
Robert Mercaş
Daniel Reidenbach (Eds.)

LN
CS

 1
16

82

12th International Conference, WORDS 2019
Loughborough, UK, September 9–13, 2019
Proceedings

Combinatorics on Words

Lecture Notes in Computer Science 11682

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Robert Mercaş • Daniel Reidenbach (Eds.)

Combinatorics on Words
12th International Conference, WORDS 2019
Loughborough, UK, September 9–13, 2019
Proceedings

123

Editors
Robert Mercaş
Loughborough University
Loughborough, UK

Daniel Reidenbach
Loughborough University
Loughborough, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-28795-5 ISBN 978-3-030-28796-2 (eBook)
https://doi.org/10.1007/978-3-030-28796-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6034-433X
https://orcid.org/0000-0001-7996-5291
https://doi.org/10.1007/978-3-030-28796-2

Preface

This volume of Lecture Notes in Computer Science contains the proceedings of the
12th International Conference WORDS 2019, which was organized by the Department
of Computer Science at Loughborough University and held during September 9–13,
2019, in Loughborough, UK.

WORDS is the main conference series devoted to the mathematical theory of words.
In particular, the combinatorial, algebraic and algorithmic aspects of words are
emphasized. Motivations may also come from other domains such as theoretical
computer science, bioinformatics, digital geometry, symbolic dynamics, numeration
systems, text processing, number theory, etc.

The conference WORDS takes place every two years. The first conference of the
series was held in Rouen, France in 1997. Since then, the locations of WORDS
conferences have been: Rouen, France (1999), Palermo, Italy (2001), Turku, Finland
(2003 and 2013), Montréal, Canada (2005 and 2017), Marseille, France (2007),
Salerno, Italy (2009), Prague, Czech Republic (2011), and Kiel, Germany (2015).

For the fourth time in the history of WORDS, a refereed proceedings volume was
published in the Lecture Notes in Computer Science series of Springer. There were 34
submissions, from 17 countries, and each of them was reviewed by three or four
referees. The selection process was undertaken by the Program Committee with the
help of generous reviewers. From these submissions, 21 papers were selected to be
published and presented at WORDS.

In addition to the contributed presentations, WORDS featured a session In Memo-
riam: Aldo de Luca, as well as six invited talks:

– Florin Manea (Kiel University, Germany): “Matching Patterns with Variables”
– Svetlana Puzynina (Saint Petersburg State University, Russia): “Abelian Properties

of Words”
– Antonio Restivo (University of Palermo, Italy): “On Sets of Words of Rank Two”
– Gwenaël Richomme (Université Paul-Valéry Montpellier 3, France): “S-adicity and

Property Preserving Morphisms”
– Aleksi Saarela (University of Turku, Finland): “Independent Systems of Word

Equations: From Ehrenfeucht to Eighteen”
– Kristina Vušković (University of Leeds, UK): “Structure of Graph Classes and

Algorithms”

The present volume also includes the papers of five of these invited talks.
We take this opportunity to warmly thank all the invited speakers and all the authors

for their contributions. We are also grateful to all Program Committee members and the
additional reviewers for their hard work that led to the selection of papers published in
this volume. The reviewing process was facilitated by the EasyChair conference sys-
tem, created by Andrej Voronkov. Special thanks are due to Alfred Hofmann and Anna
Kramer and the Lecture Notes in Computer Science team at Springer for having

granted us the opportunity to publish this special issue devoted to WORDS 2019 and
for their help during the process. We are also grateful for the support received from the
School of Science, and especially the administrative team at Loughborough University,
the Institute of Advanced Studies at Loughborough University, the European Associ-
ation for Theoretical Computer Science, and the journal Algorithms. We gratefully
acknowledge the contribution by Alex Hewitson and Luke Bellamy, who created the
conference website, and Ovidiu Toader (from Brainik), who designed the conference
poster. Finally, we are much obliged to a number of people who contributed to the
success of the conference: our colleagues Joel Day and Manfred Kufleitner, and our
students Laura Hutchinson and Alex Smith. Our warmest thanks for their assistance in
the organization of the event!

July 2019 Robert Mercaş
Daniel Reidenbach

vi Preface

Organization

Program Committee Chairs

Robert Mercaş Loughborough University, UK
Daniel Reidenbach Loughborough University, UK

Steering Committee

Valérie Berthé IRIF, CNRS Paris 7, France
Srečko Brlek Université du Québec à Montréal, Canada
Julien Cassaigne Institut de Mathématiques de Luminy, France
Maxime Crochemore King’s College London, UK
Aldo de Luca University of Naples, Italy
Anna Frid Aix-Marseille Université, France
Juhani Karhumäki University of Turku, Finland
Jean Néraud University of Rouen, France
Dirk Nowotka Kiel University, Germany
Edita Pelantová Czech Technical University in Prague, Czech Republic
Dominique Perrin Université Paris-Est Marne-la-Vallée, France
Antonio Restivo University of Palermo, Italy
Christophe Reutenauer Université du Québec à Montréal, Canada
Jeffrey Shallit University of Waterloo, Canada
Mikhail Volkov Ural Federal University, Russia

Program Committee

Marie-Pierre Beal Université Paris-Est Marne-la-Vallée, France
Srecko Brlek Université du Québec à Montréal, Canada
Émilie Charlier University of Liege, Belgium
Volker Diekert University of Stuttgart, Germany
Gabriele Fici University of Palermo, Italy
Anna Frid Aix-Marseille Université, France
Amy Glen Murdoch University, Australia
Stepan Holub Charles University, Czech Republic
Shunsuke Inenaga Kyushu University, Japan
Robert Mercaş Loughborough University, UK
Dirk Nowotka Kiel University, Germany
Edita Pelantova Czech Technical University in Prague, Czech Republic
Jarkko Peltomäki University of Turku, Finland
Narad Rampersad University of Winnipeg, Canada

Daniel Reidenbach Loughborough University, UK
Jeffrey Shallit University of Waterloo, Canada
Arseny Shur Ural Federal University, Russia

Additional Reviewers

Bannai, Hideo
Berthe, Valerie
Cassaigne, Julien
Castiglione, Giuseppa
Catalano, Costanza
Clément, Julien
Day, Joel
De Luca, Alessandro
Dolce, Francesco
Ferrari, Luca
Fleischer, Lukas
Fleischmann, Pamela
Giammarresi, Dora
Hejda, Tomas
Hertrampf, Ulrich
Kazda, Alexandr
Kitaev, Sergey
Klouda, Karel
Kopra, Johan
Kufleitner, Manfred
Köppl, Dominik
Labbé, Sébastien
Leroy, Julien
Liptak, Zsuzsanna

Maslennikova, Marina
Massuir, Adeline
Mol, Lucas
Mühle, Henri
Nicaud, Cyril
Picantin, Matthieu
Pin, Jean-Eric
Plyushchenko, Andrei
Pribavkina, Elena
Prihoda, Pavel
Rao, Michael
Restivo, Antonio
Reutenauer, Christophe
Rindone, Giuseppina
Saarela, Aleksi
Salo, Ville
Seki, Shinnosuke
Stipulanti, Manon
Sugimoto, Shiho
Vavra, Tomas
Volkov, Mikhail
Weiss, Armin
Whiteland, Markus
Žemlička, Jan

viii Organization

On Families of Limit S-adic Words
(Invited Talk)

Gwenaël Richomme

LIRMM, Université Paul-Valéry Montpellier 3,
Université de Montpellier, CNRS, Montpellier, France

gwenael.richomme@lirmm.fr
http://www.lirmm.fr/~richomme/

Abstract. Given a set S of morphisms, an infinite word is limit S-adic if it can be
recursively desubstituted using morphisms in S. Substitutive-adicity arises nat-
urally in various studies especially in studies on infinite words with factor
complexity bounded by an affine function. In the literature, when a family F of
infinite words defined by a combinatorial property P appears to be S-adic for
some set S of morphisms, it is very rare that the whole set of limit S-adic words
coincides with F. The aim of the talk is to survey such situations in which
necessarily morphisms of S preserve the property P of infinite words.

Keywords: S-adicity • Property preserving morphisms

We assume that readers are familiar with combinatorics on words; for omitted defi-
nitions see, e.g., [5, 11, 12]. All the infinite words considered in this abstract are right
infinite words.

As explained with more details in [3], the terminology S-adic was introduced by
S. Ferenczi [8]. Without context, letter S refers to term “substitution” (and we will
sometimes use the terminology substitutive-adicity instead) and in more precise defi-
nitions, it refers to a set S of (nonerasing) morphisms. An infinite word w is said S-adic
if there exist a sequence ðfnÞn� 1 of morphisms in S and a sequence of letters ðanÞn� 1

such that limn!þ1 jf1f2 � � � fnðanþ 1Þj ¼ þ1 and w ¼ limn!þ1 f1f2 � � � fnðaxnþ 1Þ. The
sequence ðfnÞn� 1 is called a directive word of w. Assume limits wk ¼
limn!þ1 fkfkþ 1 � � � fnðaxnþ 1Þ exist for all k. Observe that w1 ¼ w and wn ¼ fnðwnþ 1Þ
for all n� 1, that is, w can be infinitely desubstituted using morphisms in S. Following
[1] (where is used terminology limit point of a sequence of substitutions), we say that w
is a limit S-adic word when such sequences ðfnÞn� 1 and ðwÞn� 1 exist. Observe that the
set of limit S-adic words is the minimal set of infinite words X such that X ¼ S

f2S f ðXÞ
that we could denote by abuse of notation X ¼ SðXÞ to emphasize the fact that limit
S-adic words are generalizations of fixed points of morphisms (and even of morphic
sequences).

Limit substitutive-adicity arises naturally in various studies as, for instance, this of
Sturmian words (see, e.g. [12, Chap. 2] and [13, Chap. 5]). It is well-known (and easy
to prove) that any Sturmian word is a limit Ssturm-adic word with Ssturm ¼ Sa [Sb,
Sa ¼ fLa;Rag, Sb ¼ fLb;Rbg, LaðaÞ ¼ a ¼ RaðaÞ, LaðbÞ ¼ ab, RaðbÞ ¼ ba,

https://orcid.org/0000-0003-2211-7448

LbðaÞ ¼ ba, RbðaÞ ¼ ab, LbðbÞ ¼ b ¼ RbðbÞ. But not all limit Ssturm-adic words are
Sturmian. Only the limit Ssturm-adic words whose directive word contains infinitely
many elements of Sa and infinitely many elements of Sb are Sturmian. This condition
can be described using infinite paths with prohibited segments in an automaton (or a
graph), here with two states (or vertices), one for each set Sa and Sb. This kind of
condition with an automaton to characterize allowed directive words is also used, for
instance, in the characterization of words for which the first difference of factor
complexity is bounded by 2 [10] or in the characterization of sequences arising from
the study of multidimensional continued fraction algorithm (see for instance [4, 6]).

In [14], answering a question of G. Fici, the author characterizes in term of limit
S-adicity the family of so-called LSP infinite words, that is the words having all their
left special factors as prefixes. For this he determines a suitable set SbLSP of morphisms
and an automaton recognizing allowed infinite desubstitutions. As the obtained char-
acterization is quite evolved, a second part of [14] considers the question of finding a
simpler S-adic characterization. It is proved that, unfortunately, it does not exist any set
of morphisms S such that the family of LSP infinite words is (exactly) the family of
limit S-adic words except in the binary case.

The aim of the talk is to consider the question: which are the known families of
infinite words defined by a combinatorial property P that correspond to a family of
limit S-adic words for some set of S of morphisms? In [14], it was observed that when
such a situation arises necessarily morphisms of S preserve the property P of infinite
words. In what follows we will say that a morphism preserves words of a family F if it
maps any word on this family on another word of this family.

In the case of Sturmian words, morphisms in Ssturm indeed preserve Sturmian
words. That all Ssturm-adic infinite words are not Sturmian comes from the fact that
some limit Ssturm-adic words are periodic. At this stage, readers should remember
that Sturmian words are the aperiodic binary balanced words (where balanced means
that the numbers of a occurring in any factors u and v of equal length may differ by at
most one). Morphisms in Ssturm preserve binary balanced words and consequently limit
Ssturm-adic words are the infinite binary balanced words.

Actually it is easy to observe that the family of Sturmian words corresponds to a
family of limit substitutive-adic words, more precisely to the family of limit S0sturm-adic
words where S0sturm ¼ S

n� 1 S
n
aSb [SnbSa. Morphisms of S0sturm are obtained composing

morphisms to enforce infinite occurrences of morphisms of each of the sets Sa and Sb in
directive words of Sturmian words. One can note that in this case the set of morphisms
S0sturm is infinite.

A similar situation holds for the Arnoux-Rauzy words [2]. They are limit-SE-adic
words for a finite set of morphisms that generalize Sturmian words and they correspond
to a family of limit substitutive-adic words for an infinite set of morphisms (obtained
concatenating morphisms in SE). The morphisms in S�E are morphisms that preserve
episturmian words [7, 9] and the set of episturmian words is exactly the set of SE-adic
words.

Although limit S-adicity reveals itself to be a useful tool to study some combina-
torial properties, although the notion of property preserving morphisms is often con-
sidered to generate words with interesting properties, the family of right infinite

x G. Richomme

balanced words and the family of episturmian words seems to be the unique known
families of words that correspond exactly to a family of limit S-adic words with S a
finite set of morphisms.

Acknowledgment. Many thanks to J. Leroy and P. Séébold for their remarks on an earlier
version of this summary.

References

1. Arnoux, P., Mizutani, M., Sellami, T.: Random product of substitutions with the same inci-
dence matrix. Theor. Comput. Sci. 543, 68–78 (2014)

2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2nþ 1. Bull. Soc.
Math. France 119(2), 199–215 (1991)

3. Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: S-adic expansions. In:
Akiyama, S. (ed.) Numeration and Substitution 2012. RIMS Kôkyûroku Bessatsu, vol. B46,
pp. 81–123 (2014)

4. Berthé, V., Labbé, S.: Factor complexity of S-adic words generated by the Arnoux–Rauzy–
Poincaré algorithm. Adv. App. Math. 63, 90–130 (2015)

5. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory, Encyclopedia of
Mathematics and Its Applications, vol. 135. Cambridge University Press (2010)

6. Cassaigne, J., Labbé, S., Leroy, J.: A set of sequences of complexity 2nþ 1. In: Brlek, S.,
Dolce, F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432,
pp. 144–156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8_14

7. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of de Luca and
Rauzy. Theoret. Comput. Sci. 255, 539–553 (2001)

8. Ferenczi, S.: Rank and symbolic complexity. Ergodic Theory Dynam. Syst. 16, 663–682
(1996)

9. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret. Comput. Sci.
276(1–2), 281–313 (2002)

10. Leroy, J.: An S-adic characterization of minimal subshifts with first difference of complexity
pðnþ 1Þ � pðnÞ� 2. Discrete Math. Theor. Comput. Sci. 16(1), 233–286 (2014)

11. Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and its Applications,
vol. 17. Addison-Wesley (1983). Reprinted in the Cambridge Mathematical Library,
Cambridge University Press, UK (1997)

12. Lothaire, M.: Algebraic Combinatorics on Words, Encyclopedia of Mathematics and Its
Applications, vol. 90. Cambridge University Press (2002)

13. Pytheas Fogg, N.: In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Substitutions in
dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics, vol. 1794.
Springer, Heidelberg (2002). https://doi.org/10.1007/b13861

14. Richomme, G.: Characterization of infinite LSP words and endomorphisms preserving the
LSP property. Internat. J. Found. Comput. Sci. 30(1), 171–196 (2019)

On Families of Limit S-adic Words xi

https://doi.org/10.1007/978-3-319-66396-8_14
https://doi.org/10.1007/b13861

Contents

Matching Patterns with Variables . 1
Florin Manea and Markus L. Schmid

Abelian Properties of Words. 28
Svetlana Puzynina

On Sets of Words of Rank Two . 46
Giuseppa Castiglione, Gabriele Fici, and Antonio Restivo

Independent Systems of Word Equations: From Ehrenfeucht to Eighteen 60
Aleksi Saarela

Parikh Determinants . 68
Adrian Atanasiu, Ghajendran Poovanandran, and Wen Chean Teh

Critical Exponent of Infinite Balanced Words via the Pell Number System. . . 80
Aseem R. Baranwal and Jeffrey Shallit

Repetitions in Infinite Palindrome-Rich Words . 93
Aseem R. Baranwal and Jeffrey Shallit

Generalized Lyndon Factorizations of Infinite Words. 106
Amanda Burcroff and Eric Winsor

On the Commutative Equivalence of Bounded Semi-linear Codes 119
Arturo Carpi and Flavio D’Alessandro

Circularly Squarefree Words and Unbordered Conjugates:
A New Approach . 133

Trevor Clokie, Daniel Gabric, and Jeffrey Shallit

The Undirected Repetition Threshold. 145
James D. Currie and Lucas Mol

Characteristic Parameters and Special Trapezoidal Words. 159
Alma D’Aniello and Alessandro De Luca

Return Words and Bifix Codes in Eventually Dendric Sets. 167
Francesco Dolce and Dominique Perrin

Enumeration and Extensions of Word-Representants 180
Marisa Gaetz and Caleb Ji

Localisation-Resistant Random Words with Small Alphabets 193
Cyril Gavoille, Ghazal Kachigar, and Gilles Zémor

On Codeword Lengths Guaranteeing Synchronization 207
Vladimir V. Gusev and Elena V. Pribavkina

Binary Intersection Revisited . 217
Štěpán Holub

On Substitutions Closed Under Derivation: Examples 226
Václav Košík and Štěpán Starosta

Templates for the k-Binomial Complexity of the Tribonacci Word 238
Marie Lejeune, Michel Rigo, and Matthieu Rosenfeld

Derived Sequences of Arnoux–Rauzy Sequences. 251
Kateřina Medková

New Results on Pseudosquare Avoidance. 264
Tim Ng, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit

Every Nonnegative Real Number Is an Abelian Critical Exponent 275
Jarkko Peltomäki and Markus A. Whiteland

Rich Words Containing Two Given Factors . 286
Josef Rukavicka

Mortality and Synchronization of Unambiguous Finite Automata 299
Andrew Ryzhikov

On Discrete Idempotent Paths. 312
Luigi Santocanale

Author Index . 327

xiv Contents

Matching Patterns with Variables

Florin Manea1(B) and Markus L. Schmid2

1 Kiel University, Kiel, Germany
flmanea@gmail.com

2 Trier University, Trier, Germany
MLSchmid@MLSchmid.de

Abstract. A pattern α (i. e., a string of variables and terminals)
matches a word w, if w can be obtained by uniformly replacing the
variables of α by terminal words. The respective matching problem, i. e.,
deciding whether or not a given pattern matches a given word, is gen-
erally NP-complete, but can be solved in polynomial-time for classes of
patterns with restricted structure. In this paper we overview a series of
recent results related to efficient matching for patterns with variables, as
well as a series of extensions of this problem.

Keywords: Combinatorial pattern matching ·
Patterns with variables · String structural parameters ·
Efficient algorithms · NP-hardness

1 Introduction

A pattern with variables, called simply pattern in the context of this work, is
a string that consists of terminal symbols (e. g., a, b, c) and variables (e. g.,
x1, x2, x3). The terminal symbols are treated as constants, while the variables
are to be uniformly replaced by strings over the set of terminals (i. e., different
occurrences of the same variable are replaced by the same string); thus, a pattern
is mapped to a terminal word. For example, x1abx1x2cx2x1 can be mapped to
acabaccaaccaaac and babbacab by the replacements (x1 → ac, x2 → caa) and
(x1 → b, x2 → a), respectively.

Patterns with variables appear in various areas of theoretical computer sci-
ence, such as language theory (pattern languages [2]), learning theory (induc-
tive inference [2,24,71,77], PAC-learning [55]), combinatorics on words (word
equations [53,69], unavoidable patterns [63]), pattern matching (generalised
function matching [1,72]), database theory (extended conjunctive regular path
queries [5]), and we can also find them in practice in the form of extended regular
expressions with backreferences [12,35,39], used in programming languages like
Perl, Java, Python, etc.

Generally, in all these contexts, patterns with variables are used to model
various combinatorial pattern matching questions. For instance, searching for a
word w in a text t can be expressed as testing whether the pattern xwy can
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 1–27, 2019.
https://doi.org/10.1007/978-3-030-28796-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_1&domain=pdf
http://orcid.org/0000-0001-6094-3324
http://orcid.org/0000-0001-5137-1504
https://doi.org/10.1007/978-3-030-28796-2_1

2 F. Manea and M. L. Schmid

be mapped to t and testing whether a word w contains a cube is equivalent to
testing whether the pattern xy3z can be mapped to w, such that y is not mapped
to an empty word. Not only problems of testing whether a given word contains
a regularity or a motif of a certain form can be expressed by patterns, but also
problems asking whether a word can be factorised in a specifically restricted
manner can be modelled in this way. For instance, asking whether x2

1x
2
2 . . . x2

k

can be mapped to w, such that none of the variables xi are mapped to an empty
word, is equivalent to asking whether the word w can be factorised into k non-
empty squares.

Unfortunately, deciding whether a given arbitrary pattern can be mapped
to a given word, the matching problem, is NP-complete [2], whether we ask
that the variables are mapped to non-empty words or not. This intractability
result severely limits the practical application of patterns. Indeed, in many tasks
related to applications of patterns, the matching problem is a necessary step, so
the tasks become intractable as well. For instance, this is the case for the task of
computing so-called descriptive patterns for finite sets of words (see [2,37,38] for
more information on descriptive patterns): one cannot solve this problem without
solving a series of (general) pattern matching tasks [27]. A more detailed analysis
of the complexity of the hardness of the matching problem will be presented in
Sect. 3.

On the other hand, some strong restrictions on the structure of patterns
yield subclasses for which the matching problem is tractable (i.e., can be solved
in polynomial time). This is clearly the case of patterns where the number of dif-
ferent variables in the patterns is bounded by a constant, but more sophisticated
and general such subclasses can be defined. We will discuss a series of results
related to this topic in Sects. 4.2, 5.1 and 5.2. In our analysis, the most general
class of patterns which allow for a polynomial-time pattern matching problem is
defined by establishing a deep connection between strings/patterns and graphs,
and considering only patterns which correspond to graphs with bounded struc-
tural parameters. As such, the subclass of patterns with bounded treewidth. The
question of finding classes of patterns which can be matched in polynomial time
but do not have bounded treewidth seemed interesting to us. We show a natural
construction of such patterns in Sect. 6.

We continue this survey with a result showing that considering some of the
structural parameters, that lead to efficient pattern matching algorithms, as
general structural parameters of strings, may lead to remarkable results in other
apparently unrelated domains. We show in Sect. 7 how our results for strings can
be used to obtain a state-of-the-art approximation algorithm for computing the
cutwidth of graphs.

We conclude the survey with a series of extensions. We discuss the problem of
injective pattern matching as well as the satisfiability problem for word equations
with restricted form.

2 Basic Definitions

For detailed definitions regarding combinatorics on words we refer to [62].

Matching Patterns with Variables 3

We denote our alphabet by Σ, the empty word by ε, the set of all non-empty
words over Σ by Σ+, the set of all words over Σ by Σ∗, and the length of a word
w by |w|. (Σ∗, ·, ε) is the free monoid over Σ with concatenation as its binary
operation, written ·. For w ∈ Σ∗ and every integers i, j with 1 ≤ i ≤ j ≤ |w|,
let w[i..j] = w[i] · · · w[j], where w[k] represents the letter on position k and
1 ≤ k ≤ |w|. A period of w is any positive integer p for which w[i] = w[i + p],
for all defined positions. Moreover, in this case, w is said to be p-periodic. Its
minimal period is denoted by per(w) and represents the smallest period of w.
For example, w = abacabacabacabacab has periods 8 and 4; in particular,
per(w) = 4. A word w is called periodic if per(w) ≤ |w|

2 .
The concatenation of k words w1, w2, . . . , wk is written Πi=1,kwi. If w = wi

for all integers i with 1 ≤ i ≤ k, this represents the kth power of w, denoted
by wk; here, w is a root of wk. We can further extend the notion of a power of
a word by saying that w = w[1..per(w)]

|w|
per(w) . We say that w is primitive if it

cannot be expressed as a power of exponent � of any root, where � is an integer
with � > 1. Conversely, if w = v� for some integer � > 1, then w is also called a
repetition. The infinite repetition vvv · · · of some word v is denoted vω.

For any word w ∈ Σ+ with w = xyz, we say that y is a factor of w. If x is
empty, then y is also a prefix of w, while when z is empty, then y is also a suffix.
Whenever we have a factor both as a prefix and as a suffix, the factor is said to
be a border of the word. Furthermore, every word u = yzx ∈ Σ+ is a conjugate
of w. Note that, if w is primitive, so is every conjugate of it. If w = vu, then
v−1w = u.

Let X = {x1, x2, x3, . . .} and call every x ∈ X a variable. For a finite alphabet
Σ of terminals with Σ∩X = ∅, we define PatΣ = (X ∪Σ)+ and Pat =

⋃
Σ PatΣ .

Every α ∈ Pat is a pattern and every w ∈ Σ∗ is a (terminal) word. Given a word
or a pattern v, for the smallest sets B ⊆ Σ and Y ⊆ X with v ∈ (B ∪ Y)∗,
we denote alph(v) = B and var(v) = Y . For any x ∈ Σ ∪ X and α ∈ PatΣ ,
|α|x denotes the number of occurrences of x in α; for the sake of convenience,
we set |α|x = 0 for every symbol x not in Σ ∪ X. For a pattern α, we say that
w = α[i..i + |w|] is a maximal terminal factor of α if α[i − 1] and α[i + |w| + 1]
are either not defined, or are variables.

A substitution (for α) is a mapping h : var(α) → Σ∗. For every x ∈ var(α),
we say that x is substituted by h(x) and h(α) denotes the word obtained by sub-
stituting every occurrence of a variable x in α by h(x) and leaving the terminals
unchanged. We say that the pattern α matches w ∈ Σ+ if h(α) = w for some
substitution h : var(α) → Σ∗. Substitutions of the form h : var(α) → Σ+, i. e.,
the empty word is excluded from the range of the substitution, are also called
non-erasing ; in order to emphasize that the substitution by the empty word is
allowed, we also use the term erasing substitution.

Example 1. Let β = x1ax2bx2x1x2 be a pattern and let u = bacbabbbbacbb
and v = abaabbababab be terminal words. The pattern β matches both u and
v, witnessed by the substitutions h with h(x1) = bacb, h(x2) = b and g with
g(x1) = g(x2) = ab, respectively. Moreover, β also matches the word w =

4 F. Manea and M. L. Schmid

acbbcbcb by the erasing substitution h with h(x1) = ε, h(x2) = cb; it can be
easily verified that there is no non-erasing substitution that maps β to w.

The matching problem, denoted by Match, is to decide for a given pattern
α and word w, whether there exists a substitution h with h(α) = w. The variant
where we are only concerned with non-erasing substitutions is called the non-
erasing case of the matching problem; we also use the term erasing-case in order
to emphasize that substitution by the empty word is allowed. Another special
variant is the terminal-free case of the matching problem, where the input pat-
terns are terminal-free, i. e., they do not contain any occurrences of terminal
symbol. We shall briefly discuss some particularities of these different special
cases of the matching problem in Sect. 3. Note that in the sections on efficient
algorithms, namely Sects. 5.1, 5.2, and 6, we only consider the non-erasing case
(with terminal symbols) of the matching problem. The presented results can eas-
ily be generalised to the general setting, but we prefer the respective framework
for the ease of the presentation.

For any P ⊆ Pat, the matching problem for P (or Match for P , for short)
is the matching problem, where the input patterns are from P . In the sections of
this paper we will introduce and discuss several interesting families of patterns.

As we discuss efficient algorithms, it is important to describe the compu-
tational model we use in this work. This is the standard unit-cost RAM with
logarithmic word size. Also, all logarithms appearing in our time complexity
evaluations are in base 2. For the sake of generality, we assume that whenever
we are given as input a word w ∈ Σ∗ of length n, the symbols of w are in fact
integers from {1, 2, . . . , n} (i.e., Σ = alph(w) ⊆ {1, 2, . . . , n}), and w is seen as
a sequence of integers. This is a common assumption in the area of algorithmics
on words (see, e.g., the discussion in [54]). Clearly, our algorithmic results hold
canonically for constant alphabets, as well.

3 The Hardness of the Matching Problem

First, we recall that there are several different variants of the matching prob-
lem: the most general case (substitution by the empty word and occurrences of
terminals in the patterns are possible), the non-erasing case (with terminal sym-
bols), the terminal-free (erasing) case, and finally the terminal free non-erasing
case. As we shall see, these differences do not matter too much if we are only
concerned with the matching problem of patterns. However, in other contexts
of patterns with variables (e. g., other decision problems, learning theory), these
differences are most crucial and we therefore briefly provide some background.

For the class of the so-called pattern languages, i. e., the sets of all words that
match a pattern, the difference between the erasing and the non-erasing case
is important, since these classes of formal languages differ quite substantially
with respect to basic decision problems. For example, in the non-erasing case,
two patterns describe the same language if and only if the patterns are identical
(up to a renaming of variables), while it is open whether the equivalence problem

Matching Patterns with Variables 5

is even decidable in the erasing-case (see, e. g., Sect. 6 in [70], or [76]). Moreover,
the inclusion problem, which is undecidable for both the erasing and the non-
erasing case (see [36,52]), can be decided for terminal-free patterns in the erasing
case, while for terminal-free non-erasing patterns the decidability status is open
(intuitively speaking, this has to do with the fact that avoidability questions of
the form “does pattern β necessarily occur in long enough words over a k-letter
alphabet?” can be expressed as inclusion for two languages given by terminal-free
non-erasing patterns). Finally, also whether patterns (or descriptive patterns)
can be inferred from positive data strongly depends on whether the erasing
or non-erasing case is considered, or whether or not terminal symbols in the
patterns are allowed (see [37,38,75,77]).

For the matching problem (note that this corresponds to the membership
problem for pattern languages), whether we consider erasing or non-erasing sub-
stitution, or whether or not we disallow terminal symbols in the patterns, has
little impact on its computational hardness. In fact, that the matching problem
for patterns with variables is NP-complete has been independently discovered in
different communities and for slightly different problem variants (see, e. g., the
introductions of [28,30] for some remarks on the history of the investigation of
the matching problem).

If we consider the most general case, i. e., erasing substitutions and terminals
in the patterns, then a hardness-reduction is rather simple. For example, the
Boolean formula

((v1, v2, v3), (v2, v4, v5), (v3, v1, v3), (v4, v1, v2))

in 3-CNF (without negated variables) is 1-in-3 satisfiable (i. e., satisfiable with
exactly one literal per clause set to true) if and only if the following word w is
matched by the pattern α:

w = a b a b a b a
α = x1x2x3 b x2x4x5 b x3x1x3 b x4x1x2

We can further observe that this simple reduction also shows that the match-
ing problem is hard even for binary terminal alphabets and under the restric-
tion that variables are substituted by single symbols (or the empty word) only.
This directly raises the questions under which restrictions the matching problem
remains hard. For example, a problem instance has a large number of natural
parameters (length of the pattern, length of the word, number of variables, num-
ber of occurrences per variable, alphabet size, length of words substituted for
variables) and in addition to that, it comes in four natural variants resulting from
whether we consider the erasing or non-erasing case, and whether or not we allow
terminals in the pattern. In the above reduction, the number of variables, the
number of occurrences per each variable and the word length are unbounded.

All these numerous restricted problem variants have been thoroughly investi-
gated in [29] and it turns out that the matching problem remains NP-hard under
rather strong restrictions. We cite the following result as an example and refer
to [29] for further details.

6 F. Manea and M. L. Schmid

Theorem 1 ([29]). The erasing case of the matching problem for patterns with
variables is NP-complete, even if Σ = {a, b}, every variable has at most 2 occur-
rences and every variable can only be substituted by a single symbol or the empty
word.

This result also holds as stated for terminal-free patterns. In the non-erasing
case, however, it holds when the bound on the substitution words is 3 instead
of 1, and in the non-erasing and terminal-free case the result holds when addi-
tionally the bounds on the occurrences per variable and alphabet size are 3 and
4, respectively.

The only polynomial-time solvable cases of the matching problem obtained
by restricting the numerical parameters mentioned above are trivial ones. More
precisely, the matching problem can be easily solved for unary alphabets (in
this case, we only have to solve an equation in the integers and with integer
coefficients, which are given in unary encoding), or if every variable has only
one occurrence (the patterns are then regular, see Sect. 4), or if the number of
variables or the length of the input word is bounded by a constant (the former
is obvious, while the latter, in the erasing case, requires a slightly more careful
argument [45]).

In particular, this also points out that Theorem 1 describes some kind of
dichotomy, i. e., if we would further restrict the alphabet size, or the maximum
number of occurrences per variable to 1, then we would obtain a polynomial-
time solvable variant (even if all other parameters are unrestricted); similarly, if
we allow variables to be substituted by single symbols only, but not the empty
word, then the matching problem becomes efficiently solvable as well (regardless
of the alphabet size).

Generally, by brute-force algorithms, the matching problem can be solved
in time |α|O(|w|) or |w|O(|α|), making it polynomial-time solvable provided that
there is a constant upper bound on |w| or |α| (in fact, a bound on | var(α)| is
sufficient). However, this constant upper bound occurs in the exponent, which
means that even for rather low such bounds, say 7, the corresponding polynomial-
time algorithms are most likely impractical for larger problem instances. This
leads to the question whether exponential-time algorithms are possible whose
running-times are such that the exponential part exclusively depends on, say
| var(α)|, but not on |w|, i. e., running-times of the form f(| var(α)|)× g(|α|, |w|),
where g is a polynomial and f is some computable function (exponential, or even
double-exponential etc.). Such a running-time is polynomial for upper bounded
| var(α)|, but the degree of the polynomial is always the same independent from
the actual upper bound. If a problem has an algorithm with such a running-time,
then it is called fixed-parameter tractable (with respect to the bounded param-
eter); see the textbooks [23,32] for more information on parameterised com-
plexity. Whether the matching problem for patterns with variables allows fixed-
parameter tractability for some parameters has been thoroughly investigated
in [31]. Although there are some more or less trivial cases of fixed-parameter
tractability, the main insight provided by [31] is of a negative nature and can be
summarised in the following way.

Matching Patterns with Variables 7

Theorem 2 ([31]). All variants of the matching problem parameterised by |α|
are W[1]-hard. The erasing case of the matching problem parameterised by |w|
is W[1]-hard.1

Note that since |α| and |w| are rather general parameters, this result cov-
ers other parameters as well, e. g., |Σ| or | var(α)|. In the non-erasing case,
|w| is an upper bound for | var(α)|; thus, treating |w| as a parameter means
that | var(α)| is also a parameter and therefore the matching problem is fixed-
parameter tractable by the obvious brute-force algorithm. We refer to [31] for
further such simple fixed-parameter tractable case.

Consequently, even strong restrictions of the obvious numerical parameters
of instances of the matching problem, i. e., number of variables, alphabet size,
occurrences per variable etc., does not yield interesting efficiently matchable
subclasses of patterns with variables. However, as discussed in the next section,
looking deeper into the structure of patterns will help.

4 Structural Restrictions for Patterns

From an intuitive point of view it is clear that not only the mere length of a
pattern or the number of its variables should have an impact on the matching
complexity, but also the actual order of the variables. For example, it has been
observed rather early in [81] that if the variable occurrences in the patterns
are sorted, e. g., as in x1ax1x2x2abx2x2ax3x4cx4, then they can be matched
efficiently “from-left-to-right” (more precisely, it is observed in [81] that matching
such patterns can be done in logarithmic space).

A systematic investigation of such structural restrictions has been done in
the last decade and numerous efficiently matchable subclasses of patterns have
been found. In the following, we first present a unifying approach based on graph
morphisms and the concept of treewidth. Then, we define and summarise several
structural parameters for patterns and respective subclasses of patterns.

4.1 Pattern Matching by Graph Morphisms

The following general framework for matching patterns with variables has been
developed in [78]. For a pattern α ∈ (X ∪Σ∗), the standard graph representation
of α is the undirected graph Gpat

α = (Vα, Eα), where Vα = {1, 2, . . . , |α|} and
Eα = Eequ

α ∪ Enei
α with Eequ

α = {{i, i + 1} | 1 ≤ i ≤ |α − 1|} being the set of
neighbour edges and Eequ

α = {{i, j} | α[i..j] = xβx, x ∈ X, |β|x = 0} being the
set of equality edges (see Fig. 1 for an illustration).

In a similar way, we can also encode words w ∈ Σ∗ as graph structures Gwo
w ,

where every factor w[i..j] of w is represented by a vertex (i, j), equality edges
are drawn between (i, j) and (i′, j′) if w[i..j] = w[i′..j′], and neighbour edges if
j+1 = i′. It has been shown in [78] that α matches w if and only if there is a graph
1 Problems that are hard for the parameterised complexity class W[1] are strongly

believed to be not fixed-parameter tractable.

8 F. Manea and M. L. Schmid

Fig. 1. The standard graph representation Gpat
α for α = x1x2x3bbx2x1ax2x3x2cx1; the

dashed, straight and dotted equality edges correspond to occurrences of x1, x2 and x3,
respectively; the grey vertices correspond to occurrences of terminal symbols.

morphism from Gpat
α to Gwo

w . Moreover, the concept of the treewidth for graphs
now also applies to patterns (i. e., the treewidth of a pattern is the treewidth of its
standard graph representation), which is of relevance since the graph morphism
problem can be solved in polynomial-time provided that the source graphs have
bounded treewidth.2 Consequently, we can conclude the following algorithmic
meta-theorem.

Theorem 3 ([78]). If a class P of patterns has bounded treewidth, then the
matching problem for P can be solved in polynomial-time.

Due to the generality of the statement of Theorem 3, the polynomial-time
matching algorithm that it implies is of little practical value, even for rather
simple classes of patterns. On the other hand, its theoretical relevance is demon-
strated by the fact that it covers almost all known classes of patterns with a
polynomial-time matching problem.3 After an additional remark regarding [78],
we shall briefly define and compare those efficiently matchable classes of patterns
in the next subsection.

Remark 1. Technically, the matching problem reduces to the morphism problem
for (simple) relational structures instead of undirected graphs. However, since
we are here only interested in the treewidth of these structures, we can as well
only talk about the underlying undirected graphs.

Moreover, the actual meta-theorem of [78] is stronger in the sense that there
the treewidth of patterns is not defined with respect to the standard graph
representation, but with respect to a slightly more general graph representations
(i. e., we allow any way of drawing the equality edges as long as all vertices
corresponding to the same variable form a connected component).

4.2 Efficiently Matchable Classes of Patterns

The most obvious way to restrict patterns is to limit their number of (repeated)
variables or the number of occurrences per variable. In this regard, let vark
and repvk be the class of patterns with at most k variables and with at most k

2 See [23,32] for a formal definition of the treewidth.
3 See Sect. 6 for the respective exceptions.

Matching Patterns with Variables 9

repeated variables, respectively. Due to Theorem 1, we already know that bound-
ing the number of occurrences per variable does not in general yield polynomial-
time matchable classes. The only exception are patterns with at most one occur-
rence per variable, which are called regular patterns and are denoted by reg, e. g.,
x1ax2bacx3a is a regular pattern. Regular patterns have been first considered
in [81] and their name is motivated by the fact that the corresponding pattern
languages are regular languages.

Next, we define the so-called scope coincidence degree (see [78]). For every
y ∈ var(α), the scope of y in α is defined by scα(y) = {i, i + 1, . . . , j}, where
i is the leftmost and j the rightmost occurrence of y in α. The scopes of some
variables y1, y2, . . . , yk ∈ var(α) coincide in α if

⋂
1≤i≤k scα(yi) 	= ∅. By scd(α),

we denote the scope coincidence degree of α, which is the maximum number
of variables in α such that their scopes coincide, and by scdk, we denote the
class of patterns with scope coincidence degree of at most k. See Fig. 2 for an
example of the scope coincidence degree. An important special class is scd1,
which has been first introduced in [81] as the class of non-cross patterns (denoted
by nc). Intuitively speaking, the variables in non-cross patterns are sorted, e. g.,
x1ax1x2bax2cx3ax3x3.

α1 = x1 x2 x1 x3 x2 x3 x1 x2 x3

α2 = x1 x2 x1 x1 x2 x3 x2 x3 x3

Fig. 2. Two pattern α1 and α2 with scd(α1) = 3 and scd(α2) = 2. The scopes of
variable x1 (dashed line), x2 (straight line) and x3 (dotted line) are highlighted.

Next, we define the locality number, which is a general string-parameter, and
which has been first introduced in [15]. A word is k-local if there exists an order
of its symbols such that, if we mark the symbols in the respective order (which is
called a marking sequence), at each stage there are at most k contiguous blocks
of marked symbols in the word. This k is called the marking number of that
marking sequence. The locality number of a word is the smallest k for which
that word is k-local, or, in other words, the minimum marking number over
all marking sequences. For example, the marking sequence σ = (a, g, c) marks
w = agagcac as follows (marked blocks are illustrated by overlines): agagcac,
agagcac, agagcac, agagcac; thus, the marking number of σ is 3. In fact, all
marking sequences for w have a marking number of 3, except (g, a, c), for which
it is 2: agagcac, agagcac, agagcac. Thus, the locality number of w, denoted by
loc(w), is 2. When we measure the locality number for patterns, we simply ignore
all terminal symbols, e. g., loc(abx1x2ax1x2cx3x1ax3) = loc(x1x2x1x2x3x1x3) =
2. The class of patterns with locality number at most k is denoted by lock.

The next classes have been first considered in [78] and are based on possible
nesting structures of variables. For a pattern α, we call two variables x, y ∈ var(α)

10 F. Manea and M. L. Schmid

entwined if α contains xyxy or yxyx as a subsequence. A pattern α is nested,
if no two variables in α are entwined; the class of nested patterns is denoted
by nest. A proper subclass of nest, considered in [15], are the so-called strongly
nested patterns (denoted by snest), which are inductively defined as follows: any
pattern α ∈ var1 is strongly nested; if α1 and α2 are strongly nested and variable-
disjoint patterns, x is a variable not in var(α1)∪var(α2) and β1, β2 ∈ ({x}∪Σ)∗,
then α1α2 and β1α1β2 are strongly nested patterns. For example, the pattern
α = x1x2ax2x1bx3x4ax3 is strongly nested, whereas αx1 is nested, but not
strongly nested anymore.

If, for every x, y ∈ var(α), α = βxγ1yγ2xγ3yδ implies γ2 = ε, then α is called
closely entwined, and a pattern α is mildly entwined if it is closely entwined
and, for every x ∈ var(α), if α = βxγxδ with |γ|x = 0, then γ is nested. We
denote the class of mildly entwined patterns by ment. The main motivation for
the somewhat peculiar class of mildly entwined patterns is that mildly entwined
patterns are exactly those patterns that have a standard graph representation
that is outer-planar (see [78]).4 It is known that outer-planar graphs have a rather
low treewidth of at most 2. Since the concept of outer-planarity generalises to k-
outer-planarity and k-outer-planar graphs have a treewidth of at most 3k−1, we
can also define the classes outpk of k-outer-planar patterns (i. e., their standard
graph representation is k-outer-planar). In this regard note that outp1 = ment.
See Fig. 3 for an example of a mildly-entwined pattern.

Fig. 3. The standard graph representation Gpat
α for α =

x1x3x4x3x1x2x3x5bx5x2x5x6ax6x2. By definition, α is mildly entwined. Further-
more, since no vertex is completely “surrounded” by edges, the shown embedding is
outer-planar.

It can be easily verified that all of the pattern classes defined above have
bounded treewidth; thus, by application of Theorem 3, they can be matched
efficiently. For some of them this upper bound on the treewidth is rather low
(e. g., reg, nc, ment), while for those classes obtained by bounding a structural
parameter, e. g., repvk, scdk, lock, the bound on the treewidth also grows with
this parameter. Figure 4 shows how these pattern classes relate to each other
and how they form infinite hierarchies within the class of all patterns (denoted
by Pat).

In a sense, Fig. 4 is a “tractability map” for the matching problem of patterns
with variables. For the classes that have low treewidth, we can expect matching
algorithms that are rather efficient. On the other hand, these classes are quite

4 A graph is outer-planar if it has a planar embedding with all vertices lying on the
outer face.

Matching Patterns with Variables 11

ncreg

var1 var2 var3 var4 . . .

repv1 repv2 repv3 repv4 . . .

scd2 scd3 scd4 . . .

loc1 loc2 loc3 loc4 . . .

snest nest ment outp2 outp3 . . .

Pat

Fig. 4. An overview of efficiently matchable classes of patterns. By A → B, we denote
A ⊂ B; pairs without arrow are incomparable. Note that nc = scd1 and ment = outp1.

restricted (compared to the full class of patterns) and are most likely only appli-
cable for very special pattern matching tasks. An obvious approach to matching
general patterns would be to first perform a preprocessing that identifies a “low
class” of the tractability map that contains the input pattern and then uses
the most efficient algorithm for matching it. In this regard, it is even an asset
that most of the different efficiently matchable classes and hierarchies of classes
are incomparable: it is possible that an input pattern has a very large locality
number of 100, but can nevertheless be matched efficiently, because its standard
graph representation is 2-outerplanar; on the other hand, a pattern could have a
large scope coincidence degree and a large number of variables, but at the same
time a very low locality number. It might even be a worthwhile research task to
experimentally analyse a large corpus of (random) patterns with respect to the
classes of the tractability map in which they are contained.

Remark 2. Bounding the structural parameters defined above yields polynomial-
time matchable classes of patterns; thus, the question arises whether the match-
ing problem is also fixed-parameter tractable with respect to those parameters.
However, Theorem 2 already states that this is most likely not the case for param-
eter | var(α)|, and since | var(α)| is an upper bound for the number of repeated
variables, the scope coincidence degree, the outer-planarity and the locality num-
ber of α, it is also highly unlikely that we can achieve fixed-parameter tractability
with respect to those parameters.

4.3 Computing Structural Parameters for Patterns

Since the structural restrictions of patterns surveyed above are all meant to be
exploited algorithmically, the task of checking them (or computing the respective
parameters) is an important issue. In this regard, note that in general comput-
ing the treewidth of a graph is an NP-hard problem and it is also not known

12 F. Manea and M. L. Schmid

whether it can be computed efficiently for standard graph representations of
patterns. This also emphasises the importance of easily computable parameters
that are bounding the treewidth of a pattern and also points out why the value
of Theorem 3 is of a theoretical nature that provides guidance in finding such
restrictions with higher practical relevance. Restrictions like the regularity, the
non-cross condition, number of (repeated) variables and the different nesting
properties can be easily checked for. Moreover, also the scopes of a pattern and
therefore its scope coincidence degree can be efficiently computed, and the small-
est k for which a graph is k-outerplanar can also be computed in polynomial time
(for more details see [79]). On the other hand, computing the locality number
seems more difficult and it was left open in [15] whether or not is hard to com-
pute. This gap was closed in [13] where it was shown that computing the locality
number is NP-hard, but fixed-parameter tractable (if the locality number or |Σ|
is considered a parameter); in addition, approximation of the locality number
has also been investigated in [13] (note that these result will be discussed in
more detail in Sect. 7).

5 Faster Pattern Matching

In this section we will overview some efficient matching algorithms developed for
various classes of patterns, some defined already in the previous sections, and
some defined via some other natural structural restrictions. Most of the result
of this paper were shown in [15,16,26].

5.1 Patterns with Low Scope Coincidence Degree

We start with several definitions. The one-variable blocks in a pattern are max-
imal contiguous blocks of occurrences of the same variable. A pattern α with
m one-variable blocks can be written as α = w0Πi=1,m(zki

i wi) with zi ∈ var(α)
for i ∈ {1, 2, . . . ,m} and zi 	= zi+1, whenever wi = ε for i ∈ {1, 2, . . . ,m − 1}.
The number of one-variable blocks is a natural complexity measure that we will
consider.

Example 2. The pattern α = x1x2x2ax2x2x2x3ax3x2x2x3x3 has 7 one-variable
blocks: x1, x2x2, x2x2x2, x3, x3, x2x2, x3x3.

As discussed in the previous sections, prominent subclasses of patterns for
which Match can be solved in polynomial time are the classes of patterns with
a bounded number of (repeated) variables (vark and repvk), of regular patterns
(reg), of non-cross patterns (nc), and of patterns with a bounded scope coinci-
dence degree (scdk). However, the known respective algorithms are rather poor
considering their running times. For example, for vark, the matching problem
can be solved in O(mnk−1

(k−1)!), where m and n are the lengths of the pattern and
the word (see [47]). For patterns with a scope coincidence degree of at most k,
an O(mn2(k+3)(k +2)2) time algorithm can be derived using the general match-
ing technique described by Theorem 3, where m and n are the lengths of the

Matching Patterns with Variables 13

pattern and the word, respectively, and the proof that the matching problem for
non-cross patterns is in P (see [81]) leads to an O(n4)-time algorithm. Hence, for
all these classes, we consider the following refinement of the problem of showing
that the matching problem for a class of patterns is in P.

Problem 1. Let K be a class of patterns for which the matching problem can be
solved in polynomial time. Find an efficient algorithm that solves the matching
problem for K.

The main class of patters considered in the following is that of patterns with
bounded scope coincidence degree, and its subclasses.

If the scope coincidence degree is bounded by 1, i. e., non-cross patterns, we
can decide whether a pattern α having m one-variable blocks matches a word w of
length n in O(mn log n) time. This result can be achieved via a general dynamic
programming approach, which tries to match prefixes of the pattern α to the
prefixes of the word w. This general approach is rather standard but the big gain
is that it can be implemented efficiently by a detailed combinatorial analysis of
the possible matches between the one-variable blocks occurring in α and factors
of w. For instance, if the shortest factor of α containing all occurrences of a
variable x starts with a one-variable block containing at least two occurrences
the variable x, we can efficiently find the matches of this factor by exploiting a
major result from [14], which states that the primitively rooted squares contained
in a word of length n can be listed optimally in O(n log n). As each match for a
factor starting with two occurrences of a variable starts with a primitively rooted
square, the respective matches can be found efficiently. The result regarding
primitively rooted squares can be extended to show that, given a word w of
length n and a word v with length shorter than n, the word w contains O(n log n)
factors of the form uvu with uv primitive, and all these factors can be found
optimally in O(n log n) time. This allows us to find efficiently the matches for
one-variable that the shortest factor of α which contains all occurrences of x
and starts with xvx, for all choices of a variable x such that v is a non-empty
terminal string.

Theorem 4 ([26]). The matching problem for nc is solvable in O(mn log n)
time, where w is the input word of length n and m is the number of one-variable
blocks occurring in the pattern.

Two particular subclasses of non-cross patterns are of interest: the regular
patterns reg and the one-variable patterns var1 (see also Fig. 4). It is not hard to
show that regular patterns can be matched in linear time O(|α| + |w|), by itera-
tively using the Knuth-Morris-Pratt algorithm to identify greedily the terminal
factors occurring in the pattern, in their orders of occurrences. All factors of a
word w that match a given regular pattern α can be detected in linear time too.

More interesting is the case of one-variable patterns. The simplest example of
one-variable patterns are the repetitions, i.e., patterns of the form xk. Checking
whether a word is a match for a pattern xk can be done in linear time. Moreover,
a compact representation of all periodic factors of a word w can be also obtained

14 F. Manea and M. L. Schmid

in linear time by identifying the (at most |w|) so-called runs inside w [4]. With
this, a compact representation of occurrences of xk in w can also be obtained in
linear time. More complex one-variable patterns are the pseudo-repetitions (see
[41,43,44] and the references therein). These are patterns from {x, xR}∗, where
xR is a variable that is always substituted by the reverse image of the string
substituting x. Checking whether a string matches a given pseudo-repetition
can be done in linear time [44]. The following general result can be shown for
one-variable patterns, see [59]. Given a pattern α = v1xv2x · · · vr−1xvr such that
x is a variable and v1, v2, . . . , vr are terminal strings, a compact representation of
all P instances of α in the input string w of length n can be computed in O(rn)
time, so that one can report those occurrences in O(P) time. The same result
holds also for the case when some of the occurrences of x in such a pattern are
replaced by xR. It is worth noting that using this algorithm to find the factors
of a given word that match the shortest factor of α containing all occurrences
of a variable x inside a non-cross pattern in our approach for matching nc does
not lead to a faster matching algorithm in that case.

When considering general patterns with bounded scope coincidence degree,
one can show, using a similar dynamic programming approach as in the case of
non-cross patterns, that the matching problem for scdk is solvable in O(mn2k

((k−1)!)2)
time, where n is the length of the input word and m is, again, the number
of one-variable blocks occurring in the pattern. One should note that in this
case it seems hard to use the combinatorial insights used for non-cross patterns
(thus, the log n factor is replaced by an n factor in the evaluation of the time
complexity), but, still, this algorithm is significantly faster than the previously
known solution.

Theorem 5 ([26]). The matching problem for scdk is solvable in O
(

mn2k

((k−1)!)2

)

time, where w is the input word of length n and m is the number of one-variable
blocks occurring in the pattern.

Next we consider the classes repvk. For the basic case of k = 1, the matching
problem can be solved in O(n2) time, where n is the length of the input word.
The idea of this algorithm is to guess the length � of the repeated variable x, and
then to partition the suffix array of the input word into clusters, such that all
suffixes in a cluster start with the same factor of length �. Essentially, in a match
between the pattern and the word, where x is mapped to a factor of length �,
the positions where the factors matching x occur in the input word belong to
the same cluster. Using this idea, the desired complexity is then reached, again
via dynamic programming.

Theorem 6 ([26]). The matching problem for repvk is solvable in quadratic
time.

Further, one can use this result to show that the matching problem for the
general class of patterns repvk is solvable in O(n2k

((k−1)!)2) time. This algorithm
is better than the one that could have been obtained by using the fact that

Matching Patterns with Variables 15

patterns with at most k repeated variables have the scope coincidence degree
bounded by k+1, and then directly applying our previous algorithm solving the
matching problem for scdk+1.

Theorem 7 ([26]). The matching problem for repvk is solvable in O
(

n2k

((k−1)!)2

)

time, where n is the length of the input word.

Note that the classes of non-cross patterns and of patterns with a bounded
scope coincidence degree or with a bounded number of repeated variables are
of special interest, since for them we can compute so-called descriptive patterns
(see [2,81]) in polynomial time. A pattern α is descriptive (with respect to, say,
non-cross patterns) for a finite set S of words if it can generate all words in S
and there exists no other non-cross pattern that describes the elements of S in a
better way. Computing a descriptive pattern, which is NP-complete in general,
means to infer a pattern common to a finite set of words, with applications for
inductive inference of pattern languages (see [71]). For example, our algorithm
for computing non-cross patterns can be used in order to obtain an algorithm
that computes a descriptive non-cross pattern in time O(

∑
w∈S(m2|w| log |w|)),

where m is the length of a shortest word of S (see [27] for details).
The algorithms, except the ones for the basic cases of regular and non-cross

patterns and patterns with only one repeated variable, still have an exponen-
tial dependency on the number of repeated variables or the scope coincidence
degree. Therefore, only for very low constant bounds on these parameters can
these algorithms be considered efficient. Naturally, finding a polynomial time
algorithm for which the degree of the polynomial does not depend on the num-
ber of repeated variables or on the scope coincidence degree would be desirable.
However, by Remark 2 such algorithms are very unlikely.

Finally we recall a result regarding gapped repeats and palindromes. A gapped
repeat (palindrome) is an instance of a terminal-free pattern xyx (respectively,
xyxR). For α ≥ 1, an α-gapped repeat in a word w is a factor uvu of w such
that |uv| ≤ α|u|; the two factors u in such a repeat are called arms, while the
factor v is called gap. Such a repeat is called maximal if its arms cannot be
extended simultaneously with the same symbol to the right or, respectively, to
the left. In a sense, α-gapped repeats are instances of the pattern xyx where
length constraints are imposed on the strings that substitute x and y. In [42]
it was shown that the number of maximal α-gapped repeats that may occur
in a word is upper bounded by 18αn. Using this, an algorithm finding all the
maximal α-gapped repeats of a word in O(αn) was defined; this result is optimal,
in the worst case, as there are words that have Θ(αn) maximal α-gapped repeats.
Comparable results were developed for the case of α-gapped palindromes, i.e.,
factors uvuR with |uv| ≤ α|u|. On the one hand, these results were relevant as
they provided optimal algorithms for the identification of α-gapped repeats and
palindromes, and closed an open problem from [57,58] (see also [42] and the
references therein for more on gapped repeats and palindromes). On the other
hand, they point towards the study of Match for patterns with (linear) length
constraints on the images of the variables.

16 F. Manea and M. L. Schmid

5.2 Patterns with Low Locality Number

Intuitively, the notion of k-locality (already introduced in Sect. 4.2) involves
marking the variables in the pattern in some arbitrary order until all the variables
are marked. The pattern is k-local if this marking can be done while never
creating more than k marked blocks. Variables which only occur adjacent to
those which are already marked can be marked “for free” – without creating any
new blocks, and thus a valid marking sequence allows a sort-of parsing of the
pattern whilst maintaining a degree of closeness (locality) to the parts already
parsed. The notion of k-locality was introduced and further analysed in [15].
With respect to pattern matching, the main result proven in that paper is the
following:

Theorem 8 ([15]). Match for lock can be decided in O(mknmax (3k−1,2k+1))
time, where m is the length of the input pattern and n is the length of the input
word.

To solve the matching problem for lock we use the following idea. Using a simple
dynamic programming approach we can show that, given a pattern β ∈ (X∪Σ)∗

of length m, we can decide in O(m2kk) time whether β ∈ lock, and if the answer
is positive, we can produce in the same time a marking sequence witnessing that
β is k-local. As such we can keep track of the marked factors in the pattern, while
executing the marking according to the computed marking sequence. We also
need now to keep track to which factors of the input word the marked factors
correspond. Then we try to assign every new variable so that it fits nicely around
the already matched factors. This is done efficiently using a data structure from
[59], mentioned also above: given a word w and a one-variable pattern γ (so,
| var(γ)| = 1), one can produce a compact representation of all the g factors
of w matching γ in O(|γ||w|) time; moreover, we can obtain all the g factors
of w matching γ in O(|g|) time. This allows us to test efficiently which factors
of w match any of the one-variable blocks of β, and, ultimately, to assign a
value to each variable. In comparison to the algorithm from [78] for patterns
of bounded treewidth, which firstly constructs relational structures from α and
w, and solves the homomorphism problem on these relational structures (see
Sect. 4.1), the above algorithm exploits directly the locality structure present in
the patterns. The advantage of this more focussed approach is that it allows for
a considerable improvement in the required time, reducing the exponent of n
from 4k + 4 to 3k − 1.

6 Efficient Pattern Matching Beyond Bounded Treewidth

In [16] the authors tried to identify classes of patterns that do not have bounded
treewidth but can still be matched in polynomial time. The idea behind defining
such classes was relatively simple: consider generalised repetitions of patterns.

One simple observation is that, if we can match patterns from a class C
in polynomial time, then we can also match repetitions of these patterns in

Matching Patterns with Variables 17

polynomial time: if we wish to check whether αk matches a word w, where α
is chosen from the class C for which we can solve Match efficiently, then we
can firstly check whether w = vk for some word v, and then check whether α
matches v, so we can also match αk efficiently. Moreover, it can be observed that
most parameters that lead to efficiently matchable classes, e. g., the scope coin-
cidence degree or locality, are defined independently from the terminal symbols,
i. e., via the word obtained after removing all terminals, which shall be called
skeleton in the following (e. g., the skeleton of x1ax2bax1x2b is x1x2x1x2). As
a result, it is possible that a pattern, that is not a repetition of any α ∈ C,
has nevertheless a skeleton that is a repetition of a skeleton from C. For exam-
ple, ax1(x2)3x3bx3x1(x2)2bx2a(x3)2 is not a repetition of a non-cross pattern,
but its skeleton (x1(x2)3(x3)2)2 is. In [16] it is shown that, for some important
classes C of patterns, including lock and scdk, for constant k, the polynomial
time solvability of Match does not only extend from C to exact repetitions, but
also to such skeleton-repetitions, called C-repetitions.

Theorem 9 ([16]). For C ∈ {nc, reg, lock, scdk}, solving the matching problem
for the class of C-repetitions can be done in polynomial time.

It is interesting to note that the general treewidth-based framework of poly-
nomial time matching of patterns does not seem to cover a very simple and
natural aspect: repetitions of the same pattern. More precisely, if C is one of the
known efficiently matchable classes of patterns, then a repetition αk for some
α ∈ C is usually not in C anymore. In fact, it can be shown that even for patterns
α with bounded and very low treewidth, the treewidth of repetitions αk can be
unbounded.

Theorem 10 ([16]). Let C be a class of patterns that contains reg. Then the
class of C-repetitions contains patterns with arbitrarily large treewidth.

In particular, the previous theorem holds for the class reg of regular patterns,
arguably the simplest class allowing an unbounded number of variables (note
that patterns with a constant number of variables can trivially be matched in
polynomial-time). In the same paper it is shown that if the notion of repetition
is relaxed further, by considering a setting where the order in which the variables
appear is no longer constrained at all (i.e., considering abelian repetitions instead
of repetitions), then the matching problem is NP-complete. This holds even in
the minimal case when the number of repetitions is restricted to two, and that
the pattern which is repeated is regular.

7 From Locality to Graph Parameters

Following the ideas of Sect. 3 we explore further the connection between string
and graph parameters. The main idea behind such a connection is to reach it by
“flattening” a graph into a sequential form, or by “inflating” a string into a graph,
so that algorithmic techniques available for each one of these become applicable

18 F. Manea and M. L. Schmid

for the other one as well. In this section, following [13], we are concerned with
certain structural parameters (and the problems of computing them) for graphs
and strings: the cutwidth cw(G) of a graph G (i. e., the maximum number of
“stacked” edges if the vertices of a graph are drawn on a straight line), the path-
width pw(G) of a graph G (i. e., the minimum width of a tree decomposition the
tree structure of which is a path), and the locality number loc(α) of a string α
(explained in more detail in Sect. 4.2). By Cutwidth, Pathwidth and Loc, we
denote the corresponding natural decision problems (i. e., decide whether a given
graph has a pathwidth/cutwidth, or a given string has a locality number of at
most k, for given k) and with the prefix Min, we refer to the minimisation vari-
ants. The two former graph-parameters are very classical. Pathwidth is a simple
(yet still hard to compute) subvariant of treewidth, which measures how much
a graph resembles a path. The problems Pathwidth and MinPathwidth are
intensively studied (in terms of exact, parameterised and approximation algo-
rithms) and have numerous applications (see the surveys and textbook [7,9,56]).
Cutwidth is the best known example of a whole class of so-called graph layout
problems (see the survey [20,73] for detailed information), which are studied
since the 1970s and were originally motivated by questions of circuit layouts.

In comparison, the locality number seems a rather simple parameter directly
defined on strings, but, however, it bounds the treewidth of the string (in the
sense defined in Sect. 4.1), and the corresponding marking sequences can be seen
as instructions for a dynamic programming algorithm for matching the pattern.
In this way, it resembles a bit to the way the pathwidth and treewidth of graphs
are used in algorithmic settings. Moreover, compared to other “tractability-
parameters” of strings, it seems to cover best the treewidth of a string, but it
also cannot be efficiently computed compared to the other simpler parameters.

Going more into detail, for Loc, exact exponential-time algorithms are not
hard to be devised [15] but whether it can be solved in polynomial-time, or
whether it is at least fixed-parameter tractable was left open in the paper where
this measure was introduced. On the other hand, Pathwidth and Cutwidth
are known NP-complete problems, fixed-parameter tractable with respect to
parameter pw(G) or cw(G), respectively (even with “linear” fpt-algorithms with
running-time g(k)O(n) [8,10,82]). With respect to approximation, their min-
imisation variants have received a lot of attention, mainly because they yield
(like many other graph parameters) general algorithmic approaches for numer-
ous graph problems, i. e., a good linear arrangement or path-decomposition can
often be used to design a dynamic programming (or even divide and conquer)
algorithm for other problems. The best known approximation algorithms for the
problems MinPathwidth and MinCutwidth (with approximations ratios of
O(

√
log(opt) log(n)) and O(log2(n)), respectively) follow from approximations

of vertex separators (see [25]) and edge separators (see [60]), respectively.
There are two natural approaches to represent a word α over alphabet Σ

as a graph Gα = (Vα, Eα): (1) Vα = {1, 2, . . . , |α|} and the edges are somehow
used to represent the actual symbols (note that this is the case for the standard
graph representation of patterns defined in Sect. 4.1), or (2) Vα = Σ and the

Matching Patterns with Variables 19

edges are somehow used to represent the positions of α. A reduction of type (2)
can be defined such that |Eα| = O(|α|) and cw(Gα) = 2 loc(α), and a reduction
of type (1) can be defined such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤
2 loc(α). Since these reductions are parameterised reductions and also allow to
transfer approximation results, one may conclude that Loc is fixed-parameter
tractable if parameterised by |Σ| (note that for parameter |Σ| a simple, but less
efficient fpt-algorithm is trivially obtained by simply enumerating all marking
sequences) or by the locality number, and also that there is a polynomial-time
O(

√
log(opt) log(n))-approximation algorithm for MinLoc.

In addition, one can represent an arbitrary multi-graph G = (V,E) by a
word αG over alphabet V with |αG| = |E| and cw(G) = loc(α). This describes a
Turing-reduction from Cutwidth to Loc which also allows to transfer approx-
imation results between the minimisation variants. As a result, Loc is NP-
complete. Finally, by plugging together the reductions from MinCutwidth to
MinLoc and from MinLoc to MinPathwidth, one obtains a reduction which
transfers approximation results from MinPathwidth to MinCutwidth, which
yields an O(

√
log(opt) log(n))-approximation algorithm for MinCutwidth.

This result from [13] improved, for the first time since 1999, the best approxi-
mation for Cutwidth from [60]. Interestingly, this improvement appeared as a
side-product of relating string-parameters with graph-parameters.

Theorem 11 ([13]). There is an O(
√

log(opt) log(h))-approximation algorithm
(running in polynomial time) for MinCutwidth on multigraphs with h edges.
In particular, this yields an O(

√
log(opt) log(n))-approximation algorithm for

MinCutwidth for graphs.

Moreover, this approach allows also for establishing a direct connection
between cutwidth and pathwidth, which preserves the good algorithmic prop-
erties, and has not yet been reported in the literature so far. This is rather
surprising, since Cutwidth and Pathwidth have been jointly investigated in
the context of exact and approximation algorithms, especially in terms of bal-
anced vertex and edge separators. We think that a reason for overlooking this
connection might be that it is less obvious on the graph level and becomes more
apparent if linked via the string parameter of locality, emphasising, as such, the
value of such mixed approaches.

8 Extensions

8.1 Injectivity

In our setting, the substitutions that map variables to words are not required
to be injective, i. e., different variables can be mapped to the same word. How-
ever, the requirement of injectivity is natural in some contexts. For example,
in the pattern matching community, the first mentioning of pattern matching
with variables concerns the case where variables have to be substituted by sin-
gle symbols and in an injective way. More precisely, this parameterised pattern

20 F. Manea and M. L. Schmid

matching was introduced in [3] to formalise the problem of detecting code clones
(i. e., we want to find code segments that are created by copying some code
blocks and renaming program variables (this renaming will be injective, since
otherwise the semantic of the code might change)). More generally speaking,
the injectivity condition is appropriate whenever we know a priori that different
variables should always refer to different words (e. g., when matching the pattern

x1 name: y ; address: z ; x2 name: y ; address: z x3

in order to check whether there is a repetition of some name-address data tuple,
then it is likely that we can assume injectivity).

Depending on the actual variant, the injectivity condition can make the
matching problem harder or easier. In [26], it is shown that it is NP-hard to
decide for a given word w and an integer k whether w can be factorised into at
least k pairwise different factors. This immediately implies that the injectivity
condition makes the matching problem NP-hard even for the “trivial” pattern
class {x1x2 . . . xn | n ≥ 1} (note that this is even a subset of the class reg of
regular patterns). On the other hand, if we have an upper bound on |Σ| and
max{|h(x)| | x ∈ X} (recall that this case is still NP-hard even for bounds 2 and
1, respectively; see Theorem 1) then also the total number of possible substitu-
tion words is bounded; thus, the injectivity condition bounds the total number
of variables and therefore the matching problem becomes tractable (see [29]). A
similar observation can be made with respect to fixed-parameter tractability if
we parameterise by |Σ| and max{|h(x)| | x ∈ X} (see [31]).

8.2 Word Equations

A word equation is an equality α = β, where α and β are patterns with variables,
e. g., α = x1abx2 and β = ax1x2b define the equation x1abx2 = ax1x2b. A
solution to an equation α = β is a substitution h : (var(α) ∪ var(β)) → Σ∗ (in
the sense defined in Sect. 2) that satisfies h(α) = h(β). For the example equation
from above, the solutions are the substitutions h with h(x1) = ak, for k ≥ 0,
and h(x2) = b�, for � ≥ 0.

The study of word equations (or the existential theory of equations over
free monoids) is an important topic found at the intersection of algebra and
computer science, with significant connections to, e.g., combinatorial group or
monoid theory [21,65,66], unification [48,49,80]), and, more recently, data base
theory [33,34].

The central computational problem for word equations is the satisfiabil-
ity problem, i. e., the problem of deciding whether a given word equation
α = β has a solution or not. In this regard, the matching problem for pat-
terns with variables describes just the special case of the satisfiability problem
for word equations where one side of the equation is a terminal word, e. g.,
x1abx1x2cx2x1 = babbacab is an instance of the matching problem already
mentioned in the introduction, phrased as a word equation. Consequently, the
satisfiability problem is intractable, even for very strongly restricted cases (see

Matching Patterns with Variables 21

Theorems 1 and 2). Also note that it has been shown in [22] that the solvabil-
ity problem remains NP-hard if every variable has at most two occurrences in
αβ (called quadratic equations), but the proof of [22] actually talks about the
matching problem for patterns with at most two occurrences per variable.

While the matching problem for patterns with variables is trivially decidable,
it is not at all obvious how to solve the satisfiability problem for word equations.
In fact, the question whether it is decidable was initially approached with the
expectation that it will be answered in the negative. It was, however, shown to
be decidable by Makanin [67] (see Chap. 12 of [64] for a survey). Later it was
shown that the satisfiability problem is in PSPACE by Plandowski [74]; a new
proof of this result was obtained in [51], based on a new simple technique called
recompression. There are also cases when the satisfiability problem is tractable.
For instance, word equations with only one variable can be solved in linear time
in the size of the equation, see [50]; equations with two variables can be solved
in time O(|αβ|5), see [19].

Given the fact that there are many structural restrictions of patterns that
yield tractability (with respect to the matching problem, see Sect. 4), the ques-
tion naturally arises how the complexity of the satisfiability problem for word
equations (which are essentially equations of patterns) behaves if these restric-
tions are applied to word equations. More precisely, while each class of patterns
with NP-hard matching problem yields a class of word equations with NP-hard
satisfiability problem, the hardness of the satisfiability problem for equations
with sides in some efficiently matchable class of patterns is no longer immedi-
ate. An investigation of that question was initiated in [68], where the following
results were obtained. Firstly, the satisfiability problem for non-cross word equa-
tions (i. e., word equations for which both sides are non-cross) remains NP-hard.
In particular, solving non-cross equations α = β where each variable occurs at
most three times, at most twice in α and exactly once in β, is NP-hard (note
that this constitutes the first NP-hardness result for word equations that is not
a direct conclusion from a hardness result for the matching problem). Secondly,
the satisfiability of one-repeated variable equations (i. e., at most one variable
occurs more than once in αβ, but arbitrarily many other variables occur only
once) having at least one non-repeated variable on each side, was shown to be
trivially in P.

In [18], it is shown that it is (still) NP-hard to solve regular ordered word
equations. More precisely, these are word equations where each side is a regular
pattern and the order of the variables in both sides is the same (it is, how-
ever, possible that some variables only occur on one side of the equation), e. g.,
x1ax2bax3x4 = bx1x3aax4 is a regular ordered word equation. They are particu-
lar cases of both quadratic equations and non-cross equations, so the reductions
showing the hardness of solving these more general equations do not carry over.
In particular, note that the class of regular patterns is arguably the most simple
class of patterns in terms of their matching complexity (see Sect. 5.1).

The respective hardness reduction relied on some deep word-combinatorics
ideas. As a first step, a reachability problem for a certain type of (regulated)

22 F. Manea and M. L. Schmid

string rewriting systems was introduced, and showed it is NP-complete. This was
achieved via a reduction from the problem 3-Partition [40], which is strongly
NP-complete. Then it was shown that this reachability problem can be reduced
to the satisfiability of regular-ordered word equations; in this reduction the appli-
cations of the rewriting rules of the system were encoded into the periods of the
words assigned to the variables in a solution to the equation. The main techni-
cality was to make sure to only use one occurrence of each variable per side, and
moreover to even have the variables in the same order in both sides. This result
exhibits the arguably structurally-simplest class of word equations for which the
satisfiability problem is NP-hard.

The main open problem in the area of word equations remains, even for
simple subclasses such as regular equations or quadratic equations, to show that
the satisfiability problem of word equations of the respective types is in NP
(note that this was already explicitly posed as an open question for the class of
quadratic word equations in [22]).

9 Conclusions

In this work we tried to survey several results related to the problem of matching
patterns with variables, that seem important to us. While this work is clearly
not exhaustive, it is aimed to offer a basic understanding of the problems and
state of the art in this area.

From an algorithmic point of view, the results we covered provide a wide
variety of classes of patterns with variables, for which Match can be efficiently
solved. Moreover, as explained in Sect. 4.3, it is usually easy to check whether
a pattern belongs to one of these classes. So, putting it all together, one could
use the following approach when trying to match a pattern, rather than just
using an exponential time algorithm (based, e.g., on general SMT-solvers, or
on the theory of string solving [6,83]). First, check if the pattern belongs to
one of the classes for which efficient matching algorithms are known and, then,
use this algorithm; only use a general algorithm when no customised one can be
applied. Identifying more natural pattern classes for which Match can be solved
efficiently appears, as such, as a rather useful task. Following the practically
motivated challenges that arise from the area of string solving, one could also
try to find efficient matching algorithms for various classes of patterns, enhanced
with various constraints: regular constraints, length constraints, etc.

As an important part of this survey deals with polynomial time algorithms,
it is natural to also ask whether they are optimal or not. This kind of questions
are the focus of the area of fine-grained complexity (see, e.g., the survey [11]
and the citations therein). It would be interesting to see, using tools from this
area, whether one can show lower bounds for the Match problems for different
classes of patterns.

In the light of the results from [13], it seems that exploring the connections
between string parameters and parameters for other classes of objects could lead
to some interesting results in both worlds. So, it also seems like an interesting

Matching Patterns with Variables 23

challenge to explore what the structural parameters of strings that we explored
here (and maybe some other new ones) mean when various other types of data
are represented as strings, and what consequences can be derived from such a
representation.

Finally, the area of word equations abounds with open problems. As men-
tioned, it is not even clear whether the satisfiability of regular or quadratic
equations is in NP. So even if we restrict to equations with structurally simple
left and right hand sides, the complexity of solving equations is not known. Such
problems become even more involved when we consider equations with various
types of constraints (e.g., length or regular). For instance, the decidability of gen-
eral word equations with length constraints is a long standing open problem, but
it is already an interesting open question for simpler cases (once again: regular
or quadratic equations); see, e.g., [17,46,61], and the references therein. It seems
interesting to us whether some of the ideas used in matching patterns can be
transferred to solving (simplified) word equations, with or without constraints.

References

1. Amir, A., Nor, I.: Generalized function matching. J. Discrete Algorithms 5, 514–
523 (2007)

2. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21, 46–62 (1980)

3. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52, 28–42 (1996)

4. Bannai, H., I, T., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs”
theorem. SIAM J. Comput. 46(5), 1501–1514 (2017)

5. Barceló, P., Libkin, L., Lin, A.W., Wood, P.T.: Expressive languages for path
queries over graph-structured data. ACM Trans. Database Syst. 37, 31 (2012)

6. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

7. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21
(1993)

8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(5), 1305–1317 (1996). https://doi.org/10.1137/
s0097539793251219

9. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-
3975(97)00228-4

10. Bodlaender, H.L.: Fixed-parameter tractability of treewidth and pathwidth. In:
Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate
Algorithmic Revolution and Beyond. LNCS, vol. 7370, pp. 196–227. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30891-8 12

11. Bringmann, K.: Fine-grained complexity theory (tutorial). In: Niedermeier, R.,
Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer
Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 126, pp. 4:1–4:7. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2019). https://doi.org/10.4230/LIPIcs.STACS.2019.4. http://drops.dagstuhl.de/
opus/volltexte/2019/10243

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1137/s0097539793251219
https://doi.org/10.1137/s0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1007/978-3-642-30891-8_12
https://doi.org/10.4230/LIPIcs.STACS.2019.4
http://drops.dagstuhl.de/opus/volltexte/2019/10243
http://drops.dagstuhl.de/opus/volltexte/2019/10243

24 F. Manea and M. L. Schmid

12. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14, 1007–1018 (2003)

13. Casel, K., Day, J.D., Fleischmann, P., Kociumaka, T., Manea, F., Schmid,
M.L.: Graph and string parameters: connections between pathwidth, cutwidth
and the locality number. CoRR, to appear in Proceedings of the ICALP 2019,
abs/1902.10983 (2019). http://arxiv.org/abs/1902.10983

14. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

15. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D.: Local patterns. In: 37th
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, pp. 24:1–24:14 (2017)

16. Day, J.D., Fleischmann, P., Manea, F., Nowotka, D., Schmid, M.L.: On matching
generalised repetitive patterns. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS,
vol. 11088, pp. 269–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98654-8 22

17. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of word
equations: decidable and undecidable theories. In: Potapov, I., Reynier, P.-A. (eds.)
RP 2018. LNCS, vol. 11123, pp. 15–29. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00250-3 2

18. Day, J.D., Manea, F., Nowotka, D.: The hardness of solving simple word equations.
In: Proceedings of the MFCS 2017. LIPIcs, vol. 83, pp. 18:1–18:14 (2017)

19. Da̧browski, R., Plandowski, W.: Solving two-variable word equations. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
408–419. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 36

20. Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput.
Surv. 34(3), 313–356 (2002). https://doi.org/10.1145/568522.568523

21. Diekert, V., Jez, A., Kufleitner, M.: Solutions of word equations over partially
commutative structures. In: Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016. Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 55, pp. 127:1–127:14 (2016)

22. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S.
(eds.) STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-49116-3 20

23. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

24. Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., Zeugmann, T.: Learning
one-variable pattern languages very efficiently on average, in parallel, and by asking
queries. Theoret. Comput. Sci. 261, 119–156 (2001)

25. Feige, U., HajiAghayi, M., Lee, J.R.: Improved approximation algorithms for min-
imum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008). https://
doi.org/10.1137/05064299x

26. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Pattern matching with variables:
fast algorithms and new hardness results. In: 32nd International Symposium on
Theoretical Aspects of Computer Science, STACS 2015, pp. 302–315 (2015)

27. Fernau, H., Manea, F., Mercas, R., Schmid, M.L.: Revisiting Shinohara’s algorithm
for computing descriptive patterns. Theoret. Comput. Sci. 733, 44–54 (2018)

28. Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate com-
plexity analysis. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 83–94. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38905-
4 10

http://arxiv.org/abs/1902.10983
https://doi.org/10.1007/978-3-319-98654-8_22
https://doi.org/10.1007/978-3-319-98654-8_22
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1145/568522.568523
https://doi.org/10.1007/3-540-49116-3_20
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1137/05064299x
https://doi.org/10.1137/05064299x
https://doi.org/10.1007/978-3-642-38905-4_10
https://doi.org/10.1007/978-3-642-38905-4_10

Matching Patterns with Variables 25

29. Fernau, H., Schmid, M.L.: Pattern matching with variables: a multivariate com-
plexity analysis. Inf. Comput. 242, 287–305 (2015)

30. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string
morphism problems. In: Proceedings of the 33rd IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 24, pp. 55–66 (2013)

31. Fernau, H., Schmid, M.L., Villanger, Y.: On the parameterised complexity of string
morphism problems. Theory Comput. Syst. 59(1), 24–51 (2016)

32. Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Hei-
delberg (2006). https://doi.org/10.1007/3-540-29953-X

33. Freydenberger, D.D.: A logic for document spanners. In: Proceedings of the 20th
International Conference on Database Theory, ICDT 2017. Leibniz International
Proceedings in Informatics (LIPIcs)

34. Freydenberger, D.D., Holldack, M.: Document spanners: from expressive power to
decision problems. Theory Comput. Syst. 62(4), 854–898 (2018)

35. Freydenberger, D.D.: Extended regular expressions: succinctness and decidability.
Theory Comput. Syst. 53, 159–193 (2013)

36. Freydenberger, D.D., Reidenbach, D.: Bad news on decision problems for patterns.
Inf. Comput. 208(1), 83–96 (2010)

37. Freydenberger, D.D., Reidenbach, D.: Existence and nonexistence of descriptive
patterns. Theor. Comput. Sci. 411(34–36), 3274–3286 (2010)

38. Freydenberger, D.D., Reidenbach, D.: Inferring descriptive generalisations of for-
mal languages. J. Comput. Syst. Sci. 79(5), 622–639 (2013)

39. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)
40. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York (1979)
41. Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words.

In: STACS 2014. LIPIcs, vol. 25, pp. 337–349. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2014)

42. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and
optimal algorithms for all maximal α-gapped repeats and palindromes - finding all
maximal α-gapped repeats and palindromes in optimal worst case time on integer
alphabets. Theory Comput. Syst. 62(1), 162–191 (2018)

43. Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D.: Hide and seek with rep-
etitions. J. Comput. Syst. Sci. 101, 42–67 (2019). https://doi.org/10.1016/j.jcss.
2018.10.004

44. Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D., Tiseanu, C.: Finding
pseudo-repetitions. In: 30th International Symposium on Theoretical Aspects of
Computer Science, STACS 2013, Kiel, Germany, 27 February-2 March 2013.
LIPIcs, vol. 20, pp. 257–268 (2013)

45. Geilke, M., Zilles, S.: Learning relational patterns. In: Kivinen, J., Szepesvári, C.,
Ukkonen, E., Zeugmann, T. (eds.) ALT 2011. LNCS (LNAI), vol. 6925, pp. 84–98.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24412-4 10

46. Halfon, S., Schnoebelen, P., Zetzsche, G.: Decidability, complexity, and expressive-
ness of first-order logic over the subword ordering. In: Proceedings of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pp.
1–12. IEEE Computer Society (2017)

47. Ibarra, O.H., Pong, T.C., Sohn, S.M.: A note on parsing pattern languages. Pattern
Recogn. Lett. 16, 179–182 (1995)

48. Jaffar, J.: Minimal and complete word unification. J. ACM 37(1), 47–85 (1990)

https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jcss.2018.10.004
https://doi.org/10.1016/j.jcss.2018.10.004
https://doi.org/10.1007/978-3-642-24412-4_10

26 F. Manea and M. L. Schmid

49. Jeż, A.: Context unification is in PSPACE. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 244–255. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 21

50. Jeż, A.: One-variable word equations in linear time. Algorithmica 74, 1–48 (2016)
51. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.

ACM 63, 4 (2016)
52. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. J.

Comput. Syst. Sci. 50(1), 53–63 (1995)
53. Karhumäki, J., Plandowski, W., Mignosi, F.: The expressibility of languages and

relations by word equations. J. ACM 47, 483–505 (2000)
54. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.

J. ACM 53, 918–936 (2006)
55. Kearns, M.J., Pitt, L.: A polynomial-time algorithm for learning k-variable pattern

languages from examples. In: Proceedings of the Second Annual Workshop on
Computational Learning Theory, COLT 1989, Santa Cruz, CA, USA, 31 July–2
August 1989, pp. 57–71 (1989)

56. Kloks, T. (ed.): Treewidth, Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

57. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009)

58. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner,
P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07566-2 22

59. Kosolobov, D., Manea, F., Nowotka, D.: Detecting one-variable patterns. In: Pro-
ceedings of the 24th International Symposium on String Processing and Informa-
tion Retrieval , SPIRE 2017, Palermo, Italy, 26–29 September 2017, pp. 254–270
(2017)

60. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999). https://
doi.org/10.1145/331524.331526

61. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints,
counter systems, and presburger arithmetic with divisibility. In: Lahiri, S.K., Wang,
C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 352–369. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01090-4 21

62. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

63. Lothaire, M.: Algebraic Combinatorics on Words, chap. 3. Cambridge University
Press, Cambridge, New York (2002)

64. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge, New York (2002)

65. Lyndon, R.C.: Equations in free groups. Trans. Am. Math. Soc. 96, 445–457 (1960)
66. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg

(1977)
67. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Matem-

aticheskii Sbornik 103, 147–236 (1977)
68. Manea, F., Nowotka, D., Schmid, M.L.: On the solvability problem for restricted

classes of word equations. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS,
vol. 9840, pp. 306–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53132-7 25

https://doi.org/10.1007/978-3-662-43951-7_21
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-319-07566-2_22
https://doi.org/10.1007/978-3-319-07566-2_22
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://doi.org/10.1007/978-3-030-01090-4_21
https://doi.org/10.1007/978-3-662-53132-7_25
https://doi.org/10.1007/978-3-662-53132-7_25

Matching Patterns with Variables 27

69. Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages.
RAIRO Inf. Théor. Appl. 28, 233–253 (1994)

70. Mateescu, A., Salomaa, A.: Aspects of classical language theory. In: Rozenberg,
G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 175–251. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5 4

71. Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the
pattern languages from positive data. Theoret. Comput. Sci. 397, 150–165 (2008)

72. Ordyniak, S., Popa, A.: A parameterized study of maximum generalized pattern
matching problems. Algorithmica 75, 1–26 (2016)

73. Petit, J.: Addenda to the survey of layout problems. Bull. EATCS 105, 177–201
(2011). http://eatcs.org/beatcs/index.php/beatcs/article/view/98

74. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, STOC 2006, pp.
467–476 (2006)

75. Reidenbach, D.: A non-learnable class of e-pattern languages. Theor. Comput. Sci.
350(1), 91–102 (2006)

76. Reidenbach, D.: An examination of ohlebusch and ukkonen’s conjecture on the
equivalence problem for e-pattern languages. J. Automata Lang. Comb. 12(3),
407–426 (2007)

77. Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397(1–
3), 166–193 (2008)

78. Reidenbach, D., Schmid, M.L.: Patterns with bounded treewidth. Inf. Comput.
239, 87–99 (2014)

79. Schmid, M.L.: A note on the complexity of matching patterns with variables. Inf.
Process. Lett. 113(19–21), 729–733 (2013)

80. Schulz, K.U.: Word unification and transformation of generalized equations. J.
Autom. Reason. 11, 149–184 (1995)

81. Shinohara, T.: Polynomial time inference of pattern languages and its application.
In: Proceedings of 7th IBM Symposium on Mathematical Foundations of Computer
Science, MFCS, pp. 191–209 (1982)

82. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: a linear time fixed
parameter algorithm. J. Algorithms 56(1), 1–24 (2005). https://doi.org/10.1016/
j.jalgor.2004.12.001

83. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Berzish, M., Dolby, J., Zhang,
X.: Z3str2: an efficient solver for strings, regular expressions, and length con-
straints. Formal Methods Syst. Des. 50(2–3), 249–288 (2017)

https://doi.org/10.1007/978-3-642-59136-5_4
http://eatcs.org/beatcs/index.php/beatcs/article/view/98
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001

Abelian Properties of Words

Svetlana Puzynina(B)

Saint Petersburg State University,
7–9 Universitetskaya emb., 199034 Saint Petersburg, Russia

s.puzynina@gmail.com

Abstract. Abelian properties of words is a widely studied field in com-
binatorics on words. Two finite words are abelian equivalent if for each
letter they contain the same numbers of occurrences of this letter. In this
paper, we give a short overview of some directions of research on abelian
properties of words, and discuss in more detail two new problems: small
abelian complexity of two-dimensional words, and abelian subshifts.

Keywords: Abelian properties of infinite words · Words complexity ·
Subshifts

1 Introduction

Abelian approach is a new and very effective tool in the theory of words. Two
finite words are called abelian equivalent if they can be obtained from each
other by permutations of letters. For example, the words 001012 and 100021
are abelian equivalent. The study of abelian properties of words dates back to
Erdös’s question whether there is an infinite word avoiding abelian squares [24].
Abelian powers and their avoidability in infinite words is a natural generalization
of analogous questions for ordinary powers. The answer to Erdős’s question has
been given by Evdokimov, who provided a construction of an abelian square-free
word [25], and later by Keränen over the minimal alphabet [37]. Nowadays in
combinatorics on words, the study of abelian properties of words is an extremely
popular subject. Various abelian properties of words, including abelian com-
plexity, avoidance, powers, periods, have been widely studied recently, see, e.g.
[4,11,15,37,41,47,49–55]. In this paper, we give a short overview of some direc-
tions of research on abelian properties of words, and discuss in more detail two
new problems: small abelian complexity of two-dimensional words, and abelian
subshifts.

Nivat’s conjecture, introduced at ICALP 1997, is a two-dimensional analog
of a classical one-dimensional theorem of Morse and Hedlund. In their seminal
paper Symbolic Dynamics from 1938 [42], they introduced the notion of com-
plexity of an infinite word as a function p(n) which counts, for each integer n, the
number of its distinct factors (i.e., blocks of consecutive letters) of length n. The

Partially supported by Russian Foundation of Basic Research (grant 18-31-00118).

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 28–45, 2019.
https://doi.org/10.1007/978-3-030-28796-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_2

Abelian Properties of Words 29

factor complexity provides a useful measure of randomness of an infinite word
and more generally of the subshift it generates. They further proved that an
infinite word is periodic if and only if its complexity function satisfies p(n) ≤ n
for some n. The latter result is referred to as Morse-Hedlund theorem.

In two dimensions, the complexity is a function pw(m,n) counting for each
m,n ∈ N the number of distinct rectangular m × n blocks. Nivat’s conjec-
ture states that if the complexity pw of a two-dimensional word w satisfies
pw(n,m) ≤ nm, then w has a periodicity vector [44]. Weak forms of the conjec-
ture for pw(n,m) ≤ nm

c for different constants c > 0 were proved by Epifanio,
Koskas, Mignosi [23], by Quas, Zamboni [48], by Cyr, Kra [16], and in asymp-
totic form by Kari, Szabados [36]; see also [21]. Minimal complexity of aperiodic
two-dimensional words was explored by Berthé and Vuillon [7]. Remarkably, the
conjecture does not hold in higher dimensions. In this paper, we are interested
in abelian version of Nivat’s conjecture in the case of recurrent two-dimensional
words, i.e., words where each fragment occurs infinitely many times, and in the
structure of recurrent two-dimensional words of small abelian complexity.

Another topic we discuss in the paper is abelian subshifts. A subshift Ωx

generated by an infinite word x can be defined as the set of infinite words y such
that each factor of y is a factor of x. We consider an abelian version of the notion
of subshift: We define the abelian subshift Ax of an infinite word x as the set of
infinite words y such that, for each factor u of y, there exists a factor v of x with
u ∼ab v. Clearly, Ωx ⊆ Ax for any word x. We are interested in when the equality
holds, and we study the general structure of abelian subshifts. As an example, it
is not hard to see that for Sturmian words Ωx = Ax (so, the abelian subshift is
small compared to Ωx). Moreover, the property Ωx = Ax characterizes Sturmian
words among uniformly recurrent binary words (see Theorem 11). On the other
hand, it is easy to see that the abelian subshift of the Thue-Morse word TM is
{ε, 0, 1} ·{01, 10}N (see Example 4). So, contrary to Sturmian words, the abelian
subshift of the Thue-Morse is huge compared to ΩT M : basically, it is a morphic
image of the full binary shift. In general, the abelian subshift of an infinite
word might have a pretty complicated structure. T. Hejda, W. Steiner, and
L.Q. Zamboni studied the abelian subshift of the Tribonacci word TR. They
announced that AT R \ ΩT R �= ∅ but that ΩT R is the only minimal subshift
contained in AT R [31,59].

The paper is organized as follows. In Sect. 2, we give some overview of abelian
properties of words which are well studied. In particular, we discuss abelian
complexity and avoidance. In Sect. 3, we introduce new results concerning small
abelian complexity of two-dimensional words. In particular, we show that, con-
trary to the one-dimensional case, there exist aperiodic words with abelian com-
plexity 1 for some block sizes. Further we show that for recurrent words abelian
complexity cannot be bounded by 2 and moreover the abelian complexity at
least 3 must be achieved for infinitely many block sizes. In Sect. 4, we discuss a
recent notion of abelian subshift and study its properties. For the abelian sub-
shifts of binary words, we prove that if an aperiodic binary uniformly recurrent
word is not Sturmian, then its abelian subshift contains infinitely many minimal

30 S. Puzynina

subshifts. We further study the abelian subshifts of some generalisations of Stur-
mian words: We show that abelian subshift of an aperiodic recurrent balanced
word is a finite union of minimal subshifts. We also characterize abelian subshifts
of aperiodic words having factor complexity n+C for each n. Depending on the
word, their abelian subshifts contain either finitely many or uncountably many
distinct minimal subshifts.

2 Overview

In this section we first give some definitions and notation, and then give an
overview of some results on abelian properties of words; in particular, we discuss
abelian complexity and abelian avoidance.

2.1 Definitions and Notation

Let Σ be a finite non-empty set called an alphabet. A finite word over the
alphabet Σ is any finite sequence of its symbols. By an infinite word w we
mean an element w = w0w1w2 · · · ∈ ΣN. Although in the one-dimensional case
we usually consider one-way infinite words, most of the notions and results we
discuss extend to biinfintie words, i.e., elements from ΣZ.

The set of finite words over an alphabet Σ is denoted by Σ∗ and the set
of non-empty words is denoted by Σ+. We let |w| denote the length of a word
w ∈ Σ∗. The empty word is denoted by ε and by convention we set |ε| = 0. The
set of words of length n over the alphabet Σ is denoted by Σn. A factor of an
finite or infinite word is any finite sequence of its consecutive letters; we let L(x)
denote the set of factors of x.

An infinite word w is called recurrent if each its factor occurs in it infinitely
many times. An infinite word w is called uniformly recurrent if for each integer
n there exists an integer N such that each factor of w of length N contains all
factors of w of length n. In other words, a word is uniformly recurrent if each
its factor occurs in it with bounded gap. An infinite word w is called eventually
periodic if there exist integers N and T such that wn+T = wn for each n ≥ N .
An infinite word w is called purely periodic if wn+T = wn for each n ≥ 0. A
word is aperiodic if it is not ultimately periodic.

Given a finite word u over an alphabet Σ and a letter a ∈ Σ, we let |u|a
denote the number of occurrences of a in u. Two finite words u and v are abelian
equivalent, denoted by u ∼ab v, if |u|a = |v|a for each letter a. In other words,
u and v are permutations of one another. It is straightforward that abelian
equivalence is indeed an equivalence relation on the set of finite words.

Parikh vector of a finite word v over an alphabet Σ = {a1, . . . , ak} is defined
as PV (v) = (|v|a1 , . . . , |v|ak

). Clearly, two words are abelian equivalent if their
Parikh vectors coincide. The set of Parikh vectors of factors of length n of an
infinite word is then denoted by PV (n). A frequency of a in a finite word v is
freqv(a) = |v|a

|v| . A (bi-)infinite word w has uniform frequency of a letter a if the

ratio |wk···wk+n−1|
n has a limit freqw(a) when n → ∞, uniformly in k. A (finite or

Abelian Properties of Words 31

infinite) word w is C-balanced for an integer C > 0, if for every letter a and any
two factors u, v of w of the same length, one has ||u|a − |v|a| ≤ C. For C = 2,
the constant is usually omitted and the word is called balanced.

2.2 Abelian Complexity

For each infinite word w = w0w1w2 · · · ∈ ΣN, the complexity or factor complexity
pw(n) is a function counting the number of distinct blocks wiwi+1 · · · wi+n−1 ∈
Σn of length n occurring in w. A celebrated theorem of Morse and Hedlund
gives a link between periodicity and complexity:

Theorem 1 (Morse and Hedlund [42]). Let w be a one-dimensional word.
If there exists n such that pw(n) ≤ n, then w is eventually periodic.

Clearly, periodic words have bounded complexity. Words satisfying px(n) =
n + 1 for each n ≥ 0 are called Sturmian words, and hence are regarded as
the simplest aperiodic words. Sturmian words admit various types of charac-
terizations of geometric and combinatorial nature, e.g., they can be defined via
balance, morphisms, rotations, etc. (see [43] and Chap. 2 in [40]).

In a similar way the abelian complexity aw(n) of an infinite word w is defined
as a function which counts the number of distinct abelian classes of factors of
length n occurring in w. It easy to see that, similarly to factor complexity, the
abelian complexity also gives a characterization of periodicity:

Lemma 1 [14]. A infinite word w is purely periodic if and only if there exists
n such that aw(n) = 1.

Clearly, if an infinite word w is ultimately periodic, then its abelian com-
plexity is bounded. On the other hand, there exist aperiodic words of bounded
abelian complexity. For example, Sturmian words are aperiodic and have abelian
complexity 2 for each n, and moreover this is a characterization:

Theorem 2 [14]. Let x be an aperiodic binary infinite word. Then x is a Stur-
mian word if and only if ax(n) = 2 for every n ≥ 1.

Therefore, Sturmian words are aperiodic words of minimal abelian complexity
as well. The maximal abelian complexity is realized, for example, by words with
maximal factor complexity. We have:

Proposition 1. For all infinite words x over Σ, |Σ| = k and for all n ≥ 0,

1 ≤ ax(n) ≤
(

n + k − 1
k − 1

)
.

The following proposition relating C-balance to bounded abelian complexity
is straightforward:

Proposition 2. Let x be an infinite word. Then the abelian complexity of x is
bounded if and only if x is C-balanced for some C > 0.

32 S. Puzynina

Example 1. The Thue-Morse word TM = 0110100110010110 . . . can be defined
as the fixed point of the substitution μ : 0 �→ 01, 1 �→ 10. It is easy to see that
its abelian complexity satisfies:

aT M (n) =
{

2, if n is odd;
3, if n is even.

Example 2. Another example of an aperiodic word of bounded complexity is the
Tribonacci word TR, which can be defined as the fixed point of the morphism
0 �→ 01, 1 �→ 02, 2 �→ 0. This is also the simplest example of Arnoux-Rauzy
words. For every n ≥ 1, the abelian complexity of the Tribonacci word satisfies
aT R (n) ∈ {3, 4, 5, 6, 7}. Moreover, each of these five values is assumed [53].

In [52] it has been proved that there are recurrent words of abelian complexity
3, but there are no recurrent words of abelian complexity 4 [15]. However, there
are recurrent words with ultimately constant complexity c for every c [55].

We will now discuss the (abelian) complexity of morphic words. A mapping
ϕ : Σ∗ �→ Δ∗ is called a morphism if ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Σ∗.
The notion of a morphism extends naturally to infinite words. An infinite word
is a fixed point of a morphism ϕ : Σ∗ �→ Σ∗ if ϕ(w) = w. A well known
classification of complexities of fixed points of morphisms finished by Pansiot
[45] says that there are 5 classes of possible complexity growth: Θ(1), Θ(n),
Θ(n log n), Θ(n log log n) and Θ(n2).

The abelian complexity of purely morphic words is more complicated and is
completely classified only for fixed points of binary morphisms (more precisely,
complexity limsup has been classified). Note first that the balance function of
primitive morphisms has been characterized by Adamczewski [1]. As an imme-
diate corollary of this characterization, we get a classification of complexities
of fixed points of primitive binary morphisms. If we write f(x) = Ω′(g(x)) if
lim supx→∞ f(x)/g(x) > 0, then the complexity of a pure morphic word is either
Θ(1), or O ∩ Ω′(log n), or O ∩ Ω′(n logθ1

θ2), where θ1 and θ2 are the first and
second most significant eigenvalues of ϕ. A classification of abelian complexities
of non-primitive binary morphisms is due to Blanchet-Sadri, Fox and Rampersad
[8] completed by Whiteland [58]: it can be either Θ(1), or Θ(n), or Θ(n/ log n),
or Θ(nlogk l) with 1 < k < l, or it can fluctuate between Θ(1) and Θ(log(n)).

2.3 Abelian Avoidance

Avoidability of powers and patterns is a well studied area in combinatorics on
words. In this subsection, we provide some results on avoidability of abelian
powers. An abelian square is a nonempty word of the form uv, where u and
v are abelian equivalent. More generally, an abelian cube (resp. an abelian kth
power) is a word of the form u1u2u3 (resp. u1u2 · · · uk), where ui ∼ab uj for
all i, j ∈ {1, . . . , k}. The study of abelian avoidance started with a question of
Erdös who asked whether it is possible to construct an infinite word containing
no abelian squares as factors [24].

Abelian Properties of Words 33

A k-power is a particular case of an abelian k-power. So, unavoidability of
k-powers implies unavoidability of abelian k-powers, but not vise versa. This
implies, for example, that abelian squares are unavoidable for binary alpha-
bet. The following theorem gives the minimal sizes of the alphabet for avoiding
abelian powers:

Theorem 3 [18,37].

1. There exists an infinite word over an alphabet of size 4 with no abelian squares.
2. There exists an infinite ternary word over with no abelian cube factor.
3. There exists an infinite binary word with no abelian 4th power.

The sizes of the alphabets are optimal.

The first part of the theorem has been proved by Keränen in 1992 [37], the
other two parts by Dekking in 1979 [18].

The summary of results on avoidability of (abelian) k-powers is provided in
Table 1.

Table 1. Minimal sizes of the alphabets over which the corresponding powers are
avoidable.

Usual Abelian

Squares 3 4

Cubes 2 3

4-powers 2 2

Abelian squares are unavoidable over a binary alphabet; however, one can
wonder whether it is possible to construct an infinite binary word containing
only a finite number of abelian squares (as it is the case for ordinary squares,
where there exists an infinite binary word containing only 00, 11 and 0101 as
squares). The answer to this question is known, and it is negative. However, in
the ternary case, it is possible to construct infinite words containing only a finite
number of abelian squares:

Theorem 4 [22,51]. The following holds true:

1. Every infinite binary word contains arbitrarily long abelian squares.
2. There exist infinite ternary words with no abelian square of period larger or

equal to 6.

We refer to [22] for part 1 of the theorem, and to [51] for part 2 of the
theorem.

The following conjecture is believed to be true, but is still unproved:

Conjecture 1 (Mäkela, [38]). There exists an infinite ternary word whose abelian
squares are only 00, 11, 22.

34 S. Puzynina

Another conjecture of Mäkela stated that there exists an infinite binary word
containing only 000 and 111 as abelian cubes. The conjecture has been shown to
be false in [50], but the following modification of Mäkela’s question is still open:

Problem 1. Is it possible to construct an infinite binary word containing only a
finite number of abelian cubes?

2.4 Other Abelian Properties

In this subsection we discuss some other results on abelian properties of infinite
words, such as abelian periods, returns, borders and abelian richness, without
going into detail.

Constantinescu and Ilie introduced in 2006 the following generalization to
the abelian case of the notion of a classical period. We write PV (u) ⊂ PV (v)
if PV (u) is component-wise smaller than or equal to PV (v). A word w has an
abelian period p with preperiod h if w = u0u1 · · · um−1um such that PV (u0) ⊂
PV (u1) = · · · = PV (um−1) ⊃ PV (um) and |u0| = h, |u1| = p. The words u0

and ul are called head and tail, respectively.
Recall that the classical theorem of Fine & Wilf states that if a word w has

two (classical) periods p and q and length |w| ≥ p + q − gcd(p, q), then w has
also period gcd(p, q) [29]. Moreover, this value is optimal, in the sense that for
any p and q it is possible to construct a word with periods p and q and length
|w| = p + q − gcd(p, q) − 1 such that gcd(p, q) is not a period of w. In particular,
if a word w has two coprime periods p and q and length |w| ≥ p + q − 1, then w
is a power of a single letter. The following gives an abelian analog of Fine and
Wilf’s theorem:

Theorem 5 [13]. If a word w has coprime abelian periods p and q and length
|w| ≥ 2pq − 1, then w is a power of a single letter.

The latter result has been recently generalized to the case when the abelian
periods p and q are not coprime:

Theorem 6 [56]. If a word w has abelian periods p = p′d and q = q′d and length
|w| ≥ 2p′q′d − 1 for integers d′, p′, q′, then the number of letters occurring in w
is at most d.

Moreover, if the difference ||v0| − |u0|| of the lengths of the heads of the two
periods p and q is not a multiple of d, then the previous bound can be reduced to
2p′q′d − 2.

The following theorem gives a relation between bounded abelian complexity
and avoiding abelian powers:

Theorem 7 [52]. An infinite word with bounded abelian complexity contains
abelian k-powers for any k.

Abelian Properties of Words 35

In the case of Sturmian words something stronger holds: For every Sturmian
word w and positive integer k, each sufficiently long factor of w begins in an
Abelian k-power [52]. However, it is possible to construct a uniformly recurrent
binary word with bounded abelian complexity such that none of its prefixes is
an abelian square [10].

Another concept which gives a productive abelian version is return words.
Return words constitute a powerful tool for studying various problems in com-
binatorics on words, symbolic dynamical systems and number theory. Given a
factor v of an infinite word w, a return word to v (in w) is a factor u of w such
that uv is a factor of w beginning and ending in v and having no other (internal)
occurrence of v. In other words, the set of all return words to v is the set of
all distinct words beginning with an occurrence of v and ending just before the
next occurrence of v. The notion of return words can be regarded as a discrete
analogue of the first return map in dynamical systems. Return words are used,
for example, to characterize Sturmian words: A binary recurrent infinite word w
is Sturmian if and only if each factor u of w has two returns in w [57].

The notion of a return word is naturally generalized to the abelian setting:
Given a factor u of an infinite word x, let n1 < n2 < n3 < . . . be all the inte-
gers ni such that wni

· · · wni+|u|−1 is abelian equivalent u. Then we call each
wni

· · · wni+|u|−1 a semi-abelian return to u. By an abelian return to u we mean
an abelian class of wni

· · · wni+1−1. We note that in both cases these definitions
depend only on the abelian class of u. Each of these notions of abelian returns
gives rise to a characterization of Sturmian words. Moreover, the characterisa-
tions are the same in terms of abelian and semi-abelian returns:

Theorem 8 [47]. A binary recurrent infinite word x is Sturmian if and only if
each factor u of x has two or three (semi-)abelian returns in x.

For further results on abelian returns we refer to [41,54].
We finish this subsection by a problem of counting abelian factors in a word.

Counting a maximal number of factors of different type (palindrome, square,
run) is a rather popular subject in combinatorics on words. Clearly, a maximal
number of factors a word of length n can contain is Θ(n2). It is easy to see that
a word an/2bn/2 contains Θ(n2) distinct abelian factors. The question is, can
we construct an infinite word such that each its factor contains Θ(n2) distinct
abelian squares? The answer is negative for binary alphabets [3] and is open for
nonbinary alphabets:

Problem 2. Does there exist a constant C > 0 and an infinite word w, such that
for each n an each factor of w has at least Cn2 distinct abelian factors?

A related problem concerning finite words which are rich in squares has been
considered in [27].

There are many other abelian aspects of words which are not covered in
this survey. For example, abelian borders [11,12], abelian critical factorization
theorem [4], abelian properties of Sturmian words [28] to name just a few.

36 S. Puzynina

3 Small Abelian Complexity of Two-Dimensional Words

In Subset. 2.2 we discussed connections between periodicity and complexity in
the one-dimensional case. Due to a celebrated result of Morse and Hedlund,
Theorem 1, if a complexity of an infinite word w satisfies pw(n) ≤ n for some
n, then the word is ultimately periodic. In two dimensions, a similar assertion is
known as Nivat’s conjecture:

Conjecture 2 (Nivat’s conjecture [44]). Let w be a two-dimensional word, n,
m two numbers such that the complexity pw satisfies pw(n,m) ≤ nm. Then w
has a periodicity vector.

