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Regional Gene Therapy for Cancer

Leonid Cherkassky, Rachel Grosser, 
and Prasad S. Adusumilli

 Introduction to Cancer Gene 
Therapy

Gene therapy is a powerful technology that holds 
significant promise for cancer treatment. Many 
strategies have been explored for gene therapy, 
including correction of mutant genes, immune 
stimulation, prodrug activation, interference of 
oncogene expression, cellular therapy, and the 
use of oncolytic viruses. One of the main obsta-
cles limiting these therapies has been inefficient 
gene transfer, with subsequently poor expression. 
Achieving potent gene expression with the use of 
viral technology has been integral to the suc-
cesses recently documented for chimeric antigen 
receptor (CAR) T-cell and oncolytic virus 
therapy.

The following sections will address each ther-
apy in detail, beginning with CAR T cells and 
moving on to oncolytic viruses. We will highlight 

the principles and controversies related to these 
therapies, paying special attention to how each 
therapy is uniquely capable of optimizing key 
advantages of a regional delivery approach: 
enhanced delivery of therapeutics to the site of 
the tumor; enhanced targeting of cancer cells, 
thereby limiting normal-tissue toxicity; and gen-
eration of both a local and a systemic immune 
response that can target metastatic disease and 
potentially prevent tumor recurrence. Findings 
from investigational basic science literature will 
demonstrate the robust potential of these cancer- 
targeted gene therapies. For each therapeutic 
strategy, we will discuss the clinical trials that 
have used a regional delivery approach.

 CAR T-Cell Therapy

 Principles and Application to Solid 
Tumors

Genetic engineering technology can be used to 
redirect T cells toward cancer antigens. The T 
cell is an ideal host cell: it divides rapidly, facili-
tating viral integration, has transcriptional 
machinery that promotes high-level transgene 
expression from viral promoters, and it can estab-
lish memory for long-lasting transgene expres-
sion. And it is also a robust antitumor effector 
cell: the signaling elements activated upon tumor 
antigen recognition trigger tumor lysis, as well as 
T-cell proliferation and cytokine secretion.
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CAR T cells are tumor-specific T cells gener-
ated by the transfer of genes encoding cancer- 
targeting receptors (Fig. 5.1) [1–4]. Retroviruses 
encode for these CARs and other cellular 
enhancements, serving as the delivery system for 
genome integration and subsequent expression. 
The “chimeric” namesake refers to the fusion of 
two separate protein domains; CARs link a high- 
avidity tumor antigen–binding element derived 
from a monoclonal antibody (which provides 
cancer cell recognition) to the CD3ζ intracellular 
signaling domain (to signal T-cell activation). 
This tandem fusion results in a high-avidity 
effective binding which then leads to phosphory-
lation of the intracellular signaling portion of the 
receptor, leading to T-cell activation [5–10]. 
Further genetic modification is then superim-
posed to optimize function. To provide both sig-
nals necessary to optimize T-cell proliferation 
and survival, signaling elements include costimu-
latory domains, such as CD28 and 
4–1BB.  Multiple studies have established that 
providing costimulation genetically encoded 
within the CAR is critical for the antitumoral 
activity of adoptively transferred T cells—
enhancing both T-cell persistence and function 
[5–10]. The advent of so-called second- 
generation CARs, which combine activating and 
costimulatory signaling domains, has led to the 
successful use and subsequent FDA approval of 
two CD19-targeted CAR T-cell immunotherapies 
[11–13].

However, treating solid tumors requires over-
coming multiple obstacles—achieving effective 
T-cell infiltration of a solid tumor mass that is 
highly immunosuppressive requires genetic mod-
ifications and delivery strategies that go beyond 
those of the original CAR design. The treatment 
of solid tumors is the focus of this chapter. We 
will highlight how regional delivery, which has 
the potential to efficiently deliver T cells to the 
primary tumor site and overcome tumor- mediated 
immune inhibition, is poised to become the opti-
mal approach for CAR T-cell therapy. 
Furthermore, as with oncolytic virus therapy, the 
therapeutic benefit of regional delivery of CAR T 
cells extends beyond the local site of delivery. 
The generation of a local immune response can 
result in systemic immunosurveillance, with the 
potential to eliminate metastasis and prevent 
tumor recurrence.

