
Tatjana Welzer
Johann Eder
Vili Podgorelec
Aida Kamišalić Latifić (Eds.)

LN
CS

 1
16

95

23rd European Conference, ADBIS 2019
Bled, Slovenia, September 8–11, 2019
Proceedings

Advances in Databases
and Information Systems

Lecture Notes in Computer Science 11695

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Tatjana Welzer • Johann Eder •

Vili Podgorelec • Aida Kamišalić Latifić (Eds.)

Advances in Databases
and Information Systems
23rd European Conference, ADBIS 2019
Bled, Slovenia, September 8–11, 2019
Proceedings

123

Editors
Tatjana Welzer
University of Maribor
Maribor, Slovenia

Johann Eder
Alpen-Adria Universität Klagenfurt
Klagenfurt, Austria

Vili Podgorelec
University of Maribor
Maribor, Slovenia

Aida Kamišalić Latifić
University of Maribor
Maribor, Slovenia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-28729-0 ISBN 978-3-030-28730-6 (eBook)
https://doi.org/10.1007/978-3-030-28730-6

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6865-4946
https://orcid.org/0000-0001-6050-468X
https://orcid.org/0000-0001-6955-7868
https://orcid.org/0000-0002-8574-8506
https://doi.org/10.1007/978-3-030-28730-6

Preface

The European Conference on Advances in Databases and Information Systems
(ADBIS) celebrated its 23rd anniversary this year. Previous ADBIS conferences were
held in St. Petersburg (1997), Poznan (1998), Maribor (1999), Prague (2000), Vilnius
(2001), Bratislava (2002), Dresden (2003), Budapest (2004), Tallinn (2005),
Thessaloniki (2006), Varna (2007), Pori (2008), Riga (2009), Novi Sad (2010), Vienna
(2011), Poznan (2012), Genoa (2013), Ohrid (2014), Poitiers (2015), Prague (2016),
Nicosia (2017), and Budapest (2018). After 20 years, the conference returned to
Slovenia. It was organized at Bled.

ADBIS established itself as a highly recognized conference in Europe in the broad
field of databases and information systems. The conference aims at: (1) providing an
international forum for presenting research achievements on database theory and
practice, development of advanced DBMS technologies, and their applications;
(2) promoting the interaction and collaboration of the database and information systems
research communities both within European and with the rest of the world; (3) offering
a forum for a less formal exchange of research ideas by means of affiliated workshops;
and (4) providing guidance, motivation, and feedback for young researchers from all
over the world by means of a doctoral consortium.

This volume contains 27 full research papers from the main conference, which were
selected by the international Program Committee in a tough reviewing process out of a
total of 103 submissions (acceptance rate 26%). The selected full papers span a wide
spectrum of topics related to the ADBIS conference from different areas of research in
database and information systems technologies and their advanced applications from
theoretical foundations to optimizing index structures. Major focal areas are data
mining and machine learning, data warehouses and big data technologies, semantic
data processing, and data modeling.

We would like to express our sincere gratitude to everyone who contributed to make
ADBIS 2019 successful:

– All the organizers of the previous ADBIS workshops and conferences. They made
ADBIS a valuable trademark and we are proud to continue their work.

– The authors, who submitted papers of high quality to the conference.
– The members of the international Program Committee for dedicating their time and

expertise for assuring the high quality of the program.
– The members of ADBIS Steering Committee for proven trust and conferred orga-

nization of the conference.
– Springer for publishing these proceedings.
– Last but not least, to all the helping hands from the webmaster, programmers to

technicians and administration without whom the organization of such a conference
would not be possible.

– Finally, we would like to express our special thanks to the local chair, Lili Nemec
Zlatolas, for her continuous and coordinating activities that ensured the success of
ADBIS 2019.

July 2019 Tatjana Welzer
Johann Eder

Vili Podgorelec
Aida Kamišalić Latifić

vi Preface

Organization

Steering Committee Chair

Yannis Manolopoulos Open University of Cyprus, Cyprus

Steering Committee

Ladjel Bellatreche Laboratory of Computer Science and Automatic
Control for Systems, France

Andras Benczur Eötvös Loránd University, Hungary
Maria Bielikova Slovak University of Technology, Slovakia
Barbara Catania University of Genoa, Italy
Johann Eder Alpen-Adria-Universität Klagenfurt, Austria
Theo Haerder University of Kaiserslautern, Germany
Mirjana Ivanović University of Novi Sad, Serbia
Hannu Jaakkola Tampere University, Finland
Marite Kirikova Riga Technical University, Latvia
Yannis Manolopoulos Open University of Cyprus, Cyprus
Rainer Manthey University of Bonn, Germany
Manuk Manukyan Yerevan State University, Armenia
Tadeusz Morzy Poznan University of Technology, Poland
Pavol Navrat Slovak University of Technology, Slovakia
Boris Novikov Saint Petersburg State University, Russia
George Angelos

Papadopoulos
University of Cyprus, Cyprus

Jaroslav Pokorny Charles University in Prague, Czech Republic
Boris Rachev Technical University of Varna, Bulgaria
Bernhard Thalheim Kiel University, Germany
Goce Trajcevski Iowa State University of Science and Technology, USA
Tatjana Welzer University of Maribor, Slovenia
Robert Wrembel Poznan University of Technology, Poland
Ester Zumpano Università Della Calabria, Italy

Program Committee Chairs

Johann Eder Alpen-Adria-Universität Klagenfurt, Austria
Vili Podgorelec University of Maribor, Slovenia

Program Committee

Syed Sibte Raza Abidi Dalhousie University, Halifax, Canada
Bernd Amann Sorbonne Université, France
Costin Badica University of Craiova, Romania
Marko Bajec University of Ljubljana, Slovenia
Rodrigo Coelho Barros Pontifícia Universidade Católica do Rio Grande do Sul,

Brazil
Andreas Behrend University of Bonn, Germany
Ladjel Bellatreche LIAS/ENSMA, France
András Benczúr Eötvös Loránd University, Hungary
Maria Bielikova Slovak University of Technology in Bratislava,

Slovakia
Nikos Bikakis University of Ioannina, Greece
Zoran Bosnić University of Ljubljana, Slovenia
Dražen Brdjanin University of Banja Luka, Bosnia and Herzegovina
Albertas Caplinskas Vilnius University, Lithuania
Christos Doulkeridis University of Piraeus, Greece
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Markus Endres University of Passau, Germany
Werner Esswein TU Dresden, Germany
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Jānis Grabis Riga Technical University, Latvia
Francesco Guerra Università di Modena e Reggio Emilia, Italy
Giancarlo Guizzardi Federal University of Espirito Santo, Brazil
Hele-Mai Haav Tallinn University of Technology, Estonia
Theo Härder TU Kaiserslautern, Germany
Tomáš Horváth Eötvös Loránd University, Hungary
Marko Hölbl University of Maribor, Slovenia
Andres Iglesias University of Cantabria, Spain
Mirjana Ivanović University of Novi Sad, Serbia
Hannu Jaakkola Tampere University, Finland
Lili Jiang Umea University, Sweden
Aida Kamišalić Latifić University of Maribor, Slovenia
Mehmed Kantardzic University of Louisville, USA
Dimitris Karagiannis University of Vienna, Austria
Sašo Karakatič University of Maribor, Slovenia
Zoubida Kedad University of Versailles, France
Marite Kirikova Riga Technical University, Latvia
Attila Kiss Eötvös Loránd University, Hungary
Margita Kon-Popovska Ss. Cyril and Methodius University in Skopje,

North Macedonia
Harald Kosch Universität Passau, Germany
Michal Kratky VSB-Technical University of Ostrava, Czech Republic
Ralf-Detlef Kutsche TU Berlin, Germany

viii Organization

Julius Köpke Alpen Adria Universität Klagenfurt, Austria
Dejan Lavbič University of Ljubljana, Slovenia
Sebastian Link The University of Auckland, New Zealand
Audrone Lupeikiene Vilnius University, Lithuania
Federica Mandreoli University of Modena, Italy
Yannis Manolopoulos Open University of Cyprus, Cyprus
Manuk Manukyan Yerevan State University, Armenia
Karol Matiasko University of Žilina, Slovakia
Goran Mauša University of Rijeka, Croatia
Bálint Molnár Eötvös University of Budapest, Hungary
Angelo Montanari University of Udine, Italy
Tadeusz Morzy Poznan University of Technology, Poland
Boris Novikov St. Petersburg University, Russia
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Andreas Oberweis Karlsruhe Institute of Technology, Germany
Andreas L Opdahl University of Bergen, Norway
Eneko Osaba TECNALIA Research & Innovation, Spain
Odysseas Papapetrou Eindhoven University of Technology, The Netherlands
András Pataricza Budapest University of Technology and Economics,

Czech Republic
Tomas Pitner Masaryk University, Czech Republic
Vili Podgorelec University of Maribor, Slovenia
Jaroslav Pokorný Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
Boris Rachev Technical University of Varna, Bulgaria
Miloš Radovanović University of Novi Sad, Serbia
Heri Ramampiaro Norwegian University of Science and Technology,

Norway
Stefano Rizzi University of Bologna, Italy
Peter Ruppel Technische Universität Berlin, Germany
Gunter Saake University of Magdeburg, Germany
Petr Saloun VSB-TU Ostrava, Czech Republic
José Luis Sánchez de

la Rosa
University of La Laguna, Spain

Shiori Sasaki Keio University, Japan
Kai-Uwe Sattler TU Ilmenau, Germany
Miloš Savić University of Novi Sad, Serbia
Timos Sellis Swinburne University of Technology, Australia
Bela Stantic Griffith University, Australia
Kostas Stefanidis Tampere University, Finland
Claudia Steinberger Alpen-Adria-Universität Klagenfurt, Austria
Sergey Stupnikov Russian Academy of Sciences, Russia
Bernhard Thalheim Kiel University, Germany
Raquel Trillo-Lado Universidad de Zaragoza, Spain
Muhamed Turkanović University of Maribor, Slovenia

Organization ix

Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania
Goran Velinov Ss. Cyril and Methodius University, North Macedonia
Peter Vojtas Charles University Prague, Czech Republic
Isabelle Wattiau ESSEC and CNAM, France
Tatjana Welzer University of Maribor, Slovenia
Robert Wrembel Poznan University of Technology, Poland
Jaroslav Zendulka Brno University of Technology, Czech Republic

Additional Reviewers

Nabila Berkani
Dominik Bork
Andrea Brunello
Loredana Caruccio
Stefano Cirillo
Victoria Döller
Peter Gašpar
Sandi Gec
Yong-Bin Kang
Selma Khouri

Haridimos Kondylakis
Ilya Makarov
Riccardo Martoglia
Matteo Paganelli
Marek Rychlý
Victor Sepulveda
Paolo Sottovia
Nicola Vitacolonna
Farhad Zafari

General Chair

Tatjana Welzer University of Maribor, Slovenia

Honorary Chair

Ivan Rozman University of Maribor, Slovenia

Proceedings Chair

Aida Kamišalić Latifić University of Maribor, Slovenia

Workshops Chairs

Robert Wrembel Poznan University of Technology, Poland
Mirjana Ivanović University of Novi Sad, Serbia
Johann Gamper Free University of Bozen-Bolzano, Italy

Doctoral Consortium Chairs

Jerome Darmont Université Lumière Lyon 2, France
Mikolay Morzy Poznan University of Technology, Poland
Theodoros Tzouramanis University of the Aegean, Greece

x Organization

Local Chair

Lili Nemec Zlatolas University of Maribor, Slovenia

Organizing Committee

Marko Hölbl University of Maribor, Slovenia
Luka Hrgarek University of Maribor, Slovenia
Aida Kamišalić Latifić University of Maribor, Slovenia
Marko Kompara University of Maribor, Slovenia
Lili Nemec Zlatolas University of Maribor, Slovenia
Tatjana Welzer University of Maribor, Slovenia
Borut Zlatolas University of Maribor, Slovenia

Organization xi

Abstracts of Invited Talks

Location-in-Time Data: Compression
vs. Augmentation

Goce Trajcevski

Department of Electrical and Computer Engineering, Iowa State University,
Ames, IA, USA

gocet25@iastate.edu

1 Introduction and Motivation

Data compression aims at devising efficient methodologies for a compact representa-
tion of information [6, 12]. The “raw” information can be a plain text file, numeric
descriptors of images/video, social networks, etc. – and one can rely on properties
of the structure, semantics, etc., when developing the methodologies for making the
underlying representation more compact. While the process is something in-between a
science and an art, broadly, data compression is a methodology that takes a dataset D1

with a size b as an input, and produces a dataset D0
1 as a representation of D1 and

having a size b0, where b0\\b.
The location-in-time data – equivalently, Spatio-temporal Data – is essential in

multiple applications of societal relevance, arises in variety of contexts, and is gen-
erated by many heterogeneous sources. Its management gave rise to the fields of
Spatio-temporal and Moving Objects Databases (MOD) [3, 9, 10]. The natural quest
for compressing such data stems from several facts of life: (1) The GPS-obtained
locations of the smart phone users alone generate O(Peta-Bytes) per year – and it is
projected that the size of that location data could increase up to 400 times if cell-tower
locations are included [8]; (2) daily travel in the US averages 11 billion miles a day
(approximately 40 miles per person), and 87% of them take place in personal vehicles –
thus, samples from vehicles generated every 10 seconds produce an amount of approx.
275TB daily [7, 11].

2 Contemporary Trends and Challenges

Location-based Social Networks (LBSNs) such as Instagram and Twitter generate large
scale geo-spatial datasets capturing human behavior at unprecedented volume and level
of detail [2]. This spurred the paradigm of semantic/activity trajectories [4, 13]. While
providing a semantic enrichment to the location-in-time information, in majority of

Goce Trajcevski—Research supported by NSF grants III-1823279 and CNS-1823267.

applications there is the problem of sparsity of a user-location check-ins. For example,
the sparsity of the Gowalla dataset [1] is about 99.98% [15].

One of the popular application domains with high societal relevance is the Point of
Interest (PoI) recommendation [5]. In this realm, both the location-in-time and semantic
data need to be consideres “in = concert”, in order to learn the impact of the transitions
across different contexts over time [14].

After the broad introduction, this talk will have three distinct portions: (i) trajec-
tories data compression; (ii) semantic/activity trajectories; (iii) PoI recommendation via
fusing the sparse location data with the semantic data.

References

1. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based
social networks. In: ACM SIGKDD (2011)

2. Deville, P., Song, C., Eagle, N., Blondel, V.D., Barabási, A.L., Wang, D.: Scaling identity
connects human mobility and social interactions. In: Proceedings of the National Academy of
Sciences of the United States of America (PNAS) (2016)

3. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann (2005)
4. Güting, R.H., Valdés, F., Damiani, M.L.: Symbolic trajectories. ACM Trans. Spat. Algo-

rithms Syst. 1(2), 7 (2015)
5. He, J., Li, X., Liao, L.: Category-aware next point-of-interest recommendation via listwise

bayesian personalized ranking. In: IJCAI (2017)
6. Hirschberg, D., Lelewer, D.A.: Data compression. Comput. Surv. 19(3) (1987)
7. Jang, J., Kim, H., Cho, H.: Smart roadside server for driver assistance and safety warning:

framework and applications. In: CUTE 2010, pp. 1–5, December 2010
8. Mckinsey Global Institute: Big Data: The Next Frontier for Innovation, Competition, and

Productivity (2011)
9. Mokbel, M.F., Aref, W.G.: SOLE: scalable on-line execution of continuous queries on

spatio-temporal data streams. VLDB J. 17(5), 971–995 (2008)
10. Di Pasquale, A., et al.: Access methods and query processing techniques. In: Sellis, T.K.,

et al. (eds.) Spatio-Temporal Databases. LNCS, vol. 2520, pp. 203–261. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45081-8_6

11. Radaelli, L., Moses, Y., Jensen, C.S.: Using cameras to improve wi-fi based indoor posi-
tioning. In: Pfoser, D., Li, K.J. (eds.) W2GIS 2014. LNCS, vol 8470, pp. 166–183. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55334-9_11

12. Sayood, K.: Introduction to Data Compression. Morgan Kauffman (1996)
13. Zheng, K., Zheng, B., Xu, J., Liu, G., Liu, A., Li, Z.: Popularity-aware spatial keyword

search on activity trajectories. World Wide Web 20(4), 749–773 (2017)
14. Zhou, F., Yin, R., Zhang, K., Trajcevski, G., Zhong, T., Wu, J.: Adversarial point-of-interest

recommendation. In: The World Wide Web Conference, WWW (2019)
15. Zhuang, C., Yuan, N.J., Song, R., Xie, X., Ma, Q.: Understanding people lifestyles: con-

struction of urban movement knowledge graph from gps trajectory. In: IJCAI (2017)

xvi G. Trajcevski

https://doi.org/10.1007/978-3-540-45081-8_6
https://doi.org/10.1007/978-3-642-55334-9_11

Evolution of Data Management Systems: State
of the Art and Open Issues

Abdelkader Hameurlain

Informatics Research Institute of Toulouse IRIT, Paul Sabatier University,
118, Route de Narbonne, 31062 Toulouse Cedex, France

abdelkader.hameurlain@irit.fr

Abstract. The purpose of this talk is to provide a comprehensive state of the art
concerning the evolution of data management systems from uniprocessor file
systems to Big Data Management Systems (BDMS) in cloud environments. In
the landscape of database management systems, data analysis systems (OLAP)
and transaction processing systems (OLTP) are separately managed. The rea-
sons for this dichotomy are that both systems have very different functionalities,
characteristics and requirements. The talk will focus on the first class OLAP
systems. In this perspective, firstly, I introduce the main problems of data
management systems DMS. Then, for each environment (e.g. uniprocessor,
parallel, distributed, cloud computing), I describe synthetically, the underlying
concepts and the main characteristics of the proposed DMS. I also explain the
relationships between those DMS. In addition, data management based on
parallel and cloud systems (i.e., Parallel Relational DBMS versus BDMS) are
overviewed and compared by relying on fundamental criterion such as software
requirements (Data Independence, Software Reuse), High Performance, Data
Availability, Fault-Tolerance, Scalability and Elasticity. I point out their
advantages and weaknesses, and the reasons for which the relevant choice of a
DMS is very hard. Also, I try to learn some lessons, particularly how can the
evolution of these systems help for big data applications? Lastly, I point out
some open issues that should be tackled to ensure the viability of the next
generation of large-scale data management systems for big data applications.

Keywords: Big Data Management � Data partitioning � Data integration �
Parallel database systems � Cloud data management systems � Query processing
and optimization � High performance � Scalability � Elasticity � Hadoop
MapReduce � Spark � Multistore systems

References

1. Abadi, D. et al.: The Beckman report on database research. Commun. ACM 59(2), 92–99
(2016)

2. Agrawal, D., El Abbadi, A., Ooi, B.C., Das, S., Elmore, A.J.: The evolving landscape of data
management in the cloud. IJCSE 7(1), 2–16 (2012)

3. Babu, S., Herodotou H.: Massively parallel databases and MapReduce systems. Found.
Trends Databases 5(1), 1–104 (2013)

4. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance database
systems. Commun. ACM 35(6), 85–98 (1992)

5. DeWitt, D.J., et al.: Split query processing in polybase. In: ACM SIGMOD Conference,
New York, NY, USA, 22–27 June, pp. 1255–1266 (2013)

6. Duggan, J., Elmore, A., Stonebraker, M., et. al.: The BigDAWG polystore system.
ACM SIGMOD Rec. 44(2), 11–16 (2015)

7. Gray, J.: Evolution of data management. IEEE Comput. 29(10), 38–46 (1996)
8. Hameurlain, A., Morvan, F.: An optimization method of data communication and control for

parallel execution of SQL queries. In: Mařík, V., Lažanský, J., Wagner, R.R. (eds.) DEXA
1993. LNCS, vol. 720, pp. 301–312. Springer, Heidelberg (1993). https://doi.org/10.1007/3-
540-57234-1_27

9. Hameurlain, A., Morvan, F.: Scheduling and mapping for parallel execution of extended
SQL queries. In: CIKM ’95, November 28 – December 2 1995, Baltimore, Maryland, USA,
pp. 197–204 (1995)

10. Hameurlain, A., Morvan, F.: Big data management in the cloud: evolution or crossroad? In:
Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.)
BDAS 2015, BDAS 2016. CCIS, vol. 613, pp. 23–38. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-34099-9_2

11. Hong, W.: Exploiting inter-operation parallelism in XPRS. In: ACM SIGMOD, San Diego,
California, 2–5 June 1992, pp. 19–28 (1992)

12. Indrawan-Santiago, M.: Database research: are we at a crossroad? Reflection on NoSQL. In:
NBiS 2012, Melbourne, Australia, 26–28 September 2012, pp. 45–51 (2012)

13. Lee, K., Lee, Y., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with mapreduce:
a survey. SIGMOD Rec. 40(4), 11–20 (2011)

14. Lu, H., Tan, K.L., O., B.-C.: Query processing in parallel relational database systems.
IEEE CS Press (1994)

15. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, Third Edition.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-8834-8. ISBN
978-1-4419-8833-1

16. Pietri, I., Chronis, Y., Ioannidis, Y.: Fairness in dataflow scheduling in the cloud. Inf. Syst.
83, 118–125 (2019)

17. Schneider, D.A., DeWitt, D.J.: Tradeoffs in processing complex join queries via hashing in
multiprocessor database machines. In: VLDB Conference, 13–16 August 1990, Brisbane,
Queensland, Australia, pp. 469–480 (1990)

18. Stonebraker, M., et al.: Mapreduce and parallel DBMSs: friends or foes? Commun. ACM 53
(1), 64–71 (2010)

19. Thusoo, A., et al.: Hive - a petabyte scale data warehouse using hadoop. In: IEEE ICDE
Conference, 1–6 March 2010, Long Beach, California, USA, pp. 996–1005 (2010)

20. Tos, U., Mokadem, R., Hameurlain, A., Ayav, T., Bora S.: Ensuring performance and
provider profit through data replication in cloud systems. Clust. Comput. J. Netw. Softw.
Tools Appl. 21(3), 1479–1492 (2017). Springer, USA

21. Trummer, I., Koch, C.: Multi-objective parametric query optimization. VLDB J. 26(1), 107–
124 (2017)

22. Yin, S., Hameurlain, A., Morvan, F.: Robust query optimization methods with respect to
estimation errors: a survey. SIGMOD Rec. 44(3), 25–36, (2015). ACM Press

23. Yin, S., Hameurlain, A., Morvan, F.: SLA definition for multi-tenant DBMS and its impact
on query optimization. IEEE TKDE 30(11), 2213–2226 (2018)

24. Valduriez, P.: Parallel database systems: open problems and new issues. Distrib. Parallel
Databases 1(2), 137–165 (1993)

xviii A. Hameurlain

https://doi.org/10.1007/3-540-57234-1_27
https://doi.org/10.1007/3-540-57234-1_27
https://doi.org/10.1007/978-3-319-34099-9_2
https://doi.org/10.1007/978-3-319-34099-9_2
https://doi.org/10.1007/978-1-4419-8834-8

Semantic Relational Learning

Nada Lavrač1,2

1 Jožef Stefan Institute, Ljubljana, Slovenia
nada.lavrac@ijs.si

2 University of Nova Gorica, Vipava, Slovenia

Abstract. Relational Data Mining (RDM) addresses the task of inducing models
or patterns from multi-relational data. One of the established approaches to
RDM is propositionalization, characterized by transforming a relational database
into a single-table representation. The talk provides an overview of proposi-
tionalization algorithms, and a particular approach named wordification, all of
which have been made publicly available through the web-based ClowdFlows
data mining platform. This talk addresses also Semantic Data Mining, charac-
terized by exploiting domain ontologies in the process of model and pattern
construction, which are available through the ClowdFlows platform to enable
software reuse and experiment replication. The talk concludes by presenting the
recent developments, which allow to speed up Semantic Relational Learning by
data preprocessing using network analysis approaches.

Keywords: Relational learning � Semantic data mining � Propositionalization

Relational Learning and Semantic Data Mining

Standard machine learning and data mining algorithms induce hypotheses in the form
of models or propositional patterns learned from a given data table, where one example
corresponds to a single row in the table. Most types of propositional models and
patterns have corresponding relational counterparts, such as relational classification
rules, relational regression trees, relational association rules. Inductive Logic Pro-
gramming (ILP) and Relational Data Mining (RDM) algorithms can be used to induce
such relational models and patterns from multi-relational data, e.g., data stored in a
relational database.

Problems characterized by multiple relations can be tackled in two different ways:
(1) by using a relational learner such as Progol [3] or Aleph [5], which can build a
model or induce a set of patterns directly, or (2) by constructing and using complex
relational features to transform the relational representation into a propositional format
and then applying a propositional learner on the transformed single-table representa-
tion. This approach is called propositionalization [1].

Extensive description of a number of propositionalization algorithms and their
experimental evaluation is presented in [4]. In order to make the use of proposition-
alization algorithms easier for non-experts, as well as to make the experiments
shareable and repeatable, a number of freely available propositionalization methods

were wrapped as reusable components in the web-based data mining platform
ClowdFlows [2], together with the utilities for working with a relational database
management system (RDBMS).

A recent relational learning setting, referred to as semantic relational learning or
semantic data mining (SDM), is characterized by exploiting relational background
knowledge in the form of domain ontologies in the process of model and pattern
construction. The development of SDM techniques is motivated by the availability of
large amounts of knowledge and semantically annotated data in all domains of science,
and biology in particular, posing requirements for new data mining approaches which
need to deal with increased data complexity, the relational character of semantic rep-
resentations, as well as the reasoning capacities of the underlying ontologies. An
example SDM system Hedwig [6] performs semantic subgroup discovery by taking
into account background knowledge in the form of RDF triplets and by using a search
mechanism tailored to exploit the hierarchical nature of ontologies.

Acknowledgments. This work was supported by ARRS funded research program Knowledge
Technologies (grant number P2-0103) and SDM-Open-SLO project Semantic Data Mining for
linked open data (grant number N2-0078).

References

1. Kramer, S., Pfahringer, B., Helma, C.: Stochastic propositionalization of non-determinate
background knowledge. In: Page, D. (ed.) ILP 1998. LNCS, vol 1446, pp. 80–94. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0027312

2. Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: a cloud based scientific workflow plat-
form. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS, vol 7524,
pp. 816–819. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_54

3. Muggleton, S.: Inverse entailment and Progol. New Gen. Comput. 13(3–4), 245–286 (1995).
Special issue on Inductive Logic Programming

4. Perovšek, M., Vavpetič, A., Kranjc, J., Cestnik, B., Lavrač, N.: Wordification: proposition-
alization by unfolding relational data into bags of words. Expert Syst. Appl. 42(17–18), 6442–
6456 (2015)

5. Srinivasan, A.: Aleph manual, March 2007. http://www.cs.ox.ac.uk/activities/
machinelearning/Aleph/

6. Vavpetič, A., Novak, P.K., Grčar, M., Mozetič, I., Lavrač, N.: Semantic data mining of
financial news articles. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS,
vol 8140, pp. 294–307. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40897-7_20

xx N. Lavrač

https://doi.org/10.1007/BFb0027312
https://doi.org/10.1007/978-3-642-33486-3_54
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/
http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/
https://doi.org/10.1007/978-3-642-40897-7_20
https://doi.org/10.1007/978-3-642-40897-7_20

Contents

Data Mining

Unsupervised Artificial Neural Networks for Outlier Detection
in High-Dimensional Data . 3

Daniel Popovic, Edouard Fouché, and Klemens Böhm

Improving Data Reduction by Merging Prototypes 20
Pavlos Ponos, Stefanos Ougiaroglou, and Georgios Evangelidis

Keys in Relational Databases with Nulls and Bounded Domains 33
Munqath Alattar and Attila Sali

Machine Learning

ILIME: Local and Global Interpretable Model-Agnostic Explainer
of Black-Box Decision. 53

Radwa ElShawi, Youssef Sherif, Mouaz Al-Mallah, and Sherif Sakr

Heterogeneous Committee-Based Active Learning for Entity
Resolution (HeALER) . 69

Xiao Chen, Yinlong Xu, David Broneske, Gabriel Campero Durand,
Roman Zoun, and Gunter Saake

Document and Text Databases

Using Process Mining in Real-Time to Reduce the Number
of Faulty Products. 89

Zsuzsanna Nagy, Agnes Werner-Stark, and Tibor Dulai

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs . . . 105
Billel Aklouche, Ibrahim Bounhas, and Yahya Slimani

Big Data

Workload-Awareness in a NoSQL-Based Triplestore 123
Luiz Henrique Zambom Santana and Ronaldo dos Santos Mello

nativeNDP: Processing Big Data Analytics on Native Storage Nodes. 139
Tobias Vinçon, Sergey Hardock, Christian Riegger, Andreas Koch,
and Ilia Petrov

Calculating Fourier Transforms in SQL . 151
Dennis Marten, Holger Meyer, and Andreas Heuer

Novel Applications

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes. 169
Paolo Sottovia, Matteo Paganelli, Francesco Guerra,
and Yannis Velegrakis

Web-Navigation Skill Assessment Through Eye-Tracking Data 186
Patrik Hlavac, Jakub Simko, and Maria Bielikova

Ontologies and Knowledge Management

Updating Ontology Alignment on the Concept Level Based on Ontology
Evolution . 201

Adrianna Kozierkiewicz and Marcin Pietranik

On the Application of Ontological Patterns for Conceptual Modeling
in Multidimensional Models . 215

Glenda Amaral and Giancarlo Guizzardi

Process Mining and Stream Processing

Accurate and Transparent Path Prediction Using Process Mining. 235
Gaël Bernard and Periklis Andritsos

Contextual and Behavioral Customer Journey Discovery Using
a Genetic Approach. 251

Gaël Bernard and Periklis Andritsos

Adaptive Partitioning and Order-Preserved Merging of Data Streams. 267
Constantin Pohl and Kai-Uwe Sattler

Data Quality

CrowdED and CREX: Towards Easy Crowdsourcing Quality
Control Evaluation . 285

Tarek Awwad, Nadia Bennani, Veronika Rehn-Sonigo, Lionel Brunie,
and Harald Kosch

Query-Oriented Answer Imputation for Aggregate Queries 302
Fatma-Zohra Hannou, Bernd Amann, and Mohamed-Amine Baazizi

xxii Contents

Optimization

You Have the Choice: The Borda Voting Rule
for Clustering Recommendations. 321

Johannes Kastner and Markus Endres

BM-index: Balanced Metric Space Index Based on Weighted
Voronoi Partitioning . 337

Matej Antol and Vlastislav Dohnal

Theoretical Foundation and New Requirements

ProSA—Using the CHASE for Provenance Management 357
Tanja Auge and Andreas Heuer

ECHOES: A Fail-Safe, Conflict Handling, and Scalable Data
Management Mechanism for the Internet of Things 373

Christoph Stach and Bernhard Mitschang

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 390
Stephen J. Hegner

Data Warehouses

Data Reduction in Multifunction OLAP . 409
Ali Hassan and Patrice Darmon

A Framework for Learning Cell Interestingness from Cube Explorations 425
Patrick Marcel, Veronika Peralta, and Panos Vassiliadis

Towards a Cost Model to Optimize User-Defined Functions in an ETL
Workflow Based on User-Defined Performance Metrics 441

Syed Muhammad Fawad Ali and Robert Wrembel

Author Index . 457

Contents xxiii

Data Mining

Unsupervised Artificial Neural
Networks for Outlier Detection

in High-Dimensional Data

Daniel Popovic(B) , Edouard Fouché , and Klemens Böhm

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
popovic@cognitana.com,{edouard.fouche,klemens.boehm}@kit.edu

Abstract. Outlier detection is an important field in data mining. For
high-dimensional data the task is particularly challenging because of the
so-called “curse of dimensionality”: The notion of neighborhood becomes
meaningless, and points typically show their outlying behavior only in
subspaces. As a result, traditional approaches are ineffective. Because of
the lack of a ground truth in real-world data and of a priori knowledge
about the characteristics of potential outliers, outlier detection should be
considered an unsupervised learning problem. In this paper, we examine
the usefulness of unsupervised artificial neural networks – autoencoders,
self-organising maps and restricted Boltzmann machines – to detect out-
liers in high-dimensional data in a fully unsupervised way. Each of those
approaches targets at learning an approximate representation of the data.
We show that one can measure the “outlierness” of objects effectively, by
measuring their deviation from the learned representation. Our experi-
ments show that neural-based approaches outperform the current state
of the art in terms of both runtime and accuracy.

Keywords: Unsupervised learning · Outlier detection ·
Neural networks

1 Introduction

Outliers are objects that deviate significantly from others as to arouse the suspi-
cion that a different mechanism has generated them [17]. The search for outliers
has interested researchers and practitioners for many years, with applications
such as the detection of fraud or intrusions, and medical diagnosis.

In real-world use cases, the characteristics of outliers are unknown before-
hand. One can only obtain a ground truth with the help of domain experts, who
produce explicit labels on the nature of data points. However, generating this
ground truth is costly or even impossible. In high-dimensional spaces in particu-
lar, objects can be outlying in unexpected ways, which the expert does not notice
during inspection. For example, in aircraft fault diagnostics, thousands of sen-
sors collect huge amounts of in-flight data. The sensors not only collect airplane

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 3–19, 2019.
https://doi.org/10.1007/978-3-030-28730-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_1&domain=pdf
http://orcid.org/0000-0002-5498-1516
http://orcid.org/0000-0003-0157-7648
http://orcid.org/0000-0002-1706-1913
https://doi.org/10.1007/978-3-030-28730-6_1

4 D. Popovic et al.

data (accelerometer, speed sensor, voltage sensors, etc.) but also environmental
or weather data (thermocouple, pressure sensors, etc.) [43]. Since the space of all
valid sensor-value combinations is unknown a priori, it is impossible to discern
between normal and abnormal instances. Thus, one cannot train a classifier in
a supervised way, or even obtain a set of instances labelled as “normal”. The
absence of training data results in a fully unsupervised learning problem.

When the data is high-dimensional, i.e., has hundreds of dimensions, tra-
ditional outlier detectors do not work well at all. This is due to a number of
effects summarized as the “curse of dimensionality” [3,4]. There exists a number
of outlier detectors, which are robust against high dimensionality: ABOD and
FastABOD [30] use the angle between data objects as a deviation measure. HiCS
[24] and approaches by Aggarwal et al. [1], Kriegel et al. [29], Müller et al. [36]
and Nguyen et al. [38,39] propose to assess the outlierness of data points only in
low-dimensional projections of the full space. While these approaches do solve
the problem in high-dimensional spaces to some extent, they often come with
high computational complexity and unintuitive parameters.

Several studies propose to use artificial neural networks (ANNs) for outlier
detection [9,10,15,18,23,34,37]. However, these studies have only considered rel-
atively low-dimensional settings, i.e., fewer than 100 dimensions. Thus, the per-
formance of these approaches in high-dimensional spaces is so far unknown. Next,
they often treat outlier detection as a supervised or semi-supervised problem,
which contradicts our view on it as unsupervised.

According to Bishop [5], discrepancies between the data used for training
and testing is one of the main factors leading to inaccurate results with neural
networks. ANN-based outlier detection approaches make use of this erroneous
behavior on novel data, interpreting the deviations from the expected results –
or “errors” – of the neural networks as an indication for “outlierness”. The idea
is to train the network to learn a good representation of the majority of the data
objects. Since outliers are assumed to be “few and different” [33], the hypothesis
is that they do not fit the representation learned by the model. Thus, one can
detect them by measuring the respective error of the neural network.

To our knowledge, this study is the first to describe and compare the specifics
of a range of ANN models for such an unsupervised detection of outliers in
high-dimensional spaces, together with an extensive empirical evaluation. We
articulate our contributions as follows:

– We describe the principles of three unsupervised ANN-based
approaches for outlier detection, either based on autoencoders (AEs),
self-organizing maps (SOMs) or restricted Boltzmann machines (RBMs).

– We study the effects of different parameter settings for the ANN-
based approaches empirically. Based on this evaluation, we recommend
parameter values to tune each approach for the outlier detection task.

– We compare our approaches to state-of-the-art outlier detectors,
using 26 real-world data sets. The results show a significantly better
detection quality of AE and SOM on most data sets for a reduced runtime.

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 5

– We release our implementation on GitHub1, to ensure the reproducibility
of the experiments and further use of the algorithms.

Paper outline: Sect. 2 features the related work. Section 3 presents our adap-
tion of three families of ANNs for outlier detection. Section 4 is our evaluation.
Section 5 summarizes our results and possible further research questions.

2 Related Work

2.1 High-Dimensional Outlier Detection

Numerous approaches exist to detect outliers in high-dimensional spaces. One
can classify them as density-based [1,36], deviation-based [29,35], distance-based
[38] or angle-based [30]. Other approaches, such as Isolation Forest [33], use
decision tree ensembles to identify outliers. Alternatively, HiCS [24] decouples
the search for subspaces from the actual outlier ranking.

Although methods explicitly targeting at high-dimensional data yield better
results than most traditional methods, they come with certain drawbacks. First,
most methods have high computational complexity and therefore do not scale
well to large data sets. Second, each of these detectors requires at least one
parameter, and the detection quality strongly depends on the parameter values
for a given data set, as observed in [8]. There is little or no indication on how
to choose suitable parameter values for these detectors. We in turn provide
recommendations for suitable values for the approaches we investigate.

As an example, the time complexity of the original ABOD algorithm is in
O(n3), which is not efficient with large data sets [30]. Even though there exists a
faster version, FastABOD [30], with complexity in O(n2 + nk2), the complexity
remains quadratic with the number of objects, and determining a “good” value
for parameter k is not straightforward.

2.2 ANNs for Outlier Detection

There also exists a number of approaches based on artificial neural networks.
Japkowicz et al. [23] and Hawkins et al. [18] propose approaches based on the
Autoencoder, sometimes named Replicator Neural Network. The work was fol-
lowed by [9,12,34]. Muñoz and Muruzábal [37] were the first to propose an
approach based on SOM and Sammon’s mapping [45]. Fiore et al. [15] use the
RBM to detect outliers in a semi-supervised way, as well as [10]. However, each
of these contributions has at least one of the following issues:

– Low-dimensional: The evaluation of the approach is restricted to data with
few dimensions, i.e., typically less than 100.

– (Semi-)supervised: Outlier detection operates only in a supervised or semi-
supervised way, so that the unsupervised setting remains unaddressed.

1 https://github.com/Cognitana-Research/NNOHD.

https://github.com/Cognitana-Research/NNOHD

6 D. Popovic et al.

– Specialized: The approach is tailored to a specific scenario, such as time
series, or assumes the availability of prior knowledge, i.e., it is not applicable
to the general outlier detection problem.

To our knowledge, the effectiveness of ANNs for general outlier detection is
unknown so far in high-dimensional spaces under the unsupervised setting. In
this work we correct this and compare ANN-based models to the state-of-the-art.

3 ANN-Based Approaches

3.1 Requirements and General Idea

Any method mentioned in Sect. 2 comes with at least one disadvantage for high-
dimensional outlier detection. Given this, we formulate requirements on new
methods for the detection of outliers in high-dimensional spaces:

– R1: Accuracy. Superior outlier detection results in high-dimensional spaces,
compared to existing approaches.

– R2: Runtime. Low computational burden, which allows the deployment of
the method on high-dimensional data.

– R3: Parameterization. Small range of possible parameter values. Ide-
ally, one should be able to derive default parameter values for high outlier-
detection quality or recommendations for parameter-value selection a priori.

We show that ANN-based models fulfill these requirements. We only con-
sider unsupervised ANN models and focus on the three main families: autoen-
coders (AEs), self-organizing maps (SOMs), and restricted Boltzmann machines
(RBMs).

Unsupervised approaches have in common that they learn a representation of
the data. One can measure the deviation of each object from this representation
and use it as a score of the “outlierness” of this object. The implicit assumption
here is that outliers are “few and different”, so that they do not fit the learned
representation and have a greater outlier score OS:

OS(xinlier) < OS(xoutlier) (1)

This score in turn determines a “confidence” that a given point x is an
outlier: The higher the score, the higher this confidence. Note that, as a standard
preprocessing step, one may scale the values of each dimension for each data set
to [0, 1]. This limits the effect of different scales in different dimensions.

3.2 Autoencoder

Model Description. The autoencoder (AE) is a multi-layer neural network
that learns a lower-dimensional representation of a data set, from which this
data can be reconstructed approximately [6,21]. To achieve this, the AE has an
input and an output layer, with a number of neurons n that matches the number

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 7

of dimensions in the data set, and one or more hidden layers with different
numbers of neurons mi, mi �= n. It is a combination of an encoder part that
transforms the data into a representation called the code and a decoder part
that transforms the code back to the original data space. Figure 1(a) graphs the
typical AE architecture.

In general, no transformation exists that leads to a perfect reconstruction of
all data objects. As a result, the output of the AE is an approximate reconstruc-
tion of the input data.

Fig. 1. ANN architectures

The encoder and decoder can be represented as functions y = e(x) and
x̂ = d(y) with x, x̂ ∈ R

n, y ∈ R
m, which are learned in order to minimize the

sum of the squared error of the reconstruction

argmine,d‖x − d (e(x))‖2 (2)

Our Outlier Detection Approach. For the outlier detection we use an AE
with one hidden layer using the so-called ReLU activation function [16] for the
hidden layer, and the sigmoid activation function for the output layer. Such
a design choice is considered standard, as it alleviates the so-called vanishing
gradient problem [22] and gives way to fast computation [31].

The number of neurons in the hidden layer is set to a fraction of the number
of dimensions in the data set examined. We call this parameter the encoding
factor ε. Learning the weights of the model is done via the widely-known back-
propagation algorithm [25,32], with the AdaDelta gradient optimizer [51], in a
number ne of training epochs. Since the data is scaled to [0, 1], we use the binary
cross entropy loss function [44] between the input i and the output o, defined as

l(i,o) = −(i lno + (1 − i) ln (1 − o)) (3)

As stated above, the AE learns an approximated reconstruction of the input
data. The expectation is that the reconstruction of “abnormal” objects will be
less accurate than for “normal” objects. We use the outlier score OSAE of an

8 D. Popovic et al.

object x as the Euclidean distance between its actual values xj and its recon-
struction x̂j , similarly as in [18]:

OSAE(x) =
n∑

j=1

√
(xj − x̂j)2 (4)

3.3 Self-Organising Maps

Model Description. A Self-Organising Map (SOM), also known as Kohonen
network, is an ANN traditionally used for dimensionality reduction and visual-
ization of high-dimensional data [26,27]. It is a projection from an n-dimensional
set of data objects to a low-dimensional, usually two- or three-dimensional, grid.
A neuron with an n-dimensional weight vector is associated with each node in the
grid. In the two-dimensional case, the SOM consists of a p×q neuron matrix with
neurons described by their weights wij , i ∈ {1, . . . , p}, j ∈ {1, . . . , q}. Figure 1(b)
illustrates the architecture of a SOM.

Training using a n-dimensional data set X = {x1, . . . , xm} consists of ne

epochs with m training steps per epoch, in total T = ne ∗ m training steps. We
let wij(t) denote the weight vectors after the tth training step, wij(0) the initial
weight vectors, α(t) a learning rate decreasing with t and hij,cd(t) a neighborhood
function for neurons wij and wcd, instantiated as a smoothing kernel whose width
decreases with t. We use a Gaussian neighborhood kernel.

Training the SOM is done by finding for each data object xk the neuron that
has the closest distance, usually the Euclidean distance, to this data object, also
called the best matching unit (BMU), and updating the weight vector of each
neuron as follows:

wij(t + 1) = wij(t) + α(t)hij,cd(t)(xk − wij(t)) (5)

So the weight vectors of the BMU and its neighboring neurons in the grid are
moved closer to the data object, and we repeat this process iteratively.

Our Outlier Detection Approach. Our approach is based on the idea that
the trained SOM forms a map that is adjusted to the majority of data objects.
Outliers are assumed to be located farther away from their BMUs than inliers.

As is common in the literature, we use a 2-dimensional SOM with n rows
and columns, where n is called the topology size. We initialize the weights by
selecting the first two subspaces spanned by the first two eigenvectors of the
correlation matrix, as in [2,11].

The number of training epochs ne is a parameter that has an effect on out-
lier detection quality. The outlier score for the SOM, OSSOM, is the Euclidean
distance of a data object to its BMU. We refer to the BMU for object x as bmux.

OSSOM(x) =
n∑

j=1

√
(xj − bmuxj

)2 (6)

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 9

3.4 Restricted Boltzmann Machine

Model Description. The restricted Boltzmann machine (RBM) is a stochastic
ANN that learns a probability distribution over a training data set. It is a special
case of the Markov random field [20,49]. The RBM consists of a layer of n
“visible” neurons vi and a layer of m “hidden” neurons hj that form a bipartite
graph with a connection weight matrix Wn×m = (wij)n×m, a bias vector a =<
ai >i∈N[1,n] for the visible neurons and a bias vector b =< bj >j∈N[1,m] for the
hidden neurons. The probability distribution is defined using the energy function

E(v,h) = −aTv − bTh − vTWh (7)

which assigns a scalar energy to each configuration, i.e., to each pair of visible
and hidden neuron values. A high energy for a configuration corresponds to a
low probability of that configuration to appear in the model. The objective of
the training is to find a configuration of weights and biases that lead to a high
probability for the training data objects and a low probability for other data.
So the energy for data objects from the training data set is sought to be mini-
mized in the training process. Using the gradient descent algorithm to minimize
this objective function would involve the computation of the expectation over
all possible configurations of the input data object, which is not feasible in prac-
tice. Hence, the training usually is performed with the contrastive divergence
algorithm [19] using Gibbs sampling, which approximates the gradient descent.
This algorithm simplifies and speeds up training compared to gradient descent.
It performs three learning steps on each training data object. First, all hidden
units are updated in parallel from the training data object at the visible neurons.
Then, the visible neurons are updated in parallel to get a reconstruction of the
training data object. Finally, the hidden neurons are updated in parallel again.
Figure 1(c) illustrates the architecture of a RBM.

Our Outlier Detection Approach. We use a RBM with Gaussian visible
neurons. As it assumes that the data is normally distributed, we standardize
each dimension by subtracting the mean and dividing by the standard deviation
as a preprocessing step. After the training, the energy is expected to be low
for normal data objects and high for rare or unknown data objects. The outlier
score for a data object, OSRBM, is its so-called free energy:

OSRBM(x) = −
∑

i

aixi −
∑

i

x2
i

2
+

∑

i

ln
∑

hi

ebi+wix (8)

The proportion δ of hidden units w.r.t. visible units, and the number of
training epochs ne are free parameters. The share of the data set used for training
is referred to as γ.

4 Evaluation

In this section, we pursue two separate evaluations. First, we evaluate the param-
eter ranges of each of our approaches on high-dimensional data. This leads to

10 D. Popovic et al.

the recommendation of “good” parameters. Second, we compare the approaches
against the state of the art and evaluate them using high-dimensional data.

We implement the models in Python 3 using Keras, Tensorflow and the SOM
implementation Somoclu [50]. All experiments run on a quad-core processor at
3.20 GHz with 8 GB RAM. As mentioned earlier, we publish the source code for
our experiments on GitHub2, to ensure reproducibility.

4.1 Parameter Selection

Campos et al. [8] compare various parametrized outlier detection approaches,
with a large range of parameter values. Their results indicate that the entire
parameter-value range is needed to achieve the highest outlier detection qual-
ity over different data sets, and that there exists no obvious way to find good
parameter values a priori for a given data set.

To verify whether this applies to NN-based approaches as well, we investigate
the range of parameter combinations for each approach, based on 26 data sets.
Table 1 lists the characteristics of each data set in the corpus. It contains the
same data sets as in [9] except for KddCup99, for which there are no exact
results in [9], plus an assortment of high-dimensional data sets: Arrhythmia [8],
InternetAds [8], ISOLET [14], MNIST and Musk [42]. Arrhythmia, InternetAds
and ISOLET have several variants with different proportions of outliers. In this
work we present the results for the variants with approximately 2% outliers.
Because of the restricted number of pages, we present the evaluation results for
the other variants in our GitHub repository, evaluating in total 26 data sets.

Table 1. List of evaluated data sets.

Data set Dimensions Data objects Outliers Outlier ratio

Arrhythmia-2 259 248 4 1.61%

Cardio 21 1,831 176 9.61%

Ecoli 7 336 9 2.68%

InternetAds-2 1,555 1,630 32 1.96%

ISOLET-2 617 2,449 50 2.00%

Lympho 18 148 6 4.05%

MNIST 100 7,603 700 9.21%

Musk 166 3,062 97 3.12%

Optdigits 64 5,216 150 2.88%

P53 5,408 16,592 143 0.86%

Pendigits 16 6,870 156 2.27%

Seismic 11 2,584 170 6.58%

Thyroid 6 3,772 93 2.4%

Waveform 21 3,509 166 4.73%

Yeast 8 1,364 65 4.77%

2 https://github.com/Cognitana-Research/NNOHD.

https://github.com/Cognitana-Research/NNOHD

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 11

We evaluate the goodness of each parameter combination on the whole data-
set assortment. The aim of the evaluation is to derive parameters that lead to
results which are best on average. To this end, we define a notion of deviation
Dp that should ideally be minimized:

Dp(A) =
∑

d∈D (Smax
d − Sp

d)
|D| (9)

Intuitively, the deviation Dp of an algorithm A is the average difference between
the best achievable score Smax

d over the parameters p ∈ P and the actual score
Sp
d obtained with parameter combination p for all data sets d ∈ D. In the

end, choosing the parameter combination minimizing Dp means maximizing the
normalized average score for each data set in the assortment. Our hope is that
those parameters will lead to good outlier detection on data sets that are not
part of this assortment as well, so they can be useful to others.

We instantiate the score S as the commonly used ROC AUC. For the AE,
we investigate encoding factors from 0.5 to 0.9 in steps of 0.1. For the SOM,
we use quadratic maps with columns and rows from the range {1, . . . , 20}. We
test the RBM with values for δ, the number of hidden neurons as share of the
visible neurons, of 0.1 to 0.9 in steps of 0.1, and for γ, the share of data used for
training, of 0.1 to 0.9 in steps of 0.1. For all three approaches we use 10, 20, 50,
100 and 1,000 training epochs. The final result for a parameter combination is
computed as the average of 20 runs. As there is no obvious way to select these
parameter values a priori, we test all p ∈ P for each of our approaches in a
brute-force fashion. This results in a total number of 10,500 experiments for the
AE, 42,000 for the SOM, and 170,000 for the RBM.

Table 2 is an excerpt of the parameter evaluation of the AE, SOM and RBM
approaches. The best parameter value for each approach is in boldface, the
parameter values that are within 0.01 of the best result are in gray boldface.
We publish the complete list in our GitHub repository. The evaluation leads to
the following recommendations:

– For the Autoencoder:
• Encoding factor ε = 0.8
• Number of training epochs ne = 20

– For the Self-organizing map:
• Topology size n = 2
• Number of training epochs ne = 10

– For the Restricted Boltzmann machine:
• Proportion of hidden neurons δ = 0.8
• Number of training epochs ne = 100
• Proportion of training data γ = 0.9

Interestingly, the number of training epochs ne minimizing Dp for the ANN-
based approaches is relatively low, between 10 and 20 epochs for AE and SOM
and 100 for RBM, and this observation is consistent even if we vary the encoding
factor ε. This means that, in contrast to other application domains of neural

12 D. Popovic et al.

networks such as image recognition, good outlier detection is feasible with low
computational effort, as few training epochs are required.

We can also see that SOM achieves the best results for very low-dimensional
maps, i.e., only 2 or 3 columns/rows, which also stands for a low computational
burden. For the RBM we notice that the best results are achieved for a larger
number of epochs, namely 100 and 1,000, while the robustness is rather stable
over the number of hidden neurons. Finally, we see that the average deviation
for the large majority of the parameter values is not greater than 5%. Thus, the
performance of neural-based methods seems to be relatively independent from
the chosen parameters, i.e., they fulfill Requirement R3.

Table 2. Parameter evaluation of AE and SOM (excerpt).

Parameters AE SOM Parameters RBM

ε n ne Dε,ne Dn,ne δ ne γ Dδ,ne,γ

0.6 2 10 0.0478 0.0213 0.7 100 0.5 0.1148

0.6 2 20 0.0411 0.0320 0.7 100 0.9 0.0750

0.6 2 100 0.0476 0.0214 0.7 1000 0.5 0.0940

0.6 2 1,000 0.0844 0.0214 0.7 1000 0.9 0.0724

0.7 3 10 0.0501 0.0306 0.8 100 0.5 0.1173

0.7 3 20 0.0412 0.0457 0.8 100 0.9 0.0597

0.7 3 100 0.0527 0.0327 0.8 1000 0.5 0.0905

0.7 3 1,000 0.0788 0.0323 0.8 1000 0.9 0.0701

0.8 4 10 0.0409 0.0390 0.9 100 0.5 0.1027

0.8 4 20 0.0403 0.0500 0.9 100 0.9 0.0734

0.8 4 100 0.0512 0.0535 0.9 1000 0.5 0.0868

0.8 4 1,000 0.0827 0.0545 0.9 1000 0.9 0.0769

4.2 Outlier Detection Quality Evaluation

We now compare our approaches to the state of the art. We consider RandNet [9],
which is – to our knowledge – the most recently published ANN-based contribu-
tion. The authors did not publish their implementation nor enough information
for reproducibility, so we simply compare to the same data sets except for the
41-dimensional KddCup99, and the baseline methods LOF [7], Hawkins [18],
HiCS [24] and LODES [46] as in [9]. The authors also have set k = 5 for LOF
and HiCS, which yields suboptimal results for these approaches. Investigating
all parameter values k in the range k ∈ 1, . . . , 100 for LOF and HiCS, we find
that k = 100 leads to the best results on average. Thus, we repeat the evalua-
tion on these data sets with k = 100 for a fair comparison. We further set HiCS
parameters to M = 50, α = 0.1 and candidate cutoff = 100, which is in line with
the recommendations by the authors [24]. For any competing algorithm, we use
the implementation from ELKI [48].

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 13

Table 3 lists the ROC AUC values for the data sets in [9]. The best values
in the table are highlighted in boldface, values within 1% of the best value are
highlighted in italics. We see that AE and SOM are at least competitive using the
recommended parameter values. SOM even outperforms all approaches in three
data sets. The RBM stands behind for most data sets, only having competitive
results for the Pendigits and Thyroid data sets. Surprisingly, in a few cases (e.g.,
[Optdigits, LODES]), the score falls way below 0.5, i.e., it is worse than random
guessing. We notice that this never occurs with neural-based approaches.

In Table 4, we observe similar results for the high-dimensional data sets
Arrhythmia, ISOLET, MNIST, Musk and P53. We compare our approaches
against LOF [7], HiCS [24], FastABOD [30], LoOP [28]. In addition, we use
one-class SVM [47] and KNN Outlier [41] with k = 1 as a baseline. AE and
SOM yield the highest ROC AUC for 4 of 6 data sets. For the ISOLET data set
where LOF has the highest ROC AUC, AE and SOM are within reach of the
best results. Only for InternetAds, which consists only of binary attributes, the
ANN-based approaches fall behind the best results. Figure 2 graphs the ROC
AUC comparisons for the high-dimensional data sets.

Table 3. ROC AUC comparison for data sets used in [9] (in %).

Data set AE SOM RBM RandNet LODES HiCS LOF Hawkins

Cardio 92.10 93.01 53.75 92.87 78.90 85.59 91.41 92.36

Ecoli 87.19 86.65 76.62 85.42 91.81 88.25 90.35 82.87

Lympho 90.33 99.77 58.57 99.06 78.16 92.94 99.88 98.70

Optdigits 71.00 71.93 48.90 87.11 2.66 37.94 38.94 87.63

Pendigits 66.53 95.83 91.25 93.44 87.88 72.78 51.51 89.81

Seismic 71.88 71.99 33.03 71.28 66.71 68.19 65.58 68.25

Thyroid 89.46 92.99 94.35 90.42 72.94 91.74 96.31 87.47

Waveform 59.22 69.39 60.35 70.05 62.88 71.82 76.56 61.57

Yeast 83.81 81.81 49.37 82.95 77.70 78.21 78.19 82.12

Fig. 2. ROC AUC for high-dimensional data sets

14 D. Popovic et al.

Provost and Foster [40] argue that ROC AUC is not an appropriate perfor-
mance measure for the classification of highly skewed data sets, which certainly is
the case with outliers. Thus, we use the area under the precision-recall curve (PR
AUC) as a complementary measure for the high-dimensional data-set evaluation
[13]. Table 5 lists the corresponding PR AUC values.

As we can see, AE and SOM have the best results in terms of PR AUC for 2
out of 6 data sets and are close to the best results for the other data sets except
for InternetAds. This also indicates that AE and SOM have fewer false positives
in most data sets. A significant insight is that SOM, and to a certain degree also
AE, deliver competitive results over all data sets, while all reference algorithms
fall behind the top group by much, at least for some data sets. This stability
of results is a great advantage for the SOM and the AE. The RBM again has
a mixed performance: It is competitive on the ISOLET and Musk data sets,
but close to guessing for the Arrhythmia and MNIST data sets. It is noticeable
that the RBM yields results similar to random guesses for all sparse data sets
that are evaluated, namely the Arrhythmia, InternetAds, Lympho, MNIST and
Optdigits data sets.

Table 4. ROC AUC comparison for high dimensional data sets (in %).

Data set AE SOM RBM HiCS LOF FastABOD LoOP OC-SVM KNN

Arrhythmia-2 80.22 76.33 49.04 50.56 76.74 76.84 75.00 77.66 71.88

InternetAds-2 43.36 66.12 46.93 99.84 71.64 76.49 77.14 64.18 81.23

ISOLET-2 96.85 99.28 92.28 79.71 99.58 93.09 98.23 92.05 94.66

MNIST 82.06 81.07 49.87 51.74 80.34 54.35 71.66 76.46 72.74

Musk 100 100 95.60 99.60 84.00 5.11 51.86 67.60 7.11

P53 60.63 67.17 64.76 62.09 61.99 62.92 61.99 61.27 62.56

Table 5. PR AUC comparison for high dimensional data sets (in %).

Data set AE SOM RBM HiCS LOF FastABOD LoOP OC-SVM KNN

Arrhythmia-2 29.37 27.94 1.66 1.64 3.83 3.98 3.51 4.90 3.04

InternetAds-2 1.58 32.78 1.91 94.52 34.86 32.79 37.09 24.83 32.24

ISOLET-2 44.45 66.93 29.51 4.47 70.95 29.54 51.78 25.65 42.91

MNIST 30.13 27.40 9.26 9.99 33.95 14.05 24.74 25.49 27.96

Musk 100 100 85.58 97.46 14.68 1.65 3.71 4.54 1.91

P53 1.04 1.29 1.20 1.25 1.06 1.13 1.06 1.06 1.30

4.3 Runtime Evaluation

We measure the execution time of our approaches. Each algorithm runs with the
recommended parameter values.

Figure 3 graphs the average execution time for selected data sets with a loga-
rithmic scale. We see that SOM is very fast for all data sets. This is particularly

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 15

obvious for the P53 data set, which consists of 5,408 dimensions and 16,592 data
objects. While the fastest of the compared algorithms needs more than 18 min,
the SOM needs less than 2 min. The RBM with less than 9 min and the AE with
less than 20 min still are very fast. Note that the runtimes were measured with-
out GPU support. For the AE in particular, the runtime using a GPU would be
much smaller.

We could not compare the runtime of our approaches with RandNet, because
of the missing implementation. However, since it consists of an ensemble of up to
200 AEs with 3 hidden layers, it should be clear that it requires much more
computational effort than any of our neural-based approaches.

Fig. 3. Runtime comparison

5 Conclusions

This paper studies the application of ANN-based models, namely autoencoder
(AE), self-organizing map (SOM) and restricted Boltzmann machine (RBM),
to high-dimensional outlier detection. For each of these approaches, we propose
to use a model-specific outlier score. Nonetheless, the scores have in common
that they quantify in a fully unsupervised way the deviation from the expected
output for each data point w.r.t. the learned model.

We evaluate the models on an assortment of high-dimensional data sets and
compare the results to state-of-the-art outlier detection algorithms. The SOM
and AE approaches show superior performance in terms of detection quality
(Requirement R1) and runtime (Requirement R2) compared to the state of the
art. SOM clearly outperforms them all and yields very high result quality in large
high-dimensional data sets. At the same time, the range of relevant parameter
values (Requirement R3) for AE and SOM is significantly smaller than for the
state-of-the-art algorithms.

All in all, this study also shows that “simple” is often better in the case
of outlier detection. When used properly, well-known ANN-based approaches
such as AE and SOM outperform recently proposed approaches for unsupervised

16 D. Popovic et al.

outlier-detection tasks in high-dimensional data, both in terms of accuracy and
runtime, while being less sensitive to parameter tuning.

In the future, it will be interesting to investigate whether the extension of
the RBM to deep belief networks (DBNs) [20] leads to better results for this
class of algorithms, since RBM has shown a relatively low detection quality. In
this study, we have determined good parameter values for each approach in the
general case, but finding the optimal values for each data set for the AE and
SOM might improve performance even more. Thus, our goal would be to come
up with a method to set parameters automatically in a data-driven way.

References

1. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. In: SIGMOD
Conference, pp. 37–46. ACM (2001). https://doi.org/10.1145/376284.375668

2. Attik, M., Bougrain, L., Alexandre, F.: Self-organizing map initialization. In: Duch,
W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp.
357–362. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822 56

3. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton
(1957)

4. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7 15

5. Bishop, C.M.: Novelty detection and neural network validation. In: ICANN 1993,
pp. 789–794 (1993). https://doi.org/10.1007/978-1-4471-2063-6 225

6. Bourland, H., Kamp, Y.: Auto-association by multilayer perceptrons and singu-
lar value decomposition. Biol. Cybern. 59(4), 291–294 (1988). https://doi.org/10.
1007/BF00332918

7. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based
local outliers. In: SIGMOD Conference, pp. 93–104. ACM (2000). https://doi.org/
10.1145/335191.335388

8. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: mea-
sures, datasets, and an empirical study. Data Min. Knowl. Discov. 30(4), 891–927
(2016). https://doi.org/10.1007/s10618-015-0444-8

9. Chen, J., Sathe, S., Aggarwal, C.C., Turaga, D.S.: Outlier detection with autoen-
coder ensembles. In: SDM, pp. 90–98. SIAM (2017). https://doi.org/10.1137/1.
9781611974973.11

10. Chen, Y., Lu, L., Li, X.: Application of continuous restricted boltzmann machine
to identify multivariate geochemical anomaly. J. Geochem. Explor. 140, 56–63
(2014). https://doi.org/10.1016/j.gexplo.2014.02.013

11. Ciampi, A., Lechevallier, Y.: Clustering large, multi-level data sets: an approach
based on Kohonen Self Organizing Maps. In: Zighed, D.A., Komorowski, J.,
Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 353–358. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45372-5 36

12. Dau, H.A., Ciesielski, V., Song, A.: Anomaly detection using replicator neural
networks trained on examples of one class. In: Dick, G., et al. (eds.) SEAL 2014.
LNCS, vol. 8886, pp. 311–322. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13563-2 27

https://doi.org/10.1145/376284.375668
https://doi.org/10.1007/11550822_56
https://doi.org/10.1007/3-540-49257-7_15
https://doi.org/10.1007/978-1-4471-2063-6_225
https://doi.org/10.1007/BF00332918
https://doi.org/10.1007/BF00332918
https://doi.org/10.1145/335191.335388
https://doi.org/10.1145/335191.335388
https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1137/1.9781611974973.11
https://doi.org/10.1137/1.9781611974973.11
https://doi.org/10.1016/j.gexplo.2014.02.013
https://doi.org/10.1007/3-540-45372-5_36
https://doi.org/10.1007/978-3-319-13563-2_27
https://doi.org/10.1007/978-3-319-13563-2_27

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 17

13. Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves.
In: ICML, ACM International Conference Proceeding Series, vol. 148, pp. 233–240.
ACM (2006). https://doi.org/10.1145/1143844.1143874

14. Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.
edu/ml

15. Fiore,U., Palmieri, F.,Castiglione,A., Santis,A.D.:Network anomaly detectionwith
the restricted boltzmann machine. Neurocomputing 122, 13–23 (2013). https://doi.
org/10.1016/j.neucom.2012.11.050

16. Hahnloser, R.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, S.H.:
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405(6789), 947–951 (2000). https://doi.org/10.1038/35016072

17. Hawkins, D.M.: Identification of Outliers, Monographs on Applied Probability
and Statistics, vol. 11. Springer, Dordrecht (1980). https://doi.org/10.1007/978-
94-015-3994-4

18. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator
neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK
2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46145-0 17

19. Hinton, G.E.: Training products of experts by minimizing contrastive diver-
gence. Neural Comput. 14(8), 1771–1800 (2002). https://doi.org/10.1162/
089976602760128018

20. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006). https://doi.org/10.1162/neco.
2006.18.7.1527

21. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and
helmholtz free energy. In: NIPS, pp. 3–10. Morgan Kaufmann (1993). http://papers.
nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-
free-energy

22. Hochreiter, S.: The vanishing gradient problem during learning recurrent neural
nets and problem solutions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 6(2),
107–116 (1998). https://doi.org/10.1142/S0218488598000094

23. Japkowicz, N., Myers, C., Gluck, M.A.: A novelty detection approach to clas-
sification. In: IJCAI, pp. 518–523. Morgan Kaufmann (1995). http://ijcai.org/
Proceedings/95-1/Papers/068.pdf

24. Keller, F., Müller, E., Böhm, K.: HiCS: high contrast subspaces for density-based
outlier ranking. In: ICDE, pp. 1037–1048. IEEE Computer Society (2012). https://
doi.org/10.1109/icde.2012.88

25. Kelley, H.J.: Gradient theory of optimal flight paths. ARS J. 30(10), 947–954
(1960). https://doi.org/10.2514/8.5282

26. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/bf00337288

27. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences.
Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97610-0

28. Kriegel, H., Kröger, P., Schubert, E., Zimek, A.: Loop: local outlier probabilities.
In: CIKM, pp. 1649–1652. ACM (2009). https://doi.org/10.1145/1645953.1646195

29. Kriegel, H.-P., Kröger, P., Schubert, E., Zimek, A.: Outlier detection in axis-
parallel subspaces of high dimensional data. In: Theeramunkong, T., Kijsirikul, B.,
Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 831–838.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2 86

https://doi.org/10.1145/1143844.1143874
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.neucom.2012.11.050
https://doi.org/10.1016/j.neucom.2012.11.050
https://doi.org/10.1038/35016072
https://doi.org/10.1007/978-94-015-3994-4
https://doi.org/10.1007/978-94-015-3994-4
https://doi.org/10.1007/3-540-46145-0_17
https://doi.org/10.1007/3-540-46145-0_17
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/089976602760128018
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy
https://doi.org/10.1142/S0218488598000094
http://ijcai.org/Proceedings/95-1/Papers/068.pdf
http://ijcai.org/Proceedings/95-1/Papers/068.pdf
https://doi.org/10.1109/icde.2012.88
https://doi.org/10.1109/icde.2012.88
https://doi.org/10.2514/8.5282
https://doi.org/10.1007/bf00337288
https://doi.org/10.1007/978-3-642-97610-0
https://doi.org/10.1145/1645953.1646195
https://doi.org/10.1007/978-3-642-01307-2_86

18 D. Popovic et al.

30. Kriegel, H.P., Schubert, M., Zimek, A.: Angle-based outlier detection in high-
dimensional data. In: Proceeding of the 14th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining - KDD 2008, ACM Press, New
York, NY, USA, pp. 444–452 (2008). https://doi.org/10.1145/1401890.1401946

31. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS, pp. 1106–1114 (2012). https://doi.org/10.
1145/3065386

32. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer.
Math. 16(2), 146–160 (1976). https://doi.org/10.1007/BF01931367

33. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: ICDM, pp. 413–422. IEEE
Computer Society (2008). https://doi.org/10.1109/ICDM.2008.17

34. Marchi, E., Vesperini, F., Eyben, F., Squartini, S., Schuller, B.W.: A novel app-
roach for automatic acoustic novelty detection using a denoising autoencoder with
bidirectional LSTM neural networks. In: ICASSP, pp. 1996–2000. IEEE (2015).
https://doi.org/10.1109/ICASSP.2015.7178320

35. Müller, E., Schiffer, M., Seidl, T.: Adaptive outlierness for subspace outlier ranking.
In: CIKM, pp. 1629–1632. ACM (2010). https://doi.org/10.1145/1871437.1871690

36. Müller, E., Schiffer, M., Seidl, T.: Statistical selection of relevant subspace projec-
tions for outlier ranking. In: ICDE, pp. 434–445. IEEE Computer Society (2011).
https://doi.org/10.1109/ICDE.2011.5767916

37. Muñoz, A., Muruzábal, J.: Self-organising maps for outlier detection. Neurocom-
puting 18(1), 33–60 (1998). https://doi.org/10.1016/S0925-2312(97)00068-4

38. Nguyen, H.V., Gopalkrishnan, V., Assent, I.: An unbiased distance-based outlier
detection approach for high-dimensional data. In: Yu, J.X., Kim, M.H., Unland, R.
(eds.) DASFAA 2011. LNCS, vol. 6587, pp. 138–152. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20149-3 12

39. Nguyen, H.V., Müller, E., Vreeken, J., Keller, F., Böhm, K.: CMI: an information-
theoretic contrast measure for enhancing subspace cluster and outlier detection.
In: SDM, pp. 198–206 (2013). https://doi.org/10.1137/1.9781611972832.22

40. Provost, F.J., Fawcett, T.: Analysis and visualization of classifier performance:
comparison under imprecise class and cost distributions. In: KDD, pp. 43–48. AAAI
Press (1997), http://www.aaai.org/Library/KDD/1997/kdd97-007.php

41. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers
from large data sets. In: SIGMOD Conference, pp. 427–438. ACM (2000). https://
doi.org/10.1145/342009.335437

42. Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu
43. Reddy, K.K., Sarkar, S., Venugopalan, V., Giering, M.: Anomaly detection and

fault disambiguation in large flight data: a multi-modal deep autoencoder app-
roach. In: Proceedings of the Annual Conference of the Prognostics and Health
Management Society, Denver, Colorado. PHMC 2016, PHM Society, Rochester,
NY, USA, vol. 7, pp. 192–199 (2016). http://www.phmsociety.org/node/2088/

44. Rubinstein, R.: The cross-entropy method for combinatorial and continuous opti-
mization. Methodol. Comput. Appl. Probab. 1(2), 127–190 (1999). https://doi.
org/10.1023/A:1010091220143

45. Sammon, J.W.: A nonlinear mapping for data structure analysis. IEEE Trans.
Comput. 18(5), 401–409 (1969). https://doi.org/10.1109/T-C.1969.222678

46. Sathe, S., Aggarwal, C.C.: LODES: local density meets spectral outlier detection.
In: SDM, pp. 171–179. SIAM (2016). https://doi.org/10.1137/1.9781611974348.20

47. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001). https://doi.org/10.1162/089976601750264965

https://doi.org/10.1145/1401890.1401946
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1007/BF01931367
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICASSP.2015.7178320
https://doi.org/10.1145/1871437.1871690
https://doi.org/10.1109/ICDE.2011.5767916
https://doi.org/10.1016/S0925-2312(97)00068-4
https://doi.org/10.1007/978-3-642-20149-3_12
https://doi.org/10.1137/1.9781611972832.22
http://www.aaai.org/Library/KDD/1997/kdd97-007.php
https://doi.org/10.1145/342009.335437
https://doi.org/10.1145/342009.335437
http://odds.cs.stonybrook.edu
http://www.phmsociety.org/node/2088/
https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1023/A:1010091220143
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1137/1.9781611974348.20
https://doi.org/10.1162/089976601750264965

Unsupervised ANNs for Outlier Detection in High-Dimensional Data 19

48. Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K.A., Zimek, A.: A
framework for clustering uncertain data. PVLDB 8(12), 1976–1979 (2015).
http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf

49. Smolensky, P.: Information processing in dynamical systems: Foundations of har-
mony theory. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group, C.
(eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition, Vol. 1, pp. 194–281. MIT Press, Cambridge (1986). http://dl.acm.org/
citation.cfm?id=104279.104290

50. Wittek, P.: Somoclu: an efficient distributed library for self-organizing maps. CoRR
abs/1305.1422 (2013). http://arxiv.org/abs/1305.1422

51. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. CoRR abs/1212.5701
(2012). http://arxiv.org/abs/1212.5701

http://www.vldb.org/pvldb/vol8/p1976-schubert.pdf
http://dl.acm.org/citation.cfm?id=104279.104290
http://dl.acm.org/citation.cfm?id=104279.104290
http://arxiv.org/abs/1305.1422
http://arxiv.org/abs/1212.5701

Improving Data Reduction by Merging
Prototypes

Pavlos Ponos1(B), Stefanos Ougiaroglou1,2, and Georgios Evangelidis1

1 Department of Applied Informatics, School of Information Sciences,
University of Macedonia, 54636 Thessaloniki, Greece

{pponos,stoug}@uom.edu.gr, gevan@uom.gr
2 Department of Information Technology, Alexander TEI of Thessaloniki,

57400 Sindos, Greece

Abstract. A well-known and adaptable classifier is the k-Nearest Neigh-
bor (kNN) that requires a training set of relatively small size in order to
perform adequately. Training sets can be reduced in size by using con-
ventional data reduction techniques. Unfortunately, these techniques are
inappropriate in streaming environments or when executed in devices
with limited resources. dRHC is a prototype generation algorithm that
works in streaming environments by maintaining a condensed training
set that can be updated by continuously arriving training data segments.
Prototypes in dRHC carry an appropriate weight to indicate the num-
ber of instances of the same class that they represent. dRHC2 is an
improvement over dRHC since it can handle fixed size condensing sets
by removing the least important prototypes whenever the condensing
set exceeds a predefined size. In this paper, we exploit the idea that
dRHC or dRHC2 prototypes could be merged whenever they are close
enough and represent the same class. Hence, we propose two new pro-
totype merging algorithms. The first algorithm performs a single pass
over a newly updated condensing set and merges all prototype pairs of
the same class under the condition that each prototype is the nearest
neighbor of the other. The second algorithm performs repetitive merging
passes until there are no prototypes to be merged. The proposed algo-
rithms are tested against several datasets and the experimental results
reveal that the single pass variation performs better for both dRHC and
dRHC2 taking into account the trade-off between preprocessing cost,
reduction rate and accuracy. In addition, the merging appears to be
more appropriate for the static version of the algorithm (dRHC) since it
offers higher data reduction without sacrificing accuracy.

Keywords: k-NN classification · Data reduction ·
Prototype merging · Data streams · Clustering

1 Introduction

The attention of the Data Mining and Machine Learning communities has been
attracted by the problem of dealing with fast data streams [1] and large datasets
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 20–32, 2019.
https://doi.org/10.1007/978-3-030-28730-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_2

Improving Data Reduction by Merging Prototypes 21

that cannot fit in main memory. What is more, researchers focus on how to per-
form data mining tasks on devices with limited memory, instead of transferring
data to powerful processing servers. Classification, being a typical data mining
task, has many applications on all above-mentioned environments.

Classification algorithms (or classifiers) can be categorized to eager (model
based) or lazy (instance based). Both eager and lazy classifiers assign unclassified
items to a predefined set of class values, with their difference being on how they
work. Eager classifiers use a training set to build a model that is used to classify
new items. On the other hand, lazy classifiers do not build any models and
classify a new item by examining the whole training set. What is of utmost
importance for both types of classifiers is the size and the quality of the training
set, as both dictate the classifier’s effectiveness and efficiency.

A well known and widely used lazy classifier is the k-Nearest Neighbors
(k-NN) [2]. Once a new unclassified item arrives, its k nearest neighbors are
retrieved from the training data. This is achieved by using a distance metric, i.e.
Euclidean distance. Then, the unclassified item is assigned to the most common
class among the classes of the k nearest neighbors.

k-NN is an effective classifier, especially when it is used on small training
sets. In the event of large training sets, all distances between a new item and the
training data have to be computed, and as a result its performance degrades.
Opposite to an eager classifier that discards the training data after the construc-
tion of its classification model, k-NN classifier has higher storage requirements
as it must have the training set always available. Another drawback of k-NN is
that noise can negatively affect its accuracy. A preprocessing step that builds a
small condensing set through a Data Reduction Technique (DRT) can cope with
these weaknesses.

The Dynamic RHC (dRHC) algorithm proposed in [3] is a DRT that is based
on RHC [8] (Reduction through Homogeneous Clusters) and can gradually build
its condensing set. Whenever a new training data segment becomes available,
the existing condensing set gets updated incrementally without needing to keep
the complete training set and regenerate the prototypes. dRHC is applicable
to dynamic environments where training data progressively becomes available
and for the cases where data cannot fit in main memory. Despite the fact that
dRHC is a fast DRT that achieves high reduction rates with no significant loss
in accuracy when applying k-NN, the condensing set that it builds may outpace
the available physical memory. dRHC2 [4] is an improvement over dRHC in that
it keeps the size of the condensing set fixed. The experimental study in [4] shows
that dRHC2 is faster than dRHC while keeping accuracy at high levels.

The motivation of the current work is the scenario shown in Fig. 1. The figure
depicts a condensing set produced by dRHC2. One can notice that there exist
prototypes that could be merged, for example the two prototypes that belong
to class “circle”. The paper examines the conditions under which prototypes
could be merged without inhibiting the performance of the k-NN classifier. Two
variations are introduced for both dRHC and dRHC2. The main idea is to merge
pairs of prototypes that belong to the same class, only when certain criteria are

22 P. Ponos et al.

met. The difference between the two variations lies on whether after the arrival of
a data segment that updates the condensing set, the merging phase is executed
only once or repetitively, until there are no more prototypes found to be merged.

Fig. 1. Items of the same class that could be merged. The two prototypes of class
“circle” could be merged. What about the two prototypes of class “square”?

The rest of this paper is structured as follows: Sect. 2 discusses the back-
ground knowledge on DRTs and their limitations. Section 3 reviews the dRHC
and dRHC2 algorithms. Section 4 considers in detail the proposed algorithms.
In Sect. 5, the four new algorithms are experimentally compared to dRHC and
dRHC2 on fourteen datasets. Section 6 concludes the paper and proposes direc-
tions for future work.

2 Background Knowledge

In the literature, Data Reduction Techniques (or DRTs in short) can be clas-
sified into two main categories: (i) Prototype Generation (PG) algorithms that
generate prototypes to summarize similar items [5] and (ii) Prototype Selection
(PS) algorithms that collect prototypes from the initial training set [6]. Proto-
type selection algorithms can be further categorized into condensing or editing
algorithms. PS-condensing and PG algorithms are used for data condensation,
i.e., construction of a condensing set from the initial training data. On the other
hand, PS-editing algorithms are used for noise and outlier removal from the
training data.

The basic idea behind both PG and PS algorithms is that without loss in
accuracy we can remove items that do not delineate decision boundaries between
classes. Therefore, PG algorithms generate a few prototypes for the internal areas
and many more for the close-class borders, whereas PS algorithms try to collect
items the are close to decision boundaries. A point worth mentioning is that both
are sensitive to noise, hence an editing algorithm must be applied beforehand.

PS and PG algorithms have been reviewed, and compared to each other in
[5–7]. A prevalent feature of both is that the whole training set must reside in

Improving Data Reduction by Merging Prototypes 23

main memory, which in general, makes DRTs improper for very large datasets,
especially for the cases where algorithms are executed in devices with limited
resources or when the training set cannot fit in memory.

In addition, as soon as the condensing sets are constructed, these DRTs can-
not contemplate new items. In other words, they cannot update their condensing
set in a dynamic manner. What makes DRTs inappropriate for streaming envi-
ronments is that training items must always be available once the condensing set
is built. For each new training item (D) that becomes available, the algorithm
must run from scratch in order to calculate the new condensing set. In order to
tackle this issue the Dynamic RHC and Dynamic RHC2 algorithms [3,4] can be
used in dynamic and/or streaming environments.

3 The dRHC and dRHC2 Algorithms

The dRHC algorithm maintains all properties of RHC (Reduction through
Homogeneous Clusters) algorithm [3,8], and in addition it can also manage large
or streaming datasets.

The idea behind RHC is to apply k-Means clustering on the training set in
order to form as many clusters as the distinct values of the class variable, using as
initial seeds the corresponding class representatives. Homogeneous clusters, i.e.,
clusters with all items belonging to the same class, are replaced by their centroid,
whereas, the clustering procedure is applied recursively to all non-homogeneous
clusters. RHC is shown to be a fast and effective DRT that outperforms other
well-known DTRs in terms of data reduction and accuracy [3,8].

In an analogous fashion, dRHC engages two stages: (i) initial condensing set
construction and (ii) condensing set update. As soon as the first data segment
arrives, the initial condensing set construction phase is executed. The only dif-
ference with RHC’s condensing set is that a weight attribute that denotes the
number of training items that are represented is stored for each prototype. All
the subsequent data segments that arrive, are processed by the condensing set
update phase. In this phase, the prototypes of the current condensing set and
the items of the incoming data segment are used, so that a new set of initial
clusters is built. Then, dRHC algorithm proceeds alike to RHC.

An example of the execution of the condensing set update phase is depicted
in Fig. 2. More specifically, in Fig. 2a we can see a condensing set with three pro-
totypes and their corresponding weights. When a new data segment with seven
items arrives (Fig. 2b), each item is assigned to its nearest prototype (Fig. 2c).
Cluster A is homogeneous, therefore the prototype’s attributes are updated
so that it slightly “moves” towards the new items (Fig. 2d), and its weight is
updated in order to be the sum of the weights of all items that it now represents
(all items in the arriving data segment have weight equal to 1). For cluster B,
there is no new item assigned to it, hence the corresponding prototype remains
unchanged. On the other hand, cluster C becomes non-homogeneous and RHC is
applied on it. k-means creates two homogeneous clusters (Fig. 2e). Finally, a new
cluster centroid is computed for each cluster and the final updated condensing
set is depicted in Fig. 2f.

24 P. Ponos et al.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of execution of the condensing set update phase of dRHC

Notwithstanding the fact that dRHC seems to be a good fit for data streams
or large training datasets, after repetitive condensing set update phases, the
condensing set may become too large. An algorithm that confronts with this
drawback is dRHC2 [4], in which the size of the condensing set is maintained
to a fixed pre-specified threshold. Practically, the only difference between dRHC
and dRHC2 is the post-processing step that is presented in [4]. In dRHC2, the
condensing set never exceeds a pre-specified size that is determined as a trade-off
between computational cost, accuracy, system limitations as well as the level of
noise in the data.

dRHC2 encapsulates a mechanism where prototypes are ranked according to
their importance. The highest the importance of a prototype, the more likely to
survive a condensing set update phase. In order to judiciously rank prototypes,
dRHC2 takes into account not only the prototype’s weight, but also its age.

Lastly, in case of data with noise, dRHC2 performs better than dRHC due
to the fact that the noisy prototypes have lower weight and AnA values, and are
eventually removed.

4 The Proposed Algorithms

As discussed in Sect. 3, both dRHC and dRHC2 algorithms perform well in
streaming environments, with the latter algorithm having a clear advantage after
repetitive condensing set update phases. As demonstrated in Fig. 1, we may
encounter cases where prototypes that belong to the same class are close enough

Improving Data Reduction by Merging Prototypes 25

to be considered for merging. In effect, the size of the condensing set can be
further reduced.

In this paper, we propose two new prototype merging algorithms that produce
new variations of dRHC and dRHC2. More specifically:

– in case of variations based on dRHC, the merging step is applied after each
condensing set update phase, and

– in case of variations based on dRHC2, the merging step is applied between the
condensing set update phase and the prototype removal via ranking phase.

After examining various merging options, we propose a strategy that is not
very aggressive and manages to improve data reduction while maintaining accu-
racy at acceptable levels. The first prototype merging algorithm performs a single
pass over the condensing set and merges prototype pairs belonging to the same
class where each prototype is the nearest neighbor of the other. The notation
“sm”, that stands for single pass merging, is used to denote the new variations
of dRHC and dRHC2, namely, dRHCsm and dRHC2sm.

The second prototype merging algorithm performs multiple passes over the
condensing set until no more prototype pairs can be merged. The notation “mm”,
that stands for multiple pass merging, is used to denote the new variations of
dRHC and dRHC2, namely, dRHCmm and dRHC2mm.

dRHCsm and dRHC2sm being descendants of dRHC and dRHC2 respec-
tively, retain all their properties, with the difference being that once a new data
segment arrives and updates the condensing set, the merging phase described in
Algorithm 1 is performed.

The merging algorithm accepts as input a condensing set CS. Initially, the
newCS is empty. Then, the algorithm for each prototype x checks whether the
nearest neighbor of the nearest neighbor y of x is x itself and whether both x
and y belong to the same class (line 4). If this is the case, x and y are merged
to prototype m, m is added to the newCS and x, y are removed from the CS
(lines 5–7). Otherwise, x moves to the newCS (line 9).

A visual representation of the execution of the single pass merging phase
is shown in Fig. 3. More particularly, the initial condensing set is depicted in
Fig. 3a. Prototype pairs (E, F) and (C, G) satisfy the merging requirements
(Fig. 3b), and are merged to form prototypes EF and CG respectively (Fig. 3c).

In the case of dRHCmm and dRHC2mm, the merging phase is performed
again after the condensing set update phase. Algorithm 2 is essentially an exten-
sion of Algorithm 1, where merging is applied repetitively until there are no
more pairs of prototypes to be merged. Taking into account the condensing set
as depicted in Fig. 3c, with two additional merging passes, first CG is merged
with D and then CGD with H. As a result, the final condensing set can be seen
in Fig. 4.

26 P. Ponos et al.

Algorithm 1 Single Pass Merging Phase
Input: CS
Output: newCS

1: newCS ← ∅

2: for each x in CS do
3: y = NN(x)
4: if NN(y) == x and class(x) == class(y) then
5: m = merge (x,y)
6: add m to newCS
7: remove x,y from CS
8: else
9: move x to newCS

10: end if
11: return newCS
12: end for

(a) Initial condensing set

(b) Pairs of prototypes to be merged

(c) CS after the single pass merging phase

Fig. 3. Single Pass Merging Algorithm

Improving Data Reduction by Merging Prototypes 27

Algorithm 2 Multiple Pass Merging Phase
Input: CS
Output: newCS

1: newCS ← ∅

2: mergeflag ← True
3: while mergeflag == True do
4: mergeflag ← False
5: for each x in CS do
6: y = NN(x)
7: if NN(y) == x and class(x) == class(y) then
8: m = merge (x,y)
9: mergeflag ← True

10: add m to newCS
11: remove x,y from CS
12: else
13: move x to newCS
14: end if
15: end for
16: end while
17: return newCS

Fig. 4. Multiple Pass Merging Algorithm: condensing set after the multiple pass merg-
ing phase

5 Performance Evaluation

5.1 Experimental Setup

The performance of dRHCsm, dRHCmm, dRHC2sm and dRHC2mm was tested
against dRHC and dRHC2 by using fourteen datasets distributed by the KEEL
dataset repository1 [9]. Table 1 summarizes the datasets used.

The chosen distance metric was the Euclidean distance. All algorithms were
implemented in C. All datasets except KddCup were not normalized. We ran-
domized the datasets that were distributed sorted on the class label (last value
in each row of the datasets). For each algorithm and dataset, we measured three
average values via five-fold cross-validation. These values are Accuracy (Acc),
Reduction Rate (RR) and Preprocessing cost (PC).

1 http://sci2s.ugr.es/keel/datasets.php.

http://sci2s.ugr.es/keel/datasets.php

28 P. Ponos et al.

Table 1. Dataset description

Dataset Size Attributes Classes Data segment

Letter Image Recognition (LIR) 20000 16 26 2000

Magic G. Telescope (MGT) 19020 10 2 1902

Pen-Digits (PD) 10992 16 10 1000

Landsat Satellite (LS) 6435 36 6 572

Shuttle (SH) 58000 9 7 1856

Texture (TXR) 5500 40 11 440

Phoneme (PH) 5404 5 2 500

Balance (BL) 625 4 3 100

Pima (PM) 768 8 2 100

Ecoli (ECL) 336 7 8 200

Yeast (YS) 1484 8 10 396

Twonorm (TN) 7400 20 2 592

MONK 2 (MN2) 432 6 2 115

KddCup (KDD) 141481 36 23 4000

Acc was estimated by running k-NN classification with k = 1 and PC in terms
of distance computations. A point worth mentioning is that PC measurements do
not include the small cost overhead introduced by the ranking of the prototypes.

All four algorithms presented in Sect. 4 accept data segments as input. The
data segment sizes that were adopted for each dataset are listed in the last
column in Table 1, therefore the initial training sets were split into specific data
segments. In the scenario of limited main memory, data segment size can be
related with the size of the available memory, or to the buffer size accepting
data from a streamer. Experiments with data segments of different size were not
conducted in this study, due to the fact that in [3] dRHC’s performance was not
found to be influenced at all by the chosen segment size.

In dRHC2, dRHC2sm and dRHC2mm the maximum condensing set size that
is allowed is provided as an input in form of the T parameter. In order to be
comparable with [4], the T parameter was adjusted to the 85%, 70%, 55% and
40% of the size of the condensing sets constructed by dRHC.

5.2 Results and Discussion

In Table 2, the performance of the dRHC was compared against dRHCsm and
dRHCmm. The prevalent values are highlighted in bold. The preprocessing cost
measurements are in million distance computations while values of accuracy and
reduction rate are reported as percentages.

Due to the extra cost that is introduced by Algorithm 1, preprocessing cost
in dRHC was lower compared to dRHCsm and dRHCmm. In addition to that,
since dRHCmm may perform many passes over the condensing set in order to

Improving Data Reduction by Merging Prototypes 29

merge all eligible prototype pairs, the preprocessing cost of this algorithm was
the highest in all datasets. On the other hand, reduction rate with dRHCsm
and, especially, dRHCmm was improved at the cost of a small loss in accuracy
in some datasets. Interestingly, in some other datasets (BL, MN2, TN, ECL,
YS) the accuracy is increased, signifying an improvement in the quality of the
condensing set after the merging phase.

Table 2. Comparison of dRHC, dRHCsm and dRHCmm in terms of Accuracy (ACC
(%)), Reduction Rate (RR (%)) and Preprocessing Cost (PC (millions of distance
computations))

Dataset ACC (%) RR (%) PC (M)

dRHC dRHCsm dRHCmm dRHC dRHCsm dRHCmm dRHC dRHCsm dRHCmm

BL 70.56 70.88 70.88 78.12 80.88 81.24 0.029 0.051 0.084

KDD 99.42 99.30 99.28 99.22 99.32 99.33 54.70 56.54 67.94

LS 88.50 88.17 88.14 88.35 89.29 89.42 1.53 2.63 4.74

LIR 93.92 92.59 92.53 88.18 90.68 90.78 19.57 28.14 53.56

MGT 72.97 72.23 72.26 74.62 76.46 76.48 26.03 67.23 162.04

MN2 97.68 97.91 97.91 96.88 97.17 97.17 0.004 0.004 0.004

PD 98.49 97.19 96.63 97.23 98.07 98.28 1.44 1.57 1.68

PH 85.38 84.49 84.55 82.34 83.61 83.70 1.64 3.68 7.05

SH 99.70 99.36 99.32 99.50 99.60 99.62 7.98 8.09 8.92

TXR 97.60 95.91 95.96 94.95 96.40 96.63 0.68 0.74 1.01

TN 93.08 93.34 91.22 95.37 95.68 97.29 0.695 0.893 1.691

ECL 71.46 71.73 71.74 68.92 69.67 69.74 0.015 0.029 0.035

PM 63.93 63.40 63.41 65.11 66.33 66.63 0.064 0.210 0.325

YS 48.38 48.51 48.51 51.23 52.58 52.63 0.306 0.779 1.394

Similarly, in Table 3 one can compare the performance of dRHC2 against
dRHC2sm and dRHC2mm for the different values of T that is provided as an
input to the algorithms. We omit the measurements of the reduction rate (RR)
since the different values of T set a threshold (in form of a percentage) to the
size of the condensing set that is generated by the dRHC. To understand the
concept behind the T value, take for example the LIR dataset. In Table 2, one
can observe that for the LIR dataset, dRHC achieves Acc = 93.92 with RR =
88.18 (it practically generates only 2364 prototypes out of the 20000 instances
of the dataset). In Table 3, we observe that for T = 40 (or by fixing the max
size of the condensing set to be 40% of the condensing set produced by dRHC,
i.e., the top ranked 946 prototypes) dRHC2, dRHCsm and dRHCmm achieve
accuracies 90.08, 90.41 and 90.00 respectively.

As depicted in Table 3, for both dRHC2sm and dRHC2mm higher preprocess-
ing cost values were measured, which is justified by the extra costs introduced
with the merging step. Other than this, the accuracy was in most cases slightly
affected (negatively or positively), similarly to the results presented in Table 2.

30 P. Ponos et al.

Table 3. Comparison of dRHC2, dRHC2sm and dRHC2mm in terms of Accuracy
(ACC (%)) and Preprocessing Cost (PC (millions of distance computations)) taking
into account four different values of T

Data T % ACC (%) PC (M)

dRHC2 dRHC2sm dRHC2mm dRHC2 dRHC2sm dRHC2mm

LIR 85 93.40 92.59 92.53 19.18 28.14 53.56

70 92.84 92.44 92.33 17.72 27.65 53.47

55 91.85 91.82 91.79 15.36 24.06 45.31

40 90.08 90.41 90.00 12.29 18.58 32.64

MGT 85 74.19 72.89 72.91 25.85 67.23 162.04

70 74.64 74.05 74.00 24.41 63.21 156.08

55 75.11 74.55 74.13 21.71 53.07 124.89

40 75.97 75.48 75.43 17.73 39.75 89.54

PD 85 98.60 97.19 96.63 1.41 1.56 1.68

70 98.63 97.22 96.63 1.32 1.37 1.68

55 98.34 97.13 96.53 1.16 1.27 1.64

40 97.73 96.95 96.76 0.93 1.04 1.33

LS 85 88.61 88.07 88.13 1.51 2.62 4.72

70 88.53 88.33 88.35 1.42 2.46 4.49

55 88.58 87.94 87.96 1.27 2.11 3.74

40 87.89 87.62 87.69 1.03 1.63 2.72

SH 85 99.69 99.38 99.31 7.61 7.65 7.71

70 99.61 99.37 99.36 6.91 6.92 7.77

55 99.56 99.26 99.36 5.95 6.14 6.75

40 99.37 99.28 99.23 4.73 4.93 5.23

TXR 85 97.38 95.91 95.96 0.67 0.74 1.01

70 97.00 96.00 95.98 0.62 0.74 1.01

55 96.46 95.87 95.66 0.53 0.67 0.94

40 95.76 95.44 95.33 0.43 0.53 0.72

PH 85 86.14 84.96 85.03 1.62 3.65 7.00

70 85.62 85.59 85.70 1.52 3.34 6.73

55 85.21 84.97 85.18 1.33 2.77 6.04

40 84.88 85.36 84.60 1.08 2.06 3.92

BL 85 71.84 70.40 70.88 0.029 0.050 0.083

70 73.12 73.92 72.32 0.027 0.050 0.081

55 77.28 74.56 73.76 0.025 0.043 0.070

40 81.60 78.56 78.56 0.021 0.035 0.052

PM 85 65.23 65.62 65.49 0.063 0.200 0.324

70 67.96 65.88 65.88 0.060 0.180 0.320

55 68.09 67.44 67.31 0.055 0.150 0.260

40 68.23 67.58 68.23 0.046 0.110 0.194

ECL 85 74.73 72.95 72.95 0.015 0.029 0.035

70 76.22 75.62 75.03 0.015 0.027 0.040

55 78.28 76.81 76.51 0.014 0.024 0.034

40 79.75 77.70 78.30 0.013 0.022 0.026

YS 85 48.31 48.72 48.78 0.306 0.779 1.394

70 48.65 48.92 48.92 0.306 0.779 1.394

55 48.99 49.46 49.26 0.278 0.682 1.146

40 52.83 51.62 51.62 0.244 0.567 1.004

TN 85 94.03 94.00 91.22 0.688 0.892 1.691

70 94.54 94.69 91.22 0.654 0.850 1.691

55 95.45 95.24 91.54 0.590 0.746 1.752

40 95.93 95.34 91.54 0.495 0.604 1.471

MN2 85 96.28 96.28 96.28 0.0039 0.0041 0.0041

70 96.29 96.99 96.99 0.0038 0.0040 0.0040

55 94.45 90.50 91.66 0.0038 0.0040 0.0040

40 93.52 93.52 93.52 0.0040 0.0042 0.0042

KDD 85 99.47 99.31 99.27 53.56 56.45 68.00

70 99.51 99.38 99.36 49.81 53.80 66.53

55 99.50 99.38 99.39 43.48 47.32 57.97

40 99.48 99.38 99.40 34.60 37.34 43.85

Improving Data Reduction by Merging Prototypes 31

6 Conclusions and Future Work

This paper introduces four new algorithms (dRHCsm, dRHCmm, dRHC2sm
and dRHC2mm) that are variations of dRHC and dRHC2. The newly proposed
algorithms inherit the characteristics of the dRHC and dRHC2 algorithms while
trying to further condense the training set by merging pairs of prototypes. In
theory, we would expect higher reduction rates while maintaining the accuracy
at the same level and a slight increase in preprocessing costs, especially for the
“mm” variations.

The experimental study demonstrates that preprocessing costs are signif-
icantly higher in the case of the “mm” variations of the merging algorithms
compared to the “sm” variations, an increase that is not justified by the small
improvement in reduction rate, in the case of dRHC. Overall, the merging of pro-
totypes appears to make more sense in the case of dRHC where it offers increased
data reduction without affecting accuracy. In the case of dRHC2, where condens-
ing sets are eventually truncated via ranking, merging of prototypes could be
skipped.

In the near future, we plan to further investigate alternative prototype merg-
ing algorithms, for example based not only to the proximity of the prototypes
but on their weights or age as well. We will examine the effect of the application
of prototype merging on additional data reduction algorithms.

Acknowledgments. This research is funded by the University of Macedonia Research
Committee as part of the “Principal Research 2019” funding program.

We thank Prof. Yannis Manolopoulos for his excellent remarks during ADBIS 2017
that led to the ideas presented in this paper.

References

1. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Sys-
tems Series, Springer, Boston (2007). https://doi.org/10.1007/978-0-387-47534-9

2. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory
13(1), 21–27 (2006). http://dx.doi.org/10.1109/TIT.1967.1053964

3. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data reduc-
tion for efficient k-NN classification. Pattern Anal. Appl. 19(1), 93–109 (2014).
http://dx.doi.org/10.1007/s10044-014-0393-7

4. Ougiaroglou, S., Arampatzis, G., Dervos, D.A., Evangelidis, G.: Generating fixed-
size training sets for large and streaming datasets. In: Kirikova, M., Nørv̊ag, K.,
Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 88–102. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 7

5. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. Trans. Sys. Man Cyber
Part C 42(1), 86–100 (2012). http://dx.doi.org/10.1109/TSMCC.2010.2103939

6. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor
classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012). http://dx.doi.org/10.1109/TPAMI.2011.142

https://doi.org/10.1007/978-0-387-47534-9
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1007/s10044-014-0393-7
https://doi.org/10.1007/978-3-319-66917-5_7
http://dx.doi.org/10.1109/TSMCC.2010.2103939
http://dx.doi.org/10.1109/TPAMI.2011.142

32 P. Ponos et al.

7. Lozano, M.: Data Reduction Techniques in Classification Processes. Ph.D. Thesis,
Universitat Jaume I (2007)

8. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by find-
ing homogeneous clusters. In: Proceedings of the Fifth Balkan Conference
in Informatics, BCI 2012, ACM, New York, NY, USA, pp. 168–173 (2012).
http://doi.acm.org/10.1145/2371316.2371349

9. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: KEEL data-
mining software tool: data set repository, integration of algorithms and experimental
analysis framework. Multiple Valued Logic and Soft Comput. 17(2–3), 255–287
(2011)

http://doi.acm.org/10.1145/2371316.2371349

Keys in Relational Databases with Nulls
and Bounded Domains

Munqath Alattar1 and Attila Sali1,2(B)

1 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics, Budapest, Hungary

m.attar@cs.bme.hu
2 Alfréd Rényi Institute of Mathematics,

Hungarian Academy of Sciences, Budapest, Hungary
sali.attila@renyi.mta.hu

Abstract. Missing data value is an extensive problem in both research
and industrial developers. Two general approaches are there to deal with
the problem of missing values in databases, they either could be ignored
(removed) or imputed (filled in) with new values [10]. For some SQL
tables it is possible that some candidate key of the table is not null-free
and this needs to be handled. Possible keys and certain keys to deal with
this situation were introduced in [17]. In the present paper we introduce
an intermediate concept called strongly possible keys that is based on a
data mining approach using only information already contained in the
SQL table. A strongly possible key is a key that holds for some possi-
ble world which is obtained by replacing any occurrences of nulls with
some values already appearing in the corresponding attributes. Implica-
tion among strongly possible keys is characterized and Armstrong tables
are constructed. An algorithm to verify a strongly possible key is given
applying bipartite matching. Connection between matroid intersection
problem and system of strongly possible keys is established.

Keywords: Strongly possible keys · Null values · Armstrong tables ·
Data imputation · Matroid intersection · Matchings in bipartite graphs

1 Introduction

Keys have always been fundamental for database management, in particular for
understanding the structure and semantics of data. For a given collection of
entities a key is a set of attributes whose values enable us to uniquely identify
each entity. A standard example is a relational table, where a key is a set of

Research of the second author was partially supported by the National Research, Devel-
opment and Innovation Office (NKFIH) grant K–116769. This work is also connected to
the scientific program of the “Development of quality-oriented and harmonized R+D+I
strategy and functional model at BME” project, supported by the New Hungary Devel-
opment Plan (Project ID: TÁMOP 4.2.1/B-09/1/KMR-2010-0002).

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 33–50, 2019.
https://doi.org/10.1007/978-3-030-28730-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_3

34 M. Alattar and A. Sali

columns such that there are no two distinct rows that are the same restricted
to the given columns. Of course, keys are significant to other data models, e.g.,
XML, RDF, object models and higher order data models, as well.

Many systems today allow entering incomplete tuples into a database. For
example, in case of data warehousing if different sources of raw data are merged,
some attributes may exist in some of the sources while not available in some of
the others. This makes it necessary to treat keys over incomplete tables. It is
common to encounter databases having up to half of the entries missing, making
it very difficult to mine them using data analysis methods that can work only
with complete data [11].

There are different reasons why incompleteness occurs in database tables.
Date [7] determined more than one kind of missing data and identified seven
distinct types of null as follows: value not applicable, value unknown, value does
not exist, value undefined, value not valid, value not supplied, and value is the
empty set. The present paper deals with the data consumption with missing
values in a database table, we take the second, third, and seventh types, that is
we essentiallly follow the no information NULL approach. For the other types of
missing data we assume that symbol N/A belongs to each domain, and we treat
it as regular domain element in comparisons.

Missing values issue complicates data analysis for the analysts. Other prob-
lems are usually associated with missing values such as loss of data efficiency
and effectiveness [10]. Although some methods of data analysis may overcome
missing values problem, many others require complete databases. Two general
approaches are there to deal with the problem of missing values in databases,
they either could be ignored (removed) or imputed (filled in) with new values
[10]. Ignoring rows is more useful for relations with a few incomplete rows com-
pared to the total number of rows that would not have a vast effect on the data
analysis inferences.

In relational databases, a key over a table is satisfied, if no two distinct
tuples have the same values on all the attributes of the key. Codd formulated
the principle of a key uniqueness and totality that for a key K of any relational
schema R, any table with nulls over R must be K null-free [6,15]. For some
tables, it is possible that there is no null-free key attribute set possible and this
violates Codd’s condition of keys. So the occurrences of nulls in the key set
of attributes need to be handled. For example, in Table 1a the candidate key
(CourseName Y ear) has a null in the last tuple. This occurrence of the null
made it difficult to uniquely identify the first and last tuples.