The problem considered in this section concerns abelian complexity of mul-
tidimentional words and in particular an abelian analog of Nivat’s conjecture
under recurrence condition. A closely related paper studies balance in two-
dimensional words [6]. It is worth noting that, contrary to one-dimensional case,
in two dimensions balance is not equivalent to bounded abelian complexity.

Without the condition on recurrence, the problem in the abelian setting is
trivial. Indeed, there exist aperiodic two-dimensional words of abelian complexity
2, for example a binary word that has only one occurrence of 1. Clearly, the word
from the example is not recurrent. The main result of this section is Theorem 10,
stating that for a two-dimensional aperiodic recurrent word w there exist integers
m and n such that aw(m,n) ≥ 3; moreover there are infinitely many such pairs
(m,n). The results of this sections are based on [46].

3.1 Two-Dimensional Words

A two-dimensional word w is called periodic if there exist integers (m,n) such
that w(x, y) = w(x+m, y+n) for each pair (x, y) of integers. A two-dimensional
word w is called fully periodic if there exist two noncollinear integer vectors
(m1, n1), (m2, n2) such that w(x, y) = w(x + mi, y + ni) for each pair (x, y) of
integers and i = 1, 2. By an m × n factor of a two-dimensional word we mean a
rectangular block of the form

wx,y+n−1 · · · wx+m−1,y+n−1

...
...

wx,y · · · wx+m−1,y

for some integers x, y.
Similarly to the one-dimensional case, the abelian complexity aw(m,n) of a

two-dimensional word w is defined as the number of abelian classes of m × n
blocks. A two-dimensional word is balanced if for each pair (m,n) of integers, each
letter a and any two m × n-factors u and v of the word it holds ||u|a − |v|a| ≤
1. Sometimes C-balance is defined if the equality ||u|a − |v|a| ≤ C holds. We
remark that although in the one-dimensional case bounded abelian complexity
is equivalent to C-balance for some constant C, in two dimensions it is not true:

Abelian Properties of Words 37

Consider, for example, a word with alternating horizontal lines of 1’s and of 0’s.
This word has bounded abelian complexity but is not balanced.

A two-dimensional word w is called recurrent if each its factor occurs in it
infinitely many times. An infinite word w is called uniformly recurrent if for each
integer n there exists an integer N such that each square N × N factor of w
contains all square factors of w of size n × n.

We will need a few technical definitions. We call an (m,n)-lattice nested in
(x, y) ∈ Z

2 the set {(x, y) + (mi, nj)|i, j ∈ Z}. We remark that we can assume
that 0 ≤ x < m, 0 ≤ y < n, and that this way Z

2 is split into mn many
(m,n)-lattices.

3.2 Small Abelian Complexity of Recurrent Two-Dimensional
Words

In this section we study small abelian complexity of two-dimensional words.
First we consider the case of abelian complexity equal to 1 for some blocks.
In particular, we study the structure of such words and show that, contrary to
the one-dimensional case, there exist aperiodic words with abelian complexity
1 for some block sizes. Then we show that for recurrent two-dimensional words
abelian complexity cannot be bounded by 2, moreover, the value at least 3 must
be achieved for an infinite number of block sizes. We also show that there exist
aperiodic recurrent two-dimensional words with abelian complexity bounded by
3.

The following theorem describes the structure of two-dimensional words hav-
ing abelian complexity 1 for some block size:

Theorem 9. Let w be a two-dimensional word, and let aw(m,n) = 1 for some
integers m and n. Then in each (m,n)-lattice w is either (0, n)-periodic or (m, 0)-
periodic, i.e., we have either w(x, y) = w(x+m, y) for each point (x, y) from the
lattice, or w(x, y) = w(x, y + n) for each point (x, y) from the lattice.

The following proposition shows that, contrary to one-dimensional case
(Lemma 1), there exist aperiodic two-dimensional words that have abelian com-
plexity 1 for some values m and n:

Proposition 3. There exists an aperiodic two-dimensional word w with abelian
complexity aw(m,n) = 1 for infinitely many pairs (m,n).

We construct such a word of blocks 2 × 2 each of them being either
a b
b a

or

b a
a b

, in a way that in (4, 2)-lattices nested in (x, y) ∈ {0, 1}2 the word is (4, 0)-

periodic, and in (4, 2)-lattices nested in (x, y) ∈ {2, 3}×{0, 1} it is (0, 2)-periodic.
Now we fill in the blocks {0, 1}×{2i, 2i+1}, i ∈ Z, choosing one of the two blocks
for any i in arbitrary way, and continue by (4, 0)-periodicity to fill into the blocks
{4j, 4j + 1} × {2i, 2i + 1}, i, j ∈ Z. In the similar way we fill in the remaining
blocks: we can fill in the blocks {2j+2, 2j+3}×{0, 1}, j ∈ Z choosing one of the

38 S. Puzynina

two blocks for any j in arbitrary way, and continue by (0, 2)-periodicity to fill
into the blocks {4j +2, 4j +3}×{2i, 2i+1}, i, j ∈ Z. Here is an fragment of such
a word, with letters from the (4, 2)-lattices nested in (x, y) ∈ {0, 1}2 marked by
bold:

a b a b a b b a a b b a
b a b a b a a b b a a b
b a a b b a b a b a b a
a b b a a b a b a b a b
a b a b a b b a a b b a
b a b a b a a b b a a b
a b a b a b b a a b b a
b a b a b a a b b a a b

This word is aperiodic and has abelian complexity 1 in 4 × 2 rectangles, and
moreover for each n′,m′ ∈ N we have aw(4n′, 2m′) = 1; the proof is straightfor-
ward.

Although the words with abelian complexity one have some periodicity struc-
ture (in lattices), it is possible to construct words of complexity 2 or 3 without
periodicity in lattices:

Proposition 4. There exist recurrent aperiodic two-dimensional words that
have abelian complexity 2 or 3 and are aperiodic in any lattice.

Surprisingly, the structure of such words is not related to Sturmian words.
To build such an example, we start with any binary word x ∈ {0, 1}Z. We build
a two-dimensional word w by 2 × 2 blocks in the following way:

w2i,2j+1 w2i+1,2j+1

w2i,2j w2i+1,2j
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 0
0 1

, if xi = xj ,

0 1
1 0

, if xi �= xj .

The complexity can be checked straightforwardly by considering several cases.
Actually, this is the smallest possible complexity:

Theorem 10. Let w be a two-dimensional aperiodic recurrent word. Then there
exist infinitely many pairs (m,n) for which aw(m,n) ≥ 3.

3.3 Small Complexity of Uniformly Recurrent Two-Dimensional
Words

An interesting open question concerns the (non-abelian) Nivat’s conjecture under
the condition of recurrence. It has been recently proved that if we assume that an
infinite word is uniformly recurrent and for some (m,n) its complexity is bounded
by mn, then it has a periodicity vector [35]. On the other hand, Julien Cassaigne
characterized infinite words of complexity mn + 1 [9]. In particular, he showed

Abelian Properties of Words 39

that none of such sequences is uniformly recurrent. So the question is, what is the
minimal complexity of aperiodic two-dimensional uniformly recurrent words? We
remark that one well-known family of two-dimensional words of low complexity
include Sturmian words, i.e., words obtained by a rotation on a thorus [7]: Let α,
β be real numbers, with 1, α, β rationally independent, and 0 < α + β < 1. The
two-dimensional Sturmian word s over the three-letter alphabet {1, 2, 3} (with
parameters α, β, ρ) is defined as

sm,n = i ⇔ (mα + nβ + ρ modulo 1) ∈ Ii,

where I3 = [0, α), I2 = [α, α + β), I1 = [α + β, 1) (the intervals may also be all
half-open on the left). These words have no periodicity vector and they have
complexity p(m,n) = mn + m + n. A projection of a two-dimensional Sturmian
word defined by v(m,n) = 1 if and only if s(m,n) = 1 or 3 and v(m,n) = 2
if and only if s(m,n) = 2 gives an example of a two-dimensional uniformly
recurrent word of complexity y p(m,n) = mn + n for sufficiently large m and
n. A challenging open problem, which is a modification of Nivat’s conjecture,
is to find uniformly recurrent aperiodic two-dimensional words of the lowest
complexity.

4 Abelian Subshifts

Part of the results of this section were introduced at DLT 2018 [34], the others
are based on a recent joint work with Markus Whiteland. In the section, we
undertake a general study of the notion of abelian subshift. First, we consider the
abelian subshifts of binary words. We prove that if an aperiodic binary uniformly
recurrent word is not Sturmian, then its abelian subshift contains infinitely many
minimal subshifts. Secondly, we characterize the abelian subshifts of aperiodic
recurrent balanced words; they are a finite union of minimal subshifts. Finally,
we characterize abelian subshifts of aperiodic words having factor complexity
n + C for each n. Depending on the word, its abelian subshift contains either
finitely many or uncountably many distinct minimal subshifts.

4.1 Preliminaries and Notation

A subshift X ⊆ ΣN, X �= ∅, is a closed set (with respect to the product topology
of ΣN) which is invariant under the shift operator σ (defined by σ(a0a1a2 · · ·) =
a1a2 · · ·), that is, σ(X) ⊆ X. We call ΣN the full shift over Σ. A subshift
X ⊆ ΣN is called minimal if X does not contain any proper subshifts. For a
subshift X ⊆ ΣN we let L(X) = ∪y∈XL(y). Let x ∈ ΣN. We let Ωx denote
the shift orbit closure of x, that is, the set {y ∈ ΣN : L(y) ⊆ L(x)}. Thus
L(Ωx) = L(x) for an infinite word x ∈ ΣN. It is known that Ωx is minimal if
and only if x is uniformly recurrent. See [39] for more on the topic.

We turn to the main notion of this section. For a subshift X ⊆ ΣN we define
the abelian subshift of X as AX = {y ∈ ΣN : ∀u ∈ L(y)∃v ∈ L(X) : u ∼ab v}.
Observe that for any x ∈ ΣN the abelian subshift Ax is indeed a subshift. We
make preliminary observations on abelian subshifts of periodic infinite words.

40 S. Puzynina

Proposition 5. For any periodic word x, the abelian subshift Ax is finite.

In general, the abelian subshift of an ultimately periodic word can be huge.

Example 3. Let x = 0011(001101)ω. It is readily verified that TM ∈ Ax so that
Ax = AT M = {ε, 0, 1}{01, 10}N.

4.2 On Abelian Subshifts of Binary Words

In this subsection we show that for a uniformly recurrent word x, its abelian
subshift Ax contains exactly one minimal subshift if and only if x is a Sturmian
word, aperiodic or periodic. We remark that purely periodic balanced words
are sometimes also called Sturmian. We show that if x is an aperiodic binary
uniformly recurrent word which is not Sturmian, then Ax contains infinitely
many minimal subshifts.

The following theorem gives a characterization of Sturmian words in terms
of abelian subshifts.

Theorem 11. Let x ∈ {0, 1}N be a uniformly recurrent aperiodic word. Then
Ax contains exactly one minimal subshift if and only if x is Sturmian.

We remark that the characterization does not extend to non-binary alpha-
bets: Let f = 010010100 . . . be the Fibonacci word and let ϕ : 0 �→ 02, 1 �→ 12.
Then for w = ϕ(f) one has Aw = Ωw (see Theorem 14).

Theorem 12. Let x be a binary uniformly recurrent word which is not aperiodic
or periodic Sturmian. Then Ax contains infinitely many minimal subshifts.

The proof consists of three parts treated in different ways: if x has no frequen-
cies of letters, the proof is almost immediate. If it has rational frequencies, then
using so-called standard factors we can show that its abelian subshift contains
uncountably many infinite subshifts. The hardest case is the case of irrational
frequency, the proof is geometric and different for balanced and unbalanced case.
We omit the details.

Example 4 (Thue–Morse word). Consider the abelian subshift of the Thue-
Morse word TM . For odd lengths TM has two abelian factors, and for even
lengths three. Further, the number of occurrences of 1 in each factor differs by
at most 1 from half of its length. It is easy to see that any factor of any word
in {ε, 0, 1} · {01, 10}N has the same property, i.e., {ε, 0, 1} · {01, 10}N ⊆ AT M . In
fact, equality holds: AT M = {ε, 0, 1} · {01, 10}N. Indeed, let x ∈ AT M . Then x
has blocks of each letter of length at most 2 (since there are no factors 000 and
111). Moreover, between two consecutive occurrences of 00 there must occur 11,
and vice versa (otherwise we have a factor 001010 · · · 0100, where the number
of occurrences of 1 differs by more than 1 from half of its length). Clearly, such
word is in {ε, 0, 1} · {01, 10}N. So, for the Thue-Morse word, its subshift is huge
compared to ΩTM : basically, it is a morphic image of the full binary shift.

Abelian Properties of Words 41

4.3 On Abelian Subshifts of Minimal Complexity Words
and Related Words

In this subsection we are interested in extending the characterization of Ωx = Ax

from Theorem 11 to nonbinary alphabet. Natural idea is to check natural gen-
eralizations of Sturmian words to nonbinary alphabet. Following the definition
of Sturmian words as words of minimal complexity, we study abelian subshifts
of nonbinary words of minimal complexity. As Sturmian words can be defined
as balanced words, it is reasonable to check nonbinary balanced words. Finally,
using the definition via palindromic closures, we discuss Arnoux-Rauzy words.

First we study the abelian subshifts of aperiodic nonbinary words of minimal
complexity. Over an alphabet Σ, the minimal complexity is n + |Σ| − 1. The
structure of words of complexity n + C is related to the structure of Sturmian
words and is well understood [19,26,33]. We start with infinite words for which
p(n) = n + 2 for all n ≥ 1. Observe that this implies that we deal with ternary
words.

Theorem 13 ([26] as formulated in [33]). A word u ∈ {0, 1, 2} has factor
complexity pu (n) = n + 2 for all n ≥ 1 if and only if u is of the form (up to
permuting the letters)

1. u = 2s for some Sturmian word s ∈ {0, 1}N, or u ∈ Ωϕ(s), where s is a
Sturmian word and ϕ is defined by

2. 0 �→ 02, 1 �→ 12;
3. 0 �→ 0, 1 �→ 12.

Using this description, we obtain a complete characterization of abelian sub-
shifts of ternary words of minimal complexity. In fact, their abelian subshifts
either contain one, or uncountably many minimal subshifts:

Theorem 14. Let u be a word of factor complexity n + 2 for all n ≥ 1. If u is
as in Theorem 13, item 1 or item 2, then Au = Ωu . If u is as in item 3, then
Au contains uncountably many minimal subshifts.

Surprisingly, for alphabet of size greater than 3 there are always only finitely
many subshifts:

Theorem 15. Let u be a recurrent word of factor complexity n+C for all n ≥ 1,
where C > 2. Then Au contains exactly two minimal subshifts.

The proof is based on the characterization of words of factor complexity n+C
for all n ≥ 1 from [26].

Now we turn to aperiodic uniformly recurrent balanced words and their
abelian subshifts. We can prove that abelian subshift of such word is a finite
union of minimal subshifts. Our results rely heavily on the characterization of
aperiodic recurrent balanced words by Hubert [32].

Theorem 16. Let u be aperiodic recurrent and balanced. Then Au is the union
of finitely many minimal subshifts.

42 S. Puzynina

The techniques used in the proof of the above theorem give us the following
proposition. We remark that the words in question are not necessarily balanced.

Proposition 6. For each k ≥ 1 there exists an aperiodic word xk such that Axk

equals the union of k distinct minimal subshifts.

We remark that although the structure of aperiodic balanced words is clear,
the structure of periodic balanced words is a mystery. The following conjecture
by Fraenkel, 1973, remains open despite efforts of different scientists: The unique
(up to a permutation of letters) balanced word on k ≥ 3 letters with all distinct
frequencies of letters is (Fk)ω, where Fk = Fk−1kFk−1 and F2 = 121 [30]. The
conjecture has been verified for k ≤ 7 (see [5] and references therein).

In the end of this subsection we discuss Arnoux-Rauzy words, which are
another generalization of Sturmian words to larger alphabet. One of the ways
to define Arnoux-Rauzy words is via palindromic closures. The following basics
on Arnoux-Rauzy words are well-known and mostly taken from [2,20]. In fact,
this is a generalization of the facts about Sturmian words given for binary words
in [17].

A finite word v = v0 · · · vn−1 is a palindrome if it is equal to its reversal,
i.e., v = vn−1 · · · v0. The right palindromic closure of a finite word u, denoted
by u(+), is the shortest palindrome that has u as a prefix. The iterated (right)
palindromic closure operator ψ is defined recursively by the following rules:

ψ(ε) = ε, ψ(va) = (ψ(v)a)(+)

for all v ∈ Σ∗ and a ∈ Σ. We let Prefnw denote the prefix of w of length n, i.e.,
Prefnw = w0 · · · wn−1. The definition of ψ may be extended to infinite words u
over Σ as ψ(u) = limn ψ(Prefnu), i.e., ψ(u) is the infinite word having ψ(Prefnu)
as its prefix for every n ∈ N.

Let Δ be an infinite word on the alphabet Σ such that every letter occurs
infinitely often in Δ. The word c = ψ(Δ) is then called a characteristic (or
standard) Arnoux-Rauzy word and Δ is called the directive sequence of c. An
infinite word u is called an Arnoux-Rauzy word if it has the same set of factors as
a (unique) characteristic Arnoux-Rauzy word, which is called the characteristic
word of u. The directive sequence of an Arnoux-Rauzy word is the directive
sequence of its characteristic word. It is not hard to see that the Tribonacci
word (see Example 2) is an Arnoux-Rauzy word with the directive sequence
(123)ω.

Apparently, the structure of abelian subshifts of Arnoux-Rauzy words is
rather complicated. For example, it is not hard to see that for any Arnoux-
Rauzy word with a characteristic word c its abelian subshift contains 20c (here
we assume that 0 is the first letter of Δ and 2 is the third letter occurring in
Δ for the first time, i.e., Δ has a prefix of the form 0{0, 1}∗1{0, 1}∗2). On the
other hand, 20c /∈ Ωc.

T. Hejda, W. Steiner, and L.Q. Zamboni studied the abelian subshift of the
Tribonacci word TR. They announced that AT R \ ΩT R �= ∅ but that ΩT R is
the only minimal subshift contained in AT R [31,59].

Abelian Properties of Words 43

An interesting open question is to understand the general structure of abelian
subshifts of Arnoux-Rauzy words:

Problem 3. Characterize abelian subshifts of Arnoux-Rauzy words.

References

1. Adamczewski, B.: Balances for fixed points of primitive substitutions. Theor. Com-
put. Sci. 307(1), 47–75 (2003)

2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
Bull. Soc. Math. France 119, 199–215 (1991)

3. Avgustinovich, S., Cassaigne, J., Karhumäki, J., Puzynina, S., Saarela, A.: On
abelian saturated infinite words. Theoret. Comput. Sci. (to appear). https://doi.
org/10.1016/j.tcs.2018.05.013

4. Avgustinovich, S., Karhumäki, J., Puzynina, S.: On abelian versions of critical
factorization theorem. RAIRO - Theor. Inf. Applic. 46, 3–15 (2012)

5. Bark, J., Varju, P.: Partitioning the positive integers to seven beatty sequences.
Indag. Math. 14(2), 149–161 (2003)

6. Berthé, V., Tijdeman, R.: Balance properties of multi-dimensional words. Theor.
Comput. Sci. 273, 197–224 (2002)

7. Berthé, V., Vuillon, L.: Tilings and rotations: a two-dimensional generalization of
Sturmian sequences. Discrete Math. 223, 27–53 (2000)

8. Blanchet-Sadri, F., Fox, N., Rampersad, N.: On the asymptotic Abelian complexity
of morphic words. Adv. Appl. Math. 61, 46–84 (2014)

9. Cassaigne, J.: Double sequences with complexity mn+ 1. J. Autom. Lang. Comb.
4(3), 153–170 (1999)

10. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding abelian powers in
binary words with bounded abelian complexity. Int. J. Found. Comput. Sci. 22(4),
905–920 (2011)

11. Charlier, E., Harju, T., Puzynina, S., Zamboni, L.Q.: Abelian bordered factors and
periodicity. Eur. J. Comb. 51, 407–418 (2016)

12. Christodoulakis, M., Christou, M., Crochemore, M., Iliopoulos, C.S.: Abelian bor-
ders in binary words. Discrete Appl. Math. 171, 141–146 (2014)

13. Constantinescu, S., Ilie, L.: Fine and Wilf’s theorem for abelian periods. Bull. Eur.
Assoc. Theor. Comput. Sci. 89, 167–170 (2006)

14. Coven, E.M., Hedlund, G.A.: Sequences with minimal block growth. Math. Syst.
Theory 7, 138–153 (1973)

15. Currie, J., Rampersad, N.: Recurrent words with constant Abelian complexity.
Adv. Appl. Math. 47, 116–124 (2011)

16. Cyr, V., Kra, B.: Nonexpansive Z
2-subdynamics and Nivat’s conjecture. Trans.

Am. Math. Soc. 367(9), 6487–6537 (2015)
17. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics.

Theor. Comput. Sci. 183, 45–82 (1997)
18. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J.

Comb. Theory Ser. A 27(2), 181–185 (1979)
19. Didier, G.: Caractérisation des N -écritures et application à l’étude des suites de

complexité ultimement n+ cste. Theoret. Comp. Sci. 215(1–2), 31–49 (1999)
20. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions by

de Luca and Rauzy. Theor. Comput. Sci. 255, 539–553 (2001)

https://doi.org/10.1016/j.tcs.2018.05.013
https://doi.org/10.1016/j.tcs.2018.05.013

44 S. Puzynina

21. Durand, F., Rigo, M.: Multidimensional extension of the Morse-Hedlund theorem.
Eur. J. Comb. 34(2), 391–409 (2013)

22. Entringer, R.C., Jackson, D.E., Schatz, J.A.: On nonrepetitive sequences. J. Comb.
Theory (A) 16, 159–164 (1974)

23. Epifanio, C., Koskas, M., Mignosi, F.: On a conjecture on bi-dimensional words.
Theor. Comput. Sci. 299, 123–150 (2003)

24. Erdös, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6,
221–254 (1961)

25. Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of
symbols. Dokl. Akad. Nauk SSSR 179, 1268–1271 (1968)

26. Ferenczi, S., Mauduit, C.: Transcendence of numbers with a low complexity expan-
sion. J. Number Theory 67, 146–161 (1997)

27. Fici, G., Mignosi, F., Shallit, J.: Abelian-square-rich words. Theor. Comput. Sci.
684, 29–42 (2017)

28. Fici, G., et al.: Abelian powers and repetitions in Sturmian words. Theor. Comput.
Sci. 635, 16–34 (2016)

29. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16, 109–114 (1965)

30. Fraenkel, A.S.: Complementing and exactly covering sequences. J. Comb. Theory
Ser. A 14(1), 8–20 (1973)

31. Hejda, T., Steiner, W., Zamboni, L.Q.: What is the abelianization of the tribonacci
shift? In: Workshop on Automatic Sequences, Liège, May 2015

32. Hubert, P.: Suites équilibrées. Theor. Comput. Sci. 242(1–2), 91–108 (2000)
33. Kaboré, I., Tapsoba, T.: Combinatoire de mots récurrents de complexité n + 2.

ITA 41(4), 425–446 (2007)
34. Karhumäki, J., Puzynina, S., Whiteland, M.: On abelian subshifts. In: DLT 2018,

pp. 453–464 (2018)
35. Kari, J. Moutot, E.: Decidability and Periodicity of Low Complexity Tilings.

https://arxiv.org/abs/1904.01267
36. Kari, J., Szabados, M.: An algebraic geometric approach to nivat’s conjecture. In:

Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015,
Part II. LNCS, vol. 9135, pp. 273–285. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47666-6 22

37. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.
1007/3-540-55719-9 62

38. Keränen, V.: New abelian square-free DT0L-languages over 4 letters (2003,
manuscript)

39. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, New York (1995)

40. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

41. Masáková, Z., Pelantová, E.: Enumerating abelian returns to prefixes of sturmian
words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS,
vol. 8079, pp. 193–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40579-2 21

42. Morse, M., Hedlund, G.: Symbolic dynamics. Am. J. Math. 60, 815–866 (1938)
43. Morse, M., Hedlund, G.: Symbolic dynamics II: sturmian sequences. Am. J. Math.

62, 1–42 (1940)
44. Nivat M.: Invited talk at ICALP’97 (1997)

https://arxiv.org/abs/1904.01267
https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1007/978-3-662-47666-6_22
https://doi.org/10.1007/3-540-55719-9_62
https://doi.org/10.1007/3-540-55719-9_62
https://doi.org/10.1007/978-3-642-40579-2_21
https://doi.org/10.1007/978-3-642-40579-2_21

Abelian Properties of Words 45

45. Pansiot, J.-J.: Complexité des facteurs des mots infinis engendrés par morphismes
itérés. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 380–389. Springer,
Heidelberg (1984). https://doi.org/10.1007/3-540-13345-3 34

46. Puzynina, S.: Small abelian complexity of two-dimensional infinite words (submit-
ted)

47. Puzynina, S., Zamboni, L.Q.: Abelian returns in sturmian words. J. Comb. Theory
Ser. A 120(2), 390–408 (2013)

48. Quas, A., Zamboni, L.Q.: Periodicity and local complexity. Theor. Comput. Sci.
319(1–3), 229–240 (2004)

49. Rampersad, N., Rigo, M., Salimov, P.: A note on abelian returns in rotation words.
Theor. Comput. Sci. 528, 101–107 (2014)

50. Rao, M., Rosenfeld, M.: Avoidability of long k-abelian repetitions. Math. Comput.
85(302), 3051–3060 (2016)

51. Rao, M., Rosenfeld, M.: Avoiding two consecutive blocks of same size and same
sum over Z2. SIAM J. Discrete Math. 32(4), 2381–2397 (2018)

52. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity in minimal subshifts.
J. London Math. Soc. 83, 79–95 (2011)

53. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and abelian complexity of the
tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)

54. Rigo, M., Salimov, P., Vandomme, E.: Some properties of abelian return words. J.
Integer Seq. 16 (2013). Article number 13.2.5

55. Saarela, A.: Ultimately constant abelian complexity of infinite words. J. Autom.
Lang. Comb. 14(3–4), 255–258 (2009)

56. Simpson, J.: An abelian periodicity lemma. Theor. Comput. Sci. 656, 249–255
(2016)

57. Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Comb.
22, 263–275 (2001)

58. Whiteland, M.A.: Asymptotic abelian complexities of certain morphic binary
words. J. Autom. Lang. Comb. 24(1), 89–114 (2019)

59. Zamboni, L.Q.: Personal communication (2018)

https://doi.org/10.1007/3-540-13345-3_34

On Sets of Words of Rank Two

Giuseppa Castiglione, Gabriele Fici, and Antonio Restivo(B)

Dipartimento di Matematica e Informatica, Università di Palermo,
Via Archirafi 34, Palermo, Italy

{giuseppa.castiglione,gabriele.fici,antonio.restivo}@unipa.it

Abstract. Given a (finite or infinite) subset X of the free monoid A∗

over a finite alphabet A, the rank of X is the minimal cardinality of a
set F such that X ⊆ F ∗. A submonoid M generated by k elements of A∗

is k-maximal if there does not exist another submonoid generated by at
most k words containing M . We call a set X ⊆ A∗ primitive if it is the
basis of a |X|-maximal submonoid. This extends the notion of primitive
word: indeed, {w} is a primitive set if and only if w is a primitive word.
By definition, for any set X, there exists a primitive set Y such that
X ⊆ Y ∗. The set Y is therefore called a primitive root of X. As a main
result, we prove that if a set has rank 2, then it has a unique primitive
root. This result cannot be extended to sets of rank larger than 2.

For a single word w, we say that the set {x, y} is a binary root of w
if w can be written as a concatenation of copies of x and y and {x, y} is
a primitive set. We prove that every primitive word w has at most one
binary root {x, y} such that |x| + |y| <

√|w|. That is, the binary root
of a word is unique provided the length of the word is sufficiently large
with respect to the size of the root.

Our results are also compared to previous approaches that investigate
pseudo-repetitions, where a morphic involutive function θ is defined on
A∗. In this setting, the notions of θ-power, θ-primitive and θ-root are
defined, and it is shown that any word has a unique θ-primitive root.
This result can be obtained with our approach by showing that a word
w is θ-primitive if and only if {w, θ(w)} is a primitive set.

Keywords: Repetition · Pseudo-repetition · Hidden repetition ·
Primitive set · Binary root · k-maximal monoid

1 Introduction

The notion of rank plays an important role in combinatorics on words. Given a
subset X of the free monoid A∗ over a finite alphabet A, the rank of X, in symbols
r(X), is defined as the smallest number of words needed to express all words of
X, i.e., as the minimal cardinality of a set F such that X ⊆ F ∗. Notice that this
minimal set F may not be unique. For instance, the set X = {aabca, aa, bcaaa}
has rank 2 and there exist two distinct sets F1 = {aa, bca} and F2 = {a, bc} such
that X ⊆ F ∗

1 and X ⊆ F ∗
2 . It is worth noticing that since r(X) ≤ min{|X|, |A|},

r(X) is always finite even if X is an infinite set.
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 46–59, 2019.
https://doi.org/10.1007/978-3-030-28796-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_3

On Sets of Words of Rank Two 47

A set X is said to be elementary if r(X) = |X|. The notion of rank – and
the related notion of elementary set – have been investigated in several papers
(cf. [16–18]). In particular, in [16] it is shown that the problem to decide whether
a finite set is elementary is co-NP-complete.

In this paper, we introduce the notion of primitiveness for a set of words,
which is closely related to that of rank. We first define the notion of k-maximal
submomoid. A submonoid M of A∗, generated by k elements, is k-maximal if
there does not exist another submonoid generated by at most k words contain-
ing M . We then call a set X ⊆ A∗ primitive if it is the basis of a |X|-maximal
submonoid. Notice that if X is primitive, then r(X) = |X|, i.e., X is elemen-
tary. The converse is not in general true: there exist elementary sets that are
not primitive. For instance, the set F1 = {aa, bca} is elementary, but it is not
primitive since F ∗

1 ⊆ F ∗
2 = {a, bc}∗. The set F2, instead, is primitive.

The notion of primitive set can be seen as an extension of the classical notion
of primitive word. Indeed, given a word w ∈ A∗, the set {w} is primitive if and
only if the word w is primitive. For instance, the set {abab, abababab} is not
elementary, the set {abab} is elementary but not primitive, and the set {ab} is
primitive.

We have from that definition that for every set X, there exists a primitive set
Y such that X ⊆ Y ∗. The set Y is therefore called a primitive root of X. However,
the primitive root of a set is not, in general, unique. Consider for instance the
set X = {abcbab, abcdcbab, abcdcdcbab}. It has rank 3, hence it is elementary, yet
it is not primitive. Indeed, X ⊆ {ab, cb, cd}∗. The set {ab, cb, cd} is primitive,
and it is a primitive root of X. However, it is not the only primitive root of X:
the set {abc, dc, bab} is primitive and X ⊆ {abc, dc, bab}∗, hence {abc, dc, bab} is
another primitive root of X. In the special case of sets of rank 1, clearly these
always have a unique primitive root. For instance, the primitive root of the set
{abab, abababab} is the set {ab}.

As a main result, we prove that if a set has rank 2, then it has a unique
primitive root. This is equivalent to say that for every pair of nonempty words
{x, y} such that xy �= yx there exists a unique primitive set {u, v} such that x
and y can be written as concatenations of copies of u and v. The proof is based
on the algebraic properties of k-maximal submonoids of a free monoid.

In this investigation, we also take into account another notion of rank, that of
free rank (in the literature, in order to avoid ambiguity, the notion of rank we gave
above is often referred to as the combinatorial rank). The free rank of a set X is
the cardinality of the basis of the minimal free submonoid containing X. Closely
related to the notion of free rank is the defect theorem, which states that if X is
not a code (i.e., X∗ is not a free submonoid), then the free rank of X is strictly
smaller than its cardinality. We are specially interested in the case k = 2 (that
is, the case of 2-maximal submonoids) and we use the fact that, in this special
case, the notions of free rank and (combinatorial) rank coincide. A fundamental
step in our argument is Theorem 14, which states that the intersection of two
2-maximal submonoids is either the empty word or a submonoid generated by
one primitive word. As a consequence, for every submonoid M generated by

48 G. Castiglione et al.

two words that do not commute, there exists a unique 2-maximal submonoid
containing M . This is equivalent to the fact that every set of rank 2 has a
unique primitive root. One of the examples we gave above shows that this result
is no longer true for sets of rank 3 or larger—this highlights the very special role
of sets of rank 1 or 2.

From these results we derive some consequences on the combinatorics of a
single word. Given a word w, we say that {x, y} is a binary root of w if w can
be written as a concatenation of copies of x and y and {x, y} is a primitive set.
We prove that every primitive word w has at most one binary root {x, y} such
that |x| + |y| <

√|w|. That is, the binary root of a word is unique provided
the length of the word is sufficiently large with respect to the size of the root.
The notion of binary root of a single word may be seen as a way to capture a
hidden “repetitive structure”, which encompasses the classical notion of integer
repetition (non-primitive word). Indeed, the existence in a word w of a “short”
(with respect to |w|) binary root reveals some hidden repetition in the word.

As described in the last section, our results can also be compared to previous
approaches that investigate pseudo-repetitions, where an involutive morphism
(or antimorphism) θ is defined on the set of words A∗. This idea stems from
the seminal paper of Czeizler, Kari and Seki [4], where originally θ was the
Watson-Crick complementarity function and the motivation was the discovery
of hidden repetitive structures in biological sequences. A word w is called a θ-
power if there exists a word v such that w can be factored using copies of v
and θ(v)—otherwise the word w is called θ-primitive. If v is a θ-primitive word,
then it is called the θ-primitive root of w. Of course, since the same applies
to the word θ(w), these definitions can be given in terms of the pair {w, θ(w)}
and considering as the root the pair {v, θ(v)}. With our results, we generalize
this setting by considering as a root any pair of words {x, y}, i.e., dropping the
relation between the components of the pair.

2 Preliminaries

Given a finite nonempty set A, called the alphabet, with A∗ (resp. A+ = A∗\{ε})
we denote the free monoid (resp. free semigroup) generated by A, i.e., the set of
all finite words (resp. all finite nonempty words) over A.

The length |w| of a word w ∈ A∗ is the number of its symbols. The length
of the empty word ε is 0. For a word w = uvz, with u, v, z ∈ A∗, we say that
v is a factor of w. Such a factor is called internal if u, z �= ε, a prefix if u = ε,
or a suffix if z = ε. A word w is primitive if w = vn implies n = 1, otherwise it
is called a power. Equivalently, w is primitive if and only if it is not an internal
factor of w2.

It is well known in combinatorics on words (see, e.g., [14]) that given two
words x and y we have xy = yx if and only if x and y are powers of the same
word.

Given a subset X of A∗, we let X∗ denote the submonoid of A∗ generated by
X (under concatenation). Conversely, given a submonoid M of A∗, there exists

On Sets of Words of Rank Two 49

a unique set X that generates M and is minimal for set inclusion. In fact, X is
the set

X = (M \ {ε}) \ (M \ {ε})2, (1)

i.e., X is the set of nonempty words of M that cannot be written as a product
of two nonempty words of M . The set X will be referred to as the minimal
generating set of M , or the set of generators of M .

Let M be a submonoid of A∗ and X its minimal generating set. M is said
to be free if any word of M can be uniquely expressed as a product of elements
of X. The minimal generating set of a free submonoid M of A∗ is called a code;
it is referred to as the basis of M . It is easy to see that a set X is a code if
and only if, for every x, y ∈ X, x �= y, one has xX∗ ∩ yX∗ = ∅. We say that
X is a prefix code (resp. a suffix code) if for all x, y ∈ X, one has x ∩ yA∗ = ∅
(resp. x ∩ A∗y = ∅). A code is a bifix code if it is both a prefix and a suffix code.
It follows from elementary automata theory that if X is a prefix code, then there
exists a DFA AX recognizing X∗ whose set of states QX verifies (cf. [2]):

|QX | ≤
∑

x∈X

|x| − |X| + 1.

A submonoid M of A∗ is called pure (cf. [19]) if for all w ∈ A∗ and n ≥ 1,

wn ∈ M ⇒ w ∈ M.

By a result of Tilson [20], any nonempty intersection of free submonoids of
A∗ is free. As a consequence, for any subset X ⊆ A∗, there exists the smallest
free submonoid containing X.

Here we mention the well-known Defect Theorem (cf. [1], [14, Chap. 1], [15,
Chap. 6]), a fundamental result in the theory of codes that provides a relation
between a given subset X of A∗ and the basis of the minimal free submonoid
containing X (called the free hull of X).

Theorem 1 (Defect Theorem). Let X be a finite nonempty subset of A∗. Let
Y be the basis of the free hull of X. Then either X is a code, and Y = X, or

|Y | ≤ |X| − 1.

As in [9], given a set X ⊆ A∗, we let rf (X) denote the cardinality of the
basis of the free hull of X, called the free rank of X. Notice that for any subset
X ⊆ A∗, X and X∗ have the same free rank. Furthermore, by r(X) we denote
the combinatorial rank (or simply rank) of X, defined by:

r(X) = min{|Y | | Y ⊆ A∗,X ⊆ Y ∗}.

With this notation, the Defect Theorem can be stated as follows.

Theorem 2. Let X be a finite nonempty subset of A∗. Then rf (X) ≤ |X|, and
the equality holds if and only if X is a code.

50 G. Castiglione et al.

Note that, for any X ⊆ A+, one has

r(X) ≤ rf (X) ≤ |X|.
Example 3. Let X = {aa, ba, baa}. One can prove that X is a code, hence we
have rf (X) = 3, while r(X) = 2 since X ⊂ {a, b}∗. For X = {aa, aaa}, we have
r(X) = rf (X) = 1.

Remark 4. If |X| = 2 then rf (X) = r(X). So for sets of cardinality 2 we will
not specify if we refer to the free rank or to the (combinatorial) rank.

Moreover, from the complexity point of view, Néraud proved that deciding if
a set has rank 2 can be done in polynomial time [17], whereas for general rank
k it is an NP-hard problem [16].

The dependency graph (cf. [9]) of a finite set X ⊂ A+ is the graph GX =
(X,EX) where EX = {(u, v) ∈ X × X | uX∗ ∩ vX∗ �= ∅}. Notice that if X is a
code, then GX has no edge. Furthermore, if (u, v) is an edge, then u is a prefix
of v or vice versa. In [8] and [9], the following useful lemma is proved.

Lemma 5 (Graph Lemma). Let X ⊆ A+ be a finite set that is not a code.
Then

rf (X) ≤ c(X) < |X|,
where c(X) is the number of connected components of GX .

Example 6. Let X = {a, ab, abc, bca, acb, cba}. We have acba = a · cba = acb · a
and abca = a · bca = abc · a. The basis of the free hull of X is Y = {a, ab, bc, cb},
hence rf (X) = 4. Furthermore, r(X) = 3 and c(X) = 4, as shown in Fig. 1.

a abc bca

acb ab cba

Fig. 1. The dependency graph of X = {a, ab, abc, bca, acb, cba}.

3 k-Maximal Monoids

With Mk we denote the family of submonoids of A∗ having at most k generators
in A+. The following definition is fundamental for the theory developed in this
paper.

Definition 7. A submonoid M ∈ Mk is k-maximal if for every M ′ ∈ Mk,
M ⊆ M ′ implies M = M ′.

On Sets of Words of Rank Two 51

In other words, M is k-maximal if it is not possible to find another submonoid
generated by at most k words containing M .

Example 8. Let A = {a, b, c}. The submonoid M = {a, abca}∗ is not 2-maximal
since abca can be factored with a and bc, hence M is contained in {a, bc}∗. On
the contrary, {a, bc}∗ is 2-maximal since, obviously, a and bc cannot be factored
using two common factors.

Example 9. Let A = {a, b, c, d}. The submonoid {a, cbd, dbd}∗ is 3-maximal,
whereas {a, cbd, dcbd}∗ is not 3-maximal since it is contained in {a, d, cb}∗.

Proposition 10. Let M be a k-maximal submonoid and X its minimal gener-
ating set. Then, X is a bifix code.

Proof. By contradiction, if X is not prefix (resp. not suffix) then there exist
u, v ∈ X and t ∈ A+ such that v = ut (resp v = tu). It follows that X∗ ⊆
(X \ {v} ∪ {t})∗, whence X∗ = M is not k-maximal. �
Remark 11. By Proposition 10, it follows that if X∗ is k-maximal, then r(X) =
rf (X) = k. The inverse implication does not hold in general. For example, the
submonoid X∗ = {a, cbd, dcbd}∗ of Example 9 has both rank and free rank equal
to 3 and is bifix, but it is not 3-maximal.

Proposition 12. Let M be a k-maximal submonoid. Then M is a pure sub-
monoid.

Proof. We have to show that, for every z ∈ A∗, if zn ∈ M , for some n ≥ 1, then
z ∈ M . Let X be the minimal generating set of M . If zn ∈ M , for some n > 1,
then z ∈ X or the set X∪{z} is not a code. By the Defect Theorem (Theorem 1),
there exist u1, u2, . . . , uk ∈ A+ such that (X ∪ {z})∗ ⊆ {u1, u2, ..., uk}∗. Since
X∗ ⊆ {u1, u2, . . . , uk}∗ and X∗ is k-maximal, we have that X = {u1, u2, . . . , uk}.
Therefore, X ∪ {z} ⊆ X∗, hence z ∈ X∗.

As a direct consequence of Proposition 12, we have that a k-maximal sub-
monoid is generated by primitive words. However, not any set of k primitive
words generates a k-maximal monoid (e.g., X = {ab, ba}∗ is not 2-maximal
since it is contained in {a, b}∗).

Submonoids generated by two words, i.e., the elements of M2, are of spe-
cial interest for our purposes. They have been extensively studied in literature
(cf. [10,12,13,17]) and play an important role in some fundamental aspects of
combinatorics on words.

The reader may observe that, as a consequence of some well-known results
in combinatorics on words, the submonoids in M1 have the following important
property: If x∗ and u∗ are 1-maximal submonoids (i.e., x and u are primitive
words) then x∗∩u∗ = {ε}. Next Theorem 14, which represents the main result of
this section, can be seen as a generalization of this result to the case of 2-maximal
submonoids.

It is known (see [10]) that if X and U both have rank 2, then the intersection
X∗ ∩U∗ is a free monoid generated either by at most two words or by an infinite
set of words.

52 G. Castiglione et al.

Example 13. Let X1 = {abca, bc} and U1 = {a, bcabc}. One can verify that
X∗

1 ∩ U∗
1 = {abcabc, bcabca}∗. Let X2 = {aab, aba} and U2 = {a, baaba}. Then

X∗
2 ∩ U∗

2 = (a(abaaba)∗baaba)∗.

In the previous example, we have two submonoids that are not 2-maximal.
Indeed, X∗

1 , U∗
1 ⊆ {a, bc}∗ and X∗

2 , U∗
2 ⊆ {a, b}∗. We now address the question

of finding the generators of the intersection of two 2-maximal submonoids.

Theorem 14. Let X∗ = {x, y}∗ and U∗ = {u, v}∗ be two 2-maximal sub-
monoids. If X∗ ∩ U∗ �= {ε}, then there exists a word z ∈ A+ such that
X∗ ∩ U∗ = z∗. Moreover, z is primitive, that is, X∗ ∩ U∗ is 1-maximal.

Proof. If X ∩U = {z} then X∗ ∩U∗ = z∗. Indeed, if y = v = z and X∗ ∩U∗ �= z∗

we have the following graph GZ for Z = {x, u, z}:

x

z
u

since {x, z} and {u, z} are bifix sets. Hence, by the Graph Lemma, rf (Z) ≤
c(Z) = 2, contradicting the 2-maximality of X and U .

If X∩U = ∅, let us consider the set Z = X∪U . We have that rf (Z) > 2 since
X∗ and U∗ are 2-maximal, and, by the Defect Theorem (Theorem 1), rf (Z) < 4
since Z∗ is not free (as X∗ ∩ U∗ contains a nonempty word). Hence, the free
rank of Z is equal to 3.

Let z be a generator of X∗ ∩ U∗. So, z = x1x2 · · · xm = u1u2 · · · un, with
m,n ≥ 1, xi ∈ X and uj ∈ U . Clearly, since z is a generator, for every p <
m and q < n one has x1x2 · · · xp �= u1u2 · · · uq. Moreover, we can suppose,
without loss of generality, that x1 = x and u1 = u. We want to prove that z
is the unique generator of X∗ ∩ U∗. By contradiction, suppose that there exists
another generator z′ �= z of X∗ ∩ U∗, and let z′ = x′

1x
′
2 · · · x′

r = u′
1u

′
2. · · · u′

s. If
x′
1 �= x1 = x, then x′

1 = y and we have xZ∗ ∩ uZ∗ �= ∅ and yZ∗ ∩ u′
1Z

∗ �= ∅.
In both cases (u′

1 = u or u′
1 = v), we have that the graph GZ has two edges,

i.e., c(Z) = 2, which is impossible by the Graph Lemma. So x1 = x′
1 = x. In the

same way we prove that u1 = u′
1 = u, and therefore in the graph GZ there is

only one edge, namely the one joining x and u.

x y

u v

Let h = max{i | xj = x′
j ∀j ≤ i} and k = max{i | uj = u′

j ∀j ≤ i}. The
hypothesis that z �= z′ implies that h < m and k < n. We show that this leads
to a contradiction, and then we conclude that z = z′ is the unique generator of
X∗ ∩ U∗.

On Sets of Words of Rank Two 53

Without loss of generality, we can suppose that x1x2 · · · xh is a prefix of
u1u2 · · · uk. Hence, there exists a nonempty word t such that x1x2 · · · xht =
u1u2 · · · uk. By definition of h, xh+1 �= x′

h+1, and we can suppose that xh+1 = x
and x′

h+1 = y. Then,

tuk+1 · · · un = xh+1 · · · xm = x · · · xm

tu′
k+1 · · · u′

s = x′
h+1 · · · x′

r = y · · · x′
r.

Set Zt = X ∪ U ∪ {t}. We have

tZ∗
t ∩ xZ∗

t �= ∅
tZ∗

t ∩ yZ∗
t �= ∅.

Thus, the graph GZt
contains the edges depicted in figure:

t

x y

u v

By the Graph Lemma, then, the free rank of Zt is at most 2, and this con-
tradicts the 2-maximality of X∗ and U∗.

Finally, let us prove that z is primitive. Since X∗ and Y ∗ are 2-maximal, by
Proposition 12 they are both pure, hence also their intersection z∗ is pure. But
it is immediate that z∗ is pure if and only if z is primitive. �
Example 15. Consider the two 2-maximal monoids {abcab, cb}∗ and {abc, bcb}∗.
Their intersection is {abcabcbcb}∗. The intersection of {a, bc}∗ and {a, cb}∗ is a∗.

We have shown that the intersection of two 2-maximal submonoids is gen-
erated by at most one element. Moreover, we know that the intersection of two
1-maximal submonoids is the empty word, i.e., it is generated by zero elements.
Thus, it is natural to ask if in general, for every k ≥ 1, the intersection of two
k-maximal submonoids is generated by at most k − 1 elements. The following
examples, suggested to us by Štěpán Holub, provide a negative answer to this
question.

Example 16. The intersection of the two 3-maximal monoids {abc, dc, bab}∗ and
{ab, cb, cd}∗ is infinitely generated by abc(dc)∗bab. The intersection of the two 4-
maximal monoids {a, b, cd, ce}∗ and {ac, bc, da, ea}∗ is {acea, bcea, acda, bcda}∗.

Thus, our Theorem 14 is specific for rank 2 and cannot be generalized to
larger k.

For an upper bound on the length of the word that generates the intersection
of two 2-maximal submonoids, we have the following proposition.

54 G. Castiglione et al.

Proposition 17. With the hypotheses of Theorem 14,

|z| < (|x| + |y|)(|u| + |v|).
Proof. Let AX (resp. AU) be the minimal DFA recognizing X∗ (resp. U∗) and
QX (resp. QU) its set of states. Since X and U are bifix codes, we have |QX | <
|x| + |y| and |QU | < |u| + |v|. Then the automaton A recognizing X∗ ∩ U∗ has
a set of states Q such that |Q| < (|x| + |y|)(|u| + |v|). By Theorem 14, A is
composed by only one cycle, labeled by z. Thus, |z| < (|x| + |y|)(|u| + |v|). �

For all our examples, the bound is much smaller than the previous one, hence
we pose the following

Problem 18. Find a tight bound on the length of z in terms of the lengths of x
and y and u and v.

4 Primitive Sets

We now show how the previous results can be interpreted in the terminology of
combinatorics on words.

Let us start with the remark that a word x ∈ A+ is primitive if and only if

x ∈ u∗, u ∈ A+ ⇒ x = u.

With our definition of maximality, we have that a word x ∈ A+ is primitive if
and only if the monoid x∗ is 1-maximal. Inspired by this observation, we give
the following definition.

Definition 19. A finite set X ⊆ A∗ is primitive if it is the basis of a |X|-
maximal submonoid.

Remark 20. The definition of primitive set does not coincide with that of ele-
mentary set. A set X is said to be elementary if r(X) = |X|. If X is primitive,
then r(X) = |X|, i.e., it is elementary. But there exist elementary sets that are
not primitive. For instance, the set {aa, bca} is elementary, but it is not primitive
since {aa, bca}∗ ⊆ {a, bc}∗. The set {a, bc}, instead, is primitive.

From the definition of primitive set, we have that for every set X there exists
a primitive set Y such that X ⊆ Y ∗. The set Y is therefore called a primitive root
of X. However, the primitive root of a set is not, in general, unique. Consider for
instance the set X = {abcbab, abcdcbab, abcdcdcbab}. It has rank 3, hence it is
elementary, yet it is not primitive. Indeed, X ⊆ {ab, cb, cd}∗. The set {ab, cb, cd}
is primitive, and it is a primitive root of X. However, it is not the only primitive
root of X: the set {abc, dc, bab} is primitive and X ⊆ {abc, dc, bab}∗, hence
{abc, dc, bab} is another primitive root of X. In the special case of sets of rank
1, clearly these always have a unique primitive root. For instance, the primitive
root of the set {abab, abababab} is the set {ab}.

However, as a consequence of Theorem 14 we have the following result.

On Sets of Words of Rank Two 55

Theorem 21. A set X of rank 2 has a unique primitive root.

Proof. If {u1, u2} and {v1, v2} are two primitive roots of X then X∗ ⊆ {u1, u2}∗∩
{v1, v2}∗. Hence, by Theorem 14, X ⊆ {z}∗, for some primitive word z, i.e.
r(X) = 1, a contradiction. �

In what follows, we find convenient call a primitive set of cardinality 2 a
primitive pair.

Example 22. The words abca and bc are primitive words, yet the pair {abca, bc}
is not a primitive pair, since {abca, bc}∗ ⊆ {a, bc}∗, hence {abca, bc}∗ is not 2-
maximal. The pair {abcabc, bcabca} can be written as concatenations of copies
of both {abca, bc} and {a, bcabc}. However, there is a unique way to decompose
each word of the pair {abcabc, bcabca} as a concatenation of words of a primitive
pair, and this pair is {a, bc}. Indeed, the primitive root of {abcabc, bcabca} is
{a, bc}.

As it is well known, a primitive word x does not have internal occurrences
in xx. The next result, whose proof is omitted for brevity, provides a similar
property in the case of a primitive set of two words.

Theorem 23. Let {x, y} be a primitive pair. Then neither xy nor yx occurs
internally in a word of {x, y}3.
Example 24. Let x = abcabca, y = bcaabcabc. Then xy has an internal occur-
rence in yxx, yet {x, y} ⊂ {a, bc}∗. This example shows that the hypothesis
that {x, y} is primitive cannot be replaced by simply requiring that x and y are
primitive words.

Differently to the case of a single primitive word, the converse of Theorem 23
does not hold. For example, {abcaa, bc} is not primitive ({abcaa, bc}∗ ⊆ {a, bc}∗),
yet neither abcaabc nor bcabcaa occurs internally in a word of {x, y}3.

5 Binary Root of a Single Primitive Word

In this section, we derive some consequences on the combinatorics of a single
word. In particular, we introduce the notion of binary root of a primitive word,
and we show how this notion may be useful to reveal some hidden repetitive
structure in the word.

Let w be a nonempty word. If w is not primitive, then it can be written
in a unique way as a concatenation of copies of a primitive word r, called the
root of w. However, if w is primitive, one can ask whether it can be written
as a concatenation of copies of two words x and y. If we further require that
{x, y} is a primitive set, then we call {x, y} a binary root of the word w. Note
that the binary root of a single word is not, in general, unique. For instance,
for w = abcbac we have w = ab · cbac = abcb · ac and {ab, cbac} and {abcb, ac}
are both primitive pairs, i.e., they are both binary roots of w. However, if we
additionally require that the size |x| + |y| of the binary root {x, y} is “short”
with respect to the length of w, then we obtain again the uniqueness. This is
shown in the next theorem.

56 G. Castiglione et al.

Theorem 25. Let w be a primitive word. Then w has at most one binary root
{x, y} such that |x| + |y| <

√|w|.
Proof. Suppose by contradiction there exists another binary root {u, v} of w
with |u| + |v| <

√|w|. Take X = {x, y} and U = {u, v}. By Theorem 14, there
exists a primitive word z and an integer n such that w = zn. As w is primitive,
w = z and n = 1. By Proposition 17, we have that |w| < (|x| + |y|)(|u| + |v|) <√|w| ·√|w| = |w|, a contradiction.

�
The following example shows a word w that has binary roots of different

sizes, but only one of size less than
√|w|.

Example 26. Consider the primitive word w = abcaabcabc of length 10. The pair
{a, bc} is the only binary root of w of size smaller than

√|w|.
Asking for a tight bound in the statement of Theorem 25 is of course a

problem intimately related to Open Problem 18.
We observe that both the classical notion of root and that of binary root are

related to some repetitive structure inside the word. If w is not primitive, the
length of its root reveals its repetitive structure in the sense that, if such a length
is much smaller than the length of w, then the word w can be considered highly
repetitive. If w is primitive, the size of its binary root plays an analogous role.
This could be illustrated by the following (negative) example. Consider a word w
over the alphabet A such that all the letters of w are distinct, so that |w| = |A|.
This word is not repetitive at all, and it has |w|−1 different binary roots {x, y},
all of size |w|, corresponding to the trivial factorizations w = xy. Thus, the
absence of repetitions in a word is related to the large size of its binary roots.
On the contrary, the existence in a word w of a “short” (with respect to |w|)
binary root corresponds to the existence of some hidden repetitive structure in
the word. This approach generalizes some already-considered notions of hidden
repetitions (cf. [5–7]).

We think that the notion of a binary root can be further explored and may
have applications, e.g., in the area of string algorithms.

Notice that the minimal length of a binary root (intended as the sum of
the lengths of the two components of the pair) is affected by the combinatorial
properties of the word. For example, if w is a square-free word, then w cannot
have a binary root {x, y} such that |x| + |y| < |w|/4, since otherwise w would
contain a square (xx, yy, xyxy or yxyx). The previous remark suggests a possible
link between the notion of a binary root and the classical notion of binary pattern,
which has been deeply investigated in combinatorics on words and fully classified
by Cassaigne [3] (see also [15, Chap. 3] for a survey).

6 Connections with Pseudo-Primitive Words

We now show how the notion of a primitive pair can be seen as a generaliza-
tion of the notion of a pseudo-primitive word, with respect to an involutive
(anti-)morphism θ, as introduced in [4].

On Sets of Words of Rank Two 57

A map θ : A∗ → A∗ is a morphism (resp. antimorphism) if for each u, v ∈ A∗,
θ(uv) = θ(u)θ(v) (resp. θ(uv) = θ(v)θ(u))—θ is an involution if θ(θ(a)) = a for
every a ∈ A.

Let θ be an involutive morphism or antimorphism other than the identity
function. We say that a word w ∈ A∗ is a θ-power of t if w ∈ t{t, θ(t)}∗. A word
w is θ-primitive if there exists no nonempty word t such that w is a θ -power of
t and |w| > |t|.
Theorem 27 ([4]). Given a word w ∈ A∗ and an involutive (anti-)morphism
θ, there exists a unique θ-primitive word u ∈ A∗ such hat w is a θ-power of u.
The word u is called the θ-root of w.

Example 28. Let θ : {a, b, c}∗ → {a, b, c}∗ the involutive morphism defined by
θ(a) = b, θ(b) = a and θ(c) = c. The θ-root of the word abcabcbac is abc.

If θ is an involutive morphism, we show that Theorem 27 can be obtained as
a consequence of Theorem 21. If θ is an involutive antimorphism, we obtain a
slightly different formulation, from which we derive a new property of θ-primitive
words.

Given a morphism θ and a set X ⊆ A∗, θ(X) denotes the set {θ(u) | u ∈ X}.
We say that X is θ-invariant if θ(X) ⊆ X.

We have the following propositions.

Proposition 29. Let θ be involutive. If {x, y} is θ-invariant, then so is its root.

Example 30. Let θ be as in Example 28. The pair {abcabcbac, abcbacabc} is θ-
invariant. However, it is not a primitive pair. Its binary root is the pair {abc, bac},
which is θ-invariant since θ(abc) = bac.

Remark 31. Let θ be an involutive morphism. Then {x, y} is θ-invariant if and
only if y = θ(x). If θ is an involutive antimorphism, then {x, y} is θ-invariant if
and only if either y = θ(x) or x = θ(x) and y = θ(y). In the last case, x and y
are called θ-palindromes.

Example 32. Let θ : {a, b, c}∗ �→ {a, b, c}∗ be the involutive antimorphism
defined by θ(a) = a, θ(b) = b, θ(c) = c. The pair {abcbbcba, abcba} is θ-invariant.
Its binary root is {a, bcb}, which is θ-invariant since composed by θ-palindromes.
With the same θ, the pair {abbbbabba, abbabbbba} is θ-invariant and its binary
root is {abb, bba}, which is θ-invariant since θ(abb) = bba.

Proposition 33. Let w ∈ A∗ and θ be an involutive morphism of A∗. Then, w
is θ-primitive if and only if the pair {w, θ(w)} is a primitive pair.

Proof. Let us suppose, by contradiction, that {w, θ(w)} is a primitive pair and
w is not θ-primitive. Then there exists t such that w ∈ {t, θ(t)}∗. Hence, θ(w) ∈
{t, θ(t)}∗, so the pair {w, θ(w)} is not primitive. Conversely, let us suppose that w
is θ-primitive and {w, θ(w)} is not a primitive pair. Denote by {u, v} its binary
root. Since {w, θ(w)} is θ-invariant, then {u, v} is θ-invariant, i.e., v = θ(u).
Hence, w ∈ {u, θ(u)}∗, i.e., w is not θ-primitive. �

58 G. Castiglione et al.

From Theorem 21 and Proposition 33 we derive Theorem 27 when θ is an
involutive morphism.

Now, let us consider the case of antimorphisms. Reasoning analogously as we
did in the proof of Proposition 33, we can prove the following result.

Proposition 34. Let w ∈ A∗ and θ an involutive antimorphism of A∗. If the
pair {w, θ(w)} is a primitive pair, then w is θ-primitive.

The converse does not hold in general, as the following example shows.

Example 35. Let θ be the antimorphic involution of Example 32. The
word w = abbaabbacbc is θ-primitive, whereas the pair {w, θ(w)} =
{abbaabbacbc, cbcabbaabba} is not a primitive pair, since its binary root is the
pair {abba, cbc}.

Finally, we can state the following proposition, which provides a factorization
property of θ-primitive words.

Proposition 36. Let w ∈ A∗ and θ an involutive antimorphism. If w is
θ-primitive and {w, θ(w)} is not a primitive pair, then there exist two θ-
palindromes p and q such that w ∈ {p, q}∗.

Proof. Suppose that {w, θ(w)} is not a primitive pair and denote by {u, v} its
binary root. Since {w, θ(w)} is θ-invariant, then so is {u, v} by Proposition 29,
and v �= θ(u) since w is θ-primitive. Then, u = θ(u) and v = θ(v) are θ-
palindromes. �

Finally, we point out that our Theorem 23 can be viewed as a generalization
of the following result of Kari, Masson and Seki [11]:

Theorem 37 (Theorem 12 of [11]). Let x be a nonempty θ-primitive word.
Then neither xθ(x) nor θ(x)x occurs internally in a word of {x, θ(x)}3.

Acknowledgments. We thank Štěpán Holub for useful discussions and in particular
for suggesting us the important Example 16.

References

1. Berstel, J., Perrin, D., Perrot, J.F., Restivo, A.: Sur le théorème du défaut. J.
Algebra 60(1), 169–180 (1979)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata (Encyclopedia of
Mathematics and Its Applications), 1st edn. Cambridge University Press, New
York (2009)

3. Cassaigne, J.: Motifs évitables et régularités dans les mots. Ph.D. thesis, Université
Paris VI (1994)

4. Czeizler, E., Kari, L., Seki, S.: On a special class of primitive words. Theoret.
Comput. Sci. 411(3), 617–630 (2010)

5. Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D.: Hide and seek with repe-
titions. J. Comput. Syst. Sci. 101, 42–67 (2019)

On Sets of Words of Rank Two 59

6. Gawrychowski, P., Manea, F., Mercas, R., Nowotka, D., Tiseanu, C.: Finding
pseudo-repetitions. In: Portier, N., Wilke, T. (eds.) STACS 2013, Proceedings.
LIPIcs, vol. 20, pp. 257–268. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2013)

7. Gawrychowski, P., Manea, F., Nowotka, D.: Discovering hidden repetitions in
words. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol.
7921, pp. 210–219. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39053-1 24

8. Harju, T., Karhumäki, J.: On the defect theorem and simplifiability. Semigroup
Forum 33(1), 199–217 (1986)

9. Harju, T., Karhumäki, J.: Many aspects of defect theorems. Theoret. Comput. Sci.
324(1), 35–54 (2004)

10. Karhumäki, J.: A note on intersections of free submonoids of a free monoid. Semi-
group Forum 29(1), 183–205 (1984)

11. Kari, L., Masson, B., Seki, S.: Properties of pseudo-primitive words and their appli-
cations. Int. J. Found. Comput. Sci. 22(2), 447–471 (2011)

12. Le Rest, E.B., Le Rest, M.: Sur la combinatoire des codes à deux mots. Theoret.
Comput. Sci. 41(C), 61–80 (1985)

13. Lentin, A., Schützenberger, M.: A combinatorial problem in the theory of free
monoids. In: Proceedings of the University of North Carolina, pp. 128–144 (1967)

14. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Boston (1983)
15. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,

Cambridge (2002)
16. Néraud, J.: Elementariness of a finite set of words is co-NP-complete. ITA 24,

459–470 (1990)
17. Néraud, J.: Deciding whether a finite set of words has rank at most two. Theoret.

Comput. Sci. 112(2), 311–337 (1993)
18. Néraud, J.: On the rank of the subsets of a free monoid. Theoret. Comput. Sci.

99(2), 231–241 (1992)
19. Restivo, A.: On a question of McNaughton and Papert. Inf. Control 25(1), 93–101

(1974)
20. Tilson, B.: The intersection of free submonoids of a free monoid is free. Semigroup

Forum 4(1), 345–350 (1972)

https://doi.org/10.1007/978-3-642-39053-1_24
https://doi.org/10.1007/978-3-642-39053-1_24

Independent Systems of Word Equations:
From Ehrenfeucht to Eighteen

Aleksi Saarela(B)

Department of Mathematics and Statistics, University of Turku,
20014 Turku, Finland

amsaar@utu.fi

Abstract. A system of equations is called independent if it is not equiv-
alent to any of its proper subsystems. We consider the following decades-
old question: If we fix the number of variables, then what is the maximal
size of an independent system of constant-free word equations? This can
be easily answered in the trivial cases of one and two variables, but all
other cases remain open, even the three-variable case, where the con-
jectured answer is as small as three. We survey some historical as well
as more recent results related to this question, starting with the one
known as Ehrenfeucht’s compactness property: Every infinite system is
equivalent to a finite subsystem, and consequently an independent sys-
tem cannot be infinite. We also discuss several variations and related
questions on word equations. Finally, we pay special attention to the fol-
lowing result from 2018: The maximal size of an independent system of
three-variable equations is at most 18. This is the first such finite upper
bound, but hopefully it will not be the last.

Keywords: Combinatorics on words · Word equation ·
Independent system

1 Introduction

The following two questions are among the most important open problems in
combinatorics on words: Is the satisfiability problem of word equations (that
is, the problem of deciding whether a given word equation has a solution) NP-
complete? What is the maximal size of an independent system of constant-free
n-variable word equations? The satisfiability problem is known to be NP-hard, it
was proved to be decidable by Makanin [20] and in PSPACE by Plandowski [25],
and a simpler PSPACE algorithm was given by Jeż [16]. The question about the
maximal sizes of independent systems, on the other hand, is the topic of this
article.

We start in Sect. 2 by giving formal definitions and simple examples of word
equations and independent systems. We continue in Sect. 3 by describing Ehren-
feucht’s conjecture and the idea of its proof. In Sects. 4 and 5, we introduce the
main open questions and survey some results related to them. Rather than just
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 60–67, 2019.
https://doi.org/10.1007/978-3-030-28796-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_4&domain=pdf
http://orcid.org/0000-0002-6636-2317
https://doi.org/10.1007/978-3-030-28796-2_4

Independent Systems of Word Equations: From Ehrenfeucht to Eighteen 61

presenting the current state-of-the-art, we try to give a rough picture of how the
research has progressed from 1983 to 2018. We conclude in Sect. 6 by describing
some variations of the main questions.

2 Preliminaries

Let Ξ be an alphabet of n variables and Σ an alphabet of constants. An n-
variable word equation is a pair (u, v) ∈ (Ξ ∪ Σ)∗ × (Ξ ∪ Σ)∗. The equation
(u, v) is constant-free if u, v ∈ Ξ∗, and it is trivial if u = v. The length of (u, v)
is |uv| and it is denoted by |(u, v)|.

A constant-preserving morphism h : (Ξ ∪ Σ)∗ → Σ∗ is a solution of an
equation (u, v) if h(u) = h(v). The set of all solutions of (u, v) is denoted by
Sol((u, v)). The morphism h is periodic if h(Ξ) ⊆ w∗ for some w ∈ Σ∗.

Example 1. First, let Ξ = {x} and Σ = {a, b}. The equation (xaxbab, abaxbx)
has two solutions f and g defined by f(x) = ε and g(x) = ab:

f(xaxbab) = ε · a · ε · bab = abab = aba · ε · b · ε = f(abaxbx),
g(xaxbab) = ab · a · ab · bab = abaabbab = aba · ab · b · ab = g(abaxbx).

Then, let Ξ = {x, y, z} and Σ = {a, b}. The constant-free equation (xyz, zyx)
has infinitely many solutions. For example, for all p, q ∈ Σ∗ and i, j, k ≥ 0, the
morphism h defined by h(x) = (pq)ip, h(y) = (qp)jq, h(z) = (pq)kp is a solution
of this equation because

h(xyz) = (pq)ip · (qp)jq · (pq)kp = (pq)kp · (qp)jq · (pq)ip = h(zyx).

A system of equations is a set of equations. A morphism is a solution of a
system if it is a solution of every equation in the system. The set of solutions of
a system S is denoted by Sol(S), so Sol(S) =

⋂
E∈S Sol(E). Two equations or

systems are equivalent if they have the same set of solutions. A subset (proper
subset) of a system S is called a subsystem (proper subsystem, respectively) of S.
A system is independent if it is not equivalent to any of its proper subsystems.
Clearly, a system S is independent if and only if for every E ∈ S, there exists a
morphism h such that h /∈ Sol(E) but h ∈ Sol(E′) for all E′ ∈ S � {E}.

Example 2. Let Ξ = {x, y, z} and Σ = {a, b}. The system of equations
S = {(xyz , zyx), (xyyz, zyyx)} is independent and has a nonperiodic solution
h defined by h(x) = a, h(y) = b, h(z) = a. To see independence, note that S
is not equivalent to (xyz, zyx) because the morphism h defined by h(x) = a,
h(y) = b, h(z) = aba is a solution of (xyz, zyx) but not of S, and S is not equiv-
alent to (xyyz, zyyx) because the morphism h defined by h(x) = a, h(y) = b,
h(z) = abba is a solution of (xyyz, zyyx) but not of S.

62 A. Saarela

3 Ehrenfeucht’s Conjecture

A subset K of a language L is a test set of L if there does not exist morphisms
f, g such that f(w) = g(w) for all w ∈ K but f(w) �= g(w) for some w ∈ L.
Ehrenfeucht conjectured at the beginning of the 1970s that every language has a
finite test set. In 1983, Culik and Karhumäki [3] proved that this conjecture can
be equivalently formulated as follows: Every system of word equations is equiv-
alent to a finite subsystem. The conjecture was proved in 1985 by Albert and
Lawrence [1] (an independent proof was given by Guba [9]), giving the following
theorem, still known as Ehrenfeucht’s conjecture or Ehrenfeucht’s compactness
property.

Theorem 1. Every system of word equations is equivalent to a finite subsystem.

The idea of the proof can be described as follows: Words can be turned
into numbers by interpreting them as representations of integers in a suitable
k-ary number system. A word equation can then be turned into a multivariate
polynomial that has roots corresponding to all solutions of the word equation. A
system of word equations then corresponds to a polynomial ideal. If an infinite
system of word equations is not equivalent to any of its finite subsystems, then we
get an infinite chain I1 � I2 � I3 � · · · of polynomial ideals, which contradicts
a result from commutative algebra called Hilbert’s basis theorem.

4 Size of Independent Systems

In 1983, Culik and Karhumäki [3] asked the following question, which is still
open.

Question 1. Is it true that every independent system of three constant-free three-
variable equations has only periodic solutions?

The following even more difficult question is also well-known.

Question 2. Let IS(n) be the maximal size of an independent system of constant-
free n-variable word equations (or IS(n) = ∞ if there is no maximum). How large
is IS(n)?

It is easy to prove that IS(1) = 1, IS(2) = 2, and IS(n) ≥ n for all n. A
positive answer to Question 1 would imply IS(3) = 3. It follows from Theorem 1
that an independent system of word equations cannot be infinite. However, this
does not prove even IS(n) < ∞, because in principle it might be possible that
there are arbitrarily large finite independent systems.

Some lower bounds better than the trivial IS(n) ≥ n are known. In 1994,
Karhumäki and Plandowski [17] gave examples of independent systems show-
ing that IS(n) = Ω(n4). The hidden constant was improved by Karhumäki and
Saarela [18], but no examples larger than Θ(n4) have been found. The construc-
tions can be said to be based on the fact that (ababa)k = (ab)ka(ba)k for all

Independent Systems of Word Equations: From Ehrenfeucht to Eighteen 63

k ≤ 2 but not for any k ≥ 3. Plandowski [24] pointed out that if we could find
words u0, . . . , um such that uk

0 = uk
1 . . . uk

m for all k ≤ 3 but not for any k ≥ 4,
then it would follow that IS(n) = Ω(n5). However, these kinds of equalities had
been studied before, for example in [10] and [13], and it was suspected that such
words u0, . . . , um do not exist. This was proved later, as will be discussed in
Sect. 5.

In the three-variable case, some results restricting the form of equations in
an independent system have been proved. For example, an equation (u, v) is
called balanced if every variable occurs in u as many times as in v, and Harju
and Nowotka [12] proved that if a system of two constant-free three-variable
equations is independent and has a nonperiodic solution, then both equations
are balanced. For more results, see [5] and [6].

We can try to find upper bounds that depend on the length of the equations
in the system. If E1, . . . , Ek is an independent system, then trivially k is at most
exponential with respect to max{|E1|, . . . , |Ek|}, simply because the number
of equations of a certain length is exponential. The first nontrivial bound of
a similar type was proved by Saarela [26]: In the case of constant-free three-
variable equations, k is at most quadratic with respect to min{|E1|, . . . , |Ek|}.
This bound was improved to a linear one by Holub and Žemlička [14]. These two
results were proved with the help of polynomials and linear algebra, so there are
some similarities to the proof of Theorem 1, but the way in which polynomials
were used is very different. The linear bound has been improved since then, as
we shall see in Sect. 5, but the articles [26] and [14] contain also some results
about n-variable equations that are still the best ones known.

5 Recent Results

In 2016, Nowotka and Saarela [21] found a new way to apply an old character-
ization of three-generator subsemigroups of a free semigroup by Budkina and
Markov [2] (or alternatively a similar result by Spehner [29,30]) to analyze inde-
pendent systems. Specifically, they found that an upper bound for the number
of solutions a one-variable word equation with only finitely many solutions can
have implies a (worse) upper bound for IS(3).

The question about the maximal finite number of solutions of one-variable
equations had been considered before [7,8,19], but the above connnection made
it even more important. It had been proved that the number of solutions is at
most logarithmic with respect to the number of occurrences of the variable in the
equation [19]. From this it now followed that the size of an independent system
of constant-free three-variable equations is at most logarithmic with respect to
the length of the shortest equation in the system, thus improving the previous
linear bound.

It had been conjectured that a one-variable equation with only finitely many
solutions has at most two solutions. In view of [21], this conjecture would have
implied that IS(3) ≤ 18. In 2016, however, the attempts to prove the conjecture

64 A. Saarela

led to the discovery of the counterexample equation (first published in [22])

(xaxbxaabbabaxbabaabbab, abaabbabaxbabaabbxaxbx)

with exactly three solutions h(x) = ε, h(x) = ab and h(x) = abaabbab, and to
a weaker version of the conjecture: A one-variable equation with only finitely
many solutions has at most three solutions. This weaker conjecture would have
implied that IS(3) ≤ 23. In the journal version [22] of the conference article [21],
the conditional result was improved so that even the weaker conjecture would
imply IS(3) ≤ 18.

In 2017, Saarela [27] proved that there does not exist words u0, . . . , um such
that uk

0 = uk
1 . . . uk

m for all k ≤ 3 but not for any k ≥ 4 (a stronger result was
proved later in the journal version [28]). This meant that one particular approach
for improving the lower bound IS(n) = Ω(n4) was impossible, as was mentioned
in Sect. 4. However, the more significant consequence of [27] was that Nowotka
and Saarela found a way to apply a method similar to the one used in [27] to
study one-variable equations. In 2018, the weaker conjecture about one-variable
equations was finally proved, thus proving that IS(3) ≤ 18 [23].

Theorem 2. A one-variable word equation has either infinitely many solutions
or at most three.

Theorem 3. 3 ≤ IS(3) ≤ 18.

The rough idea behind the proof of Theorem 2 is that given an equation (u, v)
on the variable x, we can assume that the equation is in a certain kind of normal
form, and then we find a morphism σ : Σ∗ → Z that satisfies certain properties,
for example σ(h(x)) = 0 for all h ∈ Sol((u, v)). Then we study the images of
prefixes of h(u) and h(v) under σ, how they match and how they change when
the solution h changes. This eventually leads to a proof of Theorem 2.

Theorem 3 follows from Theorem 2 and the result in [22]. The idea behind
the proof of the result in [22] is that if E1, . . . , Ek is an independent system of
constant-free three-variable equations and h1, . . . , hk are morphisms such that
hi ∈ Sol(Ej) for all i �= j but not for i = j, then the morphisms hi can be classi-
fied into a small number of families by the results in [2], and, given Theorem 2,
not too many of them can be in the same family. Improving the result in [22]
seems like a potential path towards a smaller upper bound than 18.

6 Variations

If we consider equations in a free semigroup instead of a free monoid, that is, we
require that a solution h cannot map a variable to the empty word, then how large
can an independent system of constant-free n-variable equations be? The largest
known examples have size Θ(n3) [17]. Independent systems can be studied also
in other semigroups, see the survey of Harju, Karhumäki and Plandowski [11].

A finite sequence of nontrivial equations E1, . . . , En is a decreasing chain if

Sol(E1) � Sol(E1, E2) � · · · � Sol(E1, . . . , En).

Independent Systems of Word Equations: From Ehrenfeucht to Eighteen 65

and an increasing chain if

Sol(E1, . . . , En) � Sol(E2, . . . , En) � · · · � Sol(En).

Similar definition can be given for infinite chains. Chains have been studied by
Honkala [15] and Czeizler [4], for example. If the number of variables is fixed,
then how long can chains be? Clearly, E1, . . . , En is a decreasing chain if and only
if En, . . . , E1 is an increasing chain, so if there exists a finite maximal length,
then it is the same for both types of chains. However, if there are arbitrarily
long chains, then the situation is more complicated: Ehrenfeucht’s conjecture
is equivalent to the fact that decreasing chains cannot be infinite, but no such
result is known for increasing chains. In the case of constant-free three-variable
equations, there are chains of length 7 [18], and the results in [22] and [23] imply
an upper bound of 24.

Finally, independent systems can be considered also in the case of equations
with constants. Independent systems can be larger in this case, but Ehrenfeucht’s
conjecture still holds. Moreover, an independent n-variable system of equations
with constants cannot be larger than an independent (n + 2)-variable system
of constant-free equations. This is because we can assume that the alphabet of
constants is binary, and then replace the constant letters with new variables,
and this preserves independence. Thus the question of the maximal size of inde-
pendent systems does not become fundamentally different if we allow constants.

References

1. Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s conjecture. Theoret. Comput.
Sci. 41(1), 121–123 (1985). https://doi.org/10.1016/0304-3975(85)90066-0

2. Budkina, L.G., Markov, A.A.: F -semigroups with three generators. Mat. Zametki
14, 267–277 (1973)

3. Culik II, K., Karhumäki, J.: Systems of equations over a free monoid and Ehren-
feucht’s conjecture. Discrete Math. 43(2–3), 139–153 (1983). https://doi.org/10.
1016/0012-365X(83)90152-8

4. Czeizler, E.: Multiple constraints on three and four words. Theoret. Comput. Sci.
391(1–2), 14–19 (2008). https://doi.org/10.1016/j.tcs.2007.10.026

5. Czeizler, E., Karhumäki, J.: On non-periodic solutions of independent systems of
word equations over three unknowns. Int. J. Found. Comput. Sci. 18(4), 873–897
(2007). https://doi.org/10.1142/S0129054107005030

6. Czeizler, E., Plandowski, W.: On systems of word equations over three unknowns
with at most six occurrences of one of the unknowns. Theoret. Comput. Sci.
410(30–32), 2889–2909 (2009). https://doi.org/10.1016/j.tcs.2009.01.023

7. Da̧browski, R., Plandowski, W.: On word equations in one variable. Algorithmica
60(4), 819–828 (2011). https://doi.org/10.1007/s00453-009-9375-3

8. Obono, S.E., Goralcik, P., Maksimenko, M.: Efficient solving of the word equations
in one variable. In: Pŕıvara, I., Rovan, B., Ruzička, P. (eds.) MFCS 1994. LNCS,
vol. 841, pp. 336–341. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58338-6 80

9. Guba, V.S.: Equivalence of infinite systems of equations in free groups and semi-
groups to finite subsystems. Mat. Zametki 40(3), 321–324 (1986). https://doi.org/
10.1007/BF01142470

https://doi.org/10.1016/0304-3975(85)90066-0
https://doi.org/10.1016/0012-365X(83)90152-8
https://doi.org/10.1016/0012-365X(83)90152-8
https://doi.org/10.1016/j.tcs.2007.10.026
https://doi.org/10.1142/S0129054107005030
https://doi.org/10.1016/j.tcs.2009.01.023
https://doi.org/10.1007/s00453-009-9375-3
https://doi.org/10.1007/3-540-58338-6_80
https://doi.org/10.1007/3-540-58338-6_80
https://doi.org/10.1007/BF01142470
https://doi.org/10.1007/BF01142470

66 A. Saarela

10. Hakala, I., Kortelainen, J.: On the system of word equations xi
1x

i
2 · · ·xi

m =
yi
1y

i
2 · · · yi

n (i = 1, 2, · · ·) in a free monoid. Acta Inform. 34(3), 217–230 (1997).
https://doi.org/10.1007/s002360050081

11. Harju, T., Karhumäki, J., Plandowski, W.: Independent systems of equations. In:
Lothaire, M. (ed.) Algebraic Combinatorics on Words, pp. 443–472. Cambridge
University Press, Cambridge (2002)

12. Harju, T., Nowotka, D.: On the independence of equations in three variables.
Theoret. Comput. Sci. 307(1), 139–172 (2003). https://doi.org/10.1016/S0304-
3975(03)00098-7

13. Holub, Š.: Local and global cyclicity in free semigroups. Theoret. Comput. Sci.
262(1–2), 25–36 (2001). https://doi.org/10.1016/S0304-3975(00)00156-0

14. Holub, Š., Žemlička, J.: Algebraic properties of word equations. J. Algebra 434,
283–301 (2015). https://doi.org/10.1016/j.jalgebra.2015.03.021

15. Honkala, J.: On chains of word equations and test sets. Bull. EATCS 68, 157–160
(1999)

16. Jeż, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), Art. 4, 51 (2016). https://doi.org/10.1145/2743014

17. Karhumäki, J., Plandowski, W.: On the defect effect of many identities in free semi-
groups. In: Paun, G. (ed.) Mathematical Aspects of Natural and Formal Languages,
pp. 225–232. World Scientific (1994). https://doi.org/10.1142/9789814447133 0012

18. Karhumäki, J., Saarela, A.: On maximal chains of systems of word equa-
tions. Proc. Steklov Inst. Math. 274, 116–123 (2011). https://doi.org/10.1134/
S0081543811060083

19. Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found.
Comput. Sci. 22(2), 345–375 (2011). https://doi.org/10.1142/S0129054111008088

20. Makanin, G.S.: The problem of the solvability of equations in a free semigroup.
Mat. Sb. (N.S.) 103(2), 147–236 (1977). English translation in Math. USSR Sb.
32, 129–198 (1977)

21. Nowotka, D., Saarela, A.: One-unknown word equations and three-unknown
constant-free word equations. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS,
vol. 9840, pp. 332–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53132-7 27

22. Nowotka, D., Saarela, A.: One-variable word equations and three-variable constant-
free word equations. Int. J. Found. Comput. Sci. 29(5), 935–950 (2018). https://
doi.org/10.1142/S0129054118420121

23. Nowotka, D., Saarela, A.: An optimal bound on the solution sets of one-variable
word equations and its consequences. In: Proceedings of the 45th ICALP. LIPIcs,
vol. 107, pp. 136:1–136:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.136

24. Plandowski, W.: Test sets for large families of languages. In: Ésik, Z., Fülöp, Z.
(eds.) DLT 2003. LNCS, vol. 2710, pp. 75–94. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-45007-6 6

25. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483–496 (2004)

26. Saarela, A.: Systems of word equations, polynomials and linear algebra: a new
approach. Eur. J. Comb. 47, 1–14 (2015). https://doi.org/10.1016/j.ejc.2015.01.
005

27. Saarela, A.: Word equations where a power equals a product of powers. In: Pro-
ceedings of the 34th STACS. LIPIcs, vol. 66, pp. 55:1–55:9. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.
2017.55

https://doi.org/10.1007/s002360050081
https://doi.org/10.1016/S0304-3975(03)00098-7
https://doi.org/10.1016/S0304-3975(03)00098-7
https://doi.org/10.1016/S0304-3975(00)00156-0
https://doi.org/10.1016/j.jalgebra.2015.03.021
https://doi.org/10.1145/2743014
https://doi.org/10.1142/9789814447133_0012
https://doi.org/10.1134/S0081543811060083
https://doi.org/10.1134/S0081543811060083
https://doi.org/10.1142/S0129054111008088
https://doi.org/10.1007/978-3-662-53132-7_27
https://doi.org/10.1007/978-3-662-53132-7_27
https://doi.org/10.1142/S0129054118420121
https://doi.org/10.1142/S0129054118420121
https://doi.org/10.4230/LIPIcs.ICALP.2018.136
https://doi.org/10.1007/3-540-45007-6_6
https://doi.org/10.1007/3-540-45007-6_6
https://doi.org/10.1016/j.ejc.2015.01.005
https://doi.org/10.1016/j.ejc.2015.01.005
https://doi.org/10.4230/LIPIcs.STACS.2017.55
https://doi.org/10.4230/LIPIcs.STACS.2017.55

Independent Systems of Word Equations: From Ehrenfeucht to Eighteen 67

28. Saarela, A.: Word equations with kth powers of variables. J. Comb. Theory Ser. A
165, 15–31 (2019). https://doi.org/10.1016/j.jcta.2019.01.004

29. Spehner, J.C.: Quelques problémes d’extension, de conjugaison et de présentation
des sous-monöıdes d’un monöıde libre. Ph.D. thesis, Univ. Paris (1976)

30. Spehner, J.C.: Les systemes entiers d’équations sur un alphabet de 3 variables. In:
Semigroups, pp. 342–357 (1986)

https://doi.org/10.1016/j.jcta.2019.01.004

Parikh Determinants

Adrian Atanasiu1, Ghajendran Poovanandran2(B), and Wen Chean Teh3

1 Faculty of Mathematics and Computer Science, Bucharest University,
Str. Academiei 14, 010014 Bucharest, Romania

aadrian@gmail.com
2 School of Mathematics, Actuarial and Quantitative Studies,

Asia Pacific University of Technology & Innovation,
Technology Park Malaysia, 57000 Bukit Jalil, Kuala Lumpur, Malaysia

ghajendran@staffemail.apu.edu.my
3 School of Mathematical Sciences, Universiti Sains Malaysia,

11800 USM, Malaysia
dasmenteh@usm.my

Abstract. Parikh matrices, introduced by Mateescu et al. in 2001, are
generalization of the classical Parikh vectors. These special matrices are
often utilized in the combinatorial study of words as an elegant tool to
compute the number of occurrences of certain subwords in a word. In
this paper, we study the determinant of a certain submatrix of a Parikh
matrix, where the submatrix preserves the information contained in the
original matrix. We present a formula to compute such a determinant,
which we term as the Parikh determinant, for any given word. By using
a classical result on Parikh matrices, we establish Parikh determinants
as a natural combinatorial characteristic of words. Consequently, a new
general identity involving the number of occurrences of certain subwords
of a word is obtained. Finally, we address some related observations and
possible future directions of this study.

Keywords: Parikh matrices · Subwords · Core words · Determinants

1 Introduction

In combinatorics of words, it is of interest to characterize a word by using
numerical quantities. One such numerical quantity that is often investigated
in the literature is the number of occurrences of a word as a subword of another
word. In dealing with studies of this nature, the Parikh matrix mapping, which
was introduced by Mateescu et al. in [11], is a useful tool.

Parikh matrices are a generalization of the classical Parikh vectors [13]. The
Parikh matrix of a word is an upper triangular matrix which contains informa-
tion on the number of occurrences of certain subwords of that word. In general, a
Parikh matrix does not uniquely determine a word. Nevertheless, Parikh matri-
ces and their variants [1,6–8,16] have led to various new investigations in the
combinatorial study of words (for example, see [2–5,9,10,12,14,15,17–22]).
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 68–79, 2019.
https://doi.org/10.1007/978-3-030-28796-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_5

Parikh Determinants 69

In this work, we study a natural algebraic property of Parikh matrices. Partic-
ularly, we scrutinize the determinant of a certain submatrix of a Parikh matrix—
we term such determinants as Parikh determinants. The submatrix considered
preserves the essential information from the original Parikh matrix. Our main
contributions would be as follows:

1. A general formula to compute the Parikh determinant of any given word;
2. A new general identity involving the number of occurrences of certain sub-

words of a word.

The remainder of this paper is structured as follows. Section 2 provides the
basic terminology and preliminaries. Section 3, which is the core section of this
paper, introduces and studies Parikh determinants. By using the Leibniz formula
for determinants, a general formula to compute the Parikh determinant of a word
is developed. This formula is then generalized to compute the Parikh determinant
of a word raised to an arbitrary power. Also, the Parikh determinant of a word is
shown to be equivalent to the number of occurrences of a certain subword of the
word—thus realizing a new general identity involving subword occurrences in a
word. Finally, Sect. 4 contains some final remarks and possible future directions
of this study.

2 Preliminaries

The set of all positive integers up to k is denoted by [k]. We denote a sequence
of integers i1, i2, . . . , in by 〈i1, i2, . . . , in〉. The length of a sequence α is denoted
by |α|. Given a set X, we denote by X<ω the set of all finite sequences over X.

Suppose A is a k × k square matrix. We denote the (i, j)-entry of A by Ai,j .
The determinant of A is denoted by ‖A‖. For all integers 1 ≤ i, j ≤ k, we denote
by A(i, j) the submatrix obtained by deleting the i-th row and j-th column of
A.

Suppose Σ is a finite nonempty alphabet. The set of all words over Σ is
denoted by Σ∗. The unique empty word is denoted by λ. Given a word w =
a1a2 · · · ak (ai ∈ Σ for all 1 ≤ i ≤ k), we denote by mi(w) the mirror image of
w, that is mi(w) = akak−1 · · · a1. If v, w ∈ Σ∗, the concatenation of v and w is
denoted by vw. An ordered alphabet is an alphabet Σ = {a1, a2, . . . , ak} with
a total ordering on it. For example, if a1 < a2 < · · · < ak, then we may write
Σ = {a1 < a2 < · · · < ak}. For all integers 1 ≤ i ≤ j ≤ k, let ai,j denote the
word aiai+1 · · · aj . Frequently, we will abuse notation and use Σ to stand for
both the ordered alphabet and its underlying alphabet. Suppose Γ ⊆ Σ. The
projective morphism πΓ : Σ∗ → Γ ∗ is defined by

πΓ (a) =

{
a, if a ∈ Γ

λ, otherwise.

A word v is a scattered subword (or simply subword) of w ∈ Σ∗ if and only
if there exist x1, x2, . . . , xn, y0, y1, . . . , yn ∈ Σ∗ (possibly empty) such that v =

70 A. Atanasiu et al.

x1x2 · · · xn and w = y0x1y1 · · · yn−1xnyn. If the letters in v occur contiguously
in w (that is y1 = y2 = . . . = yn−1 = λ), then v is a factor of w. The number of
occurrences of a word v as a subword of w is denoted by |w|v. Two occurrences
of v are considered different if and only if they differ by at least one position
of some letter. For example, |bcbcc|bc = 5 and |aabcbc|abc = 6. By convention,
|w|λ = 1 for all w ∈ Σ∗.

For any integer k ≥ 2, let Mk denote the multiplicative monoid of k × k
upper triangular matrices with nonnegative integral entries and unit diagonal.

Definition 1. Suppose Σ = {a1 < a2 < · · · < ak} is an ordered alphabet, where
k ≥ 1. The Parikh matrix mapping with respect to Σ, denoted by ΨΣ, is the
morphism

ΨΣ : Σ∗ → Mk+1

defined as follows: ΨΣ(λ) = Ik+1; if ΨΣ(aq) = M , then

– Mi,i = 1 for each 1 ≤ i ≤ k + 1;
– Mq,q+1 = 1; and
– all other entries of the matrix ΨΣ(aq) are zero.

Matrices of the form ΨΣ(w) for w ∈ Σ∗ are called Parikh matrices.

Remark 1. The Parikh vector Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak
) of a word w ∈ Σ∗

is embedded in the second diagonal of the Parikh matrix ΨΣ(w).

Theorem 1 [11]. Suppose Σ = {a1 < a2 < · · · < ak} is an ordered alphabet
and w ∈ Σ∗. The matrix ΨΣ(w) = M has the following properties:

– Mi,i = 1 for each 1 ≤ i ≤ k + 1;
– Mi,j = 0 for each 1 ≤ j < i ≤ k + 1;
– Mi,j+1 = |w|ai,j

for each 1 ≤ i ≤ j ≤ k.

Example 1. Suppose Σ = {a < b < c < d} and w = dcabac. Then

ΨΣ(w) = ΨΣ(d)ΨΣ(c)ΨΣ(a)ΨΣ(b)ΨΣ(a)ΨΣ(c)

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ · · ·

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 2 1 1 0
0 1 1 1 0
0 0 1 2 0
0 0 0 1 1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1 |w|a |w|ab |w|abc |w|abcd

0 1 |w|b |w|bc |w|bcd

0 0 1 |w|c |w|cd

0 0 0 1 |w|d
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Parikh Determinants 71

3 Parikh Determinant of a Word

Since Parikh matrices are upper triangular matrices with ones in the main diag-
onal, the determinant of a Parikh matrix is always one—therefore it is not inter-
esting to further study its determinant. Clearly, if the last row and the first
column of a Parikh matrix is removed, the information (on the word) contained
in the original Parikh matrix is still preserved by the resulting submatrix. Fur-
thermore, the determinant of the resulting submatrix is no longer trivially one.
This motivates the following notion, which will be the central object of our study.

Definition 2. Suppose Σ is an ordered alphabet and w ∈ Σ∗. Let M = ΨΣ(w).
The Parikh determinant of the word w (with respect to Σ), denoted by ΔΣ(w),
is the determinant of the matrix M(k + 1, 1).

Remark 2. The idea of studying the determinant of the submatrix obtained by
deleting the last row and the first column of a Parikh matrix appears also in [12]
but with a single goal to prove the nonnegativity of canonical subword histories.

We now develop a formula (Theorem 2) to compute the Parikh determinant
of a word for an arbitrary ordered alphabet. However, we first need the following
lemma, which follows as a special case of the Leibniz formula for the determinant.

Lemma 1. Suppose A is a k × k matrix such that Ai,j = 0 whenever j ≤ i − 2
and Ai,i−1 = 1 for all integers 2 ≤ i ≤ k. Let

S = {〈i1, i2, . . . , in〉 ∈ [k]<ω | i1 < i2 < · · · < in = k}.

Then,
‖A‖ =

∑
〈i1,i2,...,in〉∈S

(−1)n+kA1,i1Ai1+1,i2 · · · Ain−1+1,in .

Proof. By the Leibniz formula of determinant, we have

‖A‖ =
∑

σ∈Sym([k])

(
sgn(σ)

k∏
i=1

Ai,σ(i)

)
(1)

where Sym([k]) denotes the set of permutations on [k] and

sgn(σ) =

{
1 if σ is even,

−1 if σ is odd.

Since Ai,j = 0 whenever j ≤ i − 2, it follows that for every σ ∈ Sym([k])

such that σ(i) ≤ i − 2 for some 1 ≤ i ≤ k, the term sgn(σ)
k∏

i=1

Ai,σ(i) = 0. Thus,

define
R = {σ ∈ Sym([k]) |σ(i) ≥ i − 1 for all 1 ≤ i ≤ k},

then Eq. (1) can be written as

72 A. Atanasiu et al.

‖A‖ =
∑
σ∈R

(
sgn(σ)

k∏
i=1

Ai,σ(i)

)
(2)

For every σ ∈ R, define r(σ) = 〈σ(i1), σ(i2), . . . , σ(in)〉 where 1 ≤ ij ≤ k such
that ij < ij+1 for every integer 1 ≤ j ≤ n − 1 and σ(ij) ≥ ij for every integer
1 ≤ j ≤ n.

Observation 1. Let σ ∈ R be arbitrary. For every integer 1 ≤ i ≤ k − 1,

• if σ(i) = i, then σ(i + 1) ≥ i + 1;
• if σ(i) > i, let i′ = σ(i), then σ(j) = j − 1 for every integer i+1 ≤ j ≤ i′ and

σ(i′ + 1) ≥ i′ + 1.

Suppose σ ∈ R and let 〈σ(i1), σ(i2), . . . , σ(in)〉 = r(σ). Then by the above
observation, it follows that ij+1 = σ(ij) + 1 for every integer 1 ≤ j ≤ n − 1.
Thus σ(ij) < σ(ij+1) for every integer 1 ≤ j ≤ n − 1. Notice that σ(i) ≥ 1 for
all integers 1 ≤ i ≤ k, thus i1 = 1. Also, we have i, σ(i) ≤ k for all integers
1 ≤ i ≤ k, thus it must be the case that σ(in) = k. By the above reasons, it
holds that {r(σ) |σ ∈ R} = S.

The following claim holds by the definition sgn(σ) = (−1)N(σ) where N(σ)
is the number of inversions in σ, a standard observation that N(σ) = k − |r(σ)|,
and the fact that k − |r(σ)| and k + |r(σ)| have equal parity.

Claim 1. For every σ ∈ R, we have sgn(σ) = (−1)|r(σ)|+k.

By the hypothesis, we have Ai,i−1 = 1 for all integers 2 ≤ i ≤ k. Thus by
(2), our observation and the claim, it holds that

‖A‖ =
∑

i1,i2,...,in
〈σ(i1),σ(i2),...,σ(in)〉=r(σ)

σ∈R

(−1)n+kAi1,σ(i1)Ai2,σ(i2) · · · Ain,σ(in)

=
∑

i1,i2,...,in
〈σ(i1),σ(i2),...,σ(in)〉=r(σ)

σ∈R

(−1)n+kAi1,σ(i1)Aσ(i1)+1,σ(i2) · · · Aσ(in−1)+1,σ(in)

=
∑

〈i1,i2,...,in〉∈S

(−1)n+kA1,i1Ai1+1,i2 · · · Ain−1+1,in .

Thus the conclusion holds.

The following notation will be frequently used in the subsequent part of this
section.

Definition 3. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. For every
〈i1, i2, . . . , in〉 ∈ [k]<ω and integer m such that m ≤ i1 < i2 < · · · < in, we
define

|w|〈m,i1,i2,...,in〉 = |w|am,i1 |w|ai1+1,i2 · · · |w|ain−1+1,in .

Parikh Determinants 73

Theorem 2. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Let

S = {〈i1, i2, . . . , in〉 ∈ [k]<ω | i1 < i2 < · · · < in = k}.

Then,
ΔΣ(w) =

∑
〈i1,i2,...,in〉∈S

(−1)n+k|w|〈1,i1,i2,...,in〉.

Proof. Let M = ΨΣ(w) and A = M(k + 1, 1). Then the result directly holds by
Lemma 1 since ΔΣ(w) = ‖A‖ and

Ai,j =

⎧⎪⎨
⎪⎩

|w|ai,j
if j ≥ i,

1 if j = i − 1,

0 if j ≤ i − 2.

Example 2. Suppose Σ = {a < b < c} = {a1 < a2 < a3} and w ∈ Σ∗. Then

{〈i1, i2, . . . , in〉 ∈ {1, 2, 3}<ω | i1 < i2 < · · · < in = 3}
={〈1, 2, 3〉, 〈1, 3〉, 〈2, 3〉, 〈3〉}.

Therefore,

ΔΣ(w) = |w|a1,1 |w|a2,2 |w|a3,3 − |w|a1,1 |w|a2,3 − |w|a1,2 |w|a3,3 + |w|a1,3

= |w|a|w|b|w|c − |w|a|w|bc − |w|ab|w|c + |w|abc.

We now use the formula of the Parikh determinant of a word to develop an
identity (Theorem 6) involving the number of occurrences of certain subwords
of a word. The following notion and known result are essential for our purpose.

Definition 4. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Let M =
ΨΣ(w). The alternate Parikh matrix of w, denoted by ΨΣ(w), is the matrix A
such that Ai,j = (−1)i+jMi,j for all 1 ≤ i, j ≤ k + 1.

Theorem 3 [11]. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Then

[ΨΣ(w)]−1 = ΨΣ(mi(w)).

For a given ordered alphabet, the following result establishes a connection
between the corresponding Parikh determinant of a word and the number of
occurrences of a certain subword in that word.

Theorem 4. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Then

ΔΣ(w) = |w|akak−1···a1 .

Proof. Let A = ΨΣ(w). Then

A−1 =
1

‖A‖ adj(A).

74 A. Atanasiu et al.

Since ‖ΨΣ(x)‖ = 1 for any x ∈ Σ∗, it follows that A−1 = adj(A). By definition,
the (i, j)-entry of adj(A) is (−1)i+j‖A(j, i)‖.

Notice that the (1, k +1)-entry of adj(A) is (−1)k+2‖A(k +1, 1)‖. Therefore,
by the definition of Parikh determinant, we have

A−1
1,k+1 = (−1)k+2‖A(k + 1, 1)‖ = (−1)k+2ΔΣ(w).

Let B = ΨΣ(mi(w)) and B′ = ΨΣ(mi(w)). By Theorem 3, it holds that

(−1)k+2ΔΣ(w) = A−1
1,k+1 = B′

1,k+1 = (−1)k+2B1,k+1.

It remains to see that ΔΣ(w) = B1,k+1 = |mi(w)|a1a2···ak
= |w|akak−1···a1 , thus

the conclusion holds.

At this point, we highlight the following observation, which is essential in the
proof of Theorem 4.

Remark 3. Suppose Σ is an ordered alphabet and w ∈ Σ∗. Let A = ΨΣ(w) and
B = ΨΣ(mi(w)). For all integers 1 ≤ i, j ≤ k + 1, we have Bi,j = ‖A(j, i)‖. That
is to say, every minor of ΨΣ(w) uniquely corresponds to an entry in ΨΣ(mi(w)).

The following are immediate consequences of Theorem 4.

Remark 4. Suppose Σ = {a1 < a2 < · · · < ak}.

1. For every positive integer n, there exists w ∈ Σ∗ such that ΔΣ(w) = n (take
w = akak−1 · · · a2a

n
1).

2. For any w ∈ Σ∗, if |w|ai
= 0 for some 1 ≤ i ≤ k, then ΔΣ(w) = 0.

3. For any u, v ∈ Σ∗,
a. if |u|ak

= 0, then ΔΣ(uv) = ΔΣ(v);
b. if |v|a1 = 0, then ΔΣ(uv) = ΔΣ(u).

Proposition 1. Suppose Σ = {a1 < a2 < · · · < ak} and u, v ∈ Σ∗. For all
integers 1 ≤ i ≤ k − 1, define Σi = {a1 < a2 < · · · < ai} and Σ\Σi = {ai+1 <
ai+2 < · · · < ak}. Then

ΔΣ(uv) = ΔΣ(u) + ΔΣ(v) +
k−1∑
i=1

ΔΣi
(πΣi

(v)) · ΔΣ\Σi
(πΣ\Σi

(u)).

Proof. Let y = akak−1 . . . a1 and for all integers 1 ≤ i ≤ k − 1, let yi =
akak−1 . . . ai+1 and yi = aiai−1 . . . a1. Then the result is straightforward by
Theorem 4 and the fact that

|uv|y = |u|y + |v|y +
k−1∑
i=1

|u|yi
|v|yi

.

The following formula computes, for any positive integer p, the Parikh deter-
minant of a word to the power of p.

Parikh Determinants 75

Theorem 5. Suppose Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Let

S = {〈i1, i2, . . . , in〉 ∈ [k]<ω | i1 < i2 < · · · < in = k}.

Then for any positive integer p, we have

ΔΣ(wp) =
∑

〈i1,i2,...,in〉∈S

(−1)n+k

(
p + n − 1

p − 1

)
|w|〈1,i1,i2,...,in〉.

Proof. We argue by induction on the power of w. The base step holds by Theo-
rem 2. For the induction step, assume the hypothesis is true up to power p − 1.
We show that it is true for power p.

For every integer 1 ≤ i ≤ k − 1, define Σi = {a1 < a2 < · · · < ai} and
Σ\Σi = {ai+1 < ai+2 < · · · < ak}. By Proposition 1, it holds that

ΔΣ(wp) =ΔΣ(wwp−1)

=ΔΣ(w) + ΔΣ(wp−1) +
k−1∑
i=1

ΔΣi
(πΣi

(wp−1))·ΔΣ\Σi
(πΣ\Σi

(w)).
(3)

For every integer 1 ≤ i ≤ k − 1, define

Ri = {〈r1, r2, . . . , rni
〉 ∈ [i]<ω | r1 < r2 < · · · < rni

= i}
and

Ti = {〈t1, t2, . . . , tmi
〉 ∈ [k]<ω | i + 1 ≤ t1 < t2 < · · · < tmi

= k}.

Then for every integer 1 ≤ i ≤ k − 1, by the induction hypothesis, it holds that

ΔΣi
(πΣi

(wp−1)) =
∑

〈r1,r2,...,rni
〉∈Ri

(−1)ni+i

(
p + ni − 2

p − 2

)
|πΣi

(w)|〈1,r1,r2,...,rni
〉

and

ΔΣ\Σi
(πΣ\Σi

(w)) =
∑

〈t1,t2,...,tmi
〉∈Ti

(−1)mi+k−i|πΣ\Σi
(w)|〈i+1,t1,t2,...,tmi

〉.

For every integer 1 ≤ i ≤ k, if 〈r1, r2, . . . , rni
〉 ∈ Ri and 〈t1, t2, . . . , tmi

〉 ∈ Ti,
then

|πΣi
(w)|〈1,r1,r2,...,rni

〉|πΣ\Σi
(w)|〈i+1,t1,t2,...,tmi

〉
=|w|〈1,r1,r2,...,rni

〉|w|〈i+1,t1,t2,...,tmi
〉

=|w|〈1,r1,r2,...,rni
,t1,t2,...,tmi

〉 (since rni
= i < i + 1 ≤ t1).

Therefore, for every integer 1 ≤ i ≤ k, we have

ΔΣi
(πΣi

(wp−1)) · ΔΣ\Σi
(πΣ\Σi

(w))

=
∑

〈r1,...,rni
〉∈Ri

∑
〈t1,...,tmi

〉∈Ti

(−1)ni+mi+k

(
p + ni − 2

p − 2

)
|w|〈1,r1,...,rni

,t1,...,tmi
〉.

(4)

76 A. Atanasiu et al.

Observe that

k−1⋃
i=1

{〈r1, . . . , rni
, t1, . . . , tmi

〉 | 〈r1, . . . , rni
〉 ∈ Ri and 〈t1, . . . , tmi

〉 ∈ Ti} = S.

Furthermore, for every 〈i1, i2, . . . , in〉 ∈ S, if 1 ≤ h ≤ n−1, then 〈i1, i2, . . . , ih〉 ∈
Rih and 〈ih+1, ih+2, . . . , in〉 ∈ Tih . Therefore, we obtain from (4) the equality

k−1∑
i=1

ΔΣi
(πΣi

(wp−1)) · ΔΣ\Σi
(πΣ\Σi

(w))

=
∑

〈i1,i2,...,in〉∈S

(−1)n+k

[
n−1∑
h=1

(
p + h − 2

p − 2

)]
|w|〈1,i1,i2,...,in〉.

(5)

By (3), (5), and the induction hypothesis on ΔΣ(wp−1) and ΔΣ(w), we have
ΔΣ(wp)

=
∑

〈i1,...,in〉∈S

(−1)n+k|w|〈1,i1,...,in〉 +
∑

〈i1,...,in〉∈S

(−1)n+k

(
p + n − 2

p − 2

)
|w|〈1,i1,...,in〉

+
∑

〈i1,...,in〉∈S

(−1)n+k

[
n−1∑
h=1

(
p + h − 2

p − 2

)]
|w|〈1,i1,...,in〉

=
∑

〈i1,l...,in〉∈S

(−1)n+k

⎡
⎢⎢⎣
(

p − 2
p − 2

)
︸ ︷︷ ︸

=1

+
(

p + n − 2
p − 2

)
+

n−1∑
h=1

(
p + h − 2

p − 2

)⎤⎥⎥⎦ |w|〈1,i1,...,in〉

=
∑

〈i1,...,in〉∈S

(−1)n+k

[
n∑

h=0

(
p + h − 2

p − 2

)]
|w|〈1,i1,...,in〉.

Finally, by induction on n and Pascal’s rule, it can be shown that

n∑
h=0

(
p + h − 2

p − 2

)
=
(

p + n − 1
p − 1

)
.

Thus the conclusion holds.

Finally, by Theorems 4 and 5, the following identity holds.

Theorem 6. Suppose Σ is an alphabet and a1, a2, . . . , ak are distinct letters in
Σ. Let

S = {〈i1, i2, . . . , in〉 ∈ [k]<ω | i1 < i2 < · · · < in = k}.

For any positive integer p, we have

|wp|akak−1···a1 =
∑

〈i1,i2,...,in〉∈S

(−1)n+k

(
p + n − 1

p − 1

)
|w|〈i1,i2,...,in〉.

