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Abstract. A pattern α (i. e., a string of variables and terminals)
matches a word w, if w can be obtained by uniformly replacing the
variables of α by terminal words. The respective matching problem, i. e.,
deciding whether or not a given pattern matches a given word, is gen-
erally NP-complete, but can be solved in polynomial-time for classes of
patterns with restricted structure. In this paper we overview a series of
recent results related to efficient matching for patterns with variables, as
well as a series of extensions of this problem.
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1 Introduction

A pattern with variables, called simply pattern in the context of this work, is
a string that consists of terminal symbols (e. g., a, b, c) and variables (e. g.,
x1, x2, x3). The terminal symbols are treated as constants, while the variables
are to be uniformly replaced by strings over the set of terminals (i. e., different
occurrences of the same variable are replaced by the same string); thus, a pattern
is mapped to a terminal word. For example, x1abx1x2cx2x1 can be mapped to
acabaccaaccaaac and babbacab by the replacements (x1 → ac, x2 → caa) and
(x1 → b, x2 → a), respectively.

Patterns with variables appear in various areas of theoretical computer sci-
ence, such as language theory (pattern languages [2]), learning theory (induc-
tive inference [2,24,71,77], PAC-learning [55]), combinatorics on words (word
equations [53,69], unavoidable patterns [63]), pattern matching (generalised
function matching [1,72]), database theory (extended conjunctive regular path
queries [5]), and we can also find them in practice in the form of extended regular
expressions with backreferences [12,35,39], used in programming languages like
Perl, Java, Python, etc.

Generally, in all these contexts, patterns with variables are used to model
various combinatorial pattern matching questions. For instance, searching for a
word w in a text t can be expressed as testing whether the pattern xwy can
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be mapped to t and testing whether a word w contains a cube is equivalent to
testing whether the pattern xy3z can be mapped to w, such that y is not mapped
to an empty word. Not only problems of testing whether a given word contains
a regularity or a motif of a certain form can be expressed by patterns, but also
problems asking whether a word can be factorised in a specifically restricted
manner can be modelled in this way. For instance, asking whether x2

1x
2
2 . . . x2

k

can be mapped to w, such that none of the variables xi are mapped to an empty
word, is equivalent to asking whether the word w can be factorised into k non-
empty squares.

Unfortunately, deciding whether a given arbitrary pattern can be mapped
to a given word, the matching problem, is NP-complete [2], whether we ask
that the variables are mapped to non-empty words or not. This intractability
result severely limits the practical application of patterns. Indeed, in many tasks
related to applications of patterns, the matching problem is a necessary step, so
the tasks become intractable as well. For instance, this is the case for the task of
computing so-called descriptive patterns for finite sets of words (see [2,37,38] for
more information on descriptive patterns): one cannot solve this problem without
solving a series of (general) pattern matching tasks [27]. A more detailed analysis
of the complexity of the hardness of the matching problem will be presented in
Sect. 3.

On the other hand, some strong restrictions on the structure of patterns
yield subclasses for which the matching problem is tractable (i.e., can be solved
in polynomial time). This is clearly the case of patterns where the number of dif-
ferent variables in the patterns is bounded by a constant, but more sophisticated
and general such subclasses can be defined. We will discuss a series of results
related to this topic in Sects. 4.2, 5.1 and 5.2. In our analysis, the most general
class of patterns which allow for a polynomial-time pattern matching problem is
defined by establishing a deep connection between strings/patterns and graphs,
and considering only patterns which correspond to graphs with bounded struc-
tural parameters. As such, the subclass of patterns with bounded treewidth. The
question of finding classes of patterns which can be matched in polynomial time
but do not have bounded treewidth seemed interesting to us. We show a natural
construction of such patterns in Sect. 6.

We continue this survey with a result showing that considering some of the
structural parameters, that lead to efficient pattern matching algorithms, as
general structural parameters of strings, may lead to remarkable results in other
apparently unrelated domains. We show in Sect. 7 how our results for strings can
be used to obtain a state-of-the-art approximation algorithm for computing the
cutwidth of graphs.

We conclude the survey with a series of extensions. We discuss the problem of
injective pattern matching as well as the satisfiability problem for word equations
with restricted form.

2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [62].
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We denote our alphabet by Σ, the empty word by ε, the set of all non-empty
words over Σ by Σ+, the set of all words over Σ by Σ∗, and the length of a word
w by |w|. (Σ∗, ·, ε) is the free monoid over Σ with concatenation as its binary
operation, written ·. For w ∈ Σ∗ and every integers i, j with 1 ≤ i ≤ j ≤ |w|,
let w[i..j] = w[i] · · · w[j], where w[k] represents the letter on position k and
1 ≤ k ≤ |w|. A period of w is any positive integer p for which w[i] = w[i + p],
for all defined positions. Moreover, in this case, w is said to be p-periodic. Its
minimal period is denoted by per(w) and represents the smallest period of w.
For example, w = abacabacabacabacab has periods 8 and 4; in particular,
per(w) = 4. A word w is called periodic if per(w) ≤ |w|

2 .
The concatenation of k words w1, w2, . . . , wk is written Πi=1,kwi. If w = wi

for all integers i with 1 ≤ i ≤ k, this represents the kth power of w, denoted
by wk; here, w is a root of wk. We can further extend the notion of a power of
a word by saying that w = w[1..per(w)]

|w|
per(w) . We say that w is primitive if it

cannot be expressed as a power of exponent � of any root, where � is an integer
with � > 1. Conversely, if w = v� for some integer � > 1, then w is also called a
repetition. The infinite repetition vvv · · · of some word v is denoted vω.

For any word w ∈ Σ+ with w = xyz, we say that y is a factor of w. If x is
empty, then y is also a prefix of w, while when z is empty, then y is also a suffix.
Whenever we have a factor both as a prefix and as a suffix, the factor is said to
be a border of the word. Furthermore, every word u = yzx ∈ Σ+ is a conjugate
of w. Note that, if w is primitive, so is every conjugate of it. If w = vu, then
v−1w = u.

Let X = {x1, x2, x3, . . .} and call every x ∈ X a variable. For a finite alphabet
Σ of terminals with Σ∩X = ∅, we define PatΣ = (X ∪Σ)+ and Pat =

⋃
Σ PatΣ .

Every α ∈ Pat is a pattern and every w ∈ Σ∗ is a (terminal) word. Given a word
or a pattern v, for the smallest sets B ⊆ Σ and Y ⊆ X with v ∈ (B ∪ Y )∗,
we denote alph(v) = B and var(v) = Y . For any x ∈ Σ ∪ X and α ∈ PatΣ ,
|α|x denotes the number of occurrences of x in α; for the sake of convenience,
we set |α|x = 0 for every symbol x not in Σ ∪ X. For a pattern α, we say that
w = α[i..i + |w|] is a maximal terminal factor of α if α[i − 1] and α[i + |w| + 1]
are either not defined, or are variables.

A substitution (for α) is a mapping h : var(α) → Σ∗. For every x ∈ var(α),
we say that x is substituted by h(x) and h(α) denotes the word obtained by sub-
stituting every occurrence of a variable x in α by h(x) and leaving the terminals
unchanged. We say that the pattern α matches w ∈ Σ+ if h(α) = w for some
substitution h : var(α) → Σ∗. Substitutions of the form h : var(α) → Σ+, i. e.,
the empty word is excluded from the range of the substitution, are also called
non-erasing ; in order to emphasize that the substitution by the empty word is
allowed, we also use the term erasing substitution.