 Optimizing CAR T-Cell Therapy Using 
Regional Delivery

Solid malignancies pose unique obstacles to 
T-cell therapy. Unlike hematologic malignan-
cies, which reside within the same peripheral 
compartment into which intravenously adminis-
tered cells are delivered, solid tumor masses are 
sequestered within an immunosuppressive com-
partment that can be difficult to penetrate. 
Regional therapy can overcome the limitations 

Fig. 5.1 Chimeric 
antigen receptors link an 
antibody-derived 
antigen-recognition 
domain to intracellular 
signaling domains that 
serve to activate and 
optimize T-cell function
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of systemic  administration, enhancing tumor 
infiltration and overcoming immune suppression 
(Fig. 5.2). We recently demonstrated the merits 
of regional administration of mesothelin-specific 
CAR T cells in a clinically relevant model of 
pleural mesothelioma. Regionally adminis-
tered—as compared with systemically deliv-
ered—CAR T cells displayed rapid and robust 
T-cell expansion and activation, with elimination 
of primary tumor [14]. Regional administration 
established circulation of CAR T cells that 
retained their functional activity, establishing 
T-cell memory and long-term systemic immuno-

surveillance capable of eradicating disseminated 
tumor sites. A single dose of regional CAR T-cell 
therapy provided effective protection against 
tumor rechallenge up to 200 days after the initial 
T-cell dosing; such persistence has been corre-
lated with treatment efficacy and prevention of 
tumor relapse in several preclinical models and 
clinical trials. Based on these results, intrapleu-
ral administration of CAR T cells has now been 
translated to a phase I clinical trial of pleural 
mesothelioma and breast and lung primary 
tumors metastatic to the pleura (NCT02414269 
and NCT02792114).

Fig. 5.2 [Left] Regional delivery of oncolytic virus (OV) 
is performed as either infusion or intralesional injection. 
Inset demonstrates viral infection of tumor cells leading to 
the two mechanisms of action of oncolytic viral therapy: 
(1) cancer cell death and (2) generation of a local and sys-
temic antitumor immune response. Tumor cell death leads 
to release of damage-associated and pathogen-associated 
molecular patterns (DAMPs and PAMPs), triggering den-
dritic cell (DC) activation and migration to lymph nodes 
(LN), the anatomic location where T-cell priming occurs. 
Dendritic cells activate T cells by presenting tumor anti-
gen and expressing activating cytokines and costimulatory 

ligands, leading to T-cell activation and differentiation. 
Effector T cells can now circulate to primary tumor, as 
well as to metastatic sites (MET), and effect immune-
mediated tumor cell death. [Right] Regional therapy with 
chimeric antigen receptor (CAR) T cells employs either 
indwelling catheters or transient access to the delivery site 
to infuse cancer antigen targeted T-cell therapy. CAR T 
cells recognize cancer antigen, are triggered to activate, 
and induce regression of primary tumor. Activated T cells 
also generate T-cell memory that establishes a systemic 
immunosurveillance capable of inducing regression of 
metastases and preventing tumor recurrence

5 Regional Gene Therapy for Cancer
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These results demonstrate that regional 
administration has benefits beyond treatment of 
the primary tumor. The ability of intrapleurally 
administered T cells to circulate and persist 
within the periphery opens new avenues of treat-
ment for other metastatic cancers with accessible 
tumor sites, which may serve as a “regional 
charging and distribution centers” for CAR T-cell 
therapy—in effect, treating the most accessible 
tumor site can translate into sustained responses 
in more-inaccessible tumors. Examples of can-
cers that could benefit from this treatment strat-
egy include those that metastasize to the pleural 
cavity (such as lung and breast cancers), those 
that metastasize to the peritoneal cavity (colorec-
tal and ovarian cancers), and liver metastases 
(colorectal, gastric, and pancreatic).

 Preclinical Data Supporting Regional 
CAR T-Delivery

Promising results using these approaches have 
been seen in preclinical studies of intracranial, 
intraperitoneal, and intrahepatic delivery of CAR 
T-cell therapy.