Parikh Determinants 77

In particular,

|w|akak−1···a1 =
∑

〈i1,i2,...,in〉∈S

(−1)n+k|w|〈i1,i2,...,in〉.

Notice that for the binary alphabet {a < b}, Theorem 6 gives rise to the
well-known identity |w|a|w|b = |w|ab + |w|ba.

4 Final Remarks

The Parikh determinant is natural, both as an algebraic aspect of Parikh matri-
ces, as well as a combinatorial characteristic of words. In this short section, we
present some observations and possible future directions of this study.

4.1 Parikh Determinant, Parikh Vector and Parikh Matrix

Given a word w, the Parikh determinant, Parikh vector, and Parikh matrix of the
word w describe w in terms of the number of occurrences of certain subwords.
For the binary alphabet, the combined information of the Parikh vector and
Parikh determinant of a word is equivalent to that given by the Parikh matrix
of the word. This is due to the fact that Δ{a<b}(w) = |w|ba (by Theorem 4) and
the equality |w|a|w|b = |w|ab + |w|ba. Expectedly, for larger alphabets, this is
not true. For example, Δ{a<b<c}(cbcaa) = 2 = Δ{a<b<c}(ccaba) and Ψ(cbcaa) =
(2, 1, 2) = Ψ(ccaba), however

Ψ{a<b<c}(cbcaa) =

⎛
⎜⎜⎝

1 2 0 0
0 1 1 1
0 0 1 2
0 0 0 1

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

1 2 1 0
0 1 1 0
0 0 1 2
0 0 0 1

⎞
⎟⎟⎠ = Ψ{a<b<c}(ccaba).

4.2 An Alternative Way to Compute Parikh Determinants

Let Σ = {a1 < a2 < · · · < ak} and w ∈ Σ∗. Theorem 4 establishes the fact that
the Parikh determinant of w is equivalent to the value |w|akak−1...a1 . In [19],
given any word v ∈ Σ∗, the essential subword of w whose letters account for the
value |w|v is identified. Formally, the following notion was introduced.

Definition 5. Suppose Σ is an alphabet and v, w ∈ Σ∗. The v-core of w, denoted
by corev(w), is the unique shortest-length subword w′ of w which satisfies |w′|v =
|w|v. We say that w is a v-core word if and only if corev(w) = w.

Example 3. Suppose Σ = {a, b, c} and consider the word w = cbabbca. Then,
corea(w) = aa, corebc(w) = bbbc, coreabc(w) = abbc and corecba(w) = cbabbca.
Note that since corecba(w) = w, it follows that w is a cba-core word.

Thus, for Σ = {a1 < a2 < · · · < ak}, the Parikh determinant of a word
over Σ can be computed by systematically analyzing the akak−1 . . . a1-core of
the word. We illustrate this by an example for the quarternary alphabet.

78 A. Atanasiu et al.

Example 4. Suppose Σ = {a, b, c, d}. Consider the word w = abdcddcbadccbabc.
Then ΔΣ(w) = |w|dcba = | coredcba(w)|dcba. Thus to compute the value |w|dcba,
we analyze the word coredcba(w) = dcddcbadccba as follows:

dcddcbadccba

dcddcb

dcddc

d

λ

ddd

λ λ λ

dcddcbdccb

dcddc

d

λ

ddd

λ λ λ

dcddcdcc

d

λ

ddd

λ λ λ

dddd

λ λ λ λ

dddd

λ λ λ λ

The first level (root) of the tree is the word w. The second level of the tree is
obtained by first identifying the position of letters a in w. Then, for each of those
letters a, the projection with respect to {d, c, b}, of the factor right before it, is
represented as a node. Continuing like this, the third level corresponds to the
projection with respect to {d, c}, fourth level to {d}, and finally the fifth level,
the empty alphabet.

We can easily see that the value |w|dcba is equal to the number of leaves of
the rooted tree, which is 20. Therefore, ΔΣ(w) = 20.

Ultimately, it remains to be investigated whether a more efficient algorithm
to compute the Parikh determinant of a word can be obtained.

4.3 Generalization of Parikh Determinants

Given a word w, Parikh matrices can only be used to obtain the value |w|u for any
word u such that u does not contain any repeated letters. As an improvement,
the notion of extended Parikh matrices was introduced in [16]. The notion of
Parikh determinants can be easily generalized to the context of extended Parikh
matrices.

Moreover, a result analogous to Theorem 3 has been proven for extended
Parikh matrices (see [16, Theorem 16]). Therefore, a more general identity involv-
ing subword occurrences (as in Theorem 6) is attainable.

Acknowledgements. This work was completed during the sabbatical leave of the
third author from 15 Nov 2018 to 14 Aug 2019, supported by Universiti Sains Malaysia.

References

1. Atanasiu, A., Atanasiu, R.F.: Enriching Parikh matrix mappings. Int. J. Comput.
Math. 90(3), 511–521 (2013)

Parikh Determinants 79

2. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the Parikh
matrix mapping. Fund. Inform. 49(4), 289–299 (2002)

3. Atanasiu, A., Poovanandran, G., Teh, W.C.: Parikh matrices for powers of words.
Acta Inform. 1–15 (2018)

4. Atanasiu, A., Teh, W.C.: A new operator over Parikh languages. Int. J. Found.
Comput. Sci. 27(06), 757–769 (2016)

5. Bera, S., Mahalingam, K.: Some algebraic aspects of Parikh q-matrices. Int. J.
Found. Comput. Sci. 27(04), 479–499 (2016)

6. Černý, A.: Generalizations of Parikh mappings. RAIRO Theor. Inform. Appl.
44(2), 209–228 (2010)

7. Clark, A., Watkins, C.: Some alternatives to Parikh matrices using string kernels.
Fund. Inform. 84(3–4), 291–303 (2008)

8. Egecioglu, O., Ibarra, O.H.: A matrix Q-analogue of the Parikh map. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 125–138.
Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8141-3 12

9. Mahalingam, K., Bera, S., Subramanian, K.G.: Properties of Parikh matrices of
binary words obtained by an extension of a restricted shuffle operator. Int. J.
Found. Comput. Sci. 29(3), 403–3413 (2018)

10. Mateescu, A.: Algebraic aspects of Parikh matrices. In: Karhumäki, J., Maurer, H.,
Păun, G., Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 170–180.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27812-2 16

11. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: A sharpening of the Parikh map-
ping. Theor. Inform. Appl. 35(6), 551–564 (2001)

12. Mateescu, A., Salomaa, A., Yu, S.: Subword histories and Parikh matrices. J. Com-
put. Syst. Sci. 68(1), 1–21 (2004)

13. Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581
(1966)

14. Poovanandran, G., Teh, W.C.: Elementary matrix equivalence and core transfor-
mation graphs for Parikh matrices. Discrete Appl. Math. 251, 276–289 (2018)

15. Salomaa, A.: Criteria for the matrix equivalence of words. Theoret. Comput. Sci.
411(16), 1818–1827 (2010)

16. Şerbănuţă, T.F.: Extending Parikh matrices. Theoret. Comput. Sci. 310(1–3), 233–
246 (2004)

17. Şerbănuţă, V.N.: On Parikh matrices, ambiguity, and prints. Internat. J. Found.
Comput. Sci. 20(1), 151–165 (2009)

18. Şerbănuţă, V.N., Şerbănuţă, T.F.: Injectivity of the Parikh matrix mappings revis-
ited. Fund. Inform. 73(1), 265–283 (2006)

19. Teh, W.C.: On core words and the Parikh matrix mapping. Int. J. Found. Comput.
Sci. 26(1), 123–142 (2015)

20. Teh, W.C.: Parikh matrices and Parikh rewriting systems. Fund. Inform. 146,
305–320 (2016)

21. Teh, W.C., Atanasiu, A.: On a conjecture about Parikh matrices. Theoret. Comput.
Sci. 628, 30–39 (2016)

22. Teh, W.C., Atanasiu, A., Poovanandran, G.: On strongly M-unambiguous prints
and Şerbănuţă’s conjecture for Parikh matrices. Theoret. Comput. Sci. 719, 86–93
(2018)

https://doi.org/10.1007/1-4020-8141-3_12
https://doi.org/10.1007/978-3-540-27812-2_16

Critical Exponent of Infinite Balanced
Words via the Pell Number System

Aseem R. Baranwal(B) and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
{aseem.baranwal,shallit}@uwaterloo.ca

Abstract. In a recent paper of Rampersad et al., the authors conjec-
tured that the smallest possible critical exponent of an infinite balanced
word over a 5-letter alphabet is 3/2. We prove this result, using a for-
mulation of first-order logic, the Pell number system, and a machine
computation based on finite-state automata.

Keywords: Critical exponent · Balanced word ·
Automatic theorem-proving

1 Introduction

In this paper, we prove a result about the critical exponent of infinite balanced
words, using a formulation of first-order logic, the Pell number system, and a
machine computation based on finite-state automata. To our knowledge, this is
the first result in combinatorics on words to be proved using this approach via
the Pell number system.

1.1 Preliminaries

Let w denote a word over the alphabet Σ. If w is finite, then |w| denotes its
length, and |w|a denotes the number of occurrences of the symbol a in w, where
a ∈ Σ. We let Fac(w) denote the set of all factors of w.

Definition 1. A word w over the alphabet Σ is balanced if for every symbol a ∈
Σ, and every pair of words u, v ∈ Fac(w) with |u| = |v|, we have ||u|a−|v|a| ≤ 1.

The class of Sturmian words and the class of infinite aperiodic balanced words
coincide over a binary alphabet. Vuillon [14] provides a survey on some previous
work on balanced words, and Berstel et al. [3] provide a survey on Sturmian
words.

Definition 2. Let w = w0w1 · · · wn−1 be a finite word of length n. Then p ∈ N

is a period of w if wi = wi+p for all i with 0 ≤ i < n − p.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 80–92, 2019.
https://doi.org/10.1007/978-3-030-28796-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_6&domain=pdf
http://orcid.org/0000-0001-5318-6054
http://orcid.org/0000-0003-1197-3820
https://doi.org/10.1007/978-3-030-28796-2_6

Critical Exponent of Infinite Balanced Words 81

We say that a word u has exponent e and write u = ze, where e = |u|/p is a
positive rational number, and z is the prefix of u of length p; here z is sometimes
called a fractional root of u. A word may have multiple periods, exponents, and
fractional roots. We say u is primitive if its only integer exponent is 1. If u is a
finite nonempty word, then uω denotes the infinite word uuu · · · .
Example 1. The word w = alfalfa has three periods: p1 = 3, p2 = 6, and
p3 = 7. The corresponding exponents are e1 = 7/3, e2 = 7/6, and e3 = 1. In this
example, w is a primitive word since its only integer exponent is 1.

Definition 3. The critical exponent of an infinite word w is defined to be the
supremum of the set of all rational numbers r such that there exists a finite
nonempty factor of w with exponent r. More formally,

E(w) = sup{r ∈ Q : there exist words x, y ∈ Fac(w) with |y| > 0 and y = xr}.

1.2 Previous Work

Rampersad et al. [12] gave a method to construct infinite balanced words from
binary Sturmian words, using a characterization of recurrent aperiodic balanced
words given by Hubert [7]. Their method is based on the notion of the constant
gap property.

Definition 4. An infinite word w has the constant gap property if, for each
symbol a, there is a positive integer d such that the distance between successive
occurrences of a in w is always d.

For example, (0102)ω = 010201020102 · · · has the constant gap property
because the distance between consecutive 0’s is always 2, while the distance
between consecutive 1’s (resp., 2’s) is always 4.

Sturmian words cα,β can be defined in terms of two real parameters α, β with
0 ≤ α, β < 1, and α irrational. Then

cα,β [n] := �α(n + 1) + β� − �αn + β�.
A Sturmian word is called characteristic if β = 0, and is written as cα. In this
case, it is well-known that an alternative characterization for these words can be
given in terms of the continued fraction expansion of α = [d0, d1, d2, . . .] where
di ∈ N for i ≥ 0 and di ≥ 1 for i ≥ 1. Then cα is produced as the limit of the
sequence of standard words sn defined as follows:

s0 = 0, s1 = 0d1−11, sn = sdn
n−1sn−2 for n ≥ 2.

Theorem 1 [7]. A recurrent aperiodic infinite word x is balanced if and only
if x is obtained from a Sturmian word u over {0, 1} by the following procedure:
replace the 0’s in u by a periodic sequence y with constant gaps over some
alphabet A and replace the 1’s in u by a periodic sequence y′ with constant gaps
over some alphabet B, disjoint from A.

82 A. R. Baranwal and J. Shallit

The authors of [12] defined certain infinite balanced words xk for 3 ≤ k ≤ 10
constructed from a Sturmian characteristic word cα, where α, y and y′ are care-
fully chosen. Table 1 shows the choices for x3, x4, and x5. Here ϕ = (1+

√
5)/2 is

the golden ratio. The authors also proved that E(x3) = 2+
√
2
2 and E(x4) = 1+ϕ

2 ;
furthermore, they showed that E(x3) is the least possible critical exponent over
an alphabet of 3 symbols. Based on computations, they also suggested that the
least possible critical exponents for balanced words over a k-letter alphabet is
(k − 2)/(k − 3) for k ≥ 5. In this paper we take the first step towards this con-
jecture by proving the result for k = 5. (Very recently a proof that the critical
exponent for x4 is actually minimal was announced by Peltomäki.)

Table 1. α, y, and y′ used for the construction of xk.

k α y y′

3
√

2 − 1 (01)ω 2ω

4 1/ϕ2 (01)ω (23)ω

5
√

2 − 1 (0102)ω (34)ω

1.3 Automatic Theorem Proving Using Walnut

The authors in [12] employed a computational approach using the automatic
theorem-proving software Walnut [8]. The approach is based on the methods of
Du et al. [5,9], using Theorems 2 and 3 below. The nth term of an arbitrary Stur-
mian characteristic word cα, and consequently the generated infinite balanced
word xk, can be computed by a finite automaton that takes the Ostrowski α-
representation [11] of n as input.

Theorem 2 [1, Theorem 9.1.15]. Let N ≥ 1 be an integer with Ostrowski α-
representation bjbj−1 · · · b0. Then cα[N] = 1 if and only if bjbj−1 · · · b0 ends
with an odd number of 0’s.

Theorem 3 [12, Theorem 12]. Let α be a quadratic irrational and let cα be
the Sturmian characteristic word with slope α. Let x be any word obtained by
replacing the 0’s in cα with a periodic sequence y and replacing the 1’s with a
periodic sequence y′. Then x is Ostrowski α-automatic.

Using Walnut, we can constructively decide first-order predicates. When a
predicate consisting of free variables is provided to Walnut, it also generates an
automaton accepting values for the free variables that will satisfy the predicate.
For predicates without any free variables, Walnut produces any of the two spe-
cial automata, the true, and the false automaton, depending on whether the
predicate is a tautology, or a contradiction respectively.

Critical Exponent of Infinite Balanced Words 83

2 Building the Automata

We determine the critical exponent of x5 using the computational approach
described above. The Ostrowski α-numeration system for x5 is defined by the
Pell numbers, similar to how the numeration system for x4 is defined by the
Fibonacci numbers. To enable Walnut to work with this new numeration sys-
tem, we require a deterministic finite automaton that reads its input in the Pell
number system and recognizes the addition relation {(x, y, z) ∈ N

3 : x + y = z}.
Hieronymi and Terry [6] showed that this is indeed possible when α is a quadratic
irrational, and we have α =

√
2 − 1 for x5, which satisfies this condition. Once

we have the adder, a second automaton with output that can compute x5 is
required for enabling Walnut to understand first-order predicates involving x5.

2.1 Pell Number System

The Pell numbers are defined by the recurrence relation Pn = 2Pn−1 + Pn−2 for
n ≥ 2 with P0 = 0 and P1 = 1. The first few terms of this sequence are

0, 1, 2, 5, 12, 29, 70, 169, . . .

and form sequence A000129 in Sloane’s Encyclopedia [13]. We use this sequence
of numbers to define a non-standard positional numeral system in the family
of Ostrowski numeration systems [11] with α =

√
2 − 1. Given an integer N ,

we can express it as an integer linear combination of Pell numbers as follows:
N =

∑
0≤i<n diPi+1. To ensure that this representation is unique, we impose

the following conditions on the di:

1. The least significant digit d0 ∈ {0, 1}.
2. For all i > 0 we have di ∈ {0, 1, 2}.
3. If di = 2, then di−1 = 0.

In this case, the word dn−1dn−2 · · · d0 is said to be the canonical Pell representa-
tion of an integer N , and we write it as (N)P . For example, 157 has canonical Pell
representation (201100)P . Other representations of 157 include 122100, 201021,
and 122021, but they do not conform to the conditions given above, and hence
they are not canonical.

2.2 Automaton for the Addition Relation in Pell-Base

To build the automaton that can recognize the addition relation in the Pell
number system, we use Theorem 4, a corollary to the Myhill-Nerode theorem [10]
based on the idea of Brzozowski derivative [4].

Definition 5. Given a function f : Σ∗ → R for an alphabet Σ, we define its
Hankel matrix H ∈ R

Σ∗×Σ∗
as follows:

https://oeis.org/A000129

84 A. R. Baranwal and J. Shallit

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ε a b aa · · ·
ε f(ε) f(a) f(b) f(aa) · · ·
a f(a) f(aa) f(ab) f(aaa) · · ·
b f(b) f(ba) f(bb) f(baa) · · ·
aa f(aa) f(aaa) f(aab) f(aaaa) · · ·
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where ε denotes the empty string. The matrix is indexed by words u, v ∈ Σ∗ such
that Huv = f(uv).

Theorem 4 (Myhill-Nerode [10]). Let L = {w1, w2, . . .} be a language over the
finite alphabet Σ. Let H be a binary Hankel matrix indexed by the words u, v ∈ Σ∗

such that

Huv =

{
1, if uv ∈ L;
0, otherwise.

Then L is regular if and only if the number of distinct rows in H is finite.
Furthermore, the number of distinct rows equals the minimal number of states
of a deterministic finite automaton recognizing L.

For the indices of H, we use a list of words over the alphabet Σ3 = {0, 1, 2}
sorted in the radix order. The radix order for two words x and y is defined by
x < y, if |x| < |y|, or there exist symbols a, b ∈ Σ such that |x| = |y|, x = uax′,
y = uby′, and a < b. The adder automaton takes as input 3 integers x, y, z in
canonical Pell representation in parallel, and reaches an accepting state if and
only if x + y = z. To achieve this, we require a generalization of the notion
of Pell representation to r-tuples of integers for r ≥ 1. A representation for
(x1, x2, . . . , xr) consists of a string of symbols z over some alphabet Σ, such
that a well-defined projection πi(z) over the ith coordinate gives a canonical
Pell representation of xi. To handle this, first, we pad the canonical Pell rep-
resentations of smaller integers with leading 0’s so that in the r-tuple, strings
representing all xi have the same length. Our goal is to represent a triplet (x, y, z)
that will serve as an input to the adder automaton.

Example 2. Let (x, y, z) = (65, 15, 80) be an integer triplet to be input to our
adder automaton. After padding with sufficient leading 0’s, we have (65)10 =
(020110)P , (15)10 = (001011)P , and (80)10 = (100200)P . Next, we project these
representations as a series of ternary triplets, i.e., each digit belonging to the
alphabet Σ3. Hence (65, 15, 80) is represented as

[0, 0, 1][2, 0, 0][0, 1, 0][1, 0, 2][1, 1, 0][0, 1, 0],

where the first digits of the triplets spell out 020110, the canonical Pell repre-
sentation of 65. Similar claims about the second and third digits hold for 15 and
80, respectively. This projection is necessary to our method because, in order to
recognize the addition relation, the automaton must be able to read all three
integers x, y, z in parallel.

Critical Exponent of Infinite Balanced Words 85

Since each triplet has digits ∈ Σ3 = {0, 1, 2}, it follows that our input alpha-
bet P for the adder automaton has size 33 = 27. Next, we use a set of radix-
ordered strings over P as indices for our binary Hankel matrix HP . The value in
row u and column v of HP (u, v ∈ P) is 1 if uv denotes a series of triplets over
Σ3 that is a projection for an integer triplet (x, y, z) such that x + y = z, and 0
otherwise. Finally, we learn the deterministic finite automaton with a combina-
tion of membership and equivalence queries using the Angluin L∗ algorithm [2].
The adder automaton contains 16 states over an alphabet of size 27, and hence it
is infeasible to show here. The full automaton is publicly available on GitHub.1

Before we proceed, following an idea suggested to us by Luke Schaeffer [5],
we prove the correctness of our adder automaton using Walnut. The proof is
inductive, using the definition of the successor of an integer. Of course, the
successor of an integer x is x + 1, but this makes use of the addition relation,
which we have not yet proved. Instead, we define the successor in a different way.

Definition 6. Given two integers x and y, we say y is the successor of x if
x < y, and (z ≤ x or z ≥ y) for all z ∈ Z.

The canonical Pell representation ensures that Walnut can perform compar-
isons on two integers in Pell representation easily, based on only their radix
ordering. Below we present the Walnut commands to compute the inductive
proof. First, we define the successor relation.

1 def pell_successor "?msd_pell
2 x < y & (Az (z <= x) | (z >= y))";

The above command produces an automaton accepting pairs (x, y) such that
y is a successor of x. Walnut also stores this definition and allows us to use it in
other predicates. Next, we check the base case of the induction. For all x, z ∈ Z,
x+0 = z if and only if x = z. For the addition relation, 0 is the identity element.

1 eval base_proof "?msd_pell Ax,z ((x + 0 = z) <=> (x = z))";

The predicate base proof produces the true automaton signifying that the
predicate is true. We now verify our adder using the definition of successor. For
all x, y, z, u, v ∈ Z, if u is the successor of y and v is the successor of z, then
we have x + y = z if and only if x + u = v.

1 eval inductive_proof "?msd_pell Ax,y,z,u,v
2 ($pell_successor(y, u) & $pell_successor(z, v)) =>
3 ((x + y = z) <=> (x + u = v))";

The predicate inductive proof also produces the true automaton. This
completes the proof of correctness for our automaton recognizing the addition
relation in Pell-base.

1 Corresponding Walnut code is available at https://github.com/aseemrb/walnut.

https://github.com/aseemrb/Walnut/blob/master/Custom Bases/Visual/pell_adder.png
https://github.com/aseemrb/walnut

86 A. R. Baranwal and J. Shallit

2.3 Automaton for Computing x5

Using the adder automaton we created above, we now build a deterministic finite
automaton with output that can compute x5. Each state of this automaton is
associated with an output symbol from the alphabet Σ5 = {0, 1, 2, 3, 4} of x5.
It takes as input an integer N in canonical Pell representation, and halts at the
state with output x5[N]. By Theorem 3 we know that x5 is an α-automatic
sequence for α =

√
2 − 1. Hence, using Theorem 2 we first create an automaton

for cα, which is given by the limit of the sequence of finite words sn defined as
follows:

s0 = 0, s1 = 01, sn = s2n−1sn−2 for n ≥ 2.

This definition comes from the fact that the continued fraction expansion of
α =

√
2 − 1 is [0, 2̄]. The automaton given in Fig. 1 produces the sequence cα.

The label on each state denotes the output associated with that state. When
given a positive integer N > 0 as input, this automaton halts at the state with
label cα[N]. Here cα is indexed from 1. The first few characters of cα, and
consequently of x5 constructed from cα are given below.

cα = 01010010100101010010100101010 · · ·
x5 = 03140230410324031042301403240 · · ·

Fig. 1. Pell-base automaton for cα.

Generating x5 from cα is a simple replacement of 0’s and 1’s by the constant-
gap sequences y = (0102)ω and y′ = (34)ω from Table 1. We start indexing x5

from 0. Let zl denote the prefix of cα with length l. Then for (i ≥ 0), the value
of x5[i] is a function of cα[i + 1], |zi+1|0, and |zi+1|1. Figure 2 shows the Pell-
base automaton that generates the word x5. The labels on the states denote the
output symbol for that state. Recall that the canonical Pell representation for
an integer cannot end in a 2, and cannot have a 2 immediately followed by a
1 or 2 based on the restrictions we have imposed. For this reason, we display
certain transitions in the automaton to consist of two symbols. This is done to
remove those intermediate states from display that do not produce any output.
In practice, the automaton will never halt at such states because the input is
always a valid canonical Pell representation.

As an example, consider the canonical Pell representation of (25)10, which is
(2001)P . When the automaton is given the input string 2001, it halts at a state
with label 3, signifying that x5[25] = 3.

Critical Exponent of Infinite Balanced Words 87

Fig. 2. Pell-base automaton for x5.

3 Writing the Proof

The authors in [12] proposed a hypothesis about the critical exponent of x5, but
were not able to prove it. We prove their hypothesis using the automata created
in Sect. 2. The hypothesis is that the critical exponent of the infinite balanced
word x5 is E(x5) = 3/2. The predicates used to prove this hypothesis do not
contain any free variables. In Walnut, such predicates evaluate to either the true
or the false automaton. Please see [8] for further details.

3.1 Proving the Hypothesis

We complete the proof in three steps. First, we test whether there exist integers
i, n, p such that a length-n factor of x5 starting at index i and having period p
has exponent at most 3/2. This predicate produces the true automaton.

1 eval fac_low_exponent "?msd_pell Ei,p,n
2 (p >= 1) & (2*n <= 3*p) & (Aj (j + p < n) =>
3 X[i + j] = X[i + j + p])";

Next, we test whether there exist integers i, n, p such that a length-n factor
of x5 starting at index i and having period p has exponent exactly equal to 3/2.
This predicate also produces the true automaton.

1 eval fac_ex_exponent "?msd_pell Ei,p,n
2 (p >= 1) & (2*n = 3*p) & (Aj (j + p < n) =>
3 X[i + j] = X[i + j + p])";

Finally, we test whether there exist integers i, n, p such that a length-n factor
of x5 starting at index i and having period p has exponent greater than 3/2.
This predicate fac high exponent produces the false automaton.

88 A. R. Baranwal and J. Shallit

1 eval fac_high_exponent "?msd_pell Ei,p,n
2 (p >= 1) & (2*n > 3*p) & (Aj (j + p < n) =>
3 X[i + j] = X[i + j + p])";

Combining the results above, we conclude that there exists a factor of x5

with exponent = 3/2 and there does not exist a factor of x5 with exponent
>3/2. Hence, the critical exponent of x5 is 3/2.

3.2 Exploring Interesting Properties

Although the proof is complete, our method can be used to explore various
interesting properties of the word x5. For example, in order to find the factors
of x5 that have exponent exactly =3/2, we use the following command.

1 eval fac_cex5 "?msd_pell En
2 (p >= 1) & (2*n = 3*p) & (Aj (j + p < n) =>
3 X[i + j] = X[i + j + p])";

Note that this predicate has two free variables i and p. The corresponding
automaton is given in Fig. 3, which accepts pairs of integers (i, p), such that
there exists a factor w of x5 with period p, starting at index i. The automaton
suggests that all factors w of x5 that have exponent 3/2, have period p = 4 and
length |w| = 6.

Fig. 3. Pairs (i, p) such that factors of x5 with starting index i and period p have
exponent = 3/2.

Another interesting property to explore could be the possible periods p, for
which a factor of x5 is “almost” a 3/2-power. There are many ways to define this
property. To formalize this, let w = zz′ be a factor of x5 with length n, where
z′ is a prefix of z. The period of w is p = |z|. For p > 10, we define a factor to
be an “almost” 3/2-power if n ≥ 3p/2 − 2.

1 eval almost_ce_period "?msd_pell Ei
2 (p > 10) &
3 (2*n + 4 >= 3*p) &
4 (Aj (j + p < n) => X[i + j] = X[i + j + p])";

Critical Exponent of Infinite Balanced Words 89

Note that this predicate has free variables n and p, which indicate the length
and period of w respectively. The automaton produced for this predicate is shown
in Fig. 4. We observe that for p > 10, all pairs (n, p) have the form:

(
1
1

)(
1
0

)(
1
1

){(
2
0

)(
0
0

)}∗{(
0
0

)

,

(
1
0

)(
1
0

)}

.

Fig. 4. Pairs (n, p) characterizing factors of x5 that are “almost” 3/2-powers.

This shows that there exist infinitely many factors of x5 with this prop-
erty. We also note that, as p approaches infinity, the exponent of these factors
approaches 3/2, which is the critical exponent of x5.

4 Breadth-First Search

We have proved the existence of a balanced word over Σ5 = {0, 1, 2, 3, 4} of
critical exponent 3/2. It now remains to show that this exponent 3/2 is optimal
for the alphabet Σ5. To do this, we use a computer program that employs the
usual breadth-first search technique. We use the following simple observations to
narrow the search space: first, we assume the first letter is 0. Second, we impose
the restriction that the first occurrence of the letter i occurs before the first
occurrence of j if i < j. With these restrictions, the longest balanced word of
critical exponent <3/2 is of length 44, and there are exactly 5 of them:

01203104120130410213014021031401203104120130
01203240210320421023042012302401203240210320
01230240120324021032042102304201230240120324
01231421023124102132412013214201231421023124
01231430132143103213410312341301231430132143

5 Future Prospects

5.1 Other Words Characterized by Pell-Base

The authors in [12] determine the value of the critical exponent of the infinite
balanced word x3, E(x3) = 2 +

√
2/2 using a manual case-based proof. Given

90 A. R. Baranwal and J. Shallit

that the value of α =
√

2 − 1 for x3 is the same as that for x5, we can easily
determine the value of E(x3) using our method. The constant gap words used
for constructing x3 from cα are y = (01)ω and y′ = 2ω (see Table 1). Using the
same procedure as described in Sect. 2.3, we build an automaton with output
that produces the sequence x3 (see Fig. 5). The claimed value in this case is
irrational, unlike E(x5) = 3/2, which means that it is never actually attained
by any factor of x3.

Fig. 5. Pell-base automaton for x3.

In the subsequent Walnut commands, let X denote the automaton in Fig. 5.
First, we compute the periods p such that a repetition with exponent ≥13/5 and
period p occurs in x3.

1 eval periods_of_high_powers "?msd_pell Ei
2 (p >= 1) & (Aj (5*j <= 8*p) => X[i + j] = X[i + j + p])";

The language accepted by the produced automaton is 0∗110000∗, which is the
Pell-base representation of numbers of the form Pn + Pn−1, for n ≥ 5. The
following command lets us save this as a regular expression.

1 reg pows msd_pell "0*110000*";

Next, we compute pairs of integers (n, p) such that x3 has a factor of length
n + p with period p, and this factor cannot be extended to a longer factor of
length n + p + 1 with the same period.

1 def maximal_reps "?msd_pell Ei
2 (Aj (j < n) => X[i + j] = X[i + j + p]) &
3 (X[i + n] != X[i + n + p])";

Finally, we compute integer pairs (n, p) where p is of the form 0∗110000∗, and
n + p is the maximum possible length of any factor with period p.

1 eval highest_powers "?msd_pell
2 (p >= 1) & $pows(p) & $maximal_reps(n, p) &
3 (Am $maximal_reps(m, p) => m <= n)";

Critical Exponent of Infinite Balanced Words 91

The predicate highest powers produces an automaton accepting integer pairs
(n, p) that have the form

(
0
0

)∗(2
1

)(
0
1

)(
2
0

)(
0
0

){(
2
0

)(
0
0

)}∗{(
0
0

)

,

(
1
0

)(
1
0

)}

.

As clear from the pattern of pairs (n, p), for m ≥ 5, when p = Pm + Pm−1, then
we have n = Pm+1 − 2. Thus, we have the exponent as the ratio of length n + p
and period p,

e =
Pm+1 + Pm + Pm−1 − 2

Pm + Pm−1
= 2 +

Pm − 2
Pm + Pm−1

. (1)

Let ak/bk = [d0, d1, d2, . . . , dk] be the convergents of α =
√

2−1. Then for k ≥ 0,
we have ak = Pk and bk = Pk+1. Hence, the following bound holds:

∣
∣
∣
∣α − Pk

Pk+1

∣
∣
∣
∣ <

1
Pk+1Pk+2

<
1

P 2
k+1

. (2)

Substituting k = m − 1 in (2), we bound the value of Pm/Pm−1. We also know
that Pm/Pm−1 converges to the silver ratio, σ =

√
2 + 1. Thus, we have,

e = 2 +
Pm − 2

Pm + Pm−1
< 2 +

√
2 + 1 + 1/P 2

m−1 − 2/Pm−1√
2 + 2 − 1/P 2

m−1

.

For m ≥ 5, as m → ∞, the value of e is increasing, and tends to 2+
√

2/2. Thus,
e < 2 +

√
2/2, which proves the hypothesis.

In theory, one might also hope to determine the values of E(x8) and E(x9)
using our method, since the corresponding continued fraction expansions of α
end in a repeating 2. The actual result depends on the practical limitations of
run-time and the memory available for the corresponding machine computation.

5.2 Open Problems

The obvious open problem to pursue is the implementation of an automaton that
recognizes the addition relation for words in the general Ostrowski α-numeration
system (see [6]). Assuming that the machine computation is feasible, we might
be able to obtain analogous proofs for balanced words over larger alphabets.

Acknowledgments. We thank Narad Rampersad and Luke Schaeffer for their helpful
comments. We are also grateful to the referees who read the paper and offered many
useful suggestions.

92 A. R. Baranwal and J. Shallit

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences. Cambridge University Press, Cam-
bridge (2003)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Berstel, J., Séébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Com-
binatorics on Words, Encyclopedia of Mathematics and Its Applications, vol. 30,
Chap. 2, pp. 45–110. Cambridge University Press, Cambridge (2002)

4. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
5. Du, C.F., Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci

automatic words, III: enumeration and abelian properties. Int. J. Found. Comput.
Sci. 27(8), 943–963 (2016)

6. Hieronymi, P., Terry, A.: Ostrowski numeration systems, addition, and finite
automata. Notre Dame J. Formal Logic 59(2), 215–232 (2018)

7. Hubert, P.: Suites équilibrées. Theoret. Comput. Sci. 242(1–2), 91–108 (2000)
8. Mousavi, H.: Automatic theorem proving in Walnut. Preprint: https://arxiv.org/

abs/1603.06017 (2016)
9. Mousavi, H., Schaeffer, L., Shallit, J.: Decision algorithms for Fibonacci-automatic

words, I: basic results. RAIRO Inform. Théor. App. 50(1), 39–66 (2016)
10. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–

544 (1958)
11. Ostrowski, A.: Bemerkungen zur Theorie der diophantischen Approximationen.

Abh. Math. Semin. Univ. Hamburg 1(1), 77–98 (1922)
12. Rampersad, N., Shallit, J., Vandomme, E.: Critical exponents of infinite balanced

words. Theoret. Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.2018.10.017
13. Sloane, N.J.A., et al.: The on-line encyclopedia of integer sequences (2018). https://

oeis.org
14. Vuillon, L.: Balanced words. Bull. Belgian Math. Soc. 10(5), 787–805 (2003)

https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017
https://doi.org/10.1016/j.tcs.2018.10.017
https://oeis.org
https://oeis.org

Repetitions in Infinite Palindrome-Rich
Words

Aseem R. Baranwal(B) and Jeffrey Shallit

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
{aseem.baranwal,shallit}@uwaterloo.ca

Abstract. Rich words are those containing the maximum possible num-
ber of distinct palindromes. Several characteristic properties of rich words
have been studied; yet the analysis of repetitions in rich words still
involves some interesting open problems. We consider lower bounds on
the repetition threshold of infinite rich words over 2- and 3-letter alpha-
bets, and construct a candidate infinite rich word over the alphabet
Σ2 = {0, 1} with a small critical exponent of 2 +

√
2/2. This represents

the first progress on an open problem of Vesti from 2017.

Keywords: Critical exponent · Repetitions · Rich words · Palindrome

1 Introduction

Palindromes—words equal to their reversal—are among the most widely stud-
ied repetitions in words. The class of palindrome-rich words, or simply rich
words—those words containing, as factors, the maximum possible number of
palindromes—was introduced in [4,9,11]. Since then, rich words have received
much attention in the combinatorics on words literature; see, for example,
[5,13,24].

1.1 Preliminaries

In this section we provide the preliminary definitions and results that we use
throughout the paper, along with the motivation behind our work.

Definition 1. A finite word w is rich if it contains |w| distinct nonempty palin-
dromes. An infinite word w is rich if all its factors are rich.

We say that a word u = ze has exponent e and period p = |z|, where e = |u|/p
is a positive rational number that denotes the number of times z is repeated.
We say u is primitive if its only integer exponent is 1. The word w is an overlap
if w = uuu′ where u′ is a nonempty prefix of u.

Example 1. The word u = 00010001 is rich, because it has 8 distinct nonempty
palindromes as factors, while the word v = 00101100 is not rich. The word u has
period 4 and exponent 2, since u = ze, where z = 0001 and e = 2.
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 93–105, 2019.
https://doi.org/10.1007/978-3-030-28796-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_7&domain=pdf
http://orcid.org/0000-0001-5318-6054
http://orcid.org/0000-0003-1197-3820
https://doi.org/10.1007/978-3-030-28796-2_7

94 A. R. Baranwal and J. Shallit

Definition 2 [17]. For a given alphabet Σ, a mapping ϕ on Σ∗ is an involutive
antimorphism if ϕ(uv) = ϕ(v)ϕ(u), and ϕ2(u) = u for all u, v ∈ Σ∗.

Definition 3. The critical exponent of an infinite word w is defined to be the
supremum of the set of all rational numbers e such that there exists a finite
nonempty factor of w with exponent e.

Definition 4. The repetition threshold on an alphabet of size k is the infimum
of the set of exponents e such that there exists an infinite word that avoids greater
than e-powers.

The repetition threshold can also be characterized as the smallest possible
critical exponent of a word over an alphabet of size k. Dejean gave a famous
conjecture about this threshold in [10], which was proven by Currie and Ram-
persad [8], and independently by Rao [20]. The repetition threshold can also
be studied for a limited class of infinite words. For example, Rampersad et al.
studied this threshold for infinite balanced words in [19]. In this paper, we study
the repetition threshold RT (k) for infinite rich words over an alphabet of size k.

1.2 Previous Work

Let the word w be the fixed point of a given involutive antimorphism Θ. We say
w is a Θ-palindrome if w = Θ(w). The set of Θ-palindromic factors of a word w
is denoted by PalΘ(w). In 2013, Pelantová and Starosta introduced the idea of
Θ-palindromic defect.

Definition 5. The Θ-palindromic defect of a finite word w, denoted by DΘ(w),
is defined as

DΘ(w) = |w| + 1 − γΘ(w) − |PalΘ(w)|,
where γΘ(w) = |{{a,Θ(a)} : a ∈ Σ, a occurs in w and a �= Θ(a)

}|. For an
infinite word w, the Θ-palindromic defect is the supremum of the set of DΘ(u),
where u is a factor of w.

Further, they proved that all recurrent words with a finite Θ-palindromic
defect contain infinitely many overlapping factors [17]. This result leads to the
following theorem.

Theorem 1. All infinite rich words contain a square.

Theorem 1 provides a lower bound on the repetition threshold for infinite
rich words over a k-letter alphabet; namely RT (k) ≥ 2. In [25], Vesti gives both
upper and lower bounds on the length of the longest square-free rich words, and
proposes the open problem of determining the repetition threshold for infinite
rich words.

Repetitions in Infinite Rich Words 95

2 Results over the Binary Alphabet

We construct an infinite binary rich word and determine the value of its critical
exponent. We further conjecture that this value is the repetition threshold for
the binary alphabet, based on supporting evidence from computation. We define
the word r as the image of a fixed point, r = τ(ϕω(0)) = 001001100100110 · · · ,
where the morphisms ϕ and τ are defined as follows:

ϕ: 0 → 01 τ : 0 → 0
1 → 02 1 → 01
2 → 022, 2 → 011.

2.1 Automatic Theorem-Proving

We utilize the automatic theorem-proving software Walnut, written by Hamoon
Mousavi, to constructively decide first-order predicates concerning the word r
[15]. To enable Walnut to work with the word r, we require an automaton with
output that produces r.

The Pell numbers are defined by the recurrence P0 = 0, P1 = 1, and
Pn = 2Pn−1 + Pn−2. This sequence of numbers is used to define a non-standard
positional numeral system in the family of Ostrowski numeration systems [16]
with α =

√
2 − 1. Given an integer N , we can express it as an integer linear

combination of Pell numbers as follows: N =
∑

0≤i<n diPi+1. To ensure that
this representation is unique, we impose the following conditions on the di:

1. The least significant digit d0 ∈ {0, 1}.
2. For all i > 0 we have di ∈ {0, 1, 2}.
3. If di = 2, then di−1 = 0.

In this case, the word dn−1dn−2 · · · d0 is said to be the canonical Pell repre-
sentation of the integer N , and we write it as (N)P . Computing the lengths
Li = |τ(ϕi(0))| for i ≥ 0, we note that L0 = 1, L1 = 3, and Li = 2Li−1 + Li−2

for i ≥ 2. This suggests that the word r might be Pell-automatic (meaning that
there exists an automaton that takes as input an integer N represented in the
Pell number system, and outputs the symbol in r at index N), and indeed, we
prove that this is the case. The Pell number system is a non-standard positional
number system in the family of Ostrowski numeration systems [16]. In [2], the
authors construct a Pell adder automaton to enable writing first-order predi-
cates in this number system. We use this adder to decide predicates about the
constructed word. The Walnut version equipped with the adder is available on
GitHub.1

2.2 Constructing the Automaton

We construct an automaton with output for the word r using the same methods
as used by the authors in [2] to construct the Pell adder automaton. The method
1 Repository: https://github.com/aseemrb/Walnut/.

https://github.com/aseemrb/Walnut/
https://github.com/aseemrb/Walnut/

96 A. R. Baranwal and J. Shallit

utilizes a combination of membership and equivalence queries as described in the
L∗ algorithm given by Angluin [1]. Figure 2 represents the constructed automa-
ton. Note that this automaton consists of 4 states, and we have not restricted
the Pell representations of the input to be canonical, meaning that the input
may end with a 2, and a non-zero digit may follow a 2. However, in practice, an
input will always be in the canonical Pell representation. The node labels in the
figure represent the state and the corresponding output symbol.

In [2], the authors use induction to mechanically prove the correctness of the
adder automaton that they construct. Here, we prove that the automaton in
Fig. 2 produces the same word as given by τ(ϕω(0)). To do this, first, we restrict
this automaton to only consider canonical Pell representations. Thus, the least
significant digit is <2, and a 2 is always followed by a 0. This gives the automaton
in Fig. 1. Let f and g be the morphisms associated with this automaton, and
let s = g(fω(0)) denote the infinite word produced. The morphisms f and g are
given by

f : 0 → 012 g: 0 → 0
1 → 304 1 → 0
2 → 0 2 → ε
3 → 354 3 → 1
4 → 3 4 → ε
5 → 032, 5 → 1.

Fig. 1. Automaton for the infinite word s. Here ε denotes the empty word.

2.3 Proof of Equivalence of the Morphisms

In this section, we prove that the automaton in Fig. 1 produces the same infinite
word as that produced by morphisms ϕ and τ , that is, r = s. We need two
lemmas to prove this equivalence.

Lemma 1. For all n ≥ 2, we have g(fn(0)) = g(fn−1(0))g(fn−2(3))g(fn−1(0)).

Repetitions in Infinite Rich Words 97

Proof. We prove this by induction on n. For n = 2, we have that

g(f2(0)) = g(f1(0))g(3)g(f1(0)) = 00100.

So the base case holds. Next, we construct the induction hypothesis,

H1 : g(fk(0)) = g(fk−1(0))g(fk−2(3))g(fk−1(0)),∀k ≤ n.

For the inductive step, consider g(fn+1(0)). Using the definition of the mor-
phisms f and g, we have that,

g(fn+1(0)) = g(fn(0))g(fn(1))g(fn(2))

= g(fn(0))g(fn−1(3))g(fn−1(0))g(fn−1(4))g(fn(2))

= g(fn(0))g(fn−1(3))g(fn−1(0))g(fn−2(3))g(fn−1(0)). (1)

Using the induction hypothesis H1 in Eq. (1), we get

g(fn+1(0)) = g(fn(0))g(fn−1(3))g(fn(0)).

This completes the proof.

Fig. 2. Guessed automaton for the infinite word r.

Lemma 2. For all n ≥ 2, we have g(fn(3)) = g(fn−1(3))g(fn−2(0))g(fn−1(3)).

Proof. The proof is similar to that of Lemma 1, by induction on n. For n = 2,
we have

g(f2(3)) = g(f1(3))g(0)g(f1(3)) = 11011.

So the base case holds. We have the induction hypothesis,

H2 : g(fk(3)) = g(fk−1(3))g(fk−2(0))g(fk−1(3)),∀k ≤ n.

For the inductive step, consider g(fn+1(3)). Using the definition of the mor-
phisms f and g, we have that

g(fn+1(3)) = g(fn(3))g(fn(5))g(fn(4))

= g(fn(3))g(fn−1(0))g(fn−1(3))g(fn−1(2))g(fn(4))

= g(fn(3))g(fn−1(0))g(fn−1(3))g(fn−2(0))g(fn−1(3)). (2)

98 A. R. Baranwal and J. Shallit

Using the induction hypothesis H2 in Eq. (2), we get

g(fn+1(3)) = g(fn(3))g(fn−1(0))g(fn(3)).

This completes the proof.

Now we prove the following equivalence theorem about the words produced
by the automaton in Fig. 1 and the word given by morphisms ϕ and τ .

Theorem 2. The infinite words τ(ϕω(0)) and g(fω(0)) are equal.

Proof. We prove this by a simultaneous induction on n with 3 hypotheses.

τ(ϕk(0)) = g(fk(0))g(fk−1(3)) (3)

τ(ϕk(1)) = g(fk(0))g(fk(3)) (4)

τ(ϕk(2)) = g(fk(0))g(fk+1(3)) (5)

The base case k = 1 can be checked by hand. Assume that the hypotheses hold
for k ≤ n. Next, we consider the following inductive steps using the definitions
of ϕ and τ .

τ(ϕn+1(0)) = τ(ϕn(0))τ(ϕn(1))

= g(fn(0))g(fn−1(3))g(fn(0))g(fn(3)) using (3,4)

= g(fn+1(0))g(fn(3)). using Lemma 1.

τ(ϕn+1(1)) = τ(ϕn(0))τ(ϕn(2))

= g(fn(0))g(fn−1(3))g(fn(0))g(fn+1(3)) using (3,5)

= g(fn+1(0))g(fn+1(3)) using Lemma 1.

τ(ϕn+1(2)) = τ(ϕn(0))τ(ϕn(2))τ(ϕn(2))

= g(fn(0))g(fn−1(3))g(fn(0))g(fn+1(3))g(fn(0))g(fn+1(3))

= g(fn+1(0))g(fn+2(3)) using Lemmas 1, 2.

This proves that the hypotheses are true. From Eq. (3), we have τ(ϕk(0)) =
g(fk(0))g(fk−1(3)). Letting k → ∞, we get τ(ϕω(0)) = g(fω(0)). This completes
the proof.

2.4 Proof of Palindromic Richness

We claim that the infinite word r = s = g(fω(0)) = 001001100100110 · · · is rich.
The proof is carried out using Walnut by constructing a set of predicates based
on Theorem 3, as done in [23]. We say that a word w has a unioccurrent suffix s
if s is not a factor of any proper prefix of w. We recall that A and E are Walnut’s
way of expressing the universal and existential quantifiers, respectively. All of
the computations we describe can be carried out in a matter of a few seconds
on a Linux machine.

Repetitions in Infinite Rich Words 99

Theorem 3 (Glen et al. [11]). A word w is rich if and only if every prefix of w
has a unioccurrent palindromic suffix.

In the following predicates, R denotes the automaton in Fig. 1. First, we intro-
duce the fundamental predicates that form the building blocks for verification
of the richness property.

1. The predicate FactorEq takes 3 parameters i, j, n and evaluates to true if the
length-n factors of r starting at indices i and j are equal.

2. The predicate Occurs takes 4 parameters i, j,m, n and evaluates to true if the
length-m factor of r starting at index i occurs in the length-n factor starting
at index j, i.e., R[i..i + m − 1] is a factor of R[j..j + n − 1].

3. The predicate Palindrome takes 2 parameters i, n and evaluates to true if
the length-n factor of r starting at index i is a palindrome.

1 def FactorEq "?msd_pell Ak (k < n) => (R[i + k] = R[j + k])";
2 def Occurs "?msd_pell (m <= n) &
3 (Ek (k + m <= n) & $FactorEq(i, j + k, m))";
4 def Palindrome "?msd_pell Aj,k ((k < n) & (j + k + 1 = n)) =>
5 (R[i + k] = R[i + j])";

By Theorem 3, for any finite word to be rich, it is sufficient to check if
all its prefixes have a unioccurrent palindromic suffix. We use this property
to construct the predicate RichFactor which takes two parameters i, n, and
evaluates to true if the length-n factor of r starting at index i is rich. Figure 3
shows the representation of variables in the predicate.

1 def RichFactor "?msd_pell
2 Am ((m >= 1) & (m <= n)) =>
3 (Ej (i <= j) & (j < i + m) &
4 $Palindrome(j, i + m - j) &
5 ~$Occurs(j, i, i + m - j, m - 1))";

Fig. 3. Representation of variables i, j, m, n in the predicate RichFactor. It evaluates
to true if the word R[i..i + n − 1] is rich.

Now, we simply check that all prefixes of r are rich to show that the infi-
nite word r is rich. The following predicate, R Is Rich evaluates to true, which
completes the proof.

100 A. R. Baranwal and J. Shallit

1 eval R_Is_Rich "?msd_pell An $RichFactor(0, n)";

2.5 Determining the Critical Exponent

First we observe that the critical exponent of r is < 3. This can be checked in
Walnut as follows:

1 eval CheckCritExp "?msd_pell ~(E i, p (p >= 1) &
2 Aj (j < 2*p) => R[i + j] = R[i + j + p])";

Next, we compute the periods p such that a repetition with exponent ≥5/2
and period p occurs in r.

1 eval HighPowPeriods "?msd_pell (p >= 1) &
2 (Ei Aj (2*j <= 3*p) => R[i + j] = R[i + j + p])";

The language accepted by the produced automaton is 0∗1100∗, which is the
Pell-base representation of numbers of the form Pt + Pt−1, for t ≥ 3. Next, we
compute pairs of integers (n, p) such that r has a factor of length n + p with
period p, and this factor cannot be extended to a longer factor beginning at the
same position, of length n + p + 1 with the same period.

1 def MaximalReps "?msd_pell Ei
2 (Aj (j < n) => R[i + j] = R[i + j + p]) &
3 (R[i + n] != R[i + n + p])";

Finally, we compute the pairs (n, p) where p matches the regular expression
0∗1100∗ in the Pell base representation, and n + p is the maximum possible
length of any factor with period p. (Such an n exists for each p because we
showed the critical exponent is < 3.)

1 eval HighestPowers "?msd_pell
2 $HighPowPeriods(p) &
3 $MaximalReps(n, p) &
4 (Am $MaximalReps(m, p) => m <= n)";

Fig. 4. Pairs (n, p) satisfying the predicate HighestPowers.

Repetitions in Infinite Rich Words 101

Figure 4 shows the automaton produced by the predicate HighestPowers. It
accepts pairs (n, p) of the following forms:

(
0
0

)∗(2
1

)(
0
1

)(
1
0

)
, (6)

(
0
0

)∗(2
1

)(
0
1

)(
2
0

)(
0
0

){(
2
0

)(
0
0

)}∗
, or (7)

(
0
0

)∗(2
1

)(
0
1

)(
2
0

)(
0
0

){(
2
0

)(
0
0

)}∗(1
0

)
. (8)

Here, the length of the words is l = n + p and the period is p. Equation (6)
corresponds to n = (201)P = 11 and p = (110)P = 7. Thus we have

e =
l

p
=

n + p

p
=

18
7

≈ 2.57.

Equation (7) corresponds to

n =
∑

1≤i≤k

2P2k = P2k+1 − 1, p = P2k + P2k−1.

Equation (8) corresponds to

n = 1 +
∑

1≤i≤k

2P2k+1 = P2k+2 − 1, p = P2k+1 + P2k.

Putting m = 2k−1 for (7), and m = 2k for (8), we notice that the expressions
for n and p coincide.

e =
Pm+2 + Pm+1 + Pm − 1

Pm+1 + Pm

= 2 +
Pm+1 − 1

Pm+1 + Pm
.

Since Pell numbers are the convergents of
√

2 − 1, and the ratio Pm+1/Pm con-
verges to

√
2 + 1, we have that

e = 2 +
Pm+1 − 1

Pm+1 + Pm
(9)

< 2 +
√

2 + 1 + 1/P 2
m − 1/Pm√

2 + 2 − 1/P 2
m

. (10)

For m ≥ 4, as m → ∞, the value in Eq. (10) is increasing, and tends to
2 +

√
2/2. Thus, the critical exponent of the word r is 2 +

√
2/2. The Walnut

commands for verifying richness and computing the critical exponent are avail-
able on GitHub.2

2 URL: https://github.com/aseemrb/Walnut/blob/master/CommandFiles/rich2.txt.

https://github.com/aseemrb/Walnut/blob/master/Command Files/rich2.txt
https://github.com/aseemrb/Walnut/blob/master/Command Files/rich2.txt

102 A. R. Baranwal and J. Shallit

2.6 Optimality of the Critical Exponent

A backtracking computation shows that the longest rich binary word with critical
exponent <2.700 is of length 1339. Combining this with the result above, we
obtain the following bounds.

2.700 ≤ RT (2) ≤ 2 +
√

2
2

= 2.7071 . . .

3 Faster Backtracking

In this section, we discuss some methods to optimize our backtracking algorithm.
The most obvious optimization is to consider the following.

1. Without loss of generality, we assume that the word starts with a 0.
2. We impose the restriction that the first occurrence of the symbol a occurs

before the first occurrence of symbol b if a < b.

3.1 Lyndon Method

Since our goal is to check if there is an infinite rich word with critical exponent
less than a preset threshold, we can utilize the Lyndon method to prune certain
branches of the backtracking search tree. A Lyndon word is a primitive nonempty
word that is strictly smaller in lexicographic order than all of its rotations. If a
word satisfies the properties of richness and the critical exponent being less than
some threshold, then all factors of the word also satisfy these properties. This
fact helps us by pruning those paths in the search tree that lead to a suffix that
is lexicographically smaller than the word itself.

3.2 Counting Palindromes

To check for richness, Groult et al. give a linear time algorithm to count the
number of distinct palindromes in a word [12]. Their algorithm is based on
two major ideas: a linear-time algorithm by Gusfield to compute all maximal
palindromes in a word [14], and a linear-time algorithm by Crochermore and Ilie
to compute the LPF (longest previous factor) array [7]. However, their approach
is not helpful to our problem since it requires linear pre-processing time.

What we require is a fast online algorithm such that given the number of
distinct palindromes for a word w over an alphabet Σ, we can find the number
of distinct palindromes in the word wa for all a ∈ Σ in constant amortized time.
Such an algorithm is given by Rubinchik and Shur [22]. Their primary idea is to
construct a graph where each node represents a unique palindrome. There are
two types of edges in this graph:

1. Border edge: This is a directed edge from p to q labeled a, if q = apa for
some a ∈ Σ.

Repetitions in Infinite Rich Words 103

2. Suffix edge: This is an unlabeled directed edge from p to q, if q is the longest
proper palindromic suffix of p.

Whenever we append a new symbol to an already processed word, it takes amor-
tized constant time to maintain this graph. The C++ implementation of the algo-
rithm can be found on GitHub.3

Fig. 5. The graph of palindromes for the word w = aababba. Here ε is the empty word
and γ is the imaginary palindrome word of length −1 [22].

Example 2. Figure 5 shows the graph construction for the rich word aababba. The
number of nonempty palindromes is equal to 7. Note that we have an imaginary
word γ that has length −1 and is a palindrome. The suffix edges are shown by
dashed lines, while the border edges are shown with solid lines having labels. We
say that a palindrome consisting of a single symbol borders γ, which makes the
implementation of the algorithm easy.

3.3 Computing Maximal Runs

In [6], Chen et al. present a survey of fast space-efficient algorithms for com-
puting all maximal runs in a string. They also propose some new and faster
algorithms for this task. In future work, we aim to understand and implement
these algorithms in our backtracking search. Faster computation of maximal
runs will help us to efficiently reject those paths in the backtracking search that
violate the critical exponent threshold. Thus, we may be able to compute tighter
lower bounds on the repetition threshold more efficiently.
3 URL: https://github.com/aseemrb/research-scripts/blob/master/palindromes/palin.

cpp.

https://github.com/aseemrb/research-scripts/blob/master/palindromes/palin.cpp
https://github.com/aseemrb/research-scripts/blob/master/palindromes/palin.cpp
https://github.com/aseemrb/research-scripts/blob/master/palindromes/palin.cpp

104 A. R. Baranwal and J. Shallit

4 Future Prospects

For an alphabet of size k = 3, backtracking search shows that RT (3) ≥ 9/4. The
longest word that has a critical exponent <9/4 is of length 114. For k = 4 and
the exponent threshold 11/5, our search program has reached words of length
3800 and has not terminated.

An obvious direction for further research is to develop novel ideas and meth-
ods that may help us prove lower bounds on the repetition threshold of infinite
rich words. Another possible direction is to construct infinite rich words over
larger alphabets that may serve as candidates for the repetition threshold.

Acknowledgments. We are grateful to the referees for their suggestions.
After our paper was submitted, we learned from Edita Pelantová that our word r

is a complementary symmetric Rote word [21], and hence by [3,18] it follows that r is
rich.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Baranwal, A.R., Shallit, J.: Critical exponent of infinite balanced words via the
Pell number system. Preprint: https://arxiv.org/abs/1902.00503 (2019)

3. Blondin Massé, A., Brlek, S., Labbé, S., Vuillon, L.: Palindromic complexity of
codings of rotations. Theoret. Comput. Sci. 412, 6455–6463 (2011)

4. Brlek, S., Hamel, S., Nivat, M., Reutenauer, C.: On the palindromic complexity of
infinite words. Int. J. Found. Comput. Sci. 15, 293–306 (2004)

5. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A new characteristic property
of rich words. Theoret. Comput. Sci. 410, 2860–2863 (2009)

6. Chen, G., Puglisi, S.J., Smyth, W.F.: Fast & practical algorithms for computing all
the runs in a string. In: Ma, B., Zhang, K. (eds.) CPM 2007, LNCS, vol. 4580, pp.
307–315. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73437-
6 31

7. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Inform. Process. Lett. 106(2), 75–80 (2008)

8. Currie, J., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comput. 80(274),
1063–1070 (2011)

9. de Luca, A., Glen, A., Zamboni, L.Q.: Rich, Sturmian, and trapezoidal words.
Theoret. Comput. Sci. 407, 569–573 (2008)

10. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory. Ser. A 13(1), 90–99
(1972)

11. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J.
Comb. 30, 510–531 (2009)

12. Groult, R., Prieur, E., Richomme, G.: Counting distinct palindromes in a word in
linear time. Inform. Process. Lett. 110, 908–912 (2010)

13. Guo, C., Shallit, J., Shur, A.M.: Palindromic rich words and run-length encodings.
Inform. Process. Lett. 116, 735–738 (2016)

14. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

https://arxiv.org/abs/1902.00503
https://doi.org/10.1007/978-3-540-73437-6_31
https://doi.org/10.1007/978-3-540-73437-6_31

Repetitions in Infinite Rich Words 105

15. Mousavi, H.: Automatic theorem proving in Walnut. Preprint: https://arxiv.org/
abs/1603.06017 (2016)

16. Ostrowski, A.: Bemerkungen zur Theorie der diophantischen Approximationen.
Abh. Math. Semin. Univ. Hamburg 1(1), 77–98 (1922)

17. Pelantová, E., Starosta, Š.: Languages invariant under more symmetries: overlap-
ping factors versus palindromic richness. Discrete Math. 313, 2432–2445 (2013)

18. Pelantová, E., Starosta, Š.: Constructions of words rich in palindromes and pseu-
dopalindromes. Discrete Math. Theoret. Comput. Sci. 18, Paper #16 (2016).
https://dmtcs.episciences.org/2202

19. Rampersad, N., Shallit, J., Vandomme, E.: Critical exponents of infinite balanced
words. Theoret. Comput, Sci. 777, 454–463 (2018)

20. Rao, M.: Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412(27), 3010–
3018 (2011)

21. Rote, G.: Sequences with subword complexity 2n. J. Number Theory 46, 196–213
(1994)

22. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29516-9 27

23. Schaeffer, L., Shallit, J.: Closed, palindromic, rich, privileged, trapezoidal, and bal-
anced words in automatic sequences. Electronic J. Combinatorics 23, 1–25 (2016)

24. Vesti, J.: Extensions of rich words. Theoret. Comput. Sci. 548, 14–24 (2014)
25. Vesti, J.: Rich square-free words. Theoret. Comput. Sci. 687, 48–61 (2017)

https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017
https://dmtcs.episciences.org/2202
https://doi.org/10.1007/978-3-319-29516-9_27
https://doi.org/10.1007/978-3-319-29516-9_27

Generalized Lyndon Factorizations
of Infinite Words

Amanda Burcroff(B) and Eric Winsor

University of Michigan, Ann Arbor, MI 48109, USA
{burcroff,rcwnsr}@umich.edu

Abstract. A generalized lexicographic order on words is a lexicographic
order where the total order of the alphabet depends on the position of
the comparison. A generalized Lyndon word is a finite word which is
strictly smallest among its class of rotations with respect to a generalized
lexicographic order. This notion can be extended to infinite words: an
infinite generalized Lyndon word is an infinite word which is strictly
smallest among its class of suffixes. We prove a conjecture of Dolce,
Restivo, and Reutenauer: every infinite word has a unique nonincreasing
factorization into finite and infinite generalized Lyndon words. When
this factorization has finitely many terms, we characterize the last term
of the factorization. Our methods also show that the infinite generalized
Lyndon words are precisely the words with infinitely many generalized
Lyndon prefixes.

Keywords: Generalized lexicographic order ·
Infinite generalized Lyndon word ·
Unique nonincreasing Lyndon factorization

1 Introduction

A rotation of a finite word w is a word of the form vu, where w = uv is a fac-
torization of w. A finite word is called Lyndon if it is strictly smallest among its
class of rotations with respect to the standard lexicographic order. In particular,
every finite word is a conjugate of some power of a Lyndon word. Lyndon words
were introduced in 1953 by Shirshov in [12] and studied by Lyndon in [8]. Lyn-
don words have been given various names throughout their history, including
standard lexicographic sequences, regular words, and prime words. These names
hint at their significant role in the factorization of words.

Let A∗ denote the free monoid on a totally ordered (possibly infinite) alpha-
bet A, where A∗ is ordered lexicographically. The Chen-Fox-Lyndon factorization
theorem for words states that the Lyndon words form a basis for A∗ [2]. Put
more concretely, any finite word on A can be written uniquely as a product of
nonincreasing Lyndon words.

About 40 years later, infinite Lyndon words were introduced in [13]. There
are several equivalent definitions, but we use the definition which focuses on the
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 106–118, 2019.
https://doi.org/10.1007/978-3-030-28796-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_8&domain=pdf
http://orcid.org/0000-0002-0032-4190
http://orcid.org/0000-0003-1922-4648
https://doi.org/10.1007/978-3-030-28796-2_8

Generalized Lyndon Factorizations of Infinite Words 107

idea of rotation. An infinite word is called Lyndon if it is strictly smallest among
its suffixes with respect to the standard lexicographic order. If w is an infinite
word with a nontrivial factorization uv, the suffix v can be viewed as the rotation
with respect to this factorization. Let Aω denote the set of sequences, or infinite
words, over A. These too yielded deep factorization properties; Siromoney et al.
showed that every sequence in Aω has a unique factorization as a nonincreasing
product of finite and infinite Lyndon words.

The extension of the Lyndon property to generalized lexicographic orders
came about 10 years later by Reutenauer [11]. A generalized lexicographic order
is a modified lexicographic order where the total order of the alphabet depends
on the index of comparison. This naturally induces a notion of finite and infinite
generalized Lyndon words under a generalized lexicographic order. (See Sect. 2.)
Reutenauer showed that the finite generalized Lyndon words form a basis for A∗

using Hall set theory, and Dolce et al. provided a combinatorial proof in 2018
[3,11]. Generalized Lyndon words are studied further by Dolce et al. in [4].

An example of a generalized lexicographic order is the alternating order ≤alt,
where the alphabet is given its standard order when the index of comparison is
odd and its opposite order when the index is even. This order can be connected
with continued fractions by noting that the map φ : Nω → R defined by

φ(x1x2 · · ·) = x1 +
1

x2 +
1
. . .

satisfies u ≤alt v in N
ω if and only if φ(u) ≤ φ(v) in R. Generalized Lyndon

words with respect to the alternating order are called Galois words, and Galois
factorizations were given further characterization in [4]. Another special case are
the anti-Lyndon words, introduced in [5], which are generalized Lyndon words
with respect to the opposite lexicographic order.

Dolce et al. conjectured that the finite and infinite generalized Lyndon words
provide a unique nonincreasing (with respect to ω-powers) factorization of all
infinite words. Our main result is to show that this is indeed the case.

In Sect. 3, we focus on words with a generalized Lyndon suffix. Theorem
3 shows that these are precisely the words with finitely many terms in their
nonincreasing generalized Lyndon factorization. Moreover, we characterize the
last term as the first generalized Lyndon suffix (with respect to the index).

Sections 4 and 5 focus on the existence and uniqueness, respectively, of nonin-
creasing generalized Lyndon factorizations for words which have no generalized
Lyndon suffix. In the process we develop powerful machinery to take advantage
of the strong properties of these factorizations. A product of this machinery is
presented briefly in Sect. 6, where we show that an infinite word is generalized
Lyndon if and only if it has infinitely many generalized Lyndon prefixes. This is
the generalized analogue of the result of Siromoney et al. showing that infinite
Lyndon words are precisely the words with infinitely many Lyndon prefixes.

108 A. Burcroff and E. Winsor

2 Preliminaries

Let N = {1, 2, 3, . . . }. Words are finite or infinite (to the right) sequences of
letters from a fixed alphabet A. For i < j, the contiguous substring beginning at
the ith letter and ending with the jth (inclusive on both ends) is denoted x[i, j].
A word v is a factor of x if x = uvw for (possibly empty) words u and w. In the
case that u is empty, v is a prefix of x, and if w is empty, then v is a suffix of
x. If in addition w (resp. u) is nonempty, we say that the prefix (resp. suffix) is
proper. If x is an infinite word, the suffix of x beginning at the jth index of x is
denoted x[j,∞). The length of a finite word w is denoted by |w|.

Let A∞ = A∗ ∪ Aω. Given a total order on an alphabet A, the lexicographic
ordering <lex on A∞ is defined such that x <lex y if and only if x is a proper
prefix of y or x = pas and y = pbs′ for words p, s, s′ and letters a < b. We are
primarily interested in a generalization of this order.

For each n ∈ N, let <n be a total order on A. The generalized lexicographic
order < induced by (<n)n∈N is defined such that x < y if and only if x is a proper
prefix of y or x = pas and y = pbs′ for words p, s, s′ and letters a <|p|+1 b.

If u is a prefix of v or v is a prefix of u, we write u ∼ v. Note that if |u| = |v|,
then u ∼ v implies u = v. We will use the ∼ operator “transitively”, where
the expression w1 ∼ w2 ∼ · · · ∼ wn implies that the shortest of the n words
is a prefix of the rest. We also define a modified comparison operator � such
that w1 � · · · � wn if the prefixes pi of wi having length min{|w1|, . . . , |wn|}
satisfy p1 ≤ · · · ≤ pn, where ≤ is the generalized lexicographic order. The same
property of only comparing the prefixes up to the length of the shortest word in
a chain also applies when the operators ∼ and � are applied together in a chain.

A finite word v is called a power of a finite word u if v = uk for some integer
k ≥ 2. Let the ω-power of u, denoted by uω, be the infinite word

∏∞
i=1 u. An

infinite word v is called a power of a finite word u if v = uω; we also say that
v is periodic. If u is infinite, we use the convention uω = u. An infinite word
with a periodic suffix is called eventually periodic, and an infinite word which
is not eventually periodic is called aperiodic. A word which is not a power is
called primitive. A finite word w is called a fractional power of a finite word u
if w ∼ uω. We write w = u|w|/|u|, e.g., 01 = (0111)1/2. See [6], [7], and [10] for
more on the combinatorics of words.

A word w is a finite generalized Lyndon word if it is strictly smallest among
its class of rotations with respect to a generalized lexicographic order. That is, for
any nontrivial factorization w = uv, we have uv < vu. An infinite word w is an
infinite generalized Lyndon word if it is strictly smallest among its class of suffixes
with respect to a generalized lexicographic order. A nonincreasing generalized
Lyndon factorization of a word w is a product of the form w =

∏n
i=1 �i where

n ∈ N ∪ {∞}, each �i is generalized Lyndon, and �ω
i ≥ �ω

i+1 for all i ∈ [1, n).

3 Existence and Uniqueness of Finite Factorizations

In this section, we show that the words admitting a unique finite generalized
Lyndon factorization are precisely the words with a generalized Lyndon suffix.

Generalized Lyndon Factorizations of Infinite Words 109

Lemma 1 ([3], Lemma 31). Let u, v be nonempty finite words. Then the follow-
ing four conditions are equivalent:

(1) uω < vω (2) (uv)ω < vω (3) uω < (vu)ω (4) (uv)ω < (vu)ω.

We will also make use of a result by Lyndon and Schützenberger concerning
commuting words, which can easily be strengthened when one of the words is
generalized Lyndon.

Lemma 2 [9]. Two finite words commute if and only if they are powers of a
common word.

Corollary 1. Suppose u is a finite generalized Lyndon word, v is any finite
word, and uv = vu. Then v is a power of u.

Proof. This follows from Lemma 2 and the fact that generalized Lyndon words
are primitive.

Lemma 3. Suppose u and v are finite words satisfying uω � v � unv (resp.
uω � v � unv) for some n ∈ N. Then v ∼ uω.

Proof. Suppose there exists a maximum nonnegative integer, m, such that um ∼
v; note that |um| < |v|. Then

um+1 ≤ uω � v � unv ∼ um+n.

Thus v ∼ um+n, a contradiction to our choice of m. The proof proceeds analo-
gously for the case where the inequalities are reversed.

Theorem 1. Suppose w is an infinite word. If w is a nonincreasing product of
finite generalized Lyndon words, then w has no generalized Lyndon suffixes.

Proof. Suppose w has a generalized Lyndon suffix �. Without loss of generality,
we can assume w = �0�1�2 · · · and � = u�1�2 · · · , where each �i is a generalized
Lyndon word, �ω

0 ≥ �ω
1 ≥ · · · , and u is a suffix of �0. Since �0 is generalized

Lyndon, Lemma 1 implies uω ≥ �ω
0 . Furthermore, since � is generalized Lyndon,

we have �r � u for all r ∈ N. Thus, for all r ∈ N we have uω ≥ �ω
0 ≥ �ω

r ∼ �r � u,
hence �r ∼ u.

Suppose that there exists some r ∈ N such that |�r| < |u|. Note that each
such �r is a prefix of u. By the nonincreasing property of the generalized Lyndon
factors, either there exist finitely many such r, or there exists some n ∈ N and
α ∈ (0, 1) such that for all r ≥ n, we have �r = uα. The latter case holds because
there are only finitely many prefixes of u, so one prefix must appear infinitely
many times. By the nonincreasing property of the factorization, this means that
all terms in the factorization after the first term equal to this prefix must also
equal this prefix. Observe that in the latter case, we have

(uα)ω = �ω
n ≤ uω ∼ u � �n�n+1 · · · = (uα)ω,

110 A. Burcroff and E. Winsor

hence u ∼ (uα)ω.
We conclude there exists a minimal k ∈ N such that �k = uα for some

α ∈ (0, 1) and u ∼ �k+1�k+2 · · · . Since uαu ∼ �k�k+1 · · · , then uαu � u�1. Thus,
uαu � u ∼ uω ≥ �ω

k = (uα)ω, so Lemma 3 implies u ∼ (uα)ω. Suppose |�1| ≥ |u|.
Then uuα is a prefix of w, so

(uα)ω ∼ uαu ≥ uuα ∼ uω ≥ (uα)ω,

hence u is a power of uα by Corollary 1. Thus, u is not generalized Lyndon, so
uω > �ω

0 ≥ �ω
k = (uα)ω = uω, a contradiction.

Thus, we must have that |�1| < |u|. By the minimality of k, we have that
|�r| < |u| for 1 ≤ r ≤ k, which implies that �r ∼ u ∼ (uα)ω = �ω

k for 1 ≤ r ≤ k.
As u ∼ �ω

k , we have that u ∼ �ku ∼ �k�k+1. Hence

�ω
k−1 ≤ uω ∼ u � �k−1�k�k+1 · · · ∼ �k−1u.

In particular, by Lemma 3, we have u ∼ �ω
k−1 and u ∼ �k−1�k · · · . We repeat

this process, showing that u ∼ �ω
i and u ∼ �i�i+1 · · · for all 1 ≤ i ≤ k. Hence

�1u ∼ �1�2 · · · � u�1. However, since �ω
1 ≤ uω, Lemma 1 implies �1u ≤ u�1. Thus

u and �1 commute, so Corollary 1 implies u is a power of �1. In particular, �1 is
a proper suffix of �0, so �ω

1 > �ω
0 , contradicting our nonincreasing assumption.

Thus, we must have |�r| ≥ |u| for all r ∈ N. w has a generalized Lyndon
suffix, so it cannot be periodic. We can fix s to be the smallest index such that
�s 	= u. By Lemma 3, the inequality

uω ≥ �ω
s ∼ �s � u�1 · · · �s = us�s,

implies that �s ∼ uω. Hence �s = un+β for some n ∈ N and β ∈ [0, 1). On the
one hand, we have uω ≥ �ω

s = (un+β)ω, hence unuuβ ≥ unuβu. On the other
hand, since unuuβ ∼ us+n+β is a prefix of � and unuβu ∼ �s�s+1 is a factor, we
have unuuβ ≤ unuβu because � is generalized Lyndon. Hence, Lemma 2 implies
(uβ)ω = uω = �ω

s , contradicting that (uβ)ω > �ω
s by the generalized Lyndon

property of �s.

Lemma 4. If u is a finite word and v is an infinite word, then uω > v (resp.
uω < v) if and only if uv > v (resp. uv < v).

Proof. Suppose uω > v. Let j be the largest integer such that uj ∼ v. Hence
v = ujv′ for some infinite word v′ 	∼ u. Thus, the comparison between uv and
v happens between index j|u| + 1 and index (j + 1)|u|, inclusive. In particular,
uv ∼ uj+1 > v.

Now suppose uv > v. Let k be the largest index such that uk ∼ v. Thus,
the comparison between uv and v happens between index k|u| + 1 and index
(k + 1)|u|, inclusive. In particular, uω ∼ uk+1 ∼ uv > v.

The proof with the reverse inequalities proceeds analogously.

In order to show the existence and uniqueness of generalized Lyndon factor-
izations of infinite words, we will invoke a theorem of Reutenauer which gives
the analogous result for finite words [11].

Generalized Lyndon Factorizations of Infinite Words 111

Theorem 2 [3,11]. Any finite word has a unique nonincreasing factorization
into generalized Lyndon words.

Theorem 3. An infinite word with an infinite generalized Lyndon suffix has
a unique factorization into generalized Lyndon words, and this factorization is
finite. Furthermore, the last term in this factorization is the first generalized
Lyndon suffix by index.

Proof. We first show existence. Let � be the first generalized Lyndon suffix of
w by index, that is, w = v� where the length of v is minimum such that � is
generalized Lyndon. Let �1, . . . , �n be the unique nonincreasing factorization of v
from Theorem 2. It is enough to show that �ω

n ≥ �, as this will yield �1, . . . , �n, �
as a nonincreasing generalized Lyndon factorization of w.

Suppose that �ω
n < �. By Lemma 4, this implies �n� < �. Let s be the shortest

(not necessarily proper) suffix of �n such that s� is minimal. Note that we have
s� ≤ �n� < �, so s is nonempty. However, by construction we have s� ≤ s′�
for every suffix s′ of s. Notably, s� ≤ � ≤ �′ for any suffix �′ of � because � is
generalized Lyndon. Thus s� is generalized Lyndon. This contradicts our choice
of � to be the first generalized Lyndon suffix of w. Therefore �ω

n ≥ �, so we have
produced a nonincreasing factorization of w.

By Theorem 1, any factorization of w must have only finitely many terms.
Let �1, . . . , �n� be a nonincreasing factorization of w into generalized Lyndon
words. Suppose, seeking a contradiction, that � is not the longest generalized
Lyndon suffix of w, i.e., there is a suffix s of w of the form u�j+1 · · · �n� where u
is a suffix of �j . From the nonincreasing property of the factorization w and the
generalized Lyndon property of �j , we know uω ≥ �ω

j ≥ · · · ≥ �ω
n ≥ �. By Lemma

1, (u�j)ω ≥ �ω
j . Inductively, we find (u�j · · · �n)ω ≥ �ω

n ≥ �. Thus, by Lemma 4,
we have s = u�j · · · �n� ≥ �, contradicting that s is generalized Lyndon.

Now that we have uniquely determined �, the other factors �1, . . . , �n are
uniquely determined. This follows because the prefix w[1, |�1| + · · · + |�n|] of w
has a unique nonincreasing factorization into generalized Lyndon words. Thus
by our initial assumption that �1, . . . , �n, � is a nonincreasing factorization of w,
the unique factorization of w[1, |�1| + · · · + |�n|] must be �1, . . . , �n.

4 Existence of Infinite Factorizations

In this section, we describe a method to construct an infinite factorization of a
word with no generalized Lyndon suffix by taking a limit of the finite factoriza-
tions of some of its prefixes.

Lemma 5. If a primitive infinite word has infinitely many generalized Lyndon
prefixes, then it is a generalized Lyndon word.

Proof. Let w be a primitive word which is not infinite generalized Lyndon, and
let m ∈ N be minimal such that w[m,∞) < w. Let i be the index of comparison
between w[m,∞) and w. Then for any n ≥ m+ i, we have w[m,n] ∼ w[m,∞) <

112 A. Burcroff and E. Winsor

w ∼ w[1, n] with a comparison at index i. Thus w[1, n] is not generalized Lyndon
for any n ≥ m + i, so we can conclude that w has finitely many generalized
Lyndon prefixes.

Lemma 6. If � is a finite word that is not generalized Lyndon, then �ω has
finitely many generalized Lyndon prefixes.

Proof. If � is not generalized Lyndon, then we can write � = uv where vu < uv
for some prefix u. Observe that vu will be a factor of any prefix of �ω having
length at least |�| + |u|, and uv will be a prefix of any such prefix of �ω. Thus
any prefix of �ω having length at least |�| + |u| is not generalized Lyndon.

Theorem 4. An infinite word has a nonincreasing factorization into generalized
Lyndon words.

Proof. Fix an infinite word w. Theorem 3 completes the proof in the case that
w has an infinite generalized Lyndon suffix. So we can assume that w has no
infinite generalized Lyndon suffix. In particular, w is not generalized Lyndon.

We will first consider the case where w is not eventually periodic. Since w is
not generalized Lyndon, Lemma 5 implies that w has finitely many generalized
Lyndon prefixes. Thus one of its generalized Lyndon prefixes must appear in the
factorization of w[1, n] yielded by Theorem 2 for infinitely many n ∈ N. Let �1
be such a prefix, and let w = �1w1.

We will now inductively construct a factorization of w. Suppose we can write
w = �1 · · · �kwk such that each �j is a finite generalized Lyndon word, �ω

1 ≥ · · · ≥
�ω
k , and w has infinitely many prefixes whose factorizations begin with �1, . . . , �k.

Since w has no generalized Lyndon suffixes, wk is not generalized Lyndon, so
it must have finitely many generalized Lyndon prefixes. Since infinitely many
prefixes of w have factorizations beginning with �1, . . . , �k, one of the generalized
Lyndon prefixes of wk, which we label �k+1, must be such that infinitely many
prefixes of w have factorizations beginning with �1, . . . , �k, �k+1. We can then
write w = �1 · · · �k+1wk+1. Note that by construction, �ω

k ≥ �ω
k+1. By induction,

we get a nonincreasing generalized Lyndon factorization �1, �2, . . . of w.
Now suppose that w is eventually periodic. If w is a power of a generalized

Lyndon word �, we can use the factorization w = �ω. Otherwise, w is a power
of a finite word that is not generalized Lyndon or w is primitive. In either case,
Lemmas 5 and 6 imply that w has finitely many generalized Lyndon prefixes.
We can thus apply the construction from the previous paragraph, in each step
yielding a factorization of w starting with �1, · · · , �k. This process will halt only
if wk has infinitely many generalized Lyndon prefixes pi such that �1, . . . , �k, pi

is the factorization of a prefix of w. By Lemmas 5 and 6, this implies that
wk is a power of a generalized Lyndon word �. Moreover, since the pi’s have
unbounded length and �ω

k ≥ pω
i , we must have �ω

k ≥ �ω. Therefore �1, . . . , �k, �ω

is a factorization of w. Thus, in any case, this construction yields a nonincreasing
factorization of w into generalized Lyndon words.

Generalized Lyndon Factorizations of Infinite Words 113

5 Uniqueness of Infinite Factorizations

We will determine the uniqueness of the factorization constructed in Sect. 4,
handling first the eventually periodic words and then aperiodic words with no
generalized Lyndon suffix.

Theorem 5. An eventually periodic infinite word has a unique nonincreasing
factorization into generalized Lyndon words.

Proof. Fix an infinite word w with a periodic suffix. Observe that this implies we
can write w as u�ω where u is a (possibly empty) finite word and � is a nonempty
finite generalized Lyndon word. We may assume w has no generalized Lyndon
suffix, as this case is handled by Theorem 3.

We first claim that the factorization (from Theorem 4) of w =
∏∞

i=1 �i must
terminate with �ω. Since � is generalized Lyndon hence not equal to any of its
rotations, we have that �ω[i,∞) = �ω if and only if i − 1 is an integer multiple
of |�|. Moreover, if i − 1 is not a multiple of |�|, then �ω[i,∞) is a power of a
word which is not generalized Lyndon and hence has finitely many generalized
Lyndon prefixes by Lemma 6. If one of these generalized Lyndon prefixes, �′,
appears infinitely many times in the factorization of w, then (�′)ω is a suffix of
w. Since (�′)ω and �ω are suffixes of w, they are powers of rotations of � and �′,
respectively. Because � and �′ are generalized Lyndon, this means that � = �′.
That is, only finitely many terms of the factorization are not equal to �. Thus,
we can conclude �i = � for sufficiently large i.

Now suppose �1, . . . , �n, �ω and h1, . . . , hm, �ω are two distinct factorizations
of w. Note that |�1 · · · �n| − |h1 · · · hm| must be an integer multiple of |�|, as � is
a generalized Lyndon word and hence not equal to any of its rotations. Without
loss of generality, assume |�1 · · · �n| − |h1 · · · hm| > 0. In this case, there exists
k ∈ N such that �1 · · · �n = h1 · · · hm�k, which violates the uniqueness of the
nonincreasing generalized Lyndon factorization for finite words from Theorem
2. Thus, the nonincreasing factorization of w into generalized Lyndon words is
unique.

Lemma 7. Let w = v�1�2 · · · �nu be a finite generalized Lyndon word where
n ∈ Z≥0, �i is a finite generalized Lyndon word for all i ∈ {1, . . . , n}, v is a
suffix of a finite generalized Lyndon word �0, u is a prefix of a finite generalized
Lyndon word �n+1, and �ω

0 ≥ �ω
1 ≥ · · · ≥ �ω

n+1. Then u ∼ v and u ∼ v ∼ �i · · · �nu
for all i ∈ {1, . . . , n}.
Proof. The generalized Lyndon property of w implies u � v. The nonincreasing
property of the factors implies v ∼ vω ≥ �ω

0 ≥ �ω
n+1 ∼ u. Combining these

inequalities, we have u ∼ v.
Suppose |u| ≤ |v|. The generalized Lyndon property of w and the nonincreas-

ing property furthermore implies

�nu � v ∼ u ∼ v ∼ vω ≥ �ω
0 ≥ �ω

n .

114 A. Burcroff and E. Winsor

Hence Lemma 3 implies that u ∼ �ω
n , so �nu ∼ u. Repeating this process, we can

conclude u ∼ v ∼ �nu ∼ �n−1�nu ∼ · · · ∼ �1 · · · �nu.
Similarly, suppose |u| > |v|. The generalized Lyndon property of w and the

nonincreasing property implies

�nv ∼ �nu � v ∼ vω ≥ �ω
0 ≥ �ω

n .

Hence Lemma 3 implies that v ∼ �ω
n , so v ∼ �nv ∼ �nu. Repeating this process,

we can conclude v ∼ u ∼ �nu ∼ �n−1�nu ∼ · · · ∼ �1 · · · �nu.

Lemma 8. Let w satisfy the hypotheses of Lemma 7. If |u| ≥ |v|, then there
exists some m with 0 ≤ m ≤ n such that

�j =

{
v if 1 ≤ j ≤ m

vαj for some αj ∈ (0, 1) if m < j ≤ n.

Proof. We assume that �j = v for 1 ≤ j ≤ k with 0 ≤ k ≤ n − 1 and proceed by
induction on k. Note that the base case of k = 0 is automatic. Furthermore, we
suppose there exists m with 0 ≤ m ≤ n that satisfies the property of Lemma 8
when we restrict to considering �j with j ≤ k. Note that we can have m ≥ k.
By Lemma 7, we have �k+1 ∼ u ∼ v and |v| ≤ |u|, hence �k+1 ∼ v. Thus, if
|�k+1| < |v|, then we are done.

Suppose m < k and |�k+1| ≥ |v|, so v is a prefix of �k+1. Let �m+i = vαi for
1 ≤ i ≤ k − m, where each αi ∈ (0, 1). Let t = k − m. Thus v�1 · · · �k�k+1 ∼
vkvα1 · · · vαtv. By Lemma 7, we have v ∼ u ∼ vα2 · · · vαk−mv, so vα1v is a
factor of w. Since vvα1 is a prefix of w, by the generalized Lyndon property
we have vα1v ≥ vvα1 . On the other hand, we have vω ≥ �ω

0 ≥ �ω
m+1 = (vα1)ω,

which implies vω ≥ (vα1v)ω by Lemma 1. In particular, we have vvα1 ≥ vα1v.
Combining inequalities yields vvα1 = vα1v, implying v is a power of vα1 by
Corollary 1. Thus

(vα1)ω = vω ≥ �ω
0 ≥ �ω

m+1 = (vα1)ω,

so Corollary 1 and Lemma 1 imply �0 = vα1 = v. This contradicts our choice of
m, hence |�k+1| < |v| and �k+1 ∼ v, as desired.

In the other case, we need to consider is |�k+1| > |v| and m ≥ k. Let �k+1 =
vrvα for r ∈ N and α ∈ (0, 1), noting that r + α 	∈ N since �k+1 is generalized
Lyndon, and hence primitive. If k + 1 = n or if |�k+2| ≥ v, then �k+1v is a
factor of w. Note by our inductive hypothesis that vrvvα is a prefix of w. By the
generalized Lyndon property, we have vrvαv ≥ vrvvα. However, we also have

vrvαv ∼ (vrvα)ω = �ω
k+1 ≤ �ω

0 ≤ vω ∼ vrvvα.

Combining inequalities yields vrvαv = vrvvα, implying v is a power of vα by
Corollary 1. This means �k+1 = vrvα is a power of vα, contradicting the prim-
itiveness of �k+1, so we must have k < n − 1 and |�k+2| < |v|. Since we assume
|u| > |v|, there must exist some q ∈ {k + 2, . . . , n} such that |�q| < n and

Generalized Lyndon Factorizations of Infinite Words 115

�q�q+1 · · · �nu ∼ �qv. Notably, the largest value of q such that |�q| < n works.
Then v�q is a prefix of w, and �qv is a factor of w. By the generalized Lyn-
don property of w and our inductive hypothesis, we have �qv ≥ v�q. However,
we also have �ω

q ≤ �ω
0 ≤ vω, hence (�qv)ω ≤ vω by Lemma 1. In particular,

�qv � vv ∼ v�q. Again, we combine inequalities and use Corollary 1 and Lemma
1 to conclude �q = v, our final contradiction.

Lemma 9. If w satisfies the hypotheses of Lemma 7, then �1 = · · · = �n = v.

Proof. It is enough to show that �n = v, since vω ≥ �ω
0 ≥ �ω

i ≥ �ω
n = vω. If �n 	= v,

then by Lemma 8, we have �n = vα for some α ∈ (0, 1). Moreover, by Lemma 7
and our assumption |u| ≥ |v|, we have �1 . . . �nu ∼ v, hence w = v�1 . . . �nu ∼ vv.
Thus, vαv is a factor of w and vvα is a prefix, so the generalized Lyndon property
of w implies vvα ≤ vαv. Since we have (vα)ω = �ω

n ≤ �ω
0 ≤ vω ∼ v � vαv,

Lemma 3 implies v ∼ (vα)ω. In particular, vαv ∼ (vα)ω ≤ vω ∼ vvα. Combining
inequalities, we have vvα ≤ vαv. This implies v is a power of vα by Corollary 1.
Thus (vα)ω = vω ≥ �ω

0 ≥ �ω
n = (vα)ω. In particular �ω

0 = vω, which implies v = �0
by the generalized Lyndon property of �0. Therefore v = �0 = vα, contradicting
our choice of α.

Corollary 2. Let w be as in the statement of Lemma 9. If we additionally
assume that v is a proper suffix of �0 and n ≥ 1, then |u| < |v|.
Proof. By Lemma 9, we have �1 = �2 = · · · = �n = v. Since v is a proper suffix
of �0, we have vω > �ω

0 . Thus vω > �ω
0 ≥ �ω

1 = vω, which is a contradiction.

Theorem 6. An aperiodic infinite word with no generalized Lyndon suffix has
a unique nonincreasing factorization into finite generalized Lyndon words.

Proof. Suppose w is an aperiodic word with no generalized Lyndon suffix such
that w has two distinct nonincreasing factorizations into generalized Lyndon
words. Note that each factor in both factorizations must be finite. We can remove
any initial common factors, so without loss of generality w =

∏∞
i=0 wi =

∏∞
j=0 �j

where wω
i ≥ wω

i+1 for all i ∈ Z≥0, �ω
j ≥ �ω

j+1 for all j ∈ Z≥0, and |w0| >
|�0|. Since we know finite words have unique nonincreasing generalized Lyndon
factorizations from Theorem 2, we have

∏x
i=0 wi 	= ∏y

j=0 �j for any x, y ∈ Z≥0.

Fig. 1. The construction of vk, �jk , wik , and uk

116 A. Burcroff and E. Winsor

Define v0 = �0, �j0 = �0, and wi0 = w0. We define jk+1 to be the unique
integer such that wik can be written as vk�jk+1 · · · �jk+1−1uk, where uk is a prefix
of �jk+1 . We define ik+1 to be the unique integer such that �jk+1 can be written
as ukwjk+1 · · · wjk+1−1vk+1, where vk+1 is a prefix of wjk+1 . This construction is
illustrated in Fig. 1. Observe that for each k ∈ Z≥0 we have that vk is a proper
prefix of wik , uk is a proper suffix of wik , uk is a proper prefix of �jk+1 , and vk+1

is a proper suffix of �jk+1 .
We aim to show that |vk+1| < |vk| for each k ∈ Z≥0, and since this reduction

can only be applied finitely many times, we will reach a contradiction. Assume
not, that |vk+1| ≥ |vk| for a certain k ∈ Z≥0.

First suppose that |uk| ≥ |vk|, and note that we cannot have uk be a power
of vk or uk = vk, or else wik is not primitive by Lemma 9. Thus Lemmas 9 and
7 imply that uk = vr

kvα
k for some r ∈ N and α ∈ (0, 1). Moreover, Corollary 2

implies that wik = vkuk. Lemma 7 implies that vk ∼ uk and uk ∼ vk+1, hence
|vk| ≤ |uk|, |vk+1| implies vk ∼ vk+1. Furthermore, Lemma 7 yields vk ∼ vk+1 ∼
wik+1 · · · wik+1−1vk+1, so ukwik+1 · · · wik+1−1vk+1 ∼ vr

kvα
k vk. Thus

vr
kvkvα

k ∼ vω
k ≥ �ω

jk
= (ukwik+1 · · · wik+1−1vk+1)ω ∼ vr

kvα
k vk.

However, by the generalized Lyndon property of wik and Lemma 8, we also have

vr
kvα

k vk ∼ (vr
kvα

k)ω = uω
k ≥ (vk�jk+1 . . . �jk+1−1)ω = vω

k ∼ vr
kvkvα

k .

Combining inequalities yields vr
kvα

k vk = vr
kvkvα

k , which implies that vk and vα
k are

powers of a common word by Lemma 2. Thus wik is not primitive, contradicting
that it is generalized Lyndon. So in this case we have |vk+1| < |vk|.

Now suppose |uk| < |vk|. By the generalized Lyndon property of wk, we
have vk � uk. The nonincreasing property of our factors implies uk ∼ �ω

jk+1
≤

�ω
jk

≤ vω
k ∼ vk. Hence vk ∼ uk, so uk = vα

k for some α ∈ (0, 1). Since |uk| <
|vk| ≤ |vk+1|, Corollary 2 applies to �jk . In particular, �jk+1 = ukvk+1. By the
generalized Lyndon property of wik and �jk+1 along with Lemma 1, we have

(vα
k)ω = uω

k ≥ wω
ik

≥ wω
ik+1

∼ vk+1 ∼ vω
k+1 ≥ uω

k = (vα
k)ω.

Hence vk+1 ∼ (vα
k)ω. Note that vk ∼ wω

ik
, so we also have vk ∼ vk+1 ∼ (vα

k)ω.
On the one hand, we have

vα
k vk ∼ ukvk+1 = �jk+1 ∼ �ω

jk+1
≤ �ω

jk
≤ vω

k ∼ vkvα
k .

However, the generalized Lyndon property of w1 and Lemma 7 imply

vα
k vk = ukvk ∼ ukvk�jk+1 · · · �jk+1−1 � vk�jk+1 · · · �jk+1−1uk ∼ vkuk = vα

k vk.

Therefore vα
k vk = vkvα

k , which implies vk and vα
k are powers of a common word.

However, we reach our final contradiction by noting that �jk+1 is not primitive,
contradicting that it is generalized Lyndon.

Theorem 7. Every infinite word has a unique factorization into a nonincreas-
ing product of generalized Lyndon words.

Proof. This follows directly from Theorems 3, 5, and 6.

Generalized Lyndon Factorizations of Infinite Words 117

6 Characterization of Infinite Generalized Lyndon Words

Siromoney et al. showed in [13] that the infinite Lyndon words are precisely the
limits of prefix-preserving increasing sequences of finite Lyndon words. We show
that this result still holds when Lyndon words are replaced with generalized
Lyndon words provided that the infinite word is primitive.

Theorem 8. A primitive infinite word is generalized Lyndon if and only if it
has infinitely many generalized Lyndon prefixes.

Proof. Lemma 5 handles the reverse direction. Suppose that there exists an infi-
nite generalized Lyndon word w with finitely many generalized Lyndon prefixes.
Since w has infinitely many prefixes, one of its generalized Lyndon prefixes must
appear in the unique nonincreasing generalized Lyndon factorizations (from The-
orem 2) of infinitely many of the prefixes of w.

We will now use the method presented in the proof of Theorem 4 to construct
a nontrivial factorization of w, contradicting the result of Theorem 3. Suppose
that w = �1 . . . �nwn where �j is a finite generalized Lyndon word and �ω

1 ≥ �ω
2 ≥

�ω
n > wn. Further suppose that w has infinitely many prefixes with factorizations

beginning with �1, . . . , �n. If wn is not generalized Lyndon, the process proceeds
as in Theorem 4.

Suppose wn is generalized Lyndon. If we can choose a generalized Lyndon
prefix �n+1 of wn such that infinitely many prefixes of w have factorizations
beginning with �1, . . . , �n, �n+1, then the process can continue. Otherwise, there
must be infinitely many prefixes p of wn such that �1, . . . , �n, p is a factorization
of a prefix of w. In particular, we have that pω ≤ �ω

n for infinitely many prefixes
of p. Taking the limit of these prefixes, we find that wn ≤ �ω

n . Thus, �1, . . . , �n, wn

is a nontrivial factorization of w, contradicting Theorem 3.
Therefore either the process terminates and produces a nontrivial finite gen-

eralized Lyndon factorization of w, or it continues indefinitely and produces
a nonincreasing generalized Lyndon factorization of w. Either case contradicts
Theorem 3, so w must have infinitely many generalized Lyndon prefixes.

We cannot hope this result extends to the case where the infinite word is
not primitive. For example, consider (01)ω under the alternating order. It has
infinitely many Galois prefixes, namely the prefixes of the form (01)k0 for any
k ∈ N, but 01 is not Galois.

7 Further Directions

Given that every finite and infinite word has a unique nonincreasing factorization
into generalized Lyndon words, one may wish to characterize or compute this
factorization. For example, given a simple (e.g. a finite expression of products
and powers) representation of an infinite word and a generalized lexicographical
ordering, one may wish to compute the factorization of the word in polynomial

118 A. Burcroff and E. Winsor

time. In a different direction, [1] proved the existence and uniqueness of a fac-
torization of a general transfinite (ordinally indexed) word into Lyndon words.
It remains to be seen whether this factorization theorem still holds when using
generalized Lyndon words. Lastly, one may seek a general characterization of the
first factor in a generalized Lyndon factorization along the lines of [14]. While
simple characterizations such as longest generalized Lyndon prefix fail, there
may be a more clever characterization lurking in the background.

References

1. Boasson, L., Carton, O.: Transfinite Lyndon words. In: Potapov, I. (ed.) DLT
2015. LNCS, vol. 9168, pp. 179–190. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21500-6 14

2. Chen, K.-T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. Ann. Math.
68, 81–95 (1958)

3. Dolce, F., Restivo, A., Reutenauer, C.: On generalized Lyndon words. Theoret.
Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.2018.12.015

4. Dolce, F., Restivo, A., Reutenauer, C.: Some variations on Lyndon words.
arXiv:1904.00954 [math.DM] (2019)

5. Gewurz, D.A., Merola, F.: Numeration and enumeration. Eur. J. Comb. 33(7),
1547–1556 (2012)

6. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge (1997)

7. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

8. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77, 202–215 (1954)
9. Lyndon, R.C., Schützenberger, M.P.: The equation aM = bNcP in a free group.

Michigan Math. J. 9(4), 289–298 (1962)
10. Perrin, D., Restivo, A.: Words. In: Handbook of Enumerative Combinatorics, pp.

509–564. CRC Press (2015)
11. Reutenauer, C.: Mots de Lyndon généralisés. Sém. Lothar. Combin. 54, B54h

(2006)
12. Shirshov, A.I.: Subalgebras of free Lie algebras. Matematicheskii Sbornik 75(2),

441–452 (1953)
13. Siromoney, R., Mathew, L., Dare, V.R., Subramanian, K.G.: Infinite Lyndon words.

Inf. Process. Lett. 50(2), 101–104 (1994)
14. Ufnarovskij, V.A.: Combinatorial and asymptotic methods in algebra. In:

Kostrikin, A.I., Shafarevich, I.R. (eds.) Algebra, VI, Encyclopedia of Mathematical
Sciences, vol. 57, pp. 1–196. Springer, Heidelberg (1995)

https://doi.org/10.1007/978-3-319-21500-6_14
https://doi.org/10.1007/978-3-319-21500-6_14
https://doi.org/10.1016/j.tcs.2018.12.015
http://arxiv.org/abs/1904.00954

On the Commutative Equivalence
of Bounded Semi-linear Codes

Arturo Carpi1 and Flavio D’Alessandro2,3(B)

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
via Vanvitelli 1, 06123 Perugia, Italy

2 Dipartimento di Matematica, Università di Roma “La Sapienza”,
Piazzale Aldo Moro 2, 00185 Rome, Italy

dalessan@mat.uniroma1.it
3 Department of Mathematics, Boğaziçi University, 34342 Bebek, Istanbul, Turkey

Abstract. The problem of the commutative equivalence of semigroups
generated by semi-linear languages is studied. In particular conditions
ensuring that the Kleene closure of a bounded semi-linear code is com-
mutatively equivalent to a regular language are investigated.

Keywords: Commutative equivalence ·
Bounded semi-linear language · Uniquely decipherable code ·
Kleene closure · Exponential growth

1 Introduction

In this paper, we study the commutative equivalence of context-free and regular
languages. Two words are said to be commutatively equivalent if one is obtained
from the other by rearranging the letters of the word. Two languages L1 and L2

are said to be commutatively equivalent if there exists a bijection f : L1 → L2

such that every word u ∈ L1 is commutatively equivalent to f(u). This notion
plays an important role in the study of several problems of Theoretical Computer
Science such as, for instance, in the Theory of Codes, where it is involved in the
celebrated Schützenberger conjecture about the commutative equivalence of a
maximal finite code with a prefix one (see, e.g, [4]). The question of our interest
can be formulated as follows:

Commutative Equivalence Problem. Given a context-free language L1, does
there exist a regular language L2 which is commutatively equivalent to L1?

In the sequel, for short, we refer to it as CE Problem. A language which is
commutatively equivalent to a regular one will be called commutatively regular.

It is worth noticing that commutatively equivalent languages share the same
alphabet and their generating series are equal. In particular, the generating series

The research of F. D’Alessandro was partially supported by TUBITAK Project 2221
(Scientific and Technological Research Council of Turkey) and by the National Group
for Algebraic and Geometric Structures, and their Applications (GNSAGA–INdAM).

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 119–132, 2019.
https://doi.org/10.1007/978-3-030-28796-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_9

120 A. Carpi and F. D’Alessandro

of a commutatively regular language must be rational. This remark leads us to
recall that a conceptually related study was conducted by Béal and Perrin in
[1], where the generating series of regular languages on alphabets of prescribed
size are studied. Béal and Perrin provided a characterization of such series and
this remarkable contribution thus defines the theoretical setting in which the CE
Problem can be naturally fitted in.

For our discussion, the following notions are useful. Given a language L,
the growth function gL returns, for any non-negative integer n, the number of
the words of L whose length is less than or equal to n. A language L is called
sparse if its growth function is polynomially upper bounded. A language L is
said to be of exponential growth if there exists a real number k > 1 such that
gL(n) > kn for all sufficiently large n. Two results are relevant in this context.
The first proved in [5,26,29] states that every context-free language is either
sparse or of exponential growth. The second, proved in [23,27], states that the
class of sparse context-free languages coincides with that of bounded languages.
We recall that a language L is termed bounded if there exist k words u1, . . . , uk

such that L ⊆ u∗
1 · · · u∗

k. Bounded context-free languages play a meaningful role
in Computer Science and in Mathematics and have been widely investigated
in the past so that their structure has been characterized by several theorems
[2,7,9,10,13–15,18,19,21–25,27,28]. A characterisation of regular bounded sets,
based upon a combinatorial property of the factors of the words of the language,
has been obtained by Restivo [28] and, subsequently, extended to context-free
bounded languages by Boasson and Restivo [2].

Very recently, results on the counting functions of context-free languages,
based upon the notion of strongly counting-regularity, have been obtained in
[24]. An excellent survey on the relationships between bounded languages and
semigroups has been given by de Luca and Varricchio in [15].

Another theorem that is central in this setting has been proved by Ginsburg
and Spanier [18,19]. This theorem allows one to represent, in a canonical way,
bounded context-free languages by means of sets of vectors. For this purpose,
let us first introduce a notion. Let L ⊆ u∗

1 · · · u∗
k be a bounded language where,

for every i = 1, . . . , k, ui is a word over the alphabet A. Let ϕ : Nk −→ u∗
1 · · · u∗

k

be the map defined as: for every tuple (�1, . . . , �k) ∈ N
k,

ϕ(�1, . . . , �k) = u�1
1 · · · u�k

k .

The map ϕ is called the Ginsburg map. Ginsburg and Spanier proved that L
is context-free if and only if the subset ϕ−1(L) of Nk is a finite union of linear
sets, each having a stratified set of periods. Roughly speaking, a stratified set of
periods corresponds to a system of well-formed parentheses.

In view of the Ginsburg and Spanier theorem, bounded context-free languages
are special instances of a broader class of languages called bounded semi-linear.
A language L ⊆ u∗

1 · · · u∗
k is called bounded semi-linear if L = ϕ(B), where B is

a semi-linear set, that is, a finite union:
n⋃

i=1

Bi, (1)

On the Commutative Equivalence of Bounded Semi-linear Codes 121

of linear subsets Bi of Nk, 1 ≤ i ≤ n, of dimension ki ≥ 0:

Bi = {b(i)
0 + x1b

(i)
1 + · · · + xki

b(i)
ki

| x1, . . . , xki
∈ N}. (2)

In [11–13] the solution (in the affirmative) of the CE Problem was given for sparse
languages: Every bounded context-free language L1 is commutatively equivalent
to a regular language L2. Moreover the language L2 can be effectively constructed
starting from an effective presentation of L1. It is also shown that the CE Prob-
lem can be solved in the affermative for the wider class of bounded semi-linear
languages.

In view of the last theorem and of the results mentioned above, the CE
Problem remains open for the class of context-free languages of exponential
growth.

A relevant fact in this context, is that the generating series of a commuta-
tively regular language L is always rational. This implies that the answer to the
CE Problem is not affirmative in general. Indeed, there exist context-free lan-
guages whose generating series are algebraic but not rational. It is worth noting
that Flajolet even provided remarkable examples of linear unambiguous context-
free languages with a transcendental generating series (cf [17], Theorem 3).

In [6], the study of the CE Problem has been investigated in connection with
languages of exponential growth generated by unambiguous non-expansive gram-
mars [3] and unambiguous minimal linear grammars [8,20], respectively. In par-
ticular conditions ensuring that such languages are commutatively regular have
been provided. It is worth noting that an unambiguous minimal linear grammar
gives an interesting generalization of the concept of unique-factorization code
since it inherits several properties of this structure.

As a continuation of this work, we investigate the CE Problem with respect
to the Kleene closure of languages. This operation is of interest for this study
since it preserves the property of context-freeness of languages, while it does
not preserve the property of boundedness: finite sets of words are the simplest
example of bounded languages whose Kleene closure is not bounded. It is also
interesting to note that Dyck and semi-Dyck languages provide another natural
class of monoids that are not commutatively regular. In view of the classical
theorem by Chomsky and Schützenberger for the representation of context-free
languages, such monoids can be considered very general.

It is useful to observe that a Dyck monoid is a free monoid whose minimal
set of generators, i.e. the set of Dyck prime words, is a context-free bifix code.

In contrast with the previous situation, the main result of this paper shows,
up to a technical restriction, that the monoid generated by a prefix (or suf-
fix) bounded semi-linear language, is commutatively regular. Precisely, the main
contribution of the paper is the following.

Theorem 1. Let L be a bounded semi-linear language and L = ϕ(B) where B
is the semi-linear set of Eq. (1) associated with L.

Suppose that, for every i = 1, . . . , n and for every j = 0, . . . , ki, the vector
b(i)

j of Eq. (2) is such that its corresponding word ϕ(b(i)
j) contains two distinct

letters.

122 A. Carpi and F. D’Alessandro

If L is a prefix (or suffix) code, then there exists a regular code L′ which
is commutatively equivalent to L. Consequently, L∗ is commutatively equivalent
to (L′)∗. Moreover, L′ can be effectively constructed starting from an effective
presentation of L.

In order to prove Theorem1, we use two arguments: the first concerns codes and
equations of words and makes it possible to separate the languages that represent
the simple sets Bi of the decomposition of B. The second one is a technique of an
algebro-geometrical nature for the decomposition into parallelepipeds of simple
sets. Among the rational operations on languages, the Kleene closure is the sole
one not preserving the property of boundedness and for which therefore the
study of the commutative regularity becomes an interesting issue. In view of
Theorem 1, we conjecture that the last property can be extended to all monoids
generated by bounded semi-linear languages. The result of this paper could be
the first step along this direction.