Example 1. Let β = x1ax2bx2x1x2 be a pattern and let u = bacbabbbbacbb
and v = abaabbababab be terminal words. The pattern β matches both u and
v, witnessed by the substitutions h with h(x1) = bacb, h(x2) = b and g with
g(x1) = g(x2) = ab, respectively. Moreover, β also matches the word w =
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acbbcbcb by the erasing substitution h with h(x1) = ε, h(x2) = cb; it can be
easily verified that there is no non-erasing substitution that maps β to w.

The matching problem, denoted by Match, is to decide for a given pattern
α and word w, whether there exists a substitution h with h(α) = w. The variant
where we are only concerned with non-erasing substitutions is called the non-
erasing case of the matching problem; we also use the term erasing-case in order
to emphasize that substitution by the empty word is allowed. Another special
variant is the terminal-free case of the matching problem, where the input pat-
terns are terminal-free, i. e., they do not contain any occurrences of terminal
symbol. We shall briefly discuss some particularities of these different special
cases of the matching problem in Sect. 3. Note that in the sections on efficient
algorithms, namely Sects. 5.1, 5.2, and 6, we only consider the non-erasing case
(with terminal symbols) of the matching problem. The presented results can eas-
ily be generalised to the general setting, but we prefer the respective framework
for the ease of the presentation.

For any P ⊆ Pat, the matching problem for P (or Match for P , for short)
is the matching problem, where the input patterns are from P . In the sections of
this paper we will introduce and discuss several interesting families of patterns.

As we discuss efficient algorithms, it is important to describe the compu-
tational model we use in this work. This is the standard unit-cost RAM with
logarithmic word size. Also, all logarithms appearing in our time complexity
evaluations are in base 2. For the sake of generality, we assume that whenever
we are given as input a word w ∈ Σ∗ of length n, the symbols of w are in fact
integers from {1, 2, . . . , n} (i.e., Σ = alph(w) ⊆ {1, 2, . . . , n}), and w is seen as
a sequence of integers. This is a common assumption in the area of algorithmics
on words (see, e.g., the discussion in [54]). Clearly, our algorithmic results hold
canonically for constant alphabets, as well.

3 The Hardness of the Matching Problem

First, we recall that there are several different variants of the matching prob-
lem: the most general case (substitution by the empty word and occurrences of
terminals in the patterns are possible), the non-erasing case (with terminal sym-
bols), the terminal-free (erasing) case, and finally the terminal free non-erasing
case. As we shall see, these differences do not matter too much if we are only
concerned with the matching problem of patterns. However, in other contexts
of patterns with variables (e. g., other decision problems, learning theory), these
differences are most crucial and we therefore briefly provide some background.

For the class of the so-called pattern languages, i. e., the sets of all words that
match a pattern, the difference between the erasing and the non-erasing case
is important, since these classes of formal languages differ quite substantially
with respect to basic decision problems. For example, in the non-erasing case,
two patterns describe the same language if and only if the patterns are identical
(up to a renaming of variables), while it is open whether the equivalence problem
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is even decidable in the erasing-case (see, e. g., Sect. 6 in [70], or [76]). Moreover,
the inclusion problem, which is undecidable for both the erasing and the non-
erasing case (see [36,52]), can be decided for terminal-free patterns in the erasing
case, while for terminal-free non-erasing patterns the decidability status is open
(intuitively speaking, this has to do with the fact that avoidability questions of
the form “does pattern β necessarily occur in long enough words over a k-letter
alphabet?” can be expressed as inclusion for two languages given by terminal-free
non-erasing patterns). Finally, also whether patterns (or descriptive patterns)
can be inferred from positive data strongly depends on whether the erasing
or non-erasing case is considered, or whether or not terminal symbols in the
patterns are allowed (see [37,38,75,77]).

For the matching problem (note that this corresponds to the membership
problem for pattern languages), whether we consider erasing or non-erasing sub-
stitution, or whether or not we disallow terminal symbols in the patterns, has
little impact on its computational hardness. In fact, that the matching problem
for patterns with variables is NP-complete has been independently discovered in
different communities and for slightly different problem variants (see, e. g., the
introductions of [28,30] for some remarks on the history of the investigation of
the matching problem).

If we consider the most general case, i. e., erasing substitutions and terminals
in the patterns, then a hardness-reduction is rather simple. For example, the
Boolean formula

((v1, v2, v3), (v2, v4, v5), (v3, v1, v3), (v4, v1, v2))

in 3-CNF (without negated variables) is 1-in-3 satisfiable (i. e., satisfiable with
exactly one literal per clause set to true) if and only if the following word w is
matched by the pattern α:

w = a b a b a b a
α = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

We can further observe that this simple reduction also shows that the match-
ing problem is hard even for binary terminal alphabets and under the restric-
tion that variables are substituted by single symbols (or the empty word) only.
This directly raises the questions under which restrictions the matching problem
remains hard. For example, a problem instance has a large number of natural
parameters (length of the pattern, length of the word, number of variables, num-
ber of occurrences per variable, alphabet size, length of words substituted for
variables) and in addition to that, it comes in four natural variants resulting from
whether we consider the erasing or non-erasing case, and whether or not we allow
terminals in the pattern. In the above reduction, the number of variables, the
number of occurrences per each variable and the word length are unbounded.

All these numerous restricted problem variants have been thoroughly investi-
gated in [29] and it turns out that the matching problem remains NP-hard under
rather strong restrictions. We cite the following result as an example and refer
to [29] for further details.
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Theorem 1 ([29]). The erasing case of the matching problem for patterns with
variables is NP-complete, even if Σ = {a, b}, every variable has at most 2 occur-
rences and every variable can only be substituted by a single symbol or the empty
word.

This result also holds as stated for terminal-free patterns. In the non-erasing
case, however, it holds when the bound on the substitution words is 3 instead
of 1, and in the non-erasing and terminal-free case the result holds when addi-
tionally the bounds on the occurrences per variable and alphabet size are 3 and
4, respectively.

The only polynomial-time solvable cases of the matching problem obtained
by restricting the numerical parameters mentioned above are trivial ones. More
precisely, the matching problem can be easily solved for unary alphabets (in
this case, we only have to solve an equation in the integers and with integer
coefficients, which are given in unary encoding), or if every variable has only
one occurrence (the patterns are then regular, see Sect. 4), or if the number of
variables or the length of the input word is bounded by a constant (the former
is obvious, while the latter, in the erasing case, requires a slightly more careful
argument [45]).

In particular, this also points out that Theorem 1 describes some kind of
dichotomy, i. e., if we would further restrict the alphabet size, or the maximum
number of occurrences per variable to 1, then we would obtain a polynomial-
time solvable variant (even if all other parameters are unrestricted); similarly, if
we allow variables to be substituted by single symbols only, but not the empty
word, then the matching problem becomes efficiently solvable as well (regardless
of the alphabet size).