The first approach of handling the missing values in the key attributes
involves ignoring any tuple that has a null in any of its values in the key part.
This may lead to loss of a large amount of data and may change the original data
pattern and integrity if a large number of tuples need to be ignored compared
with the total number of tuples. Another approach is an imputation operation
for each occurrence of a null in the key part of the data with a value from the
attribute domain as explained by [17]. We investigate the situation when the
attributes’ domains are not known. For that we only consider what we have in
the given data and extract the values to be imputed from the data itself for
each attribute so that the resulting complete dataset after the imputation would

Keys with Nulls and Bounded Domains 35

not contain two tuples having the same value in their key. Köhler et al. [17]
used possible worlds by replacing each occurrence of a null with a value from
the corresponding attribute’s (possibly infinite) domain. Each possible world is
considered as a table of total tuples that may contain duplicated tuples. They
defined a possible key as a key that is satisfied by some possible world of a non
total database table and a certain key as a key that is satisfied by every possible
world of the table. For example, Table 1a has some possible world that satisfies
the possible key {Course Name} while there is no possible world of the table
that satisfies key {Lecturer} and, furthermore, every possible world of the table
satisfies the certain key {Course Name, Y ear, Semester}.

In many cases we have no proper reason to assume existence of any other
attribute value than the ones already existing in the table. Such examples could
be types of cars, diagnoses of patients, applied medications, dates of exams,
course descriptions, etc. We define a strongly possible key as a key that satisfied
by some possible world that is obtained by replacing each occurrence of null
value from the corresponding attribute’s existing values. We call this kind of a
possible world a strongly possible world. This is a data mining type approach,
our idea is that a we are given a raw table with nulls and we would like to
identify possible key sets based on the data only.

We treat the implication problem for strongly possible keys and find that
it behaves similarly to keys in complete datasets, that makes a difference from
possible and certain keys. Also, it is proven that any system of strongly possible
keys enjoys Armstrong instances.

We also point out a connection of matroid intersection problem and satisfac-
tion of a system of strongly possible keys.

We introduce an algorithm to verify a single strongly possible key using
bipartite graph matching.

The organization of this paper is as follows. In Sect. 2 related work is
reviewed, Sect. 3 contains preliminaries and definitions. Strongly possible keys
over relational data with null occurrences in the key attributes studied in Sect. 4.
The related implication problem is completely characterized. Also, an Armstrong
instance for a system of strongly possible keys that satisfies necessary condition
is constructed. In Sect. 5, the existence of a system of strongly possible keys and
the use of matchings to discover strongly possible keys are studied. An algorith-
mic aspects of strongly possible keys are discussed in Sect. 6. Results and the
future research directions are concluded in Sect. 7.

2 Related Work

Keys are important constraints that enforce the semantics of relational database
systems. A key K satisfied by a total table over a relation schema R if there are
no two tuples in the table that agree on all the attributes of K. Database tables
of real database systems usually contain occurrences of null values and for some
cases this includes candidate key columns. Various studies have been done for
the purpose of handling missing values.

36 M. Alattar and A. Sali

Sree Dhevi [3] shows that it is necessary to impute the missing values based
on other information in the dataset to overcome the biased results that affect
the accuracy of classification generated by missing values. Similarly, we use the
attribute’s existing values for each null in that attribute. Cheng et al. [5] utilize
clustering algorithms to cluster data, and calculate coefficient values between
different attributes by generating minimum average error.

Aliriza et al. introduced a framework of imputation methods in [10] and
evaluates how the choice of different imputation methods affects the performance
in [11]. Experimental analyses of several algorithms for imputation of missing
values were performed by [1,4,9,16]. Our imputation method adopts the concept
of graph matching by assigning for each incomplete record a complete one from
the complete set of records constructed by combination of all attribute values
of visible domains. An approach introduced by Zhang et al. [24] discusses and
compares several strategies that utilize only known values.

Köhler et al. [17] introduced possible and certain keys. A set K of attributes
is possible key if there is a possible world where K is a key. On the other hand,
K is a certain key if it is a key in every possible world. The main concept of the
present paper is between these two, since a strongly possible world is a possible
world, as well. Possible worlds may use any value from an attribute domain to
replace a null. This effectively allows an infinite pool of values. Strongly possible
worlds are created from finite attribute domains. Some of the results in [17]
essentially use that some attribute domains are infinite. In the present paper we
investigate what can be stated without that assumption.

3 Preliminaries

We start with summarizing some basic definitions and terminologies. Let R =
{A1, A2, . . . An} be a relation schema. The set of all the possible values for each
attribute Ai ∈ R is called the domain of Ai and denoted as Di = dom(Ai) for i
= 1,2,. . . n. For X ⊆ R then DX =

∏

∀Ai∈K

Di.

An instance T = (t1, t2, . . . ts) over R is a list of tuples that each tuple is a
function t : R → ⋃

Ai∈R dom(Ai) and t[Ai] ∈ dom(Ai) for all Ai in R. By taking
list of tuples we use the bag semantics that allows several occurrences of the same
tuple. For a tuple tr ∈ T and X ⊂ R, let tr[X] be the restriction of tr to X.

In practice, database tables may have missing information about the value
of some entry tj [Ai]. This is denoted by Codd’s null marker ⊥. Note that null
is not a value but it’s an absence of value. Codd’s null marker is included in
each domain to represent the missing information [12]. tr is called V -total for a
set V of attributes if tr[A] �= ⊥, ∀A ∈ V . Also a tuple tr is a total tuple if it
is a R-total. t1 and t2 are weakly similar on X ⊆ R denoted as t1[X] ∼w t2[X]
defined by Köhler et al. [17] if:

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Keys with Nulls and Bounded Domains 37

Furthermore, t1 and t2 are strongly similar on X ⊆ T denoted by t1[X] ∼s

t2[X] if:
∀A ∈ X (t1[A] = t2[A] �= ⊥).

For the sake of convenience we write t1 ∼w t2 if t1 and t2 are weakly similar
on R and use the same convenience for strong similarity. For a null-free table
(a table with R-total tuples), a set of attributes K ⊂ R is a key if there are no
two distinct tuples in the table that share the same values in all the attributes
of K:

ta[K] �= tb[K]∀ 0 ≤ a, b ≤ s such that a �= b

Here we introduce the concept of possible and certain keys defined by Köhler
et al. [17]. Let T ′ = (t′1, t′2, . . . t

′
s) be a table that represents a total version of T

which obtained by replacing the occurrences of ⊥ in all attributes t[Ai] with a
value from the domain Di different from ⊥ for each i. T ′ is called a possible world
of T. In a possible world T ′, t′i is weakly similar to ti and T ′ is completely null-
free table. A possible key K denoted as p 〈K〉, is a key for some possible world
T ′ of T . Similarly, a certain key K denoted as c 〈K〉, is a key for every possible
world T ′ of T .

4 Strongly Possible Keys

A database attribute domain is a predefined set of values that are allowed to be
used for all the tuples under that attribute part of the table. For a given set of
tuples T , let A be an attribute that has a domain of some values range. It is
possible that all the tuples in T use only a specific group of values from all the
possible domain values. For example, in Table 1a, the attribute Course Name
has a predefined domain of all computer science course names but it only uses
two values Mathematics and Datamining along with ⊥ in the last tuple.

Table 1. Complete and incomplete datasets

(a) Incomplete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 ⊥ 5 1

Datamining 2018 Sarah 7 ⊥
⊥ 2019 Sarah ⊥ 2

(b) Complete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 Sarah 5 1

Datamining 2018 Sarah 7 2

Datamining 2019 Sarah 7 2

38 M. Alattar and A. Sali

Definition 4.1. The visible domain of an attribute Ai (V Di) is the set of all
distinct values except ⊥ that are already used by tuples in T :

V Di = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R

Then the V D1 in Table 1a is {Mathematics, Datamining}. The term visible
domain refers to the data that already exist in a given dataset. For example, if
we have a dataset with no information about the attributes’ domains definitions,
then we use the data itself to define their own structure and domains. This may
provide more realistic results when extracting the relationship between data so
it is more reliable to consider only what information we have in a given dataset.

While a possible world is obtained by using the domain values instead of the
occurrence of null as defined in Sect. 3, a strongly possible world is obtained by
using the visible domain values.

Definition 4.2. A possible world T ′ is called strongly possible world if t′[Ai] ∈
V Di for all t′ ∈ T ′ and Ai ∈ R.

That allows us to get a possible world of a set of data with some missed values
by using only the available information. We define a strongly possible key as a
key for some strongly possible world of T .

Definition 4.3. A subset K ⊆ R is a strongly possible key (in notation sp 〈K〉)
of T if ∃ T ′ ⊆ V D1 × V D2 × . . . × V Dn a strongly possible world such that K
is a key in T ′.

Note that although we use the bag semantics, multiple copies of the same
tuple rule out the existence of keys. Recall the same instance in Table 1a,
implies sp 〈CourseName Y ear〉 as a strongly possible key because there is
a strongly possible world in Table 1b where {CourseName Y ear} is a key.
On the other hand, the table implies neither sp 〈CourseName Lecturer〉 nor
sp 〈Y ear Leturer〉, because there are no strongly possible worlds T ′ that have
{CourseName Leturer} or {Y ear Leturer} as keys.

Proposition 4.1. Let T = {t1, t2, . . . tp} be a table instance over R. K ⊆ R is
a sp 〈K〉 ⇐⇒ ∃T ′ ⊆ V D1 × V D2 × . . . × V Dn s.t. T ′ = {t′1, t

′
2, . . . t

′
p} where

ti[K] ∼w t′i[K] and t′i �= t′j if i �= j and K is a key in T ′.

Note that if ti[K] ∼s tj [K] for i �= j then K is not a strongly possible key,
but the reverse is not necessarily true. For example take the instance T with the
two tuples t1 = (1, 1) and t2 = (⊥, 2). Then the only strongly possible world
is T ′ = {(1, 1), (1, 2)} and A1 is not a key in T ′, nevertheless t1[A1] �∼s t2[A1].
This shows that in contrast to possible and certain keys, the validity of sp 〈K〉
cannot be checked or charcterized by pairwise comparisons of tuples.

In the relational model, any subset of attributes that are not keys called as
antikeys [22].

Definition 4.4. We say that K is strongly possible anti-key ¬sp 〈K〉 if �T ′

strongly possible world such that K is a key in T ′.

Definition 4.5. An attribute A ∈ K is called redundant if K \ A is a strongly
possible key in T . And the key sp 〈K〉 is called minimal if ¬sp 〈Y 〉 holds ∀Y ⊂ X.

Keys with Nulls and Bounded Domains 39

4.1 Implication Problem

Integrity constraints determine the way the elements are associated to each other
in a database. The implication problem asks if a given set of constraints entails
further constraints. In other words, given an arbitrary set of constraints, the
implication problem is to determine whether a single constraint is satisfied by
all instances satisfying that set of constraints. In our context, to define the
implication, let Σ be a set of strongly possible keys and θ be a single strongly
possible key over a relation schema R. Σ logically implies θ, denoted as Σ |= θ if
for every table instance T over R satisfying every strongly possible key in Σ we
have that T satisfies θ. The next theorem characterizes the implication problem
for strongly possible keys.

Theorem 4.1. Σ |= sp 〈K〉 ⇐⇒ ∃Y ⊆ K s.t. sp 〈Y 〉 ∈ Σ.

Proof. ⇐ : ∃T ′ s.t. t′i[Y] �= t′j [Y],∀i �= j, so t′i[K] �= t′j [K],∀i �= j holds, as well.
⇒ : Suppose indirectly that sp 〈Y 〉 /∈ Σ ∀Y ⊆ K. Consider the follow-

ing instance consisting of two tuples t1 = (0, 0, . . . , 0), t2[K] = (⊥,⊥, . . . ,⊥),
and t2[R \ K] = (1, 1, . . . 1) as in Table 2. Then the only possible t′2 in T ′ is
t′2(0, 0, . . . , 0, 1, 1, . . . , 1). Furthermore, ∀Z where sp 〈Z〉 ∈ Σ, there must be
z ∈ Z \ K, thus t′1[Z] �= t′2[Z] but t′1[K] = t′2[K] showing that (t1, t2) satisfies
every strongly possible key constraints from Σ, but does not satisfy sp 〈K〉.
Note 4.1. If Σ |= ¬sp 〈K〉 and Y ⊆ K then Σ |= ¬sp 〈Y 〉.
Note 4.2. If Σ |= sp 〈K〉, then Σ |= p 〈K〉 but the reverse is not necessarily
true, since DK ⊇ V DK could be proper containment so K could be made a key
by imputing values from DK \ V DK . For example, in Table 2, it is shown that
¬sp 〈K〉 holds, but p 〈K〉 may hold in some T ′ if there is at least one other value
in the domain of K rather than the zeros to be placed instead of the nulls in the
second tuple so that t′1[K] �= t′2[K] results.

Table 2. Incomplete data

K R \ K

t1 0 0 0 0 00000000

t2 ⊥⊥⊥⊥ 11111111

Note 4.3. If Σ |= c 〈K〉, then Σ |= sp 〈K〉. As certain keys hold in any possible
world, they hold also if this possible world is created using visible domains.

Note 4.4. For a single attribute A, sp 〈A〉 ⇐⇒ t[A] �s t′[A] ∀t, t′ s.t. t �= t′,
i.e. if nulls do not occur in A.

In other words, single attribute with a null value cannot be a strongly possible
key. That is because replacing an occurrence of null with a visible domain value
results in duplicated values for that attribute.

40 M. Alattar and A. Sali

4.2 Armstrong Tables

Armstrong tables are useful tools to represent constraint sets in a user friendly
way [2,8,14,21]. Following [17], we introduce concept of null-free subschema
(NFS). Let R be a schema, an NFS RS over R is a set such that RS ⊆ R. An
instance T satisfies NFS RS if it is RS-total, that is each tuple t ∈ T is RS-total.
This corresponds to NOT NULL constraints of SQL.

Definition 4.6. An instance T over (R,RS) is an Armstrong table for
(R,RS , Σ) if for every strongly possible key θ over R θ holds in T iff Σ |= θ,
and for every attribute A ∈ R \ RS there exist a tuple t ∈ T with t[A] = ⊥.

Let us suppose that Σ = {sp 〈K〉 : K ∈ K} is given. By Note 4.4 if |K| = 1, then
K ⊆ RS must hold. If this restriction is staisfied, then Σ enjoys an Armstrong
table.

Theorem 4.2. Suppose that Σ = {sp 〈K〉 : K ∈ K} is a collection of strongly
possible key constraints such that if |K| = 1, then K ⊆ RS. Then there exists an
Armstrong table for (R,RS , Σ).

Proof. Let A be the collection of strongly possible antikeys, that is A = {A ⊂
R : Σ �|= sp 〈A〉}. According to Theorem 4.1 and Note 4.1 A is a downset and
Σ |= sp 〈K〉 ⇐⇒ K\A �= ∅ for all A ∈ A. Let H = {K1,K2, . . . , Ku} be the set
of singleton attribute keys, note that Ki �∈ A for all i = 1, 2, . . . , u and A ∈ A. Let
the maximal (under containment) elements of A be {A1, A2, . . . , Ap} and assume
that R = {K1,K2, . . . , Ku,X1,X2, . . . , Xn} with R \ RS = {X1,X2, . . . , Xm}.
Construct table T = {t0, t1, . . . , tp(m+1)} as follows. t0[X] = 0 ∀X ∈ R. For
i = 1, 2, . . . , p let ti[X] = ⊥ ∀X ∈ R \ RS , ti[X] = 0 for X ∈ RS ∩ Ai and
ti[X] = i for X ∈ RS \ Ai. Note that H ⊆ RS \ Ai for all i. Let tip+j [Xj] = i
and tip+j [X�] = ip+ j for i = 1, 2, . . . , p, j = 1, 2, . . . ,m and � �= j. Furthermore,
let tip+j [Kg] = ip + j for g + 1, 2, . . . u. Observe that tz is R-total for z > p and
that tz[X] �= tu[X] for u, z > p and for all X ∈ R.

Create a strongly possible world T ′ from T by replacing the null of ti[X]
by 0 if X ∈ Ai and by i otherwise. We claim that no two tuples of T ′ agree
on all attributes of K if Σ |= sp 〈K〉. Indeed, this latter property happens iff
K \ Ai �= ∅ for all i = 1, 2, . . . , p, hence for all 0 ≤ j < i ≤ p there exists an
attribute X ∈ K \Ai such that tj [X] �= i but ti[X] = i. Furthermore, if 0 ≤ i ≤ p
and j > p, then ti and tj can agree in at most one attribute, but that attribute
is not a singleton attribute key. On the other hand, if Σ �|= sp 〈L〉, then there
exists i such that L ⊆ Ai, which implies that t0[L] = ti[L], that is L is not a key
in table T ′.

4.3 Weak Similarity Graph

There is a natural way to assign a graph to a subset X ⊆ R of attributes that
gives information on key possibilities of X.

Keys with Nulls and Bounded Domains 41

Definition 4.7. Let T = {t1, t2, . . . tp} be a table (instance) over schema R. The
weak similarity graph Gw[X]with respect to X is defined as Gw[X] = (T,E),
where {ti, tj} ∈ E ⇐⇒ ti[X] ∼w tj [X].

Note 4.4 says that for |K| = 1 sp 〈K〉 holds iff Gw[K] is the empty graph. For
example, Fig. 1 shows the weak similarity graph of Tables 3a and b.

t1

t2

t3t4

t5

(a)

t1

t2

t3t4

t5

(b)

Fig. 1. Weak similarity graph

The following is a sufficient condition for sp 〈X〉 to hold in case of |X| > 1.

Proposition 4.2. Assume that no two tuples are strongly similar in X. If each
connected component C in the weak similarity graph Gw[X] of X ⊆ R, is a
chordless cycle of length ≥ 4, then sp 〈X〉 holds.

Proof. sp 〈X〉 holds if there exists a strongly possible world T ′ of T such that
no two tuples agree on X in T ′. Two tuples that are not connected by an edge
in Gw[X] are distinct on X in any (strongly) possible world of T , hence it is
enough to concentrate on tuples in the same component. If this single compo-
nent is a circle of k elements for k ≥ 4 (t1[X] ∼w t2[X] ∼w t3[X] ∼w . . . ∼w

tk[X] ∼w t1[X]), then ti is distinct on X from ti+2 . . . tk, t1, . . . , ti−2 and there
exist Aji ∈ X such that ti−1[Aji] �= ti+1[Aji] and ti−1[Aji], ti+1[Aji] �= ⊥. Since
ti−1 ∼w ti ∼w ti+1, we obtain that ti[Aji] = ⊥ (indices of tuples are understood
modulo k). We need to make ti different from ti−1 and ti+1, so that we can make
t′i[Aji] = ti+1[Aji] and this distinguishes it from ti−1. In this way we made any
two neighbouring tuples along the cycle distinct on X, non-neighbouring ones
are distinct in any strongly possible world.

5 Matroids, Matchings and Strongly Possible Keys

In this section we show how the existence of a system of strongly possible keys is
equivalent with the existence of a given sized common independent set of several

42 M. Alattar and A. Sali

matroids (for basic definitions and properties of matroids the reader is referred
to Welsh’s book [23]). Let us be given schema R = {A1, A2, . . . , An} and let
K = {K1,K2, . . . Kp} be a collection of attribute sets and T = {t1, t2, . . . , ts} be
an instance with possible null occurrences. Our main question here is whether
Σ = {sp 〈K1〉 , sp 〈K2〉 , . . . , sp 〈Kp〉} holds in T? Let Ei = {t′ ∈ V D1 × V D2 ×
. . . × V Dn : t′ ∼w ti}. A strongly possible world that satisfies Σ is given by an
injective mapping

f : T → V D1 × V D2 × . . . × V Dn such that f(ti) ∈ Ei ∀i

and for all j, Kj is a key in T ′ = f(T). Let S ⊆ V D1 × V D2 × . . . × V Dn be
the union S = E1 ∪ E2 ∪ . . . ∪ Es and define bipartite graph G = (T, S;E) by
{t, t′} ∈ E ⇐⇒ t ∼w t′ for t ∈ T and t′ ∈ S. Let (S,M0) be the transversal
matroid defined by G on S, that is a subset X ⊆ S satisfies X ∈ M0 if X can
be matched into T . Furthermore consider the partitions

S = Sj
1 ∪ Sj

2 ∪ . . . ∪ Sj
pj

(1)

induced by Kj for j = 1, 2, . . . , p such that Sj
i ’s are maximal sets of tuples from

S that agree on Kj . Let (S,Mj) be the partition matroid given by (1). We can
formulate the following theorem.

Theorem 5.1. Let T be an instance over schema R = {A1, A2, . . . , An}
and let K = {K1,K2, . . . Kp} be a collection of attribute sets. Σ =
{sp 〈K1〉 , sp 〈K2〉 , . . . , sp 〈Kp〉} holds in T if and only if the matroids (S,Mj)
have a common independent set of size |T | for j = 0, 1, . . . p.

Proof. An independent set T ′ of size |T | in matroid (S,M0) means that tuples
in T ′ form a strongly possible world for T . That they are independent in (S,Mj)
means that Kj is a key in T ′, that is sp 〈Kj〉 holds.

Conversely, if Σ = {sp 〈K1〉 , sp 〈K2〉 , . . . , sp 〈Kp〉} holds in T , then there
exists a strongly possible world T ′ = {t′1, t

′
2, . . . , t

′
s} ⊆ V D1 × V D2 × . . . × V Dn

such that ti ∼w t′i. This means that T ′ ⊆ S and that T ′ is independent in
transversal matroid (S,M0). sp 〈Kj〉 holds implies that tuples t′i are pairwise
distinct on Kj , that is T ′ is independent in partition matroid (S,Mj).

Unfortunately, Theorem 5.1 does not give good algorithm to decide the satisfac-
tion of a system Σ of strongly possible keys, because as soon as Σ contains at
least two constraints, then we would have to calculate the size of largest common
independent set of at least three matroids, known to be a NP-complete problem
in general [13].

In case of a single strongly possible key sp 〈K〉 constraint Theorem 5.1
requires computing the largest common independent set of two matroids, which
can be solved in polynomial time [19]. However, we can reduce the problem to
the somewhat simpler problem of matchings in bipartite graphs.

Keys with Nulls and Bounded Domains 43

If we want to decide whether sp 〈K〉 holds or not, we can forget about
the attributes that are not in K since we need distinct values on K as a
matching from V DA1 × V DA2 × . . . × V DAb

to T = {t1, t2 . . . tr}|K where
K = {A1, A2 . . . Ab}. Thus, we may construct a table T ′ that formed by find-
ing all the possible combinations of the visible domains of T |K that are weakly
similar to some tuple in T |K .

T ′ = {t′ : ∃t ∈ T : t′[K] ∼w t[K]} ⊆ V D1 × V D2 × . . . × V Db

Finding the matching between T and T ′ that covers all the tuples in T (if exist)
will result in the set of tuples in T ′ that needs to be replaced in T so that K is
a strongly possible key.

Table 3. Data samples

(a)

Lecturer Course

t1 Sarah Mathematics

t2 Sarah ⊥
t3 ⊥ Data Mining

t4 James Data Mining

t5 David Data Mining

(b)

Lecturer Course

t1 Sarah Mathematics

t2 Sarah ⊥
t3 ⊥ Mathematics

t4 James Data Mining

t5 David Data Mining

(c)

Lecturer Course

t′1 Sarah Mathematics

t′2 Sarah Data Mining

t′3 James Mathematics

t′4 James Data Mining

t′5 David Mathematics

t′6 David Data Mining

Example 5.1. Table 3b shows an incomplete set of tuples Here K = {Lecturer,
Course}. Visible domain can be identified for each attribute to construct tuples
of T ′ by finding the combinations of all the visible domain values as shown in
Table 3c (here we included all tuples for tables a and b together). Bipartite
graphs between tuples with null(s) in T and tuples in T ′ excluding those tuples
that agree on K to any total tuple in T are constructed. Figure 2a illustrates the
graph for Table 3b which contain a complete matching to assign a total tuple to
each non-total tuple in T and K is a key. While for Table 3a, Fig. 2b shows there
is no matching that covers all the tuples in T .

T T ′

t2

t3

t′2

t′3

t′5

(a) The Graph of Table 3b

T T ′

t2

t3

t′2

(b) The Graph of Table 3a

Fig. 2. Data graphs

44 M. Alattar and A. Sali

5.1 Necessary Conditions

Let cv(A) denote the number of tuples that have value v in attribute A, that
is cv(A) = |{t ∈ T : t[A] = v}|. Next are some necessary conditions to have a
strongly possible key.

Proposition 5.1. Let K ⊆ R be a set of attributes. If sp 〈K〉 holds, then

1. No two tuples ti, tj are strongly similar in K.
2. |T | ≤ ∏

∀A∈K

|V DA|.

3. ∀B ∈ K, number of nulls in B ≤ ∑

∀v∈V DB

(∏
∀A∈K |V DA|

|V DB | − cv(B)
)
.

4. For all v ∈ V DB we have cv(B) ≤
∏

∀A∈K |V DA|
|V DB |

Proof. First condition is obviously required. In addition to that, for any set of
attributes, the maximum number of distinct combination of their values is the
size of the multiplication of their visible domain, and this proves (2). Moreover,
to prove conditions (3) and (4), when K is sp 〈K〉 in T then there should exist
a T ′ with no two tuples having the same values in all attributes of K after
filling all their nulls. So for each set of tuples S that has the same value v in
the attribute B, the number of distinct combinations of the other attributes is
the multiplication of their V D’s, means the number of tuples in S should not be
more than

∏
∀A∈(K\B) V DA. Thus the number of times value v can be used to

replace a null in attribute B is at most
∏

∀A∈K |V DA|
V DB

− cv(B).

Note that sp 〈K〉 holds if a matching covering T exists in the bipartite graph
G = (T, T ′;E) defined as above, {t, t′} ∈ E ⇐⇒ t[K] ∼w t′[K]. We can apply
Hall’s Theorem to obtain

∀X ⊆ T, we have |N(X)| ≥ |X| for N(X) = {t′ : ∃t ∈ X such that t′[K] ∼w t[K]}

A1 A2

t1 0 ⊥
t2 1 ⊥
t3 2 ⊥
t4 3 0

t5 4 1

(a) A Dataset T

A1 A2

t′1 0 0

t′2 0 1

t′3 1 0

t′4 1 1

t′5 2 0

t′6 2 1

t′7 3 0

t′8 4 1

(b) T ′ of T .

t1

t2

t3

t′1

t′2

t′3

t′4

t′5

t′6

(c) The Graph of T
and T ′

Fig. 3. A certain key graph

Keys with Nulls and Bounded Domains 45

The conditions in Proposition 5.1 are implied by Hall’s condition, as well. Let
assume that Hall’s condition is true for a set of tuples T and K has b n attributes.
If ti, tj are strongly similar, then the set X = {ti, tj} has 1 = |N(X)| < |X| = 2
that proves (1). For condition (2), the graph here is G = (T, T ′;E) such that
T ′ ≤ ∏

∀A∈K

|V DA| and it is the neighboring tuples to the tuples in T so that it

is always true that T ≤ T ′. Condition (3) implied as follows. Let X be the set
of tuples that have null value in B. Then the number tuples t′ ∈ N(X) such
that t′[B] = v is at most

∏
∀A∈K |V DA|

|V DB | Finally, for an attribute B ∈ K, let Xv

be the set of all tuples that have value v in the attribute B. Then |N(Xv)| ≤
|V D1×V D2×...×V Db|

|V DB | proving (4).
As defined in Sect. 3, certain key is a key for any possible world, i.e. all the

tuples are distinct after filling the nulls regardless what values been used.

Theorem 5.2. Let T be a table instance over schema R such that a strongly
possible world of T exists. K ⊆ R is a certain key iff K is a key in any strongly
possible world of T .

Proof. ⇒: If c〈K〉 holds, then K is a key in any possible world by definition, so
in particular in any strongly possible world, as well.

⇐: Let us assume that K is a key in any strongly possible world, but there
exists a possible world T ′, and two distinct tuples t′1 �= t′2 of T ′ such that t′1[K] =
t′2[K]. Let A ∈ K be an attribute. There are three possibilities. If neither t1 nor
t1 has ⊥ in A, then let t1[A] = t2[A] = t′′1 [A] = t′′2 [A]. If one of them has ⊥
in A, say t1[A] = ⊥, then we can set t′′1 [A] = t′′2 [A] = t2[A] �= ⊥ such that
t2[A] ∈ V DA. Finally, if t1[A] = t2[A] = ⊥, then pick any x ∈ V DA and set
t′′1 [A] = t′′2 [A] = x. Such an x exists, since T has a strongly possible world. For
attributes not in K extend t′′1 and t′′2 arbitrarily from the visible domains of the
attributes. Also, fill up the nulls of other tuples of T from the visible domains
to obtain a strongly possible world, where distinct tuples t′′1 and t′′2 agree on K,
contradicting to the assumption that K is a key in any strongly possible world.

Thus certain keys can also be recognized from the bipartite graph = (T, T ′;E)
defined above, since all the tuples are distinct after filling the nulls regardless
what visible domain values are used. Then, every incomplete tuple in T has a
distinct set of weakly similar tuples in T ′ and any one of these tuples can be
assigned to that incomplete tuple. The bipartite graph of a certain key would
contain a connected component for each tuple in T with a set of tuples in T ′ as
illustrated in Fig. 3.

Concept of strongly possible keys lies in between the concepts of possi-
ble and certain keys. Every certain key is a strongly possible key and every
strongly possible key is a possible key. Figure 4 shows that {K : c 〈K〉 holds} ⊆
{K : sp 〈K〉 holds} ⊆ {K : p 〈K〉 holds}.

46 M. Alattar and A. Sali

p 〈K〉 sp 〈K〉 c 〈K〉

Fig. 4. Possible, strongly possible, and certain keys scopes

6 Strongly Possible Key Discovery

sp 〈K〉 holds if and only if there exists a matching between T and T ′ that covers
all tuples of T as explained earlier. We introduce Algorithm 1 to find a strongly
possible world if exist for a given T which verifies that sp 〈K〉 holds. The pseudo
code is in the Appendix. We start by generating T ′ from T . T ′ contains all the
total weakly similar tuples to each non-total tuple in T using the usable visible
domain values for each null in the attributes of K to reduce complexity. For
that we define UV DB =

{
v ∈ V DA :

∏
∀A∈K |V DA|

V DB
− cv(B) > 0

}
. Generating T ′

is done by taking the non-total tuples of T one by one and finding the total
weakly similar tuples using the UV D’s for each attribute instead of the nulls.
This process may result in some duplicates in T ′ because it is possible that more
than one non-total tuple in T can be weakly similar to same total tuple. For
example, in Table 1a, the first and the last tuples are both non-total and are
both weakly similar to the total tuple (Mathematics, 2019, Sarah, 5) generated
by using UV D for each null. We need to remove these duplicated tuples in T ′

after generating the weakly similar tuples for each t ∈ T .
After calculating T ′, we find the maximum matching between T \Ttotal (Ttotal

is the set of all the total tuples in T) and T ′ \Ttotal. Function BipartiteMatching
finds such a matching by recursively finding the shortest augmenting path of the
bipartite graph and increase the matching by one each time. If this matching
covers all the tuples in T \ Ttotal then T has a strongly possible world verifying
sp 〈K〉, which is T ′ ∪ Ttotal otherwise ¬sp 〈K〉 holds.

The running time depends on the size of T ′, which could be exponential in
the size of the input. Sorting using Radix Sort takes O(|R|(|T | + |T ′|)) time,
while finding the largest matching in G = (T \Ttotal, T

′ \Ttotal;E) takes O((|T \
Ttotal| + |T ′ \ Ttotal|)|E|) time by the augmenting path method.

Keys with Nulls and Bounded Domains 47

7 Conclusion and Future Directions

The main contributions of this paper are as follows:

– We introduced and defined strongly possible keys over database tables that
contain some occurrences of nulls.

– We characterized the implication problem for strongly possible key constraints
and showed that they enjoy Armstrong tables.

– We gave some necessary conditions for strongly possible keys. We showed
that deciding whether a given set of attributes is a strongly possible key can
be done by application of matchings in bipartite graph, so Hall’s condition is
naturally applied.

– We provided an algorithm to validate a strongly possible key by finding a
proper strongly possible world for that key if there is any.

– We showed that deciding whether a given system of sets of attributes is a
system of possible keys for a given table can be done using matroid intersec-
tion. However, we need at least three matroids, and matroid intersection of
three or more matroids is NP-complete, which suggests that our problem is
also NP-complete.

Strongly possible keys are special case of possible keys of relational schemata
with each attribute having finite domain. So future research is needed to decide
what properties of implication, axiomatization of inference remain valid in this
setting. Note that the main results in [17] use that at least one attribute has
infinite domain.

We plan to extend research from keys to functional dependencies. Weak and
strong functional dependencies were introduced in [20]. A wFD X →w Y holds if
there is a possible world T ′ that satisfies FD X → Y , while sFD X →s Y holds
if every possible world satisfies FD X → Y . Our strongly possible world con-
cept naturally induces an intermediate concept of functional dependency. Köhler
and Link defined c-FD’s, that is certain functional dependencies and showed
their usefulness in [18]. Strongly possible worlds and the functional dependencies
obtained from them could be used in similar ways. Future research on possible
keys of finite domains might extend our results on strongly possible keys.

Finally, Theorem 5.1 defines a matroid intersection problem. It would be
interesting to know whether this particular question is NP-complete, which we
strongly believe it is.

48 M. Alattar and A. Sali

A Appendix

Algorithm 1. Discovering a Strongly Possible Keys
Input: Dataset T on relation schema R with a candidate key K of b attributes
Output: A strongly possible world F in which K is a key if exist

1: procedure spKeyDiscovery(item T , item K)
2: Ttotal = {t : t[i] 	= ⊥ ∀i = (1, 2, . . . b)}
3: T ′ = ∅
4: for all t ∈ T \ Ttotal do

5: T ′
temp = {t′temp : t′temp ∼w t Using

∀A∈K

{
UV DA, if t[A] = ⊥
t[A], if t[A] 	= ⊥}

6: T ′ = T ′ ∪ T ′
temp

7: T ′
temp = ∅

8: end for
9: Sort T ′ using RadixSort

10: Remove the duplicated tuples in T ′

11: Graph G = {V = (T \ Ttotal, T
′ \ Ttotal);E}

12: BipartiteMatching(G)
13: if size(Match) = |T \ Ttotal| then
14: F = Match ∩ T
15: F = F ∪ Ttotal

16: return “A strongly possible world that verifies sp〈K〉 holds in T is:” + F
17: else
18: return ”sp〈K〉 does not hold in T”
19: end if
20: end procedure
21: procedure BipartiteMatching(item G)
22: Match = ∅
23: repeat
24: P =(AugmentingPath(G))
25: Match = Match �P
26: until P = ∅
27: return Match
28: end procedure
29: procedure AugmentingPath(item G)
30: Direct unmatched edges T → T ′, matched T ′ → T
31: Add s, t and connect them to non-matched vertices in T and T ′, respectively
32: Run BFS on G from source s.
33: if t is reached then
34: return P \ {s, t} for a shortest path P from s to t
35: else
36: return ∅
37: end if
38: end procedure

Keys with Nulls and Bounded Domains 49

References

1. Acuña, E., Rodriguez, C.: The treatment of missing values and its effect on classifier
accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification,
Clustering, and Data Mining Applications. Studies in Classification, Data Analysis,
and Knowledge Organisation, pp. 639–647. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-642-17103-1 60

2. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

3. Sree Dhevi, A.T.: Imputing missing values using Inverse Distance Weighted Inter-
polation for time series data. In: Sixth International Conference on Advanced Com-
puting (ICoAC), Chennai, pp. 255–259 (2014). https://doi.org/10.1109/ICoAC.
2014.7229721

4. Chang, G., Ge, T.: Comparison of missing data imputation methods for traffic flow.
In: Proceedings 2011 International Conference on Transportation, Mechanical, and
Electrical Engineering (TMEE), Changchun, pp. 639–642 (2011). https://doi.org/
10.1109/TMEE.2011.6199284

5. Cheng, C., Wei, L., Lin, T.: Improving relational database quality based on adap-
tive learning method for estimating null value. In: Second International Conference
on Innovative Computing, Informatio and Control (ICICIC 2007), Kumamoto, p.
81 (2007). https://doi.org/10.1109/ICICIC.2007.350

6. Codd, E.F.: The Relational Model for Database Management, Version 2. Addison-
Wesley Publishing Company, Boston (1990)

7. Date, C.J.: NOT Is Not “Not”! (Notes on Three-Valued Logic and Related Mat-
ters) in Relational Database Writings 1985–1989. Addison-Wesley Reading, Boston
(1990)

8. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)
9. Farhangfar, A., Kurgan, L.A., Pedrycz, W.: Experimental analysis of methods for

imputation of missing values in databases. In: Proceedings of SPIE 5421, Intelligent
Computing: Theory and Applications II, 12 April 2004. https://doi.org/10.1117/
12.542509

10. Farhangfar, A., Kurgan, L.A., Pedrycz, W.: A novel framework for imputation of
missing values in databases. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
37(5), 692–709 (2007)

11. Farhangfar, A., Kurgan, L.A., Dy, J.: Impact of imputation of missing values on
classification error for discrete data. Pattern Recogn. 41(12), 3692–3705 (2008)

12. Ferrarotti, F., Hartmann, S., Le, V.B.T., Link, S.: Codd table representations under
weak possible world semantics. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D.,
Zhou, X. (eds.) DEXA 2011. LNCS, vol. 6860, pp. 125–139. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23088-2 9

13. Garey, M.R., Johnson, D.S.: Computers and Intractability. A guide to the Theory
of NP-Completeness. Freeman, New York (1979)

14. Hartmann, S., Kirchberg, M., Link, S.: Design by example for SQL table definitions
with functional dependencies. VLDB J. 21(1), 121–144 (2012)

15. Hartmann, S., Leck, U., Link, S.: On Codd families of keys over incomplete rela-
tions. Comput. J. 54(7), 1166–1180 (2010)

16. Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing
attribute values in data mining. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS
(LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45554-X 46

https://doi.org/10.1007/978-3-642-17103-1_60
https://doi.org/10.1007/978-3-642-17103-1_60
https://doi.org/10.1109/ICoAC.2014.7229721
https://doi.org/10.1109/ICoAC.2014.7229721
https://doi.org/10.1109/TMEE.2011.6199284
https://doi.org/10.1109/TMEE.2011.6199284
https://doi.org/10.1109/ICICIC.2007.350
https://doi.org/10.1117/12.542509
https://doi.org/10.1117/12.542509
https://doi.org/10.1007/978-3-642-23088-2_9
https://doi.org/10.1007/3-540-45554-X_46
https://doi.org/10.1007/3-540-45554-X_46

50 M. Alattar and A. Sali

17. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

18. Köhler, H., Link, S.: SQL schema design: foundations, normal forms, and normal-
ization. Inf. Syst. 76, 88–113 (2018)

19. Lawler, E.L.: Matroid intersection algorithms. Math. Program. 9, 31–56 (1975)
20. Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete

relations. J. Theor. Comput. Sci. 206(1–2), 283–300 (1998)
21. Mannila, H., Rähä, K.-J.: Design of Relational Databases. Addison-Wesley, Boston

(1992)
22. Sali, A., Schewe, K.-D.: Keys and Armstrong databases in trees with restructuring.

Acta Cybernetica 18(3), 529–556 (2008)
23. Welsh, D.J.A.: Matroid Theory. Academic Press, New York (1976)
24. Zhang, S., Qin, Z., Ling, C.X., Sheng, S.: “Missing is Useful”: missing values in

cost-sensitive decision trees. IEEE Trans. Knowl. Data Eng. 17(12), 1689–1693
(2005)

Machine Learning

ILIME: Local and Global Interpretable
Model-Agnostic Explainer of Black-Box

Decision

Radwa ElShawi1, Youssef Sherif2, Mouaz Al-Mallah3, and Sherif Sakr1(B)

1 Tartu University, Tartu, Estonia
{radwa.elshawi,Sherif.Sakr}@ut.ee

2 Zewail City, Cairo, Egypt
3 Houston Methodist Heart and Vascular Center, Houston, TA, USA

Abstract. Despite outperforming humans in different supervised learn-
ing tasks, complex machine learning models are criticised for their opac-
ity which make them hard to trust especially when used in critical
domains (e.g., healthcare, self-driving car). Understanding the reasons
behind the decision of a machine learning model provides insights into the
model and transforms the model from a non-interpretable model (black-
box) to an interpretable one that can be understood by humans. In addi-
tion, such insights are important for identifying any bias or unfairness
in the decision made by the model and ensure that the model works as
expected. In this paper, we present ILIME, a novel technique that explains
the prediction of any supervised learning-based prediction model by rely-
ing on an interpretation mechanism that is based on the most influencing
instances for the prediction of the instance to be explained. We demon-
strate the effectiveness of our approach by explaining different models
on different datasets. Our experiments show that ILIME outperforms a
state-of-the-art baseline technique, LIME, in terms of the quality of the
explanation and the accuracy in mimicking the behaviour of the black-
box model. In addition, we present a global attribution technique that
aggregates the local explanations generated from ILIME into few global
explanations that can mimic the behaviour of the black-box model glob-
ally in a simple way.

Keywords: Machine learning · Interpretability · Model-agnostic

1 Introduction

Complex predictive machine learning models have been used intensively in dif-
ferent areas including banking, health care sector, personality profiles, and mar-
keting. Despite the fact that such complex (black-box) models are able to achieve
high accuracy, they lack an explanation of the prediction outcome. Thus, stake-
holders find it hard to trust such complex models specially when used in critical
domains such as self-driving cars, and disease diagnosis systems. Predictions of
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 53–68, 2019.
https://doi.org/10.1007/978-3-030-28730-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_4

54 R. ElShawi et al.

black-box models suffer not only from transparency but also from possible biases
that may lead to unfair decisions or disasters [7,14]. For example, over the period
between 1970 and 1980, St. George’s Hospital Medical School in London used a
program to invite candidates to interview, it has been discovered that the pro-
gram selection was based on the place of birth and surnames of candidates which
make the selection procedure unfair [18]. Ribeiro et al. [20] gave an example for a
highly accurate classifier that turned to be un-trusted one. The classifier used a
deep learning model trained to classify wolves and huskies and after interpreting
the model outcome, it has been discovered that the classifier classifies an image
as wolf based on the snow in the image background. Caruana et al. [4] proposed
a machine learning model for predicting the risk of readmission for patients with
pneumonia. Counter-intuitively, the trained machine learning model learned that
patients with asthma are at lower risk of readmission. If this model was used in
production, it would have resulted in severe safety risk.

Since May 2018, the interpretability of machine learning models has been
receiving huge attention as the General Data Protection Regulation (GDPR)
requested industries to explain any automated decision in a meaningful way. In
particular, it stated that “a right of explanation for all individuals to obtain
meaningful explanations of the logic involved”1. In general, one way to define
machine learning interpretability is the degree to which machine learning stake-
holders can interpret and understand the decisions made by machine learning
models [17]. In principle, interpretability aims to provide insights into the black-
box model to be explained and answers questions such as (1) How a specific
automated decision is taken? (2) What are the most critical features in the
input data that leads to the decision? In general, making black-box machine
learning models interpretable contributes positively toward establishing trust
and confidence in their predictions.

In practice, decision trees have been used intensively to mimic the behaviour
of black-box models such as neural networks models and tree ensembles [12].
Decision rules have been used widely to explain complex models such as support
vector machines and neural networks models [3]. LIME is a local interpretable
model-agnostic explanation [20] that explains the decision of an instance from
any black-box model by fitting an interpretable model around the instance to be
explained. Anchors [21] is an extension of LIME that uses the bandit algorithm to
generate decision rules with high precision and coverage. Decision rules have used
intensively to mimic the behaviour of a black-box model globally or locally given
that the training data is available when providing local explanations [11,16,19].
Decision rules have been used intensively to mimic the behaviour of a black-box
model globally or locally given that the training data is available when providing
local explanations [11]. Koh and Liang [15] used influence functions to find the
most influential training examples that lead to a particular decision. This method
requires access to the training dataset used in training the black-box model.

In this paper, we focus on the open challenge of how to find meaningful
explanation of the decision of a complex black-box model. The LIME technique

1 https://ec.europa.eu/commission.

https://ec.europa.eu/commission

ILIME: Local and Global Explainer 55

provides locality faithful explanation by fitting an interpretable model on per-
turbed instances weighted by their distances from the instance to be explained.
However, the quality of the provided explanation by LIME depends heavily on
the weights assigned to the perturbed instances. Our proposed techniques, ILIME,
tackles this challenge by weighting the perturbed instances using their distance
from the instance to be explained and using their influence on the instance to be
explained. In addition, we focus on providing the least number of local represen-
tative instances with their corresponding explanations to characterize the whole
model globally. Unlike LIME global attribution, SP-LIME [20], our proposed
global attribution technique identify the best number of local instances that can
give global understanding for the black-box model. In particular, the proposed
local interpretability technique introduced in this work satisfies the following cri-
teria (1) Model-agnostic, means that it can be used to explain the decision made
by any black-box model, (2) Understandable, means that the explanation of the
decision should be comprehensible to humans, (3) Local, means it provides local
explanation for the decision of a particular instance. (4) High fidelity, means that
it provides reliable and good approximation of the black-box model.

The main contribution of this paper can be summarized as follows:

– We present a model-agnostic local explanation technique, ILIME, that has
been evaluated on different black-box models and has been compared to one
of the state of art model agnostic instance explainer (LIME).

– We present a global attribution technique based on the aggregation of the
local explanations provided by ILIME to characterize the whole model.

– The results of our experimental evaluation show that ILIME and our proposed
global attribution are more faithful to the black-box models being explained
and more trusted.

The remainder of this paper is organized as follows. Section 2 provides a back-
ground on the concepts and techniques on which we rely on our work. In Sect. 3,
we present our local explainer, ILIME, while our global attribution technique
is presented in Sect. 4. We present a detailed experimental evaluation for our
proposed techniques in Sect. 5 before we finally conclude the paper in Sect. 6.

2 Background

2.1 Influence Functions

Perturbing data while retraining the black-box model is computationally exhaus-
tive and hence using influence functions [5] can overcome this problem. Instead
of retraining the model to get the influence of a particular instance, influence
functions work by upweighting an instance in the loss function by a very small
amount ε in the empirical risk, the new model parameters θ is described as
follows:

θ̂ε,z = argminε∈Θ
1
n

n∑

i=1

L(zi, θ) + εL(z, θ) (1)

56 R. ElShawi et al.

Where θ is the model parameters vector and θ̂θ,z is the new model parameters
vector after upweighting the training instance z by a small amount ε. L is the
loss function in which the black-box model is trained. Cook et al. [6] show that
the influence of upweighting instance z on the model parameters θ̂ is as follows:

Iup,params(z) =
dθ̂ε,z

dε
|ε=0 = −H−1

θ̂
�θ L(z, θ̂) (2)

Where Hθ̂ = 1
n

∑n
i=1 �2

θL(z, θ̂) is the Hessian and �θL(z, θ̂) is the gradient
of the loss function with respect to the model parameters given upweighting
training instance z.

Approximating the loss using gradient and Hessian matrix capture the effect
of a particular instance on the model [15]. For instance z = (x, y), where x is
the input features and y is the class label, the approximate influence of z on the
model loss function at the instance to be explained zexplained is as follows [15]:

Ipert,loss(z, zexplained) = − �θ L(zexplained, θ̂)T H−1

θ̂
�x �θL(z, θ̂) (3)

One way to interpret Ipert,loss(z, zexplained) is that the influence of a training
instance z on the instance zexplained is proportionate to the gradient of the model
loss function; the higher the gradient of the loss, the higher the influence of z on
zexplained.

2.2 LIME

LIME [20] has been introduced as a local interpretability technique that relies on
the assumption that the decision boundary of a black-box model is almost linear
around the instance being explained. LIME explains an instance by fitting an
interpretable model on perturbed sample around the input instance of interest.
The methodology to build a locally interpretable model to explain the decision
of instance x is as follows. First, generate perturbed sample around x. Next,
get the prediction of the black-box model for each instance in the perturbed
sample. Assign a weight to each instance in the perturbed sample according
to its proximity to x. Train an interpretable model such as a linear regression
model on the perturbed samples with their predictions. Finally, select the most
important k features from the interpretable model to explain x.

SP-LIME [20] is a method that selects a set of representative instances
with their corresponding explanations from the local explanations obtained from
LIME as a way to characterize the entire model and gives a global understanding
for the whole model. The SP-LIME works by selecting a set of non-redundant
sample explanations based on a budget B identified by the user, where B is the
number of explanations that a user can examine. More precisely, given a set X of
instances, the SP-LIME pick a maximum of B instances that effectively capture
the model behaviour in a non-redundant way. SP-LIME starts by constructing
a matrix W of size n × d that contains the explanations of all instances in X,
where n = |X| and d′ is the number of features used to explain instances in

ILIME: Local and Global Explainer 57

X. Each row in W represents the local importance of features of a particular
instance. Further, for each column j in W , let Ij denote the global importance
of this feature in explanation space. Intuitively, I denotes the global importance
of all features in the explanation space. The main goal of the picking step is to
pick the least number of samples V that are different and have high coverage.
The coverage is defined as the set function c that, given the explanation matrix
W and global importance I, computes the total importance of the features that
appear at least once in V as follows:

c(V,W, I) = Σd′
j=11[∃i∈V :Wij>0]Ij (4)

3 Local Explainer ILIME

In this section, we present a local interpretable model-agnostic explanation
technique without making any assumption about the black-box model to be
explained. Our proposed local explainer focuses on extending LIME and the
influence functions-based explainer [15] into a new technique called ILIME that
is more faithful than LIME and with more focus on tabular data.

Let the model being explained be denoted b : X(m)− > y where X(m) is the
feature space of m features, and y is the output space. If b is a probabilistic clas-
sifier, we use b(x) to denote the probability that an instance x belongs to certain
class and to denote the most likely class otherwise. We define an explanation e
of the decision of a black-box model to be a model g, which is a linear model.
Let Ω(g) be the complexity of linear model g and is measured by the number
of non-zero weights of the linear model. Let L be a measure of how unfaithful
model g approximate a black-box b locally, where locality is captured by using
a kernel function that is used to assign high weights to the most influential
instances that are close to the instance to be explained. ILIME aims to minimize
L which ensure local fidelity by keeping Ω(g) low enough to ensure interpretabil-
ity (having g with hundreds of non-zero coefficients will not be comprehensible
to humans).

ILIME is similar to LIME in the way it generates the perturbed sample around
the instance to be explained x. ILIME explains x by fitting a linear model on
the perturbed samples. To better understand x, we identify the most influential
instances from the perturbed sample in a linear model that affects the prediction
of x. ILIME provides an explanation that is faithful locally through using the
kernel function that captures the influence of each perturbed instance on x and
the distance of each perturbed instance from x.

The algorithm steps of ILIME for explaining an instance is summarized in
Algorithm 1. Let x′ be an interpretable representation of the instance to be
explained x. First, we generate synthetic dataset Z ′ = z′

1, ..z
′
N , where N is the

number of instances in Z ′ and z′ is a binary representation obtained from drawing
uniformly fraction of nonzero elements in x′. Next, we get the prediction of the
black-box model b on each instance in Z = z1, ..zN , where Z contains instances
in Z ′ in the feature domain. Given the dataset Z ′ of perturbed instances along

58 R. ElShawi et al.

Algorithm 1: Influence-based Local Interpretable Model-Agnostic Expla-
nation (ILIME)
Input : instance x to be explained, black-box model b, Length of explanation k
Output: explanation e of instance x

1 x′ ←− interpretable representation of x

2 Z′
c ←− {}

3 Z’ ←− Generate synthetic dataset of size N obtained from x′

4 Z ←− Recoverer samples in Z′ in the feature space

5 foreach i ∈ N do
6 Z′

c ←− Z′
c ∪ 〈z′

i, b(zi)〉
7 end

8 Train a linear model D on Z′
c

9 foreach i ∈ N do

10 Calculate the Ipert,loss(z
′
i, x

′) from model D

11 πx(zi) ←− exp(−d(x, zi))*Ipert,loss(z
′
i, x

′)
12 end

13 e ←− K-Lasso(Z′
c,k,πx(z))

14 return e

with the class labels obtained from the black-box b (from the previous step)
stored in Z ′

c, the main intuition of ILIME is to get the most influential instances
in Z ′ that contribute to the prediction of instance x in a linear model trained on
instances in Z ′. The influence of each instance in z′

i is obtained by computing
Ipert,loss(z′

i, x
′), for each i ∈ [1, N] in a linear model. Next, we weight each

instance in Z by a kernel function πx(z) that captures the distance between zi

and x (the closer z to x, the greater the weight assigned to z) multiplied by
Ipert,loss(z′

i, x
′) obtained from the previous step. The kernel function πx(z) =

exp(−d(x, z))*Ipert,loss(z′, x′), where d is the Euclidean distance between the
instance to be explained x and z. Finally, we train a linear model g on Z ′

c that
minimize the following loss function. L(b, g, πx(z)) =

∑
z∈Z,z′∈Z′

c
(πx(z)(f(z) −

g(z′))2). Choosing k features is achieved using Lasso regression [9].

4 Global Attribution Using ILIME

Although explaining the prediction of a single instance gives insights to the
most important features that contribute to that prediction, it is not sufficient to
access the trust in the whole model. One of the limitations of the SP-LIME is
that the user must identify the number of explanations that can be inspected to
have a global understanding of the model. In this section, we propose a global
model agnostic attribution that characterizes the whole model and gives a better

ILIME: Local and Global Explainer 59

understanding to the model behaviour. More precisely, given the set of local
explanations of a set of instances X using ILIME, the goal is to find the best set
of instances in X with their corresponding explanations to explain the black-box
model globally.

In general, clustering algorithms aim to detect interesting global patterns in
the input instances by grouping similar instances into the same cluster. We apply
the same idea on the set of local explanations provided by ILIME to transform
them into a few number of global attributions. Our approach is a bottom-up
approach starting from all local explanations obtained from ILIME. The main
idea is to construct a dendrogram from all local explanations to find an opti-
mal number of explanations to proxy the overall behaviour of the model being
explained. Given a set X of instances of size n, we construct an n × d matrix E
of local explanations, where d is the number of features used to explain instances
in X. When using the linear model as a local explanation for instance xi, we set
Ei,j = |wi,j |, where wi,j is the weight of feature j in instance xi obtained from the
linear model. Our proposed global attribution algorithm steps for characterizing
the whole model is summarized in Algorithm 2.

First, we get the explanation of each instance in X using local explainer
ILIME. Second, we normalize each local explanation in E = e1, ..., en to ensure
that distances reflect the similarity between explanations appropriately. Third,
we construct the pair-wise distance matrix for all explanations in E. The dis-
tance function between two explanations ei and ej is defined to be weighted
Spearman’s Rho squared rank distance [25] d(ei, ej). From the computational
perspective, Spearman’s Rho squared is a well-suited distance metric especially
when the number of features or instances is large, due to its ability to make
differences between ranking more noticeable. Fourth, we merge the most similar
two explanations e and e′ in E and replace e, e′ with e ∪ e′ and then update the
distance matrix. Repeat the third and fourth steps until the set of explanations
contains only one explanation. In order to identify the optimal number of clusters
k that represents the representative explanations, we use their Bayesian Infor-
mation Criterion (BIC). More precisely, we compute the BIC for all E results
by cutting the dendrogram at all possible cutting points and select the cut that
maximizes the BIC. From each of the k clusters, we get their corresponding
medoids V = v1, ..vk which are used to summarize the patterns detected in each
of the clusters formed in the previous step.

5 Experimental Results

In our experiments, we focus on evaluating how faithful the local explanations
of ILIME to the model being explained. In addition, we evaluate the quality
of the explanation provided by ILIME. To evaluate our technique, we com-
pare it to LIME on different datasets from the UCI repository including iris,
wine, breast cancer, and cervical cancer [8]. In addition, we use other med-
ical datasets including diabetes, hypertension and mortality. These medical
dataset were collected from patients who underwent treadmill stress testing by

60 R. ElShawi et al.

Algorithm 2: Global attributation algorithm
Input : Set of instances X = x1,xn

Output: Set of explanations V

1 E ←−
2 foreach xi ∈ X do
3 ei ←− explain using ILIME(xi) � using Algorithm 1

4 E ←− E ∪ ei
5 end

6 E ← normalize the set of explanations E

7 foreach ei ∈ E do
8 foreach ej ∈ E do
9 d(ei, ej) ←− distance between ei and ej

10 end

11 end
12 while only one cluster remains do
13 select e and e′ from E such that d(e, e′) is minimal

14 set E = E\ {e, e′} ∪ {e ∪ e′}
15 update the distant matrix d

16 end
17 generate the clusters by cutting the dendrogram at an appropriate level based

on BIC

18 V ← medoid of clusters generated in previous step

19 return V

physician referrals at Henry Ford Affiliated Hospitals in metropolitan Detroit,
MI in the U.S. The data has been obtained from the electronic medical records,
administrative databases, and the linked claim files and death registry of the
hospital [1]. For more details about the datasets and the process of develop-
ing the prediction model for predicting the risk of hypertension, diabetes and
mortality, we refer the readers to [2,23,24].

5.1 How Faithful ILIME to the Model Being Explained?

In this experiment, we focus on measuring how faithful ILIME is to the model
being explained. More precisely, we want to answer the following question: are
the relevant features returned by the ILIME truly relevant? One way to answer
this question is to assume that the model being explained is a white-box model
(interpretable) such as logistic regression. For each of the hypertension, wine
and breast cancer dataset, we follow the same pipeline:

1. Set the size of perturbed sample N = 5000, and k = 7 for both of LIME and
ILIME.

2. Partition the dataset into 70% for training and 30% for testing the model.

ILIME: Local and Global Explainer 61

Fig. 1. Recall on truly important features for logistic regression classifier on different
datasets

3. Train a logistic regression model with the training dataset such that the
maximum number of features used for any instance in the dataset is not
more than 7 features. Now we know the most important features for the
model globally and we call them the set of important features.

4. For each instance in the test dataset, we get the explanation from both LIME
and ILIME based on the top k features.

5. For each explanation retrieved by LIME and ILME, compute the fraction of
features contained in the set of important features.

We report the recall averaged over the instances in the test dataset as shown
in Fig. 1. The results show that ILIME consistently achieves higher recall than
LIME across all the datasets. In particular, these results demonstrate that ILIME
provides explanations that are more faithful to the model than LIME.

We conducted another experiment to measure how faithful the explanations
obtained from ILIME compared LIME. In particular, for each pair of the follow-
ing datasets Iris-hypertension, Iris-breast cancer, wine-diabetes, and diabetes-
mortality, we used the following pipeline:

1. Construct a composite dataset by concatenating all the instances in class 1
and 2 from the first dataset (Iris in the first pair of datasets) with the same
number of instances in class 1 and 2 from the second dataset (hypertension
in the first pair of datasets)

2. Partition the second dataset and the composite data into 2/3 for training and
1/3 for testing

3. Train a random forest classifier on the second dataset and the composite
dataset

62 R. ElShawi et al.

Fig. 2. Example for the explanation of ILIME versus LIME on one instance from the
composite Iris-hypertension dataset

We noticed that the testing accuracy dropped when using only features of the
second dataset which implies that the model learns to depend on the features of
the first dataset. From the accuracy drop when using only features of the second
dataset in prediction, we know that features of the first dataset are important
to the model’s prediction. In order to verify that ILIME explanations reveal
this relation, we do the following for each pair of datasets. For each instance
in the composite dataset, we get the explanations from both ILIME and LIME
using k features, where k equals to the total number of features in the composite
dataset. We compute the fraction of features of the first dataset recovered by the
explanations of LIME and ILIME as shown in Fig. 3. The results show that ILIME
successfully capture more important features than LIME across all datasets.
Figure 2 shows an example for the explanation of ILIME versus LIME on one
instance from the composite Iris-hypertension dataset. Figure 2 shows that ILIME
identifies four features from the iris dataset while LIME identifies three.

5.2 Can We Trust the Explanations of ILIME?

In this experiment, we focus on measuring the quality of the explanations of
ILIME and measure how trusted the explanations obtained from ILIME when
compared to LIME. We follow the following pipeline on each of the diabetes,
mortality and hypertension datsets:

– Partition the dataset into 2/3 for training and 1/3 for testing
– Train a black-box classifier such as random forest (RF) and support vector

machine (SVM)
– For each test instance wi in the test dataset, we get the prediction of the

black-box model
– Randomly select 25% of features of instance wi and create an instance w′

i with
the same feature values of wi but without the randomly selected features

– Get the prediction of instance w′
i from the black-box model

We assume that we have a trustworthiness oracle that label a test instance
as trusted if the prediction of wi equals to the prediction of w′

i and untrusted

ILIME: Local and Global Explainer 63

Fig. 3. Fraction of the second dataset features in all pairs of datasets recovered by the
explanations of LIME and ILIME

otherwise. For each instance wi in the test dataset, we do the following for
both LIME and ILIME. Get the explanation of instance wi and then get the
prediction from the linear approximation model for instance w′

i and check that
if the prediction of wi is not equal to the prediction of w′

i, then this instance
is untrusted for the explanation method used and trusted otherwise. Now, we
compare the trusted and untrusted instances for both LIME and ILIME against
the trustworthiness oracle. Using this set up, we report the overall F-score of each
explainer averaged over 50 runs using different classifiers and datasets as shown
in Fig. 4. The results show that ILIME outperforms LIME across all datasets
using random forest and support vector machine classifiers.

We conducted another experiment to assess the quality of the explanation
obtained from ILIME when compared LIME. We used a toy dataset [22], which
is 5 × 5 × 3 RGB images with four possible collection of colours. Images are
categorized into two distinct groups. Images in group 1 satisfy the following
two rules: (1) All the pixels in the four corners are the same. (2) The middle
three pixels in the top row have different colors. The images belong to group 2
satisfy neither rules. We partitioned the dataset into 2/3 for training and 1/3 for
testing. We train multilayer perceptron such that the number of hidden layers
is 2 of size 50 and 30, ReLU nonlinearities with softmax output. The network
has been trained using Adam optimizer [13]. For each test image wi in the test
dataset that satisfy the two rules mentioned above, we get the prediction of
the black-box model. An accurate model should capture the corner pixels and
the middle three pixels in the top row, we call these pixels important pixels. If
wi is correctly predicted by the model as group 1, then we get its explanation
using LIME and ILIME based on the top 7 features. We return the fraction of
important pixels averaged over all instances in the test dataset, averaged over 10

64 R. ElShawi et al.

Fig. 4. F-score of LIME and ILIME averaged over 50 runs using different classifiers and
datasets

runs. ILIME achieves an overall recall of 80% while LIME achieves 76%. Figure 5
shows an example for the explanations obtained from both LIME and ILIME
based on the top 6 features. Figure 5 shows that ILIME can successfully identify
more important pixels compared to LIME.

5.3 Can We Trust the Whole Model?

In order to evaluate the proposed global attribution technique that characterizes
the whole model, we compare it with global interpretable classifiers such as
logistic regression (LR) and decision trees (DT). We follow the following pipeline
for the cervical cancer, diabetes and breast cancer datasets for each of logistic
regression and decision trees:

1. Partition the dataset into 2/3 for training and 1/3 for testing
2. Train a classifier using the training dataset such that the maximum number of

features used for any instance is 10 and hence, we know the set of important
features identified by the model

3. Get the explanations of all test instances in the testing dataset using LIME
and ILIME local explainers

4. Get the set of explanations that best characterize the model using SP-LIME
and our proposed global attribution technique, we set the budget B in LIME
to be equals to the number of explanations retrieved by our global attribution
framework

5. Get the fraction of the important features that are recovered by SP-LIME
and our proposed framework

We report the recall averaged over all the explanations retrieved by SP-LIME
and our proposed framework as shown in Fig. 6. The overall recall reported by
our proposed framework outperforms SP-LIME across all datasets. In particular,
our proposed framework consistency achieves recall over 85% across all datasets.

ILIME: Local and Global Explainer 65

Fig. 5. Example for the explanation of ILIME versus LIME on toy dataset based on
the top 6 features

Fig. 6. The recall of trustworthiness for SP-LIME and ILIME based on different clas-
sifiers using different datasets

We conducted another experiment to validate our proposed global attribution
by comparing it against the permutation feature importance algorithm [10] in
which the importance of a feature is measured by calculating the increase in the
model’s prediction error when the feature is permuted. A feature is considered
important if shuffling its values resulted in increasing the model error. A feature
is considered unimportant if shuffling its value does not have any impact on
the model error. We train a random forest model on cervical cancer dataset
such that 70% used for training and 30% used for testing. We get the feature

66 R. ElShawi et al.

Fig. 7. Feature attribution using global feature importance, SP-LIME and ILIME
global attribution in a random forest model for predicting the risk of cervical
cancer

importance of each feature in the testing dataset on the trained model and
report the top most important five features as shown in Fig. 7(a). We get the
local explanations of each instance in the test dataset using LIME and ILIME.
Next, we get the global attribution using ILIME global attribution for instances
explained using ILIME. Then, we get the global attribution using SP-LIME for
instances explained using LIME such that the budget is identified to be the
same number of clusters identified by the ILIME global attribution technique.
For each of SP-LIME and ILIME global attribution, we report the top five most
important features as shown in Fig. 7(b) and (c). The results show that four out
of the five most important features obtained by the global feature importance
technique appear in the global attribution of ILIME while only three out of five
appear in the SP-LIME. Furthermore, the top two features in the ILIME global
attribution appear in the same order of the global feature importance technique.
For the global attribution of SP-LIME, neither of the features appear in the
same order of the global feature importance technique.

ILIME: Local and Global Explainer 67

6 Conclusion and Future Work

In this paper, we presented, ILIME, a local model agnostic explainer for explain-
ing the prediction of any machine learning black-box by fitting interpretable
model on synthetic dataset around the instance to be explained. Each instance
in the synthetic dataset is weighted by its influence in a linear model on the
instance to be explained and distance to the instance to be explained. The pro-
posed explainer ILIME has been evaluated and demonstrated its effectiveness
by outperforming the state-of art local explainer, LIME, in terms of mimicking
the behaviour of the model to be explained locally and globally. In addition, we
proposed a global attribution technique based on local explanations obtained
from ILIME to characterize the model being explained and to provide a global
understanding for the whole model. In this work, we have been mainly focusing
on tabular data. As a future work, we are planning to extend our approaches to
images and text data.

Acknowledgment. The work of Radwa Elshawi is funded by the European Regional
Development Funds via the Mobilitas Plus programme (MOBJD341). The work of
Sherif Sakr is funded by the European Regional Development Funds via the Mobilitas
Plus programme (grant MOBTT75).

References

1. Al-Mallah, M.H., et al.: Rationale and design of the Henry Ford Exercise Testing
project (the FIT project). Clin. Cardiol. 37(8), 456–461 (2014)

2. Alghamdi, M., Al-Mallah, M., Keteyian, S., Brawner, C., Ehrman, J., Sakr, S.:
Predicting diabetes mellitus using SMOTE and ensemble machine learning app-
roach: the Henry Ford ExercIse Testing (FIT) project. PLoS One 12(7), e0179805
(2017)

3. Augasta, M.G., Kathirvalavakumar, T.: Reverse engineering the neural networks
for rule extraction in classification problems. Neural Process. Lett. 35(2), 131–150
(2012)

4. Caruana, R., et al.: Intelligible models for healthcare: Predicting pneumonia risk
and hospital 30-day readmission. In: KDD (2015)

5. Cook, R.D., Weisberg, S.: Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics 22(4), 495–508 (1980)

6. Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Chapman and
Hall, New York (1982)

7. Danks, D., London, A.J.: Regulating autonomous systems: beyond standards.
IEEE Intell. Syst. 32(1), 88–91 (2017)

8. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

9. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression.
Ann. Stat. 32(2), 407–499 (2004)

10. Fisher, A., Rudin, C., Dominici, F.: Model class reliance: variable importance mea-
sures for any machine learning model class, from the rashomon perspective. arXiv
preprint arXiv:1801.01489 (2018)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1801.01489

68 R. ElShawi et al.

11. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93 (2018)

12. Hara, S., Hayashi, K.: Making tree ensembles interpretable. arXiv preprint
arXiv:1606.05390 (2016)

13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Kingston, J.K.C.: Artificial intelligence and legal liability. In: Bramer, M., Petridis,
M. (eds.) Research and Development in Intelligent Systems XXXIII, pp. 269–279.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47175-4 20

15. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions.
arXiv preprint arXiv:1703.04730 (2017)

16. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint frame-
work for description and prediction. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1675–
1684. ACM (2016)

17. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the
intelligibility of context-aware intelligent systems. In: SIGCHI (2009)

18. Lowry, S., Macpherson, G.: A blot on the profession. Br. Med. J. (Clin. Res. Ed.)
296(6623), 657 (1988)

19. Malioutov, D.M., Varshney, K.R., Emad, A., Dash, S.: Learning interpretable clas-
sification rules with boolean compressed sensing. In: Cerquitelli, T., Quercia, D.,
Pasquale, F. (eds.) Transparent Data Mining for Big and Small Data. SBD, vol. 11,
pp. 95–121. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54024-5 5

20. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the
predictions of any classifier. In: KDD (2016)

21. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: AAAI Conference on Artificial Intelligence (2018)

22. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: train-
ing differentiable models by constraining their explanations. arXiv preprint
arXiv:1703.03717 (2017)

23. Sakr, S., et al.: Using machine learning on cardiorespiratory fitness data for pre-
dicting hypertension: the henry Ford Exercise Testing (FIT) project. PLoS ONE
13(4), e0195344 (2018)

24. Sakr, S., et al.: Comparison of machine learning techniques to predict all-cause
mortality using fitness data: the henry Ford Exercise Testing (FIT) project. BMC
Med. Inform. Decis. Mak. 17(1), 174 (2017)

25. Shieh, G.S., Bai, Z., Tsai, W.Y.: Rank tests for independence–with a weighted
contamination alternative. Statistica Sinica 10, 577–593 (2000)

http://arxiv.org/abs/1606.05390
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-47175-4_20
http://arxiv.org/abs/1703.04730
https://doi.org/10.1007/978-3-319-54024-5_5
http://arxiv.org/abs/1703.03717

Heterogeneous Committee-Based Active
Learning for Entity Resolution (HeALER)

Xiao Chen(B), Yinlong Xu, David Broneske, Gabriel Campero Durand,
Roman Zoun, and Gunter Saake

Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
{xiao.chen,yinlong.xu,david.broneske,campero,roman.zoun,saake}@ovgu.de

Abstract. Entity resolution identifies records that refer to the same
real-world entity. For its classification step, supervised learning can be
adopted, but this faces limitations in the availability of labeled training
data. Under this situation, active learning has been proposed to gather
labels while reducing the human labeling effort, by selecting the most
informative data as candidates for labeling. Committee-based active
learning is one of the most commonly used approaches, which chooses
data with the most disagreement of voting results of the committee, con-
sidering this as the most informative data. However, the current state-
of-the-art committee-based active learning approaches for entity resolu-
tion have two main drawbacks: First, the selected initial training data
is usually not balanced and informative enough. Second, the committee
is formed with homogeneous classifiers by comprising their accuracy to
achieve diversity of the committee, i.e., the classifiers are not trained with
all available training data or the best parameter setting. In this paper, we
propose our committee-based active learning approach HeALER, which
overcomes both drawbacks by using more effective initial training data
selection approaches and a more effective heterogenous committee. We
implemented HeALER and compared it with passive learning and other
state-of-the-art approaches. The experiment results prove that our app-
roach outperforms other state-of-the-art committee-based active learning
approaches.

Keywords: Entity resolution ·
Query-by-committee-based active learning ·
Learning-based entity resolution · Record linkage

1 Introduction

Entity resolution (ER) is the task of identifying digital records that refer to
the same real-world entity [6]. The classification step in an ER process can
be considered as a binary classification problem [9]. Supervised learning can be

This work was partially funded by the DFG [grant no.: SA 465/50-1], China Scholarship
Council [No. 201408080093] and Graduiertenförderung des Landes Sachsen-Anhalt.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 69–85, 2019.
https://doi.org/10.1007/978-3-030-28730-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_5

70 X. Chen et al.

adopted to solve this problem. However, in order to reach a satisfactory accuracy,
a high amount of training data has to be provided, which is usually not available,
and has to be labeled by domain experts. The training dataset labeled by domain
experts for ER tasks is even more difficult to get than a normal classification
problem, since for each labeling, experts have to work on both records of pairs
and all their attribute pairs to make the final decision. Therefore, reducing the
number of required training data is of great importance for ER.

As a means to reduce human effort, active learning (AL), which is a specific
branch of machine learning (ML), is proposed to deal with this problem. Com-
pared to a normal one-off ML process, an AL process is interactive and iterative.
It reduces the number of required training data to achieve a desired accuracy by
querying experts to label only the most informative data for each iteration and
adding these into the training data (those pairs that are intrinsically difficult
to classify based on available features are informative data). Then classifiers are
retrained on updated training data and after each iteration, the stopping criteria
are checked to see whether more iterations are required. So far, there have been
different AL approaches proposed, which differ on the strategies to choose the
most informative data. Query by committee (QBC) is an effective approach that
has been successfully applied to many applications [16]. It gets the most informa-
tive data by selecting those data that result in the most disagreement in the votes
of a committee of multiple classifiers [25]. However, applying QBC approaches
for AL-based entity resolution (AL-ER) problems faces two challenges:

Diversified Committee: The key challenge to make QBC work in common is
to generate a diversified committee, which can insightful voting disagreements so
that the informativeness of data can be represented and distinguished [16] [14]. In
order to achieve the diversity, for the vast majority of proposed AL approaches,
they consider how to get multiple models with only one single type of classifi-
cation algorithm. So far, several methods have been proposed for the diversity
purpose, such as query by bagging, query by boosting [15]. However, for all those
ensemble-based approaches, the accuracy of each model is compromised to get
this diversity. For instance, in the bagging approach, the initial training dataset
is divided into several smaller subsets, then different models are built based on
different subsets [15]. Those trained models cannot be expected to achieve such
accuracy as the model trained on the whole training dataset. Besides, nowadays,
data is also quite variable in their types and there is no universally best model
for all types of data. If a system completely relies on a single type of model,
accuracy could not be acceptable for the worst cases.

Imbalanced ER Classification: The second challenge specialized for an AL-
ER solution is the generation of the initial training dataset. The binary classifi-
cation task for ER is a special task because of the imbalance of its two groups.
In our real world, there are much fewer match pairs than non-match pairs, e.g.,
for the well-known Scholar-DBLP dataset, the imbalance ratio is 1 match but
3273 non-matches [28]. If the initial training dataset is randomly selected from
all candidate pairs, the possibility to contain match pairs would be quite low,
which may lead to a very low starting accuracy of trained models or even fail

Heterogeneous Committee-Based Active Learning for Entity Resolution 71

in training a model. Facing imbalanced data, oversampling and undersampling
are commonly-used. However, except for their intrinsic shortcomings (overfitting
for oversampling and discarding potentially useful data for undersampling [12]),
they also contradict the goal of AL: saving labeling effort as much as possible.
Facing both challenges, we propose in this paper a novel Heterogeneous Active
Learning Entity Resolution (HeALER) solution. We specifically detail our con-
tributions as follow:

– We design a specialized technique to generate the initial training dataset,
which is suitable for the inherent class imbalance in ER;

– We propose to construct the AL committee with different types of classi-
fication algorithms, through which we can achieve diversity, accuracy and
robustness requirements of a committee;

– We prototype our solution and evaluate it with two well-known ER benchmark-
ing datasets, and comparing with passive ML and two state-of-the-art AL-ER
approaches (ATLAS [27] and ALIAS [24]). The evaluation results show that
HeALER is faster to converge and can reach a higher final F-measure, which
also indicates that with fewer labels a satisfactory F-measure can be achieved.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
our HeALER approach. Subsequently, we evaluate our approach and discuss the
experiment results in Sect. 3. Before we conclude and list future work in Sect. 5,
we also compare our method to other related work in Sect. 4.

2 Heterogeneous Committee-Based Active Learning
for Entity Resolution

In this section, we introduce our designed QBC AL method for ER, which is
characterized by its initial training data selection approach and its heterogeneous
committee. We start with a global picture of our approach in Sect. 2.1, then we
represent our initial training data selection method, heterogeneous committee in
the following sections.

2.1 The Global Workflow

Figure 1 represents the global workflow of our method HeALER. It is separated
into two parts, the left green area describing the preparation steps, and to the
side the light red area corresponds to the AL stage.

Preparation for Active Learning. As we can see from the left green area
of Fig. 1, several preparation steps are required to start the ER process. At
first, input data is preprocessed if necessary, which may include data cleaning,
formatting, standardization. Afterwards, blocking is performed to omit unneces-
sary comparisons, which are obvious non-matches based on predefined blocking
keys [5]. Then candidate pairs are generated based on the blocking result. Sub-
sequently, for each attribute pair, one or more similarity functions are chosen

72 X. Chen et al.

Dataset 1 Dataset n

Data Preprocessing

Blocking

Paired
Data

Similarity
Functions

Calculation

Paired data with
 similarity scores

 as features

...

Pairing

Initial Training Data Selection
Sum up Similarity Scores

Extract Matches and Non-
Matches From Matching and

Mixed Zones Separately

Descending Sort

Sample
Selector

Votes

Labeler

Labeled
Training Data

...

Heterogeneous Committee

...

Committee Generator

Stopping Criteria?

Selected
Classifier(s)

Result

No

Yes

Data Preparation Iterative Active Learning Process Main Contributions

Fig. 1. The global workflow of HeALER

to best calculate similarities between each attribute pair in order to get similar-
ity scores as features for the following learning-based classification step [4]. For
the above-introduced steps, proper techniques should be employed based on ER
task requirements, our contributions are reflected on the AL part, which will be
briefly introduced next.

Iterative Active Learning Process. The first step of HeALER is to select
pairs from the candidate pairs to be labeled by domain experts for an initial
training dataset. As mentioned in Sect. 1, the classification step of ER is an
imbalanced binary classification problem, i.e., there are much fewer match pairs
than non-match pairs [9]. In order to reach a relatively high starting point with
the initial training dataset, the training data is required to be balanced and
informative. Balanced means the initial training dataset should contain sufficient
percentages of match and non-match pairs, which is hard to achieve when one
randomly picks pairs from the entire input data, since too high percentage of
non-matches would be selected. Informative means the initial training data could
involve useful information, which can benefit classifiers. The details how we
achieve both goals will be introduced in Sect. 2.2.

Based on the initial training dataset, different classifiers are trained on them
and then all classifiers together form the required committee. Notably, our clas-
sifiers are trained by different classification algorithms, which means our com-
mittee is heterogeneous. Compared to the majority of state-of-the-art QBC-AL
approaches, our heterogeneous committee has the following advantages: First,
the fundamental requirement - diversity of the committee - is achieved in a
natural way without any other efforts. Second, each member of the committee
is trained with the best or full ability without any compromise, which is more
promising to provide a more accurate vote. Last, the committee analyzes training
data and provides the result from multiple perspectives, no matter which kind

Heterogeneous Committee-Based Active Learning for Entity Resolution 73

of data the committee is facing, it can provide relatively stable and acceptable
results. The methods to form our committee, including how to define the number
of required classifiers and how to select classification algorithms as committee
members, will be explained in Sect. 2.3.

After the committee is formed, they are employed to vote each pair from the
unlabeled pool into match or non-match. The calculation of the disagreement of
voting results for pairs will be firstly represented in Sect. 2.4. Then this process
is iterated until the stopping criteria are reached.

2.2 Initial Training Dataset Generation

As explained in the last section, a good initial training dataset should be bal-
anced and informative. In order to achieve both criteria, we analyzed a learning-
based ER process. The resources that we have for the classification step are the
candidate pairs and already calculated similarity scores for each attribute pair
as features. Figure 2 is a histogram formed for the benchmarking bibliography
dataset ACM-DBLP [13], which describes how the percentages of matching and
non-matching pairs varies along with different similarity score levels. There are
four attributes in this dataset, in total there are 16 similarity scores calculated as
features (five similarity scores for the first three attributes: title, author, venue
with different string similarity calculation functions; and one similarity score
calculated for the attribute: publication year), each separate similarity score is
normalized between zero and one, then the total similarity scores of all pairs
should be between zero and sixteen by summing up all similarity scores. Based
on this, we divided all candidate pairs into 15 groups and each group is an inter-
val between n and n+1 (n is from 0 to 15). As we can see from it, globally
the whole pairs are located in three zones. For areas with the lowest similar-
ity scores the vast majority of pairs are non-matching pairs (the non-matching
zone). Then the percentage of matching pairs increases in relatively middle lev-
els (the mixed zone), and for the last levels with highest similarity scores, the
vast majority of pairs become matching pairs (the matching zone). Dealing with
variable datasets, the concrete ranges of the three zones may vary, however,
globally speaking, those three zones and their trends should be valid for almost
all datasets.

From the perspective of balance, the difficulty for the imbalanced classifica-
tion step of ER is to find a sufficient number of matching pairs, while non-match
pairs are quite easy to get, because there are much more non-matching pairs
than matching pairs in our real world. The percentages shown in the figure can
indicate the difficulty to get matching and non-matching pairs. In order to get
sufficient matching pairs, the matching zone has to be focused. In order to get
sufficient non-matching pairs, both the non-matching zone and the mixed zone
can be the candidates.

From the other perspective of being informative, those pairs that are intrin-
sically difficult to classify based on available features, can be considered as infor-
mative data, since the classifier would be significantly improved if informative

74 X. Chen et al.

pairs are labeled and added to help the classifier training. Hence, those error-
prone pairs should be true match pairs with relatively low similarity scores and
true non-match pairs with relatively high similarity scores. True match pairs
with relatively low similarity scores should be located in the mixed zone, but
it is not possible to get them, since the matching pairs account for very small
percentages in the mixed zone. Therefore, for achieving both balance and infor-
mativeness, we have to pick matching pairs from the matching zone. On the
other hand, for non-match pairs, true non-match pairs with relatively high sim-
ilarity scores locate in the mixed zone, by combining the conclusion from above
(the non-matching zone and the mixed zone for getting non-matching pairs from
the perspective of balance), the mixed zone is the aiming zone for high quality
non-matching pairs.

Based on the above considerations, we conclude our method to generate the
initial training dataset for learning-based ER in the following way:

1. First, there can be many similarity scores calculated and for different
attributes, values of similarity scores may vary much. Hence, it is difficult
to look into each separate similarity score and judge the possibility based on
them separately. Therefore, we calculate a total score of each pair by summing
up all similarity scores of attributes.

2. Next, we sort all candidate pairs based on their total scores in descending
order.

3. Last, we divide all sorted pairs into k groups, then we can get the initial
training dataset by randomly picking n/2 number of pairs from the top k1
groups (the matching zone) for getting sufficient matching pairs and n/2
number of pairs from the next k2 groups (the mixed zone) for getting sufficient
and informative non-matching pairs (n is the preset number of initial training
data). There is no accurate method to determine which k, k1, k2 are the best.
The following hypotheses can be used. If the ER problem is between two data
sources and the linkage is one-to-one linkage, the highest number of matches
is the number of records in the smaller dataset. This number can be used as
the size of the matching and mixed zones. If the linkage is one to many, even
many to many linkages, an information that can be used is the approximate
percentage of matching pairs, then this can be the basis to locate the matching
zone and the same percentage of pairs can counted for the mixed zone. If even
the percentage of matching pairs is unknown, as a rule of thumb, 10 groups
should be a good number to averagely divide all pairs with a proper blocking
step, then the matching zone is the top group with highest similarity scores
and the mixed zone corresponds to the second group for getting non-match
pairs.

With the above-introduced strategy the interesting areas analyzed above are
established. With the first top groups, we are able to get sufficient matching
pairs, and with the next groups, sufficient and informative non-matching pairs
can be obtained.

Heterogeneous Committee-Based Active Learning for Entity Resolution 75

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Similarity Score Levels

non-match percentage match percentage

mixed zone matching
zone

non-matching
zone

Fig. 2. Distribution of
similarity scores

Fig. 3. F-measures of 7
classification algorithms

Fig. 4. Efficiency of 7
classification algorithms

2.3 Heterogeneous Committee

As introduced in Sect. 1, our committee is heterogeneous, which means that
classifiers of the committee are trained with different classification algorithms.
The method designation focuses on two aspects: how many classifiers and which
classifiers to choose.

Generally speaking, our heterogeneous committee is allowed to contain any
number of classifiers. Based on the result in [24], the performance of the classifier
is not too sensitive to how many members a committee has and with four clas-
sifiers the aggregated accuracy is already satisfactory enough. On the one hand,
each additional member in the committee means one more training process per
iteration, which can heavily increase time needed for generating one round com-
mittee and has negative impact on efficiency. On the other hand, having more
than four members for the committee achieves even lower accuracy [24]. There-
fore, in our evaluation, four classifiers are generated to form the committee. Next,
we present which candidate algorithms are suitable to be committee members.
In general, we considered the following factors:

Accuracy with Little Training Data: The selected classifiers should have
relatively high accuracy. Particularly, because the purpose of using AL is to
reduce required human labeling efforts, we assume that for the training dataset,
not so much training data is required to achieve high accuracy, which means
that the selected classifiers should still work when only little training data is
available. This is the main factor we use to choose classification algorithms.

Efficiency: Efficiency also requires consideration, since a learning-based classifi-
cation is much more time-consuming than a simple threshold-based classification
and such factor can be expected to have a large impact on the performance, as
data grows.

Interpretability: Interpretability is also of great importance for choosing the
learning algorithms, because we can use machine learning responsibly to ensure
that our values are aligned and our knowledge is reflected [8].

We considered the following seven common binary classification algorithms:
logistic regression (LR), decision tree (DT), random forest (RF), gradient-
boosted tree (GBT), support vector machine (SVM), one-vs-rest logistic regres-
sion (OvR) and naive bayes (NB). In order to select classifiers for our

76 X. Chen et al.

committee, we evaluated their F-measures also on the same benchmarking bibli-
ography dataset ACM-DBLP [13] used in Fig. 2 by using different sizes of initial
training data. Figure 3 shows the results. SVM, OvR and LR have a satisfac-
tory F-measure value even with only two training data pairs. NB and RF pro-
vide still a very low F-measure value even with 40 training data instances. NB
classifiers are generative models that need prior probabilities. The probabilities
are inaccurate for our case, because our initial training data is chosen by our
proposed method in the last section, which normally generates relatively bal-
anced training data. This state of training data does not conform to the test
data [21]. Besides, it assumes that all features are independent [23]. However,
our features are actually not independent, which may lead to the low F-measure
for NB classifiers. The RF classifier cannot perform well, because it trains an
ensemble of decision tree classifiers by splitting the training dataset into multiple
subsets, then chooses subsets of features for each decision tree classifier [26]. This
leads to a low F-measure especially when there is not enough training data. DT
overall performs well except for the case with two training data pairs, in which
DT classifier is not possible to be trained. GBT is in a similar situation as DT.
However, its F-measure values are always lower than DT. We also evaluate the
efficiency of all seven classification algorithms. All candidate pairs are divided
into roughly two equal groups. Training data is generated by randomly picking
four matching and non-matching pairs from the first group and then test data
is the other entire group. The results are shown in Fig. 4. As we can see from it,
results show that DT, GBT and RF need obviously more time than the other
algorithms. NB runs the fastest, OvR, SVM and LR follows. However, all three
tree-based classification algorithms DT, RF and GBT are quite slow. By combin-
ing the perspectives of interpretability and efficiency with the accuracy result,
SVM, OvR, LR, and DT are selected to form our heterogeneous committee.

Above we provided guidelines on how to choose classification algorithms to
form the heterogeneous committee. Facing different implementations of algo-
rithms with different adopted libraries, the best choices of classification algo-
rithms may change case by case.

2.4 Training Data Candidate Selection

After our heterogeneous committee is formed based on the above introduced
approach, it is used to vote unlabeled pairs as matches or non-matches. Then
those pairs with the most disagreement are those interesting pairs that we may
select to be labeled by domain experts and added to the training dataset. The
disagreement value of the voting results for pairs is calculated with the following
equation:

Disagreement(pair) =
∑

(am,an)∈committee)

Difference(result(am), result(an)) (1)

where (am, an) are the combinations of results from any two classification algo-
rithms from the committee and the Difference(x, y) function returns zero or one,

Heterogeneous Committee-Based Active Learning for Entity Resolution 77

Table 1. Datasets used in experiments

Datasets #Input #Records

in DBLP

#Records in

ACM/Scholar

#Pairs

(#match pairs)

#For

training data

selection

#For testing

ACM-DBLP2 2 2616 2294 21095 (2189) 10547 10548

Scholar-DBLP1 2 2616 64263 44999 (4351) 22500 22499

depending on whether x equals to y or not. With this equation, we sum up all
the differences between any two combination of classification algorithms as the
final disagreement value of the votes. However, the pair with a high disagree-
ment value has also a high possibility that it is an outlier. If an outlier is selected
and added to the training dataset, it will negatively impact the performance of
classifiers. In order to reduce the possibility that outliers are selected, the ran-
dom sampling proposed in [24] randomly picks the pair from the top-n pairs to
alleviate the probability that an outlier is selected to be labeled, n can be set
manually, such as 10, 20, 30.

Then the training data is updated in the above-introduced way iteratively
and after the iteration process is completed according to preset termination
conditions, the committee or a specific classifier can be used to identify duplicates
for any unlabeled data.

3 Evaluation

In this section, we evaluate HeALER from three aspects: first, we solely con-
ducted experiments to evaluate the balance and accuracy of our initial training
data selection method (Sect. 3.2). Second, we evaluate our heterogeneous com-
mittee and compare it to the passive learning, committees formed by ALIAS
and ATLAS (Sect. 3.3). Last, we evaluate our entire HeALER approach against
a ML process and two state-of-the-art QBC-AL approaches: ALIAS and ATLAS
(Sect. 3.4). For all results, the accuracy is measured using F-measure.

3.1 Experimental Setting

Datasets: We evaluate HeALER on two commonly-used real-world datasets:
ACM-DBLP and Scholar-DBLP citation datasets [13]. Both datasets include
two parts, one part is from the DBLP citation database and the other one is
from ACM or google scholar citation databases, respectively. All of them have
four attributes, including title, authors, venue and publication year. In order to
prepare data for HeALER, we have done the following steps based on the two
original citation databases: We first preprocess both databases by removing stop
words and null values. Then we generate blocking keys (the first five letters of the
title) for each record. Subsequently, we join two database tables with the blocking
key as the join attribute, so that we get all candidate pairs. Afterwards, simi-
larity functions are performed on each attribute to get corresponding features.

78 X. Chen et al.

(a) Balance of matching and non-matching pairs

(b) F-measure Comparison

Fig. 5. Initial training dataset selection approaches evaluation

For attributes “title”, “author”, we apply cosine, Jaccard, Jaro-Winkler, metric
longest common subsequence, N-Gram, normalized Levenshtein and Sorensen-
Dice similarity functions1. For attribute “venue”, the Jaccard similarity function
is used. For the last attribute “year”, the similarity between two values is one
or zero based on whether they equal or not. In this way, we obtained 16 fea-
tures. For the preparation of our initial training dataset selection method, total
similarity scores are calculated and appended to data as well. With the above
introduced steps, for the ACM-DBLP dataset, we got 21095 pairs after blocking
(including 2189 true match pairs). We randomly divide all pairs into two parts:
the first half 10547 pairs as the first part form the dataset to select training
data and the remaining pairs for testing. For the Scholar-DBLP dataset, we got
44999 pairs after blocking (including 4351 true match pairs). We also randomly
separate it into two parts in the same way as the ACM-DBLP dataset. The
details of datasets are summarized in Table 1.

Implementation Related: Since learning-based classification is much more
time-consuming than threshold-based classification, we implemented HeALER
with Apache Spark (version 2.4), which is a general framework supporting dis-
tributed computation, as a preparation for big data processing. However, this
paper focuses only on the quality side of ER results. The classification algorithms
used are implemented with Spark MLlib. The programming language is Scala
with the version 2.11.12.

1 Implemented by the Debatty library (version 1.1.0).

Heterogeneous Committee-Based Active Learning for Entity Resolution 79

3.2 Initial Training Dataset Evaluation

Experimental Design. This experiment is to evaluate different strategies to
select the initial training dataset by getting the average results over five runs.
We use both datasets in Table 1. The tested initial dataset sizes are four and
ten, which are proved to be the least to function selected classifiers (Fig. 3). The
following strategies are evaluated:

Random Selection: It means we randomly select the required number of pairs.

Optimal Selection: The optimal selection means that training data is optimally
balanced, i.e., because we have the ground truth for our datasets, we pick half
matches and half non-matches from the unlabeled data. However, this is not
practical, since before labeling, we have no idea which pairs are matches or
non-matches. In [24], they selected initial training data in this unpractical way.

Initial Training Data Selection of ATLAS [27]: ATLAS ranks all pairs on their
total similarity scores, then divides the whole pool to n groups (4 or 10 groups
for two tested dataset sizes respectively), at last the initial training dataset is
obtained by randomly selecting one data pair from each group.

Initial Training Data Selection of AGP [7]: In order to get both matching pairs
and non-matching pairs, the initial training dataset of AGP is obtained by select-
ing half number of pairs with highest total similarity scores (2 or 5 pairs for two
tested dataset sizes respectively) and the other half number of pairs with lowest
total similarity scores (2 or 5 pairs for two tested dataset sizes respectively).

Initial Training Data Selection of HeALER: Our own method HeALER selects
the initial training dataset in the way of the hypotheses described in Sect. 2.2.
Since the linkage for ACM-DBLP dataset is one-to-one linkage, the highest num-
ber of matches is the number of records in the smaller dataset, i.e., 2294 records
from ACM library. As the whole dataset is almost equally split to two datasets.
Then the matches contained in the first dataset to select training data should
be 1147. This number can be used to get the matching and mixed zones, i.e.,
two pairs randomly picked from the first 1147 pairs with the highest similarity
scores, and two pairs randomly picked from the next 1147 pairs. Regarding the
other dataset Scholar-ACM, it is not one-to-one linkage, but we know that the
approximate percentage of its matching pairs is 10, therefore, we divide all pairs
into 10 groups, and the first top group with the highest total similarity scores is
the matching zone, where we randomly get 5 pairs, and the second group is the
mixed zone, where we randomly get the rest 5 pairs.

We evaluate those above-introduced selection methods with balance and
F-measure metrics. For the balance metric, how many matching and non-matching
pairs in the training dataset is shown. For the F-measure metric, F-measures val-
ues are calculated by testing the classifiers trained on different training datasets
with LG, DT, SVM classification algorithms respectively on the test dataset.

Results and Discussion. As can be seen from Fig. 5a, with random and
ATLAS approaches, the training data selected is quite skewed, no sufficient

80 X. Chen et al.

matching pairs are picked, especially the random selection for the ACM-DBLP
dataset selects no matching pairs, which may make the training data unusable,
since some classifier algorithms cannot work with only one class of data for a
binary classification problem. HeALER can achieve relatively balanced train-
ing data, but not as completely balanced as AGP and Optimal selection. The
F-measures using LR, DT, and SVM calculated on the training data selected with
different approaches are shown in Fig. 5b. Therein, the training data selected
using ATLAS and the random approach works only for DT and SVM on the
Scholar-DBLP dataset. For all other cases, no classifiers are successfully trained
and used for the later test classification because of exceedingly skewed training
data. The other three approaches work apparently better. With the training data
they selected, it is always possible to complete the classification tasks using the
trained classifiers. Particularly, HeALER outperforms AGP and the optimal case
with DT due to the more informative training data, which makes the splitting
closer to the truth. However, it achieves a bit lower F-measure for LR and SVM.
By concluding the results, we can say that the quality of HeALER training data
is high when the number of divided groups can be correctly defined. Otherwise,
the AGP strategy can be applied to achieve acceptable F-measure.

3.3 Heterogeneous-Committee Evaluation

Experimental Design. This experiment is designed to specially evaluate
our heterogeneous committee and compare it to other approaches (committees
formed in [27] and [24] and passive learning to randomly pick pairs without
basing on committees’ decisions). Both datasets in Table 1 are used. We fix the
initial training data selected by our own strategy for all approaches, which pro-
vides them fair and good starting points. And the strategy used to reduce the
possibility to get outliers is fixed with the Sampling20 approach (It is evaluated
as the best strategy by comparing Sampling10, Sampling20 and Sampling30
using the random sampling method (n is set as 10, 20 or 30) introduced in Sub-
sect. 2.4. The evaluation results are omitted due to limited space). After each
iteration of the AL process, the F-measure is calculated on the classification
results of the test data in Table 1 obtained by using the DT classifier trained
on the updated training datasets by each approach. The AL process terminates
after 199 rounds. Each experiment is repeated three times to get the final average
result. The details how different approaches perform are introduced as follows:

Passive Learning : This approach randomly picks pairs to be labeled by humans
and added to the training dataset without relying on any committee votings.

ALIAS Committee [24]: ALIAS forms its committee by randomizing parameters
while training classifiers with the selected algorithm. In our experiments for both
datasets, SVM algorithm is used. We vary the value of its parameter for maxi-
mum number of iterations with 4, 6, 8 and 10. Then four classifiers are trained
respectively and form its committee. In the ALIAS paper, for their experiments,
they applied DT algorithm and varied the parameter where to split. However,

Heterogeneous Committee-Based Active Learning for Entity Resolution 81

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

F-
m

ea
su

re

Rounds

ACM-DBLP Dataset

ALIAS ATLAS HeALER Passive

0.8

0.85

0.9

0.95

1

0.2

0.35

0.5

0.65

0.8

0.95

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

F-
m

ea
su

re

Rounds

Scholar-DBLP Dataset

ALIAS ATLAS Passive HeALER

Fig. 6. Different committee comparison

as our implementation depends on the Spark MLlib, it is not possible to adjust
this parameter. Therefore, we apply SVM algorithm for our experiments.

ATLAS Committee [27]: ATLAS partitions the training dataset to four subsets,
then each subset of the training data is used to train its classifier to form its
committee. The classification algorithm used here is the same as ALIAS: SVM
for the purpose of comparison. For both datasets, each time 80 percent of pairs
are randomly chosen to constitute the training dataset. Four subsets are required
to get four classifiers of the committee.

HeALER Committee: As explained in Sect. 2.3, our heterogenous committee
includes four classifiers, which are trained with SVM, OvR, LR, and DT algo-
rithms, using the complete training dataset.

Results and Discussion. Figure 6 shows the comparison results of different
committees and the passive learning. As we can see from the results of ACM-
DBLP dataset, the F-measures of all approaches fluctuate much in the first 50
rounds, then becomes more stable later on. After about 140 rounds, our het-
erogeneous committee keeps F-measures higher than 0.92 and reaches its rough
convergence. In contrast, ALIAS and ATLAS committees still cannot achieve
their convergences till 199 runs. They show even less stable and lower results
than passive learning. However, the highest F-measures they are able to reach
during the experiments are much higher than passive learning, which proves the
effectiveness of the committee to explore which are more informative pairs. Since
the passive learning randomly chooses more pairs to be labeled, the informative
pairs are hard to be selected to really cover the shortages of the classifiers. From
the result of the other Scholar-DBLP dataset, we can get similar conclusions. Our
heterogeneous committee converges already after about 110 rounds and keeps
the F-measure 0.95 afterwards. ALIAS and ATLAS committees are far from
their convergence even with 199 rounds. The passive learning works quite good
for this dataset due to the high initial F-measure. However, it requires much
labeling effort to improves its F-measure. To summarize the results, our hetero-
geneous committee shows its advantage in picking informative data to improve
the F-measure of the classifier and reach the convergence with much less labeling
efforts than passive learning, ALIAS and ATLAS committees.

82 X. Chen et al.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
4 13 22 31 40 49 58 67 76 85 94 10
3

11
2

12
1

13
0

13
9

14
8

15
7

16
6

17
5

18
4

19
3

F-
m

ea
su

re

#Labeled Training Data

Overall Evalua on on ACM-DBLP Dataset

ALIAS ATLAS HeALER Machine Learning 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 19 28 37 46 55 64 73 82 91 10
0

10
9

11
8

12
7

13
6

14
5

15
4

16
3

17
2

18
1

19
0

19
9

F-
m

ea
su

re

#Labeled Training Data

Overall Evalua on on Scholar-DBLP Dataset

ALIAS HeALER Machine Learning ATLAS

Fig. 7. Overall evaluation

3.4 Overall Evaluation and Comparison

Experimental Design. After we evaluate our initial training data selection
approach and our heterogenous committee separately, in this section, we evalu-
ate our entire HeALER approach by comparing the F-measures using a one-off
ML approach, ALIAS and ATLAS approaches based on a same number of train-
ing data. For this overall evaluation, the same datasets are used as in the last
two sections. The F-measures are all calculated on the classification results of
the test data in Table 1 obtained by using the DT classifier. Except the nor-
mal machine learning approach, other approaches follow the iteration process of
AL and terminate after 199 rounds. For the normal one-off ML approach, we
randomly picked the corresponding number of training data of each iteration
and calculate the F-measure of the test data using the DT classifier. ATLAS
has no strategy to reduce the possibility to get outliers but it chooses the pair
with the highest similarity value among all pairs with the highest disagreement
value. Therefore, in the overall evaluation, for ATLAS, this approach choosing
the pair with the highest similarity value is used. For HeALER and ALIAS, the
sampling20 strategy is used as in the committee comparison experiment. The
final result is averaged by three times’ repetition (Fig. 7).

Results and Discussion. Figure 7 shows the comparison results of different
AL approaches and a normal ML process. As we can see from the results of
ACM-DBLP dataset, HeALER has the highest initial F-measure and keeps a
F-measure around 0.9 with 20 or more training data. ALIAS and ML perform
the worst and fluctuate their F-measures from the beginning to the end. ML
starts to function stably with at least 33 labeled data and cannot significantly
improve its F-measure when labeling more data. ATLAS starts to work with
10 labeled data and hardly varies its F-measure. The reason can be because
its strategy always selects data with the highest total similarity score, weakens
the effects of the disagreement values of data, and often chooses same data for
different iterative rounds, which leads to changeless F-measure for several or even
dozens of iterative rounds. Although it seems that ATLAS performs quite good,
the results of the Scholar-DBLP dataset, in which ATLAS performs the worst,
shows that ATLAS is not reliable, more research on the strategy of selecting
the highest similarity score from the data with highest disagreement values is

Heterogeneous Committee-Based Active Learning for Entity Resolution 83

required. For the results of ALIAS, HeALER and ML on Scholar-DBLP, similar
conclusions can be made. The results show that HeALER works better than the
other compared approaches.

4 Related Work

AL related approaches for ER include the common AL with the goal of selecting
the most informative data for classifiers to be labeled by humans (single-model-
based [18], committee-based [7,11,19,20,24,27]), and special AL approaches for
the purpose of getting the best rules (like classifiers) that are able to provide high
precision without considering the quality of training data [1–3,10,22]. Therein,
Ngomo et al. [18] identify the most informative data to be labeled and added
into the training dataset with the maximized convergence of the used classifier.
The proposed committee-based AL approaches differ from each other globally
with different committee forming approaches. The approaches [7,11,19,20] use
genetic programming algorithms to learn multi-attribute functions. However, the
quality of those functions cannot be guaranteed. The research approaches [24,27]
are the most similar to ours. They form their committees with several classifiers,
which are trained on a single type of classification algorithm. However, in order to
achieve diversity of classifiers in the committee to make AL work with the most
disagreement strategy, their classifier qualities are compromised, which restricts
the ability of the committee to identify the most informative data. Moreover,
the initial training dataset selection problem is not correctly handled. Sarawagi
and Bhamidipaty [24] directly assume that the AL process starts with an initial
training dataset including five matching and non-matching pairs, which is not
realistic, since it cannot be known whether a pair is matching or non-matching
before labeling. Although in the other paper [27], this reality is considered, how-
ever, the initial training dataset they selected is quite biased with the number of
matching and non-matching pairs, which leads to a very low quality of classifiers
for the beginning iterations. In contrast to them, our proposed HeALER can
provide a high-qualified initial training dataset and the heterogenous committee
can select more informative data to improve the classifiers faster.

5 Conclusions and Future Work

To conclude this paper, we propose our AL approach HeALER for ER, which
could select relatively balanced and informative initial training dataset and use
its heterogeneous committee to select informative pairs to be labeled by human
in order to improve the classifier. We evaluated and compared it with the pas-
sive (machine) learning and two state-of-the-art AL-ER approaches ATLAS and
ALIAS. The evaluation results show that HeALER is faster to converge and can
reach a higher final F-measure than other approaches. In addition, the results
also indicate that it requires less training data to reach a satisfactory F-measure,
which conforms to the purpose of using AL approach: reducing human labeling
effort. However, we also observed the fluctuations during the early rounds, which

84 X. Chen et al.

are caused by choosing outliers to the training dataset. For future work, tech-
niques to exploit the local density to handle imbalanced data and recognize
outliers [17] should be studied in order to improve HeALER and make it reach
the convergence faster.