2 Preliminaries

The aim of this section is to introduce some preliminary results on semi-linear
sets and bounded context-free languages. We assume that the reader is familiar
with the basic notions of context-free languages (see [4,19] for a reference).

The free abelian monoid on k generators is identified with N
k with the usual

additive structure. Let B = {b1, . . . ,bm}, m ≥ 0, be a finite subset of Nk. Then
we denote by B⊕ the submonoid of Nk generated by B, that is

B⊕ = b⊕
1 + · · · + b⊕

m = {x1b1 + · · · + xmbm | xi ∈ N, 1 ≤ i ≤ m}.

Definition 2. Let X be a subset of Nk. Then

1. X is linear if X = b0 + {b1, . . . ,bm}⊕, where b0,b1, . . . ,bm ∈ N
k,

2. X is simple if the vectors b1,b2, . . . ,bm are linearly independent in Q
k,

3. X is semi-linear if X is a finite union of linear sets in N
k,

4. X is semi-simple if X is a finite disjoint union of simple sets in N
k.

If X = b0 + {b1, . . . ,bm}⊕ is a simple set, then we say that the vectors
b0,b1, . . . ,bm, form the (unambiguous) representation of X. The vector b0

is called constant and b1, . . . ,bm are called generators of the representation,
respectively. One can prove that the representation of a simple set is unique.
The number m is called the dimension of B. Obviously one has m ≤ k. The
following is an important characterization of semi-linear sets.

Theorem 3 (Eilenberg and Schützenberger, [16]). Let X be a subset of N
k.

Then X is semi-linear in N
k if and only if X is semi-simple in N

k.

On the Commutative Equivalence of Bounded Semi-linear Codes 123

Let A = {a1, . . . , at} be an alphabet of t letters and A∗ the free monoid generated
by A. The empty word of A∗ is denoted by ε. The length of every word u is
denoted by |u|. For every a ∈ A and u ∈ A∗, the number of occurrences of a in
u will be denoted by |u|a. We let ψ : A∗ → N

t denoting the Parikh map over A,
defined, for each u ∈ A∗ as ψ(u) = (|u|a1 , |u|a2 , . . . , |u|at

).
A subset L of words of A+ is said to be a code (over A) if every word of L+

admits a unique factorization in term of words of L. A set L over the alphabet
A is said to be a prefix set if LA+ ∩ L = ∅.

Let L1, L2 be two languages over A. We say that L1 is commutatively equiv-
alent to L2 if a bijection f : L1 → L2 exists such that, for every u ∈ L1, one
has ψ(u) = ψ(f(u)). In the sequel, by simplicity, if L1 and L2 are so, we write
L1 ∼ L2. If u1, . . . , uk are k words of A+, the Ginsburg map

ϕ : Nk → u∗
1 · · · u∗

k, (3)

is the map defined, for each tuple (�1, . . . , �k) ∈ N
k, as ϕ(�1, . . . , �k) = u�1

1 · · · u�k

k .
A remarkable observation in [21] (cf Lemma 2.1) allows one to prove that the
representation of Eq. (1) of a bounded semi-linear language is faithful. Moreover
a previously mentioned theorem by Ginsburg and Spanier [18] provides a funda-
mental tool to represent, in terms of semi-linear sets, the bounded context-free
languages. For our purposes, these two results can be stated as follows.

Theorem 4. Let L ⊆ u∗
1 · · · u∗

k be a bounded semi-linear language. Then there
exists a semi-simple set B of Nk such that ϕ(B) = L and ϕ is injective on B.
Moreover, B can be effectively constructed.

In particular, the condition above holds for bounded context-free languages.

3 Some Results of Combinatorics on Words

From now on, in the sequel of the paper, we assume that u1, . . . , uk, is a list of
k words over A, fixed once for all.

In the sequel we assume that B = {b0 + x1b1 + · · · + xmbm | xi ∈ N, 1 ≤
i ≤ m} is a simple set satisfying the following:

Assumption 5. For every i = 0, . . . , m, the word ϕ(bi) contains two distinct
letters.

Remark 6. One could prove that Assumption 5 is equivalent to the following
statement:

There exists a real number ρ < 1 such that, for every X ∈ ϕ(B) and a ∈ A,
one has

|X |a < ρ|X |. (4)

Thus, Assumption 5 implies, in particular, that no word of ϕ(B) can be a
power of a single letter.

124 A. Carpi and F. D’Alessandro

Lemma 7. Let L = ϕ(B) ⊆ u∗
1 · · · u∗

k be the bounded semi-linear language
defined by the simple set B above. There exists a positive constant γ such that
for every pair of distinct letters a, b ∈ A the word

u = (aγb)k (5)

is not a prefix of any word in LA∗.

In the sequel, γ will denote the minimum constant specified by Lemma 7.
Let v = (v1, . . . , vt) ∈ N

t be a vector. We denote by |v| the non-negative
integer |v| = v1 + · · · + vt. Let

z1, . . . , zm, (6)

be a list of (not necessarily pairwise distinct) words of A+. We associate with
the list (6) its multiset of Parikh vectors {(α1,v1), . . . , (α�,v�)}, where, for every
i = 1, . . . , �, αi is the multiplicity of vi.

Lemma 8. Let us consider the list of words (6) together with its multiset of
Parikh vectors. Suppose that:

(i) for every j = 1, . . . ,m, zj contains, at least, two different letters;
(ii) for every j = 1, . . . , �, |vj | = β, where β is a constant not depending on j.

Let Nj be the greatest integer such that vj has the form vj = Njv̄j with v̄j ∈ N
t,

for every j = 1, . . . , �. If, for every j = 1, . . . , �,

Nj > mk(γ + 1),

then there exists a code W, over the alphabet A, of m (distinct) words such that,
each word has length β, and

∀ i = 1, . . . , �, Card({w ∈ W | ψ(w) = vi}) = αi. (7)

Moreover the word (aγb)k of Lemma 7 is a prefix of each word of W.

A simple argument based on code composition allows one to verify the fol-
lowing lemma which will be useful in the sequel.

Lemma 9. Let X = X1 ∪ X2 be a partition of a code X ⊆ A∗ in two subsets
X1 and X2. Then, X1X

∗
2 is a code.

4 The CE Problem for Bounded Semi-linear Languages

Here we recall details of a construction (see [11]) of an algebro-geometrical
nature, that we will use in the proof of Theorem1.

On the Commutative Equivalence of Bounded Semi-linear Codes 125

4.1 A Geometrical Decomposition of a Simple Set of Nk

Let B be a simple set of Nk of dimension m > 0:

B = b0 +b⊕
1 + · · ·+b⊕

m = {b0 +x1b1 + · · ·+xmbm | xi ∈ N, 1 ≤ i ≤ m}, (8)

where the vectors b0,b1, . . . ,bm form the representation of B. Let

(N1, . . . , Nm) (9)

be a sequence of m positive integers. From an intuitive point of view, our goal is to
define, according to this sequence of m positive integers, a suitable decomposition
of B into parallelepipeds of dimension lower than or equal to m. For this purpose,
let {+,−} be an alphabet of two symbols and let E be the set

E = {(ε1, . . . , εm) | εi ∈ {+,−}, i = 1, . . . ,m},

of all sequences of length m with elements in the set {+,−}. With every sequence
(ε1, . . . , εm) ∈ E , we associate the set of vectors B(ε1,...,εm) defined as:

B(ε1,...,εm) = {b0 + x1b1 + · · · + xmbm | xi ∈ Ri, 1 ≤ i ≤ m}, (10)

where, for every i = 1, . . . ,m, one has:

Ri = {x ∈ N | x ≥ Ni} if εi = +, Ri = {x ∈ N | x < Ni} if εi = −.

One can verify that the family (10) is a finite set of pairwise disjoint semi-simple
sets that gives a partition of B. The partition (10) can be refined as follows. Let
(ε1, . . . , εm) ∈ E \ {(−,−, . . . ,−)}, that is, there exists i, with 1 ≤ i ≤ m, where
εi = +. Then there exists a non-negative integer p, depending on (ε1, . . . , εm),
such that the set of indices i, with i = 1, . . . , m is partitioned in two sets:

I−
ε1···εm

= {i1, . . . , ip}, I+ε1···εm
= {ip+1, . . . , im}, (11)

where εi�
= − for � = 1, . . . , p, and εi�

= + for � = p + 1, . . . ,m.
It is worth remarking that:

– If, for every i = 1, . . . ,m, εi = +, then I−
ε1···εm

= ∅;
– the integer p depends upon the sequence (ε1, . . . , εm).

Denote by C+
ε1···εm

the set of all sequences

(rip+1 , . . . , rim
). (12)

with 0 ≤ ri�
< Ni�

, i� ∈ I+ε1···εm
. For every sequence (rip+1 , . . . , rim

) in C+
ε1···εm

,

define the set of vectors B
(ε1,...,εm)
rip+1 ···rim

as:

b0 +
p∑

�=1

{ci�
bi�

| 0 ≤ ci�
< Ni�

} +
m∑

�=p+1

{(ri�
+ Ni�

xi�
)bi�

| xi�
≥ 1} . (13)

126 A. Carpi and F. D’Alessandro

One can verify that the sets B
(ε1,...,εm)
rip+1 ···rim

are pairwise disjoint, semi-simple and
they give a partition of B(ε1,...,εm). Thus, by the last remarks, the simple set B
admits the partition into semi-simple sets

B− ∪
⋃

(ε1,...,εm)∈E\{(−,−,...,−)}

⋃

(rip+1 ,...,rim)∈C+
ε1···εm

B
(ε1,...,εm)
rip+1 ···rim

, (14)

where B− denotes the set B(ε1,...,εm) such that, for every i = 1, . . . ,m, εi = −.
Let L− = ϕ(B−) and let

L
(ε1,...,εm)
rip+1 ···rim

= ϕ(B(ε1,...,εm)
rip+1 ···rim

), (15)

be the languages obtained as the images, under the map ϕ, of the sets of the
family (13). In view of the last remarks and Theorem4, we get

Theorem 10. The family (15), together with L−, is a partition of L.

4.2 The Construction of the Regular Language

Let L ⊆ u∗
1 · · · u∗

k be a bounded semi-linear language. By Theorem4 there exists
a semi-simple set B of Nk such that ϕ(B) = L and ϕ is injective on B.

Now we assume that B = {b0 + x1b1 + · · · + xmbm | xi ∈ N, 1 ≤ i ≤ m} is
a simple set satisfying Assumption 5, already introduced in Sect. 3:

For every i = 0, . . . , m, the word ϕ(bi) contains two distinct letters.

Let c be a non-negative integer and β(c) = Πm
�=1|ϕ(b�)|c.

For every i = 1, . . . , m, let Ni(c) be the number defined as Ni(c) = β(c)/|ϕ(bi)|.
From now on, we will assume that c is a positive integer such that, for every
i = 1, . . . ,m, Ni(c) > mk(γ + 1), where m is the number of the vectors of the
representation of B and γ is the fixed constant of Lemma 7. The list of (possibly
equal) words

ϕ(N1(c)b1), . . . , ϕ(Nm(c)bm) (16)

satisfy the hypotheses of Lemma 8. Hence by applying this lemma to the list
(16), one gets the existence of a code of m distinct words W = {w1, . . . , wm},
each of length β(c), where, for every i = 1, . . . , m, ψ(wi) = ψ(ϕ(Ni(c)bi)). Thus
we can define the bijective function such that, for every i = 1, . . . ,m,

Ni(c)bi −→ wi, (17)

maps the i-th vector Ni(c)bi into the i-th word of W.
For the sake of simplicity, from now on, the numbers N1(c), . . . , Nm(c) and

β(c) will be denoted respectively as:

N1, . . . , Nm, β. (18)

Let us now consider the partition (14) of B, given in Subsect. 4.1, with respect
to the sequence (N1, . . . , Nm).

On the Commutative Equivalence of Bounded Semi-linear Codes 127

In order to simplify the notation, we let B1, . . . ,Bs, s ≥ 1, denote an enu-
meration of the sets of (13). Hence, for every (ε1, . . . , εm) ∈ E \ (−,−, · · · ,−),
and for every (rip+1 , . . . , rim−p

) ∈ C+
ε1···εm

, there exists exactly one index i, with
1 ≤ i ≤ s such that Bi = B

(ε1,...,εm)
rip+1 ···rim

.
Let us associate with every set Bi, with i = 1, . . . , s, the regular language:

L′
i = ϕ

⎛

⎝b0 +

{
p∑

�=1

ci�
bi�

∣∣∣∣∣ 0 ≤ ci�
< Ni�

}
+

m∑

�=p+1

ri�
bi�

⎞

⎠ w+
ip+1

w+
ip+2

· · · w+
im

,

(19)
where, for every � = p + 1, . . . , m, wi�

is the word of the code W associated by
the coding (17) to the index i�.

In order to keep our notation uniform, we denote the languages of the family
(15) as Li = ϕ(Bi), for every i = 1, . . . , s.

Let u ∈ Li. By Theorem 4 there exists exactly one vector b ∈ Bi =
B

(ε1,...,εm)
rip+1 ···rim

such that u = ϕ(b). Moreover by the fact that b0, . . . ,bm form the
representation of B, there exist exactly a tuple xi�

≥ 1, with i� = p + 1, . . . ,m
and a tuple ci�

, with i� = 1, . . . , p where 0 ≤ ci�
< Ni�

such that

b = v +
m∑

�=p+1

Ni�
xi�

bi�
, xi�

> 0,

with v = b0 +
∑p

�=1 ci�
bi�

+
∑m

�=p+1 ri�
bi�

.
Let us define the map: fi : Li −→ L′

i such that, for every u ∈ Li,

fi(u) = ϕ(v)w
xip+1
ip+1

· · · wxim
im

. (20)

One can prove that fi is a bijection from Li to L′
i that preserves the Parikh

vectors of words of Li (cf [11], Lemma 10). Let L′ be the union of all the languages
(19) together with L−:

L′ = L− ∪
s⋃

j=1

L′
j . (21)

It is worth noticing that the construction of L′ can be effectively done, starting
from an effective presentation of L. Let

f : L → L′, (22)

be the map defined as follows: on the set L−, f coincides with the identity and,
on the set Li, for every i = 1, . . . , s, f coincides with the map fi defined in (20).

In view of Theorem 10, f is well defined as a map from L into L′. Since every
map fi of (20) is a surjection from Li onto L′

i, that preserves the Parikh vectors,
then f does the same from L into L′.

The injectivity of f comes immediately from the fact that the languages (19)
and L− = ϕ(B−) are all pairwise disjoint (cf [11], Lemma 9). Hence L and L′

are commutatively regular. More precisely one has

Theorem 11. The map f is a bijection of L and L′, preserving Parikh vectors.

128 A. Carpi and F. D’Alessandro

5 The Main Result

Let L ⊆ u∗
1 · · · u∗

k be a bounded language such that ϕ(B) = L for a semi-simple
set B of Nk and ϕ is injective on B. For the sake of simplicity, we first prove
Theorem 1 in the case that B is a simple set.

5.1 The Simple Case

Let B = {b0 + x1b1 + · · · + xmbm | xi ∈ N, 1 ≤ i ≤ m} be the simple set such
that L = ϕ(B). Moreover we suppose that B satisfies Assumption 5.

In order to prove the theorem, the following lemma is needed.

Lemma 12. The language L′ is a code over A.

Proof. Since, by construction, L′ ⊆ LW∗, it is sufficient to show that the set
LW∗ is a code. In view of Lemma 9, this result will be achieved if we show that
L ∪ W is a code and L ∩ W = ∅. We notice that

LA∗ ∩ WA∗ = ∅. (23)

Indeed, by construction, the word u of Eq. (5) is a prefix of all words of WA∗,
while by Lemma 7, u is not a prefix of any word in LA∗. Taking into account
that both L and W are prefix codes, from Eq. (23) one easily derives that also
L ∪ W is a prefix code and, moreover, L ∩ W = ∅. This completes the proof. �
Proof (of Theorem 1, for simple sets). By construction and by the latter lemma,
L′ is a regular code such that L ∼ L′. Let us now show that L∗ ∼ (L′)∗. Let
f : L → L′ be the map (22) between L and the regular language L′. In view of
Theorem 11, f is a bijection preserving the Parikh vectors. Let g : L∗ → L′∗ be
the morphism generated by the map f on L: for every u ∈ L∗

g(u) =
{

ε if u = ε
f(v1) · · · f(vn) if u = v1 · · · vn, vi ∈ L, n ≥ 1 (24)

Since L is a code, every word of L+ admits a unique factorization over L, thus
implying that g is well defined as a map. Since f preserves the Parikh vectors,
one easily verifies that g does it as well, that is, for every u ∈ L∗, one has
ψ(g(u)) = ψ(u). By construction, g is a surjective mapping from L∗ onto L′∗.

Let us now verify that g is injective. Assume that g(u) = g(u′), for u, u′ ∈ L∗.
One can suppose that u, u′ �= ε, so that u = v1 · · · vn, vi ∈ L, n ≥ 1, and u′ =
v′
1 · · · v′

�, v′
i ∈ L, � ≥ 1. From the latter we get f(v1) · · · f(vn) = f(v′

1) · · · f(v′
�),

where f(vi), f(v′
j) ∈ L′, 1 ≤ i ≤ n, 1 ≤ j ≤ �. By Lemma 12, one has n = � and

for every i = 1, . . . , n, f(vi) = f(v′
i). By the injectivity of f , from the latter one

has vi = v′
i, for every i = 1, . . . , n, so u = u′. Thus g is a bijection between L∗

and L′∗, preserving the Parikh vectors, so L∗ ∼ L′∗. �
The following example clarifies some of the basic ideas underlying the proof of
Theorem 1.

On the Commutative Equivalence of Bounded Semi-linear Codes 129

Example 13. Let L = {anbmcmdn : n,m ≥ 0} be the bounded semi-linear
language over the alphabet A = {a, b, c, d}. The Ginsburg map is defined as
ϕ : N

4 → a∗b∗c∗d∗, and L = ϕ(B), where B is the simple subset of N
4

B = {v0 + nv1 + mv2 : n,m ≥ 0}, where v1 = (1, 0, 0, 1), v2 = (0, 1, 1, 0) and
v0 = (0, 0, 0, 0). Notice that ϕ(v1) = ad, ϕ(v2) = bc and ϕ(v0) = ε, so that B
satisfies a lighter variant of Assumption 5. It is easily verified that L is a prefix
set and L ∩ A+ is a prefix code.

The structure of the set B is sufficiently simple not to use the partition
procedure of Sect. 4, in order to construct the regular language L′ such that
L ∼ L′. However, the decomposition of L, on which the construction of L′ is
based upon, follows a (kind of) similar argument.

Since ϕ is injective on N
4, every vector v = (n,m,m, n) of B can be faithfully

represented by the word anbmcmdn, so that we may directly work on the language
L and get, for this language, the partition L = L0∪L1∪L2∪L3∪L4∪L5, where

– L0 = {ε, abcd}, L1 = {andn : n ≥ 1},
– L2 = {bmcm : m ≥ 1}, L3 = {a2+nb2+mc2+md2+n : n,m ≥ 0},
– L4 = {a2+nbcd2+n : n ≥ 0}, L5 = {ab2+mc2+md : m ≥ 0}.

Let L′ be the regular language L′ = L0 ∪ L′
1 ∪ L′

2 ∪ L′
3 ∪ L′

4 ∪ L′
5, where the L′

i ’s
are the regular languages defined as:

– L′
1 = {(ad)n−1da : n ≥ 1}, L′

2 = {(bc)m−1cb : m ≥ 1},
– L′

3 = {a2b2(ad)n(bc)mc2d2 : n,m ≥ 0}, L′
4 = {a2(ad)n(bc)d2 : n ≥ 0},

– L′
5 = {b2(ad)(bc)mc2 : m ≥ 0}.

Note that all the languages of the partition of L′ are pairwise disjoint and that
L′ is a prefix set. Let f : L → L′ be the map defined as follows:

– f is the identity on L0,
– ∀ v = andn ∈ L1, f(v) = (ad)n−1da ∈ L′

1,
– ∀ v = bmcm ∈ L2, f(v) = (bc)m−1cb ∈ L′

2,
– ∀ v = a2+nb2+mc2+md2+n ∈ L3, f(v) = a2b2(ad)n(bc)mc2d2 ∈ L′

3,
– ∀ v = a2+nbcd2+n ∈ L4, f(v) = a2(ad)n(bc)d2 ∈ L′

4,
– ∀ v = ab2+mc2+md ∈ L5, f(v) = b2(ad)(bc)mc2 ∈ L′

5.

One easily verifies that the restriction of f on each Li is a bijection between
Li and L′

i that preserves the Parikh vectors, so that Li ∼ L′
i. Moreover, since

the languages Li’s provide a partition of L, and the languages L′
i’s provide a

partition of L′, one easily gets L ∼ L′.

5.2 The Semi-simple Case

We outline the proof of Theorem1 in its full generality. The proof essentially
reuses the arguments of the previous subsection. In the general case we can
decompose L as the disjoint union L =

⋃n
i=1 Li, where, for i = 1, . . . , n, Li =

ϕ(Bi) for a suitable simple set Bi. Moreover all sets Bi satisfy Assumption 5. By
the results of Sect. 4 and Subsect. 5.1, for all i = 1, . . . , n, one can find a regular
code L′

i, a uniform code Wi and an integer γi such that

130 A. Carpi and F. D’Alessandro

1. Li ∼ L′
i,

2. L′
i ⊆ LiW∗

i ,
3. WiA

∗ ∩ LA∗ = ∅,
4. the word aγib is a prefix of all the words of Wi.

Moreover, as shown in the proof of Lemma7, the integers γ1, . . . , γn can be
chosen arbitrarily, provided that they are sufficiently large. Thus, with no loss
of generality, we may assume that the integers above are pairwise distinct. Since
the sets Li, i = 1, . . . , n, are pairwise disjoint subsets of the prefix code L, one
easily derives that the sets LiW∗

i are pairwise disjoint too. Thus, by Condition 2,
the sets L′

i are pairwise disjoint, too. This, together with Condition 1, implies
that the set L′ =

⋃n
i=1 L′

i is commutatively equivalent to L.
Now, to complete the proof, it is sufficient to verify that L′ is a code. First,

let us verify that
W = W1 ∪ · · · ∪ Wn,

is a prefix code. Indeed, let w ∈ Wi, 1 ≤ i ≤ n. The word w cannot be a prefix
of another word of Wi because Wi is a uniform code and it cannot be a prefix of
a word w′ ∈ Wj , with j �= i, because aγib is a prefix of w while aγj b is a prefix
of w′ and γi �= γj . We conclude that W is a prefix code.

In view of Condition 3, one derives that also the set L ∪ W is a prefix code
and, moreover, L ∩ W = ∅. Thus, by Lemma 9, LW ∗ is a code. Observing that,
in view of Condition 2, L′ ⊆ LW∗, we conclude that L′ is a regular code. Note
that all the steps of the construction of L′ are constructive.

Finally, by using the very same argument of the proof of Theorem1 for
simple sets, one constructs a bijection between L∗ and L′∗, preserving the Parikh
vectors, thus implying L∗ ∼ L′∗. This completes the proof. �

References

1. Béal, M.-P., Perrin, D.: On the generating sequences of regular languages on k
symbols. J. ACM 50, 955–980 (2003)

2. Boasson, L., Restivo, A.: Une Caractérisation des Langages Algébriques Bornés.
ITA 11, 203–205 (1977)

3. Baron, G., Kuich, W.: The characterization of nonexpansive grammars by rational
power series. Inf. Control 48, 109–118 (1981)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata Encyclopedia of Math-
ematics and its Applications, vol. 129. Cambridge University Press, Cambridge
(2009)

5. Bridson, M.R., Gilman, R.H.: Context-free languages of sub-exponential growth.
J. Comput. Syst. Sci. 64, 308–310 (1999)

6. Carpi, A., D’Alessandro, F.: On the commutative equivalence of context-free lan-
guages. In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 169–181.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 14

7. Choffrut, C., D’Alessandro, F., Varricchio, S.: On bounded rational trace lan-
guages. Theory Comput. Syst. 46, 351–369 (2010)

https://doi.org/10.1007/978-3-319-98654-8_14

On the Commutative Equivalence of Bounded Semi-linear Codes 131

8. Chomsky, N., Schützenberger, M.-P.: The algebraic theory of context-free lan-
guages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal
Systems, pp. 118–161. North Holland Publishing Company, Amsterdam (1963)

9. D’Alessandro, F., Intrigila, B., Varricchio, S.: The Parikh counting functions of
sparse context-free languages are quasi-polynomials. Theoret. Comput. Sci. 410,
5158–5181 (2009)

10. D’Alessandro, F., Intrigila, B., Varricchio, S.: Quasi-polynomials, linear Diophan-
tine equations and semi-linear sets. Theoret. Comput. Sci. 416, 1–16 (2012)

11. D’Alessandro, F., Intrigila, B.: On the commutative equivalence of bounded
context-free and regular languages: the code case. Theoret. Comput. Sci. 562,
304–319 (2015)

12. D’Alessandro, F., Intrigila, B.: On the commutative equivalence of semi-linear sets
of Nk. Theoret. Comput. Sci. 562, 476–495 (2015)

13. D’Alessandro, F., Intrigila, B.: On the commutative equivalence of bounded
context-free and regular languages: the semi-linear case. Theoret. Comput. Sci.
572, 1–24 (2015)

14. D’Alessandro, F., Ibarra, O.H., McQuillan, I.: On finite-index indexed grammars
and their restrictions. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2017. LNCS, vol. 10168, pp. 287–298. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53733-7 21

15. de Luca, A., Varricchio, S.: Finiteness and Regularity in Semigroups and Formal
Languages. Springer, Berlin (1999). https://doi.org/10.1007/978-3-642-59849-4

16. Eilenberg, S., Schützenberger, M.-P.: Rational sets in commutative monoids. J.
Algebra 13, 173–191 (1969)

17. Flajolet, P.: Analytic models and ambiguity of context-free languages. Theoret.
Comput. Sci. 49, 283–309 (1987)

18. Ginsburg, S., Spanier, E.H.: Semigroups, presburger formulas, and languages.
Pacific J. Math. 16, 285–296 (1966)

19. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. Mc Graw-Hill,
New York (1966)

20. Gross, M.: Inherent ambiguity of minimal linear grammars. Inf. Control 7, 366–368
(1964)

21. Honkala, J.: Decision problems concerning thinness and slenderness of formal lan-
guages. Acta Inf. 35, 625–636 (1998)

22. Honkala, J.: On Parikh slender context-free languages. Theoret. Comput. Sci. 255,
667–677 (2001)

23. H.Ibarra, O., Ravikumar, B.: On sparseness, ambiguity and other decision problems
for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS
1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1986). https://doi.org/
10.1007/3-540-16078-7 74

24. Ibarra, O.H., McQuillan, I., Ravikumar, B.: On counting functions of languages.
In: Hoshi, M., Seki, S. (eds.) DLT 2018. LNCS, vol. 11088, pp. 429–440. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98654-8 35

25. Ilie, L., Rozenberg, G., Salomaa, A.: A characterization of poly-slender context-free
languages. RAIRO Inform. Théor. Appl. 34, 77–86 (2000)

26. Incitti, R.: The growth function of context-free languages. Theoret. Comput. Sci.
255, 601–605 (2001)

27. Latteux, M., Thierrin, G.: On bounded context-free languages. Elektron. Inform.
Verarb. u. Kybern. 20, 3–8 (1984)

https://doi.org/10.1007/978-3-319-53733-7_21
https://doi.org/10.1007/978-3-319-53733-7_21
https://doi.org/10.1007/978-3-642-59849-4
https://doi.org/10.1007/3-540-16078-7_74
https://doi.org/10.1007/3-540-16078-7_74
https://doi.org/10.1007/978-3-319-98654-8_35

132 A. Carpi and F. D’Alessandro

28. Restivo, A.: A characterization of bounded regular sets. In: Brakhage, H. (ed.)
GI-Fachtagung 1975. LNCS, vol. 33, pp. 239–244. Springer, Heidelberg (1975).
https://doi.org/10.1007/3-540-07407-4 26

29. Trofimov, V.I.: Growth functions of some classes of languages. Kibernetika (Kiev),
(6), 9–12, 149 (1981)

https://doi.org/10.1007/3-540-07407-4_26

Circularly Squarefree Words
and Unbordered Conjugates:

A New Approach

Trevor Clokie, Daniel Gabric, and Jeffrey Shallit(B)

School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
{trevor.clokie,dgabric,shallit}@uwaterloo.ca

Abstract. Using a new approach based on automatic sequences, logic,
and a decision procedure, we reprove some old theorems about circularly
squarefree words and unbordered conjugates in a new and simpler way.
Furthermore, we prove two new results about unbordered conjugates: we
complete the classification, due to Harju and Nowotka, of binary words
with the maximum number of unbordered conjugates, and we prove that
for every possible number, up to the maximum, there exists a word having
that number of unbordered conjugates.

1 Introduction

Throughout this paper, Σk denotes the alphabet {0, 1, . . . , k − 1}.
Two finite words are said to be conjugate if one is a cyclic shift of the other,

as in the English words enlist and listen.
A finite word w has a border x if x �∈ {ε, w} and x is both a prefix and suffix

of w; the two occurrences of x are allowed to overlap each other. For example,
alfa is a border of alfalfa. A finite word w is said to be bordered if it has a
border, and otherwise, it is unbordered. A finite word w if bordered iff it has a
border of length ≤ |w|/2, for if a word has a longer border y, then the nonempty
overlap of the two occurrences of y—one as prefix and one as suffix—provides a
shorter border. For example, alfalfa is also bordered by a.

A finite word w is said to be a square if w = xx for some nonempty word x. An
example in French is the word couscous. A word (finite or infinite) is squarefree
if no nonempty factor is a square. Let μ be the Thue-Morse morphism, defined by
μ(0) = 01 and μ(1) = 10. The Thue-Morse word t = 01101001 · · · is the infinite
fixed point, starting with 0, of μ. Thue [4,12,13] proved that there exist infinite
squarefree words over a three-letter alphabet; also see [2]. A famous example of
such a word can be obtained from the Thue-Morse word as follows: count the
number of 1’s between two consecutive 0’s in t. This gives the so-called ternary
Thue-Morse word

c = 210201 · · · ,

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 133–144, 2019.
https://doi.org/10.1007/978-3-030-28796-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_10

134 T. Clokie et al.

and is squarefree. An alternative description of c is as follows [3]: it is the image,
under τ of the fixed point of the morphism ϕ defined below:

ϕ(0) = 01 τ(0) = 2
ϕ(1) = 20 τ(1) = 1
ϕ(2) = 23 τ(2) = 0
ϕ(3) = 02 τ(3) = 1

A word w is circularly squarefree if every one of its conjugates is squarefree.
For example, outshout is squarefree, but not circularly squarefree. Clearly we
have

Proposition 1. A word is circularly squarefree iff all its conjugates are unbor-
dered.

We now turn to a description of what we do in this paper. Using a complicated
case-based argument, Currie [6] proved that there exist circularly squarefree
ternary words of every length n, except for {5, 7, 9, 10, 14, 17}. The first of our
main results is a new proof of Currie’s theorem, based on the following result:

Theorem 1. For all natural numbers n > 3, except 5, 7, 9, 10, 14, 17, 21, and 28,
there exists a factor x = x(n) of the ternary Thue-Morse word c that is either

(a) of length n − 3, and x021 is circularly squarefree;
(b) of length n − 4, and x2120 is circularly squarefree.

The virtues of our proof are (a) it requires very little work—just setting up the
appropriate logical predicates—and (b) it gives specific examples of the desired
words that are very easy to describe and compute. For a completely different
approach, which has the virtue of allowing one to give a good estimate for the
number of circularly squarefree words of length n, see Shur [11].

We now turn to unbordered conjugates. In two fundamental papers, Harju
and Nowotka [7,8] studied the unbordered conjugates of a word. In particular,
letting nuc(w) denote the number of unbordered conjugates of w, and mnuck(n)
denote the maximum number of unbordered conjugates of a length-n word over
a k-letter alphabet, they proved that

(a) for binary words w of length n ≥ 4 we have nuc(w) ≤ n/2;
(b) for n > 2 even, there exists a binary word of length n having n/2 unbordered

conjugates iff n = 2k or n = 3 · 2k for some k ≥ 1.

In other words, they explicitly computed mnuc2(n) for all even n and
bounded it above for odd n. We complete the understanding of mnuc2(n) by
proving that mnuc2(n) = �n/2� for all odd n > 3. Our strategy is to show that
the maximum of nuc(w), over all words of length n, is actually achieved by a
factor of the Thue-Morse word.

More precisely, we prove

Theorem 2. For all n ≥ 1, there exists a length-n factor w of the Thue-Morse
word t with nuc(w) = mnuc2(n). Furthermore, such a factor is guaranteed to
occur starting at a position ≤ n in t.

Circularly Squarefree Words and Unbordered Conjugates: A New Approach 135

2 Circularly Squarefree Ternary Words via Walnut

Since the ternary Thue-Morse word c is squarefree, it is reasonable to hope its
factors might be a good source of circularly squarefree words. Unfortunately, c
contains circularly squarefree words of length n for only about 1/8 of all natural
numbers n, as the following result shows.

Theorem 3. There is a length-n factor of c that is circularly squarefree iff (n)2
is accepted by the automaton in Fig. 1.

0

0

11

2

0

3

1

40

5

1

0

6

1

0
7

1

8

0

9

1

0

10

1110

12

11

13

00

1

0

14

1

1

0

0
1

1

0

0

1

Fig. 1. Automaton accepting lengths (n)2 of circularly squarefree words occurring in c

To prove this result, we make use of the fact that many first-order statements
concerning claims about k-automatic sequences are decidable [5]. Furthermore,
there is free software called Walnut available to decide these claims [9].

Let (n)k denote the canonical base-k representation of n, starting with
the most significant digit, having no leading zeroes. A sequence (an)n≥0 is k-
automatic if there is a deterministic finite automaton with output (DFAO) tak-
ing (n)k as input, and reaching a state with an as output. For example, Fig. 2
illustrates the DFAO generating the sequence c. The notation q/a in a state
means the name of the state is q and the output is a. For more about automatic
sequences, see [1].

0/2

0
1/11

1

2/00

0

3/1

1

0
1

Fig. 2. DFAO computing the sequence c

136 T. Clokie et al.

Proof. We can use the ideas in [10], adapted for our case. We create first-order
logical predicates crep, facge2, and circsf as follows:

– crep(i,m, p, n, s) evaluates to true iff in the length-n word (considered cir-
cularly) starting at position s of the word c, there is a factor w of length m
and (not necessarily least) period p ≥ 1 starting at position i;

– facge2(n, s) evaluates to true iff in the length-n word (considered circularly)
starting at position s of the word c there is a square or higher power;

– circsf(n) evaluates to true iff some length-n factor (considered circularly) of
the word c has no squares.

crep(i,m, n, p, s) := ∃j ((j ≥ i) ∧ (j + p < s + n) ∧ (j + p < i + m)) =⇒ c[j] = c[j + p])∧
(∀j ((j ≥ i) ∧ (j < s + n) ∧ (j + p ≥ s + n) ∧ (j + p < i + m)) =⇒ c[j] = c[j + p − n])∧
(∀j ((j ≥ i) ∧ (j ≥ s + n) ∧ (j + p < i + m)) =⇒ c[j − n] = c[j + p − n])

facge2(n, s) := ∃i,m, p (p ≥ 1) ∧ (m ≤ n) ∧ (i ≥ s) ∧ (i < s + n) ∧ (m ≥ 2p) ∧ crep(i,m, n, p, s)

circsf(n) := ∃s¬ facge2(n, s)

When we evaluate these predicates in Walnut, we get the automaton depicted
in Fig. 1. It accepts those (n)2 for which circsf evaluates to true.

Remark 1. All the Walnut code for the theorems in this paper is available at
https://cs.uwaterloo.ca/∼shallit/papers.html. The reader can therefore verify
our results.

Corollary 1. The number of lengths �, with 2n ≤ � < 2n+1 and n ≥ 4, such
that c contains a circularly squarefree factor of length �, is 2n−3 − Fn−3 + 2,
where Fn is the n’th Fibonacci number.

Proof. By standard techniques, by determining the roots of the characteristic
polynomial of the 15×15 matrix encoding transitions of the automaton in Fig. 1.

So while the factors of the ternary Thue-Morse word alone do not suffice for
our purpose, it turns out that a small modification of them do. We now give the
proof of our first main result, Theorem1.

Proof (of Theorem 1). Let n ≥ 4 and w ∈ {x021, y2120}, where x, y are factors
of the ternary Thue-Morse word c of lengths n − 3 and n − 4, respectively.

First, we create a predicate sq021(i, n, p, s) which evaluates to true if w′ :=
x021x02 contains a square of order p with p ≥ 1 and 2p ≤ n beginning at index
i − s, where x = c[s..s + n − 4]. We do this by defining w[j] for all j such that
i ≤ j < i + p as follows:

w[j] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c[j], if j < s + n − 3;
0, if j ∈ {s + n − 3, s + 2n − 3};
2, if j ∈ {s + n − 2, s + 2n − 2};
1, if j = s + n − 1;
c[j − n], if s + n ≤ j < s + 2n − 3.

https://cs.uwaterloo.ca/~shallit/papers.html

Circularly Squarefree Words and Unbordered Conjugates: A New Approach 137

0

0

11

2

0

3

1

40

5

1

6

0

71

8

0

91

100

11

1

01
1

12
0

13

0

14

1
1

15
0

1

16

0

1
17

0

1
0

18
0

191

1 0

0
1

0

1

1
0

1

0
1

200
1

0

Fig. 3. DFA computing ∃s sqfree021(n, s)

The goal is that sq021 should represent the implication

∀j ((i ≤ j) ∧ (j < i + p)) =⇒ w[j] = w[j + p].

It is formed by constructing the conjunction of the predicates

∀j ((i ≤ j) ∧ (j < i + p) ∧ (w[j] = α) ∧ (w[j + p] = β)) =⇒ α = β

for each possible combination j and j + p, and simplifying.

0

0

11

2

0

3

1

40

5

1

6

0

71

80

91

1
100

0
1

1

11

0

0

1
0

1

01

1

0

Fig. 4. DFA computing acceptable n

Next, we create a second predicate sqfree021(n, s), which evaluates to true
if there exists x where w = x021 is circularly squarefree, for the given values of
n and s:

138 T. Clokie et al.

sqfree021(i, n, p, s) := (n > 3) ∧ (∀i, p ((1 ≤ p) ∧ (2p ≤ n) ∧ (s ≤ i) ∧ (i < s + n))
=⇒ ¬(sq021(i, n, p, s))).

Similarly, we create the analogous predicates sq2120(i, n, p, s) and
sqfree2120(n, s) for the word w′ := y2120y212.

Finally, the predicates

test021(n) := ∃s sqfree021(n, s)
test2120(n) := ∃s sqfree2120(n, s)

return true if there exists a length-n squarefree word formed by concatenating
some factor of c with 021 (respectively, 2120). The automaton for test021(n) is
depicted in Fig. 3; the automaton for test2120(n) is omitted for space consider-
ations.

When we now evaluate the predicate

currie(n) := test021(n) ∨ test2120(n)

with Walnut, we get the automaton depicted in Fig. 4.
By inspection we easily see that the automaton in Fig. 4 accepts the base-2

representation of all n except 0, 1, 2, 3, 5, 7, 9, 10, 14, 17, 21, 28.

As a consequence we now get Currie’s theorem:

Corollary 2. There exist circularly squarefree ternary words of every length n,
except for n ∈ {5, 7, 9, 10, 14, 17}.
Proof. Theorem 1 gives the result for all but finitely many n. It is easy to verify
by a short computation that there are cyclically squarefree words of lengths
0, 1, 2, 3, 21, 28, and none for lengths 5, 7, 9, 10, 14, 17.

Remark 2. These calculations were done in Walnut on a Linux machine (2
CPU—Intel E5-2697 v3 Xeon, 256 GB of RAM). Computing the automaton
for sq021 took 115.505 s, and the automaton for sq2120 took 124.908 s.

3 Unbordered Conjugates

Let σ : Σ∗
k → Σ∗

k denote the cyclic shift function, where σ(ε) = ε, σ(cw) = wc
for w ∈ Σ∗

k and c ∈ Σk. Let σ0(w) = w and σi(w) = σi−1(σ(w)) for i ≥ 1.
Suppose w is a binary word of length n. Let β : Σ∗

k → Σ∗
k be the border cor-

relation function of a word (introduced by Harju and Nowotka [7]), and defined
as follows: β(w) = a0a1 · · · an−1, where

ai =

{
u, if σi(w) is unbordered;
b, if σi(w) is bordered.

Circularly Squarefree Words and Unbordered Conjugates: A New Approach 139

For example, β(0001) = ubbu since 0001 is unbordered, while 0010, and 0100
are both bordered, and 1000 is unbordered. Let u, v ∈ Σ∗

k . We say u is the i’th
cyclic shift of v if σi(v) = u.

A result from Harju and Nowotka [7] shows that a binary word has no two
consecutive cyclic shifts that are unbordered. This result immediately tells us
that a binary word of length n can have at most �n/2� unbordered conjugates.
For a binary word w of even length to achieve this bound, every other cyclic
shift must be unbordered, or, in other words either β(w) = (ub)|w|/2 or β(w) =
(bu)|w|/2. Harju and Nowotka [7] showed that the only words of even length that
achieve this bound are the circularly overlap-free words, which are of length 3 ·2i
and 2i for i ≥ 1.

Let w be a binary word. Suppose w is of even length and is not circu-
larly overlap-free. Clearly w cannot have |w|/2 unbordered conjugates, but
it could potentially have |w|/2 − 1 unbordered conjugates. Then β(w) =
(ub)ib(ub)|w|/2−i−1b for some i ≥ 0, up to conjugation. Now suppose w is of odd
length. No circularly overlap-free words exist of odd length, so it makes sense to
think that w could contain a maximum of �|w|/2� unbordered conjugates. Then
β(w) = (ub)�|w|/2b, up to conjugation.

Let w be a bordered binary word. Then w = uvu for some words u and v.
By the left border of w we mean the occurrence of u that begins at position 1 of
w, and by the right border we mean the occurrence of u that begins at position
|w| − |u| + 1 of w.

Now we prove Theorem 2.

Proof. When n = 1, 2, 3 the maximum number of unbordered conjugates
mnuc2(n) is achieved by the words 0, 01, and 011 respectively. Specifically we
have that mnuc2(1) = 1, mnuc2(2) = 2, and mnuc2(3) = 2. It is readily verified
that each of these words occur as a factor of the Thue-Morse word at position
≤ n.

Let w be a length-n word at position m of the Thue-Morse word. The first
step is to create a first-order predicate isBorder(l,m, n) that asserts that a cyclic
shift of w has a border of a certain length. More specifically, we want to know
whether the l’th cyclic shift of w has a border of length k. There are three cases
to consider.

1. When a prefix of the right border is a suffix of w and a suffix of the right border
is a prefix of w. In other words, w = yuvx for words u, v, x, y where xy = u,
|y| = l, and |u| = k. This predicate is denoted by isBorderC1(k, l,m, n).

2. When both borders are completely contained inside of w. In other words,
w = yuux for words y, u, x where |yu| = l, and |u| = k. This predicate is
denoted by isBorderC2(k, l,m, n).

3. When a prefix of the left border is a suffix of w and a suffix of the left border
is a prefix of w. In other words, w = yvux for words u, v, x, y where xy = u,
|yvu| = l, and |u| = k. This predicate is denoted by isBorderC3(k, l,m, n).

140 T. Clokie et al.

isBorderC1(k, l,m, n) := ((k + l > n) ⇒ ((∀i(i < n − l) ⇒ T [m + l + i] = T [m + l − k + i])

∧ (∀i(i < k + l − n) ⇒ T [m + i] = T [m + n − k + i])))

isBorderC2(k, l,m, n) := (((k + l ≤ n) ∧ (l ≥ k)) ⇒ (∀i (i < k) ⇒
T [m + l + i] = T [m + l − k + i]))

isBorderC3(k, l,m, n) := (((k + l ≤ n) ∧ (l < k)) ⇒ ((∀i (i < k − l) ⇒ T [m + n − k + l + i]

= T [m + l + i]) ∧ (∀i (i < l) ⇒ T [m + i] = T [m + k + i])))

isBorder(k, l,m, n) := isBorderC1(k, l,m, n) ∧ isBorderC2(k, l,m, n) ∧ isBorderC3(k, l,m, n).

We define the predicate isBordered(l,m, n) that asserts that the l’th cyclic
shift of a length-n word at position m in the Thue-Morse word is bordered. We
can create this predicate by checking whether this word has a border of size
≤ n/2.

isBordered(l,m, n) := ∃i(2i ≤ n ∧ i ≥ 1 ∧ isBorder(i, l,m, n)).

Recall that when |w| is odd and w has a maximum number of unbor-
dered conjugates, we have that β(w) = (ub)�|w|/2b, up to conjugation. So we
have exactly one pair of adjacent bordered cyclic shifts, and the rest of the
cyclic shifts of w alternate between bordered and unbordered. The predicate
isAlternating0(l,m, n) asserts that all of the cyclic shifts of a length-n word at
position m in the Thue-Morse word alternate between unbordered and bordered,
except for the l’th and l + 1’th cyclic shifts, which are both bordered.

isAlternating0(l,m, n) :=
∀i(((i �= l ∧ i < n − 1) ⇒ (isBordered(i,m, n) = ¬ isBordered(i + 1,m, n))))∧
(((i �= l) ∧ (i = n − 1)) ⇒ (isBordered(n − 1,m, n) = ¬ isBordered(0,m, n))).

Now we create a predicate hasMNUCO(m,n) that asserts that a length-n
word at position m in the Thue-Morse word achieves the maximum number of
unbordered conjugates.

hasMNUCO(m,n) := ∃i(((i < n − 1 ∧ isBordered(i,m, n) ∧ isBordered(i+ 1,m, n))∨
(i = n − 1 ∧ isBordered(n − 1,m, n) ∧ isBordered(0,m, n))) ∧ isAlternating0(i,m, n)).

Similarly, recall that when |w| is even and w has a maximum number of
unbordered conjugates, we have that β(w) = (ub)ib(ub)|w|/2−i−1b for some i ≥ 0
or β(w) = (ub)|w|/2, up to conjugation. So we have that either all of the cyclic
shifts of w alternate between bordered and unbordered, or there are exactly two
pairs of adjacent bordered cyclic shifts, and the rest of the cyclic shifts of w
alternate between bordered and unbordered. The predicate

isAlternatingE(e, l,m, n)

asserts that all of the cyclic shifts of a length-n word at position m in the
Thue-Morse word alternate between unbordered and bordered, except for the

Circularly Squarefree Words and Unbordered Conjugates: A New Approach 141

l’th, l + 1’th, e’th, and e + 1’th cyclic shifts, which are all bordered. Note that
isAlternatingE(n, n,m, n) asserts that all of the cyclic shifts of a length n word at
position m in the Thue-Morse word alternate between unbordered and bordered.

isAlternatingE(e, l,m, n) := (∀i (((i �= l ∧ i �= e ∧ i < n − 1) ⇒ (isBordered(i,m, n) ⇔
¬ isBordered(i + 1,m, n)))) ∧ (((i �= l) ∧ (i �= e) ∧ (i = n − 1)) ⇒
(isBordered(n − 1,m, n) ⇔ ¬ isBordered(0,m, n))))

Now we create a predicate hasMNUCE(m,n) that asserts that a length-n
word at position m in the Thue-Morse word achieves the maximum number of
unbordered conjugates.

hasMNUCE(m,n) := (∃i, j ((i < j) ∧ (i < n − 1 ∧ isBordered(i,m, n) ∧ isBordered(i + 1,m, n))∧
((j = n − 1 ∧ isBordered(n − 1,m, n) ∧ isBordered(0,m, n)) ∨ ((j < n − 1)∧
isBordered(j,m, n) ∧ isBordered(j + 1,m, n))) ∧ isAlternatingE(i, j,m, n)))∨
isAlternatingE(n, n,m, n).

With these predicates we can write a predicate asserting that the Thue-Morse
word contains factors of every length n > 3 that are maximally unbordered and
occur at position ≤ n. We split the computation into cases, one for even length
words, and one for odd:

∀n ((n ≥ 2) =⇒ (∃i hasMNUCE(i, 2n)) ∧ i ≤ 2n)
∀n ((n ≥ 2) =⇒ (∃ihasMNUCO(i, 2n + 1)) ∧ i ≤ 2n + 1),

and Walnut evaluates these predicates to be true.

Thus we have that

mnuc2(n) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if n = 1;
2, if n = 2 or n = 3;
n/2, if n ∈ {2i+1, 3 · 2i : i ≥ 1};
n/2 − 1, if n > 3 even and n �∈ {2i, 3 · 2i : i ≥ 1};
�n/2�, if n > 3 odd.

As a corollary, we easily get the following.

Corollary 3. Let f(n) = mnuc2(n)−�n/2�. Then f is a 2-automatic sequence.

4 More About Unbordered Conjugates

In this section we show that there exist binary words of length n that have
exactly i unbordered conjugates where 1 < i ≤ mnuc2(n).

The general idea behind the proof is to pick some i > 1 and then pick a word
w of odd length such that nuc(w) = i and mnuc2(|w|) = i. Furthermore we only

142 T. Clokie et al.

consider such words w such that one of w’s conjugates contain 000 as a factor.
Then we keep adding 0’s to w precisely where 000 first occurs. This keeps the
number of unbordered conjugates the same. Then we can keep increasing the
size of w in this way until we hit the length we want.

Lemma 1. For n > 4 odd, there exists a word w ∈ Σn
2 such that nuc(w) = �n/2�

and 000 is a factor of some conjugate of w.

Proof. By Theorem 2, such a word w exists as a factor of the Thue-Morse word.
It is well known that the Thue-Morse word is overlap-free. So 000 cannot be a
factor of such a word w. But it is possible that w = 0u00, or w = 00u0 for some
word u. We can check whether this is the case for all odd n > 4 by modifying
our predicate from the proof of Theorem2:

∀n ((n ≥ 2) =⇒ (∃i hasMNUCO(i, 2n+ 1)) ∧ ((T [i] = 0 ∧ T [i+ 1] = 0 ∧ T [2n+ i] = 0)

∨ (T [i] = 0 ∧ T [2n − 1 + i] = 0 ∧ T [2n+ i] = 0))),

which evaluates to true.

Lemma 2. Let n > 4 be odd and w be a binary word of length n such that a
conjugate of w has 000 as a factor and nuc(w) = �n/2�. Then every conjugate
of w contains at most one distinct occurrence of 000 as a factor.

Proof. Suppose, contrary to what we want to prove that a conjugate of w con-
tains at least two distinct occurrences of 000 as a factor. Call this conjugate
w′.

If the two occurrences of 000 overlap, then we can write w′ = s0000t for
some words s, t. Then the cyclic shifts 0ts000, 00ts00, and 0ts000 are bordered.
This means that only �|ts|/2� + 1 of the remaining cyclic shifts of w can be
unbordered since any unbordered cyclic shift must be followed by a bordered
one. But �|ts|/2� + 1 = �(n − 4)/2� + 1 < �n/2�, so the two occurrences of 000
cannot overlap.

If the two occurrences of 000 do not overlap, then we can write w′ = s000t000
for some words s, t where s, and t are non-empty. Then the conjugates 00t000s0,
0t000s00, 00s000t0, and 0s000t00 are bordered. By the same argument as above,
of the remaining cyclic shifts, a maximum of �|st|/2� + 2 of them can be unbor-
dered. But �|st|/2� + 2 = �(n − 6)/2)� + 2 < �n/2�, a contradiction.

Lemma 3. Let n > 4 be odd and w be a binary word of length n such that a
conjugate w′ of w has 000 as a prefix and nuc(w) = �n/2�. Then nuc(w) =
nuc(w′) = nuc(0iw′) for all i ≥ 0.

Proof. Let i ≥ 0 be an integer. We can write w′ = 000u for some word u. It is
clear that 0ju0i+3−j is bordered for all 1 ≤ j ≤ i + 2. Therefore, it suffices to
prove that s000t is bordered if and only if s0i+3t is bordered where u = ts.

First we prove the forward direction. Suppose s000t is bordered. By Lemma 2
we have that s000t contains only one occurrence of 000 as a factor. So 000 is

Circularly Squarefree Words and Unbordered Conjugates: A New Approach 143

neither a prefix of s00 nor a suffix of 00t. Thus, any border of s000t must of
length ≤ min{|s|, |t|} + 2. But such a border would also be a border of s0i+3t.

A similar argument works for the reverse direction. Therefore nuc(w) =
nuc(w′) = nuc(0iw′) for all i ≥ 0.

Theorem 4. For all 1 < i ≤ mnuck(n) there exists w ∈ Σn
k such that nuc(w) =

i.

Proof. Let C = {5, 7, 9, 10, 14, 17}. For k ≥ 4, Harju and Nowotka [8] showed
that for all integers i with 1 < i ≤ n there exists a word w ∈ Σn

k such that
nuc(w) = i. For k = 3, Harju and Nowotka [8] showed that if n �∈ C then for all
integers i with 1 < i ≤ n there exists a word w ∈ Σn

k such that nuc(w) = i, and
if n ∈ C then for all integers i with 1 < i < n there exists a word w ∈ Σn

k such
that nuc(w) = i.

To the best of the authors’ knowledge, there is no known proof of the existence
of such words for k = 2. Suppose k = 2. By Theorem 2 there exists a w ∈ Σn

2

such that w is a factor of the Thue-Morse word and mnuc2(n) = nuc(w). So
assume i < mnuc2(n). By Lemma 1 there exists a binary word u of odd length
m such that nuc(u) = i = �m/2� and 000 is a factor of some conjugate of u.
Let u′ be the conjugate of u such that 000 is a prefix of u′. Lemma 3 tells us
nuc(u) = nuc(u′) = nuc(0n−mu′). Since nuc(0n−mu′) = i and |0n−mu′| = n, we
have that for all 1 < i ≤ mnuc2(n), there exists a w ∈ Σn

2 such that nuc(w) = i.

5 Conclusions

We want to emphasize that our experience shows that rephrasing problems
in combinatorics on words using the first-order logical theory of automatic
sequences can be a useful tool in solving these problems. We encourage oth-
ers to adopt this approach.

Acknowledgments. We thank Dirk Nowotka for helpful discussions. We are very
grateful to the referees for helpful comments, and for reminding us about the paper
[11].

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Allouche, J.P., Shallit, J.O.: The ubiquitous Prouhet-Thue-Morse sequence. In:
Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications.
DISCMATH, pp. 1–16. Springer, London (1999)

3. Berstel, J.: Sur la construction de mots sans carré. Séminaire de Théorie des Nom-
bres, pp. 18.01–18.15 (1978–1979)

4. Berstel, J.: Axel Thue’s Papers on Repetitions in Words: a Translation. No. 20
in Publications du Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal, February 1995

144 T. Clokie et al.

5. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bull. Belgian Math. Soc. 1, 191–238 (1994). corrigendum, Bull. Belg.
Math. Soc. 1, 577 (1994)

6. Currie, J.: There are ternary circular square-free words of length n for n ≥ 18.
Electron. J. Combin. 9, #N10 (2002). https://www.combinatorics.org/v9i1n10

7. Harju, T., Nowotka, D.: Border correlation of binary words. J. Combin. Theory
Ser. A 108, 331–341 (2004)

8. Harju, T., Nowotka, D.: Bordered conjugates of words over large alphabets. Elec-
tron. J. Combin. 15, #N41 (2008). https://www.combinatorics.org/ojs/index.
php/eljc/article/view/v15i1n41

9. Mousavi, H.: Automatic theorem proving in Walnut (2016), arxiv preprint
arXiv:1603.06017. Software available at https://github.com/hamousavi/Walnut

10. Shallit, J., Zarifi, R.: Circular critical exponents for Thue-Morse factors. RAIRO
Inform. Théor. App. 53, 37–49 (2019)

11. Shur, A.M.: On ternary square-free circular words. Electron. J. Combin. 17,
#R140 (2010). https://www.combinatorics.org/ojs/index.php/eljc/article/view/
v17i1r140

12. Thue, A.: Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906). reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell,
editor, Universitetsforlaget, Oslo, pp. 139–158 (1977)

13. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
vid. Selsk. Skr. Mat. Nat. Kl. 1, 1–67 (1912). reprinted in Selected Mathematical
Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, pp. 413–478
(1977)

https://www.combinatorics.org/v9i1n10
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1n41
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v15i1n41
http://arxiv.org/abs/1603.06017
https://github.com/hamousavi/Walnut
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1r140
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v17i1r140

The Undirected Repetition Threshold

James D. Currie and Lucas Mol(B)

The University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
{j.currie,l.mol}@uwinnipeg.ca

Abstract. For rational 1 < r ≤ 2, an undirected r-power is a word of
the form xyx′, where x is nonempty, x′ ∈ {x, xR}, and |xyx′|/|xy| = r.
The undirected repetition threshold for k letters, denoted URT(k), is the
infimum of the set of all r such that undirected r-powers are avoidable
on k letters. We first demonstrate that URT(3) = 7

4
. Then we show that

URT(k) ≥ k−1
k−2

for all k ≥ 4. We conjecture that URT(k) = k−1
k−2

for all
k ≥ 4, and we confirm this conjecture for k ∈ {4, 8, 12}.

Keywords: Repetition thresholds · Gapped repeats ·
Gapped palindromes · Pattern avoidance · Patterns with reversal

1 Introduction

A square is a word of the form xx, where x is a nonempty word. An Abelian
square is a word of the form xx̃, where x̃ is an anagram (or permutation) of x.
The notions of square and Abelian square can be extended to fractional powers
in a natural way. Let 1 < r ≤ 2 be a rational number. An (ordinary) r-power is
a word of the form xyx, where x is a nonempty word, and |xyx|/|xy| = r. An
Abelian r-power is a word of the form xyx̃, where x is a nonempty word, x̃ is an
anagram of x, and |xyx̃|/|xy| = r.1

In general, if ∼ is an equivalence relation on words that respects length (i.e.,
we have |x| = |x′| whenever x ∼ x′), then an r-power up to ∼ is a word of the
form xyx′, where x is nonempty, x ∼ x′, and |xyx′|/|xy| = r. The notion of
r-power up to ∼ generalizes ordinary r-powers and Abelian r-powers, where the
equivalence relations are equality and “is an anagram of”, respectively.

Let ∼ be an equivalence relation on words that respects length. For a real
number 1 < α ≤ 2, a word w is called α-free up to ∼ if no factor of w is an
r-power up to ∼ for r ≥ α. Moreover, the word w is called α+-free up to ∼ if
no factor of w is an r-power up to ∼ for r > α. For every integer k ≥ 2, we say
that α-powers up to ∼ are k-avoidable if there is an infinite word on k letters

1 We use the definition of Abelian r-power of Cassaigne and Currie [5]. We note that
several distinct definitions exist (see [17,28], for example).

J. D. Currie—Supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC), [funding reference number 2017-03901].

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 145–158, 2019.
https://doi.org/10.1007/978-3-030-28796-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_11&domain=pdf
http://orcid.org/0000-0002-0061-3849
http://orcid.org/0000-0002-4295-0632
https://doi.org/10.1007/978-3-030-28796-2_11

146 J. D. Currie and L. Mol

that is α-free up to ∼, and k-unavoidable otherwise. For every integer k ≥ 2, the
repetition threshold up to ∼ for k letters, denoted RT∼(k), is defined as

RT∼(k) = inf{r : r-powers up to ∼ are k-avoidable}.

Since we have only defined r-powers for r ≤ 2, it follows that RT∼(k) ≤ 2 or
RT∼(k) = ∞ for any particular value of k.

It is well-known that squares are 3-avoidable [1]. Thus, for k ≥ 3, we have
that RT=(k) is the usual repetition threshold, denoted simply RT(k). Dejean [14]
proved that RT(3) = 7/4, and conjectured that RT(4) = 7/5 and RT(k) =
k/(k − 1) for all k ≥ 5. This conjecture has been confirmed through the work of
many authors [3,12–14,22,23,25,26].

It is also known that Abelian squares are 4-avoidable [21]. Let ≈ denote
the equivalence relation “is an anagram of”. Thus, for all k ≥ 4, we see that
RT≈(k) is equal to the Abelian repetition threshold (or commutative repetition
threshold) for k letters, introduced by Cassaigne and Currie [5], and denoted
ART(k). Relatively less is known about the Abelian repetition threshold. Cas-
saigne and Currie [5] give (weak) upper bounds on ART(k) in demonstrating that
limk→∞ ART(k) = 1. Samsonov and Shur [28] conjecture that ART(4) = 9/5
and ART(k) = (k − 2)/(k − 3) for all k ≥ 5, and give a lower bound matching
this conjecture.2

For every word x = x1x2 · · · xn, where the xi are letters, we let xR denote
the reversal of x, defined by xR = xn · · · x2x1. For example, if x = time then
xR = emit. Let � be the equivalence relation on words defined by x � x′

if x′ = x or x′ = xR. In this article, we focus on determining RT�(k). We
simplify our notation and terminology as follows. We refer to r-powers up to
� as undirected r-powers. These come in two types: words of the form xyx are
ordinary r-powers, while we refer to words of the from xyxR as reverse r-powers.3

For example, the English words edited and render are undirected 3
2 -powers;

edited is an ordinary 3
2 -power, while render is a reverse r-power.

We say that a word w is undirected α-free if it is α-free up to �. The definition
of an undirected α+-free word is analogous. We let URT(k) = RT�(k), and refer
to this as the undirected repetition threshold for k letters.

2 Samsonov and Shur define weak, semi-strong, and strong Abelian α-powers for all
real numbers α > 1. For rational 1 < r ≤ 2, their definitions of semi-strong Abelian
r-power and strong Abelian r-power are both equivalent to our definition of Abelian
r-power.

3 We note that words of the form xyx are sometimes referred to as gapped repeats,
and that words of the form xyxR are sometimes referred to as gapped palindromes.
In particular, an ordinary (reverse, respectively) r-power satisfying r ≥ 1 + 1/α is
called an α-gapped repeat (α-gapped palindrome, respectively). Algorithmic questions
concerning the identification and enumeration of α-gapped repeats and palindromes
in a given word, along with some related questions, have recently received consid-
erable attention; see [6,16,19,20] and the references therein. Gapped repeats and
palindromes are important in the context of DNA and RNA structures, and this has
been the primary motivation for their study.

The Undirected Repetition Threshold 147

It is clear that � is coarser than = and finer than ≈. Thus, for every rational
1 < r ≤ 2, an r-power is an undirected r-power, and an undirected r-power is
an Abelian r-power. As a result, we immediately have

RT(k) ≤ URT(k) ≤ ART(k)

for all k ≥ 2.
Since only a weak upper bound on ART(k) is currently known, we provide

an alternate upper bound on URT(k) for large enough k. For words u = u0u1 · · ·
and v = v0v1 · · · of the same length (possibly infinite) over alphabets A and B,
respectively, the direct product of u and v, denoted u⊗v, is the word on alphabet
A × B defined by

u ⊗ v = (u0, v0)(u1, v1) · · · .

A word x is called a reversible factor of w if both x and xR are factors of w.

Theorem 1. For every k ≥ 9, we have URT(k) ≤ RT(k/3
).
Proof. Fix k ≥ 9, and let � = 	k/3
. Evidently, we have � ≥ 3 and thus RT(�) <
2. Let u be an infinite RT(�)+-free word on � letters. We claim that the word
u⊗ (123)ω on 3� < k letters is undirected RT(�)+-free, from which the theorem
follows. Since the only reversible factors of (123)ω have length at most 1, any
reverse r-power xyxR in u ⊗ (123)ω satisfies x = xR, and hence is an ordinary
r-power as well. Since u is ordinary RT(�)+-free, so is u⊗(123)ω. This completes
the proof of the claim. ��

We now describe the layout of the remainder of the article. In Sect. 2, we
discuss related problems in pattern avoidance, and give some implications of our
main results in that setting. In Sect. 3, we show that URT(3) = 7/4 using a
standard morphic construction. In Sect. 4, we demonstrate that URT(k) ≥ (k −
1)/(k − 2) for all k ≥ 4. In Sect. 5, we use a variation of the encoding introduced
by Pansiot [25] to prove that URT(k) = (k − 1)/(k − 2) for k ∈ {4, 8, 12}. In
light of our results, we propose the following.

Conjecture 2. For all k ≥ 4, we have URT(k) = (k − 1)/(k − 2).

We briefly place this conjecture in context. We know that RT(k) = k/(k −1)
for all k ≥ 5, we conjecture that URT(k) = (k − 1)/(k − 2) for all k ≥ 4, and
Samsonov and Shur [28] conjecture that ART(k) = (k − 1)/(k − 2) for all k ≥ 5.
Let us fix k ≥ 5. In [29], Shur proposes splitting all exponents greater than
RT(k) into levels as follows4:

1st level 2nd level 3rd level . . .[
k

k−1

+
, k−1

k−2

] [
k−1
k−2

+
, k−2

k−3

] [
k−2
k−3

+
, k−3

k−4

]
. . .

4 Shur considers exponents belonging to the “extended rationals”. This set includes
all rational numbers and all such numbers with a +, where x+ covers x, and the
inequalities y ≤ x and y < x+ are equivalent.

148 J. D. Currie and L. Mol

For α, β ∈
[

k
k−1

+
, k−3

k−4

]
, Shur provides evidence that the language of α-free

k-ary words and the language of β-free k-ary words exhibit similar behaviour
(e.g., with respect to growth) if α and β are in the same level, and quite different
behaviour otherwise; see [29,30]. If the conjectured values of URT(k) and ART(k)
are correct, then the undirected repetition threshold and the Abelian repetition
threshold provide further evidence of the distinction between levels.

We now introduce some terminology that will be used in the sequel. Let A
and B be alphabets, and let h : A∗ → B∗ be a morphism. Using the standard
notation for images of sets, we have h(A) = {h(a) : a ∈ A}, which we refer to as
the set of blocks of h. A set of words P ⊆ A∗ is called a prefix code if no element
of P is a prefix of another. If P is a prefix code and w is a nonempty factor of
some element of P+, a cut of w over P is a pair (x, y) such that (i) w = xy; and
(ii) for every pair of words p, s with pws ∈ P+, we have px ∈ P ∗. We use vertical
bars to denote cuts. For example, over the prefix code {01, 10}, the word 11 has
cut 1|1. The prefix code that we work over will always be the set of blocks of a
given morphism, and should be clear from context.

2 Related Problems in Pattern Avoidance

Let p = p1p2 · · · pn be a word over alphabet V , where the pi are letters called
variables. In this context, the word p is called a pattern. If ∼ is an equivalence
relation on words, then we say that the word w encounters p up to ∼ if w
contains a factor of the form X1X2 · · · Xn, where each word Xi is nonempty and
Xi ∼ Xj whenever pi = pj . Otherwise, we say that w avoids p up to ∼. A pattern
p is k-avoidable up to ∼ if there is an infinite word on a k-letter alphabet that
avoids p up to ∼. Otherwise, the pattern p is k-unavoidable up to ∼. Finally, the
pattern p is avoidable up to ∼ if it is k-avoidable for some k, and unavoidable
up to ∼ otherwise.

When ∼ is equality, we recover the ordinary notion of pattern avoidance
(see [4]). When ∼ is ≈ (i.e., “is an anagram of”), we recover the notion of
Abelian pattern avoidance (see [8,9,27], for example). One could also explore
pattern avoidance up to �, or undirected pattern avoidance. We discuss some
initial results in this direction. While there are patterns that are avoidable in
the ordinary sense but not in the Abelian sense [8, Lemma 3], every avoidable
pattern is in fact avoidable up to �, as we show below.

Theorem 3. Let p be a pattern. Then p is avoidable in the ordinary sense if
and only if p is avoidable up to �.

Proof. If p is unavoidable in the ordinary sense, then clearly p is unavoidable
up to � . If p is avoidable in the ordinary sense, then let u be an ω-word avoiding
p. The direct product u ⊗ (123)ω avoids p up to � by an argument similar to
the one used in Theorem 1. ��

Questions concerning the k-avoidability of patterns up to � appear to be
more interesting. The avoidability index of a pattern p up to ∼, denoted λ∼(p),

The Undirected Repetition Threshold 149

is the least positive integer k such that p is k-avoidable up to ∼, or ∞ if p is
unavoidable. In general, for any pattern p, we have

λ=(p) ≤ λ�(p) ≤ λ≈(p).

The construction of Theorem 3 can be used to show that λ�(p) ≤ 3λ=(p), though
we suspect that this bound is not tight.

The study of the undirected repetition threshold will have immediate impli-
cations on avoiding patterns up to �. For example, we can easily resolve the
avoidability index of unary patterns up to � using known results along with a
result proven later in this article.

Theorem 4. λ�(xk) =

{
3, if k ∈ {2, 3};
2, if k ≥ 4.

Proof. We prove that URT(3) = 7/4 in Sect. 3, from which it follows that
λ�(xx) = 3. Backtracking by computer, one finds that the longest binary word
avoiding xxx in the undirected sense has length 9, so λ�(xxx) ≥ 3. Since
λ≈(xxx) = 3 [15], we conclude that λ�(xxx) = 3. Finally, since λ≈(x4) = 2 [15],
we have λ�(xk) = 2 for all k ≥ 4. ��
We plan to determine the avoidability index of all binary patterns up to � in a
future work.

Finally, we remark that the study of k-avoidability of patterns up to � has
implications for k-avoidability of patterns with reversal (see [7,10,11] for defini-
tions and examples). In particular, if pattern p is k-avoidable up to �, then all
patterns with reversal that are obtained by swapping any number of letters in
p with their mirror images are simultaneously k-avoidable; that is, there is an
infinite word on k letters avoiding all such “decorations” of p.

3 URT(3)= 7
4

Dejean [14] demonstrated that RT(3) = 7/4, and hence we must have URT(3) ≥
7/4. In order to show that URT(3) = 7/4, it suffices to find an infinite ternary
word that is undirected 7

4

+-free. We provide a morphic construction of such a
word. Let f be the 24-uniform morphism defined by

0 �→ 012 021 201 021 012 102 120 210

1 �→ 120 102 012 102 120 210 201 021

2 �→ 201 210 120 210 201 021 012 102.

The morphism f is similar in structure to the morphism of Dejean [14] whose
fixed point avoids ordinary 7/4+-powers (but not undirected 7/4+-powers). Note,
in particular, that f is “symmetric” in the sense of [18].

The following theorem was verified by one of the anonymous reviewers using
the automatic theorem proving software Walnut [24]. In light of this fact (and
in order to meet space constraints), we omit our original proof.

150 J. D. Currie and L. Mol

Theorem 5. The word fω(0) is undirected 7
4

+-free.

Thus, we conclude that URT(3) = RT(3) = 7
4 . We will see in the next section

that URT(k) is strictly greater than RT(k) for every k ≥ 4.

4 A Lower Bound on URT(k) for k ≥ 4

Here, we prove that URT(k) ≥ (k − 1)/(k − 2) for k ≥ 4.

Theorem 6. If k ≥ 4, then URT(k) ≥ k−1
k−2 , and the longest k-ary word that is

undirected (k − 1)/(k − 2)-free has length k + 3.

Proof. For k ∈ {4, 5}, the statement is checked by a standard backtracking algo-
rithm, which we performed by computer. We now provide a general backtracking
argument for all k ≥ 6.

Fix k ≥ 6, and suppose that w is a k-ary word of length k + 4 that is
undirected (k − 1)/(k − 2)-free. It follows that at least k − 2 letters must appear
between any two repeated occurrences of the same letter in w, so that any length
k − 1 factor of w must contain k − 1 distinct letters. So we may assume that w
has prefix 12 · · · (k-1). Further, given any prefix u of w of length at least k − 1,
there are only two possibilities for the next letter in w, as it must be distinct
from the k − 2 distinct letters preceding it. These possibilities are enumerated
in the tree of Fig. 1.

Fig. 1. The tree of undirected (k − 1)/(k − 2)-power free words on k letters.

We now explain why each word corresponding to a leaf of the tree contains
an undirected r-power for some r ≥ (k −1)/(k −2). We examine the leaves from
top to bottom, and use the fact that (k+1)/(k−1) > (k+2)/k > (k−1)/(k−2)
when k ≥ 6.

– The factor 12 · · · (k-1)12 is an ordinary (k + 1)/(k − 1)-power.

The Undirected Repetition Threshold 151

– The factor 23 · · · (k-1)1k23 is an ordinary (k + 2)/k-power.
– The factor 34 · · · (k-1)1k243 is a reverse (k + 2)/k-power.
– The factor 45 · · · (k-1)1k245 is an ordinary (k + 1)/(k − 1)-power.
– The factor 23 · · · (k-1)1k32 is an ordinary (k + 2)/k-power.
– The factor 34 · · · (k-1)1k34 is an ordinary (k + 1)/(k − 1)-power.
– The factor 12 · · · (k-1)k12 is an ordinary (k + 2)/k-power.
– The factor 23 · · · (k-1)k132 is a reverse (k + 2)/k-power.
– The factor 34 · · · (k-1)k134 is an ordinary (k + 1)/(k − 1)-power.
– The factor 12 · · · (k-1)k21 is a reverse (k + 2)/k-power.
– The factor 23 · · · (k-1)k23 is an ordinary (k + 1)/(k − 1)-power. ��

Conjecture 2 proposes that the value of URT(k) matches the lower bound of
Theorem 6 for all k ≥ 4. In the next section, we confirm Conjecture 2 for several
values of k.

5 URT(k)= k−1
k−2

for k ∈ {4, 8, 12}
First we explain why we rely on a different technique than in Sect. 3. Fix k ≥ 4,
and let Σk = {1, 2, . . . , k}. A morphism h : A∗ → B∗ is called α-free (α+-free,
respectively) if it maps every α-free (α+-free, respectively) word in A∗ to an
α-free (α+-free, respectively) word in B∗. The morphism h is called growing if
h(a) > 1 for all a ∈ A∗. Brandenburg [2] demonstrated that for every k ≥ 4, there
is no growing RT(k)+-free morphism from Σ∗

k to Σ∗
k . By a minor modification of

his proof, one can show that there is no growing (k − 1)/(k − 2)+-free morphism
from Σ∗

k to Σ∗
k . While this does not entirely rule out the possibility that there is

a morphism from Σ∗
k to Σ∗

k whose fixed point is (k−1)/(k−2)+-free, it suggests
that different techniques may be required. Our technique relies on an encoding
similar to the one introduced by Pansiot [25] in showing that RT(4) = 7/5.
Pansiot’s encoding was later used in all subsequent work on Dejean’s Conjecture.

5.1 A Ternary Encoding

We first describe an alternate definition of ordinary r-powers which will be useful
in this section. A word w = w1 · · · wn, where the wi are letters, is periodic if for
some positive integer q, we have wi+q = wi for all 1 ≤ i ≤ n−q. In this case, the
integer q is called a period of w. The exponent of w, denoted exp(w), is the ratio
between its length and its minimal period. If r = exp(w), then w is an r-power.5

We can write any r-power w as w = pe, where |pe|/|p| = r and e is a prefix of
pe. In this case, we say that e is the excess of the r-power w.

Suppose that w ∈ Σ∗
k is an undirected (k−1)/(k−2)+-free word that contains

at least k − 1 distinct letters. Write w = w1w2 · · · wn with wi ∈ Σk. Certainly,

5 If r ≤ 2, then w is an r-power as we have defined it in Sect. 1. If r > 2, then we
take this as the definition of an (ordinary) r-power. For example, the English word
alfalfa has minimal period 3 and exponent 7

3
, so it is a 7

3
-power.

152 J. D. Currie and L. Mol

every length k − 2 factor of w contains k − 2 distinct letters, and it is easily
checked that every length k factor of w contains at least k − 1 distinct letters.

Now let w ∈ Σ∗
k be any word containing at least k − 1 distinct letters and

satisfying these two properties:

– Every length k − 2 factor of w contains k − 2 distinct letters; and
– Every length k factor of w contains at least k − 1 distinct letters.

Let u be the shortest prefix of w containing k − 1 distinct letters. We see imme-
diately that u has length k − 1 or k. Write w = uv, where v = v1v2 · · · vn

with vi ∈ Σk. Define p0 = u and pi = uv1 · · · vi for all i ∈ {1, . . . , n}. For all
i ∈ {0, 1, . . . , n}, the prefix pi determines a permutation

ri =
(

1 2 . . . k
ri[1] ri[2] . . . ri[k]

)
,

of the letters of Σk, which ranks the letters of Σk by the index of their final
appearance in pi. In other words, the word ri[3] · · · ri[k] is the length k −2 suffix
of pi, and of the two letters in Σk\{ri[3], . . . , ri[k]}, the letter ri[2] is the one
that appears last in pi. Note that the final letter ri[1] may not even appear in
pi. For example, on Σ6, the prefix 123416 gives rise to the permutation

(
1 2 3 4 5 6
5 2 3 4 1 6

)
.

Since every factor of length k − 2 in w contains k − 2 distinct letters, for any
i ∈ {1, . . . , n}, the letter vi must belong to the set {ri−1[1], ri−1[2], ri−1[3]}. This
allows us to encode the word w over a ternary alphabet, as described explicitly
below.

For 1 ≤ i ≤ n, define t(w) = t1 · · · tn, where for all 1 ≤ i ≤ n, we have

ti =

⎧
⎪⎨
⎪⎩

1, if vi = ri−1[1];
2, if vi = ri−1[2];
3, if vi = ri−1[3].

For example, on Σ5, for the word w = 12342541243, the shortest prefix contain-
ing 4 distinct letters is 1234, and w has encoding t(w) = 3131231. Given the
shortest prefix of w containing k − 1 distinct letters, and the encoding t(w), we
can recover w. Moreover, if w has period q < n, then so does t(w). The exponent
|w|/q of w corresponds to an exponent |v|/q of t(w).

Let Sk denote the symmetric group on Σk with left multiplication. Define a
morphism σ : Σ∗

3 → Sk by

σ(1) =
(

1 2 3 4 . . . k − 1 k
2 3 4 5 . . . k 1

)

σ(2) =
(

1 2 3 4 . . . k − 1 k
1 3 4 5 . . . k 2

)

σ(3) =
(

1 2 3 4 . . . k − 1 k
1 2 4 5 . . . k 3

)
.

The Undirected Repetition Threshold 153

One proves by induction that r0σ(t(pi)) = ri. It follows that if w = pe has period
|p|, and e contains at least k−1 distinct letters, then the length |p| prefix of t(w)
lies in the kernel of σ. In this case, the word t(w) is called a kernel repetition.
For example, over Σ4, the word

w = 123243414212324

has period 10, and excess 12324. Hence, the encoding t(w) = 312313123131 is
a kernel repetition; one verifies that σ(3123131231) = id.

Suppose that k is even. Then σ(1) and σ(3) are odd, while σ(2) is even. It
follows that σ(31) is even, and hence the subgroup of Sk generated by σ(2) and
σ(31) is a subgroup of the alternating group Ak. This simple observation leads
to the following important lemma, which will be used to bound the length of
reversible factors in the words we construct.

Lemma 7. Let k ≥ 4 satisfy k ≡ 0 (mod 4). Let w ∈ Σ∗
k be a word with prefix

12 · · · (k − 1) and encoding t(w) ∈ {31, 2}∗. Suppose that u = u1u2 · · · uk−1 is a
factor of w, where u1, u2, . . . , uk−1 ∈ Σk are distinct letters. Then uR is not a
factor of w.

Proof. Suppose towards a contradiction that u and uR are both factors of w.
Assume without loss of generality that u appears before uR in w. Then w contains
a factor x with prefix u and suffix uR. Consider the encoding t(x), which is a
factor of t(w).

Immediately after reading u, the ranking of the letters in Σk is
(

1 2 3 . . . k
uk u1 u2 . . . uk−1

)
,

where uk is the unique letter in Σk\{u1, u2, . . . , uk−1}. Immediately after reading
uR, the ranking of the letters in Σk is

(
1 2 3 . . . k
uk uk−1 uk−2 . . . u1

)
.

Evidently, we have

σ(t(x)) =
(
1 2 3 . . . k-1 k
1 k k-1 . . . 3 2

)
.

Since k ≡ 0 (mod 4), we observe that σ(t(x)) is an odd permutation. We
claim that t(x) does not begin in 1 or end in 3, so that t(x) ∈ {31, 2}∗. But
σ(31) and σ(2) are both even, which contradicts the fact that σ(t(x)) is odd.

The fact that t(x) does not end in 3 follows immediately from the fact that
uk−1 �= u1. It remains to show that t(x) does not begin with 1. If x is a prefix
of w, then t(x) begins in 3 or 2, so we may assume that w = yxz with y �= ε.
Then t(w) has prefix t(yu)t(x). If t(x) began in 1, then t(yu) would necessarily
end in 3, and this is impossible since u1 �= uk−1. This completes the proof of the
claim, and the lemma. ��

154 J. D. Currie and L. Mol

5.2 Constructions

Define morphisms f4, f8, f12 : Σ∗
2 → Σ∗

2 as follows:

f4(1) = 121

f4(2) = 122

f8(1) = 121212112122121

f8(2) = 211212122122112

f12(1) = 121212121211212122121

f12(2) = 212122112121121212212.

Define g : Σ∗
2 → Σ∗

3 by

g(1) = 31

g(2) = 312.

A key property of each of the morphisms f4, f8, f12, and g is that the images of
1 and 2 end in different letters.

Theorem 8. Fix k ∈ {4, 8, 12}, and let f = fk. Let w be the word over Σk with
prefix 12 · · · (k − 1) and encoding g(fω(1)). Then w is undirected (k−1)/(k−2)+-
free.

The remainder of this section is devoted to proving Theorem8. Essentially,
we adapt the technique first used by Moulin-Ollagnier [23]. A simplified version
of Moulin-Ollagnier’s technique, which we follow fairly closely, is exhibited by
Currie and Rampersad [13]. For the remainder of this section, we use notation
as in Theorem 8. We let r = |f(1)|, i.e., we say that f is r-uniform.

We first discuss kernel repetitions appearing in g(fω(1)). Let factor v = pe of
g(fω(1)) be a kernel repetition with period q; say g(fω(1)) = xvy. Let V = x′vy′

be the maximal period q extension of the occurrence xvy of v. Write x = Xx′

and y = y′Y , so that g(fω(1)) = XV Y . Write V = PE = EP ′, where |P | = q.
By the periodicity of PE, the factor P is conjugate to p, and hence P is in the
kernel of σ. Write P = π′′g(π)π′ where π′′ is a proper suffix of g(1) or g(2), and π′

is a prefix of g(1) or g(2). Analogously, write E = η′′g(η)η′. Since g(1) and g(2)
end in different letters, it follows from the maximality of V that π′′ = η′′ = ε.
In particular, the word P begins in 3. It follows that E begins in 3, and thus we
may assume that π′ = ε. Finally, by the maximality of V , we have η′ = 31, the
longest common prefix of g(1) and g(2). Altogether, we can write

PE = g(πη)31,

where g(π) = P and η is a prefix of π. We see that |P | ≥ 2|π| and |E| ≤ 3|η|+2.
Let τ : Σ∗

2 → Sk be the composite morphism σ ◦ g. Evidently, we have

τ(1) = σ(g(1)) = σ(31), and
τ(2) = σ(g(2)) = σ(312).

The Undirected Repetition Threshold 155

Since P was in the kernel of σ, we see that

τ(π) = σ(g(π)) = σ(P) = id,

i.e., the word π is in the kernel of τ .
Now set π0 = π and η0 = η. By the maximality of PE, the repetition

πη = π0η0 must be a maximal repetition with period |π0| (i.e., it cannot be
extended). If η0 has a cut, then it follows by arguments similar to those used
above that π0η0 = f(π1η1)η′, where η1 is a prefix of π1 and η′ is the longest
common prefix of f(1) and f(2). One checks that there is an element φ ∈ Sk

such that

φ · τ(f(a)) · φ−1 = τ(a)

for every a ∈ {1, 2}, i.e., the morphism τ satisfies the “algebraic property”
described by Moulin-Ollagnier [23]. It follows that π1 is in the kernel of τ . We
can repeat this process until we reach a repetition πsηs whose excess ηs has no
cut. Recalling that f is an r-uniform morphism, we have

|π0| = rs|πs|
and

|η0| = rs|ηs| + |η′|
s−1∑
i=0

ri.

Note that |η′| = 2 if k = 4, while |η′| = 0 if k ∈ {8, 12}. Thus, we have

|η0| =

{
rs|ηs| + rs − 1, if k = 4;
rs|ηs|, if k ∈ {8, 12}.

It follows that |η0| ≤ rs|ηs| + rs − 1.

Proof of Theorem 8. We first show that w contains no reverse α-power with
α > (k − 1)/(k − 2). Since 33 is not a factor of g(fω(1)), every factor of length k
in w contains a factor of the form u = u1u2 · · · uk−1, where u1, u2, . . . , uk−1 are
distinct letters. Thus, by Lemma 7, if xyxR is a factor of w with |xyxR|/|xy| >
(k − 1)/(k − 2), then |x| ≤ k − 1. In turn, we have |xyxR| < (k − 1)2. Therefore,
we conclude by a finite check that w contains no reverse α-power with α >
(k − 1)/(k − 2).

It remains to show that w is ordinary (k − 1)/(k − 2)+-free. Suppose to the
contrary that pe is a factor of w such that e is a prefix of pe and |pe|/|p| >
(k − 1)/(k − 2). We may assume that pe is maximal with respect to having
period |p|. If e has less than k − 1 distinct letters, then |e| ≤ k − 1. In turn, we
have |pe| < (k − 1)2. By a finite check, the word w has no such factors.

So we may assume that e has at least k − 1 distinct letters. Let V = t(pe),
and let P be the length |P | prefix of V . So V = PE, where E is a prefix of
P . Hence V is a kernel repetition, i.e., the word P is in the kernel of σ. By the
maximality of pe, we see that P begins in 3. Hence, the length k − 1 prefix of p

156 J. D. Currie and L. Mol

contains k − 1 distinct letters, and |e| = |E| + k − 1. We can find a factor πsηs

of fω(1) as described above, such that ηs is a prefix of πsηs, the word πs is in
the kernel of τ , and ηs does not contain a cut. Now

1
k − 2

<
|e|
|p|

=
|E| + k − 1

|P |
≤ 3|η0| + k + 1

2|π0|
=

3 (rs|ηs| + rs − 1) + k + 1
2rs|πs|

=
3rs (|ηs| + 1) + k − 2

2 · rs|πs|
=

3(|ηs| + 1) + (k − 2)r−s

2|πs|
≤ 3|ηs| + k + 1

2|πs| .

Thus, we have

|πs| <
(k − 2)(3|ηs| + k + 1)

2
. (1)

By exhaustive check, every factor of length r in fω(1) contains a cut, so we
must have |ηs| < r, and we can list all possibilities for ηs. For each possible
value of ηs, we can enumerate all possibilities for πs using (1). At this point, our
argument depends on the value of k.

If k ∈ {8, 12}, then we find that no such factor πsηs exists in fω(1). On the
other hand, if k = 4, then we find only the following two pairs satisfying (1):

– πs = 2121 and ηs = ε;
– πs = 2112112212 and ηs = 21.

Note, however, that for each pair, we have |πs|1 = |πs|2 and |ηs|1 = |ηs|2. Since
f4(1) = 121 and f4(2) = 122, it follows that |π0|1 = |π0|2 and |η0|1 = |η0|2. In
this case, we have |P | = 5

2 |π0| and |E| = 5
2 |η0| + 2. By adapting the string of

inequalities leading to (1), we find that we must in fact have

|πs| < 2|ηs| + 4,

and this does not hold in either case.
Thus, we conclude that w is undirected (k − 1)/(k − 2)+-free. ��

Acknowledgements. We thank the anonymous reviewers, whose comments helped
to improve the article.

The Undirected Repetition Threshold 157

References

1. Berstel, J.: Axel Thue’s papers on repetitions in words: a translation. In: Publica-
tions du LaCIM, vol. 20. Université du Québec à Montréal (1995)

2. Brandenburg, F.J.: Uniformly growing k-th power-free homomorphisms. Theoret.
Comput. Sci. 23(1), 69–82 (1983)

3. Carpi, A.: On Dejean’s conjecture over large alphabets. Theoret. Comput. Sci.
385(1–3), 137–151 (2007)

4. Cassaigne, J.: Unavoidable patterns. In: Lothaire, M. (ed.) Algebraic Combina-
torics on Words, pp. 111–134. Cambridge University Press, Cambridge (2002)

5. Cassaigne, J., Currie, J.D.: Words strongly avoiding fractional powers. Eur. J.
Combin. 20(8), 725–737 (1999)

6. Crochemore, M., Kolpakov, R., Kucherov, G.: Optimal bounds for computing α-
gapped repeats. In: Dediu, A.-H., Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.)
LATA 2016. LNCS, vol. 9618, pp. 245–255. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-30000-9 19

7. Currie, J.D., Lafrance, P.: Avoidability index for binary patterns with reversal.
Electron. J. Combin. 23(1), P1.36 (2016)

8. Currie, J.D., Linek, V.: Avoiding patterns in the Abelian sense. Canad. J. Math.
53(4), 696–714 (2001)

9. Currie, J.D., Visentin, T.I.: Long binary patterns are Abelian 2-avoidable. Theor.
Comput. Sci. 409(3), 432–437 (2008)

10. Currie, J.D., Mol, L., Rampersad, N.: A family of formulas with reversal of high
avoidability index. Int. J. Algebra Comput. 27(5), 477–493 (2017)

11. Currie, J.D., Mol, L., Rampersad, N.: Avoidance bases for formulas with reversal.
Theor. Comput. Sci. 738, 25–41 (2018)

12. Currie, J.D., Rampersad, N.: Dejean’s conjecture holds for n ≥ 27. RAIRO - Theor.
Inform. Appl. 43(4), 775–778 (2009)

13. Currie, J.D., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comput.
80(274), 1063–1070 (2011)

14. Dejean, F.: Sur un théorème de Thue. J. Combin. Theory Ser. A 13, 90–99 (1972)
15. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J.

Combin. Theory Ser. A 27(2), 181–185 (1979)
16. Duchon, P., Nicaud, C., Pivoteau, C.: Gapped pattern statistics. In: 28th Annual

Symposium on Combinatorial Pattern Matching (CPM 2017), pp. 21:1–21:12
(2017)

17. Fici, G., Langiu, A., Lecroq, T., Lefebvre, A., Mignosi, F., Peltomäki, J., Prieur-
Gaston, É.: Abelian powers and repetitions in Sturmian words. Theor. Comput.
Sci. 635, 16–34 (2016)

18. Frid, A.E.: Overlap-free symmetric D0L words. Discret. Math. Theor. Comput.
Sci. 4(2), 357–362 (2001)

19. Gawrychowski, P., Manea, F.: Longest α-gapped repeat and palindrome. In:
Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 27–40.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22177-9 3

20. Tomohiro, I., Köppl, D.: Improved upper bounds on all maximal α-gapped repeats
and palindromes. Theor. Comput. Sci. 753, 1–15 (2019)

21. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992). https://doi.org/10.
1007/3-540-55719-9 62

https://doi.org/10.1007/978-3-319-30000-9_19
https://doi.org/10.1007/978-3-319-30000-9_19
https://doi.org/10.1007/978-3-319-22177-9_3
https://doi.org/10.1007/3-540-55719-9_62
https://doi.org/10.1007/3-540-55719-9_62

158 J. D. Currie and L. Mol

22. Mohammad-Noori, M., Currie, J.D.: Dejean’s conjecture and Sturmian words. Eur.
J. Combin. 28(3), 876–890 (2007)

23. Moulin-Ollagnier, J.: Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9,
10, and 11 letters. Theor. Comput. Sci. 95(2), 187–205 (1992)

24. Mousavi, H.: Automatic theorem proving in Walnut. Preprint, arXiv: 1603.06017
[cs.FL] (2016)

25. Pansiot, J.J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les
mots. Discret. Appl. Math. 7(3), 297–311 (1984)

26. Rao, M.: Last cases of Dejean’s conjecture. Theor. Comput. Sci. 412(27), 3010–
3018 (2011)

27. Rosenfeld, M.: Every binary pattern of length greater than 14 is Abelian-2-
avoidable. In: 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2016), pp. 81:1–81:11 (2016)

28. Samsonov, A.V., Shur, A.M.: On Abelian repetition threshold. RAIRO - Theor.
Inform. Appl. 46(1), 147–163 (2012)

29. Shur, A.M.: On the existence of minimal β-powers. Int. J. Found. Comput. Sci.
22(7), 1683–1696 (2011)

30. Shur, A.M.: Growth of power-free languages over large alphabets. Theor. Comput.
Syst. 54(2), 224–243 (2014)

http://arxiv.org/abs/1603.06017

Characteristic Parameters and Special
Trapezoidal Words

Alma D’Aniello1 and Alessandro De Luca2(B)

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli”,
Università degli Studi di Napoli Federico II, Naples, Italy

alma.daniello@unina.it
2 DIETI, Università degli Studi di Napoli Federico II,

via Claudio 21, 80125 Naples, Italy
alessandro.deluca@unina.it

Abstract. Following earlier work by Aldo de Luca and others, we study
trapezoidal words and their prefixes, with respect to their characteristic
parameters K and R (length of shortest unrepeated suffix, and shortest
length without right special factors, respectively), as well as their sym-
metric versions H and L. We consider the distinction between closed
(i.e., periodic-like) and open prefixes, and between Sturmian and non-
Sturmian ones. Our main results characterize right special and strictly
bispecial trapezoidal words, as done by de Luca and Mignosi for Stur-
mian words.

Keywords: Trapezoidal word · Closed word · Periodic-like word

1 Introduction

Sturmian words are certainly among the most studied objects in combinatorics
on words, thanks to their natural definition, interesting characterizations, and
numerous applications in several fields; see [1,11] for surveys. An infinite word
is Sturmian if it has exactly n + 1 distinct factors (blocks of consecutive letters)
for each length n ≥ 0.

Trapezoidal words, introduced in [4,8], are a natural finite analogue of Stur-
mian words. They have at most n+1 factors of each length n, so that the graph
of their factor complexity function is in the shape of an isosceles trapezoid (or
triangle), whence their name.

The original definition of trapezoidal words, however, uses characteristic
parameters K and R. For a finite word w, Kw denotes the length of the shortest
unrepeated suffix of w, whereas Rw denotes the smallest integer n ≥ 0 such that
w has no right special factor of length n. A word w is then trapezoidal if and
only if its length |w| verifies |w| = Kw+Rw (with |w| ≥ Kw+Rw true in general,
see [8]). Finite Sturmian words, i.e., factors of Sturmian words, are trapezoidal,
but there exist non-Sturmian trapezoidal words such as aabb.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 159–166, 2019.
https://doi.org/10.1007/978-3-030-28796-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_12&domain=pdf
http://orcid.org/0000-0003-2403-4363
http://orcid.org/0000-0003-1704-773X
https://doi.org/10.1007/978-3-030-28796-2_12

160 A. D’Aniello and A. De Luca

In [2], the property of being closed (aka periodic-like) or open is considered
for trapezoidal words. In particular, the case of (prefixes of) the Fibonacci word
was completely characterized, and this was later (cf. [5]) extended to all char-
acteristic Sturmian words. Our first aim, explored in Sect. 3, is to extend some
of those arguments to the general trapezoidal case, with respect to the values of
characteristic parameters for closed and open prefixes.

In [7], a characterization was given for right (resp. left) special Sturmian
words, i.e., finite words w over A = {a, b} such that both extensions wa,wb
(resp. aw, bw) are Sturmian. Previously, in [9], strictly bispecial ones (that is,
words w such that awa, awb, bwa, bwb are all Sturmian) had been characterized;
in particular, these turn out to be the noteworthy family of central words. In [6],
bispecial (i.e., simultaneously right and left special) Sturmian words were char-
acterized. Our main objective in Sect. 4 is to give similar characterizations for
special trapezoidal words. Special words in a language are often useful for dealing
with enumerative and structural questions.

2 Notation and Preliminaries

Let A = {a, b} be an alphabet. The free monoid of all words over A under
concatenation is denoted by A∗; its neutral element is the empty word ε. For
w ∈ A∗ and x ∈ A, |w|x denotes the number of occurrences of x in w.

If w = pvs ∈ A∗, we say that v is a factor of w, p is a prefix, and s is a suffix.
A border of w is a word that is simultaneously a proper prefix and a suffix of w.
The definitions of factor and prefix also apply to (right-)infinite words over A.
A word u is a right (resp. left) special factor of a finite or infinite word w over
A if ua and ub (resp. au, bu) are both factors of w.

As anticipated above, an infinite word is Sturmian if it has exactly n + 1
distinct factors of each length n ≥ 0. Therefore Sturmian words are the simplest
aperiodic words in terms of factor complexity, and this is one of the reasons
of interest in their study (see [1,11]). Equivalently, a binary infinite word is
Sturmian if and only if it has exactly one right (resp. left) special factor of each
length. In particular, a Sturmian word is called standard or characteristic if all
its left special factors occur as prefixes.

Among the many known characterizations of factors of Sturmian words, or
finite Stumian words, perhaps the most famous and widely used one deals with
balance; w ∈ A∗ is Sturmian if and only if there is no word u such that aua
and bub are both factors of w. Such a pair of factors for a non-Sturmian word is
called a pathological pair (cf. [2,4]).

Central words are palindromic prefixes of characteristic Sturmian words.
They enjoy many equivalent definitions and interesting properties (cf. [1,7]).
In particular, a word is central if and only if it can be written as an, bn, or
uabv = vbau for some integer n ≥ 0 and u, v ∈ A∗; in the latter case, u and v
are central words themselves.

The parameters Kw and Rw defined in the previous section were introduced
in [8], along with their “left” counterparts Hw (length of the shortest unrepeated

Characteristic Parameters and Special Trapezoidal Words 161

prefix) and Lw (smallest n ≥ 0 such that w has no left special factor of length n).
As already stated, a finite word is trapezoidal if |w| = Kw + Rw, or equivalently
if |w| = Hw + Lw (cf. [4,8]).

Another noteworthy parameter is the (minimal) period πw of a word w, which
can be defined by πw = |w| − |v| where v is the longest border of w. Central
words can also be characterized in terms of periods; w ∈ A∗ is central if and only
if |w| = πwa + πwb − 2 (cf. [7]). It is known (see for example [10]) that periodic
extensions of a finite Sturmian word w, i.e., words w′ such that w is a factor of
w′ and πw′ = πw, are still Sturmian; however, this property does not extend to
trapezoidal words.

Example 1. Let w = aaababa. Then Hw = Rw = 3 and Lw = Kw = 4, so that w
is trapezoidal. Its period is πw = 6, but the periodic extension w′ = abaaababa =
abw is not trapezoidal, as |w′| = 9 > 4 + 4 = Kw′ + Rw′ .

The following theorem is essentially a restatement of [4, Theorem 5]. It char-
acterizes non-Sturmian trapezoidal words as products of two periodic extensions
of the elements in a pathological pair.

Theorem 2. A word w ∈ A∗ is trapezoidal non-Sturmian if and only if it can
be written as

w = pxux · yuyq

where u is a central word, A = {x, y}, πpxux = πux, and πyuyq = πyu. Further-
more, Rw = |pxux| and Kw = |yuyq|.
Note that for such a word, {xux, yuy} is actually the shortest pathological pair
(cf. [2]).

Example 3. The trapezoidal word w = aaababa considered in Example 1 can be
written as aaa ·baba, where aaa and baba are periodic extensions (to the left and
to the right, respectively) of the elements of the pathological pair {aaa, bab}.

The non-trapezoidal word w′ = abaaababa does not verify the condition in
Theorem 2. Indeed, its only pathological pair is (aaa, bab), and writing w′ =
abaaa · baba we obtain πabaaa = 4 �= 1 = πaa.

3 Closed and Open Trapezoidal Words

A finite, nonempty word w is said to be closed (or periodic-like in earlier works)
if it has a border u with no internal occurrences, that is, a factor occurring
exclusively as a prefix and as a suffix; another common terminology for describing
this situation is that w is a complete (first) return to u. In particular, single
letters are closed, their border being the empty word.

A non-closed word is said to be open. Equivalently, w is open if and only if its
longest repeated prefix (resp. suffix) is a right (resp. left) special factor (cf. [8]).

The following result was proved in [3, Proposition 3.6].

Proposition 4. All closed trapezoidal words are Sturmian.

162 A. D’Aniello and A. De Luca

The following result, showing a basic connection between the behavior of H
and the property of being closed or open, is essentially known (see [5, Lemma 6
and Remark 8]). We report a proof for the sake of completeness.

Lemma 5. Let w ∈ A∗ and x ∈ A. Then Hwx = Hw + 1 if wx is closed, and
Hwx = Hw if wx is open.

Proof. Trivial if w = ε. Let then w be nonempty, and hy (y ∈ A) be its shortest
unrepeated prefix, so that Hw = |hy|. If wx is closed, then its longest border has
to be longer than h since h has internal occurrences in wx, and not longer than hy
since otherwise hy would reoccur in w. Hence x = y and Hwx = |hy|+1 = Hw+1
as desired. If wx is open, then hy cannot have internal occurrences in wx, since
it is unrepeated in w, and it cannot be a suffix either, otherwise wx would be
closed. Hence hy is unrepeated in wx, i.e., Hwx = Hw. ��
Lemma 6. Let wx be a trapezoidal word, x ∈ A. Then Lwx = Lw if wx is
closed, and Lwx = Lw + 1 if wx is open.

Proof. Follows from Lemma 5 as |w| = Hw + Lw and |wx| = Hwx + Lwx. ��
Clearly, the following symmetric statement holds for left extensions xw.

Lemma 7. Let w ∈ A∗ and x ∈ A. Then Kxw = Kw + 1 if xw is closed, and
Kxw = Kw if xw is open. Moreover, if xw is trapezoidal, then Rxw = Rw if xw
is closed, and Rxw = Rw + 1 otherwise.

For a trapezoidal word w, the equality {Hw, Lw} = {Kw, Rw} holds (cf. [8]).
The following theorem, proved in [2, Proposition 4.4], is more precise.

Theorem 8. Let w be a trapezoidal word. Then Hw = Kw and Lw = Rw if w
is closed, whereas Hw = Rw and Lw = Kw if w is open.

Corollary 9. Let wx be a trapezoidal word and x ∈ A. Then Kwx = Kw + 1
and Rwx = Rw, unless

– w is closed and wx is open, or
– w is open and wx is closed,

in which cases we have Kwx = Rw + 1 and Rwx = Kw instead.

Proof. Consequence of Lemmas 5, 6, and Theorem 8.

Proposition 10. Let w ∈ A∗, y ∈ A. If wy is trapezoidal but not Sturmian,
then w is open.

Proof. If w is not Sturmian, by Proposition 4 we are done. Let then w be Stur-
mian and assume it is closed, by contradiction. By Proposition 4, wy is open.
Writing wy = pxux · yuyq as in Theorem 2, we have q = ε as w is Sturmian,
and Hw = Hwy = Rwy = |pxux| by Lemma 5 and Theorems 8 and 2. It follows
that pxu is the longest border of w. As x �= y and w ends in yu, this is clearly
absurd. ��

Characteristic Parameters and Special Trapezoidal Words 163

Let w[n] denote the prefix of w of length n. The oc-sequence of a word w is
the characteristic sequence of its closed prefixes. In other terms, it is the binary
word OCw such that

OCw(n) =

{
1 if w[n] is closed,
0 if w[n] is open.

The oc-sequence is a useful tool in studying the structure of finite and infinite
words. For example, in [5], the following was proved:

Theorem 11. Let w be an infinite word, and let

OCw =
∞∏

n=0

1kn0k
′
n

for suitable positive integers kn, k′
n, with n ≥ 0. Then kn ≤ k′

n for all n ≥ 0,
with equality holding for all n if and only if w is a characteristic Sturmian word.

In terms of oc-sequences, an immediate consequence of Lemmas 5 and 6 is
the following (see also [5, Remark 8]):

Proposition 12. For any word w, Hw is the number of closed nonempty pre-
fixes of w, i.e., Hw = |OCw|1. If w is trapezoidal, then Lw = |OCw|0.

The following two results show the behavior of characteristic parameters H
and L at the end of runs of 1 and 0 in the oc-sequence.

Proposition 13. Let w ∈ A∗ and x ∈ A be such that wx is an open trapezoidal
word, while w is closed. Then Lw < Hw.

Proof. Since Lwx = Lw + 1 by Lemma 6, the longest left special factor �x of wx
occurs as a suffix, and � is the longest left special factor of w. Clearly, the suffix
� has internal occurrences in w, so that it is strictly shorter than the longest
border v. This proves Lw − 1 = |�| < |v| = Hw − 1, whence the assertion. ��
Proposition 14. Let w ∈ A∗ and x ∈ A be such that wx is a closed trapezoidal
word, while w is open. Then Hw ≤ Lw.

Proof. Since Hwx = Hw + 1 by Lemma 5, the longest repeated prefix v of w
occurs as a suffix, so that Hw ≤ Kw. The assertion follows by Theorem 8. ��

While Theorem 11 gives local constraints for an oc-sequence (namely, each
run of 1s is followed by a longer or equal run of 0s), our last three results can be
viewed as more global constraints in the case of trapezoidal words. Considering
the integer parameter

Dw := Hw − Lw = |OCw|1 − |OCw|0
gives an interesting way to picture this situation. Indeed by Proposition 12, if w
is trapezoidal then Dw = |OCw|1 − |OCw|0, so that D increases or decreases by
1 at each subsequent prefix, depending on whether it is closed or open; more-
over by Propositions 13–14, D is necessarily positive (resp. non-positive) when
encountering the last closed (resp. open) prefix in a run.

164 A. D’Aniello and A. De Luca

Example 15. Let w = baabaababab. Then w[n] is closed for n = 1 and 4 ≤
n ≤ 8, and open otherwise; that is, OCw = 10011111000. As predicted by
Propositions 13–14, D reaches its (positive) local maxima, respectively 1 and 4,
at n = 1 and n = 8, and its (non-positive) local minimum of −1 for n = 3. Since
w is not Sturmian, by Proposition 4 any subsequent trapezoidal right extension
will be open, leading to an indefinite decrease of D.

4 Special Trapezoidal Words

In analogy with the case of finite Sturmian words (cf. [7,9]), we say that a
trapezoidal word w ∈ A∗ is right (resp. left) special if wa and wb (resp. aw, bw)
are both trapezoidal, and that w is strictly bispecial if awa, awb, bwa, and bwb
are all trapezoidal.

Proposition 16. A right special trapezoidal word is Sturmian.

Proof. Let w be a non-Sturmian trapezoidal word, then open by Proposition 4.
If z ∈ A and wz is trapezoidal, then it is also not Sturmian (like w) and hence
open. By Corollary 9, Rwz = Rw and Kwz = Kw + 1. By Theorem 2, it follows
wz = pxux · yuyqz with πyuyqz = πyu = πyuyq. This shows that z is uniquely
determined, so that w cannot be right special. ��
Symmetrically, one can prove that

Proposition 17. A left special trapezoidal word is Sturmian.

Theorem 18. A trapezoidal word w is right special if and only if either of the
following holds:

1. w is a suffix of a central word, or
2. w = pxuxyu for a central word u, distinct letters x, y, and a word p such that

πpxux = πux.

Symmetrically, w is a left special trapezoidal word if and only if it is either a
prefix of a central word, or written as w = uxyuyq for x, y ∈ A, x �= y, and
πyuyq = πyu.

Proof. As is well known (cf. [7]), both extensions wa,wb of a word w are Sturmian
if and only if w is a suffix of a central word. Let now w be right special and such
that one extension is not Sturmian. By Proposition 16, w is Sturmian. As a
consequence of Theorem 2, we must have w = pxux · yu where A = {x, y}, u is
some central word, and p is such that πpxux = πux.

