Gilbert Peterson
Sujeet Shenoi (Eds.)

Advances in
DlgltaPF@ren31cs XV

@ Springer




IFIP Advances in Information
and Communication Technology 569

Editor-in-Chief
Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 — Foundations of Computer Science

Jacques Sakarovitch, Télécom ParisTech, France
TC 2 — Software: Theory and Practice

Michael Goedicke, University of Duisburg-Essen, Germany
TC 3 — Education

Arthur Tatnall, Victoria University, Melbourne, Australia
TC 5 — Information Technology Applications

Erich J. Neuhold, University of Vienna, Austria
TC 6 — Communication Systems

Aiko Pras, University of Twente, Enschede, The Netherlands
TC 7 — System Modeling and Optimization

Fredi Troltzsch, TU Berlin, Germany
TC 8 — Information Systems

Jan Pries-Heje, Roskilde University, Denmark
TC 9 — ICT and Society

David Kreps, University of Salford, Greater Manchester, UK
TC 10 — Computer Systems Technology

Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
TC 11 — Security and Privacy Protection in Information Processing Systems

Steven Furnell, Plymouth University, UK
TC 12 — Artificial Intelligence

Ulrich Furbach, University of Koblenz-Landau, Germany
TC 13 — Human-Computer Interaction

Marco Winckler, University of Nice Sophia Antipolis, France
TC 14 — Entertainment Computing

Rainer Malaka, University of Bremen, Germany



IFIP - The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102



Gilbert Peterson - Sujeet Shenoi (Eds.)

Advances 1n
Digital Forensics XV

15th IFIP WG 11.9 International Conference
Orlando, FL, USA, January 28-29, 2019
Revised Selected Papers

@ Springer



Editors

Gilbert Peterson Sujeet Shenoi

Department of Electrical and Computer Tandy School of Computer Science
Engineering University of Tulsa

Air Force Institute of Technology Tulsa, OK, USA

Wright-Patterson AFB, OH, USA

ISSN 1868-4238 ISSN 1868-422X  (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-28751-1 ISBN 978-3-030-28752-8 (eBook)

https://doi.org/10.1007/978-3-030-28752-8

© IFIP International Federation for Information Processing 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Contents

Contributing Authors

Preface

PART I FORENSIC MODELS

1

A Holistic Forensic Model for the Internet of Things
Lakshminarayana Sadineni, Emmanuel Pilli and Ramesh Babu Battula

2

Implementing the Harmonized Model for Digital Evidence
Admissibility Assessment

Albert Antwi-Boasiako and Hein Venter

PART II MOBILE AND EMBEDDED DEVICE FORENSICS

3
Classifying the Authenticity of Evaluated Smartphone Data
Heloise Pieterse, Martin Olivier and Renier van Heerden

4

Retrofitting Mobile Devices for Capturing Memory-Resident
Malware Based on System Side-Effects

Zachary Grimmett, Jason Staggs and Sujeet Shenoi

5
A Targeted Data Extraction System for Mobile Devices

ix

xvil

19

39

59

73

Sudhir Aggarwal, Gokila Dorai, Umit Karabiyik, Tathagata Mukherjee, Nicholas
Guerra, Manuel Hernandez, James Parsons, Khushboo Rathi, Hongmei Chi,

Temilola Aderibigbe and Rodney Wilson



vi ADVANCES IN DIGITAL FORENSICS XV

6

Exploiting Vendor-Defined Messages in the USB Power Delivery 101
Protocol

Gunnar Alendal, Stefan Azelsson and Geir Olav Dyrkolbotn

7

Detecting Anomalies in Programmable Logic Controllers Using 119
Unsupervised Machine Learning

Chun-Fai Chan, Kam-Pui Chow, Cesar Mak and Raymond Chan

PART III FILESYSTEM FORENSICS

8
Creating a Map of User Data in NTFS to Improve File Carving 133

Martin Karresand, Asalena Warnquist, David Lindahl, Stefan Azelsson and
Geir Olav Dyrkolbotn

9

Analyzing Windows Subsystem for Linux Metadata to Detect 159
Timestamp Forgery

Bhupendra Singh and Gaurav Gupta

PART IV IMAGE FORENSICS

10

Quick Response Encoding of Human Facial Images for Identity 185
Fraud Detection

Shweta Singh, Saheb Chhabra, Garima Gupta, Monika Gupta and Gaurav
Gupta
11

Using Neural Networks for Fake Colorized Image Detection 201
Yuze Li, Yaping Zhang, Liangfu Lu, Yongheng Jia and Jingcheng Liu

PART V FORENSIC TECHNIQUES

12

Digital Forensic Atomic Force Microscopy of Semiconductor 219
Memory Arrays

Struan Gray and Stefan Axelsson



Contents vii

13
Timeline Visualization of Keywords 239
Wynand van Staden

14
Determining the Forensic Data Requirements for Investigating 253
Hypervisor Attacks

Changwei Liu, Anoop Singhal, Ramaswamy Chandramouli and Duminda
Wijesekera



Contributing Authors

Temilola Aderibigbe recently received his M.S. degree in Computer
Science from Florida A&M University, Tallahassee, Florida. His research
interests are in the area of digital forensics.

Sudhir Aggarwal is a Professor of Computer Science at Florida State
University, Tallahassee, Florida. His research interests include password
cracking, mobile forensics, information security and building software
systems for digital forensics.

Gunnar Alendal is a Special Investigator with Kripos/NCIS Norway,
Oslo, Norway; and a Ph.D. student in Computer Security at the Norwe-
gian University of Science and Technology, Gjovik, Norway. His research
interests include digital forensics, reverse engineering, security vulnera-
bilities, information security and cryptography.

Albert Antwi-Boasiako is the National Cybersecurity Advisor, Re-
public of Ghana, Ghana, Accra; and the Founder of the e-Crime Bureau,
Accra, Ghana. His research interests are in the area of digital forensics,
with a focus on digital forensic process standardization.

Stefan Axelsson is an Associate Professor of Digital Forensics at the
Norwegian University of Science and Technology, Gjovik, Norway; and
an Associate Professor of Digital Forensics at Halmstad University, Halm-
stad, Sweden. His research interests include digital forensics, data anal-
ysis and digital investigations.

Ramesh Babu Battula is an Assistant Professor of Computer Science
and Engineering at Malaviya National Institute of Technology, Jaipur,
India. His research interests include secure communications, cyber se-
curity, performance modeling and next generation networks.



X ADVANCES IN DIGITAL FORENSICS XV

Chun-Fai Chan is a Ph.D. student in Computer Science at the Uni-
versity of Hong Kong, Hong Kong, China. His research interests include
penetration testing, digital forensics and Internet of Things security.

Raymond Chan is a Lecturer of Information and Communications
Technology at the Singapore Institute of Technology, Singapore. His
research interests include cyber security, digital forensics and critical
infrastructure protection.

Ramaswamy Chandramouli is a Senior Computer Scientist in the
Computer Security Division at the National Institute of Standards and
Technology, Gaithersburg, Maryland. His research interests include se-
curity for virtualized infrastructures, and smart card interface specifica-
tion and testing.

Saheb Chhabra is a Ph.D. student in Computer Science and Engineer-
ing at Indraprastha Institute of Information Technology, New Delhi, In-
dia. His research interests include image processing and computer vision,
and their applications to document fraud detection.

Hongmei Chi is an Associate Professor of Computer and Informa-
tion Sciences at Florida A&M University, Tallahassee, Florida. Her
research interests include information assurance, scientific computing,
Monte Carlo and quasi Monte Carlo techniques, and data science.

Kam-Pui Chow is an Associate Professor of Computer Science at the
University of Hong Kong, Hong Kong, China. His research interests
include information security, digital forensics, live system forensics and
digital surveillance.

Gokila Dorai is a Ph.D. student in Computer Science at Florida State
University, Tallahassee, Florida. Her research interests include com-
puter, mobile device and Internet of Things forensics.

Geir Olav Dyrkolbotn is a Major in the Norwegian Armed Forces,
Lillehammer, Norway; and an Associate Professor of Cyber Defense at
the Norwegian University of Science and Technology, Gjovik, Norway.
His research interest include cyber defense, reverse engineering, malware
analysis, side-channel attacks and machine learning.



Contributing Authors xi

Struan Gray is an Associate Professor of Physics at Halmstad Univer-
sity, Halmstad, Sweden. His research interests include scanning tunnel-
ing microscopy and atomic force microscopy.

Zachary Grimmett is a Computer Engineer with the U.S. Department
of Defense in Washington, DC. His research interests include mobile
communications devices, digital forensics and malware analysis.

Nicholas Guerra is an M.S. student in Computer Science at the Uni-
versity of Tulsa, Tulsa, Oklahoma. His research interests include digital
forensics, cyber security and reverse engineering.

Garima Gupta is a Postdoctoral Researcher in Computer Science and
Engineering at Indraprastha Institute of Information Technology, New
Delhi, India. Her research interests include image processing and com-
puter vision, and their applications to document fraud detection.

Gaurav Gupta is a Scientist E in the Ministry of Information Tech-
nology, New Delhi, India. His research interests include mobile device
security, digital forensics, web application security, Internet of Things
security and security in emerging technologies.

Monika Gupta is a Visiting Assistant Professor of Optical Physics at
Miranda House, Delhi University, India. Her research interests include
image processing and computer vision, and their applications to docu-
ment fraud detection.

Manuel Hernandez is a Software Engineer at Microsoft, Redmond,
Washington. His research interests include software engineering and
computer hardware.

Yongheng Jia is an M.S. student in Computer Science at Tianjin Uni-
versity, Tianjin, China. His research interests include malware detection
and classification.

Umit Karabiyik is an Assistant Professor of Computer and Informa-
tion Technology at Purdue University, West Lafayette, Indiana. His re-
search interests include digital forensics, user and data privacy, machine
learning, and computer and network security.



xii ADVANCES IN DIGITAL FORENSICS XV

Martin Karresand is a Senior Scientist at the Swedish Defence Re-
search Agency, Linkoping, Sweden; and a Ph.D. student in Computer
Security at the Norwegian University of Science and Technology, Gjovik,
Norway. His research interests include digital forensics, file carving, data
analysis, machine learning and intrusion detection.

Yuze Li is an M.S. student in Computer Science at Tianjin University,
Tianjin, China. His research interests include digital forensics and deep
learning.

David Lindahl is a Research Engineer at the Swedish Defence Research
Agency, Linkoping, Sweden. His research interests include cyber warfare,
critical infrastructure protection and digital forensics.

Changwei Liu is a Postdoctoral Researcher in the Department of Com-
puter Science at George Mason University, Fairfax, Virginia. Her re-
search interests include network security, cloud security and digital foren-
sics.

Jingcheng Liu is an M.S. student in Computer Science at Tianjin Uni-
versity, Tianjin, China. His research interests include data privacy and
intrusion detection.

Liangfu Lu is an Assistant Professor of Mathematics at Tianjin Univer-
sity, Tianjin, China. His research interests include compressed sensing,
sparse representation and image processing.

Cesar Mak is a Research Programmer at the Logistics and Supply
Chain MultiTech R&D Centre, Hong Kong, China. His research interests
include digital forensics, machine learning and data analytics.

Tathagata Mukherjee is an Assistant Professor of Computer Science
at the University of Alabama in Huntsville, Huntsville, Alabama. His
research interests include cyber security, adversarial machine learning,
large-scale digital forensics, cyber law, computational geometry, graph
theory and optimization.



Contributing Authors xiii

Martin Olivier is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research focuses on digital forensics
— in particular, the science of digital forensics and database forensics.

James Parsons is a Software Engineer at Microsoft, Redmond, Wash-
ington. His research interests include digital forensics and software en-
gineering.

Heloise Pieterse is a Senior Researcher and Software Developer at the
Council for Scientific and Industrial Research, Pretoria, South Africa;
and a Ph.D. student in Computer Science at the University of Pretoria,
Pretoria, South Africa. Her research interests include digital forensics
and cyber security.

Emmanuel Pilli is an Associate Professor of Computer Science and
Engineering at Malaviya National Institute of Technology, Jaipur, In-
dia. His research interests include cyber security, digital forensics, cloud
computing, big data, blockchains and the Internet of Things.

Khushboo Rathi is a Senior Software Engineer with Dell Technologies,
Round Rock, Texas. Her research interests include digital forensics,
mobile forensics and machine learning.

Lakshminarayana Sadineni is a Ph.D. student in Computer Science
and Engineering at Malaviya National Institute of Technology, Jaipur,
India. His research interests include Internet of Things security and
forensics.

Sujeet Shenoi is the F.P. Walter Professor of Computer Science and a
Professor of Chemical Engineering at the University of Tulsa, Tulsa, Ok-
lahoma. His research interests include critical infrastructure protection,
industrial control systems and digital forensics.

Bhupendra Singh is an Assistant Professor of Computer Science and
Engineering at the Indian Institute of Information Technology, Pune,
India. His research interests include digital forensics, filesystem analysis
and user activity analysis in Windows and Linux systems.



xiv ADVANCES IN DIGITAL FORENSICS XV

Shweta Singh is an Integrated Software System Engineer at Elkosta
Security Systems, New Delhi, India. Her research interests include ma-
chine learning and its applications to document fraud detection.

Anoop Singhal is a Senior Computer Scientist and Program Manager
in the Computer Security Division at the National Institute of Standards
and Technology, Gaithersburg, Maryland. His research interests include
network security, network forensics, cloud security and data mining.

Jason Staggs is an Adjunct Assistant Professor of Computer Science
at the University of Tulsa, Tulsa, Oklahoma. His research interests
include telecommunications networks, industrial control systems, critical
infrastructure protection, security engineering and digital forensics.

Renier van Heerden is the Science Engagement Officer at the South
African Research and Education Network in Pretoria, South Africa. His
research interests include network security, password security and net-
work attacks.

Wynand van Staden is a Senior Lecturer of Computer Science at the
University of South Africa, Florida Park, South Africa. His research
interests include digital forensics, anonymity and privacy.

Hein Venter is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research interests are in the area of
digital forensics, with a focus on digital forensic process standardization.

Asalena Warnqvist is a Forensics Expert at the National Forensic
Centre, Swedish Police Authority, Linkoping, Sweden. Her research in-
terests include digital forensics and data recovery.

Duminda Wijesekera is a Professor of Computer Science at George
Mason University, Fairfax, Virginia. His research interests include sys-
tems security, digital forensics and transportation systems.

Rodney Wilson is a Software Developer at IBM, Research Triangle
Park, North Carolina. His research interests are in the area of software
engineering and test automation.



Contributing Authors XV

Yaping Zhang is an Assistant Professor of Computer Science at Tian-
jin University, Tianjin, China. His research interests include network

security, data mining and digital forensics.



Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Computer networks,
cloud computing, smartphones, embedded devices and the Internet of
Things have expanded the role of digital forensics beyond traditional
computer crime investigations. Practically every crime now involves
some aspect of digital evidence; digital forensics provides the techniques
and tools to articulate this evidence in legal proceedings. Digital foren-
sics also has myriad intelligence applications; furthermore, it has a vital
role in cyber security — investigations of security breaches yield valuable
information that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics XV, is the fifteenth volume
in the annual series produced by the IFIP Working Group 11.9 on Dig-
ital Forensics, an international community of scientists, engineers and
practitioners dedicated to advancing the state of the art of research and
practice in digital forensics. The book presents original research results
and innovative applications in digital forensics. Also, it highlights some
of the major technical and legal issues related to digital evidence and
electronic crime investigations.

This volume contains fourteen revised and edited chapters based on
papers presented at the Fifteenth IFIP WG 11.9 International Confer-
ence on Digital Forensics, held in Orlando, Florida, USA on January
28-29, 2019. The papers were refereed by members of IFIP Working
Group 11.9 and other internationally-recognized experts in digital foren-
sics. The post-conference manuscripts submitted by the authors were
rewritten to accommodate the suggestions provided by the conference
attendees. They were subsequently revised by the editors to produce the
final chapters published in this volume.

The chapters are organized into five sections: Forensic Models, Mobile
and Embedded Device Forensics, Filesystem Forensics, Image Forensics,
and Forensic Techniques. The coverage of topics highlights the richness
and vitality of the discipline, and offers promising avenues for future
research in digital forensics.



xviii ADVANCES IN DIGITAL FORENSICS XV

This book is the result of the combined efforts of several individuals.
In particular, we thank Mark Pollitt and Jane Pollitt for their tireless
work on behalf of IFIP Working Group 11.9. We also acknowledge the
support provided by the U.S. National Science Foundation, U.S. Na-
tional Security Agency and U.S. Secret Service.

GILBERT PETERSON AND SUJEET SHENOI



I

FORENSIC MODELS



®

Check for
updates

Chapter 1

A HOLISTIC FORENSIC MODEL
FOR THE INTERNET OF THINGS

Lakshminarayana Sadineni, Emmanuel Pilli and Ramesh Babu Battula

Abstract

The explosive growth of the Internet of Things offers numerous innova-
tive applications such as smart homes, e-healthcare, smart surveillance,
smart industries, smart cities and smart grids. However, this has sig-
nificantly increased the threat of attacks that exploit the vulnerable
surfaces of Internet of Things devices. It is, therefore, immensely im-
portant to develop security solutions for protecting vulnerable devices
and digital forensic models for recovering evidence of suspected attacks.
Digital forensic solutions typically target specific application domains
such as smart wearables, smart surveillance systems and smart homes.
What is needed is a holistic approach that covers the diverse application
domains, eliminating the overhead of employing ad hoc models.

This chapter presents a holistic forensic model for the Internet of
Things that is based on the ISO/IEC 27043 international standard.
The model has three phases — forensic readiness (proactive), forensic
initialization (incident) and forensic investigation (reactive) — that cover
the entire lifecycle of Internet of Things forensics. The holistic model,
which provides a customizable and configurable environment that sup-
ports diverse Internet of Things applications, can be enhanced to create
a comprehensive framework.

Keywords: Internet of Things forensics, holistic forensic model, forensic readiness

1.

Introduction

The Internet of Things (IoT) is a global infrastructure that enables ad-
vanced services by interconnecting (physical and virtual) objects based
on existing, evolving and interoperable information and communications
technologies [14]. The Internet of Things connects electronic, electrical
and non-electrical objects to provide seamless communications and con-
textual services [17]. The explosive growth of Internet of Things devices,
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and the nature of services they provide and data they generate have con-
tributed to an increase in security and privacy breaches as well as other
abuses [1, 8]. The need to investigate these incidents has led to the new
discipline of Internet of Things forensics, which focuses on the identifi-
cation, collection, organization and presentation of evidence related to
incidents in Internet of Things infrastructures [23].

This chapter presents a holistic forensic model for Internet of Things
environments that is based on the ISO/IEC 27043 international stan-
dard. The forensic model has three phases, forensic readiness (proactive
component), forensic initialization (incident component) and forensic
investigation (reactive component). These three phases cover the en-
tire lifecycle of Internet of Things forensics. This chapter also discusses
the challenges involved in implementing the forensic model, along with
feasible approaches and supporting technologies. The holistic model,
which provides a customizable and configurable environment that sup-
ports diverse Internet of Things applications, can be enhanced to create
a comprehensive framework.

2. Related Work

The Internet of Things stretches over several layers comprising hetero-
geneous devices, interconnected networks and diverse communications
protocols and applications. Figure 1 shows a typical Internet of Things
layered architecture. The three layers — things layer, edge layer and ap-
plications layer — are physically and logically divided according to their
functionalities. Ideally, the things and edge layers are part of same net-
work and are physically close to each other. As a result, most Internet
of Things forensic approaches consider these two layers; the applications
layer is left to cloud forensics [15].

Although much research has focused on computer forensics, network
forensics and cloud forensics, limited work has been done in the area
of Internet of Things forensics. The main reasons are the heterogeneity
of devices, and diverse communications protocols and applications do-
mains. These make it very difficult to identify common attack surfaces
and create generic security and forensic solutions.

Nevertheless, several researchers have proposed models or frameworks
for security analyses and forensic investigations in Internet of Things en-
vironments. Oriwoh and Sant [18] have proposed a model for automat-
ing security and forensic services that exclusively targets smart home
environments. The layered model has four stages. In stage 1, services
such as network traffic monitoring, intrusion detection, data collection,
parsing, compression and analysis are configured. Stage 2 automates
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Figure 1. Internet of Things layered architecture.

the configured services to detect incidents and report them to users. In
stage 3, users respond to incidents and escalate them to forensic investi-
gators. In stage 4, digital forensic investigators reconstruct the incidents
for potential legal action.

Zawoad and Hasan [23] have proposed a forensics-aware model for sup-
porting reliable investigations in Internet of Things environments. Inter-
net of Things forensics has three layers — device level forensics, network
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level forensics and cloud level forensics. A secure evidence preservation
module monitors registered devices to collect evidence such as network
logs, registry logs and sensor readings, and stores them securely in an
evidence repository. Hybrid (asymmetric-symmetric) encryption is em-
ployed to protect the evidence, making it accessible only to authorized
investigators. A secure provenance module ensures chain of custody by
preserving the evidence access history. Law enforcement agency person-
nel may access the preserved evidence and provenance information via
secure read-only APIs.

Kebande and Ray [15] have proposed a generic digital forensic investi-
gation framework for Internet of Things infrastructures. The framework,
which maps existing digital forensic techniques to Internet of Things in-
frastructures, comprises three main processes — the proactive process, the
Internet of Things forensic process and the reactive process. Other con-
current processes run alongside the three main processes. The proactive
process, which is similar to the process defined by the ISO/TEC 27043 in-
ternational standard, includes scenario definition, evidence source iden-
tification, planning incident detection, evidence collection and evidence
storage and preservation. The Internet of Things forensic process in-
cludes cloud forensics, network forensics and device forensics. The re-
active process covers initialization, the acquisition process and the in-
vestigation process. The high-level model is holistic and applicable to
all Internet of Things environments, but it lacks low-level details that
enable it to be customized to specific environments while leaving all the
processes unchanged.

Meffert et al. [16] have proposed a framework and practical approach
for Internet of Things forensics through device state acquisition. The
proposed approach is based on collecting device state information using
a dedicated controller to obtain a clear picture of the events that have
occurred. The controller is operated in three modes — device controller,
cloud controller and controller controller. The controller acquires state
information directly from devices, the cloud and controllers using their
respective modes. While the framework can reliably collect state data in
Internet of Things environments using the three modes, its limitations
include accessing historical and deleted data, physical access require-
ments and inability to connect to new devices.

Zia et al. [24] have proposed an application-specific investigative model
for Internet of Things environments. The model comprises three in-
dependent components — application-specific forensics, digital forensics
and forensic process. It is conceptualized based on three key Internet
of Things applications — smart homes, wearables and smart cities. The
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sources of forensic artifacts in the forensic readiness model are smart
homes, wearables, smart cities, networks and the cloud.

Shin et al. [20] focus on the reactive process that occurs after an
incident has occurred. They applied various digital forensic methods
to collect data from an Internet of Things device (Amazon Echo) and
network (home area network using the Z-Wave protocol). However, their
approach is limited to selected devices and communications protocols.

Babun et al. [5] have proposed a digital forensic framework for smart
environments such as smart homes and smart offices, where applications
installed on smart devices are used to control sensors and actuators in
the environments. The framework has two components — modifier and
analyzer. The modifier examines the source code of smart applications
at compile time to detect forensically-relevant data and insert tracing
logs in the appropriate places. The analyzer uses data processing and
machine learning techniques to extract forensic data related to device
activity in the event of an incident.

