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Abstract. Entity resolution identifies records that refer to the same
real-world entity. For its classification step, supervised learning can be
adopted, but this faces limitations in the availability of labeled training
data. Under this situation, active learning has been proposed to gather
labels while reducing the human labeling effort, by selecting the most
informative data as candidates for labeling. Committee-based active
learning is one of the most commonly used approaches, which chooses
data with the most disagreement of voting results of the committee, con-
sidering this as the most informative data. However, the current state-
of-the-art committee-based active learning approaches for entity resolu-
tion have two main drawbacks: First, the selected initial training data
is usually not balanced and informative enough. Second, the committee
is formed with homogeneous classifiers by comprising their accuracy to
achieve diversity of the committee, i.e., the classifiers are not trained with
all available training data or the best parameter setting. In this paper, we
propose our committee-based active learning approach HeALER, which
overcomes both drawbacks by using more effective initial training data
selection approaches and a more effective heterogenous committee. We
implemented HeALER and compared it with passive learning and other
state-of-the-art approaches. The experiment results prove that our app-
roach outperforms other state-of-the-art committee-based active learning
approaches.
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1 Introduction

Entity resolution (ER) is the task of identifying digital records that refer to
the same real-world entity [6]. The classification step in an ER process can
be considered as a binary classification problem [9]. Supervised learning can be
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adopted to solve this problem. However, in order to reach a satisfactory accuracy,
a high amount of training data has to be provided, which is usually not available,
and has to be labeled by domain experts. The training dataset labeled by domain
experts for ER tasks is even more difficult to get than a normal classification
problem, since for each labeling, experts have to work on both records of pairs
and all their attribute pairs to make the final decision. Therefore, reducing the
number of required training data is of great importance for ER.

As a means to reduce human effort, active learning (AL), which is a specific
branch of machine learning (ML), is proposed to deal with this problem. Com-
pared to a normal one-off ML process, an AL process is interactive and iterative.
It reduces the number of required training data to achieve a desired accuracy by
querying experts to label only the most informative data for each iteration and
adding these into the training data (those pairs that are intrinsically difficult
to classify based on available features are informative data). Then classifiers are
retrained on updated training data and after each iteration, the stopping criteria
are checked to see whether more iterations are required. So far, there have been
different AL approaches proposed, which differ on the strategies to choose the
most informative data. Query by committee (QBC) is an effective approach that
has been successfully applied to many applications [16]. It gets the most informa-
tive data by selecting those data that result in the most disagreement in the votes
of a committee of multiple classifiers [25]. However, applying QBC approaches
for AL-based entity resolution (AL-ER) problems faces two challenges:

Diversified Committee: The key challenge to make QBC work in common is
to generate a diversified committee, which can insightful voting disagreements so
that the informativeness of data can be represented and distinguished [16] [14]. In
order to achieve the diversity, for the vast majority of proposed AL approaches,
they consider how to get multiple models with only one single type of classifi-
cation algorithm. So far, several methods have been proposed for the diversity
purpose, such as query by bagging, query by boosting [15]. However, for all those
ensemble-based approaches, the accuracy of each model is compromised to get
this diversity. For instance, in the bagging approach, the initial training dataset
is divided into several smaller subsets, then different models are built based on
different subsets [15]. Those trained models cannot be expected to achieve such
accuracy as the model trained on the whole training dataset. Besides, nowadays,
data is also quite variable in their types and there is no universally best model
for all types of data. If a system completely relies on a single type of model,
accuracy could not be acceptable for the worst cases.

Imbalanced ER Classification: The second challenge specialized for an AL-
ER solution is the generation of the initial training dataset. The binary classifi-
cation task for ER is a special task because of the imbalance of its two groups.
In our real world, there are much fewer match pairs than non-match pairs, e.g.,
for the well-known Scholar-DBLP dataset, the imbalance ratio is 1 match but
3273 non-matches [28]. If the initial training dataset is randomly selected from
all candidate pairs, the possibility to contain match pairs would be quite low,
which may lead to a very low starting accuracy of trained models or even fail
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in training a model. Facing imbalanced data, oversampling and undersampling
are commonly-used. However, except for their intrinsic shortcomings (overfitting
for oversampling and discarding potentially useful data for undersampling [12]),
they also contradict the goal of AL: saving labeling effort as much as possible.
Facing both challenges, we propose in this paper a novel Heterogeneous Active
Learning Entity Resolution (HeALER) solution. We specifically detail our con-
tributions as follow:

