
123

Gilbert Peterson
Sujeet Shenoi (Eds.)

Advances in
Digital Forensics XV

IFIP AICT 569

IFIP Advances in Information
and Communication Technology 569

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board Members

TC 1 – Foundations of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

TC 2 – Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

TC 3 – Education
Arthur Tatnall, Victoria University, Melbourne, Australia

TC 5 – Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

TC 6 – Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

TC 7 – System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

TC 8 – Information Systems
Jan Pries-Heje, Roskilde University, Denmark

TC 9 – ICT and Society
David Kreps, University of Salford, Greater Manchester, UK

TC 10 – Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

TC 11 – Security and Privacy Protection in Information Processing Systems
Steven Furnell, Plymouth University, UK

TC 12 – Artificial Intelligence
Ulrich Furbach, University of Koblenz-Landau, Germany

TC 13 – Human-Computer Interaction
Marco Winckler, University of Nice Sophia Antipolis, France

TC 14 – Entertainment Computing
Rainer Malaka, University of Bremen, Germany

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the first World
Computer Congress held in Paris the previous year. A federation for societies working
in information processing, IFIP’s aim is two-fold: to support information processing in
the countries of its members and to encourage technology transfer to developing na-
tions. As its mission statement clearly states:

IFIP is the global non-profit federation of societies of ICT professionals that aims
at achieving a worldwide professional and socially responsible development and
application of information and communication technologies.

IFIP is a non-profit-making organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees and working groups, which organize
events and publications. IFIP’s events range from large international open conferences
to working conferences and local seminars.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is generally smaller and occasionally by invitation only. Their
purpose is to create an atmosphere conducive to innovation and development. Referee-
ing is also rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

IFIP distinguishes three types of institutional membership: Country Representative
Members, Members at Large, and Associate Members. The type of organization that
can apply for membership is a wide variety and includes national or international so-
cieties of individual computer scientists/ICT professionals, associations or federations
of such societies, government institutions/government related organizations, national or
international research institutes or consortia, universities, academies of sciences, com-
panies, national or international associations or federations of companies.

More information about this series at http://www.springer.com/series/6102

Gilbert Peterson • Sujeet Shenoi (Eds.)

Advances in
Digital Forensics XV
15th IFIP WG 11.9 International Conference
Orlando, FL, USA, January 28–29, 2019
Revised Selected Papers

123

Editors
Gilbert Peterson
Department of Electrical and Computer
Engineering
Air Force Institute of Technology
Wright-Patterson AFB, OH, USA

Sujeet Shenoi
Tandy School of Computer Science
University of Tulsa
Tulsa, OK, USA

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-030-28751-1 ISBN 978-3-030-28752-8 (eBook)
https://doi.org/10.1007/978-3-030-28752-8

© IFIP International Federation for Information Processing 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Contributing Authors ix

Preface xvii

PART I FORENSIC MODELS

1

A Holistic Forensic Model for the Internet of Things 3

Lakshminarayana Sadineni, Emmanuel Pilli and Ramesh Babu Battula

2

Implementing the Harmonized Model for Digital Evidence
Admissibility Assessment

19

Albert Antwi-Boasiako and Hein Venter

PART II MOBILE AND EMBEDDED DEVICE FORENSICS

3

Classifying the Authenticity of Evaluated Smartphone Data 39

Heloise Pieterse, Martin Olivier and Renier van Heerden

4

Retrofitting Mobile Devices for Capturing Memory-Resident
Malware Based on System Side-Effects

59

Zachary Grimmett, Jason Staggs and Sujeet Shenoi

5

A Targeted Data Extraction System for Mobile Devices 73

SudhirAggarwal, GokilaDorai, UmitKarabiyik, TathagataMukherjee, Nicholas
Guerra, Manuel Hernandez, James Parsons, Khushboo Rathi, Hongmei Chi,
Temilola Aderibigbe and Rodney Wilson

vi ADVANCES IN DIGITAL FORENSICS XV

6

Exploiting Vendor-Defined Messages in the USB Power Delivery
Protocol

101

Gunnar Alendal, Stefan Axelsson and Geir Olav Dyrkolbotn

7

Detecting Anomalies in Programmable Logic Controllers Using
Unsupervised Machine Learning

119

Chun-Fai Chan, Kam-Pui Chow, Cesar Mak and Raymond Chan

PART III FILESYSTEM FORENSICS

8

Creating a Map of User Data in NTFS to Improve File Carving 133

Martin Karresand, Asalena Warnqvist, David Lindahl, Stefan Axelsson and
Geir Olav Dyrkolbotn

9

Analyzing Windows Subsystem for Linux Metadata to Detect
Timestamp Forgery

159

Bhupendra Singh and Gaurav Gupta

PART IV IMAGE FORENSICS

10

Quick Response Encoding of Human Facial Images for Identity
Fraud Detection

185

Shweta Singh, Saheb Chhabra, Garima Gupta, Monika Gupta and Gaurav
Gupta

11

Using Neural Networks for Fake Colorized Image Detection 201

Yuze Li, Yaping Zhang, Liangfu Lu, Yongheng Jia and Jingcheng Liu

PART V FORENSIC TECHNIQUES

12

Digital Forensic Atomic Force Microscopy of Semiconductor
Memory Arrays

219

Struan Gray and Stefan Axelsson

Contents vii

13

Timeline Visualization of Keywords 239

Wynand van Staden

14

Determining the Forensic Data Requirements for Investigating
Hypervisor Attacks

253

Changwei Liu, Anoop Singhal, Ramaswamy Chandramouli and Duminda
Wijesekera

Contributing Authors

Temilola Aderibigbe recently received his M.S. degree in Computer
Science from Florida A&M University, Tallahassee, Florida. His research
interests are in the area of digital forensics.

Sudhir Aggarwal is a Professor of Computer Science at Florida State
University, Tallahassee, Florida. His research interests include password
cracking, mobile forensics, information security and building software
systems for digital forensics.

Gunnar Alendal is a Special Investigator with Kripos/NCIS Norway,
Oslo, Norway; and a Ph.D. student in Computer Security at the Norwe-
gian University of Science and Technology, Gjovik, Norway. His research
interests include digital forensics, reverse engineering, security vulnera-
bilities, information security and cryptography.

Albert Antwi-Boasiako is the National Cybersecurity Advisor, Re-
public of Ghana, Ghana, Accra; and the Founder of the e-Crime Bureau,
Accra, Ghana. His research interests are in the area of digital forensics,
with a focus on digital forensic process standardization.

Stefan Axelsson is an Associate Professor of Digital Forensics at the
Norwegian University of Science and Technology, Gjovik, Norway; and
anAssociate Professor of Digital Forensics at HalmstadUniversity, Halm-
stad, Sweden. His research interests include digital forensics, data anal-
ysis and digital investigations.

Ramesh Babu Battula is an Assistant Professor of Computer Science
and Engineering at Malaviya National Institute of Technology, Jaipur,
India. His research interests include secure communications, cyber se-
curity, performance modeling and next generation networks.

x ADVANCES IN DIGITAL FORENSICS XV

Chun-Fai Chan is a Ph.D. student in Computer Science at the Uni-
versity of Hong Kong, Hong Kong, China. His research interests include
penetration testing, digital forensics and Internet of Things security.

Raymond Chan is a Lecturer of Information and Communications
Technology at the Singapore Institute of Technology, Singapore. His
research interests include cyber security, digital forensics and critical
infrastructure protection.

Ramaswamy Chandramouli is a Senior Computer Scientist in the
Computer Security Division at the National Institute of Standards and
Technology, Gaithersburg, Maryland. His research interests include se-
curity for virtualized infrastructures, and smart card interface specifica-
tion and testing.

Saheb Chhabra is a Ph.D. student in Computer Science and Engineer-
ing at Indraprastha Institute of Information Technology, New Delhi, In-
dia. His research interests include image processing and computer vision,
and their applications to document fraud detection.

Hongmei Chi is an Associate Professor of Computer and Informa-
tion Sciences at Florida A&M University, Tallahassee, Florida. Her
research interests include information assurance, scientific computing,
Monte Carlo and quasi Monte Carlo techniques, and data science.

Kam-Pui Chow is an Associate Professor of Computer Science at the
University of Hong Kong, Hong Kong, China. His research interests
include information security, digital forensics, live system forensics and
digital surveillance.

Gokila Dorai is a Ph.D. student in Computer Science at Florida State
University, Tallahassee, Florida. Her research interests include com-
puter, mobile device and Internet of Things forensics.

Geir Olav Dyrkolbotn is a Major in the Norwegian Armed Forces,
Lillehammer, Norway; and an Associate Professor of Cyber Defense at
the Norwegian University of Science and Technology, Gjovik, Norway.
His research interest include cyber defense, reverse engineering, malware
analysis, side-channel attacks and machine learning.

Contributing Authors xi

Struan Gray is an Associate Professor of Physics at Halmstad Univer-
sity, Halmstad, Sweden. His research interests include scanning tunnel-
ing microscopy and atomic force microscopy.

Zachary Grimmett is a Computer Engineer with the U.S. Department
of Defense in Washington, DC. His research interests include mobile
communications devices, digital forensics and malware analysis.

Nicholas Guerra is an M.S. student in Computer Science at the Uni-
versity of Tulsa, Tulsa, Oklahoma. His research interests include digital
forensics, cyber security and reverse engineering.

Garima Gupta is a Postdoctoral Researcher in Computer Science and
Engineering at Indraprastha Institute of Information Technology, New
Delhi, India. Her research interests include image processing and com-
puter vision, and their applications to document fraud detection.

Gaurav Gupta is a Scientist E in the Ministry of Information Tech-
nology, New Delhi, India. His research interests include mobile device
security, digital forensics, web application security, Internet of Things
security and security in emerging technologies.

Monika Gupta is a Visiting Assistant Professor of Optical Physics at
Miranda House, Delhi University, India. Her research interests include
image processing and computer vision, and their applications to docu-
ment fraud detection.

Manuel Hernandez is a Software Engineer at Microsoft, Redmond,
Washington. His research interests include software engineering and
computer hardware.

Yongheng Jia is an M.S. student in Computer Science at Tianjin Uni-
versity, Tianjin, China. His research interests include malware detection
and classification.

Umit Karabiyik is an Assistant Professor of Computer and Informa-
tion Technology at Purdue University, West Lafayette, Indiana. His re-
search interests include digital forensics, user and data privacy, machine
learning, and computer and network security.

xii ADVANCES IN DIGITAL FORENSICS XV

Martin Karresand is a Senior Scientist at the Swedish Defence Re-
search Agency, Linkoping, Sweden; and a Ph.D. student in Computer
Security at the Norwegian University of Science and Technology, Gjovik,
Norway. His research interests include digital forensics, file carving, data
analysis, machine learning and intrusion detection.

Yuze Li is an M.S. student in Computer Science at Tianjin University,
Tianjin, China. His research interests include digital forensics and deep
learning.

David Lindahl is a Research Engineer at the Swedish Defence Research
Agency, Linkoping, Sweden. His research interests include cyber warfare,
critical infrastructure protection and digital forensics.

Changwei Liu is a Postdoctoral Researcher in the Department of Com-
puter Science at George Mason University, Fairfax, Virginia. Her re-
search interests include network security, cloud security and digital foren-
sics.

Jingcheng Liu is an M.S. student in Computer Science at Tianjin Uni-
versity, Tianjin, China. His research interests include data privacy and
intrusion detection.

Liangfu Lu is an Assistant Professor of Mathematics at Tianjin Univer-
sity, Tianjin, China. His research interests include compressed sensing,
sparse representation and image processing.

Cesar Mak is a Research Programmer at the Logistics and Supply
Chain MultiTech R&D Centre, Hong Kong, China. His research interests
include digital forensics, machine learning and data analytics.

Tathagata Mukherjee is an Assistant Professor of Computer Science
at the University of Alabama in Huntsville, Huntsville, Alabama. His
research interests include cyber security, adversarial machine learning,
large-scale digital forensics, cyber law, computational geometry, graph
theory and optimization.

Contributing Authors xiii

Martin Olivier is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research focuses on digital forensics
– in particular, the science of digital forensics and database forensics.

James Parsons is a Software Engineer at Microsoft, Redmond, Wash-
ington. His research interests include digital forensics and software en-
gineering.

Heloise Pieterse is a Senior Researcher and Software Developer at the
Council for Scientific and Industrial Research, Pretoria, South Africa;
and a Ph.D. student in Computer Science at the University of Pretoria,
Pretoria, South Africa. Her research interests include digital forensics
and cyber security.

Emmanuel Pilli is an Associate Professor of Computer Science and
Engineering at Malaviya National Institute of Technology, Jaipur, In-
dia. His research interests include cyber security, digital forensics, cloud
computing, big data, blockchains and the Internet of Things.

Khushboo Rathi is a Senior Software Engineer with Dell Technologies,
Round Rock, Texas. Her research interests include digital forensics,
mobile forensics and machine learning.

Lakshminarayana Sadineni is a Ph.D. student in Computer Science
and Engineering at Malaviya National Institute of Technology, Jaipur,
India. His research interests include Internet of Things security and
forensics.

Sujeet Shenoi is the F.P. Walter Professor of Computer Science and a
Professor of Chemical Engineering at the University of Tulsa, Tulsa, Ok-
lahoma. His research interests include critical infrastructure protection,
industrial control systems and digital forensics.

Bhupendra Singh is an Assistant Professor of Computer Science and
Engineering at the Indian Institute of Information Technology, Pune,
India. His research interests include digital forensics, filesystem analysis
and user activity analysis in Windows and Linux systems.

xiv ADVANCES IN DIGITAL FORENSICS XV

Shweta Singh is an Integrated Software System Engineer at Elkosta
Security Systems, New Delhi, India. Her research interests include ma-
chine learning and its applications to document fraud detection.

Anoop Singhal is a Senior Computer Scientist and Program Manager
in the Computer Security Division at the National Institute of Standards
and Technology, Gaithersburg, Maryland. His research interests include
network security, network forensics, cloud security and data mining.

Jason Staggs is an Adjunct Assistant Professor of Computer Science
at the University of Tulsa, Tulsa, Oklahoma. His research interests
include telecommunications networks, industrial control systems, critical
infrastructure protection, security engineering and digital forensics.

Renier van Heerden is the Science Engagement Officer at the South
African Research and Education Network in Pretoria, South Africa. His
research interests include network security, password security and net-
work attacks.

Wynand van Staden is a Senior Lecturer of Computer Science at the
University of South Africa, Florida Park, South Africa. His research
interests include digital forensics, anonymity and privacy.

Hein Venter is a Professor of Computer Science at the University of
Pretoria, Pretoria, South Africa. His research interests are in the area of
digital forensics, with a focus on digital forensic process standardization.

Asalena Warnqvist is a Forensics Expert at the National Forensic
Centre, Swedish Police Authority, Linkoping, Sweden. Her research in-
terests include digital forensics and data recovery.

Duminda Wijesekera is a Professor of Computer Science at George
Mason University, Fairfax, Virginia. His research interests include sys-
tems security, digital forensics and transportation systems.

Rodney Wilson is a Software Developer at IBM, Research Triangle
Park, North Carolina. His research interests are in the area of software
engineering and test automation.

Contributing Authors xv

Yaping Zhang is an Assistant Professor of Computer Science at Tian-
jin University, Tianjin, China. His research interests include network
security, data mining and digital forensics.

Preface

Digital forensics deals with the acquisition, preservation, examination,
analysis and presentation of electronic evidence. Computer networks,
cloud computing, smartphones, embedded devices and the Internet of
Things have expanded the role of digital forensics beyond traditional
computer crime investigations. Practically every crime now involves
some aspect of digital evidence; digital forensics provides the techniques
and tools to articulate this evidence in legal proceedings. Digital foren-
sics also has myriad intelligence applications; furthermore, it has a vital
role in cyber security – investigations of security breaches yield valuable
information that can be used to design more secure and resilient systems.

This book, Advances in Digital Forensics XV, is the fifteenth volume
in the annual series produced by the IFIP Working Group 11.9 on Dig-
ital Forensics, an international community of scientists, engineers and
practitioners dedicated to advancing the state of the art of research and
practice in digital forensics. The book presents original research results
and innovative applications in digital forensics. Also, it highlights some
of the major technical and legal issues related to digital evidence and
electronic crime investigations.

This volume contains fourteen revised and edited chapters based on
papers presented at the Fifteenth IFIP WG 11.9 International Confer-
ence on Digital Forensics, held in Orlando, Florida, USA on January
28-29, 2019. The papers were refereed by members of IFIP Working
Group 11.9 and other internationally-recognized experts in digital foren-
sics. The post-conference manuscripts submitted by the authors were
rewritten to accommodate the suggestions provided by the conference
attendees. They were subsequently revised by the editors to produce the
final chapters published in this volume.

The chapters are organized into five sections: Forensic Models, Mobile
and Embedded Device Forensics, Filesystem Forensics, Image Forensics,
and Forensic Techniques. The coverage of topics highlights the richness
and vitality of the discipline, and offers promising avenues for future
research in digital forensics.

xviii ADVANCES IN DIGITAL FORENSICS XV

This book is the result of the combined efforts of several individuals.
In particular, we thank Mark Pollitt and Jane Pollitt for their tireless
work on behalf of IFIP Working Group 11.9. We also acknowledge the
support provided by the U.S. National Science Foundation, U.S. Na-
tional Security Agency and U.S. Secret Service.

GILBERT PETERSON AND SUJEET SHENOI

I

FORENSIC MODELS

Chapter 1

A HOLISTIC FORENSIC MODEL
FOR THE INTERNET OF THINGS

Lakshminarayana Sadineni, Emmanuel Pilli and Ramesh Babu Battula

Abstract The explosive growth of the Internet of Things offers numerous innova-
tive applications such as smart homes, e-healthcare, smart surveillance,
smart industries, smart cities and smart grids. However, this has sig-
nificantly increased the threat of attacks that exploit the vulnerable
surfaces of Internet of Things devices. It is, therefore, immensely im-
portant to develop security solutions for protecting vulnerable devices
and digital forensic models for recovering evidence of suspected attacks.
Digital forensic solutions typically target specific application domains
such as smart wearables, smart surveillance systems and smart homes.
What is needed is a holistic approach that covers the diverse application
domains, eliminating the overhead of employing ad hoc models.

This chapter presents a holistic forensic model for the Internet of
Things that is based on the ISO/IEC 27043 international standard.
The model has three phases – forensic readiness (proactive), forensic
initialization (incident) and forensic investigation (reactive) – that cover
the entire lifecycle of Internet of Things forensics. The holistic model,
which provides a customizable and configurable environment that sup-
ports diverse Internet of Things applications, can be enhanced to create
a comprehensive framework.

Keywords: Internet of Things forensics, holistic forensic model, forensic readiness

1. Introduction

The Internet of Things (IoT) is a global infrastructure that enables ad-
vanced services by interconnecting (physical and virtual) objects based
on existing, evolving and interoperable information and communications
technologies [14]. The Internet of Things connects electronic, electrical
and non-electrical objects to provide seamless communications and con-
textual services [17]. The explosive growth of Internet of Things devices,

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 3–18, 2019.

https://doi.org/10.1007/978-3-030-28752-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_1&domain=pdf

4 ADVANCES IN DIGITAL FORENSICS XV

and the nature of services they provide and data they generate have con-
tributed to an increase in security and privacy breaches as well as other
abuses [1, 8]. The need to investigate these incidents has led to the new
discipline of Internet of Things forensics, which focuses on the identifi-
cation, collection, organization and presentation of evidence related to
incidents in Internet of Things infrastructures [23].

This chapter presents a holistic forensic model for Internet of Things
environments that is based on the ISO/IEC 27043 international stan-
dard. The forensic model has three phases, forensic readiness (proactive
component), forensic initialization (incident component) and forensic
investigation (reactive component). These three phases cover the en-
tire lifecycle of Internet of Things forensics. This chapter also discusses
the challenges involved in implementing the forensic model, along with
feasible approaches and supporting technologies. The holistic model,
which provides a customizable and configurable environment that sup-
ports diverse Internet of Things applications, can be enhanced to create
a comprehensive framework.

2. Related Work

The Internet of Things stretches over several layers comprising hetero-
geneous devices, interconnected networks and diverse communications
protocols and applications. Figure 1 shows a typical Internet of Things
layered architecture. The three layers – things layer, edge layer and ap-
plications layer – are physically and logically divided according to their
functionalities. Ideally, the things and edge layers are part of same net-
work and are physically close to each other. As a result, most Internet
of Things forensic approaches consider these two layers; the applications
layer is left to cloud forensics [15].

Although much research has focused on computer forensics, network
forensics and cloud forensics, limited work has been done in the area
of Internet of Things forensics. The main reasons are the heterogeneity
of devices, and diverse communications protocols and applications do-
mains. These make it very difficult to identify common attack surfaces
and create generic security and forensic solutions.

Nevertheless, several researchers have proposed models or frameworks
for security analyses and forensic investigations in Internet of Things en-
vironments. Oriwoh and Sant [18] have proposed a model for automat-
ing security and forensic services that exclusively targets smart home
environments. The layered model has four stages. In stage 1, services
such as network traffic monitoring, intrusion detection, data collection,
parsing, compression and analysis are configured. Stage 2 automates

Sadineni, Pilli & Battula 5

Figure 1. Internet of Things layered architecture.

the configured services to detect incidents and report them to users. In
stage 3, users respond to incidents and escalate them to forensic investi-
gators. In stage 4, digital forensic investigators reconstruct the incidents
for potential legal action.

Zawoad and Hasan [23] have proposed a forensics-aware model for sup-
porting reliable investigations in Internet of Things environments. Inter-
net of Things forensics has three layers – device level forensics, network

6 ADVANCES IN DIGITAL FORENSICS XV

level forensics and cloud level forensics. A secure evidence preservation
module monitors registered devices to collect evidence such as network
logs, registry logs and sensor readings, and stores them securely in an
evidence repository. Hybrid (asymmetric-symmetric) encryption is em-
ployed to protect the evidence, making it accessible only to authorized
investigators. A secure provenance module ensures chain of custody by
preserving the evidence access history. Law enforcement agency person-
nel may access the preserved evidence and provenance information via
secure read-only APIs.

Kebande and Ray [15] have proposed a generic digital forensic investi-
gation framework for Internet of Things infrastructures. The framework,
which maps existing digital forensic techniques to Internet of Things in-
frastructures, comprises three main processes – the proactive process, the
Internet of Things forensic process and the reactive process. Other con-
current processes run alongside the three main processes. The proactive
process, which is similar to the process defined by the ISO/IEC 27043 in-
ternational standard, includes scenario definition, evidence source iden-
tification, planning incident detection, evidence collection and evidence
storage and preservation. The Internet of Things forensic process in-
cludes cloud forensics, network forensics and device forensics. The re-
active process covers initialization, the acquisition process and the in-
vestigation process. The high-level model is holistic and applicable to
all Internet of Things environments, but it lacks low-level details that
enable it to be customized to specific environments while leaving all the
processes unchanged.

Meffert et al. [16] have proposed a framework and practical approach
for Internet of Things forensics through device state acquisition. The
proposed approach is based on collecting device state information using
a dedicated controller to obtain a clear picture of the events that have
occurred. The controller is operated in three modes – device controller,
cloud controller and controller controller. The controller acquires state
information directly from devices, the cloud and controllers using their
respective modes. While the framework can reliably collect state data in
Internet of Things environments using the three modes, its limitations
include accessing historical and deleted data, physical access require-
ments and inability to connect to new devices.

Zia et al. [24] have proposed an application-specific investigative model
for Internet of Things environments. The model comprises three in-
dependent components – application-specific forensics, digital forensics
and forensic process. It is conceptualized based on three key Internet
of Things applications – smart homes, wearables and smart cities. The

Sadineni, Pilli & Battula 7

sources of forensic artifacts in the forensic readiness model are smart
homes, wearables, smart cities, networks and the cloud.

Shin et al. [20] focus on the reactive process that occurs after an
incident has occurred. They applied various digital forensic methods
to collect data from an Internet of Things device (Amazon Echo) and
network (home area network using the Z-Wave protocol). However, their
approach is limited to selected devices and communications protocols.

Babun et al. [5] have proposed a digital forensic framework for smart
environments such as smart homes and smart offices, where applications
installed on smart devices are used to control sensors and actuators in
the environments. The framework has two components – modifier and
analyzer. The modifier examines the source code of smart applications
at compile time to detect forensically-relevant data and insert tracing
logs in the appropriate places. The analyzer uses data processing and
machine learning techniques to extract forensic data related to device
activity in the event of an incident.

Harbawi and Varol [11] have proposed an improved digital evidence
acquisition model for Internet of Things forensics. They highlight the
need to identify things of interest that produce initial evidence traces.
Perumal et al. [19] have proposed a four-tiered digital forensic investi-
gation model for the Internet of Things. Their model covers the entire
investigative lifecycle starting from the authorization of forensic experts
in a case to the archival of evidence after the case is closed.

Unfortunately, the forensic models discussed above fail to provide low-
level details on how they can be customized to specific application sce-
narios. In contrast, the model proposed in this chapter engages a holistic
approach that emphasizes configurable forensic readiness that is appli-
cable to any Internet of Things domain.

3. Proposed Holistic Forensic Model

The proposed holistic forensic model for the Internet of Things is
based on the ISO/IEC 27043 international standard [13]. The standard
describes digital forensics as comprising several processes, each incorpo-
rating one or more activities. ISO/IEC 27043 processes correspond to
phases in the proposed model and activities correspond to modules.

Figure 2 presents the holistic forensic model. The model has three
phases: (i) forensic readiness (proactive) phase; (ii) forensic initialization
(incident) phase; and (iii) forensic investigation (reactive) phase. Each
phase has a number of component modules. Although all the modules
focus on Internet of Things devices, their approaches can be mapped to
the applications layer if needed.

8 ADVANCES IN DIGITAL FORENSICS XV

F
o

re
n

si
c

R
ea

d
in

es
s Readiness

Configuration

Scenario Definition

Device Setup

Event Detection

Evidence Collection

Evidence Preservation

P
ro

ac
ti

ve
P

h
as

e

F
o

re
n

si
c

In
it

ia
liz

at
io

n

Incident Detection

First Response

Investigation Preparation In
ci

d
en

t
P

h
as

e

F
o

re
n

si
c

In
ve

st
ig

at
io

n

Evidence Acquisition

Evidence Examination and Analysis

Incident Reconstruction

ReportingEvidence Interpretation

R
ea

ct
iv

e
P

h
as

e

Evidence Presentation

Investigation Closure

Feedback Archival

Figure 2. Holistic forensic model for the Internet of Things.

3.1 Forensic Readiness (Proactive) Phase

During the forensic readiness (proactive) phase, digital evidence re-
lated to an Internet of Things environment is collected and preserved.

Sadineni, Pilli & Battula 9

This reduces the time, effort and cost involved in investigating subse-
quent incidents.

The forensic readiness phase has six modules.

Module 1.1 (Readiness Configuration): This module coor-
dinates all the forensic readiness activities. It provides config-
urable services to customize the model to different Internet of
Things environments, rendering the model holistic. The config-
uration is performed by administrators and/or security experts to
create application-specific, device-specific and context-aware direc-
tions for event detection, forensic data collection and preservation.

The readiness configuration module has the following basic func-
tionality:

– Provides a mechanism for adding comprehensive information
about Internet of Things devices in an environment (e.g.,
adding information about the smart devices in a smart home).
The information about each device includes the device name,
device manufacturer, device type, device id, firmware details,
device functionality, interactions to be logged (based on de-
fined scenarios) and device description.

– Guides the device setup module in identifying suitable prop-
erties and configuring each device for evidence collection.

– Guides the event detection module in identifying the specific
events that must be logged.

– Guides the evidence collection module on the data pertaining
to specific events that needs to be collected.

– Guides the evidence preservation module on how the collected
data is formatted and stored for future investigations.

It is important to note the difference between an event and an
incident. An event denotes one or more interactions with Internet
of Things devices that can change their states (e.g., changes in the
sensor readings of a smart watch and a sensor data request sent
from a mobile application to a smart watch); an event need not
be suspicious. In contrast, an incident is a sequence of suspicious
events that disrupts the regular functioning of Internet devices; an
incident impacts security and/or privacy.

Module 1.2 (Scenario Definition): This module defines scenar-
ios as sequences of events that are forensically sensitive to specific
Internet of Things applications (e.g., unusual interactions with a

10 ADVANCES IN DIGITAL FORENSICS XV

Record
Evidence

?
Pull Request

Upload
Evidence

Sync
Evidence

?
Data Modified

Figure 3. Example event in a smart watch scenario.

device and failed authorization attempts when accessing a service).
In the applications layer, scenarios are defined to cover how con-
figuration and business data should be managed (e.g., who can
access or modify the data). Each scenario specifies events that
change the states of Internet of Things devices. The state changes
are identified along with the properties of the associated devices.

Module 1.3 (Device Setup): This module identifies each new
device added to the environment and its forensic properties before
the device becomes operational. It consults the readiness configu-
ration module for device-specific settings and stores all the setup
information in a secure database for use by other modules. Also,
it keeps track of when a device is detached from the environment.

Module 1.4 (Event Detection): This module identifies forensic-
ally-sensitive events based on scenarios defined in the scenario def-
inition module. Rules may be specified for validating device in-
teractions and network traffic, and identifying potential events. In
the applications layer, an autonomous module may be designed to
monitor the security aspects of system configurations and requests
for authentication and data access.

Figure 3 presents an example event in a smart watch scenario.
When sensor data is updated or a pull request is sent from a mobile
application to the smart watch, the associated data is recorded as
potential evidence. The data is periodically synchronized with
a mobile application and may be uploaded to cloud storage for
subsequent processing.

Sadineni, Pilli & Battula 11

Module 1.5 (Evidence Collection): This module covers the
collection of potential evidence from Internet of Things devices,
controllers and network devices. An example is logging the com-
mands issued to an Internet of Things device along with their
timestamps. The sources of commands to the devices are recorded
(including multiple possible sources for a device such as a smart
TV – TV remote, direct push button and remote user over a net-
work).

Evidence collection is easier when a device operating system sup-
ports forensic interactions to collect relevant information via sys-
tem calls. Otherwise, an autonomous software layer on top of the
operating system has to be created for evidence collection from pro-
grammable devices. In both cases, an edge controller issues com-
mands to the device software for evidence collection and preser-
vation. For all other devices, an external collection mechanism is
implemented at the controller node.

When devices execute real-time applications, it is important to
know the kind of data that is generated and how it is stored; this
helps develop advanced data collection mechanisms [21]. In the ap-
plications layer, the sources of all failed interactions (e.g., configu-
ration changes, authentication and access requests, and suspicious
API calls) are logged for future investigations. All the collected
evidence is formatted according to the storage and processing re-
quirements.

Module 1.6 (Evidence Preservation): This module covers the
secure storage of evidence for future investigations. Many Inter-
net of Things devices have on-board flash memory that stores the
operating system and real-time executable files. This memory can
be used to store forensic data, which could be sent periodically
to a central server for longer-term storage and subsequent pro-
cessing. Alternative storage may be provided by fog nodes. The
evidence should be stored securely and protected from accidental
modification and intentional tampering. Potential evidence from
the applications layer may be preserved in secure cloud storage.

3.2 Forensic Initialization (Incident) Phase

The forensic initialization (incident) phase has three modules: (i) in-
cident detection; (ii) first response; and (iii) investigation preparation.

Module 2.1 (Incident Detection): This module covers the con-
tinuous monitoring of an environment for harmful behavior using

12 ADVANCES IN DIGITAL FORENSICS XV

appropriate techniques and tools. All user interactions are vali-
dated against rules defined by administrators or security experts.
In the device and controller levels, the rules are implemented as
intelligent scripts that identify malicious interactions (e.g., a script
would detect a number of failed authentication requests by an In-
ternet of Things device that exceed a threshold). In the network
level, intrusion detection systems and other security tools are used
to monitor live traffic. In the applications level, cloud security
techniques and tools are used to detect incidents. After an inci-
dent is detected, it is reported for further action.

Module 2.2 (First Response): This module covers the trans-
mission of prioritized alerts to users or administrators for imme-
diate action. In the case of an incident, an alert is escalated to a
digital forensic professional. If required, devices, controllers and
software are suspended to prevent additional damage to the en-
vironment. All the relevant components should be disconnected
from the production environment until the forensic investigation
is completed.

Module 2.3 (Investigation Preparation): This module covers
activities that support the investigative process. The activities
include:

– An incidentmanagement (investigative) plan is prepared. The
plan specifies how to proceed with an investigation. It also
covers evidence provenance and formatting.

– An incident response team of available experts is created to
implement the incident management plan. Each incident is
investigated by a dedicated team.

– Technical and other support, including organizational and op-
erational support, are provided to the team.

– The incident response team is briefed about and trained on
incident management.

– The incident management plan is reviewed and improved us-
ing techniques such as paper tests, tabletop exercises and sim-
ulations.

– The improved incident management plan is documented for
practical implementation.

Sadineni, Pilli & Battula 13

3.3 Forensic Investigation (Reactive) Phase

The forensic investigation (reactive) phase implements the investiga-
tive plan to reconstruct the sequence of events. Potential evidence col-
lected during the readiness phase is acquired and analyzed to prove or
disprove that an attack or breach occurred and to identify the victim de-
vices. The insights gained during the investigation are used to improve
security and forensic techniques and tools used in the environment.

The forensic investigation phase comprises the following five modules:

Module 3.1 (Evidence Acquisition): This module covers the
identification of evidence pertaining to the reported incident and
its acquisition from secure storage. It may be necessary to visit
the physical location and acquire forensic images of the Internet
of Things devices in question. Various techniques may be used to
extract the firmware and memory images in order to identify ma-
licious behavior. In the applications layer, artifacts related to the
cloud environment such as virtual machine images and logs, hyper-
visor logs, user activity logs, database access logs and application
logs are collected.

Module 3.2 (Evidence Examination and Analysis): This
module covers the formatting of the acquired logs and evidence
to render them suitable for analysis. Machine learning techniques
may be applied to identify attack patterns in Internet of Things
networks. Techniques and tools must be updated or augmented
periodically in order to identify new attacks. Analytic tools may
be used in the applications layer to identify suspicious behavior
related to computing, storage and data access requests.

Module 3.3 (Incident Reconstruction): This module covers
the reconstruction of an incident as a sequence of suspicious events
based on the results of the evidence examination and analysis mod-
ule. The incident reconstruction module comprises the following
two activities:

– The evidence interpretation activity analyzes results based on
predefined postulates to reconstruct an incident (e.g., identify
the sequences of events in the devices and edge layer and map
them to the applications layer to understand what has oc-
curred). The postulates may be adapted from standard secu-
rity policies or defined by security experts for specific Internet
of Things application scenarios (e.g., a security policy may be
defined to limit the number of unsuccessful authentication or

14 ADVANCES IN DIGITAL FORENSICS XV

access requests). Some policies may define the standard be-
havior of Internet of Things devices or the environment to
avoid unwanted communications between extraneous devices.

– The reporting activity generates a formal report covering the
incident findings related to attacks and victims and their
timelines.

Module 3.4 (Evidence Presentation): This module covers the
preparation and presentation of evidence to comply with the re-
quirements imposed by legal proceedings. The final report may
incorporate graphics and animations to enhance clarity.

Module 3.5 (Investigation Closure): This module covers the
post-investigation activities, especially providing feedback and ar-
chiving the evidence. Feedback is provided to the evidence ex-
amination and analysis module, and evidence traces and records
are archived. Case studies may be created to inform and enhance
future investigations.

4. Forensic Technologies

This section discusses two emerging technologies, fog/edge computing
and blockchains, that can enhance Internet of Things forensic processes.

4.1 Fog/Edge Computing

The terms fog computing and edge computing are used interchange-
ably to describe the layer between end-devices and the cloud that lever-
ages the storage and processing of intermediate devices (fog nodes). Fog
computing can be considered to be an implementation of edge comput-
ing [9]. Edge computing brings down services from the cloud to the
edges of Internet of Things networks. Since these services include device
authentication, access control, and data processing and storage, most
of the forensic readiness modules can be implemented using fog com-
puting. Al-Masri et al. [3] have proposed a fog-based digital forensic
investigation framework for Internet of Things environments.

4.2 Blockchains

The distributed and immutable characteristics of blockchains suit the
demands of Internet of Things forensics. Fernandez-Carames and Fraga-
Lamas [10] have presented a comprehensive decision model that checks
whether or not a blockchain-based solution applies to a particular Inter-
net of Things scenario. In the decision model, evidence collected from

Sadineni, Pilli & Battula 15

Internet of Things devices, controllers and applications in the cloud are
treated as the ledger. An ideal solution for Internet of Things foren-
sics is a private-permissioned blockchain where the number of nodes is
restricted and access is only provided to selected users.

The distributed nature of a blockchain dovetails with fog computing to
provide services such as evidence collection and storage. Evidence can be
collected by any node and updated in the ledger. The immutability of a
blockchain ensures that the evidence is not tampered with and is always
valid. A blockchain also supports the verification of the provenance
of evidence. These two properties enable forensic investigators to access
evidence reliably from any node at any time. Ali et al. [2] have presented
a global naming and storage system secured by blockchains.

In summary, blockchains can be used to timestamp and store evidence
collected from Internet of Things devices [10]. Banerjee et al. [6] have
presented an interesting blockchain application that tracks changes made
to Internet of Things device firmware and automatically restores the
original firmware in the event of tampering. Similar approaches can be
used to maintain the integrity of Internet of Things evidence.

5. Research Challenges

Internet of Things forensics is challenging due to the complexity of
devices and applications, and the lack of uniform standards across de-
vice manufacturers and system developers. Most tools are designed to
work with conventional systems with significant storage and computing
capabilities instead of small, specialized devices [21]. Challenges are also
imposed by the heterogeneity of devices, applications and communica-
tions technologies. As a result, the stored data has diverse formats and
requires custom acquisition methods.

Another challenge is extracting volatile data from Internet of Things
devices before it is overwritten. Sophisticated mechanisms are needed
for swift collection. Collection can be sped up by storing data on the
device itself, but the data must be moved periodically to supplementary
storage to free up device memory. The data may also be synchronized to
fog nodes or cloud storage at regular intervals. This approach is safer in
the long term because Internet of Things devices can be tampered with
or even destroyed. The transfer and aggregation of evidence also make
it more difficult to maintain the chain of custody [12]; fortunately, this
can be addressed using blockchain technology.

Some challenges are specific to the phases of the proposed holistic
forensic model. The principal challenge in the readiness phase is apply-
ing forensic processes to devices and their firmware when the devices are

16 ADVANCES IN DIGITAL FORENSICS XV

operating. Separate hardware devices with automated forensic scripts
may have to be developed to support forensic readiness activities. Chal-
lenges in the incident phase include taking control of devices deployed at
remote locations (software-defined networking could help) and communi-
cating alerts about incidents. Challenges during the investigation phase
include formatting heterogeneous evidence into a uniform structure for
examination and analysis, and employing machine learning algorithms
to detect new attacks (e.g., cross-layer attacks) [4].

6. Conclusions

Due to the diversity of devices, networks and applications, a num-
ber of ad hoc digital forensic solutions have been developed for specific
Internet of Things environments. A holistic digital forensic model that
covers diverse Internet of Things environments is required to eliminate
the overhead imposed by the ad hoc solutions.

The Internet of Things forensic model presented in this chapter is
holistic and covers the entire forensic lifecycle. The model, which is
based on the ISO/IEC 27043 international standard, is customizable
and configurable, and supports diverse Internet of Things applications.

Future research will focus on the implementation and testing of the
model in selected application domains, with the ultimate goal of creating
a comprehensive framework for Internet of Things forensics.

References

[1] F. Alaba, M. Othman, I. Hashem and F. Alotaibi, Internet of Things
security: A survey, Journal of Network and Computer Applications,
vol. 88, pp. 10–28, 2017.

[2] M. Ali, J. Nelson, R. Shea and M. Freedman, Blockstack: A global
naming and storage system secured by blockchains, Proceedings of
the USENIX Annual Technical Conference, pp. 181–194, 2016.

[3] E. Al-Masri, Y. Bai and J. Li, A fog-based digital forensics investi-
gation framework for IoT systems, Proceedings of the Third IEEE
International Conference on Smart Cloud, pp. 196–201, 2018.

[4] V. Asati, E. Pilli, S. Vipparthi, S. Garg, S. Singhal and S. Pancholi,
RMDD: Cross-layer attack in Internet of Things, Proceedings of the
International Conference on Advances in Computing, Communica-
tions and Informatics, pp. 172–178, 2018.

[5] L. Babun, A. Sikder, A. Acar and A. Uluagac, IoTDots: A Digi-
tal Forensics Framework for Smart Environments, arXiv:1809.00745
(arxiv.org/abs/1809.00745), 2018.

Sadineni, Pilli & Battula 17

[6] M. Banerjee, J. Lee and K. Choo, A blockchain future for Internet
of Things security: A position paper, Digital Communications and
Networks, vol. 4(3), pp. 149–160, 2018.

[7] M. Chernyshev, S. Zeadally, Z. Baig and A. Woodward, Internet
of Things forensics: The need, process models and open issues, IT
Professional, vol. 20(3), pp. 40–49, 2018.

[8] M. Conti, A. Dehghantanha, K. Franke and S. Watson, Internet of
Things security and forensics: Challenges and opportunities, Future
Generation Computer Systems, vol. 78(2), pp. 544–546, 2018.

[9] K. Dolui and S. Datta, Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing, Pro-
ceedings of the Global Internet of Things Summit, 2017.

[10] T. Fernandez-Carames and P. Fraga-Lamas, A review of the use
of blockchain for the Internet of Things, IEEE Access, vol. 6, pp.
32979–33001, 2018.

[11] M. Harbawi and A. Varol, An improved digital evidence acquisition
model for Internet of Things forensics I: A theoretical framework,
Proceedings of the Fifth International Symposium on Digital Foren-
sics and Security, 2017.

[12] R. Hegarty, D. Lamb and A. Attwood, Digital evidence challenges
in the Internet of Things, Proceedings of the Ninth International
Workshop on Digital Forensics and Incident Analysis, pp. 163–172,
2014.

[13] International Organization for Standardization and International
Telecommunication Union, ISO/IEC 27043:2015: Information Tech-
nology – Security Techniques – Incident Investigation Principles and
Processes, Geneva, Switzerland, 2015.

[14] International Telecommunication Union, Recommendation ITU-T
Y.2060: Overview of the Internet of Things, Geneva, Switzerland,
2012.

[15] V. Kebande and I. Ray, A generic digital forensic investigation
framework for Internet of Things (IoT), Proceedings of the Fourth
IEEE International Conference on Future Internet of Things and
Cloud, pp. 356–362, 2016.

[16] C. Meffert, D. Clark, I. Baggili and F. Breitinger, Forensic state
acquisition from Internet of Things (FSAIoT): A general framework
and practical approach for IoT forensics through IoT device state
acquisition, Proceedings of the Twelfth International Conference on
Availability, Reliability and Security, article no. 65, 2017.

18 ADVANCES IN DIGITAL FORENSICS XV

[17] R. Minerva, A. Biru and D. Rotondi, Towards a Definition of
the Internet of Things (IoT), Revision 1, IEEE Internet Initia-
tive, Piscataway, New Jersey (iot.ieee.org/images/files/
pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revi

sion1_27MAY15.pdf), 2015.

[18] E. Oriwoh and P. Sant, The Forensics Edge Management Sys-
tem: A concept and design, Proceedings of the Tenth IEEE In-
ternational Conference on Ubiquitous Intelligence and Computing
and the Tenth IEEE International Conference on Autonomic and
Trusted Computing, pp. 544–550, 2013.

[19] S. Perumal, N. Norwawi and V. Raman, Internet of Things (IoT)
digital forensic investigation model: Top-down forensic approach
methodology, Proceedings of the Fifth International Conference on
Digital Information Processing and Communications, pp. 19–23,
2015.

[20] C. Shin, P. Chandok, R. Liu, S. Nielson and T. Leschke, Poten-
tial forensic analysis of IoT data: An overview of the state-of-the-
art and future possibilities, Proceedings of the IEEE International
Conference on the Internet of Things, IEEE Green Computing and
Communications, IEEE Cyber, Physical and Social Computing and
IEEE Smart Data, pp. 705–710, 2017.

[21] S. Watson and A. Dehghantanha, Digital forensics: The missing
piece of the Internet of Things promise, Computer Fraud and Secu-
rity, vol. 2016(6), pp. 5–8, 2016.

[22] K. Yeow, A. Gani, R. Ahmad, J. Rodrigues and K. Ko, Decen-
tralized consensus for edge-centric Internet of Things: A review,
taxonomy and research issues, IEEE Access, vol. 6, pp. 1513–1524,
2017.

[23] S. Zawoad and R. Hasan, FAIoT: Towards building a forensics aware
ecosystem for the Internet of Things, Proceedings of the IEEE In-
ternational Conference on Services Computing, pp. 279–284, 2015.

[24] T. Zia, P. Liu and W. Han, Application-specific digital forensics
investigative model in Internet of Things (IoT), Proceedings of the
Twelfth International Conference on Availability, Reliability and Se-
curity, article no. 55, 2017.

Chapter 2

IMPLEMENTING THE HARMONIZED
MODEL FOR DIGITAL EVIDENCE
ADMISSIBILITY ASSESSMENT

Albert Antwi-Boasiako and Hein Venter

Abstract Standardization of digital forensics has become an important focus area
for researchers and criminal justice practitioners. Over the past decade,
several efforts have been made to encapsulate digital forensic processes
and activities in harmonized frameworks for incident investigations. A
harmonized model for digital evidence admissibility assessment has been
proposed for integrating the technical and legal determinants of digital
evidence admissibility, thereby providing a techno-legal foundation for
assessing digital evidence admissibility in judicial proceedings.

This chapter presents an algorithm underlying the harmonized model
for digital evidence admissibility assessment, which enables the determi-
nation of the evidential weight of digital evidence using factor analysis.
The algorithm is designed to be used by judges to determine evidence
admissibility in criminal proceedings. However, it should also be useful
to investigators, prosecutors and defense lawyers for evaluating potential
digital evidence before it is presented in court.

Keywords: Digital evidence admissibility, factor analysis, evidential weight

1. Introduction

The application of digital forensics in criminal justice has become
more relevant than ever because of the continuous evolution of cyber
crime and its impact on individuals, organizations and governments. It
is nearly impossible in today’s information-technology-driven society to
find a crime that does not have a digital dimension [7]. The relevance
of digital forensics is also influenced by the fact that computer systems
are being used to facilitate crimes such as fraud, terrorism and money
laundering. National information infrastructures have become targets

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 19–36, 2019.

https://doi.org/10.1007/978-3-030-28752-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_2&domain=pdf

20 ADVANCES IN DIGITAL FORENSICS XV

for cyber attackers; this has rendered digital forensics an essential com-
ponent of national strategies for combating cyber threats.

Meanwhile, advancements in computer engineering and information
and communications technologies have led to novel sources of digital ev-
idence. Unmanned aerial vehicles, driverless automobiles and Internet of
Things devices have led to new developments in digital forensics because
of the digital evidence that resides in these systems [1, 9].

However, the question of digital evidence admissibility remains a key
issue when applying digital forensics in jurisprudence. The criminal
justice sector is confronted with the challenge of proffering evidence that
is admissible in court [12]. In addition to training in new legislation
and technology, judges require a scientific approach for assessing digital
evidence in court. These challenges have driven the research community
to develop standardized processes and approaches to ensure that digital
evidence is admissible in legal proceedings.

This chapter presents an algorithm underlying a harmonized model
for digital evidence admissibility assessment, which assists in determin-
ing the evidential weight of digital evidence using factor analysis. The
algorithm is designed to be used by judges in criminal proceedings, but
it should also be useful to investigators, prosecutors and defense lawyers
for evaluating potential digital evidence before it is presented in legal
proceedings.

2. Background and Related Work

Several models and frameworks have been introduced to standardize
digital forensic activities in order to address issues regarding the ad-
missibility of digital evidence. These include a framework introduced
by participants in the 2001 Digital Forensic Research Workshop [17],
an abstract model of digital forensic procedure introduced by Reith et
al. [18] and a harmonized process model introduced by Valjarevic and
Venter [25]. A good practice guide produced by the (U.K.) Association
of Chief Police Officers [3] and an electronic crime scene investigation
guide published by the U.S. Department of Justice [23] are examples of
efforts undertaken by law enforcement to harmonize digital forensics and
provide a common approach for conducting digital investigations. The
International Organization for Standardization has created the ISO/IEC
27037 Standard [13] and the ISO/IEC 27043 Standard [14] to support
incident investigations.

Despite significant developments in rationalizing the domain of digital
forensics, issues associated with the admissibility of digital evidence in
legal proceedings have remained largely unresolved. To address this

Antwi-Boasiako & Venter 21

Legal Determinants

Legal Authorization
Determinant

Digital Evidence Relevance
Determinant

Digital Evidence
Authenticity Determinant

Digital Evidence Integrity
Determinant

Digital Evidence Reliability
Determinant

Digital Evidence
Proportionality Determinant

Technical Determinants

Digital Forensic Model
Determinant

Forensic Tool
Determinant

Chain of Custody
Determinant

Forensic Analyst
Competency Determinant

Digital Forensics Lab
Determinant

Technical Integrity
Verification Determinant

Digital Forensic Expert
Witness Determinant

Digital Forensic Report
Determinant

Figure 1. Requirements for assessing the admissibility of digital evidence.

gap, Antwi-Boasiako and Venter [2] introduced the Harmonized Model
for Digital Evidence Admissibility Assessment (HM-DEAA). This model
specifies technical and legal requirements – called “determinants” – that
underpin the admissibility of digital evidence. Figure 1 presents the
various technical and legal determinants specified in the harmonized
model.

This existential foundation of digital evidence presents a techno-legal
dilemma – a challenge or gap that exists in establishing a balanced in-
terdependent relationship between the technical and legal requirements
when establishing digital evidence admissibility and determining the
weight of digital evidence in judicial proceedings. The harmonized model
of Antwi-Boasiako and Venter [2] leverages an operational interdepen-
dency relationship between the technical and legal determinants to es-
tablish digital evidence admissibility.

Figure 2 presents the harmonized model. The three phases of the
model are integrated, but they are distinct from each other due to their
functional relevance in assessing digital evidence admissibility. The digi-
tal evidence assessment phase establishes the legal foundations of digital
evidence. The digital evidence consideration phase focuses on the techni-
cal requirements that underpin digital evidence admissibility. The digital

22 ADVANCES IN DIGITAL FORENSICS XV

P
ha

se
1

P
h

as
e

2
P

h
as

e
3

[D
ig

it
al

E
vi

d
en

ce
A

ss
es

sm
en

tP
h

as
e]

[D
ig

it
al

E
vi

d
en

ce
C

on
si

d
er

at
io

n
P

h
as

e]

[D
ig

it
al

E
vi

d
en

ce
D

et
er

m
in

at
io

n
P

h
as

e]

Pre-Requisite
Determinants

Core
Determinants

Post-Requisite
Determinants

Digital Forensic Model Determinant
Forensic Tool Determinant
Forensic Analyst Competency Determinant
Digital Forensics Lab Determinant

Chain of Custody Determinant
Technical Integrity Verification Determinant

Expert Witness Determinant
Digital Forensic Report Determinant

Legal Authorization
Determinant

Digital Evidence Relevance
Determinant

Digital Evidence
Integrity

Determinant

Digital Evidence
Authenticity
Determinant

Digital Evidence
Proportionality

Determinant

Digital Evidence
Relevance

Determinant

Figure 2. Harmonized Model for Digital Evidence Admissibility Assessment.

evidence determination phase underpins the judicial decisions regarding
the admissibility and weight of digital evidence.

The research described in this chapter builds on the previous work by
Antwi-Boasiako and Venter [2]. It presents an algorithm that underlies
the implementation of the harmonized model for digital evidence admis-
sibility assessment and enables the determination of evidential weight
using factor analysis.

3. Validation Survey Methodology and Findings

A survey of judicial experts with knowledge and experience in digital
evidence was conducted to validate the technical and legal determinants
of digital evidence admissibility. The respondents were asked to assess

Antwi-Boasiako & Venter 23

Table 1. Evidential weight impact description.

Score Impact Description

1 No Impact Determinant has no effect on the digital evidence
in question

2 Minimal Determinant has very little effect on the digital
evidence in question

3 Moderate Determinant has some effect, but not significant
enough, on the digital evidence in question

4 Significant Determinant has considerable effect on the digital
evidence in question

5 Very Determinant has exceptional effect on the digital
Significant evidence in question

the impact of each determinant on the weight of digital evidence. Table 1
shows the Likert scale [4] used by the survey respondents.

0%

10%

20%

30%

40%

50%

60%

70%

Judges Expert Witness Defense Lawyers Prosecutors Investigators

P
er

ce
n

ta
g

e

Respondent Category

Figure 3. Survey respondent categories.

A total of 77 respondents participated in the survey. The respondents
were drawn from common law and civil law jurisdictions across Africa,
North and South America, Asia, Europe and the Middle East. Figure 3
shows the five categories of experts who participated in the survey.

An expert sampling method [10] used to obtain a scientifically-valid
sample for the survey. Expert sampling provides an optimal means for
constructing the views of respondents who are judged to be experts

24 ADVANCES IN DIGITAL FORENSICS XV

DFM FT CoC FAC DFL TIV DFEW DFR LA DERe DEA DEI DERl DEP
Admissibility - No 19 20 14 16 29 14 31 25 12 25 19 17 22 31
Admissibility - Yes 58 57 63 61 48 63 46 52 65 52 58 60 55 46

0

10

20

30

40

50

60

70

80

90

N
u

m
b

er

Determinant

Figure 4. Responses related to the determinants of admissibility.

in the subject matter under investigation [10]. The survey was also
consensus-oriented, which justified the application of expert sampling
and the qualitative research approach [24]. The sample selection was
justified using consensus theory [8, 26]. The quantitative method was
instrumented through the use of statistical methods, including factor
analysis, to identify and explore the distribution of survey data.

The research instrument was subjected to a number of validity and
reliability tests, including questionnaire validity, face validity, content
validity and construct validity, which are essential to achieving validity
and reliability [22]. Questionnaire validity refers to the accuracy and
consistency of a questionnaire in providing reliable research data. Face
validity refers to the degree to which a measure appears to be related
to a specific construct in the research; according to Burton and Maze-
rolle [6], face validity establishes the ease of use, clarity and readability
of a research instrument. Content validity considers the extent to which
a survey is relevant and representative of the target construct; it es-
tablishes the credibility, accuracy and relevance of the subject matter
under investigation. Construct validity establishes a cause and effect
relationship in a research instrument [22].

Figure 4 highlights the responses related to the determinants of ad-
missibility. As an example, consider the chain of custody (CoC) determi-
nant. Fourteen survey participants (18% of the respondents) indicated
that chain of custody does not affect the admissibility of digital evidence
in a court of law whereas 62 participants (82% of the respondents) in-
dicated that it affects evidence admissibility. Several factors may have
contributed to these responses. Chain of custody is widely recognized by

Antwi-Boasiako & Venter 25

DFM FT CoC FAE DFL TIV DFEW DFR LA DERe DEA DEI DERl DEP
Very Significant Impact - 5 32 34 59 43 21 48 24 33 54 36 49 51 38 34
Significant Impact - 4 28 26 6 22 23 21 22 23 14 17 21 19 21 16
Moderate Impact - 3 11 11 9 9 17 5 23 15 7 17 6 4 14 19
Minimal Impact - 2 1 0 2 2 9 2 4 3 1 2 0 2 2 3
No Impact - 1 5 6 1 1 6 1 4 3 1 4 1 1 2 5

0

10

20

30

40

50

60

70

N
u

m
b

er
o

f
R

es
p

o
n

d
en

ts

Determinant

Figure 5. Likert scores assigned to the determinants of admissibility.

experts as one of the most important requirements for digital evidence
admissibility; this is confirmed by the high positive response rate of 82%
for the determinant. However, the understanding of respondents and
prevailing legal practices in their jurisdictions may have contributed to
the higher than expected 18% negative response rate for chain of cus-
tody.

The survey participants were also asked to rate the impact of each de-
terminant on the evidential weight using the Likert scale of 1 to 5 shown
in Table 1. Figure 5 shows the scores for the determinants. Once again,
consider the chain of custody determinant (CoC) as an example. Fifty-
nine survey participants (77% of the total) rated the impact of chain
of custody on digital evidence admissibility as very significant (Likert
score of 5); six respondents (8%) rated the impact as significant (score
of 4); nine 9 respondents (12%) rated the impact as moderate (score of
3); two respondents (3%) rated the impact as minimal (score of 2); and
one respondent (less than 1%) rated no impact (score of 1).

Figure 6 graphs the minimum, average and maximum scores for the
determinants. For example, the average rating of the impact of the chain
of custody determinant on digital evidence admissibility is 4.53. It is im-
portant to note that an analysis of the data revealed that no conspicuous
variations existed in the responses provided by judges versus other crim-
inal justice actors relative to the importance of the determinants. This
implies that all the criminal justice actors considered in the research
have common understanding and expectations of the application of dig-

26 ADVANCES IN DIGITAL FORENSICS XV

DFM FT CoC FAE DFL TIV DFEW DFR LA DERe DEA DEI DERl DEP
Min 1 1 2 3 1 2 1 1 3 1 3 3 2 2

Average 4.02 4.12 4.53 4.53 3.74 4.57 3.86 4.00 4.67 4.06 4.63 4.63 4.35 4.08

Max 5 5 5 5 5 5 5 5 5 5 5 5 5 5

0

1

2

3

4

5

6
S

co
re

DeterminantMin Average Max

Figure 6. Distributions of scores for the determinants of admissibility.

ital evidence in criminal proceedings. However, the levels of technical
and judicial knowledge and experience appear to be important factors
that contributed to the variations seen in the scores.

4. Proposed Algorithm

The next step after validating the determinants and assessing their
impacts on digital evidence admissibility is to apply the algorithm pre-
sented in Figures 7 and 8. The algorithm flowcharts cover the three
phases of the harmonized model: (i) digital evidence assessment; (ii)
digital evidence consideration; and (iii) digital evidence determination.
The algorithm formalizes the sequential activities from the introduction
of digital evidence in court through the various stages of witness presen-
tation and cross-examination to the final determination of the case by
the court.

During the first phase, digital evidence assessment, the legal founda-
tions of digital evidence are established. The relevance of the evidence
to the case is determined by the court after legal authorization is estab-
lished. This phase covers pre-trial activities in most jurisdictions. The
trial could be terminated at this stage if a proper legal foundation is not
established.

If the proper legal foundation is established, the case moves to full
trial corresponding to the second phase – digital evidence considera-
tion. The prerequisite requirements, core requirements and evaluation
requirements, which are all technical determinants listed in Figure 2, are
assessed during this phase.

Antwi-Boasiako & Venter 27

��������	
������
���
���

���������

�������

������
����
������

��������������������

���������	
������
�
��������������

���� ������
���� ����
�����

!����

�"�����
���������
��������

#

$��

#

$��

���%����

���%����

$��

	
������%

��
����������

	
���������&��'�
�"�����

����������

��������	
�������
��������������

!����
(�!���
�&�
����������

%��������
�������&�

)���(�����
�
����������

�

� ���������������
��
�%�����

#

��������	
������
�"�����*������
����������

��
������
�
������+

��
��
��
�

��
��
��
+

,�
��
���

���
 �
��

�
��
�
��

��
��

�
���

��
��

-
,�
��
���

���
 �
��

�
��
!

��
��

��
��

�
��

��
�-

Figure 7. Flowchart of the digital evidence assessment and consideration phases.

The third phase, digital evidence determination, forms the basis of
judicial decisions. In most jurisdictions, the decision could be acquittal
or conviction and sentencing. The sentence would be the maximum,
average or minimum based on the evidential weight established through
the operationalization of the harmonized model.

5. Evidential Weight Determination

This section presents the foundation for determining the evidential
weight of digital evidence using the determinants discussed in this chap-
ter.

Evidential weight is the weight that a judge would attach to a par-
ticular piece of evidence that is tendered in a court of law. According
to Mason [15], assessing evidential weight involves scrutinizing a piece

28 ADVANCES IN DIGITAL FORENSICS XV

�

��������� ������
����������&�
����������

��������� ������
�������&�

����������

.��������
������
��

��/�������
� ���%����
��0������

��������� ������
��
�
���
����&�
����������

��
������
�
������1

��������� ������
����������&�
����������

��"�����
2�����

2������

� ����������
2�����

�������
2�����

2�����

� ��������
*���������

��
��
1

,�
��
���

���
 �
��

�
��
�
��
��
�
�
��
�

�
��

��
�-

Figure 8. Flowchart of the digital evidence determination phase.

of evidence and deciding whether or not it is acceptable and relevant to
arriving at a decision during a trial.

The research described in this chapter employed factor analysis [5]
to statistically analyze the survey data in order to determine evidential
weight. Factor analysis was selected because it is well suited to ex-
ploratory data analyses. In particular, it was used to obtain the weights
of the variables required to make judicial decisions. The survey con-

Antwi-Boasiako & Venter 29

ducted in this research provided the data used to operationalize factor
analysis [16].