Harbawi and Varol [11] have proposed an improved digital evidence
acquisition model for Internet of Things forensics. They highlight the
need to identify things of interest that produce initial evidence traces.
Perumal et al. [19] have proposed a four-tiered digital forensic investi-
gation model for the Internet of Things. Their model covers the entire
investigative lifecycle starting from the authorization of forensic experts
in a case to the archival of evidence after the case is closed.

Unfortunately, the forensic models discussed above fail to provide low-
level details on how they can be customized to specific application sce-
narios. In contrast, the model proposed in this chapter engages a holistic
approach that emphasizes configurable forensic readiness that is appli-
cable to any Internet of Things domain.

3. Proposed Holistic Forensic Model

The proposed holistic forensic model for the Internet of Things is
based on the ISO/IEC 27043 international standard [13]. The standard
describes digital forensics as comprising several processes, each incorpo-
rating one or more activities. ISO/IEC 27043 processes correspond to
phases in the proposed model and activities correspond to modules.

Figure 2 presents the holistic forensic model. The model has three
phases: (i) forensic readiness (proactive) phase; (ii) forensic initialization
(incident) phase; and (iii) forensic investigation (reactive) phase. Each
phase has a number of component modules. Although all the modules
focus on Internet of Things devices, their approaches can be mapped to
the applications layer if needed.
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Figure 2. Holistic forensic model for the Internet of Things.

3.1 Forensic Readiness (Proactive) Phase

During the forensic readiness (proactive) phase, digital evidence re-
lated to an Internet of Things environment is collected and preserved.
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This reduces the time, effort and cost involved in investigating subse-
quent incidents.
The forensic readiness phase has six modules.

= Module 1.1 (Readiness Configuration): This module coor-
dinates all the forensic readiness activities. It provides config-
urable services to customize the model to different Internet of
Things environments, rendering the model holistic. The config-
uration is performed by administrators and/or security experts to
create application-specific, device-specific and context-aware direc-
tions for event detection, forensic data collection and preservation.

The readiness configuration module has the following basic func-
tionality:

— Provides a mechanism for adding comprehensive information
about Internet of Things devices in an environment (e.g.,
adding information about the smart devices in a smart home).
The information about each device includes the device name,
device manufacturer, device type, device id, firmware details,
device functionality, interactions to be logged (based on de-
fined scenarios) and device description.

— Guides the device setup module in identifying suitable prop-
erties and configuring each device for evidence collection.

— Guides the event detection module in identifying the specific
events that must be logged.

— Guides the evidence collection module on the data pertaining
to specific events that needs to be collected.

— Guides the evidence preservation module on how the collected
data is formatted and stored for future investigations.

It is important to note the difference between an event and an
incident. An event denotes one or more interactions with Internet
of Things devices that can change their states (e.g., changes in the
sensor readings of a smart watch and a sensor data request sent
from a mobile application to a smart watch); an event need not
be suspicious. In contrast, an incident is a sequence of suspicious
events that disrupts the regular functioning of Internet devices; an
incident impacts security and/or privacy.

= Module 1.2 (Scenario Definition): This module defines scenar-
ios as sequences of events that are forensically sensitive to specific
Internet of Things applications (e.g., unusual interactions with a
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Figure 3. Example event in a smart watch scenario.

device and failed authorization attempts when accessing a service).
In the applications layer, scenarios are defined to cover how con-
figuration and business data should be managed (e.g., who can
access or modify the data). Each scenario specifies events that
change the states of Internet of Things devices. The state changes
are identified along with the properties of the associated devices.

Module 1.3 (Device Setup): This module identifies each new
device added to the environment and its forensic properties before
the device becomes operational. It consults the readiness configu-
ration module for device-specific settings and stores all the setup
information in a secure database for use by other modules. Also,
it keeps track of when a device is detached from the environment.

Module 1.4 (Event Detection): This module identifies forensic-
ally-sensitive events based on scenarios defined in the scenario def-
inition module. Rules may be specified for validating device in-
teractions and network traffic, and identifying potential events. In
the applications layer, an autonomous module may be designed to
monitor the security aspects of system configurations and requests
for authentication and data access.

Figure 3 presents an example event in a smart watch scenario.
When sensor data is updated or a pull request is sent from a mobile
application to the smart watch, the associated data is recorded as
potential evidence. The data is periodically synchronized with
a mobile application and may be uploaded to cloud storage for
subsequent processing.
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3.2

Module 1.5 (Evidence Collection): This module covers the
collection of potential evidence from Internet of Things devices,
controllers and network devices. An example is logging the com-
mands issued to an Internet of Things device along with their
timestamps. The sources of commands to the devices are recorded
(including multiple possible sources for a device such as a smart
TV — TV remote, direct push button and remote user over a net-
work).

Evidence collection is easier when a device operating system sup-
ports forensic interactions to collect relevant information via sys-
tem calls. Otherwise, an autonomous software layer on top of the
operating system has to be created for evidence collection from pro-
grammable devices. In both cases, an edge controller issues com-
mands to the device software for evidence collection and preser-
vation. For all other devices, an external collection mechanism is
implemented at the controller node.

When devices execute real-time applications, it is important to
know the kind of data that is generated and how it is stored; this
helps develop advanced data collection mechanisms [21]. In the ap-
plications layer, the sources of all failed interactions (e.g., configu-
ration changes, authentication and access requests, and suspicious
APT calls) are logged for future investigations. All the collected
evidence is formatted according to the storage and processing re-
quirements.

Module 1.6 (Evidence Preservation): This module covers the
secure storage of evidence for future investigations. Many Inter-
net of Things devices have on-board flash memory that stores the
operating system and real-time executable files. This memory can
be used to store forensic data, which could be sent periodically
to a central server for longer-term storage and subsequent pro-
cessing. Alternative storage may be provided by fog nodes. The
evidence should be stored securely and protected from accidental
modification and intentional tampering. Potential evidence from
the applications layer may be preserved in secure cloud storage.

Forensic Initialization (Incident) Phase

The forensic initialization (incident) phase has three modules: (i) in-
cident detection; (ii) first response; and (iii) investigation preparation.

Module 2.1 (Incident Detection): This module covers the con-
tinuous monitoring of an environment for harmful behavior using
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appropriate techniques and tools. All user interactions are vali-
dated against rules defined by administrators or security experts.
In the device and controller levels, the rules are implemented as
intelligent scripts that identify malicious interactions (e.g., a script
would detect a number of failed authentication requests by an In-
ternet of Things device that exceed a threshold). In the network
level, intrusion detection systems and other security tools are used
to monitor live traffic. In the applications level, cloud security
techniques and tools are used to detect incidents. After an inci-
dent is detected, it is reported for further action.

Module 2.2 (First Response): This module covers the trans-
mission of prioritized alerts to users or administrators for imme-
diate action. In the case of an incident, an alert is escalated to a
digital forensic professional. If required, devices, controllers and
software are suspended to prevent additional damage to the en-
vironment. All the relevant components should be disconnected
from the production environment until the forensic investigation
is completed.

Module 2.3 (Investigation Preparation): This module covers
activities that support the investigative process. The activities
include:

— An incident management (investigative) plan is prepared. The
plan specifies how to proceed with an investigation. It also
covers evidence provenance and formatting.

— An incident response team of available experts is created to
implement the incident management plan. Each incident is
investigated by a dedicated team.

— Technical and other support, including organizational and op-
erational support, are provided to the team.

— The incident response team is briefed about and trained on
incident management.

— The incident management plan is reviewed and improved us-
ing techniques such as paper tests, tabletop exercises and sim-
ulations.

— The improved incident management plan is documented for
practical implementation.
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3.3 Forensic Investigation (Reactive) Phase

The forensic investigation (reactive) phase implements the investiga-
tive plan to reconstruct the sequence of events. Potential evidence col-
lected during the readiness phase is acquired and analyzed to prove or
disprove that an attack or breach occurred and to identify the victim de-
vices. The insights gained during the investigation are used to improve
security and forensic techniques and tools used in the environment.

The forensic investigation phase comprises the following five modules:

= Module 3.1 (Evidence Acquisition): This module covers the
identification of evidence pertaining to the reported incident and
its acquisition from secure storage. It may be necessary to visit
the physical location and acquire forensic images of the Internet
of Things devices in question. Various techniques may be used to
extract the firmware and memory images in order to identify ma-
licious behavior. In the applications layer, artifacts related to the
cloud environment such as virtual machine images and logs, hyper-
visor logs, user activity logs, database access logs and application
logs are collected.

= Module 3.2 (Evidence Examination and Analysis): This
module covers the formatting of the acquired logs and evidence
to render them suitable for analysis. Machine learning techniques
may be applied to identify attack patterns in Internet of Things
networks. Techniques and tools must be updated or augmented
periodically in order to identify new attacks. Analytic tools may
be used in the applications layer to identify suspicious behavior
related to computing, storage and data access requests.

= Module 3.3 (Incident Reconstruction): This module covers
the reconstruction of an incident as a sequence of suspicious events
based on the results of the evidence examination and analysis mod-
ule. The incident reconstruction module comprises the following
two activities:

— The evidence interpretation activity analyzes results based on
predefined postulates to reconstruct an incident (e.g., identify
the sequences of events in the devices and edge layer and map
them to the applications layer to understand what has oc-
curred). The postulates may be adapted from standard secu-
rity policies or defined by security experts for specific Internet
of Things application scenarios (e.g., a security policy may be
defined to limit the number of unsuccessful authentication or
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access requests). Some policies may define the standard be-
havior of Internet of Things devices or the environment to
avoid unwanted communications between extraneous devices.

— The reporting activity generates a formal report covering the
incident findings related to attacks and victims and their
timelines.

= Module 3.4 (Evidence Presentation): This module covers the
preparation and presentation of evidence to comply with the re-
quirements imposed by legal proceedings. The final report may
incorporate graphics and animations to enhance clarity.

= Module 3.5 (Investigation Closure): This module covers the
post-investigation activities, especially providing feedback and ar-
chiving the evidence. Feedback is provided to the evidence ex-
amination and analysis module, and evidence traces and records
are archived. Case studies may be created to inform and enhance
future investigations.

4. Forensic Technologies

This section discusses two emerging technologies, fog/edge computing
and blockchains, that can enhance Internet of Things forensic processes.

4.1 Fog/Edge Computing

The terms fog computing and edge computing are used interchange-
ably to describe the layer between end-devices and the cloud that lever-
ages the storage and processing of intermediate devices (fog nodes). Fog
computing can be considered to be an implementation of edge comput-
ing [9]. Edge computing brings down services from the cloud to the
edges of Internet of Things networks. Since these services include device
authentication, access control, and data processing and storage, most
of the forensic readiness modules can be implemented using fog com-
puting. Al-Masri et al. [3] have proposed a fog-based digital forensic
investigation framework for Internet of Things environments.

4.2 Blockchains

The distributed and immutable characteristics of blockchains suit the
demands of Internet of Things forensics. Fernandez-Carames and Fraga-
Lamas [10] have presented a comprehensive decision model that checks
whether or not a blockchain-based solution applies to a particular Inter-
net of Things scenario. In the decision model, evidence collected from
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Internet of Things devices, controllers and applications in the cloud are
treated as the ledger. An ideal solution for Internet of Things foren-
sics is a private-permissioned blockchain where the number of nodes is
restricted and access is only provided to selected users.

The distributed nature of a blockchain dovetails with fog computing to
provide services such as evidence collection and storage. Evidence can be
collected by any node and updated in the ledger. The immutability of a
blockchain ensures that the evidence is not tampered with and is always
valid. A blockchain also supports the verification of the provenance
of evidence. These two properties enable forensic investigators to access
evidence reliably from any node at any time. Ali et al. [2] have presented
a global naming and storage system secured by blockchains.

In summary, blockchains can be used to timestamp and store evidence
collected from Internet of Things devices [10]. Banerjee et al. [6] have
presented an interesting blockchain application that tracks changes made
to Internet of Things device firmware and automatically restores the
original firmware in the event of tampering. Similar approaches can be
used to maintain the integrity of Internet of Things evidence.

5. Research Challenges

Internet of Things forensics is challenging due to the complexity of
devices and applications, and the lack of uniform standards across de-
vice manufacturers and system developers. Most tools are designed to
work with conventional systems with significant storage and computing
capabilities instead of small, specialized devices [21]. Challenges are also
imposed by the heterogeneity of devices, applications and communica-
tions technologies. As a result, the stored data has diverse formats and
requires custom acquisition methods.

Another challenge is extracting volatile data from Internet of Things
devices before it is overwritten. Sophisticated mechanisms are needed
for swift collection. Collection can be sped up by storing data on the
device itself, but the data must be moved periodically to supplementary
storage to free up device memory. The data may also be synchronized to
fog nodes or cloud storage at regular intervals. This approach is safer in
the long term because Internet of Things devices can be tampered with
or even destroyed. The transfer and aggregation of evidence also make
it more difficult to maintain the chain of custody [12]; fortunately, this
can be addressed using blockchain technology.

Some challenges are specific to the phases of the proposed holistic
forensic model. The principal challenge in the readiness phase is apply-
ing forensic processes to devices and their firmware when the devices are
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operating. Separate hardware devices with automated forensic scripts
may have to be developed to support forensic readiness activities. Chal-
lenges in the incident phase include taking control of devices deployed at
remote locations (software-defined networking could help) and communi-
cating alerts about incidents. Challenges during the investigation phase
include formatting heterogeneous evidence into a uniform structure for
examination and analysis, and employing machine learning algorithms
to detect new attacks (e.g., cross-layer attacks) [4].

6. Conclusions

Due to the diversity of devices, networks and applications, a num-
ber of ad hoc digital forensic solutions have been developed for specific
Internet of Things environments. A holistic digital forensic model that
covers diverse Internet of Things environments is required to eliminate
the overhead imposed by the ad hoc solutions.

The Internet of Things forensic model presented in this chapter is
holistic and covers the entire forensic lifecycle. The model, which is
based on the ISO/IEC 27043 international standard, is customizable
and configurable, and supports diverse Internet of Things applications.

Future research will focus on the implementation and testing of the
model in selected application domains, with the ultimate goal of creating
a comprehensive framework for Internet of Things forensics.
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Chapter 2

IMPLEMENTING THE HARMONIZED
MODEL FOR DIGITAL EVIDENCE
ADMISSIBILITY ASSESSMENT

Albert Antwi-Boasiako and Hein Venter

Abstract  Standardization of digital forensics has become an important focus area
for researchers and criminal justice practitioners. Over the past decade,
several efforts have been made to encapsulate digital forensic processes
and activities in harmonized frameworks for incident investigations. A
harmonized model for digital evidence admissibility assessment has been
proposed for integrating the technical and legal determinants of digital
evidence admissibility, thereby providing a techno-legal foundation for
assessing digital evidence admissibility in judicial proceedings.

This chapter presents an algorithm underlying the harmonized model
for digital evidence admissibility assessment, which enables the determi-
nation of the evidential weight of digital evidence using factor analysis.
The algorithm is designed to be used by judges to determine evidence
admissibility in criminal proceedings. However, it should also be useful
to investigators, prosecutors and defense lawyers for evaluating potential
digital evidence before it is presented in court.

Keywords: Digital evidence admissibility, factor analysis, evidential weight

1. Introduction

The application of digital forensics in criminal justice has become
more relevant than ever because of the continuous evolution of cyber
crime and its impact on individuals, organizations and governments. It
is nearly impossible in today’s information-technology-driven society to
find a crime that does not have a digital dimension [7]. The relevance
of digital forensics is also influenced by the fact that computer systems
are being used to facilitate crimes such as fraud, terrorism and money
laundering. National information infrastructures have become targets
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for cyber attackers; this has rendered digital forensics an essential com-
ponent of national strategies for combating cyber threats.

Meanwhile, advancements in computer engineering and information
and communications technologies have led to novel sources of digital ev-
idence. Unmanned aerial vehicles, driverless automobiles and Internet of
Things devices have led to new developments in digital forensics because
of the digital evidence that resides in these systems [1, 9].

However, the question of digital evidence admissibility remains a key
issue when applying digital forensics in jurisprudence. The criminal
justice sector is confronted with the challenge of proffering evidence that
is admissible in court [12]. In addition to training in new legislation
and technology, judges require a scientific approach for assessing digital
evidence in court. These challenges have driven the research community
to develop standardized processes and approaches to ensure that digital
evidence is admissible in legal proceedings.

This chapter presents an algorithm underlying a harmonized model
for digital evidence admissibility assessment, which assists in determin-
ing the evidential weight of digital evidence using factor analysis. The
algorithm is designed to be used by judges in criminal proceedings, but
it should also be useful to investigators, prosecutors and defense lawyers
for evaluating potential digital evidence before it is presented in legal
proceedings.

2. Background and Related Work

Several models and frameworks have been introduced to standardize
digital forensic activities in order to address issues regarding the ad-
missibility of digital evidence. These include a framework introduced
by participants in the 2001 Digital Forensic Research Workshop [17],
an abstract model of digital forensic procedure introduced by Reith et
al. [18] and a harmonized process model introduced by Valjarevic and
Venter [25]. A good practice guide produced by the (U.K.) Association
of Chief Police Officers [3] and an electronic crime scene investigation
guide published by the U.S. Department of Justice [23] are examples of
efforts undertaken by law enforcement to harmonize digital forensics and
provide a common approach for conducting digital investigations. The
International Organization for Standardization has created the ISO/IEC
27037 Standard [13] and the ISO/IEC 27043 Standard [14] to support
incident investigations.

Despite significant developments in rationalizing the domain of digital
forensics, issues associated with the admissibility of digital evidence in
legal proceedings have remained largely unresolved. To address this
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Figure 1. Requirements for assessing the admissibility of digital evidence.

gap, Antwi-Boasiako and Venter [2] introduced the Harmonized Model
for Digital Evidence Admissibility Assessment (HM-DEAA). This model
specifies technical and legal requirements — called “determinants” — that
underpin the admissibility of digital evidence. Figure 1 presents the
various technical and legal determinants specified in the harmonized
model.

This existential foundation of digital evidence presents a techno-legal
dilemma — a challenge or gap that exists in establishing a balanced in-
terdependent relationship between the technical and legal requirements
when establishing digital evidence admissibility and determining the
weight of digital evidence in judicial proceedings. The harmonized model
of Antwi-Boasiako and Venter [2] leverages an operational interdepen-
dency relationship between the technical and legal determinants to es-
tablish digital evidence admissibility.

Figure 2 presents the harmonized model. The three phases of the
model are integrated, but they are distinct from each other due to their
functional relevance in assessing digital evidence admissibility. The digi-
tal evidence assessment phase establishes the legal foundations of digital
evidence. The digital evidence consideration phase focuses on the techni-
cal requirements that underpin digital evidence admissibility. The digital
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Figure 2. Harmonized Model for Digital Evidence Admissibility Assessment.

evidence determination phase underpins the judicial decisions regarding
the admissibility and weight of digital evidence.

The research described in this chapter builds on the previous work by
Antwi-Boasiako and Venter [2]. It presents an algorithm that underlies
the implementation of the harmonized model for digital evidence admis-
sibility assessment and enables the determination of evidential weight
using factor analysis.

3. Validation Survey Methodology and Findings

A survey of judicial experts with knowledge and experience in digital
evidence was conducted to validate the technical and legal determinants
of digital evidence admissibility. The respondents were asked to assess
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Table 1. FEvidential weight impact description.

Score Impact Description

1 No Impact  Determinant has no effect on the digital evidence
in question

2 Minimal Determinant has very little effect on the digital
evidence in question

3 Moderate Determinant has some effect, but not significant
enough, on the digital evidence in question

4 Significant ~ Determinant has considerable effect on the digital
evidence in question

5 Very Determinant has exceptional effect on the digital

Significant  evidence in question

the impact of each determinant on the weight of digital evidence. Table 1
shows the Likert scale [4] used by the survey respondents.
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Figure 3. Survey respondent categories.

A total of 77 respondents participated in the survey. The respondents
were drawn from common law and civil law jurisdictions across Africa,
North and South America, Asia, Europe and the Middle East. Figure 3
shows the five categories of experts who participated in the survey.

An expert sampling method [10] used to obtain a scientifically-valid
sample for the survey. Expert sampling provides an optimal means for
constructing the views of respondents who are judged to be experts
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Figure 4. Responses related to the determinants of admissibility.

in the subject matter under investigation [10]. The survey was also
consensus-oriented, which justified the application of expert sampling
and the qualitative research approach [24]. The sample selection was
justified using consensus theory [8, 26]. The quantitative method was
instrumented through the use of statistical methods, including factor
analysis, to identify and explore the distribution of survey data.

The research instrument was subjected to a number of validity and
reliability tests, including questionnaire validity, face validity, content
validity and construct validity, which are essential to achieving validity
and reliability [22]. Questionnaire validity refers to the accuracy and
consistency of a questionnaire in providing reliable research data. Face
validity refers to the degree to which a measure appears to be related
to a specific construct in the research; according to Burton and Maze-
rolle [6], face validity establishes the ease of use, clarity and readability
of a research instrument. Content validity considers the extent to which
a survey is relevant and representative of the target construct; it es-
tablishes the credibility, accuracy and relevance of the subject matter
under investigation. Construct validity establishes a cause and effect
relationship in a research instrument [22].

Figure 4 highlights the responses related to the determinants of ad-
missibility. As an example, consider the chain of custody (CoC) determi-
nant. Fourteen survey participants (18% of the respondents) indicated
that chain of custody does not affect the admissibility of digital evidence
in a court of law whereas 62 participants (82% of the respondents) in-
dicated that it affects evidence admissibility. Several factors may have
contributed to these responses. Chain of custody is widely recognized by
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Figure 5. Likert scores assigned to the determinants of admissibility.

experts as one of the most important requirements for digital evidence
admissibility; this is confirmed by the high positive response rate of 82%
for the determinant. However, the understanding of respondents and
prevailing legal practices in their jurisdictions may have contributed to
the higher than expected 18% negative response rate for chain of cus-
tody.

The survey participants were also asked to rate the impact of each de-
terminant on the evidential weight using the Likert scale of 1 to 5 shown
in Table 1. Figure 5 shows the scores for the determinants. Once again,
consider the chain of custody determinant (CoC) as an example. Fifty-
nine survey participants (77% of the total) rated the impact of chain
of custody on digital evidence admissibility as very significant (Likert
score of 5); six respondents (8%) rated the impact as significant (score
of 4); nine 9 respondents (12%) rated the impact as moderate (score of
3); two respondents (3%) rated the impact as minimal (score of 2); and
one respondent (less than 1%) rated no impact (score of 1).

Figure 6 graphs the minimum, average and maximum scores for the
determinants. For example, the average rating of the impact of the chain
of custody determinant on digital evidence admissibility is 4.53. It is im-
portant to note that an analysis of the data revealed that no conspicuous
variations existed in the responses provided by judges versus other crim-
inal justice actors relative to the importance of the determinants. This
implies that all the criminal justice actors considered in the research
have common understanding and expectations of the application of dig-
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Figure 6. Distributions of scores for the determinants of admissibility.

ital evidence in criminal proceedings. However, the levels of technical
and judicial knowledge and experience appear to be important factors
that contributed to the variations seen in the scores.

4. Proposed Algorithm

The next step after validating the determinants and assessing their
impacts on digital evidence admissibility is to apply the algorithm pre-
sented in Figures 7 and 8. The algorithm flowcharts cover the three
phases of the harmonized model: (i) digital evidence assessment; (ii)
digital evidence consideration; and (iii) digital evidence determination.
The algorithm formalizes the sequential activities from the introduction
of digital evidence in court through the various stages of witness presen-
tation and cross-examination to the final determination of the case by
the court.