References

1. Arasu, A., Götz, M., Kaushik, R.: On active learning of record matching packages.
In: SIGMOD, pp. 783–794 (2010)

2. Bellare, K., Iyengar, S., Parameswaran, A.G., Rastogi, V.: Active sampling for
entity matching. In: SIGKDD, pp. 1131–1139 (2012)

3. Bellare, K., Iyengar, S., Parameswaran, A.G., Rastogi, V.: Active sampling for
entity matching with guarantees. In: TKDD, pp. 12:1–12:24 (2013)

4. Chen, X., Durand, G.C., Zoun, R., Broneske, D., Li, Y., Saake, G.: The best of both
worlds: combining hand-tuned and word-embedding-based similarity measures for
entity resolution. In: BTW (2019)

5. Chen, X., Schallehn, E., Saake, G.: Cloud-scale entity resolution: current state and
open challenges. In: OJBD, pp. 30–51 (2018)

6. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer Science & Business Media, Heidel-
berg (2012)

7. de Freitas, J., Pappa, G.L., da Silva, A.S., et al.: Active learning genetic program-
ming for record deduplication. In: CEC, pp. 1–8 (2010)

8. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

9. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: a
survey. In: IEEE TKDE, pp. 1–16 (2007)

10. Fisher, J., Christen, P., Wang, Q.: Active learning based entity resolution using
Markov logic. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang,
R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 338–349. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31750-2 27

11. Isele, R., Bizer, C.: Active learning of expressive linkage rules using genetic pro-
gramming. J. Web Semant. 23, 2–15 (2013)

12. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al.: Handling imbalanced datasets:
a review. GESTS Int’l. Trans. Comp. Sci. Eng. 30(1), 25–36 (2006)

13. Leipzig, D.G.: Benchmark datasets for entity resolution (2017). Accessed 27 Nov
2017

14. Lu, Z., Wu, X., Bongard, J.: Active learning with adaptive heterogeneous ensem-
bles. In: ICDM, pp. 327–336 (2009)

15. Mamitsuka, N.A.H., et al.: Query learning strategies using boosting and bagging.
In: ICML (1998)

16. Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: ICML (2004)
17. Nanopoulos, A., Manolopoulos, Y., Theodoridis, Y.: An efficient and effective algo-

rithm for density biased sampling. In: CIKM, pp. 398–404. ACM (2002)
18. Ngomo, A.N., Lehmann, J., Auer, S., Höffner, K.: RAVEN - active learning of

link specifications. In: Proceedings of the International, Workshop on Ontology
Matching (2011)

http://arxiv.org/abs/1702.08608
https://doi.org/10.1007/978-3-319-31750-2_27

Heterogeneous Committee-Based Active Learning for Entity Resolution 85

19. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: efficient active learning of link specifica-
tions using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30284-8 17

20. Ngomo, A.-C.N., Lyko, K., Christen, V.: COALA – correlation-aware active learn-
ing of link specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 442–456. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38288-8 30

21. Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: ICML, p.
79 (2004)

22. Qian, K., Popa, L., Sen, P.: Active learning for large-scale entity resolution. In:
CIKM, pp. 1379–1388 (2017)

23. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R.: Tackling the poor assumptions of
Naive Bayes ext classifiers. In: ICML, pp. 616–623 (2003)

24. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
SIGKDD, pp. 269–278 (2002)

25. Seung, M.O., Sebastian, H., Sompolinsky, H.: Query by committee. In: Proceedings
of the Workshop on Computational Learning Theory (1992)

26. Spark. Spark.mllib documentation. https://spark.apache.org/docs/latest/mllib-
ensembles.html. Accessed 29 Nov 2018

27. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for
information integration. Inf. Syst. 26, 607–633 (2001)

28. Wang, Q., Vatsalan, D., Christen, P.: Efficient interactive training selection
for large-scale entity resolution. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B.,
Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS (LNAI), vol. 9078, pp. 562–
573. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18032-8 44

https://doi.org/10.1007/978-3-642-30284-8_17
https://doi.org/10.1007/978-3-642-38288-8_30
https://spark.apache.org/docs/latest/mllib-ensembles.html
https://spark.apache.org/docs/latest/mllib-ensembles.html
https://doi.org/10.1007/978-3-319-18032-8_44

Document and Text Databases

Using Process Mining in Real-Time to Reduce
the Number of Faulty Products

Zsuzsanna Nagy(&), Agnes Werner-Stark, and Tibor Dulai

Department of Electrical Engineering and Information Systems,
University of Pannonia, Egyetem Str. 10, Veszprém 8200, Hungary

nagyzsuzsi25@gmail.com,

{werner,dulai.tibor}@virt.uni-pannon.hu

Abstract. Process mining is a field of research whose tools can be used to
extract useful hidden information about a process, from its execution log files.
The current problem is that there is no solution available to track the formation
of faulty products in real-time, both in time and space, to make it possible to
reduce their number. The aim of this study is to find an effective solution for
real-time analysis of manufacturing processes. The solution is considered to be
effective if it helps to detect the error source points as soon as possible, and thus
helping to eliminate them, it contributes in reducing the number of faulty
products. Our previous solution, the “Time and Space Distribution Analysis”
(TSDA), can analyze production data in time and space, but not in real-time. As
a further development, we created the “Real-Time and Space Distribution
Analysis” (RTSDA), which is capable of observing manufacturing process log
data in real-time. It was implemented in software and tested with real process
data. Real-time process mining can increase the productivity by quickening the
detection process of the potential error source points, thus reducing the number
of faulty products.

Keywords: Process mining � Real-time data processing �
Production log data analysis � Fault source detection

1 Introduction

1.1 Real-Time Data Processing

Real-time data processing means that the processing of the input data is done in such a
short time period, that the output can be obtained nearly instantaneously. The time that
passes between the birth of the input data and the generation of the output depends on
many factors (e.g.: the size and variety of the input data, the qualities of the data
transmission network, the used data storing and processing techniques, etc.). To obtain
continuous output, continuous stream of input data is needed.

Real-time data processing is widely used by monitoring systems to detect notable
changes in the subject of the observation as soon as possible. The data processing
system collects data about the subject of the observation and processes these data to
detect anomalies in them. There are various real case studies available which are
discussing the usage of real-time data processing at specific cases. For instance, CERN

© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 89–104, 2019.
https://doi.org/10.1007/978-3-030-28730-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_6

operates a Beam Loss Monitoring (BLM) system to observe beam energy of an
accelerator. The system uses real-time signal processing to detect negative anomalies in
the measurement values [1]. An another instance, the Palomar Transient Factory (PTF),
a synoptic sky survey in operation utilized an enormous camera on a telescope to
survey the sky primarily at a single wavelength (R-band) at a rate of 1000–3000 square
degrees a night. The data were processed to detect and study transient and moving
objects (e.g.: gamma ray bursts, supernovae, etc.) [2].

There is diverse literature available about designing real-time data processing sys-
tems and choosing the most suitable data processing technique. For instance, Chen et al.
identified the most important design decisions that must be made while designing a real-
time stream processing system [3] and Nasir gave an overview of the existing data
processing technologies regarding their abilities for real-time data processing [4]. They
were dealing with the problem of processing big and varied data (i.e. Big Data) in real-
time. For smaller and invariant data, a simpler solution is sufficient, too. Bertin et al.
developed a method for archiving monitoring data by enabling real-time analysis within
a live database. Their method uses two database schemas: a current schema and a
historical schema. The current schema is storing the currently recorded data in its original
form and the historical schema is storing the aggregated version of the old data [5].

As for manufacturing processes with automatized data collection, the output data
usually are in text form (i.e. the data is not varied) and (assuming the output is about the
manufactured products) the amount of newly recorded data is always limited by the
number of newly manufactured products (i.e. the data is not big). If we know the
minimum possible throughput time of manufacturing one product, and the maximum
possible size of the data recorded about one product, then we can estimate the size of
the newly generated data per minute or even second. With today’s technology it is
possible to store the whole data of one work shift within memory. It significantly
facilitates the data managing process, but for data safety and archiving purposes, it is
highly recommended to save the processed data into a remote server. Consequently, in
our case, the most suitable solution is an in-memory database (for recent data) sup-
plemented with a remote database (for archive data).

1.2 Process Mining

Process mining is a young field of research that provides mining of useful hidden
information. It is well recognized as a valuable tool for observing and diagnosing
inefficiencies in processes based on event data. Van der Aalst et al. presented tech-
niques to identify anomalies in executions of business processes, by using available
process mining tools in ProM. The problem is that these are not really applicable on
automated manufacturing processes and none of these are able to process the data in
real-time [6].

In our previous study, we introduced our developed set of methods that can be used
to analyze a manufacturing process from multiple perspectives. These methods are
based on time and space distribution of faulty products, so they were named “Time and
Space Distribution Analysis” (TSDA). TSDA can give a comprehensive view of the
production process, but not in real-time [7, 8].

90 Z. Nagy et al.

1.3 Real-Time Process Mining

Real-time process mining means executing process mining methods in real-time. If the
process model is known, then with the help of real-time process mining we can detect
deviations in the events faster. Because of the requirements of real-time data pro-
cessing, it is suited only for processes with short throughput time.

In the case of manufacturing processes, real-time process mining can increase the
productivity by speeding up the process of detecting potential sources of errors, thereby
reducing the number of faulty products. It allows the machine operators to notice the
possible error source points sooner, so they can resolve them earlier.

Among the tools in ProM, the “Dotted Chart Analysis” (DCA) and the “Perfor-
mance Sequence Diagram Analysis” (PSDA) modules provide visualization methods
that also could be used in real-time processing of manufacturing process data [9].
PSDA is capable of displaying the process executions (cases) by events as a function of
time and a user-selected attribute, but only if the event name is the selected attribute.
Besides that, PSDA has many other disadvantages. For instance, the time is always
displayed as time duration on the y-axis, which is not advantageous for displaying
process data in real-time. Compared to PSDA, DCA gives a better solution. DCA is
capable of displaying the cases by events as a function of time and any user-selected
attribute, and it displays the time on the x-axis as timestamp (Fig. 1). However, DCA is
not a perfect solution either. The greatest disadvantage of it is that there is no possi-
bility to scroll in the enlarged chart or to change the logic behind how it the events are
colored. If a longer time period is observed with many relatively short events, then it
can make the investigation of the output difficult.

Fig. 1. A screenshot of an output chart of the DCA. The different events are marked with
differently colored dots, and the consecutive events from the same case are connected with
straight lines. In this example, the resource (Nest) is the user-selected attribute.

Using Process Mining in Real-Time to Reduce the Number 91

By implementing the missing features of DCA, an appropriate data visualization
solution can be obtained for real-time displaying of process data. Also, it would be
useful to have the option of splitting the chart according to a user-selected attribute (e.g.:
physical location of the resource). The separation of the chart has real importance, if
some of the resources have the same name but they are at different location. In addition
to avoiding possible name conflicts, it can also make the output more comprehensible, if
the events that occurred at different locations are shown on separate charts.

1.4 The Content of This Study

The aim of this study is to find an effective solution for real-time analysis of manu-
facturing processes. The solution is considered to be effective if it helps to detect the
error source points as soon as possible, and thus helping to eliminate them, it con-
tributes to reducing the number of faulty products, increasing the productivity.

During our research, we found that real-time processing of manufacturing process
data can be realized by an in-memory database (for storing the recent data) and a
remote database (for storing the archive data), and by implementing the missing fea-
tures of DCA and adding a few more features, an appropriate data visualization
solution can be obtained for real-time display of the process data. As our solution, we
designed and implemented a novel real-time process data visualization method for
observing manufacturing processes in real-time. This method was named “Real-Time
and Space Distribution Analysis” (RTSDA). It is based on the time and space distri-
bution of events. We designed and implemented a test environment and tested the
RTSDA with real process data of an automated coil-production and assembly line.

In Sect. 2, the manufacturing process is presented alongside the log files (including
the content and the creation process of the main log file) and the monitoring software.
In Sect. 3, the design plan and the implementation of our solution for processing
manufacturing process data in real-time are described. In Sect. 4, the developed
method, RTSDA, is presented, and finally, in Sect. 5, the new method is tested on real
production data.

2 Background

2.1 The Manufacturing Process

The studied manufacturing process is executed by two production lines: one coil
producer and one assembly line. The assembly line has a total of 8 stations and is
connected to the coil production line at Station 4 [7].

On the assembly line the products are placed on nests of a round Table (8 in total),
to make it easier for the machine to hold them and move them from station to station.
The product is assembled from Station 1 to 6. At the last two stations only quality
checks are done. The finished product is subjected to electrical inspection at Station 7
and to optical inspection at Station 8. The rejected unfinished products are discarded at
Station 7 and finished products are placed on trays (based on their quality) at Station 8
[7]. A simplified version of the manufacturing process model can be seen on Fig. 2.

92 Z. Nagy et al.

There are cameras at almost every station. They perform quality control tasks in the
manufacturing process. The camera pictures get processed for searching deviations on
the products. If the result is bad, the product will get declared as faulty with the
corresponding error code. Once a product is declared as faulty, it will be handled as a
faulty product until the end of the process.

2.2 The Log Files

The data is stored in CSV files (data separated by semicolons) and one file contains
information about one day production of one type of product. Each row of the file
contains process and measurement data of one product. So one row is one trace (a
sequence of events) [8].

In our case the data of the manufactured main products, the data of the manufac-
tured coils, and the output data of the electrical inspections at Station 7 are stored in
separate files and on separate computers. In this study we are taking into account only
the log files of the manufactured main products (i.e. main log file).

The main log file has 166 columns in total. The first few columns contain data for
product identification such as product type identifier number, order identifier number,
product identifier number and identification numbers of the commodities built into the
product (e.g.: coil number). The next columns contain process data for each station
such as quality indicator bit, start timestamp and work time duration of the station

Fig. 2. A simplified version of the manufacturing process model. Different stations are marked
with different colors. The red boxes indicate discarding points. The rejected commodities and the
rejected unfinished products are dropped into red boxes (which are colored medium gray on the
figure). The finished products are placed on trays. The light gray one is for rejected (faulty)
products, and the dark gray one is for accepted (good) products.

Using Process Mining in Real-Time to Reduce the Number 93

operations. The quality indicator bit indicates the quality of the product (good or faulty)
when the product left the station. The next columns contain measurement data for
each station such as the values obtained from processed camera images, and the tool
identifier values (e.g.: the identifier number of the gripper which placed the coil on the
product) from sensors. The type and amount of measured values vary between the
stations. The last three columns are very important. Two of them contain data for place
identification such as the identifier number of the nest in which the product was until
Station 7 and after Station 7. The last but most important column contains the error
code. The error code identifies the station and the quality control operation where the
product failed. Good products also get an “error code”. In such cases the code indicates
that there was no error during the manufacturing process, the product is good.

The data rows with the same order identifier are collected into the same file. The
maximum possible file size is around 2 MB. If the current main log file exceeds the size
limit, then the new data rows will be written into a new file. It means that there can be
multiple files for the same order identifier.

2.3 The Creation Process of the Main Log File

The control system maintains a string variable for each product (i.e. product string).
During the production process, it expands these variables.

At the beginning of the process, it adds the data values for product identification.
As the process goes on, it always appends the data collected from the current station to
the string variable. From every station it obtains the process data and the measurement
data (if there are any).

Assume an error has occurred at Station 4. For example, the adhesive dispenser
puts too much adhesive on the core of a product. In this case the error handling and data
generating works the way described below.

Detecting the Error. The control system detects the error, when it is processing the
camera image. The results of the camera image processing show that there is too much
adhesive on both sides of the core. The system calculates the area of the adhesive
surface and compares it with the minimum and maximum allowed value. In this
example, the calculated result exceeds the maximum allowed value. The system
determines that an error occurred during the manufacturing process of the product.

Alarming the Machine Operator. The system alarms the machine operator with a
sound and displays an error message on the connected monitor with the error code and
the short description of the error.

Recording the Error. The system sets the error indicator bit to 0 (faulty) for the
station data and appends the corresponding error code to the end of the product string.
In this example, this code will be 401.

Managing the Faulty Product. The system carries the product until the next dropping
point, then discards it there.

Carrying the Product. The machine will no longer carry out more manufacturing
operations on the product, but will continue carrying it through the stations until the

94 Z. Nagy et al.

next discarding point. The system continues to add the process information of the
stations, but the error indicator bit will stay constant 0 (because the product is unal-
terably faulty).

Removing the Product. In the example, the next dropping point is at the beginning of
Station 7. The system will no longer record any data; it throws the product into a
collector box. The system sets null values for the data values about the following
stations, and then appends these values to the product string in the correct order.

Documenting the Product String. The expansion of the product string ends with this.
The system writes the finished string into the output log file.

2.4 Monitoring Software

The monitoring software is an important part of the control system. Its main purpose is
to provide an interface for the machine operator, where they can monitor the manu-
facturing process or change the light setting of the cameras (if it is needed). It provides
several types of information during the production period and it alarms the machine
operator in case of error occurrences.

During the production period the program shows the camera images of the cur-
rently examined products and also shows the examined part of the image and the result
of the image processing. If it detects an error during the processing, it highlights the
problematic area on the image in question.

The main problem with this software is that although it provides information about
manufacturing process in real-time, it does not provide enough information to help
identifying the possible sources of errors.

3 Design and Development of the Test Environment

As it was mentioned in Sect. 1, in case of a manufacturing process, the most suitable
solution for real-time data processing is an in-memory data storage supplemented with
a remote database. The in-memory database stores the recently processed input data,
and the remote database stores the archive data. The input is read from the newest log
file at specified time intervals (if there are new rows) into the memory, then it gets
processed and finally the results are saved into the in-memory data storage. The new
content of the in-memory data storage is saved into the remote database at specified
time intervals (if there are new records). The output is created from the content of the
in-memory data storage and is presented in visual form for the user.

We developed a simulator and an analyzer software. The purpose of the simulator
software is to make it possible to test the analyzing software outside industrial envi-
ronment. The purpose of the analyzer software is to realize the previously described
tasks: reading and processing the input data, managing the in-memory data storages,
and generating and visualizing the output for the user. The remote database is not
implemented yet, but when it will be, then it will have connection with the analyzer
software.

Using Process Mining in Real-Time to Reduce the Number 95

Both software were created in Microsoft Visual Studio Community 2017, in C#
programming language. WPF (Windows Presentation Foundation) was used for the
user interface, and OxyPlot graphical library was used for displaying the charts.

A detailed description can be read below about the simulator software (Sect. 3.1)
and the analyzer software (Sect. 3.2).

3.1 Simulator Software

The simulator software was developed to make it possible to test the analyzing software
outside industrial environment. This software simulates the process of generating log
files of the manufacturing process.

The software generates the output file from a log file of a previous production. It
reads the whole content of the chosen log file into the memory, then it updates the
datetime values of the data, and then starts writing the data rows one by one, at
specified time points, into the generated output file.

The algorithm implemented within the software is described below. It is a case-
specific solution, but it can easily be applied to other cases with minimal modification
of the code.

Reading the Input. It reads the entire content of the chosen log file of a previous
production.

Checking the Data. It checks the number of columns, the type and value of the data,
and keeps only complete and completely correct rows (i.e.: rows that have formally
good values in all columns).

Updating the Timestamps. It updates all datetime values (timestamps) in the data.
First it calculates the difference between the earliest datetime value of the data and the
current datetime value, then it adds the difference to all timestamps.

Calculating the Time Points of Writing into the Output. It calculates for each data
row when to write them into the output file. The method of calculation also depends on
whether the log file stores an event or a complete process execution (trace) in one row,
and stores complete timestamp or time duration for each start timestamp. In case of “1
row = 1 trace” file structure, the complete timestamp of the last event of the trace will
determine the time point of writing the data row into the output file. In case of “1
row = 1 event” file structure, the complete timestamp of the event will determine the
time point of writing the data row into the output file. If the file contains time duration
instead of complete timestamp of the event, the complete timestamp can be obtained
from the sum of the start timestamp and the time duration.

Simulating. It starts the simulation right after it is finished with recalculating the
timestamp values. At the beginning of the simulation process it creates an output file
with the log file header as first row. During the simulation process it writes the data
rows into the output file one by one, at the specified time points. The output rows are
exactly in the same form as the input rows (in the original file), this way the only
difference between the input and the output rows are the date and time values.

96 Z. Nagy et al.

3.2 Analyzer Software

The analyzer software was developed to analyze the manufacturing process in real-
time. It can function as a complement to the production process monitoring system (it
can provide plus information) in an industrial environment.

The software stores the processed data in memory. For testing, the output file of the
simulation software was used as the input file, but it can read the input in real industrial
environment as well, without any modification of the source code.

The algorithm implemented within the software is described below. Similarly to the
simulator software, it is a case-specific solution, but it can easily be applied to other
cases with minimal modification of the code.

Reading the Input. At the beginning of the analyzing process the software starts
searching for the input file. The found input file will be observed until its size exceeds
the log file size limit, then the software starts searching for a new file again. The
software is either in file searching or in file checking state. In both cases the task is
repeated at specified time intervals: If it is in the file searching state, then it is searching
for the next input file at specified time intervals, or if it is in the file checking state, then
it is checking the current input file at specified time intervals. Sometimes the size of the
log file exceeds the set limit by few bytes. In that case, the software will keep switching
between file searching state and file checking state until a new input file appears (or the
software gets paused).

File Searching State. The software in this state keeps searching for the newest file in
the given folder. If it finds a file with the right format (a CSV file with the expected log
file header), then it will choose this file as the new input file. The software will record
the name of this file, reads the entire content of it, records the datetime of the last read
(which is the current datetime), and finally steps into file checking state. If the software
does not find a file with the right format, then it will stay in the file searching state.

File Checking State. The software in this state keeps checking the datetime of the last
modification of the current input file. If it is greater than the datetime of the last read
(i.e.: the file has been modified since the last read, there are new lines), it will read the
new lines and records the current datetime as the datetime of the last read. If the
datetime of the last modification of the current input file is less than the datetime of the
last read (i.e.: the file has not been modified since the last read, there are not any new
lines) and the size of the file is greater than or equal to the log file size limit, then the
software will step into file searching state.

Checking the Data. It checks the number of columns, and the type and value of the
data, and keeps only complete and completely correct rows.

Preprocessing the Data. It filters the data and keeps only the important data values
(that can be used for analysis). The following process data is retained in all cases: case
identifier, event name, event timestamps (start timestamp and complete timestamp or
time duration), and resource.

Using Process Mining in Real-Time to Reduce the Number 97

Processing the Data. It processes the filtered data and then, depending on the type of
the output, saves the data into separate data stores (e.g.: data tables, lists, or single value
variables). For new inputs, the data tables and the lists get extended and the values of
the single value variables get updated. Also, the affected aggregated values are recal-
culated. The exact way of processing the data is described in Sect. 4.4.

Visualizing the Output. It visualizes the output in form of tables, diagrams and text
(depending on the form of the output). If the number of elements of a data table or a list
grows too high, the visualization of these data can result in lagging of the software. For
this reason, the number of elements in that kind of data storages is restricted to a
specified number. If the number of elements exceeds the limit, then the oldest element
or elements will get removed to make the number of elements equal to the limit.

4 The New Method, the RTSDA

We developed a process data visualization method and named it “Real-Time and Space
Distribution Analysis” (RTSDA). RTSDA displays the events as a function of time (x-
axis) and resource (y-axis). It is designed to process log data in real-time, so it always
processes only the new lines, then adds the newly processed data to previously pro-
cessed ones, and finally it updates the affected parts of the output charts.

4.1 Criteria for Applying the Method

This method can be applied to other manufacturing processes as well, if they meet the
following criteria:

• The process throughput time is small, or at least new event information can be
obtained in short time periods (every second or minute). Otherwise there is no point
in observing the process in real-time.

• A resource (person or machine/tool) can perform only one activity at a time. It
means that the resource can start the next action or event only if they have finished
the previous one.

• Each event has time information recorded, or more precisely, each event has at least
one timestamp. If an event has a start timestamp, then it either has a complete
timestamp or an event time duration value, too. If an event has only one timestamp,
then it is both the start and the complete timestamp of the event.

• In case of “1 line = 1 event” log file content structure, there is a case identifier for
each event. This is necessary, because the case identifier identifies the events which
belong to the same case (trace).

• For “1 line = 1 event” log file content structure, event names are recorded for each
event. This is necessary, because the corresponding events can be identified by the
event name. There is no formal restriction on the name.

• For “1 line = 1 trace” log file content structure, all possible events are known. In
this case, event data are stored in columns or column groups, so it is important to
know which column contains data for which event.

98 Z. Nagy et al.

• The name of the utilized resource (person or machine/tool) is recorded for each
event. If the resource can be linked to a location (e.g.: a tool to a machine, or a
person to a class), it is worthwhile to record the name of the place in a separate
attribute. There is no formal restriction on the name of the resource or place; it can
be an identification number, too.

4.2 Data Visualization Considerations

DCA attaches importance to the process executions. It connects the events which
belong to the same case and colors them based on the values of a user-selected attri-
bute. RTSDA rather attaches importance to the resource utilization, so it does not
connect the events. It separates the events into multiple diagrams based on the values of
a user-selected attribute (separating attribute), and colors them based on the values of
another user-selected attribute (coloring attribute).

In the case of RTSDA, the y-axis is fixed regarding that the source of its values is
expected to be the resource attribute, but the user is free to decide which attribute is
considered to be the resource. The separating attribute is expected to be an attribute
which has values that can group the values of the resource attribute into distinct sets.
For example, if the resources are tools of different machines, the separating attribute
can be the machine. That way each machine will have its own chart with their tools as
the values of the y-axis.

In addition, the user can select a list of attributes as the source of plus information.
The values of these attributes are displayed within one textbox, when the user selects an
event on a chart of the output.

RTSDA also distinguishes between short and long events. Long events have a start
datetime point (start timestamp) and a complete datetime point (complete timestamp or
time duration from which it can be calculated). These are usually complex events that
could be broken down into additional events, but it is either not possible (because of
lack of information) or just not important (because it has no significance). These events
can be visualized as thick lines or bars. For example, in our case station processes are
long events. For example, in case of a manufacturing process, station processes are
long events. Short events have only one datetime point value (occurrence timestamp).
These events can be important parts of a long event, so they need to be highlighted.
They can be visualized as markers (e.g.: dot, rectangle, etc.). For example, in case of a
manufacturing process, declaring the product as faulty, throwing away or placing the
product on tray are short events.

4.3 Data Storing

Dynamic solutions have been used for data storage.
A data table (DataTable) type variable was used to store the preprocessed data.

The original names of the column headers (the attribute names) are kept in a separate
string array to avoid the possible name conflicts between them. The data role labels for
the attributes (e.g.: case identifier, event name, etc.) are stored as column identifier
numbers in separate single variables.

Using Process Mining in Real-Time to Reduce the Number 99

For visualization, the data of the events are recorded in individual objects. These
objects are from a custom class, the Event class. This class stores the case identifier
(case_id), alongside with the name of the event (event_name), the timestamp of the
event (timestamp), the name of the resource who executed the event (resource) and
some plus information about the event (plus_info) as well. The timestamp for long
events is either the start or complete timestamp, and for short events it is always the
occurrence timestamp. The plus information is generated from the selected attribute
values and stored in form of a string value.

The events are collected into lists according to the value of the two selected
attributes, the separating attribute and the coloring attribute. Each separator attribute
value has an event list for each coloring attribute value. It means that each value of the
separating attribute has its own diagram, and within the diagrams, each value of the
coloring attribute has its own dot or line series. It also can be imagined as a dynamic
two-dimensional array, where the separating attribute and the coloring attribute are the
two dimensions, and the event lists are the elements of the array. For the short and long
events, separate lists are reserved, because the chart drawing library expects the data in
different form in case of different visualizations. The short events are visualized with
dot series, and the long events are visualized as line series.

4.4 Data Processing

The way the data is processed depends heavily on the structure and composition of the
content of the log file. The data rows have to be processed differently in the case of “1
line = 1 event” and “1 line = 1 trace” file structure. For “1 line = 1 event” content
structure, the steps described below have to be executed after reading the new data
rows. In the case of “1 line = 1 trace” file structure, every step must be performed for
each column group (event) in each new data row. The only difference is that in this case
the empty values (which mean the event did not get executed) should be deleted.

Sorting the Data. The new events are sorted in ascending order by the start timestamp
or the occurrence timestamp.

Adding New Events. Add new events one by one to the corresponding event list. In
the case of a short event, one event is added to the corresponding event list which stores
data for a dot series. In the case of a long event, three events are added to the
corresponding event list which stores data for a line series: one event with the start
timestamp, one event with the complete timestamp, and one blank event. (Adding a
blank event is required to break the line. If it was not added, the end of this event would
visually get connected to the start of the next event.)

Maintaining the Number of Events. As it was mentioned before, if the number of
elements in the list exceeds the limit, then the oldest element or elements will get
removed to make the number of elements equal to the limit.

100 Z. Nagy et al.

5 Application of RTSDA to Real Data

We applied the method to the main log files of the automated coil-production and
assembling line.

In this example, the nests are the resources, so the events on the output diagrams
are plotted against the nest (y-axis) and time (x-axis). As the manufacturing runs in
parallel between the nests, the diagrams make the entire manufacturing process visible,
but also provides picture of the nest utilization and the station efficiency.

The rotary tables were selected as separator attributes. There are two round
tables: one bigger and one smaller. The bigger one has 8 nests and the smaller one has 4
nests. The bigger one is used by the entire machine line to transport products between
stations, while the smaller one is used only by Station 7 to move finished products to
execute electrical quality control tests. Therefore, Station 7 received its own diagram.

The names of the events were selected as the coloring attribute. In this example,
station operations are long events and error occurrences are short events. The station
operations are represented by horizontal bars, and the error occurrences are indicated
by black diamonds.

The results of the application of RTSDA to real data are presented through three
types of output cases (Figs. 3, 4 and 5).

On Fig. 3 the beginning of a production period can be seen, where the same error
occurred repetitively, one after another. This error is identified by the “402” error code,
which means that there is not enough glue on the product. For the machine operator this
output is informative. They can see that the error occurred more than once, so they can
assume that it was not just a random one-time event, it is an actual problem that needs
to be solved. In this case the problem is probably with the glue (there is no more in the
dispenser), but it is also possible that the problem is with the camera (it could not detect
the glued area on the product well, because of bad light circumstances). In such cases,
the machine operator can recheck the camera pictures themselves and make a decision
according to it.

Fig. 3. The same error occurs repetitively, one after another.

Using Process Mining in Real-Time to Reduce the Number 101

On Fig. 4 a continuous production can be seen. It could be the optimal case, but it
is not, because it has error occurrences at Station 8, at Nest 7. Station 8 is the place of
optical inspection of the finished product, so if the nest is dirty, it can cause an actually
good product to get classified as faulty. If the same error occurs more than once at the
same nest, then it is highly possible that the nest is the actual source of errors. In such
cases, the machine operator can clean the nest.

On Fig. 5 a short outage time can be seen. The outage time is a time period where
the production line did not produce any new products, the production stopped. Longer
stoppages are not beneficial for the company so it is important to detect and eliminate
them as soon as possible [7]. In this case the outage time is really short (one minute
long), so it does not cause serious loss in production. It could be because of mainte-
nance. If it was more minutes long, intervention would be needed. If there is no
information about the possible causes, the machine operator has to carry out a complete
maintenance.

Fig. 4. Continuous production with a few error occurrences at the same station and nest.

Fig. 5. A short outage time.

102 Z. Nagy et al.

5.1 Evaluation of the Method

RTSDA is capable of visualizing the log data of a manufacturing process in real-time.
It provides a comprehensive view of the production, with a tool-level image of the
utilization of the resources and the error cases that have occurred, thus helping the
machine operator to observe the evolution of the production.

The current version is a rudimentary solution for detecting error sources, because it
only implies the possible sources of the problems, it does not report them. Notwith-
standing, it still can provide sufficient support for an experienced machine operator.

It must be noted, that if the available data does not have enough information to
make it possible to detect the exact source of errors, the source of the errors can only be
presumed. To validate the results and to determine the exact locations, physical
examination of the presumed locations is necessary.

Presently, the log data of only one manufacturing process was available for the
research, so RTSDA was applied only to log data of one kind of process and only
within a test environment. For better evaluation, the method should be applied to
various processes and within the real industrial environment of the processes. Hope-
fully, there will be more possibilities in the near future to test and improve RTSDA.

The current version of RTSDA can only process log files. The method would be
more efficient, if it could get the data directly from the source, but having a process log
file with “1 line = 1 event” file structure as the input can be just as good. In such cases,
the achieved delay from actual event occurrence (in the manufacturing line) until the
event is displayed in the analysis software depends on the length of the time interval
(waiting time between time points of checking the file) specified by the user. If the time
interval is around 1 s or less, then the delay is not noticeable to the human eye. In case
of “1 line = 1 trace” file structure, all the events of the case can be displayed only after
the last event was finished. In such cases, the delay for the first event is nearly equal to
the throughput time of the case. The log files of the examined manufacturing process
originally have “1 line = 1 trace” file structure, so in a real industrial environment it
would be more beneficial if the RTSDA could have direct access to each recorded data
value, instead of reading in the data row by row from the output files.

The company that we are in cooperation with gave positive feedback about the
applicability of this method. Investigations after further analysis have started. After
that, the method will be tested in real situations.

6 Conclusion and Future Work

In this paper we introduced a new method to the issue of real-time process mining. The
new method allows real-time tracking of causes for faulty products in a manufacturing
process based on the available process log data. This method was named RTSDA.

RTSDA can give a comprehensive view of the production, and from the generated
diagrams conclusions can be drawn about the state of the production tools and the
possible sources of the errors. It can help process engineers and machine operators to
design more efficient maintenance, reduce outage time, and increase production time,
thus reducing the number of faulty products.

Using Process Mining in Real-Time to Reduce the Number 103

RTSDA was tested only on log data of one manufacturing process and only in test
environment, so from the future works, testing RTSDA in real industrial environment
and testing it with log data of other manufacturing processes is the most important task
to accomplish. It is not easy, but it would bring the deficiencies of the method to the
surface, thus helping to progress with the development of the method.

Acknowledgment. We acknowledge the financial support of Széchenyi 2020 under the EFOP-
3.6.1-16-2016-00015. Supported by the ÚNKP-18-2 New National Excellence Program of the
Ministry of Human Capacities.

References

1. Zamantzas, C.: The real-time data analysis and decision system for particle flux detection in
the LHC accelerator at CERN, No. CERN-THESIS-2006-037 (2006)

2. Surace, J., Laher, R., Masci, F., Grillmair, C., Helou, G.: The Palomar Transient Factory:
High Quality Realtime Data Processing in a Cost-Constrained Environment, arXiv preprint
arXiv:1501.06007 (2015)

3. Chen, G.J., et al.: Realtime data processing at Facebook. In: Proceedings of the 2016
International Conference on Management of Data, pp. 1087–1098 (2016)

4. Nasir, M.A.U.: Mining big and fast data: algorithms and optimizations for real-time data
processing. Doctoral dissertation, KTH Royal Institute of Technology (2018)

5. Bertin, L., Borba, R.G., Krishnapillai, A., Tulchinsky, A.: U.S. Patent No. 9,971,777. U.S.
Patent and Trademark Office, Washington, DC (2018)

6. van der Aalst, V.M.P., van Dongen, B.F., Günther, C.W., Rozinat, A., Verbeek, E., Weijters,
T.: ProM: the process mining toolkit. BPM (Demos) 489(31), 2 (2009)

7. Nagy, Z., Werner-Stark, Á., Dulai, T.: An industrial application using process mining to
reduce the number of faulty products. In: Benczúr, A., et al. (eds.) ADBIS 2018. CCIS, vol.
909, pp. 352–363. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00063-9_33

8. Nagy, Z., Werner-Stark, A., Dulai, T.: Analysis of industrial logs to reduce the number of
faulty products of manufacturing. In: Proceedings of National Conference on Economy-
Informatics, pp. 53–57 (2018). ISBN 978-615-81098-1-9

9. Kannan, V., van der Aalst, V.M.P., Voorhoeve, M.: Formal modeling and analysis by
simulation of data paths in digital document printers. In: Proceedings of the Nineth Workshop
on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2008), vol. 588 (2008)

104 Z. Nagy et al.

http://arxiv.org/abs/1501.06007
http://dx.doi.org/10.1007/978-3-030-00063-9_33

Pseudo-Relevance Feedback Based
on Locally-Built Co-occurrence Graphs

Billel Aklouche1,2,4(B) , Ibrahim Bounhas1,4 , and Yahya Slimani1,3,4

1 LISI Laboratory of Computer Science for Industrial System, INSAT,
Carthage University, Tunis, Tunisia

billel.aklouche@ensi-uma.tn, bounhas.ibrahim@gmail.com,

yahya.slimani@gmail.com
2 National School of Computer Science (ENSI), La Manouba University,

Manouba, Tunisia
3 Higher Institute of Multimedia Arts of Manouba (ISAMM),

La Manouba University, Manouba, Tunisia
4 JARIR: Joint group for Artificial Reasoning and Information Retrieval,

Manouba, Tunisia
http://www.jarir.tn/

Abstract. In Information Retrieval (IR), user queries are often too
short, making the selection of relevant documents hard. Pseudo-relevance
feedback (PRF) is an effective method to automatically expand the query
with new terms using a set of pseudo-relevant documents. However, a
main issue in PRF is the selection of good expansion terms that allow
improving retrieval effectiveness. In this paper, we present a new PRF
method based on locally-built term co-occurrence graphs. We use a con-
text window-based approach to construct our term co-occurrence graphs
over top pseudo-relevant documents. For expansion terms selection, we
propose an adapted version of the BM25 model, which allows to mea-
sure term-term similarity in co-occurrence graphs. This measure has the
advantage of selecting discriminant expansion terms that are semanti-
cally related to the query as a whole. We evaluate our PRF method using
four TREC collections, including the standard TREC Robust04 collec-
tion and the newest TREC Washington Post collection. Experimental
results show that our proposal outperforms competitive state-of-the-art
baselines and achieves significant improvements.

Keywords: Query expansion · Pseudo-relevance feedback ·
Term co-occurrence graph · BM25 · Context window ·
Term’s discriminative power

1 Introduction

The massive growth in data size has made retrieving relevant information a
challenging task. When a user makes a query, it is essential to know exactly
what he wants and then provide a valid response. However, the user’s query is
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 105–119, 2019.
https://doi.org/10.1007/978-3-030-28730-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_7&domain=pdf
http://orcid.org/0000-0002-4309-572X
http://orcid.org/0000-0002-6310-7062
http://orcid.org/0000-0002-4684-3703
https://doi.org/10.1007/978-3-030-28730-6_7

106 B. Aklouche et al.

often too short and usually omits important terms that allow the selection of
relevant documents which satisfy his needs. To overcome this problem, query
expansion (QE) is one of the main tasks in information retrieval (IR), which
refers to techniques that reformulate the initial query by adding new terms
that better express the user’s information needs, in order to improve retrieval
effectiveness [6].

Among query expansion techniques, pseudo-relevance feedback (PRF) is one
of the most popular techniques that has been widely applied. Indeed, PRF is
an effective automatic query expansion technique that relies on local analysis
of top-ranked documents, which are assumed to be relevant, in order to extract
expansion terms. A main challenging problem in PRF is the selection of good
expansion terms, which allow the retrieval of relevant documents and avoid query
drift. This latter results from the quality of the added terms, which may be
unrelated to the original query, and thus do not improve, but harm, retrieval
effectiveness.

In general, two main approaches are applied to select expansion terms from
top-ranked documents [5]. The first approach relies on the analysis of the dis-
tributional differences of terms in the pseudo-relevant documents and in the
entire collection. The second approach is based on the analysis of term asso-
ciation and co-occurrence relationships in pseudo-relevant documents. Indeed,
the use of term co-occurrence statistics for QE has been extensively applied.
In this approach, the co-occurrence of terms is used to express the semantic
relationships between terms [6]. However, a fundamental problem with the co-
occurrence-based approach is the selection of terms that are very frequent, and
thus are unlikely to be discriminative. This limitation is primarily related to how
the similarity between terms is measured [18]. Besides, terms’ position and prox-
imity, which help capture the context of terms, are usually not considered [6].

Several measures have been used to calculate the similarity between terms
from co-occurrence statistics, such as Cosine similarity, Dice coefficient and
Mutual Information [6]. The BM25 [22] probabilistic model is one of the most
effective and robust IR models, which has been widely used to measure query-
document similarity, especially in TREC experiments. The BM25 model is an
extension of the Binary Independence Model (BIM) [21]; it reconsiders certain
deficiencies of the model which is based solely on the presence or absence of
the query terms in documents. It includes statistics about both terms and doc-
uments, integrating local and global frequency of terms and document length.
Since its inception, a lot of research has been proposed presenting improvements
and extensions to the model [3,11,13,14,20,23,25]. In this paper, we propose
a PRF method that relies on local, query-specific, analysis of the top-ranked
documents using an adapted version of BM25 to measure term similarity in
co-occurrence graphs. Specifically, we explore the use of context window-based
approach to construct the term co-occurrence graphs over pseudo-relevant doc-
uments. For selecting expansion terms, we propose an adapted version of BM25
that allows measuring term-term similarity in the constructed graphs. This mea-
sure has the advantage of selecting discriminative terms that are semantically
related to the query as a whole, where we define a good expansion candidate as

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 107

a term that frequently co-occurs with the query terms and has a relatively rare
co-occurrence with other terms. That is, terms that tend to co-occur with many
other terms are penalized.

We evaluate our method on four TREC collections, namely: the TREC-7
collection, the TREC-8 collection, the standard TREC Robust04 collection and
the newest TREC Washington Post collection. Experimental results show that
our proposal outperforms the baselines by significant margins.

The remainder of the paper is organized as follows. We provide an overview
of some related work in Sect. 2. Section 3 outlines the proposed PRF method.
Experimental design and results are presented in Sect. 4. Section 5 concludes the
paper and provides insights for future work.

2 Related Work

Providing a relevant response to the user’s query has always been challenging,
as this latter is usually insufficient to allow the selection of documents that meet
the user’s needs. To face this problem, several methods of query expansion have
been proposed [6]. Two major categories can encompass the wide range of query
expansion methods, namely global and local methods.

Global methods allow expanding the query independently from the initial
retrieval results. Expansion terms are selected by analyzing the entire document
collection (corpus) or from external resources. Corpus-based approaches rely
on statistical analysis in order to discover terms associations and co-occurrence
relationships [29]. On the other hand, external resources like dictionaries and
thesauri (e.g. WordNet) are used to find expansion terms that are the most
similar to the initial query [6].

Unlike global methods, local QE methods use the top-ranked documents
resulting from an initial retrieval round [29]. Two techniques can be distinguished
to select the documents from which expansion terms are extracted: relevance
feedback and pseudo-relevance feedback. In the former, the user is involved in the
selection process of relevant documents, where he examines the query results and
manually specifies relevant documents. Most of relevance feedback approaches
are inspired and based on the Rocchio algorithm [24]. A detailed discussion on
relevance feedback can be found in [10]. On the other hand, pseudo-relevance
feedback is an effective QE technique derived from relevance feedback, where it
is assumed that the top n ranked documents in the returned results of the initial
query are relevant [4]. The process is done automatically and transparently to
the user. This technique was first introduced in [8], which made use of it in
a probabilistic model. Indeed, most of local methods make use of the pseudo-
relevance feedback technique [15]. Xu and Croft [28] have shown generally better
results by using a local QE approach compared to a global approach. However,
a main challenge in PRF is the selection of good expansion terms given a set of
pseudo-relevant documents.

Xu and Croft [29] proposed an automatic query expansion technique called
LCA (Local Context Analysis), which generates expansion terms based on their

108 B. Aklouche et al.

co-occurrence with the query terms in pseudo-relevant documents. They demon-
strated the effectiveness of this technique in different languages. Xu et al. [30]
presented a method using Wikipedia as a large document collection for generat-
ing expansion terms. They categorized the queries based on their relationship to
Wikipedia subjects using the article’s titles. Zamani et al. [32] considered PRF
as a recommendation task. They proposed a matrix factorization technique for
recommending useful expansion terms. In a similar work, Valcarce et al. [26]
explored the use of linear methods and employed an inter-term similarity matrix
to obtain expanded queries. Clinchant and Gaussier [7] conducted a theoretical
analysis of various widely used PRF models. They showed that several models
tend to select non-discriminative terms, which are very frequent and therefore
are unlikely to improve retrieval effectiveness. They argue that the PRF model
should attribute higher scores to terms with lower frequency in the collection.
Similarly, Cao et al. [5] observed that many of the most frequent terms in pseudo-
relevant documents do not improve, but hurt retrieval effectiveness. In this study,
authors proposed to select good expansion terms by integrating a term classifi-
cation process. In our work, we attempt to select the most discriminative terms
by penalizing terms that co-occur with many other terms.

Recently, automatic query expansion methods based on word embedding [1,9,
31] have shown an interesting improvement on retrieval effectiveness by exploring
word relationships from word vectors. Indeed, term co-occurrence statistics are
used to learn word vector representations based on word embedding algorithms
such as Word2vec [17] and Glove [19]. Diaz et al. [9] used Word2vec to learn
word vector representations over top 1000 ranked documents. Similarly, Zamani
and Croft [31] used top 1000 ranked documents and proposed to train word
vectors in an offline setting. In these methods, the co-occurrence of terms in
the same context window is used to produce word vectors [31]. Afterward, the
obtained vectors are used to select terms that are semantically related to the
query. We use the same approach, i.e. a context window-based approach over
pseudo-relevant documents in order to construct our term co-occurrence graphs.

3 Proposed Method

In this section, we describe our PRF method. Figure 1 illustrates the general
architecture of the proposed method. We follow two steps to obtain semantically
related terms to the query. First, term co-occurrence graphs are constructed over
the pseudo-relevant documents for each query using a context window-based
approach. Then, using an adapted version of BM25 that allows measuring the
similarity between terms from the constructed graphs, the candidate expansion
terms are sorted according to their similarity score with the entire query.

3.1 Term Co-occurrence Graphs

Exploiting co-occurrence data has been widely used in IR. The context window-
based co-occurrence approach, a simple yet effective approach [27], has proven

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 109

Fig. 1. General architecture of the proposed method.

useful in multiple Natural Language Processing (NLP) and IR applications such
as building co-occurrence matrices in Glove [19] and learning word vector rep-
resentations in Word2vec [16]. Given a target term, the terms on its left and
right within a specified window are the co-occurring contextual terms. The co-
occurrence of terms is used to capture and express the semantic relationships
between them.

In our method, we consider co-occurrences at the sentence level. That is, two
terms are considered as co-occurring if they are in the same sentence and within
the specified context window. For instance, given the sentence “The ADBIS con-
ference will take place in Slovenia.” and taking “conference” as the target term
with a window-size equal to 2, its context terms will be “The”, “ADBIS”, “will”
and “take”. A sliding-window is applied over the sentences to measure the co-
occurrence of terms and construct the corresponding graphs. In our experiments
we explored different settings of the window-size parameter to study its impact
on retrieval effectiveness.

For graph building, terms are represented as nodes in the graph and an
edge between two nodes is created once the two corresponding terms co-occur
together in a sentence within the specified window-size. The edges of the graph
are undirected and the weight of the edge corresponds to the total number of
times the linked terms co-occur in the set of documents on which the graph was
built.

3.2 Local Co-occurrence Graphs-Based PRF

The BM25 model calculates the similarity score of document D to query Q as
follows [22]:

BM25(Q,D) =
∑

q∈Q

IDF (q) × (k1 + 1)tf(q,D)

k1(1 − b + bdl(D)
avgdl) + tf(q,D)

(1)

where:

– IDF (q) is the Inverse Term Frequency of term q and it is calculated as follows:

IDF (q) = log
N − df(q) + 0.5

df(q) + 0.5
(2)

110 B. Aklouche et al.

– df(q) is the document frequency of term q, i.e., the number of documents in
which the term q appears.

– N is the total number of documents in the collection.
– tf(q,D) is the term frequency of term q in document D, i.e., the number of

times term q occurs in document D.
– dl(D) is the length of document D, usually considered as the total number

of terms in the document.
– avgdl is the average document length in the document collection.
– k1 and b are free tuning parameters.

BM25 integrates term distribution statistics in both individual documents
and across the entire collection. In this model, it is assumed that good document
descriptors and discriminators are terms that occur frequently in this document
and are relatively rare in the rest of the corpus [12]. Following these assumptions,
we define good expansion candidates as terms that frequently co-occur with the
query terms and have a relatively rare co-occurrence with other terms.

To get an expended query, we first need to project the query onto the corre-
sponding constructed graph to calculate the similarity score of each candidate
term. A candidate term is a term that has at least one co-occurrence relationship
with one of the query terms. Therefore, the top n terms with the highest scores
are added to the initial query.

Fig. 2. Example of query projection on co-occurrence sub-graph. t1, t2 are the query
terms and t3, t4, t5 are expansion candidates.

Let G be a co-occurrence graph built on the set of top k ranked documents
from the initial retrieval results. Given a query Q with terms q1, ..., qm, the
projection of query Q on graph G is the set of nodes C, where C = {t1, ..., tm}.
An example of query projection on a graph is depicted in Fig. 2. The proposed
adapted version of BM25, which we refer to as BM25cog (BM25 for co-occurrence
graphs), allows measuring the similarity between a candidate term and the whole
query. The similarity function is the sum of the similarity scores of the candidate

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 111

term to each of the query terms. BM25cog calculates the similarity score of a
candidate node tc to the set of nodes C as follows:

BM25cog(C, tc) =
∑

ti∈C

INF (ti) × (k1 + 1)e(ti, tc)

k1(1 − b + b sum e(tc)
avgsum e) + e(ti, tc)

(3)

where:

– INF (ti) indicates the Inverse Node Frequency. This is analogous to the IDF
factor in BM25 and it is computed as follows:

INF (ti) = log
N − co degree(ti) + 0.5

co degree(ti) + 0.5
(4)

– co degree(ti) denotes the number of nodes co-occurring with ti. In document-
term matrix, this is similar to the number of documents which contain a given
term.

– N is the total number of nodes in the graph, which is analogous to the total
number of documents in the collection.

– e(ti, tc) counts the number of co-occurrence of ti with tc. That is, the weight
of the edge linking the two corresponding nodes. This is analogous to the
number of times a term occurs in a document.

– sum e(tc) is the sum of the weights of the edges of the node tc in the graph.
In document-query matching, this is similar to the length of a document.

– avgsum e is the average of the sum e(tc) parameter computed for all the
nodes in the graph. This is analogous to the avgdl parameter in the original
BM25 formula.

– k1 and b are the usual BM25 free tuning parameters.

This proposed measure has at least the following advantages. First, it can
be used for both one-to-one and one-to-many associations. In addition, the INF
factor enables to measure the terms’ discriminative power: terms that tend to
co-occur with many other terms are penalized. Besides, BM25cog has two free
tuning parameters, which can be adjusted to improve effectiveness. Furthermore,
the proposed PRF method can be implemented on top of any retrieval model.

4 Experiments

In this section, we evaluate the performance of our proposed PRF method against
state-of-the-art baselines. We first present our test collections and describe our
experimental settings as well as the evaluation metrics. Then we report and
discuss the obtained results.

4.1 Experimental Setup

We conducted our experiments on four TREC (Text REtrieval Conference) col-
lections. The first one is the TREC-7 collection, with 50 queries. This test col-
lection was used in the TREC 1998 ad-hoc retrieval task. The second collection

112 B. Aklouche et al.

is the TREC-8 collection, with 50 queries, which was used in the TREC 1999
ad-hoc retrieval task. The third one is the standard TREC Robust04 collection,
with 249 queries. It was used in the TREC 2004 Robust Track, which focused on
poor performing queries. The three collections are composed of more than 500k
documents, which consist of high-quality newswire articles collected from var-
ious newspapers (Financial Times, Federal Register 94, FBIS and LA Times).
Finally, we also used the newest TREC Washington Post collection1, with 50
queries, which was provided by the TREC 2018 Common Core Track. It con-
sists of more than 600k news articles and blog posts published between 2012
and 2017 by Washington Post. The statistics of these four TREC collections are
summarized in Table 1.

Table 1. TREC collections statistics.

Collection Document set #docs Size #query #qrels

TREC-7 TREC Disks 4 & 5
(minus Congressional Record)

528k 1.9 GB 50 4,674

TREC-8 50 4,728

Robust04 249 17,412

WAPOST TREC Washington Post Corpus 608k 6.9 GB 50 3,948

All experiments were carried out using the Terrier platform2. We used only
the title field of the TREC topics as queries in our experiments. In terms of
preprocessing, stopwords were removed using the Terrier’s standard stopword
list. Documents and queries were stemmed using the Porter stemmer. We varied
the number of feedback documents (for PRF methods) between {100, 200, 1000}
and we empirically set the number of expansion terms to 10.

For the construction of term co-occurrence graphs, we need to specify the
size of the context window. We swept the value of the window-size parameter
from {2, 3, ..., 10}. Besides, we tested a dynamic window-size equal to sentence
length. Best results were obtained using a window-size in {2, 3, 4}.

We employed the BM25 model for performing retrieval. Top 1000 ranked
documents are retrieved for each query. To evaluate the effectiveness of our
PRF method, we use three standard evaluation metrics: mean average precision
(MAP), normalized discounted cumulative gain (nDCG) and precision at top
10 ranked documents (P@10). Statistical significance tests in terms of MAP
are performed using the two-tailed paired t-test at a 95% confidence level (i.e.,
p value < 0.05).

4.2 Results and Discussion

The baseline of our experiments is the state-of-the-art BM25 model, i.e., using
the original queries without feedback. Besides, we also consider three standard
1 https://trec.nist.gov/data/wapost/.
2 http://terrier.org/.

https://trec.nist.gov/data/wapost/
http://terrier.org/

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 113

PRF models, namely: Bo1, Bo2 and KL [2]. The experimental results on the four
test collections regarding MAP, nDCG and P@10 are summarized in Tables 2,
3, 4 and 5. According to these tables, the proposed PRF method outperforms
the BM25 baseline (without query expansion) in terms of MAP and nDCG in
all cases. On all the four collections, the MAP improvements are always statis-
tically significant with up to 12.9% improvement. In terms of precision, we can
see that our PRF method also outperforms the unexpanded baseline in all the
collections except in one case (TREC-7 with 1000 feedback documents). These
results show that our PRF method, which selects semantically related terms to
the whole query, leads to improvement in retrieval effectiveness of the state-
of-the-art BM25 model w.r.t. using various collections and different number of
feedback documents.

By comparing our method and the PRF baselines, we can see that it per-
forms better in terms of MAP and nDCG in the majority of cases. According
to the results, the baselines are outperformed by our method on three out of
four collections. For instance, our PRF method outperforms all the other meth-
ods in terms of MAP on the standard Robust04 collection in all cases. As for
the precision, we can see that our method outperforms all the baselines in all
the collections except in one case (TREC Washington Post with 200 feedback
documents). Furthermore, by comparing the PRF baselines and the unexpanded
baseline, it can be observed that the precision is hurt in the majority of cases.
This shows that our proposal is better at generating discriminant and good
expansion terms, thus improving the precision at top-ranked documents.

Regarding the results when varying the number of feedback documents, we
can observe that the performance of the baselines declines monotonically as the
number of feedback documents increases. In contrast, the results obtained by our
PRF method are quite stable. This shows the ability of our proposal to penalize
and filter out bad expansion terms, especially when the data get noisier.

To further investigate the effectiveness of our PRF method, We plot the
interpolated precision-recall curves in Figs. 3, 4, 5 and 6. As it can be seen, the
proposed method outperforms the baselines in the majority of cases.

Parameter Sensitivity. As discussed in Sect. 3, BM25cog has two free tuning
parameters, k1 and b, which can be adjusted to improve effectiveness. In the
next set of experiments, we study the sensitivity of BM25cog to k1 and b. We
tuned the parameter k1 from 0.1 to 3.0 and the parameter b from 0.1 to 0.9, in
increments of 0.1. We report the optimal settings of k1 and b on the four test
collections in Table 6. According to this table, the optimal parameter settings
vary across collections, and thus are collection-dependent, which is similar to the
behavior of the BM25 model [13].

114 B. Aklouche et al.

Table 2. Retrieval results on TREC Robust04 collection. The superscript * indicates
that the MAP improvements over the BM25 model are statistically significant (t-test
with p value < 0.05). The highest value in each row is marked in bold.

#docs Metric BM25 PRF BM25cog PRF Bo1 PRF Bo2 PRF KL

1000 MAP 0.2363 0.2536* 0.2044 0.1522 0.2072

nDCG 0.5081 0.5259 0.4731 0.3995 0.4748

P@10 0.4100 0.4189 0.3655 0.2920 0.3715

200 MAP 0.2363 0.2560* 0.2332 0.2097 0.2332

nDCG 0.5081 0.5294 0.5115 0.4770 0.5116

P@10 0.4100 0.4301 0.3807 0.3602 0.3924

100 MAP 0.2363 0.2567* 0.2532 0.2387 0.2509

nDCG 0.5081 0.5279 0.5328 0.5099 0.5292

P@10 0.4100 0.4245 0.3984 0.3924 0.4068

Table 3. Retrieval results on TREC Washington Post collection. The superscript *
indicates that the MAP improvements over the BM25 model are statistically significant
(t-test with p value < 0.05). The highest value in each row is marked in bold.

#docs Metric BM25 PRF BM25cog PRF Bo1 PRF Bo2 PRF KL

1000 MAP 0.2374 0.2596* 0.2147 0.1657 0.2190

nDCG 0.5062 0.5360 0.4765 0.4062 0.4834

P@10 0.4240 0.4360 0.3700 0.3080 0.3900

200 MAP 0.2374 0.2537* 0.2566* 0.2407 0.2615*

nDCG 0.5062 0.5233 0.5228 0.5048 0.5253

P@10 0.4240 0.4340 0.4300 0.3880 0.4400

100 MAP 0.2374 0.2546* 0.2648* 0.2660* 0.2663*

nDCG 0.5062 0.5289 0.5339 0.5203 0.5281

P@10 0.4240 0.4320 0.4140 0.4100 0.4200

Table 4. Retrieval results on TREC-7 collection. The superscript * indicates that
the MAP improvements over the BM25 model are statistically significant (t-test with
p value < 0.05). The highest value in each row is marked in bold.

#docs Metric BM25 PRF BM25cog PRF Bo1 PRF Bo2 PRF KL

1000 MAP 0.1728 0.1844* 0.1531 0.0943 0.1543

nDCG 0.4312 0.4520 0.4075 0.3256 0.4060

P@10 0.3920 0.3860 0.3400 0.2400 0.3620

200 MAP 0.1728 0.1830* 0.1828* 0.1544 0.1793

nDCG 0.4312 0.4530 0.4484 0.4116 0.4455

P@10 0.3920 0.4040 0.3640 0.3540 0.3720

100 MAP 0.1728 0.1951* 0.1959* 0.1789 0.1905*

nDCG 0.4312 0.4639 0.4686 0.4373 0.4596

P@10 0.3920 0.3920 0.3700 0.3760 0.3760

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 115

Table 5. Retrieval results on TREC-8 collection. The superscript * indicates that
the MAP improvements over the BM25 model are statistically significant (t-test with
p value < 0.05). The highest value in each row is marked in bold.

#docs Metric BM25 PRF BM25cog PRF Bo1 PRF Bo2 PRF KL

1000 MAP 0.2293 0.2445* 0.1963 0.1459 0.1988

nDCG 0.5006 0.5214 0.4761 0.4055 0.4735

P@10 0.4360 0.4680 0.4100 0.3380 0.4020

200 MAP 0.2293 0.2471* 0.2375 0.2123 0.2391

nDCG 0.5006 0.5290 0.5263 0.4868 0.5246

P@10 0.4360 0.4660 0.4300 0.3920 0.4420

100 MAP 0.2293 0.2501* 0.2521* 0.2337 0.2533*

nDCG 0.5006 0.5288 0.5440 0.5200 0.5427

P@10 0.4360 0.4600 0.4440 0.4100 0.4600

Table 6. Optimal settings of k1 and b in BM25cog.

Parameter Robust04 WAPOST TREC-7 TREC-8

k1 1.5 0.8 0.5 1.1

b 0.3 0.1 0.1 0.1

Fig. 3. Interpolated precision-recall curves for the Robust04 collection.

116 B. Aklouche et al.

Fig. 4. Interpolated precision-recall curves for the Washington Post collection.

Fig. 5. Interpolated precision-recall curves for the TREC-7 collection.

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 117

Fig. 6. Interpolated precision-recall curves for the TREC-8 collection.

5 Conclusion and Future Work

In this paper, we proposed a new pseudo-relevance feedback method based on
term co-occurrence graphs, which are locally-built over top pseudo-relevant doc-
uments. We proposed an adapted version of the BM25 model, which allows to
measure the similarity between terms in co-occurrence graphs and to evaluate
the discriminative power of terms.

Experimental results on four TREC collections show that our proposal sig-
nificantly outperforms state-of-the-art baselines in nearly all cases. We showed
that the proposed PRF method is able to select good expansion terms and can
filter out non-discriminative ones.

As future work, we plan to evaluate our PRF method on other state-of-the-art
retrieval models (e.g., the language model and the divergence from randomness
model) and compare it to other PRF methods, especially word embedding-based
PRF methods. Moreover, we intend to investigate the use of external resources
such as Wikipedia for the construction of co-occurrence graphs.Another promising
future research direction is to study the use of the proposed similarity measure in
other IR tasks, such asWordSenseDisambiguation (WSD)andQueryReweighing.

References

1. Aklouche, B., Bounhas, I., Slimani, Y.: Query expansion based on NLP and word
embeddings. In: Proceedings of the Twenty-Seventh Text Retrieval Conference
(TREC 2018), Gaithersburg, Maryland, USA (2018)

118 B. Aklouche et al.

2. Amati, G., Carpineto, C., Romano, G.: Fondazione ugo bordoni at TREC 2003:
Robust and web track. In: Proceedings of The Twelfth Text REtrieval Conference
(TREC 2003), Gaithersburg, Maryland, USA (2003)

3. Ariannezhad, M., Montazeralghaem, A., Zamani, H., Shakery, A.: Improving
retrieval performance for verbose queries via axiomatic analysis of term discrimi-
nation heuristic. In: Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan,
pp. 1201–1204. ACM (2017)

4. Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expansion using
SMART: TREC 3. In: Proceedings of The Third Text REtrieval Conference (TREC
1994), Gaithersburg, Maryland, USA (1994)

5. Cao, G., Nie, J.Y., Gao, J., Robertson, S.E.: Selecting good expansion terms for
pseudo-relevance feedback. In: Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Singa-
pore, Singapore, pp. 243–250. ACM (2008)

6. Carpineto, C., Romano, G.: A survey of automatic query expansion in information
retrieval. ACM Comput. Surv. (CSUR) 44(1), 1:1–1:50 (2012)

7. Clinchant, S., Gaussier, E.: A theoretical analysis of pseudo-relevance feedback
models. In: Proceedings of the 2013 Conference on the Theory of Information
Retrieval, Copenhagen, Denmark, pp. 6–13. ACM (2013)

8. Croft, W.B., Harper, D.J.: Using probabilistic models of document retrieval with-
out relevance information. J. Documentation 35(4), 285–295 (1979)

9. Diaz, F., Mitra, B., Craswell, N.: Query expansion with locally-trained word
embeddings. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics. ACL, Berlin, Germany (2016)

10. Fang, H., Zhai, C.: Web search relevance feedback. In: Liu, L., Özsu, M.T.
(eds.) Encyclopedia of Database Systems, pp. 3493–3497. Springer, Boston (2009).
https://doi.org/10.1007/978-0-387-39940-9

11. He, B., Huang, J.X., Zhou, X.: Modeling term proximity for probabilistic informa-
tion retrieval models. Inf. Sci. 181(14), 3017–3031 (2011)

12. Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information
retrieval: development and comparative experiments: Part 2. Inf. Process. Manag.
36(6), 809–840 (2000)

13. Lv, Y., Zhai, C.: Lower-bounding term frequency normalization. In: Proceedings
of the 20th ACM International Conference on Information and Knowledge Man-
agement, Glasgow, Scotland, UK, pp. 7–16. ACM (2011)

14. Lv, Y., Zhai, C.: When documents are very long, BM25 fails! In: Proceedings of
the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Beijing, China, pp. 1103–1104. ACM (2011)

15. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, UK (2008)

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. In: International Conference on Learning Representations
Workshop Papers (2013)

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, Proceedings of the 26th International Conference
on Neural Information Processing Systems, Lake Tahoe, Nevada, United States,
pp. 3111–3119 (2013)

18. Peat, H.J., Willett, P.: The limitations of term co-occurrence data for query expan-
sion in document retrieval systems. J. Am. Soc. Inf. Sci. 42(5), 378–383 (1991)

https://doi.org/10.1007/978-0-387-39940-9

Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs 119

19. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, pp. 1532–1543. ACL (2014)

20. Rasolofo, Y., Savoy, J.: Term proximity scoring for keyword-based retrieval sys-
tems. In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 207–218. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36618-0 15

21. Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. J. Am. Soc. Inf.
Sci. 27(3), 129–146 (1976)

22. Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-poisson
model for probabilistic weighted retrieval. In: Proceedings of the 17th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, Dublin, Ireland, pp. 232–241. Springer-Verlag, New York, Inc. (1994)

23. Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and
beyond. Found. Trends Inf. Retrieval 3(4), 333–389 (2009)

24. Rocchio, J.J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The
SMART retrieval System: Experiments in Automatic Document Processing, pp.
313–323. Prentice-Hall, Englewood Cliffs (1971)

25. Song, R., Taylor, M.J., Wen, J.-R., Hon, H.-W., Yu, Y.: Viewing term proximity
from a different perspective. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven,
I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 346–357. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78646-7 32

26. Valcarce, D., Parapar, J., Barreiro, A.: Lime: linear methods for pseudo-relevance
feedback. In: Proceedings of the 33rd Annual ACM Symposium on Applied Com-
puting, Pau, France, pp. 678–687. ACM (2018)

27. Wei, X., Croft, W.B.: Modeling term associations for ad-hoc retrieval performance
within language modeling framework. In: Amati, G., Carpineto, C., Romano,
G. (eds.) ECIR 2007. LNCS, vol. 4425, pp. 52–63. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71496-5 8

28. Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In:
Proceedings of the 19th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Zurich, Switzerland, pp. 4–11. ACM
(1996)

29. Xu, J., Croft, W.B.: Improving the effectiveness of information retrieval with local
context analysis. ACM Trans. Inf. Syst. (TOIS) 18(1), 79–112 (2000)

30. Xu, Y., Jones, G.J., Wang, B.: Query dependent pseudo-relevance feedback based
on Wikipedia. In: Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, Boston, MA, USA, pp.
59–66. ACM (2009)

31. Zamani, H., Croft, W.B.: Relevance-based word embedding. In: Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Shinjuku, Tokyo, Japan, pp. 505–514. ACM (2017)

32. Zamani, H., Dadashkarimi, J., Shakery, A., Croft, W.B.: Pseudo-relevance feedback
based on matrix factorization. In: Proceedings of the 25th ACM International on
Conference on Information and Knowledge Management, Indianapolis, Indiana,
USA, pp. 1483–1492. ACM (2016)

https://doi.org/10.1007/3-540-36618-0_15
https://doi.org/10.1007/978-3-540-78646-7_32
https://doi.org/10.1007/978-3-540-71496-5_8

Big Data

Workload-Awareness in a NoSQL-Based
Triplestore

Luiz Henrique Zambom Santana(B) and Ronaldo dos Santos Mello

Universidade Federal de Santa Catarina, Florianópolis, Brazil
luiz.santana@posgrad.ufsc.br, r.mello@ufsc.br

Abstract. RDF and SPARQL are increasingly used in a broad range
of information management scenarios. Scalable processing of SPARQL
queries has been the main goal for virtually all the recently proposed
RDF triplestores. Workload-awareness is considered an important fea-
ture for the current generation of triplestores. This paper presents WA-
RDF, a middleware that addresses workload-adaptive management of
large RDF graphs. These graphs are stored into NoSQL databases, which
provide high availability and scalability. The focus of this paper is on the
Workload-Aware component (WAc) of WA-RDF. WAc was developed to
avoid data fragmentation, improve data placement and reduce the inter-
mediate results. Our experimental evaluation shows that the solution is
promising, outperforming a recent baseline.

Keywords: RDF · SPARQL · NoSQL · Triplestore · Workload

1 Introduction

In the last decades, RDF, the standardized data model that - along with other
technologies like OWL, RDFS, and SPARQL - grounds the vision of the Seman-
tic Web, was affected by a wide range of data management problems, like data
integration, search optimization, data representation, and information extrac-
tion. The main reason for that is the current scale of the applications (e.g.,
smart cities, sensor networks, and healthcare), which generates huge datasets
and need to efficiently store massive RDF graphs that go beyond the processing
capacities of existing RDF storage systems. This scenario includes innovations
in the frontier of Semantic Web research fields. For example, original works have
been proposed semantic trajectories of moving objects [7] and semantic interop-
erability for healthcare data [12]. The scale of these domains raises the need for
triplestores that take advantage of NoSQL databases [4] to store large volumes
of RDF data, giving their scaling capabilities.

Workload-awareness is recognized as an important feature for the develop-
ment of scalable triplestores, as described by Aluç, Ozsu, and Daudjee [2]. The
lack of awareness can lead to important performance barriers: (i) naive data
fragmentation; (ii) poor data localization; and (iii) unnecessary large interme-
diate results. Thus, although many triplestores have been proposed in the last
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 123–138, 2019.
https://doi.org/10.1007/978-3-030-28730-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_8

124 L. H. Z. Santana and R. dos Santos Mello

years, the current solutions fall short because of the RDF structural diversity of
SPARQL workloads.

This paper presents WA-RDF, a triplestore composed of a middleware and
multiple NoSQL databases. The middleware maps pieces of an RDF graph into
NoSQL databases with different data models. The main contributions of this
paper is a workload-aware component that supports fragmentation, mapping,
partitioning, querying and caching processes. Our strong point is the ability
to process queries over large RDF graphs stored on multiple NoSQL database
servers with zero or a subtle amount of data joining cost. An experimental evalu-
ation shows that WA-RDF scales well, being able to process huge RDF datasets.

The rest of the paper is organized as follows. Section 2 presents the back-
ground and related work. Section 3 details the WA-RDF approach. Section 4
reports the experimental evaluation and Sect. 5 concludes the paper.

2 Background and Related Work

The most important pillar of this work is the Semantic Web. The effort of devel-
oping the Semantic Web was harvested mainly in terms of well-established stan-
dards for expressing shared meaning, defined by the WWW Consortium (W3C),
like the Resource Description Framework (RDF) and the Simple Protocol and
RDF Query Language (SPARQL).

RDF is a format to express triples that define a relationship between
resources. SPARQL is a query language for RDF data. A query statement in
SPARQL consists of triple patterns, conjunctions, disjunctions, and optional
patterns, and a triple pattern, in particular, defines what have to be searched,
i.e., a query predicate. SPARQL queries can be categorized by its shape into star
and chain queries, which heavily influence query performance [11]. Star shape
is characterized by subject-subject (S-S), or object-object (O-O) joins. Chain
shape is formed by object-subject (O-S) joins, i.e., the join variable is in the
subject location in one pattern, and on object location in the other one. Other
complex query structures are usually a composition of these two shapes.

The most important limitation of the triplestores proposed in the recent
years is caused by the RDF structural diversity and the dynamism of SPARQL
workloads. As discussed by Aluç, Güneş and Özsu [2], the lack of SPARQL
workload awareness can lead to naive data fragmentation, poor data localization
and unnecessarily large intermediate results.

Since the advent of the RDF format, the RDF storage has been evolving to
meet the requirements of the Computer Science trends. This subject has been
the focus of a great variety of works including relational databases, peer-to-peer
systems and, more recently, NoSQL databases. Table 1 shows some related works
in terms of type of awareness, storage, fragmentation (Frag.), localization (Loc.)
and intermediate results (Inter.). The idea is not to present an exhaustive catalog
of the newly proposed triplestores. Instead, we aim to compare solutions and
understand how they interact and complement each other. Two main concepts
guided the choice for these solutions: workload-awareness and storage technology.

Workload-Awareness in a NoSQL-Based Triplestore 125

The AdaptRDF approach [9] consists firstly of a vertical partitioning phase
that uses the workload information to generate an efficient relational schema
that reduces the number of joins. Secondly, in the adjustment phase, any change
in the workload is considered to create a sequence of pivoting and unpivoting
operations to adapt the underlying schema and maintain the efficiency of the
query processing. WARP [6] presents a fragmentation and replication method
on top of graph-based partitioning that takes the workload into account to cre-
ate a cost-aware query optimization and provide efficient execution. Cerise [8]
is a distributed RDF data store that adapts the underlying storage and query
execution according to the history of queries. It co-locates (on the same data
segment) data that are accessed frequently together to reduce overall disk and
network latency. Partout [5] uses a fragmentation procedure followed by an allo-
cation process that aims to allocate the fragments that are used together as
close as possible and to distribute the fragments evenly. The allocation algo-
rithm sorts fragments in descending order by the load, assigning a fragment to
the most beneficial host. The benefit of allocating a new fragment to a host
is inversely proportional to the host’s current loaded and directly proportional
to the number of already allocated fragments that join with the new fragment.
The fragmentation problem is discussed by WARP and Partout, which define
expanded fragments to avoid unnecessary joins. On the other hand, the local-
ization is the main contribution of AdaptRDF and Cerise. Their monitor query
changes to better rearrange the localization of the underlying schema.

Table 1. Related Workload-aware triplestores

Work Awareness Storage Frag. Loc. Inter.

AdaptRDF (2012) Query stream RDBMSs No Yes No

WARP (2013) Logs Independent Yes No No

Cerise (2014) History Native No Yes No

Partout (2014) History Native Yes Yes No

S2RDF (2016) Star query statistics Document and Graph No No Yes

Another critical issue in this paper is NoSQL databases, specifically, NoSQL-
based triplestores. Among the recent works that propose triplestores and use
NoSQL as data storage, we highlight S2RDF [11], a scalable query processor.
S2RDF proposes a Spark -based SPARQL query processor that offers speedy
response time by extending the vertical partitioning. Based on the selectivity of
triple patterns, S2RDF tries to reduce the intermediate results of the queries by
optimizing the join order.

Different from related work, our approach, called WA-RDF, considers all of
these features (fragmentation, localization and intermediate results) to provide
an efficient solution for RDF data management. It is detailed in the following.

126 L. H. Z. Santana and R. dos Santos Mello

3 WA-RDF

WA-RDF is a middleware for storing RDF data into multiple NoSQL databases.
A workload-aware approach is the cornerstone of WA-RDF. Based on it, WA-
RDF decides where and how to place data, which influences fragmentation,
mapping, partitioning, and querying strategies. WA-RDF is an evolution of Ren-
dezvous [10]. This new version includes several new features, like query relevance-
based workload monitoring, active data allocation, merging of fragments, sup-
port to update and deletion, replacement of a columnar to a graph NoSQL
database for improving chain queries performance, map-reduce-based fragmen-
tation, and workload-aware caching. The focus of this paper is on the WA-RDF
workload-aware component (WAc). Thus, first of all, it is essential to explain
how this component monitors the workload.

Figure 1 presents a partial architecture of WA-RDF. WAc is in its core, and
it is related to Dictionary, Cache, Partitioner, and Fragmenter. Also, WA-RDF
is connected to NoSQL databases.

Fig. 1. The WAc component of WA-RDF

WA-RDF registers information about the triple patterns of each incoming
SPARQL query. For instance, if we have a SPARQL query SELECT ?x WHERE
{?x p1 y?. y? p2 z?. z? p3 D} (q1) at time t1, and we have a query SELECT
?x WHERE {?x p1 y?. x? p4 a?. x? p5 b?} (q2) at time t2 (t1 < t2), WA-
RDF stores, with the aid of WAc, information about the triple patterns, the
shape of the file, the time that the query was most recently received, and
how many times WA-RDF received this query, as illustrated in Fig. 2. WAc is
composed of the following in-memory structures: QMap (registers the queries);
TPMap (registers the triple patterns); TP2Q (maps triple patterns to queries
and identifies the workload version for each triple pattern); and Q2TP (maps
queries to triple patterns).

Next sections detail how WAc can reduce data fragmentation to improve
data localization and avoid unnecessary intermediate results.

3.1 Data Fragmentation

To reduce data fragmentation in a distributed database is fundamental to speed
up query processing. The goal of the WA-RDF fragmentation process is to
minimize the number of joins to be executed by preprocessing these joins during
a triple insertion.

Workload-Awareness in a NoSQL-Based Triplestore 127

Fig. 2. WAc: workload monitoring

When WA-RDF receives a new RDF triple tnew = {s, p, o}, it persists
tnew into a document NoSQL database with a temporary JSON format {f = s,
p−i = o}. This mapping format is discussed later in this section, but it allows
tnew to be queried while WA-RDF creates a fragment. In a background pro-
cess, WA-RDF checks if tnew matches any triple pattern present in TPMap. For
instance, A p3 D matches z? p3 D (tp3) in Fig. 2, but A p3 C does not match
any triple pattern. If a match occurs, based on TP2Q information, WA-RDF
verifies in QMap if the typical workload is star or chain (or both) according to
the match. In any case, WA-RDF expands tnew to a fragment representing the
union of all the queries that hold the match. If tnew does not match any workload
information, it is solely registered in WAc and the temporary JSON format still
remains.

In the example of Fig. 2, a new triple A p1 B matches the triple pattern
?x p1 y?, which, in turn, is related to queries with both shapes in the typical
workload. Hence, if Fig. 3 (2) represents the current graph managed by WA-
RDF, the fragments formed with the new triple A p1 B will be the star {A
p1 B, F p6 A, A p4 D, A p5 E} and the chain {A p1 B, B p2 C, C p3 D}
(Fig. 3 (3)). As presented in Fig. 3 (4), after the fragments creation, they are
mapped and stored into a document or graph (or both) NoSQL databases.

Fig. 3. Fragment creation

RDF-to-NoSQL mapping is crucial for WA-RDF, so we briefly explain how
the RDF fragments are mapped to document and graph NoSQL databases. WA-
RDF transforms each document fragment into a JSON document. The most

128 L. H. Z. Santana and R. dos Santos Mello

connected node, i.e., the node that has more incoming or outcoming predicates, is
the value for the document key f. Moreover, for each predicate, it is created a key
with the predicate value concatenated with -i for incoming and -o for outcoming.
The value is the resource connected to this predicate keys, or a subdocument
with the same structure. For instance, a fragment A p1 B, A p2 C, D p3 A, E
p4 D is mapped to the JSON document {f:A, p1-o:B, p2-o:C, p3-i:{f:D,
p4-i:E}}. The benefit of this document mapping is to solve the typical queries
with only one filter access.

For the graph NoSQL database, we could do a straightahead mapping from
the fragment but, as presented in Sect. 4, the following map leads to better
results. Firstly, WA-RDF finds the longest chain, creates graph nodes for the first
subject S1, the last object On of this chain, and a summary node Si. Further, it
maps the predicates linked to S1 and On to edges, and Si contains, as properties,
all the triples between S1 and On. Finally, WA-RDF connects Si to all the nodes
that are not in the longest chain. This procedure is repeated to all the sizes of
chains until Si would have only one triple. As an example, the fragment A p1 B,
B p2 C, C p3 D, B p4 E is mapped to the nodes A, D, Si and E. Si contains
B p2 C and B p4 E as properties. Additionally, the edges p1 (from A to Si), p3
(from Si to D) and p4 from (Si to E) are also created. This mapping strategy is
efficient when there are more than one chain query connected. For instance, if a
query with the triple patterns ?x p1 y?. ?y p2 z?. ?z p3 D. ?z p4 ?k. ?k
p5 ?l. ?l p6 ?m is issued, WA-RDF can solve it with only one access.

As illustrated in Fig. 3 (4), every new fragment receives an identifier from
WAc. For document fragments, it is added to the key wa id in the body of the
document. For graph fragments, it is a property called wa id of the node Si.
This identifier is used by WA-RDF to register where each fragment is located,
as further detailed in this section.

Algorithm 1 describes the fragmentation process accomplished by WA-RDF.
The algorithm adapts the Apache Spark sintax1. Its input is a new triple tnew,
and its return is the list of triples {t1, t2, ..., tn} for a created fragment f . Firstly,
the algorithm creates a list of triple patterns (line 1). If the list is empty then
the temporary fragment is returned (lines 2 and 3). Otherwise, by using a map-
reduce programming approach, all the queries that match the triple patterns
are analyzed (lines 5 and 6). The map function removes the triples that are not
connected to tnew or does not match any triple pattern. During the map phase,
f is created from the cleaned fragments (lines 7 and 8) and, in the reduce phase,
the triples are connected to tnew (line 9). Finally, in line 10 the fragment is stred
into the NoSQL databases and the temporary fragment is deleted in line 11.

Data fragmentation can also occur during an update or delete of a triple.
For the update, the WA-RDF strategy is to create, in the background, a new
fragment and remove the old one. To avoid inconsistency during this process,
WA-RDF manages an updated/deleted list that assures that the fragment triples
are updated or deleted before they are sent to the client, as illustrated in Fig. 4
(1). In this case, the triple A p1 B was updated to A p1 Z. The update process

1 https://spark.apache.org/docs/2.2.0/rdd-programming-guide.htmlrdd-operations.

https://spark.apache.org/docs/2.2.0/rdd-programming-guide.htmlrdd-operations

Workload-Awareness in a NoSQL-Based Triplestore 129

Algorithm 1: Map-reduce-based fragmentation
Input: tnew

Output: f = {t1, t2, ..., tn}
1 triplePatterns=TPMap.matches(tnew);
2 if triplePatterns.size()= 0 then
3 f=getTemporaryFragment(tnew);
4 else
5 queries=QMAP.getQueries(triplePatterns);
6 fragment=analyze(queries);
7 f = fragment;
8 .map(cleaned: (fragment, triplePatterns));
9 .reduce((cleaned, tnew), f: connect(cleaned, tnew));

10 persistToNoSQL(f);
11 deleteTemporaryFragment(tnew);

12 return f;

has two phases, as also shown in Fig. 4. Firstly, WA-RDF matches this triple to
the WAc triple partners. In the following, it removes the fragments that have
this triple (Fig. 4 (2)). Secondly, it runs an insertion of the new value of the triple
(Fig. 4 (3)). Section 4 shows that the update time is not prohibitive. The deletion
process is similar to the update. In this case, WA-RDF creates a new fragment
that holds all the existing triples in the old fragment except the deleted triple.

Fig. 4. Triple update

WA-RDF also manages multiple nodes of each NoSQL database, where each
node maintains a partition of the data. As presented in Fig. 5, a Dictionary
component maintains the workload identifiers of the persisted fragments and
the number of triples for each workload identifier (waid) maintained in data
partitions into the NoSQL databases. The goal of the Dictionary is to help on
the querying process, avoiding unnecessary searches and reducing the calls and
round trips to the NoSQL databases. For instance, as illustrated in Fig. 5, when a
WA-RDF installation with three partitions receives a query, it matches the triple
patterns in TPMap, get the waid from TP2Q, and finds out which partitions to
query from the Dictionary.

130 L. H. Z. Santana and R. dos Santos Mello

Fig. 5. Fragment distribution

The choice for using waid to distribute the fragments into partitions can lead
to skewed data placement. We try to balance it with a round-robin process on the
partitions when new fragments are inserted or updated. Moreover, periodically
WA-RDF checks the Dictionary to find skewed partitions. In the example of
Fig. 6 (left), partition P3 has too many triples for the workload wa5. In this
case, WA-RDF checks TP2Q to see the queries causing the skewness, get the
fragments, and replicate or move data. WA-RDF moves data (replication and
deletion) to evenly distribute the storage size and the query load among the
servers. This is not the case of the example, where deleting the fragments from
P3 would only move the skewness to the other partitions. In this case, WA-RDF
only replicates data and balances the query load (Fig. 6 (right)). As presented
in Sect. 4, the additional storage need generated by this replication is usually
irrelevant in comparison to the whole dataset.

Fig. 6. Fragments redistribution

In a dynamic architecture, the workload of SPARQL queries changes over
time. To deal with it, WA-RDF maintains only the most relevant queries in WAc.
The relevance R for each query is calculated by the sum of how frequent (f) this
query is, the number of placeholders (p) in the query (the more placeholders a
query has, the more triples it potentially matches), the size (s) of the query (the
number of triple patterns), divided by the novelty (n) of the query (how long
since it was lastely received). During WA-RDF development, other measures of
relevance were considered. However, the experiments of Sect. 4 revealed that the
following formula obtained the best results.

Workload-Awareness in a NoSQL-Based Triplestore 131

R = (f + p) ∗ s/n (1)

Instead of adding immediately the new queries in the WAc, WA-RDF keeps
them in a queue and waits until the size of this queue passes a soft dynamic
threshold T. This threshold is calculated by multiplying the number of querying
threads (q) to the number of queries in the last 10 s (t), divided by the average of
queries in the last minute (m). The relevance R is calculated if T is bigger than
the number of querying threads. This threshold is used to avoid the process to
be fired for every new query.

T = q ∗ t/m (2)

Also, when the threshold is reached, WAc defines a new waid as well as
deletes and recreates all the fragments stamped with the old workload identifier.
This change leads to modifications on how the data is placed in the architecture
by changing the fragments, the partitions and the data storage in the NoSQL
databases. During fragment recreation (it is better explored in Sect. 4), WA-
RDF performs in a sub-optimum placement. However, this task does not affect
the consistency of the architecture. It is important to notice that the workload
version only changes if queries with new structures gain relevance, which is
usually seldom. In our experimental evaluation only four versions were created
for around 10,000 queries derived from 20 templates.

3.2 Data Querying

To reduce the intermediate results during a query execution it is important to
be assertive in the querying process by returning only fragments that contain
the desired query answer. Moreover, ideally, the fragments retrieved from the
NoSQL databases should not have repeated triples. Thus, WAc heavily influences
querying and caching.

A query is processed by the WA-RDF component QProc, as shown in Fig. 7.
Its design goal is to avoid joins between partitions, reduce the unnecessary inter-
mediate results, and dynamically choose the best NoSQL node to query. QProc
is formed by a Decomposer, which uses WAc information to decompose the
query into star and chain queries. The Decomposer forwards these queries to
Planner, which generates different plans to execute the queries, sending these
plans to the Optimizer/Executor. Each query is tested in parallel against the
Cache by the Optimizer/Executor. For the queries that are not in the Cache,
the Optimizer/Executor estimates the Cost and, if necessary, rewrite the query
(Rewritter). Finally, the rewritten query is executed in the NoSQL databases.
For each answered query, the Optimizer/Executor updates the cost of this
action (Phys.Cost in Fig. 7).

For each SPARQL query, WA-RDF decomposes it into star and chain queries.
For each decomposed query, it checks if this query matches any triple pattern
registered on WAc. If so, WA-RDF knows what data partitions potentially store
the fragments by getting the waid from the Dictionary. Otherwise, if the query

132 L. H. Z. Santana and R. dos Santos Mello

Fig. 7. Overview of QProc

matches no triple patterns, WA-RDF returns an empty result. If multiple parti-
tions are found, QProc has to join the results.

The processing of joins occurs when WA-RDF cannot execute a query on
a single partition. In this case, the query must be decomposed into a set of
subqueries, being each subquery evaluated separately and further joined. For
example, supposing that query q1 (the same query in Fig. 7) in the following is
not able to be completed accessing only one partition, WA-RDF divides it into
subqueries s1q1 and s2q1, and issues them to the partitions that hold the data
(P1 and P2, for example - see Fig. 7). Next, it joins the result sets by matching
the subqueries by the triple x? p1 y? (connection between the partitions).

q1: SELECT ?x WHERE {x? p1 y?. y? p2 z?. z? p3 D. x? p4 a?. x? p5 b?}
s1q1: SELECT ?x WHERE {x? p1 y?. y? p2 z?. z? p3 D.}
s2q1: SELECT ?x WHERE {x? p1 y?. x? p4 a?. x? p5 b?}

Query optimization is made along the QProc execution. Firstly, the Decomp-
oser tries to find all the star shapes present in a query qi. If it finds only one
star or chain shape, it forwards qi directly to the Optimizer/Executor. How-
ever, if it detects star and chains, or more than one star or chain in qi, it for-
wards qi to the Planner component. The Planner tries to define options to
solve the query and forwards it to the Optimizer/Executor. For each query, the
Optimizer/Executor tries to run it on the Cache. WA-RDF also consider WAc
information to manage caching. When it is time to evict data from the Cache,
it searches QMap to find out and remove the least common fragments. If the
query is not found, the Optimizer/Executor asks for the Cost component to
find out the less costly plan, and if it works, it asks for the Rewriter component
to modify it in order to improve the query processing.

The first strategy of the Optimizer/Executor is to foster the early execution
of triples with low selectivity to reduce the number of intermediate results. The
selectivity of a triple pattern is an estimation of the percentage of accessed data.
This information can be obtained with the aid of the Dictionary. As shown
in Fig. 7, the Dictionary maintains, for each typical workload, the number of
triples for each partition. For instance, the selectivity of wa1 is 1000/54500, and
1500/54500 for wa2 (54500 is total number of triples present in the Dictionary).
When WA-RDF receives q1, it processes wa1 first. Secondly, WA-RDF considers
the historical latency and the number of queries running for each NoSQL query

Workload-Awareness in a NoSQL-Based Triplestore 133

in the table PhysicalCost maintained by the Cost component. This component
also maintains a matrix of joins between fragments. This matrix is based on
the work of Chawla, Singh, and Pilli [3], but, in our case, it contains joins of
fragments instead of joins of triples. The cost matrix is updated after each query.
Finally, WA-RDF performs the join based on the cost of each partial query.

Star queries are converted to queries over NoSQL document databases. For
instance, the star queries q1 (O-O) and q2 (S-S) in the following are converted
to the access methods m1 and m2, respectively (MongoDB2 NoSQL database
syntax). The $exists function of MongoDB filters the JSON documents that
have all the predicates of each query. WA-RDF also filters by the object A in m1
and by the subject B in m2.

q1: SELECT ?x WHERE {x? p1 y?. x? p2 z? . x? p3 A}
q2: SELECT ?x WHERE {x? p1 y? . z? p2 y? . B p3 y? .}
m1: db.p1.find({p1-o:{$exists:true}, p2-o:{$exists:true}, p3-o:A}})
m2: db.p1.find({p1-i:{$exists:true}, p2-i:{$exists:true}, p3-i:B}})

Chain queries, in turn, are converted to queries over NoSQL graph databases.
For example, the query q3 in the following, with O-S joins, is translated to
the query g1 according to the Cypher3 query language of the Neo4J NoSQL
database.

q3: SELECT ?x WHERE {x? p1 y?. y? p2 z?. z? p3 w?.}
g1: MATCH (f:Fragment)
WHERE ANY(item IN f.p WHERE item = p1 OR
item = p2 OR item = p3)
RETURN p

Algorithm 2: Map-reduce-based fragment cleaning
Input: f = {f1, f2, ..., fn}, q
Output: R = {t1, t2, ..., tn}

1 R = f
2 .map(match: (f, q))
3 .reduce((t1, t2), if => !t1.equals(t2));
4 return R;

With the fragmentation approach, WA-RDF has to assure that the client will
not receive additional triples. This checking is made after all resulting fragments
come from the partitions. Algorithm 2 is executed to remove unnecessary triples
of the result set. Its input is the list of fragments f = {f1, ..., fn} and the user
query, and the output is the final result set of triples R. The algorithm also follows
the map-reduce paradigm. During the map phase, all triples of each fragment
that are not desired are removed by matching to the query. During the reduce
phase, the triples are deduplicated. Finally, the result set is returned.
2 https://docs.mongodb.com/manual/tutorial/query-documents/.
3 https://neo4j.com/developer/cypher-query-language/.

https://docs.mongodb.com/manual/tutorial/query-documents/
https://neo4j.com/developer/cypher-query-language/

134 L. H. Z. Santana and R. dos Santos Mello

To reduce intermediate results, every time a query is responded, WA-RDF
also tries to merge fragments. This task is necessary due to the storage problems
of Rendezvous, where the storage would grow exponentially. The merging process
drastically reduces storage size. It occurs when a fragment has only a small
difference in their triples than another existing one. In our current version, this
difference between the fragments must be less than 30%, but WA-RDF is flexible
to set other thresholds, and this is a subject for future research.

For instance, suppose that the query presented in Fig. 8 (1) returns the frag-
ments illustrated in Fig. 8 (2) from a document NoSQL database. In this case, a
new document is generated by the union of the triples from both fragments, as
shown in Fig. 8 (3), and the two previous fragments are deleted. A queue man-
ages this process, which permits that, instead of recreating the whole database,
we refragment only the “warm” portions of the database without impacting the
rest of the WA-RDF processes.

Fig. 8. Merging of fragments

4 Experimental Evaluation

We execute a set of experiments to evaluate the efficacy of WA-RDF. All of them
consider around a billion RDF triples generated on the e-commerce domain
using the WatDiv benchmark [1]. The goal of the experiments is to verify if
the decisions made during WA-RDF development reach the work purposes (to
avoid data fragmentation, to improve data placement, to check the scalability
of WA-RDF, and to reduce the intermediate results). Additionally, we compare
WA-RDF with Rendezvous and another baseline (S2RDF).

The current version of WA-RDF was developed using Apache Jena version
3.2.0 with Java 1.8, and we use MongoDB 3.4.3, Neo4J 3.2.5, and Redis 5.0.34 as
the document, graph, and key/value NoSQL databases, respectively. The choice
for these solutions was based on their current high popularity in DB-engines
ranking5. We also used Apache Spark 2.4.06 as the processing framework for
map/reduce algorithms and Apache Kafka 2.1.07 as the queue manager. The
tests were executed in the Azure cloud8 using nodes with 7.5 GB of memory and

4 https://redis.io/.
5 https://db-engines.com/en/ranking.
6 https://spark.apache.org/.
7 https://kafka.apache.org/.
8 https://azure.microsoft.com/en-us/.

https://redis.io/
https://db-engines.com/en/ranking
https://spark.apache.org/
https://kafka.apache.org/
https://azure.microsoft.com/en-us/

Workload-Awareness in a NoSQL-Based Triplestore 135

1 × 32 SSD capacity, with Ubuntu 18.04 server. WatDiv randomly generated a
workload consisting of 20 query templates, which involves almost 10,000 queries
at each experiment. These queries are approximately 40% simple, 40% star-
shaped and 20% chain or complex.

Figure 9(a) compares our previous middleware version (Rendezvous), which
uses the columnar NoSQL database Cassandra, with our current version (WA-
RDF), which uses Neo4j as the graph NoSQL database. It shows that WA-RDF
is more than 300 ms faster on average, mainly because Rendezvous had to per-
form multiple calls to Cassandra. This change speed up the overall architecture
in around 180 ms. We also evaluate the performance with only key/value, docu-
ment, and graph NoSQL databases. The key/value main problem is the need for
executing multiple calls during query response, and the unnecessary returned
triples, mainly for the limitations on filtering only by the key. The document
is bad on solving queries with multiple chain queries given its hierarchical data
access. The graph database is slow for the simple and star queries, also due
the multiple calls. This result shows that using document and graph databases
achieves the best mix in terms of performance.

Figure 9(b) shows the average times for update and delete operations. They
were calculated from the time between the request and the final update or dele-
tion. The workload for the update and delete was created by modifying the
triples to be inserted. During the deletion test, we just inserted all the triples
and then deleted them one-by-one. In this experiment, we could not compare
with Rendezvous and S2RDF because they do not support these operations. For
the 1 GB (i), 10 GB (ii) and 100 GB (iii) dataset sizes, the graph shows that
the deletion time is uniform (around 1200 ms on average), but the update time
increases as the dataset grows (from 1300 ms to 1600 ms on average). This time
increase is due to bigger fragments that can be created with a bigger dataset. It
makes the fragment creation process takes longer as the dataset grows.

Figure 9(c) lists how much fragment triples were not necessary during the
processing of four different query shapes. We consider here scenarios with and
without the merging process. In case (i), the triples are all complex, and the per-
centage of unnecessary triples was 20%. In case (ii), we have chain queries, and
16% was discarded. In case (iii), we have star queries, and 9% was not necessary,
and in case (iv), where all queries were solved in the cache, only 2% was unneces-
sary. Without the merging process, around 35% of the triples were unnecessary
for all the tests. It highlights the importance of having a proper access plan,
mainly for the chain queries, and the benefit of merging the fragments.

Figure 9(d) shows the spent time to merge fragments. The time calculation
begins after a query response until the old fragment is deleted. The experiments
were run for sizes of 500 thousand and 1 million triples. The only phase of this
process that is influenced by the size of the dataset is the merging analysis (when
WA-RDF compares the queries), mainly due to the memory usage. Figure 9(e)
presents the time spent by each fragmentation creation phase (temporary frag-
ment creation, queue time, querying related fragments and translation to the
target NoSQL database) for the dataset sizes of 500 thousand, 1 million and

136 L. H. Z. Santana and R. dos Santos Mello

Fig. 9. Experiments with WA-RDF

10 million triples. The queue time is heavily influenced by the dataset size, as well
as the time spent on querying the fragments to expand the query. As expected,
there is a directly proportional relation between dataset size and processing time
for creating the fragment.

Workload-Awareness in a NoSQL-Based Triplestore 137

The next experiments compare WA-RDF with our previous version and a
similar approach (S2RDF). Figure 9(f) shows the average time to return an
empty value. WA-RDF is much faster because it does not need to access the
NoSQL databases if the workload information is not present in the Dictionary.
Figure 9(g) presents the dataset size for WA-RDF, Rendezvous, and S2RDF. We
consider here a dataset with a raw size of around 13 Gigabytes. As illustrated,
Rendezvous uses around 35 Gigabytes, S2RDF about 20 Gigabytes and WA-RDF
slightly more than 18 Gigabytes. This result is exclusively due to the merging
process that avoids unnecessary replication of triples. Finally, Fig. 9(h) compares
the average query processing time for WA-RDF against the S2RDF baseline for
100 queries. It shows the superior performance of WA-RDF for the great majority
of the queries. It is possible to see that WA-RDF average execution was around
400 ms while S2RDF average was around 600 ms. However, S2RDF presented
pretty larger standard deviations (200 ms to 1000 ms) when compared to our
solution (200 ms to 600 ms).

5 Conclusion

This paper shows how the workload-awareness is pervasive in the WA-RDF
architecture, a NoSQL-based triplestore. WA-RDF presents a novel RDF data
distribution approach for persistence purposes. According to the typical shape of
main SPARQL queries, it defines RDF fragments and stores them into document
and graph NoSQL databases.

WA-RDF is an evolution of Rendezvous [10]. The new features of WA-RDF
include merging of fragments, support to update and delete operations, usage of
map/reduce paradigm on the fragmentation and results cleaning, dynamic data
allocation, and relevance-based workload monitoring. The experiments show that
WA-RDF solves the Rendezvous storage space problem by merging similar frag-
ments and avoiding unnecessary replication. Also, WA-RDF offers a map/reduce
fragmentation process, which allows process distribution using Apache Spark and
Kafka. This change permitted to execute the fragmentation in the background
without impacting storage and query processing. We also compared WA-RDF
with S2RDF, a recent Spark-based triplestore. WA-RDF was able to reduce the
querying time by 200 ms without impacting the dataset size (WA-RDF dataset
is slightly smaller than S2RDF). This result is due to the necessity of S2RDF
to query Hadoop Distributed File System (HDFS) even when the response is
an empty result, and the need for, especially for chain queries, multiple joins
between their vertically partitioned tables.

Future works include improvement in our workload-awareness strategy by
considering new measures and machine learning techniques. Moreover, we intend
to support other SPARQL clauses, like OPTIONAL and LIMIT.

138 L. H. Z. Santana and R. dos Santos Mello

References

1. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 197–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-
9 13

2. Aluç, G., Özsu, M.T., Daudjee, K.: Workload matters: Why RDF databases need
a new design. Proc. VLDB Endowment 7(10), 837–840 (2014)

3. Chawla, T., Singh, G., Pilli, E.S.: A shortest path approach to SPARQL chain
query optimisation. In: 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), pp. 1778–1778. IEEE (2017)

4. Dobos, L., Pinczel, B., Kiss, A., Rácz, G., Eiler, T.: A comparative evaluation
of NoSQL database systems. Anales Universitatis Scientiarum Budapestinensis de
Rolando Eotvos Nominatae Sectio Computatorica 42, 173–198 (2014)

5. Galárraga, L., Hose, K., Schenkel, R.: Partout: a distributed engine for efficient
RDF processing. In: Proceedings of the 23rd International Conference on World
Wide Web, pp. 267–268. ACM (2014)

6. Hose, K., Schenkel, R.: WARP: workload-aware replication and partitioning for
RDF. In: 2013 IEEE 29th International Conference on Data Engineering Work-
shops (ICDEW), pp. 1–6. IEEE (2013)

7. Ilarri, S., Stojanovic, D., Ray, C.: Semantic management of moving objects: a vision
towards smart mobility. Expert Syst. App. 42(3), 1418–1435 (2015)

8. Kobashi, H., Carvalho, N., Hu, B., Saeki, T.: Cerise: an RDF store with adaptive
data reallocation. In: Proceedings of the 13th Workshop on Adaptive and Reflective
Middleware, p. 1. ACM (2014)

9. MahmoudiNasab, H., Sakr, S.: AdaptRDF: adaptive storage management for RDF
databases. Int. J. Web Inf. Syst. 8(2), 234–250 (2012)

10. Santana, M.: Workload-aware RDF partitioning and SPARQL query caching for
massive RDF graphs stored in NoSQL databases. In: Brazilian Symposium on
Databases (SBBD), pp. 1–7. SBC (2017)

11. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on Spark. Proc. VLDB Endowment 9(10), 804–815 (2016)

12. Ullah, F., Habib, M.A., Farhan, M., Khalid, S., Durrani, M.Y., Jabbar, S.: Semantic
interoperability for big-data in heterogeneous IoT infrastructure for healthcare.
Sustain. Cities Soc. 34, 90–96 (2017)

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-319-11964-9_13

nativeNDP: Processing Big Data
Analytics on Native Storage Nodes

Tobias Vinçon1(B), Sergey Hardock1,2, Christian Riegger1, Andreas Koch3,
and Ilia Petrov1

1 Data Management Lab, Reutlingen University, Reutlingen, Germany
{tobias.vincon,sergey.hardock,christian.riegger,

ilia.petrov}@reutlingen-university.de
2 Databases and Distributed Systems Group, TU Darmstadt, Darmstadt, Germany

sergey.hardock@dvs.tu-darmstadt.de
3 Embedded Systems and Applications Group, TU Darmstadt, Darmstadt, Germany

andreas.koch@esa.informatik.tu-darmstadt.de

Abstract. Data analytics tasks on large datasets are computationally-
intensive and often demand the compute power of cluster environments.
Yet, data cleansing, preparation, dataset characterization and statistics
or metrics computation steps are frequent. These are mostly performed
ad hoc, in an explorative manner and mandate low response times. But,
such steps are I/O intensive and typically very slow due to low data
locality, inadequate interfaces and abstractions along the stack. These
typically result in prohibitively expensive scans of the full dataset and
transformations on interface boundaries.

In this paper, we examine R as analytical tool, managing large per-
sistent datasets in Ceph, a wide-spread cluster file-system. We propose
nativeNDP – a framework for Near-Data Processing that pushes down
primitive R tasks and executes them in-situ, directly within the stor-
age device of a cluster-node. Across a range of data sizes, we show that
nativeNDP is more than an order of magnitude faster than other push-
down alternatives.

Keywords: Near-Data Processing · In-storage processing · Cluster ·
Native storage

1 Introduction

Modern datasets are large, with near-linear growth, driven by developments
in IoT, social media, cloud or mobile platforms. Analytical operations and ML
workloads result therefore in massive and sometimes repetitive scans of the entire
dataset. Furthermore, data preparation and cleansing cause expensive transfor-
mations, due to varying abstractions along the analytical stack. For example,
our experiments show that computing a simple sum on a scientific dataset in R
takes 1% of the total time, while the remaining 99% are spent for I/O and CSV
format conversion.
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 139–150, 2019.
https://doi.org/10.1007/978-3-030-28730-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_9

140 T. Vinçon et al.

Such data transfers, shuffling data across the memory hierarchy, have a neg-
ative impact on performance and scalability, and incur low resource efficiency
and high energy consumption. The root cause for this phenomenon lies in the
typically low data locality as well as in traditional system architectures and algo-
rithms, designed according to the data-to-code principle. It requires data to be
transferred to the computing units to be processed, which is inherently bounded
by the von Neumann bottleneck. The negative impact is amplified by the slow-
down of Moore’s Law and the end of Dennard Scaling. The limited performance
and scalability is especially painful for nodes of high-performance cluster envi-
ronments with sufficient processing power to support computationally-intensive
analytics.