Generally, by brute-force algorithms, the matching problem can be solved
in time |α|O(|w|) or |w|O(|α|), making it polynomial-time solvable provided that
there is a constant upper bound on |w| or |α| (in fact, a bound on | var(α)| is
sufficient). However, this constant upper bound occurs in the exponent, which
means that even for rather low such bounds, say 7, the corresponding polynomial-
time algorithms are most likely impractical for larger problem instances. This
leads to the question whether exponential-time algorithms are possible whose
running-times are such that the exponential part exclusively depends on, say
| var(α)|, but not on |w|, i. e., running-times of the form f(| var(α)|)× g(|α|, |w|),
where g is a polynomial and f is some computable function (exponential, or even
double-exponential etc.). Such a running-time is polynomial for upper bounded
| var(α)|, but the degree of the polynomial is always the same independent from
the actual upper bound. If a problem has an algorithm with such a running-time,
then it is called fixed-parameter tractable (with respect to the bounded param-
eter); see the textbooks [23,32] for more information on parameterised com-
plexity. Whether the matching problem for patterns with variables allows fixed-
parameter tractability for some parameters has been thoroughly investigated
in [31]. Although there are some more or less trivial cases of fixed-parameter
tractability, the main insight provided by [31] is of a negative nature and can be
summarised in the following way.
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Theorem 2 ([31]). All variants of the matching problem parameterised by |α|
are W[1]-hard. The erasing case of the matching problem parameterised by |w|
is W[1]-hard.1

Note that since |α| and |w| are rather general parameters, this result cov-
ers other parameters as well, e. g., |Σ| or | var(α)|. In the non-erasing case,
|w| is an upper bound for | var(α)|; thus, treating |w| as a parameter means
that | var(α)| is also a parameter and therefore the matching problem is fixed-
parameter tractable by the obvious brute-force algorithm. We refer to [31] for
further such simple fixed-parameter tractable case.

Consequently, even strong restrictions of the obvious numerical parameters
of instances of the matching problem, i. e., number of variables, alphabet size,
occurrences per variable etc., does not yield interesting efficiently matchable
subclasses of patterns with variables. However, as discussed in the next section,
looking deeper into the structure of patterns will help.

4 Structural Restrictions for Patterns

From an intuitive point of view it is clear that not only the mere length of a
pattern or the number of its variables should have an impact on the matching
complexity, but also the actual order of the variables. For example, it has been
observed rather early in [81] that if the variable occurrences in the patterns
are sorted, e. g., as in x1ax1x2x2abx2x2ax3x4cx4, then they can be matched
efficiently “from-left-to-right” (more precisely, it is observed in [81] that matching
such patterns can be done in logarithmic space).

A systematic investigation of such structural restrictions has been done in
the last decade and numerous efficiently matchable subclasses of patterns have
been found. In the following, we first present a unifying approach based on graph
morphisms and the concept of treewidth. Then, we define and summarise several
structural parameters for patterns and respective subclasses of patterns.

4.1 Pattern Matching by Graph Morphisms

The following general framework for matching patterns with variables has been
developed in [78]. For a pattern α ∈ (X ∪Σ∗), the standard graph representation
of α is the undirected graph Gpat

α = (Vα, Eα), where Vα = {1, 2, . . . , |α|} and
Eα = Eequ

α ∪ Enei
α with Eequ

α = {{i, i + 1} | 1 ≤ i ≤ |α − 1|} being the set of
neighbour edges and Eequ

α = {{i, j} | α[i..j] = xβx, x ∈ X, |β|x = 0} being the
set of equality edges (see Fig. 1 for an illustration).

In a similar way, we can also encode words w ∈ Σ∗ as graph structures Gwo
w ,

where every factor w[i..j] of w is represented by a vertex (i, j), equality edges
are drawn between (i, j) and (i′, j′) if w[i..j] = w[i′..j′], and neighbour edges if
j+1 = i′. It has been shown in [78] that α matches w if and only if there is a graph
1 Problems that are hard for the parameterised complexity class W[1] are strongly

believed to be not fixed-parameter tractable.
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Fig. 1. The standard graph representation Gpat
α for α = x1x2x3bbx2x1ax2x3x2cx1; the

dashed, straight and dotted equality edges correspond to occurrences of x1, x2 and x3,
respectively; the grey vertices correspond to occurrences of terminal symbols.

morphism from Gpat
α to Gwo

w . Moreover, the concept of the treewidth for graphs
now also applies to patterns (i. e., the treewidth of a pattern is the treewidth of its
standard graph representation), which is of relevance since the graph morphism
problem can be solved in polynomial-time provided that the source graphs have
bounded treewidth.2 Consequently, we can conclude the following algorithmic
meta-theorem.

Theorem 3 ([78]). If a class P of patterns has bounded treewidth, then the
matching problem for P can be solved in polynomial-time.

Due to the generality of the statement of Theorem 3, the polynomial-time
matching algorithm that it implies is of little practical value, even for rather
simple classes of patterns. On the other hand, its theoretical relevance is demon-
strated by the fact that it covers almost all known classes of patterns with a
polynomial-time matching problem.3 After an additional remark regarding [78],
we shall briefly define and compare those efficiently matchable classes of patterns
in the next subsection.

Remark 1. Technically, the matching problem reduces to the morphism problem
for (simple) relational structures instead of undirected graphs. However, since
we are here only interested in the treewidth of these structures, we can as well
only talk about the underlying undirected graphs.

Moreover, the actual meta-theorem of [78] is stronger in the sense that there
the treewidth of patterns is not defined with respect to the standard graph
representation, but with respect to a slightly more general graph representations
(i. e., we allow any way of drawing the equality edges as long as all vertices
corresponding to the same variable form a connected component).

4.2 Efficiently Matchable Classes of Patterns

The most obvious way to restrict patterns is to limit their number of (repeated)
variables or the number of occurrences per variable. In this regard, let vark
and repvk be the class of patterns with at most k variables and with at most k

2 See [23,32] for a formal definition of the treewidth.
3 See Sect. 6 for the respective exceptions.
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repeated variables, respectively. Due to Theorem 1, we already know that bound-
ing the number of occurrences per variable does not in general yield polynomial-
time matchable classes. The only exception are patterns with at most one occur-
rence per variable, which are called regular patterns and are denoted by reg, e. g.,
x1ax2bacx3a is a regular pattern. Regular patterns have been first considered
in [81] and their name is motivated by the fact that the corresponding pattern
languages are regular languages.

Next, we define the so-called scope coincidence degree (see [78]). For every
y ∈ var(α), the scope of y in α is defined by scα(y) = {i, i + 1, . . . , j}, where
i is the leftmost and j the rightmost occurrence of y in α. The scopes of some
variables y1, y2, . . . , yk ∈ var(α) coincide in α if

⋂
1≤i≤k scα(yi) 	= ∅. By scd(α),

we denote the scope coincidence degree of α, which is the maximum number
of variables in α such that their scopes coincide, and by scdk, we denote the
class of patterns with scope coincidence degree of at most k. See Fig. 2 for an
example of the scope coincidence degree. An important special class is scd1,
which has been first introduced in [81] as the class of non-cross patterns (denoted
by nc). Intuitively speaking, the variables in non-cross patterns are sorted, e. g.,
x1ax1x2bax2cx3ax3x3.