During the first phase, digital evidence assessment, the legal founda-
tions of digital evidence are established. The relevance of the evidence
to the case is determined by the court after legal authorization is estab-
lished. This phase covers pre-trial activities in most jurisdictions. The
trial could be terminated at this stage if a proper legal foundation is not
established.

If the proper legal foundation is established, the case moves to full
trial corresponding to the second phase — digital evidence considera-
tion. The prerequisite requirements, core requirements and evaluation
requirements, which are all technical determinants listed in Figure 2, are
assessed during this phase.
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Figure 7. Flowchart of the digital evidence assessment and consideration phases.

The third phase, digital evidence determination, forms the basis of
judicial decisions. In most jurisdictions, the decision could be acquittal
or conviction and sentencing. The sentence would be the maximum,
average or minimum based on the evidential weight established through
the operationalization of the harmonized model.

5. Evidential Weight Determination

This section presents the foundation for determining the evidential
weight of digital evidence using the determinants discussed in this chap-
ter.

Evidential weight is the weight that a judge would attach to a par-
ticular piece of evidence that is tendered in a court of law. According
to Mason [15], assessing evidential weight involves scrutinizing a piece
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evidence and deciding whether or not it is acceptable and relevant to

arriving at a decision during a trial.

to

The research described in this chapter employed factor analysis [5]
statistically analyze the survey data in order to determine evidential

weight. Factor analysis was selected because it is well suited to ex-
ploratory data analyses. In particular, it was used to obtain the weights

of

the variables required to make judicial decisions. The survey con-
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ducted in this research provided the data used to operationalize factor
analysis [16].

In order for a dataset to be suitable for factor analysis, a correla-
tion must exist between the determinants and it must pass the Kaiser-
Meyer-Olkin (KMO) sampling adequacy test. The correlations between
the determinants were computed using the sample Pearson correlation
coefficient [21] as follows:

o NS oy - (Ra)(y) "
VINY 22 = (C 2PNy~ ()]
where r is the correlation coefficient between determinants = and y (x
and y are the individual survey responses); N is the number of survey
respondents; Y xy is the sum of the products of paired x and y scores;
Y is the sum of z scores; Y.y the sum of y scores; > 2% the sum of
squared z scores; and > y? is the sum of squared y scores.

Note that the correlation is calculated for each pair of determinants.
Also, the numerator in the equation is the covariance between the two
determinants and the denominator is the product of the standard devi-
ations of the two determinants.

The Stata statistical software package [19] was used to compute the
correlations. For example, a correlation of 0.324962 was established
between the forensic tool (FT) and digital forensic model (DFM) deter-
minants, and a correlation of 0.500934 was established between the legal
authorization (LA) and technical integrity verification (TIV) determi-
nants.

The KMO sampling adequacy test was performed to ensure that the
dataset was suitable for factor analysis. The KMO sampling adequacy
varies from zero to one; a value close to one denotes well suited to factor
analysis whereas a value close to zero denotes inappropriate for factor
analysis. A KMO sampling adequacy value of 0.77 was obtained, sug-
gesting that the dataset is adequate for factor analysis [20].

Factor analysis assumes that a linear relationship involving the latent
factors exists in the survey data. In general, a factor factory; in the
data is expressed as:

fCLCtOTnj = lelj + b2X2]‘ + ...+ annj + e, (2)

where the b; terms denote factor loadings (e.g., factor scores such as that
relating determinant FT to determinant DFM as computed by Stata);
Xjj terms correspond to the determinants; j is an observation (i.e., fac-
tor); n is the number of variables (i.e., number of determinants); and e;
is an error term.
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The coefficient formula for the determinants is given by:

Factor Analysis of Determinants = b1 DFM + by F'T 4 b3CoC +
byFAC + bsDFL + bgTIV +
b:DFEW + bsDFR + bgLA +
bioDERe +bi1DEA +
biaDEI + bisDERI +
biuDEP + ¢; (3)

The b; values in Equation (3) are used to compute the evidential weight
EW as follows:

EW = w1DFM + woFT + w3CoC +
Wy FAC + ws DFL + wgTIV +
wyDFEW + wsDF R +
woL A + wigDERe +
w11 DEA + wioDET +
wisDERI + w4 DEP +

€j (4)

where the w; terms correspond to the determinant weights Wd; com-
puted as:

o bm2 5
~ Total Variance 5)
Note that ¢ denotes a determinant; n is the number of determinants; b;
is a factor score generated by factor analysis; and the total variance is
the sum of the squares of the b; factor scores.

Table 2 presents the computed factor loadings b;n? and determinant
weights Wd; based on the survey results.

Wd,;

6. Results and Discussion

The equations presented in the previous section were applied to a
hypothetical case involving digital evidence. Table 3 presents the results
obtained by applying factor analysis to evidence in the hypothetical
case. In the table, a determinant weight Wd; denotes the weight of
determinant i as established by factor analysis. A determinant score
Sd; in the table, which corresponds to the score assigned to determinant
i by the court for the case in question, is given by:
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Table 2. Evidential weight determination.

Determinant Factor Factor Determinant
Loading Score ‘Weight

(bs) (bin?) (Wdy)
DFM 0.247633  0.061322 0.034
FT 0.412889  0.170477 0.095
CoC 0.344163  0.118448 0.066
FAC 0.372313 0.138617 0.025
DFL 0.212455  0.045137 0.077
TIV 0.371712  0.138170 0.077
DEFW 0.237606  0.056457 0.031
DFR 0.326640 0.106694 0.059
LA 0.240957  0.058060 0.032
DERe 0.193218 0.037333 0.021
DEA 0.495371  0.245393 0.136
DEI 0.611801  0.374300 0.208
DERIL 0.332325  0.110440 0.061
DEP 0.375614  0.141086 0.078
Total Variance 1.801933

Table 3. Evidential weight determination and analysis.

Determinant Determinant Determinant Weighted
Weight Score Value
(Wd;) (Sdy) (Wwvi)
DFM 0.034 3.8 0.129
FT 0.095 4.5 0.428
CoC 0.066 3.0 0.198
FAC 0.025 2.5 0.063
DFL 0.077 3.4 0.262
TIV 0.077 2.3 0.177
DFEW 0.031 5.0 0.155
DFR 0.059 4.7 0.277
LA 0.032 3.7 0.118
DERe 0.021 4.2 0.088
DEA 0.136 4.0 0.544
DEI 0.208 2.4 0.499
DERI 0.061 3.6 0.220
DEP 0.078 3.5 0.273

Total Evidential Weight 3.431




32 ADVANCES IN DIGITAL FORENSICS XV

Sdi — Sum of Assessment Scores
v Total Mark

where each determinant has a maximum mark allocation of five.

Each of determinants is assessed in court using different parameters,
which are essentially the key questions addressed during evidence pre-
sentation and cross-examination. For example, relative to the digital
forensic tool (FT) determinant, the following key questions are consid-
ered to determine the score:

(6)

= Which forensic tool(s) was/were used in the forensic examination?
m  Was the use of each tool licensed?

= Was open-source or proprietary software used?

s What are the implications of using each tool?

»  Was each tool tested or validated?

s What is the error rate of each tool?

m  What is the level of acceptance of each tool by the researcher and
practitioner communities?

= Are there any scientific publications about each tool?

The answers to these questions are determined based on scientific
and industry requirements in order to accept a forensic tool in digital
investigations. While the questions are not exhaustive, they provide
key assessment parameters that would be used in court to provide a
score for the given determinant. A score of 4.5 for the digital forensic
tool determinant was obtained by applying Equation 6. This value was
computed for the determinant based on the assessment questions.

Using Equation 4 and the data in Table 3, the evidential weight is
computed as:

EW = 0.034DFM + 0.095FT +
0.066CoC + 0.025F AE +
0.077DFL + 0.077TIV +
0.031DFEW + 0.059DFR +
0.032LA + 0.021DERe +
0.136DEA + 0.208DET +
0.061DERI + 0.078DEP (7)
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The weighted value Wwv;, which corresponds to the evidential weight
of determinant 4, is computed as:

Wu; = Wd; x Sd; (8)

where Wd; is the weight of determinant i and Sd; is the determinant
score.
Thus, the total weighted value of all the determinants is given by:

> Wd;iSd; = WdySdy + WdySdy + WdsSds + ... + WdnSd, — (9)
i=1
where n is the number of determinants.

Upon inserting the values from Table 3, the value of the evidential
weight is computed as:

EW = (0.034 x 3.8) + (0.095 x 4.5) + (0.066 x 3) + ... (0.078 x 3.5)
3.431 (10)

Expressing the evidential weight as a percentage EW % yields:

E
EW% = TW x 100

3.431
= 100
5 X

— 68.62 (11)

The evidential weight of 3.431, which corresponds to 68.62%, is ten-
dered in court and provides the basis for a judicial decision. The percent-
age value of the evidential weight could guide the court on the sentenc-
ing level, which can be the maximum, average or minimum sentence.
However, it should be noted that judicial decisions are also impacted
by other mitigating factors. This is because judges have certain discre-
tionary powers under the law that they may exercise when they deem
necessary. The mitigating factors include the age of the accused, guilty
plea, number of years already spent in custody, demonstration of remorse
and other extenuating factors.

While there are limits to applying the harmonized model in judicial
proceedings, it is important to emphasize that mitigating factors are
considered after the model has provided a judge with scientific guidance
to make a judicial decision. Therefore, any mitigating factors and the
discretionary powers given to a judge as an arbiter of justice do not
affect the scientificness of the harmonized model as a judicial tool.
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7. Conclusions

The algorithm presented in this chapter operationalizes the harmonic
model for digital evidence admissibility assessment and customizes the
model to enable the determination of evidential weight. The algorithm
and evidential weight determination are designed to be used by judges
in criminal proceedings. They should also be useful to investigators,
prosecutors and defense lawyers for evaluating potential digital evidence
before it is presented in legal proceedings.

It is important to note that advances in digital forensics are expected
to impact the results of future surveys of the type conducted in this
research. Different results in future surveys would result in different
weights to the determinants as well as different sets of determinants.
Such changes are to be expected in the rapidly-evolving field of digital
forensics. Nevertheless, the harmonized model, survey research method-
ology and evidential weight determination framework are sound and ro-
bust, implying that surveys would have to be conducted periodically to
generate new data, determinants and determinant weights that will keep
up with trends in digital forensics and how digital evidence is used in
legal proceedings.

Future research will focus on developing an expert system that oper-
ationalizes the harmonic model for digital evidence admissibility assess-
ment. The expert system, which will draw on concepts from computa-
tional forensics [11], could be applied in real cases, including jury trials,
to establish the utility of the harmonized model across the various types
of criminal proceedings.
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Chapter 3

CLASSIFYING THE AUTHENTICITY OF
EVALUATED SMARTPHONE DATA

Heloise Pieterse, Martin Olivier and Renier van Heerden

Abstract  Advances in smartphone technology coupled with the widespread use
of smartphones in daily activities create large quantities of smartphone
data. This data becomes increasingly important when smartphones are
linked to civil or criminal investigations. As with all forms of digital
data, smartphone data is susceptible to intentional or accidental alter-
ations by users or installed applications. It is, therefore, essential to
establish the authenticity of smartphone data before submitting it as
evidence. Previous research has formulated a smartphone data evalu-
ation model, which provides a methodical approach for evaluating the
authenticity of smartphone data. However, the smartphone data eval-
uation model only stipulates how to evaluate smartphone data without
providing a formal outcome about the authenticity of the data.

This chapter proposes a new classification model that provides a
grade of authenticity for evaluated smartphone data along with a mea-
sure of the completeness of the evaluation. Experimental results confirm
the effectiveness of the proposed model in classifying the authenticity
of smartphone data.

Keywords: Mobile device forensics, smartphone data, authenticity

1. Introduction

The competitive nature of the global smartphone market [4] stimulates
continuous advancements in smartphone technology. The advancements
enable smartphone models to support different operating systems and
permit the installation of diverse third-party applications. The current
capabilities of smartphones coupled with their widespread use in daily
activities lead to rich collections of data. Smartphone data “includes any
data of probative value that is generated by an application or transferred
to the smartphone by the end-user” [12]. Generally, smartphone data
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describes events that occurred on the smartphone and the associated
timestamps support the chronological ordering of the events [1]. As a
result, smartphone data constitutes valuable digital evidence in civil and
criminal investigations.

Smartphone data is, however, susceptible to modification [7]. Changes
to smartphone data can occur during the execution of incorrect or error-
prone applications or deployed malware. Furthermore, users with mali-
cious intent can alter smartphone data intentionally. Intentional changes
to smartphone data are commonly referred to as anti-forensics, which
“compromise[s] the availability or usefulness of evidence to the forensic
process” [8]. While several studies have successfully demonstrated the
manipulation, fabrication and alteration of smartphone data [11, 14],
unknown or unexpected changes to smartphone data that go undetected
can lead to erroneous conclusions in investigations. Therefore, it is es-
sential for digital forensic professionals to establish the authenticity of
smartphone data before formulating any conclusions [15]. Authenticity
refers to the preservation of data from the time it was first generated and
the ability to prove that the integrity of the data has been maintained
over time [3, 5, 6, 10].

Establishing the authenticity of smartphone data requires a good un-
derstanding of the smartphone operating environment and the key com-
ponents that are responsible for creating smartphone data. These com-
ponents include the smartphone applications that generate data, opera-
tion of the smartphone by the end-user and the impact of the immediate
surroundings.

Pieterse et al. [13] formally defined the term “authenticity” with re-
gard to smartphone data and used the definition to articulate several
requirements for evaluating the authenticity of the data. These re-
quirements were subsequently employed to construct a smartphone data
evaluation model that provides digital forensic professionals with a struc-
tured approach for evaluating the authenticity of smartphone data. How-
ever, the data evaluation model only stipulates how to evaluate smart-
phone data — it does not provide a formal classification of the authen-
ticity of the evaluated data. Meanwhile, classification scales for digital
evidence, such as Casey’s certainty scale or degrees of likelihood (almost
definitely, most probably, probably, very possible or possibly) [3], have
been proposed for specifying the certainty of conclusions. A formal and
consistent methodology for classifying the authenticity of smartphone
data would provide further support to the certainty of investigative con-
clusions.

This chapter introduces a new classification model for smartphone
data, which is constructed using the smartphone data evaluation model
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and the requirements for evaluating the authenticity of smartphone data.
The classification model assesses smartphone data using an ordered pair
of values. The first value corresponds to a grade of authenticity while the
second value describes the completeness of the evaluation. This classi-
fication enables digital forensic professionals to present the authenticity
of evaluated smartphone data with confidence. Experiments involving
the manipulation of iPhone 7 data confirm the effectiveness of the clas-
sification model in assessing the authenticity of smartphone data.

2. Background

A detailed analysis of smartphone data offers contextual information
about the end-user as well as the activities performed with the smart-
phone. Therefore, smartphone data can constitute valuable digital ev-
idence in civil and criminal investigations. The authenticity of smart-
phone data is of great importance to ensuring that digital forensic pro-
fessionals draw correct and accurate conclusions based on the data. In
order to formulate proper conclusions, digital forensic professionals must
be able to review smartphone data and to evaluate its authenticity.

The smartphone data evaluation model of Pieterse et al. [13] offers
a methodical approach for evaluating smartphone data. This section
briefly reviews the formal definition of authentic smartphone data, the
requirements for identifying smartphone data and the smartphone data
evaluation model.

2.1 Authentic Smartphone Data

Smartphones operate in interconnected environments where several
components are responsible for creating smartphone data. These com-
ponents are:

s End-User Behavior: End-user operation of and interactions
with a smartphone.

= Smartphone Operation: The working and operational states of
a smartphone.

= Smartphone Application Behavior: The behavior and execu-
tion of installed applications on a smartphone.

m External Environment: The roles of mobile networks as deliv-
ery platforms.

Authentic smartphone data requires the four components to consis-
tently operate as expected and to remain unaffected. The importance
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of these components renders them critical to maintaining data authen-
ticity. An affected component that operates irregularly directly impacts
data authenticity because an opportunity exists for the data to change.
Digital forensic professionals must evaluate all the components in order
to establish the authenticity of smartphone data.

2.2 Requirements for Authentic Data

A set of requirements is needed to confirm that the four components
operate as expected. The requirements should capture the expected
operational behavior of each component, enabling digital forensic pro-
fessionals to assess the components. The outcomes produced by the
requirements would offer digital forensic professionals insights into the
authenticity of smartphone data.

Pieterse et al. [12] were the first researchers to identify requirements
for evaluating smartphone data. They presented seven theories of nor-
mality that capture the normal or expected behavior of smartphone ap-
plications. Subsequent research [13] extended the theories of normality
by including additional requirements that assess the operation of smart-
phones and the impacts of the environments external to the smartphones.
The remainder of this section discusses the final requirements identified
for authentic smartphone data.

The first component covers the end-user and his/her use of the smart-
phone. Therefore, the requirements evaluate the expected operation of
the smartphone and the installed applications as operated by the end-
user. The requirements related to the first component are: (1.1) assess-
ing smartphone application usage; (1.2) assessing the operation of the
smartphone with regard to rebooting; and (1.3) assessing the presence
of anti-forensic applications.

The second component covers the operational state of the smartphone,
which reflects the changes made to the smartphone by the end-user. The
requirements are: (2.1) assessing the smartphone state (i.e., whether or
not the smartphone is rooted or jailbroken); and (2.2) assessing the
essence of known critical files. A critical file is one that is used by a
digital forensic professional to establish the authenticity of smartphone
data.

The third component covers the behavior of the installed smartphone
applications. One requirement related to smartphone application behav-
ior is: (3.1) confirming that the internally-stored data corresponds to the
data displayed on the user interface (because the data shown on the user
interface could be cached data). Another requirement is: (3.2) confirm-
ing that the structure (i.e., database) responsible for storing persistent
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data follows a consistent pattern in storing data (i.e., records are cor-
rectly ordered when listed using an auto-incremented primary key and
a date or timestamp). In addition: (3.3) confirming that all changes to
the file structure (file sizes) occur consistently. An example is a SQLite
database that appends new records in a write-ahead log (WAL), which
causes the file size to increase. The last requirement is: (3.4) confirming
that the ownership and file permissions assigned to the file structure
remains unchanged.

The fourth component covers the environment external to the end-
user and smartphone. The external environment includes smartphone
data collected by other smartphones that directly communicated with
the smartphone under investigation, as well as the records collected by
mobile network operators. Therefore, the requirements for this compo-
nent are: (4.1) confirming that the persistent smartphone data stored on
two or more smartphones corresponds to the viewed data; and (4.2) con-
firming that the persistent smartphone data corresponds to the records
collected by mobile network operators.

The requirements collectively enable comprehensive reviews of smart-
phone data as well as the components responsible for creating the data.
The outcomes produced by the requirements describe the authenticity of
the data and confirm whether or not opportunities existed for the data to
be modified. However, the requirements need to be ordered in a formal
manner to ensure their optimal use by digital forensic professionals.

2.3 Smartphone Data Evaluation Model

The requirements discussed above provide digital forensic profession-
als with a mechanism for evaluating smartphone data. However, the ab-
sence of structure or order to these requirements can impact their use in
investigations. Consequently, the proposed smartphone data evaluation
model structures the requirements to provide digital forensic profession-
als with a step-by-step guide for evaluating and reviewing smartphone
data.

The smartphone data evaluation model has three phases: (i) pre-
evaluation phase; (ii) evaluation phase; and (iii) documentation phase.

s Pre-Evaluation Phase: In this phase, a digital forensic profes-
sional performs an inspection of the smartphone. Figure 1 presents
the steps involved in this phase. The results produced by the phase
describe the smartphone accessibility (i.e., locked or unlocked) and
current smartphone state (i.e., rooted or jailbroken), along with the
most appropriate data acquisition technique (i.e., logical or phys-
ical). Logical acquisition retrieves a bit-for-bit copy of the logical
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Figure 1. Pre-evaluation phase.

file allocation storage area (filesystem partition), which includes
directories and files of various types [2, 9]. Physical acquisition
obtains a bit-for-bit copy of the entire physical store (raw disk
image), which includes deleted and lost data [2, 9].

m Evaluation Phase: The evaluation phase, which follows the pre-
evaluation phase, engages the requirements identified in Section 2.2
to review the acquired smartphone data. Figure 2 shows the steps
involved in the evaluation phase, which are structured according
to the four components identified in Section 2.1.

In the first step of the evaluation phase, a digital forensic profes-
sional selects a single smartphone application to be evaluated; this
application must reside on the smartphone. After the application
is selected, the digital forensic professional interprets and evaluates
the collected smartphone data against the requirements of each of
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Figure 2. Evaluation phase.

the four components. The outcome of the evaluation phase is a
collection of results that offers guidance to the digital forensic pro-
fessional about the authenticity of the evaluated smartphone data.

m Documentation Phase: The final documentation phase of the
smartphone data evaluation model involves the collection and ag-
gregation of all the results produced during the evaluation phase.
The results enable a digital forensic professional to make informed
decisions pertaining to the evaluated smartphone data.

3. Classification Model

The smartphone data evaluation model only stipulates how the data
is to be evaluated without providing an outcome regarding the authen-
ticity of the data. Further assistance can be provided to a digital forensic
professional by formulating a classification model that assesses the au-
thenticity of the evaluated smartphone data. Collectively, the require-
ments and smartphone data evaluation model presented in Section 2
provide a foundation for establishing a classification model for smart-
phone data. The purpose of the classification model is to formally assess
the authenticity of application-generated smartphone data residing on a
smartphone. The output of the model is an authenticity classification
— an ordered pair of values that expresses the grade of authenticity and
the completeness of the evaluation.

The following sections describe the categorization of the requirements,
the computation and representation of an authenticity score, the mea-
surement of the completeness of an evaluation, along with the visualiza-
tion of the final authenticity classification.
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3.1 Categorization of the Requirements

Mathematical equations are required to consistently classify the au-
thenticity of evaluated smartphone data. The equations must embody
the requirements and smartphone data evaluation model presented in
Section 2. In total, eleven requirements were identified and the evalua-
tion of each requirement involves one or more assessment points. Each
assessment point has one of three outcomes: (i) yes; (ii); no; or (iii)
absent. A positive result of yes confirms that the requirement is met. A
negative result of no indicates that the evaluated data does not meet the
requirement. An absent result is assigned when the data is unavailable
or insufficient.

The results produced by the assessment points are not equally im-
portant because each assessment point evaluates different aspects of the
authenticity of smartphone data. The categorization of the assessment
points into classes, each with a distinct focus, enables a more accurate
evaluation of data authenticity.

Two classes are defined based on the notion of smartphone data au-
thenticity considered in this work. Class A contains assessment points
that confirm that no opportunity existed to change the smartphone data.
Class B comprises assessment points that evaluate the consistency of the
components responsible for creating smartphone data, as well as the con-
sistency of the data itself. The assessment points in Class B evaluate
the smartphone, smartphone applications and data associated with the
applications. Therefore, Class B assessment points are placed in the
following three subclasses:

m Subclass B.1: Assessment points that only evaluate application
data.

m Subclass B.2: Assessment points that evaluate application be-
havior and the file structure used to store data.

m Subclass B.3: Assessment points that evaluate the smartphone
state.

Figure 3 categorizes the assessment points according to the established
classes and the core components involved in the requirements for authen-
tic smartphone data. The categorization of the assessment points into
Class A and Class B allows for weighted calculations of the authenticity
scores.
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Figure 3. Categorization of assessment points.

3.2 Authenticity Score

The computation of the authenticity score is weighted because the
outcome of each assessment point impacts the authenticity of the smart-
phone data differently. The weight assigned to each class should reflect
the impacts that the constituent assessment points have on the final
authenticity score.