Our group at Memorial Sloan Kettering has 
shown that intrapleurally administered CAR T 
cells show enhanced antitumor efficacy in an 
orthotopic mesothelioma mouse model even at a 
reduced dose compared to systemically adminis-
tered CAR T cells, and this enhanced efficacy is 
facilitated by CD4-dependent CD8 T-cell prolif-
eration [15]. A group at Roger Williams Medical 
Center demonstrated that intraperitoneal admin-
istration of carcinoembryonic antigen (CEA)–
targeting CARs, in an animal model of colorectal 
primary tumor with peritoneal carcinomatosis, 
was superior to intravenous administration and 
was able to mediate regression of extraperitoneal 
tumor sites [16]. Other groups have similarly 
shown robust antitumor activity following intra-
peritoneal administration of CAR T cells [17]. A 
group from Sloan Kettering Institute showed that 
intraperitoneal administration of IL-12–secreting 
CAR T cells was efficacious in a model of 
MUC16-expressing ovarian peritoneal carcino-
matosis. IL-12 secretion was genetically encoded 

in the same viral vector used for CAR transduc-
tion, simplifying gene delivery and optimizing 
CD8+ T-cell function [18]. Hepatic vascular infu-
sion is another promising avenue of regional 
administration, as demonstrated by the group at 
Roger Williams. The researchers infused CAR T 
cells into the portal circulation in a model of 
CEA-expressing colorectal liver metastases [19].

Despite these preclinical successes, obstacles 
remain in the treatment of solid tumors. The 
absence of T cells 2 weeks after initial adminis-
tration in a clinical trial targeting glioblastoma 
suggested that, even with the robust T-cell infil-
tration achieved by regional delivery, CAR T 
cells may not be able to overcome all of the chal-
lenges that solid tumors present [20]. An increas-
ing amount of preclinical and clinical experience 
has demonstrated the importance of overcoming 
tumor-mediated immune inhibition, which is the 
focus of the next section.

 Gene Engineering to Enhance 
Efficacy: Engineering the T Cell 
Beyond the Car, with a Focus 
on Overcoming Immune Suppression

The immunosuppressive obstacles encountered 
by CAR T cells led to the realization that large, 
established solid tumors require CAR T cells with 
enhancements that go beyond CAR recognition 
and signaling. Although regionally delivered T 
cells may infiltrate the tumor mass more effi-
ciently than systemically delivered T cells, they 
are still subdued by a formidable immunosup-
pressive tumor environment upon arrival. Various 
groups have taken advantage of the flexibility 
afforded by viral vectors to further enhance CAR 
T-cell function, creating T cells that optimize 
T-cell metabolism [6, 9], program a stem cell–like 
pattern of expression that enhances survival and 
self-renewal [20, 21], and express cytokines and 
cytokine receptors that optimize function [1, 22].

One of the more compelling strategies is engi-
neering T cells to overcome tumor-mediated 
immune inhibition. To eliminate tumor cells, T 
cells must not only persist but must sustain 
 function in an environment rich with inhibitory 
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signaling. The success of antibodies targeting 
immune checkpoints such as programmed death 1 
(PD-1) and cytotoxic T-lymphocyte–associated 
protein 4 (CTLA-4) supports the therapeutic 
potential of counteracting immune inhibition [23–
25]. Since adoptively transferred T cells are sus-
ceptible to inhibition, strategies combining 
adoptive T-cell therapy with checkpoint blockade 
have been investigated [26–28]. In “adaptive 
immune resistance” [29], tumor cells generate 
anti-immune protection by expressing coinhibi-
tory ligands, such as PD-1 ligand, following expo-
sure to T-cell–secreted Th1 cytokines [30–32].

Our own preclinical data established that 
human CAR T cells—even when combined with 
costimulatory signaling with either 4–1BB or 
CD28—are subject to inhibition. Using a model of 
pleural mesothelioma, we demonstrated that T-cell 
exhaustion can be reversed by interfering with the 
PD-1 pathway, either by antibody blockade or by 
genetically engineering CAR T cells to overex-
press a PD-1 dominant negative receptor (which 
serves as a decoy receptor to prevent signaling 
through the native PD-1 receptor) or an shRNA-
targeting PD-1 receptor (which downregulates 
PD-1). Whereas both avenues of checkpoint 
blockade are effective, the genetically engineered 
strategy might be preferred for its efficacy and 
simplicity, as it nullifies the need for repeated anti-
body administration. Other groups have also 
developed strategies to overcome CAR T-cell inhi-
bition in solid tumors [32, 33]; examples include 
the use of IL-12–secreting CAR T cells to over-
come PD-1–mediated inhibition [34], a PD1CD28 
“switch receptor” that translates inhibitory ligand 
binding into costimulatory signaling [35], 
CRISPR/Cas9 gene editing to generate PD-1–defi-
cient CAR T cells [36], and the construction of T 
cells that secrete PD-1 antibody [37].

