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Abstract. Anticipating the next events of an ongoing series of activities
has many compelling applications in various industries. It can be used to
improve customer satisfaction, to enhance operational efficiency, and to
streamline health-care services, to name a few. In this work, we propose
an algorithm that predicts the next events by leveraging business process
models obtained using process mining techniques. Because we are using
business process models to build the predictions, it allows business ana-
lysts to interpret and alter the predictions. We tested our approach with
more than 30 synthetic datasets as well as 6 real datasets. The results
have superior accuracy compared to using neural networks while being
orders of magnitude faster.

Keywords: Process mining · Predictive process monitoring ·
Predictive analytics · Path prediction · Trace clustering

1 Introduction

After observing a few events of an incomplete sequence of activities, we can pre-
dict the next events until process completion by learning from historical event
logs, an activity coined path prediction [1]. Anticipating the next events is valu-
able in a wide range of scenarios. For instance, when a service desk team predicts
the paths taken by open tickets, the results can be used in many different ways.
One proposition is to cut the number of predicted complaints due to delays by
changing the priority of tickets. Another is to reduce the negative impact on
customer satisfaction by preemptively informing them about a delay. One more
is to align the expertise of service desk agents with the events predicted for a
ticket. The predictions could also be used by inexperienced agents to anticipate
the next events better, allowing them to communicate more accurate informa-
tion to the customers. Overall, predicting paths can help to improve worker and
customer satisfaction, as well as improve operational efficiency.

There are two main approaches to making predictions for a series of events.
The first uses process mining while the second relies on neural networks. Both
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approaches have their strengths and limitations. Process mining is more trans-
parent because it relies on models that can be inspected by business analysts.
This is important, as business analysts may have hidden knowledge that will
influence their confidence in the prediction. Furthermore, “business stakeholders
are not data scientists [...] they are more likely to trust and use these mod-
els if they have a high-level understanding of the data that was used to train
these models” [2]. In contrast, reasoning about predictions made by artificial
neural networks is complex, if not impossible. Furthermore, a neural network
requires a long training time [1]. However, in terms of performance, the most
recent research shows that predictions using long short-term memory (LSTM)
in a neural network achieves high accuracy [3].

We address the research gap that exists between accurate, but black-box tech-
niques and transparent, but less accurate process mining approaches. Indeed, we
aim to make predictions that are accurate, fast, and interpretable by business
analysts. We propose a matrix named the loop-aware footprint matrix (LaFM),
which captures the behaviors of event logs when replayed on a business process
model obtained automatically using process mining techniques. The captured
behaviors are then retrieved from LaFM to make predictions about uncompleted
traces. We also propose a clustered version of LaFM (c-LaFM) that can cope
with the inherent complexity of real datasets. We evaluate the prediction accu-
racy of LaFM with 30 synthetic datasets and the accuracy of c-LaFM with 6
real datasets. We show that our technique outperforms the LSTM approach
introduced in [3].

The paper is organized as follows. In Sect. 2, we introduce the main defi-
nitions and discuss process mining. Section 3 provides an overview of existing
works. Section 4 presents the main idea behind LaFM. In Sect. 5, we present
the evaluation procedure. Section 6 evaluates and compares the accuracy of the
method using synthetic datasets. Section 8 introduces the clustered version of
LaFM, coined c-LaFM, which is evaluated in Sect. 8. The paper ends in Sect. 9
with a conclusion.

2 Preliminaries

In this section, we lay out the main definitions and concepts of our approach.
They are part of the well-established process mining discipline. In this paper, we
consider only the sequence of events, disregarding the timestamps or any other
contextual information in the data. By doing so, we present a simplified view of
process mining, to be complemented with the foundational book about process
mining [4].

Events. An event is a discrete type of data representing the activities executed
in a process. For instance, ‘transferring a ticket’ is an event in a ticket’s lifecycle.
Let e be an event and E be the set of all distinct events; i.e., e ∈ E.

Trace. A trace is an instance of a process execution. In a service desk context,
a trace is a ticket. Let t = {e1, e2, ...; e ∈ E} be a trace: a list of events. For
instance 〈abbc〉 is a trace with three distinct events of length 4 (|t| = 4).
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Prefix. Let a prefix pn = {e1, e2, ..., en; e ∈ t} be the first n events of a trace.
Typically, if t = 〈abbc〉, then p3 = 〈abb〉. A prefix represents the few events
observed from an uncompleted trace that we use to make a prediction.