Conversely, if w = pxuxyu with A = {x, y}, u central and πpxux = πux, then
w is Sturmian as {xux, yuy} is the only pathological pair in the trapezoidal
non-Sturmian word wy; therefore, wx must be Sturmian (and then trapezoidal)
too.

The left special case is similar. ��

Characteristic Parameters and Special Trapezoidal Words 165

The following theorem is a restatement of results in [6,7]; it characterizes
Sturmian words that are bispecial (as Sturmian words).

Theorem 19. Let w ∈ A∗. Then wa,wb, aw, bw are all Sturmian if and only if
w = (uxy)nu for some central word u, {x, y} = A and a nonnegative integer n.
Furthermore, awa, awb, bwa, bwb are all Sturmian if and only if w is central, i.e.,
n = 0, whereas for n > 0 exactly one such bilateral extension is not Sturmian,
namely xwy.

Semicentral words were defined in [2] by the property of having their longest
repeated prefix, longest repeated suffix, longest left special factor, and longest
right special factor coincide. In the same paper, they were characterized as words
w such that w = uxyu for some central word u over A = {x, y}. Hence, they
correspond to the case n = 1 in the previous theorem.

Our final result is a characterization of strictly bispecial trapezoidal words.

Theorem 20. A trapezoidal word is strictly bispecial if and only if it is central
or semicentral.

Proof. By Theorem 19, central words are strictly bispecial. Moreover, by the
same theorem all bilateral extensions of a semicentral word uxyu are Sturmian,
except for xuxyuy which is trapezoidal non-Sturmian by Theorem 2.

Conversely, if w is a strictly bispecial trapezoidal word, then either all bilat-
eral extensions are Sturmian, in which case w is central by Theorem 19 and we
are done, or at least one is not.

Assume, for instance, that cwa is trapezoidal non-Sturmian, the other cases
being similar. By Proposition 16, cw is Sturmian, so that cwb must be too.
Symmetrically, as a consequence of Proposition 17, dwa must be Sturmian as well
(where {c, d} = A). In all cases, wa,wb, aw, bw are all Sturmian. By Theorem 19,
it follows w = (uxy)nu for some n > 0; as a consequence of Theorem 2, we must
have n = 1. ��

5 Concluding Remarks

A few related problems remain open. In particular, in [5] the oc-sequence for
(prefixes of) characteristic Sturmian words was characterized, see Theorem 11.
The general trapezoidal case, and even the non-standard Sturmian one, is still
open. We believe our results may shed some light on the matter, as illustrated
at the end of Sect. 3.

Regarding the preceding section, a simple and elegant characterization of
(not necessarily strictly) bispecial trapezoidal words, such as Theorem 19 is for
the Sturmian case, is still missing. Theorem 18 might be an ingredient for such
a result.

Acknowledgments. We thank the anonymous referees for their many helpful com-
ments. This paper is dedicated to the memory of our dear colleague Aldo de Luca
(1941–2018).

166 A. D’Aniello and A. De Luca

References

1. Berstel, J., Séébold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Combi-
natorics on Words, chap. 2. Cambridge University Press, Cambridge (2002)

2. Bucci, M., De Luca, A., Fici, G.: Enumeration and structure of trapezoidal words.
Theoret. Comput. Sci. 468, 12–22 (2013). https://doi.org/10.1016/j.tcs.2012.11.
007

3. Bucci, M., de Luca, A., De Luca, A.: Rich and periodic-like words. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 145–155. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 11

4. D’Alessandro, F.: A combinatorial problem on trapezoidal words. Theoret. Com-
put. Sci. 273, 11–33 (2002). https://doi.org/10.1016/S0304-3975(00)00431-X

5. De Luca, A., Fici, G., Zamboni, L.Q.: The sequence of open and closed prefixes of
a Sturmian word. Adv. Appl. Math. 90, 27–45 (2017). https://doi.org/10.1016/j.
aam.2017.04.007

6. Fici, G.: On the structure of bispecial Sturmian words. J. Comput. Syst. Sci. 80(4),
711–719 (2014). https://doi.org/10.1016/j.jcss.2013.11.001

7. de Luca, A.: Sturmian words: structure, combinatorics, and their arith-
metics. Theoret. Comput. Sci. 183, 45–82 (1997). https://doi.org/10.1016/S0304-
3975(96)00310-6

8. de Luca, A.: On the combinatorics of finite words. Theoret. Comput. Sci. 218,
13–39 (1999). https://doi.org/10.1016/S0304-3975(98)00248-5

9. de Luca, A., Mignosi, F.: Some combinatorial properties of Sturmian words.
Theoret. Comput. Sci. 136, 361–385 (1994). https://doi.org/10.1016/0304-
3975(94)00035-H

10. de Luca, A., De Luca, A.: Some characterizations of finite Sturmian words. Theoret.
Comput. Sci. 356, 118–125 (2006). https://doi.org/10.1016/j.tcs.2006.01.036

11. Rigo, M.: Formal Languages, Automata and Numeration Systems: Introduction
to Combinatorics on Words. Wiley, New York (2014). https://doi.org/10.1002/
9781119008200

https://doi.org/10.1016/j.tcs.2012.11.007
https://doi.org/10.1016/j.tcs.2012.11.007
https://doi.org/10.1007/978-3-642-02737-6_11
https://doi.org/10.1016/S0304-3975(00)00431-X
https://doi.org/10.1016/j.aam.2017.04.007
https://doi.org/10.1016/j.aam.2017.04.007
https://doi.org/10.1016/j.jcss.2013.11.001
https://doi.org/10.1016/S0304-3975(96)00310-6
https://doi.org/10.1016/S0304-3975(96)00310-6
https://doi.org/10.1016/S0304-3975(98)00248-5
https://doi.org/10.1016/0304-3975(94)00035-H
https://doi.org/10.1016/0304-3975(94)00035-H
https://doi.org/10.1016/j.tcs.2006.01.036
https://doi.org/10.1002/9781119008200
https://doi.org/10.1002/9781119008200

Return Words and Bifix Codes
in Eventually Dendric Sets

Francesco Dolce1(B) and Dominique Perrin2

1 IRIF, Université Paris Diderot, Paris, France
dolce@irif.fr

2 LIGM, Université Paris-Est Marne-la-Vallée, Champs-sur-Marne, France

Abstract. A shift space (or its set of factors) is eventually dendric if the
possible extensions of all long enough factors are described by a graph
which is a tree. We prove two results on eventually dendric shifts. First,
all sets of return words to long enough words have the same cardinality.
Next, this class of shifts is closed under complete bifix decoding.

Keywords: Formal languages · Symbolic dynamics · Neutral words

1 Introduction

A shift space X can be defined as the set of two-sided infinite words with all their
factors in a given extendable factorial set, called the language of the shift, and
denoted L(X). Thus shift spaces and extendable factorial sets are two aspects of
the same notion. The traditional hierarchy of classes of languages translates into
a hierarchy of shift spaces. In particular, a shift space X is called sofic when its
language L(X) is a regular language. It is called of finite type when its language
is the complement of a finitely generated ideal.

The complexity of a shift space is the function n �→ p(n) where p(n) is the
number of factors of length n of the shift. In this paper, we are interested in shift
spaces of at most linear complexity. This class is important for many reasons and
includes the class of Sturmian shifts which are by definition those of complexity
n + 1, and which play a role as binary codings of discrete lines. Such shifts arise
in many other contexts (see, e.g., [15] or [17]). A shift space X is recurrent if for
every u, v ∈ L(X) there exists some w such that uwv ∈ L(X). It is uniformly
recurrent if for every element w ∈ L(X) there is an integer nw such that w
occurs as a factor in each elements of L(X) longer than nw. Thus, the notion
of recurrence expresses the property that every factor has a second occurrence.
Uniform recurrence correspond to the appearance of the second occurrence after
bounded time. It is known that all uniformly recurrent factorial extendable sets
of at most linear complexity have a finite S-adic representation (i.e., a general-
ization to several morphisms of a fixed point of a morphism) [14,16]. Conversely,
it is an open problem, known as the S-adic conjecture, to characterise the S-adic
representations of uniformly recurrent sets of at most linear complexity (see [15,
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 167–179, 2019.
https://doi.org/10.1007/978-3-030-28796-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_13

168 F. Dolce and D. Perrin

Chap. 12]). Note that all substitutive shifts defined by a primitive morphism are
both uniformly recurrent and of at most linear complexity ([17]).

In this contribution we study a class of shift spaces of at most linear complex-
ity, called eventually dendric, recently introduced in [12]. We also call eventually
dendric the language of an eventually dendric shift. This class extends the class
of dendric sets introduced in [5] (under the name of tree sets) which themselves
extend naturally episturmian sets (also called Arnoux-Rauzy sets) and interval
exchange sets. It is known that the class of eventually dendric shifts is closed
under the natural equivalence on shifts called conjugacy (see [12]). We prove here
that it is closed under a second transformation, namely complete bifix decoding,
which is important because it includes coding by non overlapping blocks of fixed
length. These two results show the robustness of the class of eventually dendric
sets, giving a strong motivation for its introduction.

A dendric set S is defined by introducing the extension graph of a word and
by requiring that this graph is a tree for every word in S. It has many interest-
ing properties which involve free groups. In particular, in a dendric set S on an
alphabet A, the group generated by the set of return words (see Sect. 4) to some
word in S is the free group on the alphabet and, in particular, has CardA free
generators. This generalizes a property known for Sturmian sets whose link with
automorphisms of the free group was noted by Arnoux and Rauzy. The class of
eventually dendric sets, studied in this paper, is defined by the property that the
extension graph of every long enough word in the set is a tree (for short words
the graphs may be arbitrary). These sets are contained in the class of eventually
neutral sets, where a weaker hypothesis on the extensions is required (see Sect. 3).
Our main results are that: all sets of return words to a (long enough) word in
a recurrent eventually neutral set S have the same cardinality (Theorem 1); the
class of eventually dendric sets is closed under complete bifix decoding (Theo-
rem 4). An interesting consequence of Theorem 1 is the equivalence of the notions
of recurrence and uniform recurrence for eventually neutral (and thus eventually
dendric) sets (Theorem 2).

The paper is organized as follows. In Sect. 2, we introduce the definition of
extension graphs and of eventually dendric sets. In Sect. 3, we recall some known
properties on the complexity of a factorial extendable set of words and of special
words. In Sect. 4 we focus on (uniformly) recurrent eventually neutral sets and
on return words in such sets. In particular we prove that for every word w the set
of return words on w is finite and that when w is long enough, all these sets have
the same cardinality (Theorem 1). In the same section, and actually as a conse-
quence of Theorem 1, we also prove that an eventually neutral set is recurrent
if and only if it is uniformly recurrent (Theorem2), a property already known
for neutral sets ([2,11]). In Sect. 5 we introduce generalized extension graphs in
which extension by words over particular sets replaces extension by letters. We
prove that one obtains an equivalent definition of eventually dendric shifts using
these generalized extension graphs (Theorem 3). In Sect. 6, we use generalized
extension graphs to prove that the class of recurrent eventually dendric sets is

Return Words and Bifix Codes in Eventually Dendric Sets 169

closed under complete bifix decoding (Theorem 4), a result already known for
dendric sets. We conclude with some open questions.

2 Eventually Dendric Sets

A set of words S on the alphabet A is factorial if it contains the factors of its
elements. It is called extendable if for any w ∈ S there are letters a, b ∈ A such
that awb ∈ S. For any set X of two-sided infinite words the language of X is
the set S = L(X) of finite factors of the elements of X. It is a factorial and
extendable set. In the following we suppose that the alphabet is minimal, i.e.,
that A ⊆ S.

Given a factorial set S and an integer n ≥ 0 we denote Sn = S ∩ An and
S≥n =

⋃
m≥n Sm. For w ∈ S and n ≥ 1, we denote Ln(w,S) = {u ∈ Sn |

uw ∈ S}, Rn(w,S) = {v ∈ Sn | wv ∈ S} and En(w,S) = {(u, v) ∈ Ln(w,S) ×
Rn(w,S) | uwv ∈ S}. The extension graph of order n of w, denoted En(w,S), is
the undirected bipartite graph whose set of vertices the disjoint union of Ln(w,S)
and Rn(w,S) and with edges the elements of En(w,S). When the context is
clear, we denote Ln(w), Rn(w), En(w) and En(w) instead of Ln(w,S), Rn(w,S),
En(w,S) and En(w,S). A path in an undirected graph is reduced if it does not
contain successive equal edges. For any w ∈ S, since any vertex of Ln(w) is
connected to at least one vertex of Rn(w), the bipartite graph En(w) is a tree if
and only if there is a unique reduced path in En(w) between every pair of vertices
of Ln(w) (resp. Rn(w)). A factorial and extendable set S is said to be eventually
dendric with threshold m ≥ 0 if E1(w) is a tree for every word w ∈ S≥m. It is said
to be (purely) dendric if we can choose m = 0. Dendric sets were introduced
in [5] under the name of tree sets. An important example of dendric sets is
formed by strict episturmian sets (also called Arnoux-Rauzy sets), which are by
definition factorial extendable sets closed by reversal and such that for every n
there exists a unique wn ∈ Sn(X) such that Card(R1(wn)) = Card(A) and such
that for every w ∈ Sn \ {wn} one has Card(R1(w)) = 1 (see [1,5]).

Example 1. Let F be the Fibonacci set, which is the set of factors of the words
ϕn(a), where ϕ is the morphism a �→ ab, b �→ a. It is also the set of factors of the
one-sided infinite word x having all ϕn(a) as prefixes, called a fixed point of ϕ,
since ϕ(x) = x. It is well known that F is a Sturmian set (see [15]). The graph
E1(a) is shown in Fig. 1 on the left. The graph E3(a) is shown on the right.

a

b

a

b

aba

aab

bab

bab

baa

aba

Fig. 1. The graphs E1(a) and E3(a).

170 F. Dolce and D. Perrin

The tree sets of characteristic c ≥ 1 introduced in [4,11] give an example of
eventually dendric sets of threshold 1 (while E1(ε) is a forest of c trees).

Example 2. Let S be the language of the infinite word obtained as fixed point of
the morphism ψ : a �→ ab, b �→ cda, c �→ cd, d �→ abc. Its language is a tree set of
characteristic 2 and it is actually a specular set ([4, Example 4.2]). The extension
graph E1(ε) is shown in Fig. 2. Since the extension graphs of all nonempty words
are trees, the set is eventually dendric with threshold 1.

a

b

b

c

c

d

d

a

Fig. 2. The extension graph E1(ε).

Example 3. Let S be the Tribonacci set, which is the set of factors of the fixed
point of the morphism ψ : a �→ ab, b �→ ac, c �→ a. S is an Arnoux-Rauzy set and
a dendric set (see [5]). Let α be the morphism α : a �→ a, b �→ a, c �→ c. The set
α(S) is eventually dendric with threshold 4 (see [12]).

3 Complexity of Eventually Dendric Sets

Let S be a factorial extendable set. For a word w ∈ S, we denote �k(w) =
Card Lk(w), ek(w) = CardEk(w), and rk(w) = CardRk(w). For any w ∈ S,
we have 1 ≤ �k(w), rk(w) ≤ ek(w). The word w is left-k-special if �k(w) > 1,
right-k-special if rk(w) > 1 and k-bispecial if it is both left-k-special and right-
k-special. For k = 1, we use �, r, e and we simply say special instead of k-special.
We define the multiplicity of w as m(w) = e(w) − �(w) − r(w) + 1. We say that
w is strong if m(w) ≥ 0, weak if m(w) ≤ 0 and neutral if m(w) = 0 (see [9]). It
is clear that if E1(w) is acyclic (resp., connected, a tree), then w is weak (resp.,
strong, neutral). The following proposition is easily verified.

Proposition 1. Let S be a factorial extendable set and let w ∈ S. If w is
neutral, then

�(w) − 1 =
∑

b∈R1(w)

(�(wb) − 1) (1)

A factorial and extendable set S is said to be eventually neutral with threshold
m ≥ 0 if w is neutral for every word w ∈ S≥m. It is said to be (purely) neutral
if we can choose m = 0. Set further pn(S) = CardSn, sn(S) = pn+1(S) − pn(S)
and bn(S) = sn+1(S)− sn(S). The sequence pn(S) is called the complexity of S.

The following result is from [8] (see also [5] and [9, Theorem 4.5.4]).

Return Words and Bifix Codes in Eventually Dendric Sets 171

Proposition 2. We have for all n ≥ 0,

sn(S) =
∑

w∈Sn

(�(w) − 1) =
∑

w∈Sn

(r(w) − 1) and bn(S) =
∑

w∈Sn

m(w).

In particular, the number of left-special (resp. right-special) words of length n is
bounded by sn(S).

We will use the following easy consequence of Proposition 2.

Proposition 3. Let S be a factorial extendable set. If S is eventually dendric,
then the sequence sn(S) is eventually constant.

The previous result implies that eventually dendric sets have eventual linear
complexity. The converse of Proposition 3 is not true.

Example 4. Let C be the Chacon ternary set, which is the set of factors of the
fixed point of the morphism ϕ : a �→ aabc, b �→ bc, c �→ abc. It is well known that
the complexity of C is pn(C) = 2n + 1 and thus that sn(C) = 2 for all n ≥ 0
(see [15, Sect. 5.5.2]). The extension graphs of abc and bca are shown in Fig. 3.
Thus m(abc) = 1 and m(bca) = −1. Let now α be the map on words defined by
α(x) = abcϕ(x). Let us verify that if the extension graph of x is the graph of
Fig. 3 on the left, the same holds for the extension graph of y = α(x). Indeed,
since axa ∈ C, the word ϕ(axa) = aabcϕ(x)aabc = ayaabc is also in C and thus
(a, a) ∈ E1(y). Since cxa ∈ C and since a letter c is always preceded by a letter
b, we have bcxa ∈ C. Thus ϕ(bcxa) = bcyaabc ∈ C and thus (c, a) ∈ E1(y). The
proof of the other cases is similar. The same property holds for a word x with
the extension graph on the right of Fig. 3. This shows that there is an infinity
of words whose extension graph is not a tree and thus the Chacon set is not
eventually dendric.

a

c

a

b

a

c

a

b

Fig. 3. The extension graphs of abc and bca.

4 Recurrent Eventually Dendric Sets

A factorial set S is recurrent if for any u, v ∈ S there is a word w such that
uwv ∈ S. A set is uniformly recurrent whenever for all w ∈ S there exists an
n ≥ 0 such that w is a factor of any word in Sn. This last property is called
minimality in the context of dynamical systems. If S is uniformly recurrent and
infinite, then either there exists for every w ∈ S an integer n ≥ 1 such that

172 F. Dolce and D. Perrin

wn /∈ S or S is equal to the set of factors of an infinite periodic word uuu · · · . A
uniformly recurrent set is recurrent but the converse is false, since for example
the A∗ is recurrent but not uniformly recurrent as soon as A has at least two
elements.

Let S be a factorial extendable set. The set of complete return words to a
word w ∈ S is the set CRS(w) of words having exactly two factors equal to w,
one as a proper prefix and the other one as a proper suffix. It is clear that S
is uniformly recurrent if and only if it is recurrent and if for every word w the
set of complete return words to w is finite. If wu is a complete return word to
w, then u is called a (right) return word to w. We denote by RS(w) the set of
return words to w. Clearly Card(CRS(w)) = Card(RS(w)).

Example 5. Let S be the Tribonacci set (see Example 3). Then RS(a) =
{a, ba, ca} and RS(c) = {abac, ababac, abaabac}.

By a result of [2], if S is uniformly recurrent and neutral (a fortiori, if S is
dendric) the set RS(w) has Card(A) elements for every w ∈ S. This is not true
anymore for eventually dendric sets, as shown in the following example.

Example 6. Let S be the Tribonacci set and let Y = α(S) be, as in Example 3
the image of S under the morphism α : a, b → a, c → c. Then, using Example 5,
we find RY (a) = {a, ca} while RY (c) = {aaac, aaaaac, aaaaaac}.

We will prove that for eventually dendric sets, a weaker property is true. It
implies that the cardinality of sets of return words is eventually constant. For
w ∈ S, set ρS(w) = r1(w) − 1 and for a set W ⊆ S, let ρS(W) =

∑
w∈W ρS(w)

(if W is infinite, ρS(W) is the supremum of the values of ρS(U) on the finite
subsets U of W).

By the symmetric of Proposition 1, for every neutral word w ∈ S, we have

ρS(w) =
∑

a∈L1(w)

ρS(aw). (2)

Theorem 1. Let S be a recurrent set which is eventually neutral with threshold
m. For every w ∈ S, the set RS(w) is finite. Moreover, for every w ∈ S≥m, we
have

Card(RS(w)) = 1 + ρS(Sm). (3)

Note that for m = 0 we have Card(RS(w)) = Card(A) since ρS(ε) = Card(A)−1.
A prefix code (resp. a suffix code) is a set X of words such that none of them

is a prefix (resp. a suffix) of another one. A prefix code (resp. a suffix code)
U ⊆ S is called S-maximal if it is not properly contained in a prefix code (resp.
suffix code) Y ⊆ S (see, for instance, [3]).

Proposition 4. Let S be an eventually neutral set with threshold m. Then
ρS(U) is finite for every suffix code U ⊆ S. If U is a finite S-maximal suffix
code with U ⊆ S≥m, then

ρS(U) = ρS(Sm). (4)

Return Words and Bifix Codes in Eventually Dendric Sets 173

Proof. For any suffix code U ⊆ S, let us set Um = (U ∩ S<m)∪ (T ∩ Sm), where
T is the set of words which are suffixes of some words of U . Note that Um is a
finite suffix code. It is equal to Sm if U is S-maximal and contained in S≥m.

Assume first that U ⊆ S is a finite S-maximal suffix code. We prove by
induction on the sum �(U) of the lengths of the words of U that

ρS(U) = ρS(Um). (5)

If all words of U are of length at most m, then U = Um and thus Eq. (5) holds.
Otherwise, let u ∈ U be of maximal length. Set u = av with a ∈ A. Then
Av ∩ S ⊆ U . Set U ′ = (U \ Av) ∪ {v}. Thus U ′ is reduced to the empty word or
is an S-maximal suffix code with �(U ′) < �(U). We have U = (U ′ \ v) ∪ L1(v)v.
Since |v| ≥ m, v is neutral, we have, by Eq. (2), ρS(U) = ρS(U ′) − ρS(v) +∑

a∈L1(v)
ρS(av) = ρS(U ′). By induction hypothesis, Eq. (5) holds for U ′. Since

Um = U ′
m, we have ρS(U) = ρS(U ′) = ρS(U ′

m) = ρS(Um). Thus Eq. (5) is
proved.

If U is infinite, then ρS(U) is the supremum of the values of ρS(V) on the
finite subsets V of U . Any finite suffix code V ⊂ S is contained in a finite S-
maximal suffix code W and ρS(V) ≤ ρS(W). By Eq. (5), this implies ρS(V) ≤
ρS(Wm). The number of possible Wm is finite, therefore ρS(V) is bounded. We
conclude that ρS(U) is finite.

Proof (of Theorem 1). Consider a word w ∈ S and let P be the set of proper
prefixes of CRS(w). For p ∈ P , denote α(p) = Card{a ∈ A | pa ∈ P ∪CRS(w)}−
1. Then CRS(w) is finite if and only if P is finite. Moreover in this case, since
CRS(w) is a prefix code, we have by a well known property of trees (one can see
CRS(w) as set of leaves and P as set of internal nodes)

Card(CRS(w)) = α(P) + 1, (6)

where α(P) =
∑

p∈P α(p). Let U be the set of words in P which are not proper
prefixes of w. We claim that U is an S-maximal suffix code. Indeed, if u, vu ∈ U ,
then w is a proper prefix of u and thus is an internal factor of vu, a contradiction
unless v = ε. Thus U is suffix. Consider r ∈ S. Either r has a suffix in U or r is
a suffix of a word in U . Indeed, let us suppose that r has no suffixes in U . Then,
since S is recurrent, there is some s ∈ S such that wsr ∈ S. Let u be the shortest
suffix of wsr which has w for proper prefix. Then u ∈ U . This shows that U is
an S-maximal suffix code. We have α(p) = 0 for any proper prefix p of w since
any word in CRS(w) has w as a proper prefix. Next we have α(p) = ρS(p) for
any p ∈ U . Indeed, if ua ∈ S for u ∈ P and a ∈ A, then ua ∈ CRS(w) ∪ P since
S is recurrent. Thus we have α(P) = ρS(U). By Proposition 4, ρS(U) is finite.
Therefore, Eq. 6 shows that Card(CRS(w)) = Card(RS(w)) is finite.

Assume finally that |w| ≥ m. Then U ⊆ S≥m and thus, by Proposition 4, we
have ρS(U) = ρS(Sm). Thus we have α(P) = ρS(Sm). By Eq. (6), this implies
Eq. (3).

It is known that for neutral set recurrence is enough to guarantee uniform
recurrence [11]. We obtain as a direct corollary of Theorem1 the following:

174 F. Dolce and D. Perrin

Theorem 2. An eventually neutral set is recurrent if and only if it is uniformly
recurrent.

Proof. Let S be a recurrent eventually neutral set. By Theorem 1, the set RS(w)
is finite for every w ∈ S. Thus S is uniformly recurrent.

Theorem 2 shows also that in a recurrent eventually neutral set the cardinality
of sets of complete return words is bounded. There exist (uniformly) recurrent
sets which do not have this property (see [13, Example 3.17]).

5 Generalized Extension Graphs

We will now see how the conditions on extension graphs can be generalized to
graphs expressing the extension by words having different length.

Proposition 5. For every n ≥ 1 and m ≥ 0, the graph En(w) is a tree for all
w ∈ S≥m if and only if En+1(w) is a tree for all words w ∈ S≥m.

To prove Proposition 5 we need some preliminary result as well as the fol-
lowing notions. Let S be a factorial extendable set of words over an alphabet
A.

For U, V ⊆ A∗ and w ∈ S, let LU (w) = {u ∈ U | uw ∈ S} and RV (w) =
{v ∈ V | wv ∈ S}.

Let U ⊆ A∗ (resp. V ⊆ A∗) be a suffix code (resp. prefix code) and w ∈ S
be such that LU (w) is an S-maximal suffix code (resp. RV (w) is an S-maximal
prefix code). The generalized extension graph of w relative to U, V is the following
undirected bipartite graph EU,V (w). The set of vertices is the disjoint union of
LU (w) and RV (w). The edges are the pairs (u, v) ∈ LU (w) × RV (w) such that
uwv ∈ S. In particular En(w) = ESn,Sn

(w). The only if part of the next result
is [5, Lemmas 3.8 and 3.10].

Lemma 1. Let S be a factorial extendable set and let w ∈ S. Let U ⊆ S be
a finite S-maximal suffix code and let V ⊆ S be finite S-maximal prefix code.
Let � ∈ S be such that A� ∩ S ⊆ U and such that EA,V (�w) is a tree. Set
U ′ = (U \ A�) ∪ {�}. The graph EU ′,V (w) is a tree if and only if the graph
EU,V (w) is a tree.

Proof. We need only to prove the if part. First, note that the hypothesis that
EA,V (�w) is a tree guarantees that the left vertices A� in EU,V (w) are clusterized:
for any pair of vertices a�, b� there exists a unique reduced path from a� to b� in
EU,V (w) using as left vertices only elements of A�. Indeed, such a path exists since
the subgraph EA�,V (w) of EU,V (w) is isomorphic to EA,V (�w) that is connected.
Since EU,V (w) is a tree, this path is unique. Let v, v′ ∈ RV (w) be two distinct
vertices and let π be the unique reduced path from v to v′ in EU,V (w). We show
that we can find a unique reduced path π′ from v to v′ in EU ′,V (w). If π does not
pass by A�, we can simply define by π′ a path passing by the same vertices than
π. Otherwise, we can decompose π in a unique way as a concatenation of a path

Return Words and Bifix Codes in Eventually Dendric Sets 175

π1 from v to a vertex in A� not passing by A� before, followed by a path from
A� to A� (using on the left only vertices from A�) and a path π2 from A� to v′

without passing in A� again. We consider in EU ′,V (w) the unique path π′
1 from

v to � obtained by replacing the last vertex of π1 by � and the unique reduced
path π′

2 from � to v′ obtained by replacing the first vertex of π2 by �. In this case
we define π′ as the concatenation of π′

1 and π′
2. The reduced path π′ is unique.

Indeed, let us suppose that we have a different path π∗ from v to v′ in EU ′,V (w).
If π∗ does not pass (on the left) by �, we would find a path having the same
vertices in EU,V (w) which is impossible since the graph is acyclic. Let us suppose
that both π′ and π∗ pass by �. Without loss of generality let us suppose that we
have a cycle in EU ′,V (w) passing by � and v (the case with v′ being symmetric).
Let us define by π′

0 and π∗
0 the two distinct subpaths of π′ and π∗ respectively

going from v to �. Since S is extendable, we can find a�, b� ∈ U , with a, b ∈ A
not necessarily distinct, and two reduced paths π1 from v to a� and and π2 from
v to b� in EU,V (w) obtained from π′

0 and π∗
0 by replacing the vertex � by a� and

b� respectively. From the remark at the beginning of the proof we know that we
can find a reduced path in EU,V (w) from a� to b�. Thus we can find a nontrivial
cycle in EU,V (w), which contradicts the acyclicity of the graph.

A symmetric statement holds for r ∈ S such that rA ∩ S ⊆ V and EU,A(wr)
is a tree, with V ′ = (V \ rA) ∪ {r}: the graph EU,V (w) is a tree if and only if
EU,V ′(w) is a tree.

Lemma 2. Let n ≥ 1, let m ≥ 0 and let V be a finite S-maximal prefix code.
If ESn,V (w) is a tree for every w ∈ S≥m then for each word u ∈ S≥n+m−1, the
graph EA,V (u) is a tree.

Proof. The graph EA,V (u) is obtained from ESn,V (u) by identifying the vertices
of Ln(u) ending with the same letter. Since ESn,V (u) is connected, EA,V (u) is
also connected. Set u = �u′ with |�| = n − 1. The graph EA,V (u) is isomorphic
to EA�,V (u′) which is a subgraph of En(u′) and thus it is acyclic.

A symmetric statement holds for n ≥ 1 and U a finite S-maximal suffix code:
if EU,Sn

(w) is a tree for every w ∈ S≥m then so is EU,A(u) for every u ∈ Sn+m−1.

Proof (of Proposition 5). Assume first that En(w) is tree for every word w ∈ S≥m.
We fix some w ∈ S≥m. We claim that for any finite S-maximal suffix code U
formed of words of length n or n + 1, the graph EU,Sn

(w) is a tree. The proof
is done by induction on γn+1(U) = Card(LU (w) ∩ An+1). The property is true
for γn+1(U) = 0, since then EU,Sn

(w) = En(w). Assume now that γn+1(U) > 0.
Let a� with a ∈ A be a word of length n + 1 in LU (w). Since U is an S-maximal
suffix code with words of length n or n+1, we have A�∩S ⊆ U . Let us consider
U ′ = (U\A�)∪{�}. Since γn+1(U ′) < γn+1(U), by induction hypothesis the graph
EU ′,Sn

(w) is a tree. Moreover, by Lemma 2, the graph EA,Sn
(�w) is a tree. Thus,

by Lemma 1, the graph EU,Sn
(w) is a tree. This proves the claim. We now claim

that for any finite S-maximal prefix code V formed of words of length n or n+1,
the graph ESn+1,V (w) is a tree by induction on δn+1(V) = Card(RV (w)∩An+1).

176 F. Dolce and D. Perrin

The property is true for δn+1(V) = 0, since the graph ESn+1,V (w) = ESn+1,Sn
(w),

is a tree. Assume now that δn+1(V) > 0. Let ra with a ∈ A be a word of length
n + 1 in RV (w). Since V is an S-maximal prefix code with words of length n
or n + 1, we have rA ∩ S ⊆ U . Let us consider V ′ = (V \ rA) ∪ {r}. Since
δn+1(V ′) < δn+1(V), by induction hypothesis the graph ESn+1,V ′(w) is a tree.
Moreover, by the symmetric version of Lemma 2, the graph ESn+1,A(wr) is a
tree. This proves the claim. Since En+1(w) = ESn+1,Sn+1(w), we conclude that
En+1(w) is a tree.

Assume now that En+1(w) is a tree for every w ∈ S≥m. Fix some w ∈ S≥m.
We first claim that EU,Sn+1(w) is a tree for every S-maximal suffix code U formed
of words of length n or n + 1 by induction on γn(U) = Card(LU (w) ∩ An). The
property is true if γn(U) = 0, since then EU,Sn+1(w) = En+1(w). Assume next
that γn(U) > 0. Let � ∈ LU (w) ∩ An. Set W = (U \ {�}) ∪ A� or equivalently
U = (W \ A�) ∪ {�}. Then δn(W) < δn(U) and consequently EW,Sn+1(w) is
a tree by induction hypothesis. On the other hand, by Lemma2, the graph
EA,Sn+1(�w) is also a tree. By Lemma 1, the graph EU,Sn+1(w) is a tree and
thus the claim is proved. We now claim that ESn,V (w) is a tree for every S-
maximal prefix code V formed of words of length n or n + 1 by induction on
δn(V) = Card(RV (w) ∩ An). The property is true if δn(V) = 0. Assume now
that δn(V) > 0. Let r ∈ RV (w) ∩ An and let T = (V \ {r}) ∪ rA or equivalently
V = (T \rA)∪{r}. Then δn(T) < δn(V) and thus ESn,T (w) is a tree by induction
hypothesis. On the other hand, by the symmetric version of Lemma 2, the graph
ESn,A(wr) is also a tree. By Lemma 1, the graph ESn,T (w) is a tree and thus the
claim is proved. Since En(w) = EU,V (w) for U = V = Sn, it follows from the
claim that En(w) is a tree.

The following result shows that in the definition of eventually dendric sets,
one can replace the graphs E1(w) by En(w) with the same threshold.

Theorem 3. Let S be a factorial extendable set. For every m ≥ 1, the following
conditions are equivalent.

(i) S is eventually dendric with threshold m,
(ii) the graph En(w) is a tree for every n ≥ 1 and every word w ∈ S≥m,
(iii) there is an integer n ≥ 1 such that En(w) is a tree for every word w ∈ S≥m.

Proof. (i) ⇒ (ii) and (iii) ⇒ (i) follows from Proposition 5 using respectively
ascending and descending induction on n. Finally, (ii) clearly implies ⇒ (iii).

6 Complete Bifix Decoding

Let S be a factorial extendable set of words over an alphabet A. A set U ⊆ S is
said to be right S-complete (resp. left S-complete) if any long enough word of
S has a prefix (resp. suffix) in U . It is two-sided S-complete if it is both left and
right S-complete. A bifix code is a set of words that is both a prefix code and a
suffix code. Similarly to what seen in Sect. 5, we say that a bifix code U ⊆ S is

Return Words and Bifix Codes in Eventually Dendric Sets 177

S-maximal if it is not properly contained in a bifix code V ⊆ S. If a bifix code
U ⊆ S is right S-complete (resp. left S-complete), it is an S-maximal bifix code
since it is already an S-maximal prefix code (resp. suffix code). It can be proved
conversely that if S is recurrent, a finite bifix code is S-maximal if and only if it
is two-sided S-complete (see [3, Theorem 4.2.2]). This is not true in general, as
shown by the following example.

Example 7. Let S = a∗b∗. The set U = {aa, b} is an S-maximal bifix code.
Indeed, it is a bifix code and it is left S-complete as one may verify. However it
is not right S-complete since no word in ab∗ has a prefix in U .

Let S ⊆ A∗ be a factorial extendable set and let U be a two-sided S-complete
finite bifix code. Let ϕ : B → U be a coding morphism for U , that is, a bijection
from an alphabet B onto U extended to a morphism from B∗ into A∗. Then
ϕ−1(S) is factorial and, since U is two-sided complete, it is extendable. The
set ϕ−1(S) is called the complete bifix decoding of S with respect to U . For
example, for any n ≥ 1, the set Sn is a two-sided complete bifix code and the
corresponding complete bifix decoding is the decoding of S by n-blocks. In [5,
Theorem 3.13] it is proved that the maximal bifix decoding of a recurrent dendric
set is a dendric set. Actually, the hypothesis that S is recurrent is only used to
guarantee that the S-maximal bifix code used for the decoding is also an S-
maximal prefix code and an S-maximal suffix code. In the definition used here
of complete bifix decoding, we do not need this hypothesis. Note, however, that
when S is recurrent, the two notions of complete and maximal bifix decoding
coincide.

Theorem 4. Any complete bifix decoding of an eventually dendric set is an
eventually dendric set having the same threshold.

Note that for any S-maximal suffix code U one has Card(U) ≥ Card(A).
Indeed, every a ∈ A appears as a suffix of (at least) an element of S.

Lemma 3. A set S is an eventually dendric set with threshold n if and only if
for any w ∈ S≥n, for any S-maximal suffix code U and for any S-maximal prefix
code V , the graph EU,V (w) is a tree.

Proof. The “if” part is trivial. To prove the other direction, we use an induction
on the sum of the lengths of the words in U, V . The property is true if the sum is
equal to 2Card(A). Indeed, for every w ∈ S≥n one has U = L(w) and V = R(w)
and thus EU,V (w) = E1(w) is a tree. Otherwise, assume that U contains words of
length at least 2 (the case with V being symmetrical). Let u ∈ U be of maximal
length. Set u = a� with a ∈ A. Since U is an S-maximal suffix code, we have
A� ∩ S ⊆ U . Set U ′ = (U \ A�) ∪ {�}. By induction hypothesis, both EU ′,V (w)
and EA,V (�w) are trees. Thus, by Lemma 1, EU,V (w) is also a tree.

Proof (of Theorem 4). Assume that S is eventually dendric with threshold n.
Let ϕ : B → U be a coding morphism for U and let T be the decoding of S
corresponding to U . Consider a word w of T of length at least n. By Lemma 3,

178 F. Dolce and D. Perrin

and since |ϕ(w)| ≥ n, the graph EU,U (ϕ(w)) is a tree. But for b, c ∈ B, one has
bwc ∈ T if and only if ϕ(bwc) ∈ S, that is, if and only if (ϕ(b), ϕ(c)) ∈ E1(ϕ(w)).
Thus E1(w) is isomorphic to EU,U (ϕ(w)) and thus E1(w) is a tree. This shows
that T is eventually dendric with threshold n.

Example 8. Let S be the Fibonacci set. Then U = {aa, aba, b} is an S-maximal
bifix code. Let ϕ : {u, v, w} → U be the coding morphism for U defined by
ϕ : u �→ aa, v �→ aba,w �→ b. The complete bifix decoding T of S with respect to
U is a purely dendric set. It is actually the natural coding of an interval exchange
transformation on three intervals (see [6]). The extension graphs E1(ε, T) and
E1(v, T) are shown in Fig. 4.

u

v

w

u

v

w

u

v

u

v

Fig. 4. The graphs E1(ε, T) and E1(w, T).

A particular case of complete bifix decoding is related to the skew product
of two dynamical systems, a notion which is well-known in topological dynamics
(see [10]). Indeed, assume that we start with a shift space X, a transitive permu-
tation group G on a set Q and a morphism f : A∗ → G. We denote by q �→ q · w
the result of the action of the permutation f(w) on the point q ∈ Q. The skew
product of X and (G,Q) is the shift space Y on the alphabet A × Q formed by
the bi-infinite words (ai, qi) such that (ai) ∈ X and pi+1 = pi ·f(ai) for all i ∈ Z.
Fix a point i ∈ Q. The set of words w such that i·w = i is a submonoid generated
by a bifix code U which is two-sided complete. The decoding of S = L(X) with
respect to U ∩ S is the language of the dynamical system induced by Y on the
set of y ∈ Y such that y0 = (a, i) for some a ∈ A (see [6] for more details).

Example 9. Let X be the Fibonacci shift, i.e., the shift whose language is the
Fibonacci set. Let Q = {1, 2}, G = Z/2Z and f : A∗ → G defined by a �→
(12), b �→ (1). Choosing i = 1, the bifix code U built as above is U = {aa, aba, b}
as in Example 8.

7 Conclusion

We have seen that the class of eventually dendric shifts is closed under complete
bifix decoding. It is also known to be closed under conjugacy (see [12]), and thus
it has strong closure properties. It would be interesting to know how properties
which are known to hold for dendric sets (or language of dendric shifts) extend
to this more general class. For instance, to which extent the properties of return
words proved for recurrent dendric sets extend to eventually dendric ones? More

Return Words and Bifix Codes in Eventually Dendric Sets 179

precisely, what can we say about the subgroup of the free group generated by
return words to a given word? In [5] it is proved that for recurrent dendric sets,
every set of return words to a fixed word is a basis of the free group, while in
the case of specular sets, the set of return words to a fixed word is a basis of
a particular subgroup called the even subgroup (see [4]). Also, is there a finite
S-adic representation for all recurrent eventually dendric sets? There is one for
recurrent dendric sets [7].

Acknowledgements. We thank Valérie Berthé, Paulina Cecchi, Fabien Durand and
Samuel Petite for useful conversations on this subject.

References

1. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n +
1. Bull. Soc. Math. France 119(2), 199–215 (1991)

2. Balková, L., Pelantová, E., Steiner, W.: Sequences with constant number of return
words. Monatsh. Math. 155(3–4), 251–263 (2008)

3. Berstel, J., De Felice, C., Perrin, D., Reutenauer, C., Rindone, G.: Bifix codes and
Sturmian words. J. Algebra 369, 146–202 (2012)

4. Berthé, V., et al.: Specular sets. Theor. Comput. Sci. 684, 3–28 (2017)
5. Berthé, V., et al.: Acyclic, connected and tree sets. Monatsh. Math. 176(4), 521–

550 (2015)
6. Berthé, V., et al.: Bifix codes and interval exchanges. J. Pure Appl. Algebra 219(7),

2781–2798 (2015)
7. Berthé, V., et al.: Maximal bifix decoding. Dicrete Math. 338, 725–742 (2015)
8. Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin

4(1), 67–88 (1997). Journées Montoises (Mons, 1994)
9. Cassaigne, J., Nicolas, F.: Factor complexity. In: Combinatorics, Automata and

Number Theory. Encyclopedia of Mathematics and its Applications, vol. 135, pp.
163–247. Cambridge University Press, Cambridge (2010)

10. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic Theory. Grundlehren der Math-
ematischen Wissenschaften (Fundamental Principles of Mathematical Sciences),
vol. 245. Springer-Verlag, New York (1982). https://doi.org/10.1007/978-1-4615-
6927-5. Translated from the Russian by A. B. Sosinskii

11. Dolce, F., Perrin, D.: Neutral and tree sets of arbitrary characteristic. Theor. Com-
put. Sci. 658(Part A), 159–174 (2017)

12. Dolce, F., Perrin, D.: Eventually dendric shifts. In: van Bevern, R., Kucherov, G.
(eds.) CSR 2019. LNCS, vol. 11532, pp. 106–118. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-19955-5 10

13. Durand, F., Leroy, J., Richomme, G.: Do the properties of an S-adic representation
determine factor complexity? J. Integer Seq. 16(2), 30 (2013). Article 13.2.6

14. Ferenczi, S.: Rank and symbolic complexity. Ergodic Theory Dyn. Syst. 16(4),
663–682 (1996)

15. Fogg, N.P., Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A.: Substitutions in
Dynamics, Arithmetics and Combinatorics. LNM, vol. 1794. Springer, Berlin
(2002)

16. Leroy, J.: Some improvements of the S-adic conjecture. Adv. Appl. Math. 48(1),
79–98 (2012)

17. Queffélec, M.: Substitution Dynamical Systems-Spectral Analysis. LNM, vol. 1294,
2nd edn. Springer, Berlin (2010)

https://doi.org/10.1007/978-1-4615-6927-5
https://doi.org/10.1007/978-1-4615-6927-5
https://doi.org/10.1007/978-3-030-19955-5_10
https://doi.org/10.1007/978-3-030-19955-5_10

Enumeration and Extensions
of Word-Representants

Marisa Gaetz1(B) and Caleb Ji2(B)

1 Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge, MA 02139, USA

mgaetz@mit.edu
2 Washington University in St. Louis,

1 Brookings Dr, St. Louis, MO 63130, USA
caleb.ji@wustl.edu

Abstract. Given a finite word w over a finite alphabet V , we may con-
struct a graph with vertex set V and an edge between to elements of V
if and only if they alternate in the word w. This is the notion of word-
representability of graphs. In this paper, we first study minimal length
words which represent graphs, giving an explicit formula for both the
length and the number of such words in the case of trees and cycles.
Then we extend this notion to study the graphs representable with other
patterns in words, proving in all cases aside from one (still unknown to
us), all graphs are representable by all other patterns. Finally, we pose
a few open problems for further work.

1 Introduction

The theory of word-representable graphs gives a way to associate a graph with a
word. Motivated by the study of Perkins semigroups [1], this topic has been the
subject of much research since its inception. A major theme of this research has
been on the classification of word-representable graphs [3,6,7]. Other papers have
studied variants and extensions to the original notion of word-representability
[4,5].

In this paper, we begin by giving a brief review of the basic definitions and
results in this field. For a more thorough treatment, we refer the reader to [2].
Then we go on to study minimal length representants of word-representable
graphs, first studied in [3]. We obtain an explicit formula for the number of
words of minimal length representing a given tree or a cycle. In the following
section, we extend the ideas from [5] to study the graphs representable with other
patterns in words. Next, we consider the word-representability of hypergraphs
through a natural generalization of the original notion. We will end with some
open questions and avenues for further research.

Definition 1 ([2]). A simple, undirected graph G = (V,E) is word-
representable if there exists a word w over the alphabet V such that any x, y ∈ V

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 180–192, 2019.
https://doi.org/10.1007/978-3-030-28796-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_14

Enumeration and Extensions of Word-Representants 181

alternate in w if and only if xy ∈ E; that is, if there are no two consecutive
instances of x or y without an occurrence of the other in between. We require
that w contains each letter of V at least once. We say that w represents G or
that w is a word-representant, or simply representant, for G.

A word w is called k-uniform if each letter in w occurs exactly k times. For
example, 12332414 is a 2-uniform word, while the 1-uniform words are precisely
the permutations.

Definition 2 ([2]). A graph G is k-word-representable if it has a k-uniform
representant w.

In fact, it has been shown that Definitions 1 and 2 are equivalent.

Theorem 1 ([3]). A graph is word-representable if and only if it is k-word-
representable for some k.

For a word w, we call the permutation obtained by removing all but the
leftmost occurrence of each letter in w the initial permutation of w. Let π(w)
denote the initial permutation of w. Similarly, we call the permutation obtained
by removing all but the rightmost occurrence of each letter in w the final per-
mutation of w. Let σ(w) denote the final permutation of w.

Henceforth, all graphs will be taken to be simple and undirected.
In addition to the initial and final permutations of a word, it will often be

useful to consider the restriction of a word to some subset of the vertices it is
defined on. To denote a word w restricted so some letters x1, . . . , xm, we write
w|x1···xm

. For example, if w = 132435213, then w|12 = 1221.

2 Enumeration of Minimal Length Representants

By Theorem 1, the following notion introduced in [2] by Kitaev is well-defined.

Definition 3 ([2]). Let G be a word-representable graph. The representation
number of G is the least k such that G is k-word-representable.

In [2], Kitaev goes on to study the class of graphs with representation num-
ber two. Rather than following Kitaev in investigating minimal length uniform
representants of graphs, we here choose to study absolute minimal length repre-
sentants.

Definition 4. For a word-representable graph G, define �(G) as the minimal
length of a word w that represents G.

It is important to note that, following Kitaev’s definition of “word-
representant” (stated above as Definition 1), we require that a word-representant
w for a graph G = (V,E) contains each letter of V at least once. As a result
of this requirement, we do not need to worry about whether it makes sense for
letters x and y to “alternate” in w when one (or both) of x and y do not appear
in w.

Definition 5. For a word-representable graph G, define n(G) as the number of
words of length �(G) that represent G.

182 M. Gaetz and C. Ji

2.1 General Results

We obtain the following bound for the �(G) of a general graph.

Theorem 2. Let G = (V,E) be a word-representable graph with connected com-
ponents {Gi = (Vi, Ei)}ki=1. Then

�(G) ≤
k∑

i=1

(�(Gi) + |Vi|) − max
1≤j≤k

|Vj |.

Proof. For each i ∈ {1, 2, . . . , k}, let wi be a minimal length representant of Gi.
We claim that the word w = w1σ(w1) w2σ(w2) · · · wk−1σ(wk−1) wk represents
G and has length

∑k
i=1(�(Gi) + |Vi|) − |Vk|. For each i ∈ {1, 2, . . . , k}, we have

that wi represents Gi over the alphabet Vi and that wiσ(wi) represents Gi

over the alphabet Vi (since appending σ(wi) to wi does not affect which letters
alternate). Noting that the sets V1, V2, . . . , Vk are pairwise disjoint, we have that
w|Vi

represents Gi for all 1 ≤ i ≤ k. Furthermore, for all pairs (i, j) satisfying
1 ≤ i < j ≤ k, we have that every vertex in Vi occurs at least twice in w
before any vertex in Vj appears. Therefore, w accurately encodes each connected
component of G as well as the information that there are no edges between
different connected components of G. It follows that w represents G, as desired.
Finally, it is clear by construction that w has length

∑k
i=1(�(Gi) + |Vi|) − |Vk|.

2.2 Trees

In the case of trees, we find a precise value for �(G).

Theorem 3. Let T = (V,E) be a tree, and let n := |V |. Then �(T) = 2n − 2.

Proof. We first prove that �(T) ≥ 2n − 2. Let w be a minimal length word-
representant of T . By definition of word-representant (see Definition 1), we have
that all elements of V occur at least once in w. We claim that there are at
most two elements of V that occur only once in w. Suppose, for the sake of
contradiction, that x, y, z ∈ V each occur exactly once in w. Then any pair
of letters chosen from {x, y, z} must alternate in w. Consequently, there are
edges xy, yz, xz ∈ E forming a triangle in T , contradicting the fact that T is
a tree. Therefore, at most two elements of V occur only once in w, meaning
�(T) ≥ 2(n − 2) + 2 = 2n − 2.

We now show by induction on n that there is a word of length 2n − 2 that
represents T . Observe that the word 12 represents the unique tree on two vertices
(namely, the tree T2 = (V2, E2) defined by V2 = {1, 2} and E2 = {12}). In other
words, the result holds for n = 2. Assume that the result holds up to n = k − 1,
where k ≥ 3. Let Tk = (Vk, Ek) be any tree on k vertices. Let a denote a leaf
of Tk, and let b denote the parent of a. By the inductive hypothesis, there is a
word w′ of length 2k − 4 that represents the tree Tk \ {a} obtained from Tk by
removing the vertex a and the edge ab. Now, replace one instance of b in w′ with
aba, and let w denote the resulting word.

Enumeration and Extensions of Word-Representants 183

We claim that w represents Tk. Recall from the above argument that at most
two elements of Vk \ {a} occur only once in w′. Since w′ has length 2k − 4, all of
the other k−3 elements of Vk \{a} must occur exactly twice in w′. In particular,
there are at most two instances of b in w′ (and hence in w). It follows that a
and b alternate in w. Furthermore, a clearly does not alternate with any other
letters in w. Consequently, we see that w is a length 2k − 2 word-representant
of T . The theorem follows by induction.

1

2 3

4

Fig. 1. A tree on four vertices.

1

2

34

Fig. 2. The star graph S3.

Example 1. Figure 1 depicts a tree on four vertices. According to Theorem 3, a
minimal length representant for this tree has length 2 · 4 − 2 = 6. It is straight-
forward to check that 212434 is a minimal length representant of the depicted
tree.

For a tree T = (V,E), we would now like to count the number n(T) of minimal
length representants for T . By Theorem 3, such representants have length 2|V |−2
and are such that two vertices occur once and all other vertices occur twice.
Note that the two vertices appearing once alternate and thus are connected
in the graph. Although this gives us some idea as to the structure of minimal
length representants of T , we would like a more detailed picture. To this end,
we establish the following notation and lemma.

For a tree T = (V,E) and an edge xy ∈ E, let Tx,xy be the subtree of T
obtained by deleting the edge xy and taking the connected component containing
x. Define Ty,xy similarly.

Lemma 1. Let T be a tree and w a minimal length representant for T . Let x, y ∈
V (T) be the vertices of T that occur only once in w; without loss of generality, let
x occur before y in w. Then w is of the form w = wx1wx2 · · · wxm

wy1wy2 · · · wyn
,

where wx1 , wx2 , . . . , wxm
∈ Tx,xy and wy1 , wy2 , . . . , wyn

∈ Ty,xy.

184 M. Gaetz and C. Ji

Proof. For sake of contradiction, assume that there are vertices xi ∈ Tx,xy and
yj ∈ Ty,xy such that a copy of T |xiyj

= yjxixiyj . Let xx1 . . . , xi and yy1 . . . , yj
be paths in T . Since x appears before y and x1 and y1 alternate with x and
y respectively but not with each other, we have that every occurrence of x1

appears before every appearance of y1. Then inductively it is clear that not both
copies of yj appear before x, so they both appear after x. Since the xks must
alternate with each other but not with yj , we see that all of them must appear
between the two yjs as well. This implies that both x1s are after one of the yjs
and thus after x, giving the desired contradiction.

Example 2. Consider again the minimal length representant w = 212434 of the
tree depicted in Figure 1. Using the notation of Lemma 1, we have x = 1 and
y = 3. As Lemma 1 predicts, all occurrences of the vertices of Tx,xy (i.e. 1 and
2) occur before all occurrences of the vertices of Ty,xy (i.e. 3 and 4) in w.

Lemma 1 gives us a lot of information regarding the structure of the minimal
length representants of T . In fact, with the help of the next lemma, it will allow
us to compute n(T). This next lemma establishes n(Sk), where Sk is the star
graph with k leaves (i.e. the complete bipartite graph K1,k).

Lemma 2. Let Sk be the star graph with leaves u1, u2, . . . , uk and with a center
vertex c. Then n(Sk) = 2·k!. Furthermore, any minimal length word-representant
w of Sk is either of the form w = uk u1u2 · · · uk−1 c uk−1uk−2 · · · u1 or of the
form w = u1u2 · · · uk−1 c uk−1uk−2 · · · u1 uk.

Proof. Note that Kn is representable by the word 123 · · · n. Now say the word
w that represents a graph G. Say ij is an edge in G and G′ is the graph G after
deleting the edge ij.

Take w′ = wσ(w)t[i, j]. It suffices to show that w′ t-represents G′.
Indeed, because w′ contains w, only the edges in G will be included, and

because w′ includes t[i, j], there will be no edge between i and j. Thus it suffices
to show that no other edges are removed.

Assume there exists an instance of the pattern ckdl in w′ that isn’t in w,
where {c, d} �= {i, j}. If ckdl begins in the w section, then the entirety of ck must
be contained in w, or else a d will appear before all k cs appear in a row. Now
if the ds after ck begins at the end of w, then c comes before d in σ(w), which
doesn’t work either. Thus ckdl has to appear after w in w′. Then it has to begin
in σ(w), but there is only one appearance of c in σ(w). Thus both c and d appear
in t[i, j], and thus {c, d} = {i, j}, contradiction. Thus there is no such instance
of ckdl in w′, so no new edges other than ij are removed. Thus w′ t-represents
G, as desired.

Example 3. Figure 2 shows the star graph S3. Using the notation of Lemma 2,
c = 1 for this graph. According to Lemma2, the depicted graph has the 12
minimal length representants given in the following Table 1:

Enumeration and Extensions of Word-Representants 185

Table 1. Minimal length representants of the star graph S3 (see Fig. 2).

uk = 2 uk = 3 uk = 4

234143 324142 432123

341432 241423 321234

243134 342124 423132

431342 421243 231324

With Lemmas 1 and 2, we are now ready to compute n(T).

Theorem 4. Let T = (V,E) be a tree on at least two vertices. Then

n(T) = 2
∏

v∈V

deg(v)!
∑

xy∈E

1
deg(x) deg(y)

,

where deg(v) denotes the degree of v in T .

We briefly present the idea of the proof below.

Proof (Idea). We loop over all edges xy and sum up the number of representants
which have exactly one occurrence of x and y. We use Lemma 1 to break up the
representant into halves and inductively apply Lemma2. Some calculation gives
the desired result.

Example 4. Consider the tree T = (V,E) on four vertices depicted in Fig. 1.
According to Theorem 4,

n(T) = 2
∏

v∈V

deg(v)!
∑

xy∈E

1
deg(x) deg(y)

= 2 (2! · 1! · 2! · 1!)
(

1
1 · 2

+
1

2 · 2
+

1
2 · 1

)
= 8

(
5
4

)
= 10.

Indeed, it is straightforward to verify that the ten representants shown in Table 2
are precisely the minimal word-representants of T , where x and y are the vertices
appearing once.

Table 2. Minimal length representants of the tree shown in Fig. 1.

{x, y} Corresponding minimal length representants of T

{1, 2} 231434, 314342, 243413, 434132

{1, 3} 212434, 434212

{3, 4} 212314, 132124, 421231, 413212

Theorem 4 has the following easy corollary.

Corollary 1. Let Pk be the path on k vertices. Then for k ≥ 3, we have

n(Pk) = (k + 1) · 2k−3.

186 M. Gaetz and C. Ji

2.3 Cycles

In this subsection, we consider cycle graph Cn on n ≥ 3 vertices. The minimal
representants of C3 are quite easy to understand.

Proposition 1. �(C3) = 3 and n(C3) = 6.

Proof. Since a representant by definition contains each vertex at least once,
�(C3) ≥ 3. It is then straightforward to see that the six permutations 123, 132,
213, 231, 312, 321 are the only length-three word-representants of C3, verifying
that �(C3) = 3 and that n(C3) = 6.

For n ≥ 4, the minimal representants of Cn are more complicated.

Theorem 5. Let Cn = (V,E) be the cycle graph on n ≥ 4 vertices. Then
�(Cn) = 2n − 2.

Proof. Let w be a minimal length word-representant for Cn. We first show that
�(Cn) ≥ 2n−2. Recall that by definition of word-representant (see Definition 1),
every element of V occurs at least once in w. Therefore, to show that �(Cn) ≥
2n − 2, it suffices to show that no more than two vertices can appear only once
in w. Suppose, for the sake of contradiction, that three vertices x, y, z ∈ V occur
exactly once in w. Then xy, xz, yz ∈ E, and these edges form a triangle in Cn.
This contradicts the fact that Cn is the cycle graph on n ≥ 4 vertices.

We now show that �(Cn) ≤ 2n − 2 by constructing a length 2n − 2 word-
representant for Cn. Suppose that the vertices of Cn are labeled 1, 2, . . . , n such
that there are edges between vertices labeled with consecutive integers, as well
as between n and 1. Consider the word w′ = n1 (n − 1)n (n − 2)(n − 1) (n −
3)(n − 2) · · · 45 34 23. Here, we format w′ by adding space between every pair
of letters to illustrate the structure of the word; the first letters in each pair form
the decreasing sequence n, n−1, n−2, n−3, . . . , 4, 3, 2, while the second letters in
each pair form the sequence 1, n, n−1, n−2, . . . , 5, 4, 3. In this construction, the
letters 1 and 2 appear exactly once, while the letters 3, 4, . . . , n appear exactly
twice. Moreover, for every vertex v ∈ V \ {1, 2}, the letters appearing between
the two occurrences of v in w′ are precisely v + 1 and v − 1. Consequently, v
alternates only with v + 1 and v − 1 in w′. Additionally, 1 alternates only with
2 and n, and 2 alternates only with 1 and 3.

Example 5. Consider the cycle graph C5 shown in Fig. 3. According to Theo-
rem 5, �(C5) = 2 · 5 − 2 = 8. It is straightforward to check that 51453423 is
therefore a minimal length representant of C5.

Having established that �(C3) = 3 and that �(Cn) = 2n − 2 for n ≥ 4, we
would now like to establish n(Cn). We have already shown that n(C3) = 6. In
fact, n(Cn) = 2n for all n ≥ 3.

Theorem 6. Let Cn = (V,E) be the cycle graph on n vertices. For n ≥ 3,
n(Cn) = 2n.

Enumeration and Extensions of Word-Representants 187

Proof. Let w be a minimal length word-representant for Cn. Since �(Cn) = 2n−2,
two elements of V will occur exactly once in w, while the remaining vertices will
occur exactly twice.

There are n choices to choose the pair of vertices which appear only once,
since they alternate and thus there must be an edge between them. After this
pair of vertices is chosen, there are two orders they can occur in a minimal length
representant. Without loss of generality, suppose the pair we have chosen is (1, 2)
and that 1 occurs before 2.

We will now consider the ways in which two instances of each of 3, 4, . . . , n can
be placed in this minimal word-representant w (which is assumed to be such that
w|12 = 12. Certainly, the two 3’s must surround the 2 but not the 1. Moreover,
the two 4’s must alternate with the two 3’s without alternating with the 1 or the
2. We claim that the 4’s must be between 1 and 2. Indeed, otherwise both 4’s will
be to the right of the 2. If this is the case, then every successive number must have
at least one instance to the right of the 2, and hence both instances to the right
of the 2 (so as to avoid alternating with 2). This would make it impossible for
n to alternate with 1. Therefore, our representant must satisfy w|1234 = 143423.
Similarly, the two 5’s must surround the leftmost 4 without alternating with 3,
giving w|12345 = 15453423. We can continue in this manner and conclude with
the two n’s immediately surrounding 1 and the leftmost instance of n − 1.

Observe that after choosing the pair (1, 2) and their relative locations, this
process has involved no choices. In other words, once 1 and 2 were chosen and
placed in that order, there was only one way to form a word representant of Cn.
It follows that n(Cn) = 2n, as desired.

3 Graphs Representable from Pattern Avoidance
in Words

So far in this paper we have exclusively considered word-representable graphs.
In this section, we define a more general notion of representability for graphs,
motivated by Kitaev in [5]. To this end, we first establish two preliminary defi-
nitions.

Definition 6. Two words are said to be isomorphic if there is a bijective,
pattern-preserving correspondence between their letters.

Example 6. The words 112134, 332378, and aabacd are all isomorphic.

Definition 7. Let w be a word defined on an alphabet V , and let u be a word
defined on an alphabet U . Then w avoids u if the set
{{x1, x2, . . . , x|U |} ⊆ V : w|x1,...,xn

has a contiguous subword isomorphic to u
}

is empty. If w does not avoid u, we say w contains u.

Example 7. Let w = 121223 and let u = 112. Then w contains u, since w|23 =
2223 has a subword that is isomorphic to u (namely, 223).

188 M. Gaetz and C. Ji

With these definitions in mind, we can now introduce a generalized notion
of graph representability.

Definition 8. Let t be a word on two letters. A t-representable graph is one
where there is an edge between x and y if and only if the subword induced by x
and y avoids the pattern given by t.

1

2

34

5

Fig. 3. The cycle graph C5.

21

3 4

Fig. 4. A 112-representable graph.

Example 8. The graph shown in Fig. 4 is 112-representable with w = 121334
serving as a 112-representant.

Remark 1. The word-representable graphs are precisely the 11-representable
graphs. This can be seen by noting that “alternating” is equivalent to avoid-
ing the word 11. In general, a word 1k-represents a graph if and only if it ak-
represents it.

Remark 2. In [5], Kitaev defines “u-representability”, an alternate way of defin-
ing representability from a word u. However, his definition depends on the order-
ing of the vertices comprising u. For instance, 112-representants are distinct from
221-representants in his definition. Our version is consistent with the traditional
notion of pattern avoidance and does not distinguish between these.

Example 9. Let w = 2123. Then w aba-represents the graph with vertex set
{1, 2, 3} with edges between 1 and 3 and between 2 and 3. However, w 121-
represents the complete graph on the vertices {1, 2, 3}.

We now prove several results on the representability of graphs for various
t. In [5], Kitaev shows all graphs can be u-represented if the length of u is at
least 3 in the following way. If w u-represents some graph G, he constructs a

Enumeration and Extensions of Word-Representants 189

word w′ from w that u-represents G′, where G′ is the graph G after deleting any
edge. We use this same approach to show that all graphs are t-representable for
certain t.

Note that if t is of the form 1k for some k > 1, then t-representations are the
same as u-representations. Thus we only consider the cases in which t has two
distinct letters.

Theorem 7. If t is of the form akbla · · · for positive integers k and l, then every
graph is t-representable.

Proof. Note that Kn is representable by the word 123 · · · n. Now say the word
w that represents a graph G. Say ij is an edge in G and G′ is the graph G after
deleting the edge ij.

Let t[i, j] be the word t after the substitution a → i, b → j has been
made. Take w′ = wr(σ(w))l+1

1 r(σ(w))l+1
2 · · · r(σ(w))l+1

n t[i, j]. We claim that w′

t-represents G′.
Indeed, because w′ contains w, only the edges in G will be included, and

because w′ includes t[i, j], there will be no edge between i and j. Thus it suffices
to show that no other edges are removed.

Assume there exists an instance of the pattern ckdlc · · · in w′ that isn’t in w,
where {c, d} �= {i, j}. Then consider where the dl can be placed. It cannot be a
part of in the section r(σ(w))l+1

1 r(σ(w))l+1
2 · · · r(σ(w))l+1

n , or else there would be
l+1 consecutive appearances of d. It cannot come in t[i, j], or else {c, d} = {i, j}.
Therefore it must be completely contained in w. Then we know that there can
be no instance of c in w that comes after those l bs, or else the pattern would
have already existed in w. Then c must appear before d in w′ after w. But by our
construction, the opposite happens. Thus there is no such instance of ckdlc · · ·
in w′, so no new edges other than ij are removed. Thus w′ t-represents G, as
desired.

In this way, we can construct a word t-representing G for any graph G by
removing edges from Kn to reach G one at a time.

Theorem 8. If t is of the form akbl where k, l ≥ 2, then every graph is t-
representable.

Proof. Note that Kn is representable by the word 123 · · · n. Now say the word
w that represents a graph G. Say ij is an edge in G and G′ is the graph G after
deleting the edge ij.

Take w′ = wσ(w)t[i, j]. It suffices to show that w′ t-represents G′.
Indeed, because w′ contains w, only the edges in G will be included, and

because w′ includes t[i, j], there will be no edge between i and j. Thus it suffices
to show that no other edges are removed.

Assume there exists an instance of the pattern ckdl in w′ that isn’t in w,
where {c, d} �= {i, j}. If ckdl begins in the w section, then the entirety of ck must
be contained in w, or else a d will appear before all k cs appear in a row. Now
if the ds after ck begins at the end of w, then c comes before d in σ(w), which
doesn’t work either. Thus ckdl has to appear after w in w′. Then it has to begin

190 M. Gaetz and C. Ji

in σ(w), but there is only one appearance of c in σ(w). Thus both c and d appear
in t[i, j], and thus {c, d} = {i, j}, contradiction. Thus there is no such instance
of ckdl in w′, so no new edges other than ij are removed. Thus w′ t-represents
G, as desired.

The remaining cases are of the form t = akb and t = abk, where k ≥ 1.
First, note that the representable graphs in these cases are the same. Indeed, if
w akb-represents some graph G, then the reverse of w abk-represents G and vice
versa.

For the case of k = 1, because every vertex must appear at least once in a
representant, there will always be an appearance of the pattern ab for any two
vertices. Thus, only the graph with no edges is ab-representable.

We now deal with the case k ≥ 2.

Theorem 9. Let k ≥ 3 and set t = akb. Then every graph is t-representable.

Proof. Note that Kn is representable by the word 123 · · · n. Now say the word
w that represents a graph G. Say ij is an edge in G and G′ is the graph G after
deleting the edge ij.

Let v be a permutation of the elements of the set V (G)\{i, j}. Take w′ =
ik−1vijπ(w)w. It suffices to show that w′ t-represents G′.

Indeed, because w′ contains w, only the edges in G will be included, and
because w′ includes an instance of ikj at the front, there will be no edge between
i and j. Thus it suffices to show that no other edges are removed.

Assume there exists an instance of the pattern ckdl in w′ that isn’t in w, where
{c, d} �= {i, j}. Clearly the ck section cannot intersect with the ik−1 section,
so it must begin in the section vijπ(w). Note that this is a concatenation of
two permutations of the elements of the set V (G). Thus there can only be two
occurrences of c in that section. But because π(w) is the initial permutation of
w, every other element will appear between the second occurrence of c and its
first occurrence in w, so we cannot have an instance of ckd. Thus there is no
such instance of ckdl in w′, so no new edges other than ij are removed. Thus w′

t-represents G, as desired.

For k = 2, we have not yet fully determined the akb-representable graphs.
However, we have the following theorem.

Theorem 10. All aa-representable graphs are also aab-representable.

Proof. Let w aa-represent a graph G. We claim that wσ(w) aab-represents G,
where σ(w) denotes the final permutation of w. Let x and y be any two distinct
vertices of G.

Suppose first that (x, y) �∈ E(G). Then the subword w|xy of w induced by x
and y contains at least one occurrence of the pattern aa. If w|xy also contains at
least one occurrence of aab, then so does wσ(w), and this direction of the proof
is complete. Therefore, suppose that w|xy avoids aab. Then w|xy must end in the
pattern aa. If w|xy ends in xx, then σ(w)|xy = yx, meaning (wσ(w))|xy ends in
xxyx, which contains 112. The case in which w|xy ends in yy follows similarly.

Enumeration and Extensions of Word-Representants 191

Next, suppose that (x, y) ∈ E(G). Then w|xy avoids aa (and therefore avoids
aab). Appending σ(w) to w does not introduce any occurrences of the pattern
aa. Therefore, (wσ(w))|xy avoids aab.

4 Further Work

In Sect. 2, we proved the following upper bound for l(G) in terms of its connected
components.

�(G) ≤
k∑

i=1

(�(Gi) + |Vi|) − max
1≤j≤k

|Vj |. (1)

It would be interesting to strengthen this bound. This leads to the following
problem.

Problem 1. Find stricter bounds for l(G) in terms of its connected components
and classify all graphs for which equality in Eq. 1 holds.

We also proved that for both trees and cycles, �(G) = 2|G| − 2. For all
triangle-free graphs G, it is clear that �(G) ≥ 2|G| − 2, because no more than
two vertices can appear only once. We ask if these observations can be extended
to classify graphs with representation number 2 for which �(G) is close to 2|G|.
Problem 2. Classify all graphs G with representation number 2 for which

(a) �(G) = 2|G| − 2,
(b) �(G) = 2|G| − 1,
(c) �(G) = 2|G|.

Recall that in [2], Kitaev classifies all graphs with representation number 2.
This gives a nice starting point from which to attack the problem above.

In Sect. 3, we show that all graphs can be t-represented as long as t as length
at least 3, except for the cases where t is of the form abk and akb. Resolving this
last case is an open problem.

Problem 3. Characterize the graphs which are t-representable for t = abk or
t = akb.

Acknowledgments. This research was conducted at the University of Minnesota
Duluth REU, funded by NSF Grant 1650947 and NSA Grant H98230-18-1-0010. The
authors would like to thank Joe Gallian for running the REU and suggesting the topic.
The authors also thank their advisors Levent Alpoge, Aaron Berger, and Colin Defant
for their support, as well as the anonymous reviewers for many helpful comments.

192 M. Gaetz and C. Ji

References

1. Kitaev, S., Seif, S.: Word problem of the Perkins semigroup via directed acyclic
graphs. Order 25(3), 177–194 (2008)

2. Kitaev, S.: A comprehensive introduction to the theory of word-representable
graphs. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396,
pp. 36–67. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62809-7 2

3. Kitaev, S., Pyatkin, A.: On representable graphs. J. Autom. Lang. Comb. 13(1),
45–54 (2008)

4. Cheon, G., Kim, J., Kim, M., Kitaev, S., Pyatkin, A.: On k-11-representable graphs.
arXiv preprint: https://arxiv.org/abs/1803.01055.pdf

5. Kitaev, S.: Existence of u-representation of graphs. J. Graph Theory 85(3), 661–668
(2017)

6. Halldórsson, M.M., Kitaev, S., Pyatkin, A.: Graphs capturing alternations in words.
In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 436–437.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14455-4 41

7. Kitaev, S., Salimov, P., Severs, C., Ulfarsson, H.: Word-representability and line
graphs. Open J. Discrete Math. 1(2), 96–101 (2011)

https://doi.org/10.1007/978-3-319-62809-7_2
https://arxiv.org/abs/1803.01055.pdf
https://doi.org/10.1007/978-3-642-14455-4_41

Localisation-Resistant Random Words
with Small Alphabets

Cyril Gavoille1(B), Ghazal Kachigar1,2, and Gilles Zémor2

1 LaBRI, University of Bordeaux, Bordeaux, France
{gavoille,ghazal.kachigar}@labri.fr

2 IMB, University of Bordeaux, Bordeaux, France
zemor@math.u-bordeaux.fr

Abstract. We consider q-coloured words, that is words on {1, . . . , q}
where no two consecutive letters are equal. Motivated by multipartite
colouring games with nonsignalling resources, we are interested in ran-
dom q-coloured words satisfying a k-localisability property. More pre-
cisely, the probability of containing any given pair of words as subwords
spaced at least k letters apart can depend only on their lengths. We focus
on the issue of the smallest alphabet size q for which a probability dis-
tribution for such random words can exist. For k = 1, we prove a lower
bound of q � 4. The bound is optimal because there exists a suitable
distribution for random 4-colourings that was constructed by Holroyd
and Liggett in 2015. Our lower bound can be generalized to k-localisable
random words where the letters of each subword of k +1 letters must be
pairwise different. We show that the alphabet size in this case must be
at least (k + 1) · (1 + 1/k)k.

Keywords: Random words · Stochastic colouring process ·
Hard-core process · Colouring game

1 Introduction

Multipartite Colouring Game. Let us consider the following general multipartite
graph colouring game. We are given a graph G with nodes v1, . . . , vn, a colour
bound q, and m players P1, . . . , Pm. The referee virtually places each player Pi

at a node vj and gives them a personalised input. This information depends on
the variant of the game. For example, it can consist of the index j that the player
Pi is placed on. Each player then has to output a colour for its node, i.e., an
integer taken from {1, . . . , q}. The players win if the resulting node colouring is
a q-colouring of the coloured subgraph of G, i.e., the subgraph induced by the
nodes hosting at least one player. More precisely, colours must differ for adjacent
players and coincide for players that have been placed on the same node, if any.

Supported by the French ANR projects ANR-16-CE40-0023 (DESCARTES) and ANR-
18-CE47-0010 (QUDATA).

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 193–206, 2019.
https://doi.org/10.1007/978-3-030-28796-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_15

194 C. Gavoille et al.

Players are allowed to agree on a joint strategy beforehand, which may
depend on G, q and m. Once placed on their node with the referee’s input,
players are not allowed to communicate in any way. So, the output colour can
only depend on the joint strategy and on the referee’s input. Unless specified
by the referee’s input, players are not aware whether other players stand at the
same node, or which players are adjacent to them.

The main question is to understand how small the colour bound q can be so
that the m players can still win the game for G, under given assumptions on
their joint strategy and on the referee’s inputs.

This question is related to fundamental problems in graph theory, distributed
computing, and quantum information. To illustrate, assume that the referee’s
input consists of the node index where each player is placed. For m = n, the
smallest q is precisely the chromatic number of G since the referee can force the
players to output a q-colouring of the whole graph, and a strategy for the players
consists of agreeing beforehand on any given q-colouring. For m = 2, and if the
two players share quantum resources (materialised say by entangled particles),
this leads to the notion of quantum chromatic number. Interestingly, this variant
of chromatic number can be smaller than the classical one. For instance, there is
a graph with 18 nodes and chromatic number 5 on which the two players Alice
and Bob can win this colouring game with only 4 colours [8].

Two-partite games with quantum resources (sometimes called pseudo-
telepathy games) are well studied in Computer Science and in Physics. How-
ever, multipartite quantum games with a large number m of players are much
less understood. There are multipartite games where quantum superiority can
be proved, and also outperformed (in terms of winning probability) by general
nonsignalling resources [1,2,7,12]. Such exotic resources, which are not predicted
to exist according to current physical theories, allow the players to use any non-
local correlations in their outputs without any communication.

Links to Distributed Computing. Colouring a network with a minimal amount
of communication is a fundamental symmetry-breaking problem studied in dis-
tributed computing (see [4,10,13,15,16] for recent breakthroughs, and [3] for a
book dedicated to this field). In this setting and in brief, each player acts at a
single node as a processor that can exchange messages with its neighbours in
some underlying graph. They must output a colouring of the graph after a lim-
ited number of synchronous rounds of communication. In this model, a.k.a. the
LOCAL model, there are distributed algorithms for q-colouring n-node paths1

that require O(log∗ n − log∗ q) rounds2 of communication for q > 2, and this is
tight. More precisely, [26,27] showed that after collecting the IDs of k neighbours
around each node, i.e., k = 2t numbers after t two-sided rounds of communi-
cation in the path, any possibly randomised q-colouring algorithm must satisfy
q = Ω(log(k) n).

1 This holds also for cycles, and more generally for graphs of maximum degree Δ with
q > Δ.

2 We write log∗ n = min{i : log
(i)
2 n � 1}, the inverse function of a power-2 tower.

Localisation-Resistant Random Words 195

Since after t rounds every node has been able to communicate with nodes at
distance at most t, these t-round algorithms imply that information about nodes
at distance t suffices to provide a q-colouring. Yet, the colouring problem in the
LOCAL model can be viewed as a particular setting of the general multipartite
colouring game where the referee’s placement is a permutation (m = n) and
where the input for each player is the t-neighbourhood of its node3. Whether
the number of rounds t can be significantly reduced if quantum resources are
available is a widely open question [14,24,25] even for path graphs.

Lastly, we notice that the colouring game as described above can be further
extended to locally checkable labelling games where the goal for the players is to
output a label taken from a predefined set and satisfying some local constraints
in the graph. This captures not only colouring problems, but also maximal inde-
pendent set, dominating set, weak 2-colouring4, and many others [6,28].

Our Contribution. In this paper we consider the multipartite q-colouring game
for the path v1 − v2 − · · · − vn where the referee’s placement is a permutation σ
on {1, . . . , n} not revealed to the players. So player Pi is placed at position σ(i)
on the path, i.e., at the node vσ(i). The referee’s input for Pi consists only of the
index σ−1(σ(i)+1) of the player placed on its right neighbouring node5, vσ(i)+1.
As a result, each player outputs a colour given its own index and the one of its
right neighbour. The players win the game if they produce a q-colouring of the
path. Thus in this game a player can coordinate only with its right neighbour
and its colour cannot depend on its position σ(i).

As explained above, this game can be seen as the q-colouring problem in the
distributed LOCAL model where each processor has received information only
from its right neighbour, after what may be called a half-round of communica-
tion. From the above lower bound with k = 1, we must have q = Ω(log n) for
every joint strategy based on classical resources including shared randomness.

The question we want to address is what is the minimum number of colours
q that can be achieved if players are allowed to use quantum resources, and
more generally any nonsignalling resources. It should be stressed that quantum
resources allow each player to use non-local correlations that may in fact beat
the previous Ω(log n) lower bound on q. We prove in this paper that q � 4 for
n large enough, and this is optimal.

To formally state our main theorem, we interpret the colouring resulting
from a run of the game as a random word X1X2 · · · Xn, where each letter Xi is
a random variable ranging in {1, . . . , q} and corresponding to the colour output
by the player at node vi. Here randomness may come from the kind of resource
used by the players in their joint strategy (e.g., a quantum state) that is revealed
at the time they output the colour (e.g., measurement).
3 Say, the list of player’s IDs and the edges list between them.
4 In this problem, each player must produce one out two possible colours such that at

least one of its adjacent node receives a different colour.
5 Player at vn receives index 0. Alternatively, we may assume that an extra player

P0 is always placed at a virtual node vn+1 and does not take part in the colouring
game.

196 C. Gavoille et al.

Given an interval I = [a, b], we use the notation XI for the subword
XaXa+1 · · · Xb−1Xb. Define the distance between any two intervals I, J as
inf {|i − j| : i ∈ I, j ∈ J}. (The distance between I and J = ∅ is +∞ by con-
vention). Note that the two subwords XI and XJ are separated by k letters in
X1 · · · Xn if and only if I and J are at distance k + 1. We say that a word is
coloured if any two consecutive letters are distinct.

In order to lower bound q for any probability distribution for random
q-coloured words coming from such games, we introduce the notion of k-
localisability defined as follows:

Definition 1. A probability distribution for a random word X1 · · · Xn is k-
localisable if, for all intervals I, J ⊆ {1, . . . , n} at distance more than k, the
distribution of (XI ,XJ) can only depend on {|I|, |J |}.

Informally, this means that the probability of having two given words S and
T in a random word depends neither on their absolute positions, nor on their
order, nor on their distance in the word, as long as the number of letters between
them is at least k.

Coming back to our colouring game on the path where players are only
aware of their immediate right neighbour, the word distribution resulting of
any winning strategy based on nonsignalling resources must be 1-localisable.
This is because otherwise two players at nodes vi and vj sufficiently far apart
could collectively retrieve information about i, j or |i − j| from their colour
distribution. From the rules of the game this is not possible without signals
(i.e., communication). This holds for any nonsignalling theory including quantum
mechanics. Note however that a k-localisable colour distribution does not forbid
non-local correlation.

Theorem 1. Every 1-localisable probability distribution for random q-coloured
words of length n requires q � 4 for n large enough.

As we will see in the next paragraph, the lower bound of Theorem1 is tight.
This is actually a consequence of the random 4-colouring given in [20].

Our approach to prove Theorem1 is to study random binary words Y1 · · · Yn

obtained from a random q-coloured word X1 · · · Xn by fixing any colour c ∈
{1, . . . , q} and by setting Yi = 1 if Xi = c, and Yi = 0 otherwise. Observe
that Y1 · · · Yn codes an independent set of the n-node path, and let us call an
independent-set word any binary word that does not contain any two consecutive
ones. Such random words can also be seen as hard-core processes where the
variable Yi indicates the presence of a radius-1 hard-core particle at position i
on the discrete line.

The lower bound of Theorem1 is actually a corollary of our following main
technical contribution. It gives a fine analysis of the marginal probabilities
of having a given number of ones in fixed positions for 1-localisable random
independent-set words, a result interesting in its own right. We let cn = 1

n+1

(
2n
n

)

denote the n-th Catalan number.

Localisation-Resistant Random Words 197

Theorem 2. Let pi denote the probability of having i ones in the positions
indexed by the odd integers 1, 3, . . . , 2i − 1, for a random independent-set word
of length n � 2i. Let � = �n/2�. Then, for every even n:

i. Every 1-localisable probability distribution for random independent-set words
of length n satisfies, for each i ∈ {0, . . . , �}, pi � c�−i+1/c�+1.

ii. There exists a 1-localisable probability distribution for random independent-
set words of length n such that, for each i ∈ {0, . . . , �}, pi = c�−i+1/c�+1.

By marginalising, it is easy to derive from Theorem 2(i) that pi �
c�n/2�−i+1/c�n/2�+1 for every length n, and not only for even n.

Let us explain why Theorem 1 follows from Theorem 2. The first observation
is that any letter transformation Yi = f(Xi) preserves the k-localisability of the
distribution as long as f does not depend on i. Now, given any 1-localisable
distribution for a random q-coloured word X1 · · · Xn, consider the most frequent
colour c, so appearing with probability at least 1/q in the random word. The
random independent-set word Y1 · · · Yn as defined above has a 1-localisable dis-
tribution. And the probability of having a one at any fixed position in Y1 · · · Yn

is p1 � 1/q. However, from Theorem 2(i) applied to Y1 · · · Yn, we get that
p1 � c5/c6 = 7/22 whenever n � 10 noting that c�/c�+1 = (� + 2)/(4� + 2).
Thus, we obtain 1/q � p1 � 7/22, implying that q > 3 as claimed in Theorem 1.

Related Works. The notion of k-localisability introduced in this paper is a natu-
ral notion for the study of multipartite colouring games on paths with quantum
resources (and beyond). A related notion in probability theory is the well-known
k-dependence of random variables [17,22] studied for more than seven decades.
A probability distribution for random variables X1 · · · Xn is k-dependent if, for
all intervals I, J ⊆ {1, . . . , n} at distance more than k, the variables XI and XJ

are independent. Clearly, 0-dependence is the same as independence.
Recall that a probability distribution for a random word X1 · · · Xn is station-

ary if, for every interval I ⊆ {1, . . . , n}, the distribution of XI can depend only
on |I|. It is not difficult to see that any stationary k-dependent distribution is
also k-localisable: for k-dependent distributions, the distribution of (XI ,XJ) is
the product of the marginals which, by stationarity, can depend only on |I| and
on |J |. However, the reverse is false. Although every k-localisable distribution is
stationary (setting J = ∅ in the definition), there exist k-localisable distribu-
tions that are not k-dependent. For instance Xi = σ(i) for a uniform random
permutation σ of {1, . . . , n} defines a 0-localisable distribution that is not k-
dependent for every k. Indeed, P(XI = S) = (n − |I|)!/n! and P(XI = S,XJ =
T) = (n − (|I| + |J |))!/n! for any two disjoint intervals I, J (so at distance more
than k for some k � 0). However, P(XI = S,XJ = T) �= P(XI = S) · P(XJ = T)
for every k. Furthermore, the random binary word defined by Yi = Xi mod 2 is
still 0-localisable and once again not k-dependent for every k.

Interestingly, the notion of 0-localisability corresponds to the notion of
exchangeability [5,9], in connection with the celebrated de Finetti Theorem that
explains the relationship between exchangeability and independence. Random

198 C. Gavoille et al.

variables are (finitely) exchangeable if they are invariant under permutations of
their indices, i.e., if P(Xσ(1), · · · ,Xσ(n)) = P(X1, · · · ,Xn) for any permutation
σ on {1, . . . , n}.

Until very recently, no stationary k-dependent distribution for q-coloured
words of growing length n was known, even for large q. It is easy to see that
k � 1 and q � 3 are required. Indeed, k � 1 since Xi and Xi+1 cannot be
independent. And q � 3, since for 2-colouring P(Xi = Xj) depends on the
parity of |i − j| that can be much larger than k. In fact, for large enough n, it
has been proved in [21] that no stationary 1-dependent 3-colouring exists. This
result is actually implied by our Theorem 2(i).

The relationship between k and q has been investigated in [18–20]. In par-
ticular, in [20] a stationary 1-dependent 4-colouring is constructed, as well as a
2-dependent 3-colouring of words of infinite length. The construction is based
on recursion formulae extending a suitable colouring of a word of length n to
a word of length n + 1. This stationary 1-dependent 4-colouring implies that a
1-localisable 4-colouring exists. Thus our lower bound in Theorem1 is tight.

Overview. Let In ⊂ {0, 1}n be the set of all independent-set words of length n,
i.e., the binary words of length n with no two consecutive ones. As explained in
the previous paragraph, Theorem1 is a corollary of Theorem2(i). So we focus
on 1-localisable distributions for binary words of In.

In a first step, we show that, for every 1-localisable probability distribution P,
the probability P(s) of every binary word s of length n can always be written as
a linear combination with integral coefficients of the pi’s, i.e., the probabilities of
a random word having i ones in positions 1, 3, . . . , 2i − 1. This leads to a system
of linear inequalities with O(n) variables pi and with O(|In|) constraints. We
can in principle find the maximum value of p1 by solving such a linear program-
ming problem. Unfortunately, |In| grows exponentially in n since it satisfies a
Fibonacci recurrence. This approach may at first seem intractable.

However, we show that the O(|In|) constraints are highly redundant and
that there is a subset of only O(n) constraints strictly equivalent to the original
ones. Hence, we end up with a much smaller linear programming problem with
n/2 variables and n/2 constraints which moreover turns out to be sufficiently
structured so as to admit a closed-form solution.

Section 2 is dedicated to deriving this structured linear programming prob-
lem with p1 as the linear objective function that we are maximising. Section 3
addresses the problem of solving this linear program. We are first able to derive
a feasible solution for the linear program involving a binomial formula for the
Catalan numbers (namely Corollary 1). We then show that the feasible solution
we found at the previous step is indeed the optimal one by using the dual-
ity theorem for linear programming. We also show that this particular solution
maximises simultaneously all the pi’s, which will prove Theorem2(i & ii).

Due to space limitations, proofs and intermediate lemmas will appear in the
full version.

Localisation-Resistant Random Words 199

2 Localisable Distribution on Independent-Set Words

A small worked-out example will go a long way towards explaining what the
present and following section are about. Let P be a 1-localisable probability
distribution on I4, and let X1X2X3X4 be a random word with this distribution.
We define p1 = P(X1 = 1) and p2 = P(X1 = X3 = 1). Let us now consider the
probabilities of the 8 individual words of I4:

0000, 1000, 0100, 0010, 0001, 1010, 0101, 1001

We have P(1010) = p2 by definition, and 1-localisability tells us that P(X1 =
1,X3 = 1) = P(X1 = 1,X4 = 1) = P(X2 = 1,X4 = 1). Hence, P(1010) =
P(1001) = P(0101) = p2. Now we also have: p1 = P(1000) + P(1010) + P(1001).
Hence the value of P(1000), which is readily seen to be the same as P(0001):

P(1000) = P(0001) = p1 − 2p2.

From P(X2 = 1) = P(0100) + P(0101) and P(X2 = 1) = P(X1 = 1) we get the
value of P(0100) and similarly of P(0010):

P(0100) = P(0010) = p1 − p2.

The only probability of an individual word that is unaccounted for is P(0000).
Writing that all probabilities of all individual words sum to 1, we get:

P(0000) = 1 − 4p1 + 3p2.

We may now notice two things. Any 1-localisable distribution on I4 is entirely
determined by the two values p1 and p2. Conversely, any probability distribution
defined as above by the two values p1 and p2 is 1-localisable. Finally, given any
two positive numbers p1 and p2, such a probability distribution is well-defined if
and only if all the linear expressions in p1, p2 that we have just computed take
positive values. In other words, the values of p1, p2 for which there exists a 1-
localisable probability distribution on I4 such that P(X1 = 1) = p1 and P(X1 =
X3 = 1) = p2, are exactly the solutions of the system of linear inequalities:

p1, p2 � 0, p1 − 2p2 � 0, p1 − p2 � 0, and 1 − 4p1 + 3p2 � 0.

Determining the largest allowable value of p1 consists therefore in solving the
associated linear program for the objective function p1. In the present example
we find that the maximum value is p1 = 2/5. Our goal is to prove that the
phenomena that we observe on this small example carry over to the general case
of 1-localisable distributions on In. We will then solve the general linear program
associated with the maximisation of p1.

We will find it convenient to write expressions such as P(10 � �) for the value
P(X1 = 1) = p1. More generally, for a distribution P for binary words of length
n, two words s, t, and an integer i � 0 such that |s| + i + |t| = n, we will write:

P(s �i t) =
∑

u∈{0,1}i

P(s u t).

200 C. Gavoille et al.

We now focus on the case of even n, and set n = 2�. It will be useful to
introduce an algebraic formalism that will enable us to manipulate the general
linear program and identify redundant linear inequalities.

Consider � variables p1, . . . , p�. Consider a function Λn : {0, 1}n →
Z[p1, . . . , p�], and define p0 =

∑
s∈{0,1}n Λn(s). We define the following rule for

extending the domain of Λn to {0, 1, �}n:

(R0) Λn(s�t) = Λn(s0t) + Λn(s1t) for every s, t such that |s| + |t| = n − 1.

Repeated application of rule (R0) until only the symbol � remains on the left-
hand side gives that Λn(�n) =

∑
s∈{0,1}n Λn(s) = p0.

We also define the following properties:

(R1) Λn(s) = 0 if s ∈ {0, 1}n \ In.
(R2) Λn(s�t�) = Λn(s��t) = Λn(�s�t) for s, t such that |s| + |t| = n − 2.
(R3) Λn(s��t) = Λn(t��s) for s, t such that |s| + |t| = n − 2.
(R4) Λn((1�)i�n−2i) = pi for i ∈ {1, . . . , �}.

Lemma 1. For every p0, there is a unique function Λn on {0, 1}n satisfying
(R1), (R2) and (R4) and p0 =

∑
s∈{0,1}n Λn(s). For every s ∈ I2�, Λn(s) is a

linear function of p1, . . . , p�. Furthermore, Λn satisfies Property (R3).

From now on, we consider only functions Λn that satisfy (R1) through (R4).
We now introduce the system of linear inequalities:

System 1. pi � 0 and Λ2�(s) � 0, for all i ∈ {1, . . . , �} and s ∈ I2�.

We then have the relatively straightforward result:

Theorem 3. Let p1, . . . , p� ∈ [0, 1]. There exists a 1-localisable probability dis-
tribution P on I2� such that P((1�)i�2�−2i) = pi for all i ∈ {1, . . . , �} iff System 1
is satisfied with p0 = 1. We then have Λ2�(s) = P(s).

Let Sn =
{
(10)k0n−2k : k ∈ {0, . . . , �}} ⊂ In. We define the following sub-

system of System 1:

System 2. pi � 0 and Λ2�(s) � 0, for all i ∈ {1, . . . , �} and s ∈ S2�.

We have the following:

Lemma 2. For every s ∈ In, there is (at)t∈Sn
, at ∈ N, such that Λn(s) =∑

t∈Sn
atΛn(t).

Using this, we prove that

Proposition 1. System 1 is equivalent to System 2, i.e., any solution of one is
also a solution of the other.

Thus, one can focus on the much more manageable System 2. We have the
following expressions for the Λ-values of the elements of Sn:

Lemma 3. Λn((10)k0n−2k) =
∑�−k

i=0 (−1)i
(
2�−2k+1−i

i

)
pk+i, for k ∈ {0, . . . , �}.

Localisation-Resistant Random Words 201

3 Solving the LP System

To summarise, we have shown so far that the existence of a 1-localisable proba-
bility distribution on I2� ⊂ {0, 1}2� is equivalent to the solvability of a system of
O(|In|) ∼ exp(Ω(n)) inequalities Λ2�(s) � 0 for s ∈ I2�. Moreover, every Λ2�(s),
for s ∈ I2�, is a linear function of pi = Λ2�((1�)i�n−2i) for 1 � i � �. We obtain
therefore a system of linear inequalities. We furthermore showed that there is a
size-� subset S2� of I2� such that the inequalities corresponding to its members
imply all inequalities for all the members of I2�.

Since we are interested in the values that can be taken by p1, . . . , p�, in
particular p1 and its maximum value, Lemma 3 tells us that we are now faced
with the explicit linear programming problem defined by p0 = 1 and:

maximise p1 subject to:
{

pi � 0, i ∈ {1, . . . , �}
∑�−k

i=0 (−1)i
(
2�−2k+1−i

i

)
pk+i � 0, k ∈ {0, . . . , � − 1} .

(1)

Once we know this maximum value of p1, we set the value of p1 to be some-
thing less than or equal to this maximum value. It turns out that this gives rise
to another linear programming problem which is very similar in form to the first
one, and where the goal is now to maximise p2. We repeat this procedure until
we get the maximum value of every pi when the values of pj for j < i are set to
something less than or equal to their maximum possible value. Indeed, we will
show that we have the following, which implies directly Theorem2:

Theorem 4. Any solution (p1, . . . , p�) ∈ R
� to the system of inequalities (1)

satisfies pi � (c�/c�+1) · pi−1 � (c�−i+1/c�+1) · p0, possibly with equality.

We now need linear programming notation:

Definition 2. Let m,n ∈ N, ci, bj , ai,j ∈ R for 1 � i � m and 1 � j � n. Let
c = (c1, . . . , cn)T, b = (b1, . . . , bm)T, x = (x1, . . . , xn)T and A = (ai,j) be an
m × n matrix. A problem of the form:

Maximise cTx, subject to Ax � b and x � 0,

is called an LP problem in standard form. The linear expression cTx is called
the objective function, Ax � b and x � 0 are called the constraints, the latter
being more specifically non-negativity constraints.

The corresponding dual problem is defined as the following problem on m
variables (y1, . . . , ym)T = y:

Minimise bTy, subject to ATy � c and y � 0.

We will need the duality theorem, see for instance [11, Chap. 5].

202 C. Gavoille et al.

Theorem 5 (Duality Theorem). If the primal problem has an optimal
solution x∗ = (x∗

1, . . . , x
∗
n)T, then the dual problem has an optimal solution

y∗ = (y∗
1 , . . . , y

∗
m)T such that cTx∗ = bTy∗. Furthermore, if x and y are feasible

solutions to the primal and the dual problem respectively, such that cTx = bTy,
then this common value optimises both objective functions.

The solution to the linear program (1) will be a consequence of the following:

Theorem 6. Consider an n × n matrix An which is of the form
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1,1 a1,2 a1,n−1 a1,n

−1 a2,2 a2,n−1 a2,n

0 −1
.

...
...

...
...

.
...

...
0 0 . . . −1 an−1,n−1 an−1,n

0 0 . . . 0 −1 an,n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Consider the LP maximisation problem Pn associated with (An, cn,bn,xn),
where bn = (b, 0, . . . , 0)T, cn = (c, 0, . . . , 0)T and xn = (x1, . . . , xn)T are vectors
of length n. Then, the optimal value of the objective function of Pn is obtained by
solving the special case Anxn = bn. And this optimal value is un

un+1
bc , where the

sequence (uk)k�1 is defined by u1 = 1 and uk+1 =
∑k

i=1 an−k+1,n−k+i uk+1−i.

Some comments are in order: in matrix form, the linear program (1) is exactly
of the form envisaged by Theorem 6 with b = c = 1. We will therefore obtain the
maximum of p1 predicted by Theorem 4 by applying Theorem6 and by proving
that the associated sequence (un)n�1 is the sequence of Catalan numbers.

Our goal is therefore to prove Theorem6. In other words the aim is to solve
the following LP maximisation problem Pn associated with (An, cn,bn,xn).

Problem 1. Maximise cnTxn, subject to Anxn � bn and xn � 0.

We will first compute the special solution given by Anxn = bn. We obtain:

Proposition 2. The value of the objective function of Problem 1 in the case
where Anxn = bn is un

un+1
bc.

Proposition 2 follows from the following intermediate results.

Lemma 4. In the case where Anxn = bn, there is (μj)1�j�n such that xn−j =
μjxn−j+1 for j �= n, b = μnx1.

Corollary 1. Let u1 = 1 and ui =
∏i−1

j=1 μi for i ∈ {2, . . . , n + 1}. Then, we

have the recurrence relation uk+1 =
∑k

i=1 an−k+1,n−k+i uk+1−i.

Corollary 2. The sequence (uj)1�j�n+1 as defined in Corollary 1 satisfies
xn−j = uj+1

uj
xn−j+1 for j �= n and b = un+1

un
x1.

Localisation-Resistant Random Words 203

Proposition 2 now follows from Corollary 2 by remarking that the objective func-
tion is cx1.

We now wish to prove that the value of p1 given by Proposition 2 actually
maximises p1. To this end we consider the dual of Problem1, namely:

Problem 2. Minimise bn
T yn, subject to An

T yn � cn and yn � 0.

Once again we solve a particular instance of this problem, namely An
Tyn =

cn. We will show that

Proposition 3. The value of the objective function of Problem 2 in the case
where An

Tyn = cn is un

un+1
bc.

It will be useful to now define a sequence of LP maximisation problems
(Pk)k�n associated with (Ak, ck,bk,xk), where Ak−1 is the (k − 1) × (k − 1)
submatrix at the bottom right of Ak. In other words, Ak = (ak

i,j) where:

an
i,j = ai,j and ak−1

i,j = ak
i+1,j+1

and where bk−1 = (xn−k, 0, . . . , 0)T and xk−1 = (xn−k, . . . , xn)T. We will now
write an

i,j instead of ai,j because we shall need to modify the superscript n later.
We next prove the following results.

Proposition 4. There are (Uk,n)1�k�n+1 and (Vk,n)1�k�n+1 such that

yk = Uk,n y1 +Vk,n for 1 � k � n

0 = Un+1,n y1 +Vn+1,n

Furthermore,

(1) Vk,n = −cUk−1,n−1, and (2) Uk,n =
∑

0�j�k−1
0=i0<···<ij=k−1

∏

0�u�j−1

an
iu+1,iu+1

, for k � 2.

Corollary 3. We have y1 = Un,n−1
Un+1,n

c in the case of equality in An
Tyn = cn.

Lemma 5. Un+1,n = un+1, where the sequence (un)n�1 is as in Corollary 1.

Corollary 3 and Lemma 5 together prove Proposition 3, remarking that the
objective function is by1. Since we have found a solution to Problem1 that gives
the value (un/un+1)bc for its objective function and we have also found a solution
to its dual problem, namely Problem2, that gives the very same value for the
dual objective function, the Duality Theorem implies that this common value
maximises both objective functions. This proves therefore Theorem6.

It remains to compute the specific value of the sequence (un) in the case of
the LP problem (1). We have:

Proposition 5. The sequence (un) is exactly the sequence of Catalan numbers.

Thus, the maximum value that can be taken by p1 is c�/c�+1.
The proof of Theorem4 is completed by determining the optimal values of

the remaining variables p2, . . . , p�. This amounts to solving linear systems Pk

for decreasing values of k, so that all the preceding techniques and results apply.

204 C. Gavoille et al.

4 Generalisation and Conclusion

In this paper we have introduced k-localisable distributions for random words.
They generalise the notion of exchangeability for random variables in much
the same way as k-dependence generalises independence. Furthermore, we
believe this notion is of great interest for the study of multipartite games with
nonsignalling resources (capturing quantum resources). This raises fundamental
questions in graph theory (through chromatic numbers) and distributed com-
puting (through symmetry-breaking problems). We have given a fine-grained
analysis of 1-localisable distributions for independent-set words, implying an
optimal lower bound of q � 4 for 1-localisable random q-coloured words.

Using the same approach, we can extend Theorem 1 to d-distance q-coloured
words in which d + 1 consecutive letters must receive pairwise distinct colours
(Theorem 1 is for d = 1). This also corresponds to d-distance q-colouring of
a path, a well-known notion in graph theory [23,29]. As d-distance chromatic
number of the path is d + 1, we must have q � d + 1. Observe that there is
no k-localisable d-distance q-colouring for k < d since P(Xi = Xj) depends on
whether |i− j| = d (it must be 0) or |i− j| > d (it must be >0 for q < n). So, we
investigate the case k = d, the d-localisable distributions for random d-distance
q-coloured words of length n. We can show that the minimum number of colours
must be q � (d+1) ·(1+1/d)d for n large enough, generalising Theorem1. Using
the same approach as for d = 1, we consider distance-d independent-set words
(i.e., binary words with no two ones at distance �d). We show, using the same
technique, that the probability of having a one in any fixed position is upper
bounded by the ratio of two consecutive Fuss-Catalan numbers of parameters
n/(d + 1), a generalisation of Catalan numbers, whose limit is dd/(d + 1)d+1.
This will appear in the full version of the paper.

A step further would be to extend the results to combinatorial structures
other than words. The notion of k-localisability extends naturally to graphs as
follows. Here each node v of a graph G gets a random variable Xv. Let XS , for
every subset S of nodes, denote the collection of random variables Xs with s ∈ S,
and let GS denote any graph isomorphic to G[S], the subgraph of G induced
by S. Then, a probability distribution for random variables (Xv) with support
the nodes of G is k-localisable if, for every two subsets I, J at distance more
than k in G such that GI and GJ are connected, the distribution of (XI ,XJ)
can depend only on {GI , GJ}. The notion of independent-set word transfers also
to binary variables encoding independent sets in G. The study of k-localisable
q-colourings (or independent-sets) on graphs would have potential applications
to understanding the possibilities of distributed quantum computing.

References

1. Almeida, M.L., Bancal, J.-D., Brunner, N., Aćın, A., Gisin, N., Pironio, S.: Guess
your neighbor’s input: a multipartite nonlocal game with no quantum advantage.
Phys. Rev. Lett. 104 (2010). https://doi.org/10.1103/PhysRevLett.104.230404

https://doi.org/10.1103/PhysRevLett.104.230404

Localisation-Resistant Random Words 205

2. Arfaoui, H., Fraigniaud, P.: What can be computed without communications? In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 135–146.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-31104-8 12

3. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent
developments. Synth. Lect. Distrib. Comput. Theory 4(1) (2013). https://doi.org/
10.2200/S00520ED1V01Y201307DCT011

4. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. In: 53rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 321–330. IEEE Computer Society Press, October 2012.
https://doi.org/10.1109/FOCS.2012.60

5. Brandão, F.G.S.L., Harrow, A.W.: Quantum de Finetti theorems under local mea-
surements with applications. In: 45th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 861–870. ACM Press, June (2013). https://doi.org/10.1145/
2488608.2488718

6. Brandt, S., et al.: LCL problems on grids. In: 35th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 101–110. ACM Press, July 2016.
https://doi.org/10.1145/3087801.3087833

7. Brassard, G., Broadbent, A., Hänggi, E., Méthot, A.A., Wolf, S.: Classical, quan-
tum and nonsignalling resources in bipartite games. Theor. Comput. Sci. 486,
61–72 (2013). https://doi.org/10.1016/j.tcs.2012.12.017

8. Cameron, P.J., Montanaro, A., Newman, M.W., Severin, S., Winter, A.: On the
quantum chromatic number of a graph. Electron. J. Comb. 14, R81 (2007)

9. Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de
Finetti representation. J. Math. Phys. 43, 4537 (2001). https://doi.org/10.1063/
1.1494475

10. Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (δ+1)-coloring algorithm?
In: 50th Annual ACM Symposium on Theory of Computing (STOC), pp. 445–456.
ACM Press, June 2018. https://doi.org/10.1145/3188745.3188964

11. Chvátal, V.: Linear Programming. W. H. Freeman, New York (1983)
12. Czekaj, �L., Paw�lowski, M., Vértesi, T., Grudka, A., Horodecki, M., Horodecki,

R.: Quantum advantage for distributed computing without communication. Phys.
Rev. A 92, 032122 (2015). https://doi.org/10.1103/PhysRevA.92.032122

13. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: 57th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 625–634.
IEEE Computer Society Press, October 2016. https://doi.org/10.1109/FOCS.2016.
73

14. Gavoille, C., Kosowski, A., Markiewicz, M.: What can be observed locally? In:
Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 243–257. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04355-0 26

15. Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph
problems. In: 49th Annual ACM Symposium on Theory of Computing (STOC),
pp. 784–797. ACM Press, June 2017. https://doi.org/10.1145/3055399.3055471

16. Harris, D.G., Schneider, J., Su, H.-H.: Distributed (Δ + 1)-coloring in sublogarith-
mic rounds. In: 48th Annual ACM Symposium on Theory of Computing (STOC),
pp. 465–478. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897533

17. Hoeffding, W., Robbins, H.: The central limit theorem for dependent variables.
Duke Math. J. 15, 773–780 (1948). https://doi.org/10.1215/S0012-7094-48-01568-
3

18. Holroyd, A.E., Hutchcroft, T., Levy, A.: Finitely dependent cycle coloring. Elec-
tron. Commun. Probab. 23, 1–8 (2018). https://doi.org/10.1214/18-ECP118

https://doi.org/10.1007/978-3-642-31104-8_12
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1109/FOCS.2012.60
https://doi.org/10.1145/2488608.2488718
https://doi.org/10.1145/2488608.2488718
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1016/j.tcs.2012.12.017
https://doi.org/10.1063/1.1494475
https://doi.org/10.1063/1.1494475
https://doi.org/10.1145/3188745.3188964
https://doi.org/10.1103/PhysRevA.92.032122
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1007/978-3-642-04355-0_26
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1215/S0012-7094-48-01568-3
https://doi.org/10.1215/S0012-7094-48-01568-3
https://doi.org/10.1214/18-ECP118

206 C. Gavoille et al.

19. Holroyd, A.E., Liggett, T.M.: Symmetric 1-dependent colorings of the integers.
Electron. Commun. Probab. 20, 1–8 (2015). https://doi.org/10.1214/ECP.v20-
4070

20. Holroyd, A.E., Liggett, T.M.: Finitely dependent coloring. Forum Math., Pi 4,
1–43 (2016). https://doi.org/10.1017/fmp.2016.7

21. Holroyd, A.E., Schramm, O., Wilson, D.B.: Finitary coloring. Ann. Probab. 45,
2867–2898 (2017). https://doi.org/10.1214/16-AOP1127

22. Işlak, U.: Asymptotic normality of random sums of m-dependent random variables.
Stat. Probab. Lett. 109, 22–29 (2016). https://doi.org/10.1016/j.spl.2015.10.015

23. Kramer, F., Kramer, H.: A survey on the distance-colouring of graphs. Discrete
Math. 308, 422–426 (2008). https://doi.org/10.1016/j.disc.2006.11.059

24. Le Gall, F., Magniez, F.: Sublinear-time quantum computation of the diameter
in CONGEST networks. In: 37th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 337–347. ACM Press, July 2018. https://doi.
org/10.1145/3212734.3212744

25. Le Gall, F., Nishimura, H., Rosmanis, A.: Quantum advantage for the
LOCAL model in distributed computing. Technical report, October 2018.
arXiv:1810.10838v1 [quant-ph]

26. Linial, N.: Locality in distributed graphs algorithms. SIAM J. Comput. 21, 193–
201 (1992). https://doi.org/10.1137/0221015

27. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring.
SIAM J. Discrete Math. 4, 409–412 (1991). https://doi.org/10.1137/0404036

28. Naor, M., Stockmeyer, L.: What can be computed locally. SIAM J. Comput. 24,
1259–1277 (1995). https://doi.org/10.1137/S0097539793254571

29. Niranjan, P.K., Kola, S.R.: The k-distance chromatic number of trees and cycles.
AKCE Int. J. Graphs Comb. (2017, in press). https://doi.org/10.1016/j.akcej.2017.
11.007

https://doi.org/10.1214/ECP.v20-4070
https://doi.org/10.1214/ECP.v20-4070
https://doi.org/10.1017/fmp.2016.7
https://doi.org/10.1214/16-AOP1127
https://doi.org/10.1016/j.spl.2015.10.015
https://doi.org/10.1016/j.disc.2006.11.059
https://doi.org/10.1145/3212734.3212744
https://doi.org/10.1145/3212734.3212744
http://arxiv.org/abs/1810.10838v1
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1016/j.akcej.2017.11.007
https://doi.org/10.1016/j.akcej.2017.11.007

On Codeword Lengths Guaranteeing
Synchronization

Vladimir V. Gusev1 and Elena V. Pribavkina2(B)

1 Leverhulme Research Centre for Functional Materials Design,
University of Liverpool, Liverpool, UK
vladimir.gusev@liverpool.ac.uk

2 Institute of Natural Sciences and Mathematics, Ural Federal University,
Ekaterinburg, Russia

elena.pribavkina@urfu.ru

Abstract. Prefix codes such as Huffman codes are commonly used for
loseless data compression. The class of synchronizing codes is often cho-
sen to improve error resilience or to enable parallel decoding of data.
Such codes have a special sequence whose occurrence realigns decoding
process leading to recovery from errors in a data stream. In the present
paper we identify a class of codes whose synchronizability depends only
on the lengths of codewords. Namely, we show that every maximal finite
prefix code with only two codeword lengths is synchronizing if and only
if these lengths are coprime.