In order for a dataset to be suitable for factor analysis, a correla-
tion must exist between the determinants and it must pass the Kaiser-
Meyer-Olkin (KMO) sampling adequacy test. The correlations between
the determinants were computed using the sample Pearson correlation
coefficient [21] as follows:

r =
N

∑
xy − (

∑
x)(

∑
y)√

[N
∑

x2 − (
∑

x)2][N
∑

y2 − (
∑

y)2]
(1)

where r is the correlation coefficient between determinants x and y (x
and y are the individual survey responses); N is the number of survey
respondents;

∑
xy is the sum of the products of paired x and y scores;∑

x is the sum of x scores;
∑

y the sum of y scores;
∑

x2 the sum of
squared x scores; and

∑
y2 is the sum of squared y scores.

Note that the correlation is calculated for each pair of determinants.
Also, the numerator in the equation is the covariance between the two
determinants and the denominator is the product of the standard devi-
ations of the two determinants.

The Stata statistical software package [19] was used to compute the
correlations. For example, a correlation of 0.324962 was established
between the forensic tool (FT) and digital forensic model (DFM) deter-
minants, and a correlation of 0.500934 was established between the legal
authorization (LA) and technical integrity verification (TIV) determi-
nants.

The KMO sampling adequacy test was performed to ensure that the
dataset was suitable for factor analysis. The KMO sampling adequacy
varies from zero to one; a value close to one denotes well suited to factor
analysis whereas a value close to zero denotes inappropriate for factor
analysis. A KMO sampling adequacy value of 0.77 was obtained, sug-
gesting that the dataset is adequate for factor analysis [20].

Factor analysis assumes that a linear relationship involving the latent
factors exists in the survey data. In general, a factor factornj in the
data is expressed as:

factornj = b1X1j + b2X2j + ...+ bnXnj + ej (2)

where the bi terms denote factor loadings (e.g., factor scores such as that
relating determinant FT to determinant DFM as computed by Stata);
Xij terms correspond to the determinants; j is an observation (i.e., fac-
tor); n is the number of variables (i.e., number of determinants); and ej
is an error term.

30 ADVANCES IN DIGITAL FORENSICS XV

The coefficient formula for the determinants is given by:

Factor Analysis of Determinants = b1DFM + b2FT + b3CoC +

b4FAC + b5DFL+ b6TIV +

b7DFEW + b8DFR+ b9LA+

b10DERe+ b11DEA+

b12DEI + b13DERI +

b14DEP + ej (3)

The bi values in Equation (3) are used to compute the evidential weight
EW as follows:

EW = w1DFM + w2FT + w3CoC +

w4FAC + w5DFL+ w6TIV +

w7DFEW + w8DFR+

w9LA+ w10DERe+

w11DEA+ w12DEI +

w13DERI + w14DEP +

ej (4)

where the wi terms correspond to the determinant weights Wdi com-
puted as:

Wdi =
bin

2

TotalVariance
(5)

Note that i denotes a determinant; n is the number of determinants; bi
is a factor score generated by factor analysis; and the total variance is
the sum of the squares of the bi factor scores.

Table 2 presents the computed factor loadings bin
2 and determinant

weights Wdi based on the survey results.

6. Results and Discussion

The equations presented in the previous section were applied to a
hypothetical case involving digital evidence. Table 3 presents the results
obtained by applying factor analysis to evidence in the hypothetical
case. In the table, a determinant weight Wdi denotes the weight of
determinant i as established by factor analysis. A determinant score
Sdi in the table, which corresponds to the score assigned to determinant
i by the court for the case in question, is given by:

Antwi-Boasiako & Venter 31

Table 2. Evidential weight determination.

Determinant Factor Factor Determinant
Loading Score Weight

(bi) (bin
2) (Wdi)

DFM 0.247633 0.061322 0.034
FT 0.412889 0.170477 0.095
CoC 0.344163 0.118448 0.066
FAC 0.372313 0.138617 0.025
DFL 0.212455 0.045137 0.077
TIV 0.371712 0.138170 0.077
DEFW 0.237606 0.056457 0.031
DFR 0.326640 0.106694 0.059
LA 0.240957 0.058060 0.032
DERe 0.193218 0.037333 0.021
DEA 0.495371 0.245393 0.136
DEI 0.611801 0.374300 0.208
DERl 0.332325 0.110440 0.061
DEP 0.375614 0.141086 0.078

Total Variance 1.801933

Table 3. Evidential weight determination and analysis.

Determinant Determinant Determinant Weighted
Weight Score Value
(Wdi) (Sdi) (Wvi)

DFM 0.034 3.8 0.129
FT 0.095 4.5 0.428
CoC 0.066 3.0 0.198
FAC 0.025 2.5 0.063
DFL 0.077 3.4 0.262
TIV 0.077 2.3 0.177
DFEW 0.031 5.0 0.155
DFR 0.059 4.7 0.277
LA 0.032 3.7 0.118
DERe 0.021 4.2 0.088
DEA 0.136 4.0 0.544
DEI 0.208 2.4 0.499
DERI 0.061 3.6 0.220
DEP 0.078 3.5 0.273

Total Evidential Weight 3.431

32 ADVANCES IN DIGITAL FORENSICS XV

Sdi =
SumofAssessment Scores

TotalMark
× 5 (6)

where each determinant has a maximum mark allocation of five.
Each of determinants is assessed in court using different parameters,

which are essentially the key questions addressed during evidence pre-
sentation and cross-examination. For example, relative to the digital
forensic tool (FT) determinant, the following key questions are consid-
ered to determine the score:

Which forensic tool(s) was/were used in the forensic examination?

Was the use of each tool licensed?

Was open-source or proprietary software used?

What are the implications of using each tool?

Was each tool tested or validated?

What is the error rate of each tool?

What is the level of acceptance of each tool by the researcher and
practitioner communities?

Are there any scientific publications about each tool?

The answers to these questions are determined based on scientific
and industry requirements in order to accept a forensic tool in digital
investigations. While the questions are not exhaustive, they provide
key assessment parameters that would be used in court to provide a
score for the given determinant. A score of 4.5 for the digital forensic
tool determinant was obtained by applying Equation 6. This value was
computed for the determinant based on the assessment questions.

Using Equation 4 and the data in Table 3, the evidential weight is
computed as:

EW = 0.034DFM + 0.095FT +

0.066CoC + 0.025FAE +

0.077DFL+ 0.077TIV +

0.031DFEW + 0.059DFR+

0.032LA+ 0.021DERe+

0.136DEA+ 0.208DEI +

0.061DERI + 0.078DEP (7)

Antwi-Boasiako & Venter 33

The weighted value Wvi, which corresponds to the evidential weight
of determinant i, is computed as:

Wvi = Wdi × Sdi (8)

where Wdi is the weight of determinant i and Sdi is the determinant
score.

Thus, the total weighted value of all the determinants is given by:

n∑
i=1

WdiSdi = Wd1Sd1 +Wd2Sd2 +Wd3Sd3 + ...+WdnSdn (9)

where n is the number of determinants.
Upon inserting the values from Table 3, the value of the evidential

weight is computed as:

EW = (0.034× 3.8) + (0.095× 4.5) + (0.066× 3) + . . . (0.078× 3.5)

= 3.431 (10)

Expressing the evidential weight as a percentage EW% yields:

EW% =
EW

5
× 100

=
3.431

5
× 100

= 68.62 (11)

The evidential weight of 3.431, which corresponds to 68.62%, is ten-
dered in court and provides the basis for a judicial decision. The percent-
age value of the evidential weight could guide the court on the sentenc-
ing level, which can be the maximum, average or minimum sentence.
However, it should be noted that judicial decisions are also impacted
by other mitigating factors. This is because judges have certain discre-
tionary powers under the law that they may exercise when they deem
necessary. The mitigating factors include the age of the accused, guilty
plea, number of years already spent in custody, demonstration of remorse
and other extenuating factors.

While there are limits to applying the harmonized model in judicial
proceedings, it is important to emphasize that mitigating factors are
considered after the model has provided a judge with scientific guidance
to make a judicial decision. Therefore, any mitigating factors and the
discretionary powers given to a judge as an arbiter of justice do not
affect the scientificness of the harmonized model as a judicial tool.

34 ADVANCES IN DIGITAL FORENSICS XV

7. Conclusions

The algorithm presented in this chapter operationalizes the harmonic
model for digital evidence admissibility assessment and customizes the
model to enable the determination of evidential weight. The algorithm
and evidential weight determination are designed to be used by judges
in criminal proceedings. They should also be useful to investigators,
prosecutors and defense lawyers for evaluating potential digital evidence
before it is presented in legal proceedings.

It is important to note that advances in digital forensics are expected
to impact the results of future surveys of the type conducted in this
research. Different results in future surveys would result in different
weights to the determinants as well as different sets of determinants.
Such changes are to be expected in the rapidly-evolving field of digital
forensics. Nevertheless, the harmonized model, survey research method-
ology and evidential weight determination framework are sound and ro-
bust, implying that surveys would have to be conducted periodically to
generate new data, determinants and determinant weights that will keep
up with trends in digital forensics and how digital evidence is used in
legal proceedings.

Future research will focus on developing an expert system that oper-
ationalizes the harmonic model for digital evidence admissibility assess-
ment. The expert system, which will draw on concepts from computa-
tional forensics [11], could be applied in real cases, including jury trials,
to establish the utility of the harmonized model across the various types
of criminal proceedings.

References

[1] S. Alabdulsalam, K. Schaefer, T. Kechadi and N. Le-Khac, Internet
of Things forensics: Challenges and a case study, in Advances in
Digital Forensics XIV, G. Peterson and S. Shenoi (Eds.), Springer,
Cham, Switzerland, pp. 35–48, 2018.

[2] A. Antwi-Boasiako and H. Venter, A model for digital evidence
assessment, in Advances in Digital Forensics XIII, G. Peterson and
S. Shenoi (Eds.), Springer, Cham, Switzerland, pp. 23–38, 2017.

[3] Association of Chief Police Officers, Good Practice Guide for
Computer-Based Evidence, London, United Kingdom, 2008.

[4] D. Bertram, Likert Scales ...are the Meaning of Life, CPSC 681
– Topic Report (poincare.matf.bg.ac.rs/~kristina/topic-
dane-likert.pdf), 2008.

Antwi-Boasiako & Venter 35

[5] A. Bryman and D. Cramer, Constructing variables, in Handbook of
Data Analysis, M. Hardy and A. Bryman (Eds.), SAGE Publica-
tions, London, United Kingdom, pp. 18–34, 2004.

[6] L. Burton and S. Mazerolle, Survey instrument validity, Part I: Prin-
ciples of survey instrument development and validation in athletic
training education research, Athletic Training Education Journal,
vol. 6(1), pp. 27–35, 2011.

[7] E. Casey, Digital Evidence and Computer Crime: Forensic Sci-
ence, Computers and the Internet, Academic Press, Waltham, Mas-
sachusetts, 2011.

[8] D. Child, The Essentials of Factor Analysis, Bloomsbury Academic,
London, United Kingdom, 2006.

[9] T. Cowper and B. Levin, Autonomous vehicles: How will they
challenge law enforcement? Law Enforcement Bulletin, FBI
Training Division, Federal Bureau of Investigation, Quantico,
Virginia (leb.fbi.gov/articles/featured-articles/autono
mous-vehicles-how-will-they-challenge-law-enforcement),
February 13, 2018.

[10] I. Etikan and K. Bala, Sampling and sampling methods, Biometrics
and Biostatistics International Journal, vol. 5(6), article no. 00148,
2017.

[11] K. Franke and S. Srihari, Computational forensics: An overview,
Proceedings of the Second International Workshop on Computa-
tional Forensics, pp. 1–10, 2008.

[12] S. Goodison, R. Davis and B. Jackson, Digital Evidence and the
U.S. Criminal Justice System: Identifying Technology and Other
Needs to More Effectively Acquire and Utilize Digital Evidence,
Technical Report RR 890-NIJ, RAND Corporation, Santa Monica,
California, 2015

[13] International Organization for Standardization, Information Tech-
nology – Security Techniques – Guidelines for Identification, Col-
lection, Acquisition and Preservation of Digital Evidence, ISO/IEC
27037:2012 Standard, Geneva, Switzerland, 2012.

[14] International Organization for Standardization, Information Tech-
nology – Security Techniques – Incident Investigation Principles
and Processes, ISO/IEC 27043:2015 Standard, Geneva, Switzer-
land, 2015.

[15] S. Mason, Electronic Evidence, Butterworths Law, London, United
Kingdom, 2012.

36 ADVANCES IN DIGITAL FORENSICS XV

[16] Organisation for Economic Co-operation and Development, Hand-
book on Constructing Composite Indicators: Methodology and User
Guide, OECD Publishing, Paris, France, 2008.

[17] G. Palmer, A Road Map for Digital Forensic Research, DFRWS
Technical Report, DTR-T001-01 Final, Air Force Research Labora-
tory, Rome, New York, 2001.

[18] M. Reith, C. Carr and G. Gunsch, An examination of digital forensic
models, International Journal of Digital Evidence, vol. 1(3), 2002.

[19] StataCorp, Stata Release 15, College Station, Texas (www.stata.
com/products), 2019.

[20] Statistics How To, Kaiser-Meyer-Olkin (KMO) Test for Sampling
Adequacy (statisticshowto.com/kaiser-meyer-olkin), 2016.

[21] Study.com, Pearson Correlation Coefficient: Formula, Exam-
ple and Significance, Mountain View, California (study.com/
academy/lesson/pearson-correlation-coefficient-formula-

example-significance.html), 2019.

[22] H. Taherdoost, Validity and reliability of the research instrument:
How to test the validation of a questionnaire/survey in a research,
International Journal of Academic Research in Management, vol.
5(3), pp. 28–36, 2016.

[23] Technical Working Group for Electronic Crime Scene Investigation,
Electronic Crime Scene Investigation: A Guide for First Responders,
NIJ Guide, NCJ 187736, U.S. Department of Justice, Washington,
DC, 2001.

[24] R. Trotter, Qualitative research sample design and sample size: Re-
solving and unresolved issues and inferential imperatives, Preventive
Medicine Journal, vol. 55(5), pp. 398–400, 2012.

[25] A. Valjarevic and H. Venter, Harmonized digital forensic process
model, Proceedings of the Information Security for South Africa
Conference, 2012.

[26] S. Weller and A. Romney, Systematic Data Collection, SAGE Pub-
lications, Newbury Park, California, 1988.

II

MOBILE AND EMBEDDED
DEVICE FORENSICS

Chapter 3

CLASSIFYING THE AUTHENTICITY OF
EVALUATED SMARTPHONE DATA

Heloise Pieterse, Martin Olivier and Renier van Heerden

Abstract Advances in smartphone technology coupled with the widespread use
of smartphones in daily activities create large quantities of smartphone
data. This data becomes increasingly important when smartphones are
linked to civil or criminal investigations. As with all forms of digital
data, smartphone data is susceptible to intentional or accidental alter-
ations by users or installed applications. It is, therefore, essential to
establish the authenticity of smartphone data before submitting it as
evidence. Previous research has formulated a smartphone data evalu-
ation model, which provides a methodical approach for evaluating the
authenticity of smartphone data. However, the smartphone data eval-
uation model only stipulates how to evaluate smartphone data without
providing a formal outcome about the authenticity of the data.

This chapter proposes a new classification model that provides a
grade of authenticity for evaluated smartphone data along with a mea-
sure of the completeness of the evaluation. Experimental results confirm
the effectiveness of the proposed model in classifying the authenticity
of smartphone data.

Keywords: Mobile device forensics, smartphone data, authenticity

1. Introduction

The competitive nature of the global smartphone market [4] stimulates
continuous advancements in smartphone technology. The advancements
enable smartphone models to support different operating systems and
permit the installation of diverse third-party applications. The current
capabilities of smartphones coupled with their widespread use in daily
activities lead to rich collections of data. Smartphone data “includes any
data of probative value that is generated by an application or transferred
to the smartphone by the end-user” [12]. Generally, smartphone data

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 39–57, 2019.

https://doi.org/10.1007/978-3-030-28752-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_3&domain=pdf

40 ADVANCES IN DIGITAL FORENSICS XV

describes events that occurred on the smartphone and the associated
timestamps support the chronological ordering of the events [1]. As a
result, smartphone data constitutes valuable digital evidence in civil and
criminal investigations.

Smartphone data is, however, susceptible to modification [7]. Changes
to smartphone data can occur during the execution of incorrect or error-
prone applications or deployed malware. Furthermore, users with mali-
cious intent can alter smartphone data intentionally. Intentional changes
to smartphone data are commonly referred to as anti-forensics, which
“compromise[s] the availability or usefulness of evidence to the forensic
process” [8]. While several studies have successfully demonstrated the
manipulation, fabrication and alteration of smartphone data [11, 14],
unknown or unexpected changes to smartphone data that go undetected
can lead to erroneous conclusions in investigations. Therefore, it is es-
sential for digital forensic professionals to establish the authenticity of
smartphone data before formulating any conclusions [15]. Authenticity
refers to the preservation of data from the time it was first generated and
the ability to prove that the integrity of the data has been maintained
over time [3, 5, 6, 10].

Establishing the authenticity of smartphone data requires a good un-
derstanding of the smartphone operating environment and the key com-
ponents that are responsible for creating smartphone data. These com-
ponents include the smartphone applications that generate data, opera-
tion of the smartphone by the end-user and the impact of the immediate
surroundings.

Pieterse et al. [13] formally defined the term “authenticity” with re-
gard to smartphone data and used the definition to articulate several
requirements for evaluating the authenticity of the data. These re-
quirements were subsequently employed to construct a smartphone data
evaluation model that provides digital forensic professionals with a struc-
tured approach for evaluating the authenticity of smartphone data. How-
ever, the data evaluation model only stipulates how to evaluate smart-
phone data – it does not provide a formal classification of the authen-
ticity of the evaluated data. Meanwhile, classification scales for digital
evidence, such as Casey’s certainty scale or degrees of likelihood (almost
definitely, most probably, probably, very possible or possibly) [3], have
been proposed for specifying the certainty of conclusions. A formal and
consistent methodology for classifying the authenticity of smartphone
data would provide further support to the certainty of investigative con-
clusions.

This chapter introduces a new classification model for smartphone
data, which is constructed using the smartphone data evaluation model

Pieterse, Olivier & van Heerden 41

and the requirements for evaluating the authenticity of smartphone data.
The classification model assesses smartphone data using an ordered pair
of values. The first value corresponds to a grade of authenticity while the
second value describes the completeness of the evaluation. This classi-
fication enables digital forensic professionals to present the authenticity
of evaluated smartphone data with confidence. Experiments involving
the manipulation of iPhone 7 data confirm the effectiveness of the clas-
sification model in assessing the authenticity of smartphone data.

2. Background

A detailed analysis of smartphone data offers contextual information
about the end-user as well as the activities performed with the smart-
phone. Therefore, smartphone data can constitute valuable digital ev-
idence in civil and criminal investigations. The authenticity of smart-
phone data is of great importance to ensuring that digital forensic pro-
fessionals draw correct and accurate conclusions based on the data. In
order to formulate proper conclusions, digital forensic professionals must
be able to review smartphone data and to evaluate its authenticity.

The smartphone data evaluation model of Pieterse et al. [13] offers
a methodical approach for evaluating smartphone data. This section
briefly reviews the formal definition of authentic smartphone data, the
requirements for identifying smartphone data and the smartphone data
evaluation model.

2.1 Authentic Smartphone Data

Smartphones operate in interconnected environments where several
components are responsible for creating smartphone data. These com-
ponents are:

End-User Behavior: End-user operation of and interactions
with a smartphone.

Smartphone Operation: The working and operational states of
a smartphone.

Smartphone Application Behavior: The behavior and execu-
tion of installed applications on a smartphone.

External Environment: The roles of mobile networks as deliv-
ery platforms.

Authentic smartphone data requires the four components to consis-
tently operate as expected and to remain unaffected. The importance

42 ADVANCES IN DIGITAL FORENSICS XV

of these components renders them critical to maintaining data authen-
ticity. An affected component that operates irregularly directly impacts
data authenticity because an opportunity exists for the data to change.
Digital forensic professionals must evaluate all the components in order
to establish the authenticity of smartphone data.

2.2 Requirements for Authentic Data

A set of requirements is needed to confirm that the four components
operate as expected. The requirements should capture the expected
operational behavior of each component, enabling digital forensic pro-
fessionals to assess the components. The outcomes produced by the
requirements would offer digital forensic professionals insights into the
authenticity of smartphone data.

Pieterse et al. [12] were the first researchers to identify requirements
for evaluating smartphone data. They presented seven theories of nor-
mality that capture the normal or expected behavior of smartphone ap-
plications. Subsequent research [13] extended the theories of normality
by including additional requirements that assess the operation of smart-
phones and the impacts of the environments external to the smartphones.
The remainder of this section discusses the final requirements identified
for authentic smartphone data.

The first component covers the end-user and his/her use of the smart-
phone. Therefore, the requirements evaluate the expected operation of
the smartphone and the installed applications as operated by the end-
user. The requirements related to the first component are: (1.1) assess-
ing smartphone application usage; (1.2) assessing the operation of the
smartphone with regard to rebooting; and (1.3) assessing the presence
of anti-forensic applications.

The second component covers the operational state of the smartphone,
which reflects the changes made to the smartphone by the end-user. The
requirements are: (2.1) assessing the smartphone state (i.e., whether or
not the smartphone is rooted or jailbroken); and (2.2) assessing the
essence of known critical files. A critical file is one that is used by a
digital forensic professional to establish the authenticity of smartphone
data.

The third component covers the behavior of the installed smartphone
applications. One requirement related to smartphone application behav-
ior is: (3.1) confirming that the internally-stored data corresponds to the
data displayed on the user interface (because the data shown on the user
interface could be cached data). Another requirement is: (3.2) confirm-
ing that the structure (i.e., database) responsible for storing persistent

Pieterse, Olivier & van Heerden 43

data follows a consistent pattern in storing data (i.e., records are cor-
rectly ordered when listed using an auto-incremented primary key and
a date or timestamp). In addition: (3.3) confirming that all changes to
the file structure (file sizes) occur consistently. An example is a SQLite
database that appends new records in a write-ahead log (WAL), which
causes the file size to increase. The last requirement is: (3.4) confirming
that the ownership and file permissions assigned to the file structure
remains unchanged.

The fourth component covers the environment external to the end-
user and smartphone. The external environment includes smartphone
data collected by other smartphones that directly communicated with
the smartphone under investigation, as well as the records collected by
mobile network operators. Therefore, the requirements for this compo-
nent are: (4.1) confirming that the persistent smartphone data stored on
two or more smartphones corresponds to the viewed data; and (4.2) con-
firming that the persistent smartphone data corresponds to the records
collected by mobile network operators.

The requirements collectively enable comprehensive reviews of smart-
phone data as well as the components responsible for creating the data.
The outcomes produced by the requirements describe the authenticity of
the data and confirm whether or not opportunities existed for the data to
be modified. However, the requirements need to be ordered in a formal
manner to ensure their optimal use by digital forensic professionals.

2.3 Smartphone Data Evaluation Model

The requirements discussed above provide digital forensic profession-
als with a mechanism for evaluating smartphone data. However, the ab-
sence of structure or order to these requirements can impact their use in
investigations. Consequently, the proposed smartphone data evaluation
model structures the requirements to provide digital forensic profession-
als with a step-by-step guide for evaluating and reviewing smartphone
data.

The smartphone data evaluation model has three phases: (i) pre-
evaluation phase; (ii) evaluation phase; and (iii) documentation phase.

Pre-Evaluation Phase: In this phase, a digital forensic profes-
sional performs an inspection of the smartphone. Figure 1 presents
the steps involved in this phase. The results produced by the phase
describe the smartphone accessibility (i.e., locked or unlocked) and
current smartphone state (i.e., rooted or jailbroken), along with the
most appropriate data acquisition technique (i.e., logical or phys-
ical). Logical acquisition retrieves a bit-for-bit copy of the logical

44 ADVANCES IN DIGITAL FORENSICS XV

Assess
Smartphone

Pre-Evaluation
Phase

Acquire Smartphone

Root/Jailbreak
Possible?

Smartphone
Evaluation Phase

Logical Acquisition Physical Acquisition

Rooted/
Jailbroken?

Accessible

Non-
Accessible

Yes

No

Yes

No

Documentation
Phase

Figure 1. Pre-evaluation phase.

file allocation storage area (filesystem partition), which includes
directories and files of various types [2, 9]. Physical acquisition
obtains a bit-for-bit copy of the entire physical store (raw disk
image), which includes deleted and lost data [2, 9].

Evaluation Phase: The evaluation phase, which follows the pre-
evaluation phase, engages the requirements identified in Section 2.2
to review the acquired smartphone data. Figure 2 shows the steps
involved in the evaluation phase, which are structured according
to the four components identified in Section 2.1.

In the first step of the evaluation phase, a digital forensic profes-
sional selects a single smartphone application to be evaluated; this
application must reside on the smartphone. After the application
is selected, the digital forensic professional interprets and evaluates
the collected smartphone data against the requirements of each of

Pieterse, Olivier & van Heerden 45

Pre-Evaluation
Phase

Select Smartphone
Application

Smartphone Operational
State Evaluation

End-User Behavior
Evaluation

Documentation Phase

Smartphone Application
Behavior Evaluation

External Environment
Evaluation

Figure 2. Evaluation phase.

the four components. The outcome of the evaluation phase is a
collection of results that offers guidance to the digital forensic pro-
fessional about the authenticity of the evaluated smartphone data.

Documentation Phase: The final documentation phase of the
smartphone data evaluation model involves the collection and ag-
gregation of all the results produced during the evaluation phase.
The results enable a digital forensic professional to make informed
decisions pertaining to the evaluated smartphone data.

3. Classification Model

The smartphone data evaluation model only stipulates how the data
is to be evaluated without providing an outcome regarding the authen-
ticity of the data. Further assistance can be provided to a digital forensic
professional by formulating a classification model that assesses the au-
thenticity of the evaluated smartphone data. Collectively, the require-
ments and smartphone data evaluation model presented in Section 2
provide a foundation for establishing a classification model for smart-
phone data. The purpose of the classification model is to formally assess
the authenticity of application-generated smartphone data residing on a
smartphone. The output of the model is an authenticity classification
– an ordered pair of values that expresses the grade of authenticity and
the completeness of the evaluation.

The following sections describe the categorization of the requirements,
the computation and representation of an authenticity score, the mea-
surement of the completeness of an evaluation, along with the visualiza-
tion of the final authenticity classification.

46 ADVANCES IN DIGITAL FORENSICS XV

3.1 Categorization of the Requirements

Mathematical equations are required to consistently classify the au-
thenticity of evaluated smartphone data. The equations must embody
the requirements and smartphone data evaluation model presented in
Section 2. In total, eleven requirements were identified and the evalua-
tion of each requirement involves one or more assessment points. Each
assessment point has one of three outcomes: (i) yes; (ii); no; or (iii)
absent. A positive result of yes confirms that the requirement is met. A
negative result of no indicates that the evaluated data does not meet the
requirement. An absent result is assigned when the data is unavailable
or insufficient.

The results produced by the assessment points are not equally im-
portant because each assessment point evaluates different aspects of the
authenticity of smartphone data. The categorization of the assessment
points into classes, each with a distinct focus, enables a more accurate
evaluation of data authenticity.

Two classes are defined based on the notion of smartphone data au-
thenticity considered in this work. Class A contains assessment points
that confirm that no opportunity existed to change the smartphone data.
Class B comprises assessment points that evaluate the consistency of the
components responsible for creating smartphone data, as well as the con-
sistency of the data itself. The assessment points in Class B evaluate
the smartphone, smartphone applications and data associated with the
applications. Therefore, Class B assessment points are placed in the
following three subclasses:

Subclass B.1: Assessment points that only evaluate application
data.

Subclass B.2: Assessment points that evaluate application be-
havior and the file structure used to store data.

Subclass B.3: Assessment points that evaluate the smartphone
state.

Figure 3 categorizes the assessment points according to the established
classes and the core components involved in the requirements for authen-
tic smartphone data. The categorization of the assessment points into
Class A and Class B allows for weighted calculations of the authenticity
scores.

Pieterse, Olivier & van Heerden 47

End-User Behavior

Smartphone
Operational State

Smartphone
Application

Behavior

External
Environment

Figure 3. Categorization of assessment points.

3.2 Authenticity Score

The computation of the authenticity score is weighted because the
outcome of each assessment point impacts the authenticity of the smart-
phone data differently. The weight assigned to each class should reflect
the impacts that the constituent assessment points have on the final
authenticity score.

Since Class A contains approximately 15% of the assessment points
(Figure 3), a weight of 0.15 is assigned to the class. Class B, which
contains the remaining assessment points, is assigned a weight of 0.85.

The Class B weight is subdivided to assign appropriate weights to its
constituent subclasses. Subclass B.1 assessment points focus strictly on
the evaluation of smartphone application data, which has a significant
influence on the authenticity score. Since the Subclass B.1 assessment
points are important, the subclass is assigned a weight of 0.425, one-half
of the total weight of its parent Class B (0.85).

Assessment points in Subclass B.2 focus on the behavior of the smart-
phone application, but exclude the application data. Since these assess-
ment points have less influence on the authenticity score than the Sub-
class B.1 assessment points that focus on data, Subclass B.2 is assigned
a weight of 0.28, two-thirds of the remaining weight of Class B, which
corresponds to one-third of the total weight of Class B (1/3 × 0.85 =
0.28).

The assessment points in Subclass B.3 focus only on the smartphone
and do not directly address smartphone applications and related data;
thus, they have a limited influence on the authenticity score. Therefore,

48 ADVANCES IN DIGITAL FORENSICS XV

Table 1. Weight assignments.

Class A Class B.1 Class B.2 Class B.3

0.15 0.425 0.28 0.14

Subclass B.3 is assigned the remaining weight of 0.14, which corresponds
to one-sixth of the total Class B weight (1/6 × 0.85 = 0.14). Table 1
shows the assignments of weights to the classes and subclasses.

Because the outcome of each assessment point is a yes (= +1), no (=
–1) or absent (= 0), positive or negative results are produced. However,
the acquisition technique used to obtain the data can impact the ability
to assess all the assessment points. Therefore, for each class c, the
collection of positive results posc are divided by the number of assessment
points nc evaluated per class. The result is then weighted using the class
weight wc shown in Table 1.

Thus, the authentication score SA for Class A is computed as:

SA = wc
posc
nc

(1)

The authentication score SB for Class B is computed as the sum of the
individual scores of its subclasses:

SB =
B.3∑

c=B.1

wc
posc
nc

(2)

The final authenticity score As is computed as the sum of the scores
computed for Classes A and B:

As =

B∑
c=A

Sc (3)

3.3 Authenticity Grading Scale

The authenticity score, as computed above, expresses the authenticity
of the evaluated smartphone data as a percentage. The percentage value
alone is inadequate – further description and categorization are required
to better reflect the authenticity of smartphone data. Specifically, the
categorization requires additional interpretation of the evaluated assess-
ment points and all the possible outcomes. Since the number of assess-
ment points evaluated and the possible outcomes factor significantly in
the categorization of the authenticity score, it is necessary to confirm

Pieterse, Olivier & van Heerden 49

Table 2. Authenticity grading scale for smartphone data.

Grade Description

Unsatisfactory Fails to meet most of the requirements.
Low Meets some of the requirements.
Moderate Meets most of the requirements in Subclasses B.2 and B.3.
High Meets most of the requirements in Subclasses B.1 and B.2.

the evaluations of the assessment points and compute all the possible
outcomes relating to the evaluations of these assessment points. The
result is a set of outcomes that has a normal distribution.

The normal distribution presents two clusters of potential outcomes.
The first cluster (below the mean of the normal distribution) corresponds
to the outcomes of the evaluated assessment points that mostly produce
negative results. The outcomes are further grouped as follows:

Unsatisfactory Authenticity: The outcomes of the evaluated
assessment points produce only negative results.

Low Authenticity: The outcomes of the evaluated assessment
points produce negative results that outweigh the positive results.

The second cluster of outcomes (above the mean of the normal distri-
bution) corresponds to the outcomes of the evaluated assessment points
that mostly produce positive results. The outcomes are further grouped
as follows:

Moderate Authenticity: The outcomes of the evaluated assess-
ment points produce positive results that outweigh the negative
results.

High Authenticity: The outcomes of the evaluated assessment
points produce only positive results.

Table 2 shows the four grades in the authenticity grading scale. In or-
der to assign a grade to the final authenticity score, it necessary to divide
the normal distribution of all the outcomes into quartiles. The lower
quartile distinguishes between the unsatisfactory and low authenticity
grades, the middle quartile distinguishes between the low and moderate
authenticity grades, and the upper quartile distinguishes between the
moderate and high authenticity grades.

The quartiles enable the authenticity grading scale to provide context
and better describe smartphone data authenticity. The quartiles create

50 ADVANCES IN DIGITAL FORENSICS XV

the boundaries between distinct grades of authenticity. The authenticity
score is then plotted on the scale to determine the authenticity grade
of the evaluated smartphone data. The consistent and formal measure-
ment of smartphone data ensures that a digital forensic professional can
conclusively establish the authenticity of smartphone data and also com-
prehend different grades of authenticity.

3.4 Completeness

The computation of authenticity scores and construction of the au-
thenticity grading scale depend on the collection of assessment points
that are evaluated. The specific acquisition technique used to obtain
smartphone data strongly influences the availability of assessment points.
A completeness score is required to express the number of the assess-
ment points evaluated per component with respect to the number of
available assessment points per component. This score would enable a
digital forensic professional to present the completeness of the smart-
phone data evaluation with confidence, thereby complementing the au-
thenticity grade.

The completeness score Cs is given by:

Cs =
4∑

i=1

(
ai
ti
)(0.25) (4)

where ai is an evaluated assessment point and ti is the total number of as-
sessment points available for the component. For each component spec-
ified in Section 2.1, the evaluated assessment points ai are counted and
divided by the total assessment points ti, yielding a weighted score com-
puted using a 25% weight measurement per component. The weighted
score ensures that each component is equally important. Evaluating a
larger collection of assessment points would yield a more thorough clas-
sification of the authenticity of smartphone data. The availability of
fewer assessment points would yield a partial evaluation, reducing the
confidence in the authenticity of smartphone data.

3.5 Authenticity Classification

The authenticity AS and completeness CS scores are the key results
produced by the classification model. The final authenticity classifica-
tion AC of the evaluated smartphone data is an ordered pair of the two
individual scores:

AC = < AS ;CS > (5)

Pieterse, Olivier & van Heerden 51

0

1

1

Authenticity Grading

C
o

m
p

le
te

n
es

s

ModerateLow HighUnsatisfactory

H
ig

h
L

ow

AC = <high; high>

Figure 4. Authenticity classification graph.

The authenticity classification graph in Figure 4 shows a visual rep-
resentation of the final authenticity classification. The x-axis represents
the authenticity grading scale; the vertical lines divide the space into four
quartiles corresponding to the four grades of authenticity. The y-axis
represents the completeness scale; the single horizontal line distinguishes
between high confidence and low confidence. The square in the top-right
corner of the graph shows an example authentication classification of AC

= <high; high>.

4. Authenticity Classification Tool

A proof-of-concept tool was developed to automate the computation
of the authentication classifications of smartphone data. Although a
digital forensic professional could perform the computations manually,
the automation eliminates human error and supports the visualizations
of the results.

4.1 Tool Description

The tool computes and presents the authenticity classifications of eval-
uated smartphone data. Specifically, the tool supports the evaluation of
all the assessment points of all the requirements. Note that each as-
sessment point has one of three outcomes: yes (= +1), no (= –1) or
absent (= 0). Equations 1 through 5 are used to compute an overall
authenticity classification.

Figure 5 shows the user interface of the tool. The central viewing
area has functional tabs, three interactive buttons and a canvas for ren-
dering the authenticity classification graph. Each tab represents a com-

52 ADVANCES IN DIGITAL FORENSICS XV

Figure 5. User interface.

ponent of authentic smartphone data and captures all the assessment
points associated with the requirements for the component. Three radio
buttons are provided to enter the outcomes for assessment points; the
buttons ensure that only one option from yes, no and absent is selected
for an assessment point. The Calculate button collects the results of
all the evaluated assessment points and computes the authenticity clas-

Pieterse, Olivier & van Heerden 53

sification. The final authenticity classification is presented within the
authenticity classification graph in the canvas panel below the buttons.

4.2 Experimental Results

An experiment was conducted to validate the classification model.
The experiment relied on a generic process for smartphone data manip-
ulation [14]. The following four steps were involved in smartphone data
manipulation:

Ensure that the selected smartphone is accessible by confirming
that the smartphone is either rooted (Android) or jailbroken (iOS).

Select the application and identify the location of the files (e.g.,
SQLite database) that contain smartphone data.

Identify the most appropriate approach for accessing smartphone
data – either direct or off-device. The direct approach performs the
manipulation of the smartphone data directly on the smartphone
and relies on a program or utility to access the files. The off-
device approach requires the files to be transferred to and from a
connected computer with the required program or utility installed
on the computer to perform the manipulation.

Perform a manual reboot of the smartphone.

The experiment used an iPhone 7 as the test device. A new, albeit
fabricated, text message was created on the device. A generic process
for smartphone data manipulation was used to create the fabricated text
message. The following steps were involved in creating the fabricated
text message:

Jailbreak the iPhone 7 using the extra recipe + yaluX applica-
tion.

Pinpoint the storage structure (SQLite database) of the iPhone’s
default messaging application (/private/var/mobile/Library/
SMS/sms.db).

Employ the direct approach and insert a fabricated text message
in the SQLite database using the pre-installed sqlite3 command-
line utility.

Reboot the iPhone 7 to complete the manipulation process and
ensure that the changes are reflected on the smartphone.

54 ADVANCES IN DIGITAL FORENSICS XV

Table 3. Traces created by the experiment.

Trace Trace Description

T1 Automatic installation of the Cydia application
T2 Unavailability of over-the-air updates
T3 Discrepancies between write-ahead log file entries

and application usage timestamps
T4 Use of the sqlite3 program
T5 Presence of a clean write-ahead log file
T6 Creation of entries in the reboot log file
T7 Discrepancies in the mobile network provider records

The manipulation of the smartphone data has inherent side-effects
that create various traces. Table 3 lists the traces specific to the ex-
periment. Jailbreaking the iPhone 7 causes the automatic installation
of the Cydia application and prevents over-the-air updates. Gaining
access to the persistent data in the SQLite database via the direct ap-
proach, but without accessing the application, causes a discrepancy be-
tween the last modification timestamp of the SQLite database and the
last usage timestamp of the application. The direct approach relies
on the sqlite3 program to gain access to the persistent data, which
changes the last access timestamp associated with the program. This
timestamp also closely follows the last modification timestamp of the
SQLite database. Accessing the SQLite database to manipulate the
record causes an immediate checkpoint to occur. Therefore, after clos-
ing the SQLite database, a clean and empty write-ahead log file is present
on the iPhone 7. Finally, rebooting the iPhone 7 creates a new entry in
the /var/mobile/logs/lockdownd.log reboot log.

Note that, although this was not observed in the case of the test
iPhone 7, creating a fabricated text message causes discrepancies in the
records captured by mobile network providers.

The traces listed in Table 3 were used to evaluate the authenticity
of the smartphone data. The outcome of the authenticity grading is
expected to be low or unsatisfactory due to the changes made to the
iPhone 7 when implanting the fabricated text message. A high com-
pleteness value is anticipated because all the assessment points were
evaluated.

Figure 6 presents the authenticity classification of the evaluated smart-
phone data. The computed authenticity classification confirms the as-
signment of a low authenticity grading. Furthermore, the authenticity
classification also confirms a high completeness value, which is antici-

Pieterse, Olivier & van Heerden 55

Figure 6. Experimental results.

pated because all the assessment points of all requirements were evalu-
ated. The assigned authenticity classification aligns with the predicted
outcome and confirms that the manipulation does indeed influence the
authenticity of the data.

56 ADVANCES IN DIGITAL FORENSICS XV

5. Conclusions

Data extracted from smartphones provides digital forensic profession-
als with clear snapshots of end-user events. The value of this digital
evidence mandates a formal, consistent and complete methodology for
confirming its authenticity, especially since the evidence could be com-
promised by anti-forensics, malware or users with malicious intent. The
previously-specified smartphone data evaluation model describes how to
review smartphone data but does not provide a classification of data au-
thenticity. The classification model presented in this chapter addresses
this shortcoming by defining a mechanism that classifies smartphone
data authenticity using a grade of authenticity and a value that conveys
the completeness of the data evaluation. Experimental results confirm
the effectiveness of the model in classifying the authenticity of smart-
phone data. The model provides significant investigatory assistance to
digital forensic professionals, enabling them to pinpoint and discount or
eliminate unreliable smartphone data from consideration when making
investigative conclusions.

Future research will focus on handling multiple smartphone applica-
tions. Research will also attempt to identify patterns in smartphone data
that could enhance or diminish the authenticity of smartphone data in
digital forensic investigations.

References

[1] P. Albano, A. Castiglione, G. Cattaneo, G. De Maio and A. De
Santis, On the construction of a false alibi on the Android OS, Pro-
ceedings of the Third International Conference on Intelligent Net-
working and Collaborative Systems, pp. 685–690, 2011.

[2] M. Bader and I. Baggili, iPhone 3GS forensics: Logical analysis us-
ing Apple iTunes Backup Utility, Small Scale Digital Device Foren-
sics Journal, vol. 4(1), 2010.

[3] E. Casey, Digital Evidence and Computer Crime: Forensic Sci-
ence, Computers and the Internet, Academic Press, Waltham, Mas-
sachusetts, 2011.

[4] G. Cecere, N. Corrocher and R. Battaglia, Innovation and com-
petition in the smartphone industry: Is there a dominant design?
Telecommunications Policy, vol. 39(3-4), pp. 162–175, 2015.

[5] F. Cohen, Digital Forensic Evidence Examination, Fred Cohen and
Associates, Livermore, California, 2009.

[6] L. Duranti, From digital diplomatics to digital records forensics,
Archivaria, vol. 68, pp. 39–66, 2009.

Pieterse, Olivier & van Heerden 57

[7] M. Hannon, An increasingly important requirement: Authentication
of digital evidence, Journal of the Missouri Bar, vol. 70(6), pp. 314–
323, 2014.

[8] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. S44–S49, 2006.

[9] W. Jansen and R. Ayers, Guidelines on Cell Phone Forensics, NIST
Special Publication 800-101, National Institute of Standards and
Technology, Gaithersburg, Maryland, 2007.

[10] M. Losavio, Non-technical manipulation of digital data, in Advances
in Digital Forensics, M. Pollitt and S. Shenoi (Eds.), Springer,
Boston, Massachusetts, pp. 51–63, 2005.

[11] H. Pieterse, M. Olivier and R. van Heerden, Playing hide-and-seek:
Detecting the manipulation of Android timestamps, Proceedings of
the Information Security for South Africa Conference, 2015.

[12] H. Pieterse, M. Olivier and R. van Heerden, Evaluating the au-
thenticity of smartphone evidence, in Advances in Digital Forensics
XIII, G. Peterson and S. Shenoi (Eds.), Springer, Cham, Switzer-
land, pp. 41–61, 2017.

[13] H. Pieterse, M. Olivier and R. van Heerden, Smartphone data eval-
uation model: Identifying authentic smartphone data, Digital In-
vestigation, vol. 24, pp. 11–24, 2018.

[14] H. Pieterse, M. Olivier and R. van Heerden, Detecting manipulated
smartphone data on Android and iOS devices, in Communications
in Computer and Information Science, H. Venter, M. Loock, M.
Coetzee, M. Eloff and J. Eloff (Eds.), Springer, Cham, Switzerland,
pp. 89–103, 2019.

[15] B. Schatz, Digital Evidence: Representation and Assurance, Ph.D.
Thesis, Information Security Institute, Faculty of Information Tech-
nology, Queensland University of Technology, Brisbane, Australia,
2007.

Chapter 4

RETROFITTING MOBILE DEVICES
FOR CAPTURING MEMORY-RESIDENT
MALWARE BASED ON SYSTEM
SIDE-EFFECTS

Zachary Grimmett, Jason Staggs and Sujeet Shenoi

Abstract Sophisticated memory-resident malware that target mobile phone plat-
forms can be extremely difficult to detect and capture. However, trig-
gering volatile memory captures based on observable system side-effects
exhibited by malware can harvest live memory that contains memory-
resident malware. This chapter describes a novel approach for captur-
ing memory-resident malware on an Android device for future analysis.
The approach is demonstrated by making modifications to the Android
debuggerd daemon to capture memory while a vulnerable process is be-
ing exploited on a Google Nexus 5 phone. The implementation employs
an external hardware device to store a memory capture after successful
exfiltration from the compromised mobile device.

Keywords: Mobile device malware, system side-effects, memory capture

1. Introduction

Mobile devices are increasingly being used to process and manage per-
sonal and sensitive information such as photos, videos, browsing history,
notes, social media posts and bank account data. As a result, these de-
vices have become attractive targets for adversaries and attacks on the
devices are increasing in their scope and magnitude [5].

Mobile devices share several attack vectors with traditional worksta-
tions (e.g., Wi-Fi and Bluetooth adapters). However, mobile devices
are also continuously connected to cellular networks in which the device
owners have little to no control. Fragmentation in mobile device oper-
ating systems and embedded device architectures makes it difficult to

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 59–72, 2019.

https://doi.org/10.1007/978-3-030-28752-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_4&domain=pdf

60 ADVANCES IN DIGITAL FORENSICS XV

develop exploits that impact multiple devices, but it also renders the
mobile device ecosystem more challenging to secure.

Vulnerabilities that affect large families of devices have been demon-
strated [1, 3, 4, 12]. These vulnerabilities make it imperative that new
efforts be developed to secure mobile devices against increasingly so-
phisticated attacks. Analyzing and understanding the rapidly evolving
threats to mobile devices require the capture and analysis of evidence
pertaining to attacks on the devices.

Memory-resident malware is difficult to detect because it resides en-
tirely in volatile memory and does not write to secondary memory. Ad-
ditionally, this type of malware often removes itself from memory after
execution. This makes it impossible for a forensic analyst to identify
and collect malware after a compromise has occurred. The only option
is to take proactive measures to capture the contents of memory while
the malware still resides in memory. In addition to supporting forensic
investigations, the ability to capture the malware enables researchers to
identify and mitigate the vulnerabilities exploited by the malware.

Mobile devices are exposed to unique threats compared with station-
ary devices (e.g., workstations) because of their mobility. Moreover,
real-world mobile devices incorporate peripherals such as communica-
tions processors that are not present in most virtual or emulated de-
vices. Therefore, it is important to leverage real-world mobile devices to
understand and mitigate the unique threats.

The proposed approach leverages digital forensic and embedded de-
vice engineering techniques to capture evidence of malicious activity on
mobile devices [8]. Consumer hardware, specifically a Google Nexus
5 smartphone, was adapted to capture transient malware, and multi-
ple techniques for storing the captured information are evaluated. The
Stagefright family of exploits is used as a case study to explore and
identify strategies for detecting various types of malware.

2. Malware Categorization

Security monitoring solutions typically rely on identifying malware
based on artifacts (e.g., data or code) that reside in a filesystem and/or
by examining how malware behaves during execution [2, 7]. Malware is
identified by developing and checking for storage signatures correspond-
ing to malware artifacts and/or execution signatures that describe mal-
ware behavior. Malware developers attempt to elude signature-based
detection by making slight modifications to malware code and/or be-
havior. In turn, malware analysts attempt to generalize the storage and
execution signatures to detect variations of the same malware. Although

Grimmett, Staggs & Shenoi 61

these approaches may work to varying degrees for known malware, they
cannot be applied effectively to (unknown) malware that has not been
studied previously.

Grimmett et al. [6] have proposed alternative methods for identifying
malware based on observable system side-effects. They also present a
taxonomy for categorizing malware according to its behavior and system
side-effects. The taxonomy covers three categories of malware based on:
(i) user-detectable behavior; (ii) system-detectable behavior; and (iii)
inconspicuous behavior. Each malware category exhibits different char-
acteristics that can be leveraged to develop system side-effect signatures
for detecting and capturing the malware in question.

Grimmett et al. [6] also present a case study involving the Stage-
fright malware. Stagefright is designated as system-detectable malware
because it produces side-effects that are detectable by the underlying
operating system (i.e., Android). The system side-effects are a result of
repeated attempts at exploiting a system service that causes a service
to crash (i.e., brute force execution). Due to the reliability requirement
imposed on mobile devices, critical services automatically restart after
a crash (e.g., due to a failed exploit attempt), enabling an attacker to
attempt to exploit the vulnerability in the system service again. In some
instances, the crashed system service is transparent to the end-user; this
enables an attacker to attempt the exploit repeatedly until it succeeds
and without alerting the user.

The crashing of a service as a result of a failed exploit attempt is, in
fact, a side-effect that is observable to the underlying operating system.
As a result, this side-effect can be used to trigger events that could
assist a malware analyst in identifying and collecting previously unknown
malware.

2.1 Stagefright

The Stagefright family of vulnerabilities include integer overflows and
heap overflows deep in the MPEG4 media processing portions of the
libstagefright Android operating system library [12]. The vulnera-
bilities are critical because they can be triggered remotely by sending
specially-crafted MMS messages to mobile device users. The entire ex-
ploitation process is transparent to a user in that it does not trigger
warnings or error messages.

In order for a Stagefright exploit to succeed, it has to defeat address
space layout randomization (ASLR). Address space layout randomiza-
tion is a memory protection mechanism supported by most modern op-
erating systems to mitigate memory corruption exploitation attempts.

62 ADVANCES IN DIGITAL FORENSICS XV

Address space layout randomization attempts to randomize the base ad-
dresses of key components of a process (e.g., libraries, the stack and the
heap) to make it more difficult for an attacker to reliably jump to a
known piece of code in memory.

To overcome this barrier, Stagefright guesses the locations of the base
addresses of the libstagefright library in the mediaserver process.
When the locations are guessed incorrectly, the Android mediaserver

process simply crashes and restarts, reloading the process into the same
vulnerable state. Thus, multiple exploitation attempts and subsequent
crashes tend to occur when a Stagefright exploit is executed. Since the
mediaserver process runs at a privileged level, successful exploitation
of the libstagefright library in the mediaserver process enables the
attacker to inherit system-level permissions. These characteristics make
Stagefright an excellent candidate for demonstrating that system side-
effects produced by malware can be used to capture the malware while
it is still in volatile memory. As a result, the Stagefright family of
vulnerabilities is considered as a case study in this research.

2.2 Live Memory Analysis

A number of tools have been developed for acquiring memory images
from volatile memory (i.e., RAM) [9–11]. A widely used open-source
tool is Linux Memory Extractor (LiME). LiME is a loadable Linux kernel
module that can dump the entire physical memory of a device. In an
attempt to be forensically sound, LiME is designed to have a very limited
memory footprint. These characteristics make LiME a useful tool for
collecting evidence of malicious activity that cannot be precisely located
in memory.

Certain challenges must be addressed in order to use LiME to capture
malware. First, LiME has minimal impact on the target system. Since
LiME does not halt the system, it is necessary to ensure that the down-
loaded malware remains in memory when the capture process executes.
Second, the memory image produced by LiME is the size of the device
physical memory – this is about 2GB in the case of a Google Nexus 5
device. The memory image file can be stored on device (local) storage
or saved over a TCP connection to a remote machine. When network
access is not available, the number of captures that can be stored are
limited by the amount of storage space available on a mobile device.

While LiME is ideal for collecting large amounts of memory at a given
time, it is not the best choice for consistent or continuous monitoring of
live memory. This makes LiME useful in situations where it can be in-
voked when suspicious activity such as a system-detectable side-effect is

Grimmett, Staggs & Shenoi 63

2&�����
������&

)���������
!
��

)����������&

!
������
3���4�� ���5

�� �����
�����

�� �����
����6

�� �����
����!

�� �����
�����

Figure 1. Proliferation of a vulnerability in a system library.

detected. The case study described in this chapter focuses on capturing
malware from mobile devices. However, the captured malware is only
useful if analysts can examine and understand what has been captured.

3. Automated Memory Acquisition

The mobile device malware analysis community lacks a mechanism
for reliably and feasibly capturing a snapshot of memory during sys-
tem exploitation attempts. This section describes a proof-of-concept
implementation that demonstrates the viability of automated memory
acquisition from an Android mobile device. The proof-of-concept has
been implemented on a Google Nexus 5 phone. By modifying the An-
droid debuggerd daemon, the physical memory contents are dumped
upon invoking the LiME kernel module during the crash of a system pro-
cess. Because of the limited storage on the mobile device, the memory
capture is subsequently exfiltrated to another device using TCP via USB
forwarding.

3.1 Design Requirements

This research was motivated by the concern that a vulnerability in a
system library (e.g., Stagefright) puts a large number of mobile devices
at risk for remote exploitation [4, 12]. The focus on system library
vulnerabilities is important. This is because, to maximize the impact,
malware developers invest resources in identifying vulnerabilities and
exploits in the system libraries of popular operating systems.

Figure 1 demonstrates how a vulnerability in a system library becomes
a vulnerability for every device that uses the library. Additionally, since
services traditionally execute with higher privileges than user applica-
tions, attackers have an additional incentive to exploit the services.

64 ADVANCES IN DIGITAL FORENSICS XV

)��������
��
���� ��������� �	
��� �"�����

2�
����

���
�&������
�"(��������
(�
���� ���

!���������
�����
��������7������
�����
���������� �����������������

�	
��8������
����

9�
����	
����
�&��������
�
�������

�
������� ���

��
������������
������

����������
�
��
���

����� ���
�����(�
��
�	
���

����������
�
��
���

Figure 2. Malware capture process.

The software modifications that support live memory acquisition from
a mobile device should be reliable and should have minimal impact on
observable device behavior. The modifications must also run on a phys-
ical device so that all the potential vectors are available for study. The
hardware should require as few proprietary modifications to the operat-
ing system as possible. Additionally, the modifications should be adapt-
able to newer devices and future operating system versions in order to
meet future malware analysis needs.

3.2 Implementation and Testing

Figure 2 presents the process for acquiring a memory image from a
mobile device after a service has crashed. When a service crashes, the
debuggerd handler is signaled, which suspends the crashing service. The
debuggerd daemon also initializes the LiME kernel module and specifies
the capture parameters (e.g., image format and exfiltration method).
The primary use case for this implementation is to transfer the image
using TCP via USB forwarding; however, transfer via Wi-Fi is also sup-
ported by the implementation. Additionally, the acquired memory image
may be moved to device local storage for transfer at a later time.

The unmodified debuggerd daemon suspends all crashing processes
when it generates a tombstone file – it is after debuggerd has completed

Grimmett, Staggs & Shenoi 65

its own crash handling functionality that the process is left suspended
and gdb is attached or the process is allowed to continue and crash. Be-
cause debuggerd suspends a process while gathering information, addi-
tional code added to debuggerd can execute before the process is allowed
to resume. After the image acquisition is complete, the kernel module is
unloaded and debuggerd allows the process to resume and crash. The
malware capture hardware stores the acquired image and proceeds to
wait for another memory acquisition; the crashed process may then be
restarted by the operating system.

3.3 Android Modification Results

A framework was created to manage a (mobile) device-under-test
and enable automated testing. The framework, which was developed in
Python, creates test instances that use the Android Debug Bridge (adb)
to interface with Android devices. These test objects can be extended
to create new test objects with additional functionality as desired. The
tests were extended to enable automated testing of the LiME kernel mod-
ule and to verify that the acquired memory samples contained the target
crash vectors.

The crash vector was recovered from memory in order to determine
if the entire vector was captured successfully. The Volatility plugin
linux pslist was used to determine the mediaserver process iden-
tifier. Next, linux yarascan was used to search the virtual memory of
the process for ftyp, which denotes the “File Type Box” that appears
in the beginning of some MPEG4 media files (e.g., crash vector). Next,
linux proc maps was used to determine the mapped memory sections
that needed to be extracted for analysis, upon which linux dump map

created an image of the relevant memory mapping from the mediaserver
process. A Python script was written to verify that the dumped memory
contained the crash vector.

The LiME kernel module is designed to provide minimally-invasive
memory acquisition for forensic analysts. The proof-of-concept imple-
mentation does not assume that the device is handled using digital
forensic best practices. Therefore, additional testing had to be con-
ducted to verify that data remains in memory long enough to be cap-
tured using LiME. Additionally, any differences between suspended and
non-suspended processes had to be understood to determine the impact
of suspension on memory acquisition.

To determine if LiME was suitable for the proposed tasks, tests were
conducted to measure how effectively LiME captures an MPEG4 crash
vector when it is executed manually immediately following a browser

66 ADVANCES IN DIGITAL FORENSICS XV

Table 1. Crash vector capture success rates during manual testing.

No Wait after Reboot Wait after Reboot

Local
Storage

TCP
Capture

Local
Storage

TCP
Capture

Suspended 25% 0% 100% 100%

Not Suspended 0% 50% 0% 100%

crash. The tests were performed using a capture to local device storage
and exfiltration via TCP over a USB connection to an external host.
Additionally, tests were performed with and without processes set to
suspend and wait after a crash. Moreover, the tests were executed with
and without a one-minute wait between restarting the device and per-
forming the crash and memory acquisition.

The results in Table 1 demonstrate the impact of a short wait on the
success rate. The wait/no-wait results demonstrate that the target data
is likely to be lost unless it is captured quickly or the process is sus-
pended. In the experiment, the device-under-test was restarted before
every memory acquisition test to ensure that no residual data remained
from previous tests. During the Android startup process, the user inter-
face was made available as quickly as possible and other startup tasks
were executed in the background. Because the background startup oper-
ations were still initializing the system, memory was released and reused
more rapidly than under normal operating conditions. Therefore, the
startup period had to be allowed to complete or the memory acquisition
would likely be disrupted by the high memory turnover.

Figure 3 shows the methodology for testing the reliability of capture of
an MPEG4 crash vector using the proof-of-concept implementation. The
device-under-test navigates to the crash vector (crash.mp4) on a local
webserver, which causes mediaserver to crash. When mediaserver

crashes, debuggerd handles the crash and inserts the LiME kernel module
and performs the memory acquisition. The acquired memory image is
then searched for instances of the known crash vector.

A successful capture includes at least one complete and intact instance
of the crash vector. If the complete vector cannot be found in memory,
it may be possible to find partial instances. The partial instances would
be less valuable than a complete sample from the perspective of malware
analysis. However, further investigation may enable a complete instance
to be reconstructed from memory.

Grimmett, Staggs & Shenoi 67

%����2���� �� ������������

�	
���������������
�����

��	��������
�������

���

���� ���

*�����(���
���

��

#

6�
:����
�
���������

���*����;<�
���
��

2� �����������

2����������������
(
�������� ���
�

Figure 3. Test design for capture technique validation.

When LiME acquires memory and exfiltrates the image to a remote
host via TCP, the rate of capture is limited by the network bandwidth
between the device and remote host. The proof-of-concept implemen-
tation was designed to support capture via a Wi-Fi network. However,
as discussed below, the time required to complete the capture limits the
effectiveness of this approach.

Table 2. Average capture time for the exfiltration methods.

Exfiltration Method Time (seconds)

Local Storage (Capture Only) 59.79
Local Storage and USB Downloading 446.95
TCP Exfiltration via USB Forwarding 382.22
TCP Exfiltration via Wi-Fi Network 2,382.93

Table 2 shows the average time required for various memory acquisi-
tion techniques. Note that the testing framework incorporates approx-
imately 5% additional overhead for network operations using Python
sockets, which is not enough to disrupt the experimental results. The
significant increase in time required to acquire an image over Wi-Fi mo-

68 ADVANCES IN DIGITAL FORENSICS XV

tivated the development of the portable hardware solution presented in
the next section.

4. Hardware Enhancements

The amount of storage available on a Google Nexus 5 (and most
phones for that matter) is limited and is certainly not ideal for stor-
ing multiple instances of full memory captures. This section describes
a portable USB host solution that provides external storage capabilities
for the memory capture system.

4.1 Design Process and Requirements

The memory acquisition proof-of-concept implementation described in
the previous section leverages a connected USB host to capture an image
using TCP over USB or to download a locally-stored memory capture.
The implementation could be altered to support the local storage of
multiple memory captures. However, a Google Nexus 5 device has just
16GB internal flash memory and only 12GB of this memory is free after
installing the modified version of Android and the Open GApps package
that contains Google Chrome. Additionally, a Google Nexus 5 does
not support any removable storage (e.g., microSD card). Because each
captured memory image is 2GB in size, the number of captures that can
be stored at one time is severely limited.

An external storage solution also reduces the likelihood of a captured
memory image being erased or corrupted. Because this research has
focused on malware capture for future analysis, it would not be prudent
to rely on a compromised mobile device to preserve the captured image.
Furthermore, since a USB connection to a compromised device could
put the USB host at risk, the external storage solution should be easily
wiped and redeployed as necessary.

It is also important that the hardware support package be portable.
This requires the external storage solution to incorporate a battery,
which imposes a limit on the length of time the hardware package can
be used between charges. Thus, the portable hardware should consume
as little power as possible while remaining reliable and available.