– We design a specialized technique to generate the initial training dataset,
which is suitable for the inherent class imbalance in ER;

– We propose to construct the AL committee with different types of classi-
fication algorithms, through which we can achieve diversity, accuracy and
robustness requirements of a committee;

– We prototype our solution and evaluate it with two well-known ER benchmark-
ing datasets, and comparing with passive ML and two state-of-the-art AL-ER
approaches (ATLAS [27] and ALIAS [24]). The evaluation results show that
HeALER is faster to converge and can reach a higher final F-measure, which
also indicates that with fewer labels a satisfactory F-measure can be achieved.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
our HeALER approach. Subsequently, we evaluate our approach and discuss the
experiment results in Sect. 3. Before we conclude and list future work in Sect. 5,
we also compare our method to other related work in Sect. 4.

2 Heterogeneous Committee-Based Active Learning
for Entity Resolution

In this section, we introduce our designed QBC AL method for ER, which is
characterized by its initial training data selection approach and its heterogeneous
committee. We start with a global picture of our approach in Sect. 2.1, then we
represent our initial training data selection method, heterogeneous committee in
the following sections.

2.1 The Global Workflow

Figure 1 represents the global workflow of our method HeALER. It is separated
into two parts, the left green area describing the preparation steps, and to the
side the light red area corresponds to the AL stage.

Preparation for Active Learning. As we can see from the left green area
of Fig. 1, several preparation steps are required to start the ER process. At
first, input data is preprocessed if necessary, which may include data cleaning,
formatting, standardization. Afterwards, blocking is performed to omit unneces-
sary comparisons, which are obvious non-matches based on predefined blocking
keys [5]. Then candidate pairs are generated based on the blocking result. Sub-
sequently, for each attribute pair, one or more similarity functions are chosen
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Fig. 1. The global workflow of HeALER

to best calculate similarities between each attribute pair in order to get similar-
ity scores as features for the following learning-based classification step [4]. For
the above-introduced steps, proper techniques should be employed based on ER
task requirements, our contributions are reflected on the AL part, which will be
briefly introduced next.

Iterative Active Learning Process. The first step of HeALER is to select
pairs from the candidate pairs to be labeled by domain experts for an initial
training dataset. As mentioned in Sect. 1, the classification step of ER is an
imbalanced binary classification problem, i.e., there are much fewer match pairs
than non-match pairs [9]. In order to reach a relatively high starting point with
the initial training dataset, the training data is required to be balanced and
informative. Balanced means the initial training dataset should contain sufficient
percentages of match and non-match pairs, which is hard to achieve when one
randomly picks pairs from the entire input data, since too high percentage of
non-matches would be selected. Informative means the initial training data could
involve useful information, which can benefit classifiers. The details how we
achieve both goals will be introduced in Sect. 2.2.

Based on the initial training dataset, different classifiers are trained on them
and then all classifiers together form the required committee. Notably, our clas-
sifiers are trained by different classification algorithms, which means our com-
mittee is heterogeneous. Compared to the majority of state-of-the-art QBC-AL
approaches, our heterogeneous committee has the following advantages: First,
the fundamental requirement - diversity of the committee - is achieved in a
natural way without any other efforts. Second, each member of the committee
is trained with the best or full ability without any compromise, which is more
promising to provide a more accurate vote. Last, the committee analyzes training
data and provides the result from multiple perspectives, no matter which kind
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of data the committee is facing, it can provide relatively stable and acceptable
results. The methods to form our committee, including how to define the number
of required classifiers and how to select classification algorithms as committee
members, will be explained in Sect. 2.3.

After the committee is formed, they are employed to vote each pair from the
unlabeled pool into match or non-match. The calculation of the disagreement of
voting results for pairs will be firstly represented in Sect. 2.4. Then this process
is iterated until the stopping criteria are reached.