Keywords: Synchronizing codes · Totally synchronizing digraphs ·
Self-synchronizing Huffman code · Synchronizing automata

1 Introduction

Prefix codes are widely used for data compression and transmission, for example,
they arise from the classical Huffman coding scheme. Error resilience of variable
length codes is a major practical concern: a single bit error at the very beginning
can propagate and make decoding of the whole message incorrect.

One of the key ideas to address this issue is the notion of synchronization [3,
Chap. 3.6]. A word w is synchronizing for a code X if uw is in X∗ for all words
u ∈ Σ∗. Essentially, an occurrence of w synchronizes all possible decodings and
blocks propagation of an error. A code X is called synchronizing if there exists
a synchronizing word for X. Such codes happen to be not only more robust, but
they also admit parallel decoding schemes described in [11,21].

Fortunately, almost all maximal binary prefix codes are synchronizing [6].
Furthermore, in many cases we can construct a synchronizing code given the

V. Gusev is supported by the Leverhulme Trust. E. Pribavkina was supported by
Russian Ministry of Education and Science Project No. 1.3253.2017 and the Competi-
tiveness Enhancement Program of Ural Federal University.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 207–216, 2019.
https://doi.org/10.1007/978-3-030-28796-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_16

208 V. V. Gusev and E. V. Pribavkina

desired codeword lengths. Recall that the code is called aperiodic if the greatest
common divisor of codeword lengths is equal to one. It is not hard to see that
aperiodicity is necessary for synchronizing codes. A kind of reverse statement
is true as well: for every aperiodic code there is a synchronizing code with the
same multiset of codeword lengths [18]. In certain cases we can infer that a code
is synchronizing from a very limited knowledge about the code. A great example
of this is the following result: if the orders of letters are relatively prime, then
the code is synchronizing [3, Theorem 3.6.10]. In the present paper we push this
idea to an extreme: can we infer that a code is synchronizing by looking only at
its codeword lengths? For a more thorough overview of a vast number of results
about codes and their synchronizing properties we refer the reader to [3,4].

Synchronizing automata constitute another source of motivation for our
paper. Recall that a deterministic finite automaton is synchronizing if there
exists a word mapping all states to a fixed one independently of the starting
state. Synchronization is a fundamental notion that arises naturally in differ-
ent areas, e.g. in matrix theory [7], semigroup theory [16], group theory [1], etc.,
see [17,20] for a general overview of the topic. Also, synchronizing codes and syn-
chronizing automata are very similar concepts [3]. A direct connection between
them in the case of maximal prefix codes is described in Sect. 2, more recent
works on the border between synchronizing automata and codes are presented
in [2,5,14,15].

One of the early challenging questions about synchronizing automata, known
as the Road coloring problem, is to characterize fixed out-degree digraphs that
can be turned into synchronizing automata by assigning letters to their edges.
Significant research effort has culminated in the following statement: a digraph
has a synchronizing coloring if and only if it is aperiodic, i.e. the gcd of its cycle
lengths is equal to one [19]. A brief overview of results connecting digraphs and
synchronizing automata can be found in [10]. The Road coloring problem in the
context of synchronizing codes was studied in [13].

The study of quantitative versions of the road coloring problem was recently
initiated in [8,9]. It is conjectured that aperiodic digraphs always have a large
number of synchronizing colorings, moreover, almost all aperiodic digraphs are
totally synchronizing, i.e. all their colorings are synchronizing. At the moment,
these conjectures seem to be quite hard. Moreover, no efficient characterization
of totally synchronizing digraphs is known, i.e. can we check that a digraph is
totally synchronizing in polynomial time?

In the present paper we put synchronizing codes in the context of total syn-
chronizability. Our main contribution is that every aperiodic maximal finite pre-
fix code with only two different codeword lengths is synchronizing. Since Huffman
codes are maximal binary prefix codes, this statement applies to them as well.
In the context of synchronizing automata, our result provides a new class of
totally synchronizing digraphs. Our proof relies on a neat result of Perrin [12]
stating that prefix codes form a free semigroup and a technical analysis of the
automaton associated with a code.

On Codeword Lengths Guaranteeing Synchronization 209

2 Preliminaries

Let Σ be an alphabet. By Σ∗ we denote the free monoid generated by Σ, and
by Σ+ we denote the set of all non-empty words on Σ.

A deterministic finite automaton A over the alphabet Σ is defined by a triple
(Q,Σ, .), where Q is a finite set of states, and p.w is the result of applying a
word w to a state p. An automaton A is said to be synchronizing, if there exists
a word w such that |Q.w| = 1, i.e. the image of the state set under the action of
w is a singleton.

A prefix code on Σ is a subset X of Σ+ which contains no proper prefix of
its elements. A prefix code is said to be maximal if it is maximal with respect to
inclusion among the prefix codes on Σ. In this paper all the codes we consider
are finite maximal prefix codes. A prefix code can be identified with a labeled
tree so that the words of the code correspond bijectively to the leaves of the
tree. Namely, a tree of a maximal prefix code X is a complete tree T (X), where
each node is either an internal node with k = |Σ| children, or a leaf node with
no children. Each outgoing edge is labeled by a letter of the alphabet. The label
of a node q is the word π(q) that labels the path from the root to q. The label
of the root is ε. Then a maximal prefix code is the set of words X such that
X = {π(q) | q is a leaf of T} for some tree T .

We may turn the tree T (X) corresponding to a code X into an automaton
A (X) recognizing X by identifying the leaves with the root, and setting the
root as both initial and final state. It is easy to see that this automaton is
deterministic since the code is maximal. Moreover, it is synchronizing iff the
code X is synchronizing. We say that a state of the automaton A (X) has depth
i if the corresponding vertex in T (X) has depth i, i.e. it can be reached by
reading a word of length i from the root. The root has depth 0. Let n be the
maximal length of words in X. Thus, the depth ranges from 0 to n − 1.

0

1

3

2

4

6

5

7

Fig. 1. Non-synchronizing code C with three codeword lengths

210 V. V. Gusev and E. V. Pribavkina

An example of a code and the corresponding tree is shown in Fig. 1. The
code C consists of 9 words {a2, aba, ab2, ba2, baba, bab2, b2a, b3a, b4}. It is some-
times easier to deal with the minimized automaton M(X) rather than with the
automaton A (X). The minimized automaton of the code C is shown on Fig. 2.

0

2

1, 4, 5

3, 6, 7

a

b

a, b

a

b

a, b

Fig. 2. Minimized automaton of the code C

In what follows we will make use of the following simple fact.

Lemma 1. Let M(X) be the minimized automaton of a maximal prefix code X.
The automaton M(X) is synchronizing iff the code X itself is synchronizing.

Proof. If the minimized automaton is synchronizing, then it can be synchronized
to the class containing the root, since the automaton is strongly connected.
This class is a singleton, since the root is the unique final state. So the initial
automaton A (X) can also be synchronized to the root. The other direction is
trivial.

Consider an arbitrary maximal prefix code X. Note that all the states of
depth n − 1 in A (X) have the same right language (equal to Σ), so they can
always be identified. Furthermore, if � is the second to maximal length of code-
words in X, then all the states of depths i where � ≤ i ≤ n− 1 can be identified.
Indeed, the right language of any such state of depth i is equal to Σn−i.

3 Main Results

Here we focus on the case of a maximal finite prefix code with only two codeword
lengths d < n, (d, n) = 1.

Theorem 1. A maximal finite prefix code X with two codeword lengths is syn-
chronizing iff X is aperiodic.

To prove the theorem we will make use of several lemmata. First consider in
detail the structure of the automaton of such code. As observed before, we may
identify all the states of depth i for i ∈ {d, . . . , n − 1}. For convenience let us
denote the root by 0, and the states of depth i for i ∈ {d, . . . , n − 1} by their

On Codeword Lengths Guaranteeing Synchronization 211

depths. We will refer to the subset of states {d, . . . , n − 1} as chain-states, and
denote this subset by C . Other states except the root are called tree-states, and
the set of such states is denoted by T . Thus, Q = {0} � T � C . A level is the
set of states of the same depth.

We say that a state p ∈ T of depth i has type ‘−’, if there is a word u ∈ Σd

such that depth(p.u) = (d + i) mod n, 0.u = 0; and has type ‘+’, if there exists
a word u ∈ Σd such that depth(p.u) = i, 0.u = d. Note that in principle, a state
may have both types, or have no type at all, see Figs. 3 and 4.

0

p

d

p.u

T

C

u

u

0

p

d

p.u

T

C

u

u

Fig. 3. Types ‘−’ and ‘+’

0

p

d

p.v

p.u

T

C

v

u

v

u

Fig. 4. No type

Lemma 2. For every state p ∈ T either p has a type, or a pair (0, q) is reachable
from (0, p) such that depth(q) = depth(p), and q has a type.

212 V. V. Gusev and E. V. Pribavkina

Proof. Suppose, there is a state p ∈ T having no type. This means that 0.u = d
iff depth(p.u) = (d + i) mod n, and 0.u = 0 iff depth(p.u) = i, where i =
depth(p). In other words, the states 0 and p either go simultaneously on a cycle
of length d or on the cycle of length n.

Assume first that i ≥ d/2. Consider the word v such that 0.v = p, and its
prefix w of length d − i. We have p.w = x ∈ {0, d}. Then 0.wt = x for every
t ∈ Σi. In particular, p.s = x for every word s ∈ Σd−i. If x = 0, then we can
choose a word u ∈ Σd such that 0.u = d, and we will have depth(p.u) = i. This
means p actually has type ‘+’ which is a contradiction. If x = d, then we can
choose a word u ∈ Σd such that 0.u = 0, but we will have depth(p.u) = (d + i)
mod n. Thus, p has type ‘−’, again, a contradiction.

Consider now the case i < d/2. We claim that any pair (0, q) with depth(q) =
i is reachable from (0, p). Indeed, there is at least one word v ∈ Σd such that
p.v = q and depth(q) = i (otherwise p would have type ‘−’). Take a prefix u of v
of length d−i. We have p.u = 0. Then for every w ∈ Σi we have depth(p.uw) = i.
Since p does not have any type, we have 0.uw = 0. Since any state q of depth i
can be represented as q = p.uw for a suitable w ∈ Σi, we obtain the claim.

Consider the state q = 0.ai. If it has a type, then we are done. Suppose, it is
not the case. Then again we have 0.u = d iff depth(q.u) = (d + i) mod n, and
0.u = 0 iff depth(q.u) = i. We have q.ad−i = x ∈ {0, d}. Since q does not have
a type, we get 0.ad−iv1 = x for every v1 ∈ Σi. In particular, (0.ai).ad−2iv1 =
q.ad−2iv1 = x for every v1 ∈ Σi. Again, since q does not have a type, we have
0.ad−2iv2 = x for every v2 ∈ Σ2i. If d − 2i ≤ i, then, as in the previous case, we
have q.u = x for every u ∈ Σd−i . If x = 0, then q has type ‘+’, if x = d, then
q has type ‘−’. A contradiction with the hypothesis. Otherwise, if i ≤ d/3, we
can continue with the induction argument until we find a positive integer k such
that d − ki ≤ i, and get a contradiction.

Lemma 3. If every level 1 ≤ i < d contains a state of type ‘−’, then from any
pair (0, p) with p ∈ T we can either reach a pair (0, q) such that q ∈ T and
depth(q) = (depth(p) − n) mod d or synchronize.

Proof. Consider an arbitrary pair (0, p), p ∈ T , and let i = depth(p). If p does
not have a type, then by the previous lemma from (0, p) we can reach a pair
(0, p′) such that depth(p′) = depth(p), and p′ has a type. So without loss of
generality we may assume that p has a type.

Case 1. If p has type ‘−’, then by the definition there is a word u ∈ Σd such
that depth(p.u) = (d + i) mod n, 0.u = 0. If d + i < n, then let α ≥ 1 be such
that p.uα−1 ∈ C , and p.uα ∈ T . If d + i ≥ n, then we set α = 1. We have
dα + i = n + j, 0 ≤ j < d, and depth(p.uα) = j = (i − n) mod d. On the other
hand, 0.uα = 0. Thus, if j �= 0, we are done. If j = 0, then the pair (0, p) is
synchronized by the word uα.

Case 2. Suppose now that the only type the state p has is ‘+’. Consider the
following subcases.

(i) There is a word u ∈ Σd such that 0.u = d, and depth(p.u) = d+ i mod n.
If d + i < n, then from (0, p) we can reach any pair (0, q) with depth(q) = i.

On Codeword Lengths Guaranteeing Synchronization 213

Indeed, let q be an arbitrary state of depth i, and let w ∈ Σi be the word
such that q = 0.w. We have (0, p).uvw = (0, q) for an arbitrary word v of length
n−d−i. If d+i > n, then consider the prefix v of u of length d−i. We have p.v = d.
Then 0.vw = d for any word w ∈ Σi, otherwise we would have a word vw′ ∈ Σd

such that 0.vw′ = 0 and depth(p.vw′) = (d + i) mod n, meaning that the state
p has type ‘−’. We have that any pair (d, p′) with depth(p′) = d + i − n < i
is reachable from (0, p). Then after applying an arbitrary word of length n − d
we obtain an arbitrary pair (0, q) with depth(q) = i. Since the level i contains
a state q of type ‘−’, from (0, p) we can reach the pair (0, q), and we enter the
previous Case 1.

(ii) There is no word u ∈ Σd such that 0.u = d, and depth(p.u) = d + i
mod n. Since p does not have type ‘−’, we get that p.v = 0 for every v ∈ Σd−i.
Consider the word w1 such that 0.w1 = p.

(ii).a. Suppose first, that i ≤ d/2. Then p.w1v = 0 for any word v ∈ Σd−2i.
So for any state q of depth i we have q = p.w1vu for a suitable word u ∈ Σi.
On the other hand, we have 0.w1vu = p.vu = 0. Thus, any pair (0, q) such that
depth(q) = i is reachable from the pair (0, p). Then we can reach such a pair
that q has type ‘−’, and we enter Case 1.

(ii).b. Suppose now that i > d/2. Then p.w1 = q1 and depth(q1) = 2i − d.
Let w2 be the word such that 0.w2 = q1, |w2| = 2i − d. Then for any u ∈ Σd−i

we have
(0, p).w1u = (0, q1.u),

depth(q1.u) = 2i − d + d − i = i.

If among the states q1.u there is a state of type ‘−’, we enter Case 1, and we are
done. Likewise, if among the states q1.u there is a state satisfying condition (i),
then we are done as well. So we may assume condition (ii) holds for every state
q1.u, u ∈ Σd−i. This means that q1.v = 0 for every v ∈ Σ2(d−i).

We claim that if 2(d − i) ≥ i, which is equivalent to i ≤ 2
3d, then every

pair (0, q) with depth(q) = i is reachable from (0, p). Indeed, let q = 0.v be
an arbitrary state of depth i, so |v| = i. Let v2 be an arbitrary word of length
2d − 3i. We have 0.w2v2v = q1.v2v = 0, and p.w2v2v = 0.v = q. So among the
states q we find such that its type is ‘−’, and finish the proof. If i > 2

3d, then
we continue by induction: suppose on the (k − 1)-th step we obtain i > k−1

k d.
On this step we have the word wk−1 of length (k − 1)i − (k − 2)d such that
0.wk−1 = qk−2. Consider the k-th step. We have |wk−1| > d−i, so we may assume
wk−1 = w′

kwk, where |w′
k| = d − i, and |wk| = ki − (k − 1)d. Let qk−1 = 0.wk.

We have p.wk−1 = p.w′
kwk = 0.wk = qk−1. For every word u ∈ Σ(k−1)(d−i) we

have
(0, p).wk−1u = (qk−2, qk−1).u = (0, qk−1.u),

depth(qk−1.u) = ki − (k − 1)d + (k − 1)(d − i) = i.

We apply the previous arguments and either obtain a reachable pair (0, q) with
depth(q) = i and such that the type of q is ‘−’, or we need to continue to the
next step. But there will be only finite number of steps, namely k ≤ d, since
i > d − 1 cannot hold true.

214 V. V. Gusev and E. V. Pribavkina

Corollary 1. If every level 1 ≤ i < d contains a state of type ‘−’, then every
pair (0, p), p ∈ T is synchronizing.

Proof. By the previous lemma we can consider the sequence of reachable pairs

(0, p) = (0, p0) → (0, p1) → · · · → (0, pk),

such that depth(pj) = (depth(pj−1)−n) mod d = (depth(p)−jn) mod d. Since
(d, n) = 1, there is 0 < j < d such that jn mod d = depth(p), thus the pair
(0, p) synchronizes after at most d − 1 steps.

Lemma 4. Every level 1 ≤ i < d contains a state of type ‘−’.

Proof. Suppose on the contrary, there is a depth 1 ≤ i < d such that all the
states of depth i either have type ‘+’ or no type. Let Xd be the set of codewords
of length d. By definition u ∈ Xd iff u ∈ Σd and 0.u = 0. Our hypothesis means
that for every state q of depth i, and for every u ∈ Xd we have depth(q.u) = i.
In other terms, for every word v ∈ Σi and every u ∈ Xd the prefix u′ of the word
vu of length d fixes the root 0, hence u′ ∈ Xd. Thus, we obtain the inclusion
ΣiXd ⊆ XdΣ

i. Since both sets are finite having the same number of elements,
we have the equality ΣiXd = XdΣ

i. Note, that both Σi and Xd are prefix
codes themselves. By a neat result by Perrin [12] the set of prefix codes is a free
monoid under concatenation. It follows, that two elements commute iff they are
a power of the same element. We have Σi = (Σj)r, so Xd = (Σj)�, which is
a contradiction, since the set of codewords of length n would be empty in this
case.

Proof (of Theorem 1). In order to prove the code is synchronizing, it is enough
to prove that every pair (p, q) is synchronizing. By Corollary 1 and Lemma 4
every pair (0, p) with p ∈ T is synchronizing. For a pair (0, p) with p ∈ C we
can apply a word u ∈ Xd a suitable number of times (at most [n

d]) and reach a
pair (0, p′) with p′ ∈ T . For a pair (p, q) with p, q ∈ T ∪ C we apply a word of
length at most n to bring one of these states to the root.

The other direction is a well-known observation. We will present it here for
completeness. Suppose that the code X is synchronizing, and let r be a common
divisor of codeword lengths. Let w be a synchronizing word for the code X. By
the definition, for any u ∈ Σ∗ we have uw ∈ X∗. In particular, for u = ε we have
w ∈ X∗, thus the length of the word w should be divisible by r. On the other
hand, for a word u of length 1 we should also have uw ∈ X∗, thus its length,
equal to |w| + 1, should also be divisible by r. Therefore, r = 1, so the code is
aperiodic.

Note that Theorem 1 cannot be extended to codes of more than two codeword
lengths: there exists a non-synchronizing code with codeword lengths {2, 3, 4}.
The code is shown on Fig. 1. Its minimized automaton is shown on Fig. 2. It is
easy to see that the pair of states (0, {1, 4, 5}) cannot be synchronized.

On Codeword Lengths Guaranteeing Synchronization 215

Theorem 2. Given an aperiodic maximal prefix code X with two codeword
lengths d < n, the shortest synchronizing word is bounded by 2n2d.

Proof. Let us first show that every pair (0, p) with p ∈ T can be mapped to a
pair (0, q) with depth(q) = (depth(p) − n) mod d by a word of length at most
2n. Indeed, if p has type ‘−’, then by Lemma 3 such a pair (0, q) can be reached
by applying a word uα of length at most n. If p has no type, then we should
first move it to the pair (0, p′) such that p′ has type ‘−’. This is possible, since
by Lemma 2 any pair (0, p′) with p′ having the same depth as p can be reached
from (0, p) by a word of length d. By Lemma 4 we can reach such a pair with p′

having type ‘−’. If p has type ‘+’, then by Lemma 3 we can reach a pair (0, p′)
with p′ of type ‘−’ by applying a word of length at most n. Overall, in order
to obtain a pair (0, q) with depth(q) = (depth(p) − n) mod d from a pair (0, p)
with p ∈ T a word of length at most 2n is sufficient.

In order to synchronize a pair (0, p) with p ∈ T we need to apply this process
of reducing depth at most d − 1 times according to Corollary 1. Thus, such a
pair is synchronizing by a word of length at most 2n(d − 1). To synchronize a
pair (0, p), where p ∈ C , we first apply a word of length at most n to reach a
pair (0, p′) such that p′ ∈ T . Thus, such a pair can be synchronized by a word
of length at most n + 2n(d − 1). We also note that we always synchronize to the
root.

Now to synchronize the automaton A (X) we first apply a word an for some
letter a ∈ Σ. Then Q.an = {0, 0.a, 0.a2, . . . , 0.a�} with � ∈ {d − 1, n − 1}.
Then we successively synchronize pairs of the form (0, p). In the beginning there
are at most n − 1 such pairs, and at each step their number is reduced at
least by one. Thus, a rough estimate for the length of a synchronizing word is
n + (n + 2n(d − 1))(n − 1) ≤ 2n2d.

References

1. Araújo, J., Cameron, P.J., Steinberg, B.: Between primitive and 2-transitive: syn-
chronization and its friends. EMS Surv. Math. Sci. 4(2), 101–184 (2017)

2. Berlinkov, M.V., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words. Inf. Sci. 369, 718–730 (2016)

3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, New York (2009)

4. Biskup, M.: Error resilience in compressed data - selected topics. Ph.D. thesis,
University of Warsaw (2008)

5. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for Huffman codes.
Theor. Comput. Sci. 410(38), 3925–3941 (2009)

6. Freiling, C.F., Jungreis, D.S., Theberge, F., Zeger, K.: Almost all complete binary
prefix codes have a self-synchronizing string. IEEE Trans. Inf. Theory 49(9), 2219–
2225 (2003)

7. Gerencsér, B., Gusev, V.V., Jungers, R.: Primitive sets of nonnegative matrices
and synchronizing automata. SIAM J. Matrix Anal. Appl. 39(1), 83–98 (2018)

8. Gusev, V.V., Szyku�la, M.: On the number of synchronizing colorings of digraphs.
In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 127–139. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22360-5 11

https://doi.org/10.1007/978-3-319-22360-5_11

216 V. V. Gusev and E. V. Pribavkina

9. Gusev, V.V., Pribavkina, E.V.: On synchronizing colorings and the eigenvectors
of digraphs. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) Mathematical
Foundations of Computer Science (MFCS). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 58, pp. 48:1–48:14 (2016)

10. Gusev, V.V., Pribavkina, E.V., Szyku�la, M.: Around the road coloring theorem.
In: TUCS Proceedings of Russian Finnish Symposium on Discrete Mathematics,
vol. 26, pp. 52–56 (2017)

11. Klein, S.T., Wiseman, Y.: Parallel Huffman decoding with applications to JPEG
files. Comput. J. 46(5), 487–497 (2003)

12. Perrin, D.: Codes conjugués. Inf. Control 20(3), 222–231 (1972)
13. Perrin, D., Schützenberger, M.P.: Synchronizing prefix codes and automata and the

road coloring problem. In: Symbolic dynamics and its applications, Contemporary
Mathematics, vol. 135, pp. 295–318. American Mathematical Society (1992)

14. Pribavkina, E.V.: Slowly synchronizing automata with zero and noncomplete sets.
Math. Notes 90(3), 411–417 (2011)

15. Ryzhikov, A., Szyku�la, M.: Finding short synchronizing words for prefix codes. In:
Potapov, I., Spirakis, P., Worrell, J. (eds.) Mathematical Foundations of Computer
Science (MFCS). Leibniz International Proceedings in Informatics (LIPIcs), vol.
117, pp. 21:1–21:14 (2018)

16. Salomaa, A.: Composition sequences for functions over a finite domain. Theor.
Comput. Sci. 292(1), 263–281 (2003)

17. Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B.,
Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive
Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005). https://doi.org/
10.1007/11498490 2

18. Schützenberger, M.P.: On synchronizing prefix codes. Inf. Control 11(4), 396–401
(1967)

19. Trahtman, A.N.: The road coloring problem. Israel J. Math. 172(1), 51–60 (2009)
20. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,

C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

21. Weißenberger, A., Schmidt, B.: Massively parallel Huffman decoding on GPUs. In:
International Conference on Parallel Processing (ICPP), pp. 27:1–27:10 (2018)

https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/11498490_2
https://doi.org/10.1007/978-3-540-88282-4_4

Binary Intersection Revisited

Štěpán Holub(B)

Department of Algebra, Charles University,
Sokolovská 83, 175 86 Praha, Czech Republic

holub@karlin.mff.cuni.cz

Abstract. We reformulate the classical result by Juhani Karhumäki
characterizing intersections of two languages of the form {x, y}∗∩{u, v}∗.
We use the terminology of morphisms which allows to formulate the
result in a shorter and more transparent way.

1 Introduction

One of the classical results that deserve to be better known is the description
Karhumäki gave in [6] for the intersection of two free monoids of rank two, that
is, for languages of the form {x, y}∗ ∩ {u, v}∗ where x and y, as well as u and v,
do not commute. We reformulate here the result in terms of morphisms which
allows an exposition that is much shorter, and hopefully also more transparent.

It is well known that an intersection of two free submonoids of a free monoid
is free. On the other hand, the intersection {x, y}∗ ∩ {u, v}∗ can have infinite
rank. The Theorem 2 in [6] gives two possible forms: {β, γ}∗ and (β0 + β(γ(1 +
δ + · · · + δt))∗ε)∗ and the last section of the cited paper (called “Concluding
remarks”) contains some further information about the form of the intersection
formulated as a byproduct of the proof which spans about fifteen pages (without
Preliminaries). The proof is in many places based on insights that are certainly
correct but not always easy to verify directly from the text. In particular, the
proof often crucially relies on “the way” certain words are “built up” from words
x and y, and/or u and v. This is exactly the kind of argument that is much easier
to make if x and y (u and v) are seen as images of a binary morphism.

2 Preliminaries

We shall denote the longest common prefix (suffix resp.) of u and v by u ∧ v
(u ∧s v resp.). Two words are prefix-comparable (suffix-comparable resp.) if one
of them is a prefix (suffix resp.) of the other. By u ≤s v we denote that u is a
suffix of v. If we want to say that u is a suffix of some sufficiently large power
of v, we say that u is a suffix of v∗. Concepts of concatenation, prefix and suffix
are extended to pairs in the obvious way.

We shall use the standard notation of regular expressions to describe certain
sets of words. Note that {u, v}∗ is an alternative notation for (u + v)∗.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 217–225, 2019.
https://doi.org/10.1007/978-3-030-28796-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_17

218 Š. Holub

A pair of noncommuting words is also called a binary code. We need the
following properties of binary codes (see [1, Lemma 3.1]). If u and v do not
commute, then the word z = uv ∧ vu is prefix-comparable with all words in
{u, v}∗. Moreover, there are distinct letters au and av such that zau is prefix-
comparable with each word in u{u, v}∗ and zav is prefix comparable with each
word in v{u, v}∗. We shall use these facts for suffixes analogously. In particular,
the above facts imply a weak version of the Periodicity lemma in the following
form:

Lemma 1. If w is a common suffix of u∗ and v∗ and |w| ≥ |u|+ |v|, then u and
v commute.

A binary morphism g : {a, b}∗ → Σ∗ is called marked if pref1(g(a)) �=
pref1(g(b)), where pref1(u) denotes the first letter of u. The marked version
of a morphism g′ is the morphism g defined by g(u) = α−1g′(u)α where α =
g′(ab) ∧ g′(ba). It is easy to see that the definition of g is correct, and that g is
marked.

We shall also use the following basic facts about submonoids of a free monoid
(see [7, Chap. 1, Sect. 1.2]). Let M ⊆ Σ∗ be a monoid, where Σ is an alphabet.
Then there is a unique minimal (w.r.t. inclusion) generating set B of M . The
cardinality (possibly infinite) of B is the rank of M . If elements of B satisfy no
non-trivial relation, then M is free. A monoid with the minimal generating set
{u, v} is free if and only if u and v do not commute. If M is not free, then there
exists a unique minimal (w.r.t inclusion) monoid F ⊆ Σ∗ containing M , called
the free hull of M . It is convenient to assume that the free hull of M is Σ∗ itself.
This assumption often does not harm generality, since we can consider Γ as the
set of letters instead of Σ, where Γ is the minimal generating set of the free hull
of M , and to use the unique embedding M ↪→ Γ ∗. The important advantage is
the fact that if Σ∗ is the free hull of M , then Σ = {pref1(b) | b ∈ B}, where B
is the minimal generating set of M .

The minimal generating set B of M is a prefix code if u, uv ∈ B implies
v ∈ B.

3 The Result

We are given four words x, y, u, v ∈ Σ∗ such that xy �= yx and uv �= vu, and
we are interested in the intersection I = {x, y}∗ ∩ {u, v}∗. As we pointed out in
Preliminaries, we can assume that

Σ = {pref1(x),pref1(y),pref1(u),pref1(v)}.

This implies that if {x, y}∗ ∩ {u, v}∗ contains a nonempty word, then either
pref1(x) �= pref1(y) or pref1(u) �= pref1(v). Without loss of generality, let
pref1(u) �= pref1(v), and let α = xy ∧ yx.

We set A = {a, b}, and define morphisms g′, h : A∗ → Σ∗ by g′(a) = x,
g′(b) = y, h(a) = u, h(b) = v. Our aim now is to investigate the set

C(g′, h) = {(r, s) ∈ A∗ × A∗ | g′(r) = h(s)}.

Binary Intersection Revisited 219

We shall call pairs (r, s) ∈ C(g′, h) solutions. A description of solutions is slightly
stronger result than description of the intersection I since there is a one to one
correspondence between I and C(g′, h) given by w ↔ (r, s), where w = g′(r) =
h(s). This also means that C(g′, h) is a free subsemigroup of A∗ × A∗, and
elements of its minimal generating set shall be called minimal solutions.

Note that h is marked, and let g be the marked version of g′, that is, g(u) =
α−1g′(u)α, where α = g′(ab) ∧ g′(ba). The crucial tool for investigation of the
structure of C(g′, h) is its description in terms of an analogous set

C(g, h) = {(r, s) ∈ A∗ × A∗ | g(r) = h(s)},

which is easy to describe. Since both g and h are marked, the construction of a
candidate pair (e, f) ∈ C(g, h) is deterministic as soon as the first letter of e (or
f) is chosen. This observation immediately implies that C(g, h) is generated by
at most two minimal elements.

We have that (r, s) is a solution if and only if

αg(r) = h(s)α. (1)

Therefore, also the construction of (r, s) is deterministic, unless there is a pair
(p, q) such that

αg(p) = h(q). (2)

Clearly, there is at most one such pair (p, q), and if it does not exist, then there
is at most one minimal solution.

From now on, we shall assume that (p, q) exists.

Lemma 2. If (r, s) is a solution, then (p−1rp, q−1sq) ∈ C(g, h).

Proof. From (1) and (2), we have αg(rp) = h(sq), which implies that p is a prefix
of rp, q is a prefix of sq, and

g(p−1rp) = h(q−1sq).

��
Therefore there is a mapping π : C(g′, h) → C(g, h) defined by

π : (r, s) → (p−1rp, q−1sq).

One is tempted to conclude that π is an isomorphism, which would complete the
characterization. However, π is not an isomorphism in general. The problem is
that the inverse π−1 : (e, f) → (pep−1, qfq−1) may be ill-defined. Indeed, (p, q)
need not be a suffix of (pe, qf). Instead we have the following characterization:

Lemma 3.

C(g′, h) = {(
pep−1, qfq−1

) | (e, f) ∈ C(g, h) and (p, q) ≤s (pe, qf)}.

220 Š. Holub

Proof. The inclusion ⊆ is Lemma 2. The inclusion ⊇ is a straightforward verifi-
cation of

αg(pep−1) = h(qfq−1)α.

��
Lemma 4. If (p, q) is a suffix of (pei, qf i) with i > 1, then (p, q) is also a suffix
of (pe, qf).

Proof. If p is a suffix of pei, then p is a suffix of e∗ which implies that p is a
suffix of pe. Similarly for q. ��

The previous lemma shows that if C(g, h) has only one generator, then there
is at most one minimal solution. It remains to suppose that there are two gen-
erators of C(g, h), namely

g(e0) = h(f0),
g(e1) = h(f1).

From now on, we shall use the notation ei = e(i) and fi = f(i) and see e and f as
morphisms {0, 1}∗ → A∗. Note that e and f are marked. Morphisms e and f play
an important role in the literature on the binary Post correspondence problem
and on binary equality sets. They were introduced in [2], where they were called
“equality collectors”. Later the name “successor morphisms” prevailed (see [3,4]
and [5]).

We say that τ is the block decomposition of a solution (r, s) if p−1rp = e(τ)
and q−1sq = f(τ). Lemma 2 says that each solution has a block decomposition.
Let

T =
{
τ | (

pe(τ)p−1, qf(τ)q−1
) ∈ C(g′, h)

}
.

be the set of block decompositions of solutions. Due to

C(g′, h) =
{(

pe(τ)p−1, qf(τ)q−1
) | τ ∈ T

}
,

it is enough to characterize the set T . First, observe the following two facts.

Lemma 5. τ ∈ T if and only if (p, q) is a suffix of (pe(τ), qf(τ)).

Proof. This is a reformulation of Lemma 3. ��
Lemma 6. The minimal generating set of T is a prefix code.

Proof. Let τ1 and τ1τ2 be two elements of T . Since p is a suffix of pe(τ1), we
have that pe(τ2) is a suffix of pe(τ1)e(τ2). Since p is also a suffix of pe(τ1)e(τ2),
we deduce that p is a suffix of pe(τ2). Similarly, we obtain that q is a suffix of
qf(τ2). Hence τ2 ∈ T , and the claim follows. ��

The following is the key technical result.

Lemma 7. If τc ∈ T for some c ∈ {0, 1} and τ ∈ {0, 1}∗, then also c ∈ T .

Binary Intersection Revisited 221

Proof. Without loss of generality, let c = 0. The claim follows from Lemma 4 if
τ ∈ 0∗. Let therefore τ = τ ′10i, and assume

(p, q) ≤s

(
pe(τ ′)e1ei0, qe(τ

′)f1f i
0

)
.

We want to show that (p, q) is a suffix of (pe0, qf0). This is equivalent to showing
that (p, q) is a suffix of (e∗

0, f
∗
0). Assume the contrary.

Minimality of (p, q) implies that p is a proper suffix of e0. The equality
αg(p) = h(q) implies g(e0p−1) is a suffix of α. Assume, without loss of generality,
that a is the first letter of e0. Since |α| < |g(ab)|, we have that e0p

−1 is am for
some m ≥ 1.

Let zf = f∗
1 ∧s f∗

0 , and let c0 and c1 be distinct letters such that c1zf ≤s f∗
1

and c0zf ≤s f∗
0 . Let moreover zh = h(c0)∗ ∧s h(c1)∗. Then zhh(zf) is the longest

common suffix of h(f∗
0) and h(f∗

1). Since α is a suffix of both g(e∗
0) and g(e∗

1),
we deduce that α is a suffix of zhh(zf) and hence

|α| ≤ |h(zf)| + |zh| .
Since q is a suffix of qf(τ ′)f1f i

0 and not a suffix of f∗
0 , we obtain that c1zff i

0 is
a suffix of q. From αg(p) = h(q) and e0 = amp, we now have h(c1zff i−1

0) ≤s

αg(am)−1, which yields

|h(c1zf)| + |g(a)| ≤ |α| .
The two inequalities above imply that |h(c1)|+ |g(a)| ≤ |α| and |h(c1)|+ |g(a)| ≤
|zh|. Since zh is a suffix of h(c1)∗, α is a suffix of h(a)∗ and zh and α are
suffix comparable, the Periodicity lemma implies that g(a) and h(c1) commute
(see Lemma 1). Since both g and h are marked, we obtain that f0 ∈ c∗

1 which
contradicts c0zf ≤s f∗

0 . ��
We now have the following characterization of T .

Lemma 8. If T contains a nonempty word, then either T = {0, 1}∗ or T is
generated (up to the exchange of letters 0 and 1) by the set

0 +
(
1 + 10 + · · · 10(t−1)

)∗
10t,

where t > 0 is the least integer such that q ≤s qf1f
t
0.

Proof. Suppose that T contains a nonempty word.
If (p, q) is a suffix of both (pe0, qf0) and (pe1, qf1), then T = {0, 1}∗ by

Lemma 5.
Otherwise, by Lemma 7, we can suppose (up to the exchange of 0 and 1) that

(p, q) ≤s (pe0, qf0) and (p, q) is not a suffix of (pe1, qf1). Then (p, q) is a suffix
of (e∗

0, f
∗
0), hence there exists a least integer t such that (p, q) ≤s (pe1e

t
0, qf1f

t
0),

that is, such that 10t ∈ T .
Let τ10i be an element of T . The minimality of (p, q) implies that p is a suffix

of e0. Since q is a suffix of both f∗
0 and qf(τ10i), we deduce that q is a suffix of

222 Š. Holub

zff i
0 where zf = f∗

1 ∧s f∗
0 . Therefore q is also a suffix of qf1f

i
0. Hence i ≥ t, and

τ10t is in T for any τ .
The characterization of the minimal generating set of T is now completed by

Lemma 6. Namely, a word τ10t is a minimal generating element of T if and only
if it does not start with 0 and does not contain a factor 10t. ��
Altogether, we have the following characterization of C(g′, h).

Theorem 1. The set C(g′, h) is generated by at most one minimal solution if
either there is no pair (p, q) satisfying αg(p) = h(q), or if there are not two
minimal pairs (e0, f0) and (e1, f1) such that g(ei) = h(fi), i = 0, 1.

If there are at least two minimal solutions, then

C(g′, h) = {(pe(τ)p−1, qf(τ)q−1
) | τ ∈ T},

where (up to the exchange of 0 and 1)

T =
(
0 +

(
1 + 10 + · · · + 10t−1

)∗
10t

)∗

where t is the least integer such that (p, q) ≤s (pe1e
t
0, qf1f

t
0).

Note that the first claim is not “if and only if”. The opposite implication
does not hold as we show below in Example 4.

4 Comparison

We now map our proof to the structure and notation of the original paper.
Theorem [6, Theorem 2] gives two options:

I = {β, γ}∗ (∗)

I =
(
β0 + β(γ(1 + τ + · · · + τ t))∗ε

)∗ (∗∗)

The option (∗) corresponds to the unique minimal solution (if γ is empty) or to
T = {0, 1}+. Then we have

β = h
(
qf0q

−1
)
, γ = h

(
qf1q

−1
)
.

The option (∗∗) is further specified by [6, Theorem 3], and we return to it later.
The case analysis of [6] corresponds to the present paper as follows:

– Case I: (p, q) does not exist.
– Case II: (p, q) exists.

• Case II A: No (e, f) exists.
• Case II B: C(g, h) has a unique generator.
• Case II C: Both (e0, f0) and (e1, f1) exist.

Binary Intersection Revisited 223

The Case II C is now divided into two main cases. In our terminology, the
classification is based on smallest elements of T whose image is longer than q.

Subcase (i) corresponds to the situation when T contains elements 0τ0 and
1τ1 where q is both longer than f(τ0) and than f(τ1). First, it is shown that
τ0, τ1 ∈ 0∗ ∪ 1∗. The case is then divided into the following situations:

– Subcase (i) a: τ0 ∈ 0∗ and τ1 ∈ 1∗ (then T = {0, 1}+),
– Subcase (i) b: τ0 ∈ 0∗ and τ1 ∈ 0+ (T is infinitely generated),
– Subcase (i) c: τ0 ∈ 1+, τ1 ∈ 0+ (strictly speaking this cannot happen, but

in [6], this case is reduced to a)).

Subcase (ii) corresponds to the situation when T contains 0τ0 with the
above properties but not 1τ1. Again, there are subcases:

– Subcase (ii) a: τ0 ∈ 0∗ (T is infinitely generated),
– Subcase (ii) b: τ0 ∈ 1+ (cannot happen).

The last mentioned subcase, namely Case II C, Subcase (ii) b, leads to a
contradiction. This is the crucial, in some sense the only technically complicated
case, and it corresponds to our Lemma 7. In [6], its proof is again divided into
two cases and spans pages 198–202.

The two infinitely generated cases cover [6, Theorem 1 (∗∗)] above, and are
formulated by [6, Theorem 3] as two further options for the generating set of I:

βγ + β(γβ)t (δ(1 + γβ + · · · + (γβ)t)∗
δγ (Thm 3 ∗)

βγ + β(γβ)t
(
δ(1 + γβ + · · · + (γβ)q−1

)∗
δ(β(γβ)t−q)−1. (Thm 3 ∗∗)

Here, we have γβ = h(f0), δ = h(f1), and q = β(γβ)t. In the case (Thm 3 ∗),
we have t = t + 1 (where t is from our Lemma 8). In the case (Thm 3 ∗∗), we
have t = q and δ = δ′β(γβ)t−q.

5 Examples

We conclude by several examples. The first two are from [6].

Example 1.

g′ : a → a b → amb,

h : a → a b → bam.

Then α = am, g = h, hence (e0, f0) = (a, a) and (e1, f1) = (b, b). We have
(p, q) = (ε, am), where ε denotes the empty word. Moreover, t = m,

T =
(
0 +

(
1 + 10 + · · · + 10m−1

)∗
10m

)∗
.

224 Š. Holub

Therefore the intersection is generated by the set

g′(e(0 +
(
1 + 10 + · · · + 10m−1

)∗
10m))

= g′(a +
(
b + ba + · · · + bam−1

)∗
bam)

= a +
(
amb + amba + · · · + ambam−1

)∗
ambam.

Example 2.

g′ : a → aab b → aba,

h : a → a b → baaba.

Then α = a,

g : a → aba b → baa,

(e0, f0) = (aa, ab) and (e1, f1) = (bb, ba). We have (p, q) = (ε, a). For T the
“up to the exchange of letters 0 and 1” applies with t = 1, and

T = (1 + 0+1)∗.

Therefore the intersection is

I =
(
g′(e(1 + 0+1))

)∗ =
(
g′(bb + (aa)+bb)

)∗ = (abaaba + (aabaab)+abaaba)∗.

This can be also written in the form given in [6] as I = (a(abaaba)∗baaba)∗.

The following example shows the possibility of (Thm 3 ∗∗).

Example 3.

g′ : a → aa b → a6b,

h : a → a b → ba4.

Then α = a6,

g : a → aa b → ba6,

(e0, f0) = (a, aa) and (e1, f1) = (b, baa). We have (p, q) = (ε, a6), t = 2, and

T = (0 + (1 + 10)∗100)∗.

The intersection is

I = (g′(e(0 + (1 + 10)∗100)))∗ = (g′(a + (b + ba)∗baa))∗

= (aa + (a6b + a6baa)∗a6baaaa)∗.

The remarkable feature of this example is that f0 is a suffix of f1.

Example 4. Finally, Table 1 lists various situations in which the intersection
is generated by at most one word. The notation is such that pref1(g(a)) =
pref1(h(a)) = a, pref1(g(b)) = pref1(h(b)) = b and pref1(e0) = pref1(h0) = a
(whenever applicable).

Particularly important is the last line where all three necessary conditions for
infinitely generated intersection are met, yet the intersection contains the empty
word only. Note that (p, q) is not a suffix of any (pe(τ), qf(τ)) in that case. This
explains the formulation of the main Theorem1.

Binary Intersection Revisited 225

Table 1. Intersections generated by at most one word.

g′(a) g′(b) h(a) h(b) α (p, q) (e0, f0) (e1, f1) I

aabb ab aba bab a (b, a) × (bbb, ba) ababab∗

aa ab aba ba a (b, a) × (b, b) {ε}
aabb ab aba babb a (b, a) × × {ε}
aab aba aba baa a × (a, a) (b, b) aba∗

aab abb aba bba a × (a, a) (b, b) {ε}
aabb ab abaa bb a × × × abaabb∗

aab abb aa bb a × × × {ε}
aab abb aab bba a × × (b, b) aab∗

aab abb aba bab a × (a, a) × {ε}
abaab ababab a ba aba (ε, ab) (a, abb) (b, bbb) {ε}

References

1. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, pp. 329–438. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59136-5 6

2. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: The (generalized) Post correspon-
dence problem with lists consisting of two words is decidable. Theoret. Comput. Sci.
21(2), 119–144 (1982). https://doi.org/10.1016/0304-3975(89)90080-7

3. Halava, V., Harju, T., Hirvensalo, M.: Binary (generalized) Post correspondence
problem. Theoret. Comput. Sci. 276(1–2), 183–204 (2002). https://doi.org/10.1016/
S0304-3975(01)00157-8

4. Halava, V., Holub, Š.: Reduction tree of the binary generalized Post correspondence
problem. Int. J. Found. Comput. Sci. 22(2), 473–490 (2011). https://doi.org/10.
1142/S0129054111008143

5. Holub, Š.: Binary equality sets are generated by two words. J. Algebra 259(1), 1–42
(2003). https://doi.org/10.1016/S0021-8693(02)00534-3

6. Karhumäki, J.: A note on intersections of free submonoids of a free monoid. Semi-
group Forum 29(1), 183–205 (1984). https://doi.org/10.1007/BF02573324

7. Lothaire, M.: Combinatorics on words. Cambridge Mathematical Library,
Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/
CBO9780511566097

https://doi.org/10.1007/978-3-642-59136-5_6
https://doi.org/10.1016/0304-3975(89)90080-7
https://doi.org/10.1016/S0304-3975(01)00157-8
https://doi.org/10.1016/S0304-3975(01)00157-8
https://doi.org/10.1142/S0129054111008143
https://doi.org/10.1142/S0129054111008143
https://doi.org/10.1016/S0021-8693(02)00534-3
https://doi.org/10.1007/BF02573324
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1017/CBO9780511566097

On Substitutions Closed Under
Derivation: Examples

Václav Koš́ık1 and Štěpán Starosta2(B)

1 Department of Mathematics, FNSPE, Czech Technical University in Prague,
Trojanova 13, 120 00 Praha 2, Czech Republic

2 Department of Applied Mathematics, FIT, Czech Technical University in Prague,
Thákurova 9, 160 00 Praha 6, Czech Republic

stepan.starosta@fit.cvut.cz

Abstract. We study infinite words fixed by a morphism and their
derived words. A derived word is a coding of return words to a factor.
We exhibit two examples of sets of morphisms which are closed under
derivation—any derived word with respect to any factor of the fixed point
is again fixed by a morphism from this set. The first example involves
standard episturmian morphisms, and the second concerns the period
doubling morphism.

Keywords: Return word · Derived word · Fixed point of substitution ·
Arnoux–Rauzy word · Episturmian word · Period doubling morphism

1 Introduction

In 1998 Fabien Durand characterized primitive substitutive sequences, i.e., mor-
phic images of fixed points of primitive substitutions. A crucial role in his char-
acterization is played by the notion “derived word”. Any primitive substitutive
sequence u is uniformly recurrent, i.e., for each factor w, the distances between
consecutive occurrences of w in u are bounded. Or equivalently, there are only
finitely many gaps between neighbouring occurrences of w. An infinite word cod-
ing ordering of these gaps (seen as finite words) is called the derived word to w
in u and is denoted by du(w).

The mentioned main result of [2] says that a uniformly recurrent word is
primitive substitutive if and only if the set of derived words to all prefixes of u is
finite. If moreover, u is fixed by a primitive substitution, then the derived word
to a prefix w of u is fixed by a primitive substitution as well. In other words,
given any primitive substitution ϕ, there exists a finite list L = {ϕ1, ϕ2, . . . , ϕk}
of primitive substitutions such that for each prefix w of u, the fixed point of
ϕ, the derived word du(w) is fixed by a substitution ϕi from L. An algorithm
which to a given Sturmian substitution creates such list L is described in [7].

On the other hand, if w is a non-prefix factor of u, then it seems that du(w)
is fixed by a substitution only exceptionally. In [5], this phenomenon is studied
for fixed points of Sturmian substitutions. For this purpose, the following new
notion has been introduced.
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 226–237, 2019.
https://doi.org/10.1007/978-3-030-28796-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_18&domain=pdf
http://orcid.org/0000-0001-5962-4297
https://doi.org/10.1007/978-3-030-28796-2_18

On Substitutions Closed Under Derivation: Examples 227

Definition 1. A finite non-empty set M of primitive substitutions is said to be
closed under derivation if the derived word du(w) to any factor w of any fixed
point u of ϕ ∈ M is fixed (after a suitable renaming of letters) by a substitution
ψ ∈ M . A primitive substitution ξ is said to be closeable under derivation if it
belongs to a set M closed under derivation.

Sturmian substitutions closeable under derivation are characterized in [5].
The aim of this contribution is to provide two new examples of sets M closed
under derivation.

In our first example, in Sect. 4, the set M is a finite subset of the monoid
of episturmian morphisms. In this case, all substitutions in M act on the same
alphabet. In our second example, in Sect. 5, the substitutions in M act on alpha-
bets with distinct cardinality. An inspiration for the second example comes from
a recent result by Huang and Wen in [4], where a curious property of the period
doubling substitution ψ(a) = ab and ψ(b) = aa was observed.

The article is organized as follows. The next section introduces necessary
notions and definition. Section 3 deals with the set of derived words to factors
of an infinite word in general. The last two sections contain the two examples of
substitutions closeable under derivation.

2 Preliminaries

Let A denote an alphabet—a finite set of symbols. A word over A is a finite
sequence u = u1u2 · · · un where ui ∈ A for all i = 1, 2, . . . , n. The length of the
word u is denoted by |u| and is equal to n. The set of all words over A together
with the operation concatenation forms a free monoid A∗, its neutral element is
the empty word ε. If u = pws ∈ A∗, then w is a factor of u, p is a prefix of u,
and s is a suffix of u. For w = uv, we write u = wv−1 and v = u−1w.

Let B be an alphabet. A morphism ϕ is a mapping ϕ : A∗ → B∗ such that
ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ A∗. A morphism ϕ : A∗ → A∗ is called primitive
if there exists an iteration k ∈ N such that for any pair a, b of letters from A, the
letter a occurs in ϕk(b). In accordance with Durand’s terminology, a morphism
ϕ is a substitution if there exist a ∈ A and w ∈ A∗, w �= ε such that ϕ(a) = aw
and |ϕn(a)| tends to infinity with growing n.

An infinite word over A is an infinite sequence u = u0u1u2 . . . from AN.
A finite word w of length n is a factor of u if there exists an index i ∈ N,
such that w = uiui+1 · · · ui+n−1. The index i is called an occurrence of w in
u. The set of all factors of u is denoted by L(u). If each factor w of u has
infinitely many occurrences, then u is recurrent. A return word to w in u is a
factor r = uiui+1 · · · uj−1, where i < j are two consecutive occurrences of w in
u. The word rw is called a complete return word to w in u and obviously, rw
is a factor of u. The set of all return words to w in u is denoted by Ru(w). If
the set Ru(w) is finite, say Ru(w) = {r0, r1, . . . , rk−1}, then u can be written
as a concatenation u = pri0ri1ri2 · · · , where p is the prefix of u such that the
factor w occurs in pw exactly once and ij ∈ {0, 1, 2, . . . , k−1}. The infinite word

228 V. Koš́ık and Š. Starosta

i0i1i2 · · · over the alphabet {0, 1, 2, . . . , k − 1} is the derived word to w in u and
is denoted by du(w). A recurrent infinite word u is uniformly recurrent if the
set Ru(w) is finite for all w ∈ L(u).

An infinite word u = u0u1u2 · · · ∈ AN is eventually periodic if there exist
integers k and n such that k ≥ 0, n > 0 and for all i with i ≥ k, ui = ui+n. An
infinite word that is not eventually periodic is aperiodic.

The domain of a morphism ϕ : A∗ → B∗ is naturally extended to AN by
putting ϕ(u) = ϕ(u0u1u2 · · ·) = ϕ(u0)ϕ(u1)ϕ(u2) · · · . We say that a morphism
ϕ : A∗ → A∗ is a substitution if there exists a letter a ∈ A such that ϕ(a) = aw
for a non-empty word w ∈ A∗ and ϕ(b) �= ε for all letters b. In other words, a
substitution is a morphism having a fixed point which can be obtained as the
limit limk→+∞ ϕk(a). A word u is purely substitutive if there exists a substitution
ϕ over A such that u = ϕ(u), i.e., u is a fixed point of ϕ. A word v over B is
substitutive if v = ψ(u), where ψ : A∗ → B∗ is a morphism and u is a purely
substitutive word. If u is fixed by a primitive substitution, then v is primitive
substitutive. A well-known fact is that a primitive substitutive word is uniformly
recurrent (c.f. [2]).

3 The Set of Derived Words to Factors of an Infinite
Word

In this section we list several simple properties of the set

Derf (u) = {du(w) : w ∈ L(u)}.

Since the derived words are often consider only with respect to a prefix, and we
consider here the derived words with respect to all the factors, we add a lower
index f in the notation Derf to emphasize this fact.

First, we show that only some special factors need to be examined to describe
Derf (u). A letter a ∈ A is a right extension of w ∈ L(u) if wa ∈ L(u). Note
that any factor of u has at least one right extension. A factor w ∈ L(u) is right
special if it has at least two distinct right extensions. Analogously, we define left
special factors.

A factor which is simultaneously right and left special is bispecial.

Proposition 2. Let u be an infinite uniformly recurrent word over A and w ∈
L(u).

(1) If w is not left special, then Ru(aw) = aRu(w)a−1, where a ∈ A is the
unique left extension of w. Moreover, if w is not a prefix of u, then du(aw) =
du(w).

(2) If w is not right special, then Ru(wa) = Ru(w) and du(wa) = du(w), where
a ∈ A is the unique right extension of w.

Proof. Item (1): First assume that w is not left special and w is not a prefix of
u. The integer i is an occurrence of w in u if and only if i − 1 is an occurrence

On Substitutions Closed Under Derivation: Examples 229

of aw in u. Consequently, r ∈ Ru(w) if and only if ara−1 ∈ Ru(aw) and the
ordering of the return words to w in u and the ordering the return words to aw
in u coincide.

Let 0 be an occurrence of w, i.e., w is a prefix of u. Then a return word r to
w and rw have an occurrence 0. We have to show that even for such r the word
ara−1 belongs to Ru(aw). Indeed, the word u is recurrent and thus rw has an
occurrence j > 0. As w is always preceded by the letter a and a is a suffix of r
we can conclude that ara−1 is a return word to aw in u.

Item (2): The proof is analogous.

We formulate a straightforward corollary of Proposition 2.

Proposition 3. Let u be an aperiodic infinite uniformly recurrent word over A.
We have

Derf (u) = {du(w) : w is a right special prefix of u}
∪ {du(w) : w is a bispecial factor of u} .

Proof. Let w be a factor of u. Let ws be the shortest right special factor of
u having w as a prefix (its existence is guaranteed by the aperiodicity of u).
Repeatedly applying Item (2) of Proposition 2 for the factors ws′ with s′ being
a prefix of s, we obtain du(w) = du(ws).

Similarly, let pws be the shortest left special factor of u having ws as a suffix.
If for all suffices p′ of p, the word p′ws is not a prefix of u, we may repeatedly
apply Item (1) of Proposition 2 to obtain du(ws) = du(pws). Moreover, by the
construction of pws, for a given w there is a unique bispecial factor pws, thus,
in this case, we need to consider only du(pws).

If for some suffix p′ of p, the word p′ws is a prefix of u, we may repeatedly
apply Item (1) of Proposition 2 to obtain du(ws) = du(p′ws). Again, by the
construction of p′ws, there is a unique such prefix p′ws for a given w. Moreover,
it is right special. Therefore, in this case, we need to take into account the word
du(p′ws).

Thus we obtain

Derf (u) ⊆ {du(w) : w is a right special prefix of u}
∪ {du(w) : w is a bispecial factor of u} ,

and since the other inclusion is trivial, the proof is concluded.

The following claim is taken from Durand’s article. His proof is constructive
and provides an algorithm for finding a suitable morphism.

Proposition 4 ([2]). Let u ∈ AN be a fixed point of a primitive morphism ϕ
and w be a prefix of u. The word du(w) is fixed by a primitive morphism as well.

Proof (Sketch of the proof). We do not repeat the whole proof, we only describe
the construction of a primitive morphism fixing du(w).

As ϕ is primitive, its fixed point u is uniformly recurrent. Let r0, r1, . . . , rk−1

be the return words to w. Since u is fixed by ϕ, the image ϕ(w) has a prefix

230 V. Koš́ık and Š. Starosta

w and thus ϕ(riw) has a prefix ϕ(ri)w. As w is a prefix and a suffix of ϕ(ri)w,
the factor ϕ(ri) is a concatenation of several return words to w, i.e., we can find
unique indices s1, s2, . . . , s�i

∈ {0, 1, . . . , k − 1} such that ϕ(ri) = rs1rs2 · · · rs�i
.

It is easy to check that the morphism given by

δ : i �→ s1s2 · · · s�i
for each i ∈ {0, 1, . . . , k − 1}

is primitive and fixes du(w). All details can be found in [2].

Proposition 5. Let u ∈ AN be a fixed point of a primitive morphism ϕ and
w ∈ L(u). The word du(w) is primitive substitutive.

Proof. Let pw be the shortest prefix of u containing the factor w. Let
r0, r1, . . . , rk−1 denote the return words to pw and let r̃0, r̃1, . . . , r̃j−1 denote
the return words to w. As w is a prefix and a suffix of the factor p−1ripw, the
word p−1rip can be written as concatenation of the return words to w, i.e.,
p−1rip = r̃s1 r̃s2 · · · r̃s�i

for some unique indices s1, s2, . . . , s�i
∈ {0, 1, . . . , j − 1}.

Define the morphism ψ : {0, 1, . . . , k − 1}∗ �→ {0, 1, . . . , j − 1}∗ by

ψ : i �→ s1s2 · · · s�i
for each i ∈ {0, 1, . . . , k − 1}.

It follows that du(w) = ψ
(
du(pw)

)
. By Proposition 4, du(pw) is fixed by a

primitive substitution.

We finish this section by an example.

Example 6. Recall the period doubling substitution

ψ(a) = ab and ψ(b) = aa,

and its fixed point
z = abaaabababaaabaaabaa

– Any occurrence of the letter b is preceded and followed by the letter a, therefore
b is neither right nor left special. By Proposition 2,

dz(b) = dz(ab) = dz(aba).

– There are two return words to a in z, namely r0 = ab and r1 = a. We can
write

z = r0r1r1r0r0r0r1r1r0r1r1r0r1 . . . and thus dz(a) = 0110001101101

The word dz(a) is fixed by a substitution. To find it, we compute

ψ(r0) = ψ(ab) = abaa = r0r1r1 and ψ(r1) = ψ(a) = ab = r0.

It follows from the proof of Proposition 4 that dz(a) is fixed by the substitution
ξ determined by

ξ(0) = 011 and ξ(1) = 0.

On Substitutions Closed Under Derivation: Examples 231

4 Example 1: Standard Episturmian Morphisms

Let us recall the definition of standard Arnoux–Rauzy words and known results
on morphisms fixing these words. All mentioned facts and further results can be
found in the survey [3].

Definition 7. An infinite word u ∈ AN is Arnoux–Rauzy if

1. u has exactly one right special factor of each length;
2. wa ∈ L(u) for every right special factor w of u and every letter a ∈ A;
3. L(u) is closed under reversal, i.e., v1v2 · · · vn ∈ L(u) implies vnvn−1 · · · v1 ∈

L(u).

An Arnoux–Rauzy word u is standard if each of its prefixes is a left special factor
of u.

The Arnoux–Rauzy words represent a generalization of Sturmian words to
multiliteral alphabets and share many properties with Sturmian words. A prop-
erty which is important for a description of their derived words is that Arnoux–
Rauzy words are aperiodic and by [1] they are also uniformly recurrent. Let MA
denote the monoid generated by standard episturmian morphisms La defined for
every a ∈ A as follows:

La :

{
a �→ a,

b �→ ab for all b �= a.

To abbreviate the notation of the elements of the monoid MA, we put

Lz = Lz1 ◦ Lz2 ◦ · · · ◦ Lzn
for z = z1z2z · · · zn ∈ A∗.

A morphism Lz ∈ MA is primitive if and only if each letter from A occurs in
z. Any primitive morphism in MA has only one fixed point and this fixed point
is a standard Arnoux–Rauzy word. On the other hand, if a standard Arnoux–
Rauzy word is fixed by a primitive substitution, then it is fixed by a primitive
morphism from the monoid MA.

Example 8. Let us consider the Tribonacci word uτ = abacabaabacababac
abaa . . .—the fixed point of the morphism τ : a �→ ab, b �→ ac, c �→ a. The
word uτ is a standard Arnoux—Rauzy word over {a, b, c} and it is fixed also
by the primitive morphism τ3. It is easy to check that τ3 = Labc and thus the
Tribonacci word is fixed by a substitution from MA.

Medková in [8] studies derived words of Arnoux–Rauzy words. She considers
all Arnoux–Rauzy (not only standard) words, but she describes derived words
only to prefixes of infinite words. To quote a consequence of one of her results
we need to recall the cyclic shift operation on A∗:

cyc(z1z2 · · · zn) = znz1 · · · zn−1.

232 V. Koš́ık and Š. Starosta

Proposition 9 (Theorem 24 in [8]). Let Lz ∈ MA, z ∈ A∗, be a primitive
morphism and u be its fixed point. If w is a prefix of u, then there exists k ∈
{1, 2, . . . , |z|} such that du(w) is fixed (up to a permutation of letters) by Lcyck(z).
In particular, the word du(w) is a standard Arnoux–Rauzy word.

Theorem 10. Let z be a word in A∗ such that each letter a ∈ A occurs in z at
least once. The set

M =
{
Lcyck(z) : k ∈ {1, 2, . . . , |z|}}

is closed under derivation.

Proof. Let v be a fixed point of Lv with v = cyck(z) for some k ∈ {1, 2, . . . , |z|}.
Since z contains each letter from A, the word v contains all letters form A as
well and thus Lv is primitive.

As v is a standard Arnoux–Rauzy word, it follows from Definition 7 that
each of its bispecial factor is a prefix of v. By Proposition 3, only derived words
to prefixes have to be considered. By Proposition 9, each such derived word
is fixed (up to a permutation of letters) by a morphism Lcyci(v) for some i ∈
{1, 2, . . . , |v|}. Obviously, this morphism belongs to M .

Example 11. If we apply the previous theorem to the ternary word abc, we
obtain that the set M = {Labc, Lbca, Lcab} is closed under derivation. Never-
theless, all the 3 morphisms in M fix the same word (up to a permutation of
letters), namely the Tribonacci word. This word is fixed by the substitution τ
given in Example 8. Therefore, the set {τ} is closed under derivation as well.

5 Example 2: The Period Doubling Morphism

The aim of this section is to show that the period doubling substitution ψ deter-
mined by ψ(a) = ab and ψ(b) = aa is closeable under derivation. For this
purpose, we first define the two following substitutions:

ν :

⎧
⎨

⎩

0 �→ 01,
1 �→ 02020101,
2 �→ 0202,

and ξ :
{

0 �→ 011,
1 �→ 0.

(1)

Next, we deduce several auxiliary statements which help us to prove the
following main theorem.

Theorem 12. The sets {ψ, ξ, ν} and {ξ, ν} are closed under derivation.

First, we focus on the derived words of the fixed point z =
abaaabababaaabaaabaa . . . of the substitution ψ. The following properties are
immediate:

(I) bb /∈ L(z). If ai ∈ L(z), then i ≤ 3.
(II) a and aa are bispecial factors of z.

On Substitutions Closed Under Derivation: Examples 233

(III) Any bispecial factor of length more than 2 has a prefix ab and a suffix ba.

Proof. Recall that ψ : a �→ ab, b �→ aa. It follows from Item (I) that b and aaa
can be neither a prefix nor a suffix of a bispecial factor. As bb /∈ L(z), the factor
baa is followed only by ψ(a) = ab. Therefore, baa is not a suffix of a bispecial
factor. Similarly, the factor aab is preceded only by a. Thus, the factor aab is
not a prefix of a bispecial factor. It follows that a bispecial factor must have the
prefix ab and the suffix ba.

(IV) The longest common prefix of ψ(a) and ψ(b) is the letter a; the longest
common suffix of ψ(a) and ψ(b) is the empty word. It implies that Φ(v) :=
ψ(v)a is bispecial whenever v is bispecial.

The converse of the very last property also holds (if Φ(v) is not too short).

Proposition 13. Let w be a non-empty bispecial factor of z such that w �= a
and w �= aa. There exists a bispecial factor v such that Φ(v) = w.

Proof. As mentioned before, the bispecial factor w has a suffix ba and a prefix
ab. Hence, there exists a factor v such that Φ(v) = ψ(v)a = w and a is both a
prefix and a suffix of v. It remains to show that v is bispecial. If it is not right
special, then v is followed only by a or b. But then w is followed only by b or a,
respectively, since ψ(va) = ψ(v)ab and ψ(vb) = ψ(v)aa. Thus, v is right special.
Similarly, v is left special, and therefore bispecial.

Corollary 14. Let w be a non-empty bispecial factor of z. There exists i ∈ N

such that
w = Φi(v) with v ∈ {a, aa} .

Remark 15. Proposition 13 and its corollary are in fact a special case of a more
general construction of bispecial factors given in [6]. From the point of view of
this general construction, the bispecial factors a and aa are called initial, and
Φ is the mapping generating all other bispecial factors from the initial bispecial
factors in the spirit of Proposition 13.

As the fixed point z has a bispecial factor aa which is not a prefix of z, the
description of derived words to non-prefix factors is more complicated than in
the case of a fixed point of a standard episturmian morphism. The following
notion will be very useful for this purpose.

Definition 16. Let w be a non-empty factor of a fixed point x of a substitution
ϕ. Suppose there exist words y, y′ and u = u1u2 · · · un such that ywy′ = ϕ(u),
|y| < |ϕ(u1)|, |y′| < |ϕ(un)|, and u ∈ L(x). If there is exactly one occurrence
of w in ϕ(u), then we call u an ancestor of w. The set of all ancestors of w
is denoted by A(w). If there are more occurrences of w in ϕ(u), then we say w
allows an ambiguous ancestor.

234 V. Koš́ık and Š. Starosta

Example 17. Given the fixed point z = abaaabababaaabaaabaa . . . of the period
doubling substitution ψ, the set of all ancestors of the factor aa is A(aa) = {b}
because ψ(b) = aa and y = ε, y′ = ε. Since ψ(ba) = aaab, y = a, y′ = b and there
are two occurrences of aa in ψ(ba), the factor aa allows an ambiguous ancestor.
The prefix aba has two ancestors aa and ab and it does not allow an ambiguous
ancestor.

Proposition 18. Let x be a fixed point of an injective substitution ϕ and w be
a factor of x with a unique ancestor u. Assume w does not allow an ambiguous
ancestor. We have dx(w) = dx(u).

Proof. The infinite word x can be written as x = zri0ri1ri2 . . . , where rij
∈

Rx(u) for all j ∈ N. If u is a prefix, then z = ε. By the definition of a return
word, u is a prefix of the word rik

u . . . for all k ∈ N. Since u is the unique
ancestor of w and w does not allow an ambiguous ancestor, there are exactly
two occurrences of w in ϕ(rik

)ϕ(u). Let ϕ(u) = ywy′.

Fig. 1. An illustration of riku and ϕ(riku) in the proof of Proposition 18. For clarity
of the figure, the depiction is a special case of non-overlapping factors w.

If we define r′
ik

:= y−1ϕ(rik
)y as in Fig. 1, then r′

ik
∈ Rx(w) for all k ∈ N

and we have

x = ϕ(x) = ϕ(z)ϕ(ri0)ϕ(ri1)ϕ(ri2) · · · =

= ϕ(z)y
︸ ︷︷ ︸
:=z′

y−1ϕ(ri0)y︸ ︷︷ ︸
r′

i0

y−1ϕ(ri1)y︸ ︷︷ ︸
r′

i1

y−1ϕ(ri2)y︸ ︷︷ ︸
r′

i2

y−1 · · · = z′r′
i0r

′
i1r

′
i2

The derived words of u and w are both i0i1i2

Lemma 19. Let v be a non-empty bispecial factor of the fixed point z of the
period doubling substitution ψ. We have dz(Φ(v)) = dz(v).

Proof. Since v is bispecial, by properties (II) and (III), the word a is a suffix of
v and thus ψ(v) has a suffix b. It implies that ψ(v) is not right special. Therefore
dz(ψ(v)) = dz(ψ(v)a) = dz(Φ(v)).

The word v is surely an ancestor of ψ(v). We show that it is the only ancestor.
Suppose there is another ancestor t with t �= v. Thus, there exists y, y′ such that

On Substitutions Closed Under Derivation: Examples 235

yψ(v)y′ = ψ(t). By Definition 16 and the form of ψ, we conclude that the length
of y and y′ is at most 1. If |y| = 0, then the form of ψ implies v = t and y′ = ε,
which is a contradiction with t �= v. Similarly, y′ cannot be empty. Therefore, y
and y′ are both letters. Thus, the last letter of ψ(v) is the first letter of ψ(a) or
ψ(b) which is in both cases the letter a—a contradiction following from the first
paragraph of this proof. Therefore A(ψ(v)) = {v} and it is not difficult to verify
that ψ(v) does not allow an ambiguous ancestor when it contains at least one
letter b. By Proposition 18 we have dz(v) = dz(ψ(v)) = dz(Φ(v)).

Proposition 20. If w is a non-empty factor of z, then dz(w) = dz(a) or
dz(w) = dz(aa). If w is a non-empty prefix of z, then dz(w) = dz(a).

Proof. By Proposition 3 we have to describe the derived words to right special
prefixes and to bispecial factors only. First assume that w is a non-empty bis-
pecial factor of z. By Corollary 14, the factor w can be obtained by iteration
of the mapping Φ(v) = ψ(v)a starting from the two bispecial factors a and aa.
Thus, by repeated application of Lemma 19, we obtain that dz(w) equals dz(a)
or dz(aa).

Now assume that w is a right special prefix of z. As the bispecial factor a is
a prefix of z and image by Ψ of every letter starts with a, the bispecial factor
Φk(a) is a prefix of z for each k ∈ N. Therefore, any right special prefix w of
z is left special as well. Since Φ�(aa) is not a prefix of z for all positive � and
by Corollary 14, any right special prefix of z equals Φk(a) for some k ∈ N. By
Lemma 19, dz(w) = dz(Φk(a)) = dz(a).

Now we show that both derived words to a factor of z are fixed by primitive
substitutions. We exploit the following simple tool.

Observation 21. Let v be a fixed point of a morphism γ and let u = α(v)
where α is a morphism. If there exists a morphism β such that αγ = βα, then
u is fixed by β.

Proof. β(u) = βα(v) = αγ(v) = α(v) = u.

Proposition 22. The derived word dz(a) is fixed by ξ and the derived word
dz(aa) is fixed by ν (where ξ and ν are defined in (1)).

Proof. In Example 6 above, we show, using Proposition 4, that the derived word
dz(a) is fixed by the substitution ξ.

It remains to consider dz(aa). As abaa is the shortest prefix of z containing
the bispecial factor aa, we can use the construction from the proof of Definition
5 to find a morphism α such that dz(aa) = α(dz(abaa)). In our case p = ab and
w = aa. According to Proposition 20, the derived word dz(abaa) is fixed by ξ
since dz(a) is fixed by ξ. Thus, dz(abaa) is over a binary alphabet, and so the
prefix abaa has exactly two return words, say r0 and r1. These two return words
can be found in the prefix of z of length 16. They are

r0 = abaaabab and r1 = abaa.

236 V. Koš́ık and Š. Starosta

It follows from the proof of Proposition 5 that (ab)−1r0ab and (ab)−1r1ab
can be written as a concatenation of return words to aa. Specifically, r′

0 =
a, r′

1 = aababab, r′
2 = aab are return words of aa and (ab)−1r0ab = r′

0r
′
1 and

(ab)−1r1ab = r′
0r

′
2. Hence, according to this claim we have

α(0) = 01,
α(1) = 02.

Note that since dz(abaa) is fixed by ξ, it is also fixed by ξ2. By Observation
21, if the substitution ν satisfies αξ2 = να, the proof is finished. This is very
easy to verify:

αξ2(0) = α(01100) = 0102020101
να(0) = ν(01) = 0102020101

αξ2(1) = α(011) = 010202
να(1) = ν(02) = 010202.

Remark 23. The derived word dz(aa) is also fixed by the morphism

η(0) = ε

η(1) = 010202
η(2) = 01.

The proof is the same as the proof of Proposition 22, but at the end we have
to verify the equality αξ = ηα. The reason why we prefer ν to η is that η is an
erasing non-primitive morphism.

Corollary 24. If w is a non-empty factor of z, then dz(w) is fixed by ξ or ν.

Proof. The corollary follows from Propositions 20 and 22.

We conclude this section by the proof of our main result. For this purpose
we need one more ingredient. It is a modification of Item 5 from [2, Proposition
6]. Its proof is almost identical to the proof of the original statement and thus
we omit it.

Lemma 25. Let u be a uniformly recurrent word and let w be its factor. Set
v = du(w). For a factor x of v, there exists a factor y of u such that dv(x) =
du(y).

Proof (Proof of Theorem 12). Let v be a fixed point of the primitive substitution
ξ and x be a factor of v. By Proposition 22, we have v = dz(a). By Lemma 25,
there exists a factor y in z such that dv(x) = dz(y). Proposition 20 implies that
dv(x) equals dz(a) or dz(aa). Therefore, dv(x) is fixed by ξ or ν.

The same reasoning gives that the derived word to any factor of the fixed
point of ν is fixed by ξ or by ν. By Definition 1, the set {ν, ξ} is closed under
derivation.

As dz(ε) = z and the derived word to any non-empty factor of z is fixed by
ξ or by ν, the set {ν, ξ, ψ} is also closed under derivation.

On Substitutions Closed Under Derivation: Examples 237

Acknowledgments. This work was supported by the Ministry of Education, Youth
and Sports of the Czech Republic, project no. CZ.02.1.01/0.0/0.0/16 019/0000778.
We also acknowledge financial support of the Grant Agency of the Czech Technical
University in Prague, grant No. SGS17/193/OHK4/3T/14. We thank Michel Dekking
for attracting our attention to the article [4].

References

1. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 255(1–2), 539–553 (2001). https://doi.
org/10.1016/S0304-3975(99)00320-5

2. Durand, F.: A characterization of substitutive sequences using return words. Dis-
crete Math. 179(1—3), 89–101 (1998)

3. Glen, A., Justin, J.: Episturmian words: a survey. Theor. Inf. Appl. 43(3), 403–442
(2009)

4. Huang, Y.K., Wen, Z.Y.: Envelope words and the reflexivity of the return word
sequences in the period-doubling sequence. Preprint available at https://arxiv.org/
abs/1703.07157 (2017)

5. Klouda, K., Pelantová, E., Starosta, Š.: Sturmian substitutions closed under deriva-
tion (2019, in preparation)

6. Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret. Com-
put. Sci. 445, 63–74 (2012). https://doi.org/10.1016/j.tcs.2012.05.007

7. Klouda, K., Medková, K., Pelantová, E., Starosta, Š.: Fixed points of Sturmian
morphisms and their derivated words. Theoret. Comput. Sci. 743, 23–37 (2018).
https://doi.org/10.1016/j.tcs.2018.06.037

8. Medková, K.: Derivated sequences of Arnoux-Rauzy sequences. Submitted to
WORDS 2019 (2019)

https://doi.org/10.1016/S0304-3975(99)00320-5
https://doi.org/10.1016/S0304-3975(99)00320-5
https://arxiv.org/abs/1703.07157
https://arxiv.org/abs/1703.07157
https://doi.org/10.1016/j.tcs.2012.05.007
https://doi.org/10.1016/j.tcs.2018.06.037

Templates for the k-Binomial Complexity
of the Tribonacci Word

Marie Lejeune(B), Michel Rigo, and Matthieu Rosenfeld

Department of Mathematics, University of Liège,
Allée de la Découverte 12 (B37), 4000 Liège, Belgium

{M.Lejeune,M.Rigo,M.Rosenfeld}@uliege.be

Abstract. Consider k-binomial equivalence: two finite words are equiv-
alent if they share the same subwords of length at most k with the same
multiplicities. With this relation, the k-binomial complexity of an infi-
nite word x maps the integer n to the number of pairwise non-equivalent
factors of length n occurring in x. In this paper based on the notion of
template introduced by Currie et al., we show that, for all k ≥ 2, the
k-binomial complexity of the Tribonacci word coincides with its usual
factor complexity p(n) = 2n + 1. A similar result was already known for
Sturmian words, but the proof relies on completely different techniques
that seemingly could not be applied for Tribonacci.

1 Introduction

Abelian equivalence of words has been investigated for quite a long time; e.g., in
the sixties Erdös raised the question whether abelian squares can be avoided by
an infinite word over an alphabet of size 4 [6,7,16]. Let Σ be a finite alphabet.
We let Σ∗ denote the set of all finite words over Σ. Two words u and v in Σ∗ are
abelian equivalent if one word is obtained by permuting the letters of the other
word. More formally, u and v are abelian equivalent if |u|a = |v|a, for all a ∈ Σ,
where we let |u|a denote the number of occurrences of the letter a in u.

Definition 1. Let u be a word over an ordered alphabet {0, . . . , k − 1}. The
abelianization or Parikh vector of u, denoted by Ψ(u), is the column vector
in N

k

(|u|0, . . . , |u|k−1)
ᵀ

.

With this notation, two words are abelian equivalent if and only if Ψ(u) =
Ψ(v). A possible generalization of abelian equivalence is the k-binomial equiva-
lence based on binomial coefficient of words. An independent generalization is
k-abelian equivalence where one counts factors of length at most k [9,10]. For
a survey, see, for instance, [19]. We let the binomial coefficient

(
u
v

)
denote the

number of times v appears as a (not necessarily contiguous) subsequence of u.
Let k ≥ 1 be an integer. Two words u and v are k-binomially equivalent, denoted
u ∼k v, if

(
u
x

)
=

(
v
x

)
for all words x of length at most k.

The first author is supported by a FNRS fellowship.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 238–250, 2019.
https://doi.org/10.1007/978-3-030-28796-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_19

Templates for the k-Binomial Complexity of the Tribonacci Word 239

Definition 2. Let x be an infinite word. The k-binomial complexity function of
x is defined as

bx,k : N → N, n �→ #(Facn(x)/∼k)

where Facn(x) is the set of factors of length n occurring in x. For k = 1, this
measure of complexity is exactly the abelian complexity.

The celebrated theorem of Morse–Hedlund [3,4] characterizes ultimately peri-
odic words in terms of a bounded factor complexity function. Hence, aperiodic
words with the lowest factor complexity are exactly the Sturmian words char-
acterized by px(n) = n + 1. It is also a well-known result of Cobham that the
factor complexity of any k-automatic sequence is in O(n). The Tribonacci word
has a factor complexity 2n + 1.

We collect the known facts about the k-binomial complexity. For all k ≥ 2,
Sturmian words have a k-binomial complexity which is the same as their factor
complexity, i.e., bx,k(n) = n + 1 for all n. Since bx,k(n) ≤ bx,k+1(n), the proof
consists in showing that any two distinct factors of length n occurring in a given
Sturmian word are never 2-binomially equivalent [17, Thm. 7]. However, the
Thue–Morse word has a bounded k-binomial complexity [17, Thm. 13]. So we
have a striking difference with the most usual complexity measures. Naturally,
the bound on the k-binomial complexity of the Thue–Morse word depends on the
parameter k because when k tends to infinity, the k-binomial equivalence gets
closer to equality of factors, i.e. bx,k(n) = px,k(n) for all n ≤ k, and the Thue–
Morse word has a factor complexity in Θ(n). The precise results are recalled
below.

Theorem 3 [17]. Let k ≥ 1. There exists Ck > 0 such that the k-binomial
complexity of the Thue–Morse word t satisfies bt,k(n) ≤ Ck for all n ≥ 0.

Theorem 4 [11]. We let t denote the Thue–Morse word over a 2-letter alphabet.
Let k be a positive integer. For all n ≤ 2k − 1, we have bt,k(n) = pt(n). For all
n ≥ 2k, we have

bt,k(n) =
{

3 · 2k − 3, if n ≡ 0 (mod 2k);
3 · 2k − 4, otherwise.

When investigating this new k-binomial complexity measure, it is naturally
interesting to consider various well-known words or families of words. A natural
choice is therefore to try computing the k-binomial complexity of the Tribonacci
word T = 010201001020101 · · · , fixed point of the morphism τ : 0 �→ 01, 1 �→ 02,
2 �→ 0. From computer experiments, the second author made the conjecture in
2014 that, for all k ≥ 2, its k-binomial complexity is the same as the usual
factor complexity 2n+1 [18]. As in the Sturmian case, it is enough to show that
given any two distinct factors of length n occurring in the Tribonacci word, these
two factors are not 2-binomially equivalent. Surprisingly, classical combinatorial
techniques seemed to be unsuccessful. We make an extensive use of the concepts
of templates and their ancestors similar to what can be found in [1,2,8] where
avoidance of abelian repetitions is considered. Closely related, let us also mention

240 M. Lejeune et al.

[5] where a morphic word avoiding three consecutive factors of the same size and
same sum is given. Recently Liétard proposed algorithmic proofs for morphic
words avoiding additive powers [13].

This paper is organized as follows. In Sect. 2, we recall the notion of Parikh
matrix and extend it to our k-binomial context. In particular, this extended
matrix is built from the classical one using the Kronecker product: binomial
coefficients can be nicely represented in terms of this product. In Sect. 3 we
define and adapt the notions of templates and ancestors to our purpose. To solve
our problem, we need to show the finiteness of some set of realizable ancestors.
To that end, in Sect. 4, we first get several bounds related to Parikh vectors of
factors of the Tribonacci word. Consequently, we deduce bounds on the realizable
ancestors. We put together the results of these last two sections to establish the
main theorem in Sect. 5. Similarly to [1,2,8,13,15], our proof is a computer-
assisted one.

2 Basics

Let Σ = {0, . . . , s − 1} be an ordered alphabet of size s. As mentioned in the
introduction, it is enough to consider 2-binomial equivalence but everything in
this section generalizes well to k-binomial equivalence.

Definition 5. Let w be a finite word over Σ. We will make an extensive use of
its extended Parikh vector denoted by Φ(w) and defined as follows. We set

Φ(w) :=
(

|w|0, . . . , |w|s−1,

(
w

00

)
,

(
w

01

)
, . . . ,

(
w

(s − 1)(s − 1)

))ᵀ
.

It is a column vector of size s(s + 1) and we assume that the s2 subwords of
length 2 are lexicographically ordered.

Take the word u = 10010201010 which is a factor of length 11 occurring in
the Tribonacci word. Its extended Parikh vector is given by

Φ(u) =
(
6, 4, 1, 15, 11, 3, 13, 6, 2, 3, 2, 0

)ᵀ
.

With this notation, Φ(u) = Φ(v) if and only if u ∼2 v.
For a vector d ∈ Z

n, n ≥ s, we let d|0,...,s−1 denote the vector in Z
s

made of the first s coordinates of d. In particular over an alphabet of size s,
Φ(w)|0,...,s−1 = Ψ(w).

We let A⊗B denote the usual Kronecker product of two matrices A ∈ Z
m×n

and B ∈ Z
p×q. It is a block-matrix in Z

mp×nq defined by

A ⊗ B :=

⎛

⎜
⎝

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎞

⎟
⎠ .

Templates for the k-Binomial Complexity of the Tribonacci Word 241

Let m be an integer. We let Pm ∈ Z
(m(m+1))×m2

denote the matrix such that
for all, i, j,

[Pm]i,j =
{

1, if i = j + m;
0, otherwise.

This matrix adds m zeros at the beginning of a column vector of size m2. We start
with two straightforward lemmas and the introduction of an extended Parikh
matrix.

Lemma 6. Let u and v be two words over an alphabet of size s. We have

Φ(uv) = Φ(u) + Φ(v) + Ps

(
Ψ(u) ⊗ Ψ(v)

)
.

Proof. The first two terms in the statement take into account the separate contri-
butions of u and v to the different coefficients. Nevertheless, subwords of length
2 can also be obtained by taking their first letter in u and their second one in
v. This is exactly the contribution of the third term. Observe that Ψ(u) ⊗ Ψ(v)
is a column vector of size s2. Applying Ps will add s zeros on top because the
contribution of individual letters has already been taken into account in the first
two terms.
�

The classical Parikh matrix M ′
h associated with a morphism h is a useful

tool in combinatorics on words (not to be confused with the notion of Parikh
matrix of a word introduced in 2000 by Mateescu et al.). Over an ordered s-letter
alphabet, it is defined from its columns as a s × s matrix

M ′
h =

(
Ψ(h(0)) · · · Ψ(h(s − 1))

)

and it readily satisfies

Ψ(h(u)) = M ′
hΨ(u), ∀u ∈ Σ∗.

For the Tribonacci morphism, it is given by

M ′
τ =

⎛

⎝
1 1 1
1 0 0
0 1 0

⎞

⎠ . (1)

Definition 7. Mimicking the Parikh matrix and its use, one can define an
extended Parikh matrix Mh associated with a morphism h defined over an ordered
s-letter alphabet. It is a s(s + 1) × s(s + 1) matrix satisfying

Φ(h(u)) = MhΦ(u), ∀u ∈ Σ∗. (2)

The existence of the extended Parikh matrix satisfying (2) is ensured by the
next result.

242 M. Lejeune et al.

Lemma 8. Let M ′
h be the Parikh matrix associated with some morphism h. The

extended Parikh matrix of h has the following form:

Mh =

⎛

⎜
⎜
⎝

M ′
h 0 · · · 0

�
� M ′

h ⊗ M ′
h

�

⎞

⎟
⎟
⎠ .

In particular, det(Mh) = det(M ′
h)2s+1. Moreover, if the alphabet is of size s,

then MhPs = Ps(M ′
h ⊗ M ′

h). If M ′
h is non-singular, then Mh is non-singular

and M−1
h is a block-triangular matrix of the same form as Mh with diagonal

blocks M ′−1
h and M ′−1

h ⊗ M ′−1
h .

Proof. Since the first s components of Φ(u) give the usual Parikh vector, M ′
h is

the upper-left corner of Mh. For the last s2 components of Φ(u) dealing with
binomial coefficients of subwords of length 2, it is shown in [11] that, for all
a, b ∈ Σ,

(
h(u)
ab

)
=

∑

c∈Σ

(
h(c)
ab

)
|u|c +

∑

x1x2∈Σ2

(
h(x1)

a

)(
h(x2)

b

)(
u

x1x2

)
.

In this expression, the first sum corresponds to the s × s submatrices marked as
� and the second sum exactly corresponds to the Kronecker product M ′

h ⊗ M ′
h.

Indeed, if we index M ′
h on Σ and M ′

h ⊗ M ′
h on Σ2, we have

(
h(x1)

a

)(
h(x2)

b

)
= [M ′

h]a,x1
[M ′

h]b,x2
= [M ′

h ⊗ M ′
h]ab,x1x2

.
�

This extended Parikh matrix was also used in [14] (for avoidance problems).

3 Templates and Ancestors

For this section, let h : Σ∗ → Σ∗ be any primitive (prolongable) morphism. Let
M ′

h be its Parikh matrix and Mh be its extended Parikh matrix. We let s := #Σ.
Recall that a prefix (resp., a suffix) of a word w is proper if it is different from
w (and thus, possibly empty).

Definition 9. The language of h, denoted by L(h), is the set of factors of any
of its non-empty fixed points (if h is primitive, they all have the same language).
The set Pref(h) (resp., Suff(h)) is the set of proper prefixes (resp., proper suf-
fixes) of the words in {h(a) | a ∈ Σ}, e.g., for the Tribonacci morphism,
Pref(τ) = {ε, 0} and Suff(τ) = {ε, 1, 2}. Such a notation can be extended to
hn. If u ∈ L(h), there exist a shortest pu ∈ Pref(h), a shortest su ∈ Suff(h) and
u′ ∈ L(h) such that h(u′) = puusu.

In the following definition, the index b (resp., e) stands for beginning (resp.,
end).

Templates for the k-Binomial Complexity of the Tribonacci Word 243

Definition 10. A template is a 5-tuple of the form t = [d,Db,De, a1, a2] where
a1, a2 ∈ Σ, d ∈ Z

s(s+1) and Db,De ∈ Z
s. A pair of words (u, v) is a realization

of (or realizes) the template t if:

• Φ(u) − Φ(v) = d + Ps

(
Db ⊗ Ψ(u) + Ψ(u) ⊗ De

)
,

• there exist u′ and v′ such that u = u′a1 and v = v′a2.

A template t is realizable by h if there is a pair of words in L(h) that realize t.

Given two factors u and v, the template of the form [Φ(u)−Φ(v),0,0, a1, a2]
is obviously realizable by h, where a1 (resp., a2) is the last letter of u (resp., v).

Due to the presence of Ps in the above definition, note that if a template
is realizable by a pair (u, v), then the corresponding vector d is such that
d|0,...,s−1 = Ψ(u) − Ψ(v).

Remark 11. There exist an infinite number of realizable templates. Actually, for
any choice of words u, v and vectors Db,De in Z

s, there exists a convenient
d ∈ Z

s(s+1).

Lemma 12. Let h be a primitive morphism. Let T := {[0,0,0, a1, a2] : a1 =
a2}. The factorial complexity and the 2-binomial complexity of any fixed point
of h are equal if and only if all templates from T are non-realizable by h.

Proof. The factorial complexity is not the same as the 2-binomial complexity if
and only if there exists a pair of factors (u, v) such that u = v and Φ(u) = Φ(v).

The two words of any realization of an element in T are 2-binomially equiva-
lent and are different since they do not have the same last letter. Thus, if there is
a realization of an element of T then the factorial complexity and the 2-binomial
complexity are not equal.

Now, for the other direction, suppose that the two complexity functions are
not equal: we have a pair of words (u, v) such that u = v and Φ(u) = Φ(v). Since
u = v and |u| = |v|, there exist u′, v′, s ∈ Σ∗ and a, b ∈ Σ with a = b such that
u = u′as and v = v′bs (observe that s is the longest common suffix of u and v).
Then Φ(u′a) = Φ(v′b) so the pair (u′a, v′b) realizes [0,0,0, a, b], which belongs
to T .
�

The idea in the next definition is that any long factor of a fixed point of a
morphism must be the image of a shorter factor, up to (short) prefix and suffix.
So the relation corresponds to the various relationships among the binomial
coefficients that must hold if this is to be the case. For more details, the reader
is invited to read the proof of [12, Lemma 15].

Definition 13. Let t′ = [d′,D′
b,D′

e, a
′
1, a

′
2] and t = [d,Db,De, a1, a2] be two

templates and h be a morphism. We say that t′ is a parent by h of t if there exist
pu, pv ∈ Pref(h) and su, sv ∈ Suff(h) such that:

• d′ is given by

Mhd′ = d+Φ(pusu)−Φ(pvsv)+Ps

(
Ψ(pv)⊗d|0,...,s−1 +d|0,...,s−1 ⊗Ψ(sv)

)

− Ps

(
(Db + Ψ(pu) − Ψ(pv)) ⊗ Ψ(pusu) + Ψ(pusu) ⊗ (De + Ψ(su) − Ψ(sv)

)
;

244 M. Lejeune et al.

• the value of D′
b is given by M ′

hD
′
b = Db + Ψ(pu) − Ψ(pv);

• the value of D′
e is given by M ′

hD
′
e = De + Ψ(su) − Ψ(sv);

• a1su is a suffix of h(a′
1);

• a2su is a suffix of h(a′
2).

We let Parh(t) denote the set of parents by h of t.

Remark 14. Observe that for any given template t, Parh(t) is finite and easy to
compute as long as Mh and M ′

h are non-singular. Indeed, the sets Pref(h) and
Suff(h) are finite. For the Tribonacci word, #Pref(τ) = 2, #Suff(τ) = 3 and
thus #Parτ (t) ≤ 36. At this stage, it is not required for a parent to be realizable.

More interestingly there is a link between preimages of the realization by h
of a template and realization by h of the parents of the template. We make that
link explicit in the following Lemma.

Lemma 15. Let h be a morphism. Assume that det(M ′
h) = ±1. Let t be a

template, u, v, v′, u′ ∈ L(h), pu, pv ∈ Pref(h) and su, sv ∈ Suff(h) such that:

• h(u′) = puusu and h(v′) = pvvsv;
• su is a proper suffix of the image of the last letter of u′;
• sv is a proper suffix of the image of the last letter of v′;
• (u, v) realizes t.

Then there exists a parent t′ of t such that (u′, v′) realizes t′.

This motivates the following definitions.

Definition 16. A template t′ is an ancestor by h (resp., realizable ancestor)
of a template t if there exists a sequence of n ≥ 1 templates (resp., realizable
templates) t = t1, t2, . . . , tn = t′ such that for all i ∈ {1, . . . , n − 1}, ti+1 is a
parent by h of ti. For a template t, we denote by RAnch(t) the set of all the
realizable ancestors by h of t. We may omit “by h” when the morphism is clear
from the context.

Let |h| = maxa∈Σ |h(a)|, usually called the width of h. To prove that two
different factors of Tribonacci are never 2-binomially equivalent, we will make
use of Lemma 12. The next result will help us to show that no template of the
set T defined in Lemma 12 is realizable by τ .

Proposition 17. Let L be a positive integer. Let h be a primitive morphism
and t0 be a template. If there exists a pair of words in L(h) that is a realization
of t0, then

• either t0 has a realization (u, v) ∈ L(h) × L(h) such that min(|u|, |v|) ≤ L or,
• there exists a realization (u, v) ∈ L(h) × L(h) of a template t of RAnch(t0)

with L ≤ min(|u|, |v|) ≤ |h|L.

Templates for the k-Binomial Complexity of the Tribonacci Word 245

Proof. Let (u, v) be a pair of factors of L(h) realizing t0. If min(|u|, |v|) ≤ L,
there is nothing left to prove. Assume therefore that min(|u|, |v|) > L.

Since v is a factor of L(h), there are sequences of words v =
v1, v2, . . . , vn ∈ Σ∗, p1, . . . , pn−1 ∈ Pref(h) and s1, . . . , sn−1 ∈ Suff(h) such
that, for all i < n, h(vi+1) = pivisi and L ≤ |vn| ≤ |h|L. Moreover we may force
that, for all i < n, si is a proper suffix of the image of the last letter of vi+1.

Similarly, since u is a factor of L(h), there are sequences of words
u = u1, u2, . . . , u� ∈ Σ∗ and p′

1, . . . , p
′
�−1 ∈ Pref(h) and s′

1, . . . , s
′
�−1 ∈ Suff(h)

such that, for all i < 	, h(ui+1) = p′
iuis

′
i and L ≤ |u�| ≤ L|h|.

Let m = min(n,). We can simply apply Lemma 15 inductively m times. We
obtain a template t′ which is an ancestor of t0 and is realized by (um, vm). Since
m = min(n,), L ≤ min(|um|, |vm|) ≤ |h|L. This concludes the proof.
�

4 Bounding Realizable Templates for the Tribonacci
Word

Recall that τ denote the Tribonacci morphism and that T is the Tribonacci
word. The matrix M ′

τ was given in (1). Since it is primitive, we may use Perron’s
theorem. Densities of letters 0, 1, 2 exist and are denoted respectively by α0, α1

and α2. Let θ ≈ 1.839 be the Perron eigenvalue of τ . Recall that α =
(
α0 α1 α2

)ᵀ

is an eigenvector of τ associated with θ. Let

Δ = {(δ0, δ1) : −1.5 ≤ δ0, δ1, δ0 + δ1 ≤ 1.5}.

4.1 Bounds on Extended Parikh Vectors

We can obtain two different kinds of bounds on extended Parikh vectors of factors
of the Tribonacci word. First we essentially take care of the large eigenvalues.

Proposition 18. Let r be a left eigenvector of Mτ having λ as associated eigen-
value. If |λ| < θ, then there exists a constant C(r) such that, for all factors w of
T ,

|r · Φ(w)|
|w| ≤ C(r).

One can see [12] for the details. If we fix n, 	 ∈ N, the bound given in the
proof is the following one:

max
u∈L(τ)
|u|≤�

⎧
⎪⎨

⎪⎩

|r · Φ(u)|
|u| ,

|λ|n
ι(, n)θn

max
u∈L(τ)
|u|≤�

|r · Φ(u)|
|u| + c3(r)

ι(, n)θn

ι(, n)θn − |λ|n

⎫
⎪⎬

⎪⎭
,

where
ι(, n) =

	

	 + θn
(
2 + 1.5

θ−1

)

246 M. Lejeune et al.

and

c3(r) = max
p∈Pref(τn)
s∈Suff(τn)

{
|r · P3 (Ψ(p) ⊗ α + α ⊗ Ψ(s))|

+
1
	

max
δ∈[−1.5,1.5]3

|r · (Φ(ps) + P3 (Ψ(p) ⊗ δ + δ ⊗ Ψ(s)))|
}

.

Moreover, integers n and 	 have to verify

|λ|n
ι(, n)θn

< 1.

The bound given by Proposition 18 will only be useful for the eigenvalues λ
such that |λ| ≥ 1. When |λ| < 1, the following result is stronger.

Proposition 19. Let r be an eigenvector of Mτ and λ be the associated eigen-
value. If |λ| < 1, then there exists a constant C(r) such that for all factors w of
T ,

|r · Φ(w)| ≤ C(r).

For every n ∈ N, the constant

C(r) =
1

1 − |λ|n max
p∈Pref(τn)
s∈Suff(τn)

max
δ∈[−1.5,1.5]3

|r · (Φ(ps) + P3 (Ψ(p) ⊗ δ + δ ⊗ Ψ(s)))|

is convenient. See [12] for details.

4.2 Bounds on Templates

This subsection contains several lemmas giving necessary conditions on tem-
plates to be realizable by τ .

Lemma 20. Let λ be an eigenvalue of Mτ such that |λ| < 1. For every
left eigenvector r of Mτ associated with λ and for every realizable template
t = [d,Db,De, a1, a2],

min
(δ0,δ1)∈Δ

∣
∣
∣
∣
∣
∣
r ·

⎛

⎝d + P3

⎛

⎝Db ⊗

⎛

⎝
δ0

δ1

−δ0 − δ1

⎞

⎠ +

⎛

⎝
δ0

δ1

−δ0 − δ1

⎞

⎠ ⊗ De

⎞

⎠

⎞

⎠

∣
∣
∣
∣
∣
∣
≤ 2C(r)

where C(r) is the constant from Proposition 19.

This bound is not so easy to use because of the complicated minimum. It
can be computed using tools from optimization. However, we can simply use this
bound as follows.

Templates for the k-Binomial Complexity of the Tribonacci Word 247

For the sake of notation, let

f(δ0, δ1) = r ·

⎛

⎝d + P3

⎛

⎝Db ⊗

⎛

⎝
δ0

δ1

−δ0 − δ1

⎞

⎠ +

⎛

⎝
δ0

δ1

−δ0 − δ1

⎞

⎠ ⊗ De

⎞

⎠

⎞

⎠ .

Then

min
(δ0,δ1)∈Δ

|f(δ0, δ1)| ≥
√

min
(δ0,δ1)∈Δ

Re (f(δ0, δ1))
2 + min

(δ0,δ1)∈Δ
Im (f(δ0, δ1))

2
.

Let IRe and IIm be intervals such that

IRe =
[

min
(δ0,δ1)∈Δ

Re (f(δ0, δ1)) , max
(δ0,δ1)∈Δ

Re (f(δ0, δ1))
]

and

IIm =
[

min
(δ0,δ1)∈Δ

Im (f(δ0, δ1)) , max
(δ0,δ1)∈Δ

Im (f(δ0, δ1))
]

.

Then
min

(δ0,δ1)∈Δ
|f(δ0, δ1)| ≥

√
min

y∈IRe

y2 + min
y∈IIm

y2.

Thus any template for which this last quantity is greater than 2C(r) is not
realizable.

Observe that each of the four interval bounds is reached for a vertex of the
polytope, that is

(
δ0

δ1

)
∈

{(
1.5

−1.5

)
,

(
1.5
0

)
,

(
0

1.5

)
,

(
−1.5
1.5

)
,

(
−1.5

0

)
,

(
0

−1.5

)}
. This

is due to the fact that f is linear (and thus convex) over the convex set Δ.
This allows us to remove many templates from the set of templates, but this

is not enough to obtain a finite set, so we need to somehow use the bounds on
the other eigenvectors as well.

Lemma 21. Let L be a positive integer. Let λ be an eigenvalue of Mτ such
that |λ| < θ. Then, for all eigenvectors r of Mτ associated with λ, there exists
a constant C(r) such that for any template t = [d,Db,De, a1, a2] realized by a
pair of factors of the Tribonacci word (u, v) with |u| ≥ L, we have

|r · P3 (Db ⊗ α + α ⊗ De)| ≤
2L −

∑3
i=1 di

L
C(r) + max

(δ0,δ1)∈Δ

|r · (d + P3 (Db ⊗ δ + δ ⊗ De))|
L

.

The quantity of the l.h.s. and the first term on the r.h.s. are straightforward
to compute. For the last term, it is not difficult to show that the maximum is in

248 M. Lejeune et al.

fact necessarily reached on a vertex of the polytope, that is

max
(δ0,δ1)∈Δ

|r · (d + P3 (Db ⊗ δ + δ ⊗ De))|
L

≤

max(
δ0

δ1

)
∈

{(
1.5
0

)
,

(
1.5

−1.5

)
,

(
0

1.5

)
,

(
−1.5

0

)
,

(
−1.5
1.5

)
,

(
0

−1.5

)}
|r · (d + P3 (Db ⊗ δ + δ ⊗ De))|

L
.

5 Proof of the Main Result

With all these lemmas, we are ready to show our main result.

Theorem 22. Two factors of the Tribonacci word are 2-binomially equivalent
if and only if they are equal.

Proof. Let T = {[0,0,0, a1, a2] : a1 = a2}. Let us show that no template from
T is realizable. Let L = 15. We can easily check with a computer that no pair of
factors of T with min(|u|, |v|) ≤ L realizes a template t from the set T . Indeed,
since for all t ∈ T , d = 0, Db = 0 and De = 0, we know that a pair of words
(u, v) realizes t if and only if Φ(u) − Φ(v) = 0. It just suffices to check that for
all n ≤ L, bT ,2(n) = pT (n).

Now, from Proposition 17, if t ∈ T is realized then one of its ancestors is
realized by a pair (u, v) with L ≤ min(|u|, |v|) ≤ 2L.

Lemmas 20 and 21 give us two sets of inequalities that any template realized
by a pair (u, v) of factors of Tribonacci with |u| ≥ L must respect. Let X be
the set of templates that respect the bounds. Let A0 = T and, for all i, let
Ai+1 = {Parτ (t) ∩ X : t ∈ Ai}. Then clearly RAncτ (t) ⊆

⋃

i∈N

Ai. Each Ai can

be easily computed and it can be checked by a computer program that the set⋃

i∈N

Ai is finite.

We can finally check with a computer that there is no pair (u, v) of factors
of T with L ≤ min(|u|, |v|) ≤ 2L that realizes any element of

⋃

i∈N

Ai. Thus no

template of T is realizable. By Lemma 12, we can conclude that the 2-binomial
complexity of the Tribonacci word is equal to its factorial complexity.
�

Accompanying this paper is an implementation in Mathematica of all the compu-
tations described in this theorem and in the previous lemmas and propositions.
We also have a C++ implementation that is much faster, but uses machine
floating point arithmetic whose accuracy cannot be guaranteed (in this case,
however, we obtain exactly the same set of templates). Diagonalizing the matrix
of Tribonacci gives 4 eigenvectors to which Lemma 20 can be applied. Since there
are two pairs of conjugate complex vectors, it is useless to keep more than one of
each pair. However, by taking a linear combination of these two, we get another
eigenvector to which we can apply Lemma 20 (in practice we only do that once,

Templates for the k-Binomial Complexity of the Tribonacci Word 249

but we could take as many vectors as we want from this 2-dimensional space).
For this conjugation reason, we also only keep 4 of the 6 eigenvectors that corre-
spond to an eigenvalue of norm less than 1. For each of these 7 eigenvectors, we
choose1 	 = 600 and the best 1 ≤ n ≤ 6 when applying Lemma 20 or Lemma 21.
The rest is done as described in the article. We obtain a set of 241544 templates.

6 Conclusion

We used an algorithm to show that the 2-binomial complexity of the Tribonacci
word is equal to its factorial complexity. It seems that our method can be turned
into an algorithm that can decide under some mild conditions whether the fac-
torial complexity of a given morphic word is equal to its k-binomial complexity.
In fact, by keeping track of the first letter of each word in templates, the “if” in
Proposition 17 can be replaced by an “if and only if” (some technicalities could
allow us to apply it even if the matrix is singular). Moreover, with arguments
similar to the ideas from [15], one could show that we also have bounds on the
eigenvectors that correspond to larger eigenvalues and that the number of tem-
plates that respect these bounds is always finite (one might need no eigenvalue
has norm 1).