 Safety Engineering for CAR T-Cell 
Therapy

Retroviruses have been primarily used in CAR 
T-cell therapy to deliver the genetic sequence 
encoding the CAR. The payload is delivered as 
RNA that is then reverse-transcribed into DNA 

for permanent integration into the genome of 
patient cells. Although integration provides high 
fidelity and long-lasting expression, it also car-
ries the potential for insertional mutagenesis and 
malignant transformation. Lentiviral vectors 
have a safer integration site profile than gamma-
retroviral vectors [38]; however, both have been 
safely used at major US institutions that are pio-
neering CAR technology [39, 40].

Although CD19 CAR T cells have shown 
impressive efficacy in treating leukemia, this suc-
cess has come with significant and at times life- 
threatening side effects due to T-cell cytokine 
release leading to a systemic inflammatory 
response that manifests as fever, hypotension, 
and neurologic dysfunction. Most cases of cyto-
kine release syndrome can be treated with corti-
costeroids and IL-6–targeting antibodies, with 
the occasional need for end-organ support in the 
intensive care unit. For increased safety, “suicide 
genes” such as iCaspase-9 [41], EGFR (epider-
mal growth factor receptor) mutation [42], and 
herpes simplex virus (HSV) thymidine kinase 
[43] can be used to mediate rapid T-cell elimina-
tion after administration of a prodrug or antibody, 
should side effects persist.

Most CARs targeting solid tumors are aimed at 
antigens shared by normal tissues and, therefore, 
carry the risk of “on-target off-tumor toxicity” 
[44, 45]. Judicious selection of the target antigen 
can offset this. The optimal target is one whose 
expression is restricted to expendable cells or, bet-
ter yet, to tumor cells only. Examples of suitable 
targets include mesothelin (we have not experi-
enced any on-target off-tumor toxicities in our 
ongoing phase I clinical trial), the mutated form 
of EGFR that is expressed on glioblastoma multi-
forme tumors [46, 47], and a glycosylated form of 
MUC1 that is unique to tumor cells [48, 49]. 
Genetic strategies to limit normal-tissue  toxicity 
are also active areas of investigation [50, 51].

 Clinical Trials of T Cells Using 
Regional Delivery Strategies

Early phase clinical trials employing regional 
delivery have now emerged. Hepatic arterial 
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 infusion, achieved through percutaneous access 
of the arterial system using angiographic cathe-
ters, has been investigated as a method of delivery 
of CEA-targeting CAR T cells for the treatment of 
colorectal liver metastases. Hepatic arterial infu-
sion was well-tolerated (NCT01373047) [52]; 
intravenous delivery, on the other hand, was asso-
ciated with dose-limiting colitis (NCT00923806) 
[53]. All but 1 patient in the HAI study had more 
abundant CAR T cells in liver metastasis tissue 
compared to healthy liver tissue, including 1 
patient who had a durable presence of CAR T 
cells 12  weeks after initial administration. 
Furthermore, CAR T cells were detected in 
peripheral blood samples from only 2 of 8 
patients. Although hepatic arterial infusion may 
result in decreased toxicity, the limited systemic 
immunity generated may ultimately limit efficacy, 
especially for extrahepatic disease. As we and 
others have demonstrated in preclinical studies, 
systemic T-cell immunity focused on a safer tar-
get than CEA may be the more optimal approach, 
achieving both efficacy and safety [15]. The 
authors of the HAI study assessed response to 
treatment by monitoring CEA levels, as imaging 
studies often do not adequately reflect response to 
immunotherapy. Although seven of eight patients 
in this trial had some decrease in CEA level, all 
but one had died at the time of study publication, 
with a median overall survival of 15 weeks.

In a trial from City of Hope (NCT00730613) 
[54], IL13Rα[alpha]2-targeting CARs were 
infused directly into 3 patients with brain tumors, 
using a catheter/reservoir system. Treatment was 
well-tolerated and displayed some antitumor 
activity: 1 patient had decreased target antigen 
expression, and another had an increase in necro-
sis as measured by MRI.  A second publication 
from this group [55] describes a patient with mul-
tifocal glioblastoma recurrence including multi-
ple brain and spinal metastases who was initially 
treated with CAR T cells infused directly at a 
resected brain tumor site via catheter infusion. 
Although there was no relapse at the infused 
resection cavity, other lesions progressed. A 
remarkable response came when T cells were 
infused into the cerebrospinal fluid by accessing 
the lateral ventricle, a delivery method associated 

with complete radiographic elimination of spinal 
metastases and a good response in brain metasta-
ses. This response was durable to 7.5 months, and 
measurable T cells were present along with cyto-
kines in the cerebrospinal fluid for at least 7 days 
after each ventricular infusion.