Since Class A contains approximately 15% of the assessment points
(Figure 3), a weight of 0.15 is assigned to the class. Class B, which
contains the remaining assessment points, is assigned a weight of 0.85.

The Class B weight is subdivided to assign appropriate weights to its
constituent subclasses. Subclass B.1 assessment points focus strictly on
the evaluation of smartphone application data, which has a significant
influence on the authenticity score. Since the Subclass B.1 assessment
points are important, the subclass is assigned a weight of 0.425, one-half
of the total weight of its parent Class B (0.85).

Assessment points in Subclass B.2 focus on the behavior of the smart-
phone application, but exclude the application data. Since these assess-
ment points have less influence on the authenticity score than the Sub-
class B.1 assessment points that focus on data, Subclass B.2 is assigned
a weight of 0.28, two-thirds of the remaining weight of Class B, which
corresponds to one-third of the total weight of Class B (1/3 x 0.85 =
0.28).

The assessment points in Subclass B.3 focus only on the smartphone
and do not directly address smartphone applications and related data;
thus, they have a limited influence on the authenticity score. Therefore,
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Table 1. Weight assignments.

Class A Class B.1 Class B.2 Class B.3
0.15 0.425 0.28 0.14

Subclass B.3 is assigned the remaining weight of 0.14, which corresponds
to one-sixth of the total Class B weight (1/6 x 0.85 = 0.14). Table 1
shows the assignments of weights to the classes and subclasses.

Because the outcome of each assessment point is a yes (= +1), no (=
—1) or absent (= 0), positive or negative results are produced. However,
the acquisition technique used to obtain the data can impact the ability
to assess all the assessment points. Therefore, for each class ¢, the
collection of positive results pos. are divided by the number of assessment
points n. evaluated per class. The result is then weighted using the class
weight w,. shown in Table 1.

Thus, the authentication score S4 for Class A is computed as:

Pposc

Sa4 = w. (1)

Ne

The authentication score Sp for Class B is computed as the sum of the
individual scores of its subclasses:

B.3
PoSc
Sp = 2
B ) we - (2)
c=B.1

The final authenticity score Ay is computed as the sum of the scores
computed for Classes A and B:

B
A,=>"8. (3)

c=A

3.3 Authenticity Grading Scale

The authenticity score, as computed above, expresses the authenticity
of the evaluated smartphone data as a percentage. The percentage value
alone is inadequate — further description and categorization are required
to better reflect the authenticity of smartphone data. Specifically, the
categorization requires additional interpretation of the evaluated assess-
ment points and all the possible outcomes. Since the number of assess-
ment points evaluated and the possible outcomes factor significantly in
the categorization of the authenticity score, it is necessary to confirm
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Table 2. Authenticity grading scale for smartphone data.

Grade Description

Unsatisfactory  Fails to meet most of the requirements.

Low Meets some of the requirements.
Moderate Meets most of the requirements in Subclasses B.2 and B.3.
High Meets most of the requirements in Subclasses B.1 and B.2.

the evaluations of the assessment points and compute all the possible
outcomes relating to the evaluations of these assessment points. The
result is a set of outcomes that has a normal distribution.

The normal distribution presents two clusters of potential outcomes.
The first cluster (below the mean of the normal distribution) corresponds
to the outcomes of the evaluated assessment points that mostly produce
negative results. The outcomes are further grouped as follows:

s Unsatisfactory Authenticity: The outcomes of the evaluated
assessment points produce only negative results.

s Low Authenticity: The outcomes of the evaluated assessment
points produce negative results that outweigh the positive results.

The second cluster of outcomes (above the mean of the normal distri-
bution) corresponds to the outcomes of the evaluated assessment points
that mostly produce positive results. The outcomes are further grouped
as follows:

s Moderate Authenticity: The outcomes of the evaluated assess-
ment points produce positive results that outweigh the negative
results.

s High Authenticity: The outcomes of the evaluated assessment
points produce only positive results.

Table 2 shows the four grades in the authenticity grading scale. In or-
der to assign a grade to the final authenticity score, it necessary to divide
the normal distribution of all the outcomes into quartiles. The lower
quartile distinguishes between the unsatisfactory and low authenticity
grades, the middle quartile distinguishes between the low and moderate
authenticity grades, and the upper quartile distinguishes between the
moderate and high authenticity grades.

The quartiles enable the authenticity grading scale to provide context
and better describe smartphone data authenticity. The quartiles create
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the boundaries between distinct grades of authenticity. The authenticity
score is then plotted on the scale to determine the authenticity grade
of the evaluated smartphone data. The consistent and formal measure-
ment of smartphone data ensures that a digital forensic professional can
conclusively establish the authenticity of smartphone data and also com-
prehend different grades of authenticity.

3.4 Completeness

The computation of authenticity scores and construction of the au-
thenticity grading scale depend on the collection of assessment points
that are evaluated. The specific acquisition technique used to obtain
smartphone data strongly influences the availability of assessment points.
A completeness score is required to express the number of the assess-
ment points evaluated per component with respect to the number of
available assessment points per component. This score would enable a
digital forensic professional to present the completeness of the smart-
phone data evaluation with confidence, thereby complementing the au-
thenticity grade.

The completeness score Cy is given by:

4

O =D (7(0.25) )

i=1

where a; is an evaluated assessment point and #; is the total number of as-
sessment points available for the component. For each component spec-
ified in Section 2.1, the evaluated assessment points a; are counted and
divided by the total assessment points t;, yielding a weighted score com-
puted using a 25% weight measurement per component. The weighted
score ensures that each component is equally important. Evaluating a
larger collection of assessment points would yield a more thorough clas-
sification of the authenticity of smartphone data. The availability of
fewer assessment points would yield a partial evaluation, reducing the
confidence in the authenticity of smartphone data.

3.5 Authenticity Classification

The authenticity Ag and completeness Cg scores are the key results
produced by the classification model. The final authenticity classifica-
tion A¢ of the evaluated smartphone data is an ordered pair of the two
individual scores:

Ac = < Ag;Cg > (5)
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Figure 4. Authenticity classification graph.

The authenticity classification graph in Figure 4 shows a visual rep-
resentation of the final authenticity classification. The x-axis represents
the authenticity grading scale; the vertical lines divide the space into four
quartiles corresponding to the four grades of authenticity. The y-axis
represents the completeness scale; the single horizontal line distinguishes
between high confidence and low confidence. The square in the top-right
corner of the graph shows an example authentication classification of A¢
= <high; high>.

4. Authenticity Classification Tool

A proof-of-concept tool was developed to automate the computation
of the authentication classifications of smartphone data. Although a
digital forensic professional could perform the computations manually,
the automation eliminates human error and supports the visualizations
of the results.

4.1 Tool Description

The tool computes and presents the authenticity classifications of eval-
uated smartphone data. Specifically, the tool supports the evaluation of
all the assessment points of all the requirements. Note that each as-
sessment point has one of three outcomes: yes (= +1), no (= —1) or
absent (= 0). Equations 1 through 5 are used to compute an overall
authenticity classification.

Figure 5 shows the user interface of the tool. The central viewing
area has functional tabs, three interactive buttons and a canvas for ren-
dering the authenticity classification graph. Each tab represents a com-
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Figure 5. User interface.

ponent of authentic smartphone data and captures all the assessment
points associated with the requirements for the component. Three radio
buttons are provided to enter the outcomes for assessment points; the
buttons ensure that only one option from yes, no and absent is selected
for an assessment point. The Calculate button collects the results of
all the evaluated assessment points and computes the authenticity clas-
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sification. The final authenticity classification is presented within the
authenticity classification graph in the canvas panel below the buttons.

4.2 Experimental Results

An experiment was conducted to validate the classification model.
The experiment relied on a generic process for smartphone data manip-
ulation [14]. The following four steps were involved in smartphone data
manipulation:

m Ensure that the selected smartphone is accessible by confirming
that the smartphone is either rooted (Android) or jailbroken (i0S).

= Select the application and identify the location of the files (e.g.,
SQLite database) that contain smartphone data.

= Identify the most appropriate approach for accessing smartphone
data — either direct or off-device. The direct approach performs the
manipulation of the smartphone data directly on the smartphone
and relies on a program or utility to access the files. The off-
device approach requires the files to be transferred to and from a
connected computer with the required program or utility installed
on the computer to perform the manipulation.

m  Perform a manual reboot of the smartphone.

The experiment used an iPhone 7 as the test device. A new, albeit
fabricated, text message was created on the device. A generic process
for smartphone data manipulation was used to create the fabricated text
message. The following steps were involved in creating the fabricated
text message:

= Jailbreak the iPhone 7 using the extra_recipe + yaluX applica-
tion.

= Pinpoint the storage structure (SQLite database) of the iPhone’s
default messaging application (/private/var/mobile/Library/
SMS/sms.db).

= Employ the direct approach and insert a fabricated text message
in the SQLite database using the pre-installed sqlite3 command-
line utility.

m Reboot the iPhone 7 to complete the manipulation process and
ensure that the changes are reflected on the smartphone.



54 ADVANCES IN DIGITAL FORENSICS XV

Table 3. Traces created by the experiment.

Trace Trace Description

T Automatic installation of the Cydia application

Ty Unavailability of over-the-air updates

T3 Discrepancies between write-ahead log file entries
and application usage timestamps

Ty Use of the sqlite3 program

Ts Presence of a clean write-ahead log file
T Creation of entries in the reboot log file
T Discrepancies in the mobile network provider records

The manipulation of the smartphone data has inherent side-effects
that create various traces. Table 3 lists the traces specific to the ex-
periment. Jailbreaking the iPhone 7 causes the automatic installation
of the Cydia application and prevents over-the-air updates. Gaining
access to the persistent data in the SQLite database via the direct ap-
proach, but without accessing the application, causes a discrepancy be-
tween the last modification timestamp of the SQLite database and the
last usage timestamp of the application. The direct approach relies
on the sqlite3 program to gain access to the persistent data, which
changes the last access timestamp associated with the program. This
timestamp also closely follows the last modification timestamp of the
SQLite database. Accessing the SQLite database to manipulate the
record causes an immediate checkpoint to occur. Therefore, after clos-
ing the SQLite database, a clean and empty write-ahead log file is present
on the iPhone 7. Finally, rebooting the iPhone 7 creates a new entry in
the /var/mobile/logs/lockdownd.log reboot log.

Note that, although this was not observed in the case of the test
iPhone 7, creating a fabricated text message causes discrepancies in the
records captured by mobile network providers.

The traces listed in Table 3 were used to evaluate the authenticity
of the smartphone data. The outcome of the authenticity grading is
expected to be low or unsatisfactory due to the changes made to the
iPhone 7 when implanting the fabricated text message. A high com-
pleteness value is anticipated because all the assessment points were
evaluated.

Figure 6 presents the authenticity classification of the evaluated smart-
phone data. The computed authenticity classification confirms the as-
signment of a low authenticity grading. Furthermore, the authenticity
classification also confirms a high completeness value, which is antici-
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Figure 6. Experimental results.

pated because all the assessment points of all requirements were evalu-
ated. The assigned authenticity classification aligns with the predicted
outcome and confirms that the manipulation does indeed influence the
authenticity of the data.
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5. Conclusions

Data extracted from smartphones provides digital forensic profession-
als with clear snapshots of end-user events. The value of this digital
evidence mandates a formal, consistent and complete methodology for
confirming its authenticity, especially since the evidence could be com-
promised by anti-forensics, malware or users with malicious intent. The
previously-specified smartphone data evaluation model describes how to
review smartphone data but does not provide a classification of data au-
thenticity. The classification model presented in this chapter addresses
this shortcoming by defining a mechanism that classifies smartphone
data authenticity using a grade of authenticity and a value that conveys
the completeness of the data evaluation. Experimental results confirm
the effectiveness of the model in classifying the authenticity of smart-
phone data. The model provides significant investigatory assistance to
digital forensic professionals, enabling them to pinpoint and discount or
eliminate unreliable smartphone data from consideration when making
investigative conclusions.

Future research will focus on handling multiple smartphone applica-
tions. Research will also attempt to identify patterns in smartphone data
that could enhance or diminish the authenticity of smartphone data in
digital forensic investigations.
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Chapter 4

RETROFITTING MOBILE DEVICES
FOR CAPTURING MEMORY-RESIDENT
MALWARE BASED ON SYSTEM
SIDE-EFFECTS

Zachary Grimmett, Jason Staggs and Sujeet Shenoi

Abstract  Sophisticated memory-resident malware that target mobile phone plat-
forms can be extremely difficult to detect and capture. However, trig-
gering volatile memory captures based on observable system side-effects
exhibited by malware can harvest live memory that contains memory-
resident malware. This chapter describes a novel approach for captur-
ing memory-resident malware on an Android device for future analysis.
The approach is demonstrated by making modifications to the Android
debuggerd daemon to capture memory while a vulnerable process is be-
ing exploited on a Google Nexus 5 phone. The implementation employs
an external hardware device to store a memory capture after successful
exfiltration from the compromised mobile device.

Keywords: Mobile device malware, system side-effects, memory capture

1. Introduction

Mobile devices are increasingly being used to process and manage per-
sonal and sensitive information such as photos, videos, browsing history,
notes, social media posts and bank account data. As a result, these de-
vices have become attractive targets for adversaries and attacks on the
devices are increasing in their scope and magnitude [5].

Mobile devices share several attack vectors with traditional worksta-
tions (e.g., Wi-Fi and Bluetooth adapters). However, mobile devices
are also continuously connected to cellular networks in which the device
owners have little to no control. Fragmentation in mobile device oper-
ating systems and embedded device architectures makes it difficult to
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develop exploits that impact multiple devices, but it also renders the
mobile device ecosystem more challenging to secure.

Vulnerabilities that affect large families of devices have been demon-
strated [1, 3, 4, 12]. These vulnerabilities make it imperative that new
efforts be developed to secure mobile devices against increasingly so-
phisticated attacks. Analyzing and understanding the rapidly evolving
threats to mobile devices require the capture and analysis of evidence
pertaining to attacks on the devices.

Memory-resident malware is difficult to detect because it resides en-
tirely in volatile memory and does not write to secondary memory. Ad-
ditionally, this type of malware often removes itself from memory after
execution. This makes it impossible for a forensic analyst to identify
and collect malware after a compromise has occurred. The only option
is to take proactive measures to capture the contents of memory while
the malware still resides in memory. In addition to supporting forensic
investigations, the ability to capture the malware enables researchers to
identify and mitigate the vulnerabilities exploited by the malware.

Mobile devices are exposed to unique threats compared with station-
ary devices (e.g., workstations) because of their mobility. Moreover,
real-world mobile devices incorporate peripherals such as communica-
tions processors that are not present in most virtual or emulated de-
vices. Therefore, it is important to leverage real-world mobile devices to
understand and mitigate the unique threats.

The proposed approach leverages digital forensic and embedded de-
vice engineering techniques to capture evidence of malicious activity on
mobile devices [8]. Consumer hardware, specifically a Google Nexus
5 smartphone, was adapted to capture transient malware, and multi-
ple techniques for storing the captured information are evaluated. The
Stagefright family of exploits is used as a case study to explore and
identify strategies for detecting various types of malware.

2. Malware Categorization

Security monitoring solutions typically rely on identifying malware
based on artifacts (e.g., data or code) that reside in a filesystem and/or
by examining how malware behaves during execution [2, 7]. Malware is
identified by developing and checking for storage signatures correspond-
ing to malware artifacts and/or execution signatures that describe mal-
ware behavior. Malware developers attempt to elude signature-based
detection by making slight modifications to malware code and/or be-
havior. In turn, malware analysts attempt to generalize the storage and
execution signatures to detect variations of the same malware. Although



Grimmett, Staggs & Shenoi 61

these approaches may work to varying degrees for known malware, they
cannot be applied effectively to (unknown) malware that has not been
studied previously.

Grimmett et al. [6] have proposed alternative methods for identifying
malware based on observable system side-effects. They also present a
taxonomy for categorizing malware according to its behavior and system
side-effects. The taxonomy covers three categories of malware based on:
(i) user-detectable behavior; (ii) system-detectable behavior; and (iii)
inconspicuous behavior. Each malware category exhibits different char-
acteristics that can be leveraged to develop system side-effect signatures
for detecting and capturing the malware in question.

Grimmett et al. [6] also present a case study involving the Stage-
fright malware. Stagefright is designated as system-detectable malware
because it produces side-effects that are detectable by the underlying
operating system (i.e., Android). The system side-effects are a result of
repeated attempts at exploiting a system service that causes a service
to crash (i.e., brute force execution). Due to the reliability requirement
imposed on mobile devices, critical services automatically restart after
a crash (e.g., due to a failed exploit attempt), enabling an attacker to
attempt to exploit the vulnerability in the system service again. In some
instances, the crashed system service is transparent to the end-user; this
enables an attacker to attempt the exploit repeatedly until it succeeds
and without alerting the user.

The crashing of a service as a result of a failed exploit attempt is, in
fact, a side-effect that is observable to the underlying operating system.
As a result, this side-effect can be used to trigger events that could
assist a malware analyst in identifying and collecting previously unknown
malware.

2.1 Stagefright

The Stagefright family of vulnerabilities include integer overflows and
heap overflows deep in the MPEG4 media processing portions of the
libstagefright Android operating system library [12]. The vulnera-
bilities are critical because they can be triggered remotely by sending
specially-crafted MMS messages to mobile device users. The entire ex-
ploitation process is transparent to a user in that it does not trigger
warnings or error messages.

In order for a Stagefright exploit to succeed, it has to defeat address
space layout randomization (ASLR). Address space layout randomiza-
tion is a memory protection mechanism supported by most modern op-
erating systems to mitigate memory corruption exploitation attempts.
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Address space layout randomization attempts to randomize the base ad-
dresses of key components of a process (e.g., libraries, the stack and the
heap) to make it more difficult for an attacker to reliably jump to a
known piece of code in memory.

To overcome this barrier, Stagefright guesses the locations of the base
addresses of the libstagefright library in the mediaserver process.
When the locations are guessed incorrectly, the Android mediaserver
process simply crashes and restarts, reloading the process into the same
vulnerable state. Thus, multiple exploitation attempts and subsequent
crashes tend to occur when a Stagefright exploit is executed. Since the
mediaserver process runs at a privileged level, successful exploitation
of the libstagefright library in the mediaserver process enables the
attacker to inherit system-level permissions. These characteristics make
Stagefright an excellent candidate for demonstrating that system side-
effects produced by malware can be used to capture the malware while
it is still in volatile memory. As a result, the Stagefright family of
vulnerabilities is considered as a case study in this research.

2.2 Live Memory Analysis

A number of tools have been developed for acquiring memory images
from volatile memory (i.e., RAM) [9-11]. A widely used open-source
tool is Linux Memory Extractor (LiME).LiME is a loadable Linux kernel
module that can dump the entire physical memory of a device. In an
attempt to be forensically sound, LiME is designed to have a very limited
memory footprint. These characteristics make LiME a useful tool for
collecting evidence of malicious activity that cannot be precisely located
in memory.

Certain challenges must be addressed in order to use LiME to capture
malware. First, LiME has minimal impact on the target system. Since
LiME does not halt the system, it is necessary to ensure that the down-
loaded malware remains in memory when the capture process executes.
Second, the memory image produced by LiME is the size of the device
physical memory — this is about 2 GB in the case of a Google Nexus 5
device. The memory image file can be stored on device (local) storage
or saved over a TCP connection to a remote machine. When network
access is not available, the number of captures that can be stored are
limited by the amount of storage space available on a mobile device.

While LiME is ideal for collecting large amounts of memory at a given
time, it is not the best choice for consistent or continuous monitoring of
live memory. This makes LiME useful in situations where it can be in-
voked when suspicious activity such as a system-detectable side-effect is
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Figure 1. Proliferation of a vulnerability in a system library.

detected. The case study described in this chapter focuses on capturing
malware from mobile devices. However, the captured malware is only
useful if analysts can examine and understand what has been captured.

3. Automated Memory Acquisition

The mobile device malware analysis community lacks a mechanism
for reliably and feasibly capturing a snapshot of memory during sys-
tem exploitation attempts. This section describes a proof-of-concept
implementation that demonstrates the viability of automated memory
acquisition from an Android mobile device. The proof-of-concept has
been implemented on a Google Nexus 5 phone. By modifying the An-
droid debuggerd daemon, the physical memory contents are dumped
upon invoking the LiME kernel module during the crash of a system pro-
cess. Because of the limited storage on the mobile device, the memory
capture is subsequently exfiltrated to another device using TCP via USB
forwarding.

3.1 Design Requirements

This research was motivated by the concern that a vulnerability in a
system library (e.g., Stagefright) puts a large number of mobile devices
at risk for remote exploitation [4, 12]. The focus on system library
vulnerabilities is important. This is because, to maximize the impact,
malware developers invest resources in identifying vulnerabilities and
exploits in the system libraries of popular operating systems.

Figure 1 demonstrates how a vulnerability in a system library becomes
a vulnerability for every device that uses the library. Additionally, since
services traditionally execute with higher privileges than user applica-
tions, attackers have an additional incentive to exploit the services.
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Figure 2. Malware capture process.

The software modifications that support live memory acquisition from
a mobile device should be reliable and should have minimal impact on
observable device behavior. The modifications must also run on a phys-
ical device so that all the potential vectors are available for study. The
hardware should require as few proprietary modifications to the operat-
ing system as possible. Additionally, the modifications should be adapt-
able to newer devices and future operating system versions in order to
meet future malware analysis needs.

3.2 Implementation and Testing

Figure 2 presents the process for acquiring a memory image from a
mobile device after a service has crashed. When a service crashes, the
debuggerd handler is signaled, which suspends the crashing service. The
debuggerd daemon also initializes the LiME kernel module and specifies
the capture parameters (e.g., image format and exfiltration method).
The primary use case for this implementation is to transfer the image
using TCP via USB forwarding; however, transfer via Wi-Fi is also sup-
ported by the implementation. Additionally, the acquired memory image
may be moved to device local storage for transfer at a later time.

The unmodified debuggerd daemon suspends all crashing processes
when it generates a tombstone file — it is after debuggerd has completed
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its own crash handling functionality that the process is left suspended
and gdb is attached or the process is allowed to continue and crash. Be-
cause debuggerd suspends a process while gathering information, addi-
tional code added to debuggerd can execute before the process is allowed
to resume. After the image acquisition is complete, the kernel module is
unloaded and debuggerd allows the process to resume and crash. The
malware capture hardware stores the acquired image and proceeds to
wait for another memory acquisition; the crashed process may then be
restarted by the operating system.

3.3 Android Modification Results

A framework was created to manage a (mobile) device-under-test
and enable automated testing. The framework, which was developed in
Python, creates test instances that use the Android Debug Bridge (adb)
to interface with Android devices. These test objects can be extended
to create new test objects with additional functionality as desired. The
tests were extended to enable automated testing of the LiME kernel mod-
ule and to verify that the acquired memory samples contained the target
crash vectors.

The crash vector was recovered from memory in order to determine
if the entire vector was captured successfully. The Volatility plugin
linux pslist was used to determine the mediaserver process iden-
tifier. Next, linux_yarascan was used to search the virtual memory of
the process for ftyp, which denotes the “File Type Box” that appears
in the beginning of some MPEG4 media files (e.g., crash vector). Next,
linux_proc_maps was used to determine the mapped memory sections
that needed to be extracted for analysis, upon which linux_dump map
created an image of the relevant memory mapping from the mediaserver
process. A Python script was written to verify that the dumped memory
contained the crash vector.