Observe that the notion of template was first introduced in the context of
avoidability of abelian powers [8] and, as one could expect, it seems that our
technique also gives a decision algorithm for the avoidability of k-binomial powers
in morphic words (and even avoidability of patterns in the k-binomial sense).

References

1. Aberkane, A., Currie, J.: A cyclic binary morphism avoiding abelian fourth powers.
Theoret. Comput. Sci. 410, 44–52 (2009)

2. Aberkane, A., Currie, J., Rampersad, N.: The number of ternary words avoiding
abelian cubes grows exponentially. J. Integer Seq. 7 (2004). Article 04.2.7

3. Allouche, J.-P., Shallit, J.: Automatic Sequences. Theory, Applications, General-
izations. Cambridge University Press, Cambridge (2003)

4. Berthé, V., Rigo, M. (eds.): Combinatorics, Automata and Number Theory. Ency-
clopedia Mathematics Applications, vol. 135. Cambridge University Press, Cam-
bridge (2010)

5. Cassaigne, J., Currie, J., Schaeffer, L., Shallit, J.: Avoiding three consecutive blocks
of the same size and same sum. J. ACM 61(2) (2014). Art. 10

6. Cassaigne, J., Richomme, G., Saari, K., Zamboni, L.Q.: Avoiding Abelian powers
in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci. 22,
905–920 (2011)

7. Currie, J., Rampersad, N.: Recurrent words with constant Abelian complexity.
Adv. Appl. Math. 47, 116–124 (2011)

8. Currie, J., Rampersad, N.: Fixed points avoiding Abelian k-powers. J. Combin.
Theory Ser. A 119, 942–948 (2012)

1 Remember that we work on τn and that increasing n and � tend to give us better
bounds but increases the computation time.

250 M. Lejeune et al.

9. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiva-
lence and complexity of infinite words. J. Combin. Theory Ser. A 120, 2189–2206
(2013)

10. Karhumäki, J., Saarela, A., Zamboni, L.Q.: Variations of the Morse-Hedlund the-
orem for k -Abelian equivalence. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014.
LNCS, vol. 8633, pp. 203–214. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09698-8 18

11. Lejeune, M., Leroy, J., Rigo, M.: Computing the k-binomial complexity of the
Thue-Morse word, 34 p. arXiv:1812.07330

12. Lejeune, M., Rigo, M., Rosenfeld, M.: Templates for the k-binomial complexity of
the Tribonacci word (long version), 23 p. http://hdl.handle.net/2268/234215

13. Liétard, F.: Avoiding additive powers, talk at Mons TCS days, Bordeaux, 10–14
September 2018

14. Rao, M., Rigo, M., Salimov, P.: Avoiding 2-binomial squares and cubes. Theoret.
Comput. Sci. 572, 83–91 (2015)

15. Rao, M., Rosenfeld, M.: Avoiding two consecutive blocks of same size and same
sum over Z

2. SIAM J. Disc. Math. 32(4), 2381–2397 (2018)
16. Richomme, G., Saari, K., Zamboni, L.Q.: Balance and Abelian complexity of the

Tribonacci word. Adv. Appl. Math. 45, 212–231 (2010)
17. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial

complexity of infinite words. Theoret. Comput. Sci. 601, 47–57 (2015)
18. Rigo, M.: Invited talk. Streams II, Lorentz Center, Leiden, January 2014
19. Rigo, M.: Relations on words. Indag. Math. (N.S.) 28, 183–204 (2017)

https://doi.org/10.1007/978-3-319-09698-8_18
https://doi.org/10.1007/978-3-319-09698-8_18
http://arxiv.org/abs/1812.07330
http://hdl.handle.net/2268/234215

Derived Sequences of Arnoux–Rauzy
Sequences

Kateřina Medková(B)

Department of Mathematics, Faculty of Nuclear Science and Physical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

medkokat@fjfi.cvut.cz

Abstract. For an Arnoux–Rauzy sequence u we describe the set Der(u)
of derived sequences corresponding to all nonempty prefixes of u using
the normalized directive sequence of u. As a corollary, we show that all
derived sequences of u are also Arnoux–Rauzy sequences. Moreover, if
u is primitive substitutive, we precisely determine the cardinality of the
set Der(u).

Keywords: Arnoux–Rauzy sequence · Derived sequence · Return word

1 Introduction

Derived sequences were introduced by Durand [4] to characterize the primitive
substitutive sequences, i.e., the sequences which are morphic images of fixed
points of primitive morphisms.

Let u = u0u1u2 · · · be a recurrent sequence. An occurrence of the factor w in
u is the index i such that w is a prefix of the sequence uiui+1ui+2 · · · . Let i < j
be two consecutive occurrences of w in u. Then the word uiui+1 · · · uj−1 is a
return word to w in u. We take into consideration only the sequence u for which
each factor w has finitely many return words, and we denote these return words
by r0, r1, . . . , rk−1. Such a sequence is called uniformly recurrent. In addition, if
w is a prefix of u, then the sequence u can be written as the unique concatenation
of the return words to w: u = rd0rd1rd2 · · · with all di ∈ {0, 1, . . . , k − 1}. The
ordering of the return words in this concatenation is coded by the sequence
du(w) = d0d1d2 · · · which is called the derived sequence of u with respect to w.

Return words and derived sequences were especially studied in the case of
Sturmian sequences, which are the aperiodic binary sequences having the least
factor complexity possible. Every Sturmian sequence u has exactly one left and
one right special factor per length. The factor w is left (right, respectively) special
if the words aw, bw (wa,wb, respectively) are factors of u for two different letters

This work was supported by the project CZ.02.1.01/0.0/0.0/16 019/0000778 from
European Regional Development Fund and by the grant No. SGS17/193/OHK4/3T/14
from the Grant Agency of the CTU in Prague.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 251–263, 2019.
https://doi.org/10.1007/978-3-030-28796-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_20

252 K. Medková

a, b. Moreover, a Sturmian sequence is standard if all its prefixes are left special
factors.

Vuillon [14] showed that a binary sequence is Sturmian if and only if each
of its factors has exactly two return words. This property implies that the
derived sequence with respect to each prefix of a Sturmian sequence is Sturmian
as well. The derived sequences of standard Sturmian sequences were precisely
described in [1], where the one-to-one correspondence between standard Stur-
mian sequences and continued fractions of irrational numbers from the interval
(0, 1) is used. Clearly, this approach does not work in the non-standard case, but
using a special representation of Sturmian sequences by Sturmian morphisms,
we can deal with it, too. This technique is basically used in [12] to study the
derived sequences of fixed points of primitive Sturmian morphisms.

As is well known, Sturmian sequences have various generalizations for multi-
letter alphabets. The first one was introduced by Arnoux and Rauzy [2]: a uni-
formly recurrent sequence u over A is called Arnoux–Rauzy if it has exactly
one left and one right special factor per length and all left (right, respectively)
special factors appear in u immediately preceded (followed, respectively) by all
letters from A.

Many properties of the Arnoux–Rauzy sequences are known (see for example
the survey [8]). For our considerations the work [9] is especially important since
its authors showed that each factor of an Arnoux–Rauzy sequence over A has
exactly #A return words. It means that the derived sequences of Arnoux–Rauzy
sequences over A can be considered over the same alphabet A. Nevertheless,
such a property does not characterize Arnoux–Rauzy sequences if #A > 2. For
example, by [6] the sequences coding interval exchange transformations can have
this property, too. More generally, the sequences over A each of whose factors
has exactly #A return words were studied in [3].

The aim of this paper is to study the derived sequences of Arnoux–Rauzy
sequences. Let us emphasize that the description of derived sequences of stan-
dard Arnoux–Rauzy sequences can be easily deduced from the work of Justin and
Vuillon [9], while here we cover also the more complicated case of non-standard
Arnoux–Rauzy sequences. As in [12], our main tool is a special representation of
Arnoux–Rauzy sequences, namely the directive sequences containing pure epis-
turmian morphisms (see Sect. 2.3). Since these directive sequences need not be
unique, in [7] the authors introduce so-called normalized directive sequences and
show that these representations are unique. Moreover, they have also other use-
ful properties which allow us to use them for a construction of derived sequences
(see Sects. 2.3 and 3).

For every Arnoux–Rauzy sequence u we describe the set Der(u) of derived
sequences with respect to all nonempty prefixes of u (see Theorem 24). As a
corollary, we show that every derived sequence of an Arnoux–Rauzy sequence
is an Arnoux–Rauzy sequence as well. By Durand’s fundamental result [4] the
sequence u is primitive substitutive if and only if the set Der(u) is finite. Here
we precisely determine the cardinality of Der(u) for all primitive substitutive
Arnoux–Rauzy sequences (see Corollary 29). It generalizes the results from [12],
where the cardinality of Der(u) is bounded for the fixed points of primitive
Sturmian morphisms.

Derived Sequences of Arnoux–Rauzy Sequences 253

2 Preliminaries

2.1 Words, Sequences and Morphisms

An alphabet A is a finite set of symbols called letters. A word of length n over
A is a string u = u0u1 · · · un−1, where all ui ∈ A. The length of u is denoted by
|u| = n. The unique word ε of length 0 is called the empty word. The symbol
A∗ denotes the set of all finite words over A and A+ = A∗ \ {ε}. By |u|a we
denote the number of copies of the letter a used in u. The reversal of a word
u = u0u1 · · · un−1 is the word un−1 · · · u1u0.

A sequence over A is a right infinite string u = u0u1u2 · · · ∈ AN with letters
ui ∈ A for all i ∈ N = {0, 1, 2, . . .}. A sequence u is eventually periodic if
u = wvvv · · · = wvω for some v, w ∈ A∗; otherwise it is aperiodic.

A word w of length n is a factor of u = u0u1u2 · · · if there is an index i
such that w = uiui+1ui+2 · · · ui+n−1. The index i is called an occurrence of w
in u. Further, if i = 0, then w is a prefix of u. We will also use the abbreviated
notation uiui+1 · · · uj−1 = u[i,j) and uiui+1 · · · = u[i,∞) for all integers 0 ≤ i < j.

The language F(u) of a sequence u is the set of all its factors. A factor w of
u is right special (left special, resp.) if there exist at least two letters a, b ∈ A
such that wa,wb ∈ F(u) (aw, bw ∈ F(u), resp.).

If each factor w of u has infinitely many occurrences in u, the sequence u is
recurrent. Moreover, if the distances between two consecutive occurrences of w
are bounded, then u is uniformly recurrent.

A morphism over A∗ is a mapping ψ : A∗ �→ A∗ such that ψ(vw) = ψ(v)ψ(w)
for all v, w ∈ A∗. We consider only non-erasing morphisms for which ψ(a) �= ε
for every a ∈ A. Then the domain of the morphism ψ can be naturally extended
to AN by ψ(u0u1 · · ·) = ψ(u0)ψ(u1) · · · . A morphism ψ is primitive if there is
k ∈ N such that for every a, b ∈ A the letter a occurs in ψk(b).

A fixed point of a morphism ψ is a sequence u such that ψ(u) = u. A sequence
v is primitive substitutive if v = θ(u), where θ is a morphism and u is a fixed
point of a primitive morphism.

A permutation P on A is a morphism over A∗ such that {P (a) : a ∈ A} = A.
The order of the permutation P is the smallest integer n > 0 such that Pn = Id.

2.2 Return Words and Derived Sequences

Let i < j be two consecutive occurrences of a factor w in a recurrent sequence
u. Then the word u[i,j) is a return word to w in u. The set of all return words
to w in u is denoted Ru(w). If the sequence u is uniformly recurrent, then every
factor w of u has a finite number of return words, we denote them Ru(w) =
{r0, r1, . . . , rk−1}. In addition, if w is a prefix of u, the sequence u can be written
as the unique concatenation of these return words: u = rd0rd1rd2 · · · and the
derived sequence of u to the prefix w is the sequence du(w) = d0d1d2 · · · over the
alphabet of cardinality #Ru(w) = k. Originally, Durand [4] fixed this alphabet
to the set {0, 1, . . . , k − 1} and required that for i < j the first occurrence of ri

in u is less than the first occurrence of rj in u. In particular, this means that his

254 K. Medková

derived sequences always start with the letter 0. In this article, we do not need
to fix the alphabet of derived sequences: two derived sequences which differ only
by a permutation of letters are identified with one another.

We consider only aperiodic and uniformly recurrent sequences u. Our aim is
to describe the set

Der(u) = {du(w) : w is a nonempty prefix of u}.

Let us emphasize that we study only derived sequences with respect to nonempty
prefixes since the derived sequence with respect to the empty word is trivial.

Clearly, if a nonempty prefix w of u is not right special, then there exists a
unique letter a such that wa ∈ F(u). Thus the occurrences of w and wa coincide,
and so Ru(w) = Ru(wa) and du(w) = du(wa). Since u is aperiodic, w is a prefix
of some right special prefix of u. Therefore, it suffices to take into consideration
only right special prefixes of u, i.e.,

Der(u) = {du(w) : w is a nonempty right special prefix of u}.

2.3 Episturmian and Arnoux–Rauzy Sequences

Definition 1. A sequence u ∈ AN is episturmian if its language is closed under
reversal and u has at most one right special factor of each length.

An episturmian sequence u ∈ AN is an Arnoux–Rauzy sequence if u has
exactly one right special factor of each length and wa ∈ F(u) for every right
special factor w of u and every letter a ∈ A. An Arnoux–Rauzy sequence u is
standard if each of its prefixes is a left special factor of u.

The Arnoux–Rauzy sequences over A are sometimes called #A-strict epistur-
mian sequences, since there are also epistumian sequences which are not Arnoux–
Rauzy (e.g., see [8]). In the binary case, the set of all Arnoux–Rauzy sequences
coincides with the set of all Sturmian sequences. Clearly, all Arnoux–Rauzy
sequences are aperiodic and by [5] they are also uniformly recurrent.

Example 2. The Tribonacci sequence uτ = abacabaabacababacabaa · · · which is
the fixed point of the morphism τ : a → ab, b → ac, c → a is a standard
Arnoux–Rauzy sequence over {a, b, c}.

In the sequel, we will use the description of episturmian sequences in terms
of sequences of pure episturmian morphisms. We follow the notation from [7].

Definition 3. For every a ∈ A we define elementary episturmian morphisms:

La :

{
a → a

b → ab for all b �= a
and Ra :

{
a → a

b → ba for all b �= a.

These 2#A morphisms generate the monoid MA = 〈La, Ra : a ∈ A〉 of pure
episturmian morphisms.

Derived Sequences of Arnoux–Rauzy Sequences 255

Let us remark that episturmian morphisms are the morphisms obtained by
composition of pure episturmian morphisms and permutations (e.g., see [8,10]).
All episturmian morphisms are injective.

Definition 4. For a given alphabet A we define a new alphabet Ā = {ā : a ∈ A}
and we consider words and sequences over the alphabet A ∪ Ā called spinned.
We put ϕa = La and ϕā = Ra for every letter a ∈ A. Then for every spinned
word z = z0z1 · · · zn−1 ∈ (A ∪ Ā)∗ we write

ϕz = ϕz0ϕz1 · · · ϕzn−1 ∈ MA

and we say that z is a directive word of the morphism ϕz. A spinned word is
L-spinned (R-spinned, respectively) if all its letters are from A (Ā, respectively).
The opposite word z̄ of a spinned word z is obtained from z by switching spins
of all its letters.

Example 5. The words āab̄c̄a, abc, b̄b̄ are spinned words over {a, b, c, ā, b̄, c̄}. The
word z = āab̄c̄a directs the morphism ψ = ϕz = ϕāab̄c̄a = RaLaRbRcLa. The
word abc is L-spinned, while b̄b̄ is R-spinned. The opposite word of z is aābcā.

Pure episturmian morphisms can have more than one directive word, i.e.,
the monoid MA is not free. Nevertheless, the presentation of the monoid MA is
known. Here we state it in the notion of directive words using the so-called block-
transformation from [11], but it also follows from more general presentation of
the whole episturmian monoid as stated in [13].

Definition 6. A block-transformation in the word z is the replacement of the
factor avā of z, where a ∈ A and v ∈ (A \ {a})∗, by the opposite word āv̄a or
vice-versa.

Proposition 7 ([11]). Let z, z′ be two spinned words over A∪Ā. Then ϕz = ϕz′

if and only if we can pass from z to z′ by a chain of block-transformations.

Example 8. Using the block-transformations from Definition 6 we may rewrite
āab̄c̄a ←→ aāb̄c̄a ←→ aabcā, and so by Proposition 7 all these words direct the
same morphism, i.e., ϕāab̄c̄a = ϕaāb̄c̄a = ϕaabcā.

The following theorem extends the notion of directive words to infinite epis-
turmian sequences.

Theorem 9 ([10]). A sequence u is episturmian if and only if there exists a
spinned sequence z = z0z1z2 · · · ∈ (A ∪ Ā)N and an infinite sequence (u(i))i≥0 of
recurrent sequences such that u(0) = u and

u(i) = ϕzi
(u(i+1)).

This sequence z is called a directive sequence of u.

Let us notice that the directive sequence from Theorem 9 is the same object
as the directive sequence from the construction of episturmian sequences using
palindromic closures (e.g., see Sect. 3 in [8]).

256 K. Medková

Proposition 10 ([10]).

(i) A spinned sequence z ∈ (A∪Ā)N which has infinitely many L-spinned letters
directs the unique episturmian sequence u. Moreover, the sequence u starts
with the left-most L-spinned letter in z.

(ii) A spinned sequence z ∈ (A ∪ Ā)N which contains finitely many L-spinned
letters directs one episturmian sequence for each ā ∈ Ā which occurs in z
infinitely many times.

Proposition 10 implies that some directive sequences direct more than one
episturmian sequence. In addition, an episturmian sequence can have more
than one directive sequence. However, in [7] the authors describe all directive
sequences which direct the same episturmian sequence. Here we state this result
only for the case of aperiodic episturmian sequences.

Theorem 11 (Theorem 4.1 in [7]). Two spinned sequences z(1) and z(2) direct
the same aperiodic episturmian sequence if and only if one of the following cases
holds for some i, j such that {i, j} = {1, 2}:
(i) z(i) =

∏
n≥1 u(n), z(j) =

∏
n≥1 v(n), where u(n), v(n) are spinned words such

that ϕu(n) = ϕv(n) for all n ≥ 1;
(ii) z(i) = wa

∏
n≥1 u(n)x(n), z(j) = w′ā

∏
n≥1 ū(n)y(n), where w,w′ are spinned

words such that ϕw = ϕw′ , a is an L-spinned letter and for all n ≥ 1, u(n)

is a nonempty a-free L-spinned word, ū(n) is the opposite word of u(n) and
x(n), y(n) are nonempty spinned words over {a, ā} such that |x(n)| = |y(n)|
and |x(n)|a = |y(n)|a.

Item (i) is based on block-transformations of the directive words of epis-
turmian morphisms, while Item (ii) brings new relations. Now we define the
normalized directive sequences which are unique for all aperiodic episturmian
sequences.

Definition 12. A spinned sequence z ∈ (A ∪ Ā)N is normalized if it contains
infinitely many L-spinned letters, but no factor from the set {āĀ∗a : a ∈ A}.
Theorem 13 (Theorem 5.2 in [7]). Any aperiodic episturmian sequence u has
a unique normalized directive sequence.

Every normalized spinned sequence directs exactly one episturmian sequence,
see Proposition 10. Moreover, the normalized directive sequences can be con-
structed using Theorem 13. If a directive sequence does not contain infinitely
many L-spinned letters, then we use Item (ii) to find another one with infinitely
many L-spinned letters. If a directive sequence contains infinitely many L-
spinned letters, then it can be normalized from left to right by repeated appli-
cations of Item (i) (see [7] for more details).

The Arnoux–Rauzy sequences can be easily recognised by their directive
sequences (e.g., see Sect. 2.3 in [8]).

Derived Sequences of Arnoux–Rauzy Sequences 257

Proposition 14. An episturmian sequence u ∈ AN with the directive sequence
z is an Arnoux–Rauzy sequence over A if and only if for every a ∈ A the letter
a or ā occurs infinitely many times in z.

Remark 15. Theorem 9 and Proposition 14 immediately imply that for an
Arnoux–Rauzy sequence u each sequence u(i) from Theorem 9 is an Arnoux–
Rauzy sequence with a directive sequence z[i,∞) = zizi+1 · · · .
Example 16. By Propositions 10 and 14, the spinned sequence y = a(ab̄c̄ā)ω

directs the unique Arnoux–Rauzy sequence u over {a, b, c}. Obviously, y is not
normalized. We can normalize it using Item (i) of Theorem 11. First we set
u(1) = aab̄c̄, u(2k) = āa and u(2k+1) = b̄c̄ for all k > 0 and make the block-
transformations in all even blocks. We get y′ = aab̄c̄(aāb̄c̄)ω. Then we set u(1) =
aab̄c̄a and u(k) = āb̄c̄a for all k > 1. After the relevant block-transformations we
get y′′ = aab̄c̄a(abcā)ω. Finally we set u(1) = aab̄c̄aa, u(2k) = bc and u(2k+1) = āa
for all k > 0, which leads us to the normalized sequence y′′′ = aab̄c̄aa(bcaā)ω.

By Proposition 10, the spinned sequence z = (āb̄c̄)ω directs three Arnoux–
Rauzy sequences u(a), u(b), u(c) starting with the letters a, b, c, respectively.
Using Item (ii) of Theorem 11 we find their normalized directive sequences
z(a) = a(bcā)ω, z(b) = āb(cab̄)ω and z(c) = āb̄c(abc̄)ω, respectively.

Justin and Vuillon [9] completely describe the return words to any factor
of an episturmian sequence. In particular, an Arnoux–Rauzy sequence has the
same number of return words to each of its factors.

Proposition 17 ([9]). Let u be an Arnoux–Rauzy sequence over A. Then every
factor w of u has exactly #A different return words.

3 Derived Sequences of Episturmian Preimages

In this section we study the relations between the derived sequences of a given
Arnoux–Rauzy sequence and the derived sequences of its preimage under the
morphisms La or Ra. In the binary case, these relations are completely analogous
to those described in Section 3 of [12]. Proposition 19 can be also deduced from
the results in [9].

For simplicity, we now define the return words and the derived sequence
with respect to the empty prefix ε of a sequence u over A as Ru(ε) = A and
du(ε) = u. We start with an auxiliary lemma which follows directly from the
form of the morphism La.

Lemma 18. Let u, u′ be Arnoux–Rauzy sequences over A such that u = La(u′)
for some a ∈ A. For each factor pa ∈ F(u) with the prefix a there is exactly one
word p′ ∈ F(u′) such that pa = La(p′)a.

Proposition 19. Let u and u′ be Arnoux–Rauzy sequences over A such that
u = La(u′) for some a ∈ A.

258 K. Medková

(i) If w is a nonempty right special prefix of u, then there exists a right special
prefix w′ of u′ such that w = La(w′)a and du(w) = du′(w′).

(ii) If w′ is a right special prefix of u′, then w = La(w′)a is a right special prefix
of u and du′(w′) = du(w).

Proof. We start with Item (i). For a nonempty right special prefix w of u we
denote its return words Ru(w) = {rc : c ∈ A} and its derived sequence du(w) =
d0d1 · · · . Thus u = rd0rd1 · · · . By the form of the morphism La, the sequence u
starts with the letter a and a is also separating in u, i.e., every factor of u of
length two contains the letter a. Since w is nonempty right special prefix, it both
starts and ends with the letter a and by Lemma 18 there is a unique prefix w′ of
u′ such that w = La(w′)a. Since w is a right special factor of the Arnoux–Rauzy
sequence u, the word wc = La(w′)ac ∈ F(u) for every c ∈ A. Thus w′c ∈ F(u′)
for every c ∈ A and so w′ is a right special factor of u′. In addition, all return
words rc start with the letter a and so by Lemma 18 there are uniquely given
words r′

c such that rc = La(r′
c) for all c ∈ A. Since La is injective, we have

u′ = r′
d0

r′
d1

· · · .
Now it suffices to prove that the set {|r′

d0
· · · r′

dj
| : j ∈ N} ∪ {0} is the set of

all occurrences of w′ in u′. Then the words r′
c, c ∈ A, are return words to w′ in

u′ and du(w) = du′(w′). Let i > 0 be an occurrence of w′ in u′. It means that
u′
[0,i)w

′c is a prefix of u′ for some c ∈ A. Then La(u′
[0,i)w

′c) is a prefix of u, the
word La(w′c) has a prefix La(w′)a = w and |La(u′

[0,i))| is an occurrence of w in
u. Thus La(u′

[0,i)) = rd0 · · · rdj
for some j ∈ N and by injectivity of La, it follows

that u′
[0,i) = r′

d0
· · · r′

dj
and so i = |r′

d0
· · · r′

dj
| for some j ∈ N.

Conversely, we suppose that i = |r′
d0

· · · r′
dj

| for some j ∈ N. If we denote
p = rd0 · · · rdj

, then pw is a prefix of u and by Lemma 18 there is a unique prefix
p′ of u′ such that p = La(p′). Clearly, p′w′ is also a prefix of u′ and by injectivity
of La we can conclude that p′ = r′

d0
· · · r′

dj
. Thus i is an occurrence of w′ in u′.

To prove Item (ii) we suppose that w′ is a right special prefix of u′. We denote
its return words Ru′(w′) = {r′

c : c ∈ A} and its derived sequence du′(w′) =
d0d1 · · · . Thus u′ = r′

d0
r′
d1

· · · . If we set w = La(w′)a and rc = La(r′
c) for all

c ∈ A, we get u = rd0rd1 · · · . Now it remains to prove that w is a right special
prefix of u and the set {|rd0 · · · rdj

| : j ∈ N} ∪ {0} is the set of all occurrences of
w in u. We skip these proofs since the arguments are completely analogous to
those used in the proof of Item (i).

Proposition 20. Let u and u′ be Arnoux–Rauzy sequences over A such that
u = Ra(u′) for some a ∈ A and let u start with the letter b ∈ A, b �= a.

(i) If w is a nonempty right special prefix of u, then there exists a nonempty
right special prefix w′ of u′ such that w = Ra(w′) and du(w) = du′(w′).

(ii) If w′ is a nonempty right special prefix of u′, then w = Ra(w′) is a nonempty
right special prefix of u and du′(w′) = du(w).

Proof. The morphisms La and Ra are conjugate, i.e., aRa(x) = La(x)a for
every word x ∈ A∗. Thus for the Arnoux–Rauzy sequence v = au we get v =
aRa(u′) = La(u′) , since the conjugacy holds for every prefix of u′.

Derived Sequences of Arnoux–Rauzy Sequences 259

Let w be a nonempty right special prefix of u and let (in) be the increasing
sequence of the occurrences of w in u. By the form of the morphism Ra, each
letter b �= a (excluding the first letter of u) is preceded by the letter a. Thus
the sequence (in) is also the sequence of the occurrences of the word aw in v
and du(w) = dv(aw). Moreover, aw is a right special prefix of v and so we
can apply Proposition 19 and find the right special prefix w′ of u′ such that
aw = La(w′)a = aRa(w′) and du(w) = dv(aw) = du′(w′). The proof of Item
(ii) is similar and so we skip it.

Propositions 19 and 20 can be also restated as follows.

Corollary 21. Let u,u′ be Arnoux–Rauzy sequences over A and a ∈ A.

(i) If u = La(u′), then Der(u) = Der(u′) ∪ {u′}.
(ii) If u = Ra(u′) and u starts with a letter b ∈ A, b �= a, then Der(u) =

Der(u′).

4 Derived Sequences of Arnoux–Rauzy Sequences

First, we introduce a transformation Δ on the set of normalized directive
sequences. Subsequently, we use this transformation to describe the set Der(u)
of derived sequences of an Arnoux–Rauzy sequence u.

Definition 22. Let z = z0z1z2 · · · be a normalized spinned sequence and let k
be the unique index such that zk is an L-spinned letter and z0z1 · · · zk−1 is an
R-spinned word (or is empty). Then Δ(z) = z[k+1,∞) = zk+1zk+2zk+3 · · · .

Clearly, if z is the normalized directive sequence of an Arnoux–Rauzy
sequence u, then Δ(z) is the normalized directive sequence of an Arnoux–Rauzy
sequence as well. For every integer m ≥ 1 we let dm denote the Arnoux–Rauzy
sequence directed by Δm(z) and we also set d0 = u.

Example 23. For the normalized spinned sequence z = c̄ba(c̄bāb)ω we get Δ(z) =
a(c̄bāb)ω, Δ2(z) = (c̄bāb)ω, Δ3(z) = (ābc̄b)ω and Δ4(z) = (c̄bāb)ω = Δ2(z).

Theorem 24. Let u be an Arnoux–Rauzy sequence over A with the normalized
directive sequence z. Then d is the derived sequence with respect to a nonempty
prefix of u if and only if d = dm for some m ≥ 1, i.e., d is an Arnoux–Rauzy
sequence directed by Δm(z) for some m ≥ 1.

Proof. (⇒) We consider a nonempty right special prefix w of u and prove that
du(w) = dm for some m ≥ 1. In fact, we prove that for every i ∈ N and a right
special prefix v of di there is a right special prefix v′ of di+1 such that |v′| < |v|
and ddi

(v) = ddi+1(v
′). Then starting with a nonempty right special prefix w of

u we eventually find the index m ≥ 1 and the prefix w′′ of dm such that w′′ = ε
and so du(w) = ddm

(ε) = dm.
Since z is normalized, Δi(z) = y is also normalized and so it has a prefix

x̄a for some a ∈ A and x̄ ∈ (Ā \ {ā})∗. If x̄ = ε, then Δi+1(z) = y[1,∞) and so

260 K. Medková

di = La(di+1). By Proposition 19 there is a right special prefix v′ of di+1 such
that v = La(v′)a and ddi

(v) = ddi+1(v
′). If x̄ is nonempty, we denote |x̄| = n.

Then Δi+1(z) = y[n+1,∞). Let us denote u(�) the sequence directed by y[�,∞) for
all � ∈ N. In particular, u(0) = di, u(n+1) = di+1 and u(�) = ϕy�

(u(�+1)) for all
� ∈ N. By Proposition 10 all sequences u(0), . . . ,u(n) starts with the letter a and
so by Proposition 20 there are nonempty right special prefixes v(�) of u(�) for all
� = 0, . . . , n such that v(0) = v, v(�) = ϕy�

(v(�+1)) for all � = 0, . . . , n − 1 and

ddi
(v) = du(1)(v(1)) = · · · = du(n)(v(n)).

By Proposition 19 there is a right special prefix v′ of u(n+1) = di+1 such that
v(n) = La(v′)a and du(n)(v(n)) = ddi+1(v

′). Since we also have

|v| > |v(1)| > |v(2)| > · · · > |v(n)| > |v′|,

v′ is the desired right special prefix of di+1.
(⇐) For arbitrary m ≥ 1 we find a nonempty right special prefix w of u such

that du(w) = dm. We set z = z0z1 · · · ziΔ
m(z) for some i ∈ N and we let u(�)

denote the sequence directed by z[�,∞) for all � ∈ N. In particular, u(0) = u and
u(i+1) = dm. Now we take the right special prefix ε of dm and using Propositions
19 and 20 we successively find right special prefixes w(�) of u(�) for all � = i, . . . , 0.
Since zi is L-spinned, the inequalities 0 < |w(i)| < |w(i−1)| < · · · < |w(0)| hold
and

dm = ddm
(ε) = du(i)(w(i)) = · · · = du(1)(w(1)) = du(w(0)).

Then w(0) is the desired prefix w of u.

Corollary 25. All derived sequences with respect to nonempty prefixes of a
given Arnoux–Rauzy sequence over A are Arnoux–Rauzy sequences over A as
well.

Proof. This follows directly from Theorems 24 and 9.

By Durand’s result [4] the set Der(u) is finite if and only if u is a primitive
substitutive sequence. An Arnoux–Rauzy sequence is primitive substitutive if
and only if its normalized directive sequence is eventually periodic. Indeed, a
pure episturmian morphism is primitive if and only if its directive word contains
at least one letter a or ā for every a ∈ A and the normalization of an eventually
periodic directive sequence always produces an eventually periodic normalized
directive sequence (see [7] for more details).

Now we specify the cardinality of Der(u) according to the normalized direc-
tive sequence of an Arnoux–Rauzy sequence u. Let us recall that two derived
sequences d(1),d(2) such that d(1) = P (d(2)) for some permutation P are con-
sidered as equal since their structure is the same. Let us emphasize that a per-
mutation P on A can be naturally extended to the alphabet A∪Ā: P acts on the
letters from A without any changes and for every letter ā ∈ Ā we put P (ā) = b̄
if P (a) = b.

Derived Sequences of Arnoux–Rauzy Sequences 261

Observation 26. Let u(1), u(2) be Arnoux–Rauzy sequences with the normalized
directive sequences z(1), z(2), respectively, and let P be a permutation. Then
u(1) = P (u(2)) if and only if z(1) = P (z(2)).

Lemma 27. Let z be the normalized directive sequence and let k < � be the
minimal indices such that there is a permutation P satisfying z[�,∞) = P (z[k,∞)).
We denote x = z[0,k), y = z[k,�) and n the order of the permutation P . Then z is
eventually periodic: z = x

(
yP (y) · · · Pn−1(y)

)ω. Moreover, every sequence z[i,∞)

with i ≥ � is equal (up to permutation of letters) to the sequence z[j,∞) for some
j ∈ {k, . . . , �−1} and if z[i,∞) = Q(z[j,∞)) for some j < i and a permutation Q,
then i ≥ �.

Proof. In the notation from the statement we can write

z = xyz[�,∞) = xyP (z[k,∞)) = xyP (yz[�,∞)) = xyP (y)P 2(z[k,∞)) = · · ·
= xyP (y) · · · Pn−1(y)Pn(y)Pn+1(y) · · · = x

(
yP (y) · · · Pn−1(y)

)ω
.

Moreover, for every i ≥ l we can write z[i,∞) = P (z[i−�+k,∞)). Thus eventually
we get z[i,∞) = Pm(z[i′,∞)) for some positive integer m and an index i′ such
that k ≤ i′ < �. The last part of the statement clearly holds since otherwise it
leads us to the contrary with the minimality of the indices k, �.

Corollary 28. Let u be an Arnoux–Rauzy sequence over A with the aperiodic
normalized directive sequence and let v, w be two distinct nonempty right special
prefixes of u. Then the derived sequences with respect to v and w are distinct,
i.e., du(v) �= P (du(w)) for any permutation P .

Proof. We argue by contradiction. By Theorem 24 all derived sequences with
respect to nonempty prefixes of u are the elements of the sequence (dm)m≥1.
Thus we can suppose that dm = P (d�) for some positive integers m, � and a
permutation P . Since v, w are distinct right special prefixes, we get m �= �. By
Observation 26, it means that Δm(z) = P (Δ�(z)) and so by Lemma 27 z is
eventually periodic, which is the contradiction.

Corollary 29. Let u be an Arnoux–Rauzy sequence over A with the eventually
periodic normalized directive sequence z = x

(
yP (y) · · · Pn−1(y)

)ω
, where the

words x ∈ (A∪Ā)∗, y ∈ (A∪Ā)+ are the shortest possible and P is a permutation
with the order n. We denote |x|L, |xy|L the numbers of L-spinned letters in the
words x, xy, respectively.

(i) If the last letters of both x, y are L-spinned, then #Der(u) = |xy|L − 1.
More precisely, there are |x|L − 1 derived sequences belonging to exactly one
nonempty right special prefix of u and |y|L derived sequences belonging to
infinitely many right special prefixes of u.

(ii) If the last letter of x or y is R-spinned or x = ε, then #Der(u) = |xy|L.
More precisely, there are |x|L derived sequences belonging to exactly one
nonempty right special prefix of u and |y|L derived sequences belonging to
infinitely many right special prefixes of u.

262 K. Medková

Proof. By Theorem 24 all elements of Der(u) are the elements of the sequence
(dm)m≥1. To prove Item (i), we have to show that the sequence (dm)m≥1 has
pre-period |x|L − 1 and period |y|L (up to permutation of letters). However, the
sequence (Δm(z))m≥1 has the same pre-period and period, see Observation 26.
Now it suffices to apply Lemma 27 with k = |x| and � = |xy|. Since both x and
y end with L-spinned letters, the sequences that occur once in (Δm(z))m≥1 are
exactly the elements of the set {z[i,∞) : 0 < i < |x|} for which zi−1 is L-spinned.
Thus they are the sequences Δ(z), . . . , Δ|x|L−1(z). Similarly, the sequences that
occur (up to permutation of letters) infinitely many times in (Δm(z))m≥1 are
exactly the elements of the set {z[i,∞) : |x| ≤ i < |xy|} for which zi−1 is L-
spinned, so they are the sequences Δ|x|L(z), . . . , Δ|xy|L−1(z).

We prove Item (ii) analogously. It suffices to realize that if x or y ends with an
R-spinned letter or x is the empty word, then the periodic part of (Δm(z))m≥1

starts with the element Δ|x|L+1(z). Thus the sequence (Δm(z))m≥1 has pre-
period |x|L and period |y|L (up to permutation of letters).

Example 30. The Arnoux–Rauzy sequence u is directed by the normalized direc-
tive sequence z = c̄ba(c̄bāb)ω = c̄ba(c̄bP (c̄b))ω for the permutation P : a →
c, b → b, c → a with the order 2. By Item (i) of Corollary 29, the sequence u
has two derived sequences: d1 directed by Δ(z) = a(c̄bāb)ω belonging to the
shortest nonempty right special prefix of u and d2 directed by Δ2(z) = (c̄bāb)ω

belonging to all the others right special prefixes of u.
The Tribonacci sequence uτ from Example 2 is directed by the normalized

directive sequence z = (abc)ω = (aP (a)P 2(a))ω for the permutation P : a →
b, b → c, c → a with the order 3. Then by Item (ii) of Corollary 29, uτ has one
derived sequence d directed by (abc)ω. In other words, the derived sequence with
respect to any prefix of uτ is the sequence uτ itself.

The Arnoux–Rauzy sequence u(a) directed by the normalized directive
sequence z(a) = a(bcā)ω (see Example 16) has by Item (ii) of Corollary 29 three
derived sequences d1,d2,d3 directed by Δ(z(a)) = (bcā)ω, Δ2(z(a)) = (cāb)ω,
Δ3(z(a)) = (ābc)ω, respectively. The sequence d1 is the derived sequence with
respect to the shortest nonempty right special prefix of u(a), while both d2,d3

belong to infinitely many right special prefixes of u(a).

References

1. Araújo, I.M., Bruyère, V.: Words derivated from Sturmian words. Theoret. Com-
put. Sci. 340, 204–219 (2005)

2. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1.
Bull. de la Société Mathématique de France 119, 199–215 (1991)

3. Balková, L., Pelantová, E., Steiner, W.: Sequences with constant number of return
words. Monatsh. Math. 155, 251–263 (2008)

4. Durand, F.: A characterization of substitutive sequences using return words. Dis-
crete Math. 179, 89–101 (1998)

5. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of
de Luca and Rauzy. Theoret. Comput. Sci. 225(1–2), 539–553 (2001)

Derived Sequences of Arnoux–Rauzy Sequences 263

6. Ferenczi, S., Holton, C., Zamboni, L.Q.: Structure of three interval exchange trans-
formations I. An arithmetic study. Ann. Inst. Fourier (Grenobles) 51, 861–901
(2001)

7. Glen, A., Levé, F., Richomme, G.: Directive words of episturmian words: equiva-
lences and normalization. RAIRO-Theoret. Inf. Appl. 43, 299–319 (2009)

8. Glen, A., Justin, J.: Episturmian words: a survey. RAIRO-Theoret. Inf. Appl. 43,
403–442 (2009)

9. Justin, J., Vuillon, L.: Return words in Sturmian and episturmian words. RAIRO-
Theoret. Inf. Appl. 34, 343–356 (2000)

10. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoret.
Comput. Sci. 276(1–2), 281–313 (2002)

11. Justin, J., Pirillo, G.: Episturmian words: shifts, morphisms and numeration sys-
tems. Int. J. Found. Comput. Sci. 15(2), 329–348 (2004)

12. Klouda, K., Medková, K., Pelantová, E., Starosta, Š.: Fixed points of Sturmian
morphisms and their derivated words. Theoret. Comput. Sci. 743, 23–37 (2018)

13. Richomme, G.: Lyndon morphisms. Bull. Belg. Math. Soc. Simon Stevin 10, 761–
785 (2003)

14. Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Combin.
22, 263–275 (2001)

New Results on Pseudosquare Avoidance

Tim Ng1, Pascal Ochem2, Narad Rampersad3, and Jeffrey Shallit1(B)

1 School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada
{tim.ng,shallit}@uwaterloo.ca

2 LIRMM, CNRS, Université de Montpellier, Montpellier, France
ochem@lirmm.fr

3 Department of Mathematics/Statistics, University of Winnipeg,
515 Portage Ave., Winnipeg, MB R3B 2E9, Canada

narad.rampersad@gmail.com

Abstract. We start by considering binary words containing the mini-
mum possible numbers of squares and antisquares (where an antisquare
is a word of the form xx), and we completely classify which possibili-
ties can occur. We consider avoiding xp(x), where p is any permutation
of the underlying alphabet, and xt(x), where t is any transformation of
the underlying alphabet. Finally, we prove the existence of an infinite
binary word simultaneously avoiding all occurrences of xh(x) for every
nonerasing morphism h and all sufficiently large words x.

1 Introduction

Let x, v be words. We say that v is a factor of x if there exist words u,w such
that x = uvw. For example, or is a factor of word.

By a square we mean a nonempty word of the form xx, like the French word
couscous. The order of a square xx is |x|, the length of x. It is easy to see
that every binary word of length at least 4 contains a square factor. However,
in a classic paper from combinatorics on words, Entringer, Jackson, and Schatz
[7] constructed an infinite binary word containing, as factors, only 5 distinct
squares: 02, 12, (01)2, (10)2, and (11)2. This bound of 5 squares was improved
to 3 by Fraenkel and Simpson [9]; it is optimal. For some other constructions
also achieving the bound 3, see [2,10,14,15].

Instead of considering squares, one could consider antisquares: these are
binary words of the form xx, where x is a coding that maps 0 → 1 and 1 → 0.
For example, 01101001 is an antisquare. (They should not be confused with
the different notion of antipower recently introduced by Fici, Restivo, Silva,
and Zamboni [8].) Clearly it is possible to construct an infinite binary word
that avoids all antisquares, but only in a trivial way: the only such words are
0ω = 000 · · · and 1ω = 111 · · · . Similarly, the only infinite binary words with
exactly one antisquare are 01ω and 10ω. However, it is easy to see that every
word in {1000, 10000}ω has exactly two antisquares—namely 01 and 10—and
hence there are infinitely many such words that are aperiodic.
c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 264–274, 2019.
https://doi.org/10.1007/978-3-030-28796-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_21&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_21

New Results on Pseudosquare Avoidance 265

Several writers have considered variations on these results. For example,
Blanchet-Sadri, Choi, and Mercaş [3] considered avoiding large squares in par-
tial words. Chiniforooshan, Kari, and Zhu [4] studied avoiding words of the form
xθ(x), where θ is an antimorphic involution. Their results implicitly suggest the
general problem of simultaneously avoiding what we might call pseudosquares:
patterns of the form xx′, where x′ belongs to some (possibly infinite) class of
modifications of x.

This paper has two goals. First, for all integers a, b ≥ 0 we determine whether
there is an infinite binary word having at most a squares and b antisquares. If
this is not possible, we determine the length of the longest finite binary word
with this property.

Second, we apply our results to discuss the simultaneous avoidance of xx′,
where x′ belongs to some class of modifications of x. We consider three cases:

(a) where x′ = p(x) for a permutation p of the underlying alphabet;
(b) where x′ = t(x) for a transformation t of the underlying alphabet; and
(c) where x′ = h(x) for an arbitrary nonerasing morphism.

In particular, we prove the existence of an infinite binary word that avoids xh(x)
simultaneously for all nonerasing morphisms h and all sufficiently long words x.

2 Simultaneous Avoidance of Squares and Antisquares

We are interested in binary words where the number of distinct factors that are
squares and antisquares is bounded. More specifically, we completely solve this
problem determining in every case the length of the longest word having at most
a distinct squares and at most b distinct antisquares. Our results are summarized
in the following table. If (one-sided) infinite words are possible, this is denoted
by writing ∞ for the length.

The results in the first two columns and first three rows (that is, for a ≤ 2
and b ≤ 1) are very easy. We first explain the first two columns:

Proposition 1.

(a) For a ≥ 0, the longest binary word with a squares and 0 antisquares has
length 2a + 1.

(b) For a ≥ 0, the longest binary word with a squares and 1 antisquare has
length 2a + 2.

Proof.

(a) If a binary word has no antisquares, then in particular it has no occurrences
of either 01 or 10. Thus it must contain only one type of letter. If it has
length 2a + 2, then it has a + 1 squares, of order 1, 2, . . . , a + 1. If it has
length 2a + 1, it has a squares. So 2a + 1 is optimal.

(b) If a length-n binary word w has only one antisquare, this antisquare must be
either 01 or 10; without loss of generality, assume it is 01. Then w is either
of the form 0n−11 or 01n−1. Such a word clearly has �(n − 1)/2� squares.

266 T. Ng et al.

a
b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 · · ·
1 3 4 7 7 7 7 7 7 7 7 7 7 7 7 · · ·
2 5 6 11 11 11 11 12 12 12 13 15 18 18 18 · · ·
3 7 8 15 15 15 20 20 20 24 29 34 53 98 ∞ · · ·
4 9 10 19 19 27 31 45 56 233 ∞ ∞ ∞ ∞ · · ·
5 11 12 27 27 40 ∞ ∞ ∞ ∞ · · ·
6 13 14 35 38 313 ∞ · · ·
7 15 16 45 ∞ ∞ · · ·
8 17 18 147 ∞ · · ·
9 19 20 ∞ · · ·
10 21 22 ∞ · · ·
...

Fig. 1. Length of longest binary word having at most a squares and b antisquares

We next explain the first three rows: if a binary word has no squares, its
length is clearly bounded by 3, as we remarked earlier. If it has one square, a
simple argument shows it has length at most 7. Finally, if it has two squares,
already Entringer, Jackson, and Schatz [7, Thm. 2] observed that it has length
at most 18.

For all the remaining finite entries, we obtained the result through the usual
backtrack search method, and we omit the details.

In what follows, we provide the lexicographically least binary words achieving
the “important” bounds in Fig. 1.

(3, 12) : 0010001100101110001011001110001100101110001011000
1110010111000101100111000110010111000101100111011

(4, 8) : 00001000001100001011000001100010110000010111000101100001011
10000010110000011000101100000101110001011000001100010110000
10111000001011000001100010110000010111000101100001011100000
10110000011000101100001011100010110000011000101100001000

(5, 4) : 0001000001010000000101010000001010000100

(6, 4) : 000010000001010000000110100000010100001101000000010100000011010

000010100001101000000010100000110100000010100001101000000010100

000011010000010100001101000000101000001101000000010100000011010

000010100001101000000010100000110100000010100001101000000010100

0000110100000101000011010000000101000001101000000011010111010

(7, 2) : 000001000000010100000010000101000000010000101

New Results on Pseudosquare Avoidance 267

(8, 2) : 0010000101000100010001010000010001000100000101000
1000100010100000100010000010100010001010000010001
0001000001010001000100010100000100010001000001010

It now remains to prove the results labeled ∞. First, we introduce some
morphisms. Let the morphisms h3,13, h4,9, h5,5, h7,3, h9,2 be defined as follows:

(a) h3,13 : 0 → 0010110011100011
1 → 001011000111
2 → 00101110

(b) h4,9 : 0 → 0000101110000011000010110000011000101100001011100010110
1 → 0000101110000011000010110000011000101100000101110001011
2 → 0000101110000011000010110000010111000101100000110001011

This is a 55-uniform morphism.

(c) h5,5 : 0 → 101000001011000010100001101011000001
1 → 101000001011000001101011000010100001
2 → 101000001010000110000010100000110000

This is a 36-uniform morphism.

(d) h7,3 : 0 → 0100100100001010000
1 → 01001001000001
2 → 0100100101000

(e) h9,2 : 0 → 0001000100000001000101
1 → 0000010001000100000101
2 → 0000001000100000010100

This is a 22-uniform morphism.

Theorem 1. Let w be an infinite squarefree sequence over the alphabet {0, 1, 2}.
Then ha,b(w) contains exactly a squares and b antisquares. More precisely

(a) h3,13(w) contains the squares 02, 12, and (01)2 and the antisquares 01, 10,
0011, 0110, 1001, 1100, 000111, 001110, 011100, 100011, 110001, 111000,
and 10010110.

(b) h4,9(w) contains the squares 02, 12, (00)2, and (01)2 and the antisquares
01, 10, 0011, 0110, 1100, 011100, 110001, 111000, and 1110000011.

(c) h5,5(w) contains the squares 02, 12, (00)2, (01)2, and (10)2 and the anti-
squares 01, 10, 0011, 0110, and 1100.

(d) h7,3(w) contains the squares 02, (00)2, (01)2, (10)2, (001)2, (010)2, and
(100)2 and the antisquares 01, 10, and 1001.

(e) h9,2(w) contains the squares 02, (00)2, (01)2, (10)2, (000)2, (0001)2,
(0010)2, (0100)2, and (1000)2 and the antisquares 01 and 10.

268 T. Ng et al.

Proof. Let h be any of the morphisms above. We first show that large squares
are avoided. The h-images of the letters have been ordered such that |h(0)| ≥
|h(1)| ≥ |h(2)|. A computer check shows that for every letter i and every ternary
word w, the factor h(i) appears in h(w) only as the h-image of i. Another
computer check shows that for every ternary squarefree word w, the only squares
uu with |u| ≤ 2|h(0)| − 2 that appear in h(w) are the ones we claim. If h(w)
contains a square uu with |u| ≥ 2|h(0)| − 1, then u contains the full h-image of
some letter. Thus, uu is a factor of h(avbvc) with a, b, c single letters and v a
nonempty word. Moreover, a �= b and b �= c, since otherwise avbvc would contain
a square. It follows that u = ph(v)s, so that p is a suffix of h(a), h(b) = sp,
and s is a prefix of h(c). Thus, h(abc) contains the square psps with period
|ps| = |h(b)|. Since 5 < |h(2)| ≤ |h(b)| ≤ |h(0)| < 2|h(0)| − 2, this contradicts
our computer check, which rules out squares with period at least 5 and at most
2|h(0)| − 2.

To show that large antisquares are avoided, it suffices to exhibit a factor f
such that f is uniformly recurrent in h(w) and f is not a factor of h(w). We use
f = 0101 for h3,13 and f = 04 for the other morphisms.

Remark 1. The uniform morphisms were found as follows: for increasing values
of q, our program looks (by backtracking) for a binary word of length 3q corre-
sponding to the image h(012) of 012 by a suitable q-uniform morphism h. Given
a candidate h, we check that h(w) has at most a squares and b antisquares for
every squarefree word w up to some length. Standard optimizations are applied
to the backtracking. Squares and antisquares are counted naively (recomputed
from scratch at every step), which is sufficient since the morphisms found are
not too large.

Remark 2. The morphisms h3,13 and h7,3 are not uniform. However, we can
construct uniform morphisms with the same properties as follows. Let m be the
18-uniform squarefree morphism given by

0 → 021012102012021201
1 → 021012102120210201
2 → 021012102120102012.

Notice that m(0), m(1), and (2) contain 6 occurrences of each letter. So the
216-uniform morphism h′

3,13 = h3,13 ◦ m is such that h′
3,13(w) and h3,13(w)

contain the same squares and antisquares. Similarly, for binary words with the
same squares and antisquares as h7,3(w), we can use the 276-uniform morphism
h7,3 ◦ m. However in this case, we have found the following smaller morphism,
which is 29-uniform.

0 → 00101000010010010100000101001
1 → 00101000010010010000101001000
2 → 00101000010010010000101000001.

New Results on Pseudosquare Avoidance 269

Corollary 1. There exists an infinite binary word having at most ten distinct
squares and antisquares as factors, but the longest binary word having nine or
fewer distinct squares and antisquares is of length 45.

Remark 3. A word of length 45 with a total of nine distinct squares and anti-
squares is

000001000000010100000010000101000000010000101.

Corollary 2. Every infinite word having at most ten distinct squares and anti-
squares has critical exponent at least 5, and there is such a word having 5-powers
but no powers of higher exponent.

Proof. By the usual backtracking approach, we can easily verify that the longest
finite word having at most ten distinct antisquares, and critical exponent <5 is
of length 57. One such example is

010001010000100100100001010010010100001001001000010100010.

On the other hand, if w is any squarefree ternary infinite word, then from above
we know that the only possible squares that can occur in h5,5(w) are of the form
x2 for x ∈ {0, 1, 00, 01, 10}. It is now easy to verify that the largest power of 0
that occurs in h5,5(w) is 05; the largest power of 1 that occurs is 12; the largest
power of 01 that occurs is (01)5/2; and the largest power of 10 that occurs is
(10)5/2.

Proposition 2. Every infinite cubefree binary word has a total of at least 23
distinct squares and antisquares.

Proof. By the usual backtracking method.

Remark 4. In the final version of this paper, we plan to provide the optimal
bound.

3 Pseudosquare Avoidance

In this section we discuss avoiding xx′ where x′ belongs to some large class of
modifications of x′. This is in the spirit of previous results [5,12,16], where one
is interested in avoiding factors of low Kolmogorov complexity. The problems
we study are not quite so general, but our results are effective, and we obtain
explicit bounds.

3.1 Avoiding Pseudosquares for Permutations

Here we are interested in avoiding patterns of the form xp(x), for all codings p
that are permutations of the underlying alphabet. Of course, this is impossible
for words of length ≥2 strictly as stated, since every word of length 2 is of the
form ap(a) where p is the permutation sending the letter a to p(a). Thus it is
reasonable to ask about avoiding xp(x) for all words x of length ≥n. Our first
result shows this is impossible for n = 2.

270 T. Ng et al.

Theorem 2. For all finite alphabets Σ, and for all words w of length ≥ 10 over
Σ, there exists a permutation p of Σ and a factor of w of the form xx′, where
x′ = p(x), and |x| ≥ 2.

Proof. Using the usual tree-traversal technique, where we extend the alphabet
size at each length extension.

We now turn to the case of larger n. For n ≥ 3, we can avoid all factors of the
form xp(x) over the binary alphabet. Of course, this case is particularly simple,
since there are only two permutations of the alphabet: the identity permutation
that leaves letters invariant, and the map x → x, which changes 0 to 1 and vice
versa.

Theorem 3. There exists an infinite word w over the binary alphabet Σ2 =
{0, 1} that avoids xx and xx for all x with |x| ≥ 3.

Proof. We can use the morphism h5,5 in Theorem 1(c). Alternatively, a simpler
proof comes from the fixed point of the morphism

0 → 01 1 → 23
2 → 24 3 → 51
4 → 06 5 → 01
6 → 74 7 → 24

followed by the coding n → n mod 2. We can now use Walnut [13] to verify that
the resulting 2-automatic word has the desired property. This word has exactly
5 distinct squares:

02, 12, (00)2, (01)2, (10)2,

and exactly 6 distinct antisquares:

01, 10, 0011, 0110, 1001, 1100.

3.2 Avoiding Pseudosquares for Transformations

In the previous subsection we considered permutations of the alphabet. We now
generalize this to transformations of the alphabet, or, in other words, to arbitrary
codings (letter-to-letter morphisms).

Theorem 4.

(a) For all finite alphabets Σ, and all words w of length ≥31 over Σ, there exists
a transformation t : Σ∗ → Σ∗ such that w contains a factor of the form
xt(x) for |x| ≥ 3.

(b) For all finite alphabets Σ, and all words w of length ≥16 over Σ, there exists
a transformation t of Σ such that w contains a factor of the form xx′, where
x′ = t(x) or x = t(x′) and |x| ≥ 3.

New Results on Pseudosquare Avoidance 271

Proof. Using the usual tree-traversal technique, where we extend the alphabet
size at each length extension.

We now specialize to the binary alphabet. This case is particularly simple,
since in addition to the two permutations of the alphabet, the only other trans-
formations are the ones sending both 0, 1 to a single letter (either 0 or 1).

Theorem 5. There exists an infinite word w over the binary alphabet Σ2 =
{0, 1} avoiding 04, 14, and xx and xx for every x with |x| ≥ 4. In other words,
w avoids both xt(x) and t(x)x for |x| ≥ 4 and all transformations t.

Proof. Use the fixed point of the morphism

0 → 01 1 → 23
2 → 45 3 → 21
4 → 23 5 → 42

followed by the coding n → �n/3�. The result can now easily be verified with
Walnut.

3.3 Avoiding Pseudosquares with Morphic Images

In this subsection we consider simultaneously avoiding all patterns of the form
xh(x), for all morphisms h defined over Σk = {0, 1, . . . , k − 1}. Clearly this is
impossible if h is allowed to be erasing (that is, some images are allowed to be
empty), or if x consists of a single letter. So once again we consider the question
for sufficiently long x.

For this version of the problem, it is particularly hard to obtain experimental
data, because the problem of determining, given x and y, whether there is a
morphism h such that y = h(x), is NP-complete [1,6].

Theorem 6. No infinite word over a finite alphabet avoids all factors of the
form xh(x), for all nonerasing morphisms h, with |x| ≥ 4.

Proof. Let w be a potential counter-example to Theorem 6. Without loss of
generality, we can assume that w is uniformly recurrent (see, e.g., [11, Lemma
2.4]). We use a, b, and c to denote distinct letters and u and v to denote non-
empty finite words.

We call a word basic if it is of the form au such that |u| = 3 and u does not
contain the letter a. Suppose, to get a contradiction, that w contains a basic
factor. Since u is recurrent, the factor au extends to auvu, which is a forbidden
occurrence of xh(x).

Suppose, to get a contradiction, that w contains a factor aaa. Since w �= aω,
the word w contains baaa, which is a basic factor. So w avoids aaa for every
letter a.

Suppose, to get a contradiction, that w contains three consecutive distinct
letters abc. To avoid a basic factor, abc must extend to abca. Then abca must
extend to abcab, and so on. Thus w must contain (abc)8/3 = abcabcab, which is
a forbidden occurrence of xh(x). So w avoids abc.

272 T. Ng et al.

Since w avoids aaa, abc, and the basic factor abbc, it must be that w is a
binary word.

Suppose, to get a contradiction, that w contains both 0100 and 1011. The
factor 0100 extends to 01001. Since w is uniformly recurrent and contains 11,
the word w contains 01001u11, which is a forbidden occurrence of xh(x). So w
does not contain both 0100 and 1011, and we assume without loss of generality
that w avoids 0100.

Using the usual tree-traversal technique, we check that no infinite binary
word avoids 000, 111, 0100, and every square xx with |x| ≥ 4. Thus, w does not
exist.

Theorem 7. There exists an infinite binary word that avoids all factors of the
form xh(x) and h(x)x, for all nonerasing binary morphisms h, with |x| ≥ 5.

Proof. Let w = m(t), where t is any ternary squarefree word t and m is the
57-uniform morphism given below.

0 → 101000110010100110001011001010110001010100011001011000110
1 → 101000110010100110001010110001101001100010101000110101001
2 → 101000110010100110001010100011010011000101011000110101001

We use u and v to denote non-empty words and a to denote a letter. We will
need the following properties of w.

(a) The only squares occurring in w are 00, 11, 0101, and 1010.
(b) w does not contain any factor uvu with |u| ≥ 15 and |v| ≤ 6.
(c) w does not contain any of the following factors: 111, 110011, 101011001,

100110101, 0100010, 00100.
(d) Every factor of w of length 13 contains 000, 001100, 010100110, or

011001010.
(e) Every factor of w of length 12 contains 0101 or 1010.
(f) Every factor of w of length at least 5, except 00010 and 01000, contains

0011, 1100, 0101, 1010, 0110, 1001, or 10001.

The proofs of (a) and (b) are similar to the proof of Theorem1. The other
properties can be checked by inspecting factors of w with bounded length. The
following cases show that w contains no factor of the form xh(x) or h(x)x with
|x| ≥ 5.

– We rule out h(0) = h(1), as h(x) contains h(0)5, which contradicts (a).

– We rule out h(a) = a, as xh(x) = h(x)x = xx is a square with period at least
5, which contradicts (a).

– We rule out |x| ≥ 13: By (e), x contains 0101 or 1010. By (a), w contains
no square with period at least 3, which forces |h(0)| = |h(1)| = 1. By the
previous cases, the only remaining possibility is h(a) = a. By (d), x contains
a factor v ∈ {000, 001100, 010100110, 011001010}. Thus, h(x) contains the
factor v ∈ {111, 110011, 101011001, 100110101}, which contradicts (c).

New Results on Pseudosquare Avoidance 273

– We rule out that x contains aaaa or aaaa: Notice that both letters 0 and
1 are contained in a square. By (a), |h(0)| ≤ 2 and |h(1)| ≤ 2. A computer
check shows that w contains no factor of the form xh(x) or h(x)x such that
5 ≤ |x| ≤ 12, |h(0)| ≤ 2, and |h(1)| ≤ 2.

– We rule out that x contains aaaa or 10001: in every case h(x) contains a
factor uvu such that v is square or a cube. By (a), min{|h(0)|, |h(1)|} ≤ 2
and |v| ≤ 6. By (b), this means that max{|h(0)|, |h(1)|} ≤ 14. Again, we only
have to consider the case 5 ≤ |x| ≤ 12, so that xh(x) and h(x)x have bounded
length and can be ruled out by computer check.

– By (f), the only remaining possibilities are x = 00010 and x = 01000. Notice
that if h(000) is in w, then h(0) ∈ {0, 01, 10}. Suppose that x = 00010. An
occurrence of h(x)x contains 0000 if h(0) ∈ {0, 10} and contains 0100010 if
h(0) = 01. This contradicts (a) and (c), respectively. An occurrence of xh(x)
contains 00100 if h(0) ∈ {0, 01} and contains 10101010 if h(0) = 10. This
contradicts (c) and (a), respectively. The case x = 01000 is symmetrical by
reversal.

4 Future Work

In the future we could consider similar questions for abelian avoidability prob-
lems.

Acknowledgments. We thank the referees for many useful suggestions.

References

1. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci.
21, 46–62 (1980)

2. Badkobeh, G., Crochemore, M.: Fewest repetitions in infinite binary words. RAIRO
Inform. Théor. App. 46, 17–31 (2012)

3. Blanchet-Sadri, F., Choi, I., Mercaş, R.: Avoiding large squares in partial words.
Theoret. Comput. Sci. 412, 3752–3758 (2011)

4. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fund. Inform.
114(1), 55–72 (2012)

5. Durand, B., Levin, L., Shen, A.: Complex tilings. J. Symbolic Logic 73, 593–613
(2008)

6. Ehrenfeucht, A., Rozenberg, G.: Finding a homomorphism between two words is
NP-complete. Inform. Process. Lett. 9, 86–88 (1979)

7. Entringer, R.C., Jackson, D.E., Schatz, J.A.: On nonrepetitive sequences. J. Com-
bin. Theory. Ser. A 16, 159–164 (1974)

8. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in infinite words. J.
Combin. Theory Ser. A 157, 109–119 (2018)

9. Fraenkel, A.S., Simpson, J.: How many squares must a binary sequence contain?
Electron. J. Combinatorics 2, #R2 (1995)

274 T. Ng et al.

10. Harju, T., Nowotka, D.: Binary words with few squares. Bull. Eur. Assoc. Theor.
Comput. Sci. 89, 164–166 (2006)

11. Luca, A.D., Varricchio, S.: Finiteness and iteration conditions for semigroups. The-
oret. Comput. Sci. 87, 315–327 (1991)

12. Miller, J.S.: Two notes on subshifts. Proc. Am. Math. Soc. 140, 1617–1622 (2012)
13. Mousavi, H.: Automatic theorem proving in Walnut (2016). http://arxiv.org/abs/

1603.06017
14. Ochem, P.: A generator of morphisms for infinite words. RAIRO Inform. Théor.

Appl. 40, 427–441 (2006)
15. Rampersad, N., Shallit, J., Wang, M.: Avoiding large squares in infinite binary

words. Theoret. Comput. Sci. 339, 19–34 (2005)
16. Rumyantsev, A.Y., Ushakov, M.A.: Forbidden substrings, Kolmogorov complexity

and almost periodic sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006.
LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006). https://doi.org/10.
1007/11672142 32

http://arxiv.org/abs/1603.06017
http://arxiv.org/abs/1603.06017
https://doi.org/10.1007/11672142_32
https://doi.org/10.1007/11672142_32

Every Nonnegative Real Number
Is an Abelian Critical Exponent

Jarkko Peltomäki1,2,3(B) and Markus A. Whiteland3(B)

1 The Turku Collegium for Science and Medicine TCSM, University of Turku,
Turku, Finland

2 Turku Centre for Computer Science TUCS, Turku, Finland
3 Department of Mathematics and Statistics, University of Turku, Turku, Finland

{jspelt,mawhit}@utu.fi

Abstract. The abelian critical exponent of an infinite word w is defined
as the maximum ratio between the exponent and the period of an abelian
power occurring in w. It was shown by Fici et al. that the set of finite
abelian critical exponents of Sturmian words coincides with the Lagrange
spectrum. This spectrum contains every large enough positive real num-
ber. We construct words whose abelian critical exponents fill the remain-
ing gaps, that is, we prove that for each nonnegative real number θ there
exists an infinite word having abelian critical exponent θ. We also extend
this result to the k-abelian setting.

Keywords: Abelian equivalence · k-abelian equivalence ·
Critical exponent · Sturmian word

1 Introduction

The study of powers and their avoidance has been one of the central themes in
combinatorics on words; see [2, Chap. 4]. The central notion here is that of the
critical exponent which measures the maximum exponent of a power occurring in
a given word. Recently it has been popular to generalize the notion of a power
using some equivalence relation in place of the usual equality of words. For
example, abelian equivalence (see the references of [6]), and its generalizations
k-abelian equivalence [3,9] and binomial equivalence [16,19] have been popular
options.

Two words u and v are abelian equivalent, written u ∼ v, if they are permu-
tations of each other. An abelian power of exponent e and period m is a word
of the form u0 · · · ue−1 such that m = |u0| and u0, . . . , ue−1 are nonempty and
abelian equivalent. For example, 01 · 10 (a square) and abc · bca · cab (a cube)
are abelian powers. Now it is possible to define the abelian critical exponent
of an infinite word as the maximum exponent of an abelian power occurring in
it. However, this does not give any interesting information on abelian powers
occurring in Sturmian words or, more generally, in words with bounded abelian

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 275–285, 2019.
https://doi.org/10.1007/978-3-030-28796-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_22&domain=pdf
http://orcid.org/0000-0003-3164-1559
https://doi.org/10.1007/978-3-030-28796-2_22

276 J. Peltomäki and M. A. Whiteland

complexity because such words contain abelian powers of arbitrarily high expo-
nent [18]. In order to capture more information on abelian powers of an infinite
word to a single quantity, it was proposed in [6] to define the abelian critical
exponent Ac(w) of an infinite word w as the quantity

lim sup
m→∞

Aew(m)
m

,

where Aew(m) is the supremum of exponents of abelian powers of period m
occurring in w. This notion turns out to be much more interesting. For example,
Ac(f) =

√
5 for the Fibonacci word f , the fixed point of the substitution 0 �→

01, 1 �→ 0 [6, Theorem 5.14]. Furthermore
√

5 is the minimum abelian critical
exponent among all Sturmian words [6, Theorem 5.14]. It follows that for each
Sturmian word s and each δ > 0, there exists an increasing sequence (mi) of
integers such that s contains an abelian power of period mi and total length
greater than (

√
5− δ)m2

i . Notice that if w does not contain abelian powers with
arbitrarily large exponent, then Ac(w) = 0. Many examples of such words are
known; see, e.g., [2, Chap. 4.6]. It is also possible that Ac(w) = ∞. Take for
example the Thue-Morse word t, the fixed point of the substitution 0 �→ 01,
1 �→ 10. Indeed, it is straightforward to see that t can be factored as a product
of abelian equivalent words of length 2n for all n ≥ 0. This shows that Ac(t) = ∞.

Further study in [6] showed the surprising fact that the set of finite abelian
critical exponents of Sturmian words equals the Lagrange spectrum L. The
Lagrange constant of an irrational α is the infimum of the real numbers λ such
that for every c > λ the inequality |α − n/m| < 1/cm2 has only finitely many
rational solutions n/m. The Lagrange spectrum is the set of finite Lagrange
constants of irrational numbers. The Lagrange spectrum has been extensively
studied in number theory since the works of Markov [12,13] in the 19th century.
The famous theorems of Markov show that the initial part of L inside the inter-
val [

√
5, 3) is discrete. Later in 1947 Hall proved that L contains a half-line [8].

After a series of improvements by multiple authors, it was finally determined by
Freiman in 1975 [7] that the largest half-line contained in the Lagrange spectrum
is [cF ,∞), where

cF =
2221564096 + 283748

√
462

491993569
= 4.5278295661 . . .

Good sources for information on the Lagrange spectrum are the monograph of
Cusick and Flahive [4] and Aigner’s book [1]. See also the recent book [17] of
Reutenauer for a more word-combinatorial flavor.

The connection between the Lagrange spectrum and abelian critical expo-
nents of Sturmian words shows that each real number larger than cF is the
abelian critical exponent of some infinite word. This raises the obvious question
of whether this can be extended to hold for all nonnegative numbers. In this
paper, we answer the question in the positive. The main result of this paper is
the following theorem.

Every Nonnegative Real Number Is an Abelian Critical Exponent 277

Theorem 1. Let θ be a nonnegative real number. Then there exists an infinite
word w such that Ac(w) = θ. The word w can be taken over an alphabet of at
most three letters.

This result should be compared with a result of Krieger and Shallit stating
that every real number θ > 1 is a critical exponent (in the usual sense) of some
infinite word [10]. Notice that here the number of letters required tends to infinity
when θ tends to 1 [10], but in our setting we need at most three letters.

We prove an analogue of Theorem 1 for k-abelian critical exponents; see
Sect. 3 for the extension and the necessary definitions.

Our proof method is to exploit the properties of the Lagrange spectrum, that
is, the fact that Theorem 1 is already known to be true for all reals greater than
cF . The idea is to find a suitable N -uniform substitution σ such that each abelian
power in σ(w) can be decoded to an abelian power in w with the same exponent.
This means, in essence, that the abelian powers in σ(w) are the abelian powers
of w blown up by a factor of N . Roughly speaking, the ratio of exponents and
periods corresponding to Ac(w) gets divided by N , that is, Ac(σ(w)) = Ac(w)/N .
The conclusion is that Theorem 1 is true for each real in the interval [cF /N,∞),
where [cF ,∞) is the largest half-line contained in the Lagrange spectrum. We
may choose N to be arbitrarily large, so Theorem 1 follows. The extension of
Theorem 1 to the k-abelian setting is proved using the same ideas.

We use the usual notions and notation from combinatorics on words. If the
reader encounters anything undefined, we refer him or her to [11]. Even though
we mention Sturmian words several times in this paper, we do not need any
properties of these binary words. For their definition, we refer the reader to [11,
Chap. 2] and [14, Chap. 4].

2 Proof of Theorem 1

Let θ be a nonnegative real number. If θ = 0, then θ is the abelian critical
exponent of any infinite word that avoids abelian powers with large enough
exponent. Such words exist by [5] (abelian fourth powers are avoidable over two
letters); see also [2, Chap. 4.6].

Assume then that θ > 0, and let N be an integer such that Nθ ∈ [cF ,∞).
Let w be an infinite binary word. Our aim is to find an N -uniform substitution
f defined on a two-letter alphabet with the following properties:

(i) If an abelian power u0 · · · ue−1 occurs in w, then f(u0) · · · f(ue−1) is an
abelian power occurring in f(w).

(ii) If an abelian power u0 · · · ue−1, e ≥ N , occurs in f(w), then w contains an
abelian power v0 · · · ve−1 with |v0| = |u0|/N .

Let us show how to prove Theorem 1 under the assumption that such f exists.
Let s be a Sturmian word having Ac(s) = Nθ. In fact, any binary word s

with Ac(s) = Nθ will do, we just know that such a Sturmian word exists by the
results of [6]. We claim that Ac(f(s)) = θ. This proves Theorem 1 when θ > 0
(assuming that f(w) has at most three letters).

278 J. Peltomäki and M. A. Whiteland

By Property (i), we have Aef(s)(tN) ≥ Aes(t) for all positive integers t. Since
Ac(s) > 0, the word s contains abelian powers of arbitrarily high exponent,
and thus by Property (i) the word f(s) contains abelian powers of arbitrarily
high exponent and period divisible by N . If Aef(s)(tN) ≥ N , then Aef(s)(tN) ≤
Aes(t) by Property (ii). Therefore there exists a sequence (ti) such that Aes(ti) =
Aef(s)(tiN) for all i. Hence

lim sup
i→∞

Aef(s)(tiN)
tiN

= lim sup
i→∞

Aes(ti)
tiN

=
1
N

lim sup
i→∞

Aes(ti)
ti

=
1
N

Ac(s) = θ,

so Ac(f(s)) ≥ θ. If Ac(f(s)) > θ, then there exists an increasing sequence (�i)
such that

Aef(s)(�i)
�i

> θ > 0

for all i. By the preceding, only finitely many of the numbers in the sequence
(�i) are divisible by N . By Property (ii), we thus have Aef(s)(�i) ≥ N only for
finitely many i meaning that

Aef(s)(�i)
�i

<
N

�i

for i large enough. This is impossible as N/�i → 0 as i → ∞. The conclusion is
that Ac(f(s)) = θ. This concludes the proof of Theorem 1.

Let us then show how to choose a suitable substitution f . Let N be a fixed
positive and even integer, and define the N -uniform substitution σ : {0, 1}∗ →
{0, 1,#}∗ by

0 �→ #0N−1,

1 �→ #1N−1.

Lemma 2. The substitution σ satisfies Property (i).

Proof. Property (i) trivially holds for any nonerasing substitution.
�
Before showing that the substitution σ satisfies Property (ii), we show that

the period of an abelian power with large enough exponent is divisible by N ,
the length of the substitution σ.

Lemma 3. Let w be an infinite binary word. If an abelian power u0 · · · ue−1,
with e ≥ N , occurs in σ(w), then N divides |u0|.
Proof. Let m = |u0|, and write m = tN + r for some t ≥ 0 and 0 ≤ r < N . The
claim is thus that r = 0. Assume, for a contradiction, that r > 0. Observe that
for σ(w) = a0a1 · · · , where an ∈ {0, 1,#} for each n ≥ 0, we have an = # if
and only if n ≡ 0 (mod N). Let us denote the position of the occurrence of uj

in σ(w) by ij , that is,
uj = aijaij+1 · · · aij+m−1.

Every Nonnegative Real Number Is an Abelian Critical Exponent 279

Observe that ij = i0 + jm, and ij ≡ i0 + jr (mod N) for each j = 0, . . . , e − 1.
Notice also that the number of occurrences of the letter # in uj equals the
number of indices k in the set {ij , ij + 1, . . . , ij + m − 1} for which k ≡ 0
(mod N). Let nj = ij mod N . If nj = 0, then we may compute the value |uj |#
as follows:

|uj |# =
⌈m

N

⌉
=

⌈
tN + r

N

⌉
= t +

⌈ r

N

⌉
= t + 1

since 0 < r < N by assumption. If nj > 0, then none of the first N − nj letters
of uj equals #. The value |uj |# is thus computed as follows:

|uj |# =
⌈

m − (N − nj)
N

⌉
=

⌈
tN + r − (N − nj)

N

⌉
= t − 1 +

⌈
r + nj

N

⌉
.

We conclude that |uj |# = t+1 if and only if nj = 0 or nj > N −r, and otherwise
|uj |# = t.

We exhibit two words uj1 and uj2 from the abelian power for which the
number of occurrences of the letter # differ. This contradiction proves our claim.
Since e ≥ N , we see that the numbers nj , nj ≡ n0+jr (mod N), j = 0, . . . , e−1,
form the coset n0 + 〈r〉 of the subgroup 〈r〉 of Z/NZ. Let now d = gcd(r,N),
so that 〈r〉 = {0, d, 2d, . . . (N/d − 1)d}. For example, if gcd(r,N) = 1, then
〈r〉 = Z/NZ. There thus exists an index j1 such that the letter # occurs among
the first d letters of uj1 . This means that either nj1 = 0 or

nj1 > N − d ≥ N − r.

Thus |uj1 |# = t+1 as was concluded previously. Similarly, there exists an index
j2 such that the letter # occurs among the d letters immediately preceding uj2 .
This means that

0 < nj2 ≤ d.

In this case
nj2 + r ≤ d + r ≤ d + N − d = N

since r ≤ N − gcd(r,N) = N − d. We thus have nj2 ≤ N − r implying that
|uj2 |# = t as was concluded previously. This concludes the proof.
�
Remark 4. The above result may be slightly generalized. Indeed, notice that the
only structural properties of σ used in the above proof are that σ is uniform, the
images of the letters begin with #, and the images of the letters contain no other
occurrences of #. In fact, the property that both images of letters begin with
is not important, it is only required that # occurs at the same position in
both σ(0) and σ(1). We are thus led to the following generalization of Lemma 3.
Let ϕ : {0, 1}∗ → {0, 1,#}∗ be a uniform substitution defined by ϕ(0) = u#v,
ϕ(1) = u′#v′, where u, u′, v, v′ ∈ {0, 1}∗, |u| = |u′|, and |v| = |v′|. Let w be a
binary word. If an abelian power u0 · · · ue−1, e ≥ |u#v|, occurs in ϕ(w), then
|u#v| divides |u0|. We shall need this generalization later in Sect. 3.

Lemma 5. The substitution σ satisfies Property (ii).

280 J. Peltomäki and M. A. Whiteland

Proof. Let u0 · · · ue−1, e ≥ N , be an abelian power occurring in σ(w). It follows
by Lemma 3 that N divides the length of u0. Our aim is to show that the abelian
power u0 · · · ue−1 can be shifted (to the left or the right) to obtain another abelian
power u′

0 · · · u′
e−1 with |u′

0| = |u0| such that each u′
i begins with the letter #.

Before doing so, let us show how the main claim follows from this. Because σ
is injective, as is readily verified, there exist unique factors v0, . . . , ve−1 of w of
length |u0|/N such that σ(vi) = u′

i for i = 0, . . . , e − 1. Notice that v0 · · · ve−1 is
a factor of w. Clearly the words vi are abelian equivalent as |vi|0 = |u′

i|0/(N −1)
and |u′

i|0 = |u′
j |0 for all j. We conclude that the word v0 · · · ve−1 is an abelian

power in w.
Let us again write σ(w) = a0a1 · · · with an ∈ {0, 1,#} for each n ≥ 0. Let

u0 have the position i in σ(w), and let n = i mod N . If n = 0 then we are done
since we may choose u′

i = ui in the above (recall that N divides |u0|). Also, if
n = 1, each word uj , j = 0, . . . , e − 1, is immediately preceded by # in σ(w)
and, moreover, each of the words ends with #. By setting u′

j = #uj#−1, we
see that #u0 · · · ue−1 = u′

0 · · · u′
e−1# occurs in σ(w), and clearly u′

j ∼ u0 for
each j = 0, . . . , e − 1. Thus u′

0 · · · u′
e−1 is an abelian power of the claimed form.

Assume now that n > 1. Without loss of generality, we assume that u0 begins
with 0 so, in fact, u0 begins with 0N−n#. By the form of the substitution, u0 is
preceded by #0n−1 in σ(w). We claim that each of the words uj , j = 0, . . . , e−1,
begins with 0N−n# and ends with #0n−1. Let us first show that u1 begins with
0N−n# (and thus that u0 ends with #0n−1). Assume for a contradiction that
u1 begins with 1N−n# (whence u0 ends with #1n−1), and say that u1 ends with
#cn−1 where c ∈ {0, 1}. Now the word #0n−1u0(#1n−1)−1 is the image of a
factor x of w. Similarly, the word #1n−1u1(#cn−1)−1 is the image of a factor y
of w with |x| = |y|. We may write

|u0|1 = |x|1(N − 1) + n − 1

and
|u1|1 = |y|1(N − 1) − (n − 1) + δc=1 · (n − 1),

where δc=1 = 1 if c = 1, and otherwise δc=1 = 0. Since u0 ∼ u1, by rearranging
the terms, we obtain

(|y|1 − |x|1)(N − 1) = (2 − δc=1)(n − 1).

Notice here that 1 ≤ 2−δc=1 ≤ 2 and that n > 1. The right side of the inequality
is positive, so |y|1−|x|1 ≥ 1. Since N > n, it must be that |y|1−|x|1 < 2−δc=1 ≤
2. We conclude that |y|1 − |x|1 = 1 and, furthermore, δc=1 = 0. We now have

N − 1 = 2(n − 1),

which is impossible since N was chosen to be even. This contradiction shows
that u1 begins with 0N−n# as well. A symmetric argument shows that u1 ends
with #0n−1. We may repeat the above argument to show that each of the words
uj , j = 0, . . . , e − 1, begins with 0N−n# and ends with #0n−1.

Every Nonnegative Real Number Is an Abelian Critical Exponent 281

To finish off the proof, we choose u′
j = #0n−1uj(#0n−1)−1 for each j =

0, . . . , e−1. Observe that #0n−1u0 · · · ue−1 = u′
0 · · · u′

e−1#0n−1 and that u′
0 ∼ u′

j

for each j = 0, . . . , e−1. We have thus exhibited an abelian power of the claimed
form thus concluding the proof.
�

Since the substitution σ satisfies Properties (i)–(ii) and σ(w) has at most
three letters, Theorem 1 is proved.

3 Extension to the k-abelian Setting

In this section, we consider a generalization of abelian equivalence. Let k be a
positive integer. Two words u and v are k-abelian equivalent, written u ∼k v,
if |u|w = |v|w for all nonempty words w of length at most k [9]. For words of
length at least k − 1, we can equivalently say that u ∼k v if and only if u and
v share a common prefix and a common suffix of length k − 1 and |u|w = |v|w
for each word w of length k [9, Lemma 2.4]. The k-abelian equivalence relation
is a congruence relation. Notice that 1-abelian equivalence is simply abelian
equivalence. Moreover, if u ∼k+1 v, then u ∼k v.

A nonempty word u0 · · · ue−1 is a k-abelian power of exponent e and period
m if |u0| = m and u0 ∼k · · · ∼k ue−1. It was proved in [9, Theorem 5.4]
using Szemerédi’s theorem that every infinite word having bounded k-abelian
complexity contains k-abelian powers of arbitrarily high exponent. Sturmian
words are particular examples of such words, so each Sturmian word contains
k-abelian powers of arbitrarily high exponent; an alternative proof of this fact
is given in [15, Lemma 3.10]

Let w be an infinite word. Then we set Aek,w(m) to be the supremum of
the exponents of k-abelian powers of period m occurring in w. We define the
k-abelian critical exponent of w to be the quantity

lim sup
m→∞

Aek,w(m)
m

,

and we denote it by Ack(w). This generalization of the abelian critical exponent
is considered in the preprint [15], where the authors of this paper study the set
of finite k-abelian critical exponents of Sturmian words. This set, dubbed as the
k-Lagrange spectrum, is similarly complicated as the Lagrange spectrum. When
k > 1, the least accumulation point of the k-Lagrange spectrum is

√
5/(2k − 1),

and the spectrum is dense in the interval (
√

5/(2k − 1),∞).
Next we prove the following analogue of Theorem 1.

Theorem 6. Let θ be a nonnegative real number. Then there exists an infinite
word w such that Ack(w) = θ. The word w can be taken over an alphabet of at
most three letters.

Similar to Sect. 2, we wish to find a substitution f defined on a two-letter
alphabet with the following properties:

282 J. Peltomäki and M. A. Whiteland

(i’) If an abelian power u0 · · · ue−1 occurs in w, then f(u0) · · · f(ue−1) is a
k-abelian power occurring in f(w).

(ii’) If a k-abelian power u0 · · · ue−1, e ≥ N , occurs in f(w), then w contains
an abelian power v0 · · · ve−1 with |v0| = |u0|/N .

Given such a substitution f , Theorem 6 is proved exactly as Theorem 1 was
proved in Sect. 2. The case k = 1 is handled by Theorem 1, so we may assume
that k > 1.

Let N ≥ 2k − 1 be a fixed integer, and define the N -uniform substitution
τ : {0, 1}∗ → {0, 1,#}∗ by

0 �→ #0k−20N−2k+20k−1,

1 �→ #0k−21N−2k+20k−1.

Let u and v be two words of length greater than 2k − 2. Suppose that
prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v), that is, assume that they
share a common prefix of length k − 1 and a common suffix of length k − 1. One
easily checks that then uv ∼k vu. Remark then that it follows that xuvy ∼k xvuy
for all words x and y because ∼k is a congruence.

Lemma 7. The substitution τ satisfies Property (i’).

Proof. By the form of the substitution τ , we have prefk−1(τ(0)) = prefk−1(τ(1))
and suffk−1(τ(0)) = suffk−1(τ(1)). Therefore τ(0)τ(1) ∼k τ(1)τ(0), and hence
τ(ui) ∼k τ(0)|ui|0τ(1)|ui|1 for i = 0, . . . , e−1. Let u0 · · · ue−1 be an abelian power
in w. Since the words u0, . . . , ue−1 are abelian equivalent, we have

τ(u0), . . . , τ(ue−1) ∼k τ(0)|u0|0τ(1)|u0|1 ,

so τ(u0) ∼k · · · ∼k τ(ue−1).
�
Lemma 8. If u0 · · · ue−1, e ≥ N , is a k-abelian power occurring in τ(w), then
N divides |u0|.
Proof. Since u0 · · · ue−1 is a k-abelian power, it is an abelian power. Observe
now that the substitution τ is as in Remark 4. Thus N divides |u0|.
�
Lemma 9. The substitution τ satisfies Property (ii’).

Proof. Suppose that a k-abelian power u0 · · · ue−1 with e ≥ N occurs in τ(s). By
Lemma 8, N divides |u0|. Similar to the proof of Lemma 5, we want to show that
the k-abelian power u0 · · · ue−1 can be shifted (to the left or the right) to obtain
another k-abelian power u′

0 · · · u′
e−1, |u′

0| = |u0|, such that each u′
i begins with

#. Then a slight modification of the argument presented in the first paragraph of
the proof of Lemma 5 proves the claim. Indeed, given the preimages v0, . . . , ve−1

of u′
0, . . . , u

′
e−1, we see that |vi|0 = |u′

i|#0k−1 for all i. Since u′
0 ∼k · · · ∼k u′

e−1,
we have |u′

i|#0k−1 = |u′
j |#0k−1 for all i and j, and it follows that v0 ∼ · · · ∼ ve−1.

Let p be the common prefix of length k − 1 of the words u0, . . . , ue−1 and
similarly q be the common suffix of length k − 1 of these words. Suppose first

Every Nonnegative Real Number Is an Abelian Critical Exponent 283

that # occurs in p, that is, p = 0r#0s with r + s = k − 2. As each occurrence of
is preceded by 0k−1 and N divides |ui|, the word ue−1 is followed by 0r. Thus
we may set u′

i = (0r)−1ui0r for i = 0, . . . , e − 1. The same r factors 0r#0s+1,
0r−1#0s+2, . . . , 0#0s+r of length k were removed from each ui and the same
r factors of length k were added to each u′

i (the final k − 1 factors of q0r of
length k) during the shift. Thus u′

0 ∼k · · · ∼k u′
e−1. If # occurs in q, that is, say

q = 0r#0s with r + s = k − 2 then, like above, we may set u′
i = #0sui(#0s)−1

for i = 0, . . . , e − 1. Suppose then that some word ui begins with 0k−1#. It is
straightforward to see that then all of the words u0, . . . , ue−1 begin with 0k−1#
and, furthermore, that ue−1 is followed by 0k−1#. Setting u′

i = (0k−1)−1ui0k−1

for i = 0, . . . , e − 1 gives the claim as above.
By the preceding paragraph, we may assume that the occurrence of p as

the prefix of ui is a proper factor of τ(ci) for a letter ci, that is, we may write
τ(ci) = xipyi, with xi and yi nonempty, for this occurrence of p. Moreover, the
preceding paragraph tells that we may assume that q is a proper suffix of xi

(otherwise # occurs in q). Since p has length k − 1, it is clear from the form of
the substitution τ that the letter ci is uniquely determined by p. Since N divides
|ui|, it follows that c0 = . . . = ce−1. This means that each ui is preceded by x0.
We still need to know that ue−1 ends with x0; the words u0, . . . , ue−2 must end
with x0. Since N divides |ui|, the suffix q of ue−1 occurs in τ(d), d ∈ {0, 1},
in the same position as the occurrence of q preceding py0 in τ(c0). Now q has
length k − 1, so its occurrence preceding pyi in τ(ci) uniquely determines ci,
and hence its occurrence in τ(d) in the same position uniquely determines d.
Therefore d = c0 and ue−1 ends with x0. We may now set u′

i = x0uix
−1
0 for

i = 0, . . . , e − 1. The suffix x0 of ui is preceded by 0k−1 and ui has prefix p of
length k − 1, so exactly the same factors of length k − 1 are added and removed
when shifting each ui to u′

i. Thus u′
0 ∼k · · · ∼k u′

e−1.
�
Since τ satisfies Properties (i’) and (ii’), Theorem 6 follows.

4 Concluding Remarks

Theorem 1 raises the following question.

Question 10. Given a nonnegative real number θ, does there exist an infinite
binary word having k-abelian critical exponent θ?

We conjecture that the question has a positive answer. To use the presented
method, the marker letter # needs to be replaced by a suitable binary word
ensuring that Properties (ii) and (ii’) hold. There seems to be no obvious choice,
at least no obvious choice leading to reasonable proofs. Perhaps another method
is required. It would certainly be very interesting if the answer to the above
question turned out to be negative. Nevertheless, we leave the question open.

The k-abelian equivalence is a refinement of abelian equivalence that “tends”
to the usual equality of words as k → ∞. As mentioned in the introduction, it
is typical to consider the maximum exponent supm≥1 exp(m) for the equality

284 J. Peltomäki and M. A. Whiteland

relation, not the superior limit of the ratio between the maximum exponent
exp(m) and period m as is done here for abelian equivalence and k-abelian
equivalence. What then happens if we consider the unorthodox notion? Does an
analogue to Theorem 1 hold? The answer is yes. The following result is proved
by the authors in the preprint [15].

Proposition 11 [15, Proposition 3.17]. Given an infinite word w, let E(w) be
the quantity

lim sup
m→∞

exp(m)
m

,

where exp(m) is the supremum of (integral) exponents of powers of period m
occurring in w. For each nonnegative θ, there exists a Sturmian word s such
that E(s) = θ.

References

1. Aigner, M.: Markov’s Theorem and 100 Years of the Uniqueness Conjecture.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-00888-2

2. Berthé, V., Rigo, M. (eds.): Combinatorics, Words and Symbolic Dynamics. Ency-
clopedia of Mathematics and Its Applications, vol. 159. Cambridge University
Press, Cambridge (2016)

3. Cassaigne, J., Karhumäki, J., Saarela, A.: On growth and fluctuation of k-abelian
complexity. Eur. J. Comb. 65, 92–105 (2017). https://doi.org/10.1016/j.ejc.2017.
05.006

4. Cusick, T.W., Flahive, M.E.: The Markoff and Lagrange Spectra. Mathematical
Surveys and Monographs, vol. 30. American Mathematical Society, Providence
(1989)

5. Dekking, F.M.: Strongly non-repetitive sequences and progression-free sets. J.
Comb. Theory Ser. A 27(2), 181–185 (1979). https://doi.org/10.1016/0097-
3165(79)90044-X

6. Fici, G., et al.: Abelian powers and repetitions in Sturmian words. Theoret. Com-
put. Sci. 635, 16–34 (2016). https://doi.org/10.1016/j.tcs.2016.04.039

7. Freiman, G.A.: Diophantine approximation and geometry of numbers (Markov’s
problem). Kalininskii Gosudarstvennyi Universitet, Kalinin (1975). (Russian)

8. Hall Jr., M.: On the sum and products of continued fractions. Ann. of Math. 48(4),
966–993 (1947). https://doi.org/10.2307/1969389

9. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiva-
lence and complexity of infinite words. J. Combin. Theory Ser. A 120, 2189–2206
(2013). https://doi.org/10.1016/j.jcta.2013.08.008

10. Krieger, D., Shallit, J.: Every real number greater than 1 is a critical exponent.
Theoret. Comput. Sci. 381, 177–182 (2007). https://doi.org/10.1016/j.tcs.2007.04.
037

11. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and Its Applications, vol. 90. Cambridge University Press, Cambridge (2002)

12. Markov, A.A.: Sur les formes quadratiques binaires indéfinies. Math. Ann. 15(3–4),
381–406 (1879). https://doi.org/10.1007/BF02086269

13. Markov, A.A.: Sur les formes quadratiques binaires indéfinies ii. Math. Ann. 17(3),
379–399 (1880). https://doi.org/10.1007/BF01446234

https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1016/j.ejc.2017.05.006
https://doi.org/10.1016/j.ejc.2017.05.006
https://doi.org/10.1016/0097-3165(79)90044-X
https://doi.org/10.1016/0097-3165(79)90044-X
https://doi.org/10.1016/j.tcs.2016.04.039
https://doi.org/10.2307/1969389
https://doi.org/10.1016/j.jcta.2013.08.008
https://doi.org/10.1016/j.tcs.2007.04.037
https://doi.org/10.1016/j.tcs.2007.04.037
https://doi.org/10.1007/BF02086269
https://doi.org/10.1007/BF01446234

Every Nonnegative Real Number Is an Abelian Critical Exponent 285

14. Peltomäki, J.: Privileged words and Sturmian words. Ph.D. dissertation, Turku
Centre for Computer Science, University of Turku, Turku (2016). http://urn.fi/
URN:ISBN:978-952-12-3422-4

15. Peltomäki, J., Whiteland, M.A.: On k-abelian equivalence and generalized
Lagrange spectra (2018). arXiv:1809.09047 (under review)

16. Rao, M., Rigo, M., Salimov, P.: Avoiding 2-binomial squares and cubes. Theoret.
Comput. Sci. 572, 83–91 (2015). https://doi.org/10.1016/j.tcs.2015.01.029

17. Reutenauer, C.: From Christoffel Words to Markoff Numbers. Oxford University
Press, Oxford (2019)

18. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian complexity of minimal subshifts.
J. Lond. Math. Soc. 83(1), 79–95 (2011). https://doi.org/10.1112/jlms/jdq063

19. Rigo, M., Salimov, P.: Another generalization of abelian equivalence: binomial
complexity of infinite words. Theoret. Comput. Sci. 601, 47–57 (2015). https://
doi.org/10.1016/j.tcs.2015.07.025

http://urn.fi/URN:ISBN:978-952-12-3422-4
http://urn.fi/URN:ISBN:978-952-12-3422-4
http://arxiv.org/abs/1809.09047
https://doi.org/10.1016/j.tcs.2015.01.029
https://doi.org/10.1112/jlms/jdq063
https://doi.org/10.1016/j.tcs.2015.07.025
https://doi.org/10.1016/j.tcs.2015.07.025

Rich Words Containing
Two Given Factors

Josef Rukavicka(B)

Department of Mathematics,
Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague,
Trojanova 13, 120 01 Prague 2, Czech Republic

josef.rukavicka@seznam.cz

Abstract. A finite word w with |w| = n contains at most n+1 distinct
palindromic factors. If the bound n+ 1 is attained, the word w is called
rich. Let F(w) be the set of factors of the word w. It is known that
there are pairs of rich words that cannot be factors of a same rich word.
However it is an open question how to decide for a given pair of rich
words u, v if there is a rich word w such that {u, v} ⊆ F(w). We present
a response to this open question:

If w1, w2, w are rich words, m = max {|w1|, |w2|}, and {w1, w2} ⊆
F(w) then there exists also a rich word w̄ such that {w1, w2} ⊆ F(w̄)
and |w̄| ≤ m2k(m)+2, where k(m) = (q + 1)m2(4q10m)log2 m and q is the
size of the alphabet. Hence it is enough to check all rich words of length
equal or lower to m2k(m)+2 in order to decide if there is a rich word
containing factors w1, w2.

1 Introduction

In the last years there have appeared several articles dealing with rich words;
see, for instance, [1–3,5]. Recall that a palindrome is a word that reads the same
forwards and backwards, for example “noon” and “level”. If a word w of length
n contains n + 1 distinct palindromic factors then the word w is called rich. It
is known that a word of length n can contain at most n + 1 palindromic factors
including the empty word. The notion of a rich word has been extended also to
infinite words. An infinite word is called rich if its every finite factor is rich [3,4].

Let lps(w) and lpp(w) denote the longest palindromic suffix and the longest
palindromic prefix of a word w, respectively. The authors of [1] showed the
following property of rich words:

Proposition 1. If r, t are two factors of a rich word w such that lps(r) = lps(t)
and lpp(r) = lpp(t), then r = t.

Two related open questions can be found:

– In [5]: Is the condition in Proposition 1 sufficient for two rich words u and v
to be factors of the same rich word?

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 286–298, 2019.
https://doi.org/10.1007/978-3-030-28796-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_23

Rich Words Containing Two Given Factors 287

– In [3]: We do not know how to decide whether two rich words u and v are
factors of a same rich word w.

In the current article we present a response to the question from [3] in the
following form: We prove that if w1, w2, w are rich words, m = max {|w1|, |w2|},
and {w1, w2} ⊆ F(w) then there exists a rich word w̄ such that {w1, w2} ⊆ F(w̄)
and |w̄| ≤ m2k(m)+2, where k(m) = (q + 1)m2(4q10m)log2 m and q is the size of
the alphabet. Thus it is enough to check all rich words of length equal or lower
to m2k(m)+2 in order to decide if there is a rich word containing factors w1, w2.
However it is a rather theoretic way how to check the existence of such a word,
since the number of words needed to be checked grows “pretty rapidly” with the
length of the factors in question.

We describe the basic ideas of the proof. If w is a rich word, then let a be
a letter such that lps(wa) = a lpps(w)a, where lpps denotes the longest proper
palindromic suffix. It is known and easy to show that wa is a rich word [5, Proof
of Theorem 2.1]. Thus every rich word w can be richly extended to a word wa.
We will call wa a standard extension of w. If there is a letter b such that a �= b
and wb is also a rich word, then we call the longest palindromic suffix of wb a
flexed palindrome; the explication of the terminology is that wb is not a standard
extension of w, hence wb is “flexed” from the standard extension. We define a set
Γ of pairs of rich words (w, r), where r is a flexed palindrome of w, the longest
palindromic prefix of w does not contain the factor r, and |r| ≥ |r̄| for each flexed
palindrome r̄ of w. If (w, r) ∈ Γ , w1 is the prefix of w with |w1| = |r|− 1 and w2

is the suffix of w with |w2| = |r| − 1 then we construct a rich word w̄ possessing
the following properties:

– The word w1 is a prefix of w̄ and the word w2 is a suffix of w̄.
– The number of occurrences of r in w̄ is strictly smaller than the number of

occurrences of r in w.
– The set of flexed palindromes of w̄ is a subset of the set of flexed palindromes

of w.

Iterative applying of this construction will allow us for a given rich word w with
a prefix w1 and a suffix w2 to construct a rich word t containing factors w1, w2

and having no flexed palindrome longer than m, where m = max{|w1|, |w2|}.
Another important, but simple, observation is that if w is a rich word with

prefix u such that the number of flexed palindromes in w is less than k and u
has exactly one occurrence in w then there is an upper bound for the length of
w. We show this upper bound as a function of k and consequently we derive an
upper bound for the length of t.

2 Preliminaries

Let A be a finite alphabet with q = |A |. The elements of A will be called letters.
Let ε denote the empty word.
Let A∗ be the set of all finite words over A including the empty word and let
An ⊂ A∗ be the set of all words of length n.

288 J. Rukavicka

Let R ⊂ A∗ denote the set of all rich words.
Let F(w) ⊂ A∗ denote the set of all factors of w ∈ A∗; we state explicitly that
ε, w ∈ F(w). Let F(S) =

⋃
v∈S F(v), where S ⊆ A∗.

Let Fp(w) ⊆ F(w) be set of all palindromic factors of w ∈ A∗.
Let Prf(w) and Suf(w) be the set of all prefixes and all suffixes of w ∈ A∗

respectively; we define that {ε, w} ⊆ Prf(w) ∩ Suf(w).
Let wR denote the reversal of w ∈ A∗; formally if w = w1w2 . . . wk then wR =
wk . . . w2w1, where wi ∈ A and i ∈ {1, 2, . . . , k}. In addition we define that
εR = ε.

Let lps(w) and lpp(w) denote the longest palindromic suffix and the longest
palindromic prefix of w ∈ A∗ respectively. We define that lps(ε) = lpp(ε) = ε.
Let lpps(w) and lppp(w) denote the longest proper palindromic suffix and the
longest proper palindromic prefix of w ∈ A∗ respectively, where |w| ≥ 2.
Let trim(w) = v, where v, w ∈ A∗, x, y ∈ A, w = xvy, and |w| ≥ 2.
Let rtrim(w) = v, where v, w ∈ A∗, y ∈ A, w = vy, and |w| ≥ 1.
Let ltrim(w) = v, where v, w ∈ A∗, x ∈ A, w = xv, and |w| ≥ 1.

Example 2. If A = {1, 2, 3, 4, 5} and w = 124135, then trim(w) = 2413,
ltrim(w) = 24135, and rtrim(w) = 12413.

Let pc(w) be the palindromic closure of w ∈ A∗; formally pc(w) = uvuR, where
w = uv and v = lps(w). Note that pc(w) is a palindrome.

Let MinLenWord(U) and MaxLenWord(U) be the shortest and the longest word
from the set U respectively, where either U ⊆ Prf(w) or U ⊆ Suf(w) for some
w ∈ A∗. If U = ∅ then we define MinLenWord(U) = ε and MaxLenWord(U) = ε.

Let lcp(w1, w2) be the longest common prefix of words w1, w2 ∈ A∗; formally
lcp(w1, w2) = MaxLenWord(Prf(w1) ∩ Prf(w2)).
Let lcs(w1, w2) be the longest common suffix of words w1, w2 ∈ A∗; formally
lcs(w1, w2) = MaxLenWord(Suf(w1) ∩ Suf(w2)).
Let occur(u, v) be the number of occurrences of v in u, where u, v ∈ A∗ and
|v| > 0; formally occur(u, v) = |{w | w ∈ Suf(u) and v ∈ Prf(w)}|. We call a
factor v unioccurrent in u if occur(u, v) = 1.

Recall the notion of a complete return [2]: Given a word w and factors r, u ∈
F(w), we call the factor r a complete return to u in w if r contains exactly two
occurrences of u, one as a prefix and one as a suffix.

We list some known properties of rich words that we use in our article. All
of them can be found, for instance, in [2].

Proposition 3. If w, u ∈ R, |w| ≥ 1, |u| ≥ 1, and u ∈ Fp(w) then all complete
returns to u in w are palindromes.

Proposition 4. If w ∈ R and p ∈ F(w) then p, pR ∈ R.

Proposition 5. A word w is rich if and only if every prefix p ∈ Prf(w) has a
unioccurrent palindromic suffix.

Rich Words Containing Two Given Factors 289

3 Standard Extensions and Flexed Palindromes

We start with a formal definition of a standard extension and a flexed palindrome
introduced at the beginning of the article.

Definition 6. Let j ≥ 0 be a nonnegative integer, w ∈ R, and |w| ≥ 2. We
define StdExt(w, j) as follows:

– StdExt(w, 0) = w.
– StdExt(w, 1) = wa such that lps(wa) = a lpps(w)a and a ∈ A.
– StdExt(w, j) = StdExt(StdExt(w, j − 1), 1), where j > 1.
Let StdExt(w) = {StdExt(w, j) | j ≥ 0}. If p ∈ StdExt(w) then we call p a
standard extension of w.
Let T(w) = {lps(ub) | ub ∈ Prf(w) and b ∈ A and ub �= StdExt(u, 1)}. If r ∈
T(w) then we call r a flexed palindrome of w.

For a given rich word w ∈ R having a flexed palindrome r we define a standard
palindromic replacement of r to be the longest palindromic suffix of a standard
extension of a prefix p of w such that lps(px) = r, where px is a prefix of w
and x ∈ A. The idea is that we can “replace” r with the standard palindromic
replacement.

Definition 7. Let stdPalRep(w, r) = lps(StdExt(p, 1)), where w, r ∈ R, r ∈
T(w), px ∈ Prf(w), x ∈ A, and lps(px) = r.

We call stdPalRep(w, r) a standard palindromic replacement of r in w.

Example 8. If A = {0, 1} and w = 110101100110000110000110011 then 001100 ∈ T(w),
lps(1101011001100001100001100) = 001100, StdExt(110101100110, 1) = 1101011001101, and
stdPalRep(w, 001100) = lps(1101011001101) = 1011001101.

We show that the length of a flexed palindrome r is less than the length of the
standard palindromic replacement stdPalRep(w, r).

Lemma 9. If ux, uy ∈ R, x, y ∈ A, x �= y, and ux = StdExt(u, 1) then
| lps(ux)| > | lps(uy)|.
Proof. Let yty = lps(uy). From the definition of a standard extension we have
lps(ux) = xvx, where v = lpps(u) and hence t ∈ Suf(v). Since y �= x we have
also yt ∈ Suf(v). The lemma follows.

An obvious corollary is that a flexed palindrome of w is not a prefix of w.

Corollary 10. If w, r ∈ R and r ∈ T(w) then r �∈ Prf(w).

In [5] the standard extension has been used to prove that each rich word w can
be extended “richly”; this means that there is a ∈ A such that wa is rich.

Lemma 11. If w ∈ R and |w| ≥ 2 then StdExt(w) ⊂ R.

290 J. Rukavicka

Proof. Obviously it is enough to prove that StdExt(w, 1) ∈ R, since for every
t ∈ StdExt(w) \ {w} there is a rich word t̄ such that t = StdExt(t̄, 1).

Let xpx = lps(StdExt(w, 1)), where x ∈ A. Proposition 5 implies that we
need to prove that xpx is unioccurrent in StdExt(w, 1). Realize that p is unioc-
current in w, hence xpx is unioccurrent in StdExt(w, 1).

To simplify the proofs of the paper we introduce a function MaxStdExt(u, v) to
be the longest prefix z of u such that z is also a standard extension of v:

Definition 12. Let MaxStdExt(u, v) = MaxLenWord({StdExt(v) ∩ Prf(u)}),
where u ∈ R and v ∈ Prf(u). We call MaxStdExt(u, v) a maximal standard
extension of v in u.

The next lemma shows that if a rich word contains factors ypx and ypy,
where p is a palindrome, p is not a prefix of w, x, y are distinct letters, and ypx
“occurs” before ypy in w then ypy is a flexed palindrome.

Lemma 13. If w, v, p ∈ R, v ∈ Prf(w), p �∈ Prf(w), x, y ∈ A, x �= y, ypx ∈
Suf(v), ypy �∈ F(v), and ypy ∈ F(w) then ypy ∈ T(w).

Proof. Let v̄ be such that v̄y ∈ Prf(w), ypy ∈ Suf(v̄y), and occur(v̄y, ypy) = 1.
Let u = lps(v̄). Because p �∈ Prf(w) it follows that u = lpps(v̄) = lps(v̄) and
thus there is z ∈ A such that zu ∈ Suf(v̄). Obviously v ∈ Prf(v̄) and hence
occur(v̄, p) > 1. Then Proposition 5 implies that occur(u, p) > 1. It follows that
yp ∈ Suf(u) ∩ Prf(u), z �= y, and Lemma 9 implies that ypy ∈ T(w). The word
w with is its factors is depicted on Fig. 1. This completes the proof.

Fig. 1. Structure of the word w for Lemma 13.