An ongoing trial from our group at the 
Memorial Sloan Kettering has demonstrated 
safety and promising antitumor activity of intra-
pleurally administered CAR T cells targeting 
mesothelin expressed on cancer cells. Although 
we have clearly seen indications of the potential 
for efficacy of regional delivery of CAR T cells, 
clinical trials exploring this approach have thus 
far been conducted with limited numbers of 
patients (Table  5.1). We therefore await more- 
mature results to further clarify the efficacy of 
regional delivery of CAR T-cell therapy.

 Oncolytic Virus Therapy

 Background, Viral Technologies, 
and Regional Delivery to Solid 
Tumors

Oncolytic viruses are versatile, capable of direct 
lysis of the tumor, and able to deliver transgenes 
to enhance efficacy and decrease toxicity. As one 
of the mechanisms of oncolytic efficacy is tumor 
cell lysis, replication-competent viruses are spe-
cifically chosen for their ability to self-replicate 
and reinfect. The experience of using oncolytic 
viruses to treat cancer has shown they not only 
induce tumor cell lysis but also generate antitu-
mor immunity, both of which contribute to treat-
ment effect. Furthermore, as with CAR T cells, 
oncolytic viruses can be genetically engineered 
to express therapeutic transgenes that further 
enhance antitumor activity.

The benefits of regional delivery of oncolytic 
viruses are similar to those for CAR T cells 
(Fig. 5.2). Researchers at Massachusetts General 
Hospital demonstrated that intraperitoneal 
administration of an oncolytic HSV for perito-
neal metastases (colorectal primary) achieved 
better tumor lysis than systemic delivery. An 
added benefit of regional delivery was decreased 

L. Cherkassky et al.
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toxicity to normal tissues [56], enabling higher 
doses. Other examples of regional delivery of 
oncolytic viruses in the preclinical setting include 
portal infusion of HSV in a model of colorectal 
liver metastases [57], carotid infusion of HSV to 
treat head and neck squamous cell carcinoma 
[58], intrapleural administration of HSV to treat 
pleural-based lung cancer [59, 60], and intraperi-
toneal administration of a vaccinia virus to treat 
malignant peritoneal mesothelioma [61].

 Oncolytic Viruses Generate Both 
a Local and a Systemic Immune 
Response

Although classified as a local intervention, treat-
ment with oncolytic virus can elicit a systemic 
antitumor immune response, serving as an in vivo 
vaccine that generates a local innate and adaptive 
immune response with the potential of establish-
ing systemic immunity.

The progression from a local immune response 
to systemic immune surveillance follows the typ-
ical immunologic sequence of triggering innate 
immunity followed by activation of adaptive 
immunity. Oncolytic viruses induce highly 
immunogenic cell death whereby tumor cell lysis 
leads to local efflux of tumor antigens and danger 
signals that trigger antigen-specific immunity: 
dendritic cells are recruited for antigen uptake 
(and activated by cell breakdown products) and 
migrate to lymph nodes to activate the adaptive 
immune system. The end effector is the potent T 
cell, which mediates antitumor effect via tumor 
lysis and cytokine secretion. The response 
induced by T cells can be particularly robust if 
tumor antigens that are especially immunogenic 
are made available; the availability of these anti-
gens (termed “neoantigens”) depends on the 
mutation frequency found within the tumor. The 
importance of these neoantigens has been high-
lighted by studies demonstrating that unique 
mutations identified by tumor sequencing iden-
tify patients likely to respond to immunotherapy 
[62, 63]. In effect, oncolytic viruses are in vivo 
vaccinations that generate systemic immunity 
capable of inducing regression of distant, unin-

jected/uninfected tumors [64]. In other preclini-
cal studies, mice previously cleared of tumor by 
the use of an oncolytic virus remained tumor-free 
after rechallenge with tumor cells, which is con-
sistent with the establishment of immunologic 
memory and suggests that oncolytic viruses can 
play a role in preventing recurrence [65, 66]. 
Such findings are consistent with our observa-
tions that regional delivery of CAR T-cell therapy 
generates a systemic response by establishing 
circulating T-cell memory.