2.2 Initial Training Dataset Generation

As explained in the last section, a good initial training dataset should be bal-
anced and informative. In order to achieve both criteria, we analyzed a learning-
based ER process. The resources that we have for the classification step are the
candidate pairs and already calculated similarity scores for each attribute pair
as features. Figure 2 is a histogram formed for the benchmarking bibliography
dataset ACM-DBLP [13], which describes how the percentages of matching and
non-matching pairs varies along with different similarity score levels. There are
four attributes in this dataset, in total there are 16 similarity scores calculated as
features (five similarity scores for the first three attributes: title, author, venue
with different string similarity calculation functions; and one similarity score
calculated for the attribute: publication year), each separate similarity score is
normalized between zero and one, then the total similarity scores of all pairs
should be between zero and sixteen by summing up all similarity scores. Based
on this, we divided all candidate pairs into 15 groups and each group is an inter-
val between n and n+1 (n is from 0 to 15). As we can see from it, globally
the whole pairs are located in three zones. For areas with the lowest similar-
ity scores the vast majority of pairs are non-matching pairs (the non-matching
zone). Then the percentage of matching pairs increases in relatively middle lev-
els (the mixed zone), and for the last levels with highest similarity scores, the
vast majority of pairs become matching pairs (the matching zone). Dealing with
variable datasets, the concrete ranges of the three zones may vary, however,
globally speaking, those three zones and their trends should be valid for almost
all datasets.

From the perspective of balance, the difficulty for the imbalanced classifica-
tion step of ER is to find a sufficient number of matching pairs, while non-match
pairs are quite easy to get, because there are much more non-matching pairs
than matching pairs in our real world. The percentages shown in the figure can
indicate the difficulty to get matching and non-matching pairs. In order to get
sufficient matching pairs, the matching zone has to be focused. In order to get
sufficient non-matching pairs, both the non-matching zone and the mixed zone
can be the candidates.

From the other perspective of being informative, those pairs that are intrin-
sically difficult to classify based on available features, can be considered as infor-
mative data, since the classifier would be significantly improved if informative
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pairs are labeled and added to help the classifier training. Hence, those error-
prone pairs should be true match pairs with relatively low similarity scores and
true non-match pairs with relatively high similarity scores. True match pairs
with relatively low similarity scores should be located in the mixed zone, but
it is not possible to get them, since the matching pairs account for very small
percentages in the mixed zone. Therefore, for achieving both balance and infor-
mativeness, we have to pick matching pairs from the matching zone. On the
other hand, for non-match pairs, true non-match pairs with relatively high sim-
ilarity scores locate in the mixed zone, by combining the conclusion from above
(the non-matching zone and the mixed zone for getting non-matching pairs from
the perspective of balance), the mixed zone is the aiming zone for high quality
non-matching pairs.

Based on the above considerations, we conclude our method to generate the
initial training dataset for learning-based ER in the following way:

1. First, there can be many similarity scores calculated and for different
attributes, values of similarity scores may vary much. Hence, it is difficult
to look into each separate similarity score and judge the possibility based on
them separately. Therefore, we calculate a total score of each pair by summing
up all similarity scores of attributes.

2. Next, we sort all candidate pairs based on their total scores in descending
order.

3. Last, we divide all sorted pairs into k groups, then we can get the initial
training dataset by randomly picking n/2 number of pairs from the top k1
groups (the matching zone) for getting sufficient matching pairs and n/2
number of pairs from the next k2 groups (the mixed zone) for getting sufficient
and informative non-matching pairs (n is the preset number of initial training
data). There is no accurate method to determine which k, k1, k2 are the best.
The following hypotheses can be used. If the ER problem is between two data
sources and the linkage is one-to-one linkage, the highest number of matches
is the number of records in the smaller dataset. This number can be used as
the size of the matching and mixed zones. If the linkage is one to many, even
many to many linkages, an information that can be used is the approximate
percentage of matching pairs, then this can be the basis to locate the matching
zone and the same percentage of pairs can counted for the mixed zone. If even
the percentage of matching pairs is unknown, as a rule of thumb, 10 groups
should be a good number to averagely divide all pairs with a proper blocking
step, then the matching zone is the top group with highest similarity scores
and the mixed zone corresponds to the second group for getting non-match
pairs.