Suffix. A suffix represents the n last events of a trace. Formally, sn = {e|t|−n , ...,
e|t|−1, e|t|; e ∈ t; e /∈ pn; |pn| + |sn| = |t|}, i.e., the suffix is the complement of the
prefix. The suffix is the set of events that we are trying to predict.

Event logs. An event log L = {t1, t2, ...; } is a collection of traces.

By looking only at the event log, process discovery techniques allow us to infer
the business process model that describes well the behavior of the traces. This is
a challenging task because the algorithm should be able to generalize behaviors
even if only a subset of them is observed, to exclude noise and outliers, and to
discover a model that is simple enough that it can be analyzed by a business
analyst but also precise enough to reflect the behaviors of the event logs. Several
techniques and approaches have been proposed to tackle this task. In this work,
we use the inductive miner [5].

Fig. 1. Process tree obtained by
the inductive miner with the traces:
{〈abdef〉, 〈bdaegef〉, 〈dcefeg〉,
〈cdeg〉}.

The inductive miner works by finding the
best split in an event log and seeing how the
two parts are related. It does this recursively
on both parts. The output is a process tree
(Fig. 1), which is a representation of a pro-
cess model that was introduced in [6]. A pro-
cess tree uses four operators: (1) the exclusive
choice operator, xor, expresses that only one
of the branches is executed; (2) the parallel
operator, and, indicates that all the branches
should be executed, in any order; and (3)
a sequence, seq, forces the execution of the
branches from left to right. Finally, (4) a loop
has a more complex execution scheme: the
first branch is executed at least once. Then, either we enter the loop by exe-
cuting the second branch and the first branch again (which can be done once
or multiple times), or we execute the third branch to exit the loop. As can be
seen in Fig. 1, except for the leaves, these four operators fill the whole tree. The
leaves of the tree are composed of the events E as well as silent activities. Silent
activities, τ , can be executed like any other events in the model, but they will
not be seen in the traces.

We have now introduced the main terminology, the inductive miner, and the
process tree. Path prediction is concerned with predicting the suffix for a given
prefix by learning from event logs. It differs from process model discovery in
which the goal is to discover a process model from event logs. While the output
is different, both methods are about understanding the control flow of traces. We
leverage this by using the inductive miner as a first step in making predictions.
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3 Related Work

The area of predictive analytics is wide as trace predictions can be time-related
(e.g., predicting the remaining time), outcome-oriented (e.g., success vs. fail-
ure), or control-flow oriented (e.g., next event(s) prediction). In this work, we
specifically focus on the latter type of prediction.

A widely adopted approach to prediction is to build a Markov chain that
describes the transition probabilities between events. These transition probabil-
ities are used to make predictions. A prediction depends only on the previously
observed event. In the all-K-order Markov model, [7], the number of levels in the
Markov chain is increased, but this increases the execution time. While the accu-
racy of the prediction increases, it suffers from rigidness in terms of the “patterns
that it can learn” [8]. As another approach, Gueniche et al., propose the compact
prediction tree [8]. It uses three data structures that can be used efficiently to
retrieve the most probable event that might occur after having observed a pre-
fix. While it predicts with high accuracy which events might occur in the suffix,
it does not return the order in which they will be executed. Hence, compact
prediction trees are not suitable for predicting paths.

There are several process mining approaches for predicting paths. In [9],
Lakshmanan et al. propose a method that estimate the likelihood of the next
activities using a process model and Markov chain. Breuker et al. propose in
[10] a predictive framework that uses grammatical inference and an expectation-
maximization algorithm to estimate the model parameters. Among its predic-
tions, it can predict the next event. Improving the comprehensibility of the
predictions is one of the design goals of their approach, so that “users without
deep technical knowledge can interpret and understand” [10]. In [1], Polato et al.
propose a labeled transition system and methods for several predictive analytic
tasks. Path prediction can be done by finding a path in the transition system
that minimizes the sum of the weights between the edges.