Analytical Tool

Cl
ie

nt
Cl

us
te

r/
Cl

us
te

r F
S

N
od

e
Ha

rd
w

ar
e

Analytical Tool Analytical Tool

File Ops.
Read/Write

Object Store Ops.
Get/Put NDP Pushdown

N
od

e
n

Node 1

Node 2 Node n

Node 1

Node 2

2
N

od
e

n

Node 1

Node 2

21
H

os
t

Processor

N
D

P
D

ev
ic

e Processor

Flash MemoryFlash Memory
Storage

3

Compute

Co
m
pu
te

Compute

Baseline Pushdown Cluster Pushdown NDP Dev

3

Fig. 1. Three different options to execute analytical operations on a cluster environ-
ment. (1) Baseline: Execute on the client; (2) Pushdown Cluster: Execute on a cluster’s
node; (3) Pushdown NDP Device: Execute on the NDP Device of a cluster’s node

Luckily, recent technological developments help to counter these drawbacks.
Firstly, hardware vendors can fabricate combinations of storage and compute
elements at reasonable costs. Secondly, this trend covers virtually all lev-
els of the memory hierarchy (e.g. IBM’s AMC for Processing-in-Memory, or

nativeNDP: Processing Big Data Analytics on Native Storage Nodes 141

Micron’s HMC). Thirdly, the device-internal bandwidth and parallelism signifi-
cantly exceed the external ones (Device-To-Host), for non-volatile semiconductor
(NVM, Flash) storage devices.

Such intelligent storage allows for Near-Data Processing (NDP) of analytics
operations, i.e. such operations are executed in-situ, close to where data is phys-
ically stored and transfer just the result sets, without moving the raw data. This
results in a code-to-data architecture.

Analytical operations are diverse and range from complex algorithms to basic
mathematical, statistical or algebraic operations. In this paper, we present exe-
cution options for basic operations in nodes of clustered environments as shown
in Fig. 1: (1) The computation is within the client and the cluster node is used
as part of a traditional distributed file system; (2) The operation is transmitted
to the cluster and processed within the cluster node itself; (3) The operation is
executed in-situ, within the NDP devices of the cluster’s node. The investigated
operations are simple, yet they clearly give evidence for the NDP effects on inter-
nal bandwidth and the ease of system and network buses. The execution of more
extensive operations like betweenness centrality within graphs or clustering and
k-nearest neighbor searches are planed for future work.
The main contributions of this paper are:

– End-to-end integration of NDP interfaces throughout the entire system stack
– The performance evaluation shows improvements of NDP operation push-

down of at least 10x
– Analysis of the impact of and necessity for NDP-based abstractions and inter-

faces.
– We identify the following aspects as the main drawbacks to implementing

NDP: Interfaces; Abstractions; Result-Set consumption semantics; Data Lay-
out and NDP Toolchain

The rest of the paper is structured as follows. Section 3 presents the archi-
tecture of nativeNDP. In Sect. 4 we discuss the experimental design and perfor-
mance evaluation. We conclude in Sect. 5.

2 Related Work

The concept of Near-Data Processing is not new. Historically it is deeply
rooted in database machines [3,6], developed in the 1970 and 1980s. [3] dis-
cuss approaches such as processor-per-track or processor-per-head as an early
attempt to combine magneto-mechanical storage and simple computing elements
to process data directly on mass storage and to reduce data transfers. Besides
reliance on proprietary and costly hardware, the I/O bandwidth and parallelism
are claimed to be the limiting factor to justify parallel DBMS [3]. While this
conclusion is not surprising, given the characteristics of magnetic/mechanical
storage combined with Amdahl’s balanced systems law [8], it is revised with mod-
ern technologies. Modern semi-conductor storage technologies (NVM, Flash) are
offering high raw bandwidth and high levels of parallelism. [3] also raises the issue

142 T. Vinçon et al.

of temporal locality in database applications, which has already been questioned
earlier and is considered to be low in modern workloads, causing unnecessary
data transfers. Near-Data Processing presents an opportunity to address it.

The concept of Active Disk emerged towards the end of the 1990s. It is most
prominently represented by systems such as: Active Disk [2], IDISK [12], and
Active storage/disk [15]. While database machines attempted to execute fixed
primitive access operations, Active Disk targets executing application-specific
code on the drive. Active storage [15] relies on processor-per-disk architecture.
It yields significant performance benefits for I/O bound scans in terms of band-
width, parallelism and reduction of data transfers. IDISK [12], assume a higher
complexity of data processing operations compared to [15] and targets mainly
analytical workloads and business intelligence and DSS systems. Active Disc [2]
targets an architecture based on on-device processors and pushdown of custom
data-processing operations. [2] focuses on programming models and explores a
streaming-based programming model, expressing data intensive operations, as
so called disklets, which are pushed down and executed on the disk processor.

With the latest trend of applying different compute units, besides CPUs, to
accelerate database workloads, a more intelligent FPGA-based storage engine
for databases has been demonstrated with Ibex [19]. It focuses mainly on the
implementation of classical database operations on reprogrammable compute
units to satisfy their characteristics, such as parallelism and bandwidth. A com-
pletely distributed storage layer, targeting NDP on DRAM over the network,
is presented by Caribou [11]. Its shared-data model is replicated from the mas-
ter to the respective replica nodes using Zookeeper’s atomic broadcast. Utilizing
bitmaps, Caribou is able to scan datasets with FPGAs only by the limiting factor
of the selection itself (low selectivity) or the network (high selectivity). More-
over, [4,5,9,14] investigate further host-to-device interfaces for general-purpose
applications or specific workloads.

However, previous research focused mainly either on the concrete implemen-
tation of the reconfigurable hardware, or on single device instances. In this paper,
we attempt to combine both topics and focus on the abstraction and interfaces
necessary to complete an efficient NDP pushdown.

3 nativeNDP Framework

The architecture shown in Fig. 2 presents a bird’s eye view of the essential com-
ponents, interfaces, and abstractions of the nativeNDP framework. An analytical
client executes an R script, triggering an analytical operation (filtering, simple
computation - SUM, AVG, STDDEV, or a clustering algorithm). It can be pro-
cessed on different levels of the system stack:

– directly in R (Fig. 1–baseline). This is a classical approach, which can be
done with out of the box software, requiring little overhead. The downside is
that the complete dataset needs to be transferred through the stack causing
excessive data transfers and posing significant memory pressure on the client.

nativeNDP: Processing Big Data Analytics on Native Storage Nodes 143

– within a Cluster node (Fig. 1–pushdown cluster). The same function can be
offloaded to the HPC cluster system and distributed across nodes. Hence the
compute and data transfer load can be reduced, but not eliminated as such
data transfers are performed locally on a node.

– on the Storage Device (Fig. 1–pushdown NDP dev). With NDP, the operations
are offloaded directly on the device, utilizing the internal bandwidth, paral-
lelism and compute resources to reduce data transfers and improve latency.

1

2

3

Client NDP DeviceCluster

Plugin Node 1

Node n

Storage Manager

Node 2

Object

Object

CSV to DF

File I/O

N
at

iv
e

St
or

ag
e

In
te

rf
ac

e

Pu
t/

G
et

Re

co
rd

Bl
oc

k
I/

O

N
DP

In

te
rf

ac
e

N
DP

In

te
rf

ac
e

Storage
Manager

Get/Put
Object

Abstractions

NDP
Device

R Script

DataFrame

Bl
oc

k
I/

O

Bl
oc

k
I/

O

Processing
Element
(FPGA)

Storage
(NVM)

Pa
rt

iti
on

in
g/

Re
pl

ic
at

io
n

Fi
le

In

te
rf

ac
e

O
bj

ec
t

In
te

rf
ac

e
N

DP
In

te
rf

ac
e

Fig. 2. The high-level architecture showing the applied interfaces and data abstractions
along the access path for the three compared experiments: baseline, pushdown cluster
node, and pushdown device

3.1 System Stack

In the following we describe the layers of the analytical stack in more detail.
Client: We utilize R as one of the most popular client software for analytical

and statistical computation. To interact with the Ceph cluster and the underlay-
ing layers, we designed a custom R plugin, RCeph. It uses the RADOS API [18]
to connect to the cluster and is able to issue specific commands with following
features:

Put/Get of Files/Objects: To facilitate the first scenario, presented in Fig. 1, the
dataset file has to be retrievable from the cluster. Therefore, the standard file
I/O API is reused. However, the transfer of results from the second and third
scenario necessitates further interfaces such as RADOS’s provided Object
API as explained in Sect. 3.2.

Pushdown of Domain-specific Operations: This feature is mainly addressed with
the second and third scenario, where domain-specific operations, usually exe-
cuted within the client, are pushed down to either a cluster’s node or even
throughout the node’s storage engine to the NDP Device. I.e. such domain-
specific operations comprise R-native operations on their storage abstraction
DataFrame or could even be extended to small algorithmic expressions.

144 T. Vinçon et al.

Format Conversion: As interfaces and abstractions of lower levels often rely on
backwards compatibility in nowadays complex systems, format conversions of
the results or CSV-encoded files and objects into the R-specific abstraction
DataFrame are necessary.

The RCeph is complied using Rcpp [7] to a plugin package and can be
installed, loaded, and applied within the R runtime environment of the client.

Cluster: To process todays datasets with analytical or statistical workloads in
an acceptable time, both data and calculation are distributed over a cluster envi-
ronment. This becomes even more crucial with focus on high performance in par-
ticular. To simplify low latency data accesses, distributed file systems are applied
in such environments nowadays. Therefore, Ceph [17], which is a wide-spread
solution for clustered environments, builds the foundation of the nativeNDP
framework. Its purpose is to efficiently manage a variety of nodes within a clus-
ter environment. Thereby, stored files are striped across small objects, grouped
into placement groups and distributed on these nodes to ensure scalability and
high reliability. Its flexible architecture comprises various components and pro-
vides interfaces for object, block and file I/O. Internally, exchangeable storage
engines are responsible to manage the reads and writes to secondary storage. One
of its most recent storage backends is called BlueStore and utilizes RocksDB as
an internal KV-Store.

Storage Manager: We replaced the internal KV-Store of BlueStore with our
own native storage engine NoFTL-KV [16]. Hereby, hardware characteristics,
like in-parallel accessible flash chips of the storage device, are known by NoFTL-
KV, which in turn is able to efficiently leverage those. Consequently, the physical
location of persisted data is defined by the KV-Store itself rather than any Flash
Translation Layer (FTL) of a conventional stack. This opens the opportunity to
issue commands directly on the physical locations throughout NoFTL-KV and
to streamline low-level interfaces along the entire access path.

NDP Device: Devices are emulated by our own storage-type SCM Simulator,
based on [10]. Running as a kernel module it provides the ability to delay read
and write request depending on its emulated physical locations by utilizing the
accurate kernel timer functions. As a consequence, reads or writes across physi-
cal page borders claim respectively multiple I/O latencies. For the experimental
evaluation, the simulator is instrumented with realistic storage-type SCM laten-
cies from [1]. Moreover, by its flexible design it allows us to extend it with the
necessary NDP interface.

3.2 Interfaces and Abstractions

The first, most commonly applied interface is the traditional file I/O (Fig. 2.1).
It abstracts the cluster as a large file system, storing its data distributed on
multiple nodes. A partitioning and/or replication layer takes care of the internal
data placement on various nodes. Instead of the KV-Store the conventional Block

nativeNDP: Processing Big Data Analytics on Native Storage Nodes 145

I/O is used to issue reads and writes to the NDP Device. This also involves any
kind of Flash-Translation-Layer on the device itself to reduce the wear on a
single storage cell and consequently ensure longevity of the entire device.

Secondly, a modern object interface offered by RADOS [18] (Fig. 2.2) can
be utilized to put/get objects on the cluster. This abstraction might comprise
single or multiple records of a file, or the result set of a pushed down user
defined function executed on the respective node. Since the cluster handles data
placement, it can transparently execute such algorithms in parallel with the full
processing power of the node’s servers if the operations are data independent.
Within the lower levels, depending on the storage manager, one can either exploit
the conventional Block I/O to access the NDP Device or leverage NoFTL-KV’s
Native Storage Interface.

Thirdly, an NDP pushdown necessitates a different kind of interface defini-
tion (Fig. 2.3). The NDP execution of application-specific operations requires
open interfaces. These should support NDP of application-specific abstractions
such as DataFrame for R. Consequently, these interfaces and abstractions man-
date flexibility, since various result types of the application logic on the device
must be transferred back to the client. Expensive format conversion along the
system stack can be avoided almost entirely. Yet, an extensive toolchain and
NDP framework support is required, beginning from the analytical tool to the
employed hardware devices in the cluster. Utilizing the processing elements near-
storage (e.g. FPGA), the internal, on-device parallelism and bandwidth can be
fully leveraged. For instance, [13] projects of up to 50 GB/s, while the workload
on slower buses (e.g. PCIe 2.0 ≈ 6.4 GB/s) in the system is eased by reducing
transfer volumes (i.e. resultset � rawdata).

4 Experimental Evaluation

To compare the different execution options on the presented system stack and
evaluate their bottlenecks, we conduct three experiments aligned to the scenarios
of Fig. 1.

4.1 Datasets and Operations

To ensure the comparability of the scenarios, datasets and operations are prede-
fined. The datasets are created synthetically as CSV files with random numbers,
with varying rows and columns from 1k to 10k. When stored in the KV-Store,
each cell of the CSV file is identifiable by an auto-generated key with the struc-
ture:

[object name].[column index].[row index]

Inevitably, this is bloating out the raw file size by approximately 16x–17x but
enables to access cells by this unique id. Alternatively, depending on the work-
load, an arrangement per row or per column is likewise feasible. Table 1 summa-
rizes the properties of each dataset for the present experiments.

146 T. Vinçon et al.

Table 1. Synthetically generated datasets for the experiments. The raw CSV file size
is according the Key-Value format bloated out.

Dataset KV Pairs CSV Size [MB] KV size [MB] Bloating ratio

1k/1k 1000000 2.8 44 15.9

2k/2k 4000000 12 182 15.2

4k/4k 16000000 45 738 16.4

6k/6k 36000000 101 1668 16.5

8k/8k 64000000 178 2971 16.7

10k/10k 100000000 278 4649 16.7

The operations performed in all experiments is independent of the data dis-
tribution and constitutes a typical data science application - calculation of the
sum or the average over a given column (Because of the marginal differences
only sum is shown further on). The final result set comprises a 32-byte integer
value and some additional status data. We leave the implementation of further
analytical and/or statistical operations open for future work.

4.2 Experimental Setup

The server, nativeNDP is evaluated on, is equipped with four Intel Xeon x7560
8-core CPUs clocked at 2.26 GHz, 1TB DRAM running Debian 4.9, kernel 4.9.0.
The NDP storage device is emulated by our real-time NVM Simulator, extended
with an NDP interface and functionality. I/O and pushdown operations are
handled internally with the storage-type SCM latencies [1].

Since the main target is to evaluate the streamlining of NDP interfaces and
abstractions, interferences caused by data distribution or multi-node communi-
cation have to be avoided. Therefore, the Ceph cluster is set up with a single
object store node. This allows conducting experiments along a clean stack and
measuring execution and transfer size for each architectural layer individually.

4.3 Experiment 1 – Baseline

The first experiment utilizes the Ceph cluster in the most common and conven-
tional way - as a file system (Fig. 2.1). Therefore, the file abstractions, interfaces,
and subsequently Block I/O are used to retrieve the entire file. The sum over
the 10th column is calculated in R by calling readCSVDataFrame of RCeph
and caching the resulting DataFrame into the R runtime environment. Here, R’s
capabilities can be used to filter the DataFrame on the respective column and
perform the arithmetic operation.

sum <- sum(RCeph::readCSVDataFrame(o_name)[col_id])

This experiment defines the baseline for any improvements of nativeNDP.
However, it exemplifies multiple drawbacks yielding in a significant performance

nativeNDP: Processing Big Data Analytics on Native Storage Nodes 147

Fig. 3. Execution time for varying dataset sizes shows the performance impact of data
transfers/volume, and the improvement through NDP.

degradation. Firstly, the entire file has to be read via block I/O, even though
only a small portion of it, the 10th column, is necessary to be processed by
the operation (Fig. 5). Secondly, the latency and bandwidth limitations of the
network interconnect between the R host and the Ceph cluster, contribute to
additional delays to the R processing. The significantly higher transfer size of
Host-To-Client, illustrated in Fig. 5, leads inevitably to a slower request dura-
tion. Additionally, as R DataFrames do not support any streaming algorithmic,
the processing has to idle until the entire dataset is retrieved from Ceph. Thirdly,
additional compute-intensive format conversions along multiple interface bound-
aries are necessary to create R DataFrames, which increase delays even further.
For example the “R - parse time” is 95% of the total time as shown in Fig. 4.
Moreover, such format conversions are directly depending on the data size, which
is subsequently affected by the large Host-To-Client transfer size. Lastly, client
systems often comprise limited hardware (e.g. notebook or workstation), while
typical working sets can range from tens to hundreds of gigabytes. Thus, process-
ing the whole dataset is not always possible without any performance degrading
swapping to disk.

These drawbacks lead to a significantly higher total execution time for the
calculation in general, as shown in Fig. 3 (at least 10x).

In total, the baseline experiment results in the lowest performance for all
datasets, which is mainly caused by the time spent in transfer and conversion
of the CSV object into the R-specific data type DataFrame (“R - parse time”
Fig. 4).

148 T. Vinçon et al.

Fig. 4. A detailed execution time analysis shows the main bottlenecks along the ana-
lytical stack.

4.4 Experiment 2 – Pushdown Cluster

For the second experiment, Ceph’s advanced object interface is extended to exe-
cute a user defined function. It queries the KV-Pairs of the respective dataset
from NoFTL-KV of the Storage Manager by filtering on the 10th column.
Thereby, the retrieved values are cumulated (Fig. 2.2). In a full-fledged clus-
ter scenario, Ceph will automatically distribute this algorithm on the respective
nodes within the cluster and aggregate their results afterwards. Obviously, the
result size after the operation pushdown is dramatically smaller than the raw
data, which relieves the network and accelerates subsequent expensive data for-
mat conversions. Hence, the almost non-existing “R - parse time” (Fig. 4) and
the respective transfer size from Host-To-Client (Fig. 5). Both result in an overall
performance improvement of up to 30% in comparison to the baseline (Fig. 3).

sum <- RCeph::execCmd(o_name, "NDP_CEPH SELECT SUM COLUMN col_id")

Nonetheless, the I/O overhead of reading the entire data from the storage
subsystem, as shown in Fig. 5 by Device-To-Host, represents a major bottleneck.
Therefore, the time spent in format conversions within Ceph increases as well.
For the largest dataset, it takes more than 99% of the time. However, it can be
avoided by applying NDP.

4.5 Experiment 3 – Pushdown NDP Device

Our last experiment relies on Near-Data Processing (Fig. 2.3). Abstractions and
interfaces are statically created for the purpose of filtering on a given column
and computing sums to enable a device pushdown.

nativeNDP: Processing Big Data Analytics on Native Storage Nodes 149

Fig. 5. Transfer sizes from Device-To-Host and Host-To-Client of varying datasets
shows the counteraction of NDP to the von Neumann bottleneck

sum <- RCeph::execCmd(obj_name,"NDP_DEV SELECT SUM COLUMN col_id")

The NDP pushdown leverages the much higher levels of compute and I/O
parallelism supported by the on-device processing elements (FPGA, GPU) to
compute the sum an order of magnitude faster (Fig. 3). Thereby, transferring
data from the storage chips takes most of the time (Fig. 4 “Device - load time”),
while the processing is only about 3% of the total time (Fig. 4 “Device - pro-
cess time”). Not only is the network relieved by this early reduction of volume,
but also the system-wide number of data transfers is significantly reduced. This
is mainly driven by the on-device computation and result size reduction as shown
in Fig. 5. As this is only possible with the application-specific abstractions, a push
down command must compulsorily comprise those to apply computation on the
device, in-situ. In R, for instance, DataFrame may be a suitable application-
specific abstraction.

5 Conclusion

We present nativeNDP, a NDP approach to effectively pushdown analytical oper-
ations to a native storage node of a clustered environment. The evaluation shows
improvements of at least 10x over the baseline. Besides the known issues with
todays computer architectures, we identify ill-suited interfaces and abstractions
along the analytical stack as major drawbacks of current solutions. Moreover,
the necessity to push down application-specific abstractions, and data layouts
interpretable by the NDP Device is considered a key aspect for a true in-situ
processing in complex system stacks. To mitigate format conversions along inter-
face boundaries of such stacks, a comprehensive but flexible NDP toolchain is
required.

150 T. Vinçon et al.

Acknowledgements. This work has been partially supported by HAW Promotion
MWK, Baden-Würrtemberg and BMBF PANDAS 01IS18081C/D.

References

1. ITRS - International Technology Roadmap for Semiconductors Reports (2014).
http://www.itrs2.net/itrs-reports.html

2. Acharya, A., Uysal, M., Saltz, J.H.: Active disks: programming model, algorithms
and evaluation. In: ASPLOS (1998)

3. Boral, H., De Witt, D.J.: Database machines: an idea whose time has passed? A
critique of the future of database machines. In: Parallel Architectures for Database
Systems (1989)

4. Cho, S., Park, C., Oh, H., Kim, S., Yi, Y., Ganger, G.R.: Active disk meets flash.
In: Proceedings 27th International Conference on Supercomputing - ICS, p. 91.
ACM Press (2013)

5. De, A., Gokhale, M., Gupta, R., Swanson, S.: Minerva: accelerating data analysis
in next-generation SSDs. In: 2013 IEEE 21st Annual International Symposium on
Field-Programmable Custom Computing Machines, pp. 9–16. IEEE, April 2013

6. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35, 85–98 (1992)

7. Eddelbuettel, D.: Seamless R and C++ integration with Rcpp. Springer, New York
(2013). https://doi.org/10.1007/978-1-4614-6868-4

8. Gray, J., Shenoy, P.J.: Rules of thumb in data engineering. In: Proceedings ICDE,
p. 3 (2000)

9. Gu, B., et al.: Biscuit: a framework for near-data processing of big data workloads.
In: ACM/IEEE 43rd Annual International Symposium on Computer Architecture,
vol. 8, pp. 153–165. IEEE, June 2016

10. Hardock, S., Petrov, I., Gottstein, R., Buchmann, A.: NoFTL: database systems
on FTL-less flash storage. Proc. VLDB Endow. (2013)

11. István, Z., Sidler, D., Alonso, G.: Caribou. Proc. VLDB Endow. 10(11), 1202–1213
(2017)

12. Keeton, K., Patterson, D.A., Hellerstein, J.M.: A case for intelligent disks
(IDISKS). SIGMOD Rec. 27(3), 42–52 (1998)

13. Kim, S., Oh, H., Park, C., Cho, S., Lee, S.W., Moon, B.: In-storage processing of
database scans and joins. Inf. Sci. (Ny) 327, 183–200 (2016)

14. Minutoli, M., Kuntz, S.K., Tumeo, A., Kogge, P.M.: Implementing Radix Sort on
Emu 1. Work. Near-Data Process, pp. 1–6 (2015)

15. Riedel, E., Gibson, G.A., Faloutsos, C.: Active storage for large-scale data min-
ing and multimedia. In: Proceedings of the 24th International Conference on Very
Large Data Bases, pp. 62–73. VLDB, Morgan Kaufmann Publishers Inc., San Fran-
cisco (1998)

16. Vinçon, T., Hardock, S., Riegger, C., Oppermann, J., Koch, A., Petrov, I.: NoFTL-
KV: Tacklingwrite-amplification on KV-stores with native storage management. In:
EDBT (2018)

17. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: a scal-
able, high-performance distributed file system. In: OSDI (2006)

18. Weil, S.A., Leung, A.W., Brandt, S.A., Maltzahn, C.: RADOS: a scalable, reliable
storage service for petabyte-scale storage clusters. In: PDSW (2007)

19. Woods, L., Teubner, J., Alonso, G.: Less watts, more performance. In: Proceedings
2013 Int. Conference Management of Data - SIGMOD, p. 1073. ACM Press, New
York (2013)

http://www.itrs2.net/itrs-reports.html
https://doi.org/10.1007/978-1-4614-6868-4

Calculating Fourier Transforms in SQL

Dennis Marten, Holger Meyer(B), and Andreas Heuer

Institute of Computer Science, Rostock University,
Albert-Einstein-Strasse 22, 18059 Rostock, Germany

{dm,hme,ah}@informatik.uni-rostock.de

Abstract. The Fourier transform is an important tool for analyzing,
transforming and searching multi-media content in databases. SQL is
the lingua franca for querying structured data. Implementing the Dis-
crete Fourier Transform (DFT) in SQL itself has several benefits. The
DFT can directly be executed in the database system. It can be reused
for several, different content processing steps from feature extraction to
query transformation and evaluation.

We not only discuss different algorithmic aspects but also do a per-
formance evaluation on top of different database systems of different
architectures, i.e. row and column stores. The SQL-based implementa-
tion is also compared to a Python-based implementation on the client
side. There is no variant that always performs best.

Keywords: Fourier transform · SQL · Databases · Multi-media ·
Performance evaluation

1 Introduction

This research is part of the PArADISE framework (Privacy Aware Assistive
Distributed Information System Environment) [15]. The project aims at sup-
porting developers of assistive systems in the development and usage phase.
Therefore, machine learning algorithms and more generally methods of scientific
computations (mainly based on linear algebra) are transparently translated into
SQL. In the development phase, depending on data size, these statements will be
decomposed into sub-queries for an efficient, horizontally distributed calculation
on a parallel database system [16].

In the usage phase, the SQL statements will be further decomposed in order
to push the sub-queries vertically down a hierarchy of database systems with
decreasing functionality, but increasing proximity to the data source (sensors)
[7]. This supports privacy aware computation as sensitive data will not be sent
and processed in the cloud. Even without privacy as a requirement for vertical
push-down of queries, there are many other reasons to calculate such algorithms
on database systems using SQL. As an example, one can benefit of established
database techniques as transparent logical and physical optimization of data
heavy (distributed) operations, fast access on highly selective algorithms (sparse
data) due to index structures, and concurrency control of transactions.
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 151–166, 2019.
https://doi.org/10.1007/978-3-030-28730-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_10

152 D. Marten et al.

Furthermore, as SQL is a standardized language, developers can easily change
their backend database system without the time-demanding (and expensive)
need of reimplementation. Additionally, standardization does also provide per-
sistence of code as SQL-89-queries will run without any problem on modern
database systems, even in the following decades.

After investigating Machine Learning (ML) algorithms in [15], we have
decided to focus on Fourier transforms which are not only used in big data
analytics but also have a wide area of applications in content-based retrieval
and multi-media database systems.

The Fourier transform is a fundamental method for analyzing periodicity,
e.g. in media types. Periodicity is essential for describing texture in images or
the chroma feature of audio signals, especially in music. Due to the complexity
of such data, the extraction of interpretable parameters, e.g. from the waveform
of an audio signal, is a difficult problem. The Fourier transform is the most
important tool for the analysis of such data, which breaks up an audio signal
into its constituting frequencies. It is also an important technique not only for
feature extraction but also for transformation, selection, reduction of data, and
for querying and retrieval.

Feature extraction and transformation are typical preprocessing steps in
indexing multi-media content in database systems. Content-based retrieval often
exploits special low- or high-dimensional index structures that are built upon
these features. The index structures are needed for efficient similarity search in
databases.

The Discrete Fourier Transform (DFT) is also a data-independent transform
for feature selection and reduction by concentrating the information, and thereby
produce fewer coefficients containing most of the information [1].

The Fast Fourier Transform (FFT) or DFT are therefore essential for content
based search application across one or several multi-media contents in databases.
Nevertheless, there is a much broader range of applications that can benefit from
executing the Fourier transform directly on the database management system.

In this paper we present a feasibility study on calculating Fourier Transforms
in relational database systems via SQL-statements. We outline a concise state
of the art analysis in Sect. 2, followed by a theoretical overview of Fourier trans-
forms, the DFT and the FFT, as well as a discussion on how to translate these
methods efficiently into SQL in Sect. 3. The following Sect. 4 presents an evalua-
tion of the corresponding in-database calculation method and a small discussion
and future work discussion is provided in the final section.

2 State of the Art

Several research projects exists that investigate a push down of ML algorithms or
scientific computations into the database system. A detailed discussion is given
in [15,16]. To sum it up, one can distinguish between three project types in this
research area.

Calculating Fourier Transforms in SQL 153

– The first group integrates in-memory environments like R into the database
system, e.g. MonetDBs R-Integration [11]. This allows users to call efficiently
implemented algorithms and directly reuse their results in SQL.

– The second family is extending the SQL interface with linear algebra data
types and operations, like MADLib [8], SciDB [3] or [12]. Both of these groups
aim at improving the database system by internally implementing new fea-
tures and extending the SQL-interface with non-standard operations.

– The third group, as presented here, concentrates on the efficient implementa-
tion of (parallel) algorithms of scientific computations and Machine Learning
in ISO-SQL. This also includes investigations on which kind of database sys-
tems perform more efficiently and what level of ISO-SQL standard is needed
and supported by most of the common systems. This research area is therefore
not focused on the optimization of one database system, but rather on a long-
term implementation with an effortlessly interchangeable backend database
system.

Before our research started, very few ML projects tested pure SQL implementa-
tions on suitable database systems. For instance, a Principal Component Anal-
ysis (PCA) has been tested in SQL Server in [17] and a simple matrix multi-
plication in MySQL in [26]. Both projects neglected further investigations, due
to somewhat unsatisfying performances. These were most likely caused by the
choice of database systems, its tuning, the SQL statements used and (in the case
of PCA) the kind of algorithm tested. As we have shown in [15], SQL imple-
mentations can perform very good if used for algorithms of the Hidden Markov
Model, even in comparison to in-memory environments for scientific calculations.

While the most recent Big Data Analytics research is promoting to push
analysis into the database, multi-media database applications have a long tra-
dition of using the Fourier transform. Without doubt, the application fields of
the Fourier transform in content-based retrieval and multi-media databases is
manifold and essential. Applications include similarity search, feature-based con-
tent indexing, feature extraction, feature selection, dimensionality reduction and
transformation on different and combined media types, to mention only some.

The FFT is used for efficient similarity search in sequence databases [2] as
well as for high dimensional indexing [1] or dimension reduction for distance-
based indexing in [13,14]. It is also used for indexing the different media types
like audio [21], music [25], or for audio classification and segmentation [10]. Index
building and query transformation can directly benefit from in-database FFTs.
Image signature [4] and feature generation [9] as well as indexing [20,22] for
image retrieval is another scenario of using built-in database FFT functionality.
As one last example, integrated image and audio analysis for content-based video
indexing [5] uses FFTs for feature extraction and combination.

All these aforementioned techniques would profit from FFT built into
database updates or queries. Since SQL-operations are directly evaluated within
the database systems, large amounts of multi-media content has not to be trans-
ferred between client and server during feature extraction, transformation, com-
bination, and feature-based retrieval in multi-media database applications.

154 D. Marten et al.

t

Si
gn
al
A
m
pl
itu

de

Fig. 1. Graphical illustration of the sine
and cosine waves from Eq. 9 (bottom)
and their superposition (top) with noise
added.

0 4 8 16
Hz

Fr
eq
ue
nc
y
A
m
pl
itu

de

Fig. 2. Section of the spectrum from
Fig. 1 calculated via Fourier transforma-
tions with peaks at 0 (noise), 4, 8 and
16 Hz.

3 Fourier Transform in SQL

In this section we will briefly discuss different implementations of the Fourier
transform in SQL. We start by giving a brief introduction of the underlying
theory. For a more precise and elaborate discussion of the theory of Fourier
transforms, we would like to refer to [19].

3.1 Theory of Fourier Transforms

The Fourier transform of a square-integrable function f ∈ L2(R) is a function
f̂ : R �→ C defined by

f̂(ω) :=
∫
R

f(t) e−2πitω d t, (1)

with

L2(R) =
{

f : R �→ R | f measureable ,

∫
R

|f |2 d x < ∞
}

, (2)

usually used to calculate the frequency distribution of a function of time (see
Fig. 1). The value of |f̂(ω)| from (1) can be interpreted as the amplitude of
sine waves with frequency ω (see Fig. 2). The superposition of all these waves
compose the original function f .

As measured time series are discrete and not continuous, it is necessary to
adjust the transform from (1).

Discrete Fourier Transform (DFT). Therefore, consider a discrete time
series x =

(
x0 . . . xn−1

)T ∈ R
n. Due to the discretization, the integral in (1)

converts into a sum and thus the discrete Fourier transform (DFT) is defined as

x̂ = (x̂j)j=0,...,n−1 :=

(
1
n

n−1∑
k=0

e−2πijk/n xk

)

j=0,...,n−1

. (3)

Calculating Fourier Transforms in SQL 155

At this point, one can easily verify that this definition can be expressed as a
simple matrix-vector-multiplication

x̂ = Fx (4)

where

F =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 wn w2

n . . . wn−1
n

1 w2
n w4

n wn−2
n

...
...

. . .
...

1 wn−1
n wn−2

n . . . wn

⎞
⎟⎟⎟⎟⎟⎠

and
wn = e−2πi/n .

The variables wj
n (j = 0, . . . , n−1) are called twiddle factors and only depend

on the length of the time series. This is why these factors are usually stored in
lookup tables in order to save computation time. The symmetrical matrix F is
usually referred to as DFT matrix and has, due to its structure, several useful
properties. If F is already computed, a discrete Fourier transform as described in
(4) needs O(n2) floating point operations. However, the fast Fourier transform
uses the special structure of the DFT matrix or (3), respectively, to significantly
optimize the calculation.

Fast Fourier Transform (FFT). The fast Fourier transform (FFT) imple-
ments a divide and conquer strategy in order to efficiently calculate the DFT
of a discrete signal x ∈ C

n. More accurately, the FFT is a family of methods,
that share a similar form, mainly depending on the size of x. Here, we will only
discuss the most common implementation: the Radix-2-DIT-algorithm [19]. For
this, the length of the time series has to be a power of 2: n = 2p (p ∈ N

≥1), or
at least be divisible by 2; hence the name. The method divides the original sum
into two sub-DFTs as

x̂k =
n/2−1∑
m=0

x2me− 2πi
n/2mk

︸ ︷︷ ︸
DFT of even indices =:Ek

+ e− 2πi
n k

n/2−1∑
m=0

x2m+1e
− 2πi

n/2mk

︸ ︷︷ ︸
DFT of odd indices=:Ok

= Ek + wk
nOk.

(5)

Because of periodicity, one can show that

x̂k+n
2

= Ek − wk
nOk (6)

and therefore

x̂k = xk + wk
nOk x̂k+n

2
= Ek − wk

nOk. (7)

156 D. Marten et al.

Algorithm 1 Recursive Radix-2-DIT
algorithm (s = 1, n = 2p) for the cal-
culation of the DFT of a time series x.

1: (x̂k)k = FFT(x, n, s)
2: if n = 1 then
3: x̂0 = x0

4: else
5: (x̂k)k=0,...,n/2−1 =

FFT(x, n/2, 2s)
6: (x̂k)k=n/2,...,n−1 =

FFT(x·+s, n/2, 2s)
7: for k = 0, . . . , n/2 − 1 do
8: t = x̂k

9: x̂k = t + wk
nx̂k+n/2

10: x̂k+n/2 = t− wk
nx̂k+n/2

11: end for
12: end if

Algorithm 2 Iterative Radix-2-DIT
algorithm (n = 2p) for the calculation
of the DFT of a time series x.
1: h = 1
2: x = x[reverse bit order(1 : n)]
3: for s = 1, 2, . . . , log2(n) do
4: for j = 0, 2s, 2 ·2s, 3 ·2s, . . . , n−1

do
5: for t = 0, 1, . . . , h− 1 do
6: p = t + j + 1

7: r = wt2log2(n)−s

n

8: z = xp+hr
9: xp+h = xp − z

10: xp = xp + z
11: end for
12: end for
13: h = 2h
14: end for

Since Ek, Ok ∈ C
2p−1

the procedure can be repeated until Ek, Ok ∈ C. This
leads to the recursive Radix-2-DIT method presented in Algorithm 1. In contrast
to the quadratic costs of the matrix-vector-multiplication, this method does only
take O(n log n) floating point operations. Anyhow, as deep recursion levels on
comparatively big data sets can be very demanding on memory management,
this method is often implemented as an iterative version shown in Algorithm2.

3.2 Translation into SQL

With the theory explained before, it is now possible to discuss a variety of SQL
implementations of the DFT. All of these use a subset of the following database
schema:

x (i int, re double, im double)
f (i int, re double, im double)
w (i int, re double, im double)
fmat (i int, j int, re double, im double)
bro (i int, v int)

Here, x stores the time series, f is the transform to be calculated, w the
twiddle factors, fmat the DFT matrix and bro the bit reverse order (needed for
FFT; see Algorithm 2). Furthermore, the attribute i represents row indices, j
column indices, re the real and im the imaginary parts of the associated complex
numbers of vectors x and f or the F . The suitability of this schema has been
discussed in detail in [16].

Calculating Fourier Transforms in SQL 157

DFT in SQL. The first thing to notice for matrix-based DFT as well as FFT
implementations is that the twiddle factors only depend on the sample size
n = 2p and can therefore be stored independently in w. This allows the reuse
of these factors for equally sized transforms, which can be considered standard
in real applications. From this point on, it can be decided if it is beneficial to
physically store the DFT matrix in fmat, which can be done in SQL via

insert into fmat
select t.i, t.j, w.re, w.im
from w join (select w1.i as i,w2.i as j from w w1, w w2) t

on mod(t.i*t.j,$n)=w.i

or be computed online in a with-clause of the corresponding query:

insert into f
select fmat.i, sum(fmat.re*x.re-fmat.im*x.im),

sum(fmat.im*x.re+fmat.re*x.im)
from fmat join x on fmat.j=x.i
group by fmat.i.

Naturally, online calculation of the DFT matrix does slow down the per-
formance, especially if multiple transforms have to be computed. Besides the
quadratic complexity, one of the main downsides of this approach is that the
physical storage of the matrix can become very disk space demanding as it is
quadratically increasing with problem size. For instance: at n samples the rela-
tion x stores

4 + 4 + 8 + 8︸ ︷︷ ︸
2 integers and 2 doubles

· n2︸︷︷︸
matrix elements

/ 230︸︷︷︸
byte to GB

GB (8)

of data (neglecting internal meta data at this point). This means that at 215 =
32768 samples the fourier matrix relation would take up 24 GB and for 216

samples already 96 GB disk space. Since the matrix vector multiplication does
usually include a hash join between matrix and vector, this will ultimately lead to
a large amount of disk operations. Unfortunately, without the usage of recursive
queries (see FFT) it seems not to be possible to calculate the DFT without
some kind of cartesian product of the twiddle factor relation as one needs to
satisfy a join condition like x.i = mod (w1.i * w2.i, $n). Anyhow, one can
use compression techniques to reduce the amount of the data processed. One of
such techniques we evaluated uses the symmetrical shape of the matrix, storing
only upper triangle and diagonal elements in a relation sfmat(i int, j int,
re double, im double). This does only require around half of the data size
of fmat, but also requires adjustment of the DFT query to

158 D. Marten et al.

insert into f
select i, sum(re), sum(im)
from (

select sfmat.i as i, x.re * sfmat.re -x.im * sfmat.im as re,
x.re * sfmat.im + x.im * sfmat.re as im

from sfmat join x on x.i = sfmat.j
union all

select sfmat.j as i, x.re * sfmat.re -x.im * sfmat.im as re,
x.re * sfmat.im + x.im * sfmat.re as im

from sfmat join x on x.i = sfmat.i
where sfmat.j <> sfmat.i

) t
group by i.

Here, instead of one big join with O(22p log 22p) operations needed (n = 2p),
this approach is aggregating over two joins with approximately half the size and
costs of O(22p−1 log 22p−1) operations each. Both of these DFT matrix based
queries have been evaluated in Sect. 4. It is worth mentioning that both approaches
are not selective and can therefore not benefit from classical index structures, like
B-trees. This changes if one is calculating a series of transforms on sub-signals as
also described in Sect. 4.

FFT in SQL. We have implemented an iterative Radix-2-DIT-method in SQL
based on Algorithm 2. In contrast to the DFT implementations, this SQL state-
ment is comparatively space demanding and can therefore not be fully dis-
played here. The main challenge for a SQL translation is that the algorithm
is highly iterative. As described in [16] such algorithms can perform very poorly
in SQL, especially if it is necessary to realize them via several successive queries.
One common example for this is the bulk insertion of external data into the
database system. Usually each system provides a special method instead of the
consecutive insertion via insert into. In this case, due to the special struc-
ture of the FFT, it is possible to realize the method with a reasonable amount
of SQL statements. Hereby, the structure is as follows: The two inner loops
(j = 0, 2s, 2 · 2s, 3 · 2s, . . . , n − 1 and t = 0, 1, . . . , h − 1) are translated into one
recursive query. With regards to the variables from Algorithm 2, one can describe
the structure of the recursive step of the query in a SQL-like pseudocode as

with z = g1 ((x �� xrec) �� w), xjz = g2 (x �� z)
select xp + z
from xjz
union all
select xp+h − z
from xjz
where p < h.

The xrec relation presents the name of the recursive relation and is used to
define the quasi-recursion step and therefore the size of z and xjz. The outer

Calculating Fourier Transforms in SQL 159

Table 1. Hardware setup of notebook used for experiments.

Component Value

Processor Intel Core i7-4600U CPU @ 2.10 GHz × 4

L1 Cache 32 KB

L2 Cache 256 KB

L3 Cache 4 MB

RAM 12 GB DDR3

Operating System Ubuntu 18.04.2 (64-bit)

Secondary Storage (SSD) 250 GB

loop (s = 1, 2, . . . , log2(n)) is represented by successive execution of the respec-
tive recursive queries of the inner loops. Here, we have tested three different
strategies:

– inserting the result of every loop into an extended relation with an additional
level attribute x (i int, level int, re double, im double),

– storing every loop result consecutively into a common table expression of one
big query, and

– update the x relation on every loop.

Based on test runs not presented here, the update-based implementation with
a B-tree index on x (i) has shown to be superior by a large margin (speed-up
factors up to 3) on any dimension (n = 2k, k = 5, . . . , 15) tested and is therefore
our method of choice for the evaluation in the upcoming section.

4 Experimental Evaluation

In this section we present the results of two experiments we have conducted in
order to get an overview of the performance of the SQL statements from Sect. 3.2
in comparison to implementations to more traditional (imperative) languages.
Both of these have been run on a notebook with hardware specifications listed
in Table 1. As a basis for further considerations, the first scenario tested the
performance of Fourier transformation with varying sample sizes and different
implementations and database systems. The second experiment investigates the
performance on short time Fourier transform (STFT), in which Fourier trans-
forms are calculated on small multiple overlapping windows of an input signal
(see Fig. 4). For both experiments we have created signals as a superposition of
4 and 16 Hz cosine waves, as well as a 8 Hz sine wave and uniformly distributed
random noise

S(t) = cos(2πf1t) + 0.2 sin(2πf2t) + 0.8 cos(2πf3t) + ε(t). (9)

This signal and its sub-signals are depicted in Fig. 1. The sample (and prob-
lem) size has been de- or increased by adjusting the sampling rate or the signal
length. As representatives of relational database systems, PostgreSQL 11 [18]

160 D. Marten et al.

t

Si
gn
al
A
m
pl
itu

de

Fig. 3. Inverse Fourier transform of the
top 3 frequencies of (9) and Fig. 1.

t

Si
gn
al
A
m
pl
itu

de

1
2

3
4

Fig. 4. Exemplary distribution of win-
dows in a short-time Fourier transform
(STFT). In the presented experiments,
consecutive windows overlap on 50% of
their size.

and Actian’s Vector 5.1 [27] have been chosen. PostgreSQL is a widely known
open-source relational database system that is built on a row-wise storage model
and provides a rich set of database functionality and extensions. Furthermore, it
is released under a BSD-like license, which is especially interesting for industrial
usage. In contrast to this, we chose the commercial relational database system
Actian’s Vector. This column store has shown great potential for similar use
cases in [16], due to its newly implemented kernel and features like clustered
index structures. Furthermore, we have established in [15], that column stores
do usually perform better on this kind of operations (Fig. 3).

As a representative of traditional environments for scientific computing, we
have implemented the iterative version of the FFT according to Algorithm 2 in
Python3/NumPy [23]. It is worth noting that there exist more powerful native
functions even in NumPy itself, but these implementations are far more complex
and are not comparable with the FFT implementations we have done in SQL so
far.

In addition to the pure processing time in Python (‘Py Pure Calc’ in Figs. 5,
6, and 7, data already in main memory) we also have provided the overall time
needed for the calculation, reading the original signal from and inserting the
results into PostgreSQL (‘Py IO PSQL’) via the Python-DB connector Psycopg2
[6]. The latter method has been added to offer a more real and fair comparison to
the persistent database solutions. Here, the choice of database system is mainly
founded on ease-of-use and is unlikely to have significant performance influence,
due to comparatively small data sizes and simple IO operations.

4.1 Calculating Fourier Transforms

The first experiment compares the calculation (and storage) of the Fourier trans-
form in each of the mentioned system. Hereby, the FFT as well as the implemen-
tations with the DFT matrix and the symmetrical DFT matrix from Sect. 3.2

Calculating Fourier Transforms in SQL 161

24 211 213 214 215
n

10−4

10−3

10−2

10−1

100

101

102

t
in

s

DFT PSQL
Symm DFT PSQL
FFT PSQL
DFT Vector

Symm DFT Vector
Py Pure Calc
Py IO PSQL

Fig. 5. Performance comparison of different implementations of Fourier transformation
in PostgreSQL 11, Actian’s Vector 5.1 and Python3/NumPy.

have been tested. We did not implement the FFT in Actian Vector, as the sys-
tem does not support recursive queries. The computation of the twiddle factors,
DFT matrices and bit reverse orders are not included in the results, as they
are serving as look-up tables. In this scenario the sample size from signal (9)
has been altered by adjusting the sampling rate, while maintaining the dura-
tion of one second. The results are depicted in Fig. 5 and represent the best
out of 5 separate runs. It can be seen that Python is clearly the fastest sys-
tem (as expected) as it outperforms Actian’s Vector with an increasing factor
around 10 to 50 and PostgreSQL with at least another order of magnitude. As
the latter gap might be to wide for most of the common use-case-scenarios of
Fourier transformations, the gap between Vector and Python is not as high and
therefore one might consider Vector as a viable option for moderate size signals,
especially when taken into account the numerous advantages of in-database cal-
culation discussed in the Introduction. Another interesting aspect that can be
seen is that the symmetrical DFT consistently does better than the classical
DFT in both database systems up to around 213 to 214 samples, but becomes
slower after this point. We suspect that this might be due to disk or memory
limits as the performance of PostgreSQL on 215 has been abandoned because
of insufficient disk space. Anyhow, one of the most important findings of this
experiment is that the FFT implementation in PostgreSQL gain a significant
performance advantage after an initial transient phase with factors around 2 to
3 in comparison to the established DFT implementations. This outcome was not
clearly predictable, since highly iterative algorithms can perform very poorly in
SQL [16], even if theoretically superior. Also, this might be an indication that

162 D. Marten et al.

256 512 1024 2048
window size

100

101

102

103

t
in

s

DFT PSQL
DFT Vector

Py IO PSQL
Py Pure Calc

Fig. 6. Depiction of experimental results of the STFT with variable window size on a
10 s signal in PostgreSQL, Actian’s Vector and Python.

systems like Actian’s Vector might even further close the gap between database
solutions and environments for scientific computing, once recursive queries are
supported.

4.2 Short-Time Fourier Transform

As the pure computation of Fourier transforms turned out to be comparatively
slow, especially in PostgreSQL, we suspected that testing the SQL based app-
roach on a common real application that would include a significant amount
of data handling (selection and grouping) might give a better understanding
on whether this approach is feasible. Therefore, we implemented a short-time
Fourier transform (STFT), which does calculate Fourier transforms on small
consecutive windows (see Fig. 4). One of the main objectives of STFT is to find
significant changes of dominating frequencies of signals over time. As the analy-
sis and detection of music is a common field of STFT applications, we simulated
digital audio signals by creating random integer sequences with a sampling rate
of 44.1 kHz, which is probably the most used rate in audio applications. The win-
dow sizes chosen are commonly used in real applications (up to 2048 samples),
consecutive windows overlap on 50% of their samples [24] and signal durations
vary from 10 to 60 s. With this specification, we investigated the performance
of the aforementioned systems again. Hereby, we tested calculations with the
DFT matrix on sliding windows as both, the classical and the symmetrical DFT
matrix approach have performed fairly similar on the given window sizes in
SQL. Furthermore, we neglected the window-wise calculation of FFTs in Post-
greSQL as on the one hand we have repeatedly observed that looping through

Calculating Fourier Transforms in SQL 163

signal length in s

10 20
40

60 windo
w size256

512
1024

t
in

s

50

100

150

200

250

DFT Vector
Py IO PSQL
Py Pure Calc

Fig. 7. Depiction of experimental results of the STFT with variable window size and
signal length in Actian’s Vector and Python.

many low-cost-queries does scale poorly in SQL [16] and on the other hand it is
remarkably easy to transform the DFT query from Sect. 3.2 into a corresponding
STFT query. For the latter, one needs to combine two sub-queries: one for the
calculation of the Fourier transform of all even-numbered windows and one for
all odd-numbered windows. The sub-queries can be created from the SQL state-
ments with DFT matrices from Sect. 3.2 by adding an attribute for the window
size, adjusting the join condition with a modulo operation in order to assign the
elements of the Fourier matrix to the respective ones of each relevant window
and finally sum up for any row-window-pair:

insert into stft
select i, window even, sum(re), sum(im)
from (

select fmatrix.i as i, 2*(x.i / $ws) as window even,
x.re*fmatrix.re as Re, x.re * fmatrix.Im as im

from x join fmatrix on mod(x.i,$ws)=fmatrix.j
where x.i < $n-mod($n,$ws)

) ttt
group by i, window even
union all
select i, window odd, sum(re), sum(im)
from (

select fmatrix.i as i, 1+2*((x.i-$shift) / $ws) as window odd,
x.Re*fmatrix.re as re, x.re * fmatrix.im as im

from x join fmatrix on mod(x.i-$shift,$ws)=fmatrix.j
where x.i>=$shift and x.i < ($n - mod($n-$shift,$ws))
) ttt
group by i, window odd

164 D. Marten et al.

Here, $n represents the length of the signal, $ws the window size and
$shift = ($ws/2) describes the number of overlapping elements for consecutive
windows. This is not only a fairly compact implementation, but can also be eas-
ily decomposed into sub-queries for efficient parallel computations via techniques
presented in [16]. The results for a 10 s signal with varying window sizes can be
seen in Fig. 6. Here, it can be seen that the database solutions perform signifi-
cantly better in comparison to the previous experiment. In fact, Actian’s Vector
even surpasses the Python implementation with database storage for window
sizes of 256 and 512 elements. PostgreSQL is still the slowest system but is only
between 1 and 2 orders behind the aforementioned Python method, making it
a potential system for real application, especially considering its license. Addi-
tionally to these findings, one can see in Fig. 7 that Vector does scale linearly
(as well as the floating point operations needed) with time on window sizes 256
and 512. At a window size of 1024, the method starts to struggle with increasing
signal lengths. This is most likely again due to more intensive main memory
usage in the database implementation. Anyhow, this problem should be easily
worked around by repeatedly calculating the STFT on a smaller subset of the
whole signal. Another lowpoint of the presented implementation in SQL is that
it scales comparatively badly regarding the window size. This is not surprising
when one considers the results of the first experiment and notices that Python
computes FFTs that only take O($ws log($ws)) operations per window in com-
parison to the quadratic costs of the DFT. Anyhow, usually STFTs are meant to
find changes on relatively wide frequency bands, which does support the overall
positive results of this experiment.

5 Conclusion

In this paper we have presented a study on the feasibility of calculating Fourier
transforms in SQL on top of relational database systems. Many reasons for in-
database SQL-based calculation, like long-term implementations, data security,
and system interchangeability have been discussed and motivated an investiga-
tion of the Fourier transformation, being one of the most common tools for data
analysis.

It has been shown that discrete Fourier transforms and even fast Fourier
transforms (if recursive queries are supported) can be efficiently calculated using
SQL statements. Furthermore, we compared these implementations in Post-
greSQL, an open source row store, and Actian’s Vector, a commercially available
column store, with Python as a more traditional environment. The results of this
experiment have shown that Vector could perform within a range of one to two
orders of magnitude better compared to Python, if results need to be stored.
Furthermore, while overall the slowest system, it has be shown that the FFT
in PostgreSQL performed significantly better than the presented DFT matrix
based solutions. This is especially interesting as it might be worth revisiting this
research, if faster systems like Vector will eventually support recursive queries.

Calculating Fourier Transforms in SQL 165

Last but not least, we have shown that real applications, like the short-time
Fourier transform, can perform very good and even faster than a Python imple-
mentation doing the transform on the client side. Especially with the aforemen-
tioned additional advantages of in-database calculation this might be considered
as an implementation strategy for applications in the near future.

References

1. Agrawal, R., Equitz, W.R., Faloutsos, C., Flickner, M.D., Swami, A.N.: Method
for high-dimensionality indexing in a multi-media database, US Patent 5,647,058,
July 1997

2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence
databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1 5

3. Brown, P.G.: Overview of SciDB: large scale array storage, processing and analysis.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 963–968
(2010). https://doi.org/10.1145/1807167.1807271

4. Celentano, A., Di Lecce, V.: FFT-based technique for image-signature generation.
In: Storage and Retrieval for Image and Video Databases V, vol. 3022, pp. 457–467.
International Society for Optics and Photonics (1997)

5. Chang, Y., Zeng, W., Kamel, I., Alonso, R.: Integrated image and speech analysis
for content-based video indexing. In: Proceedings of the IEEE International Con-
ference on Multimedia Computing and Systems, ICMCS 1996, Hiroshima, Japan,
17–23 June 1996, pp. 306–313. IEEE (1996)

6. Di Gregorio, F., Varrazzo, D.: Psycopg – PostgreSQL database adapter for Python.
http://initd.org/psycopg/docs/

7. Grunert, H., Heuer, A.: Query rewriting by contract under privacy constraints.
OJIOT 4(1), 54–69 (2018)

8. Hellerstein, J.M., et al.: The MADlib analytics library or MAD skills, the SQL.
Technical report, UCB/EECS-2012-38, EECS Department, University of Califor-
nia, Berkeley, April 2012

9. Kekre, H., Mishra, D.: CBIR using upper six FFT sectors of color images for feature
vector generation. Int. J. Eng. Technol. 2(2), 49–54 (2010)

10. Kiranyaz, S., Qureshi, A.F., Gabbouj, M.: A generic audio classification and seg-
mentation approach for multimedia indexing and retrieval. IEEE Trans. Audio
Speech Lang. Process. 14(3), 1062–1081 (2006)

11. Lajus, J., Mühleisen, H.: Efficient data management and statistics with zero-copy
integration. In: Proceedings of the 26th International Conference on Scientific and
Statistical Database Management, SSDBM 2014, pp. 12:1–12:10. ACM, New York
(2014). https://doi.org/10.1145/2618243.2618265

12. Luo, S., Gao, Z.J., Gubanov, M., Perez, L.L., Jermaine, C.: Scalable linear algebra
on a relational database system. In: 2017 IEEE 33rd International Conference
on Data Engineering (ICDE), pp. 523–534, April 2017. https://doi.org/10.1109/
ICDE.2017.108

13. Mao, R., Miranker, W.L., Miranker, D.P.: Dimension reduction for distance-based
indexing. In: Proceedings of the Third International Conference on SImilarity
Search and APplications, pp. 25–32. ACM (2010)

https://doi.org/10.1007/3-540-57301-1_5
https://doi.org/10.1145/1807167.1807271
http://initd.org/psycopg/docs/
https://doi.org/10.1145/2618243.2618265
https://doi.org/10.1109/ICDE.2017.108
https://doi.org/10.1109/ICDE.2017.108

166 D. Marten et al.

14. Mao, R., Miranker, W.L., Miranker, D.P.: Pivot selection: dimension reduction for
distance-based indexing. J. Discrete Algorithms 13, 32–46 (2012)

15. Marten, D., Heuer, A.: Machine learning on large databases: transforming hidden
Markov models to SQL statements. Open J. Databases (OJDB) 4(1), 22–42 (2017)

16. Marten, D., Meyer, H., Dietrich, D., Heuer, A.: Sparse and dense linear algebra for
machine learning on parallel-RDBMS using SQL. OJBD 5(1), 1–34 (2019)

17. Navas, M., Ordonez, C.: Efficient computation of PCA with SVD in SQL. In:
Proceedings of the 2nd ACM SIGKDD Workshop on Data Mining using Matrices
and Tensors, Paris, France, 28 June 2009 (2009). https://doi.org/10.1145/1581114.
1581119

18. Obe, R., Hsu, L.: PostgreSQL: Up and Running. O’Reilly Media, Inc. (2012)
19. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier Transform - Algorithms and

Applications, 1st edn. Springer, Dordrecht (2010). https://doi.org/10.1007/978-1-
4020-6629-0

20. Sabharwal, C.L., Subramanya, S.R.: Indexing image databases using wavelet and
discrete Fourier transform. In: Proceedings of the 2001 ACM Symposium on
Applied Computing (SAC), 11–14 March 2001, Las Vegas, NV, USA, pp. 434–
439 (2001). https://doi.org/10.1145/372202.372395

21. Subramanya, S., Simha, R., Narahari, B., Youssef, A.: Transform-based indexing
of audio data for multimedia databases. In: Proceedings of IEEE International
Conference on Multimedia Computing and Systems, pp. 211–218. IEEE (1997)

22. Tsapatsoulis, N., Avrithis, Y.S., Kollias, S.D.: Facial image indexing in multimedia
databases. Pattern Anal. Appl. 4(2–3), 93–107 (2001)

23. van der Walt, S., Colbert, S.C., Varoquaux, G.: The NumPy Array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13(2), 22–30 (2011). https://
doi.org/10.1109/MCSE.2011.37

24. Weihs, C., Ligges, U., Mörchen, F., Müllensiefen, D.: Classification in music
research. Adv. Data Anal. Classif. 1(3), 255–291 (2007). https://doi.org/10.1007/
s11634-007-0016-x

25. Yang, C.: MACS: music audio characteristic sequence indexing for similarity
retrieval. In: Proceedings of the 2001 IEEE Workshop on the Applications of Sig-
nal Processing to Audio and Acoustics (Cat. No. 01TH8575), pp. 123–126. IEEE
(2001)

26. Zhang, Y., Herodotou, H., Yang, J.: RIOT: I/O-Efficient Numerical Computing
without SQL. CoRR abs/0909.1766 (2009)

27. Zukowski, M., Boncz, P.: From x100 to Vectorwise: opportunities, challenges and
things most researchers do not think about. In: Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2012, pp.
861–862. ACM, New York (2012). https://doi.org/10.1145/2213836.2213967

https://doi.org/10.1145/1581114.1581119
https://doi.org/10.1145/1581114.1581119
https://doi.org/10.1007/978-1-4020-6629-0
https://doi.org/10.1007/978-1-4020-6629-0
https://doi.org/10.1145/372202.372395
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1007/s11634-007-0016-x
https://doi.org/10.1007/s11634-007-0016-x
https://doi.org/10.1145/2213836.2213967

Novel Applications

Finding Synonymous Attributes
in Evolving Wikipedia Infoboxes

Paolo Sottovia1, Matteo Paganelli2, Francesco Guerra2(B),
and Yannis Velegrakis3

1 University of Trento, Trento, Italy
paolo.sottovia@unitn.it

2 Università di Modena e Reggio Emilia, Modena, Italy
{matteo.paganelli,francesco.guerra}@unimore.it

3 Utrecht University, Utrecht, The Netherlands
i.velegrakis@uu.nl

Abstract. Wikipedia Infoboxes are semi-structured data structures
organized in an attribute-value fashion. Policies establish for each type
of entity represented in Wikipedia the attribute names that the Infobox
should contain in the form of a template. However, these requirements
change over time and often users choose not to strictly obey them. As a
result, it is hard to treat in an integrated way the history of the Wikipedia
pages, making it difficult to analyze the temporal evolution of Wikipedia
entities through their Infobox and impossible to perform direct compar-
ison of entities of the same type. To address this challenge, we propose
an approach to deal with the misalignment of the attribute names and
identify clusters of synonymous Infobox attributes. Elements in the same
cluster are considered as a temporal evolution of the same attribute. To
identify the clusters we use two different distance metrics. The first is
the co-occurrence degree that is treated as a negative distance, and the
second is the co-occurrence of similar values in the attributes that are
treated as a positive evidence of synonymy. We formalize the problem as
a correlation clustering problem over a weighted graph constructed with
attributes as nodes and positive and negative evidence as edges. We solve
it with a linear programming model that shows a good approximation.
Our experiments over a collection of Infoboxes of the last 13 years shows
the potential of our approach.

Keywords: Temporal schema matching · Evolving data · Wikipedia

1 Introduction

Wikipedia, with its more than 5.8 million entries1 is one of the largest human
curated sources of knowledge. A Wikipedia entry provides information about
some real world entity, of a specific type, like an event, a person, an organization,
1 https://en.wikipedia.org/wiki/Wikipedia:Statistics updated on 24 March 2019.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 169–185, 2019.
https://doi.org/10.1007/978-3-030-28730-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_11&domain=pdf
https://en.wikipedia.org/wiki/Wikipedia:Statistics
https://doi.org/10.1007/978-3-030-28730-6_11

170 P. Sottovia et al.

a product, etc. It consists of two parts: the unstructured part, which is free text,
and the structured part, that is known as the infobox and is a set of attribute-
value pairs. These pairs describe the main characteristics of the entity that the
entry describes. The importance of the Infoboxes is significant. They may contain
information that is also found in the text of the of Wikipedia entry, yet, they are
highly more structured. This means that the semantics of the information they
contain is much easier to interpret, queried, analyzed, combined and explored
in general. The attributes (i.e., the names of the attributes) to be present in an
Infobox of an entity depend on the type of the entity and are dictated by the
Wikipedia policies.

The Wikipedia entries are highly dynamic data. Real world entities evolve
over time, and so does the knowledge that we have about them. This real world
evolution is reflected into the Wikipedia entries. Users are continuously updating
the Wikipedia entries in order to always contain in the best possible way the
knowledge we have about an entity. This means that by studying the evolution
of the Wikipedia pages, it is possible to understand the evolution of the entities
through time. To do so, a fundamental task is to be able to identify and link,
across different versions in time of the same Wikipedia page, the parts that
model the same kind of information. This is typically done using the schema
information, i.e., the attribute names.

Unfortunately, the evolution of the Wikipedia entries is not only on the con-
tent but also on the attribute names, making the required linking a challenging
task. Attribute names are often changed to more accurately or completely rep-
resent the semantics of the attribute values in the Infobox. As a result, different
attribute names in different versions of the same Wikipedia entry may be used
to represent the same semantic information, and the same attribute name in
two different versions may be used to model semantically different pieces of
information.

Fig. 1. Evolution of schema and values of the entity Apple Inc.

As an illustration of that situation, consider Fig. 1 that contains four
Infoboxes from different versions in time of the entity “Apple Inc.”. Note the
attribute that describes the location of the company. Initially (in 2007), the
attribute name location was used to specify the country and other geographical

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 171

data. In 2009 it disappeared. In 2014 two new attributes were introduced to indi-
cate the location: the location country and location city. Finally, in 2017, the
attributes were renamed to hq location country and hq location city to more
accurately specify that the location is the location of the headquarters.

The aforementioned example is also indicating another situation. The fact
the same can happen to the attribute values. For instance, it can be noticed that
the value indicating the country USA was originally “united states” and later
changed to “u.s.”.

In this work we deal with the problem of attribute name alignment in
Wikipedia pages across time. We want to analyse and identify sets of attribute
names that, across the evolution history of the pages of a specific type in
Wikipedia, have been used to represent the same semantic concept. At the
same time, we want to identify cases in which the same name has been used
in attributes that model semantically different information.

Attribute alignment is a well-known problem that has been studied exten-
sively in the past, mainly in the case of schema matching and in ontology align-
ment. The straightforward approach would be to look for synonym words in
attribute names. This is the approach that has been followed in the area of Nat-
ural Language Processing. The techniques that have been developed there can
be classified in two main categories. The first are those that exploit dictionaries,
i.e., being based on the semantics of the attribute names. They are however,
limited.

Their limitation lies mainly in the number of synonyms that can be encoded
in a knowledge base. Furthermore, they are context-independence, i.e., are not
able to differentiate synonyms according to the context in which they are used.
Another approach that has been studied in the context of identifying correspon-
dences in Web form schema matching [12] is one that exploits correlations. The
idea behind these techniques is that the search for synonyms is implemented by
discovering attributes that correlate negatively or that do not co-occur. Unfor-
tunately, this concept cannot be directly applied in the context of the Wikipedia
Infobox attributes. This, because the Wikipedia content is so rich that using only
co-occurrence information results in high false positives and also false negatives.

In an effort to overcome the limitations of the co-occurrence approach we
have developed an extension of it that exploits the attribute values. In particular,
the occurrence of same values between two different attributes in Infoboxes of
different versions of the same type is treated as a positive indication that the two
attribute names model the same real world concept. Furthermore, we treat co-
occurrences as a negative indication. In particular, high degree of correlation (co-
occurrence) in Infoboxes between two different attributes is an indication that
these two attribute are referring to different concepts, thus, the high correlation
is a negative indication. We turn the above two indicators into two different
metrics, and create a network of attribute names where the values of the different
metrics are used as a distance function. Then we apply clustering [10] to identify
those sets that form mutually close names. Such sets are those we consider as
semantically related.

172 P. Sottovia et al.

Our contributions are specifically as follows: (i) We provide a novel approach
to the problem of attribute name alignment in Wikipedia Infoboxes that exploits
co-occurrence information as a negative evidence and common attribute values as
a positive evidence; (ii) We turn the evidences into metrics and treat the problem
as a clustering problem, providing an efficient implementation of it that is based
on lineal programming that provides a good approximation; (iii) We apply the
technique on the set of Wikipedia entries of 13 years and report our findings on
how effective such approach is indeed.

The remainder of the paper is structured as follows. Section 2 defines for-
mally the problem with which we deal and Sect. 3 introduces our approach.
Section 4 provides an extensive evaluation of our technique and reports our find-
ings. Related works are presented in Sect. 5 alongside details on how our approach
differs from these works.

2 Problem Statement

The paper deals with entities described in Wikipedia articles. We assume that an
article describes only an entity, identified by an identifier id (e.g., the page title).
The type T specifies the subject of the entity, e.g, an event, person, organization,
product, etc. Wikipedia articles consist of two components: an unstructured
textual component and a list of attribute-value pairs called infobox.

Definition 1 (Infobox and infobox schema). We define the entity infobox
I = {〈a1, v1〉, ..., 〈an, vn〉}, where 〈ai, vi〉 are attribute-value pairs. We denote
with SI the infobox schema, that is the set of attributes included within it, and
with VI its values.

For each type of entity T , Wikipedia policies specify a template for the infobox
schema, i.e. the list of attributes that should describe that type of entity.

The data shown in an infobox may change over time. This happens mainly for
two reasons: (1) the referred entity changes, i.e, the infobox values change and/or
(2) Wikipedia releases new policies defining the infobox schema associated to a
type of entity.

We define It the infobox at time t and Et the entity at time t it is describing.

Definition 2 (Entity). An entity at time t, denoted as Et, is a triple 〈id, T, It〉
where id is the entity identifier, T is the entity type and It the associated infobox.

The set of all the changes occurred to the entity can be collected from all the
infoboxes and constitutes the entity evolution.

Definition 3 (Entity evolution). Assuming the existence of a set of times
values T that correspond to all possible times instances ti, we define entity evo-
lution E as the triple 〈id, T, IT 〉 where id is the entity identifier, T is the entity
type and IT the set of all infoboxes Iti describing the entity over time. We iden-
tify with SIT the schema of IT , that is the union of the schemas of all the
infoboxes contained within it. Similarly, we define VIT as the set of values in all
the included infoboxes.

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 173

The problem we want to address is to find, for each entity type, lists of
synonymous attributes, i.e., attributes that are used over the time to describe
the same property of an entity. The set of attributes used in the infoboxes of a
specific entity type is called set of entity type attributes.

Definition 4 (Set of entity type attributes). For each entity type T , AT

is the set of entity type attributes and includes all attributes used in at least an
infobox schema at any time for describing an entity of type T .

Synonymous attributes are clusters of entity type attributes that describe
the same real-world entity property.

Problem 1 (Finding synonymous attributes). Given a set of entity type
attributes AT , we want to find a disjoint partitioning of AT , denoted as S =
{S1, ..., Sm}, where the attributes aj ∈ Si are used to describe the same real-
world entity property.

Furthermore, in the following, we denote:

– VI(a) as the set of values assumed over time by the attribute a within all the
infoboxes IT associated with an entity;

– ΔtI(a) as the time interval (i.e., a list, even if not contiguous, of time instants)
in which attribute a is valid, i.e. it appears in some infoboxes IT associated
with an entity;

– I as the set of the infoboxes IT collected over time for a collection of entities.

3 The Approach

In this section, we present our proposal for finding synonymous attributes in
Wikipedia entities having the same type. For each pair of attributes, two mea-
sures are computed, assessing the extent in which the attribute represent (and do
not represent) the same entity property, respectively. In this way, they provide a
positive and a negative evidence of the synonymy. The measures are presented in
Sect. 3.1. Then Sect. 3.2 shows how to use the knowledge provided by these mea-
sures to generate clusters of synonymous attributes. For this purpose, we reduce
our problem to the one addressed by correlation clustering [4], where data points
are partitioned into groups based on their similarity. A linear-programming app-
roach has been adapted for this purpose. The work has been inspired from [12],
where a similar technique has been adopted in the context of web search engines.

3.1 Positive and Negative Evidence for Synonymy

We can model the synonymy relationship between attributes by analyzing their
co-occurrences in the same infobox. In this perspective, we assume that synony-
mous attributes cannot appear simultaneously in the same infobox otherwise
there would be information redundancy. In other words, we leverage the co-
occurrence of two attributes in the same infobox as a negative evidence for their
synonymy.

174 P. Sottovia et al.

Example 1. Consider for example the attributes name and type which definitely
describe different aspects of an entity. They are very common attributes: in a
random sample of 60, 760 infoboxes describing companies collected over the last
13 years, they appeared, together or separately, in 74.61% of the cases (i.e. for
describing 45, 332 entities). Within these entities the attributes coexist in the
same infobox in 99.89% of the cases (i.e., 45, 281 times), and they do not co-
occur 51 times. According to our idea, they cannot be considered as synonyms.
Conversely, the name and company name attributes, that instead can be used
to describe the same characteristic of an entity, show an inverse co-occurrence
pattern: in 0.08% of the cases are present simultaneously in the same infobox
and in 99.92% of the cases do not co-exist.

More formally, given two attributes ai, aj belonging to infoboxes describing
the same entity type, Eq. 1 provides a measure of their “negative” co-occurrence.

NegCoocc(ai, aj) =
|{IT ∈ I|ΔtI(ai) ∩ ΔtI(aj) �= ∅}|

|{IT ∈ I|ai, aj ∈ SIT }| (1)

To compute this measure, all infoboxes in the collection are evaluated. For
each of them, the presence of both input attributes (i.e., ai and aj) in a time
frame is verified. This check is carried out by identifying whether there are
overlaps in their validity time interval (i.e., Δt(ai) and Δt(aj) respectively). The
number of entities for which there is overlap, normalized by the overall number of
entities in I, provides the correlation value that we consider as negative evidence
for their synonymy.

As the experimental evaluation shows, the adoption of this measure only is
not enough to accurately identify the synonymous attributes.

Example 2. The highest values obtained by the application of Eq. 1 to the
attribute company logo, are with the attributes logo, name and type. The
results, in our collection are respectively 0.9988, 0.965 and 0.94. Obviously, only
the first pair of attributes are synonyms. The other pairs are attributes rep-
resenting very different information. After a careful analysis of the temporal
evolution of the infobox schemas we noticed that the attributes with the “com-
pany” prefix have been introduced with an old Wikipedia policy to identify all
attributes describing “company” type entities. Today, this policy is no longer
adopted, in favor of more concise and direct attributes (such as type and name
instead of company type and company name respectively). However, a delay in
the application of the new policy produces misalignments in the infoboxes and
make Eq. 1 not enough accurate.

To produce more accurate results, we introduce a measure for positive syn-
onymy evidence. In particular, we measure the values shared between attributes
as the indication that they are really synonyms. We analyze the different value
representations of the attributes throughout the entire history of Wikipedia and
we calculate their fraction of overlap through the Jaccard similarity. We do not
deliberately consider other string similarity techniques to have a more general

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 175

approach, which does not rely on specific domain knowledge. In more detail, for
each pair of attributes we select the values that generate the maximum fraction
of overlap within the data collection. Equation 2 provides the formulation of the
measure we adopt.

PosOverlap(ai, aj) =

∑

IT ∈I|ai,aj∈SIT

max
(∑

vi∈VI(ai),vj∈VI(aj)

Jaccard(vi, vj)
)

|{IT ∈ I|ai, aj ∈ SIT w}|
(2)

where, with reference to the notation introduced in Sect. 2, VI(ai) and VI(aj)
represent respectively all values assumed over time by the attributes ai and aj

for all infoboxes in IT where they are valid.

Example 3. Let us consider the application of Eq. 2 with the same input as in
Example 2. We obtain the following results: PosOverlap(company logo, logo) =
0.8899; (company logo, name) = 0.003; and (company logo, type) = 0.007. We
can observe that the high value computed for the pair (company logo, logo)
confirms the previous evidence of synonymy. The very low values for the other
pairs do not confirm the evidence of synonymy resulting from Eq. 1.

3.2 Holistic Approach for Synonym Discovery

The measures of synonymy between pairs of attributes are used to compute
clusters of synonymous attributes which constitute the result of our work. Our
idea is to model the synonymy relations between the attributes by means of a
graph and to apply a clustering algorithm over the graph to extract groups of
synonymous attributes.

Given some positive and negative evidence for attributes synonymy, we model
attributes and their synonymy relationship as an attribute-synonymy graph,
where the nodes correspond to the attributes and the edges to the synonymy
relations between the attributes. The edges are labeled according to whether
the measure associated with them should be interpreted as positive or negative
evidence of synonymy.

Definition 5 (attribute-synonymy graph). An attribute-synonymy graph is
a graph G = (V,E) with vertices representing the attributes of the infoboxes we
want to analyze. The edges associate to each pair of vertices provide a measure
of their synonymy through a weight wi,j ≥ 0. Let Li,j be the label associated
to each edge (i, j). L can assume the value + or − according to whether the
edge is representing the measure of the negative or the positive evidence for their
synonymy expressed by Eq. 1 and Eq. 2, respectively. Let E+ be the set of edges
identified by a label of value +: E+ = {(i, j)|Li,j = +}, and, analogously, E−

(i.e., E− = {(i, j)|Li,j = −}) the set of edges identified by a label of value −.
A representation of this graph is provided in Fig. 2, where solid edges indicate
edges with positive weights and edges with crosses the negative ones.

176 P. Sottovia et al.

location_
city

name

firm_
name

company_
name

company_
type

former_
typetype

city

hq_location_city

location

Fig. 2. Attribute-synonym graph for “company” type entities

Our goal now is to apply a clustering strategy that partitions the nodes of
the attribute-synonymy graph so that each attribute is associated with a single
cluster with its synonyms (see the dashed blue circles of Fig. 2). To obtain this
result, we adopt a correlation clustering algorithm [4] which provides a method
for clustering data points into the optimum number of clusters based on their
similarity without specifying that number in advance. In our implementation,
the aim is to identify the partitioning of the infobox attributes that best respects
the positive and negative evidence of synonymy provided as input.

Problem 2 (discovery of synonymous infobox attributes). Given an attribu-
te-synonymy graph G = (V,E), we want to find a disjoint partitioning of V ,
denoted as S = {S1, ..., Sm}, that agrees as much as possible with the labels L
associated to the edges E of the attribute-synonymy graph. More precisely, we
want a clustering that maximizes the weight of agreements: the weight of + edges
within clusters plus the weight of – edges between clusters.

The resolution of this problem exploits a heuristic procedure already pro-
posed in the literature [10] for solving the correlation clustering problem. This
technique is divided into two steps. First a linear programming approach is used
to provide an approximate solution to the problem. The results produced by
this model are fractional values that correspond to scores of synonymy between
attributes. In a second step a technique called region-growing is applied to group
attributes with a high synonymy level within the same cluster and remove the
attributes that describe different information about the referred entity.

Linear-Programming Approach. In the first phase of the approach the fol-
lowing linear model has to be solved.

minimize
∑

(i.j)∈E−
wi,j(1 − xi,j) +

∑

(i.j)∈E+

wi,jxi,j

subject to xi,j ∈ [0, 1s], xi,j + xj,k ≥ xi,k, xi,j = xj,i.

The goal of this model is to identify a valid assignment of the variable xi,j

that minimizes the sum of the negative edges included in a cluster and maximizes

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 177

the sum of positive edges. Intuitively, this variable provides an indication of the
collocation of the nodes in the clusters (i.e., it assumes, in the borderline cases,
the value 0 when two attributes are included in the same cluster and 1 in the
opposite case). An assignment of xi,j is considered valid if xi,j ∈ [0, 1] and xi,j

satisfies the triangular inequality. This motivates the inclusion of the constraints
in the problem formulation. The adaptation of this linear model to our problem
requires the addition of a further constraint, which requires that the negative
weights (i.e., wi,j in the first sum) are defined according to Eq. 1, and the positive
ones (i.e., wi,j in the second sum) according to Eq. 2.

Region Growing. Once a first approximated solution to the problem is
obtained, we apply the region growing technique. Its objective is to convert
the approximate cluster membership indication of the attributes provided by
this first solution, into an exact distribution of the attributes in the different
clusters. More precisely, this technique is used to convert the fractional solution
x in an integral solution which identifies if two attributes belong to the same
cluster. Since this technique represents a classical clustering strategy, below we
provide only an insight into its operation. More details instead can be found in
[10]. The intuition behind this technique is to construct, in an iterative way and
starting from randomly selected seed nodes, some balls (i.e., groups of graph
nodes) modifying, step by step, their coverage radius on the graph. The growth
of these balls is determined by the weights associated with the graph edges: a
ball will continue to grow as the sum of the positive weights included inside the
subgraph identified by the ball is advantageous. On the contrary, the ball will
stop growing, causing the creation of a new ball (or a new cluster), when its
growth would incorporate dissimilar nodes compared to those already included
in the cluster. The arrangement of these balls within the graph determines its
final partitioning.

4 Experimental Evaluation

In this section, we firstly provide a description of the dataset used for the exper-
imental evaluation (Sect. 4.1) and then we qualitatively (Sect. 4.2) and quantita-
tively (Sect. 4.3) evaluate the effectiveness of the approach. Finally, a case study
is presented (Sect. 4.4) to show how Wikipedia synonymous attributes can be
used in a real scenario.

4.1 Dataset Description

The dataset used in the experimental evaluation is a collection of infoboxes of
entities having type associated to the “concept of company” (i.e., we consider
entities having type company, organization, dot-com company, etc.). This col-
lection includes, for each entity, its complete history between August 2004 to
August 2017, i.e. all updates in the infobox schemas that have been introduced
by Wikipedia users. The result is 60, 760 entities and around 1, 861, 252 changes.

178 P. Sottovia et al.

Table 1. Number of attributes and values per entity

Avg Std Max Min

attribute per entity 12.84 5.64 253 1

value per entity 25.35 23.67 503 1

The number of attributes used in the infoboxes varies: it is not fixed per
entity type and in the time. Table 1 provides some statistics about attributes
and values. The average number of attributes and values per entity are 12.84
and 25.35 respectively. Moreover, the maximum number of attributes associated
to an entity, in the considered period of time, is equal to 253, and the maximum
number of different values is 503.

In Tables 2a and b the top 10 most frequent attributes and values are
reported. The attribute “name” is the most used: it appears in 97% of the col-
lected entities, while “company name”, appearing in 47% of the entities, is the
10th most used attribute. Concerning the values, “united states”, “privately held
companies” and “public companies” appear respectively in 31.78%, 31.63% and
23.47% of the entities and are the most frequently values used in the collection.

Table 2. Frequencies of attributes and values

(a) Top 10 most frequent attributes

attr freq freq (%)
name 59017 97.13%
industry 51845 85.33%
foundation 49033 80.70%
homepage 47076 77.48%
type 46015 75.73%
logo 40102 66.00%
key people 36176 59.54%
products 33388 54.95%
location 32490 53.47%
company name 28565 47.01%

(b) Top 10 most frequent values

value freq freq (%)
united states 19310 31.78%
privately held company 19221 31.63%
public company 14259 23.47%
united states dollar 9692 15.95%
private 7983 13.14%
subsidiary 7144 11.76%
united kingdom 5986 9.85%
worldwide 5973 9.83%
yes 5289 8.70%
chief executive officer 4793 7.89%

Tables 3 provides an insight on the evolution of the attributes and values
in the considered period of time. In particular, Table 3a shows the attributes
whose values were most frequently subject to change, and Table 3b the top 10
entities affected by the greatest number of changes over time. Note that 10%
of all the infobox updates involves the “key people” attribute, and the most
modified entity is “Eurosport”.

A more detailed analysis of the evolution is shown in Fig. 3 and Table 4, where
the top 5 most updated types of entity are analyzed. Table 4 shows the number of
entities collected per type and the total number of changes. Figure 3 plots some
statistics about the number of updates per entity. Although the total number of

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 179

Table 3. Updates in Wikipedia entries

(a) Top 10 most changed at-
tributes

attr freq freq (%)
key people 162465 10.07%
products 112440 6.97%
location 94936 5.89%
foundation 87828 5.45%
industry 86707 5.38%
homepage 84182 5.22%
name 77894 4.83%
logo 62653 3.88%
type 61655 3.82%
revenue 59206 3.67%

(b) Top 10 most changed entities

entity title freq freq (%)
Eurosport 1924 0.10%
National Geographic (TV channel) 708 0.04%
Canada 672 0.04%
Apple Inc. 594 0.03%
Nintendo 580 0.03%
HBO 538 0.03%
Cuba 527 0.03%
Animax Asia 526 0.03%
General Motors 525 0.03%
Amazon.com 509 0.03%

updates in the “company” category is the highest, a particularly high number of
average updates has been applied to entities belonging to the “television” type.
The other categories of entities, on the other hand, present an average number
of updates which is approximately the same (i.e., the range varies between 20
and 40 updates).

Fig. 3. Number of changes of the top 5 most updated entity types.

4.2 Qualitative Evaluation of the Effectiveness

In this section we qualitatively evaluate the effectiveness of our approach by ana-
lyzing a sample of its results. Table 5 shows 10 clusters of synonymous attributes
generated by our approach. We can observe that our approach is able to identify
interesting and non-trivial synonymy relations between attributes. For example,

180 P. Sottovia et al.

Table 4. Entities and updates for the top 5 most updated entity types.

Entity type # entities # total changes

Company 57,553 1,494,245

Defunct company 664 15,304

Dot-com company 127 6,340

Television 40 4,953

Organization 155 4,819

it is able to find the correspondences between attributes like “established” and
“founded” or “predecessor” and “former name” which would not be identifiable
by a string similarity technique. Furthermore, we match attributes expressed in
different languages, such as “employees” with “mitarbeiterzahl” and “city” with
“sitz”. Analyzing these results, we can observe the various textual forms used
over time by the Wikipedia community to indicate the same characteristic of
an entity. This variety of forms presumably derives from the adoption of differ-
ent schema guidelines/policies imposed by Wikipedia2. The attributes “name”,
“company name” and “type”, “company type” are examples of this situation.
The inclusion of the prefix “company” has been introduced by a policy to make
more explicit the type of entity described by the attributes.

Table 5. Example of synonymous attributes produced by our approach

Cluster

num staff, employees, number of employees, num employees, numemployees,
mitarbeiterzahl

established, opened, formation, founded date, start year, date founded,
foundation, gründungsdatum, introduced, founded

logo, non-profit logo, network logo, company logo, firm logo

web, url, website

operating profit, ebitda, operating income, operating income

creator, founder(s), founder, founders

predecessor, former names, former name, predecessors

company type, type, unternehmensform, former type, former type, company type,
non-profit type

headquarters, headquaters, hq city, location city, city, sitz, residence,
hq location city, location, place, hq location

agency name, network name, group name, name, non-profit name, company name,
firm name, company name

2 Note a cleaning procedure has been applied to the input infoboxes to remove the
“noise” generated by human mistakes.

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 181

4.3 Quantitative Evaluation of the Effectiveness

The effectiveness of the proposed approach is assessed in quantitative terms.
The main goal of this analysis is to empirically demonstrate that both the mea-
sures contribute in identifying synonymous attributes. To perform this evalua-
tion, firstly a ground truth has been manually created. We have exploited pub-
lic attribute mappings directly provided by the Wikipedia Template pages to
obtain a first minimal set of attribute matches. This basic information has been
then extended with new manually inserted attribute correspondences. The gen-
erated ground truth includes about 2, 000 attributes clustered in 454 groups of
synonyms. Once an exact set of attribute correspondences has been generated,
we evaluated our approach on a sample of the entire collection of Wikipedia
infoboxes. In more detail, we tested our approach on an attribute-synonymy
graph, generated starting from the input dataset, consisting of 6, 854 attributes
and 52, 707 synonymy relations. The results provided by our approach were
finally compared with the ground truth.

To provide a measure of the quality of the clusters generated by
our approach with respect the ground truth, we adopted four mea-
sures: precision, recall, f1 score and rand index. We calculate precision as

true synonyms in cluster
total attributes in estimated cluster , and recall as # true synonyms in cluster

total attributes in real cluster .
The f1 score is a combination of precision and recall defined as 2∗ precision∗recall

precision+recall .
Finally, the rand index [14] was used to evaluate the similarity between the clus-
tering solution produced by our approach and that provided by the ground truth.

The experiment aims, in particular, to evaluate the contribution of each
measure in obtaining the final result. To force such behavior, a linear combination
of the two measures has been introduced. Its formulation is proposed in Eq. 3,
where the α parameter is used to weight the contribution of the measures.

SynonymyScore(ai, aj) = α∗PosOverlap(ai, aj)+(1−α)NegCoocc(ai, aj) (3)

The results of this experimentation are given in Table 6. The results show
that, with reference to the company entity type, linear combinations that assign
more importance to the positive evidence of synonymy produce better results.
Table 6 shows only α ranging from 0.6 to 1, however with lower α results follow
a similar trend: precision decreases and instead recall increases. The best con-
figuration is α = 0.8, that obtains the highest values in all evaluation measures.
We observe that the configuration with α = 1, where there is no contribution
from the negative evidence of synonymy, is the one that obtain the highest preci-
sion level. Nevertheless, in that configuration, the recall, rand and f1 score levels
decrease considerably.

4.4 Case Study

In this section we provide a small case study to show that synonymous attributes
can support the extraction of high quality and accurate information from
Wikipedia. Table 7 introduces 5 information needs a user would like to sat-
isfy against the collection of infoboxes described in Sect. 4.1. Each information

182 P. Sottovia et al.

Table 6. Effectiveness evaluation with different positive contributions

α parameter (positive contribution) Precision Recall f1 score Rand index

0.6 0.375 0.764 0.372 0.146

0.7 0.817 0.759 0.757 0.886

0.8 0.797 0.767 0.760 0.947

0.9 0.791 0.754 0.752 0.942

1 0.831 0.668 0.723 0.858

need has been transformed into 2 structured queries: one with the original fil-
tering condition formulated by the user and the second where the attributes
have been substituted with a number of disjunctive clauses, each one expressing
the same information need but by using synonymous attributes. Table 7 shows
the number of entities retrieved when both the queries are executed and the
number of results it is expected to be retrieved. Last two columns show the
same information in percentage. We observe that synonymous attributes largely
support the retrieval of all results. The maximum improvement is obtained
with the last query (i.e., type="public company", num employees>10,000,
year=2010) where the application of synonymous attributes allows us to retrieve
all results, instead of 19.15% of them, as we obtain with the original formulation.

Table 7. Case study

Query # query results

Original
clauses

Using syn-
onymous
attributes

Ground
truth

Original
clauses
(%)

Using
synonymous
attributes (%)

location city=“tokyo” 268 293 298 89.93 98.32

founded<1900 681 705 705 96.59 100

location=“USA”,
year=2014

381 531 531 71.75 100

location=“united
states”, net income>1
billion

371 429 429 86.48 100

type=“public
company”,
num employees>10,000,
year=2010

221 1154 1154 19.15 100

5 Related Work

Importance and Usage of Wikipedia Infoboxes. Wikipedia infoboxes have
been used in a large number of research projects. The most significant works

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 183

include techniques for building structured knowledge bases [3,18], for analyzing
the evolution of specific kinds of entities [13] and for applying structured queries
on the Wikipedia content [2]. Although several works support the formulation
of structured queries, no previous effort has considered the evolutionary nature
of Wikipedia. All previous approaches consider only a static snapshot of the
infoboxes as input.

Schema Matching. Schema matching is one of the most studied topics in
the database community. Books [5,11] and surveys [6,16] introduce the exist-
ing approaches in the literature. According to the categorization proposed by
[16], schema matching approaches can be classified into schema-only matchers
and instance-based matchers. Our proposal follows a hybrid approach since we
incorporate holistic correspondence refinement that belongs to the category of
collective matching approaches [6].

Our approach implements a strategy similar to the one proposed by He
et al. [12] that consider as negative evidence the co-occurence of attribute names
in the same schema. Their approach focus on the discovery of synonyms sup-
porting a web search engine and is based on the combined use of web tables
and query logs. The intuition is that users who are looking for the same results
provide different synonyms as query terms on a search engine. This is used as pos-
itive evidence for attribute synonymy. Instead, attributes within the same web
tables are not likely to be synonyms, thus providing a negative evidence. Our
approach adapts that idea to work with Wikipedia infoboxes by extracting pos-
itive and negative evidence of synonymy analyzing co-occurrences of attributes
and values.

Schema Matching and Alignment Over Infoboxes. Schema matching tech-
niques have been applied against Wikipedia infoboxes in the context of finding
correspondence between schemas in different languages. Adar et al. [1] propose a
framework called Ziggurat that creates a supervised classifier based on features
that are learned from a set of positive and negative examples extracted from
data with heuristics. Bouma et al. [9] match attributes based on the equality of
their values. Two values are equal if they have the same cross-language link or
exactly the same literals. A different approach [17] exploits value similarity over
infobox templates, where first an entity matching process is done, then templates
are matched to obtain inter-language mappings between templates and finally
attribute matching is done by means of similarity metrics. These approaches rely
on similarity metrics that are sensitive to the syntax of the underline languages:
they work well if the compared languages have the same root. To overcome this
limitation [15] exploits different evidences for similarity and combines them in a
systematic manner.

Exploration of Schema and Value Changes. In the context of data explo-
ration, a recent line of research focuses on the exploration of changes over
time. [7] is vision paper that introduces innovative concepts related to under-
standing changes that happen in the data over time. Furthermore, [8] designs a
set of primitives supporting the exploration over schema and data of evolving
datasets.

184 P. Sottovia et al.

6 Conclusion

In this paper, we introduced an approach that automatically defines clusters
of synonymous temporal-evolving infobox attributes. The approach is mainly
based on two kinds of knowledge: a negative evidence of synonymy provided by
co-occurrences of the attributes in the same infobox in a given time instance, and
a positive evidence of synonymy generated by co-occurrences of similar values for
the attributes in different time instances. We formalized this issue as a correlation
clustering problem over a weighted graph and we used a linear programming
model to solve it. Our experiments, over the last 13 years infoboxes history,
shows that our approach is effective in discovering synonymous attributes.

References

1. Adar, E., Skinner, M., Weld, D.S.: Information arbitrage across multi-lingual
Wikipedia. In: Proceedings of WSDM, pp. 94–103 (2009)

2. Agarwal, P., Strötgen, J.: Tiwiki: searching Wikipedia with temporal constraints.
In: Proceedings of WWW, pp. 1595–1600 (2017)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia:
a nucleus for a web of open data. In: ISWC, pp. 722–735 (2007)

4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

5. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping.
Data-Centric Systems and Applications. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-16518-4

6. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years
later. PVLDB 4(11), 695–701 (2011)

7. Bleifuß, T., Bornemann, L., Johnson, T., Kalashnikov, D.V., Naumann, F., Sri-
vastava, D.: Exploring change - a new dimension of data analytics. PVLDB 12(2),
85–98 (2018)

8. Bleifuß, T., Bornemann, L., Kalashnikov, D.V., Naumann, F., Srivastava, D.:
DBChEx: interactive exploration of data and schema change. In: Proceedings of
CIDR (2019)

9. Bouma, G., Duarte, S., Islam, Z.: Cross-lingual alignment and completion of
Wikipedia templates. In: Proceedings of the Workshop on Cross Lingual Infor-
mation Access, pp. 21–29. Association for Computational Linguistics (2009)

10. Demaine, E.D., Emanuel, D., Fiat, A., Immorlica, N.: Correlation clustering in
general weighted graphs. Theor. Comput. Sci. 361(2–3), 172–187 (2006)

11. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-49612-0

12. He, Y., Chakrabarti, K., Cheng, T., Tylenda, T.: Automatic discovery of attribute
synonyms using query logs and table corpora. In: Proceedings of WWW, pp. 1429–
1439 (2016)

13. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61
(2013)

14. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66, 846–850 (1971)

https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1007/978-3-642-16518-4
https://doi.org/10.1007/978-3-540-49612-0
https://doi.org/10.1007/978-3-540-49612-0

Finding Synonymous Attributes in Evolving Wikipedia Infoboxes 185

15. Nguyen, T., Moreira, V., Nguyen, H., Nguyen, H., Freire, J.: Multilingual schema
matching for wikipedia infoboxes. PVLDB 5(2), 133–144 (2011)

16. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

17. Rinser, D., Lange, D., Naumann, F.: Cross-lingual entity matching and infobox
alignment in Wikipedia. Inf. Syst. 38(6), 887–907 (2013)

18. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a large ontology from wikipedia
and wordnet. J. Web Semant. 6(3), 203–217 (2008)

Web-Navigation Skill Assessment
Through Eye-Tracking Data

Patrik Hlavac(B) , Jakub Simko , and Maria Bielikova

Faculty of Informatics and Information Technologies, Slovak Technical University,
811 07 Bratislava, Slovakia

{patrik.hlavac,jakub.simko,maria.bielikova}@stuba.sk

Abstract. Eye-tracking data provide many new options in domain of
user modeling. In our work we focus on the automatic detection of web-
navigation skill from eye-tracking data. We strive to gain a comprehen-
sive view on the impact of navigation skills on addressing specific user
studies and overall interaction on the Web. We proposed an approach
for estimating the web navigation skill, with support of self-evaluation
questionnaire. We have conducted eye-tracking study with 123 partici-
pants. Dataset from this study serves as a base for exploration analysis.
We pair different web-navigation behavior metrics with result score from
our questionnaire in order to find differences between participant groups.
The results of the classification show that some stimuli are more appro-
priate than others.

Keywords: Web navigation · Eye-tracking · Web literacy

1 Introduction

Aim of our research is to show that analyzing user’s gaze can bring valuable
information into user classification. In our paper we describe its relation to web-
navigation skill.

The main goal is to automatically distinguish between two groups based on
inferred gaze metrics. Groups differ in efficiency when performing navigational
tasks.

We estimate one specific aspect of web-navigation skill, the web-navigation
efficiency. Our proposed questionnaire focuses on user’s success and efficiency
during navigational tasks on the Web.

Short and automatic web-navigation skill assessment would be helpful UX
tool with perspective usage during user studies but also in general user modeling.
Our main motivation for starting to research a topic of web-navigation impact
on user behavior was very limited existing knowledge about gaze relations in the
field of User studies. Nowadays, User Experience (UX) research become an inter-
esting domain because of growing popularity of UX testing worldwide. Thanks
to the power of UX testing, it quickly became a massively used approach in
industry. More and more companies started to use UX methods to improve their
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 186–197, 2019.
https://doi.org/10.1007/978-3-030-28730-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_12&domain=pdf
http://orcid.org/0000-0001-7624-339X
http://orcid.org/0000-0003-0239-4237
http://orcid.org/0000-0003-4105-3494
https://doi.org/10.1007/978-3-030-28730-6_12

Web-Navigation Skill Assessment Through Eye-Tracking Data 187

products and services. More and more companies that support UX testing and
consulting were established. Even general public is aware of these possibilities.
This area deserves more exploration and deeper understanding.

Whilst qualitative studies generally consist of the interaction of a participant
with an environment with presence of moderator as an important mediator,
quantitative studies are carried mostly without the moderator and thus without
further analysis of a perception of the given participant. Given that in this
approach we usually gather a large amounts of data from logs or questionnaires,
the evaluation of quantitative studies is inferred from methods of mathematical
analysis [14].

Quantitative studies allow to generalize results for a greater population. How-
ever, this group could be so diversified, that we could not compare or evaluate
the results. Broad study was performed with 445 participants [15] using an appli-
cation to record data and session by cameras. There was an indication that each
user has different characteristics and properties that enter the process and there-
fore that detecting of individual impacts could be more important than quantity
of participants.

Our work is structured as follows. Related work section contains different
views on the Web Navigation definition and skill assessment. Our study goal is
explained in Sect. 3. Experimental methodology is described by scenario, par-
ticipants, devices and acquired data, followed by results. We summarized the
observed results in section Conclusions.

2 Related Work

2.1 Web Navigation Definition

Web navigation includes many areas that could be inspected as well as there
exist many factors that should be taken into account while investigating.

The navigation term can describe user activity and also website element (that
usually contains hyperlinks). When we explore the user navigation skill, we have
to consider also navigational environment that includes different elements. And
vice versa, when we measure the quality of website navigation, we should consider
the navigational ability of each user.

Website navigation is typically based on visual perception, accompanied by
the goal to get somewhere (most likely to meet information needs) and exploring
ways of doing this.

Since most of the information regarding the various products, actions and
situations from daily life has gradually shifted to a web-based platform, there is
a need for definition of new concept.

Nowadays, we consider digital literacy as a person’s ability to perform tasks
effectively in the digital environment, with emphasis on the representation of
information in a form usable for computers [13]. It covers a wide range of qual-
ities, abilities and skills, such as reading and interpretation of the media, repli-
cating and modifying data (from documents to pictures and music). It also deals

188 P. Hlavac et al.

with the electronic equipment such as computers, mobile phones and portable
devices and software cooperating with them. It is very connected to the Infor-
mation literacy (search, examination and handling of information) and media
literacy (competences allowing to work with the media in various formats and
genres) [1].

Information literacy, as well as the Digital literacy, has ambiguous and
broadly defined the problem area. Thus, a new, unique concept of Web liter-
acy [3] has been earmarked.

Unlike computer literacy or digital literacy, Web literacy includes more
detailed aspects of Web interaction. Many definitions divide Web literacy into
several areas, including navigation. Some standards describe it and provide spe-
cific examples; other standards rely on a detailed and unambiguous definition
that does not require examples.

We consider the web-navigation skill as the ability to effectively move across
the Web.

2.2 Web Navigation as an Ability

We expect the navigation behavior (the user’s ability to intentionally move across
the Web) is influenced mostly by two factors - the web layout and the user web-
navigational skill. Navigation layout may also influence interaction and overall
user satisfaction [9]. Navigation behavior is influenced by familiarity [6] (naviga-
tional expectations can help or distract if website uses elements of unexpected
functionality) and the ability of keeping the path to correct destination.

Web navigation is a path traversed with or without main intention (goal).
The interaction path then consists of all visited web-pages. When we look to a
lower level, we can say the navigation even consists of all website elements and
related interaction on each visited web-page element [11].

Web navigation without specific aim, but with intention could be depicted by
typical task: Get understand what is the site about. In this case we are measuring
the ability to traverse the most important parts of website by the most efficient
way. Thus, the real ability is that we know where to get crucial information and
how to navigate to the next information point.

Web navigation with intention should evoke the need of choosing the most
correct and efficient way to reach the final website (destination): Find specific
product.

2.3 Web Navigation as a Layout

Web navigation could be divided according the size of working environment into:
wearable, mobile device (smartphones, tablets), standard screen (PC, notebook),
we should consider even voice form of navigation for blind users. We can navigate
through icons, texts (and text abbreviations), shortcuts, sounds (read links for
sightless persons).

Web-Navigation Skill Assessment Through Eye-Tracking Data 189

Navigation design includes specific differences on the level of context
domains [7] (e.g. e-shop, e-banking, e-government), or even on the level of indi-
vidual websites of the same context domain. Navigation layout is influenced by
individual design approaches, which are based on constantly evolving technolo-
gies. Secondly, it is also influenced by the graphic style. In some practical cases,
the navigation could be influenced by a framework or brand that serves the
software (e.g. specific color, icons, actions).

2.4 Web Navigation as a Process

Web navigation has been evolving over the years as well as technical aspects of
the Internet. At present, we can see some of the well-established standards of
creating web navigation by navigational elements that will be familiar to users
even when they first arrive at an unknown page. Effective web browsing is the
foundation for good usability, and so ongoing approaches for creating navigation
are constantly evolving and improving [12].

The way to the navigation goal could lead through many different paths.
The chosen way can lead to assessment of user’s navigation skill. This could be
a very powerful method in the topic of skill estimation. As we discovered during
work on skill estimation [8], users can be clustered by the path they chose during
navigation to the target.

Every path has its own reasoning. Whether it is web-page influenced by
website owner, that tried to lead customers to specific information (or addi-
tional advertisement), or whether it is well known shopping cart process, we can
describe the navigational path.

2.5 Web Literacy Estimating

Most current assessments test users for overall computer usage, however they test
web interaction only marginally and even less they test web-navigation behav-
ior. Naturally, research experiments are specially designed for testing specific
issues [7], therefore they are not applicable to various aspects. Despite the expec-
tations, we did not find a great variety of proven and established Web literacy
assessments. Existing tests for Information, Computer or Internet literacy go
only partially into details that we can observe in Web literacy domain.

The results of well-known worldwide skills measurements are based mainly
on the subjective opinions of the participants. They are calculated from the
scale of how often student do some activity [10], but not how successful or effec-
tive he actually is. PISA 2012 tests were accompanied by computer-based tests
focused on reading literacy [2]. Interaction was logged during work in specialized
framework. Raw files were then treated to extract the navigation sequence and
standard metrics (e.g. number of steps) was inferred.

Verification of literacy is significant for companies that provide education.
In some cases, the assessment is just the last part of online educational process.
Microsoft Digital Literacy1 provides courses based on testing practical skills
1 https://www.microsoft.com/en-us/DigitalLiteracy.

https://www.microsoft.com/en-us/DigitalLiteracy

190 P. Hlavac et al.

(Build Your First App; Creating an Internet Email Account; Writing a Great
Resume; or newer Digital Literacy: Get Connected, Browse the Web, Search the
Web etc.). Assessments contain from 30 to 90 questions according to the level of
tested literacy. The user usually has to choose some of prepared options. North-
star2 provides much sophisticated tool, which is another assessment service, but
provides a more attractive and verbally moderated tests. It tests the user from
the basics of text processing, presentations, web or information literacy in a nine
assessments. Its environment simulates a computer desktop, interactive captcha
verification, completing a web form or searching the Web. Questions are answered
by click or by explicit “I don’t know” button. iSkillsTM Assessment3 contains
many types of environment for Defining, Accessing (filtering with select boxes),
Evaluating, Managing (sorting content in e-mail client), Integrating, Creating
(statistical environment with graphs) or Communicating (composing e-mail).