With the above-introduced strategy the interesting areas analyzed above are
established. With the first top groups, we are able to get sufficient matching
pairs, and with the next groups, sufficient and informative non-matching pairs
can be obtained.
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2.3 Heterogeneous Committee

As introduced in Sect. 1, our committee is heterogeneous, which means that
classifiers of the committee are trained with different classification algorithms.
The method designation focuses on two aspects: how many classifiers and which
classifiers to choose.

Generally speaking, our heterogeneous committee is allowed to contain any
number of classifiers. Based on the result in [24], the performance of the classifier
is not too sensitive to how many members a committee has and with four clas-
sifiers the aggregated accuracy is already satisfactory enough. On the one hand,
each additional member in the committee means one more training process per
iteration, which can heavily increase time needed for generating one round com-
mittee and has negative impact on efficiency. On the other hand, having more
than four members for the committee achieves even lower accuracy [24]. There-
fore, in our evaluation, four classifiers are generated to form the committee. Next,
we present which candidate algorithms are suitable to be committee members.
In general, we considered the following factors:

Accuracy with Little Training Data: The selected classifiers should have
relatively high accuracy. Particularly, because the purpose of using AL is to
reduce required human labeling efforts, we assume that for the training dataset,
not so much training data is required to achieve high accuracy, which means
that the selected classifiers should still work when only little training data is
available. This is the main factor we use to choose classification algorithms.

Efficiency: Efficiency also requires consideration, since a learning-based classifi-
cation is much more time-consuming than a simple threshold-based classification
and such factor can be expected to have a large impact on the performance, as
data grows.

Interpretability: Interpretability is also of great importance for choosing the
learning algorithms, because we can use machine learning responsibly to ensure
that our values are aligned and our knowledge is reflected [8].

We considered the following seven common binary classification algorithms:
logistic regression (LR), decision tree (DT), random forest (RF), gradient-
boosted tree (GBT), support vector machine (SVM), one-vs-rest logistic regres-
sion (OvR) and naive bayes (NB). In order to select classifiers for our
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committee, we evaluated their F-measures also on the same benchmarking bibli-
ography dataset ACM-DBLP [13] used in Fig. 2 by using different sizes of initial
training data. Figure 3 shows the results. SVM, OvR and LR have a satisfac-
tory F-measure value even with only two training data pairs. NB and RF pro-
vide still a very low F-measure value even with 40 training data instances. NB
classifiers are generative models that need prior probabilities. The probabilities
are inaccurate for our case, because our initial training data is chosen by our
proposed method in the last section, which normally generates relatively bal-
anced training data. This state of training data does not conform to the test
data [21]. Besides, it assumes that all features are independent [23]. However,
our features are actually not independent, which may lead to the low F-measure
for NB classifiers. The RF classifier cannot perform well, because it trains an
ensemble of decision tree classifiers by splitting the training dataset into multiple
subsets, then chooses subsets of features for each decision tree classifier [26]. This
leads to a low F-measure especially when there is not enough training data. DT
overall performs well except for the case with two training data pairs, in which
DT classifier is not possible to be trained. GBT is in a similar situation as DT.
However, its F-measure values are always lower than DT. We also evaluate the
efficiency of all seven classification algorithms. All candidate pairs are divided
into roughly two equal groups. Training data is generated by randomly picking
four matching and non-matching pairs from the first group and then test data
is the other entire group. The results are shown in Fig. 4. As we can see from it,
results show that DT, GBT and RF need obviously more time than the other
algorithms. NB runs the fastest, OvR, SVM and LR follows. However, all three
tree-based classification algorithms DT, RF and GBT are quite slow. By combin-
ing the perspectives of interpretability and efficiency with the accuracy result,
SVM, OvR, LR, and DT are selected to form our heterogeneous committee.

Above we provided guidelines on how to choose classification algorithms to
form the heterogeneous committee. Facing different implementations of algo-
rithms with different adopted libraries, the best choices of classification algo-
rithms may change case by case.