4 Removing Flexed Points

We define formally the set Γ mentioned in the introduction. An element (w, r)
of the set Γ represents a rich word w for which we are able to construct a
new rich word w̄ such that w̄ does not contain the flexed palindrome r, but w̄
have certain common prefixes and suffixes with w. We require that r is one of
the longest flexed palindromes of w and that r is not a factor of the longest
palindromic prefix of w. In addition we require that |r| > 2 so that the standard
extension of rtrim(r) would be defined.

Rich Words Containing Two Given Factors 291

Definition 14. Let Γ be a set defined as follows: (w, r) ∈ Γ if

1. w, r ∈ R and |r| > 2 and r ∈ T(w) and
2. r �∈ F(lpp(w)) and
3. |r| ≥ |r̄| for each r̄ ∈ T(w).

Given (w, r) ∈ Γ , we need to express w as a concatenation of its factors
having some special properties. For this reason we define a function parse(w, r):

Definition 15. If (w, r) ∈ Γ then let parse(w, r) = (v, z, t), where

– v, z, t ∈ R and vzt = w and
– r ∈ Suf(v) and occur(w, r) = occur(v, r) and
– vz = MaxStdExt(vzt, v).

Remark 16. The prefix v is the shortest prefix of w that contains all occurrences
of r. The prefix vz is the maximal standard extension of v in w, and t is such
that vzt = w. It is easy to see that v, z, t exist and are uniquely determined for
(w, r) ∈ Γ .

The next simple lemma is necessary for the following definition of a reduced
prefix.

Lemma 17. Let (w, r) ∈ Γ , let (v, z, t) = parse(w, r), and let v̄ be such that
v = v̄ lps(v).

– If occur(v̄r, r) > 1 then there is a word ḡ such that ḡrz ∈ Prf(v) and
occur(ḡrz, r) < occur(v, r)

– If occur(v̄r, r) = 1 then U �= ∅ and r �∈ F(U), where
U = {u | u ∈ Prf(pc(v̄ rtrim(r))) and ltrim(r)z ∈ Suf(u)}.

Proof. It follows from Property 2 of Definition 14 that there is h ∈ Prf(w) such
that w = hzR lps(v)zt. Note that lps(v) �= v since r ∈ T(w) and thus r �∈ Prf(w),
see Corollary 10. It is clear that r ∈ Prf(lps(v)) ∩ Suf(lps(v)). This implies that
hzRr ∈ Prf(w). Note that v̄ = hzR. We distinguish two cases as stated in the
Lemma:

– occur(v̄r, r) > 1: Let g be the complete return to r in v such that g ∈
Suf(hzRr). Clearly rz ∈ Prf(g) and zRr ∈ Suf(g), since r �∈ F(ltrim(r)z);
recall r ∈ Suf(v) and occur(v, r) = occur(vzt, r). Let ḡ be such that
ḡg = hzRr.

– If occur(v̄r, r) = 1: Let ū = stdPalRep(hzRr, r). Clearly lps(hzRr) = r and
ū �= r. Because zR rtrim(r) ∈ Suf(hzR rtrim(r)), then obviously U �= ∅ and
r �∈ F(U).

The word w with is its factors is depicted on Fig. 2. This completes the proof.

292 J. Rukavicka

For an element (w, r) ∈ Γ we define a function rdcPrf(w, r) (the reduced prefix),
which is a prefix of the palindromic closure of some prefix of w. In Theorem 28 we
show that the concatenation of rdcPrf(w, r) and t is a rich word having a strictly
smaller number of occurrences of r than in w, where (v, z, t) = parse(w, r). This
reducing of occurrences of r is the key for removing all “long” flexed palindromes
as explained in the introduction.

Definition 18. If w, r ∈ Γ and (v, z, t) = parse(w, r) then let rdcPrf(w, r)
be defined as follows. Following the notation and the proof of Lemma 17 we
distinguish two cases:

– occur(v̄r, r) > 1: We define rdcPrf(w, r) = ḡrz.
– occur(v̄r, r) = 1: We define rdcPrf(w, r) = MinLenWord(U).

We call rdcPrf(w, r) the reduced prefix of w by r.

Figure 2 depicts the factors of the word w used for construction of the reduced
prefix of w.

Remark 19. Note in Definition 18 in the second case, where occur(v̄r, r) = 1, it
may happen that the reduced prefix rdcPrf(w, r) is not a prefix of w. However it
is a prefix of a palindromic closure of hzR rtrim(r), hence the number of flexed
palindromes remains the same; formally |T(hzR rtrim(r)))| = |T(rdcPrf(w, r))|.
Realize that pc(t) ∈ StdExt(t) for each t ∈ R and |t| ≥ 2.

In the first case, where occur(v̄r, r) > 1, the reduced prefix rdcPrf(w, r) is
always a prefix of w.

Fig. 2. Construction of the reduced prefix. Case 1 and 2.

To clarify the definition of the reduced prefix rdcPrf(w, r) we present below
two examples representing those two cases in the definition. For both examples
we consider that A = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Example 20. If w = 123999322399932442399932255223993 and r = 999
then v = 1239993223999324423999, z = 322, t = 55223993, lps(v) =
999324423999, h = 1239993, w = hzR lps(v)zt, g = 9993223999 ∈ Suf(hzRr) =
Suf(1239993223999), ḡ = 123, and rdcPrf(w, r) = 123999322.

Rich Words Containing Two Given Factors 293

Example 21. If w = 123999599932239949 and r = 999 then v =
1239995999, z = 32, t = 239949, lps(v) = 9995999, h = 1, w =
hzR lps(v)zt, StdExt(hzR rtrim(r), 1) = StdExt(12399, 1) = 123993, ū =
stdPalRep(123999, 999) = 3993, pc(12399) = 12399321, U = {1239932}, and
rdcPrf(w, r) = 1239932.

Using the reduced prefix we can now define the word rdcWrd(w, r) (a reduced
word):

Definition 22. Let rdcWrd(w, r) = rdcPrf(w, r)t, where (v, z, t) = parse(w, r)
and (w, r) ∈ Γ . We call rdcWrd(w, r) the reduced word of w by r.

We show that the reduced word rdcWrd(w, r) and w have the same prefix and
suffix of length |r| − 1.

Lemma 23. If (w, r) ∈ Γ and u = rdcWrd(w, r) then | lcp(u,w)| ≥ |r| − 1 and
| lcs(u,w)| ≥ |r| − 1.

Proof. From the construction of the reduce prefix and the reduced word, it is
easy to see that rtrim(r) ∈ F(lcp(u, v)) and ltrim(r) ∈ F(lcs(u, v)). The lemma
follows.

As already mentioned the reduced prefix rdcPrf(w, r) is not necessarily a prefix
of w. In such a case rdcPrf(w, r) ∈ Prf(pc(v̄ rtrim(r))), see Definition 18. We
show that every palindrome from the set F(rdcPrf(w, r))\F(v̄ rtrim(r))) contains
as a factor the standard palindromic replacement ū of r in w and we show that
ū is not a factor of w. This will be important when proving richness of the word
rdcWrd(w, r).

Let F(w, r) = {u | u ∈ F(w) and r �∈ F(u)} ⊆ F(w), where w, r ∈ A∗.
The set F(w, r) contains factors of w that do not contain the factor r. Let
Fp(w, r) = Fp(w) ∩ F(w, r).

Proposition 24. If (w, r) ∈ Γ , (v, z, t) = parse(w, r), u = rdcPrf(w, r), ū =
stdPalRep(w, r), and v̄ is such that v = v̄ lps(v) then Fp(u, ū) ⊆ Fp(v̄ rtrim(r))
and ū �∈ Fp(w).

Proof. From the properties of the palindromic closure it is easy to see that
Fp(pc(f), lps(f)) ⊆ Fp(f) for each f ∈ R. It means that every palindromic
factor of pc(f) that is not a factor of f contains the factor lps(f). It follows that
Fp(u, ū) ⊆ Fp(rtrim(v)).

We show that occur(w, ū) = 0. Let ū = xtx and r = ypy, where x, y ∈ A.
Obviously x �= y. Lemma 9 implies that |ū| > |r|. It follows that py ∈ Prf(t),
and yp ∈ Suf(t). Thus xty ∈ F(w). Lemma 13 implies that ū ∈ Fp(w) if and
only if ū ∈ T(w). Since |ū| > |r|, this would be a contradiction to Property 3 of
Definition 14. Hence ū �∈ Fp(w). This completes the proof.

We define a set Mergeable which contains 3-tuples (d, g, t) of rich words such
that, among other properties, dg and gt are rich. Later we prove that the “merge”
dgt of dg and gt is also rich. Let flt(p) = A ∩Prf(p) be the first letter of a word
p ∈ A∗ with |p| ≥ 1.

294 J. Rukavicka

Definition 25. We define a set Mergeable as follows: (d, g, t) ∈ Mergeable if

1. d, g, t, dg, gt, dg flt(t) ∈ R and
2. lps(dg flt(t)) ∈ T(dg flt(t)) and
3. lps(gp) �∈ F(dg) for each p ∈ Prf(t) with |p| ≥ 1.

Let (d, g, t) ∈ Mergeable. The following proposition shows that dgt is a rich
word. This will allow us from a rich word of the form dgwgt to construct a rich
word dgt. In other words this will allow us to remove the factor w from a rich
word, and thus to reduce the number of occurrences of flexed palindromes.

Proposition 26. If (d, g, t) ∈ Mergeable then

– dgt ∈ R and
– lps(dgp) = lps(gp) for each p ∈ Prf(t) with |p| ≥ 1.

Proof. From Definition 25 it follows immediately that the Proposition holds for
(d, g,flt(t)).

Suppose that the Proposition holds for (d, g, p̄), where p̄ ∈ Prf(t) with 1 ≤
|p̄| < |t|. We show that the Proposition holds for (d, g, p) and (h, g, p), where
p ∈ Prf(t) with |p| = |p̄|+1. From the property that a finite rich word w of length
n has n+1 palindromic factors it follows that |Fp(w)| = |Fp(rtrim(w))|+1. This
and Property 3 of Definition 25 imply that lps(gp) �∈ F(lps(dgp̄)). Consequently
lps(gp) = lps(dgp) and dgp ∈ R, see Proposition 5. This completes the proof.

We prove that the set of flexed palindromes of the word dgt that are not factors
of prefix dg, where (d, g, t) ∈ Mergeable, does not depend on the prefix d.

Proposition 27. If (d, g, t), (h, g, t) ∈ Mergeable, |d| ≥ 1, and |h| ≥ 1 then
T(dgt) \ T(dg) = T(hgt) \ T(hg).

Proof. To get a contradiction, suppose that there is p ∈ Prf(t) with |p| ≥ 1 such
that lps(dgp) ∈ T(dgp) and lps(hgp) �∈ T(hgp). If |p| > 1 then | lps(dgp)| ≤
| lps(dg rtrim(p))| and trim(lps(hgp)) = lps(hg rtrim(p)), which is a contradic-
tion, because lps(dg rtrim(p)) = lps(hg rtrim(p)) = lps(g rtrim(p)), see Proposi-
tion 26. If |p| = 1 the proposition holds because of Property 2 of Definition 25.
This completes the proof.

The main theorem of the paper states that the reduced word rdcWrd(w, r)
is rich, where (w, r) ∈ Γ . In addition the theorem asserts that the set of flexed
palindromes of rdcWrd(w, r) is a subset of the set of flexed palindromes of the
word w, the number of occurrences of r is strictly smaller in rdcWrd(w, r) than
in w, and the longest common prefix and suffix of rdcWrd(w, r) and w are longer
than |r| − 1.

Theorem 28. If (w, r) ∈ Γ then

– rdcWrd(w, r) ∈ R and T(rdcWrd(w, r)) ⊆ T(w) and
– occur(rdcWrd(w, r), r) < occur(w, r) and
– | lcp(rdcWrd(w, r), w)| ≥ |r| − 1 and | lcs(rdcWrd(w, r), w)| ≥ |r| − 1.

Rich Words Containing Two Given Factors 295

Proof. Recall that rdcWrd(w, r) = ut, where (v, z, t) = parse(w, r) and u =
rdcPrf(w, r). If |t| = 0 then rdcWrd(w, r) ∈ R and T(rdcWrd(w, r)) ⊆ T(w).

Let d be such that rdcPrf(w, r) = d ltrim(r)z. If |t| > 0 then we are going
to show that (d, ltrim(r)z, t) ∈ Mergeable. Obviously d ltrim(r)z, ltrim(r)zt ∈ R;
recall that ltrim(r)zt ∈ Suf(w). We need to show that Property 3 of Definition 25
is satisfied: Because vz = MaxStdExt(vzt, v) it follows that lps(vz flt(t)) ∈ T(w).
This and occur(ltrim(r)zt, r) = 0 imply that | lps(vzp)| ≤ | ltrim(r)zp| for each
p ∈ Prf(t) with |p| ≥ 1. In consequence lps(ltrim(r)zp) = lps(vzp). Proposi-
tion 24 and occur(vzp, lps(vzp)) = 1 imply that lps(vzp) �∈ F(d ltrim(r)z). The
other properties of Definition 25 are clearly also fulfilled. Hence (d, ltrim(r)z, t) ∈
Mergeable. Thus from Proposition 26 we get that d ltrim(r)zt ∈ R.

Let w̄ be such that w = w̄ ltrim(r)zt. Obviously (w̄, ltrim(r)z, t) ∈ Mergeable.
Then Proposition 27 asserts that T(rdcWrd(w, r)) ⊆ T(w).

The fact that occur(ut, r) < occur(w, r) follows Lemma 17 and Definition 18.
Note that occur(rdcPrf(w, r), r) < occur(w, r).

The properties | lcp(rdcWrd(w, r), w)| ≥ |r| − 1 and | lcs(rdcWrd(w, r), w)| ≥
|r| − 1 follow from Lemma 23.

This completes the proof.

Two more examples will illuminate the construction of rdcWrd(w, r). The exam-
ples are again based on the two cases of Definition 18. For both example we
consider that A = {1, 2, 3, 4, 5, 6, 7, 8}.

Example 29. If w = 12145656547745656545656547874 and r = 656 then
v = 12145656547745656545656, z = 547, t = 874, lps(v) = 656545656,
u = rdcPrf(w, r) = 12145656547, and rdcWrd(w, r) = ut = 12145656547874.

Example 30. If w = 12145656547874 and r = 656 then v = 12145656, z = 54,
t = 7874, lps(v) = 656, u = rdcPrf(w, r) = 12145654, and rdcWrd(w, r) = ut =
121456547874.

For a finite set S, we can consider that the set S is well-ordered. No matter
how, we just need a function that selects one element from S. Let the function
selectFirst(S) returns the first element of S. If S is an empty set, then we define
selectFirst(S) = ε.

If a rich word w has a factor u, then the palindromic closure of w is rich and
contains the factor uR. Hence for us when constructing a rich word containing
given factors, it does not matter if w contains u or uR. We introduce the notion
of a reverse-unioccurrent factor. Moreover we define a function ruo(w, u, v) (a
reverse-unioccurrence of u, v in w) which returns a factor of w such that u, v are
reverse-unioccurrent in this factor; in addition we require u or uR to be a prefix
and v or vR to be a suffix of ruo(w, u, v).

Definition 31. If |{u, uR} ∩ F(w)| = 1 then we say that a word u is reverse-
unioccurrent in w, where w, u ∈ R.

If w1, w2, w ∈ R, w1, w2 ∈ F(w), and there is t ∈ Prf(w) such that w1 ∈ F(t)
and {w2, w

R
2 }∩F(t) = ∅ then let M(w,w1, w2) ⊂ F(w) such that t ∈ M(w,w1, w2)

if:

296 J. Rukavicka

– t ∈ F(w) and w1, w2 are reverse-unioccurrent in t and
– {w1, w

R
1 } ∩ Prf(t) �= ∅ and {w2, w

R
2 } ∩ Suf(t) �= ∅.

Let ruo(w,w1, w2) = selectFirst(M(w,w1, w2)).

Remark 32. It is not difficult to see that the function ruo(r, w1, w2) is well
defined and the set M(w,w1, w2) is nonempty.

We define the function elmWrd(w,w1, w2) (eliminated word) that constructs
a rich word from w by “eliminating all” flexed palindromes longer than m =
max{|w1|, |w2|} and keeping the prefix w1 and the suffix w2 of w.

Definition 33. Let maxFlxPal(w) = {r | (w, r) ∈ Γ}. If w,w1, w2 ∈ R, m =
max{|w1|, |w2|}, w1 ∈ Prf(w), and w2 ∈ Suf(w), then let elmWrd(w,w1, w2) be
the result of the following procedure:

01 INPUT: w,m,w_1,w_2;
02 res: = ruo(w,w_1,w_2);
03 r := selectFirst(maxFlxPal(res));
04 WHILE r is longer than m
05 DO
06 res := rdcWrd(res,r);
07 res := ruo(res,w_1,w_2);
08 r := selectFirst(maxFlxPal(res));
09 END-DO;
10 RETURN res;

The calls of the function ruo on the lines 02 and 07 guarantee that w1, w2 are
reverse-unioccurrent in the word res and that {w1, w

R
1 } ∩ Prf(res) �= ∅ and

{w2, w
R
2 }∩Suf(res) �= ∅. Realize that it is not guaranteed that w1, w2 are reverse-

unioccurrent in rdcWrd(res, r), even if w1, w2 are reverse-unioccurrent in res.
Clearly, the facts that t̄ is reverse-unioccurrent in a rich word t and t̄ ∈ Prf(t)

imply that lpp(t) ∈ Prf(t̄); realize that if d ∈ F(lpp(t̄)) then dR ∈ F(lpp(t)) also,
since palindromes are closed under reversal. Thus if r is a flexed palindrome of
t longer than the prefix t̄, then r is not a factor of lpp(t) and hence r satisfies
Property 2 of Definition 14.

Let r = selectFirst(maxFlxPal(w)). The call of the function rdcWrd(res, r)
on the line 06 contains valid parameters, since if r �= ε and |r| > m then (w, r) ∈
Γ .

In addition, because |r| > max{|w1|, |w2|}, Theorem 28 asserts that
{w1, w

R
1 } ∩ Prf(rdcWrd(res, r)) �= ∅ and {w2, w

R
2 } ∩ Suf(rdcWrd(res, r)) �= ∅;

consequently {w1, w
R
1 } ∩ Prf(res) �= ∅ and {w2, w

R
2 } ∩ Suf(res) �= ∅ on the line

06.
Moreover Theorem 28 implies that the procedure finishes after a finite

number of iterations, because occur(rdcWrd(w, r), r) < occur(w, r) and
T(rdcWrd(w, r)) ⊆ T(w). The number of iterations is bounded by the number∑

r∈T(w) occur(w, r). Note that several occurrences of r may be “eliminated” in
one iteration. Hence we proved the following lemma:

Rich Words Containing Two Given Factors 297

Lemma 34. If w ∈ R, w1 ∈ Prf(w), w2 ∈ Suf(w), m = max{|w1|, |w2|}, and
t = elmWrd(w,w1, w2) then

– t ∈ R and for each r ∈ T(t) we have |r| ≤ m and
– {w1, w

R
1 } ∩ Prf(t) �= ∅ and {w2, w

R
2 } ∩ Suf(t) �= ∅.

5 Words with Limited Number of Flexed Points

What is the maximal length of a word u such that w is reverse-unioccurrent in
u, w is a prefix of u, and u has a given maximal number of flexed palindromes?
The proposition below answers this question.

Proposition 35. If u,w ∈ R, |u| ≥ 1, |v| ≥ 1, w ∈ Prf(u), |T(u) \ T(w)| ≤ k,
|w| ≤ m, and w is reverse-unioccurrent in u then |u| ≤ m2k+1.

Proof. Obviously |pc(u)| < 2|u|, pc(u) ∈ StdExt(u), and w is not reverse-
unioccurrent in pc(u), since wR ∈ Suf(pc(u)). It follows that if v1, v2 ∈ Prf(ū)
such that v1 is reverse-unioccurrent in ū, v1 ∈ Prf(v2), |T(v2) \ T(v1)| = 1,
and lps(v2) ∈ T(v2) then | rtrim(v2)| < 2|v1|, since rtrim(v2) ∈ StdExt(v1) and
pc(v1) ∈ StdExt(v1) also. This implies that |v2| ≤ 2|v1|. The proposition follows.

Remark 36. The proof asserts that if v1, v2 are two prefixes of a word u such
that the longest palindromic suffix of v2 is the only flexed palindrome in v2 which
is not a factor of v1, then v2 is at most twice longer than v1 on condition that
v1 is reverse-unioccurrent in ltrim(v2). Less formally it means that the length
of a word can grow at most twice before the next flexed palindrome appears.
Note that for k = 1 we have |u| ≤ 2m, which makes sense, since the palindromic
closure of a word u is at most twice longer than u.

In [4] the author showed an upper bound for the number of palindromic
factors of given length in a rich word. Recall that q = |A |.
Proposition 37 ([4], Corollary 2.23]). If w ∈ R and n > 0 then

|Fp(w) ∩ An | ≤ (q + 1)n(4q10n)log2 n.

Proposition 37 implies an upper bound for the number of flexed palindromes:

Lemma 38. If w ∈ R, n > 0, and A≤n =
⋃n

j=0 Aj then

|T(w) ∩ A≤n | ≤ (q + 1)n2(4q10n)log2 n.

Proof. Just realize that
∑n

j=1(q + 1)j(4q10j)log2 j ≤ (q + 1)n2(4q10n)log2 n.

From Lemmas 34, 38 and Proposition 35 we obtain the result of the article:

Corollary 39. If w,w1, w2 are rich words, w1, w2 ∈ F(w), m = max {|w1|, |w2|}
then there exists also a rich word w̄ such that w1, w2 ∈ F(w̄) and |w̄| ≤ m2k(m)+2,
where k(m) = (q + 1)m2(4q10m)log2 m.

298 J. Rukavicka

Proof. Without loss of generality, suppose that there is t̄ ∈ Prf(w) such that
w1 ∈ Prf(t̄) and {w2, w

R
2 } ∩ F(t̄) = ∅. Then the function ruo(w,w1, w2) is well-

defined. Let t ∈ ruo(w,w1, w2). Consider the word g = elmWrd(t, w1, w2). Let
k(m) = (q + 1)m2(4q10m)log2 m. Lemma 38 and Proposition 35 imply that |g| ≥
m2k(m)+1. Lemma 34 implies that g ∈ R, {w1, w

R
1 } ∩ F(g) �= ∅, and {w2, w

R
2 } ∩

F(g) �= ∅. Let w̄ = pc(g). It follows that w1, w2 ∈ F(w̄). Because |pc(g)| ≤ 2|g|,
the corollary follows.

Acknowledgments. The author wishes to thank to Štěpán Starosta for his useful
comments. The author acknowledges support by the Czech Science Foundation grant
GAČR 13-03538S and by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS14/205/OHK4/3T/14.

References

1. Bucci, M., De Luca, A., Glen, A., Zamboni, L.Q.: A new characteristic property of
rich words. Theor. Comput. Sci. 410, 2860–2863 (2009)

2. Glen, A., Justin, J., Widmer, S., Zamboni, L.Q.: Palindromic richness. Eur. J. Comb.
30, 510–531 (2009)

3. Pelantová, E., Starosta, Š.: On words with the zero palindromic defect. In: Brlek, S.,
Dolce, F., Reutenauer, C., Vandomme, É. (eds.) WORDS 2017. LNCS, vol. 10432,
pp. 59–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66396-8 7

4. Rukavicka, J.: An upper bound for palindromic and factor complexity of rich words.
(2018, submitted for publication). https://arxiv.org/abs/1810.03573

5. Vesti, J.: Extensions of rich words. Theor. Comput. Sci. 548, 14–24 (2014)

https://doi.org/10.1007/978-3-319-66396-8_7
https://arxiv.org/abs/1810.03573

Mortality and Synchronization
of Unambiguous Finite Automata

Andrew Ryzhikov(B)

LIGM, Université Paris-Est, Marne-la-Vallée, France
ryzhikov.andrew@gmail.com

Abstract. We study mortal words and words of minimum non-zero rank
(in particular, synchronizing words) in strongly connected unambiguous
automata. We show that every n-state strongly connected unambigu-
ous automaton admits a word of minimum non-zero rank of length at
most n5, and this word can be found in polynomial time. We show
that for words of minimum rank this upper bound can be lowered to
O(n3(logn)4) for prefix automata of finite codes and to O(n3 log n) for
prefix automata of complete finite codes. We also provide quadratic lower
bounds on the length of shortest mortal words for several classes of deter-
ministic automata.

Keywords: Unambiguous automaton · Synchronizing word ·
Mortal word

1 Introduction

The questions of mortality and synchronization are the most important reach-
ability problems for finite automata. Both these problems can be considered as
finding a word of some particular (either minimum or minimum non-zero) rank
in a given automaton A. In this paper we concentrate on extremal problems
regarding the length of a shortest mortal or synchronizing word. The length of a
shortest mortal word shows the minimum time for a system to become uncontrol-
lable, while the length of a shortest synchronizing word indicates the minimum
time to get total control over the current state of the system.

Let A be an n-state strongly connected unambiguous automaton. Carpi
proved an upper bound of 1

2rn3 on the length of a shortest word of minimum
rank if A is complete [6], thus providing an upper bound to a problem which
can be considered as a broad generalization of the Černý conjecture (see [4,16]).
Kiefer and Mascle extended his result and proved an upper bound of n5 on the
length of a shortest mortal word if A is non-complete [10]. However, no poly-
nomial bound on the length of a shortest word of minimum non-zero rank was
known in the case where A is non-complete. In this paper, we provide such a
bound by extending the proof of Kiefer and Mascle, thus partially answering a
question stated in the list of research problems of [4]. Our proof also implies that

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 299–311, 2019.
https://doi.org/10.1007/978-3-030-28796-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_24&domain=pdf
https://doi.org/10.1007/978-3-030-28796-2_24

300 A. Ryzhikov

it can be checked in polynomial time whether a strongly connected unambiguous
automaton is synchronizing.

The paper is organized as follows. In Sect. 2 we present the definitions and
preliminary results used in the paper. In Sect. 3 we present the idea of the proof of
Kiefer and Mascle on bounding the lengths of mortal words in strongly connected
unambiguous automata. In Sect. 4 we show how to extend this proof to obtain
an n5 upper bound on the length of shortest words of minimum non-zero rank.
In Sect. 5 we refine the bounds on the length of shortest words of minimum rank
for prefix automata of finite codes. In Sect. 6 we provide lower bounds on the
length of shortest mortal words in several classes of deterministic automata. In
Sect. 7 we prove a sufficient condition for recognizable codes to be synchronizing.

2 Main Definitions

A nondeterministic finite automaton (which we simply call an automaton in
this paper) is a triple A = (Q,Σ,Δ), where Q is a finite set of states, Σ is a
finite alphabet, and Δ is a transition relation Q × Σ → 2Q, where 2Q is the
family of all subsets of Q. Note that our definition of an automaton does not
include any initial or accepting states. We say that a word w kills a state q if
Δ(q, w) is empty, otherwise we say that q survives w. The transition relation is
naturally extended to 2Q × Σ → 2Q by taking Δ(S, a) = ∪q∈SΔ(q, a) for S ⊆ Q
and a ∈ Σ, and then to Q × Σ∗ → 2Q by taking Δ(q, wa) = Δ(Δ(q, w), a) for
w ∈ Σ∗, a ∈ Σ and q ∈ Q. When the transition relation is clear from the context,
we denote Δ(q, w) by q.w. We also denote by w.q the set {p | q ∈ p.w}. More
generally, we denote by S.w and w.S the sets {q.w | q ∈ S} and {w.q | q ∈ S}
for S ⊆ Q, w ∈ Σ∗. An automaton is unambiguous if for any two states p, q ∈ Q
and any word w ∈ Σ∗ there is at most one path from p to q labeled by w. An
automaton is deterministic if for every state q ∈ Q and every letter a ∈ Σ the
set Δ(q, w) has cardinality at most one. Clearly, every deterministic automaton
is unambiguous. An automaton is called strongly connected if for every state p
and every state q there is a word w such that q ∈ p.w. Everywhere in the paper
we assume the automata to be strongly connected. By ε we denote the empty
word.

Provided a word w ∈ Σ∗ for an automaton A = (Q,Σ,Δ), one can naturally
assign a matrix M(w) to it as follows. Fix some ordering q1, . . . , qn of the set Q
of states. The entry M(w)i,j of the matrix M(w) is the number of paths from qi

to qj labeled by w. As follows from the definition, each entry of such a matrix
for an unambiguous automaton belongs to the set {0, 1}. For the mapping M :
Σ∗ → {0, 1}n×n for any words w1, w2 ∈ Σ∗ we have M(w1w2) = M(w1)M(w2).
We denote M(A) = {M(w) | w ∈ Σ∗}.

Using this morphism, we define the rank of a word w in an unambiguous
automaton A as the Boolean rank of the matrix M(w) [8]. By Boolean rank we
mean the rank over the Boolean semiring {0, 1} (having 1 + 1 = 1), that is, the
smallest r such that M(w) can be represented as a product of an n×r and r×n
zero-one matrices. Given an automaton A, we call a word synchronizing if it has

Mortality and Synchronization of Unambiguous Finite Automata 301

rank 1, and mortal if it has rank 0. An automaton is called non-complete if it
admits a mortal word, otherwise it is called complete. An automaton admitting a
synchronizing word is called synchronizing. The paper [2] surveys some questions
on the structure of unambiguous automata and words of particular rank for them.

A code is a set of words (called codewords) such that no word can be repre-
sented as a concatenation of codewords in two different ways. A word w is called
a factor of w′ if there exist words u, v such that w′ = uwv. A word w ∈ Σ∗ is
called non-mortal for a code X over Σ if it is a factor of a word in X∗, otherwise
it is called mortal. A code is called complete if it does not admit a mortal word.
Thus, complete codes are exactly the codes such that every word is a factor of
a decodable message. A word w is called synchronizing for a code X if for every
pair of words u, v such that uwv ∈ X∗ we have uw,wv ∈ X∗. If the word w
is synchronizing, then seeing a word ww in a decodable message uwwv allows
to separate the decoding process into two independent parts for uw and wv. A
presence of a synchronizing word in a message allows to restart the decoding
process after transmission errors or when a part of a message is skipped.

Unambiguous automata serve as a very powerful tool for studying codes.
Let A be a strongly connected unambiguous automaton, and q be some its
state. The set of first return words of q is then defined as the set of all words
labeling paths from q to q and not containing q as an intermediate state. For a
strongly connected unambiguous automaton A and a state q in it, the set of first
return words is always a recognizable (by some finite automaton) code [4]. The
converse is also true: for every recognizable code X there is a strongly connected
unambiguous automaton A such that X is the set of first return words of some
its state. Moreover, a word is mortal (synchronizing) for A if and only if it is
mortal (synchronizing) for X [4]. More generally, the minimum non-zero rank of
words for A is related to the minimum number of interpretations of words with
respect to X (called the degree of X, see Sect. 9.6 of [4]).

3 The Result of Kiefer and Mascle

Let A = (Q,Σ,Δ) be an n-state strongly connected unambiguous automaton.
Fix an ordering q1, . . . , qn of the set Q. For a subset S of states denote by vect(S)
the n-dimensional characteristic (row) vector of S, that is, a vector v ∈ {0, 1}n

with ith component equal to 1 if qi ∈ S and equal to 0 otherwise.
A set C ⊆ Q is called mergeable if there exists a word w and a state q′ such

that for every state q ∈ R we have q′ ∈ q.w. A set R ⊆ Q is called coreachable
if there exists a word w and a state q′ such that for every state q ∈ C we have
q ∈ q′.w. Characteristic vectors of mergeable and coreachable sets are exactly
non-zero columns and rows of matrices in the monoid M(A).

Let y, z be a pair of words. We denote by P(y, z) the set of all states q which
are reached by y and survive z, that is such that y.q and q.z are non-empty.
Studying P(y, z) is the central idea of the discussed result. Assume without
loss of generality that P(y, z) = {q1, . . . , qk}. Then there exist two families of
non-empty sets: a family C = {C1, . . . , Ck} of mergeable and a family R =
{R1, . . . , Rk} of coreachable sets such that Ci = y.qi, Ri = qi.z for 1 ≤ i ≤ k.

302 A. Ryzhikov

The rank of the word yz is at most k. Indeed, we can represent the matrix
M(yz) as a product of the matrix with columns vect(C1)T , . . . , vect(Ck)T and
the matrix with rows vect(R1), . . . , vect(Rk) (by vT we denote the column which
is the transposition of the row v):

M(yz) = vect(C1)T · vect(R1) + . . . + vect(Ck)T · vect(Rk).

Without additional restrictions on the words y and z, the sets from C and
R can intersect. However, the relations between the sets Ci and Rj are not
arbitrary. First, for a mergeable set C and a coreachable set R the intersection
C∩R has size at most one. Second, if Ci intersects Cj then Ri and Rj are disjoint
and vice versa. Some further results in this direction are obtained in [13].

In [10] Kiefer and Mascle show how to construct a pair y, z of words of
length O(n4) such that no pair of states in P(y, z) is coreachable or mergeable.
In particular this means that no pair of sets in C and no pair of sets in R
intersects. The algorithm decreases the number of states in P(y′, z′) by iteratively
constructing the words y′, z′. This is done by concatenating words zq for different
states q with the property that no state coreachable with q survives zq. Thus we
obtain the word z forcing that no pair of states in P(ε, z) is coreachable. The
same is done symmetrically for mergeable states by the word y. Such a pair y, z
allows to manipulate unambiguous automata much easier. In particular, one can
kill a state in P(y, z) by a word of linear length (Lemma 14 of [10]). The final
mortal word is then obtained by subsequently killing all the remaining states
in P(y, z). The rank of yz for such y, z is exactly the cardinality of P(y, z).

The proof of Carpi [6] (with some small modifications) can be seen as a
similar algorithm. The main difference is that the structure of complete automata
(provided in particular by Proposition 3.4 of [6]) makes it possible to get a better
upper bound. In particular, it is enough to perform only r steps of the algorithm
producing the pair y, z, and there is no need then to kill the states in P(y, z)
afterwards.

4 Words of Minimum Non-zero Rank

In this section we extend the result of Kiefer and Mascle described in Sect. 3 to
words of minimum non-zero rank. First we observe that the word yz constructed
in Lemma 11 of [10] is not mortal. Indeed, every word wq produced in Lemma
10 of [10] does not kill the state q. Then the algorithm in Lemma 11 consists of
taking a state p.w such that p survives w, and applying wp.w to it, thus p is not
killed by wwp.w. After getting rid of coreachable states the symmetric version for
mergeable states which are not yet killed is performed, and by the same reason
it is still maintained that some state survives.

Let now w be a word of minimum non-zero rank r such that at least one
state qi ∈ P(y, z) is not killed by zwy. Such a word always exists, since we can
take w = w1w

′w2 where w′ is a word of minimum non-zero rank, and the words
w1 and w2 are such that w1 maps a state qi.z to a state which is not killed by
w′, and w2 maps a state in qi.zw1w

′ to a state surviving y. The pair yzwy, z

Mortality and Synchronization of Unambiguous Finite Automata 303

has then the same properties as y, z but the cardinality of the set P(y, zwyz) is
exactly r. This means there exist exactly r states in P(y, z) which are mapped
by zw to y.P(y, z), and all the other states are mapped to the complement of
this set. Let qi, qj be a pair of states such that zw sends exactly one of them to
y.P(y, z), and the other one to the complement of this set. The next lemma is
an analogue of Lemma 14 from [10] for the case of words of minimum non-zero
rank instead of mortal words.

Lemma 1. One can compute in polynomial time a word x ∈ Σ∗ with |x| ≤ n
such that exactly one of the sets qi.zxyz and qj .zxyz is empty.

Proof. It is enough to compute a word x such that exactly one of the sets qi.zx
and qj .zx intersects y.P(y, z). Define ei, ej and f to be the characteristic vectors
of qi.z, qj .z and y.P(y, z) respectively. As shown in the proof of Lemma 14
of [10], we have that eiM(x)fT ≤ 1 and ejM(x)fT ≤ 1. Since all the entries are
non-negative and integer, the only two possible values are thus 0 and 1.

Let V be the subspace of Rn spanned by the vectors (ei−ej)M(x) for x ∈ Σ∗.
This subspace can be seen as the smallest subspace containing the vector ei − ej

and closed under multiplying by M(a) for all a ∈ Σ. Thus we can compute a
basis B of V by subsequently finding for an already added word u a letter a ∈ Σ
such that (ei − ej)M(ua) is not in the already generated subspace and adding
this vector to the basis. Since the dimension of V is at most n, every vector in
this basis corresponds to a word of length at most n.

As shown before, the possible values of (ei − ej)M(x)fT belong to the set
{−1, 0, 1}. Since there exists a word w (defined above) with (ei−ej)M(w)fT �= 0,
we have that V is not orthogonal to f . Thus there exists a word x corresponding
to a vector in B such that (ei − ej)M(x)fT ∈ {−1, 1}, and |x| ≤ n. The word x
has then the required properties. 	

Now we can follow the proof of [10] up to using Lemma 14, and then use
Lemma 1 of this paper instead. This lemma allows to kill one state of the set
P(y, z) while maintaining that the constructed word is not mortal. Thus we can
proceed to Lemma 15 of [10] and construct iteratively a word of minimum non-
zero rank having the same upper bound of n5 on its length. We summarize these
results in the following theorem.

Theorem 2. Every strongly connected unambiguous automaton A with n states
has a word of minimum non-zero rank of length at most n5. Such a word can be
found in polynomial time.

In particular, this means that it can be checked in polynomial time whether a
finite code is synchronizing (for example, by checking that its prefix automaton is
synchronizing, see Sect. 5 for the definition). It is natural to ask whether a faster
algorithm to check synchronizability of a finite code (or a strongly connected
unambiguous automaton in general) exists.

The main contribution of Theorem 2 is the first known polynomial upper
bound on the length of shortest words of minimum non-zero rank for the non-
complete case. Additionally it can be seen as a way to make the proof of Kiefer

304 A. Ryzhikov

and Mascle (in the general case of words of minimum rank) more uniform, since
it still works for the complete case and does not require the proof of Carpi for
the special case of complete automata.

If a non-complete strongly connected deterministic automaton has a syn-
chronizing word of length �, then it has a mortal word of length at most � + n,
where n is the number of states. To find this word it is enough to kill the only
state in the image of the synchronizing word, which can be done by a word of
linear length. A similar relation for strongly connected unambiguous automata
is provided by the following result.

Proposition 3. Let A be an n-state strongly connected non-complete synchro-
nizing unambiguous automaton. If A has a synchronizing word of length �, then
it has a mortal word of length 3� + n.

Proof. Let w be a synchronizing word for A = (Q,Σ,Δ). If ww is mortal, we are
done. Otherwise there exists exactly one state q which survives w and is reached
from some state by w. Indeed, by definition every word of rank 1 has sets C,R
of states such that Q.w = R, w.Q = C and w maps every state in C to every
state in R. Thus, if there are two different states in R ∩C, the automaton is not
unambiguous. Hence we can apply Lemma 14 of [10] for y = w and z = w and
get a word x of length at most n such that the word wxww of length at most
3� + n is mortal. 	

Obviously, no relation in the other direction exists in the general case: one can
consider an arbitrary complete deterministic synchronizing automaton and add
a nowhere defined new letter to it. Then the length of a shortest synchronizing
word is not bounded by any non-trivial function of the length of a shortest mortal
word which is equal to 1.

5 Prefix Automata

A natural automaton associated to a finite code is its prefix automaton. Let X
be a finite code over an alphabet Σ. One can then construct the prefix automaton
A = (Q,Σ,Δ) of X as follows. The states of A are the proper prefixes of words
in X. For a state q ∈ Σ∗ and a letter a ∈ Σ the set Δ(q, a) contains qa if qa is a
proper prefix of a word in X and contains ε if qa is a word in X (these situations
can occur at the same time). It is easy to see that the prefix automaton of a
finite code is always strongly connected and unambiguous. The number of its
states provides a lower bound on the total length of all words in the code. The
next lemma generalizes the log-log lemma (Lemma 16 of [3], see also [5]) from
complete prefix codes to general complete codes.

Lemma 4 (Log-log lemma for general complete codes). Let A be the
prefix automaton of a finite code X over an alphabet of size m. Then there exists
a word of length �logm n� and rank at most �logm n� for this automaton, where
n is the number of its states.

Mortality and Synchronization of Unambiguous Finite Automata 305

Proof. Denote r = �logm n� and let i be the state corresponding to ε. Similar to
the prefix case, we first show that there exists a word w of length r such that
for every state q every path from q labeled by w contains the state i. Suppose
that this is not true and hence for every word w of this length there is a state qw

having a path labeled by w which does not contain the state i. Denote by q′
w a

state in qw.w such that the path from qw to q′
w labeled by w does not contain i.

Observe that for different words w1, w2 the states q′
w1

, q′
w2

are different, and
none of these states is the state i. Thus the total number of states in A is at
least mr + 1 = m�logm n� + 1 > n, which is a contradiction.

Now we will show that w has rank at most r. Denote by W the set of prefixes
of w. Since for every state q all the paths going from q and labeled by w contain
the state i, every row of M(w) is a linear combination of vectors vect(i.w′) for
w′ ∈ W with coefficients 0 and 1. Hence the rank of M(w) is at most r. 	

Provided a short word of small rank, we can perform the general algorithm
of [10] described in Sect. 3 starting with the pair w,w and thus improve the
upper bound. Let w be a word of rank k for a strongly connected unambiguous
automaton A. Then the set P(w,w) contains at most k2 states. Indeed, by defi-
nition of rank the matrix M(w) can be represented as

∑k
i=1 vect(Ci)T ·vect(Ri)

for some families C1, . . . , Ck and R1, . . . , Rk of states, where w maps every state
of Ci to every state of Ri. Every state in P(w,w) is then contained in some Ci

and in some Rj . If there are two different states contained in the same pair Ci

and Rj , the automaton A is not unambiguous. Hence the cardinality of P(w,w)
is at most k2. If the rank of ww is zero, we have constructed a mortal word
for A. Otherwise we can start with the pair w,w and apply the iterative algo-
rithm described in Sect. 3 to get a pair y′, z′ of words such that no pair of states
in P(y′w,wz′) is coreachable or mergeable. Since P(w,w) contains at most k2

states, it remains to perform at most k2 steps to get rid of all mergeable and
coreachable states by y′ and z′. Then we can kill the states in P(y′w,wz′) one
by one as described in Lemma 15 of [10]. The length of a mortal word thus
constructed is at most k2n + (k2 + 1)(14k2(n + 2)2(n − 1) + 2|w|), see the bound
in Lemma 15 of [10].

By Lemma 4 we can find in polynomial time a word w of logarithmic length
and logarithmic rank (by enumerating all words of that length). By starting with
the pair w,w we get the following.

Theorem 5. Let A be the prefix automaton of a finite non-complete code X over
an alphabet of size m. Then there exists a mortal word of length O(n3(logm n)4),
where n is the number of states in A.

For the case of complete automata we can get a slightly better bound by
using the main result of [6], since by Lemma 4 the minimum rank of a word in
a complete prefix automaton of a finite code is at most logarithmic.

Corollary 6. Let A be the prefix automaton of a finite complete code X over
an alphabet of size m. Then the length of a word of minimum rank for A is at
most 1

2n3 · �logm n�, where n is the number of states in A.

306 A. Ryzhikov

Now we proceed to a much stronger bound for the special case of non-
complete finite prefix codes. A code is called prefix if none of its codewords
is a prefix of another codeword. If k is the length of the longest codeword of
a finite non-complete prefix code, an upper bound of 2k2 on the length of a
shortest mortal word can be easily obtained (see, e.g., [12]). We improve this
bound.

Theorem 7. Let X be a non-complete finite prefix code, and let k be the length
of a longest word in X. Then there exists a mortal word of length at most
3
2 (k2 + k).

Proof. Consider the prefix automaton A = (Q,Σ, δ) of X (since X is a prefix
code, this automaton is deterministic). Observe that Q′ = Q.ak is a subset of
Q of size at most k. For any word w ∈ Σ∗ the set Q′.w does not contain two
different states corresponding to prefixes of the same length.

Now we start with the set Q′ of active states and consequently perform the
following algorithm: while there is at least one active state, take the active state
corresponding to the longest prefix and kill it by sending it to a state q such that
q.a is empty for some a ∈ Σ and then applying a. Since the set of active states
consists of states corresponding to prefixes of pairwise different lengths, it takes
a word of length at most (1 + k) + (2 + k) + . . . + (k + k) = k(k+1)

2 + k2 = 3k2+k
2

to map each state first to the state corresponding to the empty prefix and then
to kill it. Together with the word ak we get the required. 	

As proved in [14], the code Σk \ {u} for any unbordered word u (that is,
a word having no prefix equal to its suffix) has the length of a shortest mortal
word equal to k2 + k − 1. We conjecture that the order of this bound is tight,
that is, the optimal upper bound is k2 + O(k).

6 Mortality Lower Bounds for Deterministic Automata

In this section we provide lower bounds on the length of shortest mortal words
in several classes of deterministic automata. It is known that every n-state
non-complete deterministic automaton admits a mortal word of length at most
n(n+1)

2 , and the bound is tight [15] (the lower bound is the best known even
for unambiguous automata). For strongly connected binary automata the best
known lower bound is of order n2

4 + O(n), see, e.g., [11]. We concentrate on sev-
eral subclasses of strongly connected automata and show similar lower bounds
for them. We start with a short proof of a lower bound of Pribavkina for Huff-
man decoders [14], basing directly on the structure of the automaton. Then we
use a similar technique to provide quadratic upper bounds for two other classes
of automata. For all figures of this section dashed lines represent transitions for
a, dotted lines for b, and solid lines for both a and b.

A strongly connected deterministic automaton is called a Huffman decoder if
it has a state which is contained in every cycle. Huffman decoders are decoders
of the star of finite prefix codes [5].

Mortality and Synchronization of Unambiguous Finite Automata 307

Proposition 8. For every odd n ≥ 3 there exists an n-state binary non-complete
Huffman decoder A with the length of a shortest mortal word equal to n2+4n−1

4 .

q1

q2

q3

q4q5

p1

p2

p3

p4

Fig. 1. A Huffman decoder with 9 states.

Proof. Consider the following construction of a non-complete deterministic
automaton A = (Q, {a, b}, δ). The automaton has a cycle q1, . . . , qm ∈ Q such
that it is possible to leave this cycle only at the state qm. More formally,
δ(qi, x) = qi+1 for 1 ≤ i ≤ m − 1 and x ∈ {a, b}. The state qm is mapped
to q1 by a.

Besides the cycle q1, . . . , qm, A has a chain p1, . . . , pm−1 of states leading to
the only state with an undefined transition, which is pm−1. More precisely, the
letter a moves the states of the chain (except pm−1) one step forward: δ(pi, a) =
pi+1 for 1 ≤ i ≤ m − 2. The letter b returns the states of the chain to the
cycle (to the same position as like they did not leave it): δ(pi, b) = qi+1 for
1 ≤ i ≤ m − 1. The only undefined transition is by the letter a at the state
pm−1. Finally, the state qm is mapped to p1 by b, which is the only way to reach
the chain p1, . . . , pm−1 from the cycle q1, . . . , qm. See Fig. 1 for the example with
m = 5.

In the automaton A thus constructed all the cycles pass through the state
qm, hence it is a Huffman decoder.

Observe that the word bam−1(bbam−1)m−1 of length m2 + m − 1 is mortal
for A. We are going to show that it is in fact a shortest mortal word.

Indeed, A has period m, which means that Q can be partitioned into m equiv-
alence classes such that no pair of states from different classes can be mapped
to the same state. More precisely, the classes are {qi, pi} for 1 ≤ i ≤ m − 1 and
{qm}. The only way to decrease the number of active classes is to map a state
of some active class to the state pm−1 and then apply a. We call a class active
if at least one state from it is active. Let us start with the set {q1, . . . , qm} of
active states, one from each class. To kill a state from this set (by sending it
to pm−1 first) we have to apply the word bam−1, and during the application of
this word no other active state leaves the set {q1, . . . , qm}. Further, after any
application of bam−1 the state qm cannot be active, thus we have to apply b to

308 A. Ryzhikov

make qm active so that we can kill another active state. We have to perform
that for each of m classes, thus the length of a shortest mortal word is at least
m + (m + 1)(m − 1) = m2 + m − 1. 	

If we take the state qm to be the only initial and accepting state, the prefix
code decoded by the automaton constructed in the proof is the code {a, b}m \
{bam−1}. The same construction and arguments show that for any alphabet Σ
and an unbordered word u of length m the code Σm \ {u} has the same length
of a shortest mortal word [14] (recall that a word is called unbordered is none of
its prefix equals to its suffix).

We proceed with a lower bound for circular automata. An automaton is
called circular if it has a letter acting as a cyclic permutation on the whole
set of its states. Circular automata play a crucial role in the theory of synchro-
nizing automata since the automata with the longest known length of shortest
synchronizing words are circular [16].

q7

q1

q2

q3q4

q5

q6

Fig. 2. A circular automaton with 7
states.

q7

q1

q2

q3q4

q5

q6

Fig. 3. A circular Huffman decoder
with 7 states.

Proposition 9. For every odd n ≥ 3 there exists an n-state non-complete deter-
ministic circular automaton A with the length of a shortest mortal word equal
to n2+2n+1

4 .

Proof. Consider the following construction of a non-complete deterministic
automaton A = (Q, {a, b}, δ). The automaton has a cycle q1, . . . , qn ∈ Q which
is induced by the letter b. This means that δ(qi, b) = qi+1 for 1 ≤ i ≤ n − 1, and
δ(qn, b) = q1. The letter a is undefined for qn. Let n = 2m+1. For qi, 1 ≤ i ≤ m,
a acts as a self-loop. Finally, for qi, m + 1 ≤ i ≤ 2m, a sends the state m steps
back on the cycle: δ(qi, a) = qi−m. See Fig. 2 for an example.

Observe that a(bm+1a)m is a mortal word of length m2 +2m+1 = n2+2n+1
4 .

We will show that this is in fact a shortest mortal word. Let us start with a set
{qn, q1, . . . , qm} of active states, and let w be a shortest word killing all these

Mortality and Synchronization of Unambiguous Finite Automata 309

states. There are two options: either w first maps a pair of active states to the
same state, or it first kills one state. In both cases after that the set of active
states is exactly {q1, . . . , qm}. No pair of active states can be mapped to the same
state after that, so the only way to decrease the number of active states is to map
a state to qn and then to apply a. After each application of a the set of active
states is a subset of {q1, . . . , qm}, and the number of active states is decreased
by at most 1. Thus, every mortal word has length at least 1 + (m + 2)m. 	

Proposition 10. For every odd n ≥ 3 there exists an n-state non-complete
circular Huffman decoder with the length of a shortest mortal word at least n2

8 .

Proof. We modify the construction of Proposition 9. Consider the following con-
struction of a non-complete deterministic automaton A = (Q, {a, b}, δ). The
automaton has a cycle q1, . . . , qn ∈ Q which is induced by the letter b. This
means that δ(qi, b) = qi+1 for 1 ≤ i ≤ n − 1, and δ(qn, b) = q1. The letter a is
undefined for qn. Let n = 2m+1. For qi, 1 ≤ i ≤ m, a sends the state qi one step
forward on the cycle: δ(qi, a) = qi+1. Finally, for qi, m + 1 ≤ i ≤ 2m, a sends
the state m steps back on the cycle: δ(qi, a) = qi−m. See Fig. 3 for an example.
The proof of the lower bound is similar to the previous two proofs, so we omit
it because of the space constraints. 	

It is an interesting question whether there is a connection of the length of
shortest mortal words with properties of graphs and matrices, similar to the
synchronization case [1].

7 Codes of Full Combinatorial Rank

In this section we use unambiguous automata to prove a result about synchro-
nizing codes. A bi-infinite word over an alphabet Σ is a bi-infinite sequence of
symbols from Σ, i.e. a mapping w : Z → Σ. A bi-infinite word w is periodic if
there exists an integer k such that w(i) = w(i+k) for every i ∈ Z. A finite word
which is not a power of a shorter word is called primitive.

Proposition 11. Let X be a recognizable (by a finite automaton) code consisting
of at least two words. If X is not synchronizing, then there exists an infinite
number of bi-infinite periodic words having two different factorizations over X.

Proof. Construct a strongly connected unambiguous automaton A = (Q,Σ,Δ)
such that X is the set of first return words of some of its state i (such an
automaton always exists, see Sect. 4 of [4]). If A is not synchronizing, the mini-
mum non-zero rank r of words in A is at least 2. Then there exists an idempotent
e ∈ Σ∗ of rank r stabilizing i (Theorem 9.3.10 of [4]), that is, i ∈ i.e, and for
every state q ∈ Q we have q.e2 = q.e. Consider the set W of all non-mortal
words eue with u ∈ Σ∗. Let S be the set of fixed points of e, that is, states q
with q ∈ q.e. The set W acts on S as a transitive permutation group of degree
r, with r ≥ 2 (Theorem 9.3.10 of [4]). Thus, there exists a word w = eme ∈ W

310 A. Ryzhikov

having q ∈ i.w, where q ∈ S, q �= i. Let � be the smallest positive number such
that i ∈ i.w�. The states from S in the sets {i}, i.w, i.w2, . . . , i.w�−1 are pairwise
different. Thus, the word w� ∈ X∗ is not a power of a shorter word from X∗.

Let x1, x2 be two words in X. At least one of them, say x1, does not commute
with w′ = eem, that is, x1w

′ �= w′x1. Then x1 and w′ are not the powers of the
same word. We are going to show that the words w′xk

1 are primitive for large
enough k. Indeed, assume that ut = w′xk

1 for t > 1. If |xk
1 | ≥ |x1| + |u|, then by

the periodicity lemma [7] we get that u and x1 are powers of the same word, and
thus w′ is also a power of this word, which is not possible. If |xk

1 | < |x1| + |u|,
then t = 2 and |w′| + |x1| ≥ |xk−1

1 |, which is false for k large enough.
Denote wk = emxk

1e. Since the word w′xk
1 = eemxk

1 is primitive for large
enough k, so is wk. Since the word x1 stabilizes i, the word wk is not mortal for
every k since i ∈ q′.wk, where q′ ∈ S is a state such that i ∈ q′.w. Moreover,
wk has rank r, and we have i ∈ q′.wk, so i �∈ i.wk. Thus in the same way as for
w, we get for every large enough k a word (wk)�k ∈ X∗ which is not a power of
a shorter word in X∗. To every word wk we put in correspondence a bi-infinite
word obtained by repeating wk. Since the lengths of the words wk increase and
the words are primitive for large enough k, all these bi-infinite words are pairwise
different. Each of them has two different factorizations over X. 	

The converse statement is not true. To see that, it is enough to consider a
non-synchronizing code (e.g., {aaaa, aabb, bbaa, bbbb}) which is contained in a
synchronizing code (e.g., {aaaa, aabb, bbaa, bbbb, abab, baba}).

The combinatorial rank of a set X of words over an alphabet Σ is the mini-
mum cardinality of a set Y ⊆ Σ∗ such that X ⊆ Y ∗. That is, it is the minimum
cardinality of a set of words such that every word of X can be written as a
concatenation of words from Y . For example, the combinatorial rank of every
binary code is exactly two. By the result of [9] every finite code X with the com-
binatorial rank equal to the cardinality of X has only finite number of bi-infinite
words with two different factorizations over X. By Proposition 11 this means
that this code is synchronizing. Thus we get the following.

Theorem 12. Every finite code such that its cardinality equals its combinatorial
rank is synchronizing.

Since every two-word code has combinatorial rank 2, we get in particular
that every two-word code is synchronizing. Consider the following examples.
For the two-word code {x, y} with x = abab, y = baba none of the codewords
is synchronizing, but xy and yx are. For the two-word code {x, y} with x =
b, y = abab none of the codewords is synchronizing, xy is not synchronizing,
but yx is. For the two-word code {x, y} with x = ababa, y = bab none of
the codewords is synchronizing, xy and yx are not synchronizing, but xx and
yy are. We conjecture that for every two-word code X there always exists a
synchronizing word in X2.

Acknowledgments. I am grateful to Dominique Perrin for many helpful discussions
and his constant interest to this work. I also thank Vladimir Gusev, Stefan Kiefer and

Mortality and Synchronization of Unambiguous Finite Automata 311

Elena Pribavkina for their useful comments on an early version of this manuscript, and
anonymous reviewers for their suggestions on the presentation of the paper.

References

1. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013).
https://doi.org/10.1007/s10958-013-1392-8

2. Béal, M.P., Czeizler, E., Kari, J., Perrin, D.: Unambiguous automata. Math. Com-
put. Sci. 1(4), 625–638 (2008). https://doi.org/10.1007/s11786-007-0027-1

3. Berlinkov, M.V., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words. Inf. Sci. 369, 718–730 (2016). https://doi.org/10.1016/j.ins.2016.07.
049

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Encyclopedia of
Mathematics and its Applications, vol. 129. Cambridge University Press, Cam-
bridge (2010)

5. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for huffman codes.
Theoret. Comput. Sci. 410(38), 3925–3941 (2009). https://doi.org/10.1016/j.tcs.
2009.06.005

6. Carpi, A.: On synchronizing unambiguous automata. Theoret. Comput. Sci. 60(3),
285–296 (1988). https://doi.org/10.1016/0304-3975(88)90114-4

7. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965)

8. Froidure, V.: Ranks of binary relations. Semigroup Forum 54(1), 381–401 (1997).
https://doi.org/10.1007/BF02676619

9. Karhumäki, J., Manuch, J., Plandowski, W.: A defect theorem for bi-infinite words.
Theoret. Comput. Sci. 292(1), 237–243 (2003). https://doi.org/10.1016/S0304-
3975(01)00225-0

10. Kiefer, S., Mascle, C.: On finite monoids over nonnegative integer matrices and
short killing words. In: Niedermeier, R., Paul, C. (eds.) 36th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 126, pp. 43:1–43:13. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2019). https://doi.org/10.
4230/LIPIcs.STACS.2019.43

11. Martugin, P.: A series of slowly synchronizing automata with a zero state over a
small alphabet. Inf. Comput. 206(9), 1197–1203 (2008). https://doi.org/10.1016/
j.ic.2008.03.020

12. Néraud, J., Selmi, C.: On codes with a finite deciphering delay: constructing uncom-
pletable words. Theoret. Comput. Sci. 255(1), 151–162 (2001). https://doi.org/10.
1016/S0304-3975(99)00160-7

13. Pouzet, M., Woodrow, R., Zaguia, N.: Generating boxes from ordered sets and
graphs. Order 9(2), 111–126 (1992). https://doi.org/10.1007/BF00814404

14. Pribavkina, E.V.: Slowly synchronizing automata with zero and noncomplete sets.
Math. Notes 90(3), 422–430 (2011). https://doi.org/10.1134/S0001434611090094

15. Rystsov, I.K.: Reset words for commutative and solvable automata. Theoret. Com-
put. Sci. 172(1), 273–279 (1997). https://doi.org/10.1016/S0304-3975(96)00136-3

16. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88282-4 4

https://doi.org/10.1007/s10958-013-1392-8
https://doi.org/10.1007/s11786-007-0027-1
https://doi.org/10.1016/j.ins.2016.07.049
https://doi.org/10.1016/j.ins.2016.07.049
https://doi.org/10.1016/j.tcs.2009.06.005
https://doi.org/10.1016/j.tcs.2009.06.005
https://doi.org/10.1016/0304-3975(88)90114-4
https://doi.org/10.1007/BF02676619
https://doi.org/10.1016/S0304-3975(01)00225-0
https://doi.org/10.1016/S0304-3975(01)00225-0
https://doi.org/10.4230/LIPIcs.STACS.2019.43
https://doi.org/10.4230/LIPIcs.STACS.2019.43
https://doi.org/10.1016/j.ic.2008.03.020
https://doi.org/10.1016/j.ic.2008.03.020
https://doi.org/10.1016/S0304-3975(99)00160-7
https://doi.org/10.1016/S0304-3975(99)00160-7
https://doi.org/10.1007/BF00814404
https://doi.org/10.1134/S0001434611090094
https://doi.org/10.1016/S0304-3975(96)00136-3
https://doi.org/10.1007/978-3-540-88282-4_4

On Discrete Idempotent Paths

Luigi Santocanale(B)

Laboratoire d’Informatique et des Systèmes, UMR 7020,
Aix-Marseille Université, CNRS, Marseille, France

luigi.santocanale@lis-lab.fr

Abstract. The set of discrete lattice paths from (0, 0) to (n, n) with
North and East steps (i.e. words w ∈ {x, y }∗ such that |w|x = |w|y =
n) has a canonical monoid structure inherited from the bijection with
the set of join-continuous maps from the chain { 0, 1, . . . , n } to itself.
We explicitly describe this monoid structure and, relying on a general
characterization of idempotent join-continuous maps from a complete
lattice to itself, we characterize idempotent paths as upper zigzag paths.
We argue that these paths are counted by the odd Fibonacci numbers.
Our method yields a geometric/combinatorial proof of counting results,
due to Howie and to Laradji and Umar, for idempotents in monoids of
monotone endomaps on finite chains.

Keywords: Discrete path · Idempotent · Join-continuous map

1 Introduction

Discrete lattice paths from (0, 0) to (n,m) with North and East steps have a
standard representation as words w ∈ {x, y }∗ such that |w|x = n and |w|y = m.
The set P (n,m) of these paths, with the dominance ordering, is a distributive
lattice (and therefore of a Heyting algebra), see e.g. [2,8,9,18]. A simple proof
that the dominance ordering is a lattice relies on the bijective correspondence
between these paths and monotone maps from the chain { 1, . . . , n } to the chain
{ 0, 1, . . . ,m }, see e.g. [2,3]. In turn, these maps bijectively correspond to join-
continuous maps from { 0, 1, . . . , n } to { 0, 1, . . . ,m } (those order preserving
maps that sends 0 to 0). Join-continuous maps from a complete lattice to itself
form, when given the pointwise ordering, a complete lattice in which composi-
tion distributes with joins. This kind of algebraic structure combining a monoid
operation with a lattice structure is called a quantale [19] or (roughly speaking)
a residuated lattice [10]. Therefore, the aforementioned bijection also witnesses
a richer structure for P (n, n), that of a quantale and of a residuated lattice. The
set P (n, n) is actually a star-autonomous quantale or, as a residuated lattice,
involutive, see [12].

Partially supported by the “LIA LYSM AMU CNRS ECM INdAM” and by the “LIA
LIRCO”.

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 312–325, 2019.
https://doi.org/10.1007/978-3-030-28796-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28796-2_25&domain=pdf
http://orcid.org/0000-0002-4237-7856
https://doi.org/10.1007/978-3-030-28796-2_25

On Discrete Idempotent Paths 313

A main aim of this paper is to draw attention to the interplay between
the algebraic/enumerative combinatorics of paths and these algebraic structures
(lattices, Heyting algebras, quantales, residuated lattices) that, curiously, are all
related to logic. We focus in this paper on the monoid structure that corresponds
under the bijection to function composition—which, from a logical perspective,
can be understood as a sort of non-commutative conjunction. In the literature,
the monoid structure appears to be less known than the lattice structure. A
notable exception is the work [17] where a different kind of lattice paths, related
to Delannoy paths, are considered so to represent monoids of injective order-
preserving partial transformations on chains.

We explicitly describe the monoid structure of P (n, n) and characterize those
paths that are idempotents. Our characterization relies on a general character-
ization of idempotent join-continuous maps from a complete lattice to itself.
When the complete lattice is the chain { 0, 1, . . . , n }, this characterization yields
a description of idempotent paths as those paths whose all North-East turns
are above the line y = x + 1

2 and whose all East-North turns are below this
line. We call these paths upper zigzag. We use this characterization to provide a
geometric/combinatorial proof that upper zigzag paths in P (n, n) are counted
by the odd Fibonacci numbers f2n+1. Simple algebraic connections among the
monoid structure on P (n, n), the monoid On of order preserving maps from
{ 1, . . . , n } to itself, and the submonoid On

n of On of maps fixing n, yield a geo-
metric/combinatorial proof of counting results due to Howie [13] (the number of
idempotents in On is the even Fibonacci numbers f2n) and Laradji and Umar
[16] (the number of idempotents in On

n is the odd Fibonacci numbers f2n−1).

2 A Product on Paths

Fig. 1. The path yxxxyxyyxy.

In the following, P (n,m) shall denote the set
of words w ∈ {x, y }∗ such that |w|x = n and
|w|y = m. We identify a word w ∈ P (n,m) with
a discrete path from (0, 0) to (n,m) which uses
only East and North steps of length 1. For exam-
ple, the word yxxxyxyyxy ∈ P (5, 5) is identified
with the path in Fig. 1.

Let L0, L1 be complete lattices. A map f :
L0 −→ L1 is join-continuous if f(

∨
X) =∨

f(X), for each subset X of L0. We use
Q∨(L0, L1) to denote the set of join-continuous
maps from L0 to L1. If L0 = L1 = L, then we
write Q∨(L) for Q∨(L,L).

The set Q∨(L0, L1) can be ordered pointwise (i.e. f ≤ g if and only if f(x) ≤
g(x), for each x ∈ L0); with this ordering it is a complete lattice. Function
composition distributes over (possibly infinite) joins:

(
∨

j∈J

gj) ◦ (
∨

i∈I

fi) =
∨

j∈J,i∈I

(gj ◦ fi) , (1)

314 L. Santocanale

whenever L0, L1, L2 are complete lattices, { fi | i ∈ I } ⊆ Q∨(L0, L1) and { gj |
j ∈ J } ⊆ Q∨(L1, L2). A quantale (see [19]) is a complete lattice endowed with
a semigroup operation ◦ satisfying the distributive law (1). Thus, Q∨(L) is a
quantale, for each complete lattice Q∨(L).

For k ≥ 0, we shall use Ik to denote the chain { 0, 1, . . . , k }. Notice that
f : In −→ Im is join-continuous if and only if it is monotone (or order-preserving)
and f(0) = 0. For each n,m ≥ 0, there is a well-known bijective correspondence
between paths in P (n,m) and join-continuous maps in Q∨(In, Im); next, we
recall this bijection. If w ∈ P (n,m), then the occurrences of y in w split w into
m + 1 (possibly empty) blocks of contiguous xs, that we index by the numbers
0, . . . ,m:

w = blw,x
0 · y · blw,x

1 · y . . .blw,x
m−1 · y · blw,x

m .

We call the words blw,x
0 ,blw,x

1 , . . . ,blw,x
m ∈ {x }∗ the x-blocks of w. Given i ∈

{ 1, . . . , n }, the index of the block of the i-th occurrence of the letter x in w
is denoted by blnow,x

i . We have therefore blnow,x
i ∈ { 0, . . . ,m }. Notice that

blnow,x
i equals the number of ys preceding the i-th occurrence of x in w so, in

particular, blnow,x
i can be interpreted as the height of the i-th occurrence of

x when w is considered as a path. Similar definitions, blw,y
j and blnow,y

j , for
j = 1, . . . ,m, are given for the blocks obtained by splitting w by means of the
xs:

w = blw,y
0 · x · blw,y

1 · x . . .blw,y
n−1 · x · blw,y

n .

The map blnow,x, sending i ∈ { 1, . . . , n } to blnow,x
i , is monotone from the

chain { 1, . . . , n } to the chain { 0, 1, . . . ,m }. There is an obvious bijective corre-
spondence from the set of monotone maps from { 1, . . . , n } to Im = { 0, 1, . . . ,m }
to the set Q∨(In, Im) obtained by extending a monotone f by setting f(0) := 0.
We shall tacitly assume this bijection and, accordingly, we set blnow,x

0 := 0.
Next, by setting blnow,x

n+1 := m, we notice that

|blw,y
i | = blnow,x

i+1 − blnow,x
i ,

for i = 0, . . . , n, so w is uniquely determined by the map blnow,x. Therefore,
the mapping sending w ∈ P (n,m) to blnow,x is a bijection from P (n,m) to the
set Q∨(In, Im). The dominance ordering on P (n,m) arises from the pointwise
ordering on Q∨(In, Im) via the bijection.

For w ∈ P (n,m) and u ∈ P (m, k), the product w ⊗ u is defined by concate-
nating the x-blocks of w and the y-blocks of u:

Definition 1. For w ∈ P (n,m) and u ∈ P (m, k), we let

w ⊗ u := blw,x
0 · blu,y

0 · blw,x
1 · blu,y

1 . . .blw,x
m · blu,y

m .

Example 2. Let w = yxxyxy and u = xyxyyx, so the x-blocks of w are ε, xx, x, ε
and the y-blocks of u are ε, y, yy, ε; we have w ⊗ u = xxyxyy. We can trace
the original blocks by inserting vertical bars in w ⊗ u so to separate blw,x

i blu,y
i

On Discrete Idempotent Paths 315

from blw,x
i+1bl

w,y
i+1, i = 0, . . . ,m − 1. That is, we can write w ⊗tr u = |xxy|xyy|,

so w ⊗ u is obtained from w ⊗tr u by deleting vertical bars. Notice that also w
and u can be recovered from w ⊗tr u, for example w is obtained from w ⊗tr u by
deleting the letter y and then renaming the vertical bars to the letter y. Figure 2
suggests that ⊗ is a form of synchronisation product, obtained by shuffling the
x-blocks of w with the y-blocks of u so to give “priority” to all the xs (that
is, the xs precede the ys in each block). It can be argued that there are other
similar products, for example, the one where the ys precede the xs in each block,
so w ⊕ u = yxxyyx. It is easy to see that w ⊕ u = (u� ⊗ w�)�, where w� is the
image of w along the morphism that exchanges the letters x and y.

ε y xx y x y ε

ε x y x yy x ε

� ε|xxy|xyy|ε � xxyxyy

Fig. 2. Construction of the product yxxyxy ⊗ xyxyyx.

Proposition 3. The product ⊗ corresponds, under the bijection, to function
composition. That is, we have

blnow⊗u,x = blnou,x ◦ blnow,x .

Proof. In order to count the number of ys preceding the i-th occurrence of x in
w ⊗ u, it is enough to identify the block number j of this occurrence in w, and
then count how many ys precede the j-th occurrence of x in u. That is, we have
blnow⊗u,x

i = blnou,x
j with j = blnow,x

i .
�
Remark 4. Let us exemplify how the algebraic structure of Q∨(In, Im) yields
combinatorial identities. The product is a function ⊗ : P (n,m) × P (m, k) −→
P (n, k), so we study how many preimages a word w ∈ P (n, k) might have.
By reverting the operational description of the product previously given, this
amounts to inserting m vertical bars marking the beginning-end of blocks (so to
guess a word of the form u0 ⊗tr u1) under a constraint that we describe next.
Each position can be barred more than once, so adding j bars can be done in(
n+k+j

j

)
ways. The only constraint we need to satisfy is the following. Recall

that a position � ∈ { 0, . . . , n + k } is a North-East turn (or a descent), see [15],
if � > 0, w�−1 = y and w� = x. If a position is a North-East turn, then such a
position is necessarily barred. Let us illustrate this with the word xxyxyy which
has just one descent, which is necessarily barred: xxy|xyy. Assuming m = 3, we
need to add two more vertical bars. For example, for x|xy|xy|y we obtain the
following decomposition:

x|xy|xy|y � (x|x|x|, |y|y|y) � (xyxyxy, xyxyxy) .

Therefore, if w has i descents, then these positions are barred, while the other
m−i barred positions can be chosen arbitrarily, and there are

(
n+k+m−i

m−i

)
ways to

316 L. Santocanale

do this. Recall that there are
(
n
i

)(
k
i

)
words w ∈ P (n, k) with i descents, since such

a w is determined by the subsets of { 1, . . . , n } and { 1, . . . , k } of cardinality i,
determining the descents. Summing up w.r.t. the number of descents, we obtain
the following formulas:(
n + m

n

)(
m + k

k

)
=

m∑
i=0

(
n + m + k − i

m − i

)(
n

i

)(
k

i

)
,

(
2n

n

)2

=
n∑

i=0

(
3n − i

n − i

)(
n

i

)2

.

Similar kind of combinatorial transformations and identities appear in [5,6,11],
yet it is not clear to us at the moment of writing whether these works relate in
some way to the product of paths studied here.

Remark 5. The previous remark also shows that if w ∈ P (n, k) has m ≥ 0
descents, then there is a canonical factorization w = w0 ⊗w1 with w0 ∈ P (n,m)
and w1 ∈ P (m, k). It is readily seen that, via the bijection, this is the standard
epi-mono factorization in the category of join-semilattices. The word xxyxyy,
barred at its unique descent as xxy|xyy, is decomposed into xxyx and yxyy.

Remark 6. As in [17], many semigroup-theoretic properties of the monoid
Q∨(In) can be read out of (and computed from) the bijection with P (n, n).
For example

card({ f ∈ Q∨(In) | card(Image(f)) = k + 1 }) =
(

n

k

)2

since, as in the previous remark, a path with k North-East turns corresponds to
a join-continuous map f such that card(Image(f)) = k + 1. Similarly

card({ f ∈ Q∨(In) | max(Image(f)) = k }) =
(

n + k − 1
k

)

since a map f ∈ Q∨(In) such that max(Image(f)) = k (i.e. f(n) = k) corre-
sponds to a path in P (n, k) whose last step is an East step, thus to a path in
P (n − 1, k). A similar argument can be used to count maps f ∈ On such that
f(n) = k, cf. [16, Proposition 3.7].

Remark 7. Further properties of the monoid Q∨(In) can be easily verified, for
example, this monoid is aperiodic. For the next observation, see also [16, Propo-
sition 2.3] and [17, Theorem 3.4]. Recall that f ∈ Q∨(In) is nilpotent if, for some
� ≥ 0, f � is the bottom of the lattice, that is, it is the constant map with value 0.
It is easily seen that f is nilpotent if and only if f(x) < x, for each x = 1, . . . , n.
Therefore, a path is nilpotent if and only it lies below the diagonal, that is, it is
a Dyck path. Therefore, there are 1

n+1

(
2n
n

)
nilpotents in Q∨(In).

3 Idempotent Join-Continuous Maps as Emmentalers

We provide in this section a characterization of idempotent join-continuous maps
from a complete lattice to itself. The characterization originates from the notion
of EA-duet used to study some elementary subquotients in the category of lat-
tices, see [20, Definition 9.1].

On Discrete Idempotent Paths 317

Definition 8. An emmentaler of a complete lattice L is a collection E =
{ [yi, xi] | i ∈ I } of closed intervals of L such that

– [yi, xi] ∩ [yj , xj] = ∅, for i, j ∈ I with i �= j,
– { yi | i ∈ I } is a subset of L closed under arbitrary joins,
– {xi | i ∈ I } is a subset of L closed under arbitrary meets.

The main result of this section is the following statement.

Theorem 9. For an arbitrary complete lattice L, there is a bijection between
idempotent join-continuous maps from L to L and emmentalers of L.

For an emmentaler E = { [yi, xi] | i ∈ I } of L, we let

J(E) := { yi | i ∈ I } , M(E) := {xi | i ∈ I }
intE(z) :=

∨
{ y ∈ J(E) | y ≤ z } , clE(z) :=

∧
{x ∈ M(E) | z ≤ x } .

It is a standard fact that clE is a closure operator on L (that is, it is a monotone
inflating idempotent map from L to itself) and that intE is an interior operator
on L (that is, a monotone, deflating, and idempotent endomap of L). In the
following statements an emmentaler E = { [yi, xi] | i ∈ I } is fixed.

Lemma 10. For each i ∈ I, xi = clE(yi) and intE(xi) = yi. Therefore intE
restricts to an order isomorphism from M(E) to J(E) whose inverse is clE .

Proof. Clearly, clE(yi) ≤ xi. Let us suppose that yi ≤ xj yet xi �≤ xj , then
yi ≤ xj ∧ xi < xi and xj ∧ xi = x� for some � ∈ I with � �= i. But then
x� ∈ [y�, x�] ∩ [yi, xi], a contradiction. The equality intE(xi) = yi is proved
similarly.
�

In view of the following lemma we think of E as a sublattice of L with
prescribed holes/fillings, whence the naming “emmentaler”.

Lemma 11. If E is an emmentaler of L, then
⋃ E is a subset of L closed under

arbitrary joins and meets. Moreover, the map sending z ∈ [yi, xi] to yi is a
complete lattice homomorphism from

⋃ E to J(E).

Proof. Let { zk | k ∈ K } with zk ∈ [yk, xk] for each k ∈ K. Then, for some
j ∈ I,

yj =
∨
k∈K

yk ≤
∨
k∈K

zk ≤
∨
k∈K

xk ≤ clE(
∨
k∈K

xk)

=
∨

M(E) {xk | k ∈ K } =
∨

M(E) { clE(yk) | k ∈ K } = clE(
∨
k∈K

yk) = clE(yi) = xj ,

(2)

where in the second line we have used the fact that clE(
∨

k∈K xk) is the join
in M(E) of the family {xk | k ∈ K } and also the fact that clE is an order
isomorphism (so it is join-continuous) from J(E) to M(E). Therefore,

∨
k∈K zk ∈⋃ E and, in a similar way,

∧
k∈K zk ∈ ⋃ E .

318 L. Santocanale

Next, let π :
⋃ E −→ J(E) be the map sending z ∈ [yi, xi] to yi ∈ J(E). The

computations in (2) show that π is join-continuous. With similar computations
it is seen that

∧
k∈K zk is sent to intE(

∧
k∈K yk) which is the meet of the family

{ yk | k ∈ K } within J(E). Therefore, π is meet-continuous as well.
�
We recall next some facts on adjoint pairs of maps, see e.g. [4, §7]. Two monotone
maps f, g : L −→ L form an adjoint pair if f(x) ≤ y if and only if x ≤ g(y), for
each x, y ∈ L. More precisely, f is left (or lower) adjoint to g, and g is right (or
upper) adjoint to f . Each map determines the other: that is, if f is left adjoint
to g and g′, then g = g′; if g is right adjoint to f and f ′, then f = f ′. If L is
a complete lattice, then a monotone f : L −→ L is a left adjoint (that is, there
exists g for which f is left adjoint to g) if and only if it is join-continuous; under
the same assumption, a monotone g : L −→ L is a right adjoint if and only if it
is meet-continuous.

Proposition 12. If E is an emmentaler of L, then the maps fE and gE defined
by

fE(z) := intE(clE(z)) , gE(z) := clE(intE(z)) ,

are idempotent and adjoint to each other. In particular, fE is join-continuous,
so it belongs to Q∨(L).

Proof. Clearly, fE is idempotent:

intE(clE(intE(clE(z)))) = intE(clE(z)) ,

since clE(z) = xi for some i ∈ I and clE(intE(xi)) = xi. In a similar way, gE is
idempotent. Let us argue that fE and gE are adjoint. If z0 ≤ clE(intE(z1)),
then clE(z0) ≤ clE(clE(intE(z1))) = clE(intE(z1)) and intE(clE(z0)) ≤
intE(clE(intE(z1))) = intE(z1) ≤ z1. Similarly, if intE(clE(z0)) ≤ z1, then
z0 ≤ clE(intE(z1)).
�
Lemma 13. J(E) = Image(fE) and M(E) = Image(gE).

Proof. Clearly, if y = intE(clE(z)) for some z ∈ L, then y ∈ J(E). Conversely, if
y ∈ J(E), then y = intE(clE(y)), so y ∈ Image(fE). The other equality is proved
similarly.
�

For the next proposition, recall that if f, g are adjoint, then f ◦ g ◦f = f and
g ◦ f ◦ g = g.

Proposition 14. Let f ∈ Q∨(L) be idempotent and let g be its right adjoint.
Then

1. y ≤ g(y), for each y ∈ Image(f),
2. the collection of intervals Ef := { [y, g(y)] | y ∈ Image(f) } is an emmentaler

of L,
3. J(Ef) = Image(f) and M(Ef) = Image(g).

On Discrete Idempotent Paths 319

Proof. If y ∈ Image(f), then y = f(y) and therefore the relation y ≤ g(y)
follows from f(y) ≤ y. The subset Image(f) is closed under arbitrary joins since
f is join-continuous. Similarly, Image(g) is closed under arbitrary meets, since
g is meet-continuous. Let us show that { g(y) | y ∈ Image(f) } = Image(g). To
this end, observe that if x = g(z) for some z ∈ L, then x = g(z) = g(f(g(z))),
so x = g(y) with y = f(g(z)).

Finally, let z ∈ [y1, g(y1)] ∩ [y2, g(y2)]. Then yi = f(yi) ≤ f(z) ≤ f(g(yi)).
We already observed that f(g(yi)) = yi, so yi = f(z), for i = 1, 2. We have
therefore y1 = y2 and g(y1) = g(y2).
�
Lemma 15. If f ∈ Q∨(L) is idempotent then, for each x ∈ L,

1. intEf
(x) ≤ f(x),

2. if f(x) ≤ x, then f(x) = intEf
(x),

3. if x ∈ M(Ef), then f(x) ≤ x, and so f(x) = intEf
(x).

Proof. 1. Recall that intEf
(x) ≤ x and intEf

(x) ∈ J(Ef) = Image(f),
so intEf

(x) is a fixed point of f . Then, using monotonicity, intEf
(x) =

f(intEf
(x)) ≤ f(x).

2. From f(x) ≤ x and recalling that intEf
(x) is the greatest element of J(Ef) =

Image(f) below x, it immediately follows that f(x) ≤ intEf
(x).

3. Recall that M(Ef) = Image(g), where g is right adjoint to f . Let z be such
that x = g(z), so we aim at proving that f(g(z)) ≤ g(z). This is follows from
f(f(g(z))) = f(g(z)) ≤ z and adjointness.

�
Proposition 16. For each idempotent f ∈ Q∨(L), we have f = intEf

◦ clEf
=

fEf
.

Proof. Since clEf
(z) ∈ M(Ef), then f(clEf

(z)) = intEf
(clEf

(z)), by the previous
Lemma. Therefore we need to prove that f(clEf

(z)) = f(z). This immediately
follows from the relation clEf

= g ◦ f that we prove next.
We show that g(f(z)) is the least element of Image(g) above z. We have

z ≤ g(f(z)) ∈ Image(g) by adjointness. Suppose now that x ∈ Image(g) and
z ≤ x. If y ∈ L is such that x = g(y), then z ≤ g(y) yields f(z) ≤ y and
g(f(z)) ≤ g(y) = x.
�

We can now give a proof of the main result of this section, Theorem 9.

Proof (Theorem 9). We argue that the mappings E �→ fE and f �→ Ef are inverse
to each other.

We have seen (Proposition 16) that, for an idempotent f ∈ Q∨(L), fEf
=

f . Given an emmentaler E , we have J(E) = Image(fE) by Lemma 13, and
J(EfE) = Image(fE), by Proposition 14. Therefore, J(E) = J(EfE) and, similarly,
M(E) = M(EfE). Since the two sets J(E) and M(E) completely determine an
emmentaler, we have E = EfE .
�

320 L. Santocanale

4 Idempotent Discrete Paths

It is easily seen that an emmentaler of the chain In can be described by an
alternating sequence of the form

0 = y0 ≤ x0 < y1 ≤ x1 < y2 ≤ . . . < yk ≤ xk = n ,

so J(E) = { 0, y1, . . . , yk } and M(E) = {x1, x2, . . . , xk−1, n }. Indeed, J(E) is
closed under arbitrary joins if and only if 0 ∈ J(E), while M(E) is closed under
arbitrary meets if and only if n ∈ M(E).

The correspondences between idempotents of Q∨(In), their paths, and
emmentalers can be made explicit as follows: for y ∈ J(E) such that y �= 0,
the path corresponding to fE touches the point (y, y) coming from the left of
the diagonal; for x ∈ M(E) \ J(E), the path corresponding to fE touches (x, x)
coming from below the diagonal. For E = { 0 < 1 < 2 ≤ 2 < 3 < 4 }, with
J(E) = { 0, 2, 3 } and M(E) = { 1, 2, 4 }, the path corresponding to fE is illus-
trated in Fig. 3. On the left of the figure, points of the form (x, x) with x ∈ M(E)
are squared, while points of the form (y, y) with y ∈ J(E) are circled.

Fig. 3. Idempotent path corresponding to { 0 < 1 < 2 ≤ 2 < 3 < 4 }.

Our next goal is to give a geometric characterization of idempotent paths
using their North-East and East-North turns. To this end, observe that we can
describe North-East turns of a path w ∈ P (n,m) by discrete points in the plane.
Namely, if if w = w0w1 ∈ P (n,m) with w0 = u0y, w1 = xu1, and |w0| = � (so w
has a North-East turn at position �), then we can denote this North-East turn
with the point (|w0|x, |w0|y). In a similar way, we can describe East-North turns
by discrete points in the plane.

Let us call a path an upper zigzag if every of its North-East turns is above
the line y = x + 1

2 while every of its East-North turns is below this line. Notice
that a path is an upper zigzag if and only every North-East turn is of the form
(x, y) with x < y and every East-North turn is of the form (x, y) with y ≤ x.
This property is illustrated on the right of Fig. 3.

On Discrete Idempotent Paths 321

Theorem 17. A path w ∈ P (n, n) is idempotent if and only if it is an upper
zigzag.

The proof of the theorem is scattered into the next three lemmas.

Lemma 18. An upper zigzag path is idempotent.

Proof. Let w be an upper zigzag with { (xi, yi) | i = 1, . . . , k } the set of its North-
East turns. For (i, j) ∈ { 0, . . . , n − 1 } × { 1, . . . , n }, let ei,j := xiyjxn−iyn−j

be the path that has a unique North-East turn at (i, j). Notice that w =∨
i=1,...,k exi,yi

. By Eq. (1),

w ⊗ w = (
∨

i=1,...,k

exi,yi
) ⊗ (

∨

j=1,...,k

exj ,yj
) =

∨

i,j=1,...,k

exi,yi
⊗ exj ,yj

. (3)

It is now enough to observe that ea,b ⊗ ec,d = ea,d if c < b and, otherwise,
ea,b ⊗ ec,d = ⊥, where ⊥ = xnyn is the least element of P (n, n). Therefore, we
have: (i) exi,yi

⊗exi,yi
= exi,yi

, since xi < yi, (ii) if i < j, then exi,yi
⊗exj ,yj

= ⊥,
since yi ≤ xj , (iii) if j < i, then exi,yi

⊗ exj ,yj
= exi,yj

, since xj < yj ≤ yi; in
the latter case, we also have exi,yj

≤ exi,yi
, since yj ≤ yi. Consequently, the

expression on the right of (3) evaluates to
∨

i=1,...,k exi,yi
= w.
�

Next, let us say that i ∈ In \ {n } is an increase of f ∈ Q∨(In, Im) if
f(i) < f(i + 1). It is easy to see that the set of North-East turns of w is the set
{ (i,blnow,x

i+1) | i is an increase of blnow,x }.

Lemma 19. Let f ∈ Q∨(In, In) and let g be its right adjoint. Then i ∈ In \{n }
is an increase of f if and only if i ∈ Image(g) \ {n }.
Proof. Suppose i = g(j) for some j ∈ In. If f(i+1) ≤ f(i), then i+1 ≤ g(f(i)) =
g(f(g(j))) = g(j) = i, a contradiction. Therefore f(i) < f(i + 1).

Conversely, if f(i) < f(i + 1), then f(i + 1) �≤ f(i), i + 1 �≤ g(f(i)), and
g(f(i)) < i + 1. Since i ≤ g(f(i)), then g(f(i)) = i, so i ∈ Image(g).
�
Lemma 20. The North-East turns of an idempotent path w ∈ P (n, n) corre-
sponding to the emmentaler { 0 = y0 ≤ x0 < y1, . . . yk ≤ xk = n } of In are of
the form (x�, y�+1), for � = 0, . . . , k − 1. Its East-North turns are of the form
(x�, y�), for � = 0, . . . , k. Therefore w is an upper zigzag.

Proof. For the first statement, since Image(gE) = {x0, . . . , xk−1, n } and using
Lemma 19, we need to verify that fE(x�) = y�: this is Lemma 15, point 3. The
last statement is a consequence of the fact that East-North turns are computable
from North-East turns: if (xi, yi), i = 1, . . . , k, are the North-East turns of w,
with xi < xj and yi < yj for i < j, then East-North turns of w are of the form
(x1, 0) (if x1 > 0), (xi+1, yi), i = 1, . . . , k − 1, and (n, yk) (if yk < n).
�

322 L. Santocanale

5 Counting Idempotent Discrete Paths

The goal of this section is to exemplify how the characterizations of idempotent
discrete paths given in Sect. 4 can be of use. It is immediate to establish a
bijective correspondence between emmentalers of the chain In and words w =
w0 . . . wn on the alphabet { 1, 0, 1 } that avoid the pattern 10∗1 and such that
w0 = 1 and wn ∈ { 1, 1 }; this bijection can be exploited for the sake of counting.
We prefer to count idempotents using the characterization given in Theorem 17.
In the following, we provide a geometric/combinatorial proof of counting results
[13,16] for the number of idempotent elements in the monoid Q∨(In) and, also,
in the monoid On of order preserving maps from { 1, . . . , n } to itself. Let us
recall that the Fibonacci sequence is defined by f0 := 0, f1 := 1, and fn+2 :=
fn+1 + fn. Howie [13] proved that φn = f2n (for n ≥ 1), where φn is the
number of idempotents in the monoid On. Laradji and Umar [16] proved that
γn = f2n−1 (n ≥ 1), where now γn is the number of idempotent elements of
On

n, the submonoid in On of maps fixing n. Clearly, On
n is a monoid isomorphic

(and anti-isomorphic as well) to Q∨(In−1). We infer that the number ψn of
idempotents in the monoid Q∨(In) equals f2n+1 (for n ≥ 0).

Remark 21. It is argued in [13] that φn = 1
2n

√
5
{(3 +

√
5)n − (3 − √

5)n}, which

can easily be verified using the fact that fn = θn
0 −θn

1
θ0−θ1

with θ0 = 1+
√
5

2 and

θ1 = 1−√
5

2 , see [7]. In a similar way, we derive the following explicit formula:

ψn =
1

2n+1
√

5
{(3 +

√
5)n(1 +

√
5) − (3 −

√
5)n(1 −

√
5)} .

Let us observe that the monoid On can be identified with the submonoid
of Q∨(In) of join-continuous maps f such that 1 ≤ f(1). A path corresponds
to such an f if and only if its first step is a North step. Having observed that
ψ0 = φ1 = 1, the following proposition suffices to assert that φn = f2n and
ψn = f2n+1.

Proposition 22. The following recursive relations hold:

φn+1 = ψn + φn , ψn+1 = φn+1 + ψn .

Proof. Every discrete path from (0, 0) to (n + 1, n + 1) ends with y—that is, it
visits the point (n + 1, n)—or ends with x—that is, it visits the point (n, n + 1).
Consider now an upper zigzag path π from (0, 0) to (n + 1, n + 1) that visits
(n + 1, n), see Fig. 4. By clipping on the rectangle with left-bottom corner (0, 0)
and right-up corner (n, n), we obtain an upper zigzag path π′ from (0, 0) to
(n, n). If π starts with y, then π′ does as well. This proves the right part of the
recurrences above, i.e. φn+1 = . . . + φn and ψn+1 = . . . + ψn.

Consider now an upper zigzag path π ending with x, see Fig. 5. The reflection
along the line y = n−x sends (x, y) to (n−y, n−x), so it preserves upper zigzag
paths. Applying this reflection to π, we obtain an upper zigzag path from (0, 0)
to (n + 1, n + 1) whose first step is y. This proves the ψn+1 = φn+1 + . . . part of
the recurrences above.

On Discrete Idempotent Paths 323

Fig. 4. An upper zigzag path to (5, 5) ending with y.

Fig. 5. An upper zigzag path to (5, 5) ending with x.

Consider now an upper zigzag path π ending with x and beginning with y,
see Fig. 6. By clipping on the rectangle with left-bottom corner (0, 1) and right-
up corner (n, n + 1) and then by applying the translation x �→ x − 1, we obtain
a path whose all North-East turns are above the line y = x − 1

2 and whose all
East-North turns are below this line. By reflecting along diagonal, we obtain an
upper zigzag path from (0, 0) to (n, n). This proves the φn+1 = ψn + . . . part of
the recurrences above.
�
The geometric ideas used in the proof of Proposition 22 can be exploited further,
so to show that the number of idempotent maps f ∈ Q∨(In) such that f(n) = k

Fig. 6. An upper zigzag path to (5, 5) ending with x and beginning with y.

324 L. Santocanale

equals f2k, see the analogous statement in [16, Corollary 4.5]. Indeed, if f(n) = k,
then the path corresponding to f visits the points (n−1, k) and (n, k); therefore,
since it is an upper zigzag, also the points (k−1, k) and (k, k). By clipping on the
rectangle from (0, 0) to (k, k), we obtain an upper zigzag path in P (k, k) ending
in x. As seen in the proof of Proposition 22, these paths bijectively correspond
to upper zigzag paths in P (k, k) beginning with y.

6 Conclusions

We have presented the monoid structure on the set P (n, n) of discrete lat-
tice paths (with North and East steps) that corresponds, under a well-known
bijection, to the monoid Q∨(In) of join-continuous functions from the chain
{ 0, 1, . . . n } to itself. In particular, we have studied the idempotents of this
monoid, relying on a general characterization of idempotent join-continuous
functions from a complete lattice to itself. This general characterization yields
a bijection with a language of words on a three letter alphabet and a geometric
description of idempotent paths. Using this characterization, we have given a
geometric/combinatorial proof of counting results for idempotents in monoids of
monotone endomaps of a chain [13,16].

Our initial motivations for studying idempotents in Q∨(In) originates from
the algebra of logic, see e.g. [14]. Willing to investigate congruences of Q∨(In) as a
residuated lattice [10], it can be shown, using idempotents, that every subalgebra
of a residuated lattice Q∨(In) is simple. This property does not generalize to
infinite complete chains: if I is the interval [0, 1] ⊆ R, then Q∨(I) is simple
but has subalgebras that are not simple [1]. Despite the results we presented
are not related to our original motivations, we aimed at exemplifying how a
combinatorial approach based on paths might be fruitful when investigating
various kinds of monotone maps and the multiple algebraic structures these
maps may carry.

We used the Online Encyclopedia of Integer Sequences [21] to trace related
research. In particular, we discovered Howie’s work [13] on the monoid On

through the OEIS sequences A001906 and A088305. The sequence ψn is a shift
of the sequence A001519. Related to this sequence is the doubly parametrized
sequence A144224 collecting some counting results from [16] on idempotents.
Relations with other kind of combinatorial objects counted by the sequence ψn

still need to be understood.

Acknowledgment. The author is thankful to Srecko Brlek, Claudia Muresan, and
André Joyal for the fruitful discussions he shared with them on this topic during
winter 2018. The author is also thankful to the anonymous referees for their insightful
comments and for pointing him to the reference [16].

References

1. Ball, R.N., Droste, M.: Normal subgroups of doubly transitive automorphism
groups of chains. Trans. Am. Math. Soc. 290(2), 647–664 (1985)

https://oeis.org/A001906
https://oeis.org/A088305
https://oeis.org/A001519
https://oeis.org/A144224

On Discrete Idempotent Paths 325

2. Bennett, M.K., Birkhoff, G.: Two families of Newman lattices. Algebra Univers.
32(1), 115–144 (1994)

3. Birkhoff, G.: Lattice Theory, American Mathematical Society Colloquium Publi-
cations, vol. 25, 3rd edn. American Mathematical Society, Providence (1979)

4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cam-
bridge University Press, New York (2002)

5. Dzhumadil’daev, A.S.: Worpitzky identity for multipermutations. Math. Notes
90(3), 448–450 (2011)

6. Engbers, J., Stocker, C.: Two combinatorial proofs of identities involving sums of
powers of binomial coefficients. In: INTEGERS, vol. 16 (2016)

7. Fernandes, V.H., Gomes, G.M.S., Jesus, M.M.: The cardinal and the idempotent
number of various monoids of transformations on a finite chain. Bull. Malays.
Math. Sci. Soc. (2) 34(1), 79–85 (2011)

8. Ferrari, L.: Dyck algebras, interval temporal logic, and posets of intervals. SIAM
J. Discrete Math. 30(4), 1918–1937 (2016)

9. Ferrari, L., Pinzani, R.: Lattices of lattice paths. J. Statist. Plann. Inference 135(1),
77–92 (2005)

10. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics, vol. 151. Elsevier (2007)

11. Gessel, I., Stanley, R.P.: Stirling polynomials. J. Comb. Theory Ser. A 24(1), 24–33
(1978)

12. Gouveia, M.J., Santocanale, L.: The continuous weak order, December 2018.
Preprint https://hal.archives-ouvertes.fr/hal-01944759

13. Howie, J.M.: Products of idempotents in certain semigroups of transformations.
Proc. Edinb. Math. Soc. 17(2), 223–236 (1971)

14. Jipsen, P.: Relation algebras, idempotent semirings and generalized bunched impli-
cation algebras. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017. LNCS,
vol. 10226, pp. 144–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57418-9 9

15. Krattenthaler, C.: The enumeration of lattice paths with respect to their num-
ber of turns. In: Balakrishnan, N. (ed.) Advances in Combinatorial Methods and
Applications to Probability and Statistics. Statistics for Industry and Technology,
pp. 29–58. Birkhäuser, Boston (1997). https://doi.org/10.1007/978-1-4612-4140-
9 3

16. Laradji, A., Umar, A.: Combinatorial results for semigroups of order-preserving
full transformations. Semigroup Forum 72(1), 51–62 (2006)

17. Laradji, A., Umar, A.: Lattice paths and order-preserving partial transformations.
Util. Math. 101, 23–36 (2016)

18. Mühle, H.: A Heyting algebra on Dyck paths of type A and B. Order 34(2), 327–348
(2017)

19. Rosenthal, K.: Quantales and Their Applications. Pitman Research Notes in Math-
ematics Series. Longman Scientific & Technical (1990)

20. Santocanale, L., Wehrung, F.: The equational theory of the weak Bruhat order on
finite symmetric groups. J. Eur. Math. Soc. 20(8), 1959–2003 (2018)

21. Sloane, N.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org/

https://hal.archives-ouvertes.fr/hal-01944759
https://doi.org/10.1007/978-3-319-57418-9_9
https://doi.org/10.1007/978-3-319-57418-9_9
https://doi.org/10.1007/978-1-4612-4140-9_3
https://doi.org/10.1007/978-1-4612-4140-9_3
https://oeis.org/

Author Index

Atanasiu, Adrian 68

Baranwal, Aseem R. 80, 93
Burcroff, Amanda 106

Carpi, Arturo 119
Castiglione, Giuseppa 46
Clokie, Trevor 133
Currie, James D. 145

D’Alessandro, Flavio 119
D’Aniello, Alma 159
De Luca, Alessandro 159
Dolce, Francesco 167

Fici, Gabriele 46

Gabric, Daniel 133
Gaetz, Marisa 180
Gavoille, Cyril 193
Gusev, Vladimir V. 207

Holub, Štěpán 217

Ji, Caleb 180

Kachigar, Ghazal 193
Košík, Václav 226

Lejeune, Marie 238

Manea, Florin 1
Medková, Kateřina 251
Mol, Lucas 145

Ng, Tim 264

Ochem, Pascal 264

Peltomäki, Jarkko 275
Perrin, Dominique 167
Poovanandran, Ghajendran 68
Pribavkina, Elena V. 207
Puzynina, Svetlana 28

Rampersad, Narad 264
Restivo, Antonio 46
Rigo, Michel 238
Rosenfeld, Matthieu 238
Rukavicka, Josef 286
Ryzhikov, Andrew 299

Saarela, Aleksi 60
Santocanale, Luigi 312
Schmid, Markus L. 1
Shallit, Jeffrey 80, 93, 133, 264
Starosta, Štěpán 226

Teh, Wen Chean 68

Whiteland, Markus A. 275
Winsor, Eric 106

Zémor, Gilles 193

	Preface
	Organization
	On Families of Limit \bi S -adic Words (Invited Talk)
	Contents
	Matching Patterns with Variables
	1 Introduction
	2 Basic Definitions
	3 The Hardness of the Matching Problem
	4 Structural Restrictions for Patterns
	4.1 Pattern Matching by Graph Morphisms
	4.2 Efficiently Matchable Classes of Patterns
	4.3 Computing Structural Parameters for Patterns

	5 Faster Pattern Matching
	5.1 Patterns with Low Scope Coincidence Degree
	5.2 Patterns with Low Locality Number

	6 Efficient Pattern Matching Beyond Bounded Treewidth
	7 From Locality to Graph Parameters
	8 Extensions
	8.1 Injectivity
	8.2 Word Equations

	9 Conclusions
	References

	Abelian Properties of Words
	1 Introduction
	2 Overview
	2.1 Definitions and Notation
	2.2 Abelian Complexity
	2.3 Abelian Avoidance
	2.4 Other Abelian Properties

	3 Small Abelian Complexity of Two-Dimensional Words
	3.1 Two-Dimensional Words
	3.2 Small Abelian Complexity of Recurrent Two-Dimensional Words
	3.3 Small Complexity of Uniformly Recurrent Two-Dimensional Words

	4 Abelian Subshifts
	4.1 Preliminaries and Notation
	4.2 On Abelian Subshifts of Binary Words
	4.3 On Abelian Subshifts of Minimal Complexity Words and Related Words

	References

	On Sets of Words of Rank Two
	1 Introduction
	2 Preliminaries
	3 k-Maximal Monoids
	4 Primitive Sets
	5 Binary Root of a Single Primitive Word
	6 Connections with Pseudo-Primitive Words
	References

	Independent Systems of Word Equations: From Ehrenfeucht to Eighteen
	1 Introduction
	2 Preliminaries
	3 Ehrenfeucht's Conjecture
	4 Size of Independent Systems
	5 Recent Results
	6 Variations
	References

	Parikh Determinants
	1 Introduction
	2 Preliminaries
	3 Parikh Determinant of a Word
	4 Final Remarks
	4.1 Parikh Determinant, Parikh Vector and Parikh Matrix
	4.2 An Alternative Way to Compute Parikh Determinants
	4.3 Generalization of Parikh Determinants

	References

	Critical Exponent of Infinite Balanced Words via the Pell Number System
	1 Introduction
	1.1 Preliminaries
	1.2 Previous Work
	1.3 Automatic Theorem Proving Using Walnut

	2 Building the Automata
	2.1 Pell Number System
	2.2 Automaton for the Addition Relation in Pell-Base
	2.3 Automaton for Computing x5

	3 Writing the Proof
	3.1 Proving the Hypothesis
	3.2 Exploring Interesting Properties

	4 Breadth-First Search
	5 Future Prospects
	5.1 Other Words Characterized by Pell-Base
	5.2 Open Problems

	References

	Repetitions in Infinite Palindrome-Rich Words
	1 Introduction
	1.1 Preliminaries
	1.2 Previous Work

	2 Results over the Binary Alphabet
	2.1 Automatic Theorem-Proving
	2.2 Constructing the Automaton
	2.3 Proof of Equivalence of the Morphisms
	2.4 Proof of Palindromic Richness
	2.5 Determining the Critical Exponent
	2.6 Optimality of the Critical Exponent

	3 Faster Backtracking
	3.1 Lyndon Method
	3.2 Counting Palindromes
	3.3 Computing Maximal Runs

	4 Future Prospects
	References

	Generalized Lyndon Factorizations of Infinite Words
	1 Introduction
	2 Preliminaries
	3 Existence and Uniqueness of Finite Factorizations
	4 Existence of Infinite Factorizations
	5 Uniqueness of Infinite Factorizations
	6 Characterization of Infinite Generalized Lyndon Words
	7 Further Directions
	References

	On the Commutative Equivalence of Bounded Semi-linear Codes
	1 Introduction
	2 Preliminaries
	3 Some Results of Combinatorics on Words
	4 The CE Problem for Bounded Semi-linear Languages
	4.1 A Geometrical Decomposition of a Simple Set of Nk
	4.2 The Construction of the Regular Language

	5 The Main Result
	5.1 The Simple Case
	5.2 The Semi-simple Case

	References

	Circularly Squarefree Words and Unbordered Conjugates: A New Approach
	1 Introduction
	2 Circularly Squarefree Ternary Words via Walnut
	3 Unbordered Conjugates
	4 More About Unbordered Conjugates
	5 Conclusions
	References

	The Undirected Repetition Threshold
	1 Introduction
	2 Related Problems in Pattern Avoidance
	3 URT(3)=74
	4 A Lower Bound on URT(k) for k4
	5 URT(k)=k-1k-2 for k{4,8,12}
	5.1 A Ternary Encoding
	5.2 Constructions

	References

	Characteristic Parameters and Special Trapezoidal Words
	1 Introduction
	2 Notation and Preliminaries
	3 Closed and Open Trapezoidal Words
	4 Special Trapezoidal Words
	5 Concluding Remarks
	References

	Return Words and Bifix Codes in Eventually Dendric Sets
	1 Introduction
	2 Eventually Dendric Sets
	3 Complexity of Eventually Dendric Sets
	4 Recurrent Eventually Dendric Sets
	5 Generalized Extension Graphs
	6 Complete Bifix Decoding
	7 Conclusion
	References

	Enumeration and Extensions of Word-Representants
	1 Introduction
	2 Enumeration of Minimal Length Representants
	2.1 General Results
	2.2 Trees
	2.3 Cycles

	3 Graphs Representable from Pattern Avoidance in Words
	4 Further Work
	References

	Localisation-Resistant Random Words with Small Alphabets
	1 Introduction
	2 Localisable Distribution on Independent-Set Words
	3 Solving the LP System
	4 Generalisation and Conclusion
	References

	On Codeword Lengths Guaranteeing Synchronization
	1 Introduction
	2 Preliminaries
	3 Main Results
	References

	Binary Intersection Revisited
	1 Introduction
	2 Preliminaries
	3 The Result
	4 Comparison
	5 Examples
	References

	On Substitutions Closed Under Derivation: Examples
	1 Introduction
	2 Preliminaries
	3 The Set of Derived Words to Factors of an Infinite Word
	4 Example 1: Standard Episturmian Morphisms
	5 Example 2: The Period Doubling Morphism
	References

	Templates for the k-Binomial Complexity of the Tribonacci Word
	1 Introduction
	2 Basics
	3 Templates and Ancestors
	4 Bounding Realizable Templates for the Tribonacci Word
	4.1 Bounds on Extended Parikh Vectors
	4.2 Bounds on Templates

	5 Proof of the Main Result
	6 Conclusion
	References

	Derived Sequences of Arnoux–Rauzy Sequences
	1 Introduction
	2 Preliminaries
	2.1 Words, Sequences and Morphisms
	2.2 Return Words and Derived Sequences
	2.3 Episturmian and Arnoux–Rauzy Sequences

	3 Derived Sequences of Episturmian Preimages
	4 Derived Sequences of Arnoux–Rauzy Sequences
	References

	New Results on Pseudosquare Avoidance
	1 Introduction
	2 Simultaneous Avoidance of Squares and Antisquares
	3 Pseudosquare Avoidance
	3.1 Avoiding Pseudosquares for Permutations
	3.2 Avoiding Pseudosquares for Transformations
	3.3 Avoiding Pseudosquares with Morphic Images

	4 Future Work
	References

	Every Nonnegative Real Number Is an Abelian Critical Exponent
	1 Introduction
	2 Proof of Theorem 1
	3 Extension to the k-abelian Setting
	4 Concluding Remarks
	References

	Rich Words Containing Two Given Factors
	1 Introduction
	2 Preliminaries
	3 Standard Extensions and Flexed Palindromes
	4 Removing Flexed Points
	5 Words with Limited Number of Flexed Points
	References

	Mortality and Synchronization of Unambiguous Finite Automata
	1 Introduction
	2 Main Definitions
	3 The Result of Kiefer and Mascle
	4 Words of Minimum Non-zero Rank
	5 Prefix Automata
	6 Mortality Lower Bounds for Deterministic Automata
	7 Codes of Full Combinatorial Rank
	References

	On Discrete Idempotent Paths
	1 Introduction
	2 A Product on Paths
	3 Idempotent Join-Continuous Maps as Emmentalers
	4 Idempotent Discrete Paths
	5 Counting Idempotent Discrete Paths
	6 Conclusions
	References

	Author Index