4.2 Implementation Details

Figure 4 shows the proof-of-concept implementation created using a
Raspberry Pi 3 as a USB host. The Raspberry Pi 3 runs the Rasp-
bian Jessie Lite operating system (a minimal operating system based
on Debian Jessie) and includes adb binaries compiled with the same
toolchain used by the software modification proof-of-concept system de-

Grimmett, Staggs & Shenoi 69

Figure 4. Memory capture support hardware.

scribed above. The Raspberry Pi has an 802.11n wireless radio and
multiple USB ports that enable it to support memory captures over
Wi-Fi or USB.

The Raspberry Pi 3 is a general-purpose computing device that uses
more power than a dedicated microcontroller. However, the availabil-
ity of a Linux operating system enables the memory capture device to
be more adaptable than an embedded device. The increased power re-
quirement is a reasonable trade-off for the additional functionality and
ease-of-use provided by the operating system. Specifically, the operat-
ing system enables the memory capture device to incorporate logic that
controls the behavior of the capture software and determine when to
download a completed local capture. Additionally, the device hosts an
SSH server that enables the device to be remotely operated and config-
ured.

The only way to safely shut down the Raspberry Pi is via the shutdown
or halt commands – disconnecting the device from power without shut-
ting it down properly could corrupt the microSD card and the captured
memory images it contains. The implementation incorporates an Anker
Power Bank with 8,400mAh capacity and an external charge indicator.
The external charge indicator should be monitored to minimize the risk
of draining the battery and corrupting the captured memory images.

An alternative solution is to use a second mobile device to support
the memory capture device. Using an Android device would eliminate
the need for an external battery while enabling similar capabilities as a
Raspberry Pi (i.e., Linux operating system and adb support). However,

70 ADVANCES IN DIGITAL FORENSICS XV

Table 3. Average download times of memory images via adb.

ADB Host Time (seconds)

MacBook Pro (2GHz Intel Core i7) 317.40
Raspberry Pi 3 (1.2GHz Cortex-A53) 422.50

the choice of mobile device is limited by the same constraints that mo-
tivate the use of a support device – that is, the device would need to
provide substantial external storage. In any case, a Raspberry Pi costs
less than any similar mobile device.

4.3 Experimental Results

The Raspberry Pi 3 has a less powerful processor than the worksta-
tions used to test the proof-of-concept memory capture implementation.
As a result, the portable storage solution requires more time to perform
the tasks than the times listed in Table 2. Table 3 presents the times
required to download locally-stored memory images via adb.

Device power usage was measured using a USB power monitor be-
tween the battery and Raspberry Pi. The power monitor measured the
total power consumed by the device and provided instantaneous current
and power measurements.

Table 4. Power consumption of the support hardware.

Device Status Power (Amps)

Device idle; no connection 0.26
Device idle; phone connected with screen off 0.35
Device idle; phone connected with screen on 0.69
Device downloading; phone connected with screen on 0.70

Table 4 lists the instantaneous current measurements recorded dur-
ing various states of device operation. When the mobile phone was
connected to the Raspberry Pi, it began charging and drew additional
power from the battery. This unintended side-effect caused the battery
to drain faster than expected. However, the battery provided several
hours of operation after it was fully charged.

The Raspberry Pi 3 schematics are limited and do not include the
USB controller and connections. Previous versions of the Raspberry Pi
have direct connections between the power input 5V line and the 5V

Grimmett, Staggs & Shenoi 71

line on the USB ports. However, the 5V lines on the USB ports of the
Raspberry Pi 3 are not powered when the device is powered without a
bootable image available. This suggests that the USB controller may
be able to disable the power output on the USB ports. Disabling the
unnecessary power drain through the Raspberry Pi is not critical, but it
would be useful for future applications of the hardware solution.

5. Conclusions

Mobile devices have complex attack surfaces and vulnerabilities that
can be exposed and exploited when they connect to networks. Increas-
ing device complexity and ubiquitous mobile access necessitate the de-
velopment of new techniques for detecting and mitigating mobile device
malware.

Sophisticated malware uses a variety of techniques to avoid detec-
tion and capture. Encryption and encoding have been used to evade
signature-based detection for years. Self-destructing malware erases it-
self to avoid discovery during digital forensic investigations. Memory-
resident malware that never uses non-volatile storage disappears when
the device is shut down or rebooted.

These sophisticated malware features require novel detection and cap-
ture techniques. This chapter has described a new technique that en-
ables the capture of memory-resident malware using live memory digital
forensic tools (e.g., LiME). The automated capture technique enables the
discovery and analysis of previously unknown exploitation techniques as
well as the implementation of new mitigation strategies for vulnerable
devices. Most importantly, the modifications required to implement the
technique are minimal – the modified device contains the same vulner-
abilities found in an unmodified version of the device.

A memory capture technique will not mitigate any vulnerabilities un-
less the captured malware can be analyzed successfully. Therefore, the
capture technique is designed to support malware analysis. The cap-
tured images are compatible with the Volatility framework.

Future research will focus on developing improved guidelines and tech-
niques for identifying malware in captured memory images. Addition-
ally, memory images from normal devices and exploited devices will be
compared in an attempt to automate malware analysis.

References

[1] H. Be’er, Metaphor: A (Real) Real-Life Stagefright Exploit, Revi-
sion 1.1, NorthBit, Herzliya, Israel (raw.githubusercontent.com/
NorthBit/Public/master/NorthBit-Metaphor.pdf), 2016.

72 ADVANCES IN DIGITAL FORENSICS XV

[2] R. Bejtlich, The Tao of Network Security Monitoring: Beyond In-
trusion Detection, Addison-Wesley, Boston, Massachusetts, 2004.

[3] M. Brand, Stagefrightened? Project Zero, Google, Mountain
View, California (googleprojectzero.blogspot.com/2015/09/
stagefrightened.html), September 16, 2015.

[4] J. Drake, Stagefright: Scary code in the heart of Android, presented
at the Black Hat USA Conference, 2015.

[5] G Data Software, G Data Mobile Malware Report, Threat Report:
Q2/2015, Bochum, Germany, 2015.

[6] Z. Grimmett, J. Staggs and S. Shenoi, Categorizing mobile de-
vice malware based on system side-effects, in Advances in Digital
Forensics XIII, G. Peterson and S. Shenoi (Eds.), Springer, Cham,
Switzerland, pp. 203–219, 2017.

[7] C. Pfleeger and S. Lawrence-Pfleeger, Security in Computing, Pren-
tice Hall, Upper Saddle River, New Jersey, 2007.

[8] Scientific Working Group on Digital Evidence, SWGDE Best Prac-
tices for Mobile Phone Forensics, Version 2.0, 2013.

[9] H. Sun, K. Sun, Y. Wang, J. Jing and S. Jajodia, TrustDump:
Reliable memory acquisition from smartphones, Proceedings of the
Nineteenth European Symposium on Research in Computer Secu-
rity, part I, pp. 202–218, 2014.

[10] J. Sylve, A. Case, L. Marziale and G. Richard, Acquisition and anal-
ysis of volatile memory from Android devices, Digital Investigation,
vol. 8(3-4), pp. 175–184, 2012.

[11] V. Thing, K. Ng and E. Chang, Live memory forensics of mobile
phones, Digital Investigation, vol. 7(S), pp. S74–S82, 2010.

[12] Zimperium zLabs, The Latest on Stagefright: CVE-2015-1538
Exploit is Now Available for Testing Purposes, San Francisco,
California (blog.zimperium.com/the-latest-on-stagefright-
cve-2015-1538-exploit-is-now-available-for-testing-pur

poses), September 9, 2015.

Chapter 5

A TARGETED DATA EXTRACTION
SYSTEM FOR MOBILE DEVICES

Sudhir Aggarwal, Gokila Dorai, Umit Karabiyik, Tathagata Mukherjee,
Nicholas Guerra, Manuel Hernandez, James Parsons, Khushboo Rathi,
Hongmei Chi, Temilola Aderibigbe and Rodney Wilson

Abstract Smartphones contain large amounts of data that are of significant inter-
est in forensic investigations. In many situations, a smartphone owner
may be willing to provide a forensic investigator with access to data un-
der a documented consent agreement. However, for privacy or personal
reasons, not all the smartphone data may be extracted for analysis.
Courts have also opined that only data relevant to the investigation at
hand may be extracted.

This chapter describes the design and implementation of a targeted
data extraction system for mobile devices. It assumes user consent
and implements state-of-the-art filtering using machine learning tech-
niques. The system can be used to identify and extract selected data
from smartphones in real time at crime scenes. Experiments conducted
with iOS and Android devices demonstrate the utility of the targeted
data extraction system.

Keywords: Mobile devices, privacy, targeted data extraction, iOS, Android

1. Introduction

Smartphones contain large amounts of data that are of significant in-
terest in forensic investigations. However, these devices have in essence
become personal data repositories and the privacy of their data is a seri-
ous concern. A landmark 2014 ruling by the U.S. Supreme Court in Riley
v. California and subsequent rulings based on this case suggest that it
may not be enough to obtain a warrant to conduct a search of a smart-
phone, but it may also be required to restrict the search to specific items
on the device that relate to the crime being investigated. What is needed

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 73–100, 2019.

https://doi.org/10.1007/978-3-030-28752-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_5&domain=pdf

74 ADVANCES IN DIGITAL FORENSICS XV

is a forensically-sound system that can perform targeted (selective) data
extraction under a documented consent agreement. Commercial tools
such as Cellebrite UFED Physical Analyzer have great utility, but they
do not support targeted data extraction.

This chapter describes the design and implementation of a prototype
software system that supports targeted data extraction from iOS and
Android devices in a forensically-sound manner. The system runs on a
solid state drive connected to a laptop, which is connected to a mobile
device of interest on which the targeted data extraction app is down-
loaded. Metadata and content filtering rules in the app support targeted
data extraction under a consent agreement signed by the device owner.
Metadata filtering rules enable data of specific types with relevant cre-
ation dates/times and locations to be extracted. Content-based filtering
leverages machine learning to exclude non-relevant data and ensure that
user data privacy is maintained. Forensic soundness is realized using the
eDiscovery Reference Model [19] and dynamic/live analysis techniques
drawn from network and cloud forensics [17, 26].

2. Related Work

Several tools support full data acquisition from iOS and Android de-
vices. Commercial tools include Cellebrite UFED Physical Analyzer,
Paraben Electronic Evidence Examiner, Oxygen Forensic, AccessData
Mobile Phone Examiner Plus, Microsystems XRY, Magnet Acquire and
Blackbag Mobilyze. These tools attempt to acquire as much data as pos-
sible via logical and physical acquisitions. However, they do not support
on-device or off-device selective methods for extracting only the data
that is relevant to investigations.

Considerable research has focused on forensic data extraction and
analysis. Some of this work deals with the extraction of specific types
of artifacts from cloud drives and social networking applications [2, 4,
26]. Other research has been directed at general forensic data extraction
techniques for mobile devices [14, 25]. Interested readers are referred
to [23] and [28] for detailed discussions about iOS and Android device
forensics, respectively.

The concept of “real-time triage” has become increasing important
and there has been some work on building such systems [9, 27]. Another
important aspect is data privacy in the context of digital forensics in
general and mobile forensics in particular [3, 31].

Machine learning (see, e.g., [24]) and its applications have gained con-
siderable attention in recent years. Deep learning (see, e.g., [20]) has
been successfully applied in areas ranging from image recognition [18]

Aggarwal et al. 75

to natural language translation [10]. Open-source frameworks such as
Caffe [15], Theano [8] and TensorFlow [1] have been developed for im-
plementing deep representational learning using neural networks. State-
of-the-art processors in modern smartphones make it feasible to per-
form image analysis and classification, including facial detection, using
deep learning models such as Inception [33], Open NSFW [22] and Mo-
bileNet [13].

At this time, mobile device forensic tools are unable to perform on-
device targeted data extraction as described in this chapter. In fact,
the available tools only extract images of device content and enable the
images to be queried and analyzed in an off-device manner. Moreover,
these tools do not have the ability to filter data using machine learning
techniques.

3. System Overview

The targeted data extraction system (TDES) for mobile devices has
three components: (i) data identification system; (ii) data acquisition
system; and (iii) data validation system.

Data Identification System: The data identification system is
responsible for identifying the relevant files based on metadata and
content. Input to the system is broadly driven by a consent form
and is fine-tuned by the forensic investigator using a specially-
designed user interface.

Smartphone data comes in a variety of types. The basic cate-
gories of smartphone data are photos (images), videos, messages
and contact lists. Each category is associated with metadata that
describes aspects of the data, such as time (when an image was
placed on the device), location (where the image was taken) and
sender and receiver (of text and multimedia messages).

Note that metadata is different from content. For example, a query
based on a date range – “photos taken within the past week” – uses
metadata about photos. However, a query for photos containing
“weapons” would require content-based filtering. The data identi-
fication system incorporates state-of-the-art machine learning, nat-
ural language processing and data mining algorithms to perform
content-based filtering.

Data Acquisition System: The data acquisition system inter-
acts with the data identification system to retrieve targeted files
from a smartphone in a forensically-sound manner. Data acqui-

76 ADVANCES IN DIGITAL FORENSICS XV

sition corresponds to data collection; therefore, the data that is
acquired is the desired evidence.

The data acquisition system incorporates two components: (i)
TDES manager; and (ii) TDES app. The TDES manager is a
system-on-chip that resides on a portable bootable drive. The
manager boots up in Windows 10 when connected to a laptop or
workstation. The target smartphone is connected to the same lap-
top or workstation in order to deploy the TDES app on the target
smartphone. The user interface of the TDES app enables an inves-
tigator to provide input to the data identification system. Finally,
the filtered data from the target phone is transferred to the TDES
manager.

Data Validation System: The data validation system, which is
integrated with the data identification and data acquisition sys-
tems, ensures that data is transferred in a forensically-sound man-
ner. It performs appropriate hashing to insure data integrity. Ad-
ditionally, it generates a log timeline that documents all the steps
taken by the TDES system during “live analysis.” Finally, the data
validation system produces a report that documents the needs of
the investigator (e.g., queries), the data analysis that was per-
formed and the data that was selected.

The data identification and data acquisition systems are described
together because their abstractions are closely coupled. Also, because
the system only performs logical data extractions, it is assumed that
relevant data is not stored in hidden or deleted files. Furthermore, the
focus is on rapid targeted data extraction – how to define what data is to
be extracted, how to ensure that data extraction is done in a forensically-
sound manner and how to perform data extraction very rapidly.

4. Targeted Data Extraction

In order to motivate the development of the model for targeted data
extraction, it is instructive to present potential application scenarios.
These scenarios, which were suggested by forensic investigators, involve
instances where consent is natural and the ability to filter data would
be very useful:

A car accident where a bystander has taken photos or a video of
the incident.

A drug overdose incident where the victim’s phone has information
about drugs and drug dealers.

Aggarwal et al. 77

A suicide case where the victim’s phone may contain relevant texts,
email and photos.

A domestic violence situation where the victim’s phone has photos
that document the physical abuse.

A major incident where several individuals have captured videos
and photos of the perpetrators, their weapons and their vehicles.

In several shooting incidents, bystanders and/or companions have
recorded the events on their phones [30]. The Boston Marathon bombing
case had a massive amount of digital evidence from multiple sources [32].
In these and many other incidents, automated selective data extraction
would have been very useful.

Data of value in forensic investigations is classified as follows:

User-Created Data: This includes contacts and address books,
SMS messages, MMS messages, calendars, voice memos, notes,
photographs, video/audio files, maps and location information,
voice mail and stored files.

Internet-Related Data: This includes browsing histories, email
and social networking data.

Third-Party Application Data: This includes messaging data
(text, voice, video and pictures) from applications such as Face-
book, WhatsApp and Skype.

As discussed above, the TDES app, which is deployed on the target
device, is responsible for filtering and transferring the data to the TDES
manager. This method of data extraction is called “on-device acquisi-
tion.” In this type of acquisition, only the data that is filtered by the
TDES app is transferred from the phone. No other data on the device
is ever pushed to the TDES manager.

However, for some iPhone data types, it is not possible to selectively
extract relevant data without “jailbreaking” the phone or using the
iTunes backup system. Since jailbreaking is not employed in this work,
the only option is to use the iTunes backup system. Selective data ex-
traction from iTunes is referred to as “backup acquisition.” In backup
acquisition, all the available data from the iTunes backup is moved to
the TDES manager, which extracts the relevant data and deletes the
backup after the extraction is completed.

78 ADVANCES IN DIGITAL FORENSICS XV

Table 1. On-device metadata-based extraction.

Data Category Metadata Type iOS Android

Photos Date and time Yes Yes
Photos Location Yes Yes
Photos Album type Yes Yes
Videos Date and time Yes Yes
Videos Location Yes Yes
Contacts Name Yes Yes
Contacts Number Yes Yes
Contacts Area code Yes Yes
Contacts Email Yes Yes
Calendar Events Date Yes Yes
Reminders Date Yes Yes

Photos Third-party app No Yes
Messages/SMS/MMS Date and time No Yes
Messages/SMS/MMS Contact number No Yes
Call Logs Incoming call No Yes
Call Logs Outgoing call No Yes
Call Logs Missed call No Yes
Call Logs Date and time No Yes

Notes Search string No No
Notes Date and time No No
Voice Memos Date and time No No
Web History Date and time No No
Email Date and time No No
Facebook Messages Date and time No No
WhatsApp Messages Date and time No No
LinkedIn Messages Date and time No No
WeChat Messages Date and time No No
Viber Messages Date and time No No

4.1 On-Device Metadata-Based Filtering

Table 1 shows the data that can and cannot be extracted by the TDES
app in the on-device mode via metadata filtering. The first part of the
table shows the data that can be extracted from iPhones (iOS devices)
and Android phones. The second part of the table shows the data that
can be extracted from Android phones, but not from iPhones (e.g., pho-
tos captured by third-party apps such as Facebook and WhatsApp). The
third part of the table shows data that the TDES app currently cannot
extract from iPhones and Android phones.

Aggarwal et al. 79

!
�� =2

�����
���������

!
�
� %
��� 4 %��2 �=2 ���

!
�����
	����:
�8

>�9!�9

!
��
2�� ����

Figure 1. iOS frameworks.

iPhones: System interfaces for iPhones are delivered in the form
of packages called frameworks (Figure 1). The TDES app for
iPhones uses several frameworks in Media Libraries and Core Ser-
vices. The Photos framework provides direct access to photo and
video assets managed by the iPhone Photos app. The AVKit
framework provides a high-level interface for playing video con-
tent. The CoreLocation framework provides location and orienta-
tion information. The EventKit framework provides an interface
for accessing calendar events. The Contacts framework provides
access to user contacts and functionality for organizing contact
information.

Android Phones: Figure 2 shows the Android operating sys-
tem stack. The TDES Android app, which is deployed in the
application layer, leverages services provided by the Application
framework, which includes the Content Provider, Activity Man-
ager, Resource Manager and View [12]. Content Provider provides
access to a range of data and other services used for design and
implementation.

4.2 On-Device Content-Based Filtering

Trained machine learning models are developed using supervised
learning techniques, including learning using deep neural nets. A
trained model can be incorporated in the iOS or Android TDES
app using the appropriate framework. The model can be used

80 ADVANCES IN DIGITAL FORENSICS XV

Linux Kernel

Application Layer - TDES Android App

CPU GPU

Application Framework

Content
Provider

Machine Learning
Models

Android
Runtime

Media
Library

SQLite
Library

Other
Libraries

Other
Frameworks

Figure 2. Android operating system stack.

directly by retraining the final layer or by using heuristics based
on model outputs.

The current versions of the TDES app employ adapted trained
models from Inception-v3 [16], MobileNet [13] and Open NSFW
[22] to classify photos and videos. Interested readers are referred
to the bibliography for details about the accuracy of these models.
The TDES apps are able to identify photos containing weapons,
people, vehicles, drugs, websites, skin exposure and gadgets. The
accuracy of the adapted models is discussed in Section 5.

The Core ML framework [5] is used for on-device content-based
filtering on iPhones. Core ML provides support for several machine
learning frameworks, including Vision and GameplayKit.

The TensorFlow Lite framework [35] is used for on-device con-
tent-based filtering on Android phones. The trained model and
related labels are used in conjunction with a shared object file
libtensorflow inference.so, which is written in C++. The
Java API libandroid tensorflow inference java.jar [1, 29] is
used to interface with Android platforms.

Aggarwal et al. 81

Table 2. Off-device metadata-based extraction.

Data Category Metadata Type iOS Android

Photos Date and time Yes Yes
Photos Location Yes Yes
Photos Album type Yes Yes
Videos Date and time Yes Yes
Videos Location Yes Yes
Contacts Name Yes Yes
Contacts Number Yes Yes
Contacts Area code Yes Yes
Contacts Email Yes Yes
Calendar Events Date Yes Yes
Reminders Date Yes Yes

Photos Third-party apps Yes Yes
Messages/SMS/MMS Date and time Yes Yes
Messages/SMS/MMS Contact number Yes Yes
Call Logs Incoming call Yes Yes
Call Logs Outgoing call Yes Yes
Call Logs Missed calls Yes Yes
Call Logs Date and time Yes Yes

Notes Search string Yes No
Notes Date and time Yes No
Voice Memos Date and time Yes No
Web History Date and time Yes No
Email Date and time Yes No
Facebook Messages Date and time * No
WhatsApp Messages Date and time Yes No
LinkedIn Messages Date and time * No
WeChat Messages Date and time * No
Viber Messages Date and time * No

4.3 Off-Device Backup-Based Filtering

Table 2 shows the data that can and cannot be extracted by the
TDES app in the off-device mode via metadata filtering. The first part
of the table shows the data that can be extracted from iPhones and
Android phones. The second part shows the data that can be extracted
from Android phones, but not from iPhones. The third part shows data
that the TDES app currently cannot extract from iPhones and Android
phones. Note that a table entry marked with an asterisk (*) corresponds
to an item that was not investigated.

82 ADVANCES IN DIGITAL FORENSICS XV

22��
��926

����
�

*�	����������
��

���
�'
���
��
��
�

����'�������
!
����
926��
���!
����

%��2
�
����
����

%��2�����������

Figure 3. TDES communications paradigm.

iPhones: Apple iOS security mechanisms do not permit applica-
tions that execute on an iPhone to extract certain types of content
(second and third sections of Table 1). Therefore, this content is
acquired from an iTunes backup. The idevicebackup2 command
supported by the open-source libimobiledevice [21] is employed.
Other standard, albeit complex, techniques can also be used to ex-
tract data from a backup.

Android Phones: In the case of Android phones, any data that
can be extracted off-device can also be extracted on-device; there-
fore, on-device extraction is employed. However, data from the
third-party applications in Table 1 cannot be extracted using on-
device acquisition when the phone is not rooted. Experiments with
rooted and non-rooted Android phones did not reveal an Android
equivalent of the iTunes backup mechanism.

4.4 TDES Communications

Communications between the TDES manager and the TDES app
on a target phone is an important component of the TDES system.
Figure 3 shows the communications paradigm that is implemented on
iPhones and Android phones. The forensic investigator is provided with
a portable TDES boot drive (e.g., SSD drive or USB stick) that is pre-
loaded with a bootloader for a Windows 10 machine, TDES manager
and the tools necessary to install the TDES app on the target phone.
All the extracted data is sent back to the boot drive by the TDES app;
reports pertaining to the extracted data also reside on the boot drive.

Aggarwal et al. 83

Any available Windows 10 system can be used to boot into the TDES
manager, which runs in an isolated environment on the drive. After
booting up, the TDES manager must have Internet access if the target
device is an iPhone.

The steps for targeted data extraction are:

The boot drive containing the TDES manager is inserted into a
laptop.

The Windows 10 operating system boots up and the TDES man-
ager starts its execution.

A wired connection using a USB cable is established from the lap-
top to the phone. The TDES app is installed. In the case of an
iPhone, a hotspot is needed to connect to Apple in order to sign
the code and acknowledge trust in the developer.

After the app is downloaded, the phone may be disconnected from
the laptop.

A wireless or wired two-way communications channel is set up
between the TDES manager and TDES app for data transfer.

The targeted data extracted by the TDES app is exported to the
TDES manager and reports are generated for the extracted data.

Note that no copies of data or residual data from the export process
are stored on the phone.

TDES App Installation on iPhones: Only applications from
sources approved by Apple can be executed on iPhones that are
not jailbroken. Apple iOS requires that all executable code must
be signed with a certificate issued by Apple. Third-party apps
must have signed certificates to ensure that they do not load any
tampered or self-modifying code [6].

The TDES implementation uses Cydia Impactor [34] to sign the
TDES app code. The procedure involves the generation of an iOS
App Store Package (IPA) file of the TDES app using the XCode
Archive utility. This application archive file stores an iPhone app.
In order to sign the code, Impactor logs into the Apple Developer
Center and downloads the developer’s provisioning profile and iOS
development certificate. Logging into the Apple Developer Cen-
ter requires an Internet connection. Impactor signs the IPA file
content in a depth-first manner starting with the deepest folder
level. After the signing is done, Impactor installs the TDES app

84 ADVANCES IN DIGITAL FORENSICS XV

on the iPhone. All these tasks are automated by an AutoHotKey
script [7] that executes after the TDES manager boots; thus, no
actions are required to be performed by the forensic investigator.

TDES App Installation on Android Phones: The Android
operating system permits only signed applications to be installed
on an Android phone. As long as an application is signed and
does not attempt to update another application, it can be self-
signed – this approach is adopted in the TDES implementation.
The output of the compilation is an APK file. Note that no other
authentication is necessary.

The TDES app is installed after the APK file is stored on the
target phone. For simplicity and ease of use, an Android debug
bridge is employed for communications between the host computer
and target phone. The Android debug bridge requires the phone
to be placed in the USB debugging mode; this mode is turned off
after the app is installed.

TDES Data Transfer Protocol: The communications channel
between the TDES app and TDES manager must ensure that the
extracted data is transmitted with forensic integrity and that all
data modifications are detected and documented. Furthermore,
data that is modified inadvertently or intentionally during the
chain of custody is also identified and documented.

This is implemented by hashing essentially every file and comput-
ing a final hash value, which is exported to the TDES manager.
Note that the hashing is done on the phone. If required, the fi-
nal hash value could be sent to the phone’s owner, the forensic
investigator or to a third party.

The iPhone implementation employs a socket-based data transfer
protocol. Since the iPhone implementation requires a hotspot in
any case, a wireless link is used for communications between the
app and the manager.

The Android implementation uses an Android debug bridge, which
supports socket-level communications. Since Android applications
are natively written in Java, ServerSockets and Sockets are em-
ployed. A wired connection is used for the Android communica-
tions protocol.

4.5 User Interface

The user interface, which runs as part of the app on the target phone,
enables a forensic investigator to specify the selection criteria for data ex-

Aggarwal et al. 85

traction. At this time, the interfaces are somewhat different for iPhones
and Android phones. An optional PDF consent form is provided by the
TDES manager. In the case of an iPhone, after the data extraction cri-
teria are specified using the app, a digital consent form that specifies the
data to be extracted can be completed on the app itself. In the case of
an Android phone, a broad consent form is completed on the app first.
This consent form ensures that only the relevant subset of data specified
using the app is, in fact, extracted.

A useful bookmarking feature is provided by the TDES app. Consider
a situation where a dataset has been extracted using a set of filters. The
forensic investigator who set up the filters can display the results and
do a quick data review on the phone itself before deciding what data
to actually export to the TDES manager (i.e., bookmarked data). For
example, if the investigator selected a set of images of weapons obtained
during a certain time period, then he/she could review the images and
select a subset of relevant images by bookmarking the subset.

Discussions with a former prosecutor and a current defense attorney
indicated that bookmarking is a useful feature, but it may introduce bias
during the evidence collection process. Consequently, the current imple-
mentation enables bookmarking to be turned on or off. Alternatively,
both options may be selected, producing two versions of the exported
data – the bookmarked version and the original version. If needed, an
investigator could export all the data that could be examined under the
consent and filtering definitions, including possible exculpatory data.

iPhone App Interface: Figure 4 shows the iPhone TDES app
interface. The initial choices for a forensic investigator to define
are: (i) when (specific date ranges, today, last week, last month,
etc.); (ii) where (current location, location within a certain number
of miles, location determined by city, state or zip code, etc.); and
(iii) what (data types – photos, videos, calendar, call logs, messages
and contacts).

Additional filtering options – generally, content filtering – may be
defined. For example, if photos and videos are of interest, then
the content filtering options supported are the inclusion or exclu-
sion of weapons, places, vehicles, drugs, websites, gadgets, skin
exposure, pornography and favorites. If the exclude skin exposure
option is selected, then the app filters the corresponding images,
and displays and exports the remaining images.

The last screen of the interface enables the investigator to display
the selected data on the device, export the data, or both. A consent
form is displayed before the data is exported to the TDES manager.

86 ADVANCES IN DIGITAL FORENSICS XV

Home Page Data SelectionData-Based Filters

Machine Learning
Filters

Data-Based Filters CompletionResults

Data-Based Filters

Figure 4. iPhone TDES app user interface.

?
������� �����2������
 ����46����
	�������

����
�� ��:'�"�
��

����

����
6

8���8

����

Figure 5. Android TDES app user interface.

Aggarwal et al. 87

Figure 6. TDES summary report for an iPhone.

Android App Interface: Figure 5 shows the Android TDES
app interface. The app first presents a screen for specifying the
data categories to be extracted; the same categories of data as the
iPhone app are supported. Selecting any of these data types leads
to a new screen with another set of choices providing additional
filtering options for metadata and content filtering. The Android
app interface also has provisions for first defining a broad consent
form that restricts further data selections. It also supports data
bookmarking, display and export.

Both versions of the app interface support a fair amount of metadata
and content filtering. For example, call logs can be filtered by name and
number as well as by date and time. Contacts can be filtered by name
and number. Messages can be filtered by name and number as well as
by date and time. Videos and photos can be filtered by location, date,
time and various implemented content using machine learning models.

4.6 Reporting and Forensic Integrity

A common interface using the JSON object format [11] is implemented
for the selected export of data from the iPhone and Android phone apps.
The JSON structure facilitates the description of the extracted data as
well as hash values and reporting information. For example, a report

88 ADVANCES IN DIGITAL FORENSICS XV

Server_On_USB/Upload/

CaseName_Directory/

Report.html

Final.json

Iteration-1/ Iteration-2/ Iteration-3/

It1_Photos/

It1_Photos.json

It1_Videos/

It1_Videos.json

It1_Messages/

I1_Messages.json

It1_Call Logs/

 I1_CallLogs.json

It1_Contacts/

 I1_Contacts.json

It1_CalendarEvents/

 I1_CalendarEvents.json

It1_Report1.html

It1_Photo_Camera_1.jpeg

It1_Photo_Camera_2.jpeg

It1_Photo_Camera_3.jpeg

It1_Video_Camera1.mp4

It1_Video_Camera2.mov

It1_Video_Camera3.mp4

. . .

Whatapp/

Camera/

Facebook/ It1_Photo_Whatsapp_1.jpeg

It1_Photo_Whatsapp_2.jpeg

It1_Photo_Whatsapp_3.jpeg

It1_Photo_Facebook_1.jpeg

It1_Photo_Facebook_2.jpeg

It1_Photo_Facebook_3.jpeg

MessageMedia/

It1_Messages_Media_1.jpeg

It1_Messages_Media_2.mov

It1_Messages_Media_3.mp3

Camera/

<<misc>>/

It1_Video_Whatsapp1.mp4

It1_Video_Whatsapp2.mov

It1_Video_Whatsapp3.mp4

Figure 7. Output file structure.

may need to document when the TDES app began its execution and
when the extraction was completed. Although the data transfer is pri-
marily from the app to the manager, some information, such as the
forensic investigator’s name, phone owner’s name and case number, is
passed from the manager to the app. The Android TDES app extracts
additional information such as the IMEI, phone number and email ad-
dress associated with the phone. In the case of the iPhone TDES app,
this information must be entered in the manager. Figure 6 shows a
sample report generated for an iPhone.

TDES Directory Structure on the Boot Drive: Figure 7
shows the directory structure created for storing evidence on the
boot drive. The structure is designed to ensure data integrity and
support reporting. A directory is created for each case. The com-
plete report is stored as an HTML file in this directory. The JSON
files, including Final.json, are discussed below. The extracted

Aggarwal et al. 89

It1_Photos.json

[

{

 },

},

 {

 },

},

{ },

]

[

{

. . .

}

},

{

},

}

]

Final.json
Generation of Hash of
It1_Photos.json File

Generation ofHash of Hash of
Final.json File

Final Hash Value

It1_Photos_j_hash

Figure 8. Example JSON files.

data is stored as one or more iterations of requests made by the
investigator. In each iteration, every data category has a separate
directory and a JSON file is associated with the directory.

JSON Format for Data Transfer: The JSON format is used to
describe the structure of the exported data, which is used to create
reports in the HTML format. Figure 8 shows example JSON files.

Assume that a set of photos has been extracted using metadata
and content filters. Auxiliary information about each photo is
transferred to the TDES manager along with the actual image file.
The TDES apps for iPhones and Android phones create this infor-
mation in the same format. After the information is transferred to
the TDES manager, a report manager creates the actual report.
Hashes are also transferred as part of the JSON files. As shown
in Figure 8, the It1 Photos.json file is structured into arrays of
arrays containing (key, value) pairs. For example, creation date

is a key and its value is the string 01-01-2017.

90 ADVANCES IN DIGITAL FORENSICS XV

Considerable information is exported in a JSON file. The key
filename has a value string associated with it, which corresponds
to the name of the actual photo image. The actual image is stored
as a separate file as defined by the key exportpath. The hash
value of the actual photo file is stored in the JSON structure and
is defined by the key f hash.

Hashing and Data Integrity: SHA-1 hashes are used to ensure
the integrity of the data transferred to the TDES manager; other
hash algorithms may be used if needed. Each file filename defined
in a JSON file has a hash associated with the file called the f hash.

Consider the It1 Photos.json file shown in Figure 8 and the key
filename with value It1 Photo Camera 1.jpg. A hash f hash is
associated with it (shown in the figure) because the actual file is
stored in a separate location. Therefore, any file in the directory
that is not a JSON file has a hash value stored in a JSON file.

Next, every JSON file has a JSON hash j hash associated with
the file. For example, the hash value computed for the file It1 -

Photos.json is stored as the key It1 Photos j hash in file It1 -

Hashes.json. For each iteration n, the hash of Itn Hashes.json

is stored in the Final.json file. The hash of Final.json is called
Final hash. This hash value ensures that no file in any case di-
rectory can be modified without detection.

The Final hash value computed by an app is sent to the TDES
manager and stored in Report.htm. The manager can indepen-
dently compute the Final hash value to check if any changes oc-
curred during the data transfer. Hash values are computed at
intermediate points for several reasons, including to facilitate the
granular transfer of data and check if the transfer is correct. Check-
ing the extracted files against known files is also simplified. The
TDES manager (or app) could also email a copy of the Final hash

value to the phone’s owner, forensic investigator or third party.

5. Experiments and Results

Several experiments were conducted to evaluate the accuracy and
speed of selective data filtering on iPhone and Android phones. The
metadata filtering accuracy should be 100% because the Apple and An-
droid frameworks were employed; however, manual checks of metadata
filtering were still performed.

The performance of the prototype system was also compared against
two commercial tools, Paraben EEE and Magnet AXIOM, which are

Aggarwal et al. 91

Table 3. Devices used in the experiments and device content.

Model/Version NIC P V M CL CO CA

Device 1 Lightning 10,307 178 208 482 1,102 148
iPhone-8 port
(iOS v11.2.1)

Device 2 Lightning 2,621 109 5 155 6 46
iPhone-7 port
(iOS v11.2.5)

Device 3 Lightning 2,566 102 15,978 714 384 265
iPhone-6 Plus port
(iOS v11.2.2)

Device 4 Micro- 100 6 37 7 20 17
Samsung Galaxy USB 2.0
S7 (v7.0, Nougat)

Device 5 Micro- 191 7 25,420 429 1,889 780
Moto G3 USB 2.0
(v6.0, Marshmallow)

Device 6 Micro- 249 22 13,362 500 240 337
Samsung Galaxy USB 2.0
S7 Edge (v7.0, Nougat)

NIC: Network Interface Card; P: Photos; V: Videos;

M: Messages; CL: Call Logs; CO: Contacts; CA: Calendar

used by law enforcement. As mentioned above, neither of these tools
(nor Cellebrite) can perform selective data extraction as implemented
by the prototype system. Note that the Cellebrite commercial tool was
not evaluated because this tool (like the others) essentially performs a
physical acquisition of all the phone data and then enables the user to
analyze the data off-device.

Three iPhones and three Android phones were used in the experi-
ments. Table 3 provides details about the phones and their contents.
Apple Devices 1 and 3, which belong to the authors of this chapter,
contained real user data. Apple Device 2 contained synthetic, non-
copyrighted data that is available for reuse over the Internet. Similarly,
Android Devices 5 and 6 contained real user data and belong to the
authors; Apple Device 4 contained synthetic data. Table 3 also shows
the total numbers of artifacts of each data category residing in each
test device. The TDES boot drive used was a SanDisk Extreme 128GB

92 ADVANCES IN DIGITAL FORENSICS XV

Table 4. On-device metadata-based filtering for iPhones.

Device 1 Experiments
Category: Filter Artifacts Display Export Size

Time Time

1-Photos: 12/24/17–12/27/17 2/10,307 0.7 s 3.58 s 2.33MB
2-Photos: Within 10 miles* 418/10,307 1.21 s 42m, 64 s 822MB

3-Videos: 09/1/17–01/31/18 34/178 1.20 s 51m, 11 s 1,038MB
4-Videos: Within 10 miles* – – – –
5-Videos: Current location* 4/178 0.2 s 17m, 2 s 405MB

6-Contacts: “Puppy” 3/1,102 2.57 s 0.6ms –
7-Contacts: “Robert” – – – –
8-Contacts: (xxx)xxx–xxx 1/1,102 0.12 s 0.8ms –

9-Calendar: 01/01/18–01/15/18 19/148 0.14 s 0.6ms –

10-Photos: 08/30/17–09/15/17 91/10,307 0.7 s 4m, 1 s 236MB
Videos: Any location 1/178

11-Photos: 08/31/17 9/10,307 0.73 s 1m, 1 s 51MB
Videos: Within 50 miles 1/178

12-Videos: Last week 3/178 0.4 s 1m, 2 s 47MB
Within 10 miles

stick. A ThinkPad X1 Carbon laptop was used as the boot drive and to
connect to the test phones.

iPhone Results. The iPhone experiments employed Devices 1, 2 and
3. Table 4 shows the results for on-device metadata-based filtering for
Device 1. Each experiment (row) focuses on a specific data category and
filter. For each experiment, the total number of artifacts selected out of
the total number of artifacts on the device is shown (e.g., in the case of
the 1-Photos experiment, 2/10,307 means that two photos out of 10,307
photos on the device were extracted). The metadata filtering was 100%
accurate based on manual checking (e.g., a phone feature such as Photos
Album count). The table also shows the times required to display data
on the target device and to export data to the TDES manager (via a
wired connection). The recorded times show that TDES is feasible for
in-field targeted data extraction. The amounts of exported data are also
shown. Note that a table entry marked with an asterisk (*) corresponds
to an item whose location depends on the physical location of the phone.

Table 5 shows the results of experiments for off-device backup-based
metadata filtering for Device 3. The results for messages and call logs are

Aggarwal et al. 93

Table 5. Off-device backup-based filtering for iPhones.

Device 3 Experiments
Category: Filter Artifacts Display

Time

1-Messages: None 15,978/15,978 1.95 s
2-Messages: 10/03/17–12/30/17 510/15,978 0.33 s
3-Messages: (***)***–*** 1,016/15,978 0.29 s

4-Call Logs: None 683/683 0.29 s
5-Call Logs: 01/14/17–08/14/17 297/683 0.27 s
6-Call Logs: (***)***–*** 40/683 0.27 s

7-Messages: 01/14/17–08/14/17 738/15,978 0.32 s
Call Logs: (***)***–*** 35/683

8-Messages: (***)***–*** 1,016/15,978 0.28 s
Call Logs: 40/683

shown. As discussed earlier, the backup-based procedure involved the
TDES manager acquiring a complete backup from iTunes; thus, there
is no export time. Note, however, that the forensic investigator must
still specify the filtering that must be performed by the TDES app. The
accuracy of metadata filtering is always 100% based on manual analysis
using iTunes.

Table 6. On-device metadata and content filtering for iPhones (Inception-v3).

Device 2 Experiments
Category: Filter Content Display Export Accuracy

Filter Time Time (%)

1-Photos: 12/25/17 Weapons 9.82 s 4.69 s 97.22
2-Photos: Within 10 miles Weapons 20.31 s – –
3-Photos: 12/25/17–12/29/17 Weapons 19.05 s 4.34 s 94.50

4-Photos: 12/25/17–12/29/17 Places 17.73 s 9.93 s 88.07
5-Photos: 12/25/17–12/29/17 Vehicles 17.06 s 0.72 s 100.00
6-Photos: 12/25/17–12/29/17 Drugs 16.26 s 0.33 s 96.33
7-Photos: 12/25/17–12/29/17 Websites 16.66 s 7.03 s 99.08
8-Photos: 12/25/17–12/29/17 Gadgets 17.33 s 7.88 s 89.91
9-Photos: 12/25/17–12/29/17 Skin 16.23 s 8.68 s 100.00

exposure

Table 6 shows the results of the experiments using Device 2 photos
for various combinations of metadata and content filtering. The test

94 ADVANCES IN DIGITAL FORENSICS XV

Table 7. On-device metadata-based filtering for Android phones.

Device 5 Experiments
Category: Filter Artifacts Display Export Size

Time Time

1-Photos: 02/03/18–02/05/18 2/191 0.31 s 2.32 s 6.56MB
2-Photos: Current location 1/191 0.63 s 10.58 s 46.1MB

3-Videos: 12/19/17–02/03/18 3/7 0.89 s 3.91 s 16.6MB
4-Videos: Current location 7/7 0.90 s 13.09 s 190MB

5-Calendar: 05/29/17–05/30/17 85/780 1.03 s 2.40 s 13KB

6-Messages: “aaabb” 32/25,420 1.23 s 14.23 s 7KB
7-Messages: (***)***–*** 5/25,420 0.92 s 1.25 s 4KB

8-Call Logs: “aaabb” 9/429 0.49 s 6.59 s 5KB
9-Call Logs: (***)***–*** 11/429 0.89 s 11.2 s 6KB

10-Messages: (***)***–*** 100/25,420 1.25 s 14.08 s 199.1MB
Photos: 01/28/18–02/05/18 6/191
Videos: Current location 7/7

11-Messages: 12/12/17–02/05/18 1,000/25,420 1.02 s 3.89 s 258KB
Call Logs: (***)***–*** 8/429

12-Messages: 09/12/17–09/29/17 300/25,420 1.65 s 18.2 s 236.1MB
Calendar: 09/12/17–09/29/17 5/780
Photos: Current location 1/191
Videos: Current location 7/7

iPhone had 2,621 photos with 109 photos in the date range 12/25/17
to 12/29/17, and 72 of these photos were taken on 12/25/17. The
Inception-v3 model was used for content filtering. Rows 1–3 of the
table focus on filtering for “weapons.” In the case of Row 2, content
filtering was not applied because none of the weapons photos were taken
within 10 miles. Rows 4–9 focus on content filters that would be rele-
vant to law enforcement. The times required for display and export are
shown for each experiment. The accuracy measure expresses how well
the Inception-v3 model performs content filtering. The accuracy compu-
tations involved the creation of a confusion matrix for each experiment,
following which the accuracy was computed as:

Accuracy =
TP + TN

TP + FN + FP + TN
× 100 (1)

where TP denotes true positive; TN denotes true negative; FP denotes
false positive; and FN denotes false negative.

Aggarwal et al. 95

Table 8. On-device metadata and content filtering for Android phones (MobileNet).

Device 4 Experiments
Category: Filter Content Display Export Accuracy

Filter Time Time (%)

1-Photos: 11/12/17–02/02/18 Weapons 35 s 1.5 s 75.68
2-Photos: Current location Weapons 1.3 s 0.81 s 100.00
3-Photos: 10/12/17–12/02/17 Vehicles 37.4 s 1.56 s 25.00
4-Photos: Current location Vehicles 1.4 s 1.3 s 100.00
5-Photos: 12/01/17–01/13/18 Drugs 34.69 s 1.2 s 92.06
6-Photos: Current location Drugs 1.2 s 0.0 s 71.43
7-Photos: 08/11/17–12/31/17 Skin exposure 33.08 s 2.48 s 92.21

Android Phone Results. The Android phone experiments employed
Devices 4, 5 and 6. Table 7 shows the results for on-device metadata-
based filtering for Device 5. Each experiment (row) focuses on a specific
data category and filter. Note that the display and export times are
very good. For example, in the case of the 12-Messages experiment,
exporting 236MB of device artifacts required only 18.2 seconds.

Table 8 shows the results of seven experiments using Device 4 photos
for various combinations of metadata and content filtering. The Mo-
bileNet model from TensorFlowLite was used for metadata and content
filtering. The display and export time results are excellent. The ac-
curacy measure, computed using Equation (1), expresses how well the
MobileNet model performs content filtering. The results are modest;
better machine learning models will have to be developed to improve
the accuracy of content filtering.

Comparison with Commercial Tools. Several experiments were
conducted to compare the data export times for TDES against the times
required by two commercial tools, Paraben and Magnet AXIOM. iPhone
Device 2 and Android Device 4 were used in the experiments. Table 9
shows the experimental results – the iPhone comparisons are in the top
half of the table and the Android comparisons are in the bottom half of
the table. The app installation time (AIT) is the time period from the
instant the target device was connected to the laptop to the time when
a data selection can be made (in the case of TDES, this is when a data
selection can be made on the target device; in the case of Paraben and
Magnet AXIOM, this is when a data selection choice can be made on
the laptop). The backup acquisition time (BAT) is the time taken for
backup-based acquisition. Note that, in the case of TDES, the exported

96 ADVANCES IN DIGITAL FORENSICS XV

Table 9. Export time comparisons for iPhone Device 2 and Android Device 6.

Item TDES Paraben Magnet AXIOM

Device 2
(iPhone)
AIT 52 s 10m 9m
BAT 26m (2GB) 20m 38m, 54 s (4.1GB)
Call Logs (BAT) 15ms 0.1 s 0.4 s
Messages (BAT) 16ms 0.1 s 0.3 s
Contacts 1.8ms 0.2 s 0.3 s
Calendar 2ms 0.2 s 0.3 s
Photos 39m, 3 s (2,621 files) – 80m (29,488 files, 2.30GB)
Videos 30m, 15 s (109 files) – 4m (438 files, 1.73GB)
All Media Not needed 32m 93m (48,701 files, 2.69GB)

Device 6
(Android)
AIT 14 s 5 s NA
BAT NA NA 29m
Call Logs 1 s 40 s 1m, 17 s
Messages 4m, 9 s 17m, 3 s 1m, 21 s
Contacts 1 s 2m, 11 s 1m, 11 s
Calendar 6 s 1m, 5 s 1m, 14 s
Photos 42 s (249 files) – 14m, 41 s (13,711 files)
Videos 14 s (22 files) – 1m, 38 s (62 files)
All Media NA 43 s NA

data was stored on a flash drive whereas, in the case of Paraben and
Magnet AXIOM, the exported data was stored on the laptop hard drive.

iPhone Comparison: The installation time of the TDES app on
the iPhone was 52 seconds. Paraben and Magnet AXIOM had to
first create a backup of the iPhone data. In the case of Paraben,
backup creation (20minutes) occurs in conjunction with appli-
cation initialization (10minutes) whereas Magnet AXIOM has a
separate backup creation step of 38minutes and 54 seconds af-
ter 9minutes of application initialization. Note that TDES has
a backup acquisition time only when extracting call logs and mes-
sages.

AndroidPhoneComparison: The installation time of theTDES
app on the Android phone was 14 seconds. Since Magnet AXIOM
uses backup-based acquisition, a backup must be created before
extracting any artifacts. For example, when extracting call logs,
Magnet AXIOM created a backup that took 29minutes followed

Aggarwal et al. 97

by call log extraction that took one minute and 17 seconds. The
TDES app required 14 seconds for app installation and one second
for data export. In contrast, Paraben required five seconds for
initialization and 40 seconds for data export.

In the case of Paraben and Magnet AXIOM, the only choices avail-
able for acquisition are the broad categories shown in Table 9.
Paraben does not extract photos and videos separately; it provides
one option for all media artifacts. However, experiments revealed
that selecting this option resulted in the extraction of metadata
associated with media artifacts, not the artifacts themselves.

6. Conclusions

The targeted data extraction system described in this chapter sup-
ports the acquisition of relevant data from iOS and Android devices
in a forensically-sound manner. It implements state-of-the-art metadata
and content filtering functionality based on machine learning techniques.
Forensic soundness is realized using the eDiscovery Reference Model [19]
and dynamic/live analysis techniques drawn from network and cloud
forensics [17, 26]. The design assumes that a phone is voluntarily pro-
vided to law enforcement under a documented consent agreement. How-
ever, it is equally applicable to situations where a court orders that a
smartphone passcode must be provided for evidence recovery or where
a smartphone memory dump (e.g., from a cloud backup) with an intact
filesystem is available. The targeted data extraction system is currently
being provided to law enforcement for testing and feedback, with the
goal of incorporating additional features and capabilities.

Acknowledgements

This research was supported in part by the National Institute of Jus-
tice, Office of Justice Programs, U.S. Department of Justice under Award
No. 2016-MU-CX-K003. The opinions, findings and conclusions or rec-
ommendations expressed in this chapter are those of the authors and do
not necessarily reflect the opinions of the U.S. Department of Justice.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M.
Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasude-
van, P. Warden, M. Wicke, Y. Yu and X. Zheng, Tensorflow: A
system for large-scale machine learning, Proceedings of the Twelfth

98 ADVANCES IN DIGITAL FORENSICS XV

USENIX Symposium on Operating Systems Design and Implemen-
tation, pp. 265–283, 2016.

[2] N. Al Mutawa, I. Baggili and A. Marrington, Forensic analysis of
social networking applications on mobile devices, Digital Investiga-
tion, vol. 9(S), pp. S24–S33, 2012.

[3] A. Aminnezhad, A. Dehghantanha and M. Abdullah, A survey of
privacy issues in digital forensics, International Journal of Cyber-
Security and Digital Forensics, vol. 1(4), pp. 311–323, 2012.

[4] C. Anglano, Forensic analysis of WhatsApp Messenger on Android
smartphones, Digital Investigation, vol. 11(3), pp. 201–213, 2014.

[5] Apple, Core ML, Cupertino, California (developer.apple.com/
documentation/coreml), 2017.

[6] Apple, iOS Security, iOS 12.3, Cupertino, California (www.apple.
com/business/docs/iOS_Security_Guide.pdf), 2019.

[7] AutoHotkey Foundation, AutoHotkey (autohotkey.com), 2019.

[8] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O.
Delalleau, G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Berg-
eron and Y. Bengio, Theano: Deep learning on GPUs with Python,
Proceedings of the BigLearning Workshop, vol. 3, 2011.

[9] G. Cantrell, D. Dampier, Y. Dandass, N. Niu and C. Bogen,
Research toward a partially-automated and crime-specific digital
triage process model, Computer and Information Science, vol. 5(2),
pp. 29–38, 2012.

[10] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk and Y. Bengio, Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical Machine Trans-
lation, arXiv:1406.1078 (arxiv.org/abs/1406.1078), 2014.

[11] D. Crockford, The application/json Media Type for JavaScript Ob-
ject Notation (JSON), RFC 4627, 2006.

[12] Google, Android Developer Manual, Mountain View, California,
2017.

[13] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto and H. Adam, MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,
arXiv:1704.04861 (arxiv.org/abs/1704.04861), 2017.

[14] M. Husain, I. Baggili and R. Sridhar, A simple cost-effective frame-
work for iPhone forensic analysis, Proceedings of the International
Conference on Digital Forensics and Cyber Crime, pp. 27–37, 2010.

Aggarwal et al. 99

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama and T. Darrell, Caffe: Convolutional architecture
for fast feature embedding, Proceedings of the Twenty-Second ACM
International Conference on Multimedia, pp. 675–678, 2014.

[16] Keras Team, Keras: Deep Learning for Humans, GitHub (github.
com/keras-team/keras), 2019.

[17] S. Khan, A. Gani, A. Abdul Wahab, M. Shiraz and I. Ahmad, Net-
work forensics: Review, taxonomy and open challenges, Journal of
Network and Computer Applications, pp. 214-235, 2016.

[18] A. Krizhevsky, I. Sutskever and G. Hinton, ImageNet classification
with deep convolutional neural networks, in Communications of the
ACM, vol. 60(6), pp. 84–90, 2017.

[19] D. Lawton, R. Stacey and G. Dodd, E-Discovery in Digital Forensic
Investigations, CAST Publication Number 32/14, Centre for Ap-
plied Science and Technology, Home Office, London, United King-
dom, 2014.

[20] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, vol.
521(7553), pp. 436–444, 2015.

[21] libimobile.org, libimobiledevice: A cross-platform software
protocol library and tools to communicate with iOS devices na-
tively (www.libimobiledevice.org), 2019.

[22] J. Mahadeokar, Open NSFW Model, GitHub (github.com/yahoo/
open_nsfw), 2017.

[23] S. Morrissey and T. Campbell, iOS Forensic Analysis: For iPhone,
iPad and iPod touch, Apress, New York, 2010.

[24] K. Murphy, Machine Learning: A Probabilistic Perspective, MIT
Press, Cambridge Massachusetts, 2012.

[25] D. Quick and M. Alzaabi, Forensic analysis of the Android filesys-
tem YAFFS2, Proceedings of the Ninth Australian Digital Forensics
Conference, pp. 100–109, 2011.

[26] V. Roussev, A. Barreto and I. Ahmed, Forensic Acquisition of Cloud
Drives, arXiv:1603.06542 (arxiv.org/abs/1603.06542), 2016.

[27] V. Roussev, C. Quates and R. Martell, Real-time digital forensics
and triage, Digital Investigation, vol. 10(2), pp. 158–167, 2013.

[28] N. Scrivens and X. Lin, Android digital forensics: Data, extraction
and analysis, Proceedings of the ACM Turing 50th Celebration Con-
ference – China, article no. 26, 2017.

[29] A. Shekhar, Android TensorFlow Machine Learning Example,
MindOrks Blog (blog.mindorks.com/android-tensorflow-mach
ine-learning-example-ff0e9b2654cc) March 6, 2017.

100 ADVANCES IN DIGITAL FORENSICS XV

[30] Y. Steinbuch and J. Tacopino, Woman records horrific scene after
boyfriend is fatally shot by police, New York Post, July 7, 2016.

[31] P. Stirparo and I. Kounelis, The Mobileak Project: Forensic method-
ology for mobile application privacy assessment, Proceedings of
the International Conference on Internet Technology and Secured
Transactions, pp. 297–303, 2012.

[32] M. Stroud, In Boston bombing, flood of digital evidence is a blessing
and a curse, CNN, April 18, 2013.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, Rethink-
ing the inception architecture for computer vision, Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2818–2826, 2016.

[34] Team Cydia, Cydia Impactor (cydia-app.com/cydia-impactor),
2019.

[35] TensorFlow, Introduction to TensorFlow Lite (www.tensorflow.
org/mobile/lite, 2018.

Chapter 6

EXPLOITING VENDOR-DEFINED
MESSAGES IN THE USB POWER
DELIVERY PROTOCOL

Gunnar Alendal, Stefan Axelsson and Geir Olav Dyrkolbotn

Abstract The USB Power Delivery protocol enables USB-connected devices to ne-
gotiate power delivery and exchange data over a single connection such
as a USB Type-C cable. The protocol incorporates standard commands;
however, it also enables vendors to add non-standard commands called
vendor-defined messages. These messages are similar to the vendor-
specific commands in the SCSI protocol, which enable vendors to specify
undocumented commands to implement functionality that meets their
needs. Such commands can be employed to enable firmware updates,
memory dumps and even backdoors.

This chapter analyzes vendor-defined message support in devices that
employ the USB Power Delivery protocol, the ultimate goal being to
identify messages that could be leveraged in digital forensic investiga-
tions to acquire data stored in the devices.

Keywords: USB Power Delivery protocol, vendor-specified messages, exploitation

1. Introduction

An important goal of mobile device forensics is to acquire data. Mo-
bile phones typically have two key data sources: (i) volatile memory
(RAM); and (ii) long-term storage (typically, flash memory). These
two sources differ in content and acquisition methods. RAM is often
proprietary, short-term storage that is not intended for interpretation
by applications other than the one that stored the data. In contrast,
long-term storage such as flash memory contains well-structured data,
usually in a filesystem, that is meant to be re-read, typically by the op-
erating system. Nevertheless, both types of storage maintain data that
is important in digital forensic investigations.

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 101–118, 2019.

https://doi.org/10.1007/978-3-030-28752-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_6&domain=pdf

102 ADVANCES IN DIGITAL FORENSICS XV

Security mechanisms in commercial products are hindering the foren-
sic acquisition of data. Data encryption in flash memory has invalidated
methods such as desoldering (i.e., chip-off) that enable data to be read
directly from a chip. Encryption prevents the extracted data from being
interpreted without the decryption keys. The keys are often protected
by additional encryption keys that tie the data to the specific device
that encrypted the data in long-term storage. Therefore, transplanting
a flash memory chip to a different, but identical, device would not de-
crypt the stored data. Device-tied encryption keys are also protected by
security features such as TrustZone that rely on tamper-proof hardware.
Therefore, in order to access data from a secured device, it is necessary
to exploit security vulnerabilities in the device itself, or leverage un-
documented features such as backdoors or indirectly increase the attack
surface of the device.

The general approach is that any data extraction technique should be
researched extensively, including any and all means it uses to commu-
nicate with other devices. The USB Power Delivery protocol is a com-
munications mode that has the potential to increase the device attack
surface. The idea is that, if undocumented means exist to communicate
with the device, then hidden features and security vulnerabilities could
be identified and exploited to facilitate data acquisition.

The USB Power Delivery protocol provides a uniform means for ven-
dors to implement power negotiation between power sources and devices
such as mobile phones and personal computers in order to maximize the
charging current. The power source can support different power con-
figurations, one power profile for a mobile phone and a different profile
for a personal computer, to enable the devices to obtain the appropri-
ate currents and voltages. Devices can also use the protocol to request
higher currents and voltages from power sources. In the case of two
non-power-source devices (e.g., two mobile phones), the devices can ne-
gotiate a power delivery profile so that one device can charge the other.
Another example is a monitor connected to a personal computer where
the protocol enables the monitor to draw power from the personal com-
puter if it is not connected to an external power source. If the monitor
is connected to an external power source, then it could provide power to
the personal computer. All these negotiations occur over the same USB
cable unbeknownst to the user.

The USB Power Delivery protocol is of interest from a digital foren-
sics perspective because it supports inter-device communications. These
communications could be exploited to expand the attack surface of one
or both devices, enabling the acquisition of data that is otherwise in-
accessible. The focus is on vendor-defined messages in the USB Power

Alendal, Axelsson & Dyrkolbotn 103

Delivery protocol. Undocumented messages discovered in other proto-
cols have been demonstrated to enable firmware updates, memory dumps
and even backdoors. This chapter presents a black-box testing approach
for revealing proprietary messages supported by the USB Power Deliv-
ery protocol that could be leveraged in digital forensic investigations to
acquire data stored in devices that support the protocol.

2. Related Work

Allowing vendors to incorporate proprietary vendor-defined messages
or commands in protocols to provide custom functionality has led to
the release of numerous consumer devices that potentially respond to
undocumented commands with unknown behavior. This can have dev-
astating security implications. As demonstrated by Alendal et al. [2],
vendor-specified SCSI commands can be used to bypass authentication
on self-encrypting hard drives. Whether this research represents the
best-case scenario for law enforcement or the worst-case scenario for the
vendor, one cannot ignore the fact that the existence of hidden com-
mands must be tested carefully. Indeed, as devices and firmware change
over time, such testing should be performed regularly by law enforcement
and security researchers.

Testing the USB Power Delivery protocol for hidden commands re-
quires a means for emulating the protocol. Reydarns et al. [5] have
demonstrated the use of USB Power Delivery protocol emulation in test-
ing different power configurations for a power source. However, there is
little, if any, research on the security of the USB Power Delivery proto-
col and nothing related to digital forensics. This research is important
because it comprehensively analyzes the USB Power Delivery protocol
and attempts to discover how vendor-defined protocol messages could be
leveraged to assist digital forensic examinations of devices that support
the protocol.

3. USB Power Delivery Protocol

Revision 1.0 (version 1.0) of the USB Power Delivery protocol speci-
fication was released in 2012; several revisions have been released since,
the most recent being Revision 2.0 (version 1.3) and Revision 3.0 (version
1.2) [8]. The protocol provides a uniform means for devices to negotiate
power supply configurations across vendors. It is typically supported
by devices with a USB Type-C port/connector with dedicated CC1 and
CC2 links (Figure 1). The USB Type-C connection is reversible, en-
abling devices to communicate on either CC line.

104 ADVANCES IN DIGITAL FORENSICS XV

Figure 1. USB Type-C pinout [4].