2.4 Training Data Candidate Selection

After our heterogeneous committee is formed based on the above introduced
approach, it is used to vote unlabeled pairs as matches or non-matches. Then
those pairs with the most disagreement are those interesting pairs that we may
select to be labeled by domain experts and added to the training dataset. The
disagreement value of the voting results for pairs is calculated with the following
equation:

Disagreement(pair) =
∑

(am,an)∈committee)

Difference(result(am), result(an)) (1)

where (am, an) are the combinations of results from any two classification algo-
rithms from the committee and the Difference(x, y) function returns zero or one,
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Table 1. Datasets used in experiments

Datasets #Input #Records

in DBLP

#Records in

ACM/Scholar

#Pairs

(#match pairs)

#For

training data

selection

#For testing

ACM-DBLP2 2 2616 2294 21095 (2189) 10547 10548

Scholar-DBLP1 2 2616 64263 44999 (4351) 22500 22499

depending on whether x equals to y or not. With this equation, we sum up all
the differences between any two combination of classification algorithms as the
final disagreement value of the votes. However, the pair with a high disagree-
ment value has also a high possibility that it is an outlier. If an outlier is selected
and added to the training dataset, it will negatively impact the performance of
classifiers. In order to reduce the possibility that outliers are selected, the ran-
dom sampling proposed in [24] randomly picks the pair from the top-n pairs to
alleviate the probability that an outlier is selected to be labeled, n can be set
manually, such as 10, 20, 30.

Then the training data is updated in the above-introduced way iteratively
and after the iteration process is completed according to preset termination
conditions, the committee or a specific classifier can be used to identify duplicates
for any unlabeled data.

3 Evaluation

In this section, we evaluate HeALER from three aspects: first, we solely con-
ducted experiments to evaluate the balance and accuracy of our initial training
data selection method (Sect. 3.2). Second, we evaluate our heterogeneous com-
mittee and compare it to the passive learning, committees formed by ALIAS
and ATLAS (Sect. 3.3). Last, we evaluate our entire HeALER approach against
a ML process and two state-of-the-art QBC-AL approaches: ALIAS and ATLAS
(Sect. 3.4). For all results, the accuracy is measured using F-measure.

3.1 Experimental Setting

Datasets: We evaluate HeALER on two commonly-used real-world datasets:
ACM-DBLP and Scholar-DBLP citation datasets [13]. Both datasets include
two parts, one part is from the DBLP citation database and the other one is
from ACM or google scholar citation databases, respectively. All of them have
four attributes, including title, authors, venue and publication year. In order to
prepare data for HeALER, we have done the following steps based on the two
original citation databases: We first preprocess both databases by removing stop
words and null values. Then we generate blocking keys (the first five letters of the
title) for each record. Subsequently, we join two database tables with the blocking
key as the join attribute, so that we get all candidate pairs. Afterwards, simi-
larity functions are performed on each attribute to get corresponding features.
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Fig. 5. Initial training dataset selection approaches evaluation

For attributes “title”, “author”, we apply cosine, Jaccard, Jaro-Winkler, metric
longest common subsequence, N-Gram, normalized Levenshtein and Sorensen-
Dice similarity functions1. For attribute “venue”, the Jaccard similarity function
is used. For the last attribute “year”, the similarity between two values is one
or zero based on whether they equal or not. In this way, we obtained 16 fea-
tures. For the preparation of our initial training dataset selection method, total
similarity scores are calculated and appended to data as well. With the above
introduced steps, for the ACM-DBLP dataset, we got 21095 pairs after blocking
(including 2189 true match pairs). We randomly divide all pairs into two parts:
the first half 10547 pairs as the first part form the dataset to select training
data and the remaining pairs for testing. For the Scholar-DBLP dataset, we got
44999 pairs after blocking (including 4351 true match pairs). We also randomly
separate it into two parts in the same way as the ACM-DBLP dataset. The
details of datasets are summarized in Table 1.

Implementation Related: Since learning-based classification is much more
time-consuming than threshold-based classification, we implemented HeALER
with Apache Spark (version 2.4), which is a general framework supporting dis-
tributed computation, as a preparation for big data processing. However, this
paper focuses only on the quality side of ER results. The classification algorithms
used are implemented with Spark MLlib. The programming language is Scala
with the version 2.11.12.