The LiME kernel module is designed to provide minimally-invasive
memory acquisition for forensic analysts. The proof-of-concept imple-
mentation does not assume that the device is handled using digital
forensic best practices. Therefore, additional testing had to be con-
ducted to verify that data remains in memory long enough to be cap-
tured using LiME. Additionally, any differences between suspended and
non-suspended processes had to be understood to determine the impact
of suspension on memory acquisition.

To determine if LiME was suitable for the proposed tasks, tests were
conducted to measure how effectively LiME captures an MPEG4 crash
vector when it is executed manually immediately following a browser
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Table 1. Crash vector capture success rates during manual testing.

No Wait after Reboot Wait after Reboot
Local TCP Local TCP
Storage Capture Storage Capture
Suspended 25% 0% 100% 100%
Not Suspended 0% 50% 0% 100%

crash. The tests were performed using a capture to local device storage
and exfiltration via TCP over a USB connection to an external host.
Additionally, tests were performed with and without processes set to
suspend and wait after a crash. Moreover, the tests were executed with
and without a one-minute wait between restarting the device and per-
forming the crash and memory acquisition.

The results in Table 1 demonstrate the impact of a short wait on the
success rate. The wait/no-wait results demonstrate that the target data
is likely to be lost unless it is captured quickly or the process is sus-
pended. In the experiment, the device-under-test was restarted before
every memory acquisition test to ensure that no residual data remained
from previous tests. During the Android startup process, the user inter-
face was made available as quickly as possible and other startup tasks
were executed in the background. Because the background startup oper-
ations were still initializing the system, memory was released and reused
more rapidly than under normal operating conditions. Therefore, the
startup period had to be allowed to complete or the memory acquisition
would likely be disrupted by the high memory turnover.

Figure 3 shows the methodology for testing the reliability of capture of
an MPEG4 crash vector using the proof-of-concept implementation. The
device-under-test navigates to the crash vector (crash.mp4) on a local
webserver, which causes mediaserver to crash. When mediaserver
crashes, debuggerd handles the crash and inserts the LiME kernel module
and performs the memory acquisition. The acquired memory image is
then searched for instances of the known crash vector.

A successful capture includes at least one complete and intact instance
of the crash vector. If the complete vector cannot be found in memory,
it may be possible to find partial instances. The partial instances would
be less valuable than a complete sample from the perspective of malware
analysis. However, further investigation may enable a complete instance
to be reconstructed from memory.
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Figure 3. Test design for capture technique validation.

When LiME acquires memory and exfiltrates the image to a remote
host via TCP, the rate of capture is limited by the network bandwidth
between the device and remote host. The proof-of-concept implemen-
tation was designed to support capture via a Wi-Fi network. However,
as discussed below, the time required to complete the capture limits the
effectiveness of this approach.

Table 2. Average capture time for the exfiltration methods.

Exfiltration Method

Time (seconds)

Local Storage (Capture Only)

Local Storage and USB Downloading
TCP Exfiltration via USB Forwarding
TCP Exfiltration via Wi-Fi Network

59.79
446.95
382.22

2,382.93

Table 2 shows the average time required for various memory acquisi-
tion techniques. Note that the testing framework incorporates approx-
imately 5% additional overhead for network operations using Python
sockets, which is not enough to disrupt the experimental results. The
significant increase in time required to acquire an image over Wi-Fi mo-
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tivated the development of the portable hardware solution presented in
the next section.

4. Hardware Enhancements

The amount of storage available on a Google Nexus 5 (and most
phones for that matter) is limited and is certainly not ideal for stor-
ing multiple instances of full memory captures. This section describes
a portable USB host solution that provides external storage capabilities
for the memory capture system.

4.1 Design Process and Requirements

The memory acquisition proof-of-concept implementation described in
the previous section leverages a connected USB host to capture an image
using TCP over USB or to download a locally-stored memory capture.
The implementation could be altered to support the local storage of
multiple memory captures. However, a Google Nexus 5 device has just
16 GB internal flash memory and only 12 GB of this memory is free after
installing the modified version of Android and the Open GApps package
that contains Google Chrome. Additionally, a Google Nexus 5 does
not support any removable storage (e.g., microSD card). Because each
captured memory image is 2 GB in size, the number of captures that can
be stored at one time is severely limited.

An external storage solution also reduces the likelihood of a captured
memory image being erased or corrupted. Because this research has
focused on malware capture for future analysis, it would not be prudent
to rely on a compromised mobile device to preserve the captured image.
Furthermore, since a USB connection to a compromised device could
put the USB host at risk, the external storage solution should be easily
wiped and redeployed as necessary.

It is also important that the hardware support package be portable.
This requires the external storage solution to incorporate a battery,
which imposes a limit on the length of time the hardware package can
be used between charges. Thus, the portable hardware should consume
as little power as possible while remaining reliable and available.

4.2 Implementation Details

Figure 4 shows the proof-of-concept implementation created using a
Raspberry Pi 3 as a USB host. The Raspberry Pi 3 runs the Rasp-
bian Jessie Lite operating system (a minimal operating system based
on Debian Jessie) and includes adb binaries compiled with the same
toolchain used by the software modification proof-of-concept system de-
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Figure 4. Memory capture support hardware.

scribed above. The Raspberry Pi has an 802.11n wireless radio and
multiple USB ports that enable it to support memory captures over
Wi-Fi or USB.

The Raspberry Pi 3 is a general-purpose computing device that uses
more power than a dedicated microcontroller. However, the availabil-
ity of a Linux operating system enables the memory capture device to
be more adaptable than an embedded device. The increased power re-
quirement is a reasonable trade-off for the additional functionality and
ease-of-use provided by the operating system. Specifically, the operat-
ing system enables the memory capture device to incorporate logic that
controls the behavior of the capture software and determine when to
download a completed local capture. Additionally, the device hosts an
SSH server that enables the device to be remotely operated and config-
ured.

The only way to safely shut down the Raspberry Pi is via the shutdown
or halt commands — disconnecting the device from power without shut-
ting it down properly could corrupt the microSD card and the captured
memory images it contains. The implementation incorporates an Anker
Power Bank with 8,400 mAh capacity and an external charge indicator.
The external charge indicator should be monitored to minimize the risk
of draining the battery and corrupting the captured memory images.

An alternative solution is to use a second mobile device to support
the memory capture device. Using an Android device would eliminate
the need for an external battery while enabling similar capabilities as a
Raspberry Pi (i.e., Linux operating system and adb support). However,
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Table 3. Average download times of memory images via adb.

ADB Host Time (seconds)
MacBook Pro (2 GHz Intel Core i7) 317.40
Raspberry Pi 3 (1.2 GHz Cortex-A53) 422.50

the choice of mobile device is limited by the same constraints that mo-
tivate the use of a support device — that is, the device would need to
provide substantial external storage. In any case, a Raspberry Pi costs
less than any similar mobile device.

4.3 Experimental Results

The Raspberry Pi 3 has a less powerful processor than the worksta-
tions used to test the proof-of-concept memory capture implementation.
As a result, the portable storage solution requires more time to perform
the tasks than the times listed in Table 2. Table 3 presents the times
required to download locally-stored memory images via adb.

Device power usage was measured using a USB power monitor be-
tween the battery and Raspberry Pi. The power monitor measured the
total power consumed by the device and provided instantaneous current
and power measurements.

Table 4. Power consumption of the support hardware.

Device Status Power (Amps)
Device idle; no connection 0.26
Device idle; phone connected with screen off 0.35
Device idle; phone connected with screen on 0.69
Device downloading; phone connected with screen on 0.70

Table 4 lists the instantaneous current measurements recorded dur-
ing various states of device operation. When the mobile phone was
connected to the Raspberry Pi, it began charging and drew additional
power from the battery. This unintended side-effect caused the battery
to drain faster than expected. However, the battery provided several
hours of operation after it was fully charged.

The Raspberry Pi 3 schematics are limited and do not include the
USB controller and connections. Previous versions of the Raspberry Pi
have direct connections between the power input 5V line and the 5V
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line on the USB ports. However, the 5V lines on the USB ports of the
Raspberry Pi 3 are not powered when the device is powered without a
bootable image available. This suggests that the USB controller may
be able to disable the power output on the USB ports. Disabling the
unnecessary power drain through the Raspberry Pi is not critical, but it
would be useful for future applications of the hardware solution.

5. Conclusions

Mobile devices have complex attack surfaces and vulnerabilities that
can be exposed and exploited when they connect to networks. Increas-
ing device complexity and ubiquitous mobile access necessitate the de-
velopment of new techniques for detecting and mitigating mobile device
malware.

Sophisticated malware uses a variety of techniques to avoid detec-
tion and capture. Encryption and encoding have been used to evade
signature-based detection for years. Self-destructing malware erases it-
self to avoid discovery during digital forensic investigations. Memory-
resident malware that never uses non-volatile storage disappears when
the device is shut down or rebooted.

These sophisticated malware features require novel detection and cap-
ture techniques. This chapter has described a new technique that en-
ables the capture of memory-resident malware using live memory digital
forensic tools (e.g., LiME). The automated capture technique enables the
discovery and analysis of previously unknown exploitation techniques as
well as the implementation of new mitigation strategies for vulnerable
devices. Most importantly, the modifications required to implement the
technique are minimal — the modified device contains the same vulner-
abilities found in an unmodified version of the device.

A memory capture technique will not mitigate any vulnerabilities un-
less the captured malware can be analyzed successfully. Therefore, the
capture technique is designed to support malware analysis. The cap-
tured images are compatible with the Volatility framework.

Future research will focus on developing improved guidelines and tech-
niques for identifying malware in captured memory images. Addition-
ally, memory images from normal devices and exploited devices will be
compared in an attempt to automate malware analysis.
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Abstract  Smartphones contain large amounts of data that are of significant inter-
est in forensic investigations. In many situations, a smartphone owner
may be willing to provide a forensic investigator with access to data un-
der a documented consent agreement. However, for privacy or personal
reasons, not all the smartphone data may be extracted for analysis.
Courts have also opined that only data relevant to the investigation at
hand may be extracted.

This chapter describes the design and implementation of a targeted
data extraction system for mobile devices. It assumes user consent
and implements state-of-the-art filtering using machine learning tech-
niques. The system can be used to identify and extract selected data
from smartphones in real time at crime scenes. Experiments conducted
with iOS and Android devices demonstrate the utility of the targeted
data extraction system.

Keywords: Mobile devices, privacy, targeted data extraction, iOS, Android

1. Introduction

Smartphones contain large amounts of data that are of significant in-
terest in forensic investigations. However, these devices have in essence
become personal data repositories and the privacy of their data is a seri-
ous concern. A landmark 2014 ruling by the U.S. Supreme Court in Riley
v. California and subsequent rulings based on this case suggest that it
may not be enough to obtain a warrant to conduct a search of a smart-
phone, but it may also be required to restrict the search to specific items
on the device that relate to the crime being investigated. What is needed
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is a forensically-sound system that can perform targeted (selective) data
extraction under a documented consent agreement. Commercial tools
such as Cellebrite UFED Physical Analyzer have great utility, but they
do not support targeted data extraction.

This chapter describes the design and implementation of a prototype
software system that supports targeted data extraction from iOS and
Android devices in a forensically-sound manner. The system runs on a
solid state drive connected to a laptop, which is connected to a mobile
device of interest on which the targeted data extraction app is down-
loaded. Metadata and content filtering rules in the app support targeted
data extraction under a consent agreement signed by the device owner.
Metadata filtering rules enable data of specific types with relevant cre-
ation dates/times and locations to be extracted. Content-based filtering
leverages machine learning to exclude non-relevant data and ensure that
user data privacy is maintained. Forensic soundness is realized using the
eDiscovery Reference Model [19] and dynamic/live analysis techniques
drawn from network and cloud forensics [17, 26).

2. Related Work

Several tools support full data acquisition from iOS and Android de-
vices. Commercial tools include Cellebrite UFED Physical Analyzer,
Paraben Electronic Evidence Examiner, Oxygen Forensic, AccessData
Mobile Phone Examiner Plus, Microsystems XRY, Magnet Acquire and
Blackbag Mobilyze. These tools attempt to acquire as much data as pos-
sible via logical and physical acquisitions. However, they do not support
on-device or off-device selective methods for extracting only the data
that is relevant to investigations.

Considerable research has focused on forensic data extraction and
analysis. Some of this work deals with the extraction of specific types
of artifacts from cloud drives and social networking applications [2, 4,
26]. Other research has been directed at general forensic data extraction
techniques for mobile devices [14, 25]. Interested readers are referred
to [23] and [28] for detailed discussions about iOS and Android device
forensics, respectively.

The concept of “real-time triage” has become increasing important
and there has been some work on building such systems [9, 27]. Another
important aspect is data privacy in the context of digital forensics in
general and mobile forensics in particular [3, 31].

Machine learning (see, e.g., [24]) and its applications have gained con-
siderable attention in recent years. Deep learning (see, e.g., [20]) has
been successfully applied in areas ranging from image recognition [18]
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to natural language translation [10]. Open-source frameworks such as
Caffe [15], Theano [8] and TensorFlow [1] have been developed for im-
plementing deep representational learning using neural networks. State-
of-the-art processors in modern smartphones make it feasible to per-
form image analysis and classification, including facial detection, using
deep learning models such as Inception [33], Open NSFW [22] and Mo-
bileNet [13].

At this time, mobile device forensic tools are unable to perform on-
device targeted data extraction as described in this chapter. In fact,
the available tools only extract images of device content and enable the
images to be queried and analyzed in an off-device manner. Moreover,
these tools do not have the ability to filter data using machine learning
techniques.

3. System Overview

The targeted data extraction system (TDES) for mobile devices has
three components: (i) data identification system; (ii) data acquisition
system; and (iii) data validation system.

m Data Identification System: The data identification system is
responsible for identifying the relevant files based on metadata and
content. Input to the system is broadly driven by a consent form
and is fine-tuned by the forensic investigator using a specially-
designed user interface.

Smartphone data comes in a variety of types. The basic cate-
gories of smartphone data are photos (images), videos, messages
and contact lists. Each category is associated with metadata that
describes aspects of the data, such as time (when an image was
placed on the device), location (where the image was taken) and
sender and receiver (of text and multimedia messages).

Note that metadata is different from content. For example, a query
based on a date range — “photos taken within the past week” — uses
metadata about photos. However, a query for photos containing
“weapons” would require content-based filtering. The data identi-
fication system incorporates state-of-the-art machine learning, nat-
ural language processing and data mining algorithms to perform
content-based filtering.

s Data Acquisition System: The data acquisition system inter-
acts with the data identification system to retrieve targeted files
from a smartphone in a forensically-sound manner. Data acqui-
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sition corresponds to data collection; therefore, the data that is
acquired is the desired evidence.

The data acquisition system incorporates two components: (i)
TDES manager; and (ii) TDES app. The TDES manager is a
system-on-chip that resides on a portable bootable drive. The
manager boots up in Windows 10 when connected to a laptop or
workstation. The target smartphone is connected to the same lap-
top or workstation in order to deploy the TDES app on the target
smartphone. The user interface of the TDES app enables an inves-
tigator to provide input to the data identification system. Finally,
the filtered data from the target phone is transferred to the TDES
manager.

m Data Validation System: The data validation system, which is
integrated with the data identification and data acquisition sys-
tems, ensures that data is transferred in a forensically-sound man-
ner. It performs appropriate hashing to insure data integrity. Ad-
ditionally, it generates a log timeline that documents all the steps
taken by the TDES system during “live analysis.” Finally, the data
validation system produces a report that documents the needs of
the investigator (e.g., queries), the data analysis that was per-
formed and the data that was selected.

The data identification and data acquisition systems are described
together because their abstractions are closely coupled. Also, because
the system only performs logical data extractions, it is assumed that
relevant data is not stored in hidden or deleted files. Furthermore, the
focus is on rapid targeted data extraction — how to define what data is to
be extracted, how to ensure that data extraction is done in a forensically-
sound manner and how to perform data extraction very rapidly.

4. Targeted Data Extraction

In order to motivate the development of the model for targeted data
extraction, it is instructive to present potential application scenarios.
These scenarios, which were suggested by forensic investigators, involve
instances where consent is natural and the ability to filter data would
be very useful:

m A car accident where a bystander has taken photos or a video of
the incident.

m A drug overdose incident where the victim’s phone has information
about drugs and drug dealers.
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m A suicide case where the victim’s phone may contain relevant texts,
email and photos.

m A domestic violence situation where the victim’s phone has photos
that document the physical abuse.

= A major incident where several individuals have captured videos
and photos of the perpetrators, their weapons and their vehicles.

In several shooting incidents, bystanders and/or companions have
recorded the events on their phones [30]. The Boston Marathon bombing
case had a massive amount of digital evidence from multiple sources [32].
In these and many other incidents, automated selective data extraction
would have been very useful.

Data of value in forensic investigations is classified as follows:

m User-Created Data: This includes contacts and address books,
SMS messages, MMS messages, calendars, voice memos, notes,
photographs, video/audio files, maps and location information,
voice mail and stored files.

m Internet-Related Data: This includes browsing histories, email
and social networking data.

s Third-Party Application Data: This includes messaging data
(text, voice, video and pictures) from applications such as Face-
book, WhatsApp and Skype.

As discussed above, the TDES app, which is deployed on the target
device, is responsible for filtering and transferring the data to the TDES
manager. This method of data extraction is called “on-device acquisi-
tion.” In this type of acquisition, only the data that is filtered by the
TDES app is transferred from the phone. No other data on the device
is ever pushed to the TDES manager.

However, for some iPhone data types, it is not possible to selectively
extract relevant data without “jailbreaking” the phone or using the
iTunes backup system. Since jailbreaking is not employed in this work,
the only option is to use the iTunes backup system. Selective data ex-
traction from iTunes is referred to as “backup acquisition.” In backup
acquisition, all the available data from the iTunes backup is moved to
the TDES manager, which extracts the relevant data and deletes the
backup after the extraction is completed.
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Table 1. On-device metadata-based extraction.
Data Category Metadata Type iOS Android
Photos Date and time Yes Yes
Photos Location Yes Yes
Photos Album type Yes Yes
Videos Date and time Yes Yes
Videos Location Yes Yes
Contacts Name Yes Yes
Contacts Number Yes Yes
Contacts Area code Yes Yes
Contacts Email Yes Yes
Calendar Events Date Yes Yes
Reminders Date Yes Yes
Photos Third-party app No Yes
Messages/SMS/MMS  Date and time No Yes
Messages/SMS/MMS  Contact number No Yes
Call Logs Incoming call No Yes
Call Logs Outgoing call No Yes
Call Logs Missed call No Yes
Call Logs Date and time No Yes
Notes Search string No No
Notes Date and time No No
Voice Memos Date and time No No
Web History Date and time No No
Email Date and time No No
Facebook Messages Date and time No No
WhatsApp Messages  Date and time No No
LinkedIn Messages Date and time No No
WeChat Messages Date and time No No
Viber Messages Date and time No No

4.1 On-Device Metadata-Based Filtering

Table 1 shows the data that can and cannot be extracted by the TDES
app in the on-device mode via metadata filtering. The first part of the
table shows the data that can be extracted from iPhones (i0S devices)
and Android phones. The second part of the table shows the data that
can be extracted from Android phones, but not from iPhones (e.g., pho-
tos captured by third-party apps such as Facebook and WhatsApp). The
third part of the table shows data that the TDES app currently cannot
extract from iPhones and Android phones.
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Cocoa Touch - TDES iOS App
Media Core Core ML
Libraries Services Framework
Core OS
CPU GPU

Figure 1. 108 frameworks.

m iPhones: System interfaces for iPhones are delivered in the form
of packages called frameworks (Figure 1). The TDES app for
iPhones uses several frameworks in Media Libraries and Core Ser-
vices. The Photos framework provides direct access to photo and
video assets managed by the iPhone Photos app. The AVKit
framework provides a high-level interface for playing video con-
tent. The CoreLocation framework provides location and orienta-
tion information. The EventKit framework provides an interface
for accessing calendar events. The Contacts framework provides
access to user contacts and functionality for organizing contact
information.

= Android Phones: Figure 2 shows the Android operating sys-
tem stack. The TDES Android app, which is deployed in the
application layer, leverages services provided by the Application
framework, which includes the Content Provider, Activity Man-
ager, Resource Manager and View [12]. Content Provider provides
access to a range of data and other services used for design and
implementation.

4.2 On-Device Content-Based Filtering

Trained machine learning models are developed using supervised
learning techniques, including learning using deep neural nets. A
trained model can be incorporated in the iOS or Android TDES
app using the appropriate framework. The model can be used
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Application Layer - TDES Android App
Application Framework
Content Machine Learning Other
Provider Models Frameworks
Media SQLite Other Android
Library Library Libraries Runtime
Linux Kernel
CPU GPU

Figure 2.  Android operating system stack.

directly by retraining the final layer or by using heuristics based
on model outputs.

The current versions of the TDES app employ adapted trained
models from Inception-v3 [16], MobileNet [13] and Open NSFW
[22] to classify photos and videos. Interested readers are referred
to the bibliography for details about the accuracy of these models.
The TDES apps are able to identify photos containing weapons,
people, vehicles, drugs, websites, skin exposure and gadgets. The
accuracy of the adapted models is discussed in Section 5.

The Core ML framework [5] is used for on-device content-based
filtering on iPhones. Core ML provides support for several machine
learning frameworks, including Vision and GameplayKit.

The TensorFlow Lite framework [35] is used for on-device con-
tent-based filtering on Android phones. The trained model and
related labels are used in conjunction with a shared object file
libtensorflow_inference.so, which is written in C+4. The
Java API libandroid tensorflow_inference_java.jar [1, 29] is
used to interface with Android platforms.
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Table 2. Off-device metadata-based extraction.

Data Category Metadata Type i0OS Android
Photos Date and time Yes Yes
Photos Location Yes Yes
Photos Album type Yes Yes
Videos Date and time Yes Yes
Videos Location Yes Yes
Contacts Name Yes Yes
Contacts Number Yes Yes
Contacts Area code Yes Yes
Contacts Email Yes Yes
Calendar Events Date Yes Yes
Reminders Date Yes Yes
Photos Third-party apps Yes Yes
Messages/SMS/MMS  Date and time Yes Yes
Messages/SMS/MMS  Contact number Yes Yes
Call Logs Incoming call Yes Yes
Call Logs Outgoing call Yes Yes
Call Logs Missed calls Yes Yes
Call Logs Date and time Yes Yes
Notes Search string Yes No
Notes Date and time Yes No
Voice Memos Date and time Yes No
Web History Date and time Yes No
Email Date and time Yes No
Facebook Messages Date and time * No
WhatsApp Messages  Date and time Yes No
LinkedIn Messages Date and time * No
WeChat Messages Date and time No
Viber Messages Date and time No

4.3 Off-Device Backup-Based Filtering

Table 2 shows the data that can and cannot be extracted by the
TDES app in the off-device mode via metadata filtering. The first part
of the table shows the data that can be extracted from iPhones and
Android phones. The second part shows the data that can be extracted
from Android phones, but not from iPhones. The third part shows data
that the TDES app currently cannot extract from iPhones and Android
phones. Note that a table entry marked with an asterisk (*) corresponds

to an item that was not investigated.
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Figure 3. TDES communications paradigm.

= iPhones: Apple iOS security mechanisms do not permit applica-
tions that execute on an iPhone to extract certain types of content
(second and third sections of Table 1). Therefore, this content is
acquired from an iTunes backup. The idevicebackup2 command
supported by the open-source libimobiledevice [21] is employed.
Other standard, albeit complex, techniques can also be used to ex-
tract data from a backup.