Our initial effort is to automatize estimation of user’s web-navigation skill.
There are many theoretically defined standards which help us to understand the
issue in depth. However, there are almost no practical tests or questionnaires.
While at the beginning of the millennium several attempts were made to estimate
digital and Web literacy through questionnaires, they are no longer available
today. In addition, with constant development and additional discoveries, what
does the interaction on Web mean and what does it include - the number of
such instruments to cover each area should have been created along with their
definition. But specialized tools missed arise.

User experience research is full of different methods and modern approaches.
On the one hand, in the UX industry, the time-limited website testing is the
tool to understand the perception of the user. One of the pertaining method is
the Three second rule, where after three seconds, user should be able to answer
what he can expect from the website. This method could be also found as Five
second rule4 (with little adjustments).

On the other hand, UX research5 shows that first few seconds of interaction
with website are critical in terms of deciding to leave or to stay. There are even
hints [5] that claim, that critical time that is needed to leave the website is
decreasing, being now about 8 s.

How is it, when user has to orientate in 8 s? We assume that they will focus
on the elements that they consider most important to gain most of information
fast. Do experts choose the important elements better than novices?

3 Experiment: Influence of Web-Navigation Skill on User
Behavior

The way that user perceive the website through exploring multiple elements
allows us to model his navigation. We have chosen the scenario tasks that help
2 https://www.digitalliteracyassessment.org/.
3 https://forms.ets.org/sf/iskills/rfi/.
4 https://fivesecondtest.com/.
5 https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/.

https://www.digitalliteracyassessment.org/
https://forms.ets.org/sf/iskills/rfi/
https://fivesecondtest.com/
https://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/

Web-Navigation Skill Assessment Through Eye-Tracking Data 191

us to motivate the user to search for key information on the web through multiple
elements (thus navigate). Key information would be those, which user consider
to be helpful for orientation on current homepage.

Fig. 1. Sample of four homepage websites among all 32. Website differs in domain,
content and elements.

Through exploratory analysis we strive to gain deeper insight into human
behavior during navigational tasks on the Web. We chose 32 screenshots6 from
different website homepages that are provided as testing stimuli for each partic-
ipant with simple task “to understand what is the website about”. We record
gaze data during sessions that are further processed to transition matrices. Our
approach consists of three main parts:

– collection of eye-tracking data from the first encounter with the homepage,
– collection of a web-navigation skill questionnaire and calculating results,
– classification of quantified data on participant behavior.

We expect that the division of Web literacy by other aspects will be the
step to modelling the Web literacy more transparently and automatically. Thus,
maybe this will be the “missing link” in modern user modelling and a primal
approach to fast and easy web-navigation skill detection.

We approach with analysis of user orientation on the website. Dataset con-
tains behavior from the orientation on the homepages of different websites (see
Fig. 1). We expect that users with similar skill would have similar behavior in
terms of specific gaze metrics. We analyze only first 7 s of participant interaction
to obtain the information about what elements considers participant as the most
important when perceiving new website.
6 http://eyetracking.hlavac.sk/web-navigation/.

http://eyetracking.hlavac.sk/web-navigation/

192 P. Hlavac et al.

3.1 Experiment Goals

The main goal is to find differences in eye-tracking data that allow us to classify
users according their web-navigation skill. We have to go through the following
steps:

– To verify whether the questionnaire has a distinctive ability to esti-
mate web-navigation skill.
The experiment was designed to compare the results of the proposed ques-
tionnaire with real behavior - more precisely, to find out whether the ques-
tionnaire can in specific cases significantly demonstrate a difference in metrics
(duration of the task execution, number of tasks, SPI, gaze metrics).

– To compare the behavior on different groups of participants on
modern websites.
All participants perform four tasks on modern single-page websites. All four
websites are of single-page structure, therefore links in the navigation only
scroll the content and do not open new pages.

– To analyze the user orientation on the homepages among groups.
Contains collecting the dataset from the orientation on the home page. These
websites come from different domains (education, stores, services).

3.2 Questionnaire

In order to partially abolish the subjective assessment effect, we did not ask
directly for web-navigation skill estimate. We rather asked about the situations
associated with it. Using examples from existing questionnaires, we have for-
mulated 19 statements, where the participant indicates on Likert scale 1–5 how
much they agree with each (from 1 - definitely disagree, to 5 - definitely agree).

The questionnaire contains a participant identifier (usually 6 characters), fill-
ing time time-stamp, and integer values for 19 statement questions7. For exam-
ple: “I often do not finish my online purchase because the page is too chaotic”,
“I often get to a page where I can not orientate myself”, “It often happens that
I do not find what I’m looking for at all.”

Questionnaire is provided as online form. It is anonymous, individual codes
are used to pair with gaze data. Questionnaire is not limited by the time or
requirements to be met. Questions are provided in random order to each partic-
ipant.

3.3 Apparatus

The testing room was equipped by 20 computers with eye-trackers and head-
phones, which enables multiple studies to be carried out at the same time with
identical conditions. Participants were recorded by standalone Tobii X2-60 eye-
tracker with 60 Hz sampling rate. 20 simultaneously running computers with OS
Windows 8 was used in our setup [4]. The participants’ display were 24” LCD.
Referenced freedom of head movement was 30 × 15 cm at the distance of 70 cm.
7 http://eyetracking.hlavac.sk/web-navigation/q description.pdf.

http://eyetracking.hlavac.sk/web-navigation/q_description.pdf

Web-Navigation Skill Assessment Through Eye-Tracking Data 193

3.4 Session Description

After welcoming and introducing study we performed eye-tracker calibration.
Calibration of each participant was checked individually by a team member,
only then the participants could start their session or re-calibrate. Recording
part started by unrelated study with video stimuli, followed by our experiment:
navigation tasks on live websites, getting familiar with static homepages and
filling the questionnaire.

Scenario had the following purpose:

1. to collect reference eye-tracking data from the use of live websites (4 stimuli),
– Task: to accomplish given task (find information, order product etc.).

Task is finished by clicking on the correct link or choosing button “I do
not know”.

2. to collect eye-tracking data from the first encounter with the website home-
page for short time (32 stimuli),

– Task: familiarize with current website. 32 different website screenshots
stimuli were presented in random order for 7 s. After each stimuli, par-
ticipants were provided with form containing two questions (“what is the
site about” and “what can you expect of it”). The main role of two tasks
after each screenshot was to motivate all participants to achieve a consci-
entious interaction. We limited the answers by the size of text input field.
Only small number of responds contained information that participant
was unable to answer (2,9% of responds).

3. to complete a web-navigation skill questionnaire (19 questions).

3.5 Participants

123 participants, took part in this exploratory study. Very few participants were
not able to pass the calibration process or we were not able to pair questionnaire
score with few gaze recordings. The average age in the sample was 25.29 (SD =
7.16, min = 19, max = 55). Most of the sample were females (n = 95),

Participant groups came from different environments. Different groups par-
ticipated:

– students of pedagogy on bachelor grade (N = 45),
– students of pedagogy on master grade (N = 35),
– high school teachers (N = 28),
– IT faculty doctoral students and researchers (N = 15).

3.6 Data

Eyetracking Data. The recorded gaze interaction duration on each stimuli
across all participants was lower than expected 7 s, but stable (M = 5.66 s, SD
= 0.18 s). The duration of participant’s gaze interaction across all stimuli varies
much more (M = 6.30 s, SD = 1.62 s).

194 P. Hlavac et al.

Three unexpected situations happened when stimuli was displayed consider-
ably more than 7 s (12 s, 25 s, 30 s) due to software error. These recordings were
cropped to standard 7 s in further analysis.

For analysis were only used cleaned gaze data where eye-tracker was able to
estimate the Gaze Point position on the screen.

We defined 54 different areas of interest (AOI), among all stimuli, from which
we picked 4 (logo, site options, footer, top navigation) with the highest occur-
rence among stimuli. Their intersection resulted in 21 websites, that we further
used for classification.

We worked with gaze data processed into AOI transition matrix. We gener-
ated unique matrix for every participant on each stimuli. We use their fixation
points to calculate transitions between AOI. As the result we got relatively sparse
matrices with count of transitions in each cell, see Fig. 2.

Fig. 2. Sample of three transitional matrices, for three different participants on the
same stimuli. Number of transitions will become a classification feature.

Questionnaire Data. Questions are not strongly correlating, as can be seen
on Fig. 3, so we should get comprehensive information about participant.

Although, overall success on four tasks was relatively high (M = 3.44, SD =
0.93). Success shown on participants ordered according questionnaire score differ
for top 20% participants (M = 3.85, SD = 0.37) and bottom 20% (M = 3.5, SD
= 0.95).

3.7 Normalization

Each cell on Fig. 2 represents behavior, whether participant has transition
between two specific areas. Each matrix was converted to 1-dimensional array
and used for Support Vector Classification, therefore each matrix cell became a
classification feature. These data are referred as Raw in Table 1.

Web-Navigation Skill Assessment Through Eye-Tracking Data 195

Fig. 3. Correlation matrix of 19 tasks based on 158 respondents

In order to determine further relations, we used data normalization in two
more testings. Norm1 is used for labeling arrays where values are scaled to 0–1
but in each array solely - so this normalization is related for single participant.
Norm2 is used for labeling arrays where values are scaled to 0–1, but maximum
value is calculated among all participants.

For classification was used SVC with k-fold cross-validation with 20 splits.

3.8 Results

From the wide range of participants (117) we picked extreme samples (20 best
and 20 worst according to their web-navigation score). These were labeled by
two classes for binary classification (“less skillful”, “more skillful” participant).
For every stimuli we got evenly balanced 40 instances.

Results of the classification for each stimuli separately can be seen in Table 1.
Each row contains classification accuracy with standard deviation. Only few web-
sites (stimuli 6, 8, 11, 12, 14) support the classification to our two classes. Almost
in all cases, standard normalization approaches were not useful for classification.

For further analysis we see possible improvements in understanding the dif-
ferences between stimuli that are useful for classification and that which are
not useful, and therefore not suitable. Because even though they have similar
features and website elements, they have various usage and purpose. Possible
solution for improving results would be to infer more general metrics, that could
be used across all stimuli and will enlarge the testing sample.

196 P. Hlavac et al.

Table 1. Comparing classification results on each stimuli. Normalized data are not
more useful for this type of task.

Stimuli Raw (std) Norm1 (std) Norm2 (std)

0 0.42 (±0.40) 0.72 (±0.33) 0.42 (±0.43)

1 0.47 (±0.37) 0.03 (±0.11) 0.15 (±0.28)

2 0.28 (±0.37) 0.15 (±0.28) 0.03 (±0.11)

3 0.45 (±0.42) 0.47 (±0.37) 0.42 (±0.43)

4 0.25 (±0.34) 0.17 (±0.33) 0.25 (±0.34)

5 0.47 (±0.37) 0.35 (±0.36) 0.15 (±0.28)

6 0.60 (±0.41) 0.42 (±0.40) 0.20 (±0.37)

7 0.50 (±0.39) 0.55 (±0.35) 0.17 (±0.29)

8 0.70 (±0.33) 0.68 (±0.36) 0.30 (±0.43)

9 0.30 (±0.40) 0.28 (±0.40) 0.10 (±0.25)

10 0.45 (±0.42) 0.05 (±0.15) 0.15 (±0.28)

11 0.72 (±0.37) 0.60 (±0.41) 0.15 (±0.28)

12 0.60 (±0.41) 0.30 (±0.43) 0.25 (±0.40)

13 0.38 (±0.38) 0.45 (±0.42) 0.38 (±0.47)

14 0.72 (±0.33) 0.47 (±0.40) 0.10 (±0.20)

15 0.28 (±0.29) 0.38 (±0.38) 0.17 (±0.33)

16 0.55 (±0.38) 0.20 (±0.24) 0.10 (±0.20)

17 0.45 (±0.44) 0.35 (±0.39) 0.33 (±0.43)

18 0.50 (±0.42) 0.38 (±0.41) 0.17 (±0.29)

19 0.35 (±0.39) 0.35 (±0.42) 0.15 (±0.28)

20 0.40 (±0.34) 0.07 (±0.18) 0.17 (±0.33)

4 Conclusions

In this paper, we provide new approach for estimating user web-navigation skill.
We strive to determine user web-navigation skill from his interaction represented
by eye-tracking metrics. We needed to take several steps to conduct this analy-
sis. We performed exhaustive study on variety of participants in order to com-
pare their web-navigation skill. Skill estimation was assessed by specialized self-
evaluation questionnaire. Distribution of the questionnaire results suggests a
realistic representation, additionally confirmed by the success in control tasks.

The overall results show that it is necessary to infer more user-related features
to obtain better classification accuracy. The results of the transition matrix
analysis revealed a need for sophisticated normalization of features among users
that enter the classification. However, as we conducted the user study on multiple
website homepages, we can see the results vary with each tested stimuli. For our
classification we chose stimuli with four most common features to maintain a

Web-Navigation Skill Assessment Through Eye-Tracking Data 197

large number of stimuli. Equally important is to understand all the website
elements relations and differences among stimuli.

Acknowledgement. This work was partially supported by the Slovak Research and
Development Agency under the contracts No. APVV-15-0508, APVV SK-IL-RD-18-
0004, grants No. VG 1/0725/19, VG 1/0409/17. The authors would like to thank for
financial contribution from the STU Grant scheme for Support of Young Researchers.

References

1. Ala-Mutka, K.: Mapping digital competence: towards a conceptual understanding.
Institute for Prospective Technological Studies, Sevilla (2011)

2. Bardini, C.: Computer-based assessment of mathematics in PISA 2012. In: Stacey,
K., Turner, R. (eds.) Assessing Mathematical Literacy, pp. 173–188. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-10121-7 8

3. Belshaw, D.E.A.: Working towards a framework to understand the skills, compe-
tencies and literacies necessary to be a webmaker (2013). https://wiki.mozilla.org/
Learning/WebLiteracyStandard/Legacy/WebLiteraciesWhitePaper

4. Bielikova, M., et al.: Eye-tracking en masse: group user studies, lab infrastructure,
and practices. J. Eye Mov. Res. 11(3), 6 (2018)

5. Canada Microsoft: Attention spans. Technical report, Microsoft (2015). http://dl.
motamem.org/microsoft-attention-spans-research-report.pdf

6. Eraslan, S., Yesilada, Y.: Patterns in eyetracking scanpaths and the affecting fac-
tors. J. Web Eng. 14(5&6), 363–385 (2015)

7. Juvina, I., Van Oostendorp, H.: Individual differences and behavioral metrics
involved in modeling web navigation. Univ. Access Inf. Soc. 4(3), 258–269 (2006)

8. Kubanyi, J., Hlavac, P., Simko, J., Bielikova, M.: Towards automated web naviga-
tion and search skill assessment: an eye-tracking study on the skill differences. In:
2018 13th International Workshop on Semantic and Social Media Adaptation and
Personalization (SMAP), pp. 49–54. IEEE (2018)

9. Murano, P., Lomas, T.J.: Menu positioning on web pages. Does it matter? Tech-
nical report, 4 (2015). www.ijacsa.thesai.org

10. OECD: Educational Research and Innovation Innovating Education and Educating
for Innovation The Power of Digital Technologies and Skills: The Power of Digital
Technologies and Skills. OECD Publishing (2016). https://books.google.sk/books?
id=ylYhDQAAQBAJ

11. van Oostendorp, H., Aggarwal, S.: Modeling and supporting web-navigation. J.
Interact. Sci. 3(1), 3 (2015)

12. Pilgrim, C.J.: Website navigation tools: a decade of design trends 2002 to 2011.
In: Proceedings of the Thirteenth Australasian User Interface Conference, vol. 126,
pp. 3–10. Australian Computer Society, Inc. (2012)

13. Roberts, N.J.: Toward a literate future: pairing graphic novels and traditional texts
in the high school classroom. Ph.D. thesis, Colorado State University, Libraries
(2012)

14. Rohrer, C.: When to use which user-experience research methods. Nielsen Norman
Group (2014)

15. Şengel, E.: Usability level of a university web site. Proc. Soc. Behav. Sci. 106,
3246–3252 (2013)

https://doi.org/10.1007/978-3-319-10121-7_8
https://wiki.mozilla.org/Learning/WebLiteracyStandard/Legacy/WebLiteraciesWhitePaper
https://wiki.mozilla.org/Learning/WebLiteracyStandard/Legacy/WebLiteraciesWhitePaper
http://dl.motamem.org/microsoft-attention-spans-research-report.pdf
http://dl.motamem.org/microsoft-attention-spans-research-report.pdf
www.ijacsa.thesai.org
https://books.google.sk/books?id=ylYhDQAAQBAJ
https://books.google.sk/books?id=ylYhDQAAQBAJ

Ontologies and Knowledge Management

Updating Ontology Alignment
on the Concept Level Based

on Ontology Evolution

Adrianna Kozierkiewicz and Marcin Pietranik(B)

Faculty of Computer Science and Management, Wroclaw University of Science
and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

{adrianna.kozierkiewicz,marcin.pietranik}@pwr.edu.pl

Abstract. According to one of the base definitions of an ontology, this
representation of knowledge can be understood as a formal specification
of conceptualization. In other words - they can be treated as a set of
well-defined concepts, which represent classes of objects from the real
world, along with relationships that hold between them. In the context
of distributed information systems, it cannot be expected that all of the
interacting systems can use one, shared ontology. It entails a plethora
of difficulties related to maintaining such a large knowledge structure.
A solution for this problem is called an ontology alignment, sometimes
it is also referred to as an ontology mapping. It is a task of designating
similar fragments of ontologies, that represent the same elements of their
domain. This allows different components of a distributed infrastructure
to preserve its own independent ontology while asserting mutual interop-
erability. However, when one of the participating ontologies change over
time, the designated alignment may become stale and invalid. As easily
seen in a plethora of methods found in the literature, aligning ontologies
is a complex task. It may become very demanding not only in terms of its
computational complexity. Thus relaunching it from the beginning may
not be acceptable. In this paper, we propose a set of algorithms capable
of updating a pre-designated alignment of ontologies based solely on the
analysis of changes applied during their evolution, without the necessity
of relaunching the mapping algorithms from scratch.

Keywords: Ontology alignment · Ontology evolution ·
Knowledge management

1 Introduction

In recent years knowledge bases incorporated in modern information systems
must adapt to rapidly changing requirements originating from the real world.
A modeled universe of discourse may change, and therefore, its formal repre-
sentation must follow these changes. Such a situation entails difficulties that
concern asserting that components interacting with the evolving knowledge base
will remain up to date.
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 201–214, 2019.
https://doi.org/10.1007/978-3-030-28730-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_13&domain=pdf
http://orcid.org/0000-0001-8445-3979
http://orcid.org/0000-0003-4255-889X
https://doi.org/10.1007/978-3-030-28730-6_13

202 A. Kozierkiewicz and M. Pietranik

One of the tools which allow expressing knowledge in information systems is
using ontologies. In literature, they are frequently described as a formal specifica-
tion of conceptualization and are one of the building blocks of modern semantic
applications. Informally speaking, they can be treated as a set of well-defined
concepts, which represent classes of objects from the real world, along with rela-
tionships that hold between them.

In the context of distributed, heterogeneous information systems, one cannot
expect that all of them will utilize one, shared ontology as a foundation of their
knowledge bases. Different systems have different requirements and enforcing a
common ontology would eventually make it impossible to maintain. To allow dif-
ferent systems to incorporate different ontologies, while asserting consistent com-
munication, a bridge between ontologies is needed. In the literature, the topic of
creating such a bridge is referred to as ontology alignment. In essence, it can be
described as a task of selecting parts of two (or more) ontologies that express the
same parts of a modeled universe of discourse, although differently ([5]).

There are a variety of approaches and solutions to this task. None of which
is computationally inexpensive - processing large, expressive knowledge struc-
tures and finding similarities between them is obviously a very complex task.
Therefore, a designated alignment between ontologies is very valuable. However,
what if one of the aligned ontologies needs to be altered due to unforeseen,
new requirements? Obviously, the procedure of designating the alignment may
be executed from scratch, but this solution requires to incur all computational
costs once more.

In our earlier publications ([19] and [13]) we created a mathematical foun-
dation for managing changes that may be applied to ontologies during their
lifespan. Based on these notions, a criterion for updating ontology alignment
was developed. It can be used to answer a question concerning when changes
applied to ontologies are significant enough to potentially invalidate the align-
ment between ontologies.

The main goal of the following paper is focused on a question - is it pos-
sible to update the existing alignment between two ontologies, if one of them
changes in time, based only on the analysis of these changes. Formally, it can be
defined as: For a given source ontology O(m) in a moment in time denoted as
m, a target ontology O′(n) in a moment in time denoted as n, and an alignment
between these two ontologies denoted as Align(O(m), O′(n)), one should provide
algorithms which can update this alignment if the source ontology evolves from
the state O(m) to the state O(m+1) according to applied changes. Due to the
limited space, we will focus only on a concept level available in ontologies.

The article is structured as follows. In the very next section, a selection of
related works is presented. Section 3 provides basic notions and definitions that
will be further used throughout the paper. In Sect. 4 algorithms for updating
the ontology alignment on the concept level can be found. These algorithms
have been tested using an experimental procedure described in Sect. 5. A brief
summary and an overview of our upcoming research are given in Sect. 6.

Updating Ontology Concept Alignment 203

2 Related Works

An ontology is a structure that allows to store and process knowledge. It allows
reflecting the complexity of the knowledge, relations, hierarchies and other
dependencies between objects or concepts. However, knowledge stored in ontolo-
gies could be out of date and an update process needs to be conducted to allow
reliable reasoning based on a current ontology. Many authors notice the need for
the management of an ontology evolution process. In the literature [1,6,10,17,20]
it is possible to find some systems and methods devoted to detecting changes in
the ontology and management procedures.

The ontology evolution management becomes more complicated if the knowl-
edge is distributed. The carrying out the ontology integration (also referred to
as merging) requires an actual alignment between input ontologies. However,
any modification of ontologies may entail changes in the existing alignment.
Thus, the ontology alignment evolution is a real problem and to the best of our
knowledge, it has not been well investigated so far.

In [19] authors proposed a preliminary algorithm for revalidation and pre-
serving the correctness of alignment of two ontologies. An original method for
identifying the most relevant subset of the concept’s attributes, which is useful
for interpreting the evolution of mappings under evolving ontologies, was pre-
sented in [4]. The proposed solution aims at facilitating maintenance of mappings
based on the detected attributes. COnto-Diff [7] is a rule-based approach that
detects high-level changes according to a dedicated language of changes. COnto-
Diff can also manage the alignment evolution process. Spotted ontology changes
are coupled with a mapping between the elements (concepts, properties) of two
ontology versions. The application of found modifications (and their inverses) is
also considered in this work.

Euzenat and others ([5,21]) noticed that if ontologies evolve, then new align-
ment has to be produced following the ontology evolution. Authors claimed that
this can be achieved by recording the changes made to ontologies and transform-
ing those changes into an alignment (from one ontology version to the next one).
This can be used for computing new alignments that will update the previous
ones. In this case, previously existing alignments can be replaced by their com-
position with the ontology update alignment. However, the alignment evolution
problem is raised only from a theoretical point of view. Thus, the Alignment API
and Alignment Server tool [3] do not provide any service related with changing
of alignment.

Authors [11] distinguished two approaches to the problem of mapping evolu-
tion and claimed that both solutions proposed so far have several drawbacks and
cannot constitute a generic solution. The first approach, called mapping compo-
sition, relies on designating direct mappings between data sources S and T ′ if
two mappings between S and T also T and T ′ are given. This method is used
for maintaining semantic mappings between relational schemas and ontologies in
[2]. The second approach, mapping adaptation, focus on incrementally adapting
mappings following schema changes. Thus, after every, even small, change (like
adding, moving or deleting elements from ontologies) the mappings are updated.
This approach is more often used in the literature.

204 A. Kozierkiewicz and M. Pietranik

In [23] authors presented a semi-automatic approach to update the adapting
mapping document. For an existing ontology change, pattern mapping updating
rules are directly applied to remove the staleness. When new changes arrive an
ontology engineer computes the rules and updates their repository.

In [14] Authors defined two operators for updating an ontology-based data
access specification when it’s TBox and/or source schema change. Each such
operator is based on a specific notion of mapping repair. The deletion-based
mapping repair approach looks for repairs among subsets of the original map-
pings. Then, entailment-based mappings’ repair procedure, aimed at preserving
as much as possible of mapping assertions, is implied by the original specification.

The [15] proposes two approaches for managing of the ontology mapping evo-
lution. The first one is a user-centric approach, in which the user defines the map-
ping evolution strategies to be applied automatically by the system. The second
is a semantic-based approach, in which the ontology’s evolution logs are exploited
to capture the semantics of changes and then adapted to (and applied on at)
the ontology mapping evolution process. The authors noticed, that changes to
ontologies affect the ontology mapping in two ways depending on whether it is
an addition or removal. In the case of removal, existing semantic relationships
are affected and must evolve. Additionally, if adding new ontology entities, new
semantic relations might be necessary. This remark has been applied for manag-
ing of the ontology mapping evolution. In the first approach, the user gets only
the list of possible corrective changes. The proposed semantic-based approach
automatically suggests the best corrective strategy, based on the information
manage provided by the ontology evolution process.

Khattak and others [9] also used a change history log. These logged changes
are later used in a change history log to store the ontology change information,
which helps to drastically reduce the reconciliation time of the mappings between
dynamic ontologies. The authors conducted a very comprehensive evaluation of
the mapping reconciliation procedure which confirmed its effectiveness.

Despite the fact that in the literature it is possible to find some methods for
detecting changes in ontologies the problem of managing the mapping evolution
is not widely examined. There is a lack of tools dedicated to the mentioned prob-
lems. Indeed, PrompDiff [16] is particularly good at finding alignments between
versions of ontologies. When such an alignment is made available, it is possible
to provide a composition of new versions of the alignment tied to the previous
version and eventually, to perform a migration. However, there is still a lack
of tools dedicated directly to updating an ontology alignment when ontologies
evolve.

3 Basic Notions

In the following article, we focus on the level concepts. Therefore, provided
definitions concern only elements related to this level. For a broader overview
of the formal foundations of our research, please refer to one of our previous
publications, for example, [12].

Updating Ontology Concept Alignment 205

A pair (A,V), whereA is a set of attributes andV is a set of attributes domains
is called “a real world”. An (A,V)-based ontology is defined as a quintuple:

O = (C,H,RC , I, RI) (1)

where C is a set of concepts; H is a concepts’ hierarchy; RC is a set of relations
between concepts RC = {rC1 , rC2 , ..., rCn }, n ∈ N , such that rCi ∈ RC (i ∈ [1, n])
is a subset of C × C; I is a set of instances’ identifiers; RI = {rI1 , r

I
2 , ..., r

I
n} is a

set of relations between concepts’ instances.
A concept’s c ∈ C structure from the (A,V)-based ontology is defined as:

c = (idc, Ac, V c, Ic) (2)

where: idc is its identifier, Ac is a set of concept’s c attributes (Ac ⊆ A) and
their domains V c (V c =

⋃

a∈Ac

Va where Va is a domain of an attribute a taken

from the set V), and Ic is a set of concept’s c instances.
To give attributes from the set Ac meanings, we assume an existence LA

s ,
which is a sub-language of the sentence calculus, and a function SA : A × C →
LA
s , which assigns logic sentences to attributes taken from a concept c. For

example, an attribute BirthDate within a concept Human may be assigned with
the following semantics: SA(BirthDate,Human) : birthY ear ∧ birthMonth ∧
birthDay ∧ age.

A concept’s overall meaning (its context) can be defined as a conjunc-
tion of its attributes’ semantics. Formally, for a concept c, such that Ac =
{a1, a2, ..., an}, its context is as follows ctx(c) = SA(a1, c) ∧ SA(a2, c) ∧ ... ∧
SA(an, c).

Our approach to the ontology evolution is based on a notion of a timeline,
which can be treated as an ordered set of discrete moments in time. Formally, it is
defined as TL = {tn|n ∈ N}. TL(O) is a subset of this timeline, containing only
those moments from TL during which the ontology O has been modified changed.
A superscript O(m) = (C(m),H(m), RC(m), I(m), RI(m)) is used to denote the
ontology O in a given moment in time tm ∈ TL(O). A symbol ≺ is used to
denote a fact that O(m−1) is an earlier version of O than O(m) (O(m−1) ≺ O(m)).
This notation is further used for particular elements of the given ontology, e.g.
c(m−1) ≺ c(m) represents a fact that a concept c has at least two versions, and
c(m−1) is an earlier one. A repository of an ontology O, is an ordered set of its

successive versions, It is defined as Rep(O) =
{

O(m)|∀m ∈ TL(O)
}

.

A function diffC is defined to allow comparing different versions of the same
ontology. Its input are two successive states of a single ontology O, O(m−1) and
O(m) (such that O(m−1) ≺ O(m)). Its output is three sets containing concepts
added, deleted and modified. Formally:

diffC(O(m−1), O(m)) =

〈
newC(C(m−1), C(m)),

delC(C(m−1), C(m)),

altC(C(m−1), C(m))

〉 (3)

where:

206 A. Kozierkiewicz and M. Pietranik

1. newC(C(m−1), C(m)) =
{

c
∣
∣
∣c ∈ C(m) ∧ c /∈ C(m−1)

}

2. delC(C(m−1), C(m)) =
{

c
∣
∣
∣c ∈ C(m−1) ∧ c /∈ C(m)

}

3. altC(C(m−1), C(m)) =
{

(c(m−1), c(m))|c(m−1) ∈ C(m−1) ∧ c(m) ∈ C(m) ∧
c(m−1) ≺ c(m) ∧ (Ac(m−1) �= Ac(m) ∨ V c(m−1) �= V c(m) ∨ Ic

(m−1) �= Ic
(m)

) ∨
ctx(c(m−1)) �= ctx(c(m))

}

The first two descriptors are self-explanatory. The last one represents a mod-
ification of concepts from O(m−1), as a set of pairs of concept’s versions, that
are neither new nor removed, but internally different.

Assuming that there are two independent, (A,V)-based ontologies, O and O’,
their alignment on a concept level can be defined as a set Align(O,O′) containing
tuples (further referred to as mappings) of the form:

(c, c′, λC(c, c′), r) (4)

where: c and c’ are concepts from O and O’ respectively, λC(c, c′) is a real value
representing a degree to which the concept c can be aligned into the concept
c’, and r is a relation’s type connecting c and c’ (equivalency, generalisation or
contradiction). λC(c, c′) can be designated using one of the matching methods
described in a literature related to ontology alignment ([22]). In our research
we use an approach used in [8], which has been proved useful in a variety of
applications and evaluation procedures.

In order to extend the definition above to time-tracked ontologies, we use
the aforementioned superscript notation. For example, Align(O(m), O′(n)) rep-
resents an alignment of the ontologies O and O’ in states in a moments m and
n respectively (where both m,n ∈ TL).

In our work we assume that the alignment Align(O(m), O′(n)) fulfils a taxo-
nomic completeness postulate, defined formally below:

∀(c, c′, λC(c, c′), r) ∈ Align(O(m), O′(n))
(

(b, c) ∈ H =⇒

∃(b, c′, λC(b, c′), r′) ∈ Align(O(m), O′(n))
) (5)

The equation above states that if some concept c taken from the first ontology
O has a predecessor b within the concepts’ hierarchy H, then they can be both
mapped to a concept c’ from the second ontology.

4 Updating Ontology Alignment on a Concept Level

In this section of the paper, a set of three algorithms for updating the ontol-
ogy alignment on the concept level will be presented. Every algorithm takes

Updating Ontology Concept Alignment 207

as an input a result of a comparison of two states of the source ontology
diffC(O(m−1), O(m)) and an alignment between the source ontology (before the
applied changes) and a target ontology Align(O(m−1), O′(n)). As a result, algo-
rithms will return the updated alignment Align(O(m), O′(n)), valid for the most
recent versions of both ontologies.

As defined on Eq. 3, the ontology evolution on the concept may entail appear-
ing new concepts within an ontology, modifying some of them and deleting
them. These three aspects may have a big influence on an established align-
ment between the tracked source ontology (that will be further denoted as O)
and some other target ontology (further denoted as O’). Therefore, revalidating
the alignment Align(O(m−1), O′(n)) established in the past and asserting that
it is valid in the current moment in time Align(O(m), O′(n)) requires to analyse
elements of sets from Eq. 3. This task can be divided into three, simultaneously
run sub-procedures.

The first one (defined on Algorithm 1) is a fairly simple procedure, due to
the fact that the task at hand is very straightforward. Removing concepts from
the ontology O must be followed by removing all of the mappings that involved
these concepts. The algorithm at first creates an auxiliary set of mappings that
needs to be removed (Line 2) and eventually deletes them from the alignment
Align(O(m−1), O′(n)) (Line 3).

Algorithm 2 addresses a more complex issue concerning new concepts added
to the ontology O. In such a situation all new concepts must be confronted with
the target ontology O’ in case they can be mapped with any of them. In this
particular algorithm (for illustrative reasons) we use the most basic approach
(Lines 3–4) which incorporates the concept alignment degree function λC(c, c′)
(Line 5) defined in our previous research ([18]). This method may be easily
swapped with a more refined ontology alignment tool (that can be found in the
literature, e.g. [22]). However, despite the complexity of the approach presented
on Algorithm 2, its output fulfills Eq. 5, which may not be met by other alignment
methods out of the box.

Algorithm 3 targets the most complex issue concerning concepts which struc-
tures have been updated. In the new state, the applied updates may entail three
subproblems:

Algorithm 1: Removing stale mappings of deleted concepts from the exist-
ing alignment
Input : diffC(O(m−1), O(m)), Align(O(m−1), O′(n))
Output: Align(O(m), O′(n))

1 begin

2 del :=
{
(c, c′, λC(c, c′), r) ∈ Align(O(m−1), O′(n))|c ∈ delC(C(m−1), C(m))

}
;

3 Align(O(m), O′(n)) := Align(O(m−1), O′(n)) \ del;

4 return Align(O(m), O′(n));

5 end

208 A. Kozierkiewicz and M. Pietranik

1. mappings connecting a particular, changed concept may no longer be valid
and must be removed

2. the taxonomic completeness may no longer be fulfilled (due to its incomplete-
ness or mappings that are no longer valid) and needs to be re-asserted

3. an updated concept may be mapped into concepts from the target ontology,
which was not possible in its previous state

Algorithm 3 is, therefore, build around three sections, each dealing with spe-
cific situations described above. At first (Line 3) the algorithm generated a set
of mappings connecting changed concepts. It is denoted as ãlt and contains con-
cepts’ mappings from the source ontology and the target ontology in a state from
before the applied modification. This is achieved using the altC component of
diffC function from the Eq. 3. Then, throughout Lines 5–9, each of the map-
pings from ãlt is re-checked for its correctness using current states of concepts.
The validity is checked (Line 6) based on a difference between the degree to
which two concepts in a state before the modification can be aligned and the
degree they can be aligned after the alteration. If this difference is higher than
some assumed threshold, than the validity no longer holds (Line 6). In such a
situation a particular, invalid mapping is removed (Lines 7–8).

After revalidating existing alignments, the algorithm begins (Line 11) to pro-
cess a set of changed concepts in order to re-assert the taxonomic completeness.
It is based on iterating over the set of mappings of modified concepts using the
altC component of diffC function from the Eq. 3. At first (Line 12), an auxiliary
set C̃ ′ is created - it is a copy of concepts from the target ontology. For each pair
it is checked (Line 13) if a particular concept from the source ontology in the
new state m acquired any new super-concepts within a taxonomy H(m) (Line
14). If that is the case, then the alignment is updated with appropriate mappings
of ancestors in order to fulfill the taxonomic completeness postulate from Eq. 5
(Line 15).

Algorithm 2: Updating the existing alignment with new mappings
Input : diffC(O(m−1), O(m)), Align(O(m−1), O′(n)), τ
Output: Align(O(m), O′(n))

1 begin

2 Align(O(m), O′(n)) := Align(O(m−1), O′(n));

3 for c(m) ∈ newC(C(m−1), C(m)) do

4 for c′ ∈ C′(n) do

5 if λC(c(m), c′) ≥ τ then

6 Align(O(m), O′(n)) :=

7 Align(O(m), O′(n)) ∪ {
(c(m), c′, λC(c(m), c′), r)

}

8 end

9 end

10 end

11 return Align(O(m), O′(n));

12 end

Updating Ontology Concept Alignment 209

The opposite situation is checked in lines 18–20. If some concepts have lost
some of its super-concepts (Line 18) - the corresponding mappings are removed
(Line 19) in order to meet the same taxonomic completeness postulate.

Checking both situations concerning changes in the taxonomy of the source
ontology if followed by potential removing target concepts from the aforemen-
tioned auxiliary set C̃ ′ (Line 15 and 19). This allows the algorithm to end with
checking if any new mappings may by included into the final alignment. It iter-
ates over the remaining, “untouched” concepts from the target ontology (Line
21) and performs in Lines 22–24 an analogical procedure to the one presented in
Algorithm 2 Obviously, this part of the presented algorithm may be performed
along with the aforementioned Algorithm2 However, all three presented algo-
rithms may be conducted simultaneously.

The next section of the paper contains a description of an experimental pro-
cedure we have conducted, along with an analysis of collected results. The exper-
iment was designed to verify the presented algorithms in terms of correctness
and completeness of their output in comparison with alignments obtained by
re-launching the mappings procedures for whole ontologies.

5 Experimental Verification

Our updating procedure has been experimentally verified using benchmark
datasets provided by the Ontology Alignment Evaluation Initiative (OAEI). We
have chosen “a Conference Track” consisting of 16 ontologies describing the
domain of organizing conferences, that was used in the OAEI’2018 campaign.
The experiment has been divided into two parts which are described in detail
below.

Our approach for updating ontology alignment on the concept level has been
compared with the determination a mapping between two ontologies from the
beginning by using LogMap ([8]). LogMap is an ontology alignment and align-
ment repair system which earned high positions in subsequent OAEI campaigns.
For the comparison of both tested methods, we have used an accuracy measure.
It is calculated as the number of common links (concepts’ mappings) between
two ontologies divided by the number of all connections found by both methods.

Formally, let us denote by AlignLogMap a set of mappings (defined according
to Eq. 4) created by LogMap, and by Align a set being a result of the update
procedures described in Sect. 4. The accuracy can be therefore measured using
the equation below:

Accuracy =
|AlignLogMap(O(m+1), O′) ∩ Align(O(m+1), O′)|
|AlignLogMap(O(m+1), O′) ∪ Align(O(m+1), O′)| (6)

The aim of the first part of the experiment was to show how changes in base
ontologies influence changes of alignments. For this purpose, we have chosen a
source ontology (called edas) and a target ontology (called ekaw). The source
ontology has been modified in a random way. In the subsequent steps, we have
applied more changes by adding new concepts. In the beginning, only a 10%

210 A. Kozierkiewicz and M. Pietranik

Algorithm 3: Updating modified alignments of modified concepts
Input : diffC(O(m−1), O(m)), Align(O(m−1), O′(n)), ε
Output: Align(O(m), O′(n))

1 begin

2 Align(O(m), O′(n)) := Align(O(m−1), O′(n));

3 ãlt :=
{
(c(m−1), c′, λC(c(m−1), c′), r) ∈ Align(O(m−1), O′(n))

∣∣

4 c(m−1) ∈ altC(C(m−1), C(m));

5 for (c(m−1), c′, λC(c(m−1), c′), r) ∈ ãlt do

6 if |λC(c(m−1), c′) − λC(c(m), c′)| ≥ ε then

7 Align(O(m), O′(n)) := Align(O(m), O′(n))\
8

{
(c(m−1), c′, λC(c(m−1), c′), r)

}
;

9 end

10 end

11 for (c(m−1), c(m)) ∈ altC(C(m−1), C(m)) do

12 C̃′ := C′(n)

13 if ∃(b, c(m)) ∈ H(m) ∧ ∃(c(m), c′) ∈ Align(O(m), O′(n)) then

14 if ¬∃(b, c(m−1)) ∈ H(m−1) then

15 Align(O(m), O′(n)) := Align(O(m), O′(n)) ∪ {
(b, c′, λC(b, c′), r)

}

C̃′ := C̃′ \ {
c′}

16 end

17 end

18 if ∃(b, c(m−1) ∈ H(m−1)) ∧ ¬∃(b, c(m)) ∈ H(m) then

19 Align(O(m), O′(n)) := Align(O(m), O′(n)) \ {
(b, c′, λC(b, c′), r)

}

C̃′ := C̃′ \ {
c′}

20 end

21 for c′ ∈ C′(n) do

22 if λC(c(m), c′) ≥ τ then

23 Align(O(m), O′(n)) :=

24 Align(O(m), O′(n)) ∪ {
(c(m), c′, λC(c(m), c′), r)

}

25 end

26 end

27 end

28 return Align(O(m), O′(n));

29 end

change has been applied. Eventually, the number of source ontology concepts
has been doubled. Therefore, the described experimental verification has been
repeated ten times for different amounts of changes applied to the source ontol-
ogy. It covers all the situations in real world ontology application - from minor
updates to complete rebuild of some maintained ontology.

The obtained results are presented in Table 1. The conducted experiment
allows us to draw a conclusion that our approach and LogMap give similar
alignments (in terms of the accuracy measure defined in Eq. 6) of two ontologies.

Updating Ontology Concept Alignment 211

Table 1. Different number of modifications in the source ontology edas

No. of changes Number of maps found
by our approach

Number of maps finded
by LogMap

Accuracy

10% 16 15 1

20% 17 17 1

30% 18 18 1

40% 19 20 0.95

50% 21 21 0.91

60% 21 21 0.91

70% 23 23 0.92

80% 26 24 0.93

90% 26 24 0.93

100% 25 24 0.96

However, considering the computational complexity, updating an existing align-
ment is obviously less expensive than building new mappings from the beginning.
Additionally, our procedure is able to find more correct connections between
concepts - a bigger alignment simplifies and reduces the costs of the further
integration of two ontologies.

In the second part of our experiment, we have verified how the same changes
affect the alignment if different ontologies are chosen as a source. As a target
ontology, we have chosen confOf. During the procedure, the same amount of
modifications have been applied to the remaining ontologies from the conference
track taken from the OAEI dataset. Eventually, a comparison analogous to the
first part of the experiment has been conducted for every ontology pair. We
have confronted alignments updated by algorithms presented in the following
paper with alignments designated from scratch by LogMap for modified source
ontologies and the preselected target ontology. Thus, the procedure has been
repeated fourteen times, for different ontologies, which verifies proposed methods
in different situations.

The obtained results are presented in Table 2. It is shown, that the second
experiment also proved the utility of our approach. However, the alignments
determined by tested methods are sometimes not consistent. We can draw a
conclusion that the bigger the source ontology, the bigger a difference between
alignments. Additionally, LogMap found more links between concepts only in
2 cases from overall 13. In terms of accuracy, our approach is more precise. It
allows finding more mappings in an easier way due to the fact that only modified
parts of source ontologies are analyzed. It is obvious that it will always be faster
than processing the whole ontologies.

212 A. Kozierkiewicz and M. Pietranik

Table 2. Different source ontologies

Source
ontology

Number of
concepts in source
ontology

Number of maps
finded by our
approach

Number of maps
finded by
LogMap

Accuracy

CMT 30 14 14 0.875

Conference 60 21 20 0.77

Confious 57 12 12 0.648

Crs 14 15 15 0.875

Edas 104 19 17 0.552

Ekaw 74 24 27 0.7

Iasted 141 13 13 0.53

Linklings 37 15 12 0.5

Micro 32 16 15 0.84

MyReview 39 14 15 0.83

OpenConf 62 13 12 0.55

Parperdyne 46 18 15 0.71

PCS 24 14 13 0.81

Sigkdd 50 13 13 0.86

6 Future Works and Summary

In this paper, a set of algorithms capable of updating a pre-existing ontology
alignment on the concept level is given. All of the presented procedures are based
solely on changes applied to the evolving ontologies. The experimental verifica-
tion was conducted using broadly accepted datasets provided by the Ontology
Alignment Evaluation Initiative.

Results collected during the experiment showed the usefulness of our ideas.
Due to the fact that our algorithms do not process whole ontologies, but only
their alterations, the times required by our algorithms were shorter than re-
launching mapping algorithms for whole ontologies. Therefore, during the veri-
fication procedure, we investigated the accuracy of the proposed algorithms.

The conducted experiments showed that LogMap and the proposed algo-
rithms for ontology alignment update give similar alignments of two ontologies.
Having in mind the computational complexity of designating mappings between
two ontologies, updating an existing alignment is obviously more cost effective.
Moreover, our procedure can find more correct connections between concepts
which may be useful during the eventual integration of ontologies.

In the future, we will extend the created framework for different levels of
ontologies, namely a level of relations and a level of instances. We will also
perform more extensive experiments that will involve larger ontologies.

Updating Ontology Concept Alignment 213

Acknowledgement. This research project was supported by grant No. 2017/26/D/
ST6/00251 from the National Science Centre, Poland.

References

1. Allocca, C., d’Aquin, M., Motta, E.: Detecting different versions of ontologies in
large ontology repositories. In: Proceedings of IWOD 2009, Washington, D.C., USA
(2009)

2. An, Y., Topaloglou, T.: Maintaining semantic mappings between database
schemas and ontologies. In: Christophides, V., Collard, M., Gutierrez, C. (eds.)
ODBIS/SWDB -2007. LNCS, vol. 5005, pp. 138–152. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70960-2 8

3. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API
4.0. Semant. Web 2((1), 3–10 (2011)

4. Dinh, D., Dos Reis, J.C., Pruski, C., Da Silveira, M., Reynaud-Delâıtre, C.: Identi-
fying relevant concept attributes to support mapping maintenance under ontology
evolution. Web Semant. Sci. Serv. Agents World Wide Web 29, 53–66 (2014)

5. Euzenat, J., Mocan, A., Scharffe, F.: Ontology alignments. In: Hepp, M.,
De Leenheer, P., De Moor, A., Sure, Y. (eds.) Ontology Management. Comput-
ing for Human Experience, vol. 7, pp. 177–206. Springer, Boston (2008). https://
doi.org/10.1007/978-0-387-69900-4 6

6. Grandi, F.: Multi-temporal RDF ontology versioning. In: Proceedings of IWOD
2009, Washington, D.C., USA (2009)

7. Hartung, M., Groß, A., Rahm, E.: Conto-diff: generation of complex evolution
mappings for life science ontologies. J. Biomed. Inform. 46(1), 15–32 (2013)

8. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: logic-based and scalable ontology
matching. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 273–288.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 18

9. Khattak, A.M., et al.: Mapping evolution of dynamic web ontologies. Inform. Sci.
303, 101–119 (2015). https://doi.org/10.1016/j.ins.2014.12.040

10. Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change
detection on the web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 197–212. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45810-7 20

11. Kondylakis, H., Flouris, G., Plexousakis, D.: Ontology and schema evolution in
data integration: review and assessment. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 932–947. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05151-7 14

12. Kozierkiewicz, A., Pietranik, M.: The knowledge increase estimation framework
for integration of ontology instances’ relations. In: Lupeikiene, A., Vasilecas, O.,
Dzemyda, G. (eds.) DB&IS 2018. Communications in Computer and Information
Science, vol. 838, pp. 172–186. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-97571-9 15

13. Kozierkiewicz, A., Pietranik, M.: A formal framework for the ontology evolution.
In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019.
LNCS (LNAI), vol. 11431, pp. 16–27. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-14799-0 2

14. Lembo, D., Rosati, R., Santarelli, V., Savo, D.F., Thorstensen, E.: Mapping repair
in ontology-based data access evolving systems. In: IJCAI International Joint Con-
ference on Artificial Intelligence, pp. 1160–1166 (2017)

https://doi.org/10.1007/978-3-540-70960-2_8
https://doi.org/10.1007/978-0-387-69900-4_6
https://doi.org/10.1007/978-0-387-69900-4_6
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1016/j.ins.2014.12.040
https://doi.org/10.1007/3-540-45810-7_20
https://doi.org/10.1007/3-540-45810-7_20
https://doi.org/10.1007/978-3-642-05151-7_14
https://doi.org/10.1007/978-3-319-97571-9_15
https://doi.org/10.1007/978-3-319-97571-9_15
https://doi.org/10.1007/978-3-030-14799-0_2
https://doi.org/10.1007/978-3-030-14799-0_2

214 A. Kozierkiewicz and M. Pietranik

15. Martins, H., Silva, N.: A user-driven and a semantic-based ontology mapping evo-
lution approach. In: ICEIS, vol. 1, pp. 214–221 (2009)

16. Noy, N.F., Musen, M.A.: The PROMPT suite: interactive tools for ontology merg-
ing and mapping. Int. J. Hum.-Comput. Stud. 6(59), 983–1024 (2003)

17. Papavassiliou V., Flouris G., Fundulaki I., Kotzinos D., Christophides V.: High-
level change detection in RDF(S) KBs. ACM Trans. Database Syst. 38(1), 1–42
(2013)

18. Pietranik, M., Nguyen, N.T.: A Multi-atrribute based framework for ontology
aligning. Neurocomputing 146, 276–290 (2014). https://doi.org/10.1016/j.neucom.
2014.03.067

19. Pietranik, M., Nguyen, N.T.: Framework for ontology evolution based on a multi-
attribute alignment method. In: CYBCONF 2015, pp. 108–112 (2015). https://
doi.org/10.1109/CYBConf.2015.7175915

20. Sassi, N., Jaziri, W., Gargouri, F.: Z-based formalization of kits of changes to
maintain ontology consistency. In: Proceedings of KEOD 2009, pp. 388–391 (2009)

21. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. In: Meersman, R.,
Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1164–1182. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88873-4 18

22. Shvaiko, P., Euzenat, J., Jiménez-Ruiz, E., Cheatham, M., Hassanzadeh, O.: Pro-
ceedings of the 13th International Workshop on Ontology Matching Co-located
with the 17th International Semantic Web Conference, OM@ISWC 2018, Mon-
terey, CA, USA, 8 October 2018, CEUR Workshop Proceedings, vol. 2288 (2018).
CEUR-WS.org

23. Thenmozhi, M., Vivekanandan, K.: A semi-automatic approach to update mapping
for ontology evolution. In: Proceedings of International Conference on Computa-
tional Intelligence and Information Technology, CIIT, pp. 319–324 (2012)

https://doi.org/10.1016/j.neucom.2014.03.067
https://doi.org/10.1016/j.neucom.2014.03.067
https://doi.org/10.1109/CYBConf.2015.7175915
https://doi.org/10.1109/CYBConf.2015.7175915
https://doi.org/10.1007/978-3-540-88873-4_18
http://www.CEUR-WS.org

On the Application of Ontological Patterns
for Conceptual Modeling

in Multidimensional Models

Glenda Amaral(B) and Giancarlo Guizzardi

Free University of Bozen-Bolzano, 39100 Bolzano, Italy
{gmouraamaral,giancarlo.guizzardi}@unibz.it

Abstract. Data warehouses (DW) play a decisive role in providing ana-
lytical information for decision making. Multidimensional modeling is a
special approach to modeling data, considered the foundation for build-
ing data warehouses. With the explosive growth in the amount of het-
erogeneous data (most of which external to the organization) in the lat-
est years, the DW has been impacted by the need to interoperate and
deal with the complexity of this new type of information, such as big
data, data lakes and cognitive computing platforms, becoming evident
the need to improve the semantic expressiveness of the DW. Research has
shown that ontological theories can play a fundamental role in improving
the quality of conceptual models, reinforcing their potential to support
semantic interoperability in its various manifestations. In this paper we
propose the application of ontological patterns, grounded in the Unified
Foundational Ontology (UFO), for conceptual modeling in multidimen-
sional models, in order to improve the semantic expressiveness of the
models used to represent analytical data in a DW.

Keywords: Multidimensional modeling · Data warehouse ·
Conceptual modeling · Ontological patterns

1 Introduction

Multidimensional modeling is the foundation for building data warehouses (DW).
Data warehouses were initially designed to support business intelligence applica-
tions in the internal context of the organization. In the latest years, the explosion
in the volume of data on the web and in social networks, together with the accu-
mulation of data generated by mobile devices, sensors and other semi-structured
and unstructured data sources brought a challenge to the traditional analysis
model, based on the DW, giving rise to the need of an approach that is suited
to deal with the complexity of this new type of information, such as big data,
data lakes and cognitive computing platforms. In this scenario, the necessity of
integrating the Data Warehouse with new heterogeneous sources of information
(most of which external to the organization) emerges. In addition, with the open
data phenomena, the data stored in the DW was made available outside the
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 215–231, 2019.
https://doi.org/10.1007/978-3-030-28730-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_14&domain=pdf
http://orcid.org/0000-0003-0460-2271
http://orcid.org/0000-0002-3452-553X
https://doi.org/10.1007/978-3-030-28730-6_14

216 G. Amaral and G. Guizzardi

organization, becoming evident the need to make explicit the meaning of the
information disclosed. In the light of the above, there is the need to improve the
semantic expressiveness of the multidimensional models used to represent DW
analytical data, making explicit the worldview to which they are committing (i.e.,
their ontological commitments), thus providing intra-worldview consistency and
inter-worldview interoperability. In this paper, we move towards addressing this
issue by means of the application of ontological patterns for conceptual modeling
in the design of multidimensional models.

Conceptual modeling is the activity of formally describing some aspects of the
physical and social world for the purposes of understanding and communication
[23]. It plays a fundamental role, helping us to understand, elaborate, negotiate
and precisely represent subtle distinctions in our multiple conceptualizations of
reality. The discipline of conceptual modeling is supported by a wide range of
methods and tools for representing the conceptualization of subject domains of
interest. In this paper, we focus on a set of conceptual modeling techniques,
which can be applied to address recurrent multidimensional modeling issues and
to improve the semantic expressiveness of multidimensional models. This set
includes three techniques related to the notion of ontological patterns that are
grounded in the Unified Foundational Ontology (UFO) [11], namely, Founda-
tional Ontology Patterns [29], Reification and Truthmaking Patterns [10] and
the Powertype Pattern [3].

UFO is an axiomatic formal theory based on theories from Formal Ontology
in Philosophy, Philosophical Logics, Cognitive Psychology and Linguistics. For
an in-depth discussion, empirical support and formalization see [11,15]. UFO
is the theoretical basis of OntoUML, a language for ontology-driven conceptual
modeling that has been successfully employed in several projects in different
domains [14]. A recent study shows that UFO is the second-most used founda-
tional ontology in conceptual modeling and the one with the fastest adoption
rate [33].

Several approaches have been proposed to multidimensional modeling in the
conceptual level, either as extensions to the Entity-Relationship model [6,30], as
extensions to UML [1,21], or ad hoc models [8,17]. The past decade has seen an
increasing interest in ontology-driven approaches for multidimensional modeling,
which led to a number of research initiatives in this area, most of them using
domain ontologies for representing shared conceptualizations [16,18,25,27,28,31,
32]. Different from other approaches that use domain ontologies to provide more
semantics to the information stored in the data warehouse, we have focused in
this paper on improving the semantic expressiveness of multidimensional models
by applying ontological patterns in their design.

The remainder of this paper is organized as follows. In Sect. 2, we give a
brief review on multidimensional modeling and introduce the reader to the main
notions on ontological patterns. Section 3 presents our approach for applying
ontological patterns in the design of multidimensional models. In Sect. 4, to
validate and demonstrate the contribution of our approach, we apply it to model
a case study on education, extracted from [20]. We finalize the paper in Sect. 5
with some final considerations and directions.

On the Application of Ontological Patterns in Multidimensional Models 217

2 Multidimensional Modeling and Ontology Patterns

2.1 Multidimensional Modeling

Multidimensional modeling is the process of modeling data in a universe of dis-
course, under the multidimensional paradigm. This is widely accepted as the
preferred technique for modeling analytic data [20].

Multidimensional models categorize data either as facts with associated mea-
sures, which correspond to events occurred in the business domain, or as dimen-
sions that characterize the facts and are mostly textual [26]. For example, in
financial sector payment systems, money is transferred between financial insti-
tutions in certain amounts and at certain times. A typical fact would be a pay-
ment. Typical measures would be the debited and the credited amounts. Typi-
cal dimensions would be the debited financial institution, the credited financial
institution, the currency and the time of the money transfer. Queries aggregate
measure values over ranges of dimension values to produce results, such as the
total value credited per financial institution, per month.

Traditionally, a cube metaphor is used to represent the multidimensional data
view. The cells of the data cube contain the measures describing the fact. The
axes of the cube, called dimensions, represent different ways of analyzing the
data [2]. Classification hierarchies containing levels are used for the structuring
of dimensions. A hierarchy level contains a distinct set of members and differ-
ent levels correspond to different data granularities. Another orthogonal way of
structuring dimensions from a user’s point of view is the use of dimension level
attributes. These attributes describe dimension level members but do not define
hierarchies (e.g. the name and address of a financial institution).

Multidimensional models implemented in relational databases are referred to
as star schemas because of their resemblance to a star-like structure [19]. Basi-
cally, the star schema represents each dimension as a dimension table and each
fact as a fact table with a many-to-many relationship with all the dimensions.
Figure 1 shows an example of a star schema. In this particular schema, the fact
is the Payment table. Measures are the non-foreign keys in the PAYMENT
fact table (e.g. amount). Dimensions (Time, Credited Financial Institu-

tion, Debited Financial Institution and Currency) are all the tables
connected to the fact table in a one-to-many relation-ship. Note that in this
example the Financial Institution is referenced multiple times in the fact
table, with each reference linking to a logically distinct role for this dimension
(Credited and Debited Financial Institution), what is commonly referred
to as “role-playing dimension” [19].

Fig. 1. Star schema payments

218 G. Amaral and G. Guizzardi

Although these schemas provide some level of modeling abstraction that is
understandable to the user, they are not proper conceptual models in the sense
of [13], given that they assume an underlying relational model implementation
choice and contain further decisions that are proper of a physical design phase.

2.2 Ontological Patterns as Tools for Conceptual Modeling

Foundational Ontology Patterns
Foundational Ontology Patterns are reusable fragments of foundational ontolo-
gies. As foundational ontologies span across many fields and model the very basic
and general concepts and relations that make up the world, Foundational Ontol-
ogy Patterns can be applied in any domain [2]. They are reused by analogy, i.e.,
by establishing a structural correspondence (or structural transfer) between the
structure of the pattern and the one of the problem at hand. In this article, we
focus on the use of some of the Foundational Ontology Patterns that constitute
the OntoUML Pattern Grammar [29].

Over the past decade, a number of Foundation Ontology Patterns have been
derived from UFO, using OntoUML as a pattern language. Given the objectives
of this paper, we focus here on four examples extracted from [29], selected for
their applicability in the scope of multidimensional modeling: the RoleMixin, the
Phase, the Role and the Collective Patterns. For a detailed description of these
and other OntoUML Patterns, one should refer to [29].

The RoleMixin Pattern has been extracted from UFO’s theory of sortal
universals and addresses the problem of specifying roles with multiple disjoint
allowed types [11].

UFO makes a fundamental distinction between Sortal and Non-Sortal types.
A sortal is a type that either provides or carries a uniform principle of identity
for its instances. A principle of identity supports the judgment whether two
individuals are the same or, as a special case, what changes an individual can
undergo and still be the same. A Kind is a sortal that is rigid, meaning that all its
instances cannot cease to be so without ceasing to exist. In contrast with rigidity
is the notion of anti-rigidity that characterizes a type whose instances can move
in and out of its extension without altering their identity. A Role is a sortal,
anti-rigid and relationally dependent type. Therefore, every Role in UFO must
be connected to an association representing this relational dependence condition.
Moreover, the association end connected to the depended type in this relation
must have a minimum cardinality ≥1.

A RoleMixin is an anti-rigid and relationally dependent non-sortal that
aggregates properties that are common to different Roles. Different from Roles,
RoleMixins classify entities that instantiate different kinds (and that obey differ-
ent principles of identity). Figure 2(a) shows an example the RoleMixin Pattern.
In this picture, the abstract class Customer is the RoleMixin that covers differ-
ent Role types. Classes Personal Customer and Corporate Customer are
the disjoint subclasses of Customer that can have direct instances, represent-
ing the Roles (i.e., sortal, anti-rigid and relationally dependent types) that carry

On the Application of Ontological Patterns in Multidimensional Models 219

the principles of identity that govern the individuals that fall in their exten-
sion. Classes Person and Organization are the ultimate Kinds that supply
the principles of identity carried by Personal Customer and Corporate

Customer, respectively.
The Phase Pattern consists of a phase partition, i.e., a disjoint and complete

set of two or more complementary phases that specialize the same sortal and
that are associated with the same dividing principle (e.g., gender, life status,
developmental state). Phases in UFO are relationally independent, anti-rigid
types, defined as a partition of a sortal. This partition is derived based on an
intrinsic property of that sortal (e.g., Child is a phase of Person, instantiated by
instances of person who are less than 12 years). Figure 2(b) presents an instance
of the Phase Pattern. In this picture, class Person is the sortal and classes
Child, Adolescent and Adult represent the different phases that specialize
this sortal. The sortal instances can move in and out of the extension of the
phases, due to a change in the intrinsic properties of these instances. Analogous,
in the Role Pattern we have one or more roles that specialize a sortal (Fig. 2(c)).

(a) RoleMixin (b) Phase (c) Role

Fig. 2. Foundational ontology patterns

The Collective Pattern, exemplified in Fig. 3, describes a Collective Universal
and the universals whose instances are members of these collectives. The unity
principle of collectives is a uniform relationship (i.e., a relation instance) that
holds between all parts and only those parts [12]. Because of the uniformity of
this relationship, the collective has a uniform structure, i.e., all its members are
undifferentiated with respect to (w.r.t.) the whole. In other words, they can be
said to play the same role w.r.t. the whole. Take for example collectives such as
a crowd or a forest with their corresponding instances of the member of relation
(i.e., person-crowd, tree–forest). In all of these cases, the wholes have a uniform
structure provided by a uniform unity principle (e.g., a crowd is a collective
of persons all which are positioned in a particular topologically self-connected
spatial location) and their parts are all considered to play the same role w.r.t.
the whole (e.g., all persons are equally considered to be members Of the crowd).

Fig. 3. Collective pattern

220 G. Amaral and G. Guizzardi

Reification and Truthmaking Patterns
Reification is a standard technique in conceptual modeling, which consists of
including in the domain of discourse entities that may otherwise be hidden or
implicit [10]. Classic examples are the reification of relationships [4,9,10,24] and
events [5,7]. Recent work on formal ontology suggests that entities that should
be put in the domain of discourse are those responsible for the (alleged) truth
of our propositions. These are called truthmakers [22].

In [10], the authors propose a systematic analysis of truthmaking patterns
(TMP) for properties and relations, based on the ontological nature of their
truthmakers (TM) and present a number of Truthmaking Patterns for properties
and relations at different levels of expressivity. In this paper we focus on two
Truthmaking Patterns proposed in [24], which are more relevant in the context
of multidimensional modeling.

The first one is the TMP proposed for intrinsic descriptive properties.
Regarding the concept of intrinsic property, [10] states that a property hold-
ing for x is extrinsic iff it requires the existence of something else external to x
in order to hold, and intrinsic otherwise. As for descriptive property, [10] defines
that a property P is descriptive iff, for every x, P(x) holds in virtue of (at least)
a quality q being existentially dependent on x.

The second TMP considered here was proposed in [10] for descriptive rela-
tions. Analogously to the case of descriptive properties, a descriptive relation is
defined as a relation that holds in virtue of some qualities that are existentially
dependent on one or both its relata. Following is a brief description of these
two TMP, extracted from [10]. For a formal definition of them, as well as for
additional TMP not mentioned here, the reader should refer to [10].

Before proceeding, there is an important notion that should be defined,
namely the distinction between strong and weak truthmakers. In the strong
version of truthmakers t is a truthmaker of the sentence φ if the existence of t
is sufficient to make φ true. By contrast, t is a weak truthmaker of φ if it makes
the proposition true not just because of its existence, but because of the way t
contingently is.

Intrinsic Descriptive Properties. Intrinsic descriptive properties rarely cor-
respond to classes, because they do not carry a principle of identity [11]. So,
for example, the property of being red for a rose is typically expressed as an
attribute-value pair within the class Rose (Fig. (4a)), where the attribute name
implicitly denotes the color quality [3]. We have three reification options, cor-
responding to different Truthmaking Patterns. A weak TMP emerges when the
quality is reified as a separate class (Fig. 4(b)). Note the 1-1 cardinality con-
straint, showing that a quality inheres in exactly one object, and an object has
exactly one quality of a given kind. A strong TMP is exemplified in Fig. 4(c),
where an event of “color occurrence” is reified. The first option is generally more
flexible, making it possible to describe the way the quality interacts with the
world (Mary likes the color of this rose), or further information about the qual-
ity itself (the color of a rose is located in its corolla). The second option is however
necessary when we need to account for temporal information (e.g., how long the
redness lasted), or for the spatiotemporal context (what happened meanwhile

On the Application of Ontological Patterns in Multidimensional Models 221

and where...). To achieve the maximum expressivity, a third option is that of
a full TMP, including both strong and weak TMs plus the relationship among
them (Fig. 4(d)). Concerning the latter, note that there is a formal ontological
connection between qualities and events, discussed in [9]: events can be seen as
manifestations of qualities, and qualities as the focus of events.

Fig. 4. Truthmaking patterns for an intrinsic descriptive property [10]

External Descriptive Relations. External descriptive relations hold in virtue
of at least one relational quality inhering in at least one relatum. We distinguish
two main cases: single-sided relations holding in virtue of one or more qualities
inhering in just one relatum, and multi-sided relations holding in virtue of at
least two qualities, each inhering in a different relatum. The reification of multi-
sided relations is often necessary to model social and legal relationships, such as
marriages, economic contracts, employment relationships, and so on. An example
of the first kind is an attitudinal relation such as desires, represented in Fig. 5(a).
A weak TMP is shown in Fig. 5(b), where a desire quality inhering in an agent
and depending on some resources is reified. Note that we have represented it as
a quality, but it could be seen as well as a relator consisting of just one quality.
The addition of a strong TM, resulting in a full TMP, is shown in Fig. 5(c). The
event labeled DesireEvolution’ describes whatever happens in reality whose focus
is that particular desire, such as the arising of the desire and its satisfaction.

Fig. 5. Weak and full truthmaking patterns for a single-sided relation [10]

The Powertype Pattern
In several subject domains there is the need to deal with multiple classification
levels. In such domains, the occurrence of situations in which instances of a type
are specializations of another type is recurrent [3]. This phenomenon is known
in the conceptual modeling community as the Powertype Pattern [3].

The Powertype Pattern is an example of an early approach for multi-level
modeling in software engineering. This approach is used to model situations in

222 G. Amaral and G. Guizzardi

which the instances of a type (the power type) are specializations of a lower-level
type (the base type), and both power types and base types appear as regular
classes in the model.

In [3], the authors address multi-level modeling from the perspective of the
Powertype Pattern. They propose an axiomatic well-founded theory called MLT
(for Multi-Level Theory) and apply it to revise the powertype support in UML.
In their approach, they propose to mark the association between the base type
and the higher order type with the �instantiation� stereotype, in order to dis-
tinguish it from other domain relations that do not have an instantiation seman-
tics. An association stereotyped �instantiation� represents that instances of
the target type are instantiated by instances of the source type and, thus, denote
that there is a characterization relation (in the technical sense of [3]) between
the involved types (regardless of possible generalization sets). The multiplicities
of the “target” side of an �instantiation� association can be used to distinguish
between the different variations of characterization. Whenever the lower bound
multiplicity of the target association end is set to one, each instance of the base
type is instance of, at least one instance of the powertype (e.g., every instances
of person is necessarily either a living person or a deceased person). Thus, the
higher order type completely characterizes the base type. In contrast, if the lower
bound multiplicity of the target association end is set to zero, the inferred char-
acterization relation is not a complete characterization. Analogously, if the upper
bound multiplicity of the target association end is set to one, each instance of
the base type is instance of, at most one instance of the higher order type. Thus,
in this case, the higher order type disjointly characterizes the base type (again,
no person can be both an instance of living person and of deceased person). In
contrast, if the upper bound multiplicity of the target association end is set to
many (*), the inferred characterization relation is not a disjoint characteriza-
tion. Figure 6 shows the application of the Powertype Pattern proposed in [3].
As the authors show, there are non-trivial interactions between the semantics
of the �instantiation� relation and the meta-properties of a given general-
ization set. In this example the generalization set is incomplete and disjoint
meaning that: (i) there are instances of “Employee” which are not instances of
any instance of “Management Role” (as a consequence of the semantics of the
«instantiation»association); and (ii) there are instances of “Employee” which are
neither “Organization President” nor “Department Dean” (as a consequence of
the semantics of incomplete generalization sets).

Fig. 6. Using �instantiation� [3]

On the Application of Ontological Patterns in Multidimensional Models 223

The UML extensions proposed in [3] go beyond the �instantiation� stereo-
type and the lower/upper bound multiplicities. Further details of their approach
fall outside the scope of this paper and are not presented here. For a complete
description of the approach just described the reader should refer to [3].

3 Piecing It All Together

3.1 Applying to Dimensions

Foundational Ontology Patterns (FOP) can be used to improve the expressive-
ness of multidimensional models, thus, facilitating activities, such as communica-
tion and meaning negotiation, as well as the semantic interoperability regarding
the domains represented therein. The application of FOPs in the modeling of
dimensions provide more semantics for the concepts represented.

For example, the modeling of role-playing dimensions can benefit from the
use of the Role Pattern, as it can be used to represent the different roles played
by a dimension, at the same time that it makes it explicit that the same entity
plays different roles in that specific context. Figure 7 illustrates the application of
the Role Pattern in the dimension Financial Institution of the star-schema
illustrated in Fig. 1. In a payment event (fact), Financial Institution (dimen-
sion) plays two different roles: Credited Financial Institution (the Finan-
cial Institution whose account should be credited) and Debited Financial

Institution (the Financial Institution whose account should be debited).

Fig. 7. Application of the role pattern in the modeling of role-playing dimensions

When the role played by a dimension aggregates properties that are common
to different Roles, the RoleMixin Pattern can be applied. Again, at the same time
that the pattern reinforces the truthfulness of the concepts represented, it makes
explicit the nature and the restrictions applicable to the entity represented by the
dimension. The OntoUML model presented in Fig. 8 illustrates the application of
the RoleMixin Pattern in the modeling of dimensions that represent borrowers,
in the context of Finance. In this case, a borrower may be defined as a person or
an organization that obtains a loan from a Financial Institution. In the figure,
Loan represents the fact table about the loans.

In the figure, Borrower is the RoleMixin that covers different role types.
Corporate Borrower and Personal Borrower are the disjoint subclasses
of Borrower that can have direct instances, representing the sortal roles that
carry the principles of identity that govern the individuals that fall in their

224 G. Amaral and G. Guizzardi

Fig. 8. Application of the RoleMixin pattern

extension. Dimensions Organization and Person are the ultimate substance
sortals (kinds) that supply the principles of identity carried by Corporate

Borrower and Personal Borrower, respectively. The application of the
RoleMixin Pattern preserves the unity of the concept borrower at the same
time that clarifies the distinction between different types of borrowers (personal
borrower and corporate borrower), satisfying both the modeling of facts related
to all types of borrowers and the modeling of facts related only to a specific type
of borrower (person or organization).

Analogously, when it is necessary to relate a dimension to a fact whose
instances apply only to a subset of the dimension instances (corresponding to a
phase partition) the Phase Pattern may be applied. Figure 9 depicts an example
of the Phase Pattern applied to the modeling of a fact representing exams taken
by applicants for a driver’s license. As only persons over 18 years are eligible to
a driver’s license, the Person dimension related to the fact Driver License

Exam should be restricted to people meeting the minimum age requirement.
The Phase Pattern was applied to create three phase-partitions specializing the
dimension Person (Child, Adolescent and Adult). Then it was possible
to relate the fact Driver License Exam to a subset of the Person dimension
representing only adults (Phase Adult).

Fig. 9. Application of the Phase Pattern

Finally, the Collective Pattern is applicable to dimensions that represent
entities as integral wholes, composed by members that play the same role in
the collective. In many cases, in multidimensional models, it is important to
distinguish the conceptualization of the whole from the conceptualization of the
parts, because it is necessary to relate the whole to a fact that applies to the
collective and the parts to a fact applicable only to the individuals. At the same
time, it is important to make explicit the existence of a uniform relationship that
holds between all parts (and only those parts). Figure 10 presents an example

On the Application of Ontological Patterns in Multidimensional Models 225

of the Collective Pattern applied to a multidimensional model in the context
of product manufacturing systems, which work with the concepts of Lot and
Item. In this case, a Lot is defined as a group composed of a definite quantity of
some product, manufactured under conditions of production that are considered
uniform, while the Item corresponds to each product in the Lot. In the model,
the dimension Lot represents the collection, while Item represents its members.
In this approach, it is possible to relate the dimension Lot to the fact Delivery

containing information applicable to the collective (for example, the lot weight),
as well as to relate the dimension Item to the fact Sell whose granularity is
the individual product (for example, unit price).

Fig. 10. Application of the Collective Pattern

Turning now to Truthmaking Patterns, this technique can be applied in
the modeling of dimensions to improve the expressivity of attributes describ-
ing dimension level members. These attributes are mostly intrinsic descriptive
properties that can be reified as previously discussed.

Take as example the dimension Hotel illustrated in Fig. 11(a). The prop-
erty “star rating”, used to classify hotels according to their quality, is typically
expressed as an attribute-value pair within the dimension Hotel (Fig. 11(a)),
where the attribute name implicitly denotes the hotel star rating quality.
The first option is to reify this quality (weak truthmaker) as separate class
(Fig. 11(b)), making it possible to describe the ways the quality interacts with
the world (e.g., people prefer hotels rated from four to five stars), or further
information about the quality itself (e.g., the hotel star rating is reviewed annu-
ally). The second option is to reify the event of “star rating occurrence” (strong
truthmaker), which allows to account for temporal information (e.g., how long
the hotel has been rated as five stars), or for the spatiotemporal context (what
happened when the rating changed from five to four stars). The third option,
which gives maximum expressivity, is that of a full TMP, including both strong
and weak TMs plus the relationship among them (Fig. 11(d)).

Fig. 11. Hotel dimension with a “star rating” attribute

226 G. Amaral and G. Guizzardi

Finally, there is another modeling issue that, despite being often neglected
in the design of multidimensional models, should be addressed in the models to
reinforce truthfulness to the reality. This is the case of dimensions that repre-
sent entities of different classification levels. For example, let us take the case of
Financial Institutions and their types. Consider that Financial Institution

can be specialized in Bank, Insurance Company, Investment Company

and Brokerage Firms. In this case, “Bank A” and “Bank B” are particular
Banks, both instances of Financial Institution. Data analysis under the
perspective of the type of Financial Institution are particularly common in
this context, then the Type of Financial Institution should also be consid-
ered as an entity, whose instances are “Bank”, “Insurance Company”, “Investment
Company” and “Brokerage Firm”. Traditionally, entities like Financial Insti-

tution and Type of Financial Institution are represented as unrelated
dimensions in multidimensional models and the relationship between the dif-
ferent classification levels is not explicit in the models. We propose the use of
the Powertype Pattern previously mentioned (Sect. 2.2) to address this issue.
Figure 12 presents an example of the application of the Powertype Pattern to
the scenario of Financial Institutions and their types. In the example, the asso-
ciation stereotyped �instantiation� has both the lower and the upper bound
multiplicity set to one, meaning that the target dimension (Type of Finan-

cial Institution) disjointly and completely characterize the source dimension
(Financial Institution). Thus, the model in Fig. 14 represents that: (i) every
instance of Financial Institution must be either an instance of Bank, an
instance of Insurance Company, an instance of Investment Company, or an
instance of Brokerage Firm and that (ii) “Bank” and “Insurance Company”,
“Investment Company” and “Brokerage Firm” are the only admissible instances
of Type of Financial Institution.

Fig. 12. Application of the Powertype Pattern

3.2 Applying to Facts

Conceptual modeling tools and techniques can also be applied to provide more
semantics for the concepts represented by fact tables.

In [20], Kimball defines fact tables as many-to-many relationships with the
dimensions. In the same book, Kimball states that fact tables in multidimen-
sional models store measurements resulting from organizations’ business pro-
cesses events. In one of his examples he illustrates a shipment process and states
that each movement of product onto an outbound truck generates performance
measures or facts, such as the shipment quantity. In this way, it seems that

On the Application of Ontological Patterns in Multidimensional Models 227

Kimball is committed to the view that fact tables are relationships, but he also
admits that a fact table corresponds to a physical observable event.

In [9], the authors propose a view in which events emerge from scenes as
a result of a cognitive process that focuses on relationships: relationships are
therefore the focus of events, which in turn can be seen as manifestations of
relationships. Further in the paper, they state that referring to the relationship
(which maintains its identity during the event) is unavoidable when we need to
describe what changes in time, while referring to the event is unavoidable when
we need to describe contextual aspects that go beyond the relationship itself.

In the light of what has been discussed in [20] and [9] regarding relationships
and events, a reasonable approach would be to consider two elements w.r.t. fact
tables: the fact as a relationship involving multiple participants (dimensions)
and, on the other hand, the event that is the sum of the manifestations of the
qualities constituting this relationship (measures). According to [26], not only
the relationships should be reified but also the events.

Following the terminology for kinds of relationships defined in [10], we may
classify fact tables as external descriptive relations, as they hold in virtue of
relational qualities (measures) inhering in their relata (dimensions). Thus, both
the relationship and the event (whose focus is the relationship) can be reified by
applying the TMP for external descriptive relations previously mentioned.

An example of the application of the full TMP is presented in Fig. 13, where
the TMP was applied to the fact table Loan represented in the star schema of
Fig. 13(a). The example describes a loan relation holding between a Financial

Institution and a Borrower. The relator is shown as a Loan Relationship

composed of the amount, which has a value in a Currency conceptual space,
and of the loan interest rate. Because the amount was reified as a �quality�
(whose instances inhere in the loan), it is possible to express further informa-
tion about it, for instance: (1) “This was the highest loan amount so far” or
(2) “The amount borrowed did not reach the credit limit. It is still possible to
grant new loans”. In addition, the application of the TMP allows to explicitly
represent other relevant information regarding the Loan Relationship, such
as the reciprocal commitments and claims inhering in the financial institution or
the borrower (and externally dependent on each other). The event labeled Loan

Event describes the loan date as well as whatever happens in reality whose focus
is that particular loan, such as the occurrence of loan disbursements, repayments
and credit risk assessments.

(a) Star schema (b) OntoUML Diagram

Fig. 13. Application of Truthmaking Patterns to fact tables

228 G. Amaral and G. Guizzardi

The reification of measures as individual qualities represents an interesting
improvement in the semantic expressiveness of measures in multidimensional
models. It allows to express the correlated units of measures, magnitudes, and
scales, which are generally overlooked in multidimensional approaches. This
empowers multidimensional models because each scale type defines a mathe-
matical structure on which the permissible statistics and scale transformations
are allowed. It also provides a better understanding about the nature of additiv-
ity constraints, as many statistic functions may be used to aggregate data cells
of measures, though their use depends on which sort of measure and aggregation
criteria are involved. Identifying these concepts in the multidimensional models,
based on their ontological foundations, enables designers to describe properly
what is being modeled, and therefore, to elucidate how data should be analyzed.

4 Case Illustration on Education: Student Attendance

To validate and demonstrate the contribution of our proposition to the multidi-
mensional modeling practice, we have applied it to model a tangible example: a
case study on education, extracted from [20], designed to track student atten-
dance in a course. In this model, the grain is each occurrence of a student walking
through the course classroom door each day, considering multi-instructor courses
(that is, co-taught courses). The original multidimensional model, depicted in
Fig. 14(a) [20], allows business users to answer questions concerning student
attendance at courses, including: which courses were the most heavily attended,
which students attended which courses, and which faculty member taught the
most students.

(a) Star schema (b) OntoUML Diagram

Fig. 14. Applying Ontology Patterns to the multidimensional model

We applied ontology patterns to reengineer the original model (Fig. 14(a))
and produced the OntoUML model depicted in Fig. 14(b). By applying the Role
Pattern, we elucidated that both Student and Instructor are roles played by
Persons. Consequently, Person instances can move in and out of the exten-
sion of these roles (due to changes in their relational properties), without any
effect on their identity. For example, a Student is a role that a Person plays
when related to an education institution, and it is the establishment (or termina-
tion) of this relation that alters the instantiation relation between an instance of
Person and the type Student. The application of the ontological pattern not
only provides more clarity and expressiveness to the model, but also favors the

On the Application of Ontological Patterns in Multidimensional Models 229

reuse of encoded experiences and good practices. Considering the existence of a
property Course Credits Hours in the dimension Course, we have applied
the TMP for Intrinsic Properties to reify the Course Credits Hours as sep-
arate class, thus making it possible to describe the ways in which this quality
interacts with the world (e.g., this amount of credit hours can also be earned
by taking part on a summer school), or further information about the quality
itself (e.g., course credit hours are specified in the course regulation). In this
case, the TMP contributes to enrich the expressivity of the model. Finally, we
applied a full TMP for External Descriptive Relations on the original table Stu-

dent Attendant Fact to reify the truthmaker of the Student Attendant

Fact Relationship (between student, course and instructor) by means of the
Student Attendant Event. The application of the TMP allows to explic-
itly represent relevant information regarding the Student Attendant Rela-

tionship, as well as to explicit represent the Student Attendant Event,
which describes the date of the student attendance, as well as whatever hap-
pens in reality, whose focus is that particular student attendance, such as late
arrivals or early leaves from the classes. By applying the TMP we improve the
model expressivity, conceptual clarity as well as its truthfulness to reality. The
aforementioned benefits seem to corroborate the fact that the use of ontological
patterns in multidimensional modeling helps domain experts to externalize the
knowledge about the domain, making the ontological commitments explicit and
the models more truthful to the domain being represented.

5 Conclusions

This paper described our approach to systematically apply ontological patterns
in the design of multidimensional models. We have discussed how conceptual
modeling techniques can be applied in combination for building consistent mul-
tidimensional models. In our approach we focused on the application of Founda-
tional Ontology Patterns, Reification and Truthmaking Patterns and the Power-
type Pattern to improve the semantic expressiveness of multidimensional models.
The case illustration in the area of Education exemplified how our propositions
contribute to improve the quality of multidimensional models, enhancing their
quality as artifacts to support communication, problem solving, meaning nego-
tiation and, principally, semantic interoperability in its various manifestations.

Conceptual modeling is a fundamental discipline to several communities in
computer science. In the future we plan to extend our work by conducting an
analysis of the role played by conceptual models and philosophically grounded
foundational ontologies in the scope of other technologies used for data analytics.

Acknowledgment. CAPES (PhD grant# 88881.173022/2018-01) and OCEAN
project (UNIBZ).

230 G. Amaral and G. Guizzardi

References

1. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model
extending UML. Inf. Syst. 31(6), 541–567 (2006)

2. de Almeida Falbo, R., Guizzardi, G., Gangemi, A., Presutti, V.: Ontology patterns:
clarifying concepts and terminology. In: WOP (2013)

3. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using a well-founded multi-level
theory to support the analysis and representation of the powertype pattern in
conceptual modeling. In: CAISE (2016)

4. Dahchour, M., Pirotte, A.: The semantics of reifying N-ary relationships as classes.
In: ICEIS (2002)

5. Davidson, D.: The individuation of events. In: Rescher, N. (ed.) Essays in Honor
of Carl G. Hempel, vol. 24, pp. 216–234. Springer, Dordrecht (1969)

6. Franconi, E., Kamblet, A.: A data warehouse conceptual data model. In: SSDBM
(2004)

7. Galton, A.: Reified temporal theories and how to unreify them. In: IJCAI, pp.
1177–1183. Citeseer (1991)

8. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. Int. J. Coop. Inf. Syst. 7(02n03), 215–247 (1998)

9. Guarino, N., Guizzardi, G.: Relationships and events: towards a general theory of
reification and truthmaking. In: AI*IA (2016)

10. Guarino, N., Sales, T.P., Guizzardi, G.: Reification and truthmaking patterns. In:
ER (2018)

11. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. CTIT,
Centre for Telematics and Information Technology, Trento (2005)

12. Guizzardi, G.: Ontological foundations for conceptual part-whole relations: the case
of collectives and their parts. In: CAiSE (2011)

13. Guizzardi, G., Halpin, T.: Ontological foundations for conceptual modelling. Appl.
Ontol. 3(1–2), 1–12 (2008)

14. Guizzardi, G., Wagner, G., Almeida, J.P.A., Guizzardi, R.S.S.: Towards ontologi-
cal foundations for conceptual modeling: the unified foundational ontology (UFO)
story. Appl. Ontol. 10(3–4), 259–271 (2015)

15. Guizzardi, G., et al.: Towards ontological foundations for the conceptual modeling
of events. In: ER (2013)

16. He, L., Chen, Y., Meng, N., Liu, L.Y.: An ontology-based conceptual modeling
method for data warehouse. In: ICM (2011)

17. Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design.
Universität Münster, Angewandte Mathematik und Informatik (2000)

18. Khouri, S., Ladjel, B.: A methodology and tool for conceptual designing a data
warehouse from ontology-based sources. In: Proceedings of the ACM 13th Inter-
national Workshop on Data Warehousing and OLAP, pp. 19–24. ACM (2010)

19. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. Wiley, Hawaii (2011)

20. Kimball, R., Ross, M., Thornthwaite, W., Mundy, J., Becker, B.: The Data Ware-
house Lifecycle Toolkit. Wiley, Hawaii (2008)

21. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)

22. MacBride, F.: Truthmakers. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Stanford University, Metaphysics Research Lab (2019)

23. Mylopoulos, J.: Conceptual modeling and telos. In: ER (1992)

On the Application of Ontological Patterns in Multidimensional Models 231

24. Olivé, A.: Relationship reification: a temporal view. In: CAiSE (1999)
25. Pardillo, J., Mazón, J.N.: Using ontologies for the design of data warehouses. arXiv

preprint. arXiv:1106.0304 (2011)
26. Pedersen, T.B.: Multidimensional modeling. In: Liu, L., Özsu, M.T. (eds.) Ency-

clopedia of Database Systems, pp. 1777–1784. Springer, Boston (2009)
27. Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In:

Proceedings of the ACM Tenth International Workshop on Data Warehousing and
OLAP, pp. 1–8. ACM (2007)

28. Romero, O., Abelló, A.: A framework for multidimensional design of data ware-
houses from ontologies. Data Knowl. Eng. 69(11), 1138–1157 (2010)

29. Ruy, F.B., Guizzardi, G., Falbo, R.A., Reginato, C.C., Santos, V.A.: From reference
ontologies to ontology patterns and back. Data Knowl. Eng. 109, 41–69 (2017)

30. Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R model for the
multidimensional paradigm. In: ER (1998)

31. Selma, K., Ilyès, B., Ladjel, B., Eric, S., Stéphane, J., Michael, B.: Ontology-
based structured web data warehouses for sustainable interoperability: requirement
modeling, design methodology and tool. Comput. Ind. 63(8), 799–812 (2012)

32. Thenmozhi, M., Vivekanandan, K.: A tool for data warehouse multidimensional
schema design using ontology. Int. J. Comput. Sci. Issues (IJCSI) 10(2), 161 (2013)

33. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and con-
ceptual modeling languages in ontology-driven conceptual modeling. In: ER (2016)

http://arxiv.org/abs/1106.0304

Process Mining and Stream Processing

Accurate and Transparent Path
Prediction Using Process Mining

Gaël Bernard1(B) and Periklis Andritsos2

1 Faculty of Business and Economics (HEC),
University of Lausanne, Lausanne, Switzerland

gael.bernard@unil.ch
2 Faculty of Information, University of Toronto, Toronto, Canada

periklis.andritsos@utoronto.ca

Abstract. Anticipating the next events of an ongoing series of activities
has many compelling applications in various industries. It can be used to
improve customer satisfaction, to enhance operational efficiency, and to
streamline health-care services, to name a few. In this work, we propose
an algorithm that predicts the next events by leveraging business process
models obtained using process mining techniques. Because we are using
business process models to build the predictions, it allows business ana-
lysts to interpret and alter the predictions. We tested our approach with
more than 30 synthetic datasets as well as 6 real datasets. The results
have superior accuracy compared to using neural networks while being
orders of magnitude faster.

Keywords: Process mining · Predictive process monitoring ·
Predictive analytics · Path prediction · Trace clustering

1 Introduction

After observing a few events of an incomplete sequence of activities, we can pre-
dict the next events until process completion by learning from historical event
logs, an activity coined path prediction [1]. Anticipating the next events is valu-
able in a wide range of scenarios. For instance, when a service desk team predicts
the paths taken by open tickets, the results can be used in many different ways.
One proposition is to cut the number of predicted complaints due to delays by
changing the priority of tickets. Another is to reduce the negative impact on
customer satisfaction by preemptively informing them about a delay. One more
is to align the expertise of service desk agents with the events predicted for a
ticket. The predictions could also be used by inexperienced agents to anticipate
the next events better, allowing them to communicate more accurate informa-
tion to the customers. Overall, predicting paths can help to improve worker and
customer satisfaction, as well as improve operational efficiency.

There are two main approaches to making predictions for a series of events.
The first uses process mining while the second relies on neural networks. Both
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 235–250, 2019.
https://doi.org/10.1007/978-3-030-28730-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_15

236 G. Bernard and P. Andritsos

approaches have their strengths and limitations. Process mining is more trans-
parent because it relies on models that can be inspected by business analysts.
This is important, as business analysts may have hidden knowledge that will
influence their confidence in the prediction. Furthermore, “business stakeholders
are not data scientists [...] they are more likely to trust and use these mod-
els if they have a high-level understanding of the data that was used to train
these models” [2]. In contrast, reasoning about predictions made by artificial
neural networks is complex, if not impossible. Furthermore, a neural network
requires a long training time [1]. However, in terms of performance, the most
recent research shows that predictions using long short-term memory (LSTM)
in a neural network achieves high accuracy [3].

We address the research gap that exists between accurate, but black-box tech-
niques and transparent, but less accurate process mining approaches. Indeed, we
aim to make predictions that are accurate, fast, and interpretable by business
analysts. We propose a matrix named the loop-aware footprint matrix (LaFM),
which captures the behaviors of event logs when replayed on a business process
model obtained automatically using process mining techniques. The captured
behaviors are then retrieved from LaFM to make predictions about uncompleted
traces. We also propose a clustered version of LaFM (c-LaFM) that can cope
with the inherent complexity of real datasets. We evaluate the prediction accu-
racy of LaFM with 30 synthetic datasets and the accuracy of c-LaFM with 6
real datasets. We show that our technique outperforms the LSTM approach
introduced in [3].

The paper is organized as follows. In Sect. 2, we introduce the main defi-
nitions and discuss process mining. Section 3 provides an overview of existing
works. Section 4 presents the main idea behind LaFM. In Sect. 5, we present
the evaluation procedure. Section 6 evaluates and compares the accuracy of the
method using synthetic datasets. Section 8 introduces the clustered version of
LaFM, coined c-LaFM, which is evaluated in Sect. 8. The paper ends in Sect. 9
with a conclusion.

2 Preliminaries

In this section, we lay out the main definitions and concepts of our approach.
They are part of the well-established process mining discipline. In this paper, we
consider only the sequence of events, disregarding the timestamps or any other
contextual information in the data. By doing so, we present a simplified view of
process mining, to be complemented with the foundational book about process
mining [4].

Events. An event is a discrete type of data representing the activities executed
in a process. For instance, ‘transferring a ticket’ is an event in a ticket’s lifecycle.
Let e be an event and E be the set of all distinct events; i.e., e ∈ E.

Trace. A trace is an instance of a process execution. In a service desk context,
a trace is a ticket. Let t = {e1, e2, ...; e ∈ E} be a trace: a list of events. For
instance 〈abbc〉 is a trace with three distinct events of length 4 (|t| = 4).

Path Prediction Using Process Mining 237

Prefix. Let a prefix pn = {e1, e2, ..., en; e ∈ t} be the first n events of a trace.
Typically, if t = 〈abbc〉, then p3 = 〈abb〉. A prefix represents the few events
observed from an uncompleted trace that we use to make a prediction.

Suffix. A suffix represents the n last events of a trace. Formally, sn = {e|t|−n , ...,
e|t|−1, e|t|; e ∈ t; e /∈ pn; |pn| + |sn| = |t|}, i.e., the suffix is the complement of the
prefix. The suffix is the set of events that we are trying to predict.

Event logs. An event log L = {t1, t2, ...; } is a collection of traces.

By looking only at the event log, process discovery techniques allow us to infer
the business process model that describes well the behavior of the traces. This is
a challenging task because the algorithm should be able to generalize behaviors
even if only a subset of them is observed, to exclude noise and outliers, and to
discover a model that is simple enough that it can be analyzed by a business
analyst but also precise enough to reflect the behaviors of the event logs. Several
techniques and approaches have been proposed to tackle this task. In this work,
we use the inductive miner [5].

Fig. 1. Process tree obtained by
the inductive miner with the traces:
{〈abdef〉, 〈bdaegef〉, 〈dcefeg〉,
〈cdeg〉}.

The inductive miner works by finding the
best split in an event log and seeing how the
two parts are related. It does this recursively
on both parts. The output is a process tree
(Fig. 1), which is a representation of a pro-
cess model that was introduced in [6]. A pro-
cess tree uses four operators: (1) the exclusive
choice operator, xor, expresses that only one
of the branches is executed; (2) the parallel
operator, and, indicates that all the branches
should be executed, in any order; and (3)
a sequence, seq, forces the execution of the
branches from left to right. Finally, (4) a loop
has a more complex execution scheme: the
first branch is executed at least once. Then, either we enter the loop by exe-
cuting the second branch and the first branch again (which can be done once
or multiple times), or we execute the third branch to exit the loop. As can be
seen in Fig. 1, except for the leaves, these four operators fill the whole tree. The
leaves of the tree are composed of the events E as well as silent activities. Silent
activities, τ , can be executed like any other events in the model, but they will
not be seen in the traces.

We have now introduced the main terminology, the inductive miner, and the
process tree. Path prediction is concerned with predicting the suffix for a given
prefix by learning from event logs. It differs from process model discovery in
which the goal is to discover a process model from event logs. While the output
is different, both methods are about understanding the control flow of traces. We
leverage this by using the inductive miner as a first step in making predictions.

238 G. Bernard and P. Andritsos

3 Related Work

The area of predictive analytics is wide as trace predictions can be time-related
(e.g., predicting the remaining time), outcome-oriented (e.g., success vs. fail-
ure), or control-flow oriented (e.g., next event(s) prediction). In this work, we
specifically focus on the latter type of prediction.

A widely adopted approach to prediction is to build a Markov chain that
describes the transition probabilities between events. These transition probabil-
ities are used to make predictions. A prediction depends only on the previously
observed event. In the all-K-order Markov model, [7], the number of levels in the
Markov chain is increased, but this increases the execution time. While the accu-
racy of the prediction increases, it suffers from rigidness in terms of the “patterns
that it can learn” [8]. As another approach, Gueniche et al., propose the compact
prediction tree [8]. It uses three data structures that can be used efficiently to
retrieve the most probable event that might occur after having observed a pre-
fix. While it predicts with high accuracy which events might occur in the suffix,
it does not return the order in which they will be executed. Hence, compact
prediction trees are not suitable for predicting paths.

There are several process mining approaches for predicting paths. In [9],
Lakshmanan et al. propose a method that estimate the likelihood of the next
activities using a process model and Markov chain. Breuker et al. propose in
[10] a predictive framework that uses grammatical inference and an expectation-
maximization algorithm to estimate the model parameters. Among its predic-
tions, it can predict the next event. Improving the comprehensibility of the
predictions is one of the design goals of their approach, so that “users without
deep technical knowledge can interpret and understand” [10]. In [1], Polato et al.
propose a labeled transition system and methods for several predictive analytic
tasks. Path prediction can be done by finding a path in the transition system
that minimizes the sum of the weights between the edges.

Recently, neural networks have been studied for predicting the next events.
To the best of our knowledge, Evermann et al. were the first to use a LSTM
neural network approach to predict the next event of an ongoing trace [11].
LSTM, [12], is a special type of neural network for sequential inputs. It can
learn from long-term dependencies using a sophisticated memory system. The
sophisticated memory system is a double-edged sword: it achieves high accuracy;
however, its inherent complexity prevents any inspection of the reasoning behind
the predictions. In [3], Tax et al. generalize the approach of [11]. They evaluate–
amongst other methods–the performance of the algorithm in path prediction
and show that it is more accurate than [1,10,11]. Because it achieves the best
accuracy, we use it as a baseline when evaluating the accuracy of LaFM.

Overall, two streams of research dominate path prediction. On one hand,
using process mining techniques, we can make predictions using models that can
be inspected by business analysts. On the other hand, neural networks attain
better performance in terms of accuracy. Our contribution is an algorithm that
utilizes the best aspects of both methods.

Path Prediction Using Process Mining 239

4 LaFM: Loop-Aware Footprint Matrix

We designed LaFM to store the behavior of traces efficiently when replayed on
business process models. The aim is that the behaviors can be retrieved when
predicting a suffix of events. First, we present the LaFM data structure. Next,
we explain how to build it. Finally, we detail how to use it to make predictions.

4.1 LaFM Data Structure

LaFM records the behavior of traces when replayed on top of a business process
model. An illustration of LaFM is shown in Fig. 2. Each row corresponds to a
trace and each column describes the behavior of an operator. LaFM captures the
execution orders of parallel branches, the exclusive choices, and the number of
iterations of each loop. We next describe in more detail the information recorded
by LaFM as well as the used terminology.

Fig. 2. Result of LaFM when the traces 〈abdef〉, 〈bdaegef〉, 〈dcefeg〉, and 〈cdeg〉
are replayed on top of the process tree of Fig. 1.

Parallel Branches. LaFM stores the order in which parallel branches are exe-
cuted. An incremental index is assigned to each outgoing branch of the and
operators and then propagated to the events and silent activities underneath.
For instance, and2 in Fig. 1 has two outgoing branches. The index 1 is assigned
to the first branch, which is propagated to the events below, i.e., 1 is assigned
to a, b, and c. Similarly, task d has index 2. The index is recorded in LaFM for
each and operator.

Exclusive Choices. The decision made for each exclusive choice is recorded
in LaFM. For example, at xor3 in Fig. 1, a choice must be made between and4
and c. For the trace 〈cdeg〉, the choice is c. Hence, c is recorded in LaFM.

240 G. Bernard and P. Andritsos

Loops. LaFM stores the number of times loops are executed. In Fig. 1 for the
trace 〈cdeg〉, the value recorded for loop5 is 1 because it was executed once.

Terminology. An operator might be executed multiple times during a single
process execution. For instance, when the trace 〈bdaegef〉 is replayed on the
process tree in Fig. 1, we execute the operator xor7 twice because loop5 above
it is also executed twice. The name ‘loop-aware footprint matrix reflects that
the matrix can store all behaviors, regardless of the number of times a loop
is executed. The terminology used for columns in LaFM allows us to retrieve
the behaviors of an operator using a standardized name: operator|loop. Each
operator is assigned a unique name. For example, in Fig. 1, loop5 is an operator.
For parallel gateways, we also append the execution order inside parentheses. For
instance, the second execution of and4 is and4(2). If there are loops, a single
operator can be executed many times, resulting in multiple pieces of information
that must be recorded. Adding the loop position to the terminology allows us
to distinguish this information. Let L be a list of loops that are in the path
starting from but excluding the operator itself to the root of the process tree. L
can be empty if an operator is not contained in a loop. Then, we concatenate
∀l ∈ L the following strings: lname(lindex), i.e., for each loop above an operator,
we include its name. In parentheses, we add the index of the loop. As an example,
xor7|loop5{2} points to the column returning the decisions that are made when
the operator xor7 is executed for the second time.

Three behaviors are captured in the LaFM in Fig. 2. Columns 1 to 5 retain
the execution order of parallel gateways; column 6 records the number of times a
loop was taken, and columns 7 to 9 store the decisions made at exclusive choice
gateways.

4.2 Training Phase: Building LaFM

To record the decisions made for each operator in the discovered process tree, we
replay the traces we want to learn from a Petri net version of the process tree.
Petri nets can easily be derived from process trees using simple transformation
rules [5]. Petri nets have a strong and executable formalism, which means we can
replay a trace on a Petri net by playing the token game [13]. The token game
takes as input a trace and a Petri net. Then, using a particular set of rules (see
Chapter ‘3.2.2 Petri Nets’ in [4]), the game indicates if the trace fits into the
process model (i.e., the Petri net). Algorithm 1 defines few extra operations that
are performed during the token game to build LaFM. The next section explains
how predictions can be made from LaFM.

Path Prediction Using Process Mining 241

/* Map the parallel operators above the events using a list of tuples (andOperator,
branchIndex). Return an empty list if the event is not included in a parallel
operators. */

/* e.g.,: {a: [(and4,0), (and2,0)], b: [(and4,1), (and2,0)], c: [(and2,0)]...} */
1 tsToAnds = getTransitionToAnds(processTree)

/* Map the transitions that occur right after an exclusive gateway. */
/* e.g.,: {and4: Xor3, c: Xor3, f: Xor7, g: Xor7 } */

2 tsToXors = getTransitionToXor(processTree)

/* Map the second branch of loops to tsIncrementLoops and the third one to
tsLeavingLoops */

/* e.g., tsIncrementLoops: {τ4: loop5}; tsLeavingLoops: {τ5: loop5} */
3 tsIncrementLoops = getTransitionToIncrementLoop(processTree)
4 tsLeavingLoops = getTsToLeaveLoop(processTree)

5 laFM = Matrix[]

6 foreach trace in logs do
7 counter = initializeCounters()
8 foreach tsF ired in tokenGame do
9 manageCounter(tsF ired)

10 foreach andOperators in tsToAnds[tsF ired] do
11 foreach andOperator, branchIndex in andOperators do
12 record(trace, andOperator, branchIndex)

13 if tsF ired in tsToXors then
14 record(trace, tsToAnds[tsF ired], tsF ired)

15 if tsF ired in tsToLeaveLoop then
16 record(trace, tsLeavingLoops[tsF ired], counter[tsF ired])

17 function manageCounter(tsF ired):
18 if tsF ired in tsToAnds then
19 foreach andOperator in tsToAnds[tsF ired] do
20 counter[andOperator].increment()

21 if tsF ired in tsIncrementLoops then
22 counter[tsF ired].increment()
23 foreach dependentTransition in dependentTransitions[tsF ired] do
24 counter[tsF ired].reset()

25 function record(trace, transition, value):
26 laFM[trace][getTerminology(transition)] = value

Algorithm 1: Set of extra operations performed during the token game to
build LaFM.

4.3 Prediction Phase: Using LaFM

Making predictions using LaFM is a five step recursive process, illustrated in
Fig. 3.

Step 1. We play the token game with the prefix to get a list of active tokens.

Step 2. From the tokens, we get the list of active transitions, i.e., the activities
that are currently allowed by the business process model. If only one transition
is active, we skip steps 3 and 4 to fire the transition (step 5). Otherwise, we
recursively eliminate transitions that are less likely (steps 3 and 4).

242 G. Bernard and P. Andritsos

Fig. 3. Five steps in making prediction using LaFM

Step 3. We find the highest (closest to the root) operator in the process tree
common to at least two transitions. For example, in Fig. 1, if the active transi-
tions are a, b, and d, the highest common operator is and2.

Step 4. We make a decision about the operator selected in step 3. Depending on
the operator type, we select the branch to execute next, what decision to make
at an exclusive gateway, or whether to stay in or leave a loop. Figure 4 details
how we retrieve the information in LaFM. In Fig. 2, in order to know which
one of f and g is the transition most likely to be chosen the first time we are at
xor7, we look at LaFM for xor7|loop5{1} and observe that f occurs more often
(three times out of four). When a tie occurs, we pick the first one. The number
of loops in the prefix might exceed the number of loops that were observed in the
data. Alternatively, we might have a particular order in the prefix that was never
observed in the event logs. We define three levels of abstraction that we apply
consecutively when the previous abstraction fails. The first level of abstraction
is to use LaFM as is. The second level of abstraction is to drop the loop part of
the terminology and stack the columns for the same operator. For example, if
xor7|loop5{3} does not exist in LaFM, we stack the two columns starting with
xor7|. If there is still not enough information, the third abstraction is to make
a decision by looking only at the Petri net. For parallel and exclusive choice
transitions, we pick the first branches with active transitions. For a loop, the
decision is to always to leave the loop. Using these three abstractions, we can
always make a prediction. If the list of potential transitions has been reduced to
1, we go to step 5. Otherwise, we recursively go back to step 3 where the highest
common operator will inevitably be lower.

Step 5. We fire the transition. If it is a task ∈ E, we add it to the suffix. Then,
we check to see if we have reached the end of the Petri net. If yes, we return the
suffix. If not, we go back to step 3.