α1 = x1 x2 x1 x3 x2 x3 x1 x2 x3

α2 = x1 x2 x1 x1 x2 x3 x2 x3 x3

Fig. 2. Two pattern α1 and α2 with scd(α1) = 3 and scd(α2) = 2. The scopes of
variable x1 (dashed line), x2 (straight line) and x3 (dotted line) are highlighted.

Next, we define the locality number, which is a general string-parameter, and
which has been first introduced in [15]. A word is k-local if there exists an order
of its symbols such that, if we mark the symbols in the respective order (which is
called a marking sequence), at each stage there are at most k contiguous blocks
of marked symbols in the word. This k is called the marking number of that
marking sequence. The locality number of a word is the smallest k for which
that word is k-local, or, in other words, the minimum marking number over
all marking sequences. For example, the marking sequence σ = (a, g, c) marks
w = agagcac as follows (marked blocks are illustrated by overlines): agagcac,
agagcac, agagcac, agagcac; thus, the marking number of σ is 3. In fact, all
marking sequences for w have a marking number of 3, except (g, a, c), for which
it is 2: agagcac, agagcac, agagcac. Thus, the locality number of w, denoted by
loc(w), is 2. When we measure the locality number for patterns, we simply ignore
all terminal symbols, e. g., loc(abx1x2ax1x2cx3x1ax3) = loc(x1x2x1x2x3x1x3) =
2. The class of patterns with locality number at most k is denoted by lock.

The next classes have been first considered in [78] and are based on possible
nesting structures of variables. For a pattern α, we call two variables x, y ∈ var(α)
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entwined if α contains xyxy or yxyx as a subsequence. A pattern α is nested,
if no two variables in α are entwined; the class of nested patterns is denoted
by nest. A proper subclass of nest, considered in [15], are the so-called strongly
nested patterns (denoted by snest), which are inductively defined as follows: any
pattern α ∈ var1 is strongly nested; if α1 and α2 are strongly nested and variable-
disjoint patterns, x is a variable not in var(α1)∪var(α2) and β1, β2 ∈ ({x}∪Σ)∗,
then α1α2 and β1α1β2 are strongly nested patterns. For example, the pattern
α = x1x2ax2x1bx3x4ax3 is strongly nested, whereas αx1 is nested, but not
strongly nested anymore.

If, for every x, y ∈ var(α), α = βxγ1yγ2xγ3yδ implies γ2 = ε, then α is called
closely entwined, and a pattern α is mildly entwined if it is closely entwined
and, for every x ∈ var(α), if α = βxγxδ with |γ|x = 0, then γ is nested. We
denote the class of mildly entwined patterns by ment. The main motivation for
the somewhat peculiar class of mildly entwined patterns is that mildly entwined
patterns are exactly those patterns that have a standard graph representation
that is outer-planar (see [78]).4 It is known that outer-planar graphs have a rather
low treewidth of at most 2. Since the concept of outer-planarity generalises to k-
outer-planarity and k-outer-planar graphs have a treewidth of at most 3k−1, we
can also define the classes outpk of k-outer-planar patterns (i. e., their standard
graph representation is k-outer-planar). In this regard note that outp1 = ment.
See Fig. 3 for an example of a mildly-entwined pattern.

Fig. 3. The standard graph representation Gpat
α for α =

x1x3x4x3x1x2x3x5bx5x2x5x6ax6x2. By definition, α is mildly entwined. Further-
more, since no vertex is completely “surrounded” by edges, the shown embedding is
outer-planar.

It can be easily verified that all of the pattern classes defined above have
bounded treewidth; thus, by application of Theorem 3, they can be matched
efficiently. For some of them this upper bound on the treewidth is rather low
(e. g., reg, nc, ment), while for those classes obtained by bounding a structural
parameter, e. g., repvk, scdk, lock, the bound on the treewidth also grows with
this parameter. Figure 4 shows how these pattern classes relate to each other
and how they form infinite hierarchies within the class of all patterns (denoted
by Pat).

In a sense, Fig. 4 is a “tractability map” for the matching problem of patterns
with variables. For the classes that have low treewidth, we can expect matching
algorithms that are rather efficient. On the other hand, these classes are quite

4 A graph is outer-planar if it has a planar embedding with all vertices lying on the
outer face.
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ncreg

var1 var2 var3 var4 . . .

repv1 repv2 repv3 repv4 . . .

scd2 scd3 scd4 . . .

loc1 loc2 loc3 loc4 . . .

snest nest ment outp2 outp3 . . .

Pat

Fig. 4. An overview of efficiently matchable classes of patterns. By A → B, we denote
A ⊂ B; pairs without arrow are incomparable. Note that nc = scd1 and ment = outp1.

restricted (compared to the full class of patterns) and are most likely only appli-
cable for very special pattern matching tasks. An obvious approach to matching
general patterns would be to first perform a preprocessing that identifies a “low
class” of the tractability map that contains the input pattern and then uses
the most efficient algorithm for matching it. In this regard, it is even an asset
that most of the different efficiently matchable classes and hierarchies of classes
are incomparable: it is possible that an input pattern has a very large locality
number of 100, but can nevertheless be matched efficiently, because its standard
graph representation is 2-outerplanar; on the other hand, a pattern could have a
large scope coincidence degree and a large number of variables, but at the same
time a very low locality number. It might even be a worthwhile research task to
experimentally analyse a large corpus of (random) patterns with respect to the
classes of the tractability map in which they are contained.

Remark 2. Bounding the structural parameters defined above yields polynomial-
time matchable classes of patterns; thus, the question arises whether the match-
ing problem is also fixed-parameter tractable with respect to those parameters.
However, Theorem 2 already states that this is most likely not the case for param-
eter | var(α)|, and since | var(α)| is an upper bound for the number of repeated
variables, the scope coincidence degree, the outer-planarity and the locality num-
ber of α, it is also highly unlikely that we can achieve fixed-parameter tractability
with respect to those parameters.

4.3 Computing Structural Parameters for Patterns

Since the structural restrictions of patterns surveyed above are all meant to be
exploited algorithmically, the task of checking them (or computing the respective
parameters) is an important issue. In this regard, note that in general comput-
ing the treewidth of a graph is an NP-hard problem and it is also not known
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whether it can be computed efficiently for standard graph representations of
patterns. This also emphasises the importance of easily computable parameters
that are bounding the treewidth of a pattern and also points out why the value
of Theorem 3 is of a theoretical nature that provides guidance in finding such
restrictions with higher practical relevance. Restrictions like the regularity, the
non-cross condition, number of (repeated) variables and the different nesting
properties can be easily checked for. Moreover, also the scopes of a pattern and
therefore its scope coincidence degree can be efficiently computed, and the small-
est k for which a graph is k-outerplanar can also be computed in polynomial time
(for more details see [79]). On the other hand, computing the locality number
seems more difficult and it was left open in [15] whether or not is hard to com-
pute. This gap was closed in [13] where it was shown that computing the locality
number is NP-hard, but fixed-parameter tractable (if the locality number or |Σ|
is considered a parameter); in addition, approximation of the locality number
has also been investigated in [13] (note that these result will be discussed in
more detail in Sect. 7).

5 Faster Pattern Matching

In this section we will overview some efficient matching algorithms developed for
various classes of patterns, some defined already in the previous sections, and
some defined via some other natural structural restrictions. Most of the result
of this paper were shown in [15,16,26].