The ability of oncolytic viruses to generate a de 
novo endogenous immune response supports the 
use of rational combinations of oncolytic viruses 
and immune checkpoint blockade (ICB) agents. 
As the efficacy of ICB depends on the activation of 
a preexisting immune response [23, 67–69], deliv-
ery of oncolytic virus can be used to turn a “cold” 
tumor into a “hot” tumor with a pro-inflammatory/
immunogenic environment, which can be fol-
lowed by ICB to release the “brakes” on the antitu-
mor T-cell immune response [70, 71]. Preclinical 
studies have demonstrated that intralesional injec-
tion of oncolytic virus can induce T-cell infiltration 
and increase the efficacy of CTLA-4 blockade in 
melanoma tumors; the combination of intralesion-
ally administered oncolytic virus and CTLA-4 
blockade enhanced regression of both injected and 
distant metastases [64, 72].

 Safety Engineering for Oncolytic 
Viruses: Enhancing Tumor Tropism 
for Selective Replication in Tumor Cells

As we have demonstrated for CAR T cells, the 
clinical promise of oncolytic virus therapeutics 
relies on safety as much as efficacy. Safety is of 
particular concern in the case of oncolytic viruses, 
as these viruses are infectious pathogens that can 
cause disease. By regulating the viral life cycle of 
oncolytic viruses—manipulating attachment, cell 
cycle entry, and viral replication—they can be 
optimized to selectively target tumor cells.

Genetic modification can alter the viral capsid 
to enhance binding to cell-entry receptors prefer-
entially expressed on tumor cells [73] and even 
exchange the typical capsid epitopes for single- 
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chain variable fragments that target virus to a 
tumor cell surface receptor of choice [74]. 
Another way to preferentially lyse tumor cells is 
to preferentially spare normal tissue; the deletion 
of virulence genes such as thymidine kinase can 
result in selective replication within only rapidly 
dividing tumor cells that have sufficient tran-
scriptional machinery to support viral replication 
[75]. The only FDA-approved oncolytic virus 
therapy—T-VEC—is a modified HSV-1 with 
ICP34.5 inactivation, which halts replication and 
leads to apoptosis of infected normal cells [65, 
76]. Another deletion strategy is to place viru-
lence genes under the control of tumor tissue–
specific promoters [77–79].

 Genetic Engineering to Express 
Therapeutic Genes

Oncolytic viruses are extremely versatile thera-
peutics, as they can be genetically engineered 
with elements that enhance their two primary 
mechanisms of action: lytic function and stimula-
tion of antitumor immunity. Serving as a vector 
for the delivery of therapeutic genes, T-VEC 
secretes granulocyte macrophage colony- 
stimulating factor (GM-CSF), which recruits and 
activates dendritic cells for optimal antigen pre-
sentation to T cells. Other strategies aimed at bol-
stering the immune response include delivery of 
cytokines (IL-2, IL-12, TNF) [80, 81], expression 
of tumor-associated antigens [74], and the addi-
tion of costimulatory signaling [72, 82]. To 
enhance tumor lysis, transgenes have been incor-
porated (1) to activate chemotherapy prodrugs 
[83–85], and (2) to express thymidine kinase 
(which converts administered ganciclovir into the 
toxic ganciclovir monophosphate) [86].

 Clinical Trials of Oncolytic Viruses 
Using Regional Delivery Strategies

To date, only one oncolytic virus—T-VEC, an 
attenuated HSV-1 engineered to express 
GM-CSF—has been approved by the FDA for the 
treatment of cancer, specifically for advanced mel-

anoma. Promising early clinical results led to the 
first randomized controlled trial: OPTIM 
(OncovexGM-CSF Pivotal Trial in Melanoma) [87–
89]. In patients with stage IIIb, IIIc, or IV mela-
noma with unresectable but accessible lesions, 
treatment with T-VEC resulted in an enhanced 
durable objective response (16.3% vs. 2.1%; 
p < 0.001) and overall response (26.4% vs. 5.7%; 
p  <  0.001) rate, compared with recombinant 
GM-CSF. Regression was observed in injected and 
uninjected lesions, which supports the role of onco-
lytic viruses to generate systemic immunity [90]. 
Following these results, the FDA-approved T-VEC 
for the treatment of unresectable, injectable cutane-
ous, subcutaneous, and nodal melanoma with lim-
ited visceral disease. Locally delivered intralesional 
T-VEC generated an antitumor immune response; 
injected lesions accumulated MART-1–specific 
CD8+ T cells, with an associated decrease in 
CD4+FoxP3+ regulatory T cells and myeloid-
derived suppressor cells [90, 91].