Having defined how to build and use LaFM, we detail in the next section the
evaluation procedure used to assess the quality of the predictions.

Path Prediction Using Process Mining 243

Fig. 4. Decisions for each operator type at three level of abstractions.

5 Evaluation Procedure

The evaluation procedure is the same as that described by Tax et al. in [3]. Two-
thirds of the traces in the event logs are added to the training set. Each trace
in the evaluation is tested from a prefix length of 2 to a prefix length of l − 1, l
being the length of the trace. For instance, the trace 〈abcd〉 is decomposed into:
prefix:〈ab〉, suffix:〈cd〉 and prefix:〈abc〉, suffix:〈d〉. The extracted prefix is added
to the evaluation set and the suffix is added to the ground truth set. After learn-
ing from the training set, we use the evaluation set to make predictions about
the prefix. The accuracy is obtained by measuring the Damerau-Levenshtein
similarity between the predicted suffix and the ground truth set. The Damerau-
Levenshtein distance, [14], is an edit-distance-based metric that minimizes the
number of substitutions, deletions, or additions that are needed to align two
sequences. In contrast with the Levenshtein distance, the Damerau-Levenshtein
distance allows us to swap two adjacent activities. Let e be the evaluation set, pi

the ith predicted suffix, and ti the ith ground truth suffix. We evaluate a whole
evaluation set using the following formula:

DamerauSimilarity(e) = 1 −
∑|e|

i=1
DamerauDistance(pi,ti)

max(length(pi),length(ti))

|e| (1)

A Damerau similarity of 1 means that the predicted suffix is identical to the
ground truth. We use the evaluation procedure in the next section to evaluate
the performance of LaFM on synthetic datasets as well as in Sect. 8 where the
performance of c-LaFM is tested on real datasets.

All evaluations were processed on a Mac Pro with the following configuration:
3.5 GHz 6-Core Intel Xeon E5, 64 GB 1866 MHz DDR3. We slightly updated
LSTM1 so that it does not predict the time remaining. We confirmed that this
change does not impact the accuracy of the next event predictions and slightly
reduces the execution time. LaFM and c-LaFM, as used in the evaluations, are
available at: http://customer-journey.unil.ch/lafm.

1 available here: https://verenich.github.io/ProcessSequencePrediction/.

http://customer-journey.unil.ch/lafm
https://verenich.github.io/ProcessSequencePrediction/

244 G. Bernard and P. Andritsos

6 LaFM: Evaluation

To evaluate LaFM, we used a collection of 30 synthetic datasets2 that were cre-
ated from process trees of varying shapes and complexities. These datasets were
initially created and used in [13] for testing process discovery and conformance
checking techniques.

There are three rounds of evaluation. In each round, 10 process trees were
generated. The complexity of the process trees as well as the number of traces
generated increase with the round. Overall, 64 traces were generated in round 3,
256 traces in round 4, and 1025 in round 5. We compared the predictions obtained
using LaFM, Markov chains, and LSTM. We ran the evaluation five times. The
arithmetic means of these five runs is shown in Fig. 5. LaFM is deterministic,
therefore, its variance is null. The predictions made using LaFM are closest to
the ground truth (21 times), followed by LSTM (8 times), and Markov chains
(4 times).

There are important differences in the execution times of the three techniques
(Fig. 6). Because its predictions rely only on the previous observed event, it is not
surprising that the fastest predictions are made using Markov chains, followed
by LaFM. To put the duration into perspective, the average execution time per
dataset is approximately 111 times slower for LaFM compared to a Markov
chain, and 6140 times slower for LSTM compared to a Markov chain.

Fig. 5. Comparing LaFM, LSTM and Markov Chains using the Damerau similarity
metric. The closer to 1, the closer the predictions are to the ground truth.

2 https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05, sets
‘1 - scalability’, ‘round 3 to 5’.

https://data.4tu.nl/repository/uuid:745584e7-8cc0-45b8-8a89-93e9c9dfab05

Path Prediction Using Process Mining 245

Fig. 6. Performance comparison of the training and predictions times.

7 c-LaFM: Clustered Loop-Aware Footprint Matrix

The accuracy of the predictions made using LaFM is dependent on the quality
of the discovered process tree. While the previous section showed that LaFM
performs well with synthetic datasets generated from well-structured process
trees, the accuracy will drop with real datasets, which often have very complex
behaviors and noise that cannot be described well using a single model. Our
intuition is that we should group similar traces using clustering techniques and,
for each group, discover a process tree that well describes a subset of similar
traces. Hence, we propose an updated version of LaFM with a clustering step,
coined c-LaFM for clustered LaFM.

Fig. 7. Overview of the 4 steps approach of c-LaFM.

We propose a four-step clustering method, as shown in Fig. 7. In step 1, we
extract the features that will be used to group similar traces. Thus, we count
the number of ngrams ranging in size from 1 to 2. For instance, the trace 〈aba〉
becomes: {a:2, b:1, ab:1, ba:1}. Then, we cluster the traces using HDBSCAN3,
which has the advantage of having only one intelligible parameter to set, the
minimum number of traces per cluster. According to our experiment, from 2 to 10
traces per cluster yields the best results. However, it is difficult to anticipate the
best minimum cluster size. Hence, we perform a hyperparameter optimization
of a type grid search by using 10% of the training data set to evaluate the
accuracy of the minimum cluster size and retain the best-performing one. Instead

3 https://github.com/scikit-learn-contrib/hdbscan.

https://github.com/scikit-learn-contrib/hdbscan

246 G. Bernard and P. Andritsos

of attributing each trace to a single cluster, we rely on a soft clustering approach,
which returns, for each trace, the probability of it belonging to all the clusters.

Figure 8 illustrates the soft clustering approach. Each point represents a
trace. The closer two traces are, the more ngrams they share. The strong repre-
sentatives are used to discover the process tree, while the weak and the strong
representatives will be replayed over the process tree and are available in LaFM.
The strong representatives are the traces that have a probability higher than
80% of belonging to a cluster and the weak representatives have a probabil-
ity higher than 20% but less than 80%. Using a soft clustering approach has
two main advantages. First, the inductive miner is sensitive to noise. Hence, we
want to learn only from the strong representatives (i.e., with a high probability
of belonging to the clusters) with the aim of capturing only the core behav-
iors. Second, although we do not use them to build the process trees, borderline
traces might contain interesting behaviors for several clusters. By using a soft
clustering approach, we can assign these single traces to several clusters.

Fig. 8. Illustration of the soft clus-
tering concept.

In step 2, the strong representatives are
used to build the process tree. Then, the pro-
cess tree is transformed to a Petri net so that
the weak representatives can be replayed on
it to build a local LaFM, a mechanism that
is described in Sect. 4.2.

In step 3, we train a stochastic gradient
descent classifier4 to predict which cluster a
prefix belongs to. Although the clustering is
done only once for the entire complete traces,
we build one classifier for each prefix length.
If an unexpected prefix length comes from a

never-seen-before instance, we select the classifier that was built with the largest
prefix length.

In step 4, we predict the suffix of a given prefix using the cluster returned
by the classifier. Altogether, these four steps allow us to make predictions in the
presence of noise and outliers, which are often found in real datasets. This is
what we evaluate in the next section.

8 c-LaFM: Evaluation

To test our approach, we used six publicly available event logs, as described in
Table 1. Because the event logs reflect activities performed in real life, making
predictions is a complex task. Typically, for the event logs describing the execu-
tion of a building permit application (envPermit), “almost every case follows a
unique path” [3].

4 http://scikit-learn.org/stable/modules/sgd.html.

http://scikit-learn.org/stable/modules/sgd.html

Path Prediction Using Process Mining 247

Table 1. Datasets used for the evaluation.

Name (doi) Description #traces #events

1 helpdesk (10.17632/39bp3vv62t.1) Events from a ticketing system 3’804 13’710

2 bpi12 (10.4121/uuid:3926db30-

f712-4394-aebc-75976070e91f)

Loan process for a financial industry.

Note: keeping only manual task and

lifecycle: complete as described in [3]

9’658 72’413

3 bpi13 closeP (10.4121/c2c3b154-

ab26-4b31-a0e8-8f2350ddac11)

Closed problem - management system

from Volvo IT Belgium

6’660 1’487

4 bpi13 incidents (10.4121/3537c19d-

6c64-4b1d-815d-915ab0e479da)

Incidents - management system from

Volvo IT Belgium

7’554 65’533

5 bpi13 openP (10.4121/500573e6-

accc-4b0c-9576-aa5468b10cee)

Open problems - management system from

Volvo IT Belgium

819 2’351

6 envPermit

(10.4121/uuid:26aba40d-8b2d-

435b-b5af-6d4bfbd7a270)

Execution of a building permit application

process. Note: we pick the Municipality 1

38’944 937

In contrast to LaFM, c-LaFM is non-deterministic due to the clustering step.
Hence, we ran the experiment 10 times with c-LaFM and LSTM using the proce-
dure described in Sect. 5. Figure 9 compares the accuracy of LSTM and c-LaFM.
c-LaFM is more accurate for five datasets out of six. We compare the execution
times in Fig. 10. On average, c-LaFM is 9 times faster than LSTM. Overall, we
have shown that the clustered version of LaFM is accurate and fast.

Fig. 9. Comparing c-LaFM to LSTM using real datasets. Each datasets was evaluated
10 times.

Figure 11 shows one of the predictions for the execution of a building permit
using a business process model, which was derived from the process tree that
was used to make the prediction. This is an illustration of how we can provide,
not only the predictions itself, but a way to express the reasoning behind the
prediction. For instance, a business worker could–after investigating traces like
those used to make the prediction–decide not to trust the prediction because
they have knowledge about the context that is not available in the event logs.

248 G. Bernard and P. Andritsos

Fig. 10. Comparing the total execution time to obtain predictions using c-LaFM and
LSTM. The value reported is the average of 10 executions.

Fig. 11. Displaying an actual prediction from the dataset envPermit next to the busi-
ness process model that was used to make the prediction. The labels has been translated
in English.

9 Conclusion

We propose an algorithm that relies on process models to make future path
prediction. More specifically, we propose a matrix coined LaFM that retrieves
the most likely next events. We also propose c-LaFM, a version which is more
suited to deal with the inherent complexity of real datasets. The algorithm shows
promising results in terms of accuracy and execution time.

The results showcase the value of the process models discovered using a pro-
cess discovery algorithm. Indeed, not only are these business models intrinsically
interesting for business process analysts, but we also show that they can be used
to make predictions. A limitation of this work is that we choose to rely on the
inductive miner. In our future work, we plan to measure how the use of differ-
ent process discovery techniques may impact the accuracy of the predictions. We
anticipate that mining hidden rules between LaFM columns will yield interesting
results, especially if we consider extending LaFM with contextual information.
This would allow us to detect long-term dependencies that could be used to
improve the accuracy further.

Business analysts can be reluctant to trust predictions they do not under-
stand [10]. Because in our work the predictions are made with business process
models, the predictions can be manually inspected by business analysts. Cur-
rently, our algorithm returns only the predictions, limiting the explainability of

Path Prediction Using Process Mining 249

the results. However, we envision a framework that includes an advanced visu-
alization system that explains how the predictions are made and allows business
analysts to alter the predictions if they have knowledge that is not in the data.
This type of system would display the process model, the traces on which the
predictions were made, and the reasoning behind the predictions. Gartner has
urged us to move toward explainable artificial intelligence that gives visibility
to business stakeholders “by leveraging historical data, explaining model inputs,
simplifying results or exposing underlying data in human understandable ways”
[2]. Our work contributes by providing the foundation on which a fully com-
prehensible prediction system can be built. Interestingly, in the same report, [2],
Gartner states that there is a trade-off between explainability and accuracy. Our
results highlight that this trade-off does not necessarily hold here as we can pro-
vide results that are both transparent and more accurate than state-of-the-art
neural network approaches.

References

1. Polato, M., Sperduti, A., Burattin, A., De Leoni, M.: Time and activity sequence
prediction of business process instances. Computing 100, 1005–1031 (2018)

2. Alaybeyi, S., Baker, V., Clark, W.: Build trust with business users by moving
toward explainable AI. Technical report, Gartner, October 2018. https://www.
gartner.com/doc/3891245/build-trust-business-users-moving

3. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process mon-
itoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017.
LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59536-8 30

4. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49851-4

5. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

6. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
7 10

7. Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world wide
web surfing. In: Proceedings of the UsENIX Symposium on Internet Technologies
and Systems, p. 1 (1999)

8. Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: a lossless
model for accurate sequence prediction. In: Motoda, H., Wu, Z., Cao, L., Zaiane,
O., Yao, M., Wang, W. (eds.) ADMA 2013. LNCS (LNAI), vol. 8347, pp. 177–188.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53917-6 16

9. Lakshmanan, G.T., Shamsi, D., Doganata, Y.N., Unuvar, M., Khalaf, R.: A Markov
prediction model for data-driven semi-structured business processes. Knowl. Inf.
Syst. 42(1), 97–126 (2015)

10. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible predictive
models for business processes. MIS Q. 40(4), 1009–1034 (2016)

https://www.gartner.com/doc/3891245/build-trust-business-users-moving
https://www.gartner.com/doc/3891245/build-trust-business-users-moving
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-319-59536-8_30
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-642-53917-6_16

250 G. Bernard and P. Andritsos

11. Evermann, J., Rehse, J.-R., Fettke, P.: A deep learning approach for predicting
process behaviour at runtime. In: Dumas, M., Fantinato, M. (eds.) BPM 2016.
LNBIP, vol. 281, pp. 327–338. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58457-7 24

12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

13. Leemans, S.: Robust process mining with guarantees. Ph.D. thesis, Eindhoven
University of Technology (2017)

14. Damerau, F.J.: A technique for computer detection and correction of spelling
errors. Commun. ACM 7(3), 171–176 (1964)

https://doi.org/10.1007/978-3-319-58457-7_24
https://doi.org/10.1007/978-3-319-58457-7_24

Contextual and Behavioral Customer
Journey Discovery Using a Genetic

Approach

Gaël Bernard1(B) and Periklis Andritsos2

1 Faculty of Business and Economics (HEC), University of Lausanne,
Lausanne, Switzerland
gael.bernard@unil.ch

2 Faculty of Information, University of Toronto, Toronto, Canada
periklis.andritsos@utoronto.ca

Abstract. With the advent of new technologies and the increase in
customers’ expectations, services are becoming more complex. This com-
plexity calls for new methods to understand, analyze, and improve ser-
vice delivery. Summarizing customers’ experience using representative
journeys that are displayed on a Customer Journey Map (CJM) is one
of these techniques. We propose a genetic algorithm that automatically
builds a CJM from raw customer experience recorded in a database. Min-
ing representative journeys can be seen a clustering task where both the
sequence of activities and some contextual data (e.g., demographics) are
considered when measuring the similarity between journeys. We show
that our genetic approach outperforms traditional ways of handling this
clustering task. Moreover, we apply our algorithm on a real dataset to
highlight the benefit of using a genetic approach.

Keywords: Customer journey mapping · Process mining ·
Customer journey analytics · Genetic algorithms

1 Introduction

A customer experience can be defined as a customer’s journey with an organiza-
tion over time across multiple interactions called touchpoints [1]. Recent studies
show that customer interactions are increasing [2], services are becoming more
complex, and customers are often unpredictable [3]. In this context, understand-
ing the main trajectories that were followed by customers to consume a service
is a complex task. According to Verhoef et al., a strategy based on customer
experience may provide a superior competitive advantage [1]. It is, therefore,
not surprising that “Characterizing the Customer Journey along the Purchase
Funnel and Strategies to Influence the Journey” has been ranked as one of the
most important research priorities for the coming years by the Marketing Science
Institute [4]. A challenge faced by many practitioners is that of understanding

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 251–266, 2019.
https://doi.org/10.1007/978-3-030-28730-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_16

252 G. Bernard and P. Andritsos

the large number of combinations of activities that may exist when consuming a
service. As a result, new methods employed to design, analyze, and understand
customer journeys are emerging from the industry and are becoming popular
among researchers. One of these conceptual methods that will be the focus of
this work, is called the Customer Journey Map (CJM). By showing typical jour-
neys experienced by customers across several touchpoints, a CJM helps to better
understand customers’ trajectories [5].

Fig. 1. ➊ Less than 0.01% of the entire dataset on a CJM, and ➋, a summary of the
dataset using 3 representatives.

Figure 1 shows CJMs derived from a real dataset1. In this dataset, a journey
is all the activities that are performed by a citizen throughout the day. For
instance being at home, attending class and going back home is one of the
potential journeys. As can be seen in ➊ of Fig. 1, displaying such actual journeys
on the CJM without preprocessing the data results in an overwhelming chart.
It becomes clear that when a company deals with very large numbers of actual
journeys, it is necessary to reduce the complexity and to look at these journeys
at a higher level of abstraction. Specifically, representative journeys address this
issue, [6], by summarizing the dataset (using three journeys visible in ➋ of Fig. 1).

Fig. 2. Measuring the distance among three journeys with and without the context.

1 http://www.cmap.illinois.gov/data/transportation/travel-survey.

http://www.cmap.illinois.gov/data/transportation/travel-survey

Contextual and Behavioral Customer Journey Discovery 253

The existing solutions to summarize collections of journeys [6,7] consider
only the sequence of touchpoints when measuring the distance between journeys.
Figure 2 illustrates the process with 3 short journeys. Using a basic distance
measure between sequences (e.g., edit-distance), we cannot say which one of
‘Journey 1’ or ‘Journey 3’ is closer to ‘Journey 2’ (upper part of Fig. 2). We
suggest that demographics and other contextual information might be equally
important to measure the distance between journeys. Hence, in this paper, we
propose to integrate such information when mining journeys. The bottom part
of Fig. 2 shows that when we also consider the age group, it becomes clearer that
the closest journey to ‘Journey 2’ is ‘Journey 1’.

We propose an algorithm summarizing a customer experience using both the
sequence of activities as well as the contextual information. Our genetic approach
uses only three intuitive parameters: (1) the approximate number of represen-
tative journeys to use, (2) the weight of the sequence of activities, and (3) the
weight of the contextual data. In the evaluation section, we demonstrate that
we outperform existing techniques. Finally, we highlight the impact of the three
parameters using a real dataset and illustrate the results with CJMs.

The paper is organized as follows. Section 2 discusses the discovery of cus-
tomer journeys. In Sect. 3, we outline the existing techniques. Section 4 depicts
our genetic algorithm. In Sect. 5, we evaluate our approach using internal and
external evaluation metrics. Section 6 illustrates CJMs produced by our algo-
rithm. Finally, in Sect. 7 we conclude the paper.

2 Customer Journey Discovery

The goal of a customer journey discovery algorithm is to find a reasonable
amount of representative journeys that summarize well the observed journeys.

Definition 1 (Touchpoint): We define a touchpoint as the interaction between
a company’s products or services and a customer [5]. ‘Buying a product’ or
‘complaining about a product’ are two examples of touchpoints in an online
retail context. We define t as the touchpoint while T is the collection of all
touchpoints. The touchpoints are visible in the y-axis of the CJMs (Fig. 1).

Definition 2 (Actual Journey): An actual journey Ja is a sequence of touch-
points observed from customers. To improve readability, we refer to touchpoints
using alphabetical characters (e.g., J becomes 〈ABC〉). The order in which the
activities are executed is represented by the x-axis of the CJMs visible in Fig. 1.

Definition 3 (Representative Journey): A representative journey, Jr, is a jour-
ney that summarizes a subset of actual journeys. In Fig. 1, ➊, shows how a CJM
would look like when we display actual journeys, while the bottom part, ➋, uses
representative journeys. Clearly, as can be seen in Fig. 1, the use of representative
journeys increases the readability of the CJM.

Definition 4 (Event Logs): An event log is denoted by JA, which is the list of
all journeys observed by customers.

254 G. Bernard and P. Andritsos

Definition 5 (Customer Journey Map): By using representative journeys, a
CJM summarizes customer trajectories. Let a customer journey map JR be the
set of all the Jrs summarizing JA. kR denotes the total number of journeys.
Typically, the part ➋ of Fig. 1 is a CJM, JR, containing three representative
journeys summarizing an event log.

We define the discovery of customer journeys as a function that maps all
members of JA to a member of JR; i.e., that maps all the actual journeys to
representative journeys ultimately displayed on a CJM. Discovering customer
journeys from event logs can be seen as an unsupervised clustering task. This
task has interesting challenges. First, choosing the number of representatives is
difficult. When the goal is to have a general overview about a particular dataset,
it seems reasonable to display only few journeys so the CJM is readable. However,
discovering a few dozens of representative journeys might also be a relevant
choice if the goal is to catch complex and less generic patterns. Finally, the
sequence that best summarizes its assigned actual journeys needs to be found.
It might be the case that an ideal representative journey was never observed but
still summarizes the actual journeys well. These phenomena were observed by
Gabadinho et al., and illustrated as follows: “We could imagine synthetic – not
observed – typical sequences, in the same way as the mean of a series of numbers
that is generally not an observable individual value” [8]. Before presenting our
solution, the next section describes related work.

3 Related Work

There is a body of work in social sciences that is relevant to the summariza-
tion of customer journeys. Typically, in [7,8], Gabadinho et al. are summarizing
observed sequences with representatives. They define a representative as “a set
of non-redundant ‘typical’ sequences that largely, though not necessarily exhaus-
tively, cover the spectrum of observed sequences” [7]. The authors propose four
ways to choose a representative. ‘Frequency’, (1), considers the most frequent
sequence as the representative. ‘Neighborhood density’, (2), selects the sequence
that has the most neighbors in a defined diameter. ‘Centrality’, (3), picks the
most central object, i.e., the one having the minimal sum of distances from all
other objects. Finally, ‘sequence likelihood’ considers a sequence derived from the
first-order Markov model.

Since Process Mining operates in a bottom-up fashion, from data all the way
to the discovery of conceptual models, it is another discipline closely related to
the topic of customer journey discovery. The link between customer journey maps
and process mining was highlighted in [5]. However, business process models
and CJMs are not built for the same purpose. While a business process model
captures how a process was or should be orchestrated, a CJM is built for the
purpose of better understanding what customers have experienced.

In [9], we propose CJM-ex, an online tool to explore CJMs. Because it uses
a hierarchical structure, it allows to efficiently navigate the space of journeys in

Contextual and Behavioral Customer Journey Discovery 255

CJMs. In [10], it was shown that customer journey maps can be discovered using
Markov models. In [6], we suggested a genetic approach to discover representative
journeys that uses only the sequence of touchpoints to measure the distance
between journeys. Hence, this current work can be seen as an extension of [6] to
allow taking both the sequence of touchpoints and the contextual information
into account when build CJMs.

4 A Genetic Algorithm for Customer Journey Discovery

Fig. 3. Our genetic approach

Our work is inspired by the genetic approaches proposed in [11–13] to discover
business process models from event logs. However, we tailored it towards CJMs
by introducing specific evaluation metrics suited for them. Figure 3 depicts the
main phases: (1) a preprocessing phase, (2) a phase for the generation of the
initial population, (3) the assignment of each actual journey to its closest repre-
sentative, (4) the evaluation of the quality of the CJMs, (5) the stopping criterion
evaluation, and (6) the creation of new CJMs by applying some genetic oper-
ations. We introduce these phases in details while the Fig. 4 illustrates how it
works.

Fig. 4. Illustration of the genetic process for the discovery of the best CJMs

256 G. Bernard and P. Andritsos

4.1 Preprocessing

We assume that the representative journeys will be similar to the journeys with
the most frequent patterns of activities. Hence, to reduce computation time,
we extract the most frequent patterns that we use to create new journeys and
generate the initial population. Let Top�n be the n most occurring patterns of
activities of length � and Topn ⊇ Top�[2,m] be the list of all the most occurring
patterns of lengths 2 to m. By using Topn, we reduce the execution time by two
without impairing the quality of the final output.

4.2 Initial Population

We start by generating a set of random CJMs. They are created by picking
journeys from Topn. In our running example, depicted in Fig. 4, the initial pop-
ulation is visible in column ‘generation 1’. In Fig. 4, the population size is 3. In
our experiments, we set the population size to 100.

4.3 Assignment of Actual Journeys

In order to evaluate the quality of the generated CJMs, it is required to assign
each actual journey to its closest representative. The closeness between Ja and
Jr is measured using the Levenshtein distance [14]. This metric counts the num-
ber of edit operations (i.e., deletions, insertions, and substitutions) required to
match two sequences. Typically, the distance between 〈xyz〉 and 〈xyyw〉 is 2.
The closest representative is the one having the smallest Levenshtein distance
with the actual journeys. If a tie occurs, we assign the actual journey to the
representative having the less journeys already assigned to it. When the actual
journeys have been assigned to their respective closest representative, we can
start evaluating the quality of the CJMs.

4.4 CJM Evaluation Criteria

We define four criteria to evaluate the quality of CJMs: (1) the fitness, (2)
the number of representatives, (3) the contextual distance, and (4) the average
quality. Next, we define them.

Fitness. Using the Levenshtein distance [14], fitness quality measures the dis-
tance between the representative sequence and the actual journeys assigned
to it.

Fitness(Ja, JR) = 1 −
∑|Ja|

i=1 min
|JR|
j=1 (Levenshtein(σAi

;σRj
))

∑|Ja|
i=1 Length(σAi

)
(1)

Contextual and Behavioral Customer Journey Discovery 257

where

σAi
: ith actual (observed) sequence in JA

σRj
: jth representative contained in JR

Length(x): Number of touchpoints in the sequence x

When an actual journey is strictly identical to its representative journey, the
fitness measure is equal to 1.

Number of Representatives. The more representative journeys we use, the
more likely the fitness will be high. Hence, without a metric that allows a low
number of representatives, we would obtain a final CJM with several thousands
of representative journeys. Therefore, the goal of this metric is to keep a low
number of representatives. To guide the algorithm towards an ‘ideal’ number
of representatives, we employ a clustering technique that helps in choosing the
number of clusters. More specifically, we used the Calinski-Harabasz index [15].
Let kh be the optimal number of clusters returned by the Calinski-Harabasz
index. To evaluate the quality, we measure the distance between kR and kh

using the following distribution function:

NumberOfRepresentatives(kR, kh, x0) =
1

1 + (|kR−kh|
x0

)2
(2)

where

kR: Number of Jr journeys on JR (i.e., |JR|)
kh : ideal number of journeys according to the Calinski-Harabasz index
x0 : x value of the midpoint

We set the value of the midpoint, x0, to 5 for all our experiments. The
intuition behind this parameter is the following: if we have 11 representative
journeys on a CJM and the ideal number of journeys is 6, we would have a
quality of 0.5 (midpoint) because the absolute distance between 11 and 6 is 5.
Often, the final output will have a number of representative journeys that differs
from kh. This is due to the fact that there are other evaluation criteria.

Contextual Distance. The contextual distance allows us to consider the set
of contextual data C when grouping similar journeys. The more distant the set
of contextual data is between Ja that are represented by distinct Jr, the better
the quality is. To measure the distance, we first build a value frequency table
which counts all the values per representative (vi is the value frequency counter
for Jri

). Then, for each pair of clusters, we calculate the cosine similarity, which
is defined as:

ContextualDistance(v1, v2) =
v1 · v2

||v1|| · ||v2|| (3)

Finally, the cosine distances are averaged to get the overall contextual dis-
tance. A short overall distance indicates that the contextual data of Ja that are
assigned to distinct Jr are similar. In other words, the contextual data does not
help in classifying Ja between several Jr.

258 G. Bernard and P. Andritsos

Average Quality. We get the average weighted quality by getting the arith-
metic mean of: the fitness, the number of representatives, and the contextual-
distance.

4.5 Stopping Criterion

Once we assess the quality of generated CJMs, we assess the stopping crite-
rion. Inspired by the process mining genetic algorithms, [11,13], we found three
stopping criteria: (1) a certain amount of generations has been reached, (2) the
quality does not improve anymore, or, (3), a quality threshold has been reached.
Predicting the quality that will be reached by a CJM is difficult. Hence, we
believe that the latter stopping criterion is not advisable. If a stopping criterion
is met, the algorithm stops, returning the best JR. If none of the stopping cri-
teria is met, we generate new candidates by recursively calling a function that
generates the next population, described in the next section.

4.6 Genetic Operations

Before transforming the CJMs, we evaluate and rank them by average quality.
We copy a fraction (i.e., e) of the best CJMs in a set named elite. In Fig. 4, the
elite size is 1. In our experiments, we set the elite size to 5.

By keeping the best CJMs as-is, we ensure that the quality will increase or
stay unchanged. We also generate p − e new CJMs using the following opera-
tors. (1) Addition of a random journey (mutation): A sequence from Topn is
added to JR. (2) Addition of an existing journey (crossover): A journey from
the elite population is added to JR. (3) Deletion of a journey (mutation): A
journey is removed from JR. Nothing happens if JR contains only one jour-
ney. (4) Addition of a touchpoint (mutation): A touchpoint is inserted in one of
the existing journeys. (5) Deletion of a touchpoint (mutation): A touchpoint is
removed from JR.

We loop over each of these 5 types of transformations three times. Each time,
the probability of applying the transformation is 10%, which means that more
than one transformation is applied. It also means that the same transformation
might be applied up to three times (with a probability of 0.1%). At the very
least, one transformation has to be applied. If it is not the case, we loop over each
transformation three times again until at least a transformation is performed.

In Fig. 4, JR5 have been produced by taking JR2 and adding a journey picked
from Topn (defined in Sect. 4.1). Once new JRs have been created, we return to
the evaluation phase as shown in Fig. 3.

5 Evaluation Using Synthetic Datasets

In order to evaluate the quality of our approach to return the best set of repre-
sentative journeys in JR, we evaluate the results using a collection of synthetic
customer journeys that includes some contextual data. We first describe how
we generated the dataset. Then, using this synthetic dataset, we evaluate and
compare our algorithm with existing techniques.

Contextual and Behavioral Customer Journey Discovery 259

5.1 Datasets

Fig. 5. Dataset with 50% of noise.

In order to evaluate the results
of our algorithm, we generated
synthetic event logs that simulate
journeys using generative journeys.
A generative journey is a known
sequence of activities with a known
set of characteristics from which
we generate the event logs. These
generative journeys represent the
ground truth. If we used only those
known generative journeys to pro-
duce the dataset, we would get only
kG distinct journeys. From a busi-

ness point of view, this would describe an ideal situation where each group of
customers behaves in an homogeneous way. However, we know that this is not the
case. Having group of similar journeys that slightly differ from a representative
is a more realistic setting. To achieve this, we add some noise to the generated
journeys. Typically, when the noise level is set to 50%, Ja = Jg is true for half of
the data. Figure 5 illustrates how six journeys are generated from two generative
journeys. If we assume that the noise level is defined to be 50%, three actual
journeys in the event logs deviate from the original generative journeys. The
goal of our experiments is to retrieve the set of generative journeys, as represen-
tatives, from the produced actual journeys. The 40 generated datasets as well as
details on how we produced them are made publicly available2.

5.2 Metrics

To evaluate and compare the quality of representative journeys, we rely both on
external and internal evaluations. The former evaluates the results by using the
generative journeys. Since we add some random noise, it might be the case that
the ground truth is not the best solution. For this reason, we also use internal
evaluation measures that rely on cluster analysis techniques. These metrics are
described in [8].

External Evaluation - Distance in the Number of Journeys. Measures
the distance between the number of generative journeys and the number of
representative journeys. We evaluate this metric using the following equation:

NbJourneysDistance(kG , kR) = abs(kG − kR) (4)

2 http://customer-journey.unil.ch/datasets/.

http://customer-journey.unil.ch/datasets/

260 G. Bernard and P. Andritsos

External Evaluation - Jaccard Distance. We use the Jaccard distance to
evaluate how well we can retrieve the generative journeys.

JaccardDistance(σR, σG) = 1 − |σR ∩ σG |
|σR ∪ σG | (5)

Internal Evaluation - Mean Distance [8]. This metric measures the distance
between the actual journeys and their respective representative.

MeanDistanceScorei =

∑ki

j=1 D(Si, Sij)
ki

(6)

where

D(x1, x2): Levenshtein distance between two sequences
ki : Number of journeys attached to the representative i
Si : Representative sequence i
Sij : Sequence of journeys j attached to the representative i

Internal Evaluation - Coverage [8]. This metric represents the density of
journeys in the neighborhood n of a representative.

Coveragei =

∑ki

j=1 (D(Si, Sij) < n)
ki

(7)

where

D(x1, x2): Levenshtein distance between two sequences
ki : Number of journeys attached to the representative i
Si : Representative sequence i
Sij : Sequence of journeys j attached to the representative i

Internal Evaluation - Distance Gain [8]. This metric quantifies the gain in
using representative journeys rather than the medoid of the dataset.

DistGaini =

∑ki

j=1 D(C(σA), Sij) − ∑ki

j=1 D(Si, Sij)
∑ki

j=1 D(C(σA), Sij)
(8)

where

D(x1, x2): Levenshtein distance between two sequences
ki : Number of journeys attached to the representative i
Si : Representative sequence i
Sij : Sequence of journeys j attached to the representative i
C(x) : True center of the set

Contextual and Behavioral Customer Journey Discovery 261

Fig. 6. Approach used to evaluate our clustering algorithm from traditional approaches.

5.3 Settings

We test two settings of the algorithm against traditional approaches. The tra-
ditional approaches are state-of-the-art techniques that are used to cluster and
summarize sets of sequential and categorical data. Figure 6 depicts the approach
at a high-level. As can be seen, with traditional approaches, we first build a
distance metric. We use the edit distance with a constant cost operation set to
1. Once the distance matrix is built, we create k clusters. Because we do not
know the number of representative journeys to be found, we test using from 2
to 12 clusters and use the squared Calinski-Harabasz index described in [15] to
return the most statistically relevant. Next, we get the best representatives using
the neighborhood density, the centrality, the frequency, or the likelihood using
Traminer [16]. These techniques do not use the contextual data. Hence, to allow
for a fair comparison, we compare these techniques with a version of our genetic
algorithm that does not use contextual data and which was presented in [6]. We
call this version Genetic1. We also test our genetic algorithm with a version that
considers the contextual data, called Genetic2. Note that both the traditional
and genetic approaches use the same techniques to find kh and the distance is
measured using the edit distance with a constant cost operation. To account for
the fact that the genetic algorithm is non-deterministic, we run the algorithm
ten times for each setting.

5.4 Results

Figure 7 shows the external evaluation metrics. It can be seen that the best
solution is the Genetic2, highlighting that considering the contextual information
when grouping journeys improves the quality. Next, the best solution that does
not use contextual data is Genetic1 proposed in [6].

The internal evaluation of Fig. 8 shows that not only does the genetic algo-
rithm outperforms the traditional approaches, it also proposes a better solution
than the ground truth. This can be explained by the fact that when we inject
noise, we potentially change the optimal solution.

The execution time for one thousand journeys is improved using Traminer
[16] compared to our genetic approach. We compare how the different algorithms
scale when the number of journeys increases. Hence, we ran each configuration
five times with the 40 different datasets. Figure 9 summarizes the results. As can

262 G. Bernard and P. Andritsos

Fig. 7. External evaluation. The genetic algorithm that uses the contextual information
(i.e., Genetic2) performs best.

Fig. 8. Internal evaluation. The Genetic2 has the best coverage and mean distance
while Genetic1 has the best distance gain.

Fig. 9. Execution time for 100, 1’000, and 10’000 journeys.

Contextual and Behavioral Customer Journey Discovery 263

be seen, the algorithms implemented in Traminer are orders of magnitude faster
than our approach when dealing with 100 or 1,000 journeys. However, note that
our algorithm has a better scaling potential when the number of journeys grows.
All the algorithms tested tend to be slow and will not scale when dealing with
several thousand journeys.

6 Experiments Using Real Datasets

This section reports on the experiments with a real dataset, the goal being to
illustrate how a change in the settings impacts the results. We used a publicly
available dataset3 describing the activities performed throughout the day by
Chicago’s citizens. There are 15 types of activities, such as, ‘being at home’,
‘attending class’, ‘going shopping’, or ‘doing households errands’. In the context
of this dataset, a journey is the sequence of activities starting from the morning
until the night. Typically, ‘being at home’ → ‘attending class’ → ‘being at home’

Fig. 10. Results with real dataset using three configurations

3 http://www.cmap.illinois.gov/data/transportation/travel-survey.

http://www.cmap.illinois.gov/data/transportation/travel-survey

264 G. Bernard and P. Andritsos

is a journey consisting of three activities. The total number of journeys is 29,541
and there are 123,706 activities (with an average of 4.817 activities per journey).
This dataset is interesting not only for the relatively large number of data points
describing life trajectories, but also because of the available detailed contextual
data, such as information on the citizens’ demographics.

The goal of this experiment is to show the influence of taking the citizen’s age
in consideration when measuring the distance between journeys. Figure 10 shows
the results using three different configurations. In configuration 1, we did not
leverage the contextual data (i.e., the contextual distance weight is set to 0). We
interpret the resulting CJM as follows. The first journey represents people going
to ‘work’, going back ‘home’ at noon, and returning to ‘work’ in the afternoon.
The second journey is close to the first one, the main difference being that people
do not seem to go back ‘home’ at noon. The third journey shows citizens being
at ‘home’, going ‘shopping’ twice in the afternoon, and going back ‘home’.

In configuration 2, we test the effect on the resulting CJM when considering
the ages of the customers. Therefore, we changed the weight assigned to the
contextual distance from 0 to 1. As can be seen in Fig. 10, three representative
journeys were generated. Each of these journeys has three touchpoints. They
start from ‘home’ and finish at ‘home’. In between, the first journey has the
activity ‘work’, the second one has the activity ‘shopping’, and the last one the
activity ‘attending class’. It is interesting to note the effect of the configuration
on the contextual data (the distribution charts on the right side of Fig. 10).
Indeed, while the age was equally distributed for each journey in configuration
1, we can observe that the age is discriminant in configuration 2. For instance,
more than half of the citizens in the journey j3 are under 16 years old, while this
population represents only 8.7% of the entire dataset.

In configuration 3, we show the effect when we increase the weight put on
the contextual distance parameter. Journeys j1 and j3 are identical to those
in configuration 2. However, a new and rather complex journey j2 emerges. We
observe that the distribution is impacted when giving more weight to homogene-
ity. We interpret the result as follows: Citizens younger than 29 years old tend to
have two typical patterns of activities involving either ‘school’ or ‘entertainment’
while the most typical journeys for the other citizens involve ‘work’.

Of course, this is an extremely simplified overview of the data. For the almost
30,000 actual journeys in the event logs, there are numerous unique actual jour-
neys that differ from the representative journeys we get from these three config-
urations. By letting the user choose the weight for each parameter, we let them
explore different perspectives of the data. We claim that the best parameters
depend on the dataset, the business context, and the goal of the exploration.

7 Conclusion

Our genetic approach to summarizing a set of customer journeys with the pur-
pose of displaying them on a CJM offers an interesting alternative to approaches
used in social sciences for three reasons. First, the quality of the results is bet-
ter, which is true using both internal and external evaluation metrics. Second,

Contextual and Behavioral Customer Journey Discovery 265

the weights of the three quality criteria are a flexible way to analyze a dataset
under different perspectives. All the other parameters, such as the number of
representative journeys to display or the length of the representative journeys
are left entirely to the genetic algorithm. Third, in addition to the sequence of
activities, our genetic algorithm can leverage contextual data to group similar
journeys. By doing so, we provide a way to summarize insights from customers
that are hidden in the data.

We tackle the challenging task of building a CJM from event logs as a single-
objective optimization problem so that a single ‘best’ CJM is returned. Due to
the inherent conflicting objectives of the quality criteria, we acknowledge that a
multi-objective approach might be a relevant choice that we did not investigate.

References

1. Lemon, K.N., Verhoef, P.C.: Understanding customer experience throughout the-
customer journey. J. Mark. 80, 69–96 (2016)

2. Gürvardar, İ., Rızvanoğlu, K., Öztürk, Ö., Yavuz, Ö.: How to improve the overall
pre-purchase experience through a new category structure based on a compati-
ble database: Gittigidiyor (Ebay Turkey) case. In: Marcus, A. (ed.) DUXU 2016.
LNCS, vol. 9747, pp. 366–376. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40355-7 35

3. Peltola, S., Vainio, H., Nieminen, M.: Key factors in developing omnichannel cus-
tomer experience with finnish retailers. In: Nah, F.F.-H., Tan, C.-H. (eds.) HCIB
2015. LNCS, vol. 9191, pp. 335–346. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-20895-4 31

4. Research priorities 2018–2020. Technical report, Marketing Science Institute
(2018). https://www.msi.org/research/2018-2020-research-priorities/cultivating-
the-customer-asset/1.1.-characterizing-the-customer-journey-along-the-purchase-
funnel-and-strategies-to-influence-the-journey/

5. Bernard, G., Andritsos, P.: A process mining based model for customer journey
mapping. In: Proceedings of the Forum and Doctoral Consortium Papers Presented
at the 29th International Conference on Advanced Information Systems Engineer-
ing (CAiSE 2017) (2017)

6. Bernard, G., Andritsos, P.: Discovering customer journeys from evidence: agenetic
approach inspired by process mining. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019.
LNBIP, vol. 350, pp. 36–47. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-21297-1 4

7. Gabadinho, A., Ritschard, G., Studer, M., Müller, N.S.: Summarizing sets of cat-
egorical sequences: selecting and visualizing representative sequences, pp. 94–106,
October 2009

8. Gabadinho, A., Ritschard, G., Studer, M., Müller, N.S.: Extracting and rendering
representative sequences. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds.) IC3K
2009. CCIS, vol. 128, pp. 94–106. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-19032-2 7

9. Bernard, G., Andritsos, P.: CJM-ex: goal-oriented exploration of customer journey
maps using event logs and data analytics. In: 15th International Conference on
Business Process Management (BPM 2017) (2017)

10. Harbich, M., Bernard, G., Berkes, P., Garbinato, B., Andritsos, P.: Discovering
customer journey maps using a mixture of Markov models, December 2017

https://doi.org/10.1007/978-3-319-40355-7_35
https://doi.org/10.1007/978-3-319-40355-7_35
https://doi.org/10.1007/978-3-319-20895-4_31
https://doi.org/10.1007/978-3-319-20895-4_31
https://www.msi.org/research/2018-2020-research-priorities/cultivating-the-customer-asset/1.1.-characterizing-the-customer-journey-along-the-purchase-funnel-and-strategies-to-influence-the-journey/
https://www.msi.org/research/2018-2020-research-priorities/cultivating-the-customer-asset/1.1.-characterizing-the-customer-journey-along-the-purchase-funnel-and-strategies-to-influence-the-journey/
https://www.msi.org/research/2018-2020-research-priorities/cultivating-the-customer-asset/1.1.-characterizing-the-customer-journey-along-the-purchase-funnel-and-strategies-to-influence-the-journey/
https://doi.org/10.1007/978-3-030-21297-1_4
https://doi.org/10.1007/978-3-030-21297-1_4
https://doi.org/10.1007/978-3-642-19032-2_7
https://doi.org/10.1007/978-3-642-19032-2_7

266 G. Bernard and P. Andritsos

11. Buijs, J.C., van Dongen, B.F., van der Aalst, W.M.: A genetic algorithm for discov-
ering process trees. In: 2012 IEEE Congress on Evolutionary Computation (CEC),
pp. 1–8. IEEE (2012)

12. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: ProDiGen: mining complete,
precise and minimal structure process models with a genetic algorithm. Inform.
Sci. 294, 315–333 (2015)

13. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic process
mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
48–69. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744 5

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Sov. phys. dokl. 10, 707–710 (1966)

15. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.
Theory Methods 3(1), 1–27 (1974)

16. Gabadinho, A., Ritschard, G.: Searching for typical life trajectories applied to
childbirth histories. Gendered life courses-between individualization and standard-
ization. A European approach applied to Switzerland (2013), pp. 287–312 (2013)

https://doi.org/10.1007/11494744_5

Adaptive Partitioning
and Order-Preserved Merging

of Data Streams

Constantin Pohl(B) and Kai-Uwe Sattler

Databases and Information Systems Group, TU Ilmenau, Ilmenau, Germany
{constantin.pohl,kus}@tu-ilmenau.de

Abstract. Partitioning is a key concept for utilizing modern hardware,
especially to exploit parallelism opportunities from many-core CPUs.
In data streaming scenarios where parameters like tuple arrival rates
can vary, adaptive strategies for partitioning solve the problem of over-
estimating or underestimating query workloads. While there are many
possibilities to partition the data flow, threads running partitions inde-
pendently from each other lead to unordered output inevitably. This is
a considerable difficulty for applications where tuple order matters, like
in stream reasoning or complex event processing scenarios.

In this paper, we address this problem by combining an adaptive
partitioning approach with an order-preserving merge algorithm. Since
reordering output tuples can only worsen latency, we mainly focus on
the throughput of queries while keeping the delay on individual tuples
minimal. We run micro-benchmarks as well as the Linear Road bench-
mark, demonstrating correctness and effectiveness of our approach while
scaling out on a single Xeon Phi many-core CPU up to 256 partitions.

Keywords: Adaptive partitioning · Order preservation ·
Stream processing · Parallelism · Many-core · Xeon Phi

1 Introduction

Recent trends in hardware have lead to a continuously increasing core count
in processors, following Moore’s law, stating that the number of transistors in
a chip doubles every two years. With higher core counts and thus more avail-
able threads executing in parallel, it becomes more and more crucial to spread
out algorithms and applications to run partly independent from each other. For
database systems, user queries can benefit from multithreading by intra-query or
intra-operator parallelism, e.g., by scanning different regions of data simultane-
ously. This means that DBMS operators can be parallelized mostly individually,
processing input data at once or in batches, producing results afterwards in one
single output step.

C. Pohl—This work was partially funded by the German Research Foundation (DFG)
within the SPP2037 under grant no. SA 782/28.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 267–282, 2019.
https://doi.org/10.1007/978-3-030-28730-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_17&domain=pdf
http://orcid.org/0000-0002-5965-4047
http://orcid.org/0000-0003-1608-7721
https://doi.org/10.1007/978-3-030-28730-6_17

268 C. Pohl and K.-U. Sattler

Fig. 1. Partitioning and merge schema

However, data stream management system (DSMS) operators have additional
constraints. Since most of the DSMS queries are long-running, producing results
continuously over time, a well-known concept is the partitioning of the data
flow to benefit from multiple cores or CPUs through data parallelism. Multiple
instances of an operator are running concurrently with the same functionality
but only on a fraction of input data, increasing overall query throughput. This is
achieved by a partitioner P in front of the parallel region, being responsible for
splitting data for partitions under the goal of an even load balancing to minimize
the further delay. Results from the partitions are finally gathered by a so-called
merge operator M, which combines the individual output into a single consistent
stream again (visualized in Fig. 1).

Recent research, especially in the field of machine learning, focuses on adap-
tive partitioning, where the number of partitions increases or decreases during
query execution dynamically, depending on the input data stream behaviour
[14]. An immediate challenge arising from this is how costly state migrations
are handled, presuming stateful operations within the partitions. To avoid these
costs, other recent work concentrates on optimizing the partitioning algorithm
to reduce repartitioning events [6].

On top of that, an additional restriction on partitioning is the need of an
order-preserved output for any subsequent operators that depend on tuple-wise
order. Because of partitions running independently from each other to maximize
parallelism, some partitions can process tuples faster than others. To point an
example, the same selection predicate in one partition could drop more tuples
than in another partition or a join operator could find a varying amount of
matches. Therefore it might be necessary to reorder the output for detecting
patterns or avoiding priority inversion. Since a data stream can run for a long
time, this reordering step has to minimize blocking to keep latency of individual
tuples low.

Another challenge is given directly from modern hardware, like the Xeon
Phi Knights Landing (KNL) many-core CPU. The huge amount of cores on a
single chip allows to scale out partitions into high numbers, prompting the ques-
tion how good the partition-merge schema can be utilized with the restrictions
of adaptation and order preservation. A solution to minimize thread synchro-
nization for exchanging tuples are micro-batches being applied at the expense

Adaptive Partitioning and Order-Preserved Merging 269

of individual latency. However, this leads to additional parameters to optimize
(e.g., different batch sizes), increasing the complexity of optimization.

In this paper, we address these challenges and problems by the following
contributions:

– We propose a classification of related work, combining state migration han-
dling and determination of the ideal partition number.

– We show how adaptive partitioning is realized in our stream processing engine
(SPE) PipeFabric1,

– optimizing the main bottleneck of data exchange for a many-core CPU with
micro-batching strategies.

– We describe how a minimal blocking merge operator can be realized when
the partition count is dynamically changing,

– using micro-benchmarks as well as the well-known Linear Road benchmark
[1] to demonstrate correctness and performance of our solution.

2 Related Work

Research on partitioning in data stream processing has lead to many approaches
on how to optimize load balancing while keeping aggregation costs low. We sug-
gest the following classification of the partitioning strategies (see Fig. 2), taking
account of how the number of partitions is determined as well as state migration
handling is realized.

Fig. 2. Classification of partitioning strategies

2.1 Determining the Number of Partitions

The number of partitions depends mainly on the available hardware and use case.
While it is often a good idea to fully utilize resources to speed up query execution
and hiding latencies by oversubscription (i.e., using more partitions than CPU
cores), it is not necessary and reasonable in all cases, e.g., for monetary reasons
(cloud computing). Processing of slow-paced data streams or simple stateless
queries like notifications from anomaly detection needs no scale out, wasting
processing power and memory not available for other queries. However, there
are different ways to determine the ideal number of partitions of a query.
1 Open Source, https://github.com/dbis-ilm/pipefabric.

https://github.com/dbis-ilm/pipefabric

270 C. Pohl and K.-U. Sattler

Static. In a static case, the number of partitions and also the partitioning func-
tion is determined once at the beginning of a query, staying unchanged
afterwards. This works well without any overhead of recalculating in cases when
tuple delivery rate of data streams does not change a lot or when there are no
concurrent queries in a system. To point an example, querying multiple sensors
that emit a signal every second each, followed by a calculation if the measure-
ment is above a certain threshold is such a case. The partition count can then
be determined mathematically, per calibration, or simply by experience.

Dynamic. For a dynamic environment with varying data streams and multiple
queries competing for resources, a static approach is not applicable. Especially
since queries can be long-running, it is necessary to adjust the partitioning app-
roach continuously. The main goal of a dynamic strategy is to achieve good load
balancing and throughput for the partitions. There are two diametral parameters
that determine the performance of a query regarding partitions - tuple imbal-
ance on the partitioner side and aggregation cost to merge results. A dynamic
approach changes the partitioning function during runtime often based
on statistics, determining tuple routing to partitions.

Katsipoulakis et al. [6] provide an algorithm to weigh up tuple imbalance
and aggregation cost that can be parametrized by the partitioner. They com-
pared their work to the Partial Key Grouping algorithm of Nasir et al. [10],
which was the state of the art algorithm up to that time, later refined by heavy
hitter detection [11]. Rivetti et al. [13] also analyzed key distribution for parti-
tioning techniques, resulting in a Distribution-aware Key Grouping algorithm.
Pacaci et al. [12] published additional algorithms focused on distributed stream
processing on multiple machines, trying to minimize memory overhead and key
splitting to partitions.

Adaptive. While it is possible to achieve good results with dynamic partitioning,
an adaptive approach goes one step further, adjusting also the number of parti-
tions. This allows a fine-grained adaptation to skewed data and peaks in tuple
rates. The main challenge of this strategy is to avoid unnecessary additions and
removals of partitions since it adds noticeable overhead and processing delays to
the system. The usage of statistics is also a common solution for deciding when
partitions are changed.

Shah et al. [15] proposed the Flux operator that handles repartitioning with
state movements on-the-fly, focused on query execution in a cluster with multiple
machines. Zhu et al. [18] further analyzed state migration strategies, leading to
two different algorithms named moving state and parallel track, underlined with
cost models. Gedik [3] investigated partitioning functions in general, breaking
them down into three main properties. This allows adapting the used function
to the individual use case while keeping migration costs low. In addition, Gedik
et al. [4] provided an elastic auto-parallelization approach being able to adapt
to changing workloads with state migration on runtime. De Matteis et al. [9]
revisited the adaptive partitioning approach by the idea of prediction instead of
reaction, using online optimization with queue theory models to allow reconfig-
urations to be done just in time.

Adaptive Partitioning and Order-Preserved Merging 271

2.2 State Handling

Partitioning approaches can also be classified by regarding state handling of
operations, like hash tables of a join or sum of a group by.

Stateless. Operators that are not dependent on previously seen tuples, like selec-
tion predicates or projection of attributes, can easily be parallelized. With a
dynamic partitioning function, the input rate of single partitions can vary, but
that does not require any changes inside of a partition. Changing the number of
partitions is also intuitive since stateless operations, in general, have the same
memory footprint that does not change over time.

Stateful. Aggregations, joins, or windows are examples for stateful operations.
The partitioner is responsible for a suitable distribution of tuples in such a way
that the partitions do not miss results because a key is forwarded into the wrong
partition. If the number of partitions is reduced, state migration is unavoidable.
The migration mechanism depends on the type of state - a sum could easily be
added to another sum of a different partition, for example.

Order-Preserving. Another layer of restriction on top of stateful operations is
the preservation of correct tuple order after merging partition results. Since
some partitions can run longer than others and partitions are generally not
synchronized to maximize parallelism, the order of tuples after the merge step
cannot be guaranteed automatically.

In the past, a solution to this problem in the setting of distributed computing
was provided by Gulisano et al. [5]. They sorted the output of partitions by
timestamp, using dummy elements to avoid long blocking periods if a partition
produces no output tuples for a time interval that must be specified by the user.

3 Data Stream Processing

More and more applications require a non-blocking processing schema, where
results are continually produced. Prominent examples for such applications are
social networks like Facebook or Twitter, leading to own SPEs and real-time
analytic platforms like Apache Storm [16] or its successor, Apache Heron [7].

The general focus of stream processing lies on high throughput of queries
while keeping latencies low. The already mentioned partition-merge strategy
can be found commonly in systems today, being capable of parallelizing query
operators for throughput increase without sacrificing too much latency.

However, when scaling out partitions to maximize throughput, the right num-
ber of partitions fitting to problem size is necessary to not waste hardware
resources. For a DBMS on regular servers, a simple strategy is used most of
the time: Utilize every core and memory controller that is available to the query.
Using more cores means more processing power and bandwidth, leading to (hope-
fully) faster execution time overall. Streaming queries, on the other hand, can
get limited by the rate of data arrival. If this rate is low, it does not make any

272 C. Pohl and K.-U. Sattler

sense to increase the degree of parallelism by adding more partitions, wasting
memory for local data structures and increasing contention to the partitioner
and merge operator. Underestimating the rate of incoming tuples instead leads
to tuples buffered or enqueued waiting to be processed, raising latency as well
as leading to wrong results inevitably when the buffer or queue is full and tuples
get discarded.

Because of the dynamic behavior of long-running streams, even an initially
ideal configuration can become very bad, violating guarantees like latency con-
straints. To fully adapt to stream behavior, a DSMS must be able to support
scale out as well as scale in techniques on partitioning. Increasing the number
of partitions requires an initialization process of operators and states obviously.
Reducing the number instead means that states of the partition have to be
migrated into the other partitions to not lose information. For both cases, the
partitioning function, as well as the merging step, must be adapted accordingly.

3.1 Linear Road Streaming Benchmark

The Linear Road benchmark [1] simulates a configurable number of vehicle
expressways on which cars enter and leave different segments of the road contin-
uously. Each added expressway increases the number of concurrent cars and thus
the number of calculations necessary to correctly answer the benchmark query.
The long-running query calculates tolls raised dynamically and tracks accidents,
which lead to higher congestion on segments accordingly.

The challenge of this benchmark is to respond to each input tuple within five
seconds while keeping track of the different vehicles. Since a single thread has
limited computing power, over time it is inevitable to increase parallel computa-
tions. Since the tuple arrival rate increases vastly within the first hours because
of more and more cars entering the expressways, this benchmark is a good can-
didate for adaptive partitioning. With a fixed partition size, a high amount of
partitions must be initialized right from the start to keep up with later arrival
rates, blocking hardware resources unnecessarily.

3.2 Adaptive Partitioning

The goal of our partitioning approach is twofold: (1) Minimize partition change
events to avoid costly state migrations and (2) Utilize as many partitions as
necessary to avoid over-occupation of computing resources as well as underesti-
mation of query workload. This is achieved in general by a suitable partitioning
function as well as a strategy when adding/removing partitions, further improved
by micro-batching.

Partitioning Function. The partitioning function is used to determine which
partition is responsible for processing a batch or a single tuple, used by the
partitioning operator. In general, it has to balance the load in such a way that
all partitions got input to process without overburdening individual partitions.

Adaptive Partitioning and Order-Preserved Merging 273

In addition, when stateful operations are involved, the same keys should not end
in too many partitions to avoid costly aggregation steps in the merge operation.

The function can also be dependent on the use case. For the Linear Road
benchmark, information about individual cars is requested as well as information
about the different road segments. Therefore, cars of the same segment should
not become distributed over multiple partitions. Since cars change segments over
time, it is still necessary for account balance queries that the same car is only
processed by a single partition, which leads to a conflict on how to partition the
incoming tuples.

A good partitioning function can improve the overall throughput of a query
by lowering aggregation costs and balance load. However, our work is one step
further, providing an adaptive scaling of partition numbers which can use almost
any partitioning function like current state of art from Katsipoulakis et al. [6].
For our micro-benchmarks, we simply use a round-robin-based partitioning func-
tion while the Linear Road benchmark partitions data according to pairs of car
and segment ID: Since cars travel linearly through segments until they leave,
their combination is a good candidate for partitioning overall.

Scaling Strategy. We base our decision when to add partitions on an equation
for fulfilling general latency constraints. Whenever the equation returns false,
new partitions get added to the current processing:

∀i ∈ partitions : size(qi) + tp ins(qi) < tps(pi) (1)

size(qi) expresses the number of tuples the input queue of partition i holds
since we use queues to exchange tuples between threads. tp ins(qi) is the amount
of tuples that were added in the last time frame (usually within a second) to
partition i and tps(pi) is the tuple per second processing rate of the partition
i. The idea behind this formula is that when a latency constraint is given (like
answering within 5 s for the Linear Road benchmark), the partitions should
not store input tuples for later processing when they cannot catch up current
input rates. This relationship is realized and supervised by an optimizer which
also polls the necessary information from the partitions within a specified time
interval (e.g., one second for tight latency constraints or once in a minute for
more relaxed adaptation). Whenever a partition has to be added, the optimizer
initializes the new partition and adapts the partitioning function afterwards.
The reduction of partitions needs to find a balance between two aspects: state
migration and resource allocation. If the partition size is often reduced, the
overall throughput and latency are harmed by many state migrations from the
removed partitions. On the other hand, if more partitions than necessary are
kept, resources are wasted and merging efforts are needlessly high. We, therefore,
propose an intensity-based approach (see Algorithm 1), being able to solve this
tradeoff problem very well for at least our chosen experiments.

Whenever the input queue of a partition is fully empty, the intensity of
reduction is increased. If the partitions got tuples again at the next timestep,
the intensity is reset, which is also done if the amount of partitions is reduced

274 C. Pohl and K.-U. Sattler

Input: Initial configuration, Threshold t, Partitions ps
1 Intensityold=Intensitynew=0;
2 while query is running do
3 Intensityold = Intensitynew;
4 for each p in ps do
5 if qinp(p) == empty then //a partition has no input tuples
6 Intensitynew++;
7 mark partition(p); //for later removal

8 end

9 end
10 if Intensityold == Intensitynew then //all partition queues filled
11 Intensitynew=0;
12 end
13 if Intensitynew >= t then //reduction can be applied
14 reduce partition(); //based on marked partitions
15 Intensitynew=0;

16 end

17 end

Algorithm 1: Intensity Algorithm

successfully. After reaching a parametrizable amount of intensity (expressed in
a threshold), the partition is marked for reduction, not getting tuples anymore.
When it has finished current processing, it is removed by the optimizer, inte-
grating its state atomically into another partition. This procedure depends on
the complexity of the states as well as the use case. It is also possible to reduce
multiple partitions at once by storing references to marked partitions in a list,
forwarding the list to the reducing function of the optimizer. However, it is not
recommendable to reduce multiple partitions in short optimizing time intervals,
since it can easily lead to partition ping pong by over- and underestimation of
necessary resources.

Micro-batching. A notable bottleneck in query performance is the data
exchange between the partitioner and the threads of partitions when scaling out
to tens and hundreds of partitions on a single many-core CPU. We, therefore,
added a batching operation, which gathers tuples at the expense of individual
tuple latency. The batch is then forwarded by the partitioner to the correspond-
ing partition at once, reducing the amount of thread synchronization, shown
later in this paper. The partition extracts the individual tuples from the batch
afterwards, continuing with further processing. The general concept of batching
in stream processing applications is not new, Apache Flink [2] is a well-known
example combining both strategies.

Batching up tuples can follow different approaches, providing a tradeoff
between latency and aggregation overhead in the merge operator. On the one
hand, if tuples are gathered into a single batch, forwarded when full, the latency
delay can be kept low (depending on batch size). However, this leads to a key

Adaptive Partitioning and Order-Preserved Merging 275

distribution where multiple partitions hold the same key, increasing aggregation
efforts afterwards. On the other hand, if the batch size is kept small and tuples
are batched together according to their key, it is possible not to distribute the
same key to many partitions at the expense of latency.

For our experiments, we use batching only for the micro-benchmarks, since
Linear Road has high latency constraints that cannot be fulfilled otherwise.

3.3 Order-Preserving Merge

The goal of an order-preserving merge operation is again twofold: (1) All out-
put tuples from partitions are forwarded in a single stream, ordered accordingly
and (2) Latency delay by keeping arrived tuples for ordering is minimized, hold-
ing back tuples only as long as necessary. To reach this goal, the architecture
of merging is described first. Afterwards, the order-preserving step is briefly
explained.

Merge Concepts. There are mainly two ways of exchanging tuples between
partitions and a merge operator: a single queue for all partitions or one queue
per partition (see Fig. 3).

Fig. 3. Merge with one queue (left) and multiple queues (right)

Regarding performance, only one queue works well for small numbers of
partitions, when the overall contention is low. Ordering the output, however, is
difficult to realize without costly copy operations or iterations through the tuples
inside of the queue. Regarding that fact as well as increased contention on a single
queue for high amounts of partitions, we optimized the merge step by providing
individual queues for all partition outputs. Therefore, the single producer single
consumer (SPSC) paradigm can be applied, which is a well-known concept from
lock-free data structures shared between threads.

Ordered Merge. We made the assumption that the order of tuples does not
change inside of a partition. When tuples are batched together, forwarding the
batch at once, the partition extracts the tuples in the same way as they are
inserted, leading to the same order. This means that the order of tuples inside

276 C. Pohl and K.-U. Sattler

of an output queue is correct if there is no other partition involved. Even when
multiple partition-merge schemes are applied to a query, the assumption holds
if each merge step achieves the right order for the tuples. The general concept
of order preservation for the merge operation is shown in Fig. 4.

Fig. 4. Order-preserving merge

When all partitions publish results in their own queues, the merge operator
can compare all first elements among each other. At a high conceptual level,
this merging step is comparable to merging sorted arrays like in a sort-merge
join. Any function can be used to produce the correct order, like ordering by
timestamp, value or even lexicographically. Since the comparison has only to
check one value per partition, good scaling can be achieved overall.

The problem of a partition producing no output tuples for a longer time
period, delaying any output of the merge step, can be solved differently. One
way to avoid blocking is to add dummy elements [5]. The K-Slack algorithm [8]
can also be applied here, guaranteeing a time frame in which tuples are in the
right order. The end of the time frame can be observed by comparison of the
timestamps of tuples at the end of the queues.

4 Experimental Analysis

We expect that our approach scales the number of partitions directly with
the tuple input rate of the data stream, increasing and decreasing accordingly.
With batching of tuples, reducing communication between threads, the overall
throughput in terms of tuples processed per second should rise at the expense of
individual latency. Regarding the merge operator ordering output tuples, each
added partition leads to additional comparisons worsening throughput. This
raises the expectation that the gap in performance compared to regular merging
gets bigger the more partitions are involved.

For the experiments we built our SPE PipeFabric with the Intel compiler
version 17.0.6. and AVX512 enabled. The KNL 7210 processor runs in SNC4
clustering mode, while the MCDRAM is used as last-level cache.

Adaptive Partitioning and Order-Preserved Merging 277

4.1 Micro-benchmarks

Since our approach contains different aspects like adaptive partitioning, batch-
ing, or order-preserving merge, we run individual benchmarks for each of them.
The general query we use for benchmarking can be written in SQL in the fol-
lowing way:

SELECT key, SUM(payload)
FROM stream
GROUP BY key

Tuples from the datasets we choose (described further below) consist of three
attributes each: a timestamp, a 4 byte key and 4 byte payload. The query exe-
cutes the grouped aggregation GBy with a varying number of instances, while
the projection is applied afterwards by a single projection operator Proj as shown
in Fig. 5, since a stateless projection, in general, can be executed very fast.

Fig. 5. Micro-benchmark query

We use two different synthetical datasets to simulate data stream behavior.
The first dataset follows a sinus curve over time, where the amount of tuples
produced per second varies between zero and 100.000 tuples per second. The
second dataset simulates a burst, where 10 million tuples are available to process
right from the beginning, allowing the query to finish as fast as it is able to
process them.

Figure 6 shows the distribution of the sinus dataset over time and the adap-
tive scaling of partition numbers. Each point of the dataset reflects the number
of tuples arrived in that second. Not all points are shown in the Figure to keep
track of the plot, though. Since the aggregation operator instances have com-
parable processing rates, we directly convert the partition number to tuples
processed per second overall.

It can be seen that the adaptive approach scales correctly with the sinus
curve, guaranteeing the latency restrictions. The intensity-based (delayed) reduc-
tion of partitions leads to some overextension of resources which is intentional.
As many real data streams follow a more skewed and noisy behavior with the
fact that removing partitions with stateful operations is costly, a ping-pong of
partition sizes through adding and removing partitions within a second must be
avoided.

278 C. Pohl and K.-U. Sattler

Fig. 6. Adaptive partitioning with sinus dataset

The next experiment shows the performance improvement for batching
tuples. Instead of forwarding tuple by tuple between the partitioner and the
partitions, tuples are batched and forwarded at once, increasing throughput at
the expense of individual latency. We exclude advantages through SIMD for
operations directly on batches by extracting them to tuples right after the par-
titions received them. The query stays the same as in the sinus dataset, but the
second dataset is used to create pressure on throughput. Figure 7(left) shows the
result on different numbers of partitions and varying batch sizes.

Fig. 7. Benchmark for batches (left) and merges (right)

Mainly two observations can be made. First, the overall throughput degrades
after 64 partitions. This is attributable to the fact that a single partitioner
forwarding data to other threads is limited in its processing rate. Additionally,

Adaptive Partitioning and Order-Preserved Merging 279

the aggregation is a cheap operation in general, especially when compared to the
necessary computations per tuple of the Linear Road benchmark. Second, there
is an ideal batch size for throughput. With only four partitions it simply does not
matter if batching is applied, because thread synchronization is not the limiting
factor. Instead, the speed of aggregation is limited by the processing power of the
partitions. When the number of partitions grows, the throughput with batching
increases by up to 70% when compared with a non-batching strategy.

The last micro-benchmark applies to the order-preserving merge operator.
The same setup like in the batching experiments before is used, excluding batch-
ing obviously. Results can be seen in Fig. 7(right).

Throughput of both merge strategies is compared directly, changing the num-
ber of partitions over time. With only a few partitions up to 16, the ordering
does not hurt throughput overall. Because each partition has its own output
queue following the SPSC concept, even a speedup can be achieved. But when
the number of partitions further increases, the order-preserving merge operator
has higher efforts of checking queues and comparing tuples, leading to a reduc-
tion of throughput over time up to 28% for 64 threads. Due to hyper-threading
for 128 and 256 partitions, both merge steps decrease in performance. Since the
regular merge operator only forwards incoming tuples, it gets more penalized
than the order-preserving merge by high contention.

4.2 Linear Road

The dataset for Linear Road can be generated with a variable number of express-
ways. Each expressway adds more vehicles and thus more tuples per second that
have to be processed, leading to the L-rating of a solution. To the best of our
knowledge, the highest L-rating with 512 expressways was achieved by [17], using
a distributed setting with 70 nodes, two quad-core CPUs per node. With a single
many-core CPU, it is obviously not possible to reach 512 or even more express-
ways - our goal is still to achieve a high L-rating for one processor while scaling
out our partitioning approach. In addition, we demonstrate that our algorithm
is able to adapt to the increasing data arrival rate over three hours of traffic
simulation. We use two Linear Road datasets for evaluation with one (L1) and
two (L2) expressways generated, looking forward to increasing the number of
expressways even further since not all partitions are used up to that point.

The implementation of the Linear Road query synchronizes the input tuples
according to the data driver provided by the original implementation2. For each
incoming tuple, a preprocessing step is performed, filtering the types of tuples
and applying a five-minute window semantic for the average speed within a
segment. The core of the query, storing the tuple information, processing tolls,
and checking for accidents, is realized by user defined functions (UDFs) in a
specialized operator. The UDFs follow the notations provided in the original
paper [1]. This operator is scaled out by the partition-merge schema described
above.

2 www.cs.brandeis.edu/∼linearroad/datadriverinstall.html.

www.cs.brandeis.edu/~linearroad/datadriverinstall.html

280 C. Pohl and K.-U. Sattler

Since the order of output tuples, in general, does not matter (they should
only be processed within 5 s), the merge operation simply skips the ordering
step, directly forwarding any results from the partitions. Figure 8 illustrates the
datasets and adaptive partitioning results.

Fig. 8. Linear road benchmark

It can be seen that the number of tuples that arrive per second is much higher
on the L2 dataset. Not all points for the datasets are plotted - just like the sinus
micro-benchmark, to keep the overview. The results show that our approach
is viable, although some skew in the datasets requires an over-provisioning of
partitions to keep up with the 5 s latency constraint.

If we weight the latency constraint against wasting computing resources,
it is obvious that the latency is much more important, failing the benchmark
otherwise. Based on our intensity approach to scale down the partition number,
the threshold necessary to reduce the number of partitions is therefore increased
to avoid oscillating by adding and removing partitions caused by skew.

5 Conclusion

Partitioning of a data stream is a necessity to improve throughput and latency of
queries since single threads have limited computational power. This is even more
important for many-core CPUs or GPUs, which provide an intense amount of
parallelism at the expense of serial performance. The partition-merge schema is a
common solution to parallelize stream processing, allowing to scale out operators
to multiple instances sharing their work.

For related work done in the field of adaptive partitioning as well as order
preservation, we propose a classification regarding state handling and partition

Adaptive Partitioning and Order-Preserved Merging 281

determination with their characteristics in combination of both. Order preser-
vation is motivated by different use cases like complex event processing or pat-
tern detection that require correct order of tuples delivered. In addition, stream
behavior often changes over time, leading to inefficient queries when the parti-
tioning strategy is static and does not adapt.

In this paper, we combined an adaptive partitioning approach with order-
preserving merge to utilize the parallelism provided by the KNL processor. The
partitioning aspect covers the partitioning function and scaling strategy, com-
plemented with batching to overcome the data exchange bottleneck between
partitioner and partitions. For an efficient order preserving output, the merge
operator has to avoid blocking as much as possible, which can be realized by
individual SPSC queues. The function that guarantees the correct order is con-
figurable, allowing the merge operation to handle different order properties, like
common timestamps. Finally, we demonstrated performance and correctness of
our approach in microbenchmarks as well as the Linear Road use case, executed
on a KNL many-core processor.

References

1. Arasu, A., et al.: Linear road: a stream data management benchmark. In:
(e)Proceedings of the Thirtieth International Conference on Very Large Data
Bases, Toronto, Canada, pp. 480–491, 31 August–3 September 2004

2. Carbone, P., et al.: Apache FlinkTM: stream and batch processing in a single engine.
IEEE Data Eng. Bull. 38(4), 28–38 (2015)

3. Gedik, B.: Partitioning functions for stateful data parallelism in stream processing.
VLDB J. 23(4), 517–539 (2014). https://doi.org/10.1007/s00778-013-0335-9

4. Gedik, B., et al.: Elastic scaling for data stream processing. IEEE Trans. Parallel
Distrib. Syst. 25(6), 1447–1463 (2014). https://doi.org/10.1109/TPDS.2013.295

5. Gulisano, V., et al.: StreamCloud: a large scale data streaming system. In:
2010 International Conference on Distributed Computing Systems, ICDCS 2010,
Genova, Italy, pp. 126–137, 21–25 June 2010. https://doi.org/10.1109/ICDCS.
2010.72

6. Katsipoulakis, N.R., et al.: A holistic view of stream partitioning costs. PVLDB
10(11), 1286–1297 (2017). https://doi.org/10.14778/3137628.3137639

7. Kulkarni, S., et al.: Twitter heron: stream processing at scale. In: SIGMOD, Mel-
bourne, Victoria, Australia, pp. 239–250, 31 May–4 June 2015. https://doi.org/10.
1145/2723372.2742788

8. Li, M., et al.: Event stream processing with out-of-order data arrival. In: ICDCS
Workshops, Toronto, Ontario, Canada, p. 67, 25–29 June 2007. https://doi.org/
10.1109/ICDCSW.2007.35

9. Matteis, T.D., et al.: Keep calm and react with foresight: strategies for low-latency
and energy-efficient elastic data stream processing. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP 2016, Barcelona, Spain, pp. 13:1–13:12, 12–16 March 2016. https://doi.
org/10.1145/2851141.2851148

10. Nasir, M.A.U., et al.: The power of both choices: practical load balancing for
distributed stream processing engines. In: 31st IEEE International Conference on
Data Engineering, ICDE 2015, Seoul, South Korea, pp. 137–148, 3–17 April 2015.
https://doi.org/10.1109/ICDE.2015.7113279

https://doi.org/10.1007/s00778-013-0335-9
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/ICDCS.2010.72
https://doi.org/10.1109/ICDCS.2010.72
https://doi.org/10.14778/3137628.3137639
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1145/2723372.2742788
https://doi.org/10.1109/ICDCSW.2007.35
https://doi.org/10.1109/ICDCSW.2007.35
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1109/ICDE.2015.7113279

282 C. Pohl and K.-U. Sattler

11. Nasir, M.A.U., et al.: When two choices are not enough: balancing at scale in
distributed stream processing. In: 32nd IEEE International Conference on Data
Engineering, ICDE 2016, Helsinki, Finland, pp. 589–600, 16–20 May 2016. https://
doi.org/10.1109/ICDE.2016.7498273

12. Pacaci, A., et al.: Distribution-aware stream partitioning for distributed stream
processing systems. In: Proceedings of the 5th ACM SIGMOD Workshop on Algo-
rithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2018,
Houston, TX, USA, pp. 6:1–6:10, 15 June 2018. https://doi.org/10.1145/3206333.
3206338

13. Rivetti, N., et al.: Efficient key grouping for near-optimal load balancing in stream
processing systems. In: Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, DEBS 2015, Oslo, Norway, pp. 80–91, 29 June–3
July 2015. https://doi.org/10.1145/2675743.2771827

14. Russo, G.R., et al.: Multi-level elasticity for wide-area data streaming systems: a
reinforcement learning approach. Algorithms 11(9), 134 (2018). https://doi.org/
10.3390/a11090134

15. Shah, M.A., et al.: Flux: an adaptive partitioning operator for continuous query
systems. In: Proceedings of the 19th International Conference on Data Engineering,
Bangalore, India, pp. 25–36, 5–8 March 2003. https://doi.org/10.1109/ICDE.2003.
1260779

16. Toshniwal, A., et al.: Storm @Twitter. In: SIGMOD, Snowbird, UT, USA, pp.
147–156, 22–27 June 2014. https://doi.org/10.1145/2588555.2595641

17. Zeitler, E., et al.: Massive scale-out of expensive continuous queries. PVLDB 4(11),
1181–1188 (2011)

18. Zhu, Y., et al.: Dynamic plan migration for continuous queries over data streams.
In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, Paris, France, pp. 431–442, 13–18 June 2004. https://doi.org/10.1145/
1007568.1007617

https://doi.org/10.1109/ICDE.2016.7498273
https://doi.org/10.1109/ICDE.2016.7498273
https://doi.org/10.1145/3206333.3206338
https://doi.org/10.1145/3206333.3206338
https://doi.org/10.1145/2675743.2771827
https://doi.org/10.3390/a11090134
https://doi.org/10.3390/a11090134
https://doi.org/10.1109/ICDE.2003.1260779
https://doi.org/10.1109/ICDE.2003.1260779
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/1007568.1007617
https://doi.org/10.1145/1007568.1007617

Data Quality

CrowdED and CREX: Towards Easy
Crowdsourcing Quality Control

Evaluation

Tarek Awwad1,3(B), Nadia Bennani1, Veronika Rehn-Sonigo2, Lionel Brunie1,
and Harald Kosch3

1 Université de Lyon, CNRS INSA-Lyon, LIRIS, UMR5205, Lyon, France
{tarek.awwad,nadia.bennani,lionel.brunie}@insa-lyon.fr

2 FEMTO-ST Institute, Université Bourgogne Franche-Comté/CNRS,
Besançon, France

veronika.sonigo@univ-fcomte.fr
3 Department of Distributed and Multimedia Information Systems,

University of Passau, Passau, Germany
{tarek.awwad,harald.kosch}@uni-passau.de

Abstract. Crowdsourcing is a time- and cost-efficient web-based tech-
nique for labeling large datasets like those used in Machine Learning.
Controlling the output quality in crowdsourcing is an active research
domain which has yielded a fair number of methods and approaches.
Due to the quantitative and qualitative limitations of the existing eval-
uation datasets, comparing and evaluating these methods have been
very limited. In this paper, we present CrowdED (Crowdsourcing Eval-
uation Dataset), a rich dataset for evaluating a wide range of qual-
ity control methods alongside with CREX (CReate Enrich eXtend), a
framework that facilitates the creation of such datasets and guarantees
their future-proofing and re-usability through customizable extension
and enrichment.

Keywords: Crowdsourcing · Quality control · Dataset ·
Generic platform · Extendable campaign

1 Introduction

In the era where Artificial Intelligence is emerging at a steady fast pace through
its underlying concepts such as Machine Learning and Data Mining, the quest
for collecting labeled data like labeled images or annotated metadata is a persis-
tent and fundamental task for researchers in these domains. In the last decade,
crowdsourcing has proved its ability to address this challenge by providing a
mean to collect labeled data of various types, at a low cost and short time as
compared to expert labeling. However, the quality of the data produced through
crowdsourcing is still questionable, especially when the labeling task shows a fair
amount of subjectivity or ambiguity or requires some domain expertise [37].
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 285–301, 2019.
https://doi.org/10.1007/978-3-030-28730-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_18

286 T. Awwad et al.

Tackling this quality issue is, consequently, an active research domain that
has yielded a large number of quality control (QC) methods ranging from opti-
mizing the contribution aggregation process [10,14,40] and the worker selec-
tion step [3,23] to modeling context-specific reputation systems [24,27] and con-
trolled crowdsourcing workflows [11]. Indeed, validating and comparing these
methods raise the need for evaluation datasets which are sufficiently represen-
tative, information rich and easily extensible. Existing datasets [8,17,38,39,43]
do not fulfill those requirements because they are tailored, form-wise, to evalu-
ate one method or in the best cases, one category of approaches. This renders the
cross-category comparison - like comparing aggregation approaches to selection
approaches - unfeasible through sound scientific workflows. To address this chal-
lenge we designed and collected CrowdED (Crowdsourcing Evaluation Dataset), a
publicly available information-rich evaluation dataset. In this paper, we detail and
motivate the creation of CrowdED and describe CREX (CReate Enrich eXtend),
an open platform that facilitates the collaborative extension and enrichment of
CrowdED. The contributions of this paper can be summarized as follows:

– We provide a comprehensive specification sheet for a generic and future proof
evaluation dataset, provide a comparative review of the existing datasets and
discuss their compliance with those specifications.

– We propose CrowdED, a rich evaluation dataset of which we present the
design and the contribution collection steps as well as the statistical and struc-
tural properties. We assess the ability of CrowdED in plugging the dataset
gap through a qualitative study.

– We present the design of CREX and show how it facilitates the creation of
crowdsourcing campaigns to extend and enrich evaluation datasets similar to
CrowdED.

This paper is structured as follows: In Sect. 2, the state of the art of QC
methods is briefly reviewed. In Sect. 3, the specifications of a suitable evaluation
dataset are set. In Sect. 4, the state of the art crowdsourcing evaluation datasets
are discussed w.r.t. the requirements stated earlier. Then, in Sect. 5, we describe
the creation process of CrowdED as well as its structural and statistical char-
acteristics. Finally, we present CREX in Sect. 6 and discuss its re-usability in
Sect. 7, before concluding this paper in Sect. 8.

2 Crowdsourcing Quality Control

Many methods have been proposed to perform QC in crowdsourcing systems
[3,5,15,22–24,31,35]. Most works in this domain have focused on optimizing the
contribution aggregation process which consists in inferring the correct answer of
a task using the collected contributions for this task. Early works used majority
voting (MV) with multiple assignments to infer the correct answer to a given
task. Giving different weights to the different votes improves the quality of the
aggregation by penalizing less reliable answers. Those weights can be computed
as graded and binary accuracy measures [15], credibility scores [24] or overall

CrowdED and CREX 287

approval rates which are widely used in commercial crowdsourcing platforms
e.g., Figure-Eight and AMT. More generic and widely used techniques [4,23,40]
rely on probabilistic data completion methods like the expectation maximization
algorithm (EM) [6,7]. In the latter, the weights and the correct answers are
simultaneously inferred by maximizing a likelihood model. Li et al. [23] use, in
their model, the worker accuracy and inaccuracy as weights for correct and wrong
answers (respectively), while in [40], a Generative model of Labels, Abilities, and
Difficulties (GLAD) is proposed; GLAD uses both the worker ability and the task
difficulty as weights for the contributions in the aggregation process. In [35], the
worker’s reliability score is estimated using her participation behavior e.g., time
for completing a task, the number of clicks, mouse travel, etc. Some methods
propose to add more knowledge to the aggregation process using multiple stage
crowdsourcing such as the produce/review workflow in [4].

Another way of controlling the quality consists in allowing only reliable
workers to participate to the task completion. This can be done through pre-
assignment qualification tests. Platforms like Figure-Eight use a gold-based qual-
ity assurance [19] which consists in continuously measuring the accuracy of the
worker, using test tasks - with known answers - randomly injected in the work-
flow. A high error rate causes the rejection of the worker from the current cam-
paign. Programmatic gold [28] is an extension of the gold-based QC where test
tasks with incorrect answers are also used to train workers against common
errors. Li et al. [23] propose a probing-based selection method. They describe an
algorithm that finds, for each incoming task, a group of reliable online workers
for this particular task. This is done by assigning, during the so called probing
stage, a part of the tasks to the whole crowd in order to sample it and identify
the reliable group for the remaining part. Awwad et al. [3] substitute the prob-
ing stage by an offline learning phase to learn the reliable group from previously
completed tasks with a lower cost. Roy et al. [34] characterize in the same feature
space the tasks by the skills they require and the workers with their skills, and
then match workers and tasks according to their skills.

Moreover, some approaches in the literature leverage the worker incentive
and preference aspects of the crowdsourcing process. For instance, in [1,2], the
authors argue that proposing a personalized (based on the preferences) list of
tasks for a given worker improves her throughput in terms of quality. Kamar
et al. [16] propose incentive mechanisms that promote truthful reporting in
crowdsourcing and discourage manipulation by workers and task owners.

3 Specifications

In this section, we analyze the requirements of the aforementioned QC
approaches and deduce four specifications of a suitable evaluation dataset.

Specification 1: Data richness (S1)

Table 1 summarizes the requirements of a representative set of QC methods.
The majority of classical methods such as aggregation techniques [6,15] do not

288 T. Awwad et al.

Table 1. The needs of selected QC methods in terms of dataset content.

Methods Workers Tasks Contributions Ref Methods Workers Tasks Contributions Ref

Optimize
design

ID Content Yes [30] Profile selection Declar.
profile

Content Yes [3,23]

Priming ID Content Yes [26] Reviewing/Editing ID Content Yes [4]

Train workers ID Content Yes [4] Test questions ID Content Yes [19]

Reputation ID ID Yes [27] Optimize pay ID Content Yes [9]

OAR ID ID Yes [42] Fingerprinting ID ID Yes [35]

Skill
matching

Skill profile Skill set Yes [25] Task modeling ID ID Yes [40]

Recommender Preferences Content Yes [1] Worker model ID ID Yes [14]

require any specific features to be present in the dataset aside from the set of
contributions, i.e., a set of labels indexed by (IDworker, IDtask) keys. Those are
indeed required by all the existing methods. Other methods, such as profile-based
worker selection [3,14,18,23] necessitate the presence of the worker profiles1

in the dataset. Methods which take into account the type of the task when
selecting/screening workers - and which we refer to as contextual methods -
necessitate either the existence of a category-labeled task or the content of the
task from which the task type can be derived [34]. Finally, some methods [3]
can require information on both the workers and the tasks to be present in
the dataset at the same time. We distinguish two specifications related to the
richness of a suitable evaluation dataset:

S1.1 The dataset must provide information about workers, that is, the worker
declarative profiles.

S1.2 The dataset must provide information about tasks, that is, their full con-
tent, i.e., description, questions and answer options.

Specification 2: Data diversity (S2)

Crowdsourcing tasks cover a wide range of types [37]. Similarly, workers in a
crowdsourcing system fall into multiple profile groups [13]. In order to allow
assessing the genericity of the compared methods, it is crucial that the eval-
uation dataset reflects - to a sufficient extent - this type and profile diversity.
Accordingly, we set two specifications related to the data diversity:

S2.1 The dataset must reflect the diversity of the profile features characterizing
the workers of a real crowdsourcing system.

S2.2 The dataset must reflect the diversity of the task types. This includes the
generic asked action e.g. labeling an image, judging relevance, etc., and the
actual knowledge domain of the task e.g. sport, economy, etc.

Logically, S.2 tightens S.1 or equivalently S.2 contains S.1. however to allow
a more fine-grained comparison of existing datasets we keep both specifications.

1 E.g., demographics and self-evaluation profiles.

CrowdED and CREX 289

Specification 3: Contribution abundance (S3)

To control the quality, one might need to estimate the global [42] or the con-
textual [3] reliability of the worker from his previous or current contributions,
to compute the difficulty of the task using the workers’ agreement on its answer
[40], to assess the accuracy and the convergence ability of a proposed aggre-
gation method [15,38], to compute the correlation between worker’s reliability
(computed using his contributions) and his declarative profile [23] etc. All this
requires the dataset to provide sufficient contributions per worker and per task
while ensuring that these contributions provide information about workers’ reli-
ability and the tasks’ difficulty. We formulate this by the following specifications:

S3.1 The dataset must contain a large number of contributions. That is, both
the tasks and the workers present in the dataset must have a reasonable
number of contributions.

S3.2 The dataset must contain non-random contributions for tasks and for
workers. We show later how this can be achieved during the campaign design
and the data preprocessing steps.

Specification 4: Extensibility (S4)

The creation of a generic and information rich dataset should always be open
to new contributors, so that absent and new features can be proposed and col-
lected based on uncovered and new QC needs. Moreover, creating a realistic
evaluation dataset for crowdsourcing QC necessarily passes by a crowdsourced
data collection step, which is obviously a paid process. This makes the creation
of a large enough dataset very costly, hence not achievable by only one entity
(research laboratory, company, ...). Therefore, we add to the qualitative specifi-
cations S.1, S.2 and S.3 detailed earlier in this section a fourth specification as
follows:

S4.1 The dataset must be collaboratively extensible both in terms of tasks,
workers and contributions and in terms of worker features and task types.

In the remainder of this paper, we show how we design and build CrowdED
and how CREX guarantees its extensibility to fulfill Specifications S.1, S.2 and
S.3 and S.4.

4 State-of-the-Art of Crowdsourcing Evaluation Datasets

Table 2 details the characteristics of the evaluation datasets available in the
crowdsourcing literature. For the sake of completeness, both publicly available
and non-publicly available datasets are reported even though the latter ones are
not accessible and thus cannot be used as benchmarking dataset. The table also
shows the compliance of these datasets with Specifications S.1, S.2 and S.3. As
none of these datasets is compliant with S4, this specification is not shown in
the table. The compliance with those specifications is judged based on a set of
observed characteristics in the dataset which we enumerate as follows:

290 T. Awwad et al.

– The worker features (Feat.): is the number of worker profile features found in
the dataset (related to S.1.1 and S.2.1).

– The task content (Cont.): shows whether the dataset contains information
about task content or not (related to S.1.2).

– The task diversity (Div.): shows whether the dataset contains more than one
type of tasks or not (related to S.2.2).

– The contribution density (Den.): shows whether the set of contributions is
Dense (D), i.e., all of the tasks were solved by all of the workers, Semi-Dense
(DS), i.e., the sets of workers who answered different tasks overlap or Sparse
(S), i.e., the workers who answered one task are different from those who
answered another task (related to S.3.1).

Table 2. A comparison of a sample of dataset used in the literature to evaluate crowd-
sourcing quality control.

Ref Dataset Characteristics Compliance with S1−S3

Worker Tasks Contrib. PA RD S1.1 S1.2 S2.1 S2.2 S3.1 S3.2

Feat. # Cont. Div. # Den.

[14] Stack overflow 505 8 14021 Yes No 42063 S − + + + + − + +

Evergreen webpage 434 9 7,336 Yes No 22,008 S − + + + + − + +

TREC 2011 160 9 1826 Yes No 5478 S − + + + − − + +

[19] Product search 255 0 256 No No NA S − + − − − − NA +

[21] Synthetic 11 0 300 No No 3300 D − − − − − − − −
[23] Knowledge dataset 100 5 75 Yes No 7500 D − + + + − − − +

RTE NA 5 80 Yes No NA D − + + + − − − +

Disambiguation data 277 5 50 Yes No 13850 D − + + + + − − +

[38] Aff. text analysis 10 0 700 Yes No 7000 D + + − + − − − +

RTE 10 0 800 Yes No 8000 D + + − + − − − +

Word Similarity 10 0 30 Yes No 3000 D + + − + − − − +

[39] Image annot. Synth. 12* 0 500 No No NA NA − − − − − − − −
Image annot. Real 40* 0 100 No No 4000 NA − + − − − − + +

[43] Image labeling 109 0 807 No No NA SD − + − − − − − +

Relevance judgment 6* 0 2665 No No 16000 S − + − − − − − +

Feat.: worker Features, Cont.: task Content, Div.: task Diversity, Den.: contrib. Density

D: Dense contrib., DS: Semi-Dense contrib., S: Sparse contrib., n/a: not available

PA: Public availability, RD: Real Dataset, −: Un-fulfilled, +: Fulfilled, *: per task

In the literature, many datasets have been used to evaluate crowdsourcing QC
techniques. Only a few among those provide information about the declarative
profile of the workers [14,23] which is in line with the low number of QC methods
leveraging this aspect. The same observation was made by Ye et al. in [42]. The
previous reasoning also applies on the content of the tasks which is not always
present in the datasets [14,38]. On the opposite side, the contribution abundance
requirement is almost met by all of the datasets [8,14,17,19,23,38,39]. This
might be due to the fact that aggregation methods, which constitute a large
part of the crowdsourcing related literature as shown in Sect. 2, usually require
this requirement to be met.

CrowdED and CREX 291

The Data For Everyone (DFE)2 corpus from Figure-Eight provides a large
number of real task sets for which many contributions have been collected. While
these sets are varied enough in the task types, they suffer from at least one of
the following limitations: First, the majority of them provide aggregated contri-
butions instead of individual contributions, which violate Specification S 3.1.
Second, to the best of our knowledge, none of these datasets provide the profiles
of the workers which violates Specification S 1.1. Third, the content of the task
is not always present which does not meet Specification S 1.2. One can argue
that it is possible, through some data engineering effort, like transferring missing
data like profiles from one set to the other, to combine a number of these sets
into a larger specification-fulfilling dataset. However, the datasets found in the
DFE corpus are designed and generated independently by different requesters.
Hence, the intersection between the workers and tasks of different datasets, when
computable e.g., for unaggregated or un-anonymized datasets, might be empty
or sparse which hinders any “match and transfer” step.

The aforementioned datasets are all real crowdsourcing datasets. That is,
datasets generated through an actual crowdsourced data collection step. Alter-
natively, Synthetic datasets have been also used in the literature. Roy et al. [34]
and Rahman et al. [29] generated a set of workers and tasks distributed over a set
of skills found in a multilayer skill taxonomy in order to test the efficiency of their
skill matching approaches. Others, such as Welinder et al. [39] and Hung et al.
[12], generated synthetic datasets to evaluate the performance of their aggrega-
tion algorithms. While generating synthetic evaluation datasets for aggregation
and skill matching optimization approaches is relatively an easy and scientifi-
cally valid approach, generating synthetic datasets to evaluate approaches that
leverage worker’s behavior (e.g., fingerprinting [35]) and profile (e.g., declarative
profile based worker selection [3,23]) is unfeasible. That is because, on the one
hand, ignoring the uncertainty and noise resulting from the subjectivity of the
human being in generating the data, produces a dataset which does not reflect
the real crowdsourcing context. And, on the other hand, modeling the uncer-
tainty and noise is impossible due to the lack of behavioral studies of the crowd
in crowdsourcing systems. Hence, a synthetic dataset could, theoretically, fulfill
all the specifications except Specification S 3.2.

5 CrowdED: Crowdsourcing Evaluation Dataset

In this section, the process used to create CrowdED is described in detail and its
statistical and structural characteristics are presented. This process is divided
into three steps: First, the data preparation during which the raw resources such
as the task input are collected and preprocessed. Second, the data collection
step during which the actual contributions and profiles crowdsourcing occurred.
Finally, the data formatting step during which the collected contributions and
profiles are cleaned and restructured.

2 https://www.figure-eight.com/data-for-everyone/.

https://www.figure-eight.com/data-for-everyone/

292 T. Awwad et al.

5.1 Raw Data Preparation

We built our task corpus by collecting publicly available task sets from the Data
For Everyone datasets provided freely by Figure Eight3 (FE). The main motiva-
tion behind choosing the DFE datasets is to use tasks that have served real world
applications. In fact, it is possible to generate random labeling and knowledge
related tasks from scratch and to use them in the dataset generation process.
However, those will not be as significant as real world tasks. Furthermore, DFE
is a sustainable source4 of task sets for future extension of CrowdED (Specifica-
tion S 4.1). Our initial task pool consisted of 280K+ tasks, originally belonging
to 11 different task sets. The task content was distributed over various domains
such as sport (2), fashion (1), politics (2), economy (1), disaster relief (2), tech-
nology (1) and natural sciences (2) and over different action types like relevance
judgment, image labeling, tweet categorization etc. The task questions consisted
mainly multiple choice questions. In some cases free text answers where also
possible. All this helps fulfilling Specification S 2.2. The tasks were unevenly
distributed over the various task sets. For instance, one set constitutes 67% of
the entire corpus. That is why, in order to balance our task corpus we sampled
4000 tasks out of each set (i.e., the size of the smallest set). The set of 44k
resulting tasks constitutes our task corpus. In the next step, a random sample
of 525 tasks (Limited by our crowdsourcing budget) within the task corpus was
published for crowdsourcing.

5.2 Data Collection

We designed a crowdsourcing job and submitted it to FE. Workers who selected
the job were asked to read a detailed description of the task solving process
and conditions and to fill their contributor IDs. Those who decided to proceed
with the job completion were redirected to an external web page on which the
data collection took place. In the first stage of the task, we asked workers to fill
their contributor IDs again (for an easier matching and control) and to answer
a set of profile related and self-evaluation questions (Specification S 1.2) (see
Sect. 5.3). Once done, workers proceeded in the actual task solving. For each job
instance, tasks were randomly distributed over 11 pages in order to prevent the
concentration of the negative impact of weariness on one subset of tasks. After
completing the whole task set, a unique submission code was provided to each
worker allowing her to receive her reward on FE.

Workers were rewarded a base pay equal to 1$ US. Additionally, a bonus of 2$
US was awarded (manually) to workers whose answers and declared profiles were
of a good quality and high consistency (see Profile Rating in Sect. 5.3). Moreover,
we estimated the job completion time by 45 min, thus workers who finished the
job in a very short time (i.e., less than 40 min) were automatically eliminated and
did not receive any reward. Finally, we only accepted workers of at least level

3 https://www.figure-eight.com. Formerly named CrowdFlower.
4 Yet, it is not the only one since any other task corpus can be used.

https://www.figure-eight.com

CrowdED and CREX 293

2 in the FE worker classification5. On the one hand, these three parameters
(bonus, contribution duration and minimum worker level) were strict enough
to ensure that malicious workers (i.e., workers who intentionally fill random or
wrong answers) are eliminated (Specification S 3.2). On the other hand, they are
loose enough to allow a real representation of the quality issue in crowdsourcing.
Contributions were collected during 3 months over all week days and covering all
times of the day. This is to eliminate the bias related to the time zones, holidays
and working hours during the data collection, e.g., workers representing few
countries, limited educational and work profiles, etc.

5.3 Data Structure and Statistics

Figure 1 shows the structural characteristics of CrowdED as well as the features
of tasks and workers that it contains. In total, we collected 280K+ contributions
for 525 tasks from 450 workers among which 200 completed the entire set of
tasks. We call the set of contributions given by those 200 workers a “dense set”.
Structurally, CrowdED consists of 4 files: contributions.csv which contains the
worker contributions, workers.csv which contains the worker profiles, rating.csv
where profile ratings are stored and finally task.zip where the tasks content and
description are stored in JSON format. CrowdED have been made public on
Figshare and on Github.

Fig. 1. An overview of the structural characteristics of CrowdED. (*) a dense contri-
bution is a set of answers given by a single worker to the entire task set.

Some of the 525 tasks in CrowdED contain up to three independent questions.
The total number of answered questions is 1086. The majority of these questions
(926) are multiple choice questions and the remaining part consists of open
answer questions. The input of the tasks are tweets, images, scientific article

5 FE levels range from 1 to 3 where level 3 represents the most experienced and reliable
workers and 1 represents all qualified workers.

294 T. Awwad et al.

quotes or news articles and headlines. Their action types fall into five categories:
data extraction, data categorization, relevance judgment, sentiment analysis, and
decision making. While the gold answers for these question are not available, it is
safe to say that the large number of answers collected per tasks allows to estimate
these gold answers through any aggregation technique with a high confidence.

For each worker, we collected a profile consisting of 23 features divided into
three categories:

Declarative Profile. We collected 12 features consisting of the following demo-
graphical, education and interest related information about the user: age, gender,
country, education domain, education level, work domain, work experience, inter-
ests (two features), native language, other spoken language and full time worker
(i.e., whether the worker is a full time or occasional crowdsourcing worker). We
observed that these numbers are, for their majority, compliant with the num-
bers reported in previous studies found in the literature such as the study of the
Mechanical Turk marketplace [13].

Self-evaluation Features. We collected 7 features consisting of a 5-star self rat-
ing for 7 knowledge domains: sport, fashion, technology, natural sciences, human-
itarian work, politics, and social media. We observed that in average, female
workers seemed more confident in their knowledge in fashion and Humanitarian
work, while male workers, rated themselves higher for sport. For the remaining
domains, i.e., technology, natural sciences, politics and social media, both female
and male workers rated themselves similarly.

Behavior-Related Features. Four features related to the behavior of the work-
ers during the campaign were collected. Three of these features were collected
automatically in the interface:time for completing a task page, time for read-
ing the description and filling the profile and the order of task completion. The
fourth, however, resulted from a complementary crowdsourcing campaign; in
fact, in order to judge the consistency and reliability of the worker declarative
and self-evaluation profiles, we ran a profile rating job on FE during which the
profile of each worker who participated to our job was rated (from 1 to 4) for
consistency by at least 7 workers (with an average of 11 workers).

6 CREX: CReate, Enrich, eXtend

Generating and extending the data described earlier is a technically tedious
and time consuming task. In this section, we present CREX (CReate, Enrich,
eXtend), a framework that allows the generation and extension of such data
(CREX has been used to create CrowdED).

CREX uses a two-component architecture. This architecture is shown in
Fig. 2. The first component, CREX-D, allows a configurable task data selection
while the second, CREX-C, provides tools to automatically generate crowd-
sourcing campaigns from the output of CREX-D. The computational modules

CrowdED and CREX 295

of CREX are developed with Python3. CREX uses well established and sustain-
able natural language processing and machine learning libraries such as scikit-
learn, nltk, gensim, etc. The web user interface uses a combination of Bootstrap,
JavaScript and PHP and the used database technology is MySQL6.

Fig. 2. An overview of the CREX framework that combines two main compo-
nent; CREX-D for data selection and CREX-C for campaign generation and data
collection.

6.1 Data Preparation Component (CREX-D)

A typical crowdsourcing workflow consists of 3 steps: first, designing the task,
second, crowdsourcing the task and last, collecting the results. Indeed, this typi-
cal workflow is suitable for classical crowdsourcing where the aim of the requester
is to exploit the results in a limited application-centric way, e.g., label multime-
dia data to facilitate indexing, translate a given corpus, etc. In other words, it
suits applications where the input data are fixed and limited in size. When it
comes to research-related crowdsourcing, e.g., building evaluation, validation or
training datasets where the usage of the collected data goes beyond the limited
exploitation, the input data space is usually huge and more complex. Therefore,
an upstream input data selection effort is needed. A more suitable workflow is
then a four step process that adds an input data selection step at the beginning
of the aforementioned workflow. We propose a data selection step encapsulated
in the data preparation component CREX-D that allows the requester to group
his tasks according to their types through clustering, and then, to reduce their
number according to his budget through sampling.

Figure 2 depicts the structure of the CREX-D component. It comprises four
modules: the vectorizing module (CREX-VM), the clustering module (CREX-
CM), the sampling module (CREX-SM) as well as the evaluation module (CREX-
EM). Those modules are available and inter-operable yet independent.
6 A demo of CREX’s user interface and a real world use scenario can be found on

https://project-crowd.eu/.

https://project-crowd.eu/

296 T. Awwad et al.

That is, each module can be used separately or as an entry point for the remain-
ing steps or substituted by another module of equivalent role. This allows a more
flexible usage and thus a wider cross-domains utility of CREX.

The Vectorizing Module: Grouping the tasks starts by extracting the features
of interest from the raw data. In this work, we consider textual data where each
data point is the textual representation of a task. Despite being limited to this
type of data, CREX makes it easy to bypass this limitation by either feeding
pre-vectorized data to the CREX-CM or by adding custom vectorizing functions
to the CREX-VM. The actual implementation of CREX-VM supports frequency
based text representation (TF-IDF [36]) and semantic document representation
(Doc2vec [20]).

The Clustering Module: The CREX-CM allows to cluster the vectorized
tasks using one of three types of clustering algorithms: partitional (K-means),
density-based (DBSCAN), and hierarchical (Agglomerative). User can natively
use either a cosine or an Euclidean distance during the clustering process. How-
ever, the CREX-CM provides the possibility to feed the algorithm with a custom
pre-computed similarity matrix.

The Sampling Module: This module allows to sample from an input task
corpus a smaller set of tasks that can be crowdsourced while respecting the
budget constraints of the requester. This module implements a basic stratified
sampling algorithm and a type-aware constrained sampling process which is out
of the scope of this paper.

The Evaluation Module: The CREX-EM module allows to evaluate the clus-
tering process using internal and external validity measures such as silhouette
[33], homogeneity, completeness and V-measure [32] as well as a custom validity
measure consisting of a similarity to co-occurrence correlation matrix.

6.2 Campaign Management Component (CREX-C)

From a requester perspective, a mandatory step of the crowdsourcing workflow
is the task design and generation. This step is tedious and time consuming due
to two factors: first, the interest and use of crowdsourcing is growing to reach a
wider sphere of scientific and social domains. Thus, the range of task forms and
content is getting larger. Second, a crowdsourcing task, itself, might be dynamic,
i.e., it may require conditional or real-time computed components. Therefore, it
becomes harder for commercial crowdsourcing platforms to quickly adapt their
design tools, preset templates and real-time computational means7. A common
way of dealing with these limitations is to build campaign sites with dedicated
databases and back-end computations and to make them accessible through a
common crowdsourcing platform to provide reward payment and worker manage-
ment (for security and trust). The campaign management component of CREX,

7 e.g., requester accessible back-end services or API to dynamically modify tasks
and assignments.