Recently, neural networks have been studied for predicting the next events.
To the best of our knowledge, Evermann et al. were the first to use a LSTM
neural network approach to predict the next event of an ongoing trace [11].
LSTM, [12], is a special type of neural network for sequential inputs. It can
learn from long-term dependencies using a sophisticated memory system. The
sophisticated memory system is a double-edged sword: it achieves high accuracy;
however, its inherent complexity prevents any inspection of the reasoning behind
the predictions. In [3], Tax et al. generalize the approach of [11]. They evaluate–
amongst other methods–the performance of the algorithm in path prediction
and show that it is more accurate than [1,10,11]. Because it achieves the best
accuracy, we use it as a baseline when evaluating the accuracy of LaFM.

Overall, two streams of research dominate path prediction. On one hand,
using process mining techniques, we can make predictions using models that can
be inspected by business analysts. On the other hand, neural networks attain
better performance in terms of accuracy. Our contribution is an algorithm that
utilizes the best aspects of both methods.
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4 LaFM: Loop-Aware Footprint Matrix

We designed LaFM to store the behavior of traces efficiently when replayed on
business process models. The aim is that the behaviors can be retrieved when
predicting a suffix of events. First, we present the LaFM data structure. Next,
we explain how to build it. Finally, we detail how to use it to make predictions.

4.1 LaFM Data Structure

LaFM records the behavior of traces when replayed on top of a business process
model. An illustration of LaFM is shown in Fig. 2. Each row corresponds to a
trace and each column describes the behavior of an operator. LaFM captures the
execution orders of parallel branches, the exclusive choices, and the number of
iterations of each loop. We next describe in more detail the information recorded
by LaFM as well as the used terminology.

Fig. 2. Result of LaFM when the traces 〈abdef〉, 〈bdaegef〉, 〈dcefeg〉, and 〈cdeg〉
are replayed on top of the process tree of Fig. 1.

Parallel Branches. LaFM stores the order in which parallel branches are exe-
cuted. An incremental index is assigned to each outgoing branch of the and
operators and then propagated to the events and silent activities underneath.
For instance, and2 in Fig. 1 has two outgoing branches. The index 1 is assigned
to the first branch, which is propagated to the events below, i.e., 1 is assigned
to a, b, and c. Similarly, task d has index 2. The index is recorded in LaFM for
each and operator.

Exclusive Choices. The decision made for each exclusive choice is recorded
in LaFM. For example, at xor3 in Fig. 1, a choice must be made between and4
and c. For the trace 〈cdeg〉, the choice is c. Hence, c is recorded in LaFM.
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Loops. LaFM stores the number of times loops are executed. In Fig. 1 for the
trace 〈cdeg〉, the value recorded for loop5 is 1 because it was executed once.

Terminology. An operator might be executed multiple times during a single
process execution. For instance, when the trace 〈bdaegef〉 is replayed on the
process tree in Fig. 1, we execute the operator xor7 twice because loop5 above
it is also executed twice. The name ‘loop-aware footprint matrix reflects that
the matrix can store all behaviors, regardless of the number of times a loop
is executed. The terminology used for columns in LaFM allows us to retrieve
the behaviors of an operator using a standardized name: operator|loop. Each
operator is assigned a unique name. For example, in Fig. 1, loop5 is an operator.
For parallel gateways, we also append the execution order inside parentheses. For
instance, the second execution of and4 is and4(2). If there are loops, a single
operator can be executed many times, resulting in multiple pieces of information
that must be recorded. Adding the loop position to the terminology allows us
to distinguish this information. Let L be a list of loops that are in the path
starting from but excluding the operator itself to the root of the process tree. L
can be empty if an operator is not contained in a loop. Then, we concatenate
∀l ∈ L the following strings: lname(lindex), i.e., for each loop above an operator,
we include its name. In parentheses, we add the index of the loop. As an example,
xor7|loop5{2} points to the column returning the decisions that are made when
the operator xor7 is executed for the second time.

Three behaviors are captured in the LaFM in Fig. 2. Columns 1 to 5 retain
the execution order of parallel gateways; column 6 records the number of times a
loop was taken, and columns 7 to 9 store the decisions made at exclusive choice
gateways.