5.1 Patterns with Low Scope Coincidence Degree

We start with several definitions. The one-variable blocks in a pattern are max-
imal contiguous blocks of occurrences of the same variable. A pattern α with
m one-variable blocks can be written as α = w0Πi=1,m(zki

i wi) with zi ∈ var(α)
for i ∈ {1, 2, . . . ,m} and zi 	= zi+1, whenever wi = ε for i ∈ {1, 2, . . . ,m − 1}.
The number of one-variable blocks is a natural complexity measure that we will
consider.

Example 2. The pattern α = x1x2x2ax2x2x2x3ax3x2x2x3x3 has 7 one-variable
blocks: x1, x2x2, x2x2x2, x3, x3, x2x2, x3x3.

As discussed in the previous sections, prominent subclasses of patterns for
which Match can be solved in polynomial time are the classes of patterns with
a bounded number of (repeated) variables (vark and repvk), of regular patterns
(reg), of non-cross patterns (nc), and of patterns with a bounded scope coinci-
dence degree (scdk). However, the known respective algorithms are rather poor
considering their running times. For example, for vark, the matching problem
can be solved in O(mnk−1

(k−1)! ), where m and n are the lengths of the pattern and
the word (see [47]). For patterns with a scope coincidence degree of at most k,
an O(mn2(k+3)(k +2)2) time algorithm can be derived using the general match-
ing technique described by Theorem 3, where m and n are the lengths of the
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pattern and the word, respectively, and the proof that the matching problem for
non-cross patterns is in P (see [81]) leads to an O(n4)-time algorithm. Hence, for
all these classes, we consider the following refinement of the problem of showing
that the matching problem for a class of patterns is in P.

Problem 1. Let K be a class of patterns for which the matching problem can be
solved in polynomial time. Find an efficient algorithm that solves the matching
problem for K.

The main class of patters considered in the following is that of patterns with
bounded scope coincidence degree, and its subclasses.

If the scope coincidence degree is bounded by 1, i. e., non-cross patterns, we
can decide whether a pattern α having m one-variable blocks matches a word w of
length n in O(mn log n) time. This result can be achieved via a general dynamic
programming approach, which tries to match prefixes of the pattern α to the
prefixes of the word w. This general approach is rather standard but the big gain
is that it can be implemented efficiently by a detailed combinatorial analysis of
the possible matches between the one-variable blocks occurring in α and factors
of w. For instance, if the shortest factor of α containing all occurrences of a
variable x starts with a one-variable block containing at least two occurrences
the variable x, we can efficiently find the matches of this factor by exploiting a
major result from [14], which states that the primitively rooted squares contained
in a word of length n can be listed optimally in O(n log n). As each match for a
factor starting with two occurrences of a variable starts with a primitively rooted
square, the respective matches can be found efficiently. The result regarding
primitively rooted squares can be extended to show that, given a word w of
length n and a word v with length shorter than n, the word w contains O(n log n)
factors of the form uvu with uv primitive, and all these factors can be found
optimally in O(n log n) time. This allows us to find efficiently the matches for
one-variable that the shortest factor of α which contains all occurrences of x
and starts with xvx, for all choices of a variable x such that v is a non-empty
terminal string.

Theorem 4 ([26]). The matching problem for nc is solvable in O(mn log n)
time, where w is the input word of length n and m is the number of one-variable
blocks occurring in the pattern.

Two particular subclasses of non-cross patterns are of interest: the regular
patterns reg and the one-variable patterns var1 (see also Fig. 4). It is not hard to
show that regular patterns can be matched in linear time O(|α| + |w|), by itera-
tively using the Knuth-Morris-Pratt algorithm to identify greedily the terminal
factors occurring in the pattern, in their orders of occurrences. All factors of a
word w that match a given regular pattern α can be detected in linear time too.

More interesting is the case of one-variable patterns. The simplest example of
one-variable patterns are the repetitions, i.e., patterns of the form xk. Checking
whether a word is a match for a pattern xk can be done in linear time. Moreover,
a compact representation of all periodic factors of a word w can be also obtained



14 F. Manea and M. L. Schmid

in linear time by identifying the (at most |w|) so-called runs inside w [4]. With
this, a compact representation of occurrences of xk in w can also be obtained in
linear time. More complex one-variable patterns are the pseudo-repetitions (see
[41,43,44] and the references therein). These are patterns from {x, xR}∗, where
xR is a variable that is always substituted by the reverse image of the string
substituting x. Checking whether a string matches a given pseudo-repetition
can be done in linear time [44]. The following general result can be shown for
one-variable patterns, see [59]. Given a pattern α = v1xv2x · · · vr−1xvr such that
x is a variable and v1, v2, . . . , vr are terminal strings, a compact representation of
all P instances of α in the input string w of length n can be computed in O(rn)
time, so that one can report those occurrences in O(P ) time. The same result
holds also for the case when some of the occurrences of x in such a pattern are
replaced by xR. It is worth noting that using this algorithm to find the factors
of a given word that match the shortest factor of α containing all occurrences
of a variable x inside a non-cross pattern in our approach for matching nc does
not lead to a faster matching algorithm in that case.

When considering general patterns with bounded scope coincidence degree,
one can show, using a similar dynamic programming approach as in the case of
non-cross patterns, that the matching problem for scdk is solvable in O( mn2k

((k−1)!)2 )
time, where n is the length of the input word and m is, again, the number
of one-variable blocks occurring in the pattern. One should note that in this
case it seems hard to use the combinatorial insights used for non-cross patterns
(thus, the log n factor is replaced by an n factor in the evaluation of the time
complexity), but, still, this algorithm is significantly faster than the previously
known solution.

Theorem 5 ([26]). The matching problem for scdk is solvable in O
(

mn2k

((k−1)!)2

)

time, where w is the input word of length n and m is the number of one-variable
blocks occurring in the pattern.

Next we consider the classes repvk. For the basic case of k = 1, the matching
problem can be solved in O(n2) time, where n is the length of the input word.
The idea of this algorithm is to guess the length � of the repeated variable x, and
then to partition the suffix array of the input word into clusters, such that all
suffixes in a cluster start with the same factor of length �. Essentially, in a match
between the pattern and the word, where x is mapped to a factor of length �,
the positions where the factors matching x occur in the input word belong to
the same cluster. Using this idea, the desired complexity is then reached, again
via dynamic programming.

Theorem 6 ([26]). The matching problem for repvk is solvable in quadratic
time.

Further, one can use this result to show that the matching problem for the
general class of patterns repvk is solvable in O( n2k

((k−1)!)2 ) time. This algorithm
is better than the one that could have been obtained by using the fact that
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patterns with at most k repeated variables have the scope coincidence degree
bounded by k+1, and then directly applying our previous algorithm solving the
matching problem for scdk+1.

Theorem 7 ([26]). The matching problem for repvk is solvable in O
(

n2k

((k−1)!)2

)

time, where n is the length of the input word.