1 Implemented by the Debatty library (version 1.1.0).
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3.2 Initial Training Dataset Evaluation

Experimental Design. This experiment is to evaluate different strategies to
select the initial training dataset by getting the average results over five runs.
We use both datasets in Table 1. The tested initial dataset sizes are four and
ten, which are proved to be the least to function selected classifiers (Fig. 3). The
following strategies are evaluated:

Random Selection: It means we randomly select the required number of pairs.

Optimal Selection: The optimal selection means that training data is optimally
balanced, i.e., because we have the ground truth for our datasets, we pick half
matches and half non-matches from the unlabeled data. However, this is not
practical, since before labeling, we have no idea which pairs are matches or
non-matches. In [24], they selected initial training data in this unpractical way.

Initial Training Data Selection of ATLAS [27]: ATLAS ranks all pairs on their
total similarity scores, then divides the whole pool to n groups (4 or 10 groups
for two tested dataset sizes respectively), at last the initial training dataset is
obtained by randomly selecting one data pair from each group.

Initial Training Data Selection of AGP [7]: In order to get both matching pairs
and non-matching pairs, the initial training dataset of AGP is obtained by select-
ing half number of pairs with highest total similarity scores (2 or 5 pairs for two
tested dataset sizes respectively) and the other half number of pairs with lowest
total similarity scores (2 or 5 pairs for two tested dataset sizes respectively).

Initial Training Data Selection of HeALER: Our own method HeALER selects
the initial training dataset in the way of the hypotheses described in Sect. 2.2.
Since the linkage for ACM-DBLP dataset is one-to-one linkage, the highest num-
ber of matches is the number of records in the smaller dataset, i.e., 2294 records
from ACM library. As the whole dataset is almost equally split to two datasets.
Then the matches contained in the first dataset to select training data should
be 1147. This number can be used to get the matching and mixed zones, i.e.,
two pairs randomly picked from the first 1147 pairs with the highest similarity
scores, and two pairs randomly picked from the next 1147 pairs. Regarding the
other dataset Scholar-ACM, it is not one-to-one linkage, but we know that the
approximate percentage of its matching pairs is 10, therefore, we divide all pairs
into 10 groups, and the first top group with the highest total similarity scores is
the matching zone, where we randomly get 5 pairs, and the second group is the
mixed zone, where we randomly get the rest 5 pairs.

We evaluate those above-introduced selection methods with balance and
F-measure metrics. For the balance metric, how many matching and non-matching
pairs in the training dataset is shown. For the F-measure metric, F-measures val-
ues are calculated by testing the classifiers trained on different training datasets
with LG, DT, SVM classification algorithms respectively on the test dataset.

Results and Discussion. As can be seen from Fig. 5a, with random and
ATLAS approaches, the training data selected is quite skewed, no sufficient
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matching pairs are picked, especially the random selection for the ACM-DBLP
dataset selects no matching pairs, which may make the training data unusable,
since some classifier algorithms cannot work with only one class of data for a
binary classification problem. HeALER can achieve relatively balanced train-
ing data, but not as completely balanced as AGP and Optimal selection. The
F-measures using LR, DT, and SVM calculated on the training data selected with
different approaches are shown in Fig. 5b. Therein, the training data selected
using ATLAS and the random approach works only for DT and SVM on the
Scholar-DBLP dataset. For all other cases, no classifiers are successfully trained
and used for the later test classification because of exceedingly skewed training
data. The other three approaches work apparently better. With the training data
they selected, it is always possible to complete the classification tasks using the
trained classifiers. Particularly, HeALER outperforms AGP and the optimal case
with DT due to the more informative training data, which makes the splitting
closer to the truth. However, it achieves a bit lower F-measure for LR and SVM.
By concluding the results, we can say that the quality of HeALER training data
is high when the number of divided groups can be correctly defined. Otherwise,
the AGP strategy can be applied to achieve acceptable F-measure.