The message-based USB Power Delivery protocol has three types of
messages: (i) control messages; (ii) data messages; and (iii) extended
messages. Control messages are short messages that typically require no
data exchange. Data messages contain data objects that are transmitted
between devices. Extended messages are essentially data messages with
larger data payloads. The USB Power Delivery protocol leverages the
three message types to define a wide range of standard messages, which
enable devices to communicate and negotiate power source configura-
tions.

Preamble SOP
Start of Packet

Message Header
16 bit

Data Objects (0-7)
32 bit

CRC EOP
End of Packet

Figure 2. Data message packet.

Figure 2 shows a data message packet comprising a preamble for syn-
chronization, start of packet (SOP), message header, up to eight data
objects of 32-bits each, CRC and end of packet (EOP). The preamble,
SOP, CRC and EOP are part of the physical transport layer; they are
common to all three types of messages, along with the message header.
The optional data objects are only found in data messages.

Table 1 lists example control and data messages in the USB Power
Delivery protocol.

The USB Power Delivery protocol supports different standard mes-
sage sets as indicated by the protocol specification revisions, currently
Revision 2.0 and Revision 3.0. Revision 3.0 is functionally the same
as Revision 2.0, except for new features such as USB authentication.
Interested readers are referred to the protocol specifications [8] for in-
formation pertaining to the differences between the message sets.

The USB Power Delivery protocol also enables cables to take part in
communications; a device can communicate with a cable directly using
the start of packet. Such electronically-marked cables (EMCA) enable
devices to ensure that the cable supports high voltage/current power

Alendal, Axelsson & Dyrkolbotn 105

Table 1. Control and data messages in Revision 3.0 (version 1.2).

Control Messages Data Messages

GoodCRC Source Capabilities
GotoMin Request
Accept BIST
Reject Sink Capabilities
Ping Battery Status
PS RDY Alert
Get Source Cap Get Country Info
Get Sink Cap Vendor Defined
DR Swap
PR Swap
VCONN Swap
Wait
Soft Reset
Not Supported
Get Source Cap Extended
Get Status
FR Swap
Get PPS Status
Get Country Codes

source configurations. According to the protocol specification, devices
can negotiate direct current levels up to 5A, corresponding to a maxi-
mum of 100W at 20V between devices connected via an EMCA cable.
Passive (non-EMCA) cables are rated for a maximum direct current of
3A, which corresponds to 15W at 5V, 36W at 12V or 60W at 20V.

Figure 3 shows a typical power delivery negotiation – referred to as
an explicit contract between two devices or port pairs. According to the
standard, all port pairs are required to make an explicit contract. In a
contract, the device (port) that consumes power is called the sink and
the device (port) that provides power is called the source.

Vendors may implement novel functionality using proprietary vendor-
defined messages, a subgroup of data messages in the USB Power De-
livery protocol. Similar features are found in other protocols, such as
vendor-specific commands in the SCSI protocol [6]. These commands
are implemented and used only by vendors for internal purposes such
as debugging, factory setup and proprietary communications with ven-
dor software; the commands are not used in normal device operations.
Vendor commands are rarely documented because they are reserved for
internal use.

106 ADVANCES IN DIGITAL FORENSICS XV

Start CRCReceiveTimer

Stop CRCReceiveTimer

Start CRCReceiveTimer

Stop CRCReceiveTimer

Start CRCReceiveTimer

Stop CRCReceiveTimer

Start CRCReceiveTimer

Stop CRCReceiveTimer

1: Source_Capabilities

2: GoodCRC

3: Request

4: GoodCRC

5: Accept

6: GoodCRC

7: PS_RDY

8: GoodCRC

SOURCE SINK

Start CRCReceive Timer

Stop CRCReceive Timer

Start SenderResponse Timer

Stop SenderResponse Timer

Stop PSTransition Timer

Start PSTransition Timer

Figure 3. Simplified explicit contract negotiation.

Preamble SOP
Start of Packet

Message Header
16 bit

VDO (0-6)
32 bit

CRC EOP
End of Packet

VDM HeaderVDM Header
(S)VID 16-bit | Command 16-bit

Figure 4. Vendor-defined message packet.

Figure 4 shows a vendor-defined message (VDM) packet in the USB
Power Delivery protocol. Vendor-defined messages are of two types:
(i) structured; and (ii) unstructured. Structured vendor-defined mes-
sage commands are defined in the USB Power Delivery protocol stan-
dard whereas unstructured vendor-defined message commands are im-
plemented by vendors on an ad hoc basis. Note that a “command” is a
subgroup of “message,” which is either a structured vendor-defined mes-

Alendal, Axelsson & Dyrkolbotn 107

SVID/VID
Bit 31...16

Command
Bit 4...0

VDM Type
Bit 15

VDM Version
Bit 14...13

Reserved
Bit 12...11

Object Position
Bit 10...8

Reserved
Bit 5

Cmd Type
Bit 7...6

Figure 5. Structured vendor-defined message header.

Vendor ID (VID)
Bit 31...16

Vendor Use
Bit 14...0

VDM Type
Bit 15

Figure 6. Unstructured vendor-defined message header.

sage or an unstructured vendor-defined message. Thus, while structured
vendor-defined messages have predefined command sets in the protocol
specification, unstructured vendor-defined messages can correspond to
commands defined by vendors.

Because vendor-defined messages are a type of data message, there
is a size limitation on the amount of data a message can contain – this
corresponds to the size of six vendor data objects (VDOs) plus the 32-
bit vendor-defined message header. A vendor data object contains a
32-bit value (data). To prevent vendors from implementing conflicting
messages, the protocol requires either the standard vendor ID (SVID)
defined in the protocol specification or a vendor ID (VID) to be part of
the vendor-defined message header. This means that a vendor must use
one of its 16-bit USB Implementers Forum (USB-IF) vendor IDs [7] in
all the vendor-defined messages it implements.

Example vendor IDs are 0x05ac (Apple) and 0x04e8 (Samsung). As
shown in Figures 5 and 6, the structured vendor ID and vendor ID are
required to be part of the corresponding vendor-defined message headers.
Thus, a vendor with a valid USB-IF-assigned vendor ID can implement
any command that contains up to six additional vendor data objects in
one vendor-defined message. The command is the second part of the
vendor-defined message header that can be any 15-bit value in the case
of an unstructured vendor-defined message.

Table 2 shows example structured vendor-defined message commands.

4. Methodology

Devices come in different architectures from numerous vendors and
without source code or firmware that implement the USB Power Delivery
protocol. Therefore, a black-box method was attempted to test the
existence of vendor-defined messages in the protocol. One approach
is to analyze protocol communications between devices from the same
vendor and determine if vendor-defined messages are employed. This

108 ADVANCES IN DIGITAL FORENSICS XV

Table 2. Structured commands in Revision 3.0 (version 1.2).

Structured Vendor-Defined Message Commands

Discover Identity
Discover SVIDs
Discover Modes
Enter Mode
Exit Mode
Attention
SVID Specific Commands (defined by the SVID)

assumes that, if such messages exist, the connected devices initiate their
use by default.

Instead, a more active approach that directly communicates with a
test device was employed. Since no solution was available to communi-
cate with devices via the USB Power Delivery protocol, a home-grown
approach was employed. A detailed description of this approach is be-
yond the scope of this chapter. However, the concept is simple – set up
a device to act as the source, establish a connection with the test device
and check for vendor-defined messages.

Testing for vendor-defined messages sounds simple, but the reality
is quite different. Because the protocol specification states that any
vendor-defined message must include a vendor ID, it is necessary to
know or guess the expected vendor ID of the device of interest. This is
important because a device would not respond to a vendor-defined mes-
sage containing a correctly-guessed command but an incorrect vendor
ID in the header.

Message Header
16 bit

Product Type VDO
(0-3)

VDM Header
(Discover Identity)

Product
VDO

ID Header
VDO

Cert Stat
VDO

Figure 7. Discover Identity reply packet.

Fortunately, it is possible to leverage the Discover Identity command
in the structured vendor-defined message command set shown in Table 2.
This command is required by the USB Power Delivery protocol, so all
devices should support the command. The command, which enables
devices and cables to identify other end points, has a predefined reply
packet format with a fixed number of vendor data objects and their
content (Figure 7). The ID header of the 32-bit vendor data object has
bits 0–15 reserved for the device USB-IF vendor ID. A connected device
reveals its vendor ID upon receiving a Discover Identity command.

Alendal, Axelsson & Dyrkolbotn 109

The protocol specification also states that structured vendor-defined
messages shall only be used when an explicit contract is in place (ex-
cept for a small number of cables that are not relevant in this context).
The same holds true for unstructured vendor-defined messages. Thus,
a device will not reply to a vendor-defined message until an explicit
contract is in place (i.e., a power source configuration has been negoti-
ated). Therefore, it is required to simulate a complete explicit contract
negotiation with a test device before a vendor-defined message can be
received.

This makes it necessary to simulate many messages (Figure 3) with
corresponding time-outs, such as CRCReceiveTimer (maximum 1.1ms),
SenderResponseTimer (maximum 30ms) and PSTransitionTimer (max-
iumum 550ms). Since the protocol defines the time-out values, the reply
to a packet must be provided in time or the device will time out. Many
of these requirements are strict, so the simulator must have a quick
response, which, in turn, may render a pure software solution infeasible.

By negotiating an explicit contract with a device, it is possible to ex-
plore the existence of unstructured vendor-defined commands. Using the
vendor ID captured from the response of a device to a Discover Iden-
tity command, different unstructured vendor-defined commands could
be sent to the device and the responses, if any, could be examined. This
can be done by brute forcing the lower 15 vendor use bits of the unstruc-
tured vendor-defined message header (Figure 5) with a fixed vendor ID
for each device.

Two approaches are possible. The first is to attempt to measure
the skews in the timing of device responses. The second is to test for
device responses other than the expected GoodCRC message. Testing
for timing skews could indicate that the device spent additional time
to process a correctly-guessed unstructured vendor-defined command.
However, this approach requires high resolution timers. Unfortunately,
the experimental setup could only measure the time elapsed from when a
packet was sent to when the response was received, which was much too
inaccurate. Therefore, the second approach involving device responses
other than the expected GoodCRC message was employed in the exper-
iments.

5. Experimental Results

Not every device with a USB Type-C connector is enabled for the USB
Power Delivery protocol. If a test device with a USB Type-C connector
does not respond with a GoodCRC message to the Source Capabilities

110 ADVANCES IN DIGITAL FORENSICS XV

Table 3. Test devices with USB Type-C connectors and protocol support.

Device Firmware Protocol Exposed
(Model) Version Revision Vendor ID

HTC 10 1.90.401.5 2.0 0x0bb4

(2PS6200) (HTC)

HTC U11 1.13.401.1 3.0 0x05c4

(2PZC100) (Qualcomm)

Huawei Mate 10 Pro 8.0.0.137(C432) 2.0 0x12d1

(BLA-L29) (Huawei)

LG G5 V10i-EUR-XX MMB29M 2.0 0x0000

(LG-H850) (Unknown)

Nokia 8 Sirocco 00WW 3 10F 2.0 0x05c6

(TA-1005) (Qualcomm)

Samsung Galaxy S9 G960FXXU2BRH7 3.0 0x04e8

(G960F) (Samsung)

message in an explicit contract negotiation (Figure 3), then the device
can be assumed to be non-protocol-enabled.

According to Section 6.2.1.1.5 of USB Power Delivery Protocol Speci-
fication Revision 3.0 (v.1.2) [8], the source shall set its highest supported
specification revision in the specification revision field of the Source Ca-
pabilities message and the sink shall reply with its highest supported
specification revision in the specification revision field of the Request
message (Figure 3). Because the specification states that the specifica-
tion revision field value should be backwards compatible, this means the
highest version can always be simulated in the first Source Capabilities
message acting as the source and the Request response from the device
can then be checked.

After negotiating a complete explicit contract (Figure 3) with a test
device, a Discover Identity message was sent to the device to obtain
the USB-IF vendor ID from the device. Table 3 shows the test devices
with USB Type-C connectors that were determined via this technique
to support the USB Power Delivery protocol.

With an explicit contract in place with a test device with protocol
support and its USB-IF vendor ID known, the next step was to send
arbitrary protocol messages to the device and test the responses. Specif-
ically, unstructured vendor-defined messages were sent with the vendor
ID set to the appropriate value, type set to 0 (i.e., unstructured) and
vendor use set to different values corresponding to commands (Figure 5).

Alendal, Axelsson & Dyrkolbotn 111

Table 4. Huawei Mate 10 Pro (BLA-L29) message capture.

ID Time Role Message Data

284 0:41.044.922 Hard Reset

286 0:43.577.218 Source:DFP [0]Source Cap A1 11 F0 90 01 08 FE CA B7 52

290 0:43.577.879 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

293 0:43.580.754 Sink:UFP [0]Request 42 10 C8 20 03 13 52 0F 95 B7

297 0:43.581.374 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81

300 0:43.582.060 Source:DFP [1]Accept 63 03 21 7B 00 96

303 0:43.582.586 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

306 0:43.583.283 Source:DFP [2]PS RDY A6 05 1F FD EE C9

309 0:43.583.915 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

312 0:43.737.641 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61

316 0:43.738.185 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

319 0:43.744.295 Sink:UFP [1]VDM:DiscIdentity 4F 52 41 80 00 FF D1 12 00 EC 00 00 00

00 00 00 7E 10 01 00 00 11 80 C1 C7 56

327 0:43.745.502 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

330 0:44.918.448 Source:DFP [1]VDM:Unstructured 6F 13 01 00 D1 12 0D 13 06 BC

334 0:44.919.214 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

337 0:46.507.375 Source:DFP [2]VDM:Unstructured 6F 15 02 00 D1 12 43 49 F3 21

341 0:46.507.960 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

The responses were analyzed and any response other than the expected
GoodCRC was assumed to be an attempt by the test device to reply to
the random “command” it received.

A commercial USB Power Delivery protocol recorder was used to cap-
ture communications with the test devices. Table 4 shows an example
capture of messages to and from the Huawei test device that was config-
ured as the sink. The message capture shows the entire explicit contract
negotiation (message IDs 286–309) and the USB-IF vendor ID discovery
(message IDs 312–327), which are followed by two unstructured vendor-
defined message brute force attempts (message IDs 330–334 and message
IDs 337–341). Note that the Huawei device did not respond to the two
unstructured vendor-defined message tests with anything other than the
expected GoodCRC message.

Very few test devices responded to the brute force test. In fact, only
the Samsung device replied with anything other than a GoodCRC mes-
sage, and only for some messages.

Table 5 shows an example capture of messages to and from the Sam-
sung Galaxy S9 test device that was configured as the sink. Once again,
the message capture shows the entire explicit contract negotiation (mes-
sage IDs 5442–5465) and the USB-IF vendor ID discovery (message IDs

112 ADVANCES IN DIGITAL FORENSICS XV

Table 5. Samsung Galaxy S9 (G960F) message capture.

ID Time Role Message Data

5440 14:36.248.230 Hard Reset
5442 14:39.309.886 Source:DFP [0]Source Cap A1 11 F0 90 01 08 FE CA B7 52

5446 14:39.310.395 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5449 14:39.311.982 Sink:UFP [0]Request 82 10 F0 C0 03 13 08 11 00 3A

5453 14:39.312.708 Source:DFP [0]GoodCRC A1 01 C1 AF C2 81

5456 14:39.313.284 Source:DFP [1]Accept 63 03 21 7B 00 96

5459 14:39.313.979 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5462 14:39.314.462 Source:DFP [2]PS RDY A6 05 1F FD EE C9

5465 14:39.315.049 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

5468 14:39.471.248 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61

5472 14:39.471.866 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5475 14:39.476.288 Sink:UFP [1]VDM:DiscIdentity 8F 42 41 80 00 FF E8 04 00 D1 00 00 00

00 00 00 60 68 C2 B2 A2 9E

5482 14:39.477.131 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

5485 14:40.650.372 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

5489 14:40.651.199 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5492 14:40.654.796 Sink:UFP [2]VDM:Unstructured 4F 14 41 00 E8 04 FD AA CE 68

5496 14:40.655.473 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

5499 14:41.828.228 Source:DFP [2]VDM:Unstructured 6F 15 02 00 E8 04 A8 71 A3 DB

5503 14:41.829.056 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

5506 14:41.833.325 Sink:UFP [3]VDM:Unstructured 4F 56 42 00 E8 04 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 34 A1 0A 25

5514 14:41.834.581 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

5517 14:43.008.455 Source:DFP [3]VDM:Unstructured 6F 17 02 00 E8 04 C8 22 63 A1

5521 14:43.009.071 Sink:UFP [3]GoodCRC 41 06 8E C9 D8 41

5524 14:43.013.435 Sink:UFP [4]VDM:Unstructured 4F 58 42 00 E8 04 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 84 AD C5 F6

5532 14:43.014.693 Source:DFP [4]GoodCRC 61 09 BD F0 E3 44

5535 14:44.180.619 Source:DFP [4]VDM:Unstructured 6F 19 03 00 E8 04 CC FB EF A6

5539 14:44.181.134 Sink:UFP [4]GoodCRC 41 08 89 E4 60 A6

5542 14:45.761.683 Source:DFP [5]VDM:Unstructured 6F 1B 02 00 E8 04 C9 CF 93 64

5546 14:45.762.289 Sink:UFP [5]GoodCRC 41 0A A5 85 6E 48

5549 14:45.766.649 Sink:UFP [5]VDM:Unstructured 4F 5A 42 00 E8 04 0D DA 95 63 4A 97 17

B5 F5 34 11 47 53 7E C9 E9 8C 35 3F 0E

5557 14:45.767.917 Source:DFP [5]GoodCRC 61 0B 91 91 ED AA

5560 14:46.933.424 Source:DFP [6]VDM:Unstructured 6F 1D 01 00 E8 04 87 95 66 F9

5564 14:46.934.042 Sink:UFP [6]GoodCRC 41 0C 90 20 0D A1

5567 14:46.937.851 Sink:UFP [6]VDM:Unstructured 4F 1C 41 00 E8 04 3C E1 BE 58

5571 14:46.938.566 Source:DFP [6]GoodCRC 61 0D A4 34 8E 43

5574 14:48.114.825 Source:DFP [7]VDM:Unstructured 6F 1F 02 00 E8 04 09 69 13 91

5578 14:48.115.442 Sink:UFP [7]GoodCRC 41 0E BC 41 03 4F

5581 14:48.119.820 Sink:UFP [7]VDM:Unstructured 4F 5E 42 00 E8 04 0D DA 95 63 4A 97 17

B5 F5 34 11 47 53 7E C9 E9 37 31 C6 1C

5589 14:48.121.075 Source:DFP [7]GoodCRC 61 0F 88 55 80 AD

5592 14:49.303.445 Source:DFP [0]VDM:Unstructured 6F 11 03 00 E8 04 0D B0 9F 96

5596 14:49.304.274 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

5599 14:50.881.168 Source:DFP [1]VDM:Unstructured 6F 13 02 00 E8 04 08 84 E3 54

5603 14:50.881.789 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

5606 14:50.886.156 Sink:UFP [0]VDM:Unstructured 4F 50 42 00 E8 04 60 B3 A9 5A 65 3F 48

3C 3A D6 13 DC 2D 32 8D 16 F6 75 A3 FE

5614 14:50.887.366 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A

Alendal, Axelsson & Dyrkolbotn 113

5468–5482). These are followed by the first unstructured vendor-defined
message test (message ID 5485). The sent message has an unstructured
vendor-defined message header of 0x04e80001, which is decoded accord-
ing to Figure 5 as vendor ID: 0x04e8, type: 0 and vendor use: 0x0001
(15-bit value).

Note that this unstructured vendor-defined message received a re-
sponse other that the GoodCRC (message ID 5492). The response has
an unstructured vendor-defined message header of 0x04e80041, which
is decoded according to Figure 5 as vendor ID: 0x04e8, type: 0 and ven-
dor use: 0x0041. This message appears to be a reply with no additional
data (i.e., vendor data objects).

A similar situation is seen for message 5499 with vendor use: 0x0002,
whose response (message ID 5506) has vendor use: 0x0042 and four
additional vendor data objects: 0x00000000 0x00000000 0x00000000

and 0x00000000.
The two vendor use command/reply pairs of 0x0001/0x0041 and

0x0002/0x0042 imply that bit 6 (0x0040) may be an ACK bit. If the
unstructured headers are interpreted as structured headers (Figure 6),
then bits 6–7 correspond to type where 0x1 (bit 6 set) corresponds to an
ACK. Of course, the real situation is not clear, but it does appear that
the vendor may have mixed the two types of vendor-defined message
headers.

Investigating further, the response (message ID 5506) with vendor use
set to 0x0042 also has four additional vendor data objects: 0x00000000
0x00000000 0x00000000 and 0x00000000. This appears to be data sent
back to the source side from the sink. All the vendor data objects contain
zeroes in the replies to two consecutive messages with vendor use set to
0x0002 (message IDs 5499 and 5517).

However, when a different message (message ID 5535) is sent to the
device with vendor use set to 0x0003, then a completely different re-
ply is received with vendor use set to 0x0002 (message ID 5542) and
four vendor data objects: 0x6395da0d 0xb517974a 0x471134f5 and
0xe9c97e53 (message ID 5549). Sending message 5535 again (message
ID 5574) yields the same four vendor data objects (message ID 5581).
However, another message with vendor use set to 0x0003 (message ID
5592) once again changes the vendor data objects for vendor use set
to 0x0002. Specifically, the four vendor data objects are: 0x5aa9b360

0x3c483f65 0xdc13d63a and 0x168d322d (message ID 5606).
It appears that data in the form of vendor data objects is received

from the device and different data is received when sending a specific
message with vendor use set to 0x0003. The four vendor data objects
appear to change in pseudorandom order. Another observation is that,

114 ADVANCES IN DIGITAL FORENSICS XV

Table 6. Samsung Galaxy S9 (G960F) message capture.

ID Time Role Message Data

162 0:06.589.154 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

166 0:06.589.982 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

169 0:06.594.059 Sink:UFP [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7

173 0:06.594.675 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

176 0:06.629.222 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 1C 47 B3 AB 2E F3 7B AE

F9 09 79 82 02 3B C6 BB 1A D4 E8 41

184 0:06.630.376 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

187 0:06.635.264 Sink:UFP [2]VDM:Unstructured 4F 54 42 00 E8 04 1C 47 B3 AB 2E F3 7B AE

F9 09 79 82 02 3B C6 BB 51 65 55 63

195 0:06.636.524 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

when a message is sent with vendor use set to 0x0002 along with four
random vendor data objects (0xabb3471c, 0xae7bf32e, 0x827909f9,
0xbbc63b02), a reply is received with the same vendor data objects
(Table 6). This implies that a message with vendor use set to 0x0002

corresponds to an initialization command. Repeating the messages with
vendor use set to 0x0003 and 0x0002 gives different vendor data objects,
which may correspond to some form of encryption or obfuscation.

Sending two identical runs of the messages in Table 5 gives the same
results and any randomization of the four vendor data objects sent with
vendor use set to 0x0002 yields seemingly random reply vendor data ob-
jects when intermingled with messages with vendor use set to 0x0003.
This strengthens the belief that encryption is in place and that the mes-
sage with vendor use set to 0x0002 is either transmitting a key or an
initialization vector for a symmetric cipher.

Because the results indicate that Samsung devices respond to vendor-
defined messages in the USB Power Delivery protocol, additional ex-
periments were conducted to confirm the results. The experiments em-
ployed a special factory test device called the Samsung Anyway S103
(Figure 8). This device enables a console interface provided by the de-
vice bootloader, which is useful for debug logging and other activities.
The same console can be reached via a custom USB connector and a
simple RS232-to-USB serial converter on older devices with micro-USB
connectors [3]. Alendal et al. [1] employed this type of connection to
demonstrate an exploit targeting Samsung devices with a certain secu-
rity vulnerability. The exploit assisted in bypassing a security feature in
the devices. This demonstrates the importance of expanding the attack
surface of a device by enabling the factory test feature.

Alendal, Axelsson & Dyrkolbotn 115

Figure 8. Samsung Anyway S103.

The special factory device was hard to obtain because it is usually
provided to Samsung device repair shops and similar outlets. However,
a factory device was procured to communicate with the Samsung test
device using the USB Power Delivery protocol. Table 7 shows a message
capture with the Samsung Anyway S103 and Samsung Galaxy S9 con-
figured as the source and sink, respectively (the vendor data objects are
partially redacted). Note that the communications in the message cap-
ture did not involve an explicit contract negotiation as required in the
protocol specification. Instead, immediate vendor-defined message com-
munications were conducted using the discovered vendor-defined mes-
sages. The capture corresponds to a vendor-defined message with ven-
dor use set to 0x0001, followed by a vendor-defined message with vendor
use set to 0x0002 that provides four pseudorandom vendor data objects.
These are followed by several vendor-defined messages with vendor use
set to 0x0003, each containing four vendor data objects with seemingly
pseudorandom data.

Next, the Samsung Anyway S103 factory device was removed as the
source and a blind replay from the source side of the communications was
attempted. The idea was that, if the source messages from the Samsung
Anyway S103 device were replayed and the same sink messages were
received from the test device, then the Samsung Anyway S103 device
was essentially being emulated. This test was an immediate success.

116 ADVANCES IN DIGITAL FORENSICS XV

Table 7. Samsung Anyway S103 and Samsung Galaxy S9 message capture.

ID Time Role Message Data

1 0:03.900.730 Source:DFP [0]VDM:DiscIdentity 6F 11 01 80 00 FF 76 31 6B 61

5 0:03.901.546 Sink:UFP [0]GoodCRC 41 00 BB 6C BB A8

8 0:03.905.272 Sink:UFP [0]VDM:DiscIdentity 8F 40 41 80 00 FF E8 04 00 D1 00 00 00 00

00 00 60 68 05 22 9E 4A

15 0:03.906.336 Source:DFP [0]GoodCRC 61 01 8F 78 38 4A

18 0:03.906.881 Source:DFP [1]VDM:Unstructured 6F 13 01 00 E8 04 E6 2B 56 46

22 0:03.907.590 Sink:UFP [1]GoodCRC 41 02 97 0D B5 46

25 0:03.912.440 Sink:UFP [1]VDM:Unstructured 4F 12 41 00 E8 04 5D 5F 8E E7

29 0:03.913.109 Source:DFP [1]GoodCRC 61 03 A3 19 36 A4

32 0:03.913.649 Source:DFP [2]VDM:Unstructured 6F 55 02 00 E8 04 0C DD BB FF REDACTED

40 0:03.914.888 Sink:UFP [2]GoodCRC 41 04 A2 A8 D6 AF

43 0:03.919.998 Sink:UFP [2]VDM:Unstructured 4F 54 42 00 E8 04 0C DD BB FF REDACTED

51 0:03.921.093 Source:DFP [2]GoodCRC 61 05 96 BC 55 4D

54 0:03.922.149 Source:DFP [3]VDM:Unstructured 6F 57 03 00 E8 04 E6 A9 7F 72 94 CE B1

B6 54 BA B7 75 6A F1 89 B8 01 65 20 E8

62 0:03.923.388 Sink:UFP [3]GoodCRC 41 06 8E C9 D8 41

65 0:03.931.556 Sink:UFP [3]VDM:Unstructured 4F 56 43 00 E8 04 9F B2 F5 F9 F1 68 E2

AF E5 AA 22 73 D0 77 6A 2E B6 3A A9 FB

73 0:03.932.759 Source:DFP [3]GoodCRC 61 07 BA DD 5B A3

76 0:03.934.596 Source:DFP [4]VDM:Unstructured 6F 59 03 00 E8 04 F7 96 A6 2A 08 BB A9

6E 38 40 E4 AF 33 43 7A 23 E6 D7 A8 E9

84 0:03.935.837 Sink:UFP [4]GoodCRC 41 08 89 E4 60 A6

87 0:03.942.701 Sink:UFP [4]VDM:Unstructured 4F 58 43 00 E8 04 9A 01 DB AE 9A 39 26

77 B0 A8 2D 11 A2 C1 76 80 1E 08 1E C2

95 0:03.943.902 Source:DFP [4]GoodCRC 61 09 BD F0 E3 44

The key result is that the same console reached on micro-USB Samsung
devices was enabled without the assistance of the Samsung Anyway S103
factory device.

The successful message replay strengthens the belief that encryption is
involved and that the first four vendor data objects in the vendor-defined
message with vendor use set to 0x0002 are crucial to initialization. These
vendor data objects could correspond to an initialization vector or per-
haps even the key to a symmetric cipher. However, experiments with
several symmetric ciphers using the four vendor data objects as the key
to decrypt vendor data objects in messages with the vendor use set to
0x0003 did not yield positive results.

Alendal, Axelsson & Dyrkolbotn 117

6. Conclusions

The principal contribution of this research is a testing methodology
and implementation for revealing and analyzing proprietary USB Power
Delivery protocol messages. The experimental results demonstrate that
at least one common mobile device, the Samsung Galaxy S9, is amenable
to the testing methodology. In particular, the device responds to certain
vendor-defined messages and the responses indicate the use of encryp-
tion, which raises the possibility of capturing initialization vectors and
keys for symmetric ciphers. Another important result is the ability to
enable factory device features in a test device in order to obtain valuable
log data from the device and to widen its attack surface.

Future research will continue the investigation of vendor-defined mes-
sages in the USB Power Delivery protocol. Since vendors may also im-
plement hidden features in other parts of the protocol, a promising ap-
proach is to investigate the role of the sink device that consumes power.
Connecting two devices that typically serve as sinks – like two mobile
phones – causes one device to assume the source role and provide power
to the other device. This source-sink relationship could be exploited to
expand the attack surface or even to directly acquire data.

Future research will also investigate potential security vulnerabilities.
This is challenging because it is not known how to instrument a USB
Power Delivery chip for feedback (e.g., if it crashes or demonstrates
anomalous behavior). An alternative approach is to conduct a source
code review or extract the chip firmware and apply reverse engineering
techniques. Another approach is to analyze device-side communications
with the USB Power Delivery chip, which could reveal interesting fea-
tures or vulnerabilities in the chip logic as well in the operating system.

The popularity of USB Type-C connectors is increasing and large
numbers of consumer devices will support the USB Power Delivery pro-
tocol. It is hoped that this work will stimulate research on the protocol
and its implementations to advance device security and forensics.

Acknowledgement

This research was sponsored by the Norwegian Research Council IK-
TPLUSS Program under the Ars Forensica Project No. 248094/O70.

References

[1] G. Alendal, G. Dyrkolbotn and S. Axelsson, Forensic acquisition –
Analysis and circumvention of Samsung secure boot enforced com-
mon criteria mode, Digital Investigation, vol. 24(S), pp. S60–S67,

118 ADVANCES IN DIGITAL FORENSICS XV

2018.

[2] G. Alendal, C. Kison and modg, Got HW Crypto? On the
(In)Security of a Self-Encrypting Drive Series, Cryptology ePrint
Archive, Report 2015/1002 (eprint.iacr.org/2015/1002), 2015.

[3] N. Artenstein, Exploiting Android S-Boot: Getting arbitrary code
exec in the Samsung bootloader (1/2), Information Security News-
paper, March 3, 2017.

[4] Chindi.ap (commons.wikimedia.org/wiki/User:Chindi.ap), 2019.

[5] H. Reydarns, V. Lauwereys, D. Haeseldonckx, P. van Willigenburg,
J. Woudstra and S. De Jonge, The development of a proof of con-
cept for a smart DC/DC power plug based on USB Power Delivery,
Proceedings of the Twenty-Second Conference on the Domestic Use
of Energy, 2014.

[6] T10 Technical Committee of the International Committee on Infor-
mation Technology Standards, SCSI Operation Codes (www.t10.
org/lists/op-num.htm), 2015.

[7] USB Implementers Forum, Getting a Vendor ID, Beaverton, Oregon
(www.usb.org/getting-vendor-id), 2019.

[8] USB Implementers Forum, USB Power Delivery, Beaverton, Oregon
(www.usb.org/document-library/usb-power-delivery), 2019.

Chapter 7

DETECTING ANOMALIES IN
PROGRAMMABLE LOGIC
CONTROLLERS USING
UNSUPERVISED MACHINE LEARNING

Chun-Fai Chan, Kam-Pui Chow, Cesar Mak and Raymond Chan

Abstract Supervisory control and data acquisition systems have been employed
for decades to communicate with and coordinate industrial processes.
These systems incorporate numerous programmable logic controllers
that manage the operations of industrial equipment based on sensor
information. Due to the important roles that programmable logic con-
trollers play in industrial facilities, these microprocessor-based systems
are exposed to serious cyber threats.

This chapter describes an innovative methodology that leverages un-
supervised machine learning to monitor the states of programmable logic
controllers to uncover latent defects and anomalies. The methodology,
which employs a one-class support vector machine, is able to detect
anomalies without being bound to specific scenarios or requiring de-
tailed knowledge about the control logic. A case study involving a traf-
fic light simulation demonstrates that anomalies are detected with high
accuracy, enabling the prompt mitigation of the underlying problems.

Keywords: Programmable logic controllers, anomaly detection, machine learning

1. Introduction

Supervisory control and data acquisition (SCADA) systems have been
employed for decades to manage and control critical infrastructure as-
sets. With human lives and the economy at stake, SCADA system
failures – whether due to accidents or attacks – cannot be tolerated.
Therefore, it is vital to detect SCADA system anomalies and implement
effective mitigation strategies.

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 119–130, 2019.

https://doi.org/10.1007/978-3-030-28752-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_7&domain=pdf

120 ADVANCES IN DIGITAL FORENSICS XV

Programmable logic controllers (PLCs) are the workhorses of SCADA
systems. These microprocessor-based systems implement programmable
logic that processes input signals from sensors that measure system/en-
vironment state to produce output signals that are transmitted to ac-
tuators as well as other programmable logic controllers that operate
and manage industrial equipment and processes. Programmable logic
controllers are typically small, rugged, specialized devices designed to
perform specific control tasks, often operating in harsh environments
with extreme temperatures and strong vibrations. Industrial systems
may have tens to hundreds of programmable logic controllers. Large
infrastructure assets such as power grids and oil and gas pipelines have
thousands of programmable logic controllers.

Programmable logic controllers are exposed to inadvertent and mali-
cious threats that can impact their ability to safely operate industrial
systems and facilities. The most common inadvertent threats are posed
by control program implementation bugs. Malicious threats include
memory read/write logic attacks [20, 21], malware worms [5, 6, 16],
time bombs [1, 7], and stop and start attacks [22]. These threats make
it imperative to develop security solutions for monitoring the states of
programmable logic controllers to uncover latent defects and anomalies.

Unfortunately, the limited computational and storage resources of pro-
grammable logic controllers make it difficult to deploy conventional se-
curity measures such as firewalls and intrusion detection systems. Novel
and efficient methodologies are required to detect anomalous controller
behavior in real time, and help support prompt mitigations and forensic
investigations of incidents [9, 22].

Machine learning, which has been employed with much success in in-
trusion and anomaly detection systems for traditional computing and
networking infrastructures, is a promising approach for developing sim-
ilar systems for programmable logic controllers. Supervised learning,
which takes in training data with labeled outcomes, is oriented towards
data clustering and classification. Unsupervised learning, which takes
in unlabeled data, is geared towards outlier detection. In both cases, a
mathematical model is generated from the training data and the model
serves as a classifier for new data. Either model can be used for anomaly
detection.

It is difficult to apply supervised learning to detect attacks on pro-
grammable logic controllers due to the lack of genuine attack data; ad-
ditionally, the problem spaces (numbers of attack patterns) are large
and simulating every attack pattern to generate data is infeasible. In
contrast, unsupervised learning uses datasets without labels [12, 14]. A

Chan, Chow, Mak & Chan 121

training dataset covering normal behavior is created and normalized to
construct a model that identifies outliers.

Anomaly detection is conceptually identical to outlier detection, which
makes unsupervised learning ideal for the problem at hand. In fact, out-
lier identification is virtually equivalent to applying unary classification
with respect to good cases.

A one-class support vector machine is a special case of a support vec-
tor machine with unary classification [17]. In this approach, data points
are grouped using correlations that are computed to yield the normal
state class. The region corresponding to normal state class data is used
to assess if a new data point is an outlier. This approach is essentially
a sophisticated regression test where the training data is processed col-
lectively. It is especially appropriate when the training dataset mainly
comprises normal state data and very little anomalous data. Indeed,
the approach is well-suited to anomaly detection in programmable logic
controllers because attacks are rare and attack data is hard to come by
whereas normal data is readily captured during day-to-day operations.

This chapter describes a methodology that leverages unsupervised ma-
chine learning to monitor the states of programmable logic controllers
to uncover latent defects and anomalies. The methodology, which em-
ploys a one-class support vector machine, can detect anomalies without
being bound to specific scenarios or requiring detailed knowledge about
the control logic. In addition to conventional data capture methods, the
methodology leverages an additional security block in a programmable
logic controller to detect anomalies [1]. The historian is also employed to
store timestamped programmable logic controller state information (i.e.,
key memory address values) for anomaly/attack analyses and forensic in-
vestigations. A traffic light simulation case study employing a Siemens
S7-1212C programmable logic controller demonstrates that anomalies
are detected with high accuracy.

2. Related Work

Garitano et al. [2] have reviewed several anomaly detection method-
ologies and conclude that network intrusion detection systems may not
be able to efficiently detect attacks on industrial control systems. Fur-
thermore, since programmable logic controllers typically have limited
computational resources, implementing host-based intrusion detection
systems is generally infeasible.

Hsu et al. [4] have evaluated several machine learning algorithms on
datasets comprising normal operational data from SCADA networks.

122 ADVANCES IN DIGITAL FORENSICS XV

Their results demonstrate that machine learning algorithms are able to
accurately detect most attacks.

Schuster et al. [10] conducted anomaly detection experiments in two
plant process control networks using one-class support vector machines
and isolation forest classifiers. Their studies revealed that network traffic
data is inadequate for training purposes when sufficient programmable
logic controller traffic is not available.

Wu and Nurse [18] have observed that valuable information can be ob-
tained by monitoring the memory addresses of programmable logic con-
trollers, regardless of whether the controllers were executing normally or
were under attack. They also evaluated the use of a programmable logic
controller logger as a forensic tool that continuously polls the memory
variables in a running programmable logic controller.

Yau and Chow [20, 21] have proposed two approaches for detecting at-
tacks on programmable logic controllers. One approach applies machine
learning to logged data of pre-selected memory values of a programmable
logic controller to detect abnormal operations [20]. The other approach
employs a control program logic change detector that leverages anomaly
detection rules to detect and record undesirable events [19].

Both the approaches require knowledge about the control logic before
monitoring procedures can be applied. They may, therefore, be imprac-
tical because the personnel responsible for monitoring the security of
SCADA systems are typically not involved in SCADA system develop-
ment. In addition, remote monitoring of programmable logic controllers
via active polling imposes network overhead that is unacceptable in in-
dustrial control system environments.

To overcome these challenges, Chan et al. [1] proposed the incorpora-
tion of a security block module to support programmable logic controller
logging and attack detection capabilities. Specifically, they installed a
security block (i.e., programmable logic controller code) on the device to
capture selected memory content and other internal device information
for monitoring purposes. This approach can help detect programmable
logic controller memory read-write logic attacks with high accuracy while
maintaining a low network footprint. In addition, the security block can
verify the number of data blocks installed in a programmable logic con-
troller to detect worm attacks, which is more efficient than traditional
network memory address value polling method using libnodave [3] or the
Siemens Step 7 library [8].

Chan, Chow, Mak & Chan 123

=������2�����
��!

�������%!�
#��:
�8

!
����

?���
������
�
���&�������
�

�����2�����

Figure 1. Experimental setup.

3. Anomaly Detection Case Study

This section describes the experimental setup and the methodology
for detecting anomalous programmable logic controller operations.

3.1 Experimental Setup

Figure 1 shows the experimental setup. A Siemens S7-1212C pro-
grammable logic controller was installed with a traffic light control pro-
gram that manages interactions between switches and the sequencing
and durations of traffic lights. In addition to the standard traffic control
light program, the programmable logic controller was equipped with a
security block that transmitted input, output and memory address val-
ues to a historian via a direct TCP connection. All this information was
recorded in a log file by the historian for anomaly detection and forensic
analysis.

Rogue attacks on the programmable logic controller were executed by
incorporating attack logic in the device. Upon receiving certain input
signals, the program logic altered output signals to launch the attacks.

The objective of the experiment was to detect anomalous behavior.
Events such as direct attacks, hardware failures and implementation
bugs produce anomalies. By attaching timestamps to the events, anoma-
lous situations can also be investigated retroactively by examining the
data maintained by the historian.

124 ADVANCES IN DIGITAL FORENSICS XV

Figure 2. Assignment list for the traffic light system with a security block.

3.2 Anomaly Detection Methodology

In order to detect anomalies, it is necessary to capture adequate
amounts of useful data. Since there is no prior information about the
programmable logic controller logic, it is necessary to determine which
memory addresses are referenced by the controller logic.

If the source code of the traffic light program is available, the code
can be loaded into TIA [15], an integrated development environment for
Siemens programmable logic controllers, which creates an assignment list
that contains all the referenced memory addresses. Figure 2 shows the
assignment list for the traffic light program. Because the security block
was configured to use memory block addresses MB200 to MB900, these
addresses were deemed to be irrelevant and were, therefore, ignored in
the data capture.

If the source code is not available, then it is necessary to capture the
contents of memory addresses during normal operation. The memory
capture process is repeated for small memory blocks until the contents
of all the memory addresses have been captured. Next, the memory
addresses whose contents do not change are eliminated based on the
assumption that their inactivity implies that they have no impact on
programmable logic controller behavior. The assumption is reasonable

Chan, Chow, Mak & Chan 125

for programs that do not flip and restore memory addresses during a
cycle, and have no external dependencies. This turned out to be the
case for the traffic light simulation program.

Since the source code was available in the experiment, the Siemens
TIA integrated development environment was used to identify the mem-
ory addresses of interest in the programmable logic controller.

After the memory addresses have been identified, several approaches
can be used to capture information about programmable logic controller
status. One approach is to use a network sniffer or mirror port in a
network device to capture network traffic to and from the programmable
logic controller. Another approach is to actively poll memory address
values using an external program [19]. Yet another approach is to use a
security block to transmit internal programmable logic controller data [1]
to a historian.

The approach adopted in this work was to capture and analyze input
and output signals and memory values using a security block. One reason
is that, in many real-world deployments (as in the case of the traffic con-
trol experiment), a programmable logic controller has minimal external
network traffic – because it is directly connected to input/output ports,
not all signals generate network traffic traces during normal operation.
In addition, stateful information about programmable logic controller
operations may not be transferred to an external device such as a histo-
rian for storage. Thus, network traffic captures alone would not provide
adequate information about the programmable logic controller.

Since different combinations of memory address values may represent
different program states, it is important to ensure that the captured
values are consistent within a programmable logic controller execution
cycle. However, using an external program (e.g., Snap7 [8]) over a net-
work to query memory address values does not ensure their consistency
due to network latency and programmable logic controller operating sys-
tem delays. In addition, continuously polling multiple memory addresses
imposes overhead on a programmable logic controller that may degrade
its performance.

These challenges are overcome using a security block to produce a
consistent snapshot of memory values in every cycle. Other advantages
of the security block over active polling are higher levels of correlation
between memory addresses, less lag and missing state data, and accurate
timestamp information for forensic analyses.

Since the data transferred from a security block is in the form of a
tokenized byte stream, the byte stream has to be converted back to its
original data types (e.g., integer and boolean) for input to a machine
learning model.

126 ADVANCES IN DIGITAL FORENSICS XV

The popular OCSVM outlier detection machine learning model [10]
was employed to detect anomalies. The specific OCSVM model used was
from Scikit-learn [13], an open-source software package that provides
several machine learning libraries written in Python. The formatted
input data was provided to the OCSVM model libraries.

The OCSVM parameters were optimized to increase model accuracy
before it underwent training and testing. This was achieved by applying
a portion of the original dataset to conduct an iterative search for the
best parameters.

The following optimized parameter settings were employed:

Kernel: This parameter specifies the non-linear function used by
the support vector machine to project the hyperspace to a higher
dimension. The optimal rbf kernel setting was used.

Degree: This parameter specifies the degree of the polynomial
kernel function. The optimal degree setting of four was used.

Coef0: This parameter is not significant for the rbf kernel. The
optimal setting of zero was used.

Nu: This parameter specifies the maximum number of training
examples that can be misclassified and the minimum fraction of
training examples for the support vector. The optimal setting of
0.001 was used.

The next step involved the generation of anomalous events and data
collection. Programs were executed to inject attack traffic into the pro-
grammable logic controller to simulate real attacks. Normal and attack
data collected by the historian were used as samples.

The following metrics for benchmarking the accuracy of machine learn-
ing techniques [11] were used to assess the effectiveness of anomaly de-
tection:

Precision: Precision is defined as the ratio of true positives to the
sum of true positives and false positives (= TP

TP+FP). It measures
the ability of a classifier to not misclassify negative samples as
positive samples. The precision ranges from one (best) to zero
(worst).

Recall: Recall is defined as the ratio of true positives to the sum
of true positives and false negatives (= TP

TP+FN). It measures the
ability of a classifier to identify all the positive samples. The recall
ranges from one (best) to zero (worst).

Chan, Chow, Mak & Chan 127

Table 1. Classification results for various performance metrics.

Records Precision Recall F1 Score

Training Set 922,162 1.00 0.94 0.97
Testing Set 1 505,041 0.97 0.93 0.94
Testing Set 2 588,573 0.95 0.94 0.94
Testing Set 3 471,207 0.97 0.95 0.96

F1 Score: The F1 score is a weighted average of precision and
recall (= TP+FN

TP+FP). The higher the score, the better the ability of a
classifier to detect negative samples while maintaining a low false
positive rate. The F1 score ranges from one (best) to zero (worst).

Table 1 shows the anomaly detection results for the training set and
three testing sets. Good results were obtained. The precision for the
three testing sets ranges from 0.95 to 0.97; the recall ranges from 0.93
to 0.95; and the F1 score ranges from 0.94 to 0.96.

4. Discussion

In industrial control environments, it is difficult to obtain attack data
and little, if any, details are available about the internal logic of pro-
grammable logic controllers. Since adequate amounts of normal opera-
tional data are available, the solution to detecting anomalies caused by
attacks is to employ a machine learning technique create a model of nor-
mal behavior and use the trained model to identify anomalous behavior.
The experimental results demonstrate that the trained detector was able
to recognize normal behavior with a low error rate. Thus, it would be
effective as a monitoring mechanism for detecting unknown attacks and
unanticipated failures.

The experiments assumed that the training dataset contained only
normal scenarios, without any anomalous events. This requires the num-
ber of normal scenarios in the dataset to be substantial enough to be
distinguishable from anomalous outliers. The experiments revealed that
insufficient amounts of training data about normal scenarios yield high
false positive rates. Therefore, a large normal dataset must be used
during the training phase.

Another observation is that the model parameters have large impacts
on the accuracy of detection. A previous study with the simulated traf-
fic light system [21] revealed that the default parameter settings yield
modest results. In contrast, the experiments described in this chapter

128 ADVANCES IN DIGITAL FORENSICS XV

demonstrate that good results are obtained by using a small dataset in
an iterative search for optimal model parameters and then applying the
model with the optimized parameters to larger datasets for training and
testing.

The logging mechanism implemented by the historian maintains pre-
cise timestamps of programmable logic controller memory status. The
timestamped information coupled with the trained anomaly detection
model can significantly advance forensic investigations. For example,
when the anomaly detection model triggers an alert with a concrete
timestamp, a forensic investigator can narrow down the time and dura-
tion of the incident, and look up and recreate the programmable logic
controller memory status and behavior using the data stored by the
historian.

However, the proposed approach has some limitations. First, the anal-
ysis of memory addresses is not scalable. If large numbers of memory
addresses are used by a programmable logic controller, then a filtering
mechanism would be required to reduce the number of features consid-
ered by the machine learning model. Second, if a programmable logic
controller stores its state data on an external device during its execution
cycle, this data must be obtained and verified to ensure accurate de-
tection. Finally, unsupervised learning requires a large and rich normal
dataset for model training.

5. Conclusions

The lack of genuine attack data and the difficulty in generating simu-
lated attack data render unsupervised learning well-suited to developing
anomaly detection systems for programmable logic controllers. The pro-
posed anomaly detection methodology, which employs a one-class sup-
port vector machine, accurately detects anomalies without being bound
to specific scenarios or requiring detailed knowledge about the control
logic. The methodology leverages an additional security block in a pro-
grammable logic controller to detect anomalies and employs the historian
to store timestamped programmable logic controller state information
(i.e., key memory address values) to support anomaly/attack analyses
and forensic investigations. Experimental results with a traffic light
simulation system employing a Siemens S7-1212C programmable logic
controller demonstrate that anomalies are detected with high accuracy.

Future research will focus on implementing increased state awareness
based on live programmable logic controller memory analysis to enhance
anomaly detection. Efforts will also concentrate on tuning the unsu-

Chan, Chow, Mak & Chan 129

pervised learning methodology to enhance performance metrics such as
precision, recall and the F1 score.

References

[1] C. Chan, K. Chow, S. Yiu and K. Yau, Enhancing the security
and forensic capabilities of programmable logic controllers, in Ad-
vances in Digital Forensics XIV, G. Peterson and S. Shenoi (Eds.),
Springer, Cham, Switzerland, pp. 351-367, 2018.

[2] I. Garitano, R. Uribeetxeberria and U. Zurutuza, A review of
SCADA anomaly detection systems, Proceedings of the Sixth Inter-
national Conference on Soft Computing Models in Industrial and
Environmental Applications, pp. 357–366, 2011.

[3] T. Hergenhahn, libnodave (sourceforge.net/projects/libnoda
ve), 2014.

[4] J. Hsu, D. Mudd and Z. Thornton, Project Report – SCADA
Anomaly Detection, Department of Electrical and Computer En-
gineering, Mississippi State University, Mississippi State, Mis-
sissippi (www.ece.uah.edu/~thm0009/icsdatasets/MSU_SCADA_
Final_Report.pdf), 2014.

[5] S. Karnouskos, Stuxnet worm impact on industrial cyber-physical
system security, Proceedings of the Thirty-Seventh Annual Confer-
ence of the IEEE Industrial Electronics Society, pp. 4490–4494,
2011.

[6] J. Klick, S. Lau, D. Marzin, J. Malchow and V. Roth, Internet-facing
PLCs as a network backdoor, Proceedings of the IEEE Conference
on Communications and Network Security, pp. 524–532, 2015.

[7] Langner, A time bomb with fourteen bytes, Dover, Delaware (www.
langner.com/2011/07/a-time-bomb-with-fourteen-bytes),
July 21, 2011.

[8] D. Nardella, Step 7 Open Source Ethernet Communications Suite,
Bari, Italy (snap7.sourceforge.net), 2016.

[9] S. Nazir, S. Patel and D. Patel, Assessing and augmenting SCADA
cyber security: A survey of techniques, Computers and Security, vol.
70, pp. 436-454, 2017.

[10] F. Schuster, F. Kopp, A. Paul and H. Konig, Attack and fault detec-
tion in process control communications using unsupervised machine
learning, Proceedings of the Sixteenth International Conference on
Industrial Informatics, pp. 433–438, 2018.

130 ADVANCES IN DIGITAL FORENSICS XV

[11] Scikit-learn Project, scikitlearn.metrics: Metrics (scikit-learn.
org/stable/modules/classes.html#sklearn-metrics-metric

s), 2016.

[12] Scikit-learn Project, Novelty and Outlier Detection (scikit-
learn.org/stable/modules/outlier_detection.html#outlier

-detection), 2017.

[13] Scikit-learn Project, sklearn.svm.OneClassSVM (scikit-learn.
org/stable/modules/generated/sklearn.svm.OneClassSVM.ht

ml), 2017.

[14] Scikit-learnProject, An Introduction to Machine Learning with
scikitlearn (scikit-learn.org/stable/tutorial/basic/tutor
ial.html), 2018.

[15] Siemens, Totally Integrated Automation Portal, Nuremberg, Ger-
many, 2019.

[16] R. Spenneberg, M. Bruggemann and H. Schwartke, PLC-blaster: A
worm living solely in the PLC, presented at Black Hat USA, 2016.

[17] Wikipedia, One-Class Classification (en.wikipedia.org/wiki/One
-class_classification), 2018.

[18] T. Wu and J. Nurse, Exploring the use of PLC debugging tools for
digital forensic investigations of SCADA systems, Journal of Digital
Forensics, Security and Law, vol. 10(4), pp. 79–96, 2015.

[19] K. Yau and K. Chow, PLC forensics based on control program logic
change detection, Journal of Digital Forensics, Security and Law,
vol. 10(4), pp. 59–68, 2015.

[20] K. Yau and K. Chow, Detecting anomalous programmable logic
controller events using machine learning, in Advances in Digital
Forensics XIII, G. Peterson and S. Shenoi (Eds.), Springer, Cham,
Switzerland, pp. 81–94, 2017.

[21] K. Yau, K. Chow, S. Yiu and C. Chan, Detecting anomalous behav-
ior of PLCs using semi-supervised machine learning, Proceedings of
the IEEE Conference on Communications and Network Security,
pp. 580–585, 2017.

[22] E. Yilmaz and S. Gonen, Attack detection/prevention system
against cyber attacks on industrial control systems, Computers and
Security, vol. 77, pp. 94–105, 2018.

III

FILESYSTEM FORENSICS

Chapter 8

CREATING A MAP OF USER DATA
IN NTFS TO IMPROVE FILE CARVING

Martin Karresand, Asalena Warnqvist, David Lindahl, Stefan Axelsson
and Geir Olav Dyrkolbotn

Abstract Digital forensics and, especially, file carving are burdened by the large
amounts of data that need to be processed. Attempts to solve this
problem include efficient carving algorithms, parallel processing in the
cloud and data reduction by filtering uninteresting files. This research
addresses the problem by searching for data where it is more likely to
be found. This is accomplished by creating a probability map for find-
ing unique data at various logical block addressing positions in storage
media. SHA-1 hashes of 512B sectors are used to represent the data.
The results, which are based on a collection of 30 NTFS partitions from
computers running Microsoft Windows 7 and later versions, reveal that
the mean probability of finding unique hash values at different logi-
cal block addressing positions vary between 12% to 41% in an NTFS
partition. The probability map can be used by a forensic analyst to pri-
oritize relevant areas in storage media without the need for a working
filesystem. It can also be used to increase the efficiency of hash-based
carving by dynamically changing the random sampling frequency. The
approach contributes to digital forensic processes by enabling them to
focus on interesting regions in storage media, increasing the probability
of obtaining relevant results faster.

Keywords: File carving, hash-based carving, partition content map, NTFS

1. Introduction

The ever-increasing amounts of data handled in digital forensic inves-
tigations are a major challenge [55]. This situation has been discussed
for years [8, 19, 28, 54, 58], but the challenges persist. The research
community has attempted to address the problem using a number of
approaches. A survey by Quick and Choo [55] lists data mining, data re-

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 133–158, 2019.

https://doi.org/10.1007/978-3-030-28752-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_8&domain=pdf

134 ADVANCES IN DIGITAL FORENSICS XV

duction and subsets, triage, intelligence analysis and digital intelligence,
distributed and parallel processing, visualization, digital forensics as a
service and various artificial intelligence techniques.

File carving is especially affected by the increasing amounts of data.
It is used in situations where a filesystem is not present – only the prop-
erties of the stored data are available [51, 53]. Previous research has
attempted to determine the data type (file type) of fragmented data us-
ing histograms of the frequencies of bytes, byte pairs and the differences
between consecutive byte values [36–41]. Researchers have also leveraged
the compressibility of data for type identification [2–4]. As in previous
research, this work uses small blocks of data (512B sectors) and their
statistical properties to improve file carving; however, the focus is on the
most probable positions of user data as opposed to their exact types.

Carving files without the help of a working filesystem is difficult, but
such a capability is very valuable in digital forensic investigations. In
hash-based carving, hashes of blocks of unknown data from storage me-
dia are compared against equally-sized blocks of known suspicious mate-
rial. A number of strategies, techniques and algorithms for hash-based
carving have been developed [6, 7, 15, 24–26, 66]. However, the large
number of hash comparisons that have to be performed by a hash-based
carving algorithm imposes a significant burden on the forensic process.

The research community has not as yet leveraged the principle of
searching for data where it is more likely to be found. Since the alloca-
tion algorithm of an operating system places new data in a filesystem
according to a set of rules (and not randomly), this principle can be
used in digital forensics. However, the allocation process is too complex
to understand completely and is, therefore, commonly considered to be
random. As a result, the conventional approach is to search storage me-
dia from beginning to end regardless of the most probable positions of
the sought-after data.

Most data of interest in forensic investigations is related to user activ-
ity (e.g., system logs and user-created files). Such data is often unique to
a specific computer because the probability of two users independently
creating exactly the same data is miniscule. Shared data (e.g., child
abuse material) downloaded by a user is also of interest. But this data
is intertwined with unique user data in storage media according to the
rules of the allocation algorithm. Therefore, it is sensible to use the log-
ical block addressing (LBA) positions of unique user data to find data
related to user activities.

To demonstrate the principle, this chapter describes an experiment
that uses SHA-1 hashes of the content of non-related computers running
Windows 7 and later versions to compute the probabilities of unique

Karresand et al. 135

hashes (corresponding to unique user data) at different positions in the
30 largest NTFS-formatted partitions of 26 hard disks. The data was
chosen to be as realistic as possible in order to increase the applicabil-
ity of the results; for this reason, data from real-world computers was
collected for the experiment.

2. Related Work

Although the approach described in this chapter is unique, it is in-
structive to evaluate related research in the area of file carving.

2.1 File Fragment Carving

Veenman [65] has employed the entropy, histograms and Kolmogorov
complexity of 4KiB file fragments to determine their types; the results
reveal that histograms yield the highest detection rate versus false pos-
itives. Calhoun and Coles [11] have experimented with statistical mea-
sures such as ASCII code frequency, entropy, mode, mean, standard
deviation and correlation between adjacent bytes; they have also con-
sidered the use of the longest common sub-strings and sub-sequences
between file fragments for data classification.

Ahmed et al. [1] have used byte frequency distributions to measure
the distances between the statistical properties of a data fragment and
a model; instead of using the Mahalanobis distance measure, they em-
ployed cosine similarity and obtained better results. Li et al. [43] have
also used byte frequency distributions (histograms) of different data frag-
ments, but in conjunction with a support vector machine to discriminate
between data types. The best results were achieved using byte frequency
distributions on their own.

Fitzgerald et al. [23] have combined several statistical measures of
data fragments (histograms of one- and two-byte sequences, entropy and
Kolmogorov complexity) to obtain feature vectors that were fed to a
support vector machine for classification. Their method outperformed
the approaches proposed by other researchers. However, they did not
evaluate the contributions of the chosen feature vectors, leaving it for
future work. Interested readers are referred to Poisel et al. [52] for a
taxonomy of data fragment classification techniques.

2.2 Hash-Based Carving

Hash-based carving compares the hashes of known file blocks against
the hashes of equally-sized blocks from storage media. This approach

136 ADVANCES IN DIGITAL FORENSICS XV

enables files that have been partially overwritten or damaged to be iden-
tified.

The roots of hash-based carving go back to the spamsum tool developed
by Tridgell [62]. Garfinkel and McCarrin [25] were among the first to use
hashes for file carving (specifically, in the 2006 Digital Forensic Research
Workshop (DFRWS) Carving Challenge). Subsequently, Kornblum [42]
employed spamsum for piecewise hashing, which is now referred to as
approximate matching. Dandass et al. [17] have used hashes for file
carving in an empirical study of disk sector hashes. However, the term
hash-based carving was first introduced by Collange et al. [15] when
they explored the possibility of using a graphics processing unit (GPU)
to compare hashes of 512B sections of known files with hashes of 512B
sectors from disk images.

In the 2006 DFRWS Carving Challenge [25], portions of files found on
the Internet were hashed and used to find the same hashes in the chal-
lenge image. The experience led to the development of the frag_find

tool [26]. The optimal size of the data blocks to hash was determined
to be equal to the sector size; however, it is not mentioned if the sectors
were 512B or 4KiB in size. Garfinkel et al. [25] elaborated further on
the size of hashed blocks, stating that, starting with Windows NT 4.0,
the default minimum allocation unit in NTFS is 4KiB [48].

Foster [24] discusses the problem of data shared across files, noting
that “the block of nulls is the most common block in [the] corpus,” re-
lating them to NULL paddings in files. Young et al. [66] have further
developed Foster’s ideas; they discuss the optimal block size, the han-
dling of large amounts of data, efficient hash algorithms, good datasets
to use and common blocks of files.

Random sampling has been used to improve the speed of hash-based
carving [24–26]. The determination of a suitable sampling frequency is
regarded as sampling without replacement. A higher sampling frequency
may increase the detection rate, but it negatively impacts execution
speed. The key problem is to strike a trade-off between detection rate
and execution speed.

2.3 Data Persistence

The concept of data persistence is relevant to this research because
persistence in areas of storage media indicates that these areas have
not been reused. This information is valuable when creating a map of
storage media.