CrowdED and CREX 297

CREX-C, provides an easy-to-use tool for generating campaign sites from the
sampled tasks using the campaign generator module (CG).

The Campaign Generator Module: CREX-CG takes two inputs: the set of
tasks to be published on the campaign site and the requester input consisting
of the task descriptions, examples and instructions. It parses these inputs to
intermediate JSON files and uses them to generate the campaign pages. The
campaign site communicates directly with the database where the contributions
and the worker profiles are stored. Contributions in the database are stored using
a JSON format which allows a straightforward use of CREX-C for different task
structures/types without the need for a new database model and query rewriting.

The Filtering Module: For a set of workers, tasks and contributions collected
after publishing the campaign generated by the CREX-CG module, the filter-
ing module allows to select a subset of these data based on qualitative and
quantitative selection criteria applied on the workers. Those criteria cover the
declarative profile features of the worker, their rating of their profiles, their time
of task completion, their time of profile completion as well as the number of task
they achieved. The filtering process has two main goals: First, it helps selecting
a subset of the workers based on qualitative criteria to allow studying its char-
acteristics e.g., its average performance of female workers. Second, it allows to
clean the data based on behavioral criteria. For instance, a profile filled in less
than 20 s is most likely to be inconsistent. That is, it has been most likely filled
randomly, which means that the worker associated to this profile is very likely
a malicious worker. Consequently, considering only the contributions of workers
who spent a reasonable time answering the profile questionnaire would yield a
noiseless dataset.

7 CrowdED and CREX Re-usability

7.1 Usability in Quality Control Evaluation

Table 3 shows the usability of CrowdED for evaluating the QC methods reported
in Table 1. This usability is judged based on the needs of these methods in terms
of information about workers, tasks and contributions and their availability in
CrowdED. The majority of the methods that require information about workers
and tasks only (regardless the type of the information) are natively supported
by CrowdED (blue cells). Others are supported either through simulation, i.e.,
vertically or horizontally splitting the dataset to simulate a real world situation
like worker screening or through augmentation, i.e., adding more knowledge to
the available data without the need for additional crowdsourcing by extracting
new features or using external taxonomy to represent tasks and workers (orange
cells). Less frequent methods that require more information are not supported
natively. Nevertheless, thanks to CREX, they could be supported by extending
CrowdED with a minor reconfiguration effort (e.g. changing the reward) or with
a more demanding coding effort (red cells).

298 T. Awwad et al.

T
a
b
le

3
.
C

ro
w

d
E

D
’s

u
sa

b
il
it
y

fo
r

th
e

ex
is

ti
n
g

q
u
a
li
ty

co
n
tr

o
l
m

et
h
o
d
s:

n
a
ti
v
e
,
si
m
u
la
ti
o
n
/
a
u
gm

en
ta
ti
o
n
,
ex

te
n
si

o
n
.

M
et
h
o
d
s

W
o
rk
er
s

T
a
sk
s

C
o
n
tr
ib
u
ti
o
n
s

R
ef

M
et
h
o
d
s

W
o
rk
er
s

T
a
sk
s

C
o
n
tr
ib
u
ti
o
n
s

O
th

er

O
p
ti
m
iz
e
d
es
ig
n

ID
C
o
n
te

n
t

Y
e
s

P
ro
fi
le

se
le
ct
io
n

D
e
c
la
r
.
p
r
o
fi
le

C
o
n
te

n
t

Y
e
s

P
ri
m
in
g

ID
C
o
n
te

n
t

Y
e
s

It
er
a
ti
v
e

R
ev

ie
w
in
g
/
E
d
it
in
g

ID
C
o
n
te

n
t

Y
e
s

It
er
a
ti
v
e

T
ra
in

w
o
rk
er
s

ID
C
o
n
te

n
t

Y
e
s

In
te
ra
ct
io
n

T
es
t
q
u
es
ti
o
n
s

ID
C
o
n
te

n
t

Y
e
s

R
ep

u
ta
ti
o
n

ID
ID

Y
e
s

M
o
b
il
it
y

O
p
ti
m
iz
e
p
a
y

ID
C
o
n
te

n
t

Y
e
s

R
ew

a
rd

O
A
R

ID
ID

Y
e
s

F
in
g
er
p
ri
n
ti
n
g

ID
ID

Y
e
s

B
eh

a
v
io
r

S
k
il
l
m
a
tc
h
in
g

S
ki
ll
p
ro
fi
le

S
ki
ll
se
t

Y
e
s

T
a
sk

m
o
d
el
in
g

ID
ID

Y
e
s

R
ec
o
m
m
en

d
er

P
re
fe
re
n
ce
s

C
o
n
te

n
t

Y
e
s

W
o
rk
er

m
o
d
el

ID
ID

Y
e
s

S
id
e
in
fo
.

CrowdED and CREX 299

Supporting different QC methods is one important facet of CrowdED’s re-
usability. Being representative from a task type and worker feature perspective is
the other facet. While it already supports a diversity of these types and features,
the current iteration of CrowdED does not cover the whole ever growing range
of task types and worker features. CREX helps fill this gap. Missing types and
features can be gradually added by CREX users by appending their croudsourced
data to crowdED. Eventually this collaborative effort will lead to a near full
coverage of the tasks, workers and QC methods.

7.2 Compliance with the FAIR Principles

To guarantee the re-usability of those resources by the wide community (which
allows a better extension and enrichment of CrowdED), the FAIR principles
[41] (Findable, Accessible, Interoperable, Reusable) were considered during the
design, the creation and the publishing process: CrowdED and CREX are avail-
able on Github and Figshare (with an associated DOI) which makes them
Findable. They are published under CC and GPL licensing respectively to
allow their Re-usablility and Accessibility. CrowdED data are stored in csv
files and no proprietary languages were used to develop CREX. This ensures the
Interoperability of the resources.

Accessibility. The site http://project-crowd.eu/ provides a demo of CREX-
D and CREX-C, a tutorial on installing and using CREX, a full description of
the configurable parameters as well as additional materials for this paper such as
the full statistical sheet of tasks, profiles, ratings and contributions of CrowdED.
Moreover, the site provides links to download both CREX and CrowdED.

8 Conclusion

In this paper we proposed CrowdED and CREX in order to address the lack of
evaluation datasets, which is unanimously one of the most challenging aspects
facing the research in crowdsourcing QC. The specifications fulfilled by CrowdED
allow it to be usable in evaluating and comparing a wide range of existing meth-
ods. CrowdED covers a large number of quality control methods as well as dif-
ferent task types and worker features. In order to deal with the methods and
task types which are not natively supported and included by CrowdED, and to
future-proof it, we proposed CREX. CREX is an open-source framework that
allows the collaborative extension of CrowdED to fulfill new qualitative require-
ments e.g., new worker profile types, and quantitative requirements e.g., more
contributions for a given task (S4).

References

1. Alsayasneh, M., et al.: Personalized and diverse task composition in crowdsourcing.
IEEE Trans. Knowl. Data Eng. 30(1), 128–141 (2018)

http://project-crowd.eu/

300 T. Awwad et al.

2. Amer-Yahia, S., Gaussier, E., Leroy, V., Pilourdault, J., Borromeo, R.M., Toyama,
M.: Task composition in crowdsourcing, pp. 194–203 (2016)

3. Awwad, T., Bennani, N., Ziegler, K., Sonigo, V., Brunie, L., Kosch, H.: Efficient
worker selection through history-based learning in crowdsourcing, vol. 1, pp. 923–
928 (2017)

4. Baba, Y., Kashima, H.: Statistical quality estimation for general crowdsourcing
tasks. In: ACM SIGKDD, NY, USA, pp. 554–562 (2013)

5. Daniel, F., Kucherbaev, P., Cappiello, C., Benatallah, B., Allahbakhsh, M.: Quality
control in crowdsourcing: a survey of quality attributes, assessment techniques, and
assurance actions. ACM Comput. Surv. (CSUR) 51(1), 7 (2018)

6. Dawid, A.P., Skene, A.M.: Maximum likelihood estimation of observer error-rates
using the EM algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 20–28 (1979)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39, 1–38 (1977)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database, pp. 248–255 (2009)

9. Difallah, D.E., Catasta, M., Demartini, G., Cudré-Mauroux, P.: Scaling-up the
crowd: micro-task pricing schemes for worker retention and latency improvement
(2014)

10. Ghosh, A., Kale, S., McAfee, P.: Who moderates the moderators?: crowdsourc-
ing abuse detection in user-generated content. In: Proceedings of the 12th ACM
Conference on Electronic Commerce, pp. 167–176. ACM (2011)

11. Gil, Y., Garijo, D., Ratnakar, V., Khider, D., Emile-Geay, J., McKay, N.: A con-
trolled crowdsourcing approach for practical ontology extensions and metadata
annotations. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 231–
246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4 24

12. Quoc Viet Hung, N., Tam, N.T., Tran, L.N., Aberer, K.: An evaluation of aggre-
gation techniques in crowdsourcing. In: Lin, X., Manolopoulos, Y., Srivastava, D.,
Huang, G. (eds.) WISE 2013. LNCS, vol. 8181, pp. 1–15. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41154-0 1

13. Ipeirotis, P.G.: Demographics of mechanical turk (2010)
14. Jin, Y., Carman, M., Kim, D., Xie, L.: Leveraging side information to improve

label quality control in crowd-sourcing (2017)
15. Jung, H.J., Lease, M.: Improving consensus accuracy via z-score and weighted

voting. In: Human Computation (2011)
16. Kamar, E., Horvitz, E.: Incentives for truthful reporting in crowdsourcing. In: Pro-

ceedings of the 11th International Conference on Autonomous Agents and Multi-
agent Systems, vol. 3, pp. 1329–1330. International Foundation for Autonomous
Agents and Multiagent Systems (2012)

17. Kanoulas, E., Carterette, B., Hall, M., Clough, P., Sanderson, M.: Overview of the
TREC 2011 session track (2011)

18. Kazai, G., Kamps, J., Milic-Frayling, N.: The face of quality in crowdsourcing
relevance labels: Demographics, personality and labeling accuracy. In: CIKM, pp.
2583–2586 (2012)

19. Le, J., Edmonds, A., Hester, V., Biewald, L.: Ensuring quality in crowdsourced
search relevance evaluation: the effects of training question distribution. In: 2010
Workshop on Crowdsourcing for Search Evaluation, pp. 21–26 (2010)

20. Le, Q., Mikolov, T.: Distributed representations of sentences and documents, pp.
1188–1196 (2014)

21. Li, H., Yu, B., Zhou, D.: Error rate analysis of labeling by crowdsourcing. In:
Machine Learning Meets Crowdsourcing Workshop (2013)

https://doi.org/10.1007/978-3-319-68204-4_24
https://doi.org/10.1007/978-3-642-41154-0_1

CrowdED and CREX 301

22. Li, H., Yu, B., Zhou, D.: Error rate bounds in crowdsourcing models. arXiv preprint
arXiv:1307.2674 (2013)

23. Li, H., Zhao, B., Fuxman, A.: The wisdom of minority: Discovering and targeting
the right group of workers for crowdsourcing. In: WWW, NY, pp. 165–176 (2014)

24. Mashhadi, A.J., Capra, L.: Quality control for real-time ubiquitous crowdsourcing.
In: UbiCrowd, NY, USA, pp. 5–8 (2011)

25. Mavridis, P., Gross-Amblard, D., Miklós, Z.: Using hierarchical skills for optimized
task assignment in knowledge-intensive crowdsourcing, pp. 843–853 (2016)

26. Morris, R., Dontcheva, M., Gerber, E.: Priming for better performance in microtask
crowdsourcing environments. IEEE Internet Comput. 16(5), 13–19 (2012)

27. Mousa, H., Benmokhtar, S., Hasan, O., Brunie, L., Younes, O., Hadhoud, M.: A
reputation system resilient against colluding and malicious adversaries in mobile
participatory sensing applications (2017)

28. Oleson, D., Sorokin, A., Laughlin, G.P., Hester, V., Le, J., Biewald, L.: Program-
matic gold: targeted and scalable quality assurance in crowdsourcing. Hum. Com-
put. 11(11), 43–48 (2011)

29. Rahman, H., Roy, S.B., Thirumuruganathan, S., Amer-Yahia, S., Das, G.: Task
assignment optimization in collaborative crowdsourcing, pp. 949–954 (2015)

30. Rahmanian, B., Davis, J.G.: User interface design for crowdsourcing systems, pp.
405–408 (2014)

31. Raykar, V.C., et al.: Supervised learning from multiple experts: whom to trust
when everyone lies a bit. In: Proceedings of the 26th Annual International Confer-
ence on Machine Learning, pp. 889–896. ACM (2009)

32. Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external
cluster evaluation measure (2007)

33. Rousseeuw, P.J., Kaufman, L.: Finding Groups in Data. Wiley, Hoboken (1990)
34. Roy, S.B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia, S., Das, G.: Task

assignment optimization in knowledge-intensive crowdsourcing. VLDB J. 24(4),
467–491 (2015)

35. Rzeszotarski, J.M., Kittur, A.: Instrumenting the crowd: using implicit behavioral
measures to predict task performance. In: UIST, NY, USA, pp. 13–22 (2011)

36. Salton, G., McGill, M.: Modern information retrieval (1983)
37. Sarasua, C., Simperl, E., Noy, N., Bernstein, A., Leimeister, J.M.: Crowdsourcing

and the semantic web: a research manifesto. Hum. Comput. (HCOMP) 2(1), 3–17
(2015)

38. Snow, R., O’Connor, B., Jurafsky, D., Ng, A.Y.: Cheap and fast–but is it good?:
evaluating non-expert annotations for natural language tasks. In: Conference on
Empirical Methods in Natural Language Processing, pp. 254–263. Association for
Computational Linguistics (2008)

39. Welinder, P., Branson, S., Perona, P., Belongie, S.J.: The multidimensional wisdom
of crowds, pp. 2424–2432 (2010)

40. Whitehill, J., Wu, T.F., Bergsma, J., Movellan, J.R., Ruvolo, P.L.: Whose vote
should count more: optimal integration of labels from labelers of unknown exper-
tise. In: NIPS, pp. 2035–2043 (2009)

41. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management
and stewardship. Sci. Data 3 (2016)

42. Ye, B., Wang, Y., Liu, L.: Crowd trust: a context-aware trust model for worker
selection in crowdsourcing environments, pp. 121–128 (2015)

43. Zhou, D., Basu, S., Mao, Y., Platt, J.C.: Learning from the wisdom of crowds by
minimax entropy, pp. 2195–2203 (2012)

http://arxiv.org/abs/1307.2674

Query-Oriented Answer Imputation
for Aggregate Queries

Fatma-Zohra Hannou, Bernd Amann(B), and Mohamed-Amine Baazizi

Sorbonne Université, CNRS, LIP6, Paris, France
{fatma.hannou,bernd.amann,mohamed-amine.baazizi}@lip6.fr

Abstract. Data imputation is a well-known technique for repairing
missing data values but can incur a prohibitive cost when applied to
large data sets. Query-driven imputation offers a better alternative as it
allows for fixing only the data that is relevant for a query. We adopt a
rule-based query rewriting technique for imputing the answers of analytic
queries that are missing or suffer from incorrectness due to data incom-
pleteness. We present a novel query rewriting mechanism that is guided
by partition patterns which are compact representations of complete and
missing data partitions. Our solution strives to infer the largest possible
set of missing answers while improving the precision of incorrect ones.

Keywords: Data imputation · Aggregation queries ·
Partition patterns

1 Introduction

Data incompleteness naturally leads to query results of poor quality and repair-
ing missing data is a common data cleansing task. Data imputation consists
in estimating missing data values manually or by using statistical or predictive
models built from existing available data. Repairing large data sets can lead to
important imputation costs which may be disproportional to the cost of certain
query workloads. In particular for analytic queries, imputation at the raw data
level might be inefficient for repairing aggregated query results. Query-driven
imputation allows for rectifying only the values that are relevant for the eval-
uation of a query and, hence, can significantly reduce the amount of data to
be processed. Although this approach is appealing, it has received little atten-
tion within the data cleansing community. A notable exception is ImputeDB [2]
where data imputation is performed during query execution by injecting statis-
tical estimators into the query plans. While this approach achieves its primary
goal of repairing only the data accessed by the queries, it requires the extension
of existing query processors to accommodate for the new imputation operators.
In this article, we are interested in the imputation of aggregated query results
where partition-wise imputation at a higher granularity might be preferred to
the tuple-wise imputation at the raw data level. Our approach is based on the

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 302–318, 2019.
https://doi.org/10.1007/978-3-030-28730-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_19

Query-Oriented Answer Imputation for Aggregate Queries 303

assumption that incorrect values obtained by incomplete partitions are of lower
quality than values obtained by imputation. Instead of instrumenting the query
execution plan, we adopt a declarative approach where experts express domain
and data specific imputation rules which identify missing or incorrect query
answers and estimate their values by aggregating available correct results. This
approach allows data analysts to capture the semantics of the underlying data
imputation process and facilitates the interpretation of the imputation results.

As an example, consider the following SQL query Qkwh over some table
Energy(B,F,R,W,D, kWh) storing daily kWh measures for day D of week W
and rooms R in floor F of building B. Query QkWh computes the average weekly
energy consumption for three floors in building 25:

select B, F, W, sum(kWh) as kWh
from Energy
where B = 25 and F in (1,2,3)
group by B, F, W

Table Energy might miss some measures for these floors. This incompleteness
can be the result of tuples containing null values in attribute kWh or defined
with respect to some reference tables (maps, calendars etc.). In both cases, a first
step consists in identify missing data tuples, and subsequently trace how they
impact the quality of query QkWh. Table 1 shows respectively a representation of
table Energy (ordered by week and floor), and the query answer Qkwh(Energy).
Missing measures are indicated by null values. For example, for week 1, Energy
contains all measures of floors 1 and 3 (we consider that each floor has only
one room and a week has three days) and misses one measure for floor 2. It
misses all measures for floor 1 and week 2. Each tuple in the query answer is
obtained by aggregating a partition of the input data and annotated correct if

Table 1. Energy table and Qkwh(Energy)

Energy

B F R W D kWh

25 1 1 1 1 12.3
25 1 1 1 2 10.1
25 1 1 1 3 9.6
25 2 1 1 1 8.3
25 2 1 1 2 6.4
25 2 1 1 3 null
25 3 1 1 1 5.3
25 3 1 1 2 7.2
25 3 1 1 3 6.1
25 1 1 2 1 null
25 1 1 2 2 null
25 1 1 2 3 null
...

QkWh(Energy)

B F W kWh label

25 1 1 32.0 correct
25 2 1 14.7 incorrect
25 3 1 18.6 correct
25 1 2 null missing
...

304 F.-Z. Hannou et al.

the partition is complete, missing if the partition is empty and incorrect if the
partition is not empty by incomplete. Data imputation is a common approach
for fixing incomplete data by applying statistical or logical inference methods.
Most approaches apply imputation independently of the query at the raw data
level. As shown in [2], repairing the entire data may turn expensive when data
is large and inefficient when the query only needs to fix a subset of values to
improve the query result quality. A second argument we develop in this article
is that, for aggregation queries, it might have more sense to estimate missing
or incorrect results at the granularity of the query result itself by exploiting
specific knowledge about the input data sets at the aggregation level. For this,
we propose rule based approach for repairing dirty data similar to [5] where
domain experts can define imputation rules using correct available observation
to repair missing and incorrect results. For example, an expert can state by the
following imputation rule that some missing or incorrect query result (due to
incomplete data) for a given floor could be repaired by taking the average of all
available correct results

r0 : (B : x, F : ,W : y) ← (B : x, F : ,W : y), avg(kWh)

More precisely, any missing or incorrect measure for some floor in building x
and for week y that matches with the left-hand side of the rule will be estimated
by the average over all correct measures for the same building and week (tuples
matching the right-hand side of the rule).

Our imputation process is based on a pattern representation of queries and
data for identifying correct, incorrect and missing query answers and for selecting
and evaluating imputation rules. In summary, the main steps of our imputation
approach are the following:

1. experts define imputation rules for repairing aggregate query results using
information about correct observations;

2. the system detects and summarizes correct, incomplete and missing query
answers in form of partition patterns;

3. the system selects for each missing or incorrect partition pattern one or several
rules for imputing data;

4. the selected imputation rules are translated into standard SQL queries that
generate correct results for missing or incorrect query answers.

Contribution and Paper Outline: Our imputation model for summarizing, ana-
lyzing and repairing aggregate query answers is presented in Sect. 2. Related
work is presented in Sect. 3. We describe the imputation process in Sect. 4 and
validate it experimentally in Sect. 5. Conclusion and future work directions are
presented in Sect. 6.

Query-Oriented Answer Imputation for Aggregate Queries 305

2 Imputation Model

Our imputation model is defined for a particular sub-class of SQL aggregate
queries:

Definition 1. Let Q be valid SQL aggregate query of the form

select S, agg(m) from T where P group by G

where condition P only uses equality predicates with constants.

Without loss of generality, we assume that P is in disjunctive normal form.
For example, query QkWh can be rewritten by transforming the where clause
into (B = 25 and F = 1)or (B = 25 and F = 2)or (B = 25 and F = 3).

We now introduce the notion of query pattern for representing the partitions
generated by the group by clause of an SQL aggregate query.

Definition 2. A query pattern is a tuple q = (a1 : x1, ..., an : xn) where for
each attribute ai, its values xi ∈ dom(ai) ∪ V ∪ {∗} is (1) a constant in the
domain of attribute ai or (2) a distinct variable in a set of variables V or (3)
the wildcard symbol ∗.
For example, (B : 25, F : x,R : ∗) is a query pattern where x ∈ V is a variable.

Definition 3. Let Q be some valid SQL aggregate query as defined in Defini-
tion 1 and A be a key of the input table containing all attributes in Q except the
aggregated attribute. We can then define a set of query patterns Q over A which
contains a query pattern qi ∈ Q for each disjoint di in the where clause such
that (1) all attributes Aj in di are represented by the corresponding constants
cj in qi, (2) all other attributes in the group by clause are distinct variable
attributes and (5) all attributes in A and not in Q are wildcard attributes.

For example, suppose that (B,F,R,W,D) is a key of table Energy (see
Sect. 1). Then, the SQL query QkWh generates the query pattern set Q = {(B :
25, F : 1, R : ∗,W : ,D : ∗), (B : 25, F : 2, R : ∗,W : ,D : ∗), (B : 25, F :
3, R : ∗,W : ,D : ∗)}. Observe that all query patterns of a query share the
same wildcard attributes and if q does not contain any wildcard attributes, then
the corresponding SQL query corresponds to a simple conjunctive query which
returns the measure values of the matching tuples (without aggregation and
group-by clause).

The instance of a query pattern q defines a subset of the partitions generated
by the group by clause over the tuples filtered by the where clause of the
corresponding SQL query. This filtered partitioning can formally be defined by
a partial equivalence relation over the query input tuples:

Definition 4. A tuple t matches a query pattern q, denoted match(t, q), if t.ai =
q.ai for all constant attributes in q. Two tuples t and t′ matching some query
pattern q are equivalent in q, denoted t ≡q t′, if t.aj = t′.aj for all variable
attributes aj in q (t and t′ only can differ for wildcard attributes).

306 F.-Z. Hannou et al.

A pattern p defines for each matching tuple t an equivalence class Φq(t) =
{t′|t ≡p t′}.

Definition 5. The instance of a query pattern q in some table M , denoted
I(M, q), contains all equivalence classes (partitions) of tuples in M .

It is easy to see that (1) when p does not contain any wildcard attribute, then
I(M, q) = {{t}|t ∈ I(q,M)} contains a singleton for each matching tuple in
M , and (2) when q does not contain any variable, I(q,M) = {Φq} contains
a single partition Φq ⊆ M . For example, the equivalence class Φq(t) of tuple
t = (B : 25, F : 1, R : 1,W : 2,D : 3) defined by pattern q = (B : 25, F : 1, R :
∗,W : xw,D : ∗) contains all tuples of building 25, floor 1 and week 2. The
equivalence class Φq(t′) with the same pattern q for tuple t′ = (B : 26, F : 1, R :
1,W : 2,D : 3) is empty. Finally, q′ = (B : 25, F : 1, R : ∗,W : 2,D : ∗) defines a
unique equivalence class for all tuples of floor 1 in building 25 and week 2.

Constrained Tables and Partition Patterns: We follow the approach of relative
information completeness [7] for modeling the completeness of a data table M .

Definition 6. Let M be a relational table and A be a key in M . Table R is called
a reference table for data table M if R contains all keys of M : πA(M) ⊆ R.
The pair T = (M,R) is called a constrained table.

Observe that any table M ′(A, val) with key A and with null values for attribute
val can be decomposed into an equivalent constrained table T = (M,R) where
measure table M = σval is not null(M ′) contains all tuples in M without null
values and R = πA(M ′) contains all key values in M ′. At the opposite, we can
build from any constrained table T = (M,R) a relational table S = R �� M
with null values (left outer join of R with M). For example, table Energy
has key (building, floor, room, week, day) and we can decompose Energy into
a measure table M defined by: select ∗ from Energy where kWh is not null
and a reference table R defined by select B, F, R, W, D from Energy.

In order to reason about the completeness of data partitions, we introduce
the concept of partition pattern [14].

Definition 7. Let T = (M,R) be a constrained table with reference attributes
A. A partition pattern p is a query pattern without variables over attributes A.
A partition pattern p is

– complete in table T if its instance (partition) in R is equal to its instance
(partition) in M : I(p,R) = I(p,M).

– incomplete in table T if its instance (partition) in T is strictly included in its
instance (partition) in R: I(p,M) ⊂ I(p,R).

– missing in table T if it is incomplete and its instance in M is empty: I(p,R) 	=
∅ ∧ I(p,M) = ∅.
For example, table Energy in Table 1 contains all measures for (1) all rooms

and days of the first week and the first floor and (2) misses all measures for

Query-Oriented Answer Imputation for Aggregate Queries 307

floor 1 and week 2. These observations are respectively summarized by pattern
pattern c1 in table C and e1 in in table E (Table 2). More exactly, pattern tables
C and E define the complete and missing partitions in the subset of keys M
identifying all non-null tuples in Energy with respect to the reference table R,
which contains all keys of Energy.

Both pattern tables are covering and minimal in the sense that they contain
respectively all complete and all empty patterns of T and no pattern that is
subsumed by another pattern in the same table. We call C and E the complete
and empty pattern (fragment) summaries of T and an algorithm for generating
these summaries is described in [11].

Imputation rules and imputation queries: Imputation rules repair the results of
aggregation queries by estimating missing tuple values. They are defined using
query patterns characterizing the tuples that should be repaired and the tuples
that should be used for their reparation.

Table 2. Complete and missing pattern tables for Energy data table

C B F R W D

c1 25 1 * 1 *
c2 25 2 * 1 *
c3 25 2 * 2 *
c4 25 3 * 1 *
c5 25 3 2 2 *
c6 25 5 * 1 *
c7 25 5 * 2 *
c8 26 * * * *

E B F R W D

e1 25 1 * 2 *
e2 25 * * 3 *
e3 25 3 1 2 *
e4 25 4 * * *

Definition 8. An imputation rule for some set of reference attributes A and
some measure attribute val is an expression of the form r : qm ← qa, imp where
(1) qm and qa are query patterns over A without wildcards, (2) all variables
shared by qm and qa are bound to the same attribute in qm and qa and (3) impu-
tation expression imp is an aggregation function transforming a set of values in
the domain of m into a single value in the domain of m.

In the following we use the anonymous variable for denoting non-shared
variables. For example, we can define the following imputation rules for missing
kWh values:

r1 : (B : x, F : ,W : y) ← (B : x, F : ,W : y), (max(kWh) + min(kWh))/2
r2 : (B : x, F : y,W : 3) ← (B : x, F : y,W : 2), kWh

r3 : (B : , F : 4,W : x) ← (B : , F : 4,W : x), avg(kWh)

Imputation rule r1 produces an estimation of the weekly electricity consump-
tion of some floor in some building by the midrange of all correct consumption

308 F.-Z. Hannou et al.

values over other floors of the same building and the same week. Rule r2 takes the
correct consumption of a floor in week 2 for estimating the value of the same floor
at week 3 (the aggregation function returns the value of the generated singleton).
Finally, rule r3 takes the average of all correct values for floor 4 in all buildings to
repair the value of the same floor in some building for the same week.

The formal semantics of an imputation rule is defined with respect to a
query Q, a table ImputeD of result tuples to be repaired by the rule and a table
AvailableD of all correct values which can be used for imputation. Observe
that table ImputeD contains all results generated by incomplete partitions and
all missing results corresponding to empty partitions whereas table AvailableD
contains all possible correct tuples that are returned by a new query Q′ which
is obtained by removing the where clause of Q (imputation rules can use all
correct results of Q but also other correct values that are generated by the same
aggregation function over complete partitions).

Definition 9. Let ImputeD and AvailableD be two tables that contain the
tuples to be repaired and the tuples which can be used for reparation. Then,
the semantics of an imputation rule r : qm ← qa, imp is defined by the follow-
ing imputation query Q(r) over ImputeD and AvailableD where A contains all
attributes in qm and S is the set of variable attributes shared by qm and qa:

select x.A, imp as m
from ImputeD x, AvailableD y
where match(x, qm) and match(y, qa) and x.S = y.S
group by x.A

The previous imputation query joins all tuples x ∈ ImputeD matching qm
with the set of tuples y in AvailableD matching qa over the shared attributes
S, partitions the obtained table over all rule attributes and finally applies the
imputation expression imp to estimate a value for m. For example, the previous
imputation rule r2 can be rewritten into the following SQL query :

select x.B, x.F, x.W, y.kWh
from ImputeD x, AvailableD y
where x.W = 3 and y.W = 2 and x.B = y.B and x.F = y.F ;

where AvailableD corresponds to the correct results generated by query QkWh

without its filtering condition. We will show in Sect. 4 how to exploit partition
patterns for identifying missing and incorrect query results and evaluating impu-
tation rules.

3 Related Work

Missing data is an ancient problem in statistical analysis [1] and data imputation
has been studied for many decades by the statisticians [1] and more recently by
the database community [3]. Different imputation approaches have been devel-
oped including Mean Imputation [9], which is still one of the most effective

Query-Oriented Answer Imputation for Aggregate Queries 309

techniques, K-Nearest Neighbor [9] and Hot Deck Imputation [18] (k=1) aggre-
gating the k most similar available samples, Clustering-Based Imputation [12]
estimating missing values by the nearest neighbor in the same cluster built over
the non-missing values. More recently, Learning-Based Imputation models adapt
machine learning techniques and represent data imputation as a classification
and regression problem [15]. Crowdsourcing techniques are also used for achiev-
ing data completion or repairing tasks and achieve high-quality results balanced
by an increased cost of human effort. Rule based cleaning is a middle-ground
solution that allows referring to human for drawing cleaning rules, but auto-
mates the reparation process. A notable example is the work of [5], introducing
a user interface for editing cleaning rules, and running automatic cleaning tasks.
The solution presented in [13] allies an SQL-like languages and machine learning
techniques to offer non expert users an interface to achieve data imputation.
Several classes of data integrity constraints also have been applied for detecting
and repairing missing or incorrect data [6]. For example, [8] proposes a formal
model based on master data to detect missing and incorrect data and editing
rules for repairing this data. The more recent work of [17] introduces the notion
of fixing rules to capture semantic errors for specific domains and specify how
to fix it. Our work adopts the same idea of using rules for repairing aggregate
query answers using a different approach for identifying missing and incorrect
results generated by empty or incomplete data partitions.

For large datasets, data imputation can become very expensive and ineffi-
cient. In contrast, query result estimation techniques consider repairing query
answers, obtained by applying queries to incomplete (or incorrect) data. Sam-
pling methods have been first used for run-time optimization through approx-
imate queries [10,16] over representative sample instead of the entire dataset.
In the same spirit, [16] integrates sampling techniques together with a cleaning
strategy to optimize during run-time. The price to pay for the reduced time and
cleaning effort is a bias introduced by the cleaning and sampling. [4] tackles the
problem in the absence of any knowledge about the extent of missing tuples
and estimates the impact of unknown unknowns on query results. The work
introduces statistical models for quantifying the error in query results due to
missing tuples. The goal of dynamic imputation [2] is to incorporate the missing
data imputation into the query optimization engine. Physical query plans are
augmented with two additional operators, that delete tuples with missing values
and replace them with new values. Only data involved in the query evaluation
are imputed, and the replacement is achieved at different query execution steps.

4 Query Imputation Process

Our imputation process is decomposed into four steps. The first step consists
in identifying the set of all partition patterns ImputeP (Q) summarizing the
partitions to be repaired and the set of partition patterns AvailableP (Q) of
partitions that can be used for reparation. Step 2 consists in identifying the set
of all rules that can be used for repairing ImputeP (Q) by using AvailableP (Q).

310 F.-Z. Hannou et al.

In this step, a rule is chosen if and only if it can repair at least one answer tuple
and if there exists at least one correct value that can be used for imputation.
The result of this step is a set of candidate imputations. The third step consists
in creating a sequence of candidate imputations which repair the missing and
incorrect tuples. Observe that a tuple might be repaired by several queries and
we assume that each imputation query overwrites conflicting repaired tuples
generated by the previous queries. Finally, step 4 consists in generating the
imputation queries following the imputation strategy of step 2.

Step 1: Identify correct, incorrect and missing result tuples: For identi-
fying correct, incorrect and missing answers, we first extend the notion of pattern
matching from tuples to query patterns.

Definition 10. A query pattern q matches a partition pattern p, denoted by
match(q, p), if for all constant attributes q.ai in q, q.ai = p.ai or p.ai = ∗. If
match(q, p), we can define a mapping ν from the variable attributes ai in q to
the attributes in p such that ν(q.ai) = p.ai. Then, a query pattern q (1) fully
matches partition pattern p, denoted by full(q, p), if ν(q) matches p and (2)
partially matches p, denoted by partial(q, p), otherwise. Partition pattern ν(p)
is called the matching pattern of q for p.

For example, query pattern q = (25, , ∗, , ∗) matches all patterns in C and
E except pattern c8 : (26, ∗, ∗, ∗, ∗)1. It fully matches patterns c1 : (25, 1, ∗, 1, ∗),
c2 : (25, 2, ∗, 1, ∗), c3 : (25, 2, ∗, 2, ∗), c5 : (25, 3, 2, 2, ∗), c6 : (25, 5, ∗, 1, ∗), c7 : (25,
5, ∗, 2, ∗), e1 : (25, 1, ∗, 2, ∗) and e2 : (25, ∗, ∗, 3, ∗) and partially matches pattern
e3 : (25, 3, 1, 2, ∗) and c4 : (25, 3, ∗, 1, ∗).

Let P be a set of partition patterns and Q be a set of query patterns of
some query Q. Then we denote by match(P,Q), partial(P,Q), and full(P,Q)
the sets of partition patterns in P that are matched, partially matched and fully
matched by query patterns q ∈ Q. By definition, partial(P,Q) = match(P,Q)−
full(P,Q).

Definition 11. Let W (Q) be the set of wildcard attributes in the query patterns
Q of some query Q and q be a query pattern over all variable and constant
attributes in the query patterns of Q. Then we denote by q∗ the query pattern
where all attributes in W are wildcard attributes. Pattern q∗ is called the exten-
sion of q in Q.

The extension of query pattern q = (B : 25, F : 2,W :) is q∗ = (B : 25, F : 2,
R : ∗,W : ,D : ∗) and the extension of tuple t = (B : 25, F : 1,W : 1) in Q is pat-
tern t∗ = (B : 25, F : 1, R : ∗,W : 1,D : ∗).

Proposition 1. Given a query Q over some constrained table T = (M,R) with
complete pattern summary C and missing pattern summary E. Let Q be the query
pattern set of Q. Then, for any tuple t in the reference table of Q the following
holds:
1 We omit attribute names when they’re not necessary for understanding.

Query-Oriented Answer Imputation for Aggregate Queries 311

– t is in the result of Q and correct iff t∗ matches a pattern p ∈ full(C,Q);
– t is in the result of Q and incorrect iff t∗ matches a pattern p ∈ partial(E ,Q)

(or, equivalently p ∈ partial(C,Q);
– t is missing in the result of Q iff a pattern p ∈ full(E ,Q) matches t∗.

Since query pattern q = (25, 1, ∗, , ∗) fully matches patterns c1, all answer
tuples t of QkWh where t∗ matches c1 are correct. For example, for tuple t =
(25, 1, 1), its extension t∗ = (25, 1, ∗, 1, ∗) matches c1 : (25, 1, ∗, 1, ∗). The same
argument holds for pattern q′ = (25, 2, ∗, , ∗) and tuples (25, 2, 1) and (25, 2, 2)
On the opposite, since q also fully matches patterns e1 : (25, 1, ∗, 2, ∗) and
e2 : (25, ∗, ∗, 3, ∗), all answer extensions matching these patterns are missing
in the result. Finally, q′′ = (25, 3, ∗, , ∗) partially matches pattern e3 : (25, 3,
1, 2, ∗) (or, equivalently, pattern c4 : (25, 3, ∗, 1, ∗)), all extended answer pat-
terns matched by these patterns, like for example (25, 3, 1)∗ = (25, 3, ∗, 1, ∗), are
incorrect.

By Proposition 1 and Definition 10, the set of missing or incorrect tuples
exactly corresponds to the set of the corresponding extended tuples matching E .

Definition 12. Given query Q over some table T = (M,R) with pattern tables C
and E and query pattern set Q. We can then define the following sets of patterns
for Q:

– ImputeP (Q) = full(E ,Q) ∪ partial(E ,Q) = full(E ,Q)
– AvailableP (Q) = {p|p ∈ C ∧ ∀A ∈ W (Q) : p.A = ∗}

ImputeP (Q) contains all patterns describing incomplete or missing partitions
(to be repaired) in the result of Q whereas AvailableP (Q) describes all complete
partitions that can be used for repairing Q. In the following step, we explain
how we can use these two sets for filtering imputation rules for some aggregation
query Q.

Step 2: Generate Candidate Imputations: Missing and incorrect answers
of some aggregation query Q (query pattern set Q) are estimated by imputation
queries. Each imputation query is generated by an imputation rule and repairs
some missing and incorrect tuples. We assume that the complete and missing
data partitions are represented by a complete and missing pattern summary as
defined before. We first define the notion of candidate imputation.

Definition 13. Let ImputeP (Q) be the imputation pattern set and
AvailableP (Q) the reparation pattern set of Q. A rewriting ω for pm ∈
ImputeP (Q) is an expression ω : pm ←r Pa where there exists an imputa-
tion rule r : qm ← qa, fimp such that the extended query pattern q∗

m matches pm
with ν and Pa ⊆ C is a non-empty set of complete patterns in C that are matched
by ν(q∗

a).

We say that rule r generates rewriting ω and call ν(q∗
m) the imputation pattern

of ω and ν(q∗
a) the repair pattern of ω. All rules r where there exists at least

312 F.-Z. Hannou et al.

one rewriting are called candidate imputations for Q. For example, ω1 : e1 ←r1

{c3, c7} is a candidate imputation for e1 : (25, 1, ∗, 2, ∗) generated by rule r1
with imputation pattern ν(q∗

m) = e1 : (25, 1, ∗, 2, ∗), repair pattern ν(q∗
a) =

(25, , ∗, 2, ∗) and Pa = {c3 : (25, 2, ∗, 2, ∗), c7 : (25, 5, ∗, 2, ∗)}, Similarly, ω2 :
e2 ←r2 {c3, c7} is a candidate imputation for e2 : (25, ∗, ∗, 3, ∗) using rule r2
with imputation pattern ν(q∗

m) = e2 : (25, ∗, ∗, 3, ∗), repair pattern ν(q∗
m) =

(25, ∗, ∗, 2, ∗) and Pa = {c3 : (25, 2, ∗, 2, ∗), c7 : (25, 5, ∗, 2, ∗)} and Finally, ω3 :
e2 ←r3 {c8} is second a candidate imputation for e2 : (25, ∗, ∗, 3, ∗) using rule
r3 with imputation pattern ν(q∗

m) = e2 : (25, ∗, ∗, 3, ∗), repair pattern ν(q∗
a) =

(, 4, ∗, 2, ∗) and Pa = {c8 : (26, ∗, ∗, ∗, ∗)}.

Step 3: Imputation strategy: The result of step 2 is a set of candidate impu-
tation rules where there exists at least one rewriting. Given a set of candidate
imputations R for some aggregation query Q, the goal is to define an ordered
sequence of candidate imputations for repairing the answer of Q. This sequence
is called an imputation strategy. The goal of a strategy is to solve two kinds
of conflicts. First there might exist several candidate imputations for the same
partition pattern pm ∈ ImputeP (Q) as shown in the example above for pattern
e2. Second, patterns in ImputeP (Q) might not be disjoint and repair a subset
of shared tuples. For example, missing patterns e2 : (25, ∗, ∗, 3, ∗) and e4 : (25,
4, ∗, ∗, ∗) might share the partition (25, 4, 3). A standard way for solving such
conflicts is to apply a multiple-imputation strategy which consists in applying
all candidate imputations and combining the estimated results through some
statistical methods. In this article, we adopt a different strategy which con-
sists in regrouping all candidate imputations for each rule and evaluating these
imputation groups following a static priority order defined over the imputation
rules. We can show that this process is deterministic since each imputation rule
generates at most one imputation value for any missing tuple.

Imputation rules can be ordered in different ways. For example, one might
prefer “specialized” rules to more “generic” rules where specialization can be
expressed by the number of constants in the and shared variables. For example,
rule r3 is then considered more specialized than rule r1 since it contains more
constants whereas rule r2 is more specialized than r3 since it contains more
shared variables (with the same number of constants). Another strategy is to
order the rules using some statistical estimations about data distribution, bias
and completeness or domain specific expert knowledge about the system gen-
erating the data. For example, if the kWh values for floor 4 are quite similar
over all buildings for a given week, rule rd might be preferable to rule rc. Rule
r1 might be preferred to the other rules if the kWh values do not vary over the
floors of the same building.

Step 4: Imputation query generation: As shown in Definition 9, each
candidate imputation r : qm ← qa, fimp generates an imputation query joining
the table ImputeD of values to be repaired with the table AvailableD containing
all correct values. As explained in Sect. 2, table AvailableD is shared by all

Query-Oriented Answer Imputation for Aggregate Queries 313

imputation queries, and can be obtained by removing the filter condition (where
clause) of query Q and matching the result with the pattern table AvailableP (Q)
(see Definition 12). For performance reasons we precompute this table once and
store the result, and reuse it for all imputation queries. Table ImputeD can be
obtained by matching the result Q with pattern table ImputeP (Q). Each rule
r : qm ← qa, fimp then generates the following imputation query over tables
ImputeP (Q), the result table Result of Q and AvailableD(Q) where S is the
set of variable attributes shared by qm and qa and A is the set of remaining
attributes in qm:

select x.A, x.S, fimp as m
from ImputeP (Q) p, Result x, AvailableD y
where match(x,qm) and match(y,qa) and x.S = y.S and match(x,p)
group by x.A, x.S

In the experiments we use a variation of imputation queries which returns the
pattern cover, for partitions to be repaired. This is more efficient since partitions
covered by the same pattern are imputed with the same value. An example of
such a rewriting is shown in the expriments.

5 Experiments

In this section we investigate the effectiveness and efficiency of our pattern-based
approach for repairing analytic queries answers. We consider a real dataset of
temperature measure collected by the sensor network at our university cam-
pus. The data table Temp(building, floor, room, year,month, day, hour, value)
used in our study contains temperatures collected in 12 buildings during
one year. Temp features both spatial and temporal incompleteness since
sensors only partially cover the campus buildings and operate erratically.
In addition to the temperature measures, we consider a second data set
Occ(building, floor, room, occupation, area) that records campus rooms areas
and occupations. Complete and empty pattern summaries are computed by a
pattern generation algorithm described in [11]. This algorithm produces pattern
summaries with respect to the campus map table and the calendar. Data and pat-
tern tables cardinalities are reported in Table 3. For example data table DTemp

contains 1, 321, 686 tuples for a reference table RTemp of 24, 615, 600 tuples
(Temp only covers about 5% of reference RTemp), and generates 11, 268 complete
partition patterns and 10, 777 missing partition patterns. DOcc is almost com-
plete and generates 1, 109 complete partition patterns and 263 missing partition
patterns for 611 tuples.

We designed a set of imputation rules over attributes in Tem and Occ. Rules
have variable schemas, allowing to match with different query patterns. The set
of rules in Table 4 is listed in priority order, the first rule is more pertinent
(accurate) than the next one when both apply.

Some implicit (expert) knowledge about campus locations allowed us to
define the priority order for some rules. Take the example of rules r2 and r3

314 F.-Z. Hannou et al.

Table 3. Data and pattern tables cardinalities

Variant x Data Dx Reference Rx Complete Px Missing P̄x

Temp 1,321,686 24,615,600 11,268 10,777

Occ 10,131 10,742 1,109 263

Table 4. Imputation rules for sensor dataset Temp

building, floor, room:
rule b f r b f r agg

r0 3334 xf xr xf xr min(temp)
r1 xf xf avg(temp)

building, floor, room, month, day:
rule b f r m d b f r m d agg

r2 xb xf 10 xm xd xb xf 12 xm xd temp
r3 xb xf 11 xm xd xb xf 13 xm xd temp
r4 xb xf xr 8 xb xf xr max(temp)
r5 xb xf xr xm xb xf xr xm avg(temp)
r6 xm xd xm xd avg(temp)

building, floor, room, month, occupation:
rule b f r m o b f r m o agg

r7 xb xf xr ”TD” xb xf ”TP” avg(temp)
r8 xb xf ”TD” xb xf avg(temp)

in Table 4: in the same floor, rooms are named sequentially in each side: one
side with odd numbers, and the other with even numbers. Room 12 is then next
room 10 (and not 11). The room planning allow rules such as r9 since the usage
of “TP” rooms is nearly the same (temporal scale) as for “TD”, which explains
the correlation between their temperature measures.

For our experiments, we define a set of aggregation queries over data tables
Temp and TempOcc = Temp �� Occ (Table 5). All queries aggregate temperature
measures along different attributes with variable filtering conditions (spatial,
temporal, occupation, area).

Query Result Annotation: The query result annotation step consists in clas-
sifying each answer tuple as correct, incorrect and missing. We run an identi-
fication algorithm that implements functions strict match and weak match of
Proposition 1 in Sect. 4. Table 6 classifies result patterns and partitions of each
query in Table 5 into missing and correct categories. The answer data partitions
are distributed between two classes correct and incorrect. Missing data is by
definition not part of the query answer, since they do not belong to the data

Query-Oriented Answer Imputation for Aggregate Queries 315

Table 5. Analytical queries over sensor datasets

Q1 select b, f , r , avg(temp)
from Temp
where b 3334
group by b, f , r

Q2 select b, f , r ,m,d,max(temp)
from Temp
where m in (6,7,8)
group by b, f , r , m, d

Q3 select b, f , r ,m,d avg(temp)
from Temp
where f in (4,5) and r in (10,11)
group by b,m,d

Q4 select b, f , r m, avg(temp)
from TempOcc
where b in (5354,5455)
and o ”TD”

group by b, f , r , m

Table 6. Correct, incorrect and missing patterns and data

|Answer| Correct Incorrect Missing Time (sec)

Patts Data Patts Data Patts Data

Q1 8 0 0 8 8 24 108 1.6 × 10−2

Q2 1,012 119 1 012 0 0 132 256,588 10.0 × 10−2

Q3 1,602 4 377 7 1,225 116 5,333 2.9 × 10−2

Q4 44 19 22 22 22 66 220 4.3 × 10−2

table (when using null values for representing missing information, missing data
would correspond to null values in the result).

Observe that the number of patterns does not represent the number of corre-
sponding data partitions. Pattern summarize completeness of data partitions at
different sizes ([25,*,*] covers much more data than [25,1,10] which corresponds
to one room partition). More generic patterns belong to a category set, wider
they cover data partitions, and imputing this single patterns extends to all sub-
sumed data. The running the running time is not impacted by the data table
size (Q3 vs. Q4).

Query Result Imputation: The imputation strategy algorithm generates an
ordered set of imputation queries to apply for each query “to repair” pattern
set. Since the pattern summaries are shared by all imputation queries, we pre-
compute the join between both data tables and the corresponding pattern tables
and use the result in the imputation queries. Recall that rules are applied in the
inverse order of their definition order. Take the example of the query Q2. The
ordered set of rules to repair the answer is {r6, r5, r4, r3, r2}. The imputation
process described in Sect. 4 is optimized in our experiments. Two imputation
queries are executed. First, table repairedPatt stores an aggregation estima-
tion obtained by joining the pattern table torepair with data table available.
The obtained pattern table with freshly computed temperature values is then

316 F.-Z. Hannou et al.

joined with the result table Result to generate the final table repairedResult.
This pre-aggregation at the pattern level improves query performance since it
avoids the redundant aggregation of partitions which are covered by the same
patterns in the Result:

create table repairedPatt as
select a.b, a. f , a.r , 8 as r .m, r.d, max(a.temp)
from torepair r, available a
where (a.b = r.b or r.b = ’∗’) and (a.f = r.f or r. f = ’∗’) and

(a.r = r.r or r. r = ’∗’)
group by b, f, r, m, d

create table repairedResult as
select r .b, r . f , r . r , p.m, r.d, p.temp
from repairedPatt p, Result r
where (r.b = p.b or p.b = ’∗’) and (r.f = p.f or p.f = ’∗’) and

(r . r = p.r or p.r = ’∗’) and (r.d=p.d or p.d = ’∗’)

In Table 7, column match patt. records the number of patterns that can be
repaired and column cov. part. shows the number of repaired partitions. The
number of imputed partitions (column imp. part.) depends on the number of
available correct partitions matching the rule’s RHS for the repairing process.
The number of remaining patterns (column rem.) corresponds to patterns that
no rule has repaired.

Table 7. Imputation results

Query rule match. patt. cov. part. imp. part. rem. run time (10−3 sec)

Q1 r1 32 136 109 27 2.40

r0 32 136 40 1.58

Q2 r6 132 256, 588 256588 0 27, 910.00

r5 132 256, 588 9936 720.00

r4 132 86459 10261 3, 260.00

r3 25 9292 920 1.74

r2 25 10212 920 1.84

Q3 r6 127 6558 6558 0 13, 890.00

r5 127 6558 1084 2, 240.00

r4 25 465 10261 3.70

r3 123 5333 331 1, 590.00

r2 74 1225 342 170.00

Q4 r8 88 242 242 0 4.78

r7 88 242 66 0.15

Query-Oriented Answer Imputation for Aggregate Queries 317

Observe from the set of rules that only r1 and r0 are applicable for the
first query. We start by applying the rule r1 with less priority, imputing 109
partitions over 136. The rule r0 repairs less tuples, since it requires repairing
a room with the average observed temperature for the same room during the
year. Many rooms are not equipped with sensors at all which explains the poor
number of imputation update achieved with this rule. At the end, 27 results still
remain without any estimation. We found for example that all missing partitions
matching the patterns (3334, JU, ∗), (3334, SS, ∗) and (3334, SB, ∗) could not be
imputed, since no temperature measure is available for these floors in all campus
buildings. Note that both applied rules require a completion using the same floor,
but no recording sensor is available for these floors, preventing imputation. All
other queries could be repaired completely by applying all matching imputation
rules. These experiments demonstrate that the usefulness of imputation rules
depends on the existence of correct answers and the expert’s knowledge about
the sensor network configuration and behavior.

6 Conclusion

We presented a new query-driven imputation approach for repairing analytic
query results using imputation rules. We propose a complete query rewriting
process that starts from missing and incorrect data identification using com-
pleteness patterns to generate imputation strategies for estimating missing and
incorrect query results. The current imputation model is limited to aggregation
queries with equality predicates in disjunctive normal form and a first possible
extension would be to extend matching to inequality predicates. A second exten-
sion concerns the introduction of statistical quality criteria like precision in rule
selection process. One obvious criteria for choosing a rule might be the coverage
of available correct data for estimating missing values. Finally, another research
direction concerns the automatic generation of imputation rules by using data
mining and machine learning techniques.

Acknowledgement. This work has partially been supported by the EBITA collabo-
rative research project between the Fraunhofer Institute and Sorbonne Université.

References

1. Buck, S.F.: A method of estimation of missing values in multivariate data suitable
for use with an electronic computer. J. R. Stat. Soc. Ser. B (Methodol) 22, 302–306
(1960)

2. Cambronero, J., Feser, J.K., Smith, M.J., Madden, S.: Query optimization for
dynamic imputation. Proc. VLDB Endowment 10(11), 1310–1321 (2017)

3. Chu, X., Ilyas, I.F., Krishnan, S., Wang, J.: Data cleaning: overview and emerging
challenges. In: Proceedings of the 2016 ACM SIGMOD International Conference
on Management of Data, pp. 2201–2206. ACM, New York (2016)

318 F.-Z. Hannou et al.

4. Chung, Y., Mortensen, M.L., Binnig, C., Kraska, T.: Estimating the impact
of unknown unknowns on aggregate query results. ACM Trans. Database Syst.
(TODS) 43(1), 3 (2018)

5. Dallachiesa, M., et al.: NADEEF: a commodity data cleaning system. In: Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data,
pp. 541–552. ACM (2013)

6. Fan, W.: Dependencies revisited for improving data quality. In: Proceedings of
the 2008 ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 159–170. ACM (2008)

7. Fan, W., Geerts, F.: Relative information completeness. ACM Trans. Database
Syst. (TODS) 35(4), 27 (2010)

8. Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with editing rules
and master data. Proc. VLDB Endowment 3(1–2), 173–184 (2010)

9. Farhangfar, A., Kurgan, L., Dy, J.: Impact of imputation of missing values on
classification error for discrete data. Pattern Recognit. 41(12), 3692–3705 (2008)

10. Garofalakis, M.N., Gibbons, P.B.: Approximate query processing: taming the ter-
abytes. In: Proceedings of 27th International Conference on Very Large Databases
(VLDB), pp. 343–352 (2001)

11. Hannou, F.Z., Amann, B., Baazizi, A.M.: Exploring and comparing table fragments
with fragment summaries. In: The Eleventh International Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA). IARIA (2019)

12. Liao, Z., Lu, X., Yang, T., Wang, H.: Missing data imputation: a fuzzy k-means
clustering algorithm over sliding window. In: 2009 Sixth International Conference
on Fuzzy Systems and Knowledge Discovery, vol. 3, pp. 133–137. IEEE (2009)

13. Mansinghka, V., Tibbetts, R., Baxter, J., Shafto, P., Eaves, B.: BayesDB: A proba-
bilistic programming system for querying the probable implications of data. arXiv
preprint arXiv:1512.05006 (2015)

14. Razniewski, S., Korn, F., Nutt, W., Srivastava, D.: Identifying the extent of com-
pleteness of query answers over partially complete databases. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, Mel-
bourne, Victoria, Australia, pp. 561–576, 31 May–4 June 2015

15. Silva-Ramı́rez, E.L., Pino-Mej́ıas, R., López-Coello, M., Cubiles-de-la Vega, M.D.:
Missing value imputation on missing completely at random data using multilayer
perceptrons. Neural Netw. 24(1), 121–129 (2011)

16. Wang, J., Krishnan, S., Franklin, M.J., Goldberg, K., Kraska, T., Milo, T.: A
sample-and-clean framework for fast and accurate query processing on dirty data.
In: Proceedings of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 469–480. ACM (2014)

17. Wang, J., Tang, N.: Towards dependable data repairing with fixing rules. In: Pro-
ceedings of the 2014 ACM SIGMOD International Conference on Management of
Data, pp. 457–468 (2014)

18. Zhu, B., He, C., Liatsis, P.: A robust missing value imputation method for noisy
data. Appl. Intell. 36(1), 61–74 (2012)

http://arxiv.org/abs/1512.05006

Optimization

You Have the Choice: The Borda Voting
Rule for Clustering Recommendations

Johannes Kastner1(B) and Markus Endres2(B)

1 University of Augsburg, Universitätsstr. 6a, 86159 Augsburg, Germany
johannes.kastner@informatik.uni-augsburg.de

2 University of Passau, Innstr. 43, 94032 Passau, Germany
markus.endres@uni-passau.de

Abstract. Automatic recommendationsareverypopular inE-commerce,
online shopping platforms, video on-demand services, or music-streaming.
However, recommender systems often suggest too many related items such
that users are unable to cope with the huge amount of recommendations.
In order to avoid losing the overview in recommendations, clustering algo-
rithms like k-means are a very common approach to manage large and con-
fusing sets of items. In this paper, we present a clustering technique, which
exploits theBorda social choice voting rule for clustering recommendations
in order to produce comprehensible results for a user. Our comprehensive
benchmark evaluation and experiments regarding quality indicators show
that our approach is competitive to k-means and confirms the high quality
of our Borda clustering approach.

Keywords: Borda · Clustering · k-means · Recommendations

1 Introduction

Recommender systems are becoming more and more common, because the quan-
tity of data, e.g., in online shopping platforms like Amazon, movie on-demand
streaming services like Netflix and Amazon Prime Video, or music-streaming
platforms as Spotify, is increasing continuously [19]. In order to handle these
large and confusing sets of objects easily, clustering is a very promising app-
roach to encapsulate similar objects and to present only a few representatives of
the sets to the user [6,21].

Example 1. Bob wants to watch a movie. He favors timeless old-school movies
of the late 70s, 80s and early 90s, prefers action-, adventure-movies and dramas.
Since it is later on the evening, he only wants to watch movies, which have a
runtime between 90 and 130 min. Furthermore Bob prefers ambitious movies, so
the user rating should be higher than 7 on a score from 0 to 10.

The result of such a preference query (cp. [12]) on a movie data set, e.g.,
the Internet Movie Database1 (IMDb) could produce a large, confusing result. In
our example the query would return a total of 30 movies, cp. Table 1.

1 https://www.imdb.com/.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 321–336, 2019.
https://doi.org/10.1007/978-3-030-28730-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_20&domain=pdf
https://www.imdb.com/
https://doi.org/10.1007/978-3-030-28730-6_20

322 J. Kastner and M. Endres

Table 1. Sample result of Bob’s 4-dim. preference query.

Now, Bob has to select one movie out of a quite confusing set of items. This
is in most cases a difficult decision, especially if the user preferences get more
and more complex regarding constraints in several dimensions, e.g., for growing
number of domains or number of constraints in multi-dimensional use cases.

Clustering approaches like k-means ensure that these large and confusing
sets are encapsulated and presented in a clear manner to the user. However,
if we consider the individual domains of each dimension, traditional distance
measures, which are used commonly in k-means, e.g., Euclidean, stretch to their
limits: While the domain of the dimension rating in Bob’s query from Example 1
yields to a range of almost 2 in the data set of Table 1, the domain of the movies’
runtime is 28 min between the movies with the shortest and longest runtime (ID
0 vs. 7). The same challenge is noticeable for the dimensions release year and
genres. Since these dimensions have quite diverse domains, using traditional
distance measures in k-means meet problems with this use case, because the
domains are not set into an equal relation to each other. In our Example, the
domains of release year and running time would have a major influence on the
clustering approach. If we want to get a useful clustering, we need to adjust
the domains before the clustering process (cp. [17,24]). This might be a very
challenging task due to various and versatile user preferences.

In this paper we adapt the Borda social choice voting rule for cluster allo-
cation, in order to ensure an equal treatment of each dimension. Each object is
considered equally in each dimension and receives a “voting”, which yields to
a more balanced and smooth result compared to a cluster allocation using tra-
ditional distance measures. Unlike k-means with traditional distance measures,
the Borda social choice voting rule considers each dimension independent from
the size of their domains for each object by assigning votes.

The rest of the paper is organized as follows: In Sect. 2 we discuss related
work. After that, the essential basics for our framework are laid in Sect. 3. In
Sect. 4 we explain our Borda social choice clustering algorithm. Thereafter, we
discuss synthetic experiments for our approach in Sect. 5. Section 6 presents our
recommender system resting upon the IMDb and our comprehensive quality
evaluation. We conclude in Sect. 7.

The Borda Voting Rule for Clustering Recommendations 323

2 Related Work

Thousands of clustering algorithms have been proposed in the literature. We will
briefly review some approaches related to our solution.

The basic algorithms of many clustering approaches are k-means and
k-means++, cp. [1,6]. The authors of [9] extended k-means and published an
implementation, which filters the data set with a kd-tree in order to ensure a
better separation between clusters. Considering multidimensional data sets is
a very common research area, hence [25] published an approach using hyper-
boxes for partitioning and forming clusters to reach less errors compared to the
common k-means clustering, especially in higher dimensions.

The authors of [27] published an approach, which ensures the stability of
k-means clustering by adding a heuristic for finding optimal centroids during the
cluster allocation. Using a weighting for identifying subsets in k-means ensures
better results, which is approached in [7]. In [18] subspace clustering is considered
to mask out dimensions in high dimensional data by a so called feature selection,
which reduces the dimensions by removing irrelevant and redundant ones.

Both [8,23] deal with chains as input for clustering algorithms and there-
fore present solutions for the cluster allocation of chains using orders instead of
trivial distances. Gong et al. published a collaborative filtering recommendation
algorithm in [26], which considers clustering approaches for user and item clus-
tering using similar ratings. Clustering personalized music recommendations by
setting favored music as centroids for the clustering process is published in [13].
The authors of [10] also used preferences in order to minimize the sets, which
should be clustered. Their approach is to compute clusterings in high dimensional
environments by using a Pareto-dominance criterion for cluster allocation.

Virmani et al. [24] proposed a k-means clustering approach, where a nor-
malization of features is integrated before the clustering process starts. This is
done by assigning weights to each attribute value to achieve standardization.
Also [17] discuss the effects of domain standardization. They found out that it
is important to select a specific standardization procedure according to the data
set, in order to obtain better quality results.

In all these cases the question is how to find the right weights and which
standardization procedure should be applied? In our paper we overcome the
normalization and standardization problem by applying the Borda social choice
voting rule to allocate objects to the clusters.

3 Background

Before we introduce our novel Borda clustering approach, we explain the most
important basics and background knowledge used in this paper. We briefly recap
the k-means clustering algorithm, which is an iterative partitioning algorithm
with a convergence criterion. Hereby each object gets allocated to one of k clus-
ters iteration by iteration, until a stable configuration is found. Furthermore we
review k-means++, a version of k-means where the initial partition is adjusted
with seeding.

324 J. Kastner and M. Endres

3.1 The k-means and k-means++ Clustering Algorithms

We present k-means as it is defined in [6]. Given a set X consisting of
nd-dimensional objects x and k user-desired clusters ci, k-means works as follows:

(1) Find an initial partition for the cluster centroids by choosing a random
d-dimensional object of X for each of the k centroids.

(2) Calculate for each object the distances to all centroids by using a distance-
measure, e.g., Euclidean distance, and subsequently allocate each object to
the closest centroid.

(3) Recalculate each centroid by averaging the contained objects.
(4) Proceed with Step (2) until two succeeding clusterings are stable, which

means that all clusters from the last iteration contain the equal set of objects
as in the current iteration.

In k-means++ the initial partition is not chosen arbitrary by random, but
by a randomized seeding technique. In particular, the possibly best centroids for
the initial partition should be found in order to reach more accurate clusterings.
Step (1) of the k-means algorithm is replaced as follows, cp. [1]:

(1a) Arbitrary choose an object of the set X as first cluster centroid c0.
(1b) For each further cluster centroid ci | i ∈ {1, ..., k − 1} choose x ∈ X with a

probabiltity of

p(x) =
dist(x, ci)2∑

x∈X dist(x, ci)2
(1)

where dist(x, ci)2 is the shortest squared Euclidean distance from a point x
to the already chosen closest centroid ci.

(1c) Proceed with Step (2) of the k-means clustering algorithm.

3.2 Similarity Measures

k-means and its variants use traditional measures like the Euclidean or Canberra
norm to calculate the distances between objects and sets [2].

The Euclidean distance is the most favored and used distance measure
for clustering with k-means. Given two points xi = (xi1 , . . . , xid) and xj =
(xj1 , . . . , xjd) with d dimensions, the particular squared distances regarding each
dimension are summed up and rooted after that, i.e.,

dist(xi, xj) =

√
√
√
√

d∑

l=1

(xil − xjl)2 (2)

In order to set the focus on distances using small domains as well, the Can-
berra norm is a very auxiliary measure. It sums up the absolute fractional dis-
tances of two d-dimensional points xi, xj in relation to the range of the focused
dimension for all dimensions:

dist(xi, xj) =
d∑

l=1

|xil − xjl |
(xil + xjl)

(3)

The Borda Voting Rule for Clustering Recommendations 325

Example 2. Consider Example 1. Assume we want k = 3 clusters and the movies
with the IDs (1), (7), and (23) are chosen as initial centroids. The movie with ID
(27) should be allocated to one of the clusters using k-means with the Euclidean
distance on the attributes rating, running time, release year, and genres.

We used the Jaccard coefficient 2 to determine the distance for categorical
attributes like genre, e.g, J (genresID=1, genresID=27) = 1

4 for movie (1) and
(27). The distance between movie (1) and (27) is then given by

dist(1, 27) =
√

(8.8− 7.1)2 + (125− 124)2 + (1990− 1977)2 + (1− 0.25)2 = 13.2

and shows that the (large) domain of the year has a major influence on the
calculation of the distance. Finally, movie (27) would be allocated to the cluster
with centroid (23) because of the lowest distance of only dist(23, 27) = 8.5.

4 Borda Social Choice Clustering

In this section we present our novel Borda social choice clustering approach.
Social choice deals with the aggregation of individual preferences for managing
social assessments and ruling. The Borda social choice voting rule is omnipresent
in political or other elections, e.g., the Eurovision Song Contest. Social choice has
its foundation back in the 18th century and was published first by Jean-Charles
de Borda and Marquis de Condercet [22].

4.1 The Borda Social Choice Voting Rule

As mentioned in [5], the Borda social choice voting rule is a very appealing
approach to consider each dimension in a multi-dimensional scenario in an equal
manner. This rule can be used for the allocation of objects to one and only
one cluster and therefore allows more influence of smaller domains. For our
approach, the Borda social choice voting rule is a promising method, because
every candidate receives equal weighted votes from each voter.

Definition. Given k candidates Ci, and d voters Vj , where each voter votes
for each candidate. Each voter has to allocate the voting vjm ∈ {0, ..., k − 1},
m = 1, ..., k, where all vjm are pairwise distinct. After all voters assigned their
votes, the votes for each candidate are summed up as it can be seen in Eq. 4,
while the Borda winner is determined as depicted in Eq. 5.

bordaSumCi
=

d∑

l=1

vli (4)

bordaWinner = max{bordaSumCi
| i = 1, ..., k} (5)

2 Jaccard: J(A, B) = |A ∩ B|/|A ∪ B| for two sets A and B. Jδ(A, B) = 1 − J(A, B).

326 J. Kastner and M. Endres

If we apply this approach to our clustering-framework, the candidates corre-
spond to the available clusters and the voters correspond to the dimensions of
the d-dimensional object which should be allocated to a cluster. Then, for each
dimension votes are assigned for the distances between the object and the cen-
troids of the clusters. While the closest distance receives a maximum vote of
k−1, the second closest gets a vote of k−2, etc., the largest distance obtains
a vote of 0, where k is the number of desired clusters. After the voting, Eq. 4
determines the sum of all votes for each cluster, and subsequently Eq. 5 identifies
the winner.

Therefore, dimensions, which would not be equally considered because of a
smaller or larger domain, e.g., by using a distance measure like Euclidean, get
equal weighted votes like the other dimensions and have a higher influence on
the clustering process.

Example 3. Reconsider Example 2. Table 2 shows our Borda social choice clus-
ter allocation for movie (27). The centroids of the initial clusters C1, C2, C3 are
the movies with the IDs (1), (7), (23).

For each dimension the distances between movie (27) and the centroids are
calculated. The Borda votes are depicted in parentheses, e.g., the dimension rat-
ing is closest to C3 and therefore gets a vote of k − 1 = 2. The second closest
centroid is C2 with vote 1, and C1 gets the vote 0. Finally, C2 with movie (7)
as initial centroid is determined as the Borda winner with a Borda sum of 5,
cp. Eqs. 4 and 5. Compared to the Euclidean distance we obtain a more concise
result for the cluster allocation, due to ranking the values in each dimensions
according to their closeness. Note that a Jaccard coefficient of 1.0 is the best
value for the genre.

Table 2. Cluster allocation for movie (27).

4.2 The Borda Clustering Algorithm

We modified the classic k-means algorithm from Sect. 3.1 to realize a clustering
with the Borda social choice voting rule as decision criterion for the cluster
allocation. For this, we changed Step (2) of k-means, where the distances of each
object to the available clusters are calculated, and used the Borda rule for cluster
allocation. This allocation is described in Function 1, which finally returns the
id of the centroid the object should be allocated to.

The Borda Voting Rule for Clustering Recommendations 327

Function 1. Determine Borda Winner

Input: d-dim. object x = (x1, ..., xd), centroids C, cluster-id last iteration idlast.
Output: id of the closest cluster for object x = (x1, ..., xd).

1: function getBordaWinner(x, C, idlast)
2: votes[] ←calculateBordaSum(x, C) � determine & sum up votes.
3: id= analyzeBordaWinners(votes[], idlast) � analyze all Borda winners.
4: return id
5: end function

For managing the Borda social choice voting rule, an object array votes[] is
used to save the centroid ids and Borda values. As further information for each
object x = (x1, ..., xd) ∈ X, an identifier idlast of the allocated centroid from the
previous iteration is necessary.

In Line 2, the array votes[] is set to the bordaSum values from Eq. 4. In detail,
in each dimension the distances between the considered object x and each cluster
centroid of C are calculated, saved together with the centroids id in an object
based data structure and appended to an object array. Once all distances in the
current dimension are calculated, this object array is sorted ascending according
to the distances in order to assign the Borda votes from 0 to k−1. After the sort,
the votes for each cluster are determined and summed up in the array votes[]
over all dimensions.

Subsequently, we find the Borda winner(s) with the highest score in the
array votes[] (Line 3) and return the id of the centroid in Line 4. If there is more
than one Borda winner, the winner is chosen by random. After the object x
got allocated to the centroid with the identifier id, the clustering continues with
Step (3) of k-means. Note that we call this approach Borda. There are some
improvements w.r.t. the convergence, which we will discuss in the next section.

4.3 Convergence

When talking about clustering, convergence is a major topic. In [6,16] it was
shown that k-means can only converge to a local optimum (with some probability
to a global optimum when clusters are well separated). Our algorithm is based
on k-means and only uses another “distance measure”. Therefore the proof of
convergence is similar to that one of k-means.

Proof. (Proof of convergence). There is only a finite number of ways to partition
n data points into k clusters [6,16]. For each iteration of our algorithm, we
produce a new clustering based only on the old clustering. In addition, it holds
that

(1) if the old clustering is the same as the new, then the next clustering will
again be the same. We have some kind of fixed-point.

(2) if the new clustering is different from the old one, then the newer one has a
lower cost (due to a better overall voting).

328 J. Kastner and M. Endres

Since the algorithm iterates a function whose domain is a finite set, the
iteration must eventually enter a cycle. The cycle cannot have length greater
than 1, because otherwise by (2) one would have some clustering which has a
lower cost than itself, which is impossible. �

Therefore, k-means using the Borda social choice voting rule, converges in a
finite number of iterations to a local solution, but does not permit us to eliminate
the interesting possibility that a point oscillates indefinitely between two clusters.

Indeed, after some preliminary tests, especially for higher dimensions and
higher number of clusters, we noticed that there are some problems regarding
the convergence of our approach. In order to solve this problem, we added a
decision criterion for the cluster allocation, if there is more than one Borda
winner.

In detail: For each iteration we save the ids of cluster objects the object got
allocated to. Assume there is more than one Borda winner in the next iteration.
We then consult the allocation to the centroid from the last iteration idlast (Line
3 of Function 1). If so, the object goes to the same cluster as in the last iteration.
As our benchmarks show, this solution ensures that the clusters are becoming
stable in a few number of iterations.

Another problem concerns the initial partition, which could result in empty
clusters. If the first centroid was randomly chosen, the probability that a quite
similar object of the first centroid will be chosen is very small but possible.
Especially, if there are, e.g., different movies with almost the same specifications,
the possibility is given, that these movies are chosen as cluster centroids. Then,
the order of the cluster centroids decides that the first of the regarding clusters
will be occupied with objects, while the following cluster with the similar centroid
will stay empty. K-means++ minimizes these problems and furthermore cares
that the runtime and the number of iterations will decrease. We call this extended
approach considering convergence and empty clusters Borda++.

4.4 Complexity

The complexity of our algorithm is given by O(ndk · k log(k) + k) where each
of the n d-dimensional objects should be clustered in k clusters. The algorithm
calculates for each object the distances of the dimension d for each cluster k in
O(ndk). Depending on the sorting algorithm, the distances are sorted, e.g., by
Quicksort in k · log(k). Finally, we search for the Borda winners in O(k). Hence
we get a complexity of O(nd · k2 · log(k)).

5 Synthetic Experiments

The aim of our synthetic experiments was to show that our approach is compet-
itive to k-means w.r.t. runtime and number of iterations.

The Borda Voting Rule for Clustering Recommendations 329

5.1 Benchmark Settings

We implemented our algorithms in Java 1.8, and ran our experiments on a server
(Intel Xeon, 2.53 GHz, 44 GB RAM) running Debian GNU/Linux 7. For our
benchmarks we used the data generator described in [3], which creates inde-
pendent, anti-correlated, and correlated synthetic data. We varied the number
of dimensions, the number of objects per set and the number of desired clus-
ters. We investigated the runtime and the number of iterations until a stable
clustering is reached. We used the following clustering techniques:

– Eucl.: k-means with Euclidean distance for cluster allocation.
– Canb.: k-means with Canberra distance for cluster allocation.
– Borda: k-means with Borda voting rule for cluster allocation.
– Borda++: k-means++ with Borda voting rule for cluster allocation.

5.2 Evaluation

Since Euclidean is the most common distance for k-means, we want to show that
our approach terminates at least as fast as k-means and needs the same or less
number of iterations until termination. Furthermore, we investigated Canberra
to gain useless reference values for our approach, which should be dominated by
them of our approach w.r.t. the runtime and the number of iterations as well.
In order to receive a faster runtime and less iterations until stable clusterings,
we want to show the utility of k-means++ for our Borda approach w.r.t. the
runtime and number of iterations.

Experiments on Runtime: In Fig. 1 we varied the number of clusters (k =
3, 5, 7, 9) and the data size, i.e., we used 5000, 10000, and 15000 input objects
for the clustering. In this 3-dimensional case, increasing the number of clusters
and the input data lead to an increasing runtime, too.

Fig. 1. Runtime w.r.t d=3.

330 J. Kastner and M. Endres

Our approach (Borda) works in equal time compared to k-means with
Euclidean (Eucl.) and Canberra (Canb.) for small numbers of clusters. For
7 and 9 clusters our approach is slower independent of the number of input
objects, because of a higher complexity of our approach. Benefits of a faster
runtime for k-means++ (Borda++) is in most cases hardly recognizable.

Figure 2 presents our results on a 5-dimensional domain. We see that for
increasing numbers of dimensions Borda reaches a better runtime compared to
Eucl. except for a high number of clusters. In some cases Borda terminates faster
than Canb., e.g., the test series with 7 clusters, but all in all Borda mostly reaches
an equal runtime in a 5-dimensional space.

Fig. 2. Runtime w.r.t. d=5.

A similar behavior illustrates the test series for a 9-dimensional set of objects
in Fig. 3. While both, Borda and Borda++, terminate in similar time compared
to Canb. for 3 and 5 clusters, they are a lot faster than Eucl. The trends for
growing runtimes w.r.t. the number of clusters and objects can be noticed in
9-dimensional space, too. Further experiments have shown that in higher dimen-
sions the runtime increases with more objects and more clusters.

Fig. 3. Runtime w.r.t. d=9.

The Borda Voting Rule for Clustering Recommendations 331

Experiments on Iterations: In this section we consider the number of itera-
tions necessary to reach a stable clustering, cp. Fig. 4.

(a) d=3

(b) d=5

(c) d=9

Fig. 4. Number of iterations.

Our experiments indicate that for an increasing number of clusters and an
increasing number of objects the number of iterations until termination increases,

332 J. Kastner and M. Endres

too. However, Borda and Borda++ reach a stable clustering in clearly less iter-
ations than Eucl. and Canb. Our experiments have also shown that for higher
dimensions (d > 9) the number of iterations is increasing slightly for growing
number of objects as well as growing number of desired clusters. Thus, the seed-
ing performed with the k-means++ algorithm has only a small effect on the
number of iterations for Borda++ compared to Borda.

In summary, our Borda approach has similar runtime as the classic k-means
algorithms, but needs only a fractional part of iterations until termination for
all test series. Therefore, Borda and Borda++ can be considered as competitive
to k-means resp. k-means++ using traditional distance measures.

6 Quality Experiments

In the context of clustering algorithms, the question of “quality” often arises.
However, it is difficult to compare results of different approaches and to deter-
mine the quality of clustering methods [14,15]. We used the clustering evaluation
indicators Silhouette (scores between −1 and 1, higher scores are better) [20] and
the Davies-Bouldin Index (scores from 0 to ∞, lower scores are better) [4] to
measure the “internal quality”, i.e., if a clustering has a high intra-cluster simi-
larity and a low inter-cluster similarity.

6.1 Settings

To test the quality we developed a movie recommender system [11] based on the
JMDb movie database, a Java-based alternative interface3 of the IMDb. The
prototype recommends clusters of movies based on the user’s preferences and
allows us a comparison of the clustering techniques.

We used this system to filter all movies w.r.t. the following preferences:

– Scenario (S1): Action and comedy movies of the 2000s to the present day.
Running time between 60 and 120min. Rating between 6 and 10.

– Scenario (S2): Drama, thriller and crime movies during the 90s and 2000s.
Rating between 8 and 10.

– Scenario (S3): Classic-movies of the 70s and 80s. Release year between 1975
and 1989. Running time between 90 and 150min. Action-, adventure-movies,
and dramas as genre.

The chosen scenarios were build on common user preferences considering
movies of the last 40 years. To determine useful values for the Silhouette (Sil.)
and Davies-Bouldin Index (DB), we evaluated experiments on k ∈ {3, 5, 7, 9}
w.r.t. the results of the scenarios. We performed 1000 runs of our experiments
to get a significant mean value.

3 http://www.jmdb.de/.

http://www.jmdb.de/

The Borda Voting Rule for Clustering Recommendations 333

Note that our Borda clustering approach is not metric in general, but an
“assignment function”. Therefore, no appropriate numerical distance measure
for Silhouette and Davies-Bouldin could be found for our Borda clustering app-
roach. We simply used the Euclidean distance and the Canberra distance in both
indicators to evaluate the quality, even though this is not adequate for Borda
and leads to a bias. Tables 3, 4 and 5 show our results for the scenarios (S1),
(S2) and (S3).

Table 3. Quality measures using Sil. and DB Index for Scenario (S1).

Table 4. Quality measures using Sil. and DB Index for Scenario (S2).

Table 5. Quality measures using Sil. and DB Index for Scenario (S3).

The left most column in all tables represent the algorithm used for clustering,
i.e., k-means++ with the Canberra (Canb.), Borda++, or Euclidean (Eucl.)

334 J. Kastner and M. Endres

measure. For each algorithm we computed the Silhouette and Davies-Bouldin
quality indicator, one time with the Canberra distance, the other time with the
Euclidean distance.

Unsurprisingly, Canb. performs best with the Canberra distance function,
and Eucl. provides the best internal quality using the Euclidean distance for all
evaluated scenarios. This is due to the fact that the clusters are computed using
the corresponding distance measure, and therefore the quality indicators also
compute a high intra-cluster similarity.

For example consider Table 3, where Silhouette leads to an internal quality
of 0.484 (Canberra dist.) on the score of −1 to 1 and therefore k = 9 would be
best in this case. Also Davies-Bouldin having a value of 0.839 is best for k = 9.
Obviously, this is not the case with Borda due the fact that neither the Euclidean
nor the Canberra distance fits to the Borda assignment function. Nevertheless,
we observe that the internal quality of Borda always gets values between Canb.
and Eucl. In addition, our approach reaches more reasonable values than Canb.
using the Euclidean distance or Eucl. with the Canberra distance. Thus our
approach is adequate for the intra-cluster and inter-cluster similarity (Davies-
Bouldin Index) as well as the coherence of the clusters (Silhouette).

6.2 Lessons Learned

Considering the internal clustering indicators, our approach confirms a high
quality. That means that Borda++ achieves a high intra-cluster similarity, even
if it is between Eucl. and Canb. Note that the quality indicators Silhouette and
the Davies-Bouldin-Index are evaluated using the Euclidean distance and the
Canberra distance in their distance calculations. Therefore, it is obvious that
Eucl. gets a better quality by using the Euclidean distance, and Canb. is better
using the Canberra distance. However, our approach using the Borda++ alloca-
tion lies between both quality measures and therefore provides a high internal
quality.

Finally, Borda++ is a competitive alternative for the cluster allocation in
centroid-based clustering algorithms like k-means due to similar runtimes, less
iterations, and the benefit that no normalization is needed before the clustering.
Additionally, our comprehensive and thorough experiments considering the inter-
nal quality emphasizes the advantages of our alternative clustering approach.

7 Conclusion and Outlook

In our paper, we presented a clustering approach exploiting the Borda social
choice voting rule as decision criterion for cluster allocation. Using Borda, users
do not need to care about the normalization of domains, because the Borda
social choice voting rule for cluster allocation considers each dimension as equally
important.

Our experiments show that our approach terminates in comparative runtime
to k-means clustering with traditional distance measures, but needs less iter-
ations until a stable clustering is reached. Furthermore, comprehensive quality

The Borda Voting Rule for Clustering Recommendations 335

experiments verify the benefit of our approach in the context of a large and multi-
dimensional environment, namely the IMDb movie recommender. Hence, Borda
is a novel approach which is competitive to well-known clustering techniques.

In our future work we want to minimize the empty cluster problem by choos-
ing a better initial partition, e.g., populating the centroids initially with the
most-preferred movies of the users. Furthermore, since our Borda clustering
approach provides very concise results for the Borda winners at the cluster
assignment, we want to investigate the possibility to weight dimensions by user-
preferences. In addition, we will integrate the Borda voting rule into other clus-
tering techniques like X-Means, EM-Clustering or a density based clustering
algorithm like DBSCAN in order to identify the behavior of Borda. Moreover,
we want to confirm our quality experiments with an extensive user study using
our Demo Recommender [11].

References

1. Arthur, D., Vassilvitskii, S.: K-means++: the advantages of careful seeding. In:
ACM-SIAM 2007, SODA 2007, Philadelphia, PA, USA, pp. 1027–1035 (2007)

2. Bandyopadhyay, S., Saha, S.: Unsupervised Classification. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-32451-2

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001,
pp. 421–430. IEEE, Washington, DC (2001)

4. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern
Anal. Mach. Intell. 1(2), 224–227 (1979)

5. Debord, B.: An axiomatic characterization of Borda’s k-choice function. Soc.
Choice Welfare 9(4), 337–343 (1992)

6. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

7. Jing, L., Ng, M.K., Huang, J.Z.: An entropy weighting k-means algorithm for
subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data
Eng. 19(8), 1026–1041 (2007)

8. Kamishima, T., Akaho, S.: Efficient clustering for orders. In: Zighed, D.A.,
Tsumoto, S., Ras, Z.W., Hacid, H. (eds.) Mining Complex Data. Studies in Com-
putational Intelligence, vol. 165, pp. 261–279. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-88067-7 15

9. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu,
A.Y.: An efficient k-means clustering algorithm: analysis and implementation.
IEEE TPAMI 24(7), 881–892 (2002)

10. Kastner, J., Endres, M., Kießling, W.: A pareto-dominant clustering approach for
pareto-frontiers. In: EDBT/ICDT 2017, Venice, Italy, 21–24 March 2017, Work-
shop Proceedings, vol. 1810 (2017)

11. Kastner, J., Ranitovic, N., Endres, M.: The Borda social choice movie recom-
mender. In: BTW 2019, 4–8 March 2019 in Rostock, Germany, pp. 499–502 (2019)

12. Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview.
Bull. Tech. Commitee Data Eng. 34(2), 11–18 (2011)

13. Kim, D., Kim, K.S., Park, K.H., Lee, J.H., Lee, K.M.: A Music Recommendation
System with a Dynamic k-means Clustering Algorithm. In: ICMLA (2007)

https://doi.org/10.1007/978-3-642-32451-2
https://doi.org/10.1007/978-3-540-88067-7_15
https://doi.org/10.1007/978-3-540-88067-7_15

336 J. Kastner and M. Endres

14. Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H., Newell, C.: Explain-
ing the user experience of recommender systems. User Model. User-Adap. Inter.
22(4–5), 441–504 (2012)

15. Kunaver, M., Porl, T.: Diversity in recommender systems a survey. Know. Based
Syst. 123(C), 154–162 (2017)

16. Macqueen, J.: Some methods for classification and analysis of multivariate observa-
tions. In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

17. Mohamad, I., Usman, D.: Standardization and its effects on K-Means Clustering
Algorithm. Res. J. Appl. Sci. Eng. Technol. 6, 3299–3303 (2013)

18. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a
review. SIGKDD Explor. Newsl. 6(1), 90–105 (2004)

19. Ricci, F., Rokach, L., Shapira, B.: Recommender systems: introduction and chal-
lenges. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Hand-
book, pp. 1–34. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-
7637-6 1

20. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. J. Comp. Appl. Math. 20, 53–65 (1987)

21. Sarstedt, M., Mooi, E.: Cluster analysis. In: A Concise Guide to Market Research.
STBE, pp. 273–324. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-53965-7 9

22. Sen, A.: The possibility of social choice. Am. Econ. Rev. 89(3), 349–378 (1999)
23. Ukkonen, A.: Clustering algorithms for chains. J. Mach. Learn. Res. 12, 1389–1423

(2011)
24. Virmani, D., Shweta, T., Malhotra, G.: Normalization Based K Means Clustering

Algorithm. CoRR abs/1503.00900 (2015)
25. Wan, S.J., Wong, S.K.M., Prusinkiewicz, P.: An algorithm for multidimensional

data clustering. ACM Trans. Math. Softw. 14(2), 153–162 (1988)
26. Wei, S., Ye, N., Zhang, S., Huang, X., Zhu, J.: Collaborative filtering recommen-

dation algorithm based on item clustering and global similarity. In: BIFE 2012,
pp. 69–72, August 2012

27. Zhang, Z., Zhang, J., Xue, H.: Improved K-means clustering algorithm. In: Pro-
ceedings of the Congress on Image and Signal Processing 2008, CISP 2008, vol. 5,
pp. 169–172, May 2008

https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-3-642-53965-7_9
https://doi.org/10.1007/978-3-642-53965-7_9

BM-index: Balanced Metric Space Index
Based on Weighted Voronoi Partitioning

Matej Antol and Vlastislav Dohnal(B)

Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, Czech Republic
{xantol,dohnal}@fi.muni.cz

Abstract. Processing large volumes of various data requires index
structures that can efficiently organize them on secondary memory.
Methods based on pivot permutations have become popular because of
their tremendous querying performance. Pivot permutations can be per-
ceived as a recursive Voronoi tessellation with a fixed set of anchors. Its
disadvantage is that it cannot adapt to the data distribution well, which
leads to cells unbalanced in occupation and unevenly filled disk buckets.

In this paper, we address this issue and propose a novel schema called
the BM-index. It exploits a weighted Voronoi partitioning, which is able
to respect the data distribution. We present an algorithm to balance the
data partitions, and show its correctness. The secondary memory is then
accessed efficiently, which is shown in experiments executing k-nearest
neighbors queries on a real-life image collection CoPhIR.

Keywords: Indexing structure · k-nearest neighbor query ·
Approximate search · Metric space · Voronoi partitioning

1 Introduction

Aspects of the Big Data phenomenon require new solutions to data processing
systems. In this paper, we focus on indexing structures that model data as a
metric space. This inherently provides a solution to the property of variety, while
volume and velocity are handled by indexing itself. Since metric space model
requires only a distance measure to be defined, it forms an extensible solution. It
is also much more resilient to the curse of dimensionality than multi-dimensional
indexing structures [6]. For details, we refer the reader to the books [17,20].
Current applications need to compare data items non-rigidly, so a similarity
operator must be defined, e.g., k-nearest neighbors query [7]. By analogy to
common Internet search engines, an approximate evaluation of similarity queries
provides very good quality of results at low processing costs.

Indexing structures organizing data by recursive Voronoi partitioning have
become popular in recent years [9,11,14,15]. They vary in details, but they share
the common idea of defining a data partition via a pivot permutation. Having
a preselected set of data objects (called pivots), we can assign each database
object a list of m closest pivots – a prefix of pivot permutation. Next, the objects
are grouped by their prefixes and each group forms a separate data partition.
The performance study [13] on various real-life data-sets proved outstanding
performance of such indexing structures. From the data organization point of
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 337–353, 2019.
https://doi.org/10.1007/978-3-030-28730-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_21

338 M. Antol and V. Dohnal

view, the prefix should not be too long, because it might lead to having low fill
factor (as low as one data object per partition). On the other hand, it should
not be too short, which would create some data partitions impractically big.

1.1 Problem Definition and Contributions

We take the recursive Voronoi partitioning with a fixed set of pivots as a model
of pivot permutations. In this variant, the data is separated by all pivots and
each partition has a pivot as its center. On the second level, the partitions are
divided by the remaining pivots, so new data partitions have their pivots outside
them. As a result, it becomes unfeasible to keep the partitions of approximately
equal occupation. This issue has also been confirmed by Skala [18]. He stated
that the number of data partitions does not grow exponentially, but far more
slowly. Consequently, large data-sets then require long prefixes to “carve” spuri-
ous partitions. The by-product of this is a huge number of tiny partitions. Such
partitions eventually end up as separate buckets or files in the secondary storage.

In this paper, we tackle this property and apply the weighted Voronoi par-
titioning into the pivot permutation schema to eliminate under- and over-filled
buckets. We show correctness of such modification and its applicability to sim-
ilarity searching. Experiments on a real-life data set reveal much better I/O
performance. We compared our results with M-index, which is an up-to-date
structure that uses secondary memory. Its recall performance is comparable to
newer proposals like PP-index [9] and NAPP [19].

The rest of the paper is organized as follows. The following section summa-
rizes the related work and the principles of pivot permutations in metric spaces.
The new Balanced Metric Index is presented in Sect. 3. Next, performance anal-
ysis on the CoPhIR data-set is given in Sect. 4. In Conclusions, we foresee future
directions to improve searching performance further.

2 Related Work

The paper focuses on the state-of-the-art data organizations based on Voronoi
partitioning [13]. The pioneering work was GNAT [5] that applies Voronoi par-
titioning recursively. It divides the search space using k sites (pivots) to produce
k partitions. Each partition is then recursively split using the same principle but
with a new set of pivots. There are also simpler structures like the generalized-
hyperplane tree that use only two pivots to partition the space. The disadvantage
of GNAT of being an in-memory structure was later solved in EGNAT [16]. The
advantage of GNAT is that it applies the recursive Voronoi tessellation in its
classical way – choosing a brand new set of pivots on next levels, so data local-
ity and density is respected. However, it increases memory requirements and
computational costs due to selecting new sets of pivots repeatedly.

The PP-index is probably the first structure that mines the same set of
pivots for data partitioning using pivot permutation [8,9]. A similar approach
was used in the M-index [14], where the permutation was encoded into one
integer and the B+-tree was applied for fast retrieval. It was shown that PP-
index is outperformed by M-index in k-nearest neighbors queries. The MI-file falls

Balanced Metric Space Index 339

into the same category [1]. It employs inverted file and Spearman Footrule metric
to identify posting lists relevant to the query’s permutation prefix. By analogy,
NAPP [19] uses inverted files, but adds compression of the posting lists. Recently,
another pivot-permutation-based technique is the PPP-codes [15], where more
independent pivot sets are used to make filtering more efficient. The authors
also compress the prefixes by applying Trie prefix trees to optimize memory use.
Since these techniques are the most relevant for our proposal, we describe their
common principle in the following subsection.

An interesting study on comparing and ordering pivot permutations was
presented recently [11]. They improve Spearman Footrule to penalize by a power
factor α the permutations that vary in more pivots. This is relevant to our
approach too, so we presented it in Sect. 2.2 in detail.

Another stream of research focuses on employing other models to further
optimize filtering by creating compact representations of original data objects.
Binary sketches were proposed recently [12], where a system of independent
hyperplanes is converted to a bit-string. It leads to very efficient and effective
filtering with Hamming distance. To speed up search on secondary memory, the
sketches must be stored apart from the data objects. Even though the represen-
tation is very compact it induces further new I/O operations. They might be
kept in memory, so reading buckets with data objects can be optimized.

2.1 Backgrounds and Indexing of Pivot Permutations

A metric space M = (D, d) is defined over a universe D of data objects and
a distance function d(·, ·) that satisfies metric postulates. A database X ⊂ D
of data objects is organized to speed up similarity query evaluation: (i) the k-
nearest neighbors query kNN(q) = {A : A ⊆ X, |A| = k ∧ ∀a ∈ A, o ∈ X − A :
d(q, a) ≤ d(q, o)}, (ii) the range query R(q, r) = {o ∈ X : d(q, o) ≤ r}. For the
reader’s convenience, we summarize the complete notation in Table 1.

Pivot-permutations-based index structures are constructed in four steps: (i)
select a set of anchor objects, called pivots; (ii) compute their permutation for
each database object (order them by distance to the object), (iii) divide the
objects into partitions having the same permutation prefix and (iv) store them
into buckets. The details are given in the following definitions.

A set of l pivots P = {p1, ..., pl} is typically taken at random from the
database, where the highly correlated objects are dropped. It follows the data
distribution of database objects and is cheap and well-performing. These pivots
are fixed for the life-time of index structure. The indexing phase organizes the
database by computing a pivot permutation for each object o ∈ X :

pp(o) = 〈p[1]o , p[2]o , . . . , p[l]o 〉,

where p[1] is the pivot closest to o (having the smallest value of d(o, p),∀p ∈ P),
p[2] is the second closest pivot, and so on. The bucket b to store the object into is
identified by taking the prefix π of pp(o), which we denote as pivot permutation
prefix:

ppp(o) = 〈p[1]o , p[2]o , . . . , p[π]o 〉.

340 M. Antol and V. Dohnal

Table 1. Notation

M(D, d) A metric space over a data domain D and a pair-wise
distance function d(·, ·)

X = {o1, . . . , on} The database of objects oi; X ⊂ D, |X| = n

P = {p1, . . . , pl} A set of preselected pivots; P ⊂ X, |P | = l

d(o1, o2) Distance between two objects o1 and o2

wd(o, p) Weighted distance between an object o and a pivot p

p
[i]
o ith closest pivot to an object o

rd(o) = p
[1]
o / p

[2]
o Ratio of distance of o to the closest pivot and to the second

closest pivot

pp(o) = 〈p[1]o , . . . , p
[l]
o 〉 Permutation of all pivots for an object o

ppp(o) = 〈p[1]o , . . . , p
[π]
o 〉 The π-long prefix of pp(o); |pp(o)| = π

ppp(o)[i], pp(o)[i] Pivot at the index i in the permutation (also without
argument o)

W = {W〈〉, W〈p1〉, . . . } A set of pivots weights, each specific to a permutation prefix

W〈p[1],...,p[m]〉 Pivot weights corresponding to ppp in subscript, consists of
|P | floats

Fig. 1. Voronoi cells for pivots p1, p2, p3: (a) 1-level tessellation, (b) pivot permutations.

If we take the prefix length of 1, we get the Voronoi tessellation [3]. An illustration
is provided in Fig. 1.

The major issue of this schema is choosing the right value of π since it
defines the coarseness of partitioning. It correlates with the maximum number
of data partitions. As stated in [18], the number of partitions is much lower for
high-dimensional data than the total number of possible permutations P (l, π).
High prefix values lead to many almost-empty buckets, thus the partitioning is
very unbalanced. The structures surveyed above set π to 7 or 8, typically. It
still results in many under-occupied buckets, so M-index [14] uses a dynamic
prefix ≤ π to stop splitting under-occupied buckets prematurely. The down side
is that a navigation tree is needed to track the prefixes, which also leads to larger
memory requirements.

Balanced Metric Space Index 341

2.2 Searching of Pivot Permutations

Answering a similarity k-nearest neighbor query is a process of identifying data
partitions that contain objects closest to the query object q. The index structure
has to construct a priority queue of such promising data partitions, so their
permutation prefixes are compared. For illustration of a query object and an
area covering a partition, see Fig. 1b. The traditional approaches are Spearman
Footrule, Spearman Rho and Kendall Tau metrics [11].

Assume a query object, a data partition and their pivot permutations pp(q)
and pparea, Spearman Footrule is defined as the sum of differences in pivot
positions in the permutations:

SF (pp(q), pparea) =
∑

p∈P

| idx(p, pp(q)) − idx(p, pparea) |,

idx(p, pp(o)) = i, where po[i] = p.

The optimization presented in [11] amplifies larger index differences by an expo-
nent α > 1. It is sufficient to assume that two objects are distant in the metric
space if there is just one pivot positioned far away in their permutations. Kendall
Tau is based on counting the number of inversions in pivot positions.

Kτ (pp(q), pparea) =
∑

pi,pj∈P

Kpi,pj
(pp(q), pparea),

Kpi,pj (pp1, pp2) =

{
0, if idx(pi, pp1) < idx(pj , pp1) ⇔ idx(pi, pp2) < idx(pj , pp2)
1, otherwise.

The effectiveness of these metrics depends highly on the number of pivots we
use. For few pivots, they cannot catch the original distance precisely, so at least
tens or hundreds of pivots are necessary. These metrics can also be applied to
prefixes only [10].

In [15], it was shown that Spearman Footrule and Kendall Tau perform a
little worse than the metrics that weigh original distances between the query
object and the pivot with decreasing importance as we move to higher positions
in the permutation prefixes. The priority queues in M-index and PPP-codes are
organized by:

– Weighted Sum of Pivot Distances (WSPD). It computes a weighted
sum of distances from the query object to the pivots in a partition’s pivot
permutation prefix (ppparea) as follows:

WSPD(pp(q), ppparea) =
|ppparea|∑

i=0

d(q, ppparea[i]) ∗ 0.75i

– Sum of Differences between Pivot Distances (SDPD). It sums differ-
ences between the distance of pivot in the query object’s permutation and
the distance of pivot in the partition’s permutation prefix:

SDPD(pp(q), ppparea) =
|pparea|∑

i=0

max(0, d(q, ppparea[i]) − d(q, ppp(q)[i])).

342 M. Antol and V. Dohnal

Fig. 2. Voronoi partitioning defined by the pivots denoted by large-font numbers; the
other dots are data objects.

To sum up, the pivot-permutation-based indexing techniques suffer from
unbalanced partitioning, where many data partitions are under-occupied or even
empty, and some are filled with considerably high number of objects. Even
though the querying performance is very good, this issue still influences neg-
atively their potential when persisted to secondary memory.

3 Balanced Indexing with Weighted Voronoi Partitioning

In this section, we propose an indexing structure that adopts the weighted
Voronoi tessellation [2] for data partitioning. We provide an algorithm to con-
struct it and show its correctness. This principle can be used in any data orga-
nization based on pivot permutations, e.g. the M-index [14] and PPP-codes [15].

3.1 Weighted Voronoi Partitioning in Metric Space

Organizing data using Voronoi partitioning depends on the pivots used to define
the cells. In metric space, we are not allowed to optimize the position of pivots,
since artificial objects cannot be computed anyway [20]. As a result, uneven
distribution is very common (see Fig. 2). This problem is escalated at the next
levels of recursive Voronoi partitioning for pivot permutations.

We propose the recursive weighted Voronoi partitioning for metric spaces
that builds on the idea of weighted Voronoi tessellation [2]. A preselected set of
pivots P is used in the same way as presented in Sect. 2.1, i.e. omitting already
used pivots at the next levels of partitioning. However, we introduce real-value
weights that are associated with pivots. This allows us to make a data-driven
split, as is exemplified in Fig. 3, where the grey dashed lines denote the original
(non-weighted) Voronoi partitioning.

On the first level, we have a vector of weights W<> = [wp1 , . . . , wpn
] (one

weight per pivot), where wpi
≥ 1 and the subscript W〈〉 stands for the zero-length

permutation prefix. Any data object o is then associated with the cell defined
by the pivot pi whose weighted distance is shortest, i.e. ∀pj ∈ P : d(o, pj) ·wpj

≥
d(o, pi) ·wpi

. The uneven distribution is balanced by shrinking overloaded areas,

Balanced Metric Space Index 343

Fig. 3. Weighted Voronoi partitioning: (a) for two pivots, and (b) for five pivots; the
gray dashed lines delimit cells of Voronoi partitioning whereas the black curves define
cells of weighted Voronoi partitioning. Pivots denoted in the large font.

which corresponds to increasing weights of the pivots defining them. Formally,
the weighted distance is defined as:

wd(o, p) = d(o, p) · wp (1)

On the next level, the same principle is repeated, but we use another vector
of weights. Assume we have identified up to now m closest pivots by weighted
distances, i.e. the current pivot permutation prefix is pppaux(o) = 〈p[1]o , . . . , p

[m]
o 〉.

The next pivot is obtained from the remaining ones using the weights associated
with this particular prefix, i.e., Wpppaux(o), and the prefix is extended by one
pivot. This is repeated until the complete prefix of length π is obtained.

The total number of weight vectors corresponds to the number of nodes in
a full l-ary tree: lπ−1

l−1 (l = |P |). Since there are few levels, we do not use sparse
arrays to store the weights. This results in l lπ−1

l−1 float values being maintained.

3.2 Setting Weights

We start with a motivating example for the case of two pivots (p1, p2) and two
objects (o1, o2) as given in Fig. 3a. The original Voronoi partitioning assigns
both objects to p1. For balanced partitioning, we need to set the weight of pivot
p1 to move the further object o2 to the other partition, so that the conditions
wd(o1, p1) < wd(o2, p2) and wd(o2, p1) > wd(o2, p2) hold after the relocation. In
metric spaces, it is not possible to measure the distance to the dividing hyper-
plane exactly, because it is not defined analytically. However, such a measure is
necessary to identify and order the objects that are close to the cells’ boundary,
because these are relocated as first.

We propose the relative distance of an object to the hyperplane as the rank
of objects for relocation. It is a ratio of distances to the first and the second
closest pivots, i.e.

rd(o) =
wd(o, p[1])
wd(o, p[2])

(2)

344 M. Antol and V. Dohnal

Note that 0 ≤ rd(·) ≤ 1 for objects within the cell of p[1], and 1 < rd(·) < ∞
for objects outside of it. If we order all objects within the cell by their relative
distance, we obtain the order in which the objects are moved to other cells. From
Fig. 3a, it is clear that rd(o1) < rd(o2).

The update to the weight of p1 that moves o2 to the cell of p2 is defined as
follows:

wp1 =
1

avg(rd(o1), rd(o2))
(3)

Lemma 1. The object o2 is assigned to the cell of p2 now.

Proof. The weights wp1 , wp2 were initialized to one, so updated weight wp1 is
defined using the real distances only:

wp1 =
2 · d(o1, p2) · d(o2, p2)

d(o1, p1) · d(o2, p2) + d(o2, p1) · d(o1, p2)

We will show that wd(o2, p2) < wd(o2, p1) holds after the update, by
contradiction:

wd(o2, p2) ≥ wd(o2, p1)

d(o2, p2) ≥ 2 · d(o1, p2) · d(o2, p2) · d(o2, p1)
d(o1, p1) · d(o2, p2) + d(o2, p1) · d(o1, p2)

1 ≥ 2 · d(o1, p2) · d(o2, p1)
d(o1, p1) · d(o2, p2) + d(o2, p1) · d(o1, p2)

d(o1, p1) · d(o2, p2) + d(o2, p1) · d(o1, p2) ≥ 2 · d(o1, p2) · d(o2, p1)

d(o1, p1) · d(o2, p2) ≥ d(o1, p2) · d(o2, p1)

d(o1, p1) · d(o2, p2)
d(o1, p2) · d(o2, p2)

≥ d(o1, p2) · d(o2, p1)
d(o1, p2) · d(o2, p2)

rd(o1) ≥ rd(o2)

This is a contradiction to the assumption that we are relocating the object with
higher relative distance. �

By analogy, we can show that o1 stays in the cell of p1. In the following section,
we present an algorithm for settings weights gradually.