3.3 Heterogeneous-Committee Evaluation

Experimental Design. This experiment is designed to specially evaluate
our heterogeneous committee and compare it to other approaches (committees
formed in [27] and [24] and passive learning to randomly pick pairs without
basing on committees’ decisions). Both datasets in Table 1 are used. We fix the
initial training data selected by our own strategy for all approaches, which pro-
vides them fair and good starting points. And the strategy used to reduce the
possibility to get outliers is fixed with the Sampling20 approach (It is evaluated
as the best strategy by comparing Sampling10, Sampling20 and Sampling30
using the random sampling method (n is set as 10, 20 or 30) introduced in Sub-
sect. 2.4. The evaluation results are omitted due to limited space). After each
iteration of the AL process, the F-measure is calculated on the classification
results of the test data in Table 1 obtained by using the DT classifier trained
on the updated training datasets by each approach. The AL process terminates
after 199 rounds. Each experiment is repeated three times to get the final average
result. The details how different approaches perform are introduced as follows:

Passive Learning : This approach randomly picks pairs to be labeled by humans
and added to the training dataset without relying on any committee votings.

ALIAS Committee [24]: ALIAS forms its committee by randomizing parameters
while training classifiers with the selected algorithm. In our experiments for both
datasets, SVM algorithm is used. We vary the value of its parameter for maxi-
mum number of iterations with 4, 6, 8 and 10. Then four classifiers are trained
respectively and form its committee. In the ALIAS paper, for their experiments,
they applied DT algorithm and varied the parameter where to split. However,
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Fig. 6. Different committee comparison

as our implementation depends on the Spark MLlib, it is not possible to adjust
this parameter. Therefore, we apply SVM algorithm for our experiments.

ATLAS Committee [27]: ATLAS partitions the training dataset to four subsets,
then each subset of the training data is used to train its classifier to form its
committee. The classification algorithm used here is the same as ALIAS: SVM
for the purpose of comparison. For both datasets, each time 80 percent of pairs
are randomly chosen to constitute the training dataset. Four subsets are required
to get four classifiers of the committee.

HeALER Committee: As explained in Sect. 2.3, our heterogenous committee
includes four classifiers, which are trained with SVM, OvR, LR, and DT algo-
rithms, using the complete training dataset.

Results and Discussion. Figure 6 shows the comparison results of different
committees and the passive learning. As we can see from the results of ACM-
DBLP dataset, the F-measures of all approaches fluctuate much in the first 50
rounds, then becomes more stable later on. After about 140 rounds, our het-
erogeneous committee keeps F-measures higher than 0.92 and reaches its rough
convergence. In contrast, ALIAS and ATLAS committees still cannot achieve
their convergences till 199 runs. They show even less stable and lower results
than passive learning. However, the highest F-measures they are able to reach
during the experiments are much higher than passive learning, which proves the
effectiveness of the committee to explore which are more informative pairs. Since
the passive learning randomly chooses more pairs to be labeled, the informative
pairs are hard to be selected to really cover the shortages of the classifiers. From
the result of the other Scholar-DBLP dataset, we can get similar conclusions. Our
heterogeneous committee converges already after about 110 rounds and keeps
the F-measure 0.95 afterwards. ALIAS and ATLAS committees are far from
their convergence even with 199 rounds. The passive learning works quite good
for this dataset due to the high initial F-measure. However, it requires much
labeling effort to improves its F-measure. To summarize the results, our hetero-
geneous committee shows its advantage in picking informative data to improve
the F-measure of the classifier and reach the convergence with much less labeling
efforts than passive learning, ALIAS and ATLAS committees.
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Fig. 7. Overall evaluation

3.4 Overall Evaluation and Comparison

Experimental Design. After we evaluate our initial training data selection
approach and our heterogenous committee separately, in this section, we evalu-
ate our entire HeALER approach by comparing the F-measures using a one-off
ML approach, ALIAS and ATLAS approaches based on a same number of train-
ing data. For this overall evaluation, the same datasets are used as in the last
two sections. The F-measures are all calculated on the classification results of
the test data in Table 1 obtained by using the DT classifier. Except the nor-
mal machine learning approach, other approaches follow the iteration process of
AL and terminate after 199 rounds. For the normal one-off ML approach, we
randomly picked the corresponding number of training data of each iteration
and calculate the F-measure of the test data using the DT classifier. ATLAS
has no strategy to reduce the possibility to get outliers but it chooses the pair
with the highest similarity value among all pairs with the highest disagreement
value. Therefore, in the overall evaluation, for ATLAS, this approach choosing
the pair with the highest similarity value is used. For HeALER and ALIAS, the
sampling20 strategy is used as in the committee comparison experiment. The
final result is averaged by three times’ repetition (Fig. 7).