Jones et al. [35] have created a framework for studying the persistence
of deleted files in storage media. They employ differential forensic anal-

Karresand et al. 137

ysis to compare snapshots of filesystems in use and follow the decay of
deleted files over time.

Fairbanks and Garfinkel [22] identify twelve factors that affect data
persistence in storage media. Fairbanks [20, 21] also discusses the low-
level functions of Ext4 and their impacts on digital forensics.

2.4 Data Reduction

Quick and Choo [54, 56] have proposed methods for reducing the
amounts of data analyzed in digital forensic investigations. They ex-
tract specific files using a list of key files and work on the subset of files.
However, this requires a working filesystem, which limits the applica-
bility of their methods. Also, the list of key files has to be updated
constantly.

Rowe [59] has proposed a similar approach to that of Quick and Choo,
although it is more technical. Nine methods are compared for identify-
ing uninteresting files, which are defined as “files whose contents do not
provide forensically useful information about the users of a drive.” How-
ever, all the methods require a working filesystem, which is inconsistent
with the fundamental premise of file carving.

2.5 Data Mapping

Guidance Software [34] has developed an EnScript module for its En-
Case software, which creates a map of the recoverable sectors of a file
found in a filesystem. The module can handle situations where other
tools do not work (e.g., partially damaged files). However, it is very
processor intensive and can create maps of only a few files at a time.

Gladyshev and James [28] have studied file carving from a decision-
theoretic point of view. They specify a model where the storage media
is sampled at a frequency based on the properties of the hard drive and
the file type that is to be found. In some situations, their carving model
outperforms standard linear carving algorithms, but their solution is
not general. Gladyshev and James also mention using the distribution
of data on disk, but do not relate this to the probability of finding user
data at various logical block addressing positions in storage media.

Van Baar and colleagues [63, 64] focus on the non-linear extraction
of data from images. They posit that master file table (MFT) records
(filesystem metadata) of an NTFS partition should be extracted first.
The MFT records can be used to find interesting areas in the filesystem.
They also leverage the analysis process to influence the imaging process
by prioritizing certain portions of storage media during imaging.

138 ADVANCES IN DIGITAL FORENSICS XV

3. Proposed Method

The review of the literature reveals that it is necessary to improve the
efficiency of algorithms and tools used in digital forensics, and especially
in file carving. However, the research community has not yet leveraged
the inherent structures of allocation algorithms to address the problem.
This research is founded on the novel idea of using the probability of
finding user data in various locations in storage media to govern the
digital forensic process and, thus, contribute to an immediate increase of
the efficiency of current file carving algorithms and tools. In hash-based
carving, the concept can be used to increase the efficiency of random
sampling by varying the sampling rate according to the probability of
finding user data at different logical block addressing positions. The
concept can also be used during triage and other situations that involve
trade-offs between speed and detection rate.

Another advantage is that the proposed method works without a
filesystem. The map created by the method can be used directly to
improve the speed of any file carving algorithm by revealing the most
probable positions of unique data in NTFS-formatted storage media.
The forensic process can be started at the position with the highest
probability of containing data of interest (e.g., user data) or by varying
the sampling rate according to the probability of finding user data. In
the latter case, the sampling frequency would be higher where it mat-
ters most and lower in other areas, increasing the likelihood of getting
hits while maintaining the same amount of samples as in the case of
equally-distributed sampling.

The proposed method also benefits digital forensic analysts because
the map can help plan a forensic process in the same way a road map
is used to plan a trip. Storage media are currently treated as black
boxes, which forces forensic analysts to spend valuable time scanning
them from beginning to end before any analysis can be performed. This
is especially true in a file carving situation where there is no filesystem
to govern the search. With the proposed method, a forensic analyst can
focus on relevant areas of the storage media and postpone, or even skip,
less relevant areas.

The map can also support storage media imaging. By starting the
imaging process at the most probable position of user data and contin-
uing in decreasing order of relevance, the analysis process can be run
almost in parallel with imaging because the most relevant data for anal-
ysis is available immediately. Thus, the analysis process can be started
earlier, even before the imaging is finalized, saving valuable time and
effort. Of course, the reliability of the analysis will increase as more

Karresand et al. 139

data is analyzed, but preliminary results are available that can guide
the subsequent work. This concept is also supported by the Hansken
Project [63, 64]. By implementing the proposed method in Hansken,
its ability to handle media with broken filesystems would be enhanced,
possibly approaching the performance of the standard process.

The proposed method uses 512B sectors when hashing data in order
to handle storage media regardless of its filesystem cluster size. Since
the map is created once and can be reused, as in the case of a road map,
no performance penalty is incurred when using the map. The map is
divided into a small number of equally-sized areas (currently 128) so that
any random seek penalty would only occur between – and not within –
these areas, and could, therefore, be ignored.

The only situation where 512B hashes are required is when the map is
created. There is no need to use 512B hashes when performing casework.
Likewise, any hashing algorithm can be used in casework because the
map hashes are only used to compute the probabilities of user data at
different positions, never for comparing hashes from a specific case. If a
given hash algorithm is broken, it could be replaced by a new algorithm
and the map would still work.

During the research, nine sectors were discovered to have the same
hash values at the same logical block addressing positions in all 30 par-
titions. These sectors could be used to identify an NTFS filesystem, to
find the start of an NTFS partition and to locate the $MFT file for further
processing. These tasks can be accomplished regardless of the state of
the filesystem.

4. Experimental Setup

Live data was collected from real computers in order to determine
the distribution of unique data in the major NTFS-formatted partitions
of common Microsoft Windows computers. Next, the probabilities of
finding unique hash values at different logical block addressing positions
were computed. Finally, a map was created by computing the mean
probabilities of a number of (currently 128) equally-sized partition areas
based on logical block addressing positions. The mean probability com-
putations were performed to generalize and scale the map into a usable
format.

In order to reduce the size of the data stored in the experiment and to
protect the privacy of users, the SHA-1 algorithm was used to hash each
512B sector of all 30 NTFS-formatted main partitions considered in the
experiment. SHA-1 was employed because it currently strikes the best
balance between speed, collision risk and hash size from among the can-

140 ADVANCES IN DIGITAL FORENSICS XV

didate hash algorithms (MD5 and SHA family). The choice was based
on a practical evaluation using the available hardware. The hashing was
performed locally at each source computer and only the resulting hashes
were moved from the source computers.

Since the SHA-1 algorithm maps 512B of data to a 20-byte hash, there
is always a risk of collisions. The collision risk arises because 512B of
data is compressed into a 20-byte hash and, therefore, the results may
contain false positives. The problem can be analyzed using the Birthday
Paradox, where N is the number of possible hashes, n is the number
of hashes (i.e., total number of sectors hashed in the worst case) and
Prob(Collision) is the probability of a collision, which is given by:

Prob(Collision) = 1−
N !

Nn · (N − n)!

When N = 2160 and n = 18, 210, 308, 798, the probability of at least one
collision is:

Prob(Collision) ≈ 1− e−n2/2N ≈ n2/2N ≈ 1.1 · 10−28

This expression uses Stirling’s approximation of factorials, which yields
acceptable results for large numbers.

Since the SHAttered attack [16, 61] is 100,000 times faster than a
brute force attack using the Birthday Paradox, the risk of an intentional
collision is higher. Fortunately, the attack is infeasible in digital forensic
scenarios. Therefore, a unique SHA-1 hash is assumed to represent a
unique piece of data.

Although the SHA-1 algorithm has been broken [16, 61], from a cryp-
tographic point of view, the risk of an intentional collision is also negli-
gible. This is because the computing power required to create a collision
is out of reach of common users. Also, such an attack would require a
large number of collisions to be created for the majority of the storage
media in the map source data. In a digital forensic scenario, it would
be much easier to fill the storage media with shared and unique data in
an intentional pattern; but this is easily mitigated by collecting source
data from unrelated sources. In any case, the mapping process is not
limited to SHA-1 – any hashing algorithm would suffice as long as all
the mapping data is hashed using the same algorithm.

4.1 Data Collection

Data representing real-world situations was obtained by using conve-
nience sampling of data from computers owned by acquaintances. The
Real Data Corpus was not used because the timestamps on the web-
site [18] indicate that the last update to the dataset was made back in

Karresand et al. 141

2011. The data collected for the experiment was much newer, corre-
sponding to Windows versions 8 and 10. Windows 8 was introduced at
the end of 2012 [27] and, therefore, Windows 8 data does not exist in
the Real Data Corpus, nor does Windows 10 data.

Data was collected from 30 partitions in 26 computers (23 consumer-
grade and three office-grade computers). The data was collected by
hashing every 512B sector of the drives using the dcfldd disk imaging
tool set to the SHA-1 hash algorithm. The operating system instal-
lations corresponded to three language packs ranging from Microsoft
Windows 7 to Windows 10 Enterprise, Professional, Ultimate, Home
and Educational versions. Some computers have been upgraded from an
earlier Windows version to Windows 10. However, five computers are
maintained in their original form and access to all their raw content is
still available.

Real computers were employed to avoid bias introduced by simulating
user behavior. While real computers ensure that the results would be as
close to possible to casework, the drawback was reduced control of the
material. For example, in some instances, information whether a drive
was mechanical or solid-state was not available. The lack of informa-
tion does not affect the results because data was collected at the logical
block addressing level from the drive controller. However, the lower level
physical storage formats were hidden [5, 10, 14, 57].

As far as the experiment is concerned, the only difference between a
mechanical hard disk and a solid state drive is how the unused areas
were filled. This could be old data, 0x00 or 0xFF depending on how
the TRIM command was implemented in the solid state drives [9, 29–
33]. Hence, a mechanical drive would more often yield old data from
unallocated clusters compared with a solid state drive. Since only the
logical block addressing positions of unique data was used, any 0x00

and 0xFF fillings were automatically filtered. In the case of old data
from unallocated clusters, a very unbalanced erase/write cycle would
leave a large amount of old data, i.e., a large amount of data would
have been erased first, followed by a small amount of (or no) writing
of new data. This would be the case if a hard disk was erased using
a random pattern and then reformatted and reused. The experimental
results would be affected if a large number of unallocated sectors were
to contain old (unique) data. In order to affect the map creation process
to a sufficient degree, this situation would have to hold for a significant
number of partitions in the dataset. Therefore, data was not collected
from the computers until their users confirmed that large-scale filesystem
cleaning was not performed close to the data collection.

142 ADVANCES IN DIGITAL FORENSICS XV

Table 1. Partition sizes, unique hashes, and 0x00 and 0xFF fillings in the last 20GB.

Partition Size Unique Hashes 0x00 Filling 0xFF Filling
(GiB) (%) (%) (%)

F 59.5 0.08 100.00 0.00
E 59.5 22.36 2.01 0.12
AC 111.3 7.63 100.00 0.00
I 111.6 61.83 20.12 1.67
A 118.4 23.17 75.24 0.00
W 118.6 59.80 26.18 0.00
K 146.4 5.82 100.00 0.00
Qa 150.0 43.33 45.78 0.07
N 177.6 38.32 48.48 0.00
Ra 185.9 31.89 56.89 0.14
Sa 200.0 86.85 0.02 0.02
Oa 209.0 13.68 100.00 0.00
Y 217.1 14.77 100.00 0.00
P 232.7 53.97 0.83 0.07
H 237.3 16.68 100.00 0.00
AA 237.3 12.60 100.00 0.00
D 237.9 20.59 0.00 100.00
G 238.1 7.03 25.56 0.16
M 238.1 23.06 79.47 0.01
Rb 258.4 1.68 100.00 0.00
Sb 265.6 36.22 100.00 0.00
T 297.9 9.35 48.12 0.28
C 421.7 34.98 0.86 1.17
Z 423.9 4.05 100.00 0.00
X 443.8 6.48 100.00 0.00
U 448.0 10.60 100.00 0.00
V 465.6 48.43 100.00 0.00
Ob 699.0 0.15 98.72 0.00
Qb 766.5 1.47 100.00 0.00
B 905.2 29.74 100.00 0.00

Total 8,683.4 20.92 67.61 3.35

The storage media used in the experiment had capacities ranged from
64GB to 1TB. The largest NTFS-formatted partition was extracted
from each storage media drive based on the assumption that it contained
the operating system and user files. In four instances, an extra storage
partition was present, which was also extracted.

Table 1 shows the partition sizes, percentages of unique hashes and
the 0x00 and 0xFF fillings in the last 20GB of the partitions. The total
size of the partitions was 8,638.4GiB, corresponding to 18,210,308,798

Karresand et al. 143

hashes, 3,809,786,792 of which were unique. A low percentage of unique
hashes in a partition indicates that the partition was not used or at
least not used for storing user data. The larger partitions in Table 1
(i.e., those ending in “b”) have low percentages of unique hashes and
high percentages of 0x00 and 0xFF fillings. Data was collected from
multiple partitions on the associated drives, which were large.

The lifetimes and, hence, amounts of data stored on the drives varied.
Most of the drives had 0x00 fillings to some extent. These may be
remnants of the production process, but some of the smaller drives (≤
256GiB) were solid state drives that would have been filled with 0xFF

values at the factory [9].
The last 20B of each partition was examined to determine if any par-

titions in the dataset were completely filled with data at some point in
their lifetimes. The 20GB size was selected as a suitable trade-off be-
tween having a large amount of data and the risk of including operating
system files in the case of the smaller partitions. Low percentages of
both 0x00 and 0xFF fillings in Table 1 is an indicator that the partition
was completely filled or was wiped with a random pattern at some point
in its lifetime.

NTSF-formatted partitions were considered because NTFS has about
90% of the desktop system market share [50]. The partition names in
Table 1 were assigned based on the order of hashing (i.e., partition “A”
was hashed before “B”). Four computers contributed two partitions each
to the dataset due to the partition size (these computers were installed
with an extra partition for user data). The associated partitions are
indicated by a second lowercase letter in their names. Although the
partitions did not have operating system files, they contained an NTFS
filesystem and were, therefore, included in the dataset.

Some of the unique hash values that were found corresponded to 1KiB
MFT records. The size of an MFT record is defined in the boot sector
of an NTFS partition; the standard size is 1 KiB [12]. These records
yielded up to two unique hash values each due to their highly varying
content (timestamps, file names, file content, etc.).

Therefore, a survey of 27 computers not included in the dataset was
conducted to estimate the mean number of MFT records. This was
accomplished by counting the total number of files and folders because
each file and folder in a computer is represented by at least one MFT
record. If a file has many attributes (e.g., alternate streams) or is heavily
fragmented, then the filesystem creates a new MFT record to hold the
extra information.

The survey revealed that the average total number of files and fold-
ers in the computers was 363,630. Due to the uncertainty involved in

144 ADVANCES IN DIGITAL FORENSICS XV

counting (using File Explorer), an extra 25% was added to account for
hidden files, files requiring more than one MFT record and MFT records
internal to the filesystem. The extra 25% also covered network storage
of user data in the office-grade computers. In the case of the consumer-
grade computers, all the user files would most likely have been stored
locally; therefore, these files were included in the count.

4.2 Implementation

In order to prepare the data for the experiment, the hashes from the
largest partitions were computed and merged into a single file, which was
then sorted in ascending order of hash value. The unique hashes from
the file were then extracted; thus, all the 0x00- and 0xFF-filled sectors
were automatically filtered out. The unique hashes were then sorted in
order of ascending logical block addressing position and separated into
individual files based on partition. The data in each partition was then
divided into 128 equally-sized areas, each 1

128 of the size of the partition.
Following this, the probabilities of finding unique hashes in each area
were computed as the number of unique hashes divided by the sizes of
the areas in the sectors in each partition.

After the probability computations, the mean, median and standard
deviation of the probabilities of unique hashes were calculated for each
area of the partitions regardless of the partition sizes. The mean values
were used to create a map of the storage media, showing where it is
more likely to find user data (unique data) in a generic-NTFS formatted
partition.

4.3 Evaluation

The map was evaluated by conducting an experiment that simulated
a hash-based carving scenario and comparing the performance of sam-
pling based on the map against that of a uniformly-distributed sampling.
Four real partitions that were not included in the dataset were used as
ground truth. The distributions of unique data in the four partitions
were used to pick a random integer target. The map was then used to
pick a random integer map and the uniform distribution was used to
pick a random integer uni. All the random integers were selected in the
same total range representing the logical block addressing positions of a
fictitious partition, albeit with a bias for target and map. The map re-
ceived one hit when map = target and the uniform distribution received
one hit when uni = target. The predefined range was set to 16MiB and
divided into 128 equally-sized areas using the mapping process. The
small partition size was chosen to increase the number of hits.

Karresand et al. 145

Mean
Std Dev
Median

P
ro

b
a

b
il

it
y

(%
)

0

10

20

30

40

Posit ion (% of size)
0 20 40 60 80 100

Figure 1. Probabilities of unique hashes.

The random sampling process was iterated 109 times for each of the
four partitions to stabilize the results. The small number of partitions
used to create the map adversely affected the evaluation results. Since
the number of partitions used to create the ground truth was also small,
the results were affected by individual variations in partition content.
Another factor affecting the results is that the four partitions used as
ground truth were taken from computers that were about to be scrapped;
since their drives were well-used, the partitions had lower percentages of
0x00 and 0xFF fillings towards their ends.

The experiment used Python 2.7 and the random library running on
a Debian Stretch (version 9) computer.

5. Experimental Results

Figure 1 shows plots of the means, medians and standard deviations
of the probabilities of unique hashes at different positions in the 30
partitions in the dataset. The positions are presented as percentages of
the partition size. Each partition was split into 128 equally-sized areas
based on the total size of the partition.

As seen in the map in Figure 1, the probabilities of unique hashes
at different positions vary from approximately 12% to 41%. The low

146 ADVANCES IN DIGITAL FORENSICS XV

median values in the second half of the partitions are due to the presence
of 0x00 and 0xFF fillings in a significant number of the partitions. Note
that the median values are zero or close to zero because more than 50%
of the partitions had no unique data or very small amounts of unique
data.

An NTFS-formatted drive reserves 12.5% of its space for the MFT by
default [49]. In all 30 partitions in the dataset, the MFT area started
exactly 3GiB into the partitions. Hence, the starting point of the area
where non-resident file data is allocated is at the logical block addressing
position:

P = 3 · 230 + 0.125 · partition size (bytes)

However, this is not the case if the user changed the MFT reserved space
at the time of formatting. In the case of a very small partition, the non-
resident data allocation point would likely have been changed. Based on
the dataset, the non-resident data allocation starting point is valid for
partitions ≥ 60GiB.

The bulk of the operating system, the first user files and software
from the initial installation reside at the non-resident data allocation
point. According to Microsoft [45–47], the minimum space requirement
for Windows 7, 8, 8.1 or 10 installations is 20GiB for 64-bit systems.
Thus, the most probable starting point for day-to-day usage of a parti-
tion containing Windows is:

(3 + 20) · 230 + 0.125 · partition size (bytes)

bytes into a partition. Converting the starting points to percentages of
the associated partition lengths yields values between 14% and 43% (see
Figure 1).

The largest number of operating system files were found in the be-
ginning of the area and the number decreased towards the end. This
explains the sharp negative trends in the plots between 20% and 40%,
along with the peaks around 30%. In the case of the mean plot, from
40% onwards, the values slowly decrease and the standard deviations
increase. This is due to differing usage patterns of the partitions – some
partitions had been storing more data and/or had been more utilized
than other partitions in the dataset.

A total of 3,809,786,792 unique hashes were found in the dataset;
these correspond to data created locally by the user or operating system
(e.g., logs). However, unique portions of MFT records were also in the
data. Each file and directory is represented by at least one MFT record
in NTFS. Depending on the number of file attributes, multiple MFT
records may be needed to store the metadata. Typical examples are
files with many alternate data streams or highly fragmented files.

Karresand et al. 147

Type: $DATA (128-12) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-1) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-6) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-1) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Type: $DATA (128-6) Name: N/A Non-Resident [...]

786432 786433 786434 786435 786436 786437 786438 786439

[...]

Figure 2. Portions of the $DATA attributes of $MFT files

.

MFT records may affect the results by increasing the number of unique
non-user data hashes. To estimate the effect of the MFT records, the
numbers of files and folders in 27 typical computers (office-grade and
home-grade) were examined. The mean value was found to be 363,630
files, which corresponds to approximately 0.7% of the unique hashes in
the 30 computers.

The pagefile.sys and hiberfil.sys files may also generate large
numbers of unique hashes depending on how much they were used. These
files certainly affect the map and the results. However, they should be
included because they are of high value in a digital forensic investigation.

When studying the mapping process, four sectors were found to con-
tain the same hash value at the same logical block addressing position
in all the partitions in the dataset. The sectors, located in filesystem
cluster 786,435, all contained the second half of MFT records that had
been used only once according to their signature values [12]. The first
part of the MFT records contained similar, but not equal information.
The istat tool [13] revealed that the sectors belonged to the $MFT file
(i.e., filesystem itself). The $DATA attributes of the $MFT files in the
five computers to which raw access was still available allocated the same
eight clusters at the beginning of the run length. Note that the eight
numbers in every third row in Figure 2 indicate the filesystem clusters
allocated to a file. Filesystem cluster 786,435 contained four static sec-
tors – at positions 6,291,481, 6,291,483, 6,291,485 and 6,291 487 – that
were found in all 30 partitions.

148 ADVANCES IN DIGITAL FORENSICS XV

Table 2. Evaluation results.

Hits Hits Percentage
(Map) (Uniform) (Map/Uniform)

28,635 30,279 94.6%
29,881 30,363 98.4%
32,556 30,836 105.6%
33,257 30,461 109.2%

124,329 121,939 102.0%

Upon combining this with the static content of the four sectors in
cluster 786,435, the NTFS formatting appears to place the start of the
MFT at the same position – exactly 3GiB into the partition. If this is
true, then the first and last sectors of an NTFS partition should contain
the hex string 00 00 0C 00 00 00 00 00 starting at position 0x30 (lit-
tle endian) [44]. This was verified for the five computers for which raw
access was still available.

According to Carrier [12], the $DATA attribute of the $MFTMirr file
allocates clusters in the middle of a filesystem. This implies that the
middle sector, based on the size of the volume (partition), is actually
where the mirror should be kept. However, this was not always true.
In four of the five computers to which full access was available, the
$MFTMirr file allocated filesystem cluster 2 and, in the last partition,
filesystem cluster 8,912,895 was allocated. However, the latter partition
was 59,919,808 clusters in size; hence, none of the $MFTMirr files were
located near the middle of any of the partitions. Consequently the NTFS
allocation strategy appears to have changed since Carrier published his
book [12].

In order to evaluate the efficiency of the map in random sampling
situations, four NTFS partitions (different from the 30 partitions in the
mapping dataset) were used to create the map. The four 16 MiB par-
titions were divided into 128 equally-sized areas that were sampled 109

times in the evaluation.
Table 2 shows the evaluation results. In particular, the table shows the

number of hits using the map relative to using a uniformly-distributed
sampling rate. Due to the small number of partitions used in the evalu-
ation, the distributions of unique data in the individual partitions have
a high impact on the result. Therefore, the evaluation results are merely
the first indicator of the performance of future maps, not the final answer
(future research will conduct a new evaluation using a larger number of

Karresand et al. 149

partitions). In any case, the best result – when the map most resembles
one of the evaluation partitions – is almost 10% better than using a
uniformly-distributed sampling rate. Changing the number of equally-
sized areas does not change the results in any significant way. Changing
the 16MiB partition size also does not change the results.

6. Discussion

The concept of searching for data where it is more likely to be found
is more appealing than randomly searching for data. Nevertheless, an
empirical evaluation was conducted to test the implementation. The
evaluation reveals a 2% improvement when using the map compared
with using a uniformly-distributed sampling rate. This is certainly not a
paradigm shift, but it is a positive indicator of the utility of the concept.

The reason for the modest result is the small number of partitions
used to create the map. More partitions are required to reveal the un-
derlying deterministic allocation pattern; this would also provide a solid
statistical foundation and improve the strength of the results. Having a
large enough dataset would enable its division into several use cases, each
producing its own map. An example would be to differentiate between
web surfers, office administrators and file sharers. However, such a study
would require a much larger data collection effort while maintaining a
high level of control of the collected material to filter unique data that
was not created by the user or system (e.g., data written during disk
wiping).

After the mapping foundation is stable, the efficiency of digital foren-
sic methods and tools – especially in file carving situations where a
filesystem is not present – can be improved in several ways. One exam-
ple is when using hash-based carving to find portions of files on storage
media. In this case, the following three strategies are possible:

Speed is Prioritized: The total number of samples is reduced
compared with the uniformly-distributed sampling case without
any significant loss in detection rate. This strategy could be used in
triage situations or when preliminary results are required quickly.

Speed is Maintained: The same amount of samples are main-
tained compared with the uniformly-distributed sampling case,
which enhances detection at the same execution speed. This stan-
dard case can be used without changing the digital forensic process.

Detection Rate is Prioritized: A larger number of samples are
used than in the case of uniformly-distributed sampling, yielding
a much higher detection rate and a lower cost in terms of execu-

150 ADVANCES IN DIGITAL FORENSICS XV

tion speed. An example is a situation where a suspect’s drive has
an unusual usage pattern. The standard number of hashes can
be maintained in low priority areas of a drive whereas a higher
sampling rate can be used in high priority areas for improved de-
tection.

When the area reserved for the MFT is used up, a new area amounting
to 12.5% of the volume size is added. This area may be contiguous, but
it does not have to be so. As the filesystem grows, new MFT records
are added and allocated where suitable [12]. Thus, an old and well-
used NTFS partition may very well have MFT records spread all over
the storage space. This would possibly affect the creation of the map,
adding noise to the unique data.

According to the empirical study of the number of files and directories
(usually represented by a single MFT record each) in an NTFS partition,
the amount of MFT records corresponds to approximately 0.7% of the
total amount of unique hashes in each partition. The actual amount of
unique hashes belonging to an MFT record is probably less than 0.7%
because the second part of an MFT record often contains 510 zero-bytes
followed by a two-byte signature value at the end of the sector. Signature
values are used by NTFS to verify the integrity of data structures (but
not sectors containing file content) that span two or more sectors [12].
The last two bytes of every sector in such a data structure are called
a fixup value and are moved to an array in the beginning of the struc-
ture during the process of writing to disk. The last two bytes are then
replaced by the signature value. When the data structure is read, the
signature values are used to check that all the sectors that are read have
the same signature value and, thus, belong to the same data structure.
The signature value is incremented by one every time a data structure
is updated on disk [12].

The worst case scenario is a partition filled with files that are less
than approximately 700B in size, resulting in a partition filled with
MFT records that store the data internally. The maximum size of an
internal $Data attribute varies depending on the sizes of other attributes
stored in the MFT record. Most sources give a maximum internal $Data
attribute size of 600 to 700 bytes; Microsoft reports a 900B limit [49]. If
all the files contain the same data, only the MFT metadata (timestamps,
etc.) would differ; thus, the partition would still appear to be filled with
random data. The maximum number of files in an NTFS partition is
232 − 1 [49], so the partition would be approximately 4TiB in size.

Another way to estimate the number of unique MFT record hashes in
the dataset is to generate SHA-1 hash values for all possible combinations
of 510 zeros and a two-byte signature value, which correspond to the

Karresand et al. 151

second half of a standard MFT record. The first such hash that is
unique in the dataset represents a signature value of 3613 (0x1D0E little
endian). Many of the lower signature values generate several thousand
hits. There is no guarantee that all the generated hashes belong to MFT
records; however, at least four do and, consequently, the percentage of
unique MFT hash values that pollute the dataset is likely less than 0.7%.
Hence, the unique hashes of the MFT records do not significantly affect
the precision of the map.

The experiment was limited to computers running Microsoft Windows
7 and later versions with NTFS-formatted main partitions. The privacy
of the computer owners was protected by using SHA-1 hashes to obscure
the real data. This limited the ability to trace the original data corre-
sponding to each hash. However, since the focus is on the logical block
addressing positions of unique hashes, the precise data represented by
the hashes is not needed for map creation.

The proposed method can also be used to find shared data. Of spe-
cial interest is static data – shared data found in the same logical block
addressing position in unrelated storage media. Knowledge of the logi-
cal block addressing positions of static data is of value in several digital
forensic applications. For example, prioritizing search in forensic imag-
ing and analysis could provide an analyst with the means to break drive
encryption via a plaintext attack [60] (depending, of course, on the en-
cryption algorithm that is used).

The logical block addressing position of static data can be used to
handle corrupt storage media. In many cases, large portions of corrupt
media are readable, but there are no indications of the forensic value of
the lost portions. Having access to a map of static content in storage me-
dia can help a digital forensic analyst improve the evaluative reporting in
casework by indicating the forensic value of lost areas. This contributes
to higher confidence in the collected evidence.

Furthermore, a map can be used to create signatures that identify
the filesystems in partially-recovered partitions. These signatures are
feasible because the metadata layout and allocation process during in-
stallation differ for operating systems.

Finally, media areas that should have high probabilities of static con-
tent but do not have this content could be indicators of the presence of
malware or other suspicious activities because deviations are unlikely in
such areas. Instead of having to hash every file in a filesystem in search
of deviations, the search can start at the most likely place in the filesys-
tem. The partition is then scanned in descending order of probability of
static content.

152 ADVANCES IN DIGITAL FORENSICS XV

7. Conclusions

The proposed method for hash-based file carving is based on the prin-
ciple that it is better to search for data in locations where the probability
of finding the data is high. The method relies on a map of the probabil-
ity of finding unique data at various logical block addressing positions
in storage media. Unique data is data that is created locally on a com-
puter and not (yet) shared. This includes system-created data such as
log files and user-created local data that is not downloaded from the In-
ternet (downloaded data corresponds to shared data). Uniquely-created
data is often more valuable in a forensic investigation than shared data,
although shared data (e.g., child abuse material) can be valuable too.

The map provides a digital forensic analyst with a pre-computed view
of storage media that enables the forensic process to focus on the most
relevant portions of media instead of spending valuable time scanning
the entire storage media from beginning to end. Unique data is only
used to create the map; this is done once, although regular updates
to the map are recommended. After the map is created, it can be used
repeatedly for any data or with any method, tool or investigative process
without having to recreate the map for every new case.

Creating a probability map of unique (or static) data at different
positions in storage media opens up a host of applications. The map
could be used when performing triage, planning the order of analysis of
large amounts of seized storage media, estimating the value of partially-
analyzed data due to corruption and breaking the encryption of storage
media.

Future research will extend the dataset to stabilize map creation and
make the map more reliable. It will also explore other methods for cre-
ating maps as well as creating separate maps for use cases. Research
will also search for and study the origin of interesting areas in storage
media such as the four sectors with the same hash values found at ap-
proximately 3GiB into all 30 partitions, which indicates that certain
areas of NTFS partitions are static. Finally, future work will extend
the method to other filesystems, especially Ext4 and Apple File System
(APFS), with the goal of creating a general mapping process for storage
media, regardless of type and filesystem.

The authors of this chapter are interested in releasing the current hash
dataset to the public. However, due to its size, the optimal transfer op-
tion will have to be discussed with the interested party. Interested parties
are encouraged to contact the first author (martin@filecarving.net)
to arrange for file transfers.

Karresand et al. 153

Acknowledgement

This research was sponsored by the Norwegian Research Council Ars
Forensica Project No. 248094/O70.

References

[1] I. Ahmed, K. Lhee, H. Shin and M. Hong, On improving the accu-
racy and performance of content-based file type identification, Pro-
ceedings of the Fourteenth Australasian Conference on Information
Security and Privacy, pp. 44–59, 2009.

[2] S. Axelsson, The normalized compression distance as a file fragment
classifier, Digital Investigation, vol. 7(S), pp. S24–S31, 2010.

[3] S. Axelsson, Using normalized compression distance for classify-
ing file fragments, Proceedings of the International Conference on
Availability, Reliability and Security, pp. 641–646, 2010.

[4] S. Axelsson, K. Bajwa and M. Srikanth, File fragment analysis using
normalized compression distance, in Advances in Digital Forensics
IX, G. Peterson and S. Shenoi (Eds.), Springer, Berlin Heidelberg,
Germany, pp. 171–182, 2013.

[5] J. Barbara, Solid state drives: Part 5, Forensic Magazine, vol. 11(1),
pp. 30–31, 2014.

[6] F. Breitinger and K. Petrov, Reducing the time required for hashing
operations, in Advances in Digital Forensics IX, G. Peterson and S.
Shenoi (Eds.), Springer, Berlin Heidelberg, Germany, pp. 101–117,
2013.

[7] F. Breitinger, C. Rathgeb and H. Baier, An efficient similarity di-
gests database lookup – A logarithmic divide and conquer approach,
Journal of Digital Forensics, Security and Law, vol. 9(2), pp. 155–
166, 2014.

[8] F. Breitinger, G. Stivaktakis and H. Baier, FRASH: A framework
to test algorithms of similarity hashing, Digital Investigation, vol.
10(S), pp. S50–S58, 2013.

[9] C. Buckel, Understanding Flash: Blocks, Pages and Program
Erases, flashdba Blog (flashdba.com/2014/06/20/understand
ing-flash-blocks-pages-and-program-erases), June 20, 2014.

[10] C. Buckel, Understanding Flash: The Flash Translation Layer,
flashdba Blog (flashdba.com/2014/09/17/understanding-flash
-the-flash-translation-layer), September 17, 2014.

[11] W. Calhoun and D. Coles, Predicting the types of file fragments,
Digital Investigation, vol. 5(S), pp. S14–S20, 2008.

154 ADVANCES IN DIGITAL FORENSICS XV

[12] B. Carrier, File System Forensic Analysis, Pearson Education, Up-
per Saddle River, New Jersey, 2005.

[13] B. Carrier, TSK Tool Overview (wiki.sleuthkit.org/index.
php?title=TSK_Tool_Overview), January 13, 2014.

[14] T. Chung, D. Park, S. Park, D. Lee, S. Lee and H. Song, A survey
of the flash translation layer, Journal of Systems Architecture, vol.
55(5-6), pp. 332–343, 2009.

[15] S. Collange, Y. Dandass, M. Daumas and D. Defour, Using graphics
processors for parallelizing hash-based data carving, Proceedings of
the Forty-Second Hawaii International Conference on System Sci-
ences, 2009.

[16] Cryptology Group at CentrumWiskunde and Informatica and Secu-
rity, Privacy and Anti-Abuse Group at Google Research, SHAttered
– We have Broken SHA-1 in Practice (shattered.io), 2017.

[17] Y. Dandass, N. Necaise and S. Thomas, An empirical analysis of
disk sector hashes for data carving, Journal of Digital Forensic
Practice, vol. 2(2), pp. 95–104, 2008.

[18] Digital Corpora, Real Data Corpus (digitalcorpora.org/cor
pora/disk-images/real-data-corpus), July 15, 2018.

[19] EUROPOL: European Law Enforcement Agency, IOCTA 2016: In-
ternet Organized Crime Threat Assessment, Technical Report, Eu-
ropean Police Office, The Hague, The Netherlands, 2016.

[20] K. Fairbanks, An analysis of Ext4 for digital forensics, Digital In-
vestigation, vol. 9(S), pp. S118–S130, 2012.

[21] K. Fairbanks, A technique for measuring data persistence using the
Ext4 file system journal, Proceedings of the Thirty-Ninth Annual
IEEE Computer Software and Applications Conference, vol. 3, pp.
18–23, 2015.

[22] K. Fairbanks and S. Garfinkel, Column: Factors affecting data de-
cay, Journal of Digital Forensics, Security and Law, vol. 7(2), pp.
7–10, 2012.

[23] S. Fitzgerald, G. Mathews, C. Morris and O. Zhulyn, Using NLP
techniques for file fragment classification, Digital Investigation, vol.
9(S), pp. S44–S49, 2012.

[24] K. Foster, Using Distinct Sectors in Media Sampling and Full Me-
dia Analysis to Detect Presence of Documents from a Corpus, Mas-
ter’s Thesis, Department of Computer Science, Naval Postgraduate
School, Monterey, California, 2012.

Karresand et al. 155

[25] S. Garfinkel and M. McCarrin, Hash-based carving: Searching media
for complete files and file fragments with sector hashing and hashdb,
Digital Investigation, vol. 14(S1), pp. S95–S105, 2015.

[26] S. Garfinkel, A. Nelson, D. White and V. Roussev, Using purpose-
built functions and block hashes to enable small block and sub-file
forensics, Digital Investigation, vol. 7(S), pp. S13–S23, 2010.

[27] S. Gibbs, From Windows 1 to Windows 10: 29 years of Windows
evolution, The Guardian, October 2, 2014.

[28] P. Gladyshev and J. James, Decision-theoretic file carving, Digital
Investigation, vol. 22, pp. 46–61, 2017.

[29] Y. Gubanov and O. Afonin, Why SSD drives destroy court evidence
and what can be done about it, Forensic Focus, October 23, 2012.

[30] Y. Gubanov and O. Afonin, Recovering evidence from SSD drives in
2014: Understanding trim, garbage collection and exclusions, Foren-
sic Focus, September 23, 2014.

[31] Y. Gubanov and O. Afonin, SSD and eMMC forensics 2016, Foren-
sic Focus, April 20, 2016.

[32] Y. Gubanov and O. Afonin, SSD and eMMC forensics 2016 – Part
2, Forensic Focus, May 4, 2016.

[33] Y. Gubanov and O. Afonin, SSD and eMMC forensics 2016 – Part
3, Forensic Focus, June 7, 2016.

[34] Guidance Software, File Block Hash Map Analysis, Version
8.8.5, Waterloo, Canada (www.guidancesoftware.com/app/File-
Block-Hash-Map-Analysis), 2018.

[35] J. Jones, T. Khan, K. Laskey, A. Nelson, M. Laamanen and D.
White, Inferring previously uninstalled applications from residual
partial artifacts, Proceedings of the Eleventh Annual Conference on
Digital Forensics, Security and Law, pp. 113–130, 2016.

[36] M. Karresand, Completing the Picture – Fragments and Back
Again, Licentiate Thesis, Institute of Technology: Faculty of Science
and Engineering, Linkoping University, Linkoping, Sweden, 2008.

[37] M. Karresand and N. Shahmehri, File type identification of data
fragments by their binary structure, Proceedings of the Seventh An-
nual IEEE SMC Information Assurance Workshop, pp. 140–147,
2006.

[38] M. Karresand and N. Shahmehri, Oscar – File type and camera
identification using the structure of binary data fragments, Pro-
ceedings of the First Conference on Advances in Computer Security
and Forensics, pp. 11–20, 2006.

156 ADVANCES IN DIGITAL FORENSICS XV

[39] M. Karresand and N. Shahmehri, Oscar – File type identification
of binary data in disk clusters and RAM pages, Proceedings of the
Thirty-First IFIP TC-11 International Information Security Con-
ference, pp. 413–424, 2006.

[40] M. Karresand and N. Shahmehri, Oscar – Using byte pairs to find
the file type and camera make of data fragments, Proceedings of the
Second European Conference on Computer Network Defense, pp.
85–94, 2007.

[41] M. Karresand and N. Shahmehri, Reassembly of fragmented JPEG
images containing restart markers, Proceedings of the Fourth Euro-
pean Conference on Computer Network Defense, pp. 25–32, 2008.

[42] J. Kornblum, Identifying almost identical files using context trig-
gered piecewise hashing, Digital Investigation, vol. 3(S), pp. S91–
S97, 2006.

[43] Q. Li, A. Ong, P. Suganthan and V. Thing, A novel support vec-
tor machine approach to high entropy data fragment classifica-
tion, Proceedings of the South African Information Security Multi-
Conference, pp. 236–247, 2010.

[44] LSoft Technologies, NTFS Partition Boot Sector, Missis-
sauga, Canada (www.ntfs.com/ntfs-partition-boot-sector.
htm), 2018.

[45] Microsoft, Windows 7 System Requirements, Redmond, Washing-
ton (support.microsoft.com/en-us/help/10737/windows-7-sy
stem-requirements), April 12, 2017.

[46] Microsoft, Windows 8.1 System Requirements, Redmond, Washing-
ton (support.microsoft.com/en-gb/help/12660/windows-8-sy
stem-requirements), April 12, 2017.

[47] Microsoft, Windows 10 System Requirements, Redmond, Washing-
ton (support.microsoft.com/en-us/help/4028142/windows-wi
ndows-10-system-requirements), November 20, 2017.

[48] Microsoft, Default Cluster Size for NTFS, FAT and exFAT,
Redmond, Washington (support.microsoft.com/en-us/help/
140365/default-cluster-size-for-ntfs--fat--and-exfat),
April 17, 2018.

[49] Microsoft, How NTFS Works, Redmond, Washington (technet.
microsoft.com/pt-pt/library/cc781134(v=ws.10).aspx), Oc-
tober 28, 2018.

[50] Net Applications, Desktop Operating System Market Share,
Aliso Viejo, California (www.netmarketshare.com/operating-
system-market-share.aspx?qprid=10&qpcustomd=0), 2017.

Karresand et al. 157

[51] A. Pal and N. Memon, The evolution of file carving, IEEE Signal
Processing, vol. 26(2), pp. 59–71, 2009.

[52] R. Poisel, M. Rybnicek and S. Tjoa, Taxonomy of data fragment
classification techniques, in Digital Forensics and Cyber Crime, P.
Gladyshev, A. Marrington and I. Baggili (Eds.), Springer, Cham,
Switzerland, pp. 67–85, 2014.

[53] R. Poisel and S. Tjoa, A comprehensive literature review of file
carving, Proceedings of the International Conference on Availability,
Reliability and Security, pp. 475–484, 2013.

[54] D. Quick and K. Choo, Data reduction and data mining frame-
work for digital forensic evidence: Storage, intelligence, review and
archive, Trends and Issues in Crime and Criminal Justice, no. 480,
pp. 1–11, September 2014.

[55] D. Quick and K. Choo, Impacts of increasing volume of digital foren-
sic data: A survey and future research challenges, Digital Investiga-
tion, vol. 11(4), pp. 273–294, 2014.

[56] D. Quick and K. Choo, Big forensic data reduction: Digital forensic
images and electronic evidence, Cluster Computing, vol. 19(2), pp.
723–740, 2016.

[57] R. Reiter, T. Swatosh, P. Hempstead and M. Hicken, Accessing
logical-to-physical address translation data for solid state disks, U.S.
Patent No. 8898371, November 25, 2014.

[58] V. Roussev, Managing terabyte-scale investigations with similarity
digests, in Advances in Digital Forensics VIII, G. Peterson and S.
Shenoi (Eds.), Springer, Berlin Heidelberg, Germany, pp. 19–34,
2012.

[59] N. Rowe, Identifying forensically uninteresting files using a large
corpus, in Digital Forensics and Cyber Crime, P. Gladyshev, A.
Marrington and I. Baggili (Eds.), Springer, Cham, Switzerland, pp.
86–101, 2014.

[60] B. Schneier, Applied Cryptography: Protocols, Algorithms and
Source Code in C, John Wiley and Sons, Hoboken, New Jersey,
1996.

[61] M. Stevens, E. Bursztein, P. Karpman, A. Albertini and Y. Markov,
The first collision for full SHA-1, Proceedings of the Thirty-Seventh
Annual International Cryptology Conference, pp. 570–596, 2017.

[62] A. Tridgell, spamsum (www.samba.org/ftp/unpacked/junkcode/
spamsum/README), July 27, 2015.

158 ADVANCES IN DIGITAL FORENSICS XV

[63] R. van Baar, H. van Beek and E. van Eijk, Digital forensics as
a service: A game changer, Digital Investigation, vol. 11(S1), pp.
S54–S62, 2014.

[64] H. van Beek, E. van Eijk, R. van Baar, M. Ugen, J. Bodde and A.
Siemelink, Digital forensics as a service: Game on, Digital Investi-
gation, vol. 15, pp. 20–38, 2015.

[65] C. Veenman, Statistical disk cluster classification for file carving,
Proceedings of the Third International Symposium on Information
Assurance and Security, pp. 393–398, 2007.

[66] J. Young, K. Foster, S. Garfinkel and K. Fairbanks, Distinct sector
hashes for target file detection, IEEE Computer, vol. 45(12), pp.
28–35, 2012.

Chapter 9

ANALYZING WINDOWS SUBSYSTEM
FOR LINUX METADATA TO DETECT
TIMESTAMP FORGERY

Bhupendra Singh and Gaurav Gupta

Abstract Timestamp patterns assist forensic analysts in detecting user activities,
especially operations performed on files and folders. However, the Win-
dows Subsystem for Linux feature in Windows 10 versions 1607 and
later enables users to access and manipulate NTFS files using Linux
command-line tools within the Bash shell. Therefore, forensic analysts
should consider the timestamp patterns generated by file operations per-
formed using Windows command-line utilities and Linux tools within
the Bash shell.

This chapter describes the identification of timestamp patterns of
various file operations in stand-alone NTFS and Ext4 filesystems as well
as file interactions between the filesystems. Experiments are performed
to analyze the anti-forensic capabilities of file timestamp changing util-
ities – called timestomping tools – on NTFS and Ext4 filesystems. The
forensic implications of timestamp patterns and timestomping are also
discussed.

Keywords: Anti-forensics, Windows Subsystem for Linux, timestamps, forgery

1. Introduction

Anti-forensic techniques and tools are increasingly used to circumvent
digital forensic investigations. Several definitions of anti-forensics have
been proposed over the years [2, 11, 12, 17]. According to Garfinkel [11],
anti-forensics seeks to frustrate forensic tools, investigations and inves-
tigators. Conlan et al. [6] identify data hiding, encryption, data de-
struction, steganography and trail obfuscation as notable anti-forensic
techniques. In their anti-forensics taxonomy, filesystem manipulation
is a subcategory of data hiding. The modification of file timestamps

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 159–182, 2019.

https://doi.org/10.1007/978-3-030-28752-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_9&domain=pdf

160 ADVANCES IN DIGITAL FORENSICS XV

– often called “timestomping” – was pioneered by the timestomp util-
ity [10]. Timestomping is the intentional alteration of created, modified
or accessed timestamps of files or directories in the filesystem of a hard
drive, USB stick, flash memory card or other storage device. Because
timestamps are vital to event reconstruction and timeline creation, the
authenticity and reliability of timestamps extracted from storage media
are vital to forensic investigations [3].

The widespread use of anti-forensic tools, such as privacy cleaners
(e.g., CCleaner) and timestomping utilities (e.g., SetMACE), has made
the identification and analysis of suspicious files increasingly difficult.
Moreover, advanced malware programs use anti-forensic techniques to
persist and remain hidden in target systems [19]. These techniques in-
clude timestomping, data hiding and filesystem tunneling [5]. For ex-
ample, Albano et al. [1] have presented an anti-forensic approach that
leverages the Linux touch command to manipulate the last modified
timestamp of an mmssms.db database in order to modify or delete evi-
dence in an Android device.

Filesystem metadata analysis is an important component of digital
forensic investigations. This chapter focuses on filesystem timestamp
patterns that can be used to detect date and time forgery in stand-alone
NTFS and Ext4 filesystems as well as in file interactions between the
filesystems. The Windows Subsystem for Linux (WSL) feature in Win-
dows 10 enables users to modify, access and delete files and folders in
NTFS using Linux tools within a Windows Subsystem for Linux Bash
shell. Moreover, users can launch Windows programs and store apps
within the shell without leaving (or limiting) evidence in Prefetch files
and other sources of program execution data; these traces would have
been recorded if similar actions were performed using Windows Explorer.
Malicious users can leverage the Windows Subsystem for Linux to ma-
nipulate file data and metadata using Linux commands such as touch
and shred. Therefore, it is important to investigate the forensic impli-
cations of the Windows Subsystem for Linux feature with a focus on
file metadata in hybrid filesystems. The research literature has just two
works that discuss the forensic implications of the Windows Subsystem
for Linux, one is a blog post [13] and the other is a research article [16].

2. Filesystem Timestamps

This section presents details about timestamps in the widely-used
NTFS and Ext4 filesystems and their time resolutions. The time reso-
lutions of other filesystems, including the newer APFS (Apple Filesys-

Singh & Gupta 161

tem), are provided to understand anti-forensic techniques that may be
used against them.

2.1 NTFS Timestamps and Time Resolutions

NTFS is a complex and robust filesystem used by default in com-
puters running Windows NT 3.1 and later versions. NTFS timestamps
are stored as 8-byte file time values that represent the number of 100-
nanosecond intervals elapsed since 12:00 A.M. January 1, 1601. Conse-
quently, NTFS timestamps have 100 nanosecond precision.

In addition to MAC (modified, accessed and changed) timestamps,
NTFS, unlike other filesystems, also has a birth (i.e., file creation) time-
stamp. Thus, NTFS metadata contains four types of timestamps for
each file on disk: (i) modified (file last modified); (ii) accessed (file last
accessed); (iii) created (file created); and (iv) master file table (MFT)
entry last modified. These timestamps are commonly referred to by their
acronyms – MACE.

Several operating systems allow updates of the access time to be dis-
abled. This means that the access time in a filesystem entry is not up-
dated when the associated file is accessed. However, a user can change
the default access time update. For example, the access time in Win-
dows is controlled by the HKLM\SYSTEM\CurrentControlSet\Control
\FileSystem\NtfsDisableLastAccessUpdate registry key, where a val-
ue of one disables access time updates.

NTFS has two locations in $MFT where timestamps are recorded –
$STANDARD INFORMATION (or $SI) and $FILE NAME (or $FN).
The $SI timestamps are collected by Windows Explorer and by fls,
mactime, timestomp, find and other utilities that can display time-
stamps. The timestamp values in the $SI attribute can be modified by
user processes.

NTFS maintains a duplicate set of timestamp values in the $FN at-
tribute. For a given $MFT entry, multiple $FN attributes may exist.
Because the $FN attribute can only be modified by the Windows kernel,
the MACE values in $FN are updated in a different manner and are
inconsistent with the MACE values in the $SI attribute. In fact, time-
stamp values in $FN are untouched by most timestamp manipulation
tools.

It is important to note that the timestamp values in $SI and $FN
update independently. For example, when a user accesses or modifies
file content, then the temporal values in $SI are updated whereas the
temporal values in $FN are updated when the user performs a move or
copy operation. Analysis of the temporal values of these two attributes

162 ADVANCES IN DIGITAL FORENSICS XV

can enable a forensic analyst to detect anomalies and timestomping.
Additionally, the information can help an analyst create an accurate
timeline of user activities in the system being investigated.

2.2 Ext4 Timestamps and Time Resolutions

Ext4, the successor to the standard Linux filesystem Ext3, is the
default filesystem in most Linux distributions. The filesystem has in-
troduced many new features, including the maximum file size (16GB to
16TB vs. 16GB to 2TB in Ext3), directory capacity (64,000 subdirec-
tories vs. 32,000 in Ext3), journal checksum, journaling feature disabling
option, delayed and multiple block allocations, large inodes, used inode
count and fast e2fsck and fast extended attributes [7–9, 15]. These
features improve the performance and reliability of Ext4 compared with
the Ext3 filesystem.

In addition to these features, the inode structure in Ext4 is extended
to return seconds and nanoseconds since the Unix epoch (1970-01-01
00:00:00 UTC). Five timestamps are stored in an Ext4 filesystem: (i) file
last modification (m-time); (ii) file last access (a-time); (iii) inode meta-
data changed (c-time); (iv) file creation (cr-time); and (v) file deletion
(d-time). The first four timestamps are commonly referred to MACB,
where B denotes the birth (or creation) timestamp.

The larger inode structure size of 256 bytes in Ext4 provides additional
space to support nanosecond timestamps and postpones the “year 2038
problem” to 2446-05-10 [20]. Mathur et al. [15] have shown that the
32 bits for the c-time, a-time, m-time and cr-time timestamps in Ext3
are extended to 64 bits in Ext4. However, d-time is not extended and
remains a 32-bit timestamp in Ext4 with a precision of one second.

The Linux stat API enables users to access MAC timestamps up
to nanosecond precision. The regular stat command does not report
the cr-time and d-time timestamps. However, users can view all five
timestamps with nanosecond precision using the TSK istat command
or the debugfs version of stat. Note that the TSK istat command
does not consider the extra epoch bits and, therefore, cannot resolve
timestamps beyond the year 2038.

Table 1 shows the timestamp resolutions in various filesystems, along
with their epoch dates and times.

3. Experiments and Results

The Windows 10 Anniversary Update (v1607) shipped with the beta
version of the Windows Subsystem for Linux feature brings Windows
and Linux platforms together. The feature was introduced to reduce

Singh & Gupta 163

Table 1. Filesystem time resolutions and epoch dates and times.

Filesystem Timestamps Size Resolution Epoch Date
(Bytes) and Time

Ext3 File modified 4 1 s 1970-01-01
File accessed 4 1 s 00:00:00
Inode metadata 4 1 s
modified
File deleted 4 1 s

FAT32 File modified 4 2 s 1980-01-01
File accessed 2 1 day 00:00:00
File created 4 2 s

Ext4 File modified 8 1 ns 1970-01-01
File accessed 8 1 ns 00:00:00
Inode metadata 8 1 ns
modified
File created 8 1 ns
File deleted 4 1 s

NTFS File modified 8 100 ns 1601-01-01
File accessed 8 100 ns 00:00:00
MFT entry 8 100 ns
modified
File created 8 100 ns

HFS+ File modified 4 1 s 1904-01-01
File accessed 4 1 s 00:00:00 and
Inode metadata 4 1 s 1970-01-01
modified 00:00:00 since
File created 4 1 s Mac OS-X 10.7 (Lion)

APFS File modified 8 1 ns 1970-01-01
File accessed 8 1 ns 00:00:00
Inode metadata 8 1 ns
modified 8 1 ns
File created 8 1 ns

the “gaps” experienced when running Windows tools alongside Linux
command-line tools and environments. Since its introduction, the Win-
dows Subsystem for Linux has continuously improved Windows-Linux
integration. The Windows 10 Creators Update (v1703) enables users to
invoke Windows applications, store apps within a Linux Bash shell and
use Linux mainstream developers tools within Windows. Microsoft has
stated that it does not explicitly support X/GUI apps/desktops in the

164 ADVANCES IN DIGITAL FORENSICS XV

Windows Subsystem for Linux because the intent is only to provide the
needed command-line developers tools.

The Windows Subsystem for Linux feature in Windows 10 introduces
exciting possibilities for digital forensics. In its Windows 10 Fall Creators
Update (v1709), Microsoft announced that the Windows Subsystem for
Linux would be a fully-supported operating system feature that would
enable users to install multiple Linux distributions and to run them
side-by-side simultaneously. Support for mounting USB storage devices
is also provided to enable users to access files and folders from within
the Linux Bash shell. Clearly, a deep understanding of the Windows
Subsystem for Linux feature is required in order for a forensic analyst
to correctly interpret timestamp values in filesystems of interest.

3.1 Stand-Alone NTFS Filesystems

The Windows Subsystem for Linux feature in Windows 10 (Anniver-
sary Update and later versions) enables users to perform various file
operations in NTFS using mainstream developer command-line tools
within the Linux Bash shell. Therefore, an attempt was made to iden-
tify timestamp patterns in NTFS for various file operations performed
using command-line tools within the Windows Subsystem for Linux.
Windows command-line tools and Linux command-line tools were em-
ployed to manipulate files. Changes in the MACE timestamps in the
$SI and $FN attributes of files were analyzed.

The experimental set-up involved the installation and configuration
of Ubuntu and Windows Subsystem for Linux on a personal computer
running Windows 10 Pro x64 with version 1709 (build 16299.371). The
Ubuntu version was 16.04.03 LTS with core command-line tools (ssh,
scp, apt, grep, top, awk, etc.) and mainstream developer tools (emacs,
vim, nano, gdb, git, etc.). Following the configuration of Ubuntu, TSK
(v4.2.0.3) was installed using apt within the Bash shell. FTK Imager
was installed on the Windows system to create the dd image of the NTFS
volume. The MACE timestamps in the $SI and $FN attributes corre-
sponding to files of interest were extracted using the istat command.

The experiments focused on several file operations – creation, access,
modification, renaming, copying, moving (same volume and across vol-
umes), deletion, compression and decompression. Before performing file
operations, several reference files were selected to record their MACE
timestamps in $SI and $FN attributes using istat on the dd image of
the NTFS volume. Note that istat requires the inode number ($MFT
entry number for NTFS) of the file; this was obtained by parsing $MFT
using Mft2Csv [18]. Following a file operation, the MACE timestamps

Singh & Gupta 165

were collected for the reference files in the newly-created image of the
NTFS volume. This process was repeated for every file operation con-
sidered in the timestamp pattern evaluations.

Timestamp Rules for File Creation: These timestamp rules
were determined by creating several files using echo, copy and
fsutil within the Windows command-line, and touch within the
Linux Bash shell. It was observed that, whenever a file was created,
the MACE timestamps in the $SI and $FN attributes corresponded
to the date and time that the file was created.

Timestamp Rules for File Access: These timestamp rules were
determined by reopening reference files using their default appli-
cations (called the standard GUI mechanism), and using the cat

and nano commands within the Bash shell. It was observed that,
when a file in an NTFS volume was accessed using the standard
mechanism, then, by default, the em-time timestamp in the $SI
attribute was updated to the date and time that the file was last
accessed. However, no changes to the MACE timestamps in $FN
were observed. Also, when files were accessed using cat and nano,
no changes to the MACE timestamps in the $SI and $FN attributes
were observed.

Timestamp Rules for File Modification: These timestamp
rules were determined by modifying the reference files using the
standard GUI mechanism, and using echo and powershell within
the Windows command-line and nano within the Bash shell. The
powershell command-line shell, which was introduced in Win-
dows 7, also provides a way to modify a file. In all the cases, the
m-time and em-time timestamps in the $SI attribute were updated
to correspond to the date and time when the file was modified. No
changes to the MACE timestamps in $FN were observed.

Timestamp Rules for File Renaming: These timestamp rules
were determined by renaming the reference files via Windows Ex-
plorer (standard mechanism), rename within the Windows com-
mand line, and rename and mv within the Bash shell. It was ob-
served that, in all four cases, em-time in $SI was updated to the
date and time when the file was renamed. Moreover, em-time in
$FN was changed to the last em-time in $SI. Thus, during nor-
mal NTFS operations, em-time in $SI is greater than or equal to
em-time in $FN.

Timestamp Rules for File Copying: These timestamp rules
were determined by copying and pasting reference files via Win-

166 ADVANCES IN DIGITAL FORENSICS XV

dows Explorer, and using copy within the Windows command-line
and cp within the Bash shell. It was observed that, when a copy
operation was performed using Windows Explorer or copy, the
m-time and em-time timestamps in $SI were inherited from the
original file. However, the a-time and c-time timestamps were
changed to the date and time when the copied file was created
on disk. Also, all four timestamps in $FN were updated in every
case. When the cp command was used within the Bash shell, all
the MACE timestamps in $SI and $FN attributes were changed.

Timestamp Rules for File Moving: These timestamp rules
were determined by moving reference files within the same NTFS
volume and to a different NTFS volume using Windows Explorer,
move within the Windows command-line and mv within the Bash
shell. It was discovered that, when a file was moved using the
standard mechanism within the same volume, only the $SI em-
time was updated to the date and time when the file was moved.
No changes were observed to the MACE timestamps in $FN when
files were moved to the same volume. However, when a file was
moved using move or mv, in addition to the $SI em-time being
updated, the $FN em-time was updated to the last $SI em-time.

In a second experiment, files were moved to a different NTFS vol-
ume using the same methods. It was discovered that the Windows
move command and Bash shell mv command produced different
timestamp patterns for a given file. Specifically, the Windows
move preserved a-time and c-time in $SI whereas the Bash shell
mv preserved only a-time. However, moving files across volumes
changed all the MACE timestamps in the $FN attribute.

Timestamp Rules for File Deletion: These rules were de-
termined by deleting reference files using the Windows Explorer
SHIFT+DELETE, Windows command-line del and Bash shell rm. It
was discovered that, when a file in an NTFS volume was deleted,
none of MACE timestamps in $SI and $FN were changed. In other
words, it is very difficult to estimate the deletion dates and times
of NTFS files from metadata alone.

Timestamp Rules for File Compression: These rules were
determined by compressing files and folders in several ways, such as
using WinZip, a customized VBScript, 7-Zip and Bash shell tar.
It was discovered that all the file compression methods created a
new file that recorded the MACE timestamps in $SI and $FN as
the file compression date and time.

Singh & Gupta 167

Timestamp Rules for File Decompression: These rules were
determined by decompressing files using WinZip, 7-Zip and Bash
shell unzip. It was discovered that different tools yielded different
timestamp patterns. For example, when a compressed file was de-
compressed using WinZip, only the $SI em-time was changed to the
file decompression date and time whereas the $SI c-time, m-time
and a-time were unchanged from the c-time, m-time and a-time
before compression. When a compressed file was decompressed
using 7-Zip, the $SI c-time, em-time and a-time were changed
to the file decompression date and time whereas m-time was un-
changed from the m-time before compression. If the compressed
file was decompressed using the Bash shell unzip, then the $SI
c-time and em-time were changed to the file decompression date
and time whereas the m-time and a-time were unchanged from the
m-time and a-time before compression, respectively. However, for
all the decompression methods used in the experiments, the $FN
MACE timestamps were changed to the file decompression date
and time.

Tables 2 through 4 summarize the patterns observed for various op-
erations on NTFS files.

3.2 Stand-Alone Ext4 Filesystems

Several experiments were performed to determine timestamp patterns
for various file operations in an Ext4 filesystem.