= Android Phones: In the case of Android phones, any data that
can be extracted off-device can also be extracted on-device; there-
fore, on-device extraction is employed. However, data from the
third-party applications in Table 1 cannot be extracted using on-
device acquisition when the phone is not rooted. Experiments with
rooted and non-rooted Android phones did not reveal an Android
equivalent of the iTunes backup mechanism.

4.4 TDES Communications

Communications between the TDES manager and the TDES app
on a target phone is an important component of the TDES system.
Figure 3 shows the communications paradigm that is implemented on
iPhones and Android phones. The forensic investigator is provided with
a portable TDES boot drive (e.g., SSD drive or USB stick) that is pre-
loaded with a bootloader for a Windows 10 machine, TDES manager
and the tools necessary to install the TDES app on the target phone.
All the extracted data is sent back to the boot drive by the TDES app;
reports pertaining to the extracted data also reside on the boot drive.
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Any available Windows 10 system can be used to boot into the TDES
manager, which runs in an isolated environment on the drive. After
booting up, the TDES manager must have Internet access if the target
device is an iPhone.

The steps for targeted data extraction are:

The boot drive containing the TDES manager is inserted into a
laptop.

The Windows 10 operating system boots up and the TDES man-
ager starts its execution.

A wired connection using a USB cable is established from the lap-
top to the phone. The TDES app is installed. In the case of an
iPhone, a hotspot is needed to connect to Apple in order to sign
the code and acknowledge trust in the developer.

After the app is downloaded, the phone may be disconnected from
the laptop.

A wireless or wired two-way communications channel is set up
between the TDES manager and TDES app for data transfer.

The targeted data extracted by the TDES app is exported to the
TDES manager and reports are generated for the extracted data.

Note that no copies of data or residual data from the export process
are stored on the phone.

TDES App Installation on iPhones: Only applications from
sources approved by Apple can be executed on iPhones that are
not jailbroken. Apple iOS requires that all executable code must
be signed with a certificate issued by Apple. Third-party apps
must have signed certificates to ensure that they do not load any
tampered or self-modifying code [6].

The TDES implementation uses Cydia Impactor [34] to sign the
TDES app code. The procedure involves the generation of an iOS
App Store Package (IPA) file of the TDES app using the XCode
Archive utility. This application archive file stores an iPhone app.
In order to sign the code, Impactor logs into the Apple Developer
Center and downloads the developer’s provisioning profile and iOS
development certificate. Logging into the Apple Developer Cen-
ter requires an Internet connection. Impactor signs the IPA file
content in a depth-first manner starting with the deepest folder
level. After the signing is done, Impactor installs the TDES app
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on the iPhone. All these tasks are automated by an AutoHotKey
script [7] that executes after the TDES manager boots; thus, no
actions are required to be performed by the forensic investigator.

TDES App Installation on Android Phones: The Android
operating system permits only signed applications to be installed
on an Android phone. As long as an application is signed and
does not attempt to update another application, it can be self-
signed — this approach is adopted in the TDES implementation.
The output of the compilation is an APK file. Note that no other
authentication is necessary.

The TDES app is installed after the APK file is stored on the
target phone. For simplicity and ease of use, an Android debug
bridge is employed for communications between the host computer
and target phone. The Android debug bridge requires the phone
to be placed in the USB debugging mode; this mode is turned off
after the app is installed.

TDES Data Transfer Protocol: The communications channel
between the TDES app and TDES manager must ensure that the
extracted data is transmitted with forensic integrity and that all
data modifications are detected and documented. Furthermore,
data that is modified inadvertently or intentionally during the
chain of custody is also identified and documented.

This is implemented by hashing essentially every file and comput-
ing a final hash value, which is exported to the TDES manager.
Note that the hashing is done on the phone. If required, the fi-
nal hash value could be sent to the phone’s owner, the forensic
investigator or to a third party.

The iPhone implementation employs a socket-based data transfer
protocol. Since the iPhone implementation requires a hotspot in
any case, a wireless link is used for communications between the
app and the manager.

The Android implementation uses an Android debug bridge, which
supports socket-level communications. Since Android applications
are natively written in Java, ServerSockets and Sockets are em-
ployed. A wired connection is used for the Android communica-
tions protocol.

User Interface

The user interface, which runs as part of the app on the target phone,
enables a forensic investigator to specify the selection criteria for data ex-
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traction. At this time, the interfaces are somewhat different for iPhones
and Android phones. An optional PDF consent form is provided by the
TDES manager. In the case of an iPhone, after the data extraction cri-
teria are specified using the app, a digital consent form that specifies the
data to be extracted can be completed on the app itself. In the case of
an Android phone, a broad consent form is completed on the app first.
This consent form ensures that only the relevant subset of data specified
using the app is, in fact, extracted.

A useful bookmarking feature is provided by the TDES app. Consider
a situation where a dataset has been extracted using a set of filters. The
forensic investigator who set up the filters can display the results and
do a quick data review on the phone itself before deciding what data
to actually export to the TDES manager (i.e., bookmarked data). For
example, if the investigator selected a set of images of weapons obtained
during a certain time period, then he/she could review the images and
select a subset of relevant images by bookmarking the subset.

Discussions with a former prosecutor and a current defense attorney
indicated that bookmarking is a useful feature, but it may introduce bias
during the evidence collection process. Consequently, the current imple-
mentation enables bookmarking to be turned on or off. Alternatively,
both options may be selected, producing two versions of the exported
data — the bookmarked version and the original version. If needed, an
investigator could export all the data that could be examined under the
consent and filtering definitions, including possible exculpatory data.

m iPhone App Interface: Figure 4 shows the iPhone TDES app
interface. The initial choices for a forensic investigator to define
are: (i) when (specific date ranges, today, last week, last month,
ete.); (ii) where (current location, location within a certain number
of miles, location determined by city, state or zip code, etc.); and
(iii) what (data types — photos, videos, calendar, call logs, messages
and contacts).

Additional filtering options — generally, content filtering — may be
defined. For example, if photos and videos are of interest, then
the content filtering options supported are the inclusion or exclu-
sion of weapons, places, vehicles, drugs, websites, gadgets, skin
exposure, pornography and favorites. If the exclude skin exposure
option is selected, then the app filters the corresponding images,
and displays and exports the remaining images.

The last screen of the interface enables the investigator to display
the selected data on the device, export the data, or both. A consent
form is displayed before the data is exported to the TDES manager.
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TARGETED DATA REPORT S
Se 1§
Section-1. Case Summary
Device Information IMEL 3562000000 SNo. | Thembnal DetaBled Descript
Phone Number; +1{98x)xxx-xxxx — - . =
Device Owner Information Device Owner Name: Sally Smith 1 . -.I-llch.\;“ml;t:;;lﬂhm:v Camera_1JPG
| Email ID: sally@sxxxh.com | Syt oot -
Investigation Information Date/Time: 04-04-2018 3:28:6 (GMT) S et
Iytmgamr Information J?hn Doe [Export Path: export/Cise Mlteralion-
Case ID Case 0 1/it]_Photos/Camera/Iti_Photo_Camera 1.JPG
Creation Date: 12252017, 3:28:6 (GMT)
Section-2. Filtered Data Lecation: Not Found
2 File Name: It|_Photo_Camera 2 PNG
Photos . Yes Path on Device;
Videos No file:///var/mobile/Media/DCIM/I00APPLEAMG _0342.P
Messages No NG
Call Logs No §  Export Path: cxportCase Orkeration-
Contacts Yes 1/itl_Photox'Camera/lt]_Photo_Camera 2. PNG
Calendar [ No Creation Date: 12-25.2017, 3:28:20 (GMT)
Location: Not Found
Se 3 ame: [t]_Photo_Camera_3.JPG
S evice
armobileMedia DCIM/100APPLEIMG_0367.1
Date From | 12-25-2017
Date To 12-26-2017 Export Path: export/Case 0/teration
Location - 1/it]_Photos/Camera/lt]_Photo_Camera 3.JPG
Specific Contact Name | Robert 5.2017, 3:29:26 (GMT)
Specific Contact Number : Location: Not Found
Advanced Filters (Inclusions) Weapons, Places
Advanced Filters (Exclusions) Favorites Section-5.2. C
Section-4. Artifact Items Summary 1 Robert SSOONXXXNXXX | EC
- mary 2 Robert SIXXXXXXXXXX | US
Number of photos retrieved I3
Number of contacts retrieved 2 End of Report

Figure 6. TDES summary report for an iPhone.

= Android App Interface: Figure 5 shows the Android TDES
app interface. The app first presents a screen for specifying the
data categories to be extracted; the same categories of data as the
iPhone app are supported. Selecting any of these data types leads
to a new screen with another set of choices providing additional
filtering options for metadata and content filtering. The Android
app interface also has provisions for first defining a broad consent
form that restricts further data selections. It also supports data
bookmarking, display and export.

Both versions of the app interface support a fair amount of metadata
and content filtering. For example, call logs can be filtered by name and
number as well as by date and time. Contacts can be filtered by name
and number. Messages can be filtered by name and number as well as
by date and time. Videos and photos can be filtered by location, date,
time and various implemented content using machine learning models.

4.6 Reporting and Forensic Integrity

A common interface using the JSON object format [11] is implemented
for the selected export of data from the iPhone and Android phone apps.
The JSON structure facilitates the description of the extracted data as
well as hash values and reporting information. For example, a report
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Figure 7. Output file structure.

may need to document when the TDES app began its execution and
when the extraction was completed. Although the data transfer is pri-
marily from the app to the manager, some information, such as the
forensic investigator’s name, phone owner’s name and case number, is
passed from the manager to the app. The Android TDES app extracts
additional information such as the IMEI, phone number and email ad-
dress associated with the phone. In the case of the iPhone TDES app,
this information must be entered in the manager. Figure 6 shows a
sample report generated for an iPhone.

s TDES Directory Structure on the Boot Drive: Figure 7
shows the directory structure created for storing evidence on the
boot drive. The structure is designed to ensure data integrity and
support reporting. A directory is created for each case. The com-
plete report is stored as an HTML file in this directory. The JSON
files, including Final.json, are discussed below. The extracted
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It1_Photos.json Final.json

ion of Hash of]
[ It1_Photos.json File
{ Iit1_Photos_j hash L
“filename” : “It1_Photo_Camera_1.jpeg”, ok {
“f_hash” : “1a2b3c4d5e6f708a90" “CASE DATA” : {
“pathondevice” : “/private/var/.../000123.jpeg” “Investigator Name”: “John Doe”,
" : “lexpor ion-1 “Case Number” : “12345”,
It1_Photos/Camerallti_Photo_Camera_1.jpeg” “Evidence Data Time Zone”: “(UTC-06:00)"
“source” : “camera”, “Device IMEI Number” : “xxxxxx",
“creationdatetime” : “01-01-2017, 12:12:45", “Device Phone Number” : “123-456-7890",
“modificationdatetime” : “02-01-2017, 01:02:43", ..
“location” = { o
“latitude” : “20.9111”, b
“longitude” : “20.45", {
“address” : “12,ab, tally, FL-32301, US” “EVIDENCE DATA” : {
) “Iteration1_j_hash”: {
L “It1_Photos_j_hash” :
{ “1a2b3c4d5e6f708a9c”,
“filename” : “It1_Photo_Whatsapp_1.jpeg”, “It1_Videos_j_hash”:
“f_hash” : “1a2b3c4d5e6f708a9d” “3a2b3c4d5e6f708a9c”,
“pathondevice” : “/private/var/...[010124.jpeg” “It1_Messages_j_hash”:
: “lexport ion-1 “3a2b3c4d5e6f708a9c”,
It1_P 1_Photo_\ _1.jpeg” “It1_CallLogs_j_hash”:
“source” : “whatsapp”, “3a2b3c4d5e6708a9¢c”,
“creationdatetime” : “01-01-2017, 12:12:45”, “It1_Contacts_j_hash™:
“modificationdatetime” : “02-01-2017, 01:02:43", “3a2b3c4d5e6f708a9c”,
“location” = { “It1_CalendarEvents_j_hash™:
“latitude” : “20.9111", “3a2b3c4d5e6f708a9c”
“longitude” : %20.45", b
“address” : “34,cd, tally, FL-32301, US” }
h 1
b Generation oHash of Hashof l
o) Final.json File
. [ Final Hash Value

Figure 8. Example JSON files.

data is stored as one or more iterations of requests made by the
investigator. In each iteration, every data category has a separate
directory and a JSON file is associated with the directory.

= JSON Format for Data Transfer: The JSON format is used to
describe the structure of the exported data, which is used to create
reports in the HTML format. Figure 8 shows example JSON files.

Assume that a set of photos has been extracted using metadata
and content filters. Auxiliary information about each photo is
transferred to the TDES manager along with the actual image file.
The TDES apps for iPhones and Android phones create this infor-
mation in the same format. After the information is transferred to
the TDES manager, a report manager creates the actual report.
Hashes are also transferred as part of the JSON files. As shown
in Figure 8, the It1 _Photos. json file is structured into arrays of
arrays containing (key, value) pairs. For example, creation date
is a key and its value is the string 01-01-2017.
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Considerable information is exported in a JSON file. The key
filename has a value string associated with it, which corresponds
to the name of the actual photo image. The actual image is stored
as a separate file as defined by the key exportpath. The hash
value of the actual photo file is stored in the JSON structure and
is defined by the key f_hash.

Hashing and Data Integrity: SHA-1 hashes are used to ensure
the integrity of the data transferred to the TDES manager; other
hash algorithms may be used if needed. Each file filename defined
in a JSON file has a hash associated with the file called the £ hash.

Consider the It1 Photos. json file shown in Figure 8 and the key
filename with value It1 Photo_Camera_1.jpg. A hash f_hash is
associated with it (shown in the figure) because the actual file is
stored in a separate location. Therefore, any file in the directory
that is not a JSON file has a hash value stored in a JSON file.

Next, every JSON file has a JSON hash j hash associated with
the file. For example, the hash value computed for the file Tt1 -
Photos. json is stored as the key It1 Photos_j hash in file ITt1 -
Hashes. json. For each iteration n, the hash of Itn Hashes. json
is stored in the Final. json file. The hash of Final. json is called
Final _hash. This hash value ensures that no file in any case di-
rectory can be modified without detection.

The Final _hash value computed by an app is sent to the TDES
manager and stored in Report.htm. The manager can indepen-
dently compute the Final hash value to check if any changes oc-
curred during the data transfer. Hash values are computed at
intermediate points for several reasons, including to facilitate the
granular transfer of data and check if the transfer is correct. Check-
ing the extracted files against known files is also simplified. The
TDES manager (or app) could also email a copy of the Final hash
value to the phone’s owner, forensic investigator or third party.

Experiments and Results

Several experiments were conducted to evaluate the accuracy and

speed of selective data filtering on iPhone and Android phones. The
metadata filtering accuracy should be 100% because the Apple and An-
droid frameworks were employed; however, manual checks of metadata
filtering were still performed.

The performance of the prototype system was also compared against

two commercial tools, Paraben EEE and Magnet AXIOM, which are
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Table 3. Devices used in the experiments and device content.

Model/Version NIC P V. ™M CL CO CA
Device 1 Lightning 10,307 178 208 482 1,102 148
iPhone-8 port

(i0S v11.2.1)

Device 2 Lightning 2,621 109 5 155 6 46
iPhone-7 port

(i0S v11.2.5)

Device 3 Lightning 2,566 102 15,978 714 384 265
iPhone-6 Plus port

(i0S v11.2.2)

Device 4 Micro- 100 6 37 7 20 17
Samsung Galaxy USB 2.0

S7 (v7.0, Nougat)

Device 5 Micro- 191 7 25,420 429 1,889 780
Moto G3 USB 2.0

(v6.0, Marshmallow)

Device 6 Micro- 249 22 13,362 500 240 337
Samsung Galaxy USB 2.0

S7 Edge (v7.0, Nougat)

NIC: Network Interface Card; P: Photos; V: Videos;
M: Messages; CL: Call Logs; CO: Contacts; CA: Calendar

used by law enforcement. As mentioned above, neither of these tools
(nor Cellebrite) can perform selective data extraction as implemented
by the prototype system. Note that the Cellebrite commercial tool was
not evaluated because this tool (like the others) essentially performs a
physical acquisition of all the phone data and then enables the user to
analyze the data off-device.

Three iPhones and three Android phones were used in the experi-
ments. Table 3 provides details about the phones and their contents.
Apple Devices 1 and 3, which belong to the authors of this chapter,
contained real user data. Apple Device 2 contained synthetic, non-
copyrighted data that is available for reuse over the Internet. Similarly,
Android Devices 5 and 6 contained real user data and belong to the
authors; Apple Device 4 contained synthetic data. Table 3 also shows
the total numbers of artifacts of each data category residing in each
test device. The TDES boot drive used was a SanDisk Extreme 128 GB
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Table 4. On-device metadata-based filtering for iPhones.

Device 1 Experiments
Category: Filter Artifacts Display Export Size
Time Time

1-Photos: 12/24/17-12/27/17  2/10,307  0.7s  3.58s  2.33MB
2-Photos: Within 10 miles* 418/10,307 1.21s 42m,64s 822MB

3-Videos: 09/1/17-01/31/18 34/178 1.20s  51m,11s 1,038 MB
4-Videos: Within 10 miles* - - - -
5-Videos: Current location* 4/178 0.2s 17m,2s 405MB
6-Contacts: “Puppy” 3/1,102 2.57s 0.6 ms -
7-Contacts: “Robert” - - - -
8-Contacts: (XXX)XXX—XXX 1/1,102 0.12s 0.8 ms -
9-Calendar: 01/01/18-01/15/18 19/148 0.14s  0.6ms -
10-Photos: 08/30/17-09/15/17 91/10,307  0.7s  4m,1s 236 MB
Videos: Any location 1/178
11-Photos: 08/31/17 9/10,307 0.73s 1m,1s 51 MB
Videos: Within 50 miles 1/178
12-Videos: Last week 3/178 04s 1m,2s  47MB

Within 10 miles

stick. A ThinkPad X1 Carbon laptop was used as the boot drive and to
connect to the test phones.

iPhone Results. The iPhone experiments employed Devices 1, 2 and
3. Table 4 shows the results for on-device metadata-based filtering for
Device 1. Each experiment (row) focuses on a specific data category and
filter. For each experiment, the total number of artifacts selected out of
the total number of artifacts on the device is shown (e.g., in the case of
the 1-Photos experiment, 2/10,307 means that two photos out of 10,307
photos on the device were extracted). The metadata filtering was 100%
accurate based on manual checking (e.g., a phone feature such as Photos
Album count). The table also shows the times required to display data
on the target device and to export data to the TDES manager (via a
wired connection). The recorded times show that TDES is feasible for
in-field targeted data extraction. The amounts of exported data are also
shown. Note that a table entry marked with an asterisk (*) corresponds
to an item whose location depends on the physical location of the phone.

Table 5 shows the results of experiments for off-device backup-based
metadata filtering for Device 3. The results for messages and call logs are
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Table 5. Off-device backup-based filtering for iPhones.

Device 3 Experiments

Category: Filter Artifacts Display
Time
1-Messages: None 15,978/15,978 1.95s
2-Messages: 10/03/17-12/30/17  510/15,978 0.33s
3-Messages: (HH¥)Hix sdokok 1,016/15,978 0.29s
4-Call Logs: None 683/683 0.29s
5-Call Logs: 01/14/17-08/14/17  297/683 0.27s
6-Call Logs: (F*%¥)¥¥* k¥ 40/683 0.27s
7-Messages: 01/14/17-08/14/17  738/15,978 0.32s
Call Logs: (k) stk 35/683
8-Messages: (HH¥)#ik _sfokk 1,016/15,978 0.28s
Call Logs: 40/683

shown. As discussed earlier, the backup-based procedure involved the
TDES manager acquiring a complete backup from iTunes; thus, there
is no export time. Note, however, that the forensic investigator must
still specify the filtering that must be performed by the TDES app. The
accuracy of metadata filtering is always 100% based on manual analysis
using iTunes.

Table 6. On-device metadata and content filtering for iPhones (Inception-v3).

Device 2 Experiments

Category: Filter Content Display Export Accuracy
Filter Time  Time (%)
1-Photos: 12/25/17 Weapons  9.82s 4.69s 97.22
2-Photos: Within 10 miles Weapons  20.31s - -
3-Photos: 12/25/17-12/29/17 Weapons  19.05s 4.34s 94.50
4-Photos: 12/25/17-12/29/17 Places 17.73s 9.93s 88.07
5-Photos: 12/25/17-12/29/17 Vehicles 17.06 s 0.72s 100.00
6-Photos: 12/25/17-12/29/17 Drugs 16.26's 0.33s 96.33
7-Photos: 12/25/17-12/29/17 Websites  16.66s 7.03s 99.08
8-Photos: 12/25/17-12/29/17 Gadgets  17.33s 7.885 89.91
9-Photos: 12/25/17-12/29/17 Skin 16.23s  8.68s  100.00
exposure

Table 6 shows the results of the experiments using Device 2 photos
for various combinations of metadata and content filtering. The test
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Table 7. On-device metadata-based filtering for Android phones.

Device 5 Experiments

Category: Filter Artifacts Display Export Size
Time Time
1-Photos: 02/03/18-02/05/18 2/191 0.31s 2.32s  6.56 MB
2-Photos: Current location 1/191 0.63s 10.58s  46.1MB
3-Videos: 12/19/17-02/03/18 3/7 0.89s 391ls  16.6 MB
4-Videos: Current location 7/7 0.90s 13.09s  190MB
5-Calendar: 05/29/17-05/30/17  85/780 1.03s 2.40s 13KB
6-Messages: “aaabb” 32/25,420 1.23s 14.23s 7KB
T-Messages: (H#)ik ook 5/25,420 0.92s 1.255 4KB
8-Call Logs: “aaabb” 9/429 0.49s 6.59s 5KB
9-Call Logs: (H#¥)¥x ok 11/429 0.89s 11.2s 6 KB
10-Messages: (¥ )Hokk s 100/25,420 1.25s 14.08s 199.1MB
Photos: 01/28/18-02/05/18  6/191
Videos: Current location 7/
11-Messages: 12/12/17-02/05/18 1,000/25,420  1.02s 3.89s 258 KB
Call Logs: (Ffok)*x ook 8/429

12-Messages: 09/12/17-09/29/17 300/25,420 1.65s 18.2s  236.1MB
Calendar: 09/12/17-09/29/17 5/780
Photos: Current location 1/191
Videos: Current location 77

iPhone had 2,621 photos with 109 photos in the date range 12/25/17
to 12/29/17, and 72 of these photos were taken on 12/25/17. The
Inception-v3 model was used for content filtering. Rows 1-3 of the
table focus on filtering for “weapons.” In the case of Row 2, content
filtering was not applied because none of the weapons photos were taken
within 10 miles. Rows 4-9 focus on content filters that would be rele-
vant to law enforcement. The times required for display and export are
shown for each experiment. The accuracy measure expresses how well
the Inception-v3 model performs content filtering. The accuracy compu-
tations involved the creation of a confusion matrix for each experiment,
following which the accuracy was computed as:

TP +TN y
TP+ FN+FP+TN

where T'P denotes true positive; T'N denotes true negative; F'P denotes
false positive; and F'N denotes false negative.

Accuracy = 100 (1)
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Table 8. On-device metadata and content filtering for Android phones (MobileNet).