Results and Discussion. Figure 7 shows the comparison results of different
AL approaches and a normal ML process. As we can see from the results of
ACM-DBLP dataset, HeALER has the highest initial F-measure and keeps a
F-measure around 0.9 with 20 or more training data. ALIAS and ML perform
the worst and fluctuate their F-measures from the beginning to the end. ML
starts to function stably with at least 33 labeled data and cannot significantly
improve its F-measure when labeling more data. ATLAS starts to work with
10 labeled data and hardly varies its F-measure. The reason can be because
its strategy always selects data with the highest total similarity score, weakens
the effects of the disagreement values of data, and often chooses same data for
different iterative rounds, which leads to changeless F-measure for several or even
dozens of iterative rounds. Although it seems that ATLAS performs quite good,
the results of the Scholar-DBLP dataset, in which ATLAS performs the worst,
shows that ATLAS is not reliable, more research on the strategy of selecting
the highest similarity score from the data with highest disagreement values is
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required. For the results of ALIAS, HeALER and ML on Scholar-DBLP, similar
conclusions can be made. The results show that HeALER works better than the
other compared approaches.

4 Related Work

AL related approaches for ER include the common AL with the goal of selecting
the most informative data for classifiers to be labeled by humans (single-model-
based [18], committee-based [7,11,19,20,24,27]), and special AL approaches for
the purpose of getting the best rules (like classifiers) that are able to provide high
precision without considering the quality of training data [1–3,10,22]. Therein,
Ngomo et al. [18] identify the most informative data to be labeled and added
into the training dataset with the maximized convergence of the used classifier.
The proposed committee-based AL approaches differ from each other globally
with different committee forming approaches. The approaches [7,11,19,20] use
genetic programming algorithms to learn multi-attribute functions. However, the
quality of those functions cannot be guaranteed. The research approaches [24,27]
are the most similar to ours. They form their committees with several classifiers,
which are trained on a single type of classification algorithm. However, in order to
achieve diversity of classifiers in the committee to make AL work with the most
disagreement strategy, their classifier qualities are compromised, which restricts
the ability of the committee to identify the most informative data. Moreover,
the initial training dataset selection problem is not correctly handled. Sarawagi
and Bhamidipaty [24] directly assume that the AL process starts with an initial
training dataset including five matching and non-matching pairs, which is not
realistic, since it cannot be known whether a pair is matching or non-matching
before labeling. Although in the other paper [27], this reality is considered, how-
ever, the initial training dataset they selected is quite biased with the number of
matching and non-matching pairs, which leads to a very low quality of classifiers
for the beginning iterations. In contrast to them, our proposed HeALER can
provide a high-qualified initial training dataset and the heterogenous committee
can select more informative data to improve the classifiers faster.

5 Conclusions and Future Work

To conclude this paper, we propose our AL approach HeALER for ER, which
could select relatively balanced and informative initial training dataset and use
its heterogeneous committee to select informative pairs to be labeled by human
in order to improve the classifier. We evaluated and compared it with the pas-
sive (machine) learning and two state-of-the-art AL-ER approaches ATLAS and
ALIAS. The evaluation results show that HeALER is faster to converge and can
reach a higher final F-measure than other approaches. In addition, the results
also indicate that it requires less training data to reach a satisfactory F-measure,
which conforms to the purpose of using AL approach: reducing human labeling
effort. However, we also observed the fluctuations during the early rounds, which
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are caused by choosing outliers to the training dataset. For future work, tech-
niques to exploit the local density to handle imbalanced data and recognize
outliers [17] should be studied in order to improve HeALER and make it reach
the convergence faster.
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