4.2 Training Phase: Building LaFM

To record the decisions made for each operator in the discovered process tree, we
replay the traces we want to learn from a Petri net version of the process tree.
Petri nets can easily be derived from process trees using simple transformation
rules [5]. Petri nets have a strong and executable formalism, which means we can
replay a trace on a Petri net by playing the token game [13]. The token game
takes as input a trace and a Petri net. Then, using a particular set of rules (see
Chapter ‘3.2.2 Petri Nets’ in [4]), the game indicates if the trace fits into the
process model (i.e., the Petri net). Algorithm 1 defines few extra operations that
are performed during the token game to build LaFM. The next section explains
how predictions can be made from LaFM.
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/* Map the parallel operators above the events using a list of tuples (andOperator,
branchIndex). Return an empty list if the event is not included in a parallel
operators. */

/* e.g.,: {a: [(and4,0), (and2,0)], b: [(and4,1), (and2,0)], c: [(and2,0)]...} */
1 tsToAnds = getTransitionToAnds(processTree)

/* Map the transitions that occur right after an exclusive gateway. */
/* e.g.,: {and4: Xor3, c: Xor3, f: Xor7, g: Xor7 } */

2 tsToXors = getTransitionToXor(processTree)

/* Map the second branch of loops to tsIncrementLoops and the third one to
tsLeavingLoops */

/* e.g., tsIncrementLoops: {τ4: loop5}; tsLeavingLoops: {τ5: loop5} */
3 tsIncrementLoops = getTransitionToIncrementLoop(processTree)
4 tsLeavingLoops = getTsToLeaveLoop(processTree)

5 laFM = Matrix[]

6 foreach trace in logs do
7 counter = initializeCounters()
8 foreach tsF ired in tokenGame do
9 manageCounter(tsF ired)

10 foreach andOperators in tsToAnds[tsF ired] do
11 foreach andOperator, branchIndex in andOperators do
12 record(trace, andOperator, branchIndex)

13 if tsF ired in tsToXors then
14 record(trace, tsToAnds[tsF ired], tsF ired)

15 if tsF ired in tsToLeaveLoop then
16 record(trace, tsLeavingLoops[tsF ired], counter[tsF ired])

17 function manageCounter(tsF ired):
18 if tsF ired in tsToAnds then
19 foreach andOperator in tsToAnds[tsF ired] do
20 counter[andOperator].increment()

21 if tsF ired in tsIncrementLoops then
22 counter[tsF ired].increment()
23 foreach dependentTransition in dependentTransitions[tsF ired] do
24 counter[tsF ired].reset()

25 function record(trace, transition, value):
26 laFM[trace][getTerminology(transition)] = value

Algorithm 1: Set of extra operations performed during the token game to
build LaFM.

4.3 Prediction Phase: Using LaFM

Making predictions using LaFM is a five step recursive process, illustrated in
Fig. 3.

Step 1. We play the token game with the prefix to get a list of active tokens.

Step 2. From the tokens, we get the list of active transitions, i.e., the activities
that are currently allowed by the business process model. If only one transition
is active, we skip steps 3 and 4 to fire the transition (step 5). Otherwise, we
recursively eliminate transitions that are less likely (steps 3 and 4).
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Fig. 3. Five steps in making prediction using LaFM

Step 3. We find the highest (closest to the root) operator in the process tree
common to at least two transitions. For example, in Fig. 1, if the active transi-
tions are a, b, and d, the highest common operator is and2.

Step 4. We make a decision about the operator selected in step 3. Depending on
the operator type, we select the branch to execute next, what decision to make
at an exclusive gateway, or whether to stay in or leave a loop. Figure 4 details
how we retrieve the information in LaFM. In Fig. 2, in order to know which
one of f and g is the transition most likely to be chosen the first time we are at
xor7, we look at LaFM for xor7|loop5{1} and observe that f occurs more often
(three times out of four). When a tie occurs, we pick the first one. The number
of loops in the prefix might exceed the number of loops that were observed in the
data. Alternatively, we might have a particular order in the prefix that was never
observed in the event logs. We define three levels of abstraction that we apply
consecutively when the previous abstraction fails. The first level of abstraction
is to use LaFM as is. The second level of abstraction is to drop the loop part of
the terminology and stack the columns for the same operator. For example, if
xor7|loop5{3} does not exist in LaFM, we stack the two columns starting with
xor7|. If there is still not enough information, the third abstraction is to make
a decision by looking only at the Petri net. For parallel and exclusive choice
transitions, we pick the first branches with active transitions. For a loop, the
decision is to always to leave the loop. Using these three abstractions, we can
always make a prediction. If the list of potential transitions has been reduced to
1, we go to step 5. Otherwise, we recursively go back to step 3 where the highest
common operator will inevitably be lower.