Timestamp Rules for File Creation: These rules were deter-
mined by creating several files using touch, echo and cat within
a Ubuntu terminal. It was discovered that, when files were cre-
ated, the inode MACB timestamps corresponded to the file cre-
ation dates and times.

Timestamp Rules for File Access: These rules were deter-
mined by reopening reference files using the standard GUI mecha-
nism, and the cat and nano commands within a Ubuntu terminal.
No changes were observed to any of the timestamps.

Timestamp Rules for File Modification: These rules were
determined by modifying reference files using the standard GUI
mechanism, and the nano and vim commands within a Ubuntu
terminal. It was observed that, in all cases, m-time, a-time and
c-time were updated to the dates and times when the files were
modified. However, cr-time was unchanged during file modifica-
tion.

T
a
bl
e
2
.

T
im

es
ta
m
p
p
a
tt
er
n
s
o
b
se
rv
ed

fo
r
o
p
er
a
ti
o
n
s
o
n
fi
le
s
in

N
T
F
S
.

O
p
e
r
a
ti
o
n

M
e
th

o
d

N
T
F
S

T
im

e
st
a
m

p
s

L
o
c
a
ti
o
n

F
il
e

F
il
e

E
n
tr
y

F
il
e

M
o
d
ifi

e
d

A
c
c
e
ss
e
d

M
o
d
ifi

e
d

C
r
e
a
te

d
(m

-t
im

e
)

(a
-t
im

e
)

(e
m

-t
im

e
)

(c
-t
im

e
)

C
re
a
ti
o
n

S
ta
n
d
a
rd

G
U
I

$
S
I

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

$
F
N

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

e
c
h
o

$
S
I

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

co
m
m
a
n
d
-l
in
e

$
F
N

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

c
o
p
y

$
S
I

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

co
m
m
a
n
d
-l
in
e

$
F
N

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

f
s
u
t
i
l

$
S
I

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

co
m
m
a
n
d
-l
in
e

$
F
N

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

t
o
u
c
h

$
S
I

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

B
a
sh

sh
el
l

$
F
N

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

A
cc
es
s

S
ta
n
d
a
rd

G
U
I

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

A
cc
es
s
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

c
a
t

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

n
a
n
o

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

M
o
d
ifi
ca

ti
o
n

S
ta
n
d
a
rd

G
U
I

$
S
I

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

e
c
h
o

$
S
I

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

co
m
m
a
n
d
-l
in
e

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

p
o
w
e
r
s
h
e
l
l

$
S
I

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

co
m
m
a
n
d
-l
in
e

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

n
a
n
o

$
S
I

M
o
d
ifi
ca

ti
o
n
d
a
te

&
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
d
ifi
ca

ti
o
n
d
a
te

&
ti
m
e

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

168 ADVANCES IN DIGITAL FORENSICS XV

T
a
bl
e
3
.

T
im

es
ta
m
p
p
a
tt
er
n
s
o
b
se
rv
ed

fo
r
o
p
er
a
ti
o
n
s
o
n
fi
le
s
in

N
T
F
S
(c
o
n
ti
n
u
ed

).

O
p
e
r
a
ti
o
n

M
e
th

o
d

N
T
F
S

T
im

e
st
a
m

p
s

L
o
c
a
ti
o
n

F
il
e

F
il
e

E
n
tr
y

F
il
e

M
o
d
ifi

e
d

A
c
c
e
ss
e
d

M
o
d
ifi

e
d

C
r
e
a
te

d
(m

-t
im

e
)

(a
-t
im

e
)

(e
m

-t
im

e
)

(c
-t
im

e
)

R
en

a
m
e

S
ta
n
d
a
rd

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

W
in
d
o
w
s
E
x
p
lo
re
r

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

r
e
n
a
m
e

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

co
m
m
a
n
d
-l
in
e

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

L
a
st

$
S
I
em

-t
im

e
N
o
t
ch

a
n
g
ed

r
e
n
a
m
e

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

L
a
st

$
S
I
em

-t
im

e
N
o
t
ch

a
n
g
ed

m
v

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

L
a
st

$
S
I
em

-t
im

e
N
o
t
ch

a
n
g
ed

C
o
p
y

S
ta
n
d
a
rd

$
S
I

N
o
t
ch

a
n
g
ed

C
o
p
y
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

C
o
p
y
d
a
te
,
ti
m
e

G
U
I

$
F
N

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

c
o
p
y

$
S
I

N
o
t
ch

a
n
g
ed

C
o
p
y
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

C
o
p
y
d
a
te
,
ti
m
e

co
m
m
a
n
d
-l
in
e

$
F
N

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

c
p

$
S
I

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

B
a
sh

sh
el
l

$
F
N

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

M
o
v
e

S
ta
n
d
a
rd

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

(S
a
m
e
V
o
lu
m
e)

W
in
d
o
w
s
E
x
p
lo
re
r

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

L
a
st

$
S
I
em

-t
im

e
N
o
t
ch

a
n
g
ed

m
o
v
e

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

co
m
m
a
n
d
-l
in
e

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

L
a
st

$
S
I
em

-t
im

e
N
o
t
ch

a
n
g
ed

m
v

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

L
a
st

$
S
I
em

-t
im

e
N
o
t
ch

a
n
g
ed

M
o
v
e

S
ta
n
d
a
rd

$
S
I

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

(A
cr
o
ss

V
o
lu
m
es
)

W
in
d
o
w
s
E
x
p
lo
re
r

$
F
N

M
o
v
e
d
a
te

&
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te

&
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

m
o
v
e

$
S
I

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

co
m
m
a
n
d
-l
in
e

$
F
N

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

m
v

$
S
I

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te

&
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

B
a
sh

sh
el
l

$
F
N

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

Singh & Gupta 169

T
a
bl
e
4
.

T
im

es
ta
m
p
p
a
tt
er
n
s
o
b
se
rv
ed

fo
r
o
p
er
a
ti
o
n
s
o
n
fi
le
s
in

N
T
F
S
(c
o
n
ti
n
u
ed

).

O
p
e
r
a
ti
o
n

M
e
th

o
d

N
T
F
S

T
im

e
st
a
m

p
s

L
o
c
a
ti
o
n

F
il
e

F
il
e

E
n
tr
y

F
il
e

M
o
d
ifi

e
d

A
c
c
e
ss
e
d

M
o
d
ifi

e
d

C
r
e
a
te

d
(m

-t
im

e
)

(a
-t
im

e
)

(e
m

-t
im

e
)

(c
-t
im

e
)

D
el
et
io
n

S
ta
n
d
a
rd

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

W
in
d
o
w
s
E
x
p
lo
re
r

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

S
H
I
F
T
+
D
E
L
E
T
E

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

d
e
l

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

co
m
m
a
n
d
-l
in
e

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

r
m

$
S
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

B
a
sh

sh
el
l

$
F
N

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

C
o
m
p
re
ss
io
n

W
i
n
Z
i
p
a
n
d

$
S
I

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

7
-
Z
i
p

$
F
N

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

V
B
S
c
r
i
p
t

$
S
I

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

co
m
m
a
n
d
-l
in
e

$
F
N

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

t
a
r

$
S
I

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

B
a
sh

sh
el
l

$
F
N

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
re
ss
io
n

W
i
n
Z
i
p

$
S
I

F
il
e
la
st

m
-t
im

e
F
il
e
la
st

a
-t
im

e
D
ec
o
m
p
.
d
a
te
,
ti
m
e

F
il
e
la
st

c-
ti
m
e

$
F
N

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

7
-
Z
i
p

$
S
I

F
il
e
la
st

m
-t
im

e
D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

$
F
N

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

u
n
z
i
p

$
S
I

F
il
e
la
st

m
-t
im

e
F
il
e
la
st

a
-t
im

e
D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

B
a
sh

sh
el
l

$
F
N

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

170 ADVANCES IN DIGITAL FORENSICS XV

Singh & Gupta 171

Timestamp Rules for File Renaming: These rules were deter-
mined by renaming reference files using the standard GUI mecha-
nism, and the rename and mv commands within a Ubuntu terminal.
It was discovered that a-time and c-time were updated to the date
and time when the renaming operation was performed whereas
m-time and cr-time were unchanged.

Timestamp Rules for File Copying: These rules were deter-
mined by copying reference files using the standard GUI mech-
anism and the cp command within a Ubuntu terminal. It was
discovered that the m-time of a copied file was inherited from the
original file whereas the a-time, c-time and cr-time were updated
to the date and time of the copy operation. However, if the file
was copied using the cp command, then all the MACB timestamps
were changed to the date and time of the copy operation.

Timestamp Rules for File Moving: These rules were deter-
mined by moving reference files to the same Ext4 volume as well as
to another Ext4 volume using the standard GUI mechanism and
the mv command within a Ubuntu terminal. In all cases, a-time
and c-time were changed to the date and time of the move oper-
ation. However, m-time and cr-time were unchanged after all the
move operations.

Timestamp Rules for File Deletion: These rules were de-
termined by deleting files using the standard SHIFT+DELETE, and
the rm and shred commands within a Ubuntu terminal. It was
discovered that, in addition to the m-time and c-time, the Ext4
filesystem recorded the d-time of the particular file, and all the
timestamp values were updated to the date and time when the file
was deleted. However, a-time and cr-time were unchanged after
all the deletion operations.

Timestamp Rules for File Compression: These rules were
determined by compressing files and folders in an Ext4 volume
using the standard GUI mechanism, and the zip, tar and gzip

commands within a Linux terminal. It was discovered that, if a file
or folder was compressed using the standard GUI mechanism or
using zip or tar, then the inode MACB timestamps stored in the
volume corresponded to the date and time when the file or folder
was compressed. However, different timestamp patterns were ob-
served for different compression algorithms. For example, when
the gzip command-line tool within a Ubuntu Bash terminal was
used, m-time and a-time were not updated. However, c-time and

172 ADVANCES IN DIGITAL FORENSICS XV

cr-time were updated to the date and time when the compression
command was executed.

Timestamp Rules for File Decompression: These rules were
determined by decompressing several files using the standard GUI
mechanism, and the unzip, tar and gzip commands within a
Ubuntu terminal. It was discovered that, when a compressed file
was extracted or decompressed, the timestamp patterns depended
on the decompression method used. For example, unzip and tar

left m-time unchanged from the file last modified time (just before
compression); the other three timestamps were updated to the date
and time when the zipped file was decompressed. In the case of
gzip, m-time and a-time were unchanged.

Tables 5 and 6 summarize the patterns observed for various operations
on Ext4 files.

3.3 NTFS-Ext4 File Transfers

Experiments were conducted to identify the timestamp patterns of
file transfers to and from Windows NTFS and Linux Ext4 volumes. In
the experiments, a personal computer was set up to dual boot with Mi-
crosoft Windows 10 v1709 x64 and Ubuntu 16.04.03 LTS. The TSK tool
was installed using apt within a Ubuntu Bash terminal. To enable file
transfers between NTFS and Ext4, the Windows volumes were mounted
in Ubuntu and files were transferred using methods such as the standard
GUI mechanism, and cp and mv within a Ubuntu Bash terminal. The
istat tool was used to collect timestamps before and after each file was
transferred.

In the case of file transfers from NTFS to Ext4 using the standard
GUI, and cp and mv within a Ubuntu Bash terminal, it was discovered
that, for all the cases shown in Table 7, at least a-time, c-time and
cr-time were changed to the file transfer date and time. However, file
transfers using cp changed all the inode MACB timestamps. Also, file
transfers from NTFS to Ext4 using the standard GUI and mv within a
Ubuntu Bash terminal caused the inode m-time to be inherited from $SI
m-time.

When a file was transferred from Ext4 to NTFS using the standard
GUI, and cp and mv within a Ubuntu Bash terminal, all the MACE
timestamps in $FN were assigned the date and time when the file was
transferred. Also, a-time, em-time and c-time in $SI were updated to the
file transfer date and time. However, except for the file transfer using cp,
m-time in $SI was not updated. In fact, it inherited the inode m-time of

T
a
bl
e
5
.

T
im

es
ta
m
p
p
a
tt
er
n
s
o
b
se
rv
ed

fo
r
o
p
er
a
ti
o
n
s
o
n
fi
le
s
in

E
x
t4
.

O
p
e
r
a
ti
o
n

M
e
th

o
d

T
im

e
st
a
m

p
s

F
il
e

F
il
e

In
o
d
e

F
il
e

F
il
e

M
o
d
ifi

e
d

A
c
c
e
ss
e
d

M
o
d
ifi

e
d

C
r
e
a
te

d
D
e
le
te

d
(m

-t
im

e
)

(a
-t
im

e
)

(c
-t
im

e
)

(c
r
-t
im

e
)

(d
-t
im

e
)

C
re
a
ti
o
n

t
o
u
c
h

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

N
A

c
a
t

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

N
A

e
c
h
o

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

C
re
a
ti
o
n
d
a
te
,
ti
m
e

N
A

A
cc
es
s

G
U
I

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
A

c
a
t

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
A

n
a
n
o

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

N
A

M
o
d
ifi
ca

ti
o
n

G
U
I

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

n
a
n
o

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

v
i
m

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

M
o
d
ifi
ca

ti
o
n
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

R
en

a
m
e

G
U
I

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

r
e
n
a
m
e

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

m
v

N
o
t
ch

a
n
g
ed

R
en

a
m
e
d
a
te
,
ti
m
e

R
en

a
m
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

C
o
p
y

G
U
I

N
o
t
ch

a
n
g
ed

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

N
A

c
p

C
o
p
y
d
a
te

&
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

C
o
p
y
d
a
te
,
ti
m
e

N
A

M
o
v
e

G
U
I

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

M
o
v
e
T
o
T
ra
sh

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

m
v

N
o
t
ch

a
n
g
ed

M
o
v
e
d
a
te
,
ti
m
e

M
o
v
e
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

N
A

Singh & Gupta 173

T
a
bl
e
6
.

T
im

es
ta
m
p
p
a
tt
er
n
s
o
b
se
rv
ed

fo
r
o
p
er
a
ti
o
n
s
o
n
fi
le
s
in

E
x
t4
.

O
p
e
r
a
ti
o
n

M
e
th

o
d

T
im

e
st
a
m

p
s

F
il
e

F
il
e

In
o
d
e

F
il
e

F
il
e

M
o
d
ifi

e
d

A
c
c
e
ss
e
d

M
o
d
ifi

e
d

C
r
e
a
te

d
D
e
le
te

d
(m

-t
im

e
)

(a
-t
im

e
)

(c
-t
im

e
)

(c
r
-t
im

e
)

(d
-t
im

e
)

D
el
et
io
n

M
o
v
e
to

T
ra
sh

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

a
n
d
D
el
et
e

S
H
I
F
T
+
D
E
L
E
T
E

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

r
m

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

s
h
r
e
d

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

N
o
t
ch

a
n
g
ed

D
el
.
d
a
te
,
ti
m
e

C
o
m
p
re
ss
io
n

G
U
I

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

N
A

t
a
r

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

N
A

z
i
p

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

N
A

g
z
i
p

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

C
o
m
p
.
d
a
te
,
ti
m
e

C
o
m
p
.
d
a
te
,
ti
m
e

N
A

D
ec
o
m
p
re
ss
io
n

G
U
I

F
il
e
la
st

m
-t
im

e
D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

N
A

u
n
z
i
p

F
il
e
la
st

m
-t
im

e
D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

N
A

t
a
r

F
il
e
la
st

m
-t
im

e
D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

N
A

g
z
i
p

N
o
t
ch

a
n
g
ed

N
o
t
ch

a
n
g
ed

D
ec
o
m
p
.
d
a
te
,
ti
m
e

D
ec
o
m
p
.
d
a
te
,
ti
m
e

N
A

174 ADVANCES IN DIGITAL FORENSICS XV

Singh & Gupta 175

Table 7. Timestamp patterns observed during NTFS to Ext4 file transfers.

Operation Transfer Timestamps
Method

File File Inode File
Modified Accessed Modified Created
(m-time) (a-time) (c-time) (cr-time)

Copy File copy Not Copy date Copy date Copy date
via GUI changed and time and time and time

Copy File copy Copy date Copy date Copy date Copy date
via cp in and time and time and time and time
Bash shell

Move File move Not Move date Move date Move date
via GUI changed and time and time and time

Move File move Not Move date Move date Move date
via mv in changed and time and time and time
Bash shell

the file in the Ext4 volume. Table 8 summarizes the timestamp patterns
observed during the Ext4 to NTFS file transfers.

3.4 Timestomping Tool Capabilities

Experiments were conducted with several timestomping utilities and
command-line tools to imvestigate evidence tampering in NTFS and
Ext4 filesystems.

Six utilities, BulkFileChanger, Attribute Changer, SKTimeStamp,
FS Touch, SetMACE and AttributeMagic, were used to alter the MACE
timestamps in an NTFS volume. The utilities were installed on a Win-
dows 10 system and various (newly created and existing) files in a disk
volume were considered as reference files.

Before any timestamps were modified, the MACE timestamps corre-
sponding to $SI and $FN were collected from the reference files in an
NTFS volume image (i.e., dd image created using FTK Imager). The
timestamps were extracted using the TSK istat command within a
Bash shell. The inode number (MFT entry number for NTFS) of a file
required by istat was obtained by parsing $MFT using Mft2Csv.

Each of the six anti-forensic utilities was executed to change the time-
stamps of the reference files to future times. A dd image of the NTFS
volume was then created and istat was executed to extract MACE
timestamps from the $SI and $FN attributes of the reference files. It

176 ADVANCES IN DIGITAL FORENSICS XV

Table 8. Timestamp patterns observed during Ext4 to NTFS file transfers.

Operation Transfer NTFS Timestamps
Method Location

File File Entry File
Modified Accessed Modified Created
(m-time) (a-time) (em-time) (c-time)

Copy File copy $SI Not Copy date Copy date Copy date
via GUI changed and time and time and time

$FN Copy date Copy date Copy date Copy date
and time and time and time and time

Copy File copy $SI Copy date Copy date Copy date Copy date
via cp in and time and time and time and time
Bash shell $FN Copy date Copy date Copy date Copy date

and time and time and time and time

Move File move $SI Not Move date Move date Move date
via GUI changed and time and time and time

$FN Move date Move date Move date Copy date
and time and time and time and time

Move File move $SI Note Move date Move date Move date
via cp in changed and time and time and time
Bash shell $FN Move date Move date Move date Move date

and time and time and time and time

is believed that is the best methodology for comparing the anti-forensic
capabilities of timestomping utilities.

By and large, the six timestomping tools could not set the $FN MACE
timestamps. In fact, only the SetMACE command-line tool could alter
the $FN MACE timestamps. Additionally, whereas all the tools could
alter the $SI MAC timestamps, no tool – except for SetMACE – could al-
ter the $SI em-time. However, BulkFileChanger, Attribute Changer,
SKTimeStamp, FS Touch and AttributeMagic set the em-time to the
date and time when the tool was executed. These five tools were unable
to set the nanoseconds portion of the date and time; instead, they set all
nine digits after the seconds part to zeroes. FS Touch could only change
the $SI MAC timestamps up to the milliseconds part (three digits after
the seconds part).

Only the SetMACE command-line tool was able to successfully alter all
the MACE timestamps in $SI and $FN with nanosecond precision. This
is because, unlike the other tools, SetMACE performs direct disk accesses
to manipulate the MACE timestamps in $SI and $FN, as well as in
the $INDEX ROOT and $INDEX ALLOCATION attributes. SetMACE accom-
plishes this using a driver that bypasses the filesystem and writes directly

Singh & Gupta 177

Table 9. Timestomping capabilities of six anti-forensic tools on NTFS.

Tool Timestamps File File Entry File
Modified Accessed Modified Created

BulkFileChanger $SI � � � �

v1.51 $FN � � � �

Attribute $SI � � � �

Changer v9.0a $FN � � � �

SKTimeStamp $SI � � � �

v1.3.5 $FN � � � �

FS Touch v7.3 $SI � � � �

$FN � � � �

SetMACE $SI � � � �

v1.0.0.14 $FN � � � �

AttributeMagic $SI � � � �

v2.4 $FN � � � �

to the disk without leaving any traces in NTFS metadata ($LogFile and
$UsnJrnl), provided that the adversary has elevated disk access privi-
leges. That means that SetMACE resolves the filesystem internally and
writes the timestamps directly to the physical disk, bypassing filesystem
and operating system control mechanisms. As a result, detecting traces
of SetMACE execution is extremely difficult.

Table 9 compares the timestomping capabilities of the six anti-forensic
tools on NTFS. The � symbol denotes that the timestamp was changed,
but the nanoseconds part was zeroed. The � symbol indicates that the
timestamp was changed to the date and time when the utility was exe-
cuted. The � symbol denotes that the timestamp was changed, but only
up to the milliseconds part. The � symbol signifies that the timestamp
was changed, including the nanoseconds part. Finally, the � symbol
indicates that the timestamp was not changed.

Five utilities, chmod, chattr, touch, SetMACB and BulkFileChanger,
were used to alter the MACB timestamps in an Ext4 filesystem. TSK
was installed on a computer running Ubuntu 16.04 LTS and several
(newly created and existing) files in the Ext4 volume were considered as
reference files. BulkFileChanger was executed on the Ubuntu 16.04 LTS
system using the Wine package, which is capable of running Windows
applications on several POSIX-compliant operating systems. Before any
timestamps were modified, the MACB timestamps corresponding to the
reference files in the Ext4 volume were extracted using stat (when the

178 ADVANCES IN DIGITAL FORENSICS XV

file inode number was known) and istat (otherwise). Following this,
each tool was executed to manipulate the MACB timestamps of the
reference files. The new timestamps then were recorded.

The analysis revealed that chmod updated only the accessed (a-time)
and inode modified (c-time) timestamps whereas chattr only updated
c-time. The touch command (with default options) updated a-time and
c-time to the current date and time. The touch command was also able
to alter the accessed and file modified timestamps to a specific date and
time using the -a option for a-time and the -m option for m-time. For ex-
ample, touch -a -m -t 201612061104.45 test.txt changed the m-
time and a-time of test.txt to 2016-12-06 11:04:45.000000000, but
c-time was updated to the date and time when the command was exe-
cuted. If the system date and time were correct, then c-time would have
the correct date and time; however, if the system time was manipulated,
then c-time would have the incorrect date and time.

The touch command also changed m-time and a-time up to the nano-
seconds part using the -d option. For example, touch -d "2016-12-06

11:04:45.123456789" test.txt changed the m-time and a-time of the
file test.txt to 2016-12-06 11:04:45.123456789, but c-time was up-
dated to the date and time when the command was executed.

The touch command also copied the timestamps of a file to a target
file using option -r. For example, touch test.txt -r sample.txt set
the m-time of test.txt file to the m-time of sample.txt. Also, the
a-time and c-time of the test.txt file were updated to the date and
time when the command was executed; however, the created timestamp
(cr-time) was untouched.

The BulkFileChanger utility was unable to manipulate cr-time; it
only changed the date and time of m-time and left the nanoseconds part
to be all zeroes.

However, it is possible to manipulate all the MACB timestamps of
a file in an Ext4 filesystem. A workaround procedure, referred to as
SetMACB in Table 10, was created to successfully manipulate all four
MACB timestamps with nanosecond precision. The SetMACB procedure
involved the following steps:

Alter the system time to the desired date and time using the date
command-line tool.

Create a new file with the same content or copy-paste an existing
file whose timestamps need to be manipulated.

Update the a-time andm-time of the file using the touch command-
line tool.

Singh & Gupta 179

Table 10. Timestomping capabilities of five anti-forensic tools on Ext4 filesystems.

Tool Options File File Inode File
Modified Accessed Modified Created

chmod 775 � � � �

chattr +a � � � �

touch -a -t � � � �

-a -m -t � � � �

-d � � � �

-r � � � �

SetMACB See text � � � �

BulkFileChanger Using Wine � � � �

Reset the system time to the current date and time using the date
command-line tool.

Table 10 compares the timestomping capabilities of the five anti-
forensic tools on the Ext4 filesystem. The � symbol denotes that the
timestamp was changed, but the nanoseconds part was zeroed. The
� symbol indicates that the timestamp was changed to the date and
time when the utility was executed. The � symbol signifies that the
timestamp was changed, including the nanoseconds part. Finally, the �

symbol indicates that the timestamp was not changed.

4. Discussion

Analyzing timestamps in a filesystem to their full precision is impor-
tant to detect timestamp forgery. The experiments reveal that, by and
large, the evaluated timestomping tools could set the file created, modi-
fied and accessed timestamps to specified dates and times with precisions
of seconds, leaving the nanoseconds parts as zeroes. Thus, if the nanosec-
onds part of any NTFS MACE or Ext4 MACB timestamp (except for
inode d-time in Ext4) contains all zeroes, then timestamp forgery is in-
dicated. However, this is not always true because, when a file is copied
or moved from a USB device (FAT32 filesystem) to an NTFS or Ext4
volume, it inherits the m-time (in $SI only for NTFS), but the nanosec-
onds part has all zeroes because the time resolution of the last modified
time in a FAT32 filesystem only has a precision of seconds. In the case
of an NTFS file, because of the 100 ns interval, there is one chance out
of 4, 782, 969 (= 97) that the nanoseconds part of a timestamp would be

180 ADVANCES IN DIGITAL FORENSICS XV

all zeroes by default. In the case of an Ext4 file, the chance is only one
out of 387, 420, 489 (= 99).

The experiments also reveal that the touch timestamp manipulation
tool behaves differently in the NTFS and Ext4 filesystems. In the case of
NTFS, touch (by default), updates a-time, m-time and em-time to the
system date and time in the $SI attribute whereas all four timestamps in
the $FN attribute are not touched. In the case of Ext4, touch updates
a-time, m-time and c-time to the system date and time. However, touch
does not manipulate file creation timestamps in both the filesystems.

5. Conclusions

Timestamp patterns assist forensic analysts in detecting user activities
in filesystems, especially operations performed on files. However, anti-
forensic techniques such as timestomping can alter file created, modified
and accessed timestamps in the filesystems of hard drives, USB sticks,
flash memory cards and other storage devices. Because timestamps are
vital to event reconstruction and timeline creation, the determination
of the authenticity and reliability of timestamps extracted from storage
media are vital in forensic investigations

The filesystem timestamp patterns specified in this chapter enable
forensic analysts to detect date and time forgeries in stand-alone NTFS
and Ext4 filesystems as well as forgeries related to file transfers be-
tween the two filesystems. The analysis of well-known file timestamp
changing utilities (timestomping tools) on NTFS and Ext4 filesystems
provides valuable insights into their anti-forensic capabilities. Time-
stamp anomalies can be detected by leveraging timestamp patterns and
analyzing timestamps to their full precision.

The research described in this chapter has focused on the Windows
Subsystem for Linux feature in Windows 10 systems. Since this feature
is still evolving, it is expected that the timestamp patterns would vary in
future versions of Windows 10. Nevertheless, this research has demon-
strated how timestamp patterns and the capabilities of anti-forensic tools
can be systematically investigated to detect timestamp forgeries.

Future research will investigate the forensic implications of the Win-
dows Subsystem for Linux feature with regard to the recovery of deleted
files using Linux tools such as rm, shred and srm. Also, research will
attempt to identify the sources and locations of execution artifacts cre-
ated when Windows programs and apps are launched within a Bash shell
using the Windows Subsystem for Linux feature.

Singh & Gupta 181

References

[1] P. Albano, A. Castiglione, G. Cattaneo and A. De Santis, A novel
anti-forensic technique for the Android OS, Proceedings of the Inter-
national Conference on Broadband and Wireless Computing, Com-
munications and Applications, pp. 380–385, 2011.

[2] I. Baggili, A. BaAbdallah, D. Al-Safi and A. Marrington, Research
trends in digital forensic science: An empirical analysis of pub-
lished research, Proceedings of the Fourth International Conference
on Digital Forensics and Cyber Crime, pp. 144–157, 2012.

[3] F. Buchholz and E. Spafford, On the role of filesystem metadata in
digital forensics, Digital Investigation, vol. 1(4), pp. 298–309, 2004.

[4] B. Carrier, File System Forensic Analysis, Pearson Education, Up-
per Saddle River, New Jersey, 2005.

[5] E. Casey, Digital stratigraphy: Contextual analysis of filesystem
traces in forensic science, Journal of Forensic Sciences, vol. 63(5),
pp. 1383–1391, 2018.

[6] K. Conlan, I. Baggili and F. Breitinger, Anti-forensics: Furthering
digital forensic science through a new, extended, granular taxonomy,
Digital Investigation, vol. 18(S), pp. S66–S75, 2016.

[7] A. Dewald and S. Seufert, AFEIC: Advanced forensic Ext4 inode
carving, Digital Investigation, vol. 20(S), pp. S83–S91, 2017.

[8] K. Fairbanks, An analysis of Ext4 for digital forensics, Digital In-
vestigation, vol. 9(S), pp. S118–S130, 2012.

[9] K. Fairbanks, C. Lee and H. Owen III, Forensic implications of
Ext4, Proceedings of the Sixth Annual Workshop on Cyber Security
and Information Intelligence Research, article no. 22, 2010.

[10] J. Foster and V. Liu, Catch me, if you can, presented at Black Hat
Japan, 2005.

[11] S. Garfinkel, Anti-forensics: Techniques, detection and countermea-
sures, Proceedings of the Second International Conference on i-
Warfare and Security, pp. 77–84, 2007.

[12] R. Harris, Arriving at an anti-forensics consensus: Examining how
to define and control the anti-forensics problem, Digital Investiga-
tion, vol. 3(S), pp. 44–49, 2006.

[13] A. Harrison, Further Forensicating of Windows Subsystem for
Linux, 1234n6 Blog (www.blog.1234n6.com/2017/10/further-
forensicating-of-windows.html), October 17, 2017.

182 ADVANCES IN DIGITAL FORENSICS XV

[14] S. Ho, D. Kao and W. Wu, Following the breadcrumbs: Timestamp
pattern identification for cloud forensics, Digital Investigation, vol.
24, pp. 79–94, 2018.

[15] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas and L.
Vivier, The new Ext4 filesystem: Current status and future plans,
Proceedings of the Linux Symposium, vol. 2, pp. 21–34, 2007.

[16] L. Nathan, A. Case, A. Ali-Gombe and G. Richard III, Memory
forensics and the Windows Subsystem for Linux, Digital Investiga-
tion, vol. 26(S), pp. S3–S11, 2018.

[17] M. Rogers, Anti-forensics: The coming wave in digital forensics,
poster presentation at the Seventh Annual CERIAS Information
Security Symposium, 2006.

[18] J. Schicht, Mft2Csv, GitHub (www.github.com/jschicht/Mft2
Csv/wiki/Mft2Csv), May 20, 2017.

[19] B. Singh and U. Singh, Program execution analysis in Windows:
A study of data sources, their formats and comparison of forensic
capability, Computers and Security, vol. 74, pp. 94–114, 2018.

[20] D. Wong, Ext4 Disk Layout (www.ext4.wiki.kernel.org/index.
php/Ext4_Disk_Layout), February 18, 2019.

IV

IMAGE FORENSICS

Chapter 10

QUICK RESPONSE ENCODING OF
HUMAN FACIAL IMAGES FOR
IDENTITY FRAUD DETECTION

Shweta Singh, Saheb Chhabra, Garima Gupta, Monika Gupta and
Gaurav Gupta

Abstract Advancements in printing and scanning technology enable fraudsters
to tamper with identity documents such as identity cards, drivers’ li-
censes, admit cards, examination hall tickets and academic transcripts.
Several security features are incorporated in important identity docu-
ments to counter forgeries and verify genuineness, but these features
are often lost in printed versions of the documents. At this time, a
satisfactory method is not available for authenticating a person’s facial
image (photograph) in a printed version of a document. Typically, an
official is required to check the person’s image against an image stored
in an online verification database, which renders the problem even more
challenging.

This chapter presents an automated, low-cost and efficient method
for addressing the problem. The method employs printed quick response
codes corresponding to low-resolution facial images to authenticate the
original and printed versions of identity documents.

Keywords: Facial images, documents, quick response codes, tamper detection

1. Introduction

Advancements in printing and scanning technology have made it easy
for fraudsters to produce high-quality tampered documents. Indeed,
changing or replacing the facial image of a person on an identity docu-
ment is becoming very common.

Numerous frauds have been perpetrated by tampering with human
facial images on documents. One example is the Vyapam scam in In-
dia [10], where a fraudster replaces the photograph of a student on an

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 185–199, 2019.

https://doi.org/10.1007/978-3-030-28752-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_10&domain=pdf

186 ADVANCES IN DIGITAL FORENSICS XV

examination admit card with that of an imposter who takes the exam on
behalf of the student. Another example comes from China [15], where
a broker finds a proxy to take an important exam such as the SAT,
GRE or GMAT on behalf of a student. The broker then prepares a fake
passport with the information of the student but with the image of the
proxy.

Authenticating a tampered identity document requires an expert to
manually analyze the document using sophisticated equipment such as a
microscope or video spectral comparator. This process is time-consuming,
inefficient and non-scalable. Also, this method for detecting tampered
documents is not applicable to printed versions of documents because
most security features are lost during the printing process.

Clearly, there is a need to develop an automated system that can
authenticate a person’s facial image on a document. This system should
work for originals as well as printed versions of documents. Also, the
system should be able to authenticate documents offline and without
relying on a database of images. Additionally, if tampering is detected,
the system should be able to reproduce the person’s facial image that is
similar to the original image in the document.

This chapter presents a method that employs printed quick response
(QR) codes of low-resolution facial images to authenticate the original
and printed versions of documents. The method supports image-to-
image verification, which matches an image on an identity document
against the image encoded as a quick response code on the same docu-
ment. Also, it supports real-time person verification, which matches an
image encoded as a quick response code on the identity document against
a person’s image captured in real time. Figure 1 shows an example of
authenticating (and detecting the tampering of) a driver’s license using
the proposed method.

2. Related Work

Several researchers have proposed methods for detecting counterfeit
documents. Gupta et al. [6] describe a method that considers the texture
and unique color count in order to detect counterfeit documents. The
method links a counterfeit document to its source scanner and printer.
While the method can differentiate between the original and printed ver-
sions of documents, it is not effective at detecting tampering in printed
documents.

Sarkar et al. [12] have proposed a method for detecting low-quality
and high-quality counterfeit currency notes. They have also analyzed
printed security features on currency notes.

Singh et al. 187

Matched

Not Matched
Figure 1. Authentication of a facial image on a driver’s license.

Chhabra et al. [2] have developed a method for detecting fraudulent
bank checks, including checks whose text has been altered using invisible
ink. However, this method for alteration detection does not work well
for printed documents.

The method proposed in this chapter employs quick response codes
as information carriers. In the research literature, quick response codes
have been used in applications ranging from physical document authen-
tication to securing information and identifying leaked documents.

Warasart and Kuacharoen [16] have used quick response codes to
authenticate text-based physical documents. Specifically, they created
codes based on text in documents and verified them against codes cre-
ated using text extracted from the documents by an optical character
recognition system.

188 ADVANCES IN DIGITAL FORENSICS XV

Espejel-Trujillo et al. [3] have employed a visual secret sharing scheme
and quick response codes to authenticate documents. Their approach
generates a binary encrypted message whose first part is encoded as
a quick response code and printed on an identity document while the
second part is encoded as a quick response code stored in a database.
The authentication process extracts both the parts in order to verify the
authenticity of a document.

Tkachenko et al. [14] have proposed a two-level quick response code for
document authentication. The first-level code is the same as an ordinary
quick response code that is readable by a typical quick response code
decoder. The second private-level code contains textures and special
patterns for document authentication.

Nayak et al. [8] have developed a font pixel manipulation approach for
detecting the sources of leaks of hardcopy documents. A quick response
code that encodes information in the font pixels of a unique document
identifier is created and embedded in the document. During the detec-
tion process, this information is extracted from a leaked document to
obtain its unique identifier.

Aygun and Akcay [1] have employed quick response codes to securely
transmit biometric facial features used to authenticate e-government and
e-passport applications. Seenivasagam and Velumani [13] have devel-
oped a method for authenticating medical images by embedding quick
response codes containing patient identity details as watermarks in the
images. More recently, Raval et al. [11] have proposed a method that
protects the privacy of images using an adversarial perturbation mech-
anism and quick response codes.

Table 1 compares existing quick-response-code-based methods along
with the proposed authentication method. The literature review in-
dicates that no automated approach for authenticating a person’s fa-
cial image in a document has been published previously. The proposed
method addresses the deficiency by performing authentications in an of-
fline manner. Low-resolution facial images are stored as quick response
codes on documents when creating the documents. During authenti-
cation, the low-resolution image stored as a quick response code on a
document is extracted and matched against a person’s facial image on
the document.

Two challenges are encountered when storing and verifying low-reso-
lution images using quick response codes. First, because a quick response
code has limited data storage capacity, an image is downsampled to a low
resolution (e.g., 16×16 or 8×8), which leads to considerable information
loss. Second, authentication requires the comparison of a low-resolution
image against a high-resolution image. To address these challenges, the

Singh et al. 189

Table 1. Comparison of tampering detection methods.

Authors Method Documents Facial Image
Authentication

Gupta et al., 2007 [6] Texture and Original No
unique color count

Chhabra et al., 2017 [2] Texture Original No

Nayak et al., 2018 [8] Font pixel Printed No
manipulation

Espejel-Trujillo et al., Visual secret Printed No
2016 [3] sharing

Singh et al., 2019 Generative Original and Yes
(proposed method) adversarial net printed

proposed method uses deep learning to enhance the low-resolution image
that is used for authentication.

3. Proposed Method

The proposed method has two steps: (i) document generation; and
(ii) document authentication.

3.1 Document Generation

Given a document with a low-resolution facial image of a person, a
quick response code corresponding to the image is created. This quick
response code is then printed on the document. Figure 2(a) shows the
steps involved in document generation.

3.2 Document Authentication

Two common situations are encountered when attempting to authen-
ticate a person’s facial image on a document: (i) image-to-image verifi-
cation; and (ii) real-time person verification.

In image-to-image verification, the low-resolution image already en-
coded as a quick response code on a document is matched against the
person’s image on the document. This is required when the person’s
facial image on the document must be verified for possible tampering.

In real-time person verification, the facial image already encoded as a
quick response code on a document is matched against the person’s facial
image captured in real time. This is required when it is difficult to verify

190 ADVANCES IN DIGITAL FORENSICS XV

QR code
Encoder

��,��

Downsampling

Grayscale

��,�� ��

Mapping
Feature

Extractor

Feature
Extractor

Score
Computat ion

�	,
� �	,�

�	

�	,� ���

���

��

(a)

(b)

Figure 2. Proposed method.

the facial image on the document as a result of changes in the person’s
facial features due to age or injury or when the person’s image on the
document has been damaged. Figure 2(b) shows the steps involved in
document authentication using the quick response code computed from
a low-resolution image.

The embedded quick response code and the person’s image on the
document make it possible to perform the authentication process offline
(i.e., without a database). The research literature demonstrates that
quick response codes work well on printed documents.

The document authentication step has two components: (i) low-resolu-
tion to high-resolution image mapping; and (ii) image matching:

Low-Resolution to High-Resolution Image Mapping: A
generative adversarial network model [4] is employed to transform
a low-resolution grayscale image encoded as a quick response code
to a high-resolution color image. The approach involves training
a generator model G to produce an output image x from a noise
vector z, and a discriminator D to distinguish between the real
image y and a generated image x. The objective of the generator
is to produce images such that the discriminator cannot distin-
guish between the real images and the generated images, where
the discriminator has been trained to distinguish real images from
generated images.

The objective function of a generative adversarial network is given
by:

Singh et al. 191

LGAN (G,D) = Ey[logD(y)] + Ez[log(1−D(G(z)))] (1)

where the generator model G tries to minimize the objective func-
tion and the discriminator D tries to maximize the objective func-
tion.

A conditional generative adversarial network is trained to trans-
form the input low-resolution grayscale image to a high-resolution
color image.

Let XHR be a training set containing m high-resolution color im-
ages associated with a document. Let ZLR be the corresponding
low-resolution grayscale image set. Each image Zi,LR in ZLR is
generated by downsampling the high-resolution color image Xi,HR

using bicubic interpolation followed by grayscale conversion.

In order to learn the mapping between a low-resolution grayscale
image and a high-resolution color image, it is necessary to first
upsample the low-resolution grayscale image:

Zi,LR
Upsampling
−−−−−−−→
Grayscale

Zi,HR (2)

where, Zi,HR is the upsampled high-resolution grayscale image.

However, the upsampled image becomes blurred due to significant
information loss. Inspired by the work of Isola et al. [7], the prob-
lem is overcome using a Pix2Pix generative adversarial network
to learn the mapping between the upsampled grayscale image and
the high-resolution color image.

Specifically, a conditional generative adversarial network may be
used to learn the mapping from input images to the corresponding
output images (i.e., image-to-image translation). In this work, it is
required to learn the mapping from the input upsampled grayscale
image set ZHR to the output high-resolution color image set XHR.
Therefore, the objective function is written as:

LcGAN (G,D) = EZHR,XHR
[logD(ZHR,XHR)]+

EZHR,z[log(1−D(G(ZHR, z)))] (3)

As mentioned above, a low-resolution image becomes blurred af-
ter upsampling. Therefore, the L1 norm (Manhattan distance)
is employed to encode sharpness in the output images. The new
objective function is given by:

192 ADVANCES IN DIGITAL FORENSICS XV

LcGAN (G,D) = EZHR,XHR
[logD(ZHR,XHR)]+

EZHR,z[log(1−D(G(ZHR, z)))] + λLL1(G) (4)

Image Matching: The verification task is to determine if an
image encoded as a quick response code matches the input image
associated with the document or matches the image captured in
real time.

Let Pi be the input image to be matched against the image en-
coded in the quick response code. For this purpose, the low-
resolution grayscale image in the quick response code is extracted
and mapped to the high-resolution color image Xi,HR. Next, the
two images are input to a pre-trained facial model to obtain the
output facial representation vectors for the two images. The Eu-
clidean distance between the two output facial representation vec-
tors is computed to obtain the image matching score Si, which is
given by:

Si = ||R(Pi)−R(Xi,HR)||F (5)

where R(.) is the function that extracts facial features from the
input images and ||.||F is the Frobenius norm.

4. Experiments and Results

The proposed method was evaluated using the Multi-PIE 51 dataset
[5]. The evaluation employed 16× 16 and 8× 8 low-resolution images.

The Multi-PIE 51 dataset contains 50,248 images of 337 subjects.
The images of each subject have differing illuminations, poses and ex-
pressions. The dataset was partitioned into a training set and testing
set with 202 (60%) subjects and 135 (40%) subjects, respectively.

Two experiments were conducted: (i) image-to-image verification; and
(ii) real-time person verification. Table 2 shows the details of the the
experiments, which were conducted with 16 × 16 and 8 × 8 resolution
images. The Light CNN-29 [17] and VGGFace [9] facial representation
models were employed to extract features from images.

In order to encode images as quick response codes, the low-resolution
images were converted to unicode and then stored as quick response
codes. The steps were reversed to decode the images. The Pix2Pix
generative adversarial network model was trained for 150 epochs using
the 16× 16 and 8× 8 resolution images.

Singh et al. 193

Table 2. Experiments conducted with 16× 16 and 8× 8 resolution images.

Experiment Resolution Training Testing
Samples Samples

Image-to-Image 16× 16 33,613 16,635
Verification 8× 8 33,613 16,635

Real-Time Person 16× 16 33,613 16,635
Verification 8× 8 33,613 16,635

4.1 Performance Evaluation

The proposed method was evaluated for image-to-image verification
and real-time person verification. For both the evaluations, 16,635 gen-
uine and imposter pairs were generated using test dataset. In the case
of image-to-image verification, two same images (regardless of their res-
olutions) were considered to be a genuine pair. In the case of real-time
person verification, two images of the same subject were considered to
be a genuine pair.

4.2 Image-to-Image Verification

Image-to-image verification compared images in the documents against
the images encoded as quick response codes in the documents. Figures 3
and 4 show the receiver operating characteristic (ROC) curves obtained
for the Light CNN-29 and VGGFace models, respectively. Note that
the curves on the left-hand sides of the figures are for 16× 16 resolution
images whereas the curves on the right-hand sides of the figures are for
8 × 8 resolution images. The ROC curves in the two figures indicate
that image-to-image verification yields better results with the 16 × 16
resolution images for both the models. Also, the Light CNN-29 model
performs better with 16 × 16 resolution images whereas the VGGFace
performs better with 8× 8 resolution images.

Table 3 shows the true positive rates for three false positive rates (0.01,
0.1 and 0.2) for the Light CNN-29 and VGGFace models with the two
image resolutions. The first row of the table shows the image-to-image
verification results. Note that the Light CNN-29 model yields a better
true positive rate with 16× 16 resolution images for a false positive rate
of 0.01 whereas the VGGFace model yields better true positive rates for
false positive rates of 0.1 and 0.2. In the case of 8× 8 resolution images,
the VGGFace model yields better true positive rates for all three false
positive rates.

194 ADVANCES IN DIGITAL FORENSICS XV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCNN-29: Resolution 16x16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCNN-29: Resolution 8x8

False Posit ive Rate

Tr
u

e
Po

si
ti

ve
R

at
e

Figure 3. ROC curves for image-to-image verification (Light CNN-29 model).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VGGFace: Resolution 16x16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VGGFace: Resolution 8x8

False Posit ive Rate

Tr
u

e
Po

si
ti

ve
R

at
e

Figure 4. ROC curves for image-to-image verification (VGGFace model).

Table 3. True positive rates for false positive rates of 0.01, 0.1 and 0.2.

Experiment
Resolution Light CNN-29 VGGFace

0.01 0.1 0.2 0.01 0.1 0.2

Image-to-Image
Verification

16× 16 0.9823 0.9988 0.9996 0.9818 0.9992 0.9999
8× 8 0.0461 0.0461 0.1642 0.3068 0.7857 0.9132

Real-Time Person
Verification

16× 16 0.0598 0.6439 0.9396 0.0538 0.4582 0.6933
8× 8 0.0087 0.0977 0.1476 0.0429 0.3070 0.4864

Figure 5 shows image samples obtained using the Pix2Pix generative
adversarial network model (i.e., mapped from low-resolution grayscale
images to high-resolution color images). The first row shows the original
images, the second row shows the 16 × 16 resolution images encoded
as quick response codes and the third row shows the images obtained

Singh et al. 195

Figure 5. Images generated using Pix2Pix for 16× 16 resolution images.

using Pix2Pix. Note that the visual appearances of subjects are almost
completely preserved in the 16×16 resolution images. This demonstrates
that the proposed method is able to reproduce images that are similar
to the original images.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCNN-29: Resolution 16x16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LCNN-29: Resolution 8x8

False Posit ive Rate

Tr
u

e
Po

si
ti

ve
R

at
e

Figure 6. ROC curves for real-time person verification (Light CNN-29 model).

4.3 Real-Time Person Verification

Real-time person verification compared images encoded as quick re-
sponse codes in the documents against persons’ images captured in real
time. Figures 6 and 7 show the receiver operating characteristic curves
obtained for the Light CNN-29 and VGGFace models, respectively. Once
again, the curves on the left-hand sides of the figures are for 16× 16 res-
olution images whereas the curves on the right-hand sides of the figures

196 ADVANCES IN DIGITAL FORENSICS XV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VGGFace: Resolution 16x16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

VGGFace: Resolution 8x8

False Posit ive Rate

Tr
u

e
Po

si
ti

ve
R

at
e

Figure 7. ROC curves for real-time person verification (VGGFace model).

are for 8×8 resolution images. The ROC curves reveal significant drops
in real-time person verification compared with image-to-image verifica-
tion – these are due to variations in illumination, poses and expressions
in the images. The ROC curves for both models indicate that real-time
person verification is better for 16× 16 resolution images. Furthermore,
the Light CNN-29 model performs better with 16×16 resolution images
whereas the VGGFace performs better with 8× 8 resolution images.

Table 3 also shows the true positive rates for three false positive rates
(0.01, 0.1 and 0.2) for real-time person verification with the Light CNN-
29 and VGGFace models for the two image resolutions. The second row
of the table shows the real-time person verification results.

Figure 8 shows image samples obtained using the Pix2Pix generative
adversarial network model (i.e., mapped from low-resolution grayscale
images to high-resolution color images). The first row shows the original
images, the second row shows the 8 × 8 resolution images encoded as
quick response codes and the third row shows the images obtained using
Pix2Pix. Note that the visual appearances of the subjects are almost
completely distorted in all the images. This demonstrates that the 8×8
resolution images are not suitable for real-time person verification.

5. Conclusions

The availability of sophisticated, yet inexpensive, printing and scan-
ning equipment makes it easy for fraudsters to tamper with facial im-
ages on important documents such as identity cards, drivers’ licenses,
admit cards, examination hall tickets and academic transcripts. Sev-
eral solutions have been developed to verify the authenticity of identity
documents, but they are usually limited to verifying document original-

Singh et al. 197

Figure 8. Images generated using Pix2Pix for 8× 8 resolution images.

ity. Moreover, their underlying techniques often fail when applied to
printed versions of identity documents. Some researchers have devel-
oped techniques for detecting the tampering of text in photocopied and
printed versions of identity documents, but they do not verify the facial
identities of persons from the documents.

This chapter has presented an effective and low-cost solution for ver-
ifying facial images from original and printed versions of identity docu-
ments. A person’s facial image is converted to a quick response code
that is embedded in an identity document during its creation. In image-
to-image verification, the image on an identity document is compared
against the image encoded as a quick response code on the document.
In real-time person verification, the image encoded as a quick response
code on an identity document is compared against the person’s facial
image captured in real time.

Future work will implement the proposed method in real-world en-
vironments. Also, research will focus on detecting fraudulent identity
documents where the facial features of two persons are amalgamated to
create facial images.

References

[1] S. Aygun and M. Akcay, Securing biometric face images via
steganography for QR code, Proceedings of the Eighth International
Conference on Information Security and Cryptology, pp. 128–133,
2015.

198 ADVANCES IN DIGITAL FORENSICS XV

[2] S. Chhabra, G. Gupta, M. Gupta and G. Gupta, Detecting fraudu-
lent bank checks, in Advances in Digital Forensics XIII, G. Peterson
and S. Shenoi (Eds.), Springer, Cham, Switzerland, pp. 245–266,
2017.

[3] A. Espejel-Trujillo, I. Castillo-Camacho, M. Nakano-Miyatake and
H. Perez-Meana, Identity document authentication based on VSS
and QR codes, Procedia Technology, vol. 3, pp. 241–250, 2012.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville and Y. Bengio, Generative adversarial nets,
Proceedings of the Twenty-Seventh Annual Conference on Neural
Information Processing Systems, pp. 2672–2680, 2014.

[5] R. Gross, I. Matthews, J. Cohn, T. Kanade and S. Baker, Multi-
PIE, Image and Vision Computing, vol. 28(5), pp. 807–813, 2010.

[6] G. Gupta, S. Saha, S. Chakraborty and C. Mazumdar, Document
frauds: Identification and linking fake documents to scanners and
printers, Proceedings of the International Conference on Computing:
Theory and Applications, pp. 497–501, 2007.

[7] P. Isola, J. Zhu, T. Zhou and A. Efros, Image-to-Image Translation
with Conditional Adversarial Networks, arXiv:1611.07004 (arxiv.
org/abs/1611.07004), 2018.

[8] J. Nayak, S. Singh, S. Chhabra, G. Gupta, M. Gupta and G. Gupta,
Detecting data leakage from hard copy documents, in Advances in
Digital Forensics XIV, G. Peterson and S. Shenoi (Eds.), Springer,
Cham, Switzerland, pp. 111–124, 2018.

[9] O. Parkhi, A. Vedaldi and A. Zisserman, Deep face recognition,
Proceedings of the British Machine Vision Conference, pp. 41.1–
41.12, 2015.

[10] A. Rai, I have been asked to shut my mouth, but work will go on –
An interview with the whistleblower who exposed Madhya Pradesh
Vyapam scam, The News Minute, February 25, 2015.

[11] N. Raval, A. Machanavajjhala and L. Cox, Protecting visual secrets
using adversarial nets, Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops, pp. 1329–1332,
2017.

[12] S. Sarkar, R. Verma and G. Gupta, Detecting counterfeit currency
and identifying its source, in Advances in Digital Forensics IX, G.
Peterson and S. Shenoi (Eds.), Springer, Berlin Heidelberg, Ger-
many, pp. 367–384, 2013.

Singh et al. 199

[13] V. Seenivasagam and R. Velumani, A QR code based zero-
watermarking scheme for authentication of medical images in tel-
eradiology cloud, Computational and Mathematical Methods in
Medicine, article no. 516465, 2013.

[14] I. Tkachenko, W. Puech, C. Destruel, O. Strauss, J. Gaudin and C.
Guichard, Two-level QR code for private message sharing and docu-
ment authentication, IEEE Transactions on Information Forensics
and Security, vol. 11(3), pp. 571–583, 2016.

[15] P. Tyre, How sophisticated test scams from China are making their
way into the U.S., The Atlantic, March 21, 2016.

[16] M. Warasart and P. Kuacharoen, Paper-based document authen-
tication using digital signature and QR code, Proceedings of the
Fourth International Conference on Computer Engineering and
Technology, pp. 94–98, 2012.

[17] X. Wu, R. He, Z. Sun and T. Tan, A light CNN for deep face
representation with noisy labels, IEEE Transactions on Information
Forensics and Security, vol. 13(11), pp. 2884–2896, 2018.

Chapter 11

USING NEURAL NETWORKS FOR
FAKE COLORIZED IMAGE DETECTION

Yuze Li, Yaping Zhang, Liangfu Lu, Yongheng Jia and Jingcheng Liu

Abstract Modern colorization techniques can create artificially-colorized images
that are indistinguishable from natural color images. As a result, the
detection of fake colorized images is attracting the interest of the digi-
tal forensics research community. This chapter tackles the challenge by
introducing a detection approach that leverages neural networks. It an-
alyzes the statistical differences between fake colorized images and their
corresponding natural images, and shows that significant differences ex-
ist. A simple, but effective, feature extraction technique is proposed that
utilizes cosine similarity to measure the overall similarity of normalized
histogram distributions of various channels for natural and fake images.
A special neural network with a simple structure but good performance
is trained to detect fake colorized images. Experiments with datasets
containing fake colorized images generated by three state-of-the-art col-
orization techniques demonstrate the performance and robustness of the
proposed approach.

Keywords: Image forensics, fake colorized image detection, neural networks

1. Introduction

Digital image forensics is the process of collecting, identifying, ana-
lyzing and presenting evidence derived from digital image resources [2,
6]. Rapid advancements in image tampering techniques have made it
increasingly difficult to distinguish between natural and fake images.
Farid [6] divides image tampering techniques into six categories: (i) com-
positing; (ii) morphing; (iii) re-touching; (iv) enhancing; (v) computer-
generating; and (vi) painting. While these categories cover most image
tampering techniques, other more specific image tampering techniques
such as colorization [13] and splicing [1, 5] have been proposed.

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 201–215, 2019.

https://doi.org/10.1007/978-3-030-28752-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_11&domain=pdf

202 ADVANCES IN DIGITAL FORENSICS XV

�������

	������
�"������

#�����
#��:
�8

	������
���&���

	������
�"������

%������
��
����

!=�=���%4##

Figure 1. ColorDet-NN approach.

Colorization is the process of transforming grayscale images to col-
orized images by adding color features. Colorization techniques are fre-
quently used to add color to greyscale photographs or black-and-white
films to restore historical scenes. These techniques are also used to col-
orize black-and-white CT, X-ray and MRI images to enhance medical
diagnosis and treatment. However, colorization can also be used for ma-
licious purposes, for example, to create doctored photographs and videos
that appear legitimate to the naked eye.

Guo et al. [8] were among the first researchers to focus on fake col-
orized image detection. They proposed two classification techniques,
FCID-HIST and FCID-FE, that rely on support vector machines [3].
Difficulties in choosing appropriate kernel functions for the support vec-
tor machines limit the performance of the techniques. Additionally, the
computing resources required by support vector machines render them
infeasible for large datasets.

To address these challenges, this research employs the ColorDet-NN
neural network [15] to detect fake colorized images. Figure 1 shows the
ColorDet-NN approach. An initial feature analysis step compares the
statistical differences in the color distributions of natural images and fake
colorized images. A feature extraction step then captures contributing
features from raw image data for pre-processing. The final training step
utilizes the extracted features to create a ColorDet-NN neural network
that detects fake colorized images.

2. Background

Colorization is the process of transforming grayscale images to col-
orized images by adding color features. Several colorization techniques

Li et al. 203

have been proposed over the past two decades. The colorization tech-
niques differ in how they obtain and handle the data used to model
the correspondence between grayscale and colorized images. As a re-
sult, colorization techniques are broadly divided into three categories:
(i) scribble-based; (ii) transfer-based; and (iii) fully automated.

Scribble-based methods require users to specify the colors in grayscale
images in advance based on their experience. The first scribble-based
method, developed by Levin et al. [16], utilizes a quadratic cost function
of the differences between a pixel and its neighboring pixels under the
assumption that adjacent pixels with similar intensities should have sim-
ilar colors. Several researchers have developed more effective techniques.
For example, Luan et al. [17] have developed an interactive system for
colorizing natural images that uses texture similarity to obtain effective
color propagation. Sykora et al. [20] have created a flexible, interactive
tool for painting hand-drawn cartoons. However, these techniques rely
on – and are therefore limited by – the user’s experience, and require a
large number of experiments to achieve good performance.

Transfer-based colorizing techniques establish mappings between ref-
erence colorized images and grayscale images, following which they trans-
fer colors to the target greyscale images from analogous regions of the
reference colorized images. Reinhard et al. [18] have done pioneering
research on transferring colors between images. Ironi et al. [12] have
presented a novel color transfer technique that analyzes the low-level
feature space using a robust supervised classification scheme. However,
in transfer-based colorization, the choice of appropriate reference col-
orized images is crucial to obtaining good performance.

Several researchers have applied deep learning techniques [14] to col-
orization. These fully-automated techniques have better performance
than scribble-based and transfer-based methods. Larsson et al. [13] have
developed a fully-automated image colorization technique that predicts
per-pixel color histograms utilizing low-level and semantic representa-
tions. Iizuka et al. [11] have employed a neural network that combines
global priors and local image features to automatically colorize grayscale
images. Zhang et al. [22] have proposed a fully-automated technique
that increases the diversity of colors in images by posing colorization as
a classification problem.

Guo et al. [8] were among the first researchers to leverage machine
learning to detect fake colorized images. They proposed two classifica-
tion methods, FCID-HIST and FCID-FE, that compute the statistical
differences in the hue, saturation, dark and bright channels in different
ways; they then employ support vector machines to distinguish between
natural and fake colorized images.

204 ADVANCES IN DIGITAL FORENSICS XV

Table 1. Maximum absolute differences for natural and fake image distributions.

Colorization Red Green Blue Hue Saturation Value
Technique

Larsson et al. [13] 70% 42% 188% 264% 4,393% 174%
Iizuka et al. [11] 32% 211% 92% 1,093% 1,654% 52%
Zhang et al. [22] 105% 154% 70% 774% 5,083% 49%

3. Detection Methodology

Research in deep learning has significantly enhanced colorization tech-
niques. It has become very difficult for humans to distinguish fake col-
orized images from natural images. The proposed ColorDet-NN ap-
proach for detecting fake colorized images effectively analyzes the sta-
tistical differences between natural images and fake colorized images
generated by three state-of-the-art techniques developed by: (i) Larsson
et al. [13]; (ii) Iizuka et al. [11]; and (iii) Zhang et al. [22]. The ColorDet-
NN neural network is then trained to detect fake colorized images.

3.1 Statistical Analysis and Testing

Statistical differences exist in the color distributions of natural images
and fake colorized images. The RGB color space is defined by three
chromaticities of the red, green and blue primary color channels (range
is from 0 to 255), which can produce any chromaticity in the triangle
defined by the primary colors. The HSV color space is an alternative
representation of the RGB color space, which has hue, saturation and
value channels. The RGB color space has more redundant information,
which leads to insufficient feature differentiation. Therefore, the HSV
color space is employed to obtain more features.

Normalized histograms were computed for the red, green, blue, hue,
saturation and value channels in 10,000 natural images from the Ima-
geNet LSVRC 2012 Validation Set [19]. The corresponding fake colorized
images were generated using the colorization techniques of Larsson et
al. [13], Iizuka et al. [11] and Zhang et al. [22].

The absolute differences between the distribution values of natural
images and those of fake colorized images divided by the distribution
values of the natural images were computed for the red, green, blue,
hue, saturation and value channels. Table 1 shows the maximum values
of the percentages obtained for the six channels. Clearly, a statistical
difference exists in each channel between the natural and fake colorized
images generated by each of the three colorization techniques.

Li et al. 205

Table 2. Two-sample Kolmogorov-Smirnov test results for the RGB channels.

Colorization Red Green Blue
Technique

Larsson et al. [13] 1 1 0
Iizuka et al. [11] 1 1 1
Zhang et al. [22] 0 0 1

Table 3. Two-sample Kolmogorov-Smirnov test results for the HSV channels.