Note that the classes of non-cross patterns and of patterns with a bounded
scope coincidence degree or with a bounded number of repeated variables are
of special interest, since for them we can compute so-called descriptive patterns
(see [2,81]) in polynomial time. A pattern α is descriptive (with respect to, say,
non-cross patterns) for a finite set S of words if it can generate all words in S
and there exists no other non-cross pattern that describes the elements of S in a
better way. Computing a descriptive pattern, which is NP-complete in general,
means to infer a pattern common to a finite set of words, with applications for
inductive inference of pattern languages (see [71]). For example, our algorithm
for computing non-cross patterns can be used in order to obtain an algorithm
that computes a descriptive non-cross pattern in time O(

∑
w∈S(m2|w| log |w|)),

where m is the length of a shortest word of S (see [27] for details).
The algorithms, except the ones for the basic cases of regular and non-cross

patterns and patterns with only one repeated variable, still have an exponen-
tial dependency on the number of repeated variables or the scope coincidence
degree. Therefore, only for very low constant bounds on these parameters can
these algorithms be considered efficient. Naturally, finding a polynomial time
algorithm for which the degree of the polynomial does not depend on the num-
ber of repeated variables or on the scope coincidence degree would be desirable.
However, by Remark 2 such algorithms are very unlikely.

Finally we recall a result regarding gapped repeats and palindromes. A gapped
repeat (palindrome) is an instance of a terminal-free pattern xyx (respectively,
xyxR). For α ≥ 1, an α-gapped repeat in a word w is a factor uvu of w such
that |uv| ≤ α|u|; the two factors u in such a repeat are called arms, while the
factor v is called gap. Such a repeat is called maximal if its arms cannot be
extended simultaneously with the same symbol to the right or, respectively, to
the left. In a sense, α-gapped repeats are instances of the pattern xyx where
length constraints are imposed on the strings that substitute x and y. In [42]
it was shown that the number of maximal α-gapped repeats that may occur
in a word is upper bounded by 18αn. Using this, an algorithm finding all the
maximal α-gapped repeats of a word in O(αn) was defined; this result is optimal,
in the worst case, as there are words that have Θ(αn) maximal α-gapped repeats.
Comparable results were developed for the case of α-gapped palindromes, i.e.,
factors uvuR with |uv| ≤ α|u|. On the one hand, these results were relevant as
they provided optimal algorithms for the identification of α-gapped repeats and
palindromes, and closed an open problem from [57,58] (see also [42] and the
references therein for more on gapped repeats and palindromes). On the other
hand, they point towards the study of Match for patterns with (linear) length
constraints on the images of the variables.
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5.2 Patterns with Low Locality Number

Intuitively, the notion of k-locality (already introduced in Sect. 4.2) involves
marking the variables in the pattern in some arbitrary order until all the variables
are marked. The pattern is k-local if this marking can be done while never
creating more than k marked blocks. Variables which only occur adjacent to
those which are already marked can be marked “for free” – without creating any
new blocks, and thus a valid marking sequence allows a sort-of parsing of the
pattern whilst maintaining a degree of closeness (locality) to the parts already
parsed. The notion of k-locality was introduced and further analysed in [15].
With respect to pattern matching, the main result proven in that paper is the
following:

Theorem 8 ([15]). Match for lock can be decided in O(mknmax (3k−1,2k+1))
time, where m is the length of the input pattern and n is the length of the input
word.

To solve the matching problem for lock we use the following idea. Using a simple
dynamic programming approach we can show that, given a pattern β ∈ (X∪Σ)∗

of length m, we can decide in O(m2kk) time whether β ∈ lock, and if the answer
is positive, we can produce in the same time a marking sequence witnessing that
β is k-local. As such we can keep track of the marked factors in the pattern, while
executing the marking according to the computed marking sequence. We also
need now to keep track to which factors of the input word the marked factors
correspond. Then we try to assign every new variable so that it fits nicely around
the already matched factors. This is done efficiently using a data structure from
[59], mentioned also above: given a word w and a one-variable pattern γ (so,
| var(γ)| = 1), one can produce a compact representation of all the g factors
of w matching γ in O(|γ||w|) time; moreover, we can obtain all the g factors
of w matching γ in O(|g|) time. This allows us to test efficiently which factors
of w match any of the one-variable blocks of β, and, ultimately, to assign a
value to each variable. In comparison to the algorithm from [78] for patterns
of bounded treewidth, which firstly constructs relational structures from α and
w, and solves the homomorphism problem on these relational structures (see
Sect. 4.1), the above algorithm exploits directly the locality structure present in
the patterns. The advantage of this more focussed approach is that it allows for
a considerable improvement in the required time, reducing the exponent of n
from 4k + 4 to 3k − 1.

6 Efficient Pattern Matching Beyond Bounded Treewidth

In [16] the authors tried to identify classes of patterns that do not have bounded
treewidth but can still be matched in polynomial time. The idea behind defining
such classes was relatively simple: consider generalised repetitions of patterns.

One simple observation is that, if we can match patterns from a class C
in polynomial time, then we can also match repetitions of these patterns in
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polynomial time: if we wish to check whether αk matches a word w, where α
is chosen from the class C for which we can solve Match efficiently, then we
can firstly check whether w = vk for some word v, and then check whether α
matches v, so we can also match αk efficiently. Moreover, it can be observed that
most parameters that lead to efficiently matchable classes, e. g., the scope coin-
cidence degree or locality, are defined independently from the terminal symbols,
i. e., via the word obtained after removing all terminals, which shall be called
skeleton in the following (e. g., the skeleton of x1ax2bax1x2b is x1x2x1x2). As
a result, it is possible that a pattern, that is not a repetition of any α ∈ C,
has nevertheless a skeleton that is a repetition of a skeleton from C. For exam-
ple, ax1(x2)3x3bx3x1(x2)2bx2a(x3)2 is not a repetition of a non-cross pattern,
but its skeleton (x1(x2)3(x3)2)2 is. In [16] it is shown that, for some important
classes C of patterns, including lock and scdk, for constant k, the polynomial
time solvability of Match does not only extend from C to exact repetitions, but
also to such skeleton-repetitions, called C-repetitions.

Theorem 9 ([16]). For C ∈ {nc, reg, lock, scdk}, solving the matching problem
for the class of C-repetitions can be done in polynomial time.

It is interesting to note that the general treewidth-based framework of poly-
nomial time matching of patterns does not seem to cover a very simple and
natural aspect: repetitions of the same pattern. More precisely, if C is one of the
known efficiently matchable classes of patterns, then a repetition αk for some
α ∈ C is usually not in C anymore. In fact, it can be shown that even for patterns
α with bounded and very low treewidth, the treewidth of repetitions αk can be
unbounded.

Theorem 10 ([16]). Let C be a class of patterns that contains reg. Then the
class of C-repetitions contains patterns with arbitrarily large treewidth.

In particular, the previous theorem holds for the class reg of regular patterns,
arguably the simplest class allowing an unbounded number of variables (note
that patterns with a constant number of variables can trivially be matched in
polynomial-time). In the same paper it is shown that if the notion of repetition
is relaxed further, by considering a setting where the order in which the variables
appear is no longer constrained at all (i.e., considering abelian repetitions instead
of repetitions), then the matching problem is NP-complete. This holds even in
the minimal case when the number of repetitions is restricted to two, and that
the pattern which is repeated is regular.