Step 5. We fire the transition. If it is a task ∈ E, we add it to the suffix. Then,
we check to see if we have reached the end of the Petri net. If yes, we return the
suffix. If not, we go back to step 3.

Having defined how to build and use LaFM, we detail in the next section the
evaluation procedure used to assess the quality of the predictions.
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Fig. 4. Decisions for each operator type at three level of abstractions.

5 Evaluation Procedure

The evaluation procedure is the same as that described by Tax et al. in [3]. Two-
thirds of the traces in the event logs are added to the training set. Each trace
in the evaluation is tested from a prefix length of 2 to a prefix length of l − 1, l
being the length of the trace. For instance, the trace 〈abcd〉 is decomposed into:
prefix:〈ab〉, suffix:〈cd〉 and prefix:〈abc〉, suffix:〈d〉. The extracted prefix is added
to the evaluation set and the suffix is added to the ground truth set. After learn-
ing from the training set, we use the evaluation set to make predictions about
the prefix. The accuracy is obtained by measuring the Damerau-Levenshtein
similarity between the predicted suffix and the ground truth set. The Damerau-
Levenshtein distance, [14], is an edit-distance-based metric that minimizes the
number of substitutions, deletions, or additions that are needed to align two
sequences. In contrast with the Levenshtein distance, the Damerau-Levenshtein
distance allows us to swap two adjacent activities. Let e be the evaluation set, pi

the ith predicted suffix, and ti the ith ground truth suffix. We evaluate a whole
evaluation set using the following formula:

DamerauSimilarity(e) = 1 −
∑|e|

i=1
DamerauDistance(pi,ti)

max(length(pi),length(ti))

|e| (1)

A Damerau similarity of 1 means that the predicted suffix is identical to the
ground truth. We use the evaluation procedure in the next section to evaluate
the performance of LaFM on synthetic datasets as well as in Sect. 8 where the
performance of c-LaFM is tested on real datasets.

All evaluations were processed on a Mac Pro with the following configuration:
3.5 GHz 6-Core Intel Xeon E5, 64 GB 1866 MHz DDR3. We slightly updated
LSTM1 so that it does not predict the time remaining. We confirmed that this
change does not impact the accuracy of the next event predictions and slightly
reduces the execution time. LaFM and c-LaFM, as used in the evaluations, are
available at: http://customer-journey.unil.ch/lafm.

1 available here: https://verenich.github.io/ProcessSequencePrediction/.

http://customer-journey.unil.ch/lafm
https://verenich.github.io/ProcessSequencePrediction/
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6 LaFM: Evaluation

To evaluate LaFM, we used a collection of 30 synthetic datasets2 that were cre-
ated from process trees of varying shapes and complexities. These datasets were
initially created and used in [13] for testing process discovery and conformance
checking techniques.

There are three rounds of evaluation. In each round, 10 process trees were
generated. The complexity of the process trees as well as the number of traces
generated increase with the round. Overall, 64 traces were generated in round 3,
256 traces in round 4, and 1025 in round 5. We compared the predictions obtained
using LaFM, Markov chains, and LSTM. We ran the evaluation five times. The
arithmetic means of these five runs is shown in Fig. 5. LaFM is deterministic,
therefore, its variance is null. The predictions made using LaFM are closest to
the ground truth (21 times), followed by LSTM (8 times), and Markov chains
(4 times).

There are important differences in the execution times of the three techniques
(Fig. 6). Because its predictions rely only on the previous observed event, it is not
surprising that the fastest predictions are made using Markov chains, followed
by LaFM. To put the duration into perspective, the average execution time per
dataset is approximately 111 times slower for LaFM compared to a Markov
chain, and 6140 times slower for LSTM compared to a Markov chain.