Colorization Hue Saturation Value
Technique

Larsson et al. [13] 1 1 1
Iizuka et al. [11] 1 1 1
Zhang et al. [22] 0 1 0

Note that significant differences exist in the saturation channel. In
this channel, all the percentages are more than 1,600%, which means
that significant color biases exist at some channel values between the
natural and fake colorized images. In addition, the minimum percentage
reached 32%, which suggests that there are statistical differences that
can be utilized for detection.

The two-sample Kolmogorov-Smirnov test [7] is employed to deter-
mine whether the distributions of natural images and fake colorized im-
ages are different. The test checks whether the two data samples have
the same distributions in order to measure their differences.

The null hypothesis H0 is defined as:

H0 : The two data samples satisfy the same distribution.

Let KSTestcm be the two-sample Kolmogorov-Smirnov test result be-
tween the distribution of natural images and the distribution of fake
colorized images generated by a colorization method m in channel c.
Then, the null hypothesis is rejected at the 0.05 level of significance if
KSTestcm = 1.

Tables 2 and 3 show that at least one channel will reject the null
hypothesis for each colorization method in each color space. In the case
of fake colorized images generated using the technique of Iizuka et al. [11],
the red, green, blue, hue, saturation and value channels all reject the null
hypothesis. On the other hand, for fake colorized images generated using
the technique of Zhang et al. [22], only the blue and saturation channels

206 ADVANCES IN DIGITAL FORENSICS XV

reject the null hypothesis, but this still means that the features of at
least two channels can be used to distinguish between natural and fake
colorized images. Simply put, there are statistical differences in the color
distributions of natural and fake colorized images.

3.2 Feature Extraction

The statistical differences in the red, green, blue, hue, saturation and
value channels are used for feature extraction.

Specifically, to distinguish between natural and fake colorized images
the following six features are employed: (i) red channel feature Fr; (ii)
green channel feature Fg; (iii) blue channel feature Fb; (iv) hue channel
feature Fh; (v) saturation channel feature Fs; and (vi) value channel
feature Fv.

Each channel feature is computed in a similar manner. For each fea-
ture Fch, let Histtotaln,ch denote the normalized histogram distribution for
all the natural images for channel ch. Let Histαch denote the ch channel
histogram distribution for an input image α. The feature computa-
tion also leverages the first-order derivative of the normalized channel
histogram distributions. These first-order derivatives are Deritotaln,ch for
natural images. The Derich

α for an input image α is computed as:

Deriαch(i) = Histαch(i+ 1)−Histαch(i), i ∈ [0, 254] (1)

where Histαch(i) and Deriαch(i) are components of the vectors Histαch and
Deriαch, respectively.

Since a natural image has a closer similarity to the natural image
distributions than a fake colorized image, the cosine similarity cos is
used to measure the overall similarity between Histαch and Histtotaln,ch and

Deriαch and Deritotaln,ch :

cos(θ) =
A ·B

‖A‖ ‖B‖
=

∑n
i=0AiBi√∑n

i=0A
2
i

√∑n
i=0B

2
i

(2)

where Ai and Bi are components of vectors A and B, respectively.
The feature computations Fα

r , Fα
g , Fα

b , Fα
h , Fα

s and Fα
v for input

image α are given by:

Li et al. 207

Fα
ch(1) =

Histtotaln,ch ·Histαch∥∥∥Histtotaln,ch

∥∥∥ ∥∥Histαch
∥∥

=

∑255
i=0Histtotaln,ch (i)×Histαch(i)√∑255

i=0Histtotaln,ch (i)
2
×
√∑255

i=0Histαch(i)
2
,

ch = r, g, b, h, s, v

(3)

Fα
ch(2) =

Deritotaln,ch ·Deriαch∥∥∥Deritotaln,ch

∥∥∥ ∥∥Deriαch
∥∥

=

∑254
i=0Deritotaln,ch (i)×Deriαch(i)√∑254

i=0Deritotaln,ch (i)
2
×
√∑254

i=0Deriαch(i)
2
,

ch = r, g, b, h, s, v

(4)

Fα
ch = [Fα

ch(1), F
α
ch(2)], ch = r, g, b, h, s, v (5)

After all the features are obtained, the feature vector Fα
HIST for an

input image α is:

Fα
HIST = [Fα

r , F
α
g , F

α
b , F

α
h , F

α
s , F

α
v] (6)

Let Lα
HIST denote the binary label of Fα

HIST . Lα
HIST has a value of

one if input image α is a fake colorized image and Lα
HIST has a value of

zero if input image α is a natural image.
Thus, the final detection data Dα

HIST is:

Dα
HIST = [Fα

HIST , L
α
HIST]

=

{
[Fα

r , F
α
g , F

α
b , F

α
h , F

α
s , F

α
v , 1], if image α is fake

[Fα
r , F

α
g , F

α
b , F

α
h , F

α
s , F

α
v , 0], if image α is natural

(7)

3.3 Neural Network Construction

An artificial neural network is an algorithm that models computations
using graphs of artificial neurons, mimicking how neurons work in the
brain. Artificial neural networks are well-suited to solving complex non-
linear problems. Unlike traditional machine learning algorithms such as
support vector machines, artificial neural networks have flexible struc-
tures that can be adapted according to the problem that is to be solved.
This work uses an artificial neural network to differentiate natural im-
ages from fake colorized images.

208 ADVANCES IN DIGITAL FORENSICS XV

����
��&��

=�����
��&��

?����
��&����

?����
��&���1

?����
��&���+

?����
��&���@

Figure 2. Neural network structure.

The artificial neural network employed for detecting fake colorized im-
ages is based on the dense convolutional network (DenseNet) model [10].
DenseNet has a relatively simple structure, in which every layer of the
network is connected to every other layer in a feed-forward manner.
Compared with other neural network models, DenseNet strengthens fea-
ture propagation while reducing the number of parameters.

Figure 2 shows the structure of the neural network used for fake col-
orized image detection. The neural network has six layers – an input
layer, an output layer and four hidden layers. Each hidden layer is fully
connected to the previous layers. For each hidden layer, the input of the
layer is the sum of the outputs of the other hidden layers.

The relationships of the hidden layers are given by:

Xi = Y1 + · · ·+ Yi−1, i ≥ 2 (8)

where Xi and Yi are the input and output of layer i, respectively.
The selection of an appropriate activation function is an important as-

pect when designing a neural network. The proposed technique employs
a parametric rectified linear unit (PReLU) [9], an activation function
with parameters that can be trained. This activation function is used in
the hidden layers of the network. Table 4 shows the details of the neu-
ral network. Hidden layers 1 through 3 have 32 neurons each whereas
hidden layer 4 has 128 neurons.

The joint supervision of the softmax loss function and center loss
function [21] was used to train the neural network. The softmax loss
function is one of the most widely used loss functions. The center loss
function has been demonstrated to minimize intra-class variations while
keeping the features of different classes separable.

The softmax loss function LS is:

LS = −
m∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
WT

j
xi+bj

(9)

where xi is the ith deep feature, which belongs to the class yi; m is the
mini-batch; and n is the number of classes.

Li et al. 209

Table 4. Neural network details.

Layer Neurons Activation Connected Layer

Input Layer 12
Hidden Layer 1 32 PReLU Input Layer
Hidden Layer 2 32 PReLU Hidden Layer 1
Hidden Layer 3 32 PReLU Hidden Layer 1, 2
Hidden Layer 4 128 PReLU Hidden Layer 1, 2, 3
Output Layer (Softmax loss) 2 Hidden Layer 4
Output Layer (Center loss) 1 Hidden Layer 4

The center loss function is:

LC =
1

2

m∑
i=1

‖xi − cyi‖
2
2 (10)

where cyi is the center of yi of the deep feature and is updated as the
deep feature changes. The joint supervision of the softmax loss function
and center loss function are used to train the neural network.

The final loss function is:

L = LS + λLC

= −
m∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
WT

j
xi+bj

+
λ

2

m∑
i=1

‖xi − cyi‖
2
2

(11)

4. Experiments and Results

This section describes the datasets used in the experiments, the ex-
perimental measurements and the performance evaluation results.

4.1 Datasets

Six benchmark datasets based on the ImageNet LSVRC 2012 Vali-
dation Set [19] were employed in the experiments. The datasets, which
are widely used in image colorization and fake image detection research,
contain many categories of images, including images of people, animals,
buildings and landscapes.

The D1 dataset corresponds to the ctest10k dataset [13], which has
10,000 fake colorized images and their corresponding 10,000 natural im-
ages from the ImageNet LSVRC 2012 Validation Set. Datasets D2 and
D3 each contain the 10,000 natural images in dataset D1 as well as
10,000 fake colorized images generated from the natural images using

210 ADVANCES IN DIGITAL FORENSICS XV

the colorization techniques of Iizuka et al. [11] and Zhang et al. [22],
respectively. Thus, datasets D1, D2 and D3 each have 20,000 images.

The D4 dataset contains 2,000 fake colorized images randomly selected
from the ctest10k dataset [13] and their corresponding 2,000 natural im-
ages from the ImageNet LSVRC 2012 Validation Set, resulting in a total
of 4,000 images. The D5 dataset also has 4,000 images – 2,000 natural
images selected randomly from dataset D1 and their corresponding fake
colorized images generated by the colorization technique of Iizuka et
al. [11]. The D6 dataset also has 4,000 images – 2,000 natural images
selected randomly from dataset D1 and their corresponding fake images
generated by the colorization technique of Zhang et al. [22].

4.2 Measurements

The accuracy, precision, recall and F1 score were used to evaluate
the performance of ColorDet-NN. In addition, the half total error rate
(HTER) and area under the curve (AUC) measurements were used to
compare the performance of ColorDet-NN against the performance of
FCID-HIST and FCID-FE developed by Guo et al. [8].

4.3 Performance Evaluation

Several experiments were designed to evaluate the performance of
ColorDet-NN. The experiments use all six datasets, D1 through D6.

The first set of experiments evaluated the ability of ColorDet-NN
to detect fake colorized images. Datasets D1, D2 and D3 were used
to assess the performance of ColorDet-NN at detecting fake colorized
images generated using the colorization techniques of Larsson et al. [13],
Iizuka et al. [11] and Zhang et al. [22]. Each dataset D1, D2 and D3
was randomly divided into a training set corresponding to 75% of the
dataset and a testing set corresponding to 25% of the dataset.

Nine cross-validation experiments were conducted using the three
training sets and three testing sets. The results in Table 5 demonstrate
that ColorDet-NN can effectively distinguish between natural images
and the fake colorized images generated by the three colorization tech-
niques. All the accuracy values are greater than 88% when the training
and testing sets come from the same original dataset. However, the ac-
curacy values fall when the training and testing sets come from different
datasets. Most of the experiments have accuracy values greater than
73%, except for the third experiment; this is likely due to large differ-
ences in the image features for fake images generated by the colorization
techniques.

Li et al. 211

Table 5. Detection results in the cross-validation experiments.

Training Testing Accuracy Precision Recall F1 Score HTER

D1 D1 88.46% 85.46% 92.67% 88.92% 11.54%
D2 74.32% 74.24% 74.48% 74.36% 25.68%
D3 65.94% 69.17% 57.52% 62.81% 34.06%

D2 D1 77.82% 84.52% 68.12% 75.44% 22.18%
D2 88.20% 87.59% 88.99% 88.28% 11.80%
D3 80.82% 87.46% 71.96% 78.96% 19.18%

D3 D1 73.76% 78.29% 65.76% 71.48% 26.24%
D2 81.16% 80.22% 82.72% 81.45% 18.84%
D3 89.58% 86.28% 94.12% 90.02% 10.42%

Table 6. Area under curve results in the cross-validation experiments.

Training Testing
D1 D2 D3

D1 0.95972 0.82466 0.73605
D2 0.87773 0.95323 0.89848
D3 0.82149 0.89930 0.96504

Table 6 shows the area under the curve results in the cross-validation
experiments. All the area under the curve results are greater than 95%
when the training and testing sets come from the same dataset. The re-
sults imply that ColorDet-NN is effective at detecting the fake colorized
images.

The next set of experiments were conducted to compare the detec-
tion performance of ColorDet-NN against state-of-the-art techniques for
detecting fake colorized images. The FCID-HIST and FCID-FE fake
colorized image detection techniques developed by Guo et al. [8] were
used in the comparisons. Datasets D4, D5 and D6 were divided equally
into training sets and testing sets in order to evaluate the performance
of ColorDet-NN versus FCID-HIST and FCID-FE.

Nine experiments were performed using testing and training sets drawn
from the same and different datasets. Table 7 compares the area under
the curve results for ColorDet-NN, FCID-HIST and FCID-FE. ColorDet-
NN has better performance than FCID-HIST and FCID-FE in most
situations, especially when the training and testing sets are drawn from
the same dataset (area under the curve values greater than 93%). A

212 ADVANCES IN DIGITAL FORENSICS XV

Table 7. Comparison of area under the curve results.

Training Testing ColorDet-NN FCID-HIST FCID-FE

D4 D4 0.93654 0.85687 0.85762
D5 0.81590 0.74112 0.77320
D6 0.76650 0.78525 0.84100

D5 D4 0.83701 0.63106 0.68758
D5 0.93613 0.85927 0.90382
D6 0.88755 0.56928 0.71286

D6 D4 0.82165 0.79804 0.82669
D5 0.88527 0.63953 0.72447
D6 0.94972 0.83215 0.84832

small decline in performance is seen when the training and testing sets
come from different datasets, but ColorDet-NN still outperforms FCID-
HIST and FCID-FE, except in the third and seventh experiments. The
negative results in these two cases arise because dataset D6 has more
complex features than dataset D4 and the features extracted by FCID-
HIST and FCID-FE are more sensitive than the features extracted by
ColorDet-NN.

Table 8. Comparison of half total error rate results.

Training Testing ColorDet-NN FCID-HIST FCID-FE

D4 D4 13.85% 22.50% 22.30%
D5 27.00% 33.95% 31.70%
D6 30.45% 28.00% 23.65%

D5 D4 25.45% 38.15% 38.50%
D5 13.85% 22.35% 17.30%
D6 20.95% 43.55% 36.15%

D6 D4 25.80% 26.95% 25.10%
D5 20.55% 41.85% 34.25%
D6 12.35% 24.45% 22.85%

Table 8 compares the half total error rate results for ColorDet-NN,
FCID-HIST and FCID-FE. ColorDet-NN has lower values than those
of FCID-HIST and FCID-FE, which implies that ColorDet-NN outper-
forms FCID-HIST and FCID-FE in detecting fake colorized images.

Li et al. 213

In summary, the experiments demonstrate that ColorDet-NN has bet-
ter performance than FCID-HIST and FCID-FE in distinguishing nat-
ural images from fake colorized images.

5. Conclusions

The ColorDet-NN neural-network-based technique for detecting fake
colorized images has three steps. The first step analyzes and validates
the statistical differences existing between fake colorized images and
their corresponding natural counterparts. The second step employs the
cosine similarity of normalized histogram distributions between fake and
natural images in various channels to extract features for detection. The
third step designs and trains ColorDet-NN to detect fake colorized im-
ages. Experiments with six datasets containing fake colorized images
generated by three state-of-the-art colorization techniques demonstrate
that ColorDet-NN significantly outperforms existing detection methods.

The ColorDet-NN technique exhibits reduced performance when its
training and testing sets are drawn from different datasets. This oc-
curs because different colorization techniques with large differences in
the statistical information of color distributions significantly impact the
extraction of features used for fake image detection. Future research will
focus on the common features of colorization techniques and leveraging
auxiliary features such as texture to enhance detection. Additionally,
efficient neural network structures will be investigated as a means to
improve performance.

References

[1] K. Bahrami, A. Kot, L. Li and H. Li, Blurred image splicing local-
ization by exposing blur type inconsistency, IEEE Transactions on
Information Forensics and Security, vol. 10(5), pp. 999–1009, 2015.

[2] R. Bohme and M. Kirchner, Counter-forensics: Attacking image
forensics, in Digital Image Forensics, H. Sencar and N. Memon
(Eds.), Springer, New York, pp. 327–366, 2013.

[3] C. Chang and C. Lin, LIBSVM: A library for support vector ma-
chines, ACM Transactions on Intelligent Systems and Technology,
vol. 2(3), article no. 27, 2011.

[4] H. Farid, Creating and Detecting Doctored and Virtual Images:
Implications to The Child Pornography Prevention Act, Technical
Report TR2004-518, Department of Computer Science, Dartmouth
College, Hanover, New Hampshire, 2004.

214 ADVANCES IN DIGITAL FORENSICS XV

[5] H. Farid, Exposing digital forgeries from JPEG ghosts, IEEE Trans-
actions on Information Forensics and Security, vol. 4(1), pp. 154–
160, 2009.

[6] H. Farid, Image forgery detection, IEEE Signal Processing, vol.
26(2), pp. 16–25, 2009.

[7] G. Fasano and A. Franceschini, A multidimensional version of the
Kolmogorov-Smirnov test, Monthly Notices of the Royal Astronom-
ical Society, vol. 225(1), pp. 155–170, 1987.

[8] Y. Guo, X. Cao, W. Zhang and R. Wang, Fake colorized image de-
tection, IEEE Transactions on Information Forensics and Security,
vol. 13(8), pp. 1932–1944, 2018.

[9] K. He, X. Zhang, S. Ren and J. Sun, Delving deep into recti-
fiers: Surpassing human-level performance on ImageNet classifica-
tion, Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 1026–1034, 2015.

[10] G. Huang, Z. Liu, L. van der Maaten and K. Weinberger, Densely
connected convolutional networks, Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 2261–2269,
2017.

[11] S. Iizuka, E. Simo-Serra and H. Ishikawa, Let there be color! Joint
end-to-end learning of global and local image priors for automatic
image colorization with simultaneous classification, ACM Transac-
tions on Graphics, vol. 35(4), article no. 110, 2016.

[12] R. Ironi, D. Cohen-Or and D. Lischinski, Colorization by example,
Proceedings of the Sixteenth Eurographics Conference on Rendering
Techniques, pp. 201–210, 2005.

[13] G. Larsson, M. Maire and G. Shakhnarovich, Learning represen-
tations for automatic colorization, Proceedings of the Fourteenth
European Conference on Computer Vision, Part IV, pp. 577–593,
2016.

[14] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature, vol.
521(7553), pp. 436–444, 2015.

[15] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hub-
bard and L. Jackel, Backpropagation applied to handwritten ZIP
code recognition, Neural Computation, vol. 1(4), pp. 541–551, 1989.

[16] A. Levin, D. Lischinski and Y. Weiss, Colorization using optimiza-
tion, ACM Transactions on Graphics, vol. 23(3), pp. 689–694, 2004.

[17] Q. Luan, F. Wen, D. Cohen-Or, L. Liang, Y. Xu and H. Shum, Nat-
ural image colorization, Proceedings of the Eighteenth Eurographics
Conference on Rendering Techniques, pp. 309–320, 2007.

Li et al. 215

[18] E. Reinhard, M. Adhikhmin, B. Gooch and P. Shirley, Color transfer
between images, IEEE Computer Graphics and Applications, vol.
21(5), pp. 34–41, 2001.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.
Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg and F. Li,
ImageNet Large-Scale Visual Recognition Challenge, International
Journal of Computer Vision, vol. 115(3), pp. 211–252, 2015.

[20] D. Sykora, J. Dingliana and S. Collins, LazyBrush: Flexible paint-
ing tool for hand-drawn cartoons, Computer Graphics Forum, vol.
28(2), pp. 599–608, 2009.

[21] Y. Wen, K. Zhang, Z. Li and Y. Qiao, A discriminative feature learn-
ing approach for deep face recognition, Proceedings of the Fourteenth
European Conference on Computer Vision, Part VII, pp. 499–515,
2016.

[22] R. Zhang, P. Isola and A. Efros, Colorful image colorization, Pro-
ceedings of the Fourteenth European Conference on Computer Vi-
sion, Part III, pp. 649–666, 2016.

V

FORENSIC TECHNIQUES

Chapter 12

DIGITAL FORENSIC ATOMIC
FORCE MICROSCOPY OF
SEMICONDUCTOR MEMORY ARRAYS

Struan Gray and Stefan Axelsson

Abstract Atomic force microscopy is an analytical technique that provides very
high spatial resolution with independent measurements of surface to-
pography and electrical properties. This chapter assesses the potential
for atomic force microscopy to read data stored as local charges in the
cells of memory chips, with an emphasis on simple sample preparation
(“delidding”) and imaging of the topsides of chip structures, thereby
avoiding complex and destructive techniques such as backside etching
and polishing. Atomic force microscopy measurements of a vintage
EPROM chip demonstrate that imaging is possible even when sample
cleanliness, stability and topographical roughness are decidedly sub-
optimal. As feature sizes slip below the resolution limits of optical
microscopy, atomic force microscopy offers a promising route for func-
tional characterization of semiconductor memory structures in RAM
chips, microprocessors and cryptographic hardware.

Keywords: Atomic force microscopy, memory chip delidding, surface imaging

1. Introduction

Atomic force microscopy has been used to investigate the structures of
memory devices and to conduct detailed failure analyses of memory cell
structures. However, limited information is available about the use of
atomic force microscopy to read the memory content of packaged chips.
The published information suggests that atomic force microscopy and
related techniques should work – the open question is how well.

The initial results presented in this chapter reveal that, even without
custom sample mounting or modification of the atomic force microscope
itself, it is possible to obtain topographic data from a packaged chip

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 219–237, 2019.

https://doi.org/10.1007/978-3-030-28752-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_12&domain=pdf

220 ADVANCES IN DIGITAL FORENSICS XV

Figure 1. EPROM memory circuits imaged by dark-field optical microscopy.

using a basic research-grade instrument (Figure 1). Should future work
prove the feasibility of the technique, it is easy to envision the creation
of a custom atomic force microscope that could accommodate integrated
circuits in situ on circuit boards. A key aspect of investigations in this
area would be to perform topside imaging and characterization, avoiding
the need for backside polishing and etching and, in principle, maintaining
the integrity of the chip as a working device.

There are some interesting prospects for the future. Micro-electro-
mechanical systems (MEMS) technology and other manufacturing pro-
cesses, which could produce smaller, lighter atomic force microscopy
structures with higher fundamental resonance, would enable an increase
in data access rates and crash-free investigations of surfaces with high
relief. These, in turn, would impact the practicability and security of
the applications discussed in this chapter. Further development of high-
speed electronics and microwave engineering may permit other advances
in surface characterization of semiconductor devices or simply make mea-
surements easier, cheaper and more reliable.

From the point of view of forensic investigations, atomic force mi-
croscopy offers a number of advantages: it is minimally invasive; it may
be performed in a wide variety of environments; and it can be used to
image almost any kind of sample. The problems in performing atomic

Gray & Axelsson 221

force microscopy studies of working memory chips are mostly practical,
but are of sufficient severity to deter casual investigations. Whatever
the future may bring in terms of instruments and their capabilities, one
thing is clear: sample preparation techniques will continue to be very
important.

This chapter focuses on atomic force microscopy and related tech-
niques, and how future developments could make them more applicable
to forensic investigations of memory chips. The results of preliminary
experiments are used to illuminate the practical issues that limit suc-
cessful implementation.

2. Background

This section discusses probe microscopy and relevant issues related to
security and forensics.

2.1 Probe Microscopy

Probe microscopy has antecedents in various stylus-based surface pro-
filing tools, but the dramatic increases in sensitivity and resolution
provided by the invention of scanning tunneling microscopy (STM) in
1981 [4] have led to the explosive development of instruments and their
applications. Atomic force microscopy (AFM) was invented soon after-
wards [3], motivated by a desire to expand the atomic resolution of the
scanning tunneling microscope to investigations of non-conducting sam-
ples. Atomic force microscopy uses a force interaction between the probe
tip and the sample surface to measure the distance between them. Typ-
ically, the interaction involves the Van der Waals force, but in principle,
any force that varies with the relative positions of the tip and sample
may be employed.

The narrow focus on atomic resolution as the ultimate goal of probe
microscopy has ensured that the early literature in the field is full of
interesting experiments and phenomena that failed to make an impact
because of what was perceived as “poor resolution.” Many of these tech-
niques have been justifiably neglected, but some loiter at the margins of
respectability and are worth revisiting periodically to examine whether
or not they have acquired contemporary relevance. An example is using
microwave or radio-frequency signals to measure the electrical charac-
teristics of a sample surface. This was proved to be possible in the early
days, but the methods were not robust enough to be adopted widely.
However, novel measurements made recently using scanning microwave
impedance microscopy (SMIM) have rejuvenated the field, revealing spa-
tial variations in surface capacitance with nanometer resolution [15].

222 ADVANCES IN DIGITAL FORENSICS XV

In addition to scanning microwave impedance microscopy, two more
established techniques – electrical force microscopy (EFM) and scanning
capacitance microscopy (SCM) – are relevant to forensic investigations
of chip surfaces. All three techniques use the voltage on a conductive
tip to reveal additional information about a surface beyond its topogra-
phy. Electrical force microscopy measures the Coulomb forces between
the tip and any charge concentrations on the sample surface. Scan-
ning capacitance microscopy uses a modulated voltage to reveal changes
in the tip-surface capacitance that are related to local doping levels,
stored charge and metallization of semiconductor devices. Scanning mi-
crowave impedance microscopy investigates similar factors by regarding
the tip-sample junction as the termination of a transmission line using
the back-reflected signal to measure the complex tip-sample impedance.

2.2 Security and Forensics

Secure communications and computing have been important for many
years and their importance seems set to increase. Several techniques
have been devised to defend against attacks on confidentiality, integrity
and availability. These include the use of cryptography [22], information
flow analysis [23], and detection and estimation theory [1]. The vast
majority of these techniques depend on a secure “black box” to hide
the secrets or to perform computations. The concept takes different
names depending on how it is implemented, including trusted computing
bases in secure operating systems [20], bastion hosts in firewalls [19] and
trusted platform modules in hardware-supported security [12].

In the case of secure operating systems and firewalls, many types of
attacks are known, for example, those based on the exploitation of (in-
evitable) software flaws. Likewise, a number of attacks against hardware
have been devised, many of them based on observing, or affecting, the
hardware operating environment. The attacks include differential power
analysis [13], differential fault analysis [2], probing with light/laser exci-
tation [21], freezing of memory [10], electron microscope analysis [17] and
Van Eck/TEMPEST radiation analysis. All these attacks, with one or
two exceptions, require physical access to the hardware. Physical access
is becoming increasingly easy to obtain as secure electronic hardware
in the form of embedded and mobile devices is becoming commonplace.
As these devices, especially those in mobile phones, have become ubiq-
uitous, increased security requirements have led manufacturers to rely
on hardware-based cryptographic modules and ubiquitous encryption to
maintain the security of user data [9]. This has presented significant
challenges to law enforcement and other actors who need to access the

Gray & Axelsson 223

stored data in order to investigate crimes and other incidents. While
there has been some success in leveraging software flaws in security im-
plementations of smartphones, it is unclear how long this avenue will
remain effective [8].

It follows that other techniques, including piercing the black box itself
using sophisticated analysis techniques, are probably the inevitable next
step in the evolution of digital forensics. However, it should be noted
that knowledge pertaining to such attacks is not only useful to would-
be attackers (e.g., law enforcement), but also to defenders, because it
is difficult to defend against unknown threats. One such threat that
should not be ignored is the question of whether or not the hardware
can be trusted, especially if backdoors have been introduced during the
manufacturing process [24].

3. Atomic Force Microscopy

Before examining more specialized techniques and how they have been
applied to investigations of semiconductor memory devices, it is instruc-
tive to summarize the benefits and problems of atomic force microscopy
because they are relevant to all derived technologies. Atomic force mi-
croscopy is a mature technique and the purpose here is not to reproduce
the wealth of information in the numerous textbooks, manufacturer ap-
plication notes and (surprisingly reliable) Wikipedia entries. Instead,
the technique is briefly described with an emphasis on key performance
metrics that are relevant to digital forensics as well as aspects that are
currently limiting, but where future developments could have significant
impact.

Figure 2 shows a generic atomic force microscopy setup in which a
laser is reflected from the back of a cantilever carrying a sharp tip.
A split photodiode measures the deflection of the laser beam, which
changes as the cantilever flexes in response to the forces between the
tip and the sample. The deflection signal is fed to a feedback loop that
adjusts the position of the cantilever mount to keep the force and, hence,
the height above the surface constant. As the tip moves sideways, its
position tracks changes in the surface topography while the feedback
loop maintains a constant height.

Most routine work has stabilized around the use of probes manufac-
tured via semiconductor microfabrication techniques, with the tip and
cantilever integrated in a standardized chip. The stiffness and other me-
chanical properties of the cantilever can be readily tuned; other aspects
of the tip can also be optimized for particular applications. For exam-
ple, conductive tips for the techniques discussed in this chapter can be

224 ADVANCES IN DIGITAL FORENSICS XV

�����

!����� ��

%��

2������2��(���

%�������

2�������
�
��
��

Figure 2. Atomic force microscopy.

made by doping the semiconductor material used in their manufacture
or by evaporating metals onto the structure. Cantilevers typically have
force constants ranging from 0.1 to 100N/m depending on their intended
modes of operation. Typical atomic force microscopy resolutions are 0.1
to 10 nm vertically (largely limited by noise) and 1 to 100 nm laterally
(largely limited by tip shape, and tip and sample quality).

Sensing position via the static flexing of the cantilever – the so-called
“contact” mode – is an option for most microscopes, but the forces be-
tween the tip and sample tend to be large, often leading to damage or
wear. It is more common to situate the tip farther away from the surface,
where the forces are weaker, using a modulation technique to recover sen-
sitivity. Such oscillation-based schemes are robust and reliable; because
the tip spends most of its time far from the surface, the potential for
wear or damage are reduced substantially. A high-amplitude oscillation
also ensures that strong interactions at close distances (e.g., adhesion
or attraction to an absorbed water layer in ambient conditions) do not
cause substantial dragging or friction, enabling rough and unpredictable
surfaces to be measured more easily.

Oscillatory schemes also enable forces other than the intrinsic Van
der Waals interaction to be distinguished, for example, by modulating
them with a different frequency, or because they operate out of phase or
have a different gradient with respect to the distance from the sample.
Thus, when measuring Coulomb forces in electrical force microscopy,

Gray & Axelsson 225

it is possible to modulate the voltage on the tip at a frequency well
below that of the cantilever oscillation and, thus, use a second lock-in
measurement to assess the electrostatic force separately.

The most widely-quoted figures of merit for atomic force microscopy
and related techniques usually involve resolution. This, as mentioned
above, can be something of a distraction. Even a desktop atomic force
microscope operating in air at standard temperature and humidity can
readily achieve 10 nm resolution, provided that the sample surface is
clean and stable. Although gate lengths and some oxide thicknesses
in semiconductor devices are approaching these dimensions, the lateral
spacing of any likely two-dimensional storage structure is considerably
larger and it is not likely that the spatial resolution limit of atomic force
microscopy would present a significant obstacle to determining whether
or not a given memory cell is charged.

Other aspects of atomic force microscopy are likely to be more signifi-
cant than resolution, especially bandwidth and the time domain. There
are three key timescales that govern how an atomic force microscope
measurement may be made. Perhaps the least significant is the most
fundamental: all electromagnetic and chemical interactions between the
tip and surface operate on a timescale determined by the propagation
of electromagnetic energy in the near field and the response times of
electrons and other charges in the materials. Typically, this corresponds
to frequencies in or beyond the visible spectrum (1014Hz or higher),
which implies a typical timescale of femtoseconds or less. Two firm
conclusions can be made because the timescale is so much faster than
any near-term developments in clock speed or phase-coherent detectors.
First, any experiment that is devised is unlikely to be limited by the fun-
damental electromagnetic properties of the materials, even at terahertz
frequencies. Second, if the response to higher frequency stimulation is of
interest, then a modulation scheme or some sort of heterodyne detection
would be needed to shift the signal into a measurable band.

The most significant timescale for practical experiments, including
digital forensic uses, is the pixel clock: the rate at which an atomic
force microscopy system can take individual pixels of the final image.
This is surprisingly slow: typical times for a raster scan are 0.1 to 1
seconds for each line of data, leading to acquisition times of an hour or
more even for low-resolution images. The slow response is set by the
fundamental mechanical frequency of the microscope as a whole. This
limits the response to positioning commands from the feedback loop
and scan drivers because operating above resonance with an unknown
mechanical phase shift quickly leads to unrecoverable damage to the
sample and/or tip. The rigidity of the microscope is determined by

226 ADVANCES IN DIGITAL FORENSICS XV

factors related to its intended use and special instruments can achieve
better performance by dispensing with easy tip exchange or the need to
accommodate a wide range of sample sizes.

This factor is also the one that may be most amenable to change and
where developments directly applicable to forensic imaging are expected.
For example, efforts are underway to use micro-electro-mechanical sys-
tems technology to make the entire atomic force microscope exchange-
able rather than just the tip [16]. Integrating the motion actuators,
cantilever and tip in a monolithic package can make the mechanical
loop between substrate and tip considerably smaller and stiffer, raising
its fundamental frequency and enabling faster scanning while still under
closed loop control.

Faster scan speeds will allow more rapid processes to be recorded
and studied, as well as make scanning more reliable and tip crashes
less likely. As discussed in the pilot study below, the slow response of
current microscopes is not only frustrating, but it leads to poor quality
data. Improving predictability and reducing the likelihood of damaging
the sample under study will only benefit digital forensic investigations
in search of presentable evidence.

The third important timescale is the fundamental oscillation frequency
of the cantilever. This is adjustable based on design and materials, but
the usual value lies in the 100 to 300 kHz range. At present, this is
not regarded as a limitation. Other signals can be modulated at 1 to
50 kHz and still be safely below the oscillation frequency while remain-
ing well above the pixel clock rate. There may, however, be difficulties
in the future. If, as is highly desirable, scan speeds increase and raise
the pixel clock rate, limited bandwidth will be available for interme-
diate frequency measurements in electrical force microscopy, scanning
capacitance microscopy and scanning microwave impedance microscopy.

One final property of atomic force microscopy is of relevance. Unlike
an electron microscope with its relatively high beam energy or even a
visible light microscope that uses photon energies capable of breaking
chemical bonds, an atomic force microscope has a very soft touch. It is
possible to use forces so low that any sample sensitive to them would be
impractical as a device. It is also possible to measure electrical charac-
teristics with extremely low applied voltages, currents and fields. This
makes atomic force microscopy excellent for non-destructive testing and
also makes it difficult to implement countermeasures in the chips being
investigated.

Gray & Axelsson 227

Figure 3. EPROM memory chip with exposed die (approx. 4mm×8mm in size).

4. Memory Chip Layout and Structure

Like most semiconductor integrated circuits, memory chips are cre-
ated by cycles of lithography, deposition and reaction to produce fine-
scale patterns of various materials on the surface of a single-crystal semi-
conductor wafer, usually silicon. The basic chip or die is brittle and
sensitive to chemical and mechanical damage, so it is usually packaged
before being used in a device. First, thin wires are bonded to the chip
die to create more robust connections to metal pins than can be accom-
plished using conventional soldering techniques. Next, the die and cage
are encapsulated. Polymer resins are now used for packaging; sintered
ceramics used to be common and are still employed in some devices.

Figure 3 shows a 1,024B Intel 2708 EPROM memory chip made in
1974. The exposed chip die is approximately 4mm×8mm in size. De-
spite its venerable age and low capacity, the chip illustrates the general
characteristics that are still shared by modern high density devices. The
quartz window that protects the chip die has been removed to show the
structure beneath it. Because the circuits etched into the chip surface
are so large, they are easy to see with a camera lens or microscope.

Figure 4 shows a close-up view of the die itself. The two large blocks
are the actual memory locations, which are surrounded by control cir-
cuitry and address lines used to write and read data. The figure also
shows the bonding pads to which thin bonding wires are attached.

228 ADVANCES IN DIGITAL FORENSICS XV

Figure 4. Close-up view of the chip die showing two arrays of memory cells.

The first lesson, which is also relevant to modern, high-density surface-
mount integrated circuits, is that the overall package is much larger than
the die itself. The second is that a substantial 3D structure surrounds the
planar circuits on the die; this means that access to the memory array has
to take place through a tunnel cut in the packaging and between the arcs
of the bonding wires. This is by no means trivial for probe microscopy
because non-standard or extended mounting of the cantilever impacts
imaging performance.

Figure 5 shows an optical microscope image of the individual memory
arrays. Charge is stored in the oval structures and electrical connections
are made to a single memory cell by addressing the appropriate com-
bination of white and yellow/gold lead-in traces. The spacing between
the bright white address lines is approximately 20μm. Modern chips
are more complex and have structures that are an order of magnitude
smaller. Also, they often include more transistors and other active de-
vices as part of the individual memory cells. However, the general layout
of memory chips is very similar as is the packaging.

5. Prior Art

The three atomic force microscopy techniques – electrical force mi-
croscopy, scanning capacitance microscopy and scanning microwave im-

Gray & Axelsson 229

Figure 5. Optical microscope image of individual memory cells.

pedance microscopy – all have potential for investigations of semicon-
ductor memory. They use a conductive tip to apply or sense electrical
signals and typically employ conventional atomic force microscopy height
sensing to control the tip position while measuring the electrical signals
independently.

The first technique, electrical force microscopy, measures the electri-
cal forces between a surface and a charged tip. An oscillating voltage
is often applied to the tip and a lock-in amplifier is used to isolate this
component of the signal coming from the split photodetector. Provided
a frequency is chosen that lies between the pixel clock and the funda-
mental frequency of the cantilever, this perturbation neither affects the
topographic image data nor the basic operation of the height stabiliz-
ing feedback. The lock-in signal represents the gradient of the electric
force on the tip with distance. This signal changes sign when the tip is
over positively or negatively charged regions of the surface. Although
absolute quantitative measurements require detailed 3D models of the
tip, surface geometry and materials, it is possible to map electric field
gradients due to local charges.

The application to semiconductor memory devices is obvious because
charges are mostly stored in capacitors or floating gate electrodes, which
produce fringing fields that affect nearby sensing electrodes. Typical

230 ADVANCES IN DIGITAL FORENSICS XV

charge and discharge voltages are much larger than the tip voltages
needed for good signal-to-noise in electrical force microscopy, so a mea-
surement can be made without erasing the charge structure on the sam-
ple surface. Measuring the difference between a memory cell with a
charged floating gate and a cell with a neutral gate is well within the
capabilities of most instruments.

There is little reported work on using electrical force microscopy to
image and read the contents of packaged semiconductor memory. An
application note by Park Systems [18], a commercial manufacturer of
atomic force microscopes, reports electrical force microscopy measure-
ments on bare, unpackaged, uncontacted memory cells. Reports are also
available about materials-science-oriented studies focused on developing
novel memory structures (see, e.g., [6, 11]). However, these works do
not describe successful top-down measurements of mainstream memory
devices. Konopinski [14] has conducted the most extensive electrical
force microscopy investigation of memory arrays, specifically flash mem-
ory EEPROMs used in SIM cards. While the electrical force microscopy
measurements in this study were inconclusive, they do not rule out the
utility of the technique.

The second technique, scanning capacitance microscopy, imposes a
DC bias on the conducting tip with an overlaid oscillatory voltage. The
currents on and off the tip are measured using a preamplifier placed
close to the cantilever; a lock-in technique is used to provide specificity
and noise rejection. The signal yielding the scanning capacitance mi-
croscopy measurement is proportional to dC/dV at the DC bias voltage.
The technique is most applicable to systems where dC/dV varies with
voltage, which includes many semiconductor structures.

Scanning capacitance microscopy has been used extensively to char-
acterize on-chip transistor and memory structures in cross-sectional and
top-down planar views. In fact, most manufacturers of commercial mi-
croscopes that offer scanning capacitance microscopy as an option pro-
vide an SRAM chip as a test sample. However, as in the case of the
Park Systems technical note [18], the emphasis is usually on imaging a
passivated planar sample with no actual connections to the doped re-
gions of the semiconductor instead of in situ measurements of connected
charged devices. The most attractive use of scanning capacitance mi-
croscopy is to assess dopant levels in semiconductors. It can reliably and
robustly detect the difference between n-type and p-type regions. With
suitable modeling, it is also able to measure doping levels as a function
of position across the surface.

Some studies have used scanning capacitance microscopy to read the
contents of memory cells. De Nardi et al. [7] have successfully used

Gray & Axelsson 231

scanning capacitance microscopy to read memory devices that were ex-
tensively prepared for the scanning capacitance microscopy technique.
They were able to distinguish between cells containing bit values of 1
and 0, and to recreate word-length data from scanning capacitance mi-
croscopy images. They also emphasize the need to map the physical lo-
cations of the data as seen by scanning capacitance microscopy to their
logical locations within the conceptual data array. This is one area are
where countermeasures such as scrambling physical memory locations
on an individual chip could defeat read attempts. However, in cases
where a consistent layout is used, the mapping can be performed for a
single device (other than the device under test) and the results could be
applied to all the devices in the same batch or of the same type.

The scanning capacitance microscopy study by De Nardi et al. [7] and
the electrical force microscopy study by Konopinski [14] both involved
the extraction of the die from the memory device and thinning it from
the backside, reducing the chip thickness until the underside of the ac-
tive circuits was almost exposed. This is not a trivial procedure, but
is necessary, especially in the case of scanning capacitance microscopy,
which relies on band-bending induced by the electric field from the tip
to create a signal. In any case, it is essentially impractical to take mea-
surements from the topside through the arrays of addressing and control
lines.

The third technique, scanning microwave impedance microscopy [15],
uses matched transmission lines and filters to apply a microwave signal
to the conducting tip. A conventional RF network analyzer then records
the back-reflected signal, essentially treating the tip-sample junction as
an unmatched termination to the transmission line. From this, it is
possible to extract the complex impedance of the junction and map it
across the surface. As with scanning capacitance microscopy, the os-
cillatory signal enables the impedance measurement to be decoupled
from the topography; the output signal is proportional to dC/dV for
the imaginary part and to dR/dV for the real part. Scanning microwave
impedance microscopy provides similar information as scanning capac-
itance microscopy, but with greater reliability and signal-to-noise. The
published literature on scanning microwave impedance microscopy is a
little thin, but the technique has definite promise.

6. Vintage EPROM Chip Experiments

The experiments involved preparing and mounting a 1,024B Intel
2708 EPROM memory chip in an atomic force microscope in order to in-
vestigate whether or not topside measurements are possible without the

232 ADVANCES IN DIGITAL FORENSICS XV

Figure 6. Innova microscope with the EPROM chip mounted.

extensive and destructive sample preparation described in the electrical
force microscopy and scanning capacitance microscopy studies discussed
above.

The experiments employed an Innova atomic force microscope, a low-
cost research-grade instrument, with scanning capacitance microscopy
capabilities [5]. The atomic force microscopy system has a built-in video
microscope that enables the tip position to be correlated with measure-
ments using other microscopes. The system can perform atomic force
microscopy on areas up to 100μm×100μm in size.

Figure 6 shows the Innova atomic force microscope with its sound-
proof cover removed and the EPROM chip mounted on the sample stage.
The electronics for the scanning capacitance microscopy preamplifier are
housed in the gold-colored rectangular box on the right.

Figure 7 shows a close-up view of the chip mounted in situ in the
Innova atomic force microscope. The cantilever chip is mounted in the
white holder at the top center. The red laser used for deflection de-
tection can be seen reflecting off the cantilever itself, with some stray
light to the left and on the surface of the EPROM chip. It is clear that
space is extremely tight. Also, the rear of the atomic force microscope

Gray & Axelsson 233

Figure 7. Close-up view of the mounted EPROM chip.

scanner head is tilted up at an extreme angle so that the cantilever chip
projects down into the well containing the chip die; this is not an optimal
configuration.

Note that Figure 7 shows the EPROM chip in Figures 5 and 6 with
its protective quartz window removed. The remainder of the packaging
is still intact.

In order to investigate whether or not additional processing would
facilitate atomic force microscopy, the top plate of the packaging was
removed by cleaving it with a straight sharp blade. This enabled the
microscope to be placed in a less contorted posture, but it was still not
in its normal configuration. However, imaging was possible and atomic
force microscope topographs could be taken.

Figure 8 shows an atomic force microscope topograph of the surface
of the memory cell array. The image area is 20μm×20μm and the
total height variation is 4.4μm. The horizontal stripes and deep holes
correspond to the bright white address lines seen in the optical image in
Figure 5.

The topograph is remarkably clean and stable, although the uncleaned
surface of a 1974-vintage EPROM chip was imaged. Moreover, the sur-

234 ADVANCES IN DIGITAL FORENSICS XV

Figure 8. Topograph of the memory cell array in the EPROM chip.

face features can directly be related to those seen in the optical micro-
graph of the same chip shown in Figure 6. There is a great deal of tip
interaction, as can be seen from the sudden jumps and glitches at some
points in the image, but given the simplicity of the preparation tech-
nique, this is a very encouraging result. Note that although the package
had been delidded, all the bond wires were still intact and, in principle,
data could be written to the chip.

Experiments involving scanning capacitance microscopy and electrical
force microscopy were not conducted. However, it is clear that these
techniques would be entirely practicable, although delidding may be
more complicated for modern chips with resin packages. In fact, modern
chips with low-profile packaging and less surface relief on the die itself

Gray & Axelsson 235

should be easier to investigate because there would much less tip-sample
interaction.

7. Conclusions

Atomic force microscopy has already been used to investigate the
structures of memory devices and to conduct detailed failure analyses of
memory cell structures. However, limited information is available about
its application to reading the memory contents of packaged chips. Nev-
ertheless, the published research suggests that atomic force microscopy
and related techniques should certainly be applicable to reading memory
– the only question is how well.

The initial results presented in this chapter demonstrate that, even
without custom sample mounting or modification of the atomic force mi-
croscope itself, it is possible to obtain topographic data from a packaged
chip using a basic research-grade instrument. If future research demon-
strates the feasibility of the technique, it is easy to envision the construc-
tion of a custom atomic force microscope that could image integrated
circuits in situ on their circuit boards. A key aspect of the research would
be to perform topside imaging and characterization, avoiding backside
polishing and etching and, in principle, maintaining the integrity of the
chip as a working device.

The prospects for the future are exciting. Micro-electro-mechanical
systems technology and other manufacturing processes that produce
smaller, lighter atomic force microscopy structures with higher funda-
mental resonance would allow for increases in data access rates and
crash-free investigations of surfaces with high relief. This would affect
the practicability of security and forensic applications discussed in this
work. Further development of high-speed electronics and microwave en-
gineering may permit other advances in the surface characterization of
semiconductor devices, or they may simply make measurements easier,
cheaper and more reliable.

From the point of view of forensic investigations, atomic force mi-
croscopy has a number of advantages: it is minimally invasive; it may
be performed in a wide variety of environments; and it can be used to im-
age almost any kind of sample. The problems in performing atomic force
microscopy investigations of working memory chips are mostly practi-
cal, but are of sufficient severity to deter casual investigations. Whatever
the future may bring in terms of instruments and their capabilities, one
thing is clear – sample preparation techniques will always be of the ut-
most importance.

236 ADVANCES IN DIGITAL FORENSICS XV

References

[1] S. Axelsson, A Preliminary Attempt to Apply Detection and Esti-
mation Theory to Intrusion Detection, Technical Report 00-4, De-
partment of Computer Engineering, Chalmers University of Tech-
nology, Goteborg, Sweden, 2000.

[2] E. Biham and A. Shamir, Differential fault analysis of secret key
cryptosystems, Proceedings of the Seventeenth Annual International
Cryptology Conference, pp. 513–525, 1997.

[3] G. Binnig, C. Quate and C. Gerber, Atomic force microscope, Phys-
ical Review Letters, vol. 56, pp. 930–933, 1986.

[4] G. Binnig and H. Rohrer, Scanning tunneling microscopy, Helvetica
Physica Acta, vol. 55, pp. 726–735, 1982.

[5] Bruker, Innova, Billerica, Massachusetts (www.bruker.com/pro
ducts/surface-and-dimensional-analysis/atomic-force-mic

roscopes/innova/overview.html), 2019.

[6] D. Chiang, P. Lei, F. Zhang and R. Barrowcliff, Dynamic EFM spec-
troscopy studies on electric force gradients of IrO2 nanorod arrays,
Nanotechnology, vol. 16(3), pp. S35–S40, 2005.

[7] C. De Nardi, R. Desplats, P. Perdu, C. Guerin, J. Gauffier and T.
Amundsen, Direct measurements of charge in floating gate tran-
sistor channels of flash memories using scanning capacitance mi-
croscopy, Proceedings of the Thirty-Second International Sympo-
sium on Testing and Failure Analysis, pp. 86–93, 2006.

[8] S. Garfinkel, Digital forensics research: The next 10 years, Digital
Investigation, vol. 7(S), S64–S73, 2010.

[9] M. Green, Why Can’t Apple Decrypt Your iPhone, A Few Thoughts
on Cryptography Engineering Blog, October 4, 2014.

[10] J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J.
Calandrino, A. Feldman, J. Appelbaum and E. Felten, Lest we re-
member: Cold-boot attacks on encryption keys, Communications of
the ACM, vol. 52(5), pp. 91–98, 2009.

[11] J. Kim, D. Son, M. Lee, C. Song, J. Song, J. Koo and D. Kim,
A wearable multiplexed silicon nonvolatile memory array using
nanocrystal charge confinement, Science Advances, vol. 2(1), article
no. e1501101, 2016.

[12] S. Kinney, Trusted Platform Module Basics: Using TPM in Embed-
ded Systems, Newnes, Burlington, Massachusetts, 2006.

Gray & Axelsson 237

[13] P. Kocher, J. Jaffe and B. Jun, Differential power analysis, Proceed-
ings of the Nineteenth Annual International Cryptology Conference,
pp. 388–397, 1999.

[14] D. Konopinski, Forensic Applications of Atomic Force Microscopy,
Doctoral Dissertation, Department of Electronic and Electrical En-
gineering, University College London, London, United Kingdom,
2013.

[15] K. Lai, W. Kundhikanjana, H. Peng, Y. Cui, M. Kelly and Z. Shen,
Tapping mode microwave impedance microscopy, Review of Scien-
tific Instruments, vol. 80(4), 043707, 2009.

[16] M. Maroufi, A. Fowler, A. Bazaei and S. Moheimani, High-stroke
silicon-on-insulator MEMS nanopositioner: Control design for non-
raster scan atomic force microscopy, Review of Scientific Instru-
ments, vol. 86(2), 023705, 2015.

[17] I. Mayergoyz and C. Tse, Spin-Stand Microscopy of Hard Disk Data,
Elsevier, Oxford, United Kingdom, 2007.

[18] J. Pineda, G. Pascual, B. Kim and K. Lee, Electrical Characteri-
zation of Semiconductor Device Using SCM and SKPM Imaging,
Application Note #8, Park Systems, Santa Clara, California, 2017.

[19] M. Ranum, Thinking about firewalls, Proceedings of the Second In-
ternational Conference on Systems and Network Security and Man-
agement, 1993.

[20] J. Rushby, A trusted computing base for embedded systems, Pro-
ceedings of the Seventh Department of Defense/National Bureau of
Standards Computer Security Conference, pp. 294–311, 1984.

[21] S. Skorobogatov and R. Anderson, Optical fault induction attacks,
Proceedings of the Fourth International Workshop on Cryptographic
Hardware and Embedded Systems, pp. 2–12, 2002.

[22] W. Stallings, Cryptography and Network Security: Principles and
Practice, Prentice Hall, Upper Saddle River, New Jersey, 2010.

[23] D. von Oheimb, Information flow control revisited: Noninfluence =
noninterference + nonleakage, Proceedings of the Ninth European
Symposium on Research in Computer Security, pp. 225–243, 2004.

[24] A. Waksman and S. Sethumadhavan, Tamper evident microproces-
sors, Proceedings of the IEEE Symposium on Security and Privacy,
pp. 173–188, 2010.

Chapter 13

TIMELINE VISUALIZATION
OF KEYWORDS

Wynand van Staden

Abstract Visualizations of communications between actors are typically presented
as actor interactions or as plots of the dates and times when the com-
munications occurred. These visualizations are valuable to forensic ana-
lysts; however, they do not provide an understanding of the general flow
of the discussed topics, which are identified by keywords or keyphrases.
The ability to view the content of a corpus as a timeline of discussion
topics can provide clues to when certain topics became more prevalent in
the discussion, when topics disappeared from the discussion and which
topics are outliers in the corpus. This, in turn, may help discover related
topics and times that can be used as clues in further analyses. The goal
is to provide a forensic analyst with assistance in systematically review-
ing data, eliminating the need to manually examine large amounts of
communications.

This chapter focuses on the timeline-based visualization of keywords
in a text corpus. The proposed technique employs automated keyword
extraction and clustering to produce a visual summary of topics recorded
from the content of an email corpus. Topics are regarded as keywords
and are placed on a timeline for visual inspection. Links are placed
between topics as the timeline progresses. Placing topics on a timeline
makes it easier to discover patterns of communication about specific
topics instead of merely focusing on general discussion patterns. The
technique complements existing visualization techniques by enabling a
forensic analyst to concentrate on the most interesting portions of a
corpus.

Keywords: Email corpus, topic extraction, timeline visualization

1. Introduction

Data visualization in social network analysis is typically organized
around communication patterns – who knows whom and how the ac-

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 239–252, 2019.

https://doi.org/10.1007/978-3-030-28752-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_13&domain=pdf

240 ADVANCES IN DIGITAL FORENSICS XV

tors interact. During an investigation, social network analysis is used
with great effect to determine which actors might be colluding, where
to search for potential material evidence and which actors should be
interviewed for additional data. When a large corpus has to be exam-
ined, the visualization of interactions and communication patterns is an
important part of the analysis process.

As discussed in the next section on related work, considerable re-
search has concentrated on data visualization. However, in nearly all
cases, visualization has focused on the quantitative aspects of the data
– for example, plotting email messages as two-dimensional data where
one dimension corresponds to the email user and the other dimension
corresponds to the time when the email was sent. Such visualization
may directly assist in discovering evidence.

Taking a cue from information cartography, this chapter proposes a
technique for visualizing topical communication on a timeline by extract-
ing keywords (representative of topics) from a corpus. This provides a
means for a forensic analyst to follow the progression of topics (and re-
lated topics) based on a particular time window. The idea of providing
a timeline visualization of topics during analysis comes from the work of
Shahaf et al. [20]. However, the proposed approach is different because,
as a first-step technique that assists a forensic analyst in an investiga-
tion, it does not hide information and important clues from the analyst.
Specifically, it enables a forensic analyst to identify the various topics in
a corpus and how they flow through time, providing valuable assistance
in understanding actor interactions and supporting focused explorations
of a corpus. The timeline-based visualization of keywords is tested on
the well-known Enron email corpus.

2. Related Work

Digital forensics is becoming a mature discipline [13] with standard-
ized processes and commercial tools. Email forensics has developed
into a separate area within the discipline and comes with its own chal-
lenges [8].

Several researchers have investigated visualization as a means to dis-
cover digital evidence. Schrenk and Poisel [18] survey visualization tech-
niques used in digital forensics. Olsson and Boldt [12] have developed a
visualization tool that provides timelines for event reconstruction from
files and file content. Fei et al. [3] have employed self-organizing maps
to discover anomalies in data that can help identify sources of evidence.

Devendran et al. [2] have conducted a comparative study of five pop-
ular open-source email forensic tools; their study indicates that visu-

van Staden 241

alization is restricted to standard content inspection. However, tools
that support email visualization are becoming more prevalent. For ex-
ample, Stadlinger and Dewald [22] have developed a tool that depicts
email communications between different accounts. The tool provides
histograms of email volumes per hour and per day, and the most ac-
tive users. It also creates a link graph that highlights the flow of email
from accounts to other accounts (i.e., outbound communication patterns
between accounts).

Haggerty et al. [5] report that most investigative tools for email visu-
alization support quantitative data analyses. Their triage system makes
use of link analysis and tag clouds to visualize interactions and actor
relationships. The tag clouds highlight important words and concepts
shared by actors. However, their approach focuses the attention of a
forensic analyst on searching for evidence instead of appreciating the
patterns and events that are latent in the data. Understanding the
nascent patterns and events assists the analyst in developing complex
and concrete ideas about where to search for evidence.

Frau et al. [4] have developed a tool that depicts email as glyphs whose
size and color change based on their locations in the email folder hierar-
chy and their overall size. Email messages are presented as a scatter-plot
on a timeline.

Viegas et al. [24] have created a forensic tool that provides an overview
of topics discussed between users and their contacts. However, their tool
is not designed for email visualization and does not link topics over time.

Nordbo [11] has developed a visualization tool that considers user
interactivity to discover digital evidence. The tool provides email time-
line views per user, activity histograms summarized per day, week and
overall, frequencies of messages sent and received, and popular communi-
cation times. Several other visualization techniques and tools have been
developed and interested readers are referred to the work of Joorabi [7],
Appan et al. [1], and Sudarsky and Hjelsvold [23].

Very little research has focused on topics and timelines as a means
for visualization. One exception is the work of Shahaf et al. [20], which
introduces the concept of information maps (“metro maps”) that convey
the knowledge and evolution of stories in curated news articles. The
maps are generated based on properties and constraints – coherence,
coverage and connectivity. A highly-coherent map provides storylines in
which each point in the story relates to the previous and next “stops.”
High coverage ensures that a storyline provides as much information as
possible about a story and promotes diversity (i.e., the storyline provides
as much information about a particular topic as possible). Connectivity
ensures that links between different aspects of a story are provided,

242 ADVANCES IN DIGITAL FORENSICS XV

meaning that the connections between different aspects of the story are
present (as a reader might expect). The concept of metro maps has been
extended to the visualization of academic (research) papers [19].

The work of Shahaf et al. [20] has motivated the timeline visualization
of topics described in this chapter. However, the notions of coverage and
diversity are difficult to apply to an email corpus during an investigation
because the objective of a forensic analyst is not to acquire new knowl-
edge. Instead, the analyst is interested in discovering material evidence
and may not care how well an email message covers a particular topic,
just that the topic is present in the message. The considerations of cov-
erage and diversity in the case of an email corpus and topic visualization
are left for future research.

3. Proposed Technique

The proposed technique incorporates three processes: (i) data acqui-
sition; (ii) topic extraction and preprocessing; and (iii) visualization:

Data Acquisition: The data acquisition process involves data
preparation, extraction and storage in the appropriate formats and
locations. This requires the email messages to be parsed in various
formats, such as UNIX mbox [6] and Microsoft PST/OST. Data
may be stored in a normalized relational database, in a NoSQL
database that handles large data volumes more effectively and scal-
ably, or in a container format. The principle is that it should be
easy to query the data.

Topic Extraction and Preprocessing: Topic extraction and
preprocessing involve the following steps:

– Automated extraction of keywords using established tech-
niques such as word co-location analysis and named entity
recognition.

– Normalization of extracted keywords, which includes auto-
mated spelling correction. This step can be difficult because
most spelling corrections are curated: the user is present and
can provide guidance to the spelling corrector. Extracting
keywords and making automatic corrections require assump-
tions to be made about the correct spellings of words, which
could form a vernacular that is unique to the entity. This
issue is discussed by Samanta and Chaudhuri [17].

– Generation of common lexicographic rendering indexes re-
lated to normalization. The lexicographic renderings of key-
words may differ slightly in the corpus due to the writing

van Staden 243

habits of individuals (e.g., misspellings of words and uncom-
mon renderings of company names). These minor variations
are united to present a consistent view of keywords.

Visualization: Visualization involves the following steps:

– Acceptance of a search query.

– Finding related or similar keywords.

– Clustering topics and email messages based on keywords.

– Rendering topics and keywords on a timeline.

The proposed technique is implemented using a lightweight SQL re-
lational database system to store the data. Email messages are stored
in one table. Another table contains the keywords. A bridging table is
used to present the many-to-many relationships between email messages
and keywords. A final table contains the normalized keywords and their
one-to-many relationships.

The reference implementation was evaluated using the well-known
Enron dataset. However, timeline comparisons of reported events and
corpus events were not performed.

The next two sections describe the topic extraction and preprocessing
phase and the visualization phase in detail.

4. Topic Extraction and Preprocessing

The topic extraction and preprocessing phase involves harvesting key-
words (keyphrases) from a corpus and preparing the extracted topics for
querying. Three types of models may be employed for keyword extrac-
tion: (i) statistical models; (ii) supervised models; and (iii) unsupervised
models [21]. Each model type has its own advantages and disadvantages
for use in different domains [21]. However, a system used by a forensic
analyst should provide as much information as possible with little con-
figuration overhead. Specifically, it should provide a starting point for
the analyst.

In the case of the reference implementation, an unsupervised model
was considered that would be relatively fast and would not require
the number of topics to be predetermined (e.g., latent Dirichlet alloca-
tion). For this reason, the rapid automated keyword extraction (RAKE)
model [15] was selected. Note that the idea was to create a reference
implementation that would permit the replacement of one model with
another to adapt topic extraction to a particular domain. However, it
should be clear that any other model could be used after sufficient testing
in a given domain.

244 ADVANCES IN DIGITAL FORENSICS XV

Rapid automated keyword extraction considers stop words as bound-
aries between potential keywords and scores the individual words based
on co-occurrence. The highest scoring candidates are used as keywords
for the text. The choice of the stop-word list can play a role in the coher-
ence of the keywords that are harvested. Standard stop-word lists were
selected for the reference implementation. However, domain-specific stop
words may yield additional benefits [9]; this topic is the subject of future
research.