Device 4 Experiments

Category: Filter Content Display Export Accuracy
Filter Time Time (%)
1-Photos: 11/12/17-02/02/18 Weapons 35s 1.5s 75.68
2-Photos: Current location Weapons 1.3s 0.81s 100.00
3-Photos: 10/12/17-12/02/17 Vehicles 37.4s 1.56s 25.00
4-Photos: Current location Vehicles 14s 1.3s 100.00
5-Photos: 12/01/17-01/13/18 Drugs 34.69s 1.2 92.06
6-Photos: Current location Drugs 1.2s 0.0s 71.43
7-Photos: 08/11/17-12/31/17 Skin exposure  33.08s 2.48s 92.21

Android Phone Results. The Android phone experiments employed
Devices 4, 5 and 6. Table 7 shows the results for on-device metadata-
based filtering for Device 5. Each experiment (row) focuses on a specific
data category and filter. Note that the display and export times are
very good. For example, in the case of the 12-Messages experiment,
exporting 236 MB of device artifacts required only 18.2seconds.

Table 8 shows the results of seven experiments using Device 4 photos
for various combinations of metadata and content filtering. The Mo-
bileNet model from TensorFlowLite was used for metadata and content
filtering. The display and export time results are excellent. The ac-
curacy measure, computed using Equation (1), expresses how well the
MobileNet model performs content filtering. The results are modest;
better machine learning models will have to be developed to improve
the accuracy of content filtering.

Comparison with Commercial Tools. Several experiments were
conducted to compare the data export times for TDES against the times
required by two commercial tools, Paraben and Magnet AXIOM. iPhone
Device 2 and Android Device 4 were used in the experiments. Table 9
shows the experimental results — the iPhone comparisons are in the top
half of the table and the Android comparisons are in the bottom half of
the table. The app installation time (AIT) is the time period from the
instant the target device was connected to the laptop to the time when
a data selection can be made (in the case of TDES, this is when a data
selection can be made on the target device; in the case of Paraben and
Magnet AXIOM, this is when a data selection choice can be made on
the laptop). The backup acquisition time (BAT) is the time taken for
backup-based acquisition. Note that, in the case of TDES, the exported
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Table 9. Export time comparisons for iPhone Device 2 and Android Device 6.

Item TDES Paraben Magnet AXIOM
Device 2

(iPhone)

AIT 528 10m 9m

BAT 26 m (2GB) 20m 38m,54s (4.1 GB)
Call Logs (BAT) 15ms 0.1s 0.4s

Messages (BAT) 16 ms 0.1s 0.3s

Contacts 1.8ms 0.2s 0.3s

Calendar 2ms 0.2s 0.3s

Photos 39m,3s (2,621 files) — 80m (29,488 files, 2.30 GB)
Videos 30m,15s (109 files) — 4m (438 files, 1.73 GB)
All Media Not needed 32m 93 m (48,701 files, 2.69 GB)
Device 6

(Android)

AIT 14s 5s NA

BAT NA NA 29m

Call Logs 1s 40s 1m,17s

Messages 4m,9s 17m,3s 1m,21s

Contacts 1s 2m,11s 1m,11s

Calendar 6s 1m,5s 1m,14s

Photos 425 (249 files) - 14m,41s (13,711 files)
Videos 145 (22 files) - 1m, 38s (62 files)

All Media NA 43s NA

data was stored on a flash drive whereas, in the case of Paraben and
Magnet AXIOM, the exported data was stored on the laptop hard drive.

iPhone Comparison: The installation time of the TDES app on
the iPhone was 52 seconds. Paraben and Magnet AXIOM had to
first create a backup of the iPhone data. In the case of Paraben,
backup creation (20 minutes) occurs in conjunction with appli-
cation initialization (10 minutes) whereas Magnet AXIOM has a
separate backup creation step of 38 minutes and 54 seconds af-
ter 9minutes of application initialization. Note that TDES has
a backup acquisition time only when extracting call logs and mes-
sages.

Android Phone Comparison: The installation time of the TDES
app on the Android phone was 14 seconds. Since Magnet AXIOM
uses backup-based acquisition, a backup must be created before
extracting any artifacts. For example, when extracting call logs,
Magnet AXIOM created a backup that took 29 minutes followed
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by call log extraction that took one minute and 17 seconds. The
TDES app required 14 seconds for app installation and one second
for data export. In contrast, Paraben required five seconds for
initialization and 40 seconds for data export.

In the case of Paraben and Magnet AXIOM, the only choices avail-
able for acquisition are the broad categories shown in Table 9.
Paraben does not extract photos and videos separately; it provides
one option for all media artifacts. However, experiments revealed
that selecting this option resulted in the extraction of metadata
associated with media artifacts, not the artifacts themselves.

6. Conclusions

The targeted data extraction system described in this chapter sup-
ports the acquisition of relevant data from iOS and Android devices
in a forensically-sound manner. It implements state-of-the-art metadata
and content filtering functionality based on machine learning techniques.
Forensic soundness is realized using the eDiscovery Reference Model [19]
and dynamic/live analysis techniques drawn from network and cloud
forensics [17, 26]. The design assumes that a phone is voluntarily pro-
vided to law enforcement under a documented consent agreement. How-
ever, it is equally applicable to situations where a court orders that a
smartphone passcode must be provided for evidence recovery or where
a smartphone memory dump (e.g., from a cloud backup) with an intact
filesystem is available. The targeted data extraction system is currently
being provided to law enforcement for testing and feedback, with the
goal of incorporating additional features and capabilities.
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Chapter 6

EXPLOITING VENDOR-DEFINED
MESSAGES IN THE USB POWER
DELIVERY PROTOCOL

Gunnar Alendal, Stefan Axelsson and Geir Olav Dyrkolbotn

Abstract  The USB Power Delivery protocol enables USB-connected devices to ne-
gotiate power delivery and exchange data over a single connection such
as a USB Type-C cable. The protocol incorporates standard commands;
however, it also enables vendors to add non-standard commands called
vendor-defined messages. These messages are similar to the vendor-
specific commands in the SCSI protocol, which enable vendors to specify
undocumented commands to implement functionality that meets their
needs. Such commands can be employed to enable firmware updates,
memory dumps and even backdoors.

This chapter analyzes vendor-defined message support in devices that
employ the USB Power Delivery protocol, the ultimate goal being to
identify messages that could be leveraged in digital forensic investiga-
tions to acquire data stored in the devices.

Keywords: USB Power Delivery protocol, vendor-specified messages, exploitation

1. Introduction

An important goal of mobile device forensics is to acquire data. Mo-
bile phones typically have two key data sources: (i) volatile memory
(RAM); and (ii) long-term storage (typically, flash memory). These
two sources differ in content and acquisition methods. RAM is often
proprietary, short-term storage that is not intended for interpretation
by applications other than the one that stored the data. In contrast,
long-term storage such as flash memory contains well-structured data,
usually in a filesystem, that is meant to be re-read, typically by the op-
erating system. Nevertheless, both types of storage maintain data that
is important in digital forensic investigations.
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Security mechanisms in commercial products are hindering the foren-
sic acquisition of data. Data encryption in flash memory has invalidated
methods such as desoldering (i.e., chip-off) that enable data to be read
directly from a chip. Encryption prevents the extracted data from being
interpreted without the decryption keys. The keys are often protected
by additional encryption keys that tie the data to the specific device
that encrypted the data in long-term storage. Therefore, transplanting
a flash memory chip to a different, but identical, device would not de-
crypt the stored data. Device-tied encryption keys are also protected by
security features such as TrustZone that rely on tamper-proof hardware.
Therefore, in order to access data from a secured device, it is necessary
to exploit security vulnerabilities in the device itself, or leverage un-
documented features such as backdoors or indirectly increase the attack
surface of the device.

The general approach is that any data extraction technique should be
researched extensively, including any and all means it uses to commu-
nicate with other devices. The USB Power Delivery protocol is a com-
munications mode that has the potential to increase the device attack
surface. The idea is that, if undocumented means exist to communicate
with the device, then hidden features and security vulnerabilities could
be identified and exploited to facilitate data acquisition.

The USB Power Delivery protocol provides a uniform means for ven-
dors to implement power negotiation between power sources and devices
such as mobile phones and personal computers in order to maximize the
charging current. The power source can support different power con-
figurations, one power profile for a mobile phone and a different profile
for a personal computer, to enable the devices to obtain the appropri-
ate currents and voltages. Devices can also use the protocol to request
higher currents and voltages from power sources. In the case of two
non-power-source devices (e.g., two mobile phones), the devices can ne-
gotiate a power delivery profile so that one device can charge the other.
Another example is a monitor connected to a personal computer where
the protocol enables the monitor to draw power from the personal com-
puter if it is not connected to an external power source. If the monitor
is connected to an external power source, then it could provide power to
the personal computer. All these negotiations occur over the same USB
cable unbeknownst to the user.

The USB Power Delivery protocol is of interest from a digital foren-
sics perspective because it supports inter-device communications. These
communications could be exploited to expand the attack surface of one
or both devices, enabling the acquisition of data that is otherwise in-
accessible. The focus is on vendor-defined messages in the USB Power
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Delivery protocol. Undocumented messages discovered in other proto-
cols have been demonstrated to enable firmware updates, memory dumps
and even backdoors. This chapter presents a black-box testing approach
for revealing proprietary messages supported by the USB Power Deliv-
ery protocol that could be leveraged in digital forensic investigations to
acquire data stored in devices that support the protocol.

2. Related Work

Allowing vendors to incorporate proprietary vendor-defined messages
or commands in protocols to provide custom functionality has led to
the release of numerous consumer devices that potentially respond to
undocumented commands with unknown behavior. This can have dev-
astating security implications. As demonstrated by Alendal et al. [2],
vendor-specified SCSI commands can be used to bypass authentication
on self-encrypting hard drives. Whether this research represents the
best-case scenario for law enforcement or the worst-case scenario for the
vendor, one cannot ignore the fact that the existence of hidden com-
mands must be tested carefully. Indeed, as devices and firmware change
over time, such testing should be performed regularly by law enforcement
and security researchers.

Testing the USB Power Delivery protocol for hidden commands re-
quires a means for emulating the protocol. Reydarns et al. [5] have
demonstrated the use of USB Power Delivery protocol emulation in test-
ing different power configurations for a power source. However, there is
little, if any, research on the security of the USB Power Delivery proto-
col and nothing related to digital forensics. This research is important
because it comprehensively analyzes the USB Power Delivery protocol
and attempts to discover how vendor-defined protocol messages could be
leveraged to assist digital forensic examinations of devices that support
the protocol.

3. USB Power Delivery Protocol

Revision 1.0 (version 1.0) of the USB Power Delivery protocol speci-
fication was released in 2012; several revisions have been released since,
the most recent being Revision 2.0 (version 1.3) and Revision 3.0 (version
1.2) [8]. The protocol provides a uniform means for devices to negotiate
power supply configurations across vendors. It is typically supported
by devices with a USB Type-C port/connector with dedicated CC1 and
CC2 links (Figure 1). The USB Type-C connection is reversible, en-
abling devices to communicate on either CC line.
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Al A2 A3 A4 A5 A6 A7 A8 A9 Al0 A1l A12

GND TX1+ TX1- MBUS cci | D+ | D- SBU1 VBUS RX2- RX2+ GND
GND RX1+ RX1- VBUS | TX2- TX2+ GND

Bl12 Bl11 B10 B9 B8 B7 Bé B5 B4 B3 B2 B1

Figure 1. USB Type-C pinout [4].

The message-based USB Power Delivery protocol has three types of
messages: (i) control messages; (ii) data messages; and (iii) extended
messages. Control messages are short messages that typically require no
data exchange. Data messages contain data objects that are transmitted
between devices. Extended messages are essentially data messages with
larger data payloads. The USB Power Delivery protocol leverages the
three message types to define a wide range of standard messages, which
enable devices to communicate and negotiate power source configura-
tions.

Preamble SOP Message Header Data Objects (0-7) CRC EOP
Start of Packet 16 bit 32 bit End of Packet

Figure 2. Data message packet.

Figure 2 shows a data message packet comprising a preamble for syn-
chronization, start of packet (SOP), message header, up to eight data
objects of 32-bits each, CRC and end of packet (EOP). The preamble,
SOP, CRC and EOP are part of the physical transport layer; they are
common to all three types of messages, along with the message header.
The optional data objects are only found in data messages.

Table 1 lists example control and data messages in the USB Power
Delivery protocol.

The USB Power Delivery protocol supports different standard mes-
sage sets as indicated by the protocol specification revisions, currently
Revision 2.0 and Revision 3.0. Revision 3.0 is functionally the same
as Revision 2.0, except for new features such as USB authentication.
Interested readers are referred to the protocol specifications [8] for in-
formation pertaining to the differences between the message sets.

The USB Power Delivery protocol also enables cables to take part in
communications; a device can communicate with a cable directly using
the start of packet. Such electronically-marked cables (EMCA) enable
devices to ensure that the cable supports high voltage/current power
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Table 1. Control and data messages in Revision 3.0 (version 1.2).

Control Messages Data Messages
GoodCRC Source_Capabilities
GotoMin Request

Accept BIST

Reject Sink_Capabilities
Ping Battery_Status
PS_RDY Alert
Get_Source_Cap Get_Country_Info
Get_Sink_Cap Vendor_Defined
DR_Swap

PR_Swap

VCONN_Swap

Wait

Soft_Reset

Not_Supported
Get_Source_Cap_Extended
Get_Status

FR_Swap

Get_PPS_Status
Get_Country_Codes

source configurations. According to the protocol specification, devices
can negotiate direct current levels up to 5 A, corresponding to a maxi-
mum of 100 W at 20V between devices connected via an EMCA cable.
Passive (non-EMCA) cables are rated for a maximum direct current of
3 A, which corresponds to 15 W at 5V, 36 W at 12V or 60 W at 20V.

Figure 3 shows a typical power delivery negotiation — referred to as
an explicit contract between two devices or port pairs. According to the
standard, all port pairs are required to make an explicit contract. In a
contract, the device (port) that consumes power is called the sink and
the device (port) that provides power is called the source.

Vendors may implement novel functionality using proprietary vendor-
defined messages, a subgroup of data messages in the USB Power De-
livery protocol. Similar features are found in other protocols, such as
vendor-specific commands in the SCSI protocol [6]. These commands
are implemented and used only by vendors for internal purposes such
as debugging, factory setup and proprietary communications with ven-
dor software; the commands are not used in normal device operations.
Vendor commands are rarely documented because they are reserved for
internal use.
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Figure 3. Simplified explicit contract negotiation.

Preamble SOP Message Header VDM Header VDO (0-6) CRC EOP

Start of Packet 16 bit (S)VID 16-bit | Command 16-bit 32 bit End of Packet

Figure 4. Vendor-defined message packet.

Figure 4 shows a vendor-defined message (VDM) packet in the USB
Power Delivery protocol. Vendor-defined messages are of two types:
(i) structured; and (ii) unstructured. Structured vendor-defined mes-
sage commands are defined in the USB Power Delivery protocol stan-
dard whereas unstructured vendor-defined message commands are im-
plemented by vendors on an ad hoc basis. Note that a “command” is a
subgroup of “message,” which is either a structured vendor-defined mes-
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SVID/VID | VDM Type | VDM Version| Reserved |Object Position| Cmd Type | Reserved | Command
Bit 31...16 Bit15 Bit 14..13 Bit 12...11 Bit 10...8 Bit7..6 Bit5 Bit4..0

Figure 5. Structured vendor-defined message header.

Vendor ID (VID) VDM Type Vendor Use
Bit 31..16 Bit15 Bit 14..0

Figure 6. Unstructured vendor-defined message header.

sage or an unstructured vendor-defined message. Thus, while structured
vendor-defined messages have predefined command sets in the protocol
specification, unstructured vendor-defined messages can correspond to
commands defined by vendors.

Because vendor-defined messages are a type of data message, there
is a size limitation on the amount of data a message can contain — this
corresponds to the size of six vendor data objects (VDOs) plus the 32-
bit vendor-defined message header. A vendor data object contains a
32-bit value (data). To prevent vendors from implementing conflicting
messages, the protocol requires either the standard vendor ID (SVID)
defined in the protocol specification or a vendor ID (VID) to be part of
the vendor-defined message header. This means that a vendor must use
one of its 16-bit USB Implementers Forum (USB-IF) vendor IDs [7] in
all the vendor-defined messages it implements.

Example vendor IDs are 0x05ac (Apple) and 0x04e8 (Samsung). As
shown in Figures 5 and 6, the structured vendor ID and vendor ID are
required to be part of the corresponding vendor-defined message headers.
Thus, a vendor with a valid USB-IF-assigned vendor ID can implement
any command that contains up to six additional vendor data objects in
one vendor-defined message. The command is the second part of the
vendor-defined message header that can be any 15-bit value in the case
of an unstructured vendor-defined message.

Table 2 shows example structured vendor-defined message commands.

4. Methodology

Devices come in different architectures from numerous vendors and
without source code or firmware that implement the USB Power Delivery
protocol. Therefore, a black-box method was attempted to test the
existence of vendor-defined messages in the protocol. One approach
is to analyze protocol communications between devices from the same
vendor and determine if vendor-defined messages are employed. This
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Table 2. Structured commands in Revision 3.0 (version 1.2).

Structured Vendor-Defined Message Commands

Discover Identity

Discover SVIDs

Discover Modes

Enter Mode

Exit Mode

Attention

SVID Specific Commands (defined by the SVID)

assumes that, if such messages exist, the connected devices initiate their
use by default.

Instead, a more active approach that directly communicates with a
test device was employed. Since no solution was available to communi-
cate with devices via the USB Power Delivery protocol, a home-grown
approach was employed. A detailed description of this approach is be-
yond the scope of this chapter. However, the concept is simple — set up
a device to act as the source, establish a connection with the test device
and check for vendor-defined messages.

Testing for vendor-defined messages sounds simple, but the reality
is quite different. Because the protocol specification states that any
vendor-defined message must include a vendor ID, it is necessary to
know or guess the expected vendor ID of the device of interest. This is
important because a device would not respond to a vendor-defined mes-
sage containing a correctly-guessed command but an incorrect vendor
ID in the header.

Message Header VDM Header ID Header Cert Stat Product Product Type VDO
16 bit (Discover Identity) VDO VDO ) (0-3)

Figure 7. Discover Identity reply packet.

Fortunately, it is possible to leverage the Discover Identity command
in the structured vendor-defined message command set shown in Table 2.
This command is required by the USB Power Delivery protocol, so all
devices should support the command. The command, which enables
devices and cables to identify other end points, has a predefined reply
packet format with a fixed number of vendor data objects and their
content (Figure 7). The ID header of the 32-bit vendor data object has
bits 0—15 reserved for the device USB-IF vendor ID. A connected device
reveals its vendor ID upon receiving a Discover Identity command.
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The protocol specification also states that structured vendor-defined
messages shall only be used when an explicit contract is in place (ex-
cept for a small number of cables that are not relevant in this context).
The same holds true for unstructured vendor-defined messages. Thus,
a device will not reply to a vendor-defined message until an explicit
contract is in place (i.e., a power source configuration has been negoti-
ated). Therefore, it is required to simulate a complete explicit contract
negotiation with a test device before a vendor-defined message can be
received.

This makes it necessary to simulate many messages (Figure 3) with
corresponding time-outs, such as CRCReceiveTimer (maximum 1.1 ms),
SenderResponseTimer (maximum 30 ms) and PSTransitionTimer (max-
iumum 550 ms). Since the protocol defines the time-out values, the reply
to a packet must be provided in time or the device will time out. Many
of these requirements are strict, so the simulator must have a quick
response, which, in turn, may render a pure software solution infeasible.

By negotiating an explicit contract with a device, it is possible to ex-
plore the existence of unstructured vendor-defined commands. Using the
vendor ID captured from the response of a device to a Discover Iden-
tity command, different unstructured vendor-defined commands could
be sent to the device and the responses, if any, could be examined. This
can be done by brute forcing the lower 15 vendor use bits of the unstruc-
tured vendor-defined message header (Figure 5) with a fixed vendor ID
for each device.

Two approaches are possible. The first is to attempt to measure
the skews in the timing of device responses. The second is to test for
device responses other than the expected GoodCRC message. Testing
for timing skews could indicate that the device spent additional time
to process a correctly-guessed unstructured vendor-defined command.
However, this approach requires high resolution timers. Unfortunately,
the experimental setup could only measure the time elapsed from when a
packet was sent to when the response was received, which was much too
inaccurate. Therefore, the second approach involving device responses
other than the expected GoodCRC message was employed in the exper-
iments.

5. Experimental Results

Not every device with a USB Type-C connector is enabled for the USB
Power Delivery protocol. If a test device with a USB Type-C connector
does not respond with a GoodCRC message to the Source_Capabilities
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Table 3. Test devices with USB Type-C connectors and protocol support.

Device Firmware Protocol Exposed
(Model) Version Revision Vendor ID
HTC 10 1.90.401.5 2.0 0x0bb4
(2PS6200) (HTC)
HTC U11 1.13.401.1 3.0 0x05c4
(2PZC100) (Qualcomm)
Huawei Mate 10 Pro  8.0.0.137(C432) 2.0 0x12d1
(BLA-L29) (Huawei)
LG G5 V10i-EUR-XX MMB29M 2.0 0x0000
(LG-H850) (Unknown)
Nokia 8 Sirocco 00WW_3_10F 2.0 0x05¢6
(TA-1005) (Qualcomm)
Samsung Galaxy S9  G960FXXU2BRH7 3.0 0x04e8
(G960F) (Samsung)

message in an explicit contract negotiation (Figure 3), then the device
can be assumed to be non-protocol-enabled.

According to Section 6.2.1.1.5 of USB Power Delivery Protocol Speci-
fication Revision 3.0 (v.1.2) [8], the source shall set its highest supported
specification revision in the specification revision field of the Source_Ca-
pabilities message and the sink shall reply with its highest supported
specification revision in the specification revision field of the Request
message (Figure 3). Because the specification states that the specifica-
tion revision field value should be backwards compatible, this means the
highest version can always be simulated in the first Source_Capabilities
message acting as the source and the Request response from the device
can then be checked.

After negotiating a complete explicit contract (Figure 3) with a test
device, a Discover Identity message was sent to the device to obtain
the USB-IF vendor ID from the device. Table 3 shows the test devices
with USB Type-C connectors that were determined via this technique
to support the USB Power Delivery protocol.

With an explicit contract in place with a test device with protocol
support and its USB-IF vendor ID known, the next step was to send
arbitrary protocol messages to the device and test the responses. Specif-
ically, unstructured vendor-defined messages were sent with the vendor
ID set to the appropriate value, type set to 0 (i.e., unstructured) and
vendor use set to different values corresponding to commands (Figure 5).
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Table 4. Huawei Mate 10 Pro (BLA-L29) message capture.

ID Time Role Message Data
284 0:41.044.922 Hard Reset
286 0:43.577.218 Source:DFP [0]Source_Cap A1 11 FO 90 01 08 FE CA B7 52
290 0:43.577.879 Sink:UFP  [0]GoodCRC 41 00 BB 6C BB A8
293 0:43.580.754 Sink:UFP [0]Request 42 10 C8 20 03 13 52 OF 95 B7
297 0:43.581.374 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81
300 0:43.582.060 Source:DFP [1]Accept 63 03 21 7B 00 96
303 0:43.582.586 Sink:UFP  [1)GoodCRC 41 02 97 OD B5 46
306 0:43.583.283 Source:DFP [2]PS_.RDY A6 05 1F FD EE C9
309 0:43.583.915 Sink:UFP  [2]GoodCRC 41 04 A2 A8 D6 AF
312 0:43.737.641 Source:DFP [0]VDM:Discldentity 6F 11 01 80 00 FF 76 31 6B 61
316 0:43.738.185 Sink:UFP  [0]GoodCRC 41 00 BB 6C BB A8
]

319 0:43.744.295 Sink:UFP  [1]JVDM:Discldentity 4F 52 41 80 00 FF D1 12 00 EC 00 00 00
00 00 00 7E 10 01 00 00 11 80 C1 C7 56

GoodCRC 61 03 A3 19 36 A4

327 0:43.745.502 Source:DFP [1]

330 0:44.918.448 Source:DFP [1]JVDM:Unstructured 6F 13 01 00 D1 12 0D 13 06 BC
334 0:44.919.214 Sink:UFP  [1]GoodCRC 41 02 97 OD B5 46
]
]

337 0:46.507.375 Source:DFP [2]VDM:Unstructured 6F 15 02 00 D1 12 43 49 F3 21
341 0:46.507.960 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

The responses were analyzed and any response other than the expected
GoodCRC was assumed to be an attempt by the test device to reply to
the random “command” it received.