7 From Locality to Graph Parameters

Following the ideas of Sect. 3 we explore further the connection between string
and graph parameters. The main idea behind such a connection is to reach it by
“flattening” a graph into a sequential form, or by “inflating” a string into a graph,
so that algorithmic techniques available for each one of these become applicable
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for the other one as well. In this section, following [13], we are concerned with
certain structural parameters (and the problems of computing them) for graphs
and strings: the cutwidth cw(G) of a graph G (i. e., the maximum number of
“stacked” edges if the vertices of a graph are drawn on a straight line), the path-
width pw(G) of a graph G (i. e., the minimum width of a tree decomposition the
tree structure of which is a path), and the locality number loc(α) of a string α
(explained in more detail in Sect. 4.2). By Cutwidth, Pathwidth and Loc, we
denote the corresponding natural decision problems (i. e., decide whether a given
graph has a pathwidth/cutwidth, or a given string has a locality number of at
most k, for given k) and with the prefix Min, we refer to the minimisation vari-
ants. The two former graph-parameters are very classical. Pathwidth is a simple
(yet still hard to compute) subvariant of treewidth, which measures how much
a graph resembles a path. The problems Pathwidth and MinPathwidth are
intensively studied (in terms of exact, parameterised and approximation algo-
rithms) and have numerous applications (see the surveys and textbook [7,9,56]).
Cutwidth is the best known example of a whole class of so-called graph layout
problems (see the survey [20,73] for detailed information), which are studied
since the 1970s and were originally motivated by questions of circuit layouts.

In comparison, the locality number seems a rather simple parameter directly
defined on strings, but, however, it bounds the treewidth of the string (in the
sense defined in Sect. 4.1), and the corresponding marking sequences can be seen
as instructions for a dynamic programming algorithm for matching the pattern.
In this way, it resembles a bit to the way the pathwidth and treewidth of graphs
are used in algorithmic settings. Moreover, compared to other “tractability-
parameters” of strings, it seems to cover best the treewidth of a string, but it
also cannot be efficiently computed compared to the other simpler parameters.

Going more into detail, for Loc, exact exponential-time algorithms are not
hard to be devised [15] but whether it can be solved in polynomial-time, or
whether it is at least fixed-parameter tractable was left open in the paper where
this measure was introduced. On the other hand, Pathwidth and Cutwidth
are known NP-complete problems, fixed-parameter tractable with respect to
parameter pw(G) or cw(G), respectively (even with “linear” fpt-algorithms with
running-time g(k)O(n) [8,10,82]). With respect to approximation, their min-
imisation variants have received a lot of attention, mainly because they yield
(like many other graph parameters) general algorithmic approaches for numer-
ous graph problems, i. e., a good linear arrangement or path-decomposition can
often be used to design a dynamic programming (or even divide and conquer)
algorithm for other problems. The best known approximation algorithms for the
problems MinPathwidth and MinCutwidth (with approximations ratios of
O(

√
log(opt) log(n)) and O(log2(n)), respectively) follow from approximations

of vertex separators (see [25]) and edge separators (see [60]), respectively.
There are two natural approaches to represent a word α over alphabet Σ

as a graph Gα = (Vα, Eα): (1) Vα = {1, 2, . . . , |α|} and the edges are somehow
used to represent the actual symbols (note that this is the case for the standard
graph representation of patterns defined in Sect. 4.1), or (2) Vα = Σ and the
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edges are somehow used to represent the positions of α. A reduction of type (2)
can be defined such that |Eα| = O(|α|) and cw(Gα) = 2 loc(α), and a reduction
of type (1) can be defined such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤
2 loc(α). Since these reductions are parameterised reductions and also allow to
transfer approximation results, one may conclude that Loc is fixed-parameter
tractable if parameterised by |Σ| (note that for parameter |Σ| a simple, but less
efficient fpt-algorithm is trivially obtained by simply enumerating all marking
sequences) or by the locality number, and also that there is a polynomial-time
O(

√
log(opt) log(n))-approximation algorithm for MinLoc.

In addition, one can represent an arbitrary multi-graph G = (V,E) by a
word αG over alphabet V with |αG| = |E| and cw(G) = loc(α). This describes a
Turing-reduction from Cutwidth to Loc which also allows to transfer approx-
imation results between the minimisation variants. As a result, Loc is NP-
complete. Finally, by plugging together the reductions from MinCutwidth to
MinLoc and from MinLoc to MinPathwidth, one obtains a reduction which
transfers approximation results from MinPathwidth to MinCutwidth, which
yields an O(

√
log(opt) log(n))-approximation algorithm for MinCutwidth.

This result from [13] improved, for the first time since 1999, the best approxi-
mation for Cutwidth from [60]. Interestingly, this improvement appeared as a
side-product of relating string-parameters with graph-parameters.

Theorem 11 ([13]). There is an O(
√

log(opt) log(h))-approximation algorithm
(running in polynomial time) for MinCutwidth on multigraphs with h edges.
In particular, this yields an O(

√
log(opt) log(n))-approximation algorithm for

MinCutwidth for graphs.

Moreover, this approach allows also for establishing a direct connection
between cutwidth and pathwidth, which preserves the good algorithmic prop-
erties, and has not yet been reported in the literature so far. This is rather
surprising, since Cutwidth and Pathwidth have been jointly investigated in
the context of exact and approximation algorithms, especially in terms of bal-
anced vertex and edge separators. We think that a reason for overlooking this
connection might be that it is less obvious on the graph level and becomes more
apparent if linked via the string parameter of locality, emphasising, as such, the
value of such mixed approaches.

8 Extensions

8.1 Injectivity

In our setting, the substitutions that map variables to words are not required
to be injective, i. e., different variables can be mapped to the same word. How-
ever, the requirement of injectivity is natural in some contexts. For example,
in the pattern matching community, the first mentioning of pattern matching
with variables concerns the case where variables have to be substituted by sin-
gle symbols and in an injective way. More precisely, this parameterised pattern
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matching was introduced in [3] to formalise the problem of detecting code clones
(i. e., we want to find code segments that are created by copying some code
blocks and renaming program variables (this renaming will be injective, since
otherwise the semantic of the code might change)). More generally speaking,
the injectivity condition is appropriate whenever we know a priori that different
variables should always refer to different words (e. g., when matching the pattern

x1 name: y ; address: z ; x2 name: y ; address: z x3

in order to check whether there is a repetition of some name-address data tuple,
then it is likely that we can assume injectivity).

Depending on the actual variant, the injectivity condition can make the
matching problem harder or easier. In [26], it is shown that it is NP-hard to
decide for a given word w and an integer k whether w can be factorised into at
least k pairwise different factors. This immediately implies that the injectivity
condition makes the matching problem NP-hard even for the “trivial” pattern
class {x1x2 . . . xn | n ≥ 1} (note that this is even a subset of the class reg of
regular patterns). On the other hand, if we have an upper bound on |Σ| and
max{|h(x)| | x ∈ X} (recall that this case is still NP-hard even for bounds 2 and
1, respectively; see Theorem 1) then also the total number of possible substitu-
tion words is bounded; thus, the injectivity condition bounds the total number
of variables and therefore the matching problem becomes tractable (see [29]). A
similar observation can be made with respect to fixed-parameter tractability if
we parameterise by |Σ| and max{|h(x)| | x ∈ X} (see [31]).