The standard stop-word list provided by NLTK [10] introduced too
much noise during initial testing. Therefore, the SMART stop-word
list [16] was chosen.

The second part of preprocessing involves getting the keywords ready
for searching. Stemming was deemed to be an appropriate preprocessing
step for information retrieval.

Stemming maps a known word to a common form. Stemming words
that have similar lexical and semantic representations produces a com-
mon lexicographic representation that can be used to perform string
comparisons more easily. This enables an analyst to enter variations
of the words to compare against the corpus. For example, stemming
“activities” and “activity” maps both words to the same common lexi-
cographic representation.

This work opted for the well-known stemming technique of Porter [14],
which maps “activities” and “activity” to “activ.” Thus, a forensic
analyst could use the search term “activities,” but still obtain all the
email messages that contain the term “activity.”

In order to facilitate searches based on keywords, all the words in the
extracted topics were stemmed and an index was created on the actual
topics to which the words referred. Words in the search terms were also
stemmed and matches were performed on the stemmed words.

A common representation index was created to account for slight vari-
ations of keywords such as “securities exchange commission” and “secu-
rity exchange commission.” The common representation index employed
a maximum likelihood estimator to produce a consistent visual render-
ing of such topics. The estimator mapped keywords (using stemming)
to the most common representation found in the list of keywords. In
this case:

c(k) = argmaxxδ(x, k)

where δ(x, k) is the number of times x appears as a topic related to k.
This approach ensures that minor variations in topic spellings produce
a single consistent representation during visualization.

van Staden 245

5. Visualization

The visualization of topics is presented after a search query (term)
is issued. The stemming of the search terms works in the same way as
the stemming of the keywords obtained via the rapid automated keyword
extraction technique. Each keyword is simply stemmed and the stemmed
version is used when finding candidate keywords.

5.1 Finding and Ranking

Finding related topics is similar to finding related documents in infor-
mation retrieval. Several techniques can be used to find related docu-
ments, the most common being TF-IDF (term frequency/inverse docu-
ment frequency). In basic information retrieval, searching and matching
are variations of the bag-of-words approach.

Upon conducting sampling and statistical analyses of the words in
a collection of documents, it is possible to determine how different the
documents are from each other. In such cases, the search term is con-
sidered to be a document and the searching system simply finds all the
documents that are similar to the search term document. These search
techniques are extremely powerful for large corpora with large docu-
ments. However, since the approach presented here preprocesses the
keywords, the search essentially matches words in the short search term
against words in the short keyword/topic list. This makes the matching
technique simple and fast.

The matching technique employs a similarity score based on the Jac-
card index J , which is defined as:

J(x, y) =
|x ∩ y|

|x|+ |y|

where x and y are the words being compared.
Using the stemmed index created in the preprocessing stage, all the

candidate keywords are found and then ranked according to the Jaccard
distance measure. Algorithm 1 specifies the details of the search.

The search results return the top n = 30 exact keyword matches in
order to reduce the amount of noise that can bleed into the listed key-
words and reduce the information presented in the visualization. Note
that the parameter n can be adjusted to de-clutter the results.

The final step in the process is to retrieve all the email messages in the
corpus that contain the listed keywords. These candidate email messages
are used to construct the timeline.

246 ADVANCES IN DIGITAL FORENSICS XV

Algorithm 1: Search algorithm.
Input: T: Search term
Result: R: Ranked list of keywords
S ← StemmedWordList(T);
foreach s in S do

C ← C ∪ KeywordLookup(s);
end
foreach c in C do

R ← R ∪ (c,J(c,T))
end
return R;

5.2 Clustering

The results must be clustered prior to visualization. The choice of
clustering method impacts the eventual summary and display of data.
However, in the case of the reference implementation, it was decided to
employ as much information as possible in the clustering. Topics were
clustered per day and subsequently by merging related keywords com-
mon to email messages on the same day. The resulting cluster contained
common keywords in a collection of email messages on a particular day.

To illustrate the clustering technique, assume that the search term
“accounting irregularities” yields several email messages on a single day.
This gives rise to one of two scenarios: (i) several email messages on
the given day, where all the messages contain the same keyword used in
the search; or (ii) several email messages on the given day, where some
messages contain only the keyword related to the search term and some
messages contain the keyword as well as additional keywords.

In the first scenario, clustering emails containing the same keyword
would de-clutter a visual rendering of the timeline. In the second sce-
nario, clustering email messages with the same keyword would also de-
clutter the display. However, these keywords are not assimilated into
multi-keyword clusters because the assimilation could obscure unique
email clusters.

5.3 Rendering

The timeline is rendered by displaying topic clusters using the topics
in the email messages per day. Each topic cluster is then linked to the
cluster corresponding to a following day based entirely on the topic.
Linking is performed using the following rules:

For each topic on a given day, find the first future occurrence of
the same topic and create a link to the topic.

van Staden 247

For each topic on a given day, find the first future occurrence of
the same topic that is present in a multi-topic cluster and create
a link to the topic.

For each topic in a multi-topic cluster, find the first future occur-
rence of the topic and create a link to the topic.

6. Results

This section presents the visualization renderings for searches using
two keyphrases: (i) “accounting irregularities;” and (ii) “securities ex-
change commission.” The renderings illustrate the utility of timeline
visualization of keywords/keyphrases. Presenting visual renderings on
paper is always difficult and the renderings have been reduced in size for
presentation purposes.

In the case of the keyphrase “accounting irregularities,” some of the
top search terms returned – “accounting irregularities,” “accounting ir-
regularities disclosed,” “accounting irregularities leaked,” “creative ac-
counting” – were found in nearly 400 email messages.

Figure 1 shows the visualization corresponding to the keyphrase “ac-
counting irregularities.” The timeline clearly shows two interesting peri-
ods during which several clusters of email messages discussed accounting
irregularities – between January 14 and 18, as well as between January
29 and March 3. Each period contains a flurry of email messages that
discuss the same topics. A merge/split on the topics reveals that the
phrase “creative accounting” appears in the second period. However,
the keyphrase meanders throughout the timeline. The appearances of
“creative accounting” and “accounting problem” yield a potential area
of interest because it appears that these topics were being discussed after
the initial shock of the Enron exposé.

In the case of the keyphrase “securities exchange commission,” some
of the top search terms returned – “securities exchange commission in-
quiry,” “exchange commission,” “exchange commission opens” – were
found in nearly 1,700 email messages

Figure 2 shows the visualization corresponding to the keyphrase “secu-
rities exchange commission.” Since Enron had regular dealings with the
U.S. Securities and Exchange Commission (SEC), the keyphrase search
does not provide a significant amount of information – the timeline is rid-
dled with references on an almost daily basis. Moreover, since the corpus
was collected around the time of the investigation by the U.S. Securities
and Exchange Commission, many email messages would be expected to
include the keyphrase “securities exchange commission.” The point is
that a search using this particular keyphrase delivers very few outliers.

248 ADVANCES IN DIGITAL FORENSICS XV

+<<+<��@

+<<+<��A

+<<+<��;

+<<+<��B

+<<+<��C

+<<+<�++

+<<+<�+1

+<<+<�+@

+<<+<�+A

+<<+<�+B

+<<+<�+D

+<<+<�1<

+<<+<�1�

+<<+<+<�

+<<+<+<1

+<<+<+<@

+<<+<+<A

+<<+<+<;

+<<+<+<C

+<<+<+�+

���
�����:
�8

���
�������������������E���
�����������������������8��E����
�����:
�8

���
����

���
����

���������� �����
�������������������E��
����������
�������������������E����
�������������������

���
�����:
�8E���
�������������������������
���E���
������
�����&

���
�������������������E����
��������������������������������
 ���
�������������������

���
�������������������

���
�������������������

������ �����
����E���
����������������������
�������������������

������ �����
����E����
����

���
����

���
�������������������

������ �����
����

���
�������
����E����
���������

���
�������
����E����
����������������������
�������
����E����
��������
� ���
�������������������

���
�������������������

������ �����
����E���
 ������
�������������������

���
�������������������

���
�������������������������
���

������&������
���&����
�������������������

������&������
���&����
�������������������E����
�������������������

Figure 1. Visualization corresponding to “accounting irregularities.”

7. Conclusions

Most digital forensic investigations engage typical social network vi-
sualization approaches that depict person-person communications on a
timeline and person-person links. Some approaches even provide key-
word listings per day or word clouds. However, these visualizations do
not provide an understanding of the general flow of the discussed topics,
which are identified by keywords or keyphrases.

The proposed timeline-based visualization of keywords draws on the
concept of metro maps of science [19]. It leverages automated keyword
extraction and clustering to produce a visual summary of topics in an
email corpus. Topics are regarded as keywords and are placed on a
timeline for visual inspection; links are then placed between topics as

van Staden 249

+<<��<<+

+<<��<�C

+<<��<+<

+<<��<++

+<<��<+1

+<<��<+@

+<<��<+A

+<<����+

+<<����1

+<<����@

+<<����A

+<<����;

+<<����B

+<<����D

+<<���+<

+<<���+�

+<<���+;

+<<���+B

+<<���+C

+<<��+<1

+<<��+<@

�"�������
������

�"�������
������

�"�������
������

������������"�������
������

�"�������
������
E�������������"�������
������
�"�������
������

�"�������
������
 �"�������
������
E�������������"�������
������
 ��������������������
������

�"�������
������
 �"�������
������
E�������������"�������
������
 ������������"�������
������

�"�������
������

�"�������
������
E�������������"�������
������
 ������������"�������
������

�"�������
������
E��"�������
������
�������� �"�������
������

�"�������
������

������������"�������
������
��0���&E��"�������
������
�"�������
������

�"�������
������

������������"�������
������
��0���&

�"�������
������
 �"�������
������
E�"�������
������
���������

�"�������
������

�"�������
������

�"�������
������

�"�������
������

�"�������
������
E�������������"�������
������
 ������������"�������
������
�"�������
������

�"�������
������
E�������������"�������
������
�"�������
������

�"�������
������

�"�������
������
E�������������"�������
������
�"�������
������

�"�������
������

Figure 2. Visualization corresponding to “securities exchange commission.”

the timeline progresses. Placing topics on a timeline makes it easier for
forensic analysts to discover patterns of communication about specific
topics instead of manually analyzing general discussion patterns. Also,

250 ADVANCES IN DIGITAL FORENSICS XV

the technique complements existing visualization techniques by enabling
forensic analysts to concentrate on the most interesting portions of a cor-
pus, including zooming in on specific times and specific communications.

Future research will attempt to develop an interactive system that
will address the problems associated with paper-based visualizations of
dense data, enabling forensic analysts to explore corpora more efficiently
and effectively. Research efforts will also focus on understanding topical
conversations in a corpus by incorporating news events. For example, in
the Enron case, the timelines could be correlated with reports of arrests
and other relevant events that could enhance human understanding of
the case. Finally, research will investigate the choice of stop-word lists
and perform rigorous tests on the use of rapid automated keyword ex-
traction on email messages.

Acknowledgement

This research was supported by the South African National Research
Foundation under Grant No. 114848.

References

[1] P. Appan, H. Sundaram and B. Tseng, Summarization and visual-
ization of communication patterns in a large-scale social network,
Proceedings of the Tenth Pacific-Asia Conference on Advances in
Knowledge Discovery and Data Mining, pp. 371–379, 2006.

[2] V. Devendran, H. Shahriar and V. Clincy, A comparative study of
email forensic tools, Journal of Information Security, vol. 6(2), pp.
111–117, 2015.

[3] B. Fei, J. Eloff, H. Venter and M. Olivier, Exploring forensic data
with self-organizing maps, in Advances in Digital Forensics, M. Pol-
litt and S. Shenoi (Eds.), Springer, Boston, Massachusetts, pp. 113–
123, 2005.

[4] S. Frau, J. Roberts and N. Boukhelifa, Dynamic coordinated email
visualization, Proceedings of the Thirteenth International Confer-
ence in Central Europe on Computer Graphics, Visualization and
Computer Vision, pp. 187–193, 2005.

[5] J. Haggerty, S. Haggerty and M. Taylor, Forensic triage of email
network narratives through visualization, Information Management
and Computer Security, vol. 22(4), pp. 358–370, 2014.

van Staden 251

[6] E. Hall, The application/mbox Media Type, RFC 4155 (data
tracker.ietf.org/doc/rfc4155), 2005.

[7] M. Joorabchi, EmailTime: Visualization and Analysis of Email
Dataset, Master’s Thesis, School of Interactive Art and Technol-
ogy, Simon Fraser University, Burnaby, Canada, 2010.

[8] H. Lalla and S. Flowerday, Towards a standardized digital foren-
sic process, Proceedings of the Information Security South Africa
Conference, 2010.

[9] M. Makrehchi and M. Kamel, Extracting domain-specific stop
words for text classifiers, Intelligent Data Analysis, vol. 21(1), pp.
39–62, 2017.

[10] NLTK Project, Natural Language Toolkit (www.nltk.org), 2019.

[11] A. Nordbo, Data Visualization for Discovery of Digital Evidence
in Email, Master’s Thesis, Department of Computer Science and
Media Technology, Gjovik University College, Gjovik, Norway, 2014.

[12] J. Olsson and M. Boldt, Computer forensic timeline visualization
tool, Digital Investigation, vol. 6(S), pp. S78–S87, 2009.

[13] G. Palmer, A Road Map for Digital Forensic Research, DFRWS
Technical Report, Technical Report DTR-T001-01 Final, Air Force
Research Laboratory, Rome, New York, 2001.

[14] M. Porter, An algorithm for suffix stripping, in Readings in Infor-
mation Retrieval, K. Sparck-Jones and P. Willet (Eds.), Morgan
Kaufmann, San Francisco, California, pp. 313–316, 1997.

[15] S. Rose, D. Engel, N. Cramer and W. Cowley, Automatic keyword
extraction from individual documents, in Text Mining: Applications
and Theory, M. Berry and J. Kogan (Eds.), John Wiley and Sons,
Hoboken, New Jersey, pp. 1–20, 2010.

[16] G. Salton, The SMART Retrieval System: Experiments in Auto-
matic Document Processing, Prentice-Hall, Upper Saddle River,
New Jersey, 1971.

[17] P. Samanta and B. Chaudhuri, A simple real-word error detection
and correction using local word bigram and trigram, Proceedings
of the Twenty-Fifth Conference on Computational Linguistics and
Speech Processing, pp. 211–220, 2013.

[18] G. Schrenk and R. Poisel, A discussion of visualization techniques
for the analysis of digital evidence, Proceedings of the Sixth Inter-
national Conference on Availability, Reliability and Security, pp.
758–763, 2011.

252 ADVANCES IN DIGITAL FORENSICS XV

[19] D. Shahaf, C. Guestrin and E. Horvitz, Metro maps of science, Pro-
ceedings of the Eighteenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1122–1130, 2012.

[20] D. Shahaf, C. Guestrin and E. Horvitz, Trains of thought: Gener-
ating information maps, Proceedings of the Twenty-First Interna-
tional Conference on World Wide Web, pp. 899–908, 2012.

[21] S. Siddiqi and A. Sharan, Keyword and keyphrase extraction tech-
niques: A literature review, International Journal of Computer Ap-
plications, vol. 109(2), pp. 18–23, 2015.

[22] J. Stadlinger and A. Dewald, A forensic email analysis tool using
dynamic visualization, Journal of Digital Forensics, Security and
Law, vol. 12(1), article no. 6, 2017.

[23] S. Sudarsky and R. Hjelsvold, Visualizing electronic mail, Proceed-
ings of the Sixth International Conference on Information Visual-
ization, pp. 3–9, 2002.

[24] F. Viegas, S. Golder and J. Donath, Visualizing email content: Por-
traying relationships from conversational histories, Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
pp. 979–988, 2006.

Chapter 14

DETERMINING THE FORENSIC DATA
REQUIREMENTS FOR INVESTIGATING
HYPERVISOR ATTACKS

Changwei Liu, Anoop Singhal, RamaswamyChandramouli andDuminda
Wijesekera

Abstract Hardware/server virtualization is commonly employed in cloud com-
puting to enable ubiquitous access to shared system resources and pro-
vide sophisticated services. The virtualization is typically performed
by a hypervisor, which provides mechanisms that abstract hardware
and system resources from the operating system. However, hypervisors
are complex software systems with many vulnerabilities. This chap-
ter analyzes recently-discovered vulnerabilities associated with the Xen
and KVM open-source hypervisors, and develops their attack profiles
in terms of hypervisor functionality (attack vectors), attack types and
attack sources. Based on the large number of vulnerabilities related to
hypervisor functionality, two sample attacks leveraging key attack vec-
tors are investigated. The investigation clarifies the evidence coverage
for detecting attacks and the missing evidence needed to reconstruct
attacks.

Keywords: Cloud computing, hypervisors, Xen, KVM, vulnerabilities, forensics

1. Introduction

Most cloud services are provided by virtualized environments. Vir-
tualization is a key feature of cloud computing that enables ubiquitous
access to shared pools of system resources and high-level services provi-
sioned with minimal management effort [15, 28]. Although an operating
system directly controls hardware resources, virtualization via a hyper-
visor or virtual machine monitor (VMM) [6] in a cloud environment pro-
vides an abstraction of hardware and system resources. The hypervisor
serves as a software layer between the physical hardware and virtual (or

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

G. Peterson and S. Shenoi (Eds.): Advances in Digital Forensics XV, IFIP AICT 569, pp. 253–272, 2019.

https://doi.org/10.1007/978-3-030-28752-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28752-8_14&domain=pdf

254 ADVANCES IN DIGITAL FORENSICS XV

guest) machines, presenting the guest operating systems with virtual op-
erating platforms and managing their execution. However, hypervisors
are complex software systems with numerous lines of code and many
vulnerabilities [20]. These vulnerabilities can be exploited to gain ac-
cess to and control a hypervisor, and subsequently attack all the virtual
machines that execute in the compromised hypervisor.

Several researchers have characterized and assessed hypervisor vul-
nerabilities, developed tools for detecting vulnerabilities and identified
evidence that can be used for attack forensics [7, 9, 19, 20, 26, 27].
Hypervisor forensics seeks to extract leftover artifacts in order to in-
vestigate and analyze attacks at the hypervisor level. Techniques such
as inspecting physical memory to locate evidence of attacks have been
explored [7], but little, if any, research has analyzed recent hypervisor
vulnerabilities to derive attack profiles and leverage them to discover
forensic evidence that can help reconstruct hypervisor attacks.

The research described in this chapter was motivated by the work of
Perez-Botero et al. [20] that characterized hypervisor vulnerabilities with
the objective of preventing their exploitation. This chapter focuses on
recent (2016 and 2017) vulnerability reports associated with the popular,
open-source Xen and KVM hypervisors, which are listed in the National
Institute of Standards and Technology National Vulnerability Database
(NIST-NVD). The chapter analyzes and classifies the vulnerabilities to
derive attack profiles based on hypervisor functionality, attack type and
source. Additionally, it simulates sample attacks to ascertain their foren-
sic data coverage and explore methods for identifying and obtaining the
evidence needed to reconstruct attacks.

2. Background and Related Work

This section discusses hypervisor architectures with a focus on the
Xen and KVM hypervisors. Also, it discusses related work in the area
of cloud forensics.

2.1 Hypervisors

Hypervisors are software and/or firmware modules that virtualize sys-
tem resources such as CPU, memory and devices. Popek and Gold-
berg [21] have classified hypervisors as Type 1 and Type 2 hypervi-
sors. A Type 1 hypervisor runs directly on the host hardware to control
the hardware and manage guest operating systems. For this reason, a
Type 1 hypervisor is sometimes called a “bare metal” hypervisor. Ex-
ample Type 1 hypervisors are Xen, Microsoft Hyper-V and VMware
ESX/ESXi.

Liu, Singhal, Chandramouli & Wijesekera 255

Device Manager
Control Software

Domain0 VM DomainU--PVM DomainU--HVM

Unmodified
User Applications

Unmodified
User Applications

XenLinux

Network Block Dev

Native Driver

Back-End Driver
Front-End DriverNetwork Block Dev

Front-End Driver

OS Kernel (Modified) OS Kernel (Unmodified)

Xen Hypervisor (VMM)

Scheduler Timers Interrupts Virtual MMU

Hardware (I/O, Physical Memory, CPUs)

Figure 1. Xen hypervisor architecture.

A Type 2 hypervisor is similar to a program that executes as a pro-
cess in an operating system. Example Type 2 hypervisors are VMware
Player, VirtualBox, Parallels Desktop for Mac and QEMU.

Some hypervisors have features of Type 1 and Type 2 hypervisors.
For example, the Linux-kernel-based virtual machine (KVM) is a kernel
module that effectively converts the host operating system to a Type 1
hypervisor, but it is also categorized as a Type 2 hypervisor because a
Linux distribution is a general-purpose operating system that executes
other applications that compete for virtual machine resources [18].

A market report [14] lists the most popular hypervisors as Microsoft
Hyper-V, VMware VSphere/ESX, Citrix XenServer/Xen and KVM. Be-
cause Microsoft Hyper-V and VMware VSphere/ESX are commercial
products, this work focuses on the remaining two hypervisors, Xen and
KVM, which are both open source.

Xen Hypervisor. Figure 1 shows the Xen hypervisor architecture.
The hypervisor manages three kinds of virtual machines. The first is the

256 ADVANCES IN DIGITAL FORENSICS XV

control domain (Dom0) and the other two are guest domains (DomU)
that support two virtualization modes – paravirtualization (PV) and
hardware-assisted virtualization (HVM) [31]. Dom0 is the initial domain
started by the Xen hypervisor upon booting up a privileged domain. It
plays the administrator role and provides services to the DomU virtual
machines.

Paravirtualization in a DomU guest domain is a highly efficient and
lightweight virtualization technology introduced by Xen that does not
require virtualization extensions from the host hardware. Thus, par-
avirtualization enables virtualization on a hardware architecture that
does not support hardware-assisted virtualization; however, it requires
paravirtualization-enabled kernels and paravirtualization drivers in or-
der to power a high performance virtual server.

Hardware-assisted virtualization requires hardware extensions. Xen
typically uses QEMU (Quick Emulator) [22], a generic hardware emula-
tor that simulates personal computer hardware (e.g., CPU, BIOS, IDE,
VGA, network cards and USBs). Because of the use of simulation tech-
nologies, the performance of a virtual machine with hardware-assisted
virtualization is inferior to that of a paravirtualization virtual machine.

Xen 4.4 provides the new PVH virtualization mode with lightweight
hardware-assisted-virtualization-like guests that use virtualization ex-
tensions in the host hardware. Unlike hardware-assisted virtualization
guests that (for example) use QEMU to emulate devices, PVH guests use
paravirtualization drivers for input/output and native operating system
interfaces for virtualized timers, virtualized interrupts and booting. A
PVH guest also requires a PVH-enabled guest operating system [31].

KVM Hypervisor. KVM was introduced in 2006 and it was soon
merged into the Linux kernel (2.6.20) in open-source hypervisor projects.
KVM is a full virtualization solution for Linux that runs on x86 hardware
with virtualization extensions (Intel VT or AMD-V) to enable virtual
machines to execute as normal Linux processes [11].

Figure 2 shows a KVM hypervisor architecture that uses QEMU to
create guest virtual machines that execute as separate user processes.
KVM is considered to be a Type 2 hypervisor because it is installed on
top of the host operating system. However, the KVM kernel module
turns the Linux kernel into a Type 1 bare-metal hypervisor, providing
the functionality of the most complex and powerful Type 1 hypervisors.

Liu, Singhal, Chandramouli & Wijesekera 257

Ordinary Linux
Processes

User VM User VM

QEMU QEMU

Host OS (Linux Kernel)

KVM HypervisorModules

Driver Driver Driver

Hardware

Figure 2. KVM hypervisor architecture.

2.2 Related Work

Hypervisor attacks are defined as exploits of hypervisor vulnerabili-
ties that enable external attackers to gain access to and control hyper-
visors [24]. Perez-Botero et al. [20] have characterized Xen and KVM
vulnerabilities based on hypervisor functionality. However, the charac-
terizations cannot be used to predict attack trends.

Thongthua and Ngamsuriyaroj [27] have assessed the vulnerabilities
of popular hypervisors, including VMware ESXi, Citrix XenServer and
KVM, using the NIST 800-115 security testing framework. Their as-
sessments of vulnerabilities cover weaknesses, severity scores and attack
impacts.

Joshi et al. [9] have researched threats to hypervisors and hypervi-
sor forensic mechanisms. They also discuss the use of virtual machine
introspection at the hypervisor level to detect attacks [5, 19] and mem-
ory forensic techniques to identify hypervisor attack artifacts in a host
memory dump [7].

3. Deriving Hypervisor Attack Profiles

As a prelude to determining the forensic data requirements for de-
tecting hypervisor attacks, the following criteria are employed to derive
attack profiles based on recent hypervisor vulnerabilities:

258 ADVANCES IN DIGITAL FORENSICS XV

Hypervisor Functionality: The specific functionality that leads
to the existence of a vulnerability (attack vector).

Attack Type: The specific impact of exploiting a vulnerability.

Attack Source: The specific component in a hypervisor platform
where an attack is launched.

The Xen and KVM hypervisor attack profiles were derived by first
identifying all the vulnerabilities in the NIST-NVD that were posted
during 2016 and 2017. Each hypervisor functionality (attack vector)
was then associated with the attack type (impact) that resulted from
exploiting each vulnerability and the attack source based on the NIST-
NVD vulnerability descriptions. The total number of vulnerabilities
in each of the three categories (attack vector, attack type and attack
source) thus constitute the recent attack profiles for the two hypervisors.

3.1 NIST-NVD Vulnerabilities

The NIST-NVD is a repository of standards-based vulnerability man-
agement data, which includes databases of security checklist references,
security-related software flaws, misconfigurations, product names and
impact metrics [17]. A search of the NIST-NVD for vulnerabilities
posted in 2016 and 2017 revealed 83 Xen hypervisor vulnerabilities and
20 KVM hypervisor vulnerabilities. These vulnerabilities were associ-
ated with the three classification criteria: (i) hypervisor functionality;
(ii) attack type; and (iii) attack source.

3.2 Hypervisor Functionality

In order to better understand hypervisor vulnerabilities, Perez-Botero
et al. [20] considered eleven traditional hypervisor functionalities and
mapped vulnerabilities to them. The eleven vulnerabilities are: (i) vir-
tual CPUs; (ii) virtual symmetric multiprocessing; (iii) soft memory
management units; (iv) input/output and networking; (v) paravirtual-
ized input/output; (vi) interrupt and timer mechanisms; (vii) hypercalls;
(viii) VMExits; (ix) virtual machine management; (x) remote manage-
ment software; and (xi) hypervisor add-ons. Based on the common
functions provided by functionalities (iv) and (v), the two were merged
as a single functionality.

Virtual CPUs: A virtual CPU (also called a virtual processor)
abstracts a share of a physical CPU assigned to a virtual machine.
The hypervisor allocates a portion of the physical CPU cycles to

Liu, Singhal, Chandramouli & Wijesekera 259

a virtual CPU assigned to a virtual machine. The hypervisor also
schedules virtual CPU tasks to the physical CPUs.

Virtual Symmetric Multiprocessing: Virtual symmetric mul-
tiprocessing enables multiple virtual CPUs belonging to the same
virtual machine to be scheduled on a physical CPU with at least
two logical processors.

Soft Memory Management Units: A memory management
unit (MMU) is the hardware that manages memory by translat-
ing the virtual addresses manipulated by software to physical ad-
dresses. In a virtualized environment, the hypervisor emulates
the memory management unit – called the soft memory manage-
ment unit – of a guest operating system by mapping what the
guest operating system sees as physical memory (called pseudo-
physical/physical addresses in Xen) to the underlying memory of
the machine (called machine addresses in Xen). The physical ad-
dress to machine address mapping table is typically maintained in
the hypervisor and hidden from a guest operating system using
a shadow page table for the guest virtual machine. Each shadow
page table mapping, which translates virtual addresses of programs
in a guest virtual machine to guest (pseudo) physical addresses, is
placed in the guest operating system [10, 30].

The Xen paravirtualized memory management unit model requires
a guest operating system to be directly aware of the mapping be-
tween (pseudo) physical and machine addresses (using a P2M ta-
ble). Additionally, in order to read page table entries that contain
machine addresses and convert them back to (pseudo) physical ad-
dresses, translation from machine to (pseudo) physical addresses
via a reverse M2P table is required by the Xen paravirtualized
memory management unit model [30].

Input/Output and Networking: A hypervisor provides in-
put/output services to guest virtual machines via three common
approaches (all of which are employed by Xen): (i) the hypervisor
emulates a known input/output device in a fully virtualized system
and each guest uses a native unmodified driver to interact with it;
(ii) a paravirtual front-end driver in a paravirtualized system is in-
stalled in a modified guest operating system in DomU, which uses
shared-memory asynchronous buffer-descriptor rings to communi-
cate with the back-end input/output driver in the hypervisor; and
(iii) the host assigns a pass-through device directly to the guest
virtual machine. Scalable self-virtualizing input/output devices

260 ADVANCES IN DIGITAL FORENSICS XV

that allow direct access interface to multiple virtual machines are
also employed to reduce input/output virtualization overhead and
improve virtual machine performance.

Although hypervisors enforce isolation across virtual machines re-
siding in a single physical machine, Xen uses the grant mecha-
nism for inter-domain communications. Shared-memory commu-
nications between unprivileged domains are implemented via grant
tables [10]. Grant tables protect the input/output buffers in guest
domain memory and share the buffers with Dom0, which enable
split device drivers with block device and network interface card
input/output. Each domain has its own grant table that allows the
domain to inform Xen about the permissions that other domains
have on their pages.

KVM typically uses Virtio, a virtualization standard for network
and disk drivers. Virtio is architecturally similar to Xen paravirtu-
alized device drivers that comprise front-end and back-end drivers.

Interrupt and Timer Mechanisms: Hypervisors should be able
to virtualize and manage interrupts and timers [25], interrupt/
timer controllers of guest operating systems and guest operating
system accesses to controllers. The interrupt and timer mecha-
nisms in a hypervisor include a programmable interval timer, ad-
vanced programmable interrupt controller and interrupt request
mechanisms [20].

Hypercalls: Hypercalls are similar to system calls (syscalls) that
provide user-space applications with kernel-level operations. They
are used like syscalls with up to six arguments passed in registers.
A hypercall layer, which is commonly available, enables guest op-
erating systems to make requests to the host operating system.
Domains use hypercalls to request privileged operations from hy-
pervisors such as updating page tables. As a result, an attacker can
use hypercalls to attack a hypervisor from a guest virtual machine.

VMExits: Belay at el. [1] describe VMExits as changing virtual
machines from the non-root mode to the root mode. VMExits
are triggered by certain events in guest virtual machines – exter-
nal interrupts, triple faults, task switches, input/output operation
instructions (e.g., INB and OUTB) and control register accesses.
VMExits are the main source of performance degradation in vir-
tualized systems.

Virtual Machine Management: Hypervisors support basic vir-
tual machine management functionality, including starting, paus-

Liu, Singhal, Chandramouli & Wijesekera 261

ing and stopping virtual machines. They are implemented in Xen’s
Dom0 and KVM’s libvirt driver.

Remote Management Software: Remote management soft-
ware serves as an interface that connects directly to a hypervisor,
providing additional management and monitoring tools. By pro-
viding an intuitive user interface that visualizes system status, re-
mote management software enables an administrator to provision
and manage virtualized environments.

Hypervisor Add-Ons: Hypervisor add-ons use modular designs
to add extended functions. By leveraging interactions between
add-ons and a hypervisor, an attacker can cause a host to crash
(denial-of-service attack) or even compromise the host.

3.3 Deriving Attack Profiles

Based on the descriptions posted in the NIST-NVD, the 83 Xen and
20 KVM vulnerabilities identified during 2016 and 2017 were mapped
to the ten hypervisor functionalities. In order to derive the hypervisor
attack profiles, the vulnerabilities were analyzed and classified according
to functionality, attack type (impact) and attack source.

Table 1 shows the Xen and KVM vulnerabilities classified by function-
ality. The numbers of vulnerabilities and their percentages are listed for
each hypervisor functionality. With the exception of virtual symmet-
ric multiprocessing, all the other functionalities were reported as having
vulnerabilities.

The table reveals that Xen has more vulnerabilities than KVM; one
reason may be Xen’s broader user base. Furthermore, approximately
71% of the vulnerabilities in Xen and 45% of the vulnerabilities in KVM
are concentrated in two functionalities – soft memory management units,
and input/output and networking. A detailed analysis of CVE reports
indicates that these vulnerabilities primarily originate in page tables and
input/output grant table emulation.

Additionally, the vulnerabilities based on input/output and network-
ing functionality were associated with each of the four types of in-
put/output virtualization: fully virtualized devices, paravirtualized de-
vices, direct access devices and self-virtualized devices. The associations
revealed that most of the input/output and networking vulnerabilities
in Xen come from paravirtualized devices and all the input/output and
networking vulnerabilities in KVM come from fully-virtualized devices.
In the case of Xen, this is because, in most Xen deployments, input/out-
put and networking functionality is configured using a paravirtualized

262 ADVANCES IN DIGITAL FORENSICS XV

Table 1. Xen and KVM vulnerabilities classified by functionality.

No. Hypervisor Functionality Xen KVM

1 Virtual CPUs 6 (7%) 4 (20%)

2 Virtual Symmetric Multiprocessing 0 (0%) 0 (0%)

3 Soft Memory Management Units 34 (41%) 5 (25%)

4 Input/Output and Networking 241 (30%) 42 (20%)

5 Interrupt and Timer Mechanisms 7 (8%) 3 (15%)

6 Hypercalls 3 (4%) 1 (5%)

7 VMExits 1 (1%) 2 (10%)

8 Virtual Machine Management 7 (8%) 0 (0%)

9 Remote Management Software 1 (1%) 0 (0%)

10 Hypervisor Add-Ons 0 (0%) 1 (5%)

1Five are fully-virtualized; 19 are paravirtualized; none are direct access or

self-virtualized
2All are fully-virtualized

Table 2. Types of attacks leveraging Xen and KVM vulnerabilities.

Attack Type Xen KVM

Denial-of-Service 481 (44%) 172 (63%)

Privilege Escalation 333 (30%) 34 (11%)

Information Leakage 155 (14%) 5 (19%)

Arbitrary Code Execution 86 (7%) 27 (7%)

Reading/Modifying/Deleting Files 3 (3%) 0 (0%)

Others (e.g., Host Compromise, 3 (3%) 0 (0%)
Canceling Other Administrators’
Operations and Data Corruption)

1Four have other impacts; 2Three have other impacts; 3Sixteen have other impacts
4Two have other impacts; 5Five have other impacts; 6Two have other impacts
7All have other impacts

device. In the case of KVM, the functionality is configured using a fully
virtualized device.

Liu, Singhal, Chandramouli & Wijesekera 263

Table 3. Numbers of attacks from various attack sources.

Attack Source Xen KVM

Cloud Administrators 21 (2%) 0 (0%)

Guest Operating System Administrators 172 (20%) 1 (5%)

Guest Operating System Users 633 (76%) 174 (85%)

Remote Users 1 (1%) 15 (5%)

Host Operating System Users 0 (0%) 1 (5%)

1Management; 2Including HVM and PV administrators
3Including ARM, x86, HVM and PV users
4Including KVM L1, L2 and privileged users
5Authenticated remote guest users

Table 2 shows the types of attacks that leverage vulnerabilities in
Xen and KVM hypervisors. The most common attack type is denial-of-
service (44% for Xen and 63% for KVM), indicating that attacking the
availability of cloud services could be a serious cloud security problem.
The other top attacks are privilege escalation (30% for Xen and 11%
for KVM), information leakage (14% for Xen and 19% for KVM) and
arbitrary code execution (7% for Xen and 7% for KVM). Although these
attacks occur with less frequency than denial-of-service attacks, they
result in more serious damage by enabling attackers to obtain sensitive
user information or compromise hosts or guest virtual machines.

Table 3 shows the numbers of attacks for various attack sources. The
greatest source of attacks is guest operating system users (76% for Xen
and 85% for KVM); other attack sources are cloud administrators, guest
operating system administrators and remote users. This suggests that
cloud providers should monitor guest user activities in order to reduce
the risk of attacks.

4. Sample Attacks and Forensic Implications

Because the Xen hypervisor attack profile lists many vulnerabilities
related to the soft memory management unit functionality and guest
virtual machines as the major attack source, two sample attacks were
executed to explore evidence coverage and methodologies for identifying
evidence in order to reconstruct hypervisor attacks. One attack ex-
ploited the CVE-2017-7228 vulnerability and the other attack exploited
the CVE-2016-6258 vulnerability.

264 ADVANCES IN DIGITAL FORENSICS XV

4.1 Sample Attacks

As discussed earlier, the Xen hypervisor manages three kinds of vir-
tual machines, the control domain (Dom0) and guest domains (DomU)
that support two virtualization modes, paravirtualization and hardware-
assisted virtualization. The paravirtualization mode is popular due to
its better performance [4]. However, because the Xen paravirtualization
model uses complex code to emulate memory management units, vul-
nerabilities such as CVE-2017-7228 and CVE-2016-6258 are introduced.

The CVE-2017-7228 vulnerability was reported in 2017 [8]. This
vulnerability in x86 64-bit Xen (versions 4.8.x, 4.7.x, 4.6.x, 4.5.x and
4.4.x) was caused by inadequate checking of the XENMEM exchange func-
tion, which enables a paravirtualization guest user to access hypervisor
memory outside the memory provisioned to the guest virtual machine.
Therefore, a malicious 64-bit paravirtualization guest user who makes a
hypercall HYPERVISOR memory op function invoke the XENMEM exchange

function may be able to access all the system memory, enabling a virtual
machine escape from DomU to Dom0 (i.e., breaking out of the guest vir-
tual machine and interacting with the hypervisor host operating system)
to cause a hypervisor host crash or information leakage.

The CVE-2016-6258 vulnerability was reported in 2016 [2]. The par-
avirtualization module uses a page table tomap pseudo-physical/physical
addresses seen by a guest virtual machine to the underlying memory of
the machine. Exploiting a vulnerability in the Xen paravirtualization
page tables that enables unauthorized modifications to page table en-
tries, a malicious paravirtualization guest can access the page directory
with an updated write privilege and execute a virtual machine escape to
break out of DomU and control Dom0.

The two attacks were executed on a paravirtualization module con-
figured in Qubes 3.1 and Debian 8 with Xen 4.6. Figure 3 illustrates
the attacks. The attacker impersonates a paravirtualization guest root
user (the bottom terminal is the attacker’s virtual machine (attacker)).
The attacker executes the command qvm-run victim firefox to run
the Firefox web browser in the paravirtualization guest user virtual ma-
chine (victim). This opens a webpage in the victim’s virtual machine
(shown in the upper window). Note that the qvm-run command in
Qubes 3.1 can only be executed by Dom0 to run an application in a
guest virtual machine. As shown in Figure 3, both the attacks enable a
paravirtualization guest user to gain control of Dom0.

Liu, Singhal, Chandramouli & Wijesekera 265

Figure 3. CVE-2017-7228 and CVE-2016-6258 attacks.

4.2 Identifying Evidence Coverage

The two attacks from guest virtual machines exploited hypercall and
soft memory management unit vulnerabilities in Xen. In addition to
using Xen’s device activity logs, the runtime syscalls of the impacted
processes were logged. Subsequent analysis revealed that the syscalls
obtained from the attacker’s virtual machine constitute useful evidence.

Figure 4 shows the syscalls from the attacking process in the attacker’s
virtual machine (some of the syscalls are not presented due to space
limitations). Specifically, the figure shows that:

The attacker executed an attack program with the arguments qvm-
run victim firefox targeting the victim’s guest virtual machine
(Line 1).

The attack program and the required Linux libraries were loaded
in memory for program execution (Lines 2–4).

266 ADVANCES IN DIGITAL FORENSICS XV

1. execve("./attack", ["./attack", "qvm-run victim firefox"], [/* 30

vars */]) = 0

2. brk(NULL) = 0x8cd000

3. mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x7fa3a3022000

4. ...

5. mprotect(0x7fa3a2df9000, 16384, PROT_READ) = 0

6. mprotect(0x600000, 4096, PROT_READ) = 0

7. mprotect(0x7fa3a3023000, 4096, PROT_READ) = 0

8. ...

9. open("test.ko", O_RDONLY) = 3

10. finit_module(3, "user_shellcmd_addr=1407334317317"..., 0) = 0

11. fstat(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 0), ...})

= 0

12. mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS,

-1, 0) = 0x7fa3a3021000

13. mmap(0x600000000000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_

FIXED|MAP_ANONYMOUS|MAP_LOCKED, -1, 0) = 0x600000000000

14. delete_module("test", O_NONBLOCK) = 0

15. exit_group(0)= ?

execve(): Executes the program pointed to by the first argument

brk(): Changes the location of the program break, which defines

the end of the process data segment

mmap(): Creates a new mapping in the virtual address space of the

calling process

mprotect(): Changes the access protections of the calling process

memory pages

open(): Opens the file test.ko

finit_module(): Loads the kernel module test.ko

fstat(): Gets the file status; the first argument is the file

descriptor

delete_module(): Unloads the injected module

exit_group(): Exits all the process threads

Figure 4. Syscalls intercepted from the attacking program.

The memory pages of the attack program were protected from
being accessed by other processes (Lines 5–8).

The attack program injected the test.ko loadable Linux module
into kernel space to exploit the vulnerability, and subsequently
deleted the module (Lines 9–15).

Despite the noise in the syscalls (a common occurrence), other syscalls
– such as those in Lines 1, 9 and 15 – reveal that the attack program
injected a loadable kernel module into kernel space and proceeded to ex-

Liu, Singhal, Chandramouli & Wijesekera 267

ploit the vulnerability to control Dom0. This opened the Firefox browser
in the victim’s guest virtual machine.

Clearly, the device activity logs and runtime syscalls constitute valu-
able evidence in a forensic investigation. Liu et al. [13] have shown that
such evidence helps reconstruct attack paths in attack scenarios. Specif-
ically, during the reconstruction process, an attack path with missing
attack steps drives the search for and collection of additional supporting
evidence.

Analysis of the syscalls captured during the two sample attacks re-
veal that, while the syscalls obtained from the attacker’s virtual machine
are useful for forensic analysis, they lack attack details. In particular,
the syscalls do not provide details of how features of the loadable kernel
module used Xen’s memory management to launch the attacks. Another
deficiency is that the syscalls were collected from the attacker’s guest vir-
tual machine, which could have been easily compromised or manipulated
by the attacker. Therefore, it is important to implement the monitoring
of virtual machines from the hypervisor to obtain supporting evidence
that would be admissible in legal proceedings.

4.3 Using Virtual Machine Introspection

Virtual machine introspection can be used to inspect the state of
a virtual machine from a privileged virtual machine or the hypervisor
to analyze the software running on the virtual machine [5]. The state
information includes CPU state (e.g., registers), the entire memory and
all input/output device states (e.g., contents of storage devices and the
registers of input/output controllers).

The following virtual-machine-introspection-based forensic applica-
tions are promising:

A virtual-machine-introspection-based application takes a snap-
shot of the entire memory and the input/output state of a victim’s
virtual machine. The captured state of the running victim virtual
machine can be compared against a suspended virtual machine in
a known good state or against the original virtual machine image
from which the victim virtual machine was instantiated [5].

A virtual-machine-introspection-based application analyzes execu-
tion paths of the compromised virtual machine by tracing the se-
quence of virtual machine activities and the corresponding com-
plete virtual machine state (e.g., memory map, input/output ac-
cess). A detailed attack graph is then constructed with virtual
machine states as nodes and virtual machine activities as edges,
helping trace the path leading to the compromised state [16].

268 ADVANCES IN DIGITAL FORENSICS XV

1. root@debian:/home/guest/src/libvmi/libvmi# ./examples/vmi-process-

list pv-attacker

2. Process listing for VM pv-attcker (id=2)

3. [0] swapper/0 (struct addr:ffffffff81e13500)

4. [1] systemd (struct addr:ffff88--7c460000)

5. ...

6. [674] (sd-pam) (struct addr:ffff880076104600)

7. [677] bash (struct addr:ffff880003c8aa00)

8. [703] sudo (struct addr:ffff880004341c00)

9. [704] attack (struct addr:ffff880004343800)

10. root@debian:/home/guest/srv/libvmi/libvmi# ./examples/vmi-module-

list pv-attacker

11. test

12. x86_pkg_temp_thermal

14. Coretemp

15. crct10dif_pclmul

16. ...

Figure 5. Running processes and injected modules in the attacker’s virtual machine.

Although virtual machine introspection addresses deficiencies in foren-
sic analyses based on system calls from a compromised virtual machine,
virtual machine introspection applications must reconstruct the opera-
tional semantics of the guest operating system based on low-level sources
such as physical memory and CPU registers [3]. Because LibVMI [12]
provides virtual machine introspection functionality on Xen and KVM,
and bridges the semantic gap by reconstructing high-level state informa-
tion from low-level physical memory data, experiments were performed
using LibVMI as an introspection tool to capture evidence related to
the two sample attacks. This was accomplished by installing Xen 4.6
in Debian 8 with the privileged Dom0 and configuring the two paravir-
tualization guests in DomU with Kernel 3.10.100 and Ubuntu 16.04.5,
respectively. LibVMI (release 0.12) [12] installed on Dom0 was employed
to capture all the running processes and the Linux modules injected in
the attacker’s guest virtual machine.

Figure 5 shows the running processes and injected modules in the
attacker’s virtual machine during the CVE-2017-7228 attack. Lines 1
and 10 show that two programs, vmi-process-list and vmi-module-

list, were executed to capture the running processes and modules in
the attacker’s virtual machine (pv-attacker). Lines 3–9 are the cap-
tured processes (each line lists the process number, process name and
kernel task list address where the process name was retrieved). Lines 11
to 16 provide information about the captured modules; each line shows

Liu, Singhal, Chandramouli & Wijesekera 269

the module name. Comparisons of the captured processes and modules
during the attack against those collected at an earlier time help identify
the attack process (attack) in Line 9 and the injected attack module
(test) in Line 11. The module file extension .ko is omitted by the
program.

While an introspection tool such as LibVMI is effective at detecting
hypervisor attacks, it has some limitations. First, in order to access
memory consistently, the tool pauses and resumes the guest virtual ma-
chine – the experiment revealed that LibVMI paused the attacker’s vir-
tual machine for 0.035756 seconds and 0.036173 seconds when capturing
the running processes and injected modules, respectively. Second, be-
cause virtual machine introspection is only effective during an attack,
an attacker could easily utilize an in-virtual-machine timing mechanism
(e.g., kprobes, a tracing framework built into the kernel) to evade pas-
sive virtual machine introspection [29]. Third, storing the captured snap-
shots of guest VMs for forensic analyses often requires large amounts of
storage space.

5. Conclusions

The analysis and classification of recently-reported Xen and KVM
vulnerabilities have contributed to the creation of hypervisor attack pro-
files. The profiles reveal that most attacks on the two hypervisors are
due to vulnerabilities arising from the soft memory management unit and
the input/output and networking functionalities; the two most common
types of hypervisor attacks are denial-of-service and privilege escalation;
and most attacks originate from guest virtual machines.

Experiments involving two sample attacks on the Xen and KVM hy-
pervisors provide insights into evidence coverage and the evidence needed
to reconstruct attacks during forensic investigations. The most valu-
able evidence resides in runtime system memory, and obtaining this ev-
idence with guaranteed integrity requires virtual machine introspection
techniques that examine the states of guest virtual machines from the
hypervisor level while ensuring strong isolation from the guest virtual
machines.

Future research will focus on constructing detailed attack paths from
the snapshots of attackers’ virtual machines, and addressing the timing
and memory issues that come into play when using virtual machine
introspection.

This chapter is not subject to copyright in the United States. Com-
mercial products are identified in order to adequately specify certain pro-
cedures. In no case does such an identification imply a recommendation

270 ADVANCES IN DIGITAL FORENSICS XV

or endorsement by the National Institute of Standards and Technology,
nor does it imply that the identified products are necessarily the best
available for the purpose.

References

[1] A. Belay, A. Bittau, A. Mashtizadeh, D. Terei, D. Mazieres and
C. Kozyrakis, Dune: Safe user-level access to privileged CPU fea-
tures, Proceedings of the Tenth USENIX Symposium on Operating
Systems Design and Implementation, pp. 335–348, 2012.

[2] J. Boutoille and G. Campana, Xen Exploitation Part 3: XSA-
182, Qubes escape, Quarkslab’s Blog (blog.quarkslab.com/
xen-exploitation-part-3-xsa-182-qubes-escape.html), Au-
gust 4, 2016.

[3] B. Dolan-Gavitt, B. Payne and W. Lee, Leveraging Forensic Tools
for Virtual Machine Introspection, School of Computer Science,
Georgia Institute of Technology, Atlanta, Georgia, 2011.

[4] H. Fayyad-Kazan, L. Perneel and M. Timmerman, Full and para-
virtualization with Xen: A performance comparison, Journal of
Emerging Trends in Computing and Information Sciences, vol. 4(9),
pp. 719–727, 2013.

[5] T. Garfinkel and M. Rosenblum, A virtual machine introspection
based architecture for intrusion detection, Proceedings of the Net-
work and Distributed System Security Symposium, pp. 191–206,
2003.

[6] R. Goldberg, Survey of virtual machine research, IEEE Computer,
vol. 7(9), pp. 34–45, 1974.

[7] M. Graziano, A. Lanzi and D. Balzarotti, Hypervisor memory foren-
sics, Proceedings of the Sixteenth International Symposium on Re-
search in Attacks, Intrusions and Defenses, pp. 21–40, 2013.

[8] J. Horn, Pandavirtualization: Exploiting the Xen Hypervisor,
Project Zero, Google, Mountain View, California (googleproject
zero.blogspot.com/2017/04/pandavirtualization-exploitin

g-xen.html), April 7, 2017.

[9] L. Joshi, M. Kumar and R. Bharti, Understanding threats to hy-
pervisor, its forensics mechanism and its research challenges, In-
ternational Journal of Computer Applications, vol. 119(1), pp. 1–5,
2015.

Liu, Singhal, Chandramouli & Wijesekera 271

[10] J. Kloster, J. Kristensen and A. Mejlholm, Efficient Memory Shar-
ing in the Xen Virtual Machine Monitor, DAT5 Semester Thesis
Report, Department of Computer Science, Aalborg University, Aal-
borg, Denmark, 2006.

[11] KVM Contributors, Kernel Virtual Machine, KVM (www.
linux-kvm.org/page/Main_Page), 2019.

[12] LibVMI Community, LibVMI: LibVMI Virtual Machine Introspec-
tion, LibVMI (libvmi.com), 2019.

[13] C. Liu, A. Singhal and D. Wijesekera, A layered graphical model
for cloud forensic mission attack impact analysis, in Advances in
Digital Forensics XIV, G. Peterson and S. Shenoi (Eds.), Springer,
Cham, Switzerland, pp. 263–289, 2018.

[14] S. Lowe, 2015 State of Hyperconverged Infrastructure Market Re-
port, ActualTech Media, Bluffton, South Carolina, 2015.

[15] P. Mell and T. Grance, Sidebar: The NIST definition of cloud com-
puting, Communications of the ACM, vol. 53(6), p. 50, 2010.

[16] A. Moser, C. Kruegel and E. Kirda, Exploring multiple execution
paths for malware analysis, Proceedings of the IEEE Symposium on
Security and Privacy, pp. 231–245, 2007.

[17] National Institute of Standards and Technology, NIST National
Vulnerability Database, Gaithersburg, Maryland (nvd.nist.gov),
2019.

[18] B. Pariseau, KVM reignites Type 1 vs. Type 2 hypervisor debate,
TechTarget, Newton, Massachusetts (searchservervirtualizati
on.techtarget.com/news/2240034817/KVM-reignites-Type-1-

vs-Type-2-hypervisor-debate), April 15, 2011.

[19] B. Payne, Simplifying Virtual Machine Introspection Using Lib-
VMI, Sandia Report SAND2012-7818, Sandia National Laborato-
ries, Albuquerque, New Mexico, 2012.

[20] D. Perez-Botero, J. Szefer and R. Lee, Characterizing hypervisor
vulnerabilities in cloud computing servers, Proceedings of the In-
ternational Workshop on Security in Cloud Computing, pp. 3–10,
2013.

[21] G. Popek and R. Goldberg, Formal requirements for virtualizable
third generation architectures, Communications of the ACM, vol.
17(7), pp. 412–421, 1974.

272 ADVANCES IN DIGITAL FORENSICS XV

[22] QEMU, QEMU – The FAST! Processor Emulator (www.qemu.org),
2019.

[23] J. Satran, L. Shalev, M. Ben-Yehuda and Z. Machulsky, Scalable
I/O – A well-architected way to do scalable, secure and virtualized
I/O, Proceedings of the Workshop on I/O Virtualization, 2008.

[24] J. Shi, Y. Yang and C. Tang, Hardware assisted hypervisor intro-
spection, SpringerPlus, vol. 5(647), 2016.

[25] Y. Song, H. Wang and T. Soyata, Hardware and software aspects
of VM-based mobile-cloud offloading, in Enabling Real-Time Mobile
Cloud Computing through Emerging Technologies, T. Soyata (Ed.),
IGI Global, Hershey, Pennsylvania, pp. 247–271, 2015.

[26] J. Szefer, E. Keller, R. Lee and J. Rexford, Eliminating the hy-
pervisor attack surface for a more secure cloud, Proceedings of the
Eighteenth ACM Conference on Computer and Communications Se-
curity, pp. 401–412, 2011.

[27] A. Thongthua and S. Ngamsuriyaroj, Assessment of hypervisor vul-
nerabilities, Proceedings of the International Conference on Cloud
Computing Research and Innovations, pp. 71–77, 2016.

[28] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Ander-
son, S. Bennett, A. Kagi, F. Leung and L. Smith, Intel virtualization
technology, IEEE Computer, vol. 38(5), pp. 48–56, 2005.

[29] G. Wang, Z. Estrada, C. Pham, Z. Kalbarczyk and R. Iyer, Hyper-
visor introspection: A technique for evading passive virtual machine
monitoring, Proceedings of the Ninth USENIX Workshop on Offen-
sive Technologies, 2015.

[30] XenProject, x86ParavirtualizedMemory Management (wiki.xen.
org/wiki/X86_Paravirtualised_Memory_Management), 2019.

[31] XenProject, XenProject Software Overview (wiki.xen.org/wiki/
Xen_Project_Software_Overview), 2019.

	Contents
	Contributing Authors
	Preface
	I FORENSIC MODELS
	1 A HOLISTIC FORENSIC MODEL FOR THE INTERNET OF THINGS
	1. Introduction
	2. Related Work
	3. Proposed Holistic Forensic Model
	3.1 Forensic Readiness (Proactive) Phase
	3.2 Forensic Initialization (Incident) Phase
	3.3 Forensic Investigation (Reactive) Phase

	4. Forensic Technologies
	4.1 Fog/Edge Computing
	4.2 Blockchains

	5. Research Challenges
	6. Conclusions
	References

	2 IMPLEMENTING THE HARMONIZED MODEL FOR DIGITAL EVIDENCE ADMISSIBILITY ASSESSMENT
	1. Introduction
	2. Background and Related Work
	3. Validation Survey Methodology and Findings
	4. Proposed Algorithm
	5. Evidential Weight Determination
	6. Results and Discussion
	7. Conclusions
	References

	II MOBILE AND EMBEDDEDDEVICE FORENSICS
	3 CLASSIFYING THE AUTHENTICITY OF EVALUATED SMARTPHONE DATA
	1. Introduction
	2. Background
	2.1 Authentic Smartphone Data
	2.2 Requirements for Authentic Data
	2.3 Smartphone Data Evaluation Model

	3. Classification Model
	3.1 Categorization of the Requirements
	3.2 Authenticity Score
	3.3 Authenticity Grading Scale
	3.4 Completeness
	3.5 Authenticity Classification

	4. Authenticity Classification Tool
	4.1 Tool Description
	4.2 Experimental Results

	5. Conclusions
	References

	4 RETROFITTING MOBILE DEVICES FOR CAPTURING MEMORY-RESIDENT
	1. Introduction
	2. Malware Categorization
	2.1 Stagefright
	2.2 Live Memory Analysis

	3. Automated Memory Acquisition
	3.1 Design Requirements
	3.2 Implementation and Testing
	3.3 Android Modification Results

	4. Hardware Enhancements
	4.1 Design Process and Requirements
	4.2 Implementation Details
	4.3 Experimental Results

	5. Conclusions
	References

	5 A TARGETED DATA EXTRACTION SYSTEM FOR MOBILE DEVICES
	1. Introduction
	2. Related Work
	3. System Overview
	4. Targeted Data Extraction
	4.1 On-Device Metadata-Based Filtering
	4.2 On-Device Content-Based Filtering
	4.3 Off-Device Backup-Based Filtering
	4.4 TDES Communications
	4.5 User Interface
	4.6 Reporting and Forensic Integrity

	5. Experiments and Results
	6. Conclusions
	Acknowledgements
	References

	6 EXPLOITING VENDOR-DEFINED MESSAGES IN THE USB POWER DELIVERY PROTOCOL
	1. Introduction
	2. Related Work
	3. USB Power Delivery Protocol
	4. Methodology
	5. Experimental Results
	6. Conclusions
	Acknowledgement
	References

	7 DETECTING ANOMALIES IN PROGRAMMABLE LOGIC CONTROLLERS USING UNSUPERVISED MACHINE LEARNING
	1. Introduction
	2. Related Work
	3. Anomaly Detection Case Study
	3.1 Experimental Setup
	3.2 Anomaly Detection Methodology

	4. Discussion
	5. Conclusions
	References

	III FILESYSTEM FORENSICS
	8 CREATING A MAP OF USER DATA IN NTFS TO IMPROVE FILE CARVING
	1. Introduction
	2. Related Work
	2.1 File Fragment Carving
	2.2 Hash-Based Carving
	2.3 Data Persistence
	2.4 Data Reduction
	2.5 Data Mapping

	3. Proposed Method
	4. Experimental Setup
	4.1 Data Collection
	4.2 Implementation
	4.3 Evaluation

	5. Experimental Results
	6. Discussion
	7. Conclusions
	Acknowledgement
	References

	9 ANALYZING WINDOWS SUBSYSTEM FOR LINUX METADATA TO DETECT TIMESTAMP FORGERY
	1. Introduction
	2. Filesystem Timestamps
	2.1 NTFS Timestamps and Time Resolutions
	2.2 Ext4 Timestamps and Time Resolutions

	3. Experiments and Results
	3.1 Stand-Alone NTFS Filesystems
	3.2 Stand-Alone Ext4 Filesystems
	3.3 NTFS-Ext4 File Transfers
	3.4 Timestomping Tool Capabilities

	4. Discussion
	5. Conclusions
	References

	IV IMAGE FORENSICS
	10 QUICK RESPONSE ENCODING OF HUMAN FACIAL IMAGES FOR IDENTITY FRAUD DETECTION
	1. Introduction
	2. Related Work
	3. Proposed Method
	3.1 Document Generation
	3.2 Document Authentication

	4. Experiments and Results
	4.1 Performance Evaluation
	4.2 Image-to-Image Verification
	4.3 Real-Time Person Verification

	5. Conclusions
	References

	11 USING NEURAL NETWORKS FOR FAKE COLORIZED IMAGE DETECTION
	1. Introduction
	2. Background
	3. Detection Methodology
	3.1 Statistical Analysis and Testing
	3.2 Feature Extraction
	3.3 Neural Network Construction

	4. Experiments and Results
	4.1 Datasets
	4.2 Measurements
	4.3 Performance Evaluation

	5. Conclusions
	References

	V FORENSIC TECHNIQUES
	12 DIGITAL FORENSIC ATOMIC FORCE MICROSCOPY OF SEMICONDUCTOR MEMORY ARRAYS
	1. Introduction
	2. Background
	2.1 Probe Microscopy
	2.2 Security and Forensics

	3. Atomic Force Microscopy
	4. Memory Chip Layout and Structure
	5. Prior Art
	6. Vintage EPROM Chip Experiments
	7. Conclusions
	References

	13 TIMELINE VISUALIZATION OF KEYWORDS
	1. Introduction
	2. Related Work
	3. Proposed Technique
	4. Topic Extraction and Preprocessing
	5. Visualization
	5.1 Finding and Ranking
	5.2 Clustering
	5.3 Rendering

	6. Results
	7. Conclusions
	Acknowledgement
	References

	14 DETERMINING THE FORENSIC DATA REQUIREMENTS FOR INVESTIGATING HYPERVISOR ATTACKS
	1. Introduction
	2. Background and Related Work
	2.1 Hypervisors
	2.2 Related Work

	3. Deriving Hypervisor Attack Profiles
	3.1 NIST-NVD Vulnerabilities
	3.2 Hypervisor Functionality
	3.3 Deriving Attack Profiles

	4. Sample Attacks and Forensic Implications
	4.1 Sample Attacks
	4.2 Identifying Evidence Coverage
	4.3 Using Virtual Machine Introspection

	5. Conclusions
	References