A commercial USB Power Delivery protocol recorder was used to cap-
ture communications with the test devices. Table 4 shows an example
capture of messages to and from the Huawei test device that was config-
ured as the sink. The message capture shows the entire explicit contract
negotiation (message IDs 286-309) and the USB-IF vendor ID discovery
(message IDs 312-327), which are followed by two unstructured vendor-
defined message brute force attempts (message IDs 330-334 and message
IDs 337-341). Note that the Huawei device did not respond to the two
unstructured vendor-defined message tests with anything other than the
expected GoodCRC message.

Very few test devices responded to the brute force test. In fact, only
the Samsung device replied with anything other than a GoodCRC mes-
sage, and only for some messages.

Table 5 shows an example capture of messages to and from the Sam-
sung Galaxy S9 test device that was configured as the sink. Once again,
the message capture shows the entire explicit contract negotiation (mes-
sage IDs 5442-5465) and the USB-IF vendor ID discovery (message IDs
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Table 5. Samsung Galaxy S9 (G960F) message capture.

ID Time Role Message Data

5440 14:36.248.230 Hard Reset

5442 14:39.309.886 Source:DFP [0]Source_Cap A1 11 FO 90 01 08 FE CA B7 52
5446 14:39.310.395 Sink:UFP 0]GoodCRC 41 00 BB 6C BB A8

5449 14:39.311.982 Sink:UFP 0]Request 82 10 FO CO 03 13 08 11 00 3A
5453 14:39.312.708 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81

5456 14:39.313.284 Source:DFP [1]Accept 63 03 21 7B 00 96

5459 14:39.313.979 Sink:UFP 1]GoodCRC 41 02 97 OD B5 46

5462 14:39.314.462 Source:DFP [2]PS_RDY A6 05 1F FD EE C9

5465 14:39.315.049 Sink:UFP 2]GoodCRC 41 04 A2 A8 D6 AF

5468 14:39.471.248 Source:DFP [0]VDM:Discldentity 6F 11 01 80 00 FF 76 31 6B 61
5472 14:39.471.866 Sink:UFP 0]GoodCRC 41 00 BB 6C BB A8

5475 14:39.476.288 Sink:UFP 1]VDM:Discldentity 8F 42 41 80 00 FF E8 04 00 D1 00 00 00

00 00 00 60 68 C2 B2 A2 9E

5482 14:39.477.131 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

5485 14:40.650.372 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

5489 14:40.651.199 Sink:UFP 1]GoodCRC 41 02 97 OD B5 46

5492 14:40.654.796 Sink:UFP 2]VDM:Unstructured 4F 14 41 00 E8 04 FD AA CE 68

5496 14:40.655.473 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

5499 14:41.828.228 Source:DFP [2]VDM:Unstructured 6F 15 02 00 E8 04 A8 71 A3 DB

5503 14:41.829.056 Sink:UFP 2]GoodCRC 41 04 A2 A8 D6 AF

5506 14:41.833.325 Sink:UFP 3]VDM:Unstructured 4F 56 42 00 E8 04 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 34 A1 OA 25

5514 14:41.834.581 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

5517 14:43.008.455 Source:DFP [3]VDM:Unstructured 6F 17 02 00 E8 04 C8 22 63 Al

5521 14:43.009.071 Sink:UFP 3]GoodCRC 41 06 8E C9 D8 41

5524 14:43.013.435 Sink:UFP 4]VDM:Unstructured 4F 58 42 00 E8 04 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 84 AD C5 F6

5532 14:43.014.693 Source:DFP [4]GoodCRC 61 09 BD FO E3 44

5535 14:44.180.619 Source:DFP [4]VDM:Unstructured 6F 19 03 00 E8 04 CC FB EF A6

5539 14:44.181.134 Sink:UFP 4]GoodCRC 41 08 89 E4 60 A6

5542 14:45.761.683 Source:DFP [5]VDM:Unstructured 6F 1B 02 00 E8 04 C9 CF 93 64

5546 14:45.762.289 Sink:UFP 5]GoodCRC 41 OA A5 85 6E 48

5549 14:45.766.649 Sink:UFP 5/VDM:Unstructured 4F 5A 42 00 E8 04 OD DA 95 63 4A 97 17

B5 F5 34 11 47 53 7E C9 E9 8C 35 3F OE

5557 14:45.767.917 Source:DFP [5]GoodCRC 61 0B 91 91 ED AA

5560 14:46.933.424 Source:DFP [6]VDM:Unstructured 6F 1D 01 00 E8 04 87 95 66 F9

5564 14:46.934.042 Sink:UFP 6]GoodCRC 41 0C 90 20 OD A1

5567 14:46.937.851 Sink:UFP 6]VDM:Unstructured 4F 1C 41 00 E8 04 3C E1 BE 58

5571 14:46.938.566 Source:DFP [6]GoodCRC 61 OD A4 34 8E 43

5574 14:48.114.825 Source:DFP [7]JVDM:Unstructured 6F 1F 02 00 E8 04 09 69 13 91

5578 14:48.115.442 Sink:UFP 7]GoodCRC 41 OE BC 41 03 4F

5581 14:48.119.820 Sink:UFP 7]VDM:Unstructured 4F 5E 42 00 E8 04 OD DA 95 63 4A 97 17

B5 F5 34 11 47 53 7E C9 E9 37 31 C6 1C

5589 14:48.121.075 Source:DFP [7]GoodCRC 61 OF 88 55 80 AD

5592 14:49.303.445 Source:DFP [0]VDM:Unstructured 6F 11 03 00 E8 04 OD BO 9F 96

5596 14:49.304.274 Sink:UFP 0]GoodCRC 41 00 BB 6C BB A8

5599 14:50.881.168 Source:DFP [1]VDM:Unstructured 6F 13 02 00 E8 04 08 84 E3 54

5603 14:50.881.789 Sink:UFP 1]GoodCRC 41 02 97 OD B5 46

5606 14:50.886.156 Sink:UFP 0]VDM:Unstructured 4F 50 42 00 E8 04 60 B3 A9 5A 65 3F 48

3C 3A D6 13 DC 2D 32 8D 16 F6 75 A3 FE
5614 14:50.887.366 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A
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5468-5482). These are followed by the first unstructured vendor-defined
message test (message ID 5485). The sent message has an unstructured
vendor-defined message header of 0x04e80001, which is decoded accord-
ing to Figure 5 as vendor ID: 0x04e8, type: 0 and vendor use: 0x0001
(15-bit value).

Note that this unstructured vendor-defined message received a re-
sponse other that the GoodCRC (message ID 5492). The response has
an unstructured vendor-defined message header of 0x04e80041, which
is decoded according to Figure 5 as vendor ID: 0x04e8, type: 0 and ven-
dor use: 0x0041. This message appears to be a reply with no additional
data (i.e., vendor data objects).

A similar situation is seen for message 5499 with vendor use: 0x0002,
whose response (message ID 5506) has vendor use: 0x0042 and four
additional vendor data objects: 0x00000000 0x00000000 0x00000000
and 0x00000000.

The two vendor use command/reply pairs of 0x0001/0x0041 and
0x0002/0x0042 imply that bit 6 (0x0040) may be an ACK bit. If the
unstructured headers are interpreted as structured headers (Figure 6),
then bits 6-7 correspond to type where 0x1 (bit 6 set) corresponds to an
ACK. Of course, the real situation is not clear, but it does appear that
the vendor may have mixed the two types of vendor-defined message
headers.

Investigating further, the response (message ID 5506) with vendor use
set to 0x0042 also has four additional vendor data objects: 0x00000000
0x00000000 0x00000000 and 0x00000000. This appears to be data sent
back to the source side from the sink. All the vendor data objects contain
zeroes in the replies to two consecutive messages with vendor use set to
0x0002 (message IDs 5499 and 5517).

However, when a different message (message ID 5535) is sent to the
device with vendor use set to 0x0003, then a completely different re-
ply is received with vendor use set to 0x0002 (message ID 5542) and
four vendor data objects: 0x6395da0d 0xb517974a 0x471134f5 and
0xe9c97e53 (message ID 5549). Sending message 5535 again (message
ID 5574) yields the same four vendor data objects (message ID 5581).
However, another message with vendor use set to 0x0003 (message ID
5592) once again changes the vendor data objects for vendor use set
to 0x0002. Specifically, the four vendor data objects are: 0x5aa9b360
0x3c483£65 0xdc13d63a and 0x168d322d (message ID 5606).

It appears that data in the form of vendor data objects is received
from the device and different data is received when sending a specific
message with vendor use set to 0x0003. The four vendor data objects
appear to change in pseudorandom order. Another observation is that,
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Table 6. Samsung Galaxy S9 (G960F) message capture.

ID Time Role Message Data
162 0:06.589.154 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46
166 0:06.589.982 Sink:UFP  [1]GoodCRC 41 02 97 OD B5 46
169 0:06.594.059 Sink:UFP  [1]JVDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7
]
]

173 0:06.594.675 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

176 0:06.629.222 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 1C 47 B3 AB 2E F3 7B AE
F9 09 79 82 02 3B C6 BB 1A D4 E8 41

184 0:06.630.376 Sink:UFP  [2]GoodCRC 41 04 A2 A8 D6 AF

187 0:06.635.264 Sink:UFP  [2]VDM:Unstructured 4F 54 42 00 E8 04 1C 47 B3 AB 2E F3 7B AE
F9 09 79 82 02 3B C6 BB 51 65 55 63

195 0:06.636.524 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

when a message is sent with vendor use set to 0x0002 along with four
random vendor data objects (0Oxabb3471c, Oxae7bf32e, 0x827909f9,
0xbbc63b02), a reply is received with the same vendor data objects
(Table 6). This implies that a message with vendor use set to 0x0002
corresponds to an initialization command. Repeating the messages with
vendor use set to 0x0003 and 0x0002 gives different vendor data objects,
which may correspond to some form of encryption or obfuscation.

Sending two identical runs of the messages in Table 5 gives the same
results and any randomization of the four vendor data objects sent with
vendor use set to 0x0002 yields seemingly random reply vendor data ob-
jects when intermingled with messages with vendor use set to 0x0003.
This strengthens the belief that encryption is in place and that the mes-
sage with vendor use set to 0x0002 is either transmitting a key or an
initialization vector for a symmetric cipher.

Because the results indicate that Samsung devices respond to vendor-
defined messages in the USB Power Delivery protocol, additional ex-
periments were conducted to confirm the results. The experiments em-
ployed a special factory test device called the Samsung Anyway S103
(Figure 8). This device enables a console interface provided by the de-
vice bootloader, which is useful for debug logging and other activities.
The same console can be reached via a custom USB connector and a
simple RS232-to-USB serial converter on older devices with micro-USB
connectors [3]. Alendal et al. [1] employed this type of connection to
demonstrate an exploit targeting Samsung devices with a certain secu-
rity vulnerability. The exploit assisted in bypassing a security feature in
the devices. This demonstrates the importance of expanding the attack
surface of a device by enabling the factory test feature.
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Figure 8. Samsung Anyway S103.

The special factory device was hard to obtain because it is usually
provided to Samsung device repair shops and similar outlets. However,
a factory device was procured to communicate with the Samsung test
device using the USB Power Delivery protocol. Table 7 shows a message
capture with the Samsung Anyway S103 and Samsung Galaxy S9 con-
figured as the source and sink, respectively (the vendor data objects are
partially redacted). Note that the communications in the message cap-
ture did not involve an explicit contract negotiation as required in the
protocol specification. Instead, immediate vendor-defined message com-
munications were conducted using the discovered vendor-defined mes-
sages. The capture corresponds to a vendor-defined message with ven-
dor use set to 0x0001, followed by a vendor-defined message with vendor
use set to 0x0002 that provides four pseudorandom vendor data objects.
These are followed by several vendor-defined messages with vendor use
set to 0x0003, each containing four vendor data objects with seemingly
pseudorandom data.

Next, the Samsung Anyway S103 factory device was removed as the
source and a blind replay from the source side of the communications was
attempted. The idea was that, if the source messages from the Samsung
Anyway S103 device were replayed and the same sink messages were
received from the test device, then the Samsung Anyway S103 device
was essentially being emulated. This test was an immediate success.
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Table 7. Samsung Anyway S103 and Samsung Galaxy S9 message capture.

ID Time Role Message Data
1 0:03.900.730 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61
5 0:03.901.546 Sink:UFP  [0]GoodCRC 41 00 BB 6C BB A8

8 0:03.905.272 Sink:UFP  [0]VDM:DiscIdentity 8F 40 41 80 00 FF E8 04 00 D1 00 00 00 00
00 00 60 68 05 22 9E 4A

54 0:03.922.149 Source:DFP

15 0:03.906.336 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A

18 0:03.906.881 Source:DFP [1]JVDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

22 0:03.907.590 Sink:UFP  [1]GoodCRC 41 02 97 OD BS 46

25 0:03.912.440 Sink:UFP  [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7

29 0:03.913.109 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

32 0:03.913.649 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 0C DD BB FF REDACTED
40 0:03.914.888 Sink:UFP  [2]GoodCRC 41 04 A2 A8 D6 AF

43 0:03.919.998 Sink:UFP  [2]VDM:Unstructured 4F 54 42 00 E8 04 0C DD BB FF REDACTED
51 0:03.921.093 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

[

3]VDM:Unstructured 6F 57 03 00 E8 04 E6 A9 7F 72 94 CE Bl
B6 54 BA B7 75 6A F1 89 B8 01 65 20 E8
62 0:03.923.388 Sink:UFP  [3]GoodCRC 41 06 8E C9 D8 41

65 0:03.931.556 Sink:UFP  [3]VDM:Unstructured 4F 56 43 00 E8 04 9F B2 F5 F9 F1 68 E2
AF E5 AA 22 73 DO 77 6A 2E B6 3A A9 FB

73 0:03.932.759 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

76 0:03.934.596 Source:DFP [4]VDM:Unstructured 6F 59 03 00 E8 04 F7 96 A6 2A 08 BB A9
6E 38 40 E4 AF 33 43 7A 23 E6 D7 A8 E9

84 0:03.935.837 Sink:UFP  [4]GoodCRC 41 08 89 E4 60 A6

87 0:03.942.701 Sink:UFP  [4]VDM:Unstructured 4F 58 43 00 E8 04 9A 01 DB AE 9A 39 26
77 BO A8 2D 11 A2 C1 76 80 1E 08 1E C2

95 0:03.943.902 Source:DFP [4]GoodCRC 61 09 BD FO E3 44

The key result is that the same console reached on micro-USB Samsung
devices was enabled without the assistance of the Samsung Anyway S103
factory device.

The successful message replay strengthens the belief that encryption is
involved and that the first four vendor data objects in the vendor-defined
message with vendor use set to 0x0002 are crucial to initialization. These
vendor data objects could correspond to an initialization vector or per-
haps even the key to a symmetric cipher. However, experiments with
several symmetric ciphers using the four vendor data objects as the key
to decrypt vendor data objects in messages with the vendor use set to
0x0003 did not yield positive results.
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6. Conclusions

The principal contribution of this research is a testing methodology
and implementation for revealing and analyzing proprietary USB Power
Delivery protocol messages. The experimental results demonstrate that
at least one common mobile device, the Samsung Galaxy S9, is amenable
to the testing methodology. In particular, the device responds to certain
vendor-defined messages and the responses indicate the use of encryp-
tion, which raises the possibility of capturing initialization vectors and
keys for symmetric ciphers. Another important result is the ability to
enable factory device features in a test device in order to obtain valuable
log data from the device and to widen its attack surface.

Future research will continue the investigation of vendor-defined mes-
sages in the USB Power Delivery protocol. Since vendors may also im-
plement hidden features in other parts of the protocol, a promising ap-
proach is to investigate the role of the sink device that consumes power.
Connecting two devices that typically serve as sinks — like two mobile
phones — causes one device to assume the source role and provide power
to the other device. This source-sink relationship could be exploited to
expand the attack surface or even to directly acquire data.

Future research will also investigate potential security vulnerabilities.
This is challenging because it is not known how to instrument a USB
Power Delivery chip for feedback (e.g., if it crashes or demonstrates
anomalous behavior). An alternative approach is to conduct a source
code review or extract the chip firmware and apply reverse engineering
techniques. Another approach is to analyze device-side communications
with the USB Power Delivery chip, which could reveal interesting fea-
tures or vulnerabilities in the chip logic as well in the operating system.

The popularity of USB Type-C connectors is increasing and large
numbers of consumer devices will support the USB Power Delivery pro-
tocol. It is hoped that this work will stimulate research on the protocol
and its implementations to advance device security and forensics.
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Chapter 7

DETECTING ANOMALIES IN
PROGRAMMABLE LOGIC

CONTROLLERS USING
UNSUPERVISED MACHINE LEARNING

Chun-Fai Chan, Kam-Pui Chow, Cesar Mak and Raymond Chan

Abstract  Supervisory control and data acquisition systems have been employed
for decades to communicate with and coordinate industrial processes.
These systems incorporate numerous programmable logic controllers
that manage the operations of industrial equipment based on sensor
information. Due to the important roles that programmable logic con-
trollers play in industrial facilities, these microprocessor-based systems
are exposed to serious cyber threats.

This chapter describes an innovative methodology that leverages un-
supervised machine learning to monitor the states of programmable logic
controllers to uncover latent defects and anomalies. The methodology,
which employs a one-class support vector machine, is able to detect
anomalies without being bound to specific scenarios or requiring de-
tailed knowledge about the control logic. A case study involving a traf-
fic light simulation demonstrates that anomalies are detected with high
accuracy, enabling the prompt mitigation of the underlying problems.

Keywords: Programmable logic controllers, anomaly detection, machine learning

1. Introduction

Supervisory control and data acquisition (SCADA) systems have been
employed for decades to manage and control critical infrastructure as-
sets.  With human lives and the economy at stake, SCADA system
failures — whether due to accidents or attacks — cannot be tolerated.
Therefore, it is vital to detect SCADA system anomalies and implement
effective mitigation strategies.

@© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 119-130, 2019.
https://doi.org/10.1007/978-3-030-28752-8_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_7&domain=pdf

120 ADVANCES IN DIGITAL FORENSICS XV

Programmable logic controllers (PLCs) are the workhorses of SCADA
systems. These microprocessor-based systems implement programmable
logic that processes input signals from sensors that measure system/en-
vironment state to produce output signals that are transmitted to ac-
tuators as well as other programmable logic controllers that operate
and manage industrial equipment and processes. Programmable logic
controllers are typically small, rugged, specialized devices designed to
perform specific control tasks, often operating in harsh environments
with extreme temperatures and strong vibrations. Industrial systems
may have tens to hundreds of programmable logic controllers. Large
infrastructure assets such as power grids and oil and gas pipelines have
thousands of programmable logic controllers.

Programmable logic controllers are exposed to inadvertent and mali-
cious threats that can impact their ability to safely operate industrial
systems and facilities. The most common inadvertent threats are posed
by control program implementation bugs. Malicious threats include
memory read/write logic attacks [20, 21], malware worms [5, 6, 16],
time bombs [1, 7], and stop and start attacks [22]. These threats make
it imperative to develop security solutions for monitoring the states of
programmable logic controllers to uncover latent defects and anomalies.

Unfortunately, the limited computational and storage resources of pro-
grammable logic controllers make it difficult to deploy conventional se-
curity measures such as firewalls and intrusion detection systems. Novel
and efficient methodologies are required to detect anomalous controller
behavior in real time, and help support prompt mitigations and forensic
investigations of incidents [9, 22].

Machine learning, which has been employed with much success in in-
trusion and anomaly detection systems for traditional computing and
networking infrastructures, is a promising approach for developing sim-
ilar systems for programmable logic controllers. Supervised learning,
which takes in training data with labeled outcomes, is oriented towards
data clustering and classification. Unsupervised learning, which takes
in unlabeled data, is geared towards outlier detection. In both cases, a
mathematical model is generated from the training data and the model
serves as a classifier for new data. Either model can be used for anomaly
detection.

It is difficult to apply supervised learning to detect attacks on pro-
grammable logic controllers due to the lack of genuine attack data; ad-
ditionally, the problem spaces (numbers of attack patterns) are large
and simulating every attack pattern to generate data is infeasible. In
contrast, unsupervised learning uses datasets without labels [12, 14]. A
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training dataset covering normal behavior is created and normalized to
construct a model that identifies outliers.

Anomaly detection is conceptually identical to outlier detection, which
makes unsupervised learning ideal for the problem at hand. In fact, out-
lier identification is virtually equivalent to applying unary classification
with respect to good cases.

A one-class support vector machine is a special case of a support vec-
tor machine with unary classification [17]. In this approach, data points
are grouped using correlations that are computed to yield the normal
state class. The region corresponding to normal state class data is used
to assess if a new data point is an outlier. This approach is essentially
a sophisticated regression test where the training data is processed col-
lectively. It is especially appropriate when the training dataset mainly
comprises normal state data and very little anomalous data. Indeed,
the approach is well-suited to anomaly detection in programmable logic
controllers because attacks are rare and attack data is hard to come by
whereas normal data is readily captured during day-to-day operations.

This chapter describes a methodology that leverages unsupervised ma-
chine learning to monitor the states of programmable logic controllers
to uncover latent defects and anomalies. The methodology, which em-
ploys a one-class support vector machine, can detect anomalies without
being bound to specific scenarios or requiring detailed knowledge about
the control logic. In addition to conventional data capture methods, the
methodology leverages an additional security block in a programmable
logic controller to detect anomalies [1]. The historian is also employed to
store timestamped programmable logic controller state information (i.e.,
key memory address values) for anomaly /attack analyses and forensic in-
vestigations. A traffic light simulation case study employing a Siemens
S7-1212C programmable logic controller demonstrates that anomalies
are detected with high accuracy.

2. Related Work

Garitano et al. [2] have reviewed several anomaly detection method-
ologies and conclude that network intrusion detection systems may not
be able to efficiently detect attacks on industrial control systems. Fur-
thermore, since programmable logic controllers typically have limited
computational resources, implementing host-based intrusion detection
systems is generally infeasible.

Hsu et al. [4] have evaluated several machine learning algorithms on
datasets comprising normal operational data from SCADA networks.
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Their results demonstrate that machine learning algorithms are able to
accurately detect most attacks.

Schuster et al. [10] conducted anomaly detection experiments in two
plant process control networks using one-class support vector machines
and isolation forest classifiers. Their studies revealed that network traffic
data is inadequate for training purposes when sufficient programmable
logic controller traffic is not available.

Wu and Nurse [18] have observed that valuable information can be ob-
tained by monitoring the memory addresses of programmable logic con-
trollers, regardless of whether the controllers were executing normally or
were under attack. They also evaluated the use of a programmable logic
controller logger as a forensic tool that continuously polls the memory
variables in a running programmable logic controller.

Yau and Chow [20, 21] have proposed two approaches for detecting at-
tacks on programmable logic controllers. One approach applies machine
learning to logged data of pre-selected memory values of a programmable
logic controller to detect abnormal oper