Fig. 5. Comparing LaFM, LSTM and Markov Chains using the Damerau similarity
metric. The closer to 1, the closer the predictions are to the ground truth.

2 https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05, sets
‘1 - scalability’, ‘round 3 to 5’.

https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05
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Fig. 6. Performance comparison of the training and predictions times.

7 c-LaFM: Clustered Loop-Aware Footprint Matrix

The accuracy of the predictions made using LaFM is dependent on the quality
of the discovered process tree. While the previous section showed that LaFM
performs well with synthetic datasets generated from well-structured process
trees, the accuracy will drop with real datasets, which often have very complex
behaviors and noise that cannot be described well using a single model. Our
intuition is that we should group similar traces using clustering techniques and,
for each group, discover a process tree that well describes a subset of similar
traces. Hence, we propose an updated version of LaFM with a clustering step,
coined c-LaFM for clustered LaFM.

Fig. 7. Overview of the 4 steps approach of c-LaFM.

We propose a four-step clustering method, as shown in Fig. 7. In step 1, we
extract the features that will be used to group similar traces. Thus, we count
the number of ngrams ranging in size from 1 to 2. For instance, the trace 〈aba〉
becomes: {a:2, b:1, ab:1, ba:1}. Then, we cluster the traces using HDBSCAN3,
which has the advantage of having only one intelligible parameter to set, the
minimum number of traces per cluster. According to our experiment, from 2 to 10
traces per cluster yields the best results. However, it is difficult to anticipate the
best minimum cluster size. Hence, we perform a hyperparameter optimization
of a type grid search by using 10% of the training data set to evaluate the
accuracy of the minimum cluster size and retain the best-performing one. Instead

3 https://github.com/scikit-learn-contrib/hdbscan.

https://github.com/scikit-learn-contrib/hdbscan
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of attributing each trace to a single cluster, we rely on a soft clustering approach,
which returns, for each trace, the probability of it belonging to all the clusters.

Figure 8 illustrates the soft clustering approach. Each point represents a
trace. The closer two traces are, the more ngrams they share. The strong repre-
sentatives are used to discover the process tree, while the weak and the strong
representatives will be replayed over the process tree and are available in LaFM.
The strong representatives are the traces that have a probability higher than
80% of belonging to a cluster and the weak representatives have a probabil-
ity higher than 20% but less than 80%. Using a soft clustering approach has
two main advantages. First, the inductive miner is sensitive to noise. Hence, we
want to learn only from the strong representatives (i.e., with a high probability
of belonging to the clusters) with the aim of capturing only the core behav-
iors. Second, although we do not use them to build the process trees, borderline
traces might contain interesting behaviors for several clusters. By using a soft
clustering approach, we can assign these single traces to several clusters.

Fig. 8. Illustration of the soft clus-
tering concept.

In step 2, the strong representatives are
used to build the process tree. Then, the pro-
cess tree is transformed to a Petri net so that
the weak representatives can be replayed on
it to build a local LaFM, a mechanism that
is described in Sect. 4.2.

In step 3, we train a stochastic gradient
descent classifier4 to predict which cluster a
prefix belongs to. Although the clustering is
done only once for the entire complete traces,
we build one classifier for each prefix length.
If an unexpected prefix length comes from a

never-seen-before instance, we select the classifier that was built with the largest
prefix length.

In step 4, we predict the suffix of a given prefix using the cluster returned
by the classifier. Altogether, these four steps allow us to make predictions in the
presence of noise and outliers, which are often found in real datasets. This is
what we evaluate in the next section.

8 c-LaFM: Evaluation

To test our approach, we used six publicly available event logs, as described in
Table 1. Because the event logs reflect activities performed in real life, making
predictions is a complex task. Typically, for the event logs describing the execu-
tion of a building permit application (envPermit), “almost every case follows a
unique path” [3].

4 http://scikit-learn.org/stable/modules/sgd.html.

http://scikit-learn.org/stable/modules/sgd.html
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Table 1. Datasets used for the evaluation.