Many of the preclinical studies supporting 
combination therapy with an oncolytic virus and 
an ICB agent have now been translated into clini-
cal trials (Table  5.2). The use of intralesional 
T-VEC followed by the anti–CTLA-4 antibody 
ipilimumab in patients with advanced melanoma 
[92] resulted in an objective response rate of 50%, 
with 44% of the patients exhibiting durable 
responses lasting >6  months. A subsequent ran-
domized controlled trial (comprising 198 patients 
with unresectable stage IIIB-IV melanoma) com-
pared T-VEC with and without ipilimumab and 
found a significant difference in the response rate 
(39% vs. 18%; p  =  0.002); correlative studies 
found increased levels of T cells in patients receiv-
ing T-VEC with ipilimumab [93]. The use of the 
anti–PD-1 antibody pembrolizumab may be even 
more effective—in a phase I study of 21 patients 
with melanoma, pembrolizumab resulted in a 62% 
objective response rate and an impressive 33% 
complete response rate (NCT02263508) [94].

Preclinical and clinical studies have explored 
other methods of delivery for oncolytic virus ther-
apy, including pleural and peritoneal delivery and 
hepatic arterial infusion. These methods have 
been combined with systemic therapy, including 
chemotherapy and ICB.  Intraperitoneal delivery 
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Table 5.2 Selected oncolytic trials with Regional Delivery Strategy with published results and novel study findings or 
features

NCT
Year launched
Phase
Center
Number of 
patients Virus design Cancer diagnosis Notable study feature or finding

Intrahepatic
1 NCT00012155 

[97]
2003
Phase 1
MSK
12 patients

NV 1020 Colorectal A majority of virus cleared by the liver and 
not found in systemic circulation, proving 
advantage of regional delivery
1 SAE attributed to viral therapy

Intraperitoneal
1 NCT00002960 

[98, 99]
1997
Phase 1
Multicenter
36 patients

Recombinant 
adenovirus-p53 
SCH-58500

Fallopian tube, 
ovarian, primary 
peritoneal

50% of women who completed 3 cycles of 
treatment had a CA-125 response, used to 
monitor responses
8 ≥ grade 3 AEs

2 NCT00408590 
[100]
2004
Phase 1
Mayo Clinic, 
NCI
37 patients

CEA-expressing 
measles virus with 
thyroidal sodium iodide 
symporter

Ovarian Dose-dependent CEA elevation was 
observed in peritoneal fluid and serum, 
supporting dose- dependent activity
5 patients had significant decreases in 
CA-125 levels, used to monitor responses
3 SAEs in cohort 1, 2 SAEs in cohort 2

Intrapleural
1 NCT01212367 

[101]
2009
Phase 1
UPenn, NCI
9 patients

Ad.hIFN-α[alpha] 
(Scheme 721015, 
adenoviral-mediated 
interferon alpha)

Mesothelioma No increase in humoral immune response to 
the virus antigen or mesothelin, however 
there was response to the mesothelioma 
cells. Two patients subsequently underwent 
radical pleurectomy
Dose escalation terminated due to severe 
“flu-like” symptoms. Two patients had 
catheter infections

2 NCT01119664 
[102]
2010
Phase 1,2
UPenn
40 patients

Ad.hIFN-α[alpha] 
(Scheme 721015, 
adenoviral-mediated 
interferon alpha)

Mesothelioma Median overall survival for all patients with 
epithelial histology was 21 months versus 
7 months for patients with non-epithelial 
histology. For both cohorts combined, there 
was stable disease in 62.5% of patients and 
partial responses in 25% of patients, 
however, no complete responses were 
observed
6 SAEs, none attributable to drug 
instillation

Intratumoral
1 NCT00289016 

[103]
2005
Phase 2
Multicenter
50 patients

HSV with GM-CSF 
(Talimogene 
laherparepvec)

Melanoma 26% of patients on study got to NED (3 
able to have surgery after T-VEC). 1-year 
survival was achieved for all patients who 
had partial response, complete response, or 
surgical complete response
No SAEs related to treatment
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Table 5.2 (continued)

NCT
Year launched
Phase
Center
Number of 
patients Virus design Cancer diagnosis Notable study feature or finding

2 NCT00769704 
[104]
2009
Phase 3
Multicenter
436 patients

HSV with GM-CSF 
(Talimogene 
laherparepvec)

Melanoma 26% of patients treated with T-VEC had 
OR, vs. 6% of patients treated with 
GM-CSF
No ≥ grade 3 AE occurred in ≥3% of pts. in 
either arm