8.2 Word Equations

A word equation is an equality α = β, where α and β are patterns with variables,
e. g., α = x1abx2 and β = ax1x2b define the equation x1abx2 = ax1x2b. A
solution to an equation α = β is a substitution h : (var(α) ∪ var(β)) → Σ∗ (in
the sense defined in Sect. 2) that satisfies h(α) = h(β). For the example equation
from above, the solutions are the substitutions h with h(x1) = ak, for k ≥ 0,
and h(x2) = b�, for � ≥ 0.

The study of word equations (or the existential theory of equations over
free monoids) is an important topic found at the intersection of algebra and
computer science, with significant connections to, e.g., combinatorial group or
monoid theory [21,65,66], unification [48,49,80]), and, more recently, data base
theory [33,34].

The central computational problem for word equations is the satisfiabil-
ity problem, i. e., the problem of deciding whether a given word equation
α = β has a solution or not. In this regard, the matching problem for pat-
terns with variables describes just the special case of the satisfiability problem
for word equations where one side of the equation is a terminal word, e. g.,
x1abx1x2cx2x1 = babbacab is an instance of the matching problem already
mentioned in the introduction, phrased as a word equation. Consequently, the
satisfiability problem is intractable, even for very strongly restricted cases (see
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Theorems 1 and 2). Also note that it has been shown in [22] that the solvabil-
ity problem remains NP-hard if every variable has at most two occurrences in
αβ (called quadratic equations), but the proof of [22] actually talks about the
matching problem for patterns with at most two occurrences per variable.

While the matching problem for patterns with variables is trivially decidable,
it is not at all obvious how to solve the satisfiability problem for word equations.
In fact, the question whether it is decidable was initially approached with the
expectation that it will be answered in the negative. It was, however, shown to
be decidable by Makanin [67] (see Chap. 12 of [64] for a survey). Later it was
shown that the satisfiability problem is in PSPACE by Plandowski [74]; a new
proof of this result was obtained in [51], based on a new simple technique called
recompression. There are also cases when the satisfiability problem is tractable.
For instance, word equations with only one variable can be solved in linear time
in the size of the equation, see [50]; equations with two variables can be solved
in time O(|αβ|5), see [19].

Given the fact that there are many structural restrictions of patterns that
yield tractability (with respect to the matching problem, see Sect. 4), the ques-
tion naturally arises how the complexity of the satisfiability problem for word
equations (which are essentially equations of patterns) behaves if these restric-
tions are applied to word equations. More precisely, while each class of patterns
with NP-hard matching problem yields a class of word equations with NP-hard
satisfiability problem, the hardness of the satisfiability problem for equations
with sides in some efficiently matchable class of patterns is no longer immedi-
ate. An investigation of that question was initiated in [68], where the following
results were obtained. Firstly, the satisfiability problem for non-cross word equa-
tions (i. e., word equations for which both sides are non-cross) remains NP-hard.
In particular, solving non-cross equations α = β where each variable occurs at
most three times, at most twice in α and exactly once in β, is NP-hard (note
that this constitutes the first NP-hardness result for word equations that is not
a direct conclusion from a hardness result for the matching problem). Secondly,
the satisfiability of one-repeated variable equations (i. e., at most one variable
occurs more than once in αβ, but arbitrarily many other variables occur only
once) having at least one non-repeated variable on each side, was shown to be
trivially in P.

In [18], it is shown that it is (still) NP-hard to solve regular ordered word
equations. More precisely, these are word equations where each side is a regular
pattern and the order of the variables in both sides is the same (it is, how-
ever, possible that some variables only occur on one side of the equation), e. g.,
x1ax2bax3x4 = bx1x3aax4 is a regular ordered word equation. They are particu-
lar cases of both quadratic equations and non-cross equations, so the reductions
showing the hardness of solving these more general equations do not carry over.
In particular, note that the class of regular patterns is arguably the most simple
class of patterns in terms of their matching complexity (see Sect. 5.1).

The respective hardness reduction relied on some deep word-combinatorics
ideas. As a first step, a reachability problem for a certain type of (regulated)
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string rewriting systems was introduced, and showed it is NP-complete. This was
achieved via a reduction from the problem 3-Partition [40], which is strongly
NP-complete. Then it was shown that this reachability problem can be reduced
to the satisfiability of regular-ordered word equations; in this reduction the appli-
cations of the rewriting rules of the system were encoded into the periods of the
words assigned to the variables in a solution to the equation. The main techni-
cality was to make sure to only use one occurrence of each variable per side, and
moreover to even have the variables in the same order in both sides. This result
exhibits the arguably structurally-simplest class of word equations for which the
satisfiability problem is NP-hard.

The main open problem in the area of word equations remains, even for
simple subclasses such as regular equations or quadratic equations, to show that
the satisfiability problem of word equations of the respective types is in NP
(note that this was already explicitly posed as an open question for the class of
quadratic word equations in [22]).

9 Conclusions

In this work we tried to survey several results related to the problem of matching
patterns with variables, that seem important to us. While this work is clearly
not exhaustive, it is aimed to offer a basic understanding of the problems and
state of the art in this area.

From an algorithmic point of view, the results we covered provide a wide
variety of classes of patterns with variables, for which Match can be efficiently
solved. Moreover, as explained in Sect. 4.3, it is usually easy to check whether
a pattern belongs to one of these classes. So, putting it all together, one could
use the following approach when trying to match a pattern, rather than just
using an exponential time algorithm (based, e.g., on general SMT-solvers, or
on the theory of string solving [6,83]). First, check if the pattern belongs to
one of the classes for which efficient matching algorithms are known and, then,
use this algorithm; only use a general algorithm when no customised one can be
applied. Identifying more natural pattern classes for which Match can be solved
efficiently appears, as such, as a rather useful task. Following the practically
motivated challenges that arise from the area of string solving, one could also
try to find efficient matching algorithms for various classes of patterns, enhanced
with various constraints: regular constraints, length constraints, etc.

As an important part of this survey deals with polynomial time algorithms,
it is natural to also ask whether they are optimal or not. This kind of questions
are the focus of the area of fine-grained complexity (see, e.g., the survey [11]
and the citations therein). It would be interesting to see, using tools from this
area, whether one can show lower bounds for the Match problems for different
classes of patterns.

In the light of the results from [13], it seems that exploring the connections
between string parameters and parameters for other classes of objects could lead
to some interesting results in both worlds. So, it also seems like an interesting
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challenge to explore what the structural parameters of strings that we explored
here (and maybe some other new ones) mean when various other types of data
are represented as strings, and what consequences can be derived from such a
representation.

Finally, the area of word equations abounds with open problems. As men-
tioned, it is not even clear whether the satisfiability of regular or quadratic
equations is in NP. So even if we restrict to equations with structurally simple
left and right hand sides, the complexity of solving equations is not known. Such
problems become even more involved when we consider equations with various
types of constraints (e.g., length or regular). For instance, the decidability of gen-
eral word equations with length constraints is a long standing open problem, but
it is already an interesting open question for simpler cases (once again: regular
or quadratic equations); see, e.g., [17,46,61], and the references therein. It seems
interesting to us whether some of the ideas used in matching patterns can be
transferred to solving (simplified) word equations, with or without constraints.
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