Name (doi) Description #traces #events

1 helpdesk (10.17632/39bp3vv62t.1) Events from a ticketing system 3’804 13’710

2 bpi12 (10.4121/uuid:3926db30-

f712-4394-aebc-75976070e91f)

Loan process for a financial industry.

Note: keeping only manual task and

lifecycle: complete as described in [3]

9’658 72’413

3 bpi13 closeP (10.4121/c2c3b154-

ab26-4b31-a0e8-8f2350ddac11)

Closed problem - management system

from Volvo IT Belgium

6’660 1’487

4 bpi13 incidents (10.4121/3537c19d-

6c64-4b1d-815d-915ab0e479da)

Incidents - management system from

Volvo IT Belgium

7’554 65’533

5 bpi13 openP (10.4121/500573e6-

accc-4b0c-9576-aa5468b10cee)

Open problems - management system from

Volvo IT Belgium

819 2’351

6 envPermit

(10.4121/uuid:26aba40d-8b2d-

435b-b5af-6d4bfbd7a270)

Execution of a building permit application

process. Note: we pick the Municipality 1

38’944 937

In contrast to LaFM, c-LaFM is non-deterministic due to the clustering step.
Hence, we ran the experiment 10 times with c-LaFM and LSTM using the proce-
dure described in Sect. 5. Figure 9 compares the accuracy of LSTM and c-LaFM.
c-LaFM is more accurate for five datasets out of six. We compare the execution
times in Fig. 10. On average, c-LaFM is 9 times faster than LSTM. Overall, we
have shown that the clustered version of LaFM is accurate and fast.

Fig. 9. Comparing c-LaFM to LSTM using real datasets. Each datasets was evaluated
10 times.

Figure 11 shows one of the predictions for the execution of a building permit
using a business process model, which was derived from the process tree that
was used to make the prediction. This is an illustration of how we can provide,
not only the predictions itself, but a way to express the reasoning behind the
prediction. For instance, a business worker could–after investigating traces like
those used to make the prediction–decide not to trust the prediction because
they have knowledge about the context that is not available in the event logs.
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Fig. 10. Comparing the total execution time to obtain predictions using c-LaFM and
LSTM. The value reported is the average of 10 executions.

Fig. 11. Displaying an actual prediction from the dataset envPermit next to the busi-
ness process model that was used to make the prediction. The labels has been translated
in English.

9 Conclusion

We propose an algorithm that relies on process models to make future path
prediction. More specifically, we propose a matrix coined LaFM that retrieves
the most likely next events. We also propose c-LaFM, a version which is more
suited to deal with the inherent complexity of real datasets. The algorithm shows
promising results in terms of accuracy and execution time.

The results showcase the value of the process models discovered using a pro-
cess discovery algorithm. Indeed, not only are these business models intrinsically
interesting for business process analysts, but we also show that they can be used
to make predictions. A limitation of this work is that we choose to rely on the
inductive miner. In our future work, we plan to measure how the use of differ-
ent process discovery techniques may impact the accuracy of the predictions. We
anticipate that mining hidden rules between LaFM columns will yield interesting
results, especially if we consider extending LaFM with contextual information.
This would allow us to detect long-term dependencies that could be used to
improve the accuracy further.

Business analysts can be reluctant to trust predictions they do not under-
stand [10]. Because in our work the predictions are made with business process
models, the predictions can be manually inspected by business analysts. Cur-
rently, our algorithm returns only the predictions, limiting the explainability of
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the results. However, we envision a framework that includes an advanced visu-
alization system that explains how the predictions are made and allows business
analysts to alter the predictions if they have knowledge that is not in the data.
This type of system would display the process model, the traces on which the
predictions were made, and the reasoning behind the predictions. Gartner has
urged us to move toward explainable artificial intelligence that gives visibility
to business stakeholders “by leveraging historical data, explaining model inputs,
simplifying results or exposing underlying data in human understandable ways”
[2]. Our work contributes by providing the foundation on which a fully com-
prehensible prediction system can be built. Interestingly, in the same report, [2],
Gartner states that there is a trade-off between explainability and accuracy. Our
results highlight that this trade-off does not necessarily hold here as we can pro-
vide results that are both transparent and more accurate than state-of-the-art
neural network approaches.
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