3 NCT01740297 
[88]
2013
Phase 1,2
Multicenter
217 patients

HSV with GM-CSF 
(Talimogene 
laherparepvec)

Melanoma The ORR of the combination therapy group 
was 38.8% vs. 18% with ipilimumab alone. 
13.3% of patients in the combination group 
achieved complete response (vs. 7%)
Combination therapy group had a higher 
rate of response in uninjected lesions 
(35.5% vs. 13.6%)
28% of combination therapy patients and 
18% of ipilimumab patients had ≥ grade 3 
AE

4 NCT02263508 
[105]
2014
Phase 1b
Multicenter
21 patients

HSV with GM-CSF 
(Talimogene 
laherparepvec)

Melanoma Circulating CD8+ T cells, including those 
expressing Tim3 and BTLA became 
elevated during treatment with T-VEC 
initially but decreased after pembrolizumab 
began
33% of patients had grade 3 or 4 AEs

5 NCT00554372 
[106]
2008
Phase 2
Multicenter
30 patients

JX-594: Recombinant 
vaccinia virus 
(TK-deletion plus 
GM-CSF)

Hepatocellular Assessed induction of humoral antitumor 
immunity through antibody—Mediated 
complement dependent toxicity (CDC). 
11/16 patients in the high-dose cohort 
developed CDC. Also assessed cellular 
immunity and found that cytotoxic T cells 
were induced to vaccinia peptides and the 
JX-594 transgene product β-gal
4/14 patients in low dose and 4/16 patients 
in high dose had SAEs

6 NCT01227551 
[107]
2011
Phase 2
Multicenter
57 patients

Coxsackievirus A21 
(CVA21)

Melanoma Both injected and uninjected lesions 
responded. 14/40 evaluable patients (35%) 
achieved irPFS at 6 months
No ≥ grade 3 or 4 product related AEs

7 NCT02272855 
[108]
2014
Phase 2
Multicenter
46 patients

HF10 Melanoma Responding tumors showed increased total 
TILs and CD8+ T cells
3 ≥ grade 3 AEs

AE , adverse event; BTLA, B and T lymphocyte associated; CEA, carcinoembryonic antigen; GM-CSF, granulocyte 
macrophage–colony stimulating factor; HSV, herpes simplex virus; NED, no evidence of disease; SAE, severe adverse 
event; T-VEC, talimogene laherparepvec; TK, thymidine kinase
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can be used for primary tumors presenting as car-
cinomatosis. Early studies have demonstrated the 
safety and feasibility of intraperitoneal delivery. 
Patients with ovarian or primary peritoneal cavity 
cancers have received intraperitoneal delivery of 
an adenovirus (NCT00002960) via Hickman, 
Tenckhoff, or PortaCath catheters. The authors 
observed manageable toxicity and found trans-
gene expression in both ascitic fluid and tumor 
biopsy specimens. Similar to the difficulties faced 
when attempting to estimate the peritoneal sur-
face disease during preoperative evaluation, CT 
scan did not reliably identify an effect on disease, 
and measured CA-125 levels may be a better way 
to gauge treatment response in this context. 
Combination treatment with chemotherapy per-
formed the best, and a dose-dependent effect was 
observed. Regional therapy has also shown prom-
ise for malignant pleural mesothelioma. 
Intrapleural delivery (via pleural catheter) of ade-
novirus with IFN-γ (NCT01119664) and adenovi-
rus with IFN-α[alpha] (NCT01212367) have been 
safely applied in early phase clinical trials. One 
patient from the latter study had a significant 
response at both intra- and extrathoracic disease 
sites, suggesting that systemic immunity was gen-
erated. Hepatic arterial infusion is a potential 
regional delivery method for primary and meta-
static lesions to the liver. In NCT00012155, 
patients received an intraarterial injection of 
NV1020 (HSV) into the hepatic artery for the 
treatment of colorectal liver metastases.

 Conclusion

As our understanding of solid tumor immunol-
ogy deepens, and as genetic engineering technol-
ogy continues to advance, regional gene therapies 
are poised to become effective options in cancer 
treatment. Regional gene therapy may be an 
essential first step to achieving durable responses 
in solid tumors. The ability to generate both local 
and systemic antitumor immunity is an especially 
promising attribute of these treatments. Solutions 
to avoiding normal-tissue toxicity have been 
addressed in preclinical studies and have already 
been translated to the clinic. Combination treat-

ment strategies, incorporating chemotherapy, 
radiation therapy, and immunotherapies, will 
serve to enhance efficacy.
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