3.3 Balancing Cells

Weighting Voronoi partitioning is an iterative process that picks the most popu-
lated cell and expels as many objects as prescribed by an occupation constraint.
The objects moved from the cell to neighboring cells are identified using the
relative distance. We take all objects closest to the cell’s borders and update
the weight based on Eq. 3, where o1 stands for the first object staying in the

Balanced Metric Space Index 345

Algorithm 1. Balancing cells
Require: Weighted Voronoi partitioning (V); weights (W); max. occupation (lim)
1: while C ← the most populated cell in V ∧ |C| > lim do
2: ppp ← pivot permutation prefix of the cell C
3: p ← ppp[−1] {last pivot in the prefix}
4: WC ← W〈ppp[0],...,ppp[−2]〉 {weights for this cell; last pivot is removed from ppp}
5: O ← list of objects in C ordered by increasing rd(·)
6: {Mark two objects at the split border:}
7: o1 ← O[lim]; o2 ← O[lim + 1] {rd(o1) < rd(o2) holds}
8: {Update the weight of p, so o1 remains and o2 is the first object moved away:}
9: WC [p] = WC [p]

avg(rd(o1),rd(o2))

10: Move objects O[lim .. |O|] to the neighboring cells
11: end while

cell and o2 for the last being moved out. The correctness of this step, as well as
convergence of the algorithm, is discussed in the following two subsections.

The algorithm for redistributing objects which exceed the given capacity is
formulated in Algorithm 1. It proceeds until all cells comply with the capacity
constraint. The overflowing objects are moved away (line 10), because the weight
of the cell’s pivot has been increased. This step involves finding the new closest
pivot for each moved object. From the local point of view, it is the next pivot in
the permutation. However, the weight of such a pivot could have been updated
in some other iteration of the algorithm, so the object’s pivot permutation must
be updated. Since only the weights get updated, the original distances to pivot
cannot change. This update is localized to the suffix of the permutation.

3.4 Consistency of One Step in Weight Modification

The update of weight done in line 9 of the algorithm may arouse concerns
about unintended shifts of objects between pivots. As the weight of one pivot is
increased in this step, no object from any neighboring area can be shifted into
the cell. At the same time, the weighted distances of objects within the edited
cell must necessarily increase.

Lemma 2. Assume that objects o1 and o2 are part of the cell of pivot p and
their relative distances hold:

rd(o1) < rd(o2) ≤ 1. (4)

The weight of p is updated to w′
p > wp and the object o1 is pushed out from the

cell, while o2 remains there.

Proof. By contradiction, the new relative distances for the objects hold:

d(o1, p) · w′
p

d(o1, pi) · wpi

>
d(o2, p) · w′

p

d(o2, pj) · wpj

346 M. Antol and V. Dohnal

Algorithm 2. Building BM-index.
Require: Set of pivots (P); maximum bucket capacity (cap); data-set (X)
1: W ← {W〈〉 = [1 ∗ |P |]} {initialize root weights to ones (|P | in total)}
2: root ← split(P , cap, 〈〉, X, W) {empty ppp for root node; call Algorithm 3}
3: return bmindex(root,P ,W)

The update step in line 9 can be simplified to ∃δ > 1 : w′
p = wp · δ, so the

previous formula is rewritten to:

d(o1, p) · wp · δ

d(o1, pi) · wpi

>
d(o2, p) · w · δ

d(o2, pj) · wpj

d(o1, p) · wp

d(o1, pi) · wpi

>
d(o2, p) · w

d(o2, pj) · wpj

Since the weights wi, wj as well as δ and all distances d(·, ·) are constants in this
update step, we have got the contradiction with Eq. 4. �

Lastly, in Sect. 3.2, we condition an ability to set a correct weight by the
strict non-equality of relative weights of the bordering objects. In practice, the
relative weights of two objects can be equal. The weight update should therefore
reflect this by yet again modifying the weight computation in line 9 as:

wp =
wp

max(avg(rd(o1), rd(o2)), rd(o1) + ε)
, (5)

where ε is equal to the minimum positive value of the given data type.
If the pivot p in the lemma can be replaced by the last pivot of the cell’s

permutation prefix, it holds for recursive weighted Voronoi partitioning as well.

3.5 Convergence of the Balancing Algorithm

Let us consider two neighboring areas, both exceeding the occupation constraint,
where their occupations differ by one object only. The question is whether Algo-
rithm 1 could cycle in exchanging the single object infinitely. Since the weights
are increased strictly monotonously, another object will be pushed towards a
third cell after several iterations. This happens even if there is a longer loop
of cells via object “commutes”. Thus the algorithm terminates (assuming the
occupation limit is reasonable, i.e. #buckets ∗ occupation > |X|).

3.6 Indexing with Recursive Weighted Voronoi Partitioning

To complete the description of the proposed BM-index, we add building and
search algorithms. The building algorithm uses the permutation prefixes defined
earlier and balancing is done on a per-level basis, see Algorithms 2 and 3. The
presented search algorithm (Algorithm 4) evaluates k-nearest neighbors queries

Balanced Metric Space Index 347

Algorithm 3. Splitting a node.
Require: Set of pivots (P); maximum bucket capacity (cap); permutation (ppp); data-

set (X); weights (W)
1: if |X| ≤ cap then
2: return leaf(ppp, X) {leaf node with permutation and bucket with objects}
3: end if
4: W ← W ∪ {Wppp = [1 ∗ |P |]} {initialize weights to ones (|P | in total)}
5: V ← voronoi(X,P) {partition data by the pivots}
6: balance(V, W , 	 |X|

|P |
) {call Algorithm 1}
7: children ← ∅
8: for all p ∈ P do
9: C ← set of objects in the cell defined by p

10: children ← children ∪ split(P , cap, 〈ppp · p〉, C, W) {append pivot p to ppp}
11: end for
12: return node(〈ppp〉, children) {ppp, list of pointers to children}

in an approximate manner, so it also passes the constraint on the number of dis-
tance function calls. The evaluation terminates when this constraint is reached.
On line 11, the distance between two pivot permutations is estimated by WSPD,
but any other metric can be used.

4 Efficiency Evaluation

We examine the performance of our method in three parts. Section 4.2 provides
an overview of the efficiency when changing the number of pivots and levels. The
costs of balancing are reviewed in Sect. 4.3. Lastly, we compare the performance
of the our method with M-index in Sect. 4.4.

4.1 Setup

The CoPhIR data-set [4] used in all experiments is a collection of 282-dimensional
vectors, where each was obtained by concatenating five MPEG-7 global visual
descriptors extracted from an image. The distance function is a weighted sum
of L1 and L2 metrics on the corresponding descriptors. We used two sizes of the
data-sets: 100,000 and 1,000,000 objects, denoted as 100K and 1M, respectively.
Pivots were selected at random from the data-set since they provide sufficient
performance [15].

The query evaluation efficiency was measured on 30-nearest-neighbors
queries. We used 1,000 query objects that were selected from the 100K data-
set at random. The preset stop-condition of approximate evaluation was the
number of distance calculations and it included also the distance computations
from the query object to the pivots.

4.2 Querying Performance

We summarize the performance of k-nearest-neighbors queries with respect to
the data-set size, the number of pivots used to build the BM-index, and two

348 M. Antol and V. Dohnal

Algorithm 4. Evaluating kNN query.
Require: BM-index (idx); kNN query (q, k); approx. limit (max)
1: queue.push(idx.root, 0) {priority queue; root has zero (max) priority}
2: pp(q) ← perm(q, idx.P, idx.W) {calculate full pivot permutation}
3: dc ← |idx.P | {distance computations counter}
4: A ← ∅ {candidates for answer; ordered by distance from q; max. k objects}
5: while node ← queue.pop() ∧ dc < max do
6: if node is a leaf then
7: update(A,node.X) {add objects closer than current kth neighbor}
8: dc ← dc + |node.X|
9: else

10: for all ch ∈ node.children do
11: queue.push(〈node.ppp · ch.p〉,WSPD(pp(q), 〈node.ppp · ch.p〉))
12: end for
13: end if
14: end while
15: return A {final answer; ranked by distance from q}

(a) 100K (b) 1M

Fig. 4. BM-index: average precision of approximate 30NN queries for 100K and 1M
data-sets with varying number of pivots (x-axis). The curves are denoted by the number
of levels of BM-index and the approximation parameter (stop condition).

different depths of it in Fig. 4. For the priority queue in the query evaluation
algorithm, we tested three methods presented in Sect. 2, namely Kendall Tau,
WSPD and PSPD. However, since the WSPD method performed slightly better
than the others, so we present the result for this method only.

The results show improving precision for increasing number of pivots because
the data is split in more smaller parts, which is also supported by better perfor-
mance of two-level configurations. The number of pivots influences the perfor-
mance for small pivot sets mainly, where 2-level configuration over 16 pivots (240
buckets in total) exhibits worse performance than 1-level one over 128 pivots –
74% vs. 89% on 100K.

4.3 Construction Costs

The balancing algorithm (Sect. 3.3) is designed as post-processing of cells cre-
ated by Voronoi partitioning. In Table 2, we compare the overhead of balancing

Balanced Metric Space Index 349

Table 2. Building costs of 1-level Voronoi part. on 100K data-set and balancing costs.

Number of pivots Original Voronoi Balancing process

Build
time (s)

Distance
computations

Time (s) Optim.
steps

Objects
moved

16 17 1 600 120 83 3 007 197 950

32 31 3 200 496 71 5 770 226 424

64 65 6 402 016 66 9 047 300 013

128 179 12 808 128 51 15 681 329 904

256 294 25 632 640 65 32 486 416 586

512 467 51 330 816 91 52 667 445 902

1 024 914 102 923 776 140 82 494 577 185

to the original costs in wall-clock time. The most of the time is needed to com-
pute distances to pivots, i.e., to construct the Voronoi tessellation. For higher
numbers of pivots, the Voronoi cells become less populated and the balancing
time becomes marginal. The costs are presented also in the number of balanc-
ing algorithm iterations (steps) and the total number of exchanged objects. The
experiments were conducted on the same hardware and the values are averages
over five runs. The result clearly shows that costs to compute pivot permutations
form the prevalent part, and the balancing process is efficient.

In Fig. 5a, we present occupation of buckets in leaf nodes from unbalanced
to balanced structure of one-level BM-index over 1,024 pivots. In particular, we
show the buckets ordered by their occupation for the BM-index’s state before
running balancing, after balancing each leaf node exactly once, after balancing
to the max occupation of twice the average occupation, and after balancing to
the average occupation (98 objects). This shows the extreme imbalance of the
data structure, which negatively influences the querying performance, since all
the large cells are scanned completely. After balancing, the distribution is more
or less constant. There are a few under-occupied cells, which exist due to ceiling
the value of the stop condition to an integer.

The values of pivot weights for the same states are presented in Fig. 5b.
We can observe that for the fully balanced structure, 95% of the weights is
less than 1.5, and 50% of them is even under 1.25. Next, one-pass balancing
was applied to roughly two thirds of the leaf nodes, which is 627 optimization
steps (0.8% of complete balancing). The number of objects moved between cells
was 84,988, which corresponds to 14.8% of the required exchanges for a fully
balanced structure. When the balancing stop condition was set to twice the
average occupancy, we observed it to be very efficient as well. It required 1,114
balancing steps (1.4% of complete balancing) and 35,012 object exchanges only.

The main benefit of the looser approaches is that they remove large discrepan-
cies (tens of percents) in bucket occupation for marginal fraction of modifications
needed for complete balancing. Figure 6 shows details on trends of exchanged
objects during balancing in order to provide an insight into possibilities of

350 M. Antol and V. Dohnal

Fig. 5. Influence of balancing from unbalanced to balanced state: (a) on occupation of
leaf nodes, and (b) on weights of pivots. (100K, 1,024 pivots, 1-level)

(a) 100K, 16 pivots, 1 level (b) 100K, 1,024 pivots, 1 level

Fig. 6. The number of objects moved out from an area during the balancing process.

setting the stop condition for partial balancing. Setups with 16 and 1,024 pivots
are used, where the average occupancy was 7 and 98 objects, respectively. The
graphs show that most effort is spent to polish balancing.

4.4 Overall Efficiency of the Proposed Algorithm

In the last set of experiments, we compare BM-index with M-index in precision
of 30NN. Figure 7 and Table 3 present results for a one- and a two-level BM-
index and M-index with the maximum limit of 8 levels to organize the 100K
data set. Leaf node capacity was fixed to 1,564 and 26 objects. We increased
the approximation limit gradually and plot the precision and the number of
accessed leaf nodes. In Table 3, the average time to answer a query for these
limits is shown.

We can see that the M-index has consistently lower demands than BM-index
in terms of distance computations. However, our balanced index is significantly
more efficient in accessing the secondary memory. It saves up to 85% leaf nodes
compared to M-index. For example, 1-level BM-index has precision of around
90–95% at accessing 15 leaves only, where M-index accessed 100 leaf nodes.
In Table 3, we can observe that the overall performance is similar in case of

Balanced Metric Space Index 351

Fig. 7. Comparison of M-index and proposed BM-index in precision of 30NN queries
on 100K data-set and 64 pivots: (a,c) 1-level, 1,564 leaf node capacity, and (b,d) 2-level,
26 leaf node capacity.

Table 3. Comparison of M-index and BM-index performance measured as an average
time to answer a query in milliseconds.

Distance computations 1 000 5 000 10 000 15 000 20 000

BM-index (1lvl) 20.6 66.8 104.1 195.2 237.5

M-index (1564 leaf cap) 34.6 78.6 125.3 175.6 219.4

BM-index (2lvl) - 79.5 132.8 194.6 257.1

M-index (26 leaf cap) 133.0 187.7 267.8 400.1 493.9

the setup with greater leaf node capacity. On the other hand, the BM-index
outperforms the M-index in the lower leaf node capacity setup, respectively,
when the indexing structure has more levels.

5 Conclusions and Future Work

We proposed the BM-index that distributes data equally among buckets by
weighting pivot permutations. The balancing algorithm is implemented as the
post-processing step that equals the cells’ occupation by introducing weighted
Voronoi partitioning into metric spaces. We showed its correctness and analyzed
its costs. They are reasonably low with respect to the building costs of the

352 M. Antol and V. Dohnal

original non-weighted Voronoi tessellation. In overall, the BM-index’s querying
performance is significantly lower in I/O operations, while similar to the state-
of-the-art structures in distance computations. The average time to answer a
query in BM-index is also shorter by up to 50%.

In the future, we would like to address the means of the priority queue con-
struction, and adjust priority to the influence of pivots’ weights, which we believe,
has a negative impact on querying performance currently.

Acknowledgment. The publication of this paper and the follow-up research was
supported by the ERDF “CyberSecurity, CyberCrime and Critical Information Infras-
tructures Center of Excellence” (No.CZ.02.1.01/0.0/0.0/16 019/0000822).

References

1. Amato, G., Gennaro, C., Savino, P.: MI-File: using inverted files for scalable
approximate similarity search. Multimed. Tools Appl. 71, 1333–1362 (2014)

2. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the
weighted voronoi diagram in the plane. Pattern Recogn. 17(2), 251–257 (1984)

3. Aurenhammer, F.: Voronoi diagrams - a survey of a fundamental geometric data
structure. ACM Comput. Surv. 23(3), 345–405 (1991)

4. Batko, M., et al.: Building a web-scale image similarity search system. Multimed.
Tools Appl. 47(3), 599–629 (2009)

5. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21th
International Conference on Very Large Data Bases, VLDB 1995, pp. 574–584.
Morgan Kaufmann Publishers Inc., San Francisco (1995)

6. Chávez, E., Navarro, G.: A probabilistic spell for the curse of dimensionality. In:
Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 147–
160. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44808-X 12

7. Deepak, P., Prasad, M.D.: Operators for Similarity Search: Semantics, Techniques
and Usage Scenarios. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
319-21257-9

8. Esuli, A.: MiPai: using the pp-index to build an efficient and scalable similarity
search system. In: Second International Workshop on Similarity Search and Appli-
cations, SISAP 2009, 29–30 2009, Prague, Czech Republic, pp. 146–148 (2009)

9. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Inform. Process. Manage. (IPM) 48(5), 889–902 (2012)

10. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete
Math. (2003). https://doi.org/10.1137/s0895480102412856

11. Figueroa, K., Paredes, R., Reyes, N.: New permutation dissimilarity measures for
proximity searching. In: Marchand-Maillet, S., Silva, Y.N., Chávez, E. (eds.) SISAP
2018. LNCS, vol. 11223, pp. 122–133. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02224-2 10

12. Mic, V., Novak, D., Zezula, P.: Binary sketches for secondary filtering. ACM Trans.
Inform. Syst. 36(5), 4:1–4:30 (2018)

13. Naidan, B., Boytsov, L., Nyberg, E.: Permutation search methods are efficient, yet
faster search is possible. Proc. VLDB Endow. 8(12), 1618–1629 (2015)

14. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inform. Syst. 36, 721–733 (2011)

https://doi.org/10.1007/3-540-44808-X_12
https://doi.org/10.1007/978-3-319-21257-9
https://doi.org/10.1007/978-3-319-21257-9
https://doi.org/10.1137/s0895480102412856
https://doi.org/10.1007/978-3-030-02224-2_10
https://doi.org/10.1007/978-3-030-02224-2_10

Balanced Metric Space Index 353

15. Novak, D., Zezula, P.: PPP-codes for large-scale similarity searching. In:
Hameurlain, A., Küng, J., Wagner, R., Decker, H., Lhotska, L., Link, S. (eds.)
Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIV.
LNCS, vol. 9510, pp. 61–87. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49214-7 2

16. Paredes, R.U., Navarro, G.: EGNAT: a fully dynamic metric access method for
secondary memory. In: Second International Workshop on Similarity Search and
Applications, SISAP 2009, 29–30 2009, Czech Republic, pp. 57–64 (2009)

17. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Mor-
gan Kaufmann Series in Data Management Systems. Morgan Kaufmann, Burling-
ton (2006)

18. Skala, M.: Counting distance permutations. J. Discrete Algorithms 7(1), 49–61
(2009). https://doi.org/10.1016/j.jda.2008.09.011. Selected papers from the 1st
International Workshop on Similarity Search and Applications

19. Tellez, E.S., Chavez, E., Navarro, G.: Succinct nearest neighbor search. Inform.
Syst. 38(7), 1019–1030 (2013). https://doi.org/10.1016/J.IS.2012.06.005

20. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2005).
https://doi.org/10.1007/0-387-29151-2

https://doi.org/10.1007/978-3-662-49214-7_2
https://doi.org/10.1007/978-3-662-49214-7_2
https://doi.org/10.1016/j.jda.2008.09.011
https://doi.org/10.1016/J.IS.2012.06.005
https://doi.org/10.1007/0-387-29151-2

Theoretical Foundation and New
Requirements

ProSA—Using the CHASE
for Provenance Management

Tanja Auge(B) and Andreas Heuer(B)

University of Rostock, 18051 Rostock, Germany
{tanja.auge,andreas.heuer}@uni-rostock.de
https://dbis.informatik.uni-rostock.de

Abstract. Collecting, storing, tracking, and archiving scientific data is
the main task of research data management, being the basis for scien-
tific evaluations. In addition to the evaluation (a complex query in the
case of structured databases) and the result itself, the important part
of the original database used has also to be archived. To ensure repro-
ducible and replicable research, the evaluation queries can be processed
again at a later point in time in order to reproduce the result. Being able
to calculate the origin of an evaluation is the main problem in prove-
nance management, particularly in why and how data provenance. We
are developing a tool called ProSA which combines data provenance and
schema/data evolution using the CHASE for the different database trans-
formations needed. Besides describing the main ideas of ProSA, another
focus of this paper is the concrete use of our CHASE tool ChaTEAU for
invertible query evaluation.

Keywords: Theoretical foundations of databases · Data curation ·
Annotation · Provenance · Temporal databases · CHASE

1 Introduction

Collecting, evaluating, analyzing, archiving, and publishing research data are
the main tasks of research data management. Research institutes all over the
world are producing research data in huge amounts. The processing, analysis,
and storage of a huge amount of data, which is usually generated in research,
can be considerably supported by the use of data provenance. With the combi-
nation of the CHASE – a universal tool for transforming databases or queries
in database systems – and data provenance, a minimal sub-database of an orig-
inal research dataset can be computed which is one of the main problems in
minimizing research data [6]. So questions like (1) Where does the data come
from? (2) Why this result? and (3) How is the result being computed? can be
answered in research data management [13,28]. As a use case, we apply our
results in research data management and data provenance within a joint project
of the University of Rostock and the Leibniz Institute for Baltic Sea Research
Warnemünde (IOW) [11,12].
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 357–372, 2019.
https://doi.org/10.1007/978-3-030-28730-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_22

358 T. Auge and A. Heuer

In this paper, we will introduce our data provenance tool called ProSA, a
tool for combining data provenance, schema and data evolution by means of the
CHASE in the case of invertible query evaluation (Sect. 5). The CHASE as a
basic tool is implemented in ChaTEAU (Sect. 4). Besides the presentation of the
general techniques behind ChaTEAU, we will introduce different applications
of the CHASE, all being research topics within our Database Research Group
at the University of Rostock (DBIS). These applications are invertible query
evaluation (Sect. 3), semantic query optimization and answering queries using
operators (Sect. 6). First, however, basic Notions and the State of the Art in
the research areas research data management, CHASE and data provenance are
introduced in the following Sect. 2.

2 Basic Notions and State of the Art

In our data provenance tool ProSA, we are using the CHASE technique to repre-
sent all of the database transformations needed for research data management,
specifically evaluation queries against the original research data, schema and
data evolution operations, as well as data exchange processes (between different
research repositories). Therefore, we first introduce the CHASE as a general tool
for different database problems. We close this section by introducing the main
concepts of data provenance.

2.1 The CHASE Algorithm

Semantic query optimization, answering queries using views (AQuV), data
exchange and integration, cleaning as well as invertible query evaluation are
basic problems in database theory that can be solved using the CHASE. For
this reason, different versions of the algorithm itself as well as various tools that
implement or execute the CHASE have been developed over time. Each tool such
as Llunatic, PDQ or ProvCB is specifically designed for one area of application
like data cleaning, semantic optimization and AQuV (see Table 1).

Hence, the idea of this universal tool can be summarized as follows: For an
object © (e.g. a database, or a query) and a set of dependencies � (e.g. a set
of FDs and JDs) the CHASE incorporates � into ©, so that � is implicitly
contained in ©. We represent this by:

chase�(©) = �©.

Incorporating parameters � into an object © can mean different things. We
therefore distinguish between two cases:

1. When a CHASE incorporates dependencies into a query, all interpretations of
variables of a query (e.g., in a predicate calculus notation, replacing variables
by attribute values) will always satisfy the functional dependencies given;

2. When a CHASE incorporates dependencies into a database with marked null
values, the CHASEd database will satisfy all of these dependencies, sometimes
replacing null values by attribute values.

ProSA—Using the CHASE for Provenance Management 359

Table 1. Overview of CHASE variants

Parameter � Object © Result �© Goal

0. dependency database schema database schema with optimized database
integrity constraint design

I. dependency query query semantic
optimization

II. view query query using views AQuV
II’. operator query query using AQuO

given operators
III. s-t tgds, egds source database target database data exchange,

data integration
IV. tgds, egds database modified database cleaning
V. tgds, egds incomplete query result certain answers

database
VI. s-t tgds, egds, database query result invertible query

tgds evaluation

Database Structures or Queries as a CHASE Object. The original idea
of the CHASE was to include dependencies like functional dependencies (FD)
X → Y or join dependencies (JD) �� [R1, ..., Rn] into a given database schema [1,
33]. The result, a database schema with integrity constraints, led to an optimized
database design (Table 1, case 0) by guaranteeing some desirable database design
properties such as the lossless join property. Semantic query optimization, on the
other hand, requires the incorporation of dependencies into a given query. One of
the already existing CHASE tools PDQ [9] has been developed for this purpose.
For optimization, the CHASEd query has to be transformed to an equivalent,
optimal query by using an additional BACKCHASE phase [15].

Answering Queries using Views (AQuV) and its generalization answering
queries using capabilities of database engines that we call Answering Queries
using Operators (AQuO, see Sect. 6) are also possible goals that can be realized
with the CHASE. Here a set of views (or operators) will be incorporated as the
CHASE parameters � into a given query, the CHASE object © (case II. and
II.’). Finding an efficient method of answering a query using a set of previously
defined materialized views over the database, rather than accessing the database
relations is discussed in [14,27]. Here a given query Q is enriched by its views
(CHASE phase) and then reduced to the minimum equivalent view: The CHASE
will therefore be extended by a BACKCHASE phase, again. One of the tools for
efficiently1 calculating CHASE&BACKCHASE applied to AQuV is ProvCB [29].

Database Instances with Null Values as a CHASE Object. Instead of
queries as CHASE objects © we can also use databases with null values as ©.
Processing source-to-target tuple generating dependencies (s-t tgd’s,[16]) using
the CHASE is implemented by Llunatic [19] and ChaseFUN [10]. S-t tgd’s are
formulas
1 By the use of Provenance information.

360 T. Auge and A. Heuer

∀x : (φ(x) → ∃y : ψ(x,y))

where φ is a function over source predicates (e.g., relation schemes of the source
database), ψ is a function over target predicates (e.g., relation schemes of the
target database), x being domain variables over attributes in the source, and
y being domain variables over (new, additional) attributes in the target. While
the CHASE creates a new target database using s-t tgd’s as some kind of inter-
database dependencies, tuple generating dependency (tgd), a s-t tgds on the same
database, and equality generating dependencies (egd)

∀x : (φ(x) → (x1 = x2))

can be seen as intra-database dependencies representing integrity constraints
within a database [7,16]. Egd’s replace marked null values by other marked null
values or attribute values (also called constants) [16,18].

Llunatic and ChaseFUN support data exchange and data integration sce-
narios as well as database cleaning tasks (case III. and IV.). For the goal of
invertible query evaluations, no known tool yet exists (case VI.). In this case,
the CHASE result �© is not a (new, integrated or exchanged) database but the
result of a database query. The BACKCHASE phase is afterwards used to calcu-
late an inverse of the query or to generate a provenance polynomial [21,22] to be
able to determine a (minimal) sub-database that guarantees the reproducibility
of the query result.

The CHASE in General. The CHASE applications we are using in our
research projects at the University of Rostock are shown as red rows in Table 1.
The main application Invertible Query Evaluation of the project ProSA will be
described in Sect. 3. The other CHASE applications of the Data Research Group
(DBIS) of the University of Rostock are summarized in Sect. 6. A generalization
of CHASE and the development of a general chase tool is therefore a common
task for several, different research projects.

A first idea of a universal CHASE tool is given in [8]. Here the authors tested
and compared different CHASE tools like PDQ, ChaseFUN and Llunatic. They
tested for different CHASE strategies like oblivious CHASE, standard/restricted
CHASE and core CHASE [20]. The concept of the standard CHASE is shown in
Algorithm 1. Eliminating the first If-statement (h is an active trigger) transforms
this algorithm to the oblivious CHASE, the core chase is neglected here.

Basically, for a given database instance I, Algorithm 1 provides a modified
database I ′ by incorporating any possible dependency σ ∈ Σ into I. While tgd’s
create new tuples under active trigger, egd’s clean the database by replacing null
values where an active trigger h is a homomorphism from the left-hand side of σ
to I which cannot be extended to a homomorphism from the right-hand side to
I. In other words, a trigger is active, if a new tuple can (and has to) be generated
or null values be replaced.

ProSA—Using the CHASE for Provenance Management 361

Algorithm 1 standard CHASE (Σ, I)
Require: Set of dependencies Σ, Database instance I
Ensure: Modified database I ′

1: for all trigger h for a dependency σ ∈ Σ do
2: if h is an active trigger then
3: if σ is a tgd then
4: Adding new tuples to the database instance I
5: else if σ is an egd then
6: if values compared are different constants then
7: CHASE fails
8: else
9: Substituting null values by other null values or constants

The problem of this basic algorithm is that the CHASE parameter � is fixed
(a set of dependencies Σ) and the CHASE object © is also fixed (a database
instance I). In our approach ChaTEAU, we will extend the CHASE to become
applicable to other CHASE parameters (such as views, query operators, or pri-
vacy constraints, see [24,25]) and other CHASE objects (such as queries and
general database transformations).

In Sect. 3, we will focus on the use of the CHASE for calculating inverses of
an evaluation query in research data management, to determine the origin of the
evaluation results. This is one of the main tasks in data provenance. We therefore
will introduce some basic notions of data provenance in the next subsection.

2.2 Data Provenance

Given a database instance I and a query Q, the central task in data management
is to compute the result of the query K = Q(I). However, in many cases the
result of the query itself is not sufficient. We are interested, for example, in:

1. Where do the result tuples come from?
2. Why – by means of which parts of the original database I – was a certain

result achieved?
3. How – by means of which sequence of operations – was a result actually

achieved?
4. Why is an expected value missing in the result?

Thus, in Data Provenance we typically distinguish between four Provenance
queries (where , why , how , and why not) and four Provenance answers (exten-
sional, intensional, query-based, modification-based). In the remainder of this
paper, we focus on how - and why - provenance, and on extensional answers to
these queries. An extensional answer to a why -query is the sub-database of the
original research database I, the result tuples are derived from. The tuples of
this sub-database of I are called witnesses for the evaluation result K.

The why - and where-provenance can be derived from the result of the how -
provenance (see Fig. 1). For this we can define a reduction based on the infor-
mation content

where � why � how .

362 T. Auge and A. Heuer

where � why � how .

where-provenance why -provenance how -provenance
(table name) (witness base) (polynomial)

R {{t1}, {t2}, {t1, t2}} (t1 · (t1 + t2)) + (t2 · (t1 + t2))

relational name tuple list

Fig. 1. Reduction of why and where from how

In our research project ProSA, we mainly focus on why - and how -provenance
with extensional answers to the provenance queries, which are given by prove-
nance polynomials [3,21] and (minimal) witness bases [13] to guarantee the
reproducibility of the query result. The polynomials are defined by a commuta-
tive semi-ring (N[X],+, ·, 0, 1) with + for union and projection as well as · for
natural join. The selection does not change a tuple, hence it is not represented
in the semi-ring. Projection and union both eliminate duplicate tuples, they
are therefore represented by an operation in the semi-ring. The second opera-
tion · symbolizes the natural join, representing the combination of tuples. The
polynomials apply to the positive relational algebra (i.e., without difference or
negation), but approaches for the extension by aggregate functions and negation
already exist [2,3].

We are interested in specifying a concrete calculation rule (how), or at least
in specifying all necessary source tuples (why). For the given example in Fig. 1
the provenance polynomial is calculated as (t1 · (t1 + t2)) + (t2 · (t1 + t2)), where
t1, t2 and t3 are tupel identifiers of the source instance I. Reducing each par-
tial polynom t21, 2t1t2, t22 to the set of its identifiers results the witness base
{{t1}, {t2}, {t1, t2}}. A minimal witness base would be {{t1}} or {{t2}}.

3 Invertible Query Evaluation

In our project ProSA (Provenance management using Schema mappings with
Annotations) [4], which summarizes the DBIS research interests in the area of
research data management, we develop techniques to invert evaluation queries
against a research database (case VI. in Table 1) to be able to answer why -
provenance queries. We use the witnesses (results of the why -query, see [13])
and the provenance polynomials (results of how -query, see [21]) to determine the
minimal sub-database of the original research database that has to be archived
for reproducibility and replicability of research results.

3.1 Research Data Management

In research data management research data has to be managed, analyzed, stored,
and archived for a long period of time. One of our research interests in this topic

ProSA—Using the CHASE for Provenance Management 363

is the question of how we can minimize the amount of data to be archived,
especially in the case of constantly changing databases or database schemes and
permanently performing new evaluations on these data (see [6])? Therefore we
have to answer two concrete research questions:

1. Calculation of the minimal part of the original research database (we call it
minimal sub-database) that has to be stored permanently to achieve replicable
research.

2. Unification of the theories behind data provenance and schema (as well as
data) evolution.

Fig. 2. Unification of provenance and evolution [4]

The idea behind these goals is sketched in Fig. 2: The calculation of an inverse
query Qprov, which is used to determine the required minimal sub-database I∗

(red dashed box), depends on the original query Q and the result instance (green
box) that should be reconstructed:

Qprov(K∗(S2)) = Q−1(K∗(S2)).

Unfortunately, the specification of a concrete inverse is not always possible, but it
is not even necessary in many cases. Sometimes, e.g. due to privacy requirements,
we only want to reconstruct some kind of sub-database of the original research
database by a quasi-inverted mapping [17]. If there is no direct inverse function,
the only possibility to define such an inverse is adding provenance annotations

364 T. Auge and A. Heuer

such as provenance polynomials. The aim of our research is to calculate the
inverses or quasi-inverses of the evaluation query, if possible, and calculating
additional provenance polynomials as annotations in cases, where direct inverses
are not possible. The complete inverse mappings for the basic relational algebra
operations are introduced in [6].

Nevertheless, the situation in research data management is even more com-
plicated since the research database will evolve over time. There are frequent
data evolution operations (updates) and occasional schema changes. Under the
schema evolution E : S1 → S3, the query Q′ can be directly calculated as a
composition of the original query Q and the inverse evolution E−1. So the new
provenance query Q′

prov of the new minimal sub-database J∗ (blue dotted box)
results as

Q′
prov(K

∗(S2)) = (Qprov ◦ E)(K∗(S2)).

To combine data provenance (particularly why -and how -provenance to calcu-
late a minimal sub-database of our research database), schema and data evolu-
tion in a common framework, we will use

– the CHASE for the evaluation query, the schema evolution and update oper-
ations on our research database,

– while using a second CHASE step (called BACKCHASE) applied to the result
of the first CHASE step to be able to formally describe the why - and how -
provenance by inverse mappings and provenance polynomials.

3.2 CHASE&BACKCHASE

For a given database (CHASE object ©) and a set of dependencies (CHASE
parameter �) the CHASE represents an evaluation query generating the query
result. This evaluation can be particularly difficult in the case of operations
aggregating data. In many cases, there is no suitable inverse. However, if the
existence of an exact inverse is not important, in many cases a so-called quasi-
inverse can be specified.

Usually three different types of (quasi-)inverse schema mappings created by
the CHASE are distinguished: exact, classic and relaxed CHASE inverses [17,
18]. Two more inverse types, the tuple preserving-relaxed (tp-relaxed) and result
equivalent CHASE inverse are introduced in [6], which also includes an overview
of the inverse types of all relational algebra operations. As one example, the
inverse type of the query πAD(σC=c(r1) �� πAB(r2)) can be identified as relaxed.
With additional provenance polynomials the projection itself can be identified
as tp-relaxed. Generally, most basic operations can be optimized to become
invertible by adding additional annotations like provenance polynomials [3,21]
or provenance games [31]. The inverse type of a composition of operations always
corresponds to the weakest type of all partial mappings.

In this context, the CHASE&BACKCHASE procedure [14] can be used to
calculate a suitable inverse function. A query Q formulated as an s-t tgd can now
be processed using the CHASE and then inverted using the BACKCHASE to

ProSA—Using the CHASE for Provenance Management 365

calculate a minimal part of the original database. This calculated minimal sub-
database should be able to reconstruct the query results under various constraints
[4,5]. So the questions are: How to automatically compute this minimal sub-
database of the primary data? Given an evaluation query and the result of the
evaluation query, is it possible to derive the minimal sub-database simply by an
inverse mapping without any additional annotations of the data and without
any need to freeze the original database? These questions address some exciting
problems of research data management, such as traceability, reproducibility and
replicability of research results [11,12,28].

3.3 Provenance Using CHASE

Over the years, the CHASE algorithm has been used in many different areas
of application. In our ProSA project, the CHASE is used for query evaluation
(i.e., data transformation), schema and data evolution, and data exchange. The
BACKCHASE is used to invert the query evaluation Q, i.e. to calculate the
extensional answer of the why -Provenance as the witness base of the query Q.

Given a schema mapping M defined by an s-t tgd and a source instance
I, Fagin [18] computes a target instance via CHASEM(I). He also discussed a
target and a source schema evolution and specified some types of CHASE inverse
functions (exact, classic, relaxed), which are essential for schema evolution. In
ProSA, we use Fagin’s schema mappings as queries Q, schema evolution, and
data exchange steps.

The result of the evaluation query Q described by extended s-t tgd’s and
egd’s can be calculated using the CHASE algorithm. The calculation of the
minimal sub-database I ′ is computed by inverting Q. This inverse Qprov does not
necessarily have to correspond to an inverse in the classical sense Q◦Qprov = Id,
since a CHASE inverse cannot always be specified [4]. The provenance answer
I ′ can then be calculated using the BACKCHASE.

4 Many Application Areas – One Tool: ChaTEAU

Since different research projects in our group use the CHASE as a basic technique
(see Sect. 6), we decided to either use or develop one general CHASE tool that
is applicable to all of these applications. A nice overview of already existing
CHASE tools is given in [8]. To our knowledge, and after evaluating the CHASE
tools being publicly available, none of the existing tools can be applied to all of
the scenarios mentioned above (Table 1), or at least to some scenarios of each of
both groups (case I. and II.: queries as CHASE objects; case III. to VI:: databases
as CHASE objects).

Here, the basic idea of our universal tool ChaTEAU (Chase for Transforming,
Evolving, and Adapting databases and queries, Universal approach) as well as
somepreliminary implementationworkwill be presented. Finally,we can construct
a tool for each of the three application scenarios based on ChaTEAU (see Fig. 4(b)
in Sect. 5). In the case of invertible query evaluation, for example, extended data
preparation and a BACKCHASE phase are necessary.

366 T. Auge and A. Heuer

4.1 Theoretical Foundation of ChaTEAU

The main idea of making the various use cases of the CHASE applicable in
a single, universal tool is based on the fact that the CHASE objects © and
parameters � are essentially interchangeable without significantly changing the
way the CHASE is executed. With this in mind, we can abstract Algorithm 1
by replacing the input (a set of dependencies Σ and a database instance I) by
a general parameter � and a general object ©.

CHASE Parameter �. This parameter is always represented as a intra-
database or inter-database dependency: In semantic optimization, it corresponds
to a set of egd’s and tgd’s as intra-database constraints, in the case of AQuV, to
a set of views (interpreted as dependencies between base and view relations), or
to a set of s-t tgd’s, tgd’s and egd’s as in data exchange and data integration.

CHASE Object ©. The CHASE object © is either a query Q or a database
instance I. While in queries (distinguished or non-distinguished) variables vi

[32] can be replaced by other variables vj or constants ci, in database instances
null values ηi are replaced by other null values ηj or constants ci. The variable
substitution depends on certain conditions which are shown in Fig. 3. These
conditions guarantee a homomorphic mapping of the CHASE object.

constants (ci)

distinguished variables (ai) null values (ηi)

non-distinguished variables (bi)

variables (vi)

Fig. 3. Possible homomorphisms for the object ©

CHASE Rules. The replacement rules incorporating the CHASE parameter
� into the CHASE object © are independent of the selection of � or © itself.
Currently these are egd-, tgd- and s-t tgd-rules [18,32]. Currently, we are working
on an extension of these rules to handle aggregates in evaluation queries, too:
these aggregates have to be integrated similar to Skolem functions in the target
part of an s-t tgd. There are also existing rules for views like in case II [14].

ProSA—Using the CHASE for Provenance Management 367

4.2 ChaTEAU

The core of ChaTEAU is based on Algorithm 1. A first implementation was given
in [30]. The input of the algorithm can be any possible CHASE parameter � and
object © as described above. The output will then be a transformed database
schema, a query (satisfying certain constraints) or a modified database instance.

ChaTEAU is based on five classes of objects: terms, homomorphisms,
integrity constraints, atoms and instances. Terms form an elementary data struc-
ture in ChaTEAU which are represented by the class term. As in theory, they
can be a variable, a null value or a constant. Constant values are represented by
simple data types. However, since they can be strings, numbers, or other values,
and the data type is not known at runtime, the approach used here is dynamic
typing. The currently supported data types are string, double and integer.
For each data type, there is a field variable of the class that stores the corre-
sponding value. A term can only contain one value of one type, which is why
only one of these field variables is ever used. Variables and null values are also
part of the term class. The distinction between these three types is made by an
enumeration, which determines what kind of term it is when a term is created.
So term is elementary for the other classes used in ChaTEAU.

The tool as well as the theory differentiates between relational and equality
atoms. Both are the basic building block for instances, queries and integrity
constraints. Relational atoms themselves consist of a term and an identifier.
Equality atoms contain two terms, expressing an equality relation between them.
Both are combined in the class atom.

Instances are implemented in instance and constraints like tgd’s as well as
egd’s in integrity constraints. An integrity constraint always consists of a
head and a body, which again consist of atoms. Apart from the head of an egd,
which is formed from an equality atom, relational atoms are used for the heads
and bodies. Also instances are based on relational atoms.

If there is a homomorphism between a source and a target term, a term
mapping is generated which maps one term to another term like vi → vj , η1 →
Max and η2 → η1. Homomorphisms are also fundamental for the use in CHASE
rules and defining active triggers (see Algorithm 1).

5 ProSA Using ChaTEAU

The reconstruction of a minimal sub-database I∗ like in Fig. 2 is the main task
of our project ProSA [4]. To achieve this, a given database instance I as well as
the associated schema S1 are extended by a unique identifier. This ID is a coding
usually consisting of the table name and a consecutive number. This modified
database, the schema and the evaluation query Q are now input for the CHASE
algorithm implemented in ChaTEAU and extended by provenance aspects which
are realized in a separate BACKCHASE phase (see Fig. 4(a)). The result of the
evaluation query and the result of the provenance query are finally the output
of ProSA.

368 T. Auge and A. Heuer

(a) Overview of ProSA (b) Tools for CHASE application

Fig. 4. Applications of the CHASE at DBIS

ChaTEAU is not only the core of ProSA (red dashed box, Fig. 4(b)), but also
the basis of two other tools for Answering Queries using Operators (solid box)
as well as for semantic query optimization (dotted box). Both applications will
be briefly motivated below in Sect. 6.

CHASE & BACKCHASE. The combination of CHASE and provenance in
one application is explained in detail in [6]. There we describe the idea that the
recovered instance

I∗ = CHASEQprov(K) = CHASEQprov(CHASEQ(I))

is thus the result of a query Qprov on the result instance K. I∗ contains whole
tuples from I or tuples restricted to certain attributes of the source schema (and
filled with (marked) null values).

Schema: S1

��
S2

��
S1

Instance: I

CHASEQ

�� K

CHASEQprov

�� I
∗

The CHASE&BACKCHASE method for determining a CHASE inverse
schema mapping/provenance mapping Qprov = (S2, S1, Σ2) to Q = (S1, S2, Σ1)
can therefore be described in two phases:

– CHASE phase: Calculate the CHASE of I as the CHASE object © with Q
as a CHASE parameter � represented as a sequence of s-t tgd and egd rules
which generate new tuples (s-t tgd) and replace (marked) null values with
constants or null values with smaller index (egd).

– BACKCHASE phase: Calculate the CHASE of K (or an interesting subset
of the result, called K∗, for which the provenance should be checked) as the
CHASE object © with Qprov as a CHASE parameter �, again represented as
a sequence of s-t tgd and egd rules.

ProSA—Using the CHASE for Provenance Management 369

An evaluation query Q is processed by the CHASE. So a given database instance
I(S1) delivers a result instance K(S2) which is shown in Fig. 5 (green). Such a
mapping is easy to find for simple queries with SPJU (select, projection, join,
union), but difficult for queries with aggregation. For this purpose, the CHASE
must be extended by functions which code aggregation functions like max, min,
count, sum and avg.

I(S1)

CHASE

K∗(S2)

I∗(S1)

BACKCHASE

K(S2)

Fig. 5. CHASE&BACKCHASE in ProSA (Color figure online)

Additionally, the provenance query Qprov is processed by the BACKCHASE
resulting in an (exact, classic, relaxed, result-equivalent, . . .) CHASE inverse
adding some annotations like provenance polynomials to guarantee the recon-
struction of the recovered instance I∗ as a minimal sub-database of the research
database I that has been the basis for the evaluation query Q.

6 Other Applications of the CHASE

Within the Database Research Group of the University of Rostock, we work in
different areas such as Semantic Query Optimization, Answering Queries using
Operators (AQuO) and Invertible Query Evaluation. However, the different areas
of application have one thing in common. All three can be processed by means
of the CHASE implemented in ChaTEAU (see Fig. 4(b)).

Semantic Query Optimization. One of the first and classical applications of
the CHASE is injecting data dependencies into queries to be able to optimize
queries under given dependencies. In one of our research projects, we looked
for different kinds of tgd’s (such as inclusion dependencies) as inter-object rela-
tionships in multimedia databases. Instead of extracting multimedia features for
content-based retrieval, we use the inter-object dependencies to optimize queries
consisting of longer join paths. The dependencies are CHASEd into the query,
and a BACKCHASE phase will generate an optimized query plan minimizing
the number of joins used.

Anwering Queries using Operators (AQuO). In our project PArADISE
(Privacy-Aware assistive Distributed Information System Environment, see
[23,25]) we use query rewriting and query containment techniques to achieve
an efficient and privacy-aware processing of queries. To achieve this, the whole
network structure, from data-producing sensors up to cloud computers, is uti-
lized to create a database machine consisting of billions of devices, the Internet

370 T. Auge and A. Heuer

of Things. Based on previous research in the field of query rewriting, we devel-
oped a concept to split a query into fragment and remainder queries. Fragment
queries can operate on resource limited devices to filter and preaggregate data.
Remainder queries take these preprocessed (filtered and aggregated) data and
(only) execute the last, complex part of the original queries on more powerful
devices like cloud servers. As a result, less data is processed and forwarded to
a cloud server and the privacy principle of data minimization is accomplished
[24–26].

In one of our rewriting techniques, we used an extension of the AQuV tech-
nique to answer queries using only restricted capabilities of query processors. The
AQuV problem has to be generalized to the AQuO problem (Anwering Queries
using Operators), describing restricted query operators available on the devices
in the Internet of Things. The idea for ChaTEAU is to CHASE these operators
into the query to be able to BACKCHASE the enhanced query to fragment and
remainder queries automatically.

7 Conclusion and Future Work

The aim of our project ProSA is the development of techniques to invert eval-
uation queries against a research database to be able to answer how - and
why -provenance. We use the CHASE tool ChaTEAU to represent the queries,
data and schema evolution, and calculate he provenance answers by the BACK-
CHASE process. Some open questions in the areas ChaTEAU and ProSA are:

ChaTEAU. We have to complete our implementation to get a tool that can
handle a generalized CHASE object © as well as a generalized CHASE param-
eter �. We are working on extensions of s-t tgd, tgd and egd rules to handle
more complex dependencies and query operators such as aggregations. On the
other hand, we need to control the CHASE process by evaluating complexity and
runtime of the CHASE procedure, and we need to ensure the termination of the
CHASE procedure by adapting criteria such as the weak acyclicity introduced
for tgd’s as a CHASE parameter [16].

ProSA. For a concrete implementation of the BACKCHASE phase, we first
need a definition of special BACKCHASE rules. These rules correspond to the
CHASE rules with additional annotations like provenance polynomials. Again,
the processing of aggregates is a difficulty here, but similar to the processing
using the CHASE.

Additionally, we have to decide about the annotations to be stored if an exact
or classic inverse does not exist for our evaluation query. While the use of prove-
nance polynomials as an annotation is quite elegant, it is not efficient to process
all the polynomials on a large database. This is particularly the case if the research
database is very large. Besides this, due to privacy reasons, it is not always appro-
priate to calculate elements of the original research database exactly. In this case,
an intensional answer of the provenance query (only describing the content of the
original database in a descriptive, anonymized manner) seems to be more appro-
priate than the extensional answer we calculated up to now.

ProSA—Using the CHASE for Provenance Management 371

Lastly, the ProSA technique is prepared to integrate schema evolution steps
and database updates. We have to describe these evolutions by s-t tgd’s to
incorporate evolving databases into the ProSA tool.

Acknowledgements. We thank our students Fabian Renn and Frank Röger for their
comparison of different CHASE tools like Llunatic and PDQ as well as Martin Jurklies
for the basic implementation of our CHASE tool ChaTEAU.

References

1. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases.
ACM Trans. Database Syst. 4(3), 297–314 (1979)

2. Amarilli, A., Bourhis, P., Senellart, P.: Provenance circuits for trees and treelike
instances (extended version). CoRR abs/1511.08723 (2015)

3. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In:
PODS, pp. 153–164. ACM (2011)

4. Auge, T., Heuer, A.: Combining provenance management and schema evolution.
In: Belhajjame, K., Gehani, A., Alper, P. (eds.) IPAW 2018. LNCS, vol. 11017, pp.
222–225. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98379-0 24

5. Auge, T., Heuer, A.: Inverses in research data management: combining prove-
nance management, schema and data evolution (inverse im forschungsdatenman-
agement). In: Grundlagen von Datenbanken. CEUR Workshop Proceedings, vol.
2126, pp. 108–113. CEUR-WS.org (2018)

6. Auge, T., Heuer, A.: The theory behind minimizing research data: result equivalent
CHASE-inverse mappings. In: CEUR Workshop Proceedings of the LWDA, vol.
2191, pp. 1–12. CEUR-WS.org (2018)

7. Benczúr, A., Kiss, A., Márkus, T.: On a general class of data dependencies in the
relational model and its implication problems. Comput. Math. Appl. 21(1), 1–11
(1991)

8. Benedikt, M., et al.: Benchmarking the chase. In: PODS, pp. 37–52. ACM (2017)
9. Benedikt, M., Leblay, J., Tsamoura, E.: PDQ: proof-driven query answering over

web-based data. PVLDB 7(13), 1553–1556 (2014)
10. Bonifati, A., Ileana, I., Linardi, M.: ChaseFUN: a data exchange engine for func-

tional dependencies at scale. In: EDBT, pp. 534–537. OpenProceedings.org (2017)
11. Bruder, I., Heuer, A., Schick, S., Spors, S.: Konzepte für das Forschungsdatenman-

agement an der Universität Rostock (Concepts for the Management of Research
Data at the University of Rostock). In: CEUR Workshop Proceedings of the
LWDA, vol. 1917, p. 165. CEUR-WS.org (2017)

12. Bruder, I., et al.: Daten wie Sand am Meer - Datenerhebung, -strukturierung, -
management und Data Provenance für die Ostseeforschung. Datenbank-Spektrum
17(2), 183–196 (2017). https://doi.org/10.1007/s13222-017-0259-4

13. Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization
of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS,
vol. 1973, pp. 316–330. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44503-X 20

14. Deutsch, A., Hull, R.: Provenance-directed Chase&Backchase. In: Tannen, V.,
Wong, L., Libkin, L., Fan, W., Tan, W.C., Fourman, M. (eds.) In Search of Ele-
gance in the Theory and Practice of Computation. LNCS, vol. 8000, pp. 227–236.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41660-6 11

https://doi.org/10.1007/978-3-319-98379-0_24
https://doi.org/10.1007/s13222-017-0259-4
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/3-540-44503-X_20
https://doi.org/10.1007/978-3-642-41660-6_11

372 T. Auge and A. Heuer

15. Deutsch, A., Popa, L., Tannen, V.: Query reformulation with constraints. SIGMOD
Rec. 35(1), 65–73 (2006)

16. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

17. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Quasi-inverses of schema mappings.
ACM Trans. Database Syst. 33(2), 11:1–11:52 (2008)

18. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Schema mapping evolution through
composition and inversion. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema
Matching and Mapping. Data-Centric Systems and Applications, pp. 191–222.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-16518-4 7

19. Geerts, F., Mecca, G., Papotti, P., Santoro, D.: That’s all folks! LLUNATIC goes
open source. PVLDB 7(13), 1565–1568 (2014)

20. Greco, S., Molinaro, C., Spezzano, F.: Incomplete Data and Data Dependencies in
Relational Databases. Synthesis Lectures on Data Management. Morgan & Clay-
pool Publishers, San Rafael (2012)

21. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp.
31–40. ACM (2007)

22. Green, T.J., Tannen, V.: The semiring framework for database provenance. In:
PODS, pp. 93–99. ACM (2017)

23. Grunert, H., Heuer, A.: Datenschutz im PArADISE. Datenbank-Spektrum 16(2),
107–117 (2016)

24. Grunert, H., Heuer, A.: Privacy protection through query rewriting in smart envi-
ronments. In: EDBT, pp. 708–709. OpenProceedings.org (2016)

25. Grunert, H., Heuer, A.: Rewriting complex queries from cloud to fog under capa-
bility constraints to protect the users’ privacy. OJIOT 3(1), 31–45 (2017)

26. Grunert, H., Heuer, A.: Query rewriting by contract under privacy constraints.
OJIOT 4(1), 54–69 (2018)

27. Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294
(2001)

28. Herschel, M., Diestelkämper, R., Ben Lahmar, H.: A survey on provenance: what
for? What form? What from? VLDB J. 26(6), 881–906 (2017)

29. Ileana, I., Cautis, B., Deutsch, A., Katsis, Y.: Complete yet practical search for min-
imal query reformulations under constraints. In: SIGMOD Conference, pp. 1015–
1026. ACM (2014)

30. Jurklies, M.: CHASE und BACKCHASE: Entwicklung eines Universal-Werkzeugs
für eine Basistechnik der Datenbankforschung. Master’s thesis, Universität Rostock
(2018)

31. Köhler, S., Ludäscher, B., Zinn, D.: First-order provenance games. CoRR abs/
1309.2655 (2013) http://arxiv.org/abs/1309.2655

32. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
33. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies.

ACM Trans. Database Syst. 4(4), 455–469 (1979)

https://doi.org/10.1007/978-3-642-16518-4_7
http://arxiv.org/abs/1309.2655

ECHOES: A Fail-Safe, Conflict Handling,
and Scalable Data Management

Mechanism for the Internet of Things

Christoph Stach(B) and Bernhard Mitschang

Institute for Parallel and Distributed Systems, University of Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{stachch,mitsch}@ipvs.uni-stuttgart.de

Abstract. The Internet of Things (IoT) and Smart Services are becom-
ing increasingly popular. Such services adapt to a user’s needs by using
sensors to detect the current situation. Yet, an IoT service has to capture
its required data by itself, even if another service has already captured it
before. There is no data exchange mechanism adapted to the IoT which
enables sharing of sensor data among services and across devices.

Therefore, we introduce a data management mechanism for the IoT.
Due to its applied state-based synchronization protocol called ECHOES.
It is fail-safe in case of connection failures, it detects and handles data
conflicts, it is geared towards devices with limited resources, and it is
highly scalable. We embed ECHOES into a data provisioning infrastruc-
ture, namely the Privacy Management Platform and the Secure Data
Container. Evaluation results verify the practicability of our approach.

Keywords: IoT · Data exchange · Synchronization protocol

1 Introduction

The Internet of Things (IoT) has long left its early stages of development behind
in which only technology evangelists and early adopters used Smart Things1. Due
to omnipresent Internet connectivity options and increasing bandwidth speeds,
devices with a permanent Internet access grew proliferated in the early 2000s.
Yet, it was not until the IoT became more and more invisible, by integrating sen-
sors into everyday objects, that this technology found its way into limelight [7].

The Internet of Things is extremely intriguing for both consumers and ser-
vice providers as the data collected by Smart Things is extremely valuable. Since
these devices are usually permanently close to their users and their sensors are
able to record a wide range of data, data scientists can gain profound knowledge

1 We use the term ‘Smart Thing ’ for any kind of device which is able to connect to
other devices in order to exchange data with each other and has the ability either
to monitor its environment or to control other devices.

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 373–389, 2019.
https://doi.org/10.1007/978-3-030-28730-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_23&domain=pdf
http://orcid.org/0000-0003-3795-7909
https://doi.org/10.1007/978-3-030-28730-6_23

374 C. Stach and B. Mitschang

about the users. Services can thus be tailored to individual customers. Applica-
tion cases can be found in any domain, such as Smart Homes, Smart Cars, or
Smart Health.

So, it is not surprising that analysts predict that by 2020 over 50 billion
Smart Things will be in use and the market will be shared among many service
providers [13]. Each device vendor and each service provider has its own way
of storing and processing the captured data. Therefore, the effort to collect all
data required for a certain service is cumbersome—different services have to
collect the same data over and over again, as there is no simple data exchange
mechanism among services, let alone a direct data exchange across Smart Things.
Yet, the IoT can only unfold its true potential if all user data is available to all
of his or her Smart Things at any time. Due to the vast amount of data, a
smart synchronization mechanism is required, i. e., the volume of data being
transmitted has to be as low as possible and the computational costs for Smart
Things have to be minimal as these devices often have very limited resources [35].

Since none of the existing data exchange approaches for the IoT provide
these characteristics, we introduce a state-based synchronization protocol for
the Internet of Things, called ECHOES, and apply it to a data exchange mech-
anism. To this end, we make the following three contributions:

(I) We introduce an approach that enables Smart Things to exchange their
data using a central synchronization server. For this purpose, our state-based
synchronization protocol is used. Whenever changes to the client’s data stock
(i. e., adding new data sets, modifying existing data sets, or removing data sets)
are done, it calls synchronization server and applies the changes to the remote
data stock. Analogously, the changes are then applied to all other Smart Things
of this user by the synchronization server. Due to the state-based procedure, our
approach is resource-friendly in terms of run time performance and the volume
of data being transmitted. (II) As for Smart Things it cannot be ensured that
they have a permanent connection to the server, our protocol also supports
an offline mode. That is, Smart Things are able to gather data locally and
synchronize with the server as soon as connectivity is back on. In this mode
also, a resource-friendly proceeding is ensured. It has to be mentioned that in
this stage conflicts can occur (e. g., if two offline Smart Things modify the same
data set) and ECHOES is able to detect and resolve them. (III) We embed
ECHOES into an existing data provisioning infrastructure for Smart Things,
namely the PMP (Privacy Management Platform) [27] and the SDC (Secure
Data Container) [29]. The SDC is a shared data storage for IoT services and
the PMP provides access to this data stock. By integrating ECHOES, we enable
the synchronization of all SDCs and therefore, the PMP is able to provide all
collected data of a user to any service on every Smart Thing. As the PMP
provides fine-grained access control mechanisms, this data exchange is done in
a privacy-aware manner.

The remainder of this paper is as follows: Sect. 2 introduces a real-world appli-
cation case from the Smart Health domain, in which it is mandatory for Smart
Things to exchange their data. From this, we derive a requirement specification

ECHOES 375

in Sect. 3. We discuss related work in Sect. 4. Subsequently, we introduce the
protocol of ECHOES in Sect. 5 and detail on its implementation based on the
PMP and the SDC in Sect. 6. An evaluation of ECHOES is given in Sect. 7.
Finally, Sect. 8 concludes this paper.

2 Application Case

In the following, we depict an IoT use case from the Smart Health domain.
Smart Health applications are especially beneficial for patients suffering from
chronic diseases such as diabetes. These patients have to visit their physicians
regularly in order to do medical screenings and to keep track of their disease pro-
gression. Supported by Smart Things however, the patients are able to perform
the required medical check-up at home by themselves. This does not only save a
lot of money, but it also enables physicians to focus on emergencies [25]. Smart
Phones are considered as particularly useful in the context of Smart Health
application [11]. On the one hand, people always carry their Smart Phones with
them and on the other hand, these devices are equipped with a variety of sensors
which are relevant for Smart Health applications. For instance, Knöll empha-
sized the importance of the location where a medical reading was taken for its
interpretation [14]. In addition, it is possible to connect medical devices such as
glucometers or peak flow meters to Smart Phones via Bluetooth.

An example for such an application is Candy Castle [26]. The game is
designed for children suffering from diabetes and is intended to help them coping
with the continuous blood glucose monitoring. To this end, the children have to
defend a virtual castle against attacks by dark forces (as a reflection of their
disease). To protect the castle, the children have to build walls which hold the
attackers back. They do this by doing a blood glucose reading. As the walls
gradually wear down, Candy Castle motivates players to regularly check their
blood sugar levels. Additionally, the virtual castle is linked to the location of
the children’s home and each reading is supplemented with the GPS coordinates
where it was taken. Thereby, the walls can be inserted geographically correct
in the game and the players are motivated to check their blood sugar levels
in many different places. From a medical point of view, the children get used
to the continuous blood glucose monitoring and physicians are able to identify
healthy and unhealthy places in the children’s environment [14]. Further sen-
sors can be integrated to identify unhealthy factors more precisely. For instance,
Smart Bracelets can be used to detect certain activities (e. g., administering
insulin) [16], microphones can be used to determine the child’s mood [18], and
cameras can be used to calculate the bread units of the children’s food [3]. The
blood glucose measurement can also be integrated into the game automatically,
e. g., via the Apple Watch [34].

However, such an application requires a fast and simple data exchange
between the patient and his or her physician [6]. And Candy Castle is only one
of many Smart Health applications. For example, a COPD application requires
similar data, such as the location of a metering [31]. To avoid that every applica-
tion has to acquire the same data all over again, there is a growing trend towards

376 C. Stach and B. Mitschang

Fig. 1. Client-server model for the IoT.

a quantified self [33]. That is, all of a user’s data on a specific domain is stored
in a central repository [5]. Yet, this is limited to the pre-defined types of data of
the repository vendor and it is not possible to use it for a generic use case.

So, it is necessary to have a generic mechanism to easily share data between
different Smart Things and applications to face the interconnection and data
exchange problems and thereby exploit the full potential of IoT applications [19].

3 Requirement Specification

Although the IoT is designed as a decentralized network of independent devices,
the client-server model as shown in Fig. 1 is still predominant [22]. So, a data
exchange mechanism for the IoT can capitalize on the advantages of a server,
namely its high availability, computing power, and scalability. None of this is pro-
vided by the Smart Things. Thus, clients should mainly focus on data gathering
and processing and not the management of the data exchange. These manage-
ment tasks have to meet the following requirements:

R1 – Availability of Data: As the given application case shows, a permanent
network connection must not be required to collect and process data. Users
have to be able to edit data locally offline (e. g., do a blood glucose reading) and
synchronize it with other devices (e. g., their physicians’ devices) later when there
is a network connection. This guarantees a fail safe usage of IoT applications.

R2 – Conflict Handling: When a user edits the same data set offline on
multiple devices, conflicts might occur during synchronization (e. g., a user enters
contradictory readings). So, conflicts must be handled without data loss.

R3 – Efficiency: Synchronization has to deal with limited resources of Smart
Things, e. g., limited data transfer volume, limited computational power, limited
memory, and limited battery. So, the amount of metadata must be minimal and
the calculation of the data that has to be transferred must be simple and fast.

R4 – Transparency: The synchronization must be transparent for the user
and—as good as possible—also for application developers. That is, user interac-
tion has to be largely avoided and the developers’ effort must be minimal.

ECHOES 377

R5 – Genericity: The mechanism must not be restricted to a certain domain
or a specific data schema. The data has to be available to any application.

R6 – Scalability: As users interact with an increasing number of Smart Things
and IoT applications, many read and write data accesses must be expected. So,
synchronization has to be able to cope with a large number of mobile clients.

R7 – Security: The IoT handles a lot of private data, i. e., security is a key
aspect. This applies in particular to data storage, data access, and data sharing.

4 Related Work

With these requirements in mind, we look at related work. We consider work
from three different categories: (a) data sharing approaches for Smart Things,
(b) Cloud-based solutions for data sharing, and (c) synchronization approaches
for the IoT. We focus on Android-based solutions, as this OS is becoming increas-
ingly predominant in the IoT context, e. g., Android Things2 or emteria.OS3.

Smart Thing Approaches. Android’s safety concept requires applications to
run in sandboxes, strictly isolated from each other. A direct data exchange among
applications is therefore not intended. In order to support data sharing, Android
introduces so called Content Providers, i. e., restricted interfaces to the data sets
of an application [12]. Although the interfaces are standardized, it is still cumber-
some to use Content Providers. An application has to specify in the program code
which Content Providers—i. e., which other applications—it needs to access. As
a result, this approach largely lacks genericity. To overcome this flaw, MetaSer-
vice [8] introduces a temporary shared object storage. In this storage, applica-
tions can deposit a single data object and another application is able to obtain it.
When another object is deposited, any previously stored object is overwritten.
In this respect, MetaService works similar to the Clipboard which is common
on desktop PCs. However, MetaService is not suitable for the distribution of
comprehensive data volumes. This is provided by the SDC [28,29]. The SDC is
a shared database for Android that can be used by any application. Due to its
fine-grained access control, users can specify precisely, which application may
access which data set. With the CURATOR [30] extension, NoSQL databases
are also supported so that, for instance, objects can be exchanged directly among
applications. More information on the SDC is given in Sect. 6. However, none
of these approaches supports data exchange across devices. Mobius [10] can be
used for this purpose. It introduces a system-wide database which is synchro-
nized with a Cloud database to share data across devices. However, Mobius uses
locally virtual partitions to realize access control. An application has access to
its own partition, only. That is, in order to share data with several applications
the respective data has to be added to each respective partition. Although data
sharing across devices is very simple, data sharing among applications is still
cumbersome.
2 see https://developer.android.com/things/.
3 see https://emteria.com/.

https://developer.android.com/things/
https://emteria.com/

378 C. Stach and B. Mitschang

Cloud-Based Approaches. There is a variety of Cloud services that enable
data sharing across Smart Things. The most straightforward approach is a Cloud
database in which applications can store and retrieve their data. These databases
are usually associated with a specific application or class of applications and have
a fixed data schema. For instance, there is the Glucose Web Portal [15], which
can be used by applications related to diabetes. In addition to the storage of
data, the Glucose Web Portal also provides some health services, e. g., the anal-
ysis of diabetes data. That is, an application has to collect health data and
send it to the service and then the not only the data itself but also the analy-
sis results are available to any other application. Similar services are available
for other diseases such as COPD as well [32]. A more generic approach is the
HealthVault [5]. A user has to create a HealthVault profile. Then s/he can store
and link any kind of health data captured by any Smart Thing in his or her
profile. This data is available for any application for its analysis and presenta-
tion. However, these approaches do not support user-defined types of data, an
application automatically has access to all data, and since the data is only stored
in the Cloud, it is not available if the Internet connection is interrupted. Many
database vendors also provide a mobile version of their databases. These versions
often support synchronization with a Cloud-based back-end. Couchbase Mobile4

is such a mobile version. However, its synchronization is designed to ensuring
that the data sets of a particular application are kept up to date on all of a user’s
Smart Things. Data sharing among different applications is not supported. Also,
the synchronization only operates with the mobile client from Couchbase—other
databases are not supported. Resilio Sync5 improves the availability of such a
synchronization by adopting a P2P approach instead of a central database [23].
Yet, this enables only the exchange of files and not of single data sets and it has
fairness issues, which cause significant slowdowns [20].

Synchronization Approaches. Syxaw [17] brings the two aforementioned cat-
egories together by introducing a middleware for the synchronization of struc-
tured data. It enables multiple users to edit documents and folders collabora-
tively, and Syxaw takes care of merging the changes. However, since it operates
on files, the computation of changes is expensive and locks on at file level are
very restrictive. For a use case as presented in Sect. 2, a fine-grained synchro-
nization of data sets is much better suited. This is achieved by SAMD [9]. In
order to reduce the computational effort for the mobile clients, all expensive
operations are carried out server-sided. This includes a multi-layered calculation
of hash values for the managed data sets. Thereby it is sufficient to exchange
comparatively small hash values for most of the synchronization process instead
of the actual data. SWAMD [2] follows a quite similar approach, but its focus
is on wireless networks, which is common in an IoT environment. Yet, both
approaches are designed for a deployment scenario in which synchronization
takes place infrequently. A continuous synchronization of data requires a per-
manent recalculation and exchange of the hash values, which causes high costs.
4 see https://www.couchbase.com/products/mobile.
5 see https://www.resilio.com.

https://www.couchbase.com/products/mobile
https://www.resilio.com

ECHOES 379

Contrary to this, MRDMS [24] represents a timestamp-based synchronization
approach. The timestamps enable MRDMS to reflect the temporal correlation
of changes. In this way, the required data transfer volume can be further reduced
compared to SAMD. However, since less data is used for synchronization, con-
flicts often cannot be resolved. Furthermore, lost updates cannot be prevented.
By incorporating snapshots into such approaches, automatic conflict resolution
can be improved [21]. Yet, this increases computational effort and data volumes.

As none of these approaches supports a use case as given in Sect. 2 as well as
the requirements from Sect. 3, we introduce a solution in the following.

5 The ECHOES Protocol

In ECHOES, we do not pursue a P2P approach as it is not guaranteed that all
Smart Things are permanently available and interconnected. A central, perma-
nently available server component therefore ensures the fastest and most reliable
data distribution. Moreover, computation-intensive tasks can be shifted to the
server in order to reduce computational effort for the Smart Things. A one-
way push or pull approach is inefficient as data changes can occur on both the
server and the clients. Therefore, we apply a two-way state-based approach in
our synchronization protocol. The synchronization steps can be simplified, since
it is possible to decide based on the respective state which actions are necessary.
Furthermore, we introduce version numbers for conflict resolution.

PPLDisconnected PPH PCU PSU

PCDPSDPCPACTIVE

INSERTPL INSERTPH UPDATEPL

UPDATEPH

DELETEPLDELETEPHConflicts?

PPL: Primary Pull PPH: Primary Push PCU: Primary Client Update PSU: Primary Server Update
PCD: Primary Client Delete PSD: Primary Server Delete PCP: Primary Conflict Pull

Fig. 2. ECHOES offline synchronization process (applies to server and client).

Offline Mode. For the initial synchronization or after a connection failure, the
client has to process seven states sequentially (see Fig. 2). This is due to the fact
that during the offline period various changesmayhave beenmade to the databases
of both the client and the server.

First, it is necessary to check whether new data sets have been added. In
the primary pull (PPL) the client sends all IDs of its data sets to the server and
the server calculates the delta to its central database. As a response to the PPL,
the server sends all data sets that are not available on the client. The client sets

380 C. Stach and B. Mitschang

the status of these data sets to RELEASED. The client then performs a primary
push (PPH) by sending all data sets that were added in the offline stage—i. e.,
data sets with the status NEW—to the server. When the server acknowledges
receipt, their statuses are set to RELEASED.

ECHOES then handles edited data sets. In the primary client update (PCU)
the client sends all version numbers of data sets with status RELEASED that were
not handled by the previous steps to the server. The version number of a data
set is incremented when a RELEASED data set is edited. The server sends back
updates for all data sets for which a newer version exists. In the primary server
update (PSU), the client sends then all data sets with the status MODIFIED—i. e.,
data sets that were edited during offline stage—to the server. The server checks
based on the version number whether it can apply the update or whether there
is a conflict with a change made by another client. Accordingly, the status on
the client is set to RELEASED or the conflict is logged.

From the previous steps, the server already knows all the unmodified data
sets on the client (status RELEASED). If these sets do not exist on the server any
more, they must be deleted on the client as part of the primary client delete
(PCD). Accordingly, the primary server delete (PSD) synchronizes local deletions.
To this end, deletions performed during offline mode are not applied to the data
stock immediately, but the status of the affected data sets is set to DELETED and
the version numbers are incremented. During PSD, the server checks whether
the data can be deleted or whether there is a conflict and gives feedback to the
client.

Finally, ECHOES deals with conflict resolution. For all data sets flagged as
conflicting, the client receives the versions available on the server. As these con-
flicts cannot be resolved automatically, the primary conflict pull (PCP) requires
user interaction. The user has to decide which version is the valid one. The ver-
sion number of this data record is then adjusted. The new version number is the
maximum of the two former version numbers plus 1.

After these seven steps, the online mode is activated. Nota bene, authentica-
tion and authorization of the Smart Things towards the synchronization server
are not part of the ECHOES protocol. This has to be done in a preliminary step.
ECHOES handles synchronization, only. Yet, we tackle both of these issues in
our implementation (see Sect. 6).

Online Mode. In online mode (see Fig. 3), client and server mutually send
acknowledgement messages periodically as a heartbeat message. In this process,
both change their state from ACTIVE to STANDBY and vice versa. That way, no
permanent (energy-consuming) connection is necessary.

Each party (i. e., client and server) can continue to work and process data
locally, regardless of its current state. To this end, each party adds corresponding
tasks to a local queue. This queue is processed as soon as the respective party is
active. Each of these tasks refers to a single data set, only. As a result, the pro-
cessing is significantly less computationally expensive than the synchronization
in offline mode and only a single state has to be traversed per task.

ECHOES 381

IPHIUPHIDPH ACTIVE STANDBY

IPL

IUPL

IDPL

Heartbeat

Heartbeat

IPL: Immediate Pull IPH: Immediate Push
IUPL: Immediate Update Pull IUPH: Immediate Update Push
IDPL: Immediate Delete Pull IDPH: Immediate Delete Push

Fig. 3. ECHOES online synchronization process (applies to server and client).

A reasonable tradeoff must be achieved in this respect. Long ACTIVE-STANDBY
cycles cause less communication overhead (for passing the activity token, i. e., the
heartbeat message), but more local changes—and therefore potential conflicts—
might occur per cycle and it takes more time until the changes are applied to
all devices. Short cycles cause increased communication overhead, even if there
have not been any changes during the STANDBY phase.

Immediate pull (IPL) and immediate push (IPH) are the counterparts in the
online mode to the PPL and PPH state in the offline mode. Conflicts do not have
to be considered in these states. The IDs used by ECHOES contain a reference
to the Smart Thing that generates the data. This prevents conflicts if new data
is simply added.

When data sets are edited, an immediate update pull (IUPL) or respectively
an immediate update push (IUPH) is triggered. First, the server checks based
on the version number whether the changes can be applied immediately to all
clients. If this is the case, the status is set to RELEASED. If there is a conflict,
the server attempts to resolve it by merging the changes. If that is successful,
the new version of the data set is distributed to all clients. If the conflict cannot
be resolved automatically, the client that submitted the change is notified and
the user must resolve the conflict manually. To prevent the synchronization from
being blocked by this user interaction, the data set is marked as a conflict and the
update task is added to the client’s queue again. Once the conflict is resolved,
the conflict flag as well as the update task are removed, and the changes are
synchronized by the server on all clients.

Finally, immediate delete pull (IDPL) and immediate delete push (IDPH) deal
with the synchronization of delete operations. The client (or analogously the
server) receives the ID and the version number of the data set in question. If
the version number is equal to or higher than the one of the local instance, the

382 C. Stach and B. Mitschang

data set is immediately deleted. Otherwise the local version was edited, and the
corresponding synchronization has not been carried out yet—i. e., the IUPH task
is still in the client’s queue. In such a case, the deletion operation is refused, and
the user is informed about the conflict. If the conflict occurs on the server, the
resolution takes place on the client that caused the conflict. A dedicated conflict
state is not required in online mode, since conflicts are resolved immediately
when they occur.

Although ECHOES enables synchronization across devices, there is still a
lack of a data exchange mechanism among applications. Therefore, an implemen-
tation is presented in the following, in which ECHOES operates as a background
service that is available to any application.

6 Implementation of ECHOES

The PMP [27] is a privacy system for Smart Things. To this end, it isolates
applications form data sources and controls any access to the data via its fine-
grained permissions. In other words, the PMP can be seen as a middleware
that operates as an information broker. The PMP’s key feature is that it is
extendable. New data sources can be added at any time as so-called Resources.
Subsequently, applications can access these data sources via the PMP.

The SDC [29], a database system based on SQLite, is such a Resource. It
offers security features, e. g., the stored data is encrypted and it provides a tuple-
based access control. In addition, it has a customizable schema to be compatible
to any application and stored data can be partitioned to increase performance.

As the SDC is a PMP Resource, it is available to any applications. Thus,
data can be exchanged among applications via the fine-grained access control. By
integrating ECHOES into the SDC, an exchange across devices can be realized.

Figure 4 shows the data access and synchronization process of an SDC-based
ECHOES implementation. Initially, an application requests access to the local
SDC instance from the PMP (1). Then, the PMP checks whether the applica-
tion has the required permissions. If the application is authorized to use the
SDC, the PMP enables access. The application can use the SDC like an inter-
nal database, i. e., it can query, insert, update, or delete data (2). If data from
another application is affected, the SDC checks the required access rights.

Due to the integration of ECHOES, the SDC detects changes to the data
stock and synchronizes it (3). Depending on whether the SDC is currently in
offline or online mode, this involves different steps. If it is in offline mode, it
must establish a connection to the synchronization server and perform a complete
synchronization (see Fig. 2). Otherwise, the respective type of alteration can be
submitted to the server (see Fig. 3). In this process, the changes are applied to the
central database (4). The synchronization server then creates an event to notify
all other SDC instances via its event bus (5). These notifications are transformed
into tasks and added to the threads of the respective Smart Things (6). Finally,
the necessary changes are applied to their local SDC instances (7). The data from
Smart Thing1 is then available to applications on Smart Thingn (8). Again, the
PMP handles access control (9).

ECHOES 383

Fig. 4. Data access and synchronization process.

For the integration of ECHOES into the SDC, its data schema has to be
adapted, as additional metadata is required for synchronization. The extended
relational schema is shown in Fig. 5. First, a new ID is added for each data
set. This ID contains references to the Smart Thing that created or edited the
data set most recently. In addition, the mode of each data set has to be logged.
In addition to the four modes (NEW, RELEASED, MODIFIED, and DELETED) which
are required for synchronization (see Sect. 5), there is a fifth mode OFFLINE.
Data sets flagged with this mode are excluded from synchronization. If a conflict
cannot be resolved automatically, this is also indicated in the mode entry of the
corresponding data sets. The SDC then informs the user about the conflict and
s/he can decide which version should be valid. The VERSION of the data sets is
required by ECHOES to decide which version is valid. The TIMESTAMP entry is
not necessarily required for the synchronization as the version already represents
the chronological order in which the data was edited. Yet, the timestamps help
users to resolve conflicts as they are able to track exactly when which data set was
edited. SHARE is provided by the SDC. It is a foreign key to the maintenance
tables of the SDC. These tables have to be synchronized as well in order to
enable access control on all devices. Finally, the actual PAYLOAD is stored as
well. An individual data schema can be specified, just like in the native SDC.

The actual data transfer is realized as a flattened stream of characters. A
composer in the SDC converts the database entries into a sequence of key-value
pairs and a parser processes such a sequence and inserts the contained values
into the SDC. That way, the amount of data that needs to be transferred is
minimized as almost solely payload data is transferred. On the synchronization
server, there are corresponding counterparts according to the specifications in
Sect. 5.

384 C. Stach and B. Mitschang

ECHOES DATA SETS

ID MODE VERSION TIMESTAMP SHARE PAYLOAD

INT FK DATA

Fig. 5. Relational schema for the mobile database.

7 Evaluation

To evaluate the performance of our ECHOES prototype, we describe the evalua-
tion setup, present the evaluation results, and discuss whether ECHOES fulfills
all requirements towards a data exchange mechanism for the IoT.

Fig. 6. Candy castle data model used for evaluation.

Evaluation Setup. For the evaluation, we draw on Candy Castle [26]. This
application is executed on two Smart Phones and the captured data is syn-
chronized on both devices. For this purpose, we extended the SDC-based data
management of Candy Castle by ECHOES—the applied data model of the pay-
load is shown in Fig. 6. In addition, we set up an ECHOES synchronization
server. To get a better understanding of how different hardware configurations
and different Android versions affect the performance of ECHOES, we perform
our measurements on two different types of Smart Phones: on the one hand
the LG Nexus 5X (S1) with a current Android version and on the other hand
the Huawei Honor 6 Plus (S2) with more memory and more CPU cores but a
lower clock speed. Both are intentionally lower middle-class models, since their
hardware setup is similar to those of other popular Smart Things, such as the
Raspberry Pi. MariaDB is used on the server. MariaDB is a highly powerful and
scalable database with strong similarities to MySQL [1,4]. A detailed evaluation
setup is given in Table 1.

ECHOES 385

Table 1. Evaluation setup.

Smart Thing S1 Smart Thing S2 Server

OS Android 8.1.0 Android 5.1.1 Debian 9.4

CPU Snapdragon 808 Kirin 925 8 ∗ 3.6 GHz

RAM 2 GB 3 GB 8 GB

Connection 50 Mbit/s 50 Mbit/s 100 Mbit/s

Database SQLite SQLite MariaDB

For the evaluation, we examine four different scenarios for both, the offline
mode as well the online mode: (a) Initially, both Smart Phones are disconnected
and an ascending number of data sets (from 100 up to 6, 400) is randomly gener-
ated on one Smart Phone. Then, both devices are connected. (b) Subsequently,
both Smart Phones are disconnected again. Then, on one device 50% of the
data sets are edited and synchronization is started. (c) Next, 50% of the data
is edited on both devices in offline mode, i. e., ECHOES must resolve conflicts.
(d) Finally, 50% of the data sets are deleted on one device and synchronization
is started.

In each scenario, we take the time until synchronization is completed. These
scenarios are repeated with permanently enabled connectivity to evaluate online
mode. In this case, the duration of the synchronization of each individual oper-
ation is measured. Each test is performed with a pair of Smart Thing S1 and
S2. After each run, all databases are reset to avoid side effects caused by warm
caches. Each test is carried out for 10 times and the average processing time is
considered.

Evaluation Results. All evaluation results for ECHOES’s offline mode are
shown in Fig. 7. Figure 7a shows the time until newly added data sets are avail-
able on all devices (PPL & PPH). The processing time increases nearly linear
to the number of data sets. On average, the synchronization of a single newly
added data set takes about 84 ms on a pair of S1 and about 99 ms on a pair of
S2. It is striking that ECHOES is performing very well on the weaker hardware.
A considerably more decisive factor is the OS version. These findings are also
reflected by the three other scenarios.

The processing time when changes are made to 50% of the data sets (PCU
& PSU) is shown in Fig. 7b. This processing time also increases linearly, but it
is significantly higher than in the previous scenario. Although only half of the
data sets have been changed, the other half must also be cross-checked with the
server. Nevertheless, a processing time of 180 ms or 215 ms per edited data set
is still reasonable.

386 C. Stach and B. Mitschang

100 400 1,600 6,400

200

400

600

Number of Data Sets

P
ro
ce
ss
in
g
T
im

e
(i
n
se
c)

S1

S2

(a) Adding New Data Sets.

100 400 1,600 6,400

200

400

600

Number of Data Sets

P
ro
ce
ss
in
g
T
im

e
(i
n
se
c)

S1

S2

(b) Modifying Data Sets (no conflicts).

100 400 1,600 6,400

200

400

600

800

Number of Data Sets

P
ro
ce
ss
in
g
T
im

e
(i
n
se
c)

S1

S2

(c) Modifying Data Sets (conflicts).

100 400 1,600 6,400

50

100

150

200

Number of Data Sets

P
ro
ce
ss
in
g
T
im

e
(i
n
se
c)

S1

S2

(d) Deleting Data Sets.

Fig. 7. Overall processing time of ECHOES’s offline mode.

The effect of conflict resolving (PCP) on the processing time is shown in
Fig. 7c. This conflict resolving increases the costs caused by ECHOES (213 ms
or 254 ms per edited data set). Yet, conflicts are unlikely in our application case.

The deletion of data sets (PCU & PSU) is very fast (24 ms or 28 ms per data
set, see Fig. 7d).

Table 2. Processing time of ECHOES’s online mode.

Add Modify Delete

Smart Thing S1 365 ms 368 ms 309 ms

Smart Thing S2 398 ms 402 ms 337 ms

In the online mode, changes (regardless whether it is add, modify, or delete)
are available on all devices after about 350 ms. The detailed costs are stated
in Table 2. As shown in Sect. 5, conflicts need not to be considered explicitly
in online mode since they are handled by the three listed operations already.

ECHOES 387

The online synchronization takes longer than the synchronization of a single
data set in offline mode, as the communication overhead required to initiate
the data exchange is generated only once for the total bulk of transferred data.
These costs are thus allocated proportionally in offline mode among all data sets
contained in the bulk.

Discussion. As ECHOES has an online and an offline mode, it ensures avail-
ability even in case of connection failures. This enables users to continue work-
ing and ECHOES takes care of the synchronization as soon as the connection
is reestablished (R1). Conflict handling is ensured, as ECHOES resolves con-
flicts automatically due to its PCP state (R2). Evaluation results prove ECHOES
efficiency. Not only does it cope with limited resources, but also the required
metadata is minimal. Based on the memory consumption of an SQL database,
the payload in our application case requires 192 bytes per data set, while the
metadata occupies only 20 bytes. That is almost a ratio of 10 to 1. Obviously,
this is case-specific (R3). From an application’s point of view, transparency
is achieved. An application interacts with the SDC as if it is a local database
(R4). Also, genericity is ensured at the data schema of an SDC instance can
be customized (R5). The server-side scalability is ensured by the use of Mari-
aDB and as the SDC can be partitioned, the scalability can be further improved
(R6). Finally, the PMP and the SDC ensures privacy and security on the
mobile clients (R7). Therefore, ECHOES meets all requirements towards a data
exchange mechanism for the IoT.

8 Conclusion

The IoT is becoming increasingly popular. A growing number of applications
are emerging in various domains such as Smart Homes, Smart Cars, or Smart
Health. These IoT applications require a mechanism to share data. However,
current data sharing approaches do not fulfills all requirements towards such a
mechanism.

Therefore, we introduce ECHOES, a state-based synchronization protocol for
the IoT. It provides four key features: (1) It supports an online and offline mode
to deal with connection failures. (2) It deals with conflicts when several parties
edit the same data set. (3) It can be executed on limited resources. (4) It operates
with any given data schema. We implement this protocol in a data provisioning
infrastructure for Smart Things (PMP & SDC). Thus, our prototype has three
further key features: (5) The SDC behaves like a local database. (6) The back-
end is highly scalable due to MariaDB. (7) The PMP and the SDC provide a
wide range of data security features. Evaluation results are very promising as
changes are available on all clients in less than 0.4 s.

Acknowledgment. We thank the BW-Stiftung for financing the PATRON research
project and the DFG for funding the SitOPT research project.

388 C. Stach and B. Mitschang

References

1. Aditya, B., Juhana, T.: A high availability (HA) MariaDB Galera Cluster across
data center with optimized WRR scheduling algorithm of LVS - TUN. In: TSSA
(2015)

2. Alhaj, T.A., et al.: Synchronization wireless algorithm based on message digest
(SWAMD) for mobile device database. In: ICCEEE (2013)

3. Almaghrabi, R., et al.: A novel method for measuring nutrition intake based on
food image. In: I2MTC (2012)

4. Bartholomew, D.: MariaDB vs. MySQL. White paper, Monty Program Ab (2012)
5. Bhandari, V.: Enabling Programmable Self with HealthVault: An Accessible Per-

sonal Health Record. O’Reilly Media Inc., Newton (2012)
6. Chan, M., et al.: Smart wearable systems: current status and future challenges.

Artif. Intell. Med. 56(3), 137–156 (2012)
7. Chase, J.: The evolution of the Internet of Things. White paper, Texas Instruments

(2013)
8. Choe, H., et al.: MetaService: an object transfer platform between Android appli-

cations. In: RACS (2011)
9. Choi, M.Y., et al.: A database synchronization algorithm for mobile devices. IEEE

Trans. Consum. Electron. 56(2), 392–398 (2010)
10. Chun, B.G., et al.: Mobius: unified messaging and data serving for mobile apps.

In: MobiSys (2012)
11. Dayer, L., et al.: Smartphone medication adherence apps: potential benefits to

patients and providers. J. Am. Pharm. Assoc. 53(2), 172–181 (2013)
12. Enck, W., et al.: Understanding Android security. IEEE Secur. Privacy 7(1), 50–57

(2009)
13. Hung, M. (ed.): Leading the IoT: Gartner Insights on How to Lead in a Connected

World. Gartner (2017)
14. Knöll, M.: Diabetes City: how urban game design strategies can help diabetics. In:

eHealth (2009)
15. Koutny, T., et al.: On-line blood glucose level calculation. In: ICTH (2016)
16. Kwapisz, J.R., et al.: Activity recognition using cell phone accelerometers. ACM

SIGKDD Explor. Newsl. 12(2), 74–82 (2010)
17. Lindholm, T., et al.: Syxaw: data synchronization middleware for the mobile web.

Mob. Netw. Appl. 14(5), 661–676 (2009)
18. Mehta, D.D., et al.: Mobile voice health monitoring using a wearable accelerometer

sensor and a smartphone platform. IEEE Trans. Biomed. Eng. 59(11), 3090–3096
(2012)

19. Murnane, E.L., et al.: Mobile health apps: adoption, adherence, and abandonment.
In: UbiComp/ISWC 2015, Adjunct (2015)

20. Peng, Z., et al.: On the measurement of P2P file synchronization: Resilio Sync as
a case study. In: IWQoS (2017)

21. Phatak, S.H., Nath, B.: Transaction-centric reconciliation in disconnected client-
server databases. Mob. Netw. Appl. 9(5), 459–471 (2004)

22. Ren, J., et al.: Serving at the edge: a scalable IoT architecture based on transparent
computing. IEEE Netw. 31(5), 96–105 (2017)

23. Scanlon, M., et al.: Network investigation methodology for BitTorrent Sync. Com-
put. Secur. 54(C), 27–43 (2015)

24. Sethia, D., et al.: MRDMS-mobile replicated database management synchroniza-
tion. In: SPIN (2014)

ECHOES 389

25. Silva, B.M.C., et al.: Mobile-health: a review of current state in 2015. J. Biomed.
Inform. 56(August), 265–272 (2015)

26. Stach, C.: Secure Candy Castle – a prototype for privacy-aware mHealth apps. In:
MDM (2016)

27. Stach, C., Mitschang, B.: Privacy management for mobile platforms - a review of
concepts and approaches. In: MDM (2013)

28. Stach, C., Mitschang, B.: Der Secure Data Container (SDC) - Sicheres Datenma-
nagement für mobile Anwendungen. Datenbank-Spektrum 15(2), 109–118 (2015)

29. Stach, C., Mitschang, B.: The Secure Data Container: an approach to harmonize
data sharing with information security. In: MDM (2016)

30. Stach, C., Mitschang, B.: CURATOR–a secure shared object store: design, imple-
mentation, and evaluation of a manageable, secure, and performant data exchange
mechanism for smart devices. In: SAC (2018)

31. Stach, C., et al.: The Privacy Management Platform: an enabler for device inter-
operability and information security in mHealth applications. In: HEALTHINF
(2018)

32. Steimle, F., et al.: Extended provisioning, security and analysis techniques for the
ECHO health data management system. Computing 99(2), 183–201 (2017)

33. Swan, M.: Sensor mania! The Internet of Things, wearable computing, objective
metrics, and the Quantified Self 2.0. J. Sens. Actuator Netw. 1(3), 217–253 (2012)

34. Wakabayashi, D.: Freed from the iPhone, the Apple Watch finds a medical purpose.
Report, The New York Times (2017)

35. Walker, M.: Hype cycle for emerging technologies. Market analysis, Gartner (2018)

Transaction Isolation in Mixed-Level
and Mixed-Scope Settings

Stephen J. Hegner(B)

DBMS Research of New Hampshire, PO Box 2153, New London, NH 03257, USA
dbmsnh@gmx.com

Abstract. Modern database-management systems permit the isolation
level to be set on a per-transaction basis. In such a mixed-level setting, it
is important to understand how transactions running at different levels
interact. More fundamentally however, these levels are sometimes of dif-
ferent scopes. For example, READ COMMITTED and REPEATABLE READ are
of local scope, since the defining properties depend upon only the trans-
action and its relationship to those running concurrently. On the other
hand, SERIALIZABLE is of global scope; serializability is a property of a
schedule of transactions, not of a single transaction. In this work, in
addition to formalizing the interaction of transactions at different levels,
the meaning of serializability within local scope is also addressed.

Keywords: Database · Transaction · Isolation

1 Introduction

In a modern relational database-management system (RDBMS), there is trade-
off between performance via transaction concurrency and adequate isolation of
transactions from the operations of other transactions. It has therefore long been
held that a single notion of isolation is not adequate. Rather, the level of iso-
lation should be determined by the needs of the application. This philosophy
is integral to SQL, the standard of which [10, Part 2, Sect. 4.36] identifies four
distinct levels of isolation for transactions, ordered with increasing isolation as
READ UNCOMMITTED < READ COMMITTED < REPEATABLE READ < SERIALIZABLE.

Based upon the names of the isolation levels, as well as upon the semantics
as defined in the SQL standard, this classification is very confusing, because it
mixes isolation levels of distinct scope. The isolation levels READ UNCOMMITTED,
READ COMMITTED, and REPEATABLE READ are local in scope; the definitions apply
to individual transactions, with the relevant isolation properties of a transaction
T completely determined in conjunction with the behavior of those transac-
tions which run concurrently with it. On the other hand, the isolation level
SERIALIZABLE is global in scope; it applies to an entire schedule of transactions.
Indeed, it makes no sense to say that an individual transaction is serializable;
it only makes sense to say that a set of transactions, organized into a schedule

c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 390–406, 2019.
https://doi.org/10.1007/978-3-030-28730-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_24

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 391

S, is serializable; that is, that the results of running the transactions according
to S is equivalent to running them in some schedule S′ with no concurrency.
This raises the obvious question of what it means, in a mixed-level system, to
run some but not all transactions with serializable isolation. A main goal of this
paper is to address such questions of isolation involving multiple scopes.

It is the apparent intent of the SQL standard that the SERIALIZABLE isola-
tion level serve double duty, with both local and global scope, called a multiscope
isolation level. On the one hand, it is defined to be a local isolation level, call
it DEGREE 3,1 which is slightly stronger than REPEATABLE READ. On the other
hand, it is also defined in the standard to be a serializable-generating isolation
level, in the sense that if all transactions are run at that level, then the result
must be a serializable schedule. Unfortunately, it has been known for some time
that DEGREE 3, as defined above, is not serializable generating [2, Sect. A5B],
rendering the standard somewhat confusing at best. Nevertheless, the idea of a
serializable-generating local isolation level is an important one. In this paper,
working within the context of modern MVCC (multiversion concurrency con-
trol), a minimal serializable-generating local isolation level called RCX is iden-
tified. Interestingly, while it is slightly stronger than READ COMMITTED, it is not
order comparable to REPEATABLE READ. Indeed, it is shown that it is not nec-
essary to require repeatable reads (i.e., to require that the transaction read the
same value for a data object x regardless of when the read occurs during its
lifetime) in order to achieve serializable-generating behavior; rather, the critical
requirement is to prohibit so-called backward read-write dependencies. Thus,
the SQL standard imposes a condition for the local component of its multiscope
isolation level SERIALIZABLE which is not necessary for serialization.

For such a serializable-generating local isolation level, it is natural to ask
whether it has any properties related to serializability when run in a mixed-level
context, with other transactions running at other levels. The answer is shown to
be in the affirmative. RCX, as well as all higher levels of isolation, are serializable
preserving, in the sense that if transaction T runs at that level, then adding T
to the schedule will not result in any new cycles. In particular, if the existing
schedule is serializable, then adding T will preserve that property.

The way in which new serializable-generating strategies, including SSI [4,7]
and SSN [15], fit into this picture is also examined. SSI is of particular interest
because it is used for implementation of the SERIALIZABLE isolation level in
PostgreSQL [12]. Both may be termed preemptive regional strategies. They look
for certain small structures in the conflict graph which are a necessary part
of any cycle, aborting one of the participants when such a structure is found.
However, in contradistinction to RCX, neither is serializable preserving, or has
any similar property, so they have dubious benefit in a mixed-level context.

1 The SQL standard gives SERIALIZABLE no name to identify its local scope. Since it
is sometimes called Degree 3 isolation in the literature, [9, Sect. 7.6], the moniker
DEGREE 3 is introduced here, purely for clarification. Technically, it is REPEATABLE

READ which additionally prohibits so-called phantoms.

392 S. J. Hegner

The paper is organized as follows. In Sect. 2, necessary background material
on transactions and serializability is summarized. In Sect. 3, local isolation levels
are studied, with a particular focus on how they interact with each other in a
mixed-mode setting. In Sect. 4, serialization in multi-scope settings is examined.
Finally, Sect. 5 contains conclusions and further directions.

2 Transactions, Schedules, and Serialization

In this section, the basic ideas of transactions, schedules, and serialization are
summarized. The focus is to provide a precise and ambiguous notation and
terminology to use as a foundation for the ideas presented in Sects. 3 and 4.

Context 2.1 (Data objects and the global schema). A database schema
D is defined by a set DObj〈D〉 of data objects. Each such object has a single
value at any point in time, which may be read or written by a transaction.

In this work, such a schema D, called the global schema, is fixed. The current
instance of the global schema is called the global database.

Notation 2.2 (Time). Brackets are used to identify time intervals of the real
numbers R, using common conventions. For a, b ∈ R, [a, b] = {c ∈ R | a ≤ c ≤
b}, (a, b] = {c ∈ R | a < c ≤ b}, and [a, b) = {c ∈ R | a ≤ c < b}.

Summary 2.3 (Transactions). A transaction T over DObj〈D〉 is defined by
certain time points in R, in addition to read and write operations. First, T has
a start time tStart〈T 〉 and an end time tEnd〈T 〉, with tStart〈T 〉 < tEnd〈T 〉.

The specification of operations on the database follow an object-level model,
in which it is only known whether a transaction reads and/or writes a given
x ∈ DObj〈D〉, without knowledge of specific values. The read set ReadSet〈T 〉 ⊆
DObj〈D〉 of T consists of all data objects which T reads. Similarly, the write set
WriteSet〈T 〉 ⊆ DObj〈D〉 of T consists of all data objects which T writes.

The request time assignment of T provides the time at which read
and write operations are requested by the transaction. Formally, the request
time assignment Req for T assigns to each x ∈ ReadSet〈T 〉 a time
tReq

Read〈x〉〈T 〉 ∈ [tStart〈T 〉, tEnd〈T 〉), and to each x ∈ WriteSet〈T 〉 a time tReq

Write〈x〉〈T 〉 ∈
(tStart〈T 〉, tEnd〈T 〉]. Note that the read time tReq

Read〈x〉〈T 〉 may be the same as the
start time, but that it must occur strictly before the end time. Similarly, the
write time tReq

Write〈x〉〈T 〉 may be the same as the end time, but that it must occur
strictly after the start time. Furthermore, if x ∈ ReadSet〈T 〉 ∩ WriteSet〈T 〉, then
tReq

Read〈x〉〈T 〉 < tReq

Write〈x〉〈T 〉; that is a write must occur after a read. It is assumed
that each transaction T reads and writes a data object x at most once. The set
of all time points of T is TimePoints〈T 〉 = {tStart〈T 〉, tEnd〈T 〉} ∪ {tReq

Read〈x〉〈T 〉 | x ∈
ReadSet〈T 〉} ∪ {tReq

Write〈x〉〈T 〉 | x ∈ WriteSet〈T 〉}.
The set of all transactions over D is denoted Trans〈D〉.

Summary 2.4 (Effective time assignments). In early systems using single-
version concurrency control (SVCC), the request time of a read or write was

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 393

often the same as the time at which the global database was actually read or
written by the transaction. However, for modern systems, this is almost never
the case for writes and often not the case for reads either. Rather, there is an
effective time assignment, whose values depend upon the isolation protocol. In
virtually all cases for a system employing MVCC, the effective time for a write
is at the end of the transaction, while the effective time for a read depends upon
the isolation protocol. With the read-request-write-end time assignment, denoted
RRWE, all writes occur at the end of the transaction, while reads occur at their
request times. Specifically, for x ∈ ReadSet〈T 〉, tRRWE

Read〈x〉〈T 〉 = tReq
Read〈x〉〈T 〉, while for

x ∈ WriteSet〈T 〉, tRRWE
Write〈x〉〈T 〉 = tEnd〈T 〉. With the read-beginning-write-end time

assignment, denoted RBWE, all reads occur at the start of the transaction, and
all writes occur at the end. Specifically, for x ∈ ReadSet〈T 〉, tRBWE

Read〈x〉〈T 〉 = tStart〈T 〉,
while for x ∈ WriteSet〈T 〉, tRRWE

Write〈x〉〈T 〉 = tEnd〈T 〉. RRWE is typically associated with
variants of read-committed isolation, while RBWE is usually associated with vari-
ants of snapshot isolation, as elaborated in Sect. 3. TASetEff = {RRWE,RBWE}
denotes the set consisting of the two effective time assignments.

Definition 2.5 (Transactions with effective time assignment). It is
important to be able to run the same transaction at different levels of isolation,
which may have associated with them different effective time assignments (see
Definition 3.3). Therefore, rather than building a fixed effective time assignment
into a transaction, it is more appropriate to associate such a time assignment as
a parameter. Formally, a transaction with effective time assignment, or a Teff-
transaction for short, is a pair 〈T, τ〉 with T ∈ Trans〈D〉 and τ ∈ TASetEff. The
set of all Teff-transactions over D is denoted TransTeff〈D〉.

The set of time points of 〈T, τ〉 is exactly the same as the set of time points of
T ; TimePoints〈〈T, τ〉〉 = TimePoints〈T 〉. Observe that in an effective time assign-
ment (RRWE or RBWE) each write occurs at tEnd〈T 〉, and each read at either its
request time tReq

Read〈T 〉〈x〉 or else at tStart〈T 〉, so the effective time assignment does
not add any new time points, beyond those defined by transaction start and end,
plus effective times of reads and writes.

Summary 2.6 (Schedules and temporal relationships between trans-
actions). A pair {T1, T2} ⊆ Trans〈D〉 is time compatible if TimePoints〈T1〉 ∩
TimePoints〈T2〉 = ∅. A pair {〈T1, τ1〉, 〈T2, τ2〉} ⊆ TransTeff〈D〉 is time compati-
ble precisely in the case that {T1, T2} has that property.

A schedule over Trans〈D〉 is a finite (possibly empty) set S ⊆ TransTeff〈D〉
for which every distinct pair {〈T1, τ1〉, 〈T2, τ2〉} ⊆ S is time compatible. Define
TransOf〈S〉 = {T | 〈T, τ〉 ∈ S}.

Two distinct transactions {T1, T2} ⊆ TransOf〈S〉 are concurrent, written T1 ‖
T2, if both tStart〈T1〉 < tEnd〈T2〉 and tStart〈T2〉 < tEnd〈T1〉 hold. If {T1, T2} is not
concurrent, then it is serial in S. In that case, if tStart〈T1〉 < tStart〈T2〉, write
T1 <S T2, and if tStart〈T2〉 < tStart〈T1〉, write T2 <S T1.

The set of all schedules over Trans〈D〉 is denoted Sched〈D〉.
Summary 2.7 (Serializable behavior of schedules). Roughly speaking, a
schedule S is serializable if its transactions may be relocated in time so that no

394 S. J. Hegner

two are concurrent, while preserving the effect of all read and write operations.
There are many distinct ways to formalize this idea; in [16, Ch. 3] there are
descriptions of no fewer than five major alternatives, many with minor variants.
In this work, the notion of conflict serializability of a schedule S will be used,
owing to its simple characterization in terms of edges in the conflict graph of the
schedule, also called the direct serialization graph, or DSG, of S. For comprehen-
sive summaries of conflict serializability, see [11, Sec. 2.6] and [16, Sec. 3.8]. In
addition, [1] examines the DSG with an eye towards modern isolation protocols.
Here, only the essential notions, will be identified.

The DSG associated with a schedule S is denoted DSG〈S〉. In that graph,
the vertices are the members of TransOf〈S〉. There are three types of edges
(also called dependencies). For 〈T1, τ1〉, 〈T2, τ2〉 ∈ S, there is a read-write edge,
or rw-edge, from T1 to T2, denoted T1

rw−→ T2, if T1 reads some data object x
for which T2 is the next writer. More precisely, this means that tτ1

Read〈x〉〈T1〉 <
tτ2

Write〈x〉〈T2〉, and for no other 〈T3, τ3〉 ∈ S with x ∈ WriteSet〈T3〉 is it the case
that tτ1

Read〈x〉〈T1〉 < tτ3
Write〈x〉〈T3〉 < tτ2

Write〈x〉〈T2〉.
Similarly, there is a write-write edge, or ww-edge, from T1 to T2, denoted

T1
ww−−→ T2 if T1 writes some data object x and T2 is the next writer of x; i.e.,

tτ1
Write〈x〉〈T1〉 < tτ2

Write〈x〉〈T2〉, and for no other 〈T3, τ3〉 ∈ S with x ∈ WriteSet〈T3〉 is
it the case that tτ1

Write〈x〉〈T1〉 < tτ3
Write〈x〉〈T3〉 < tτ2

Write〈x〉〈T2〉.
Finally, there is write-read edge, or wr-edge, from T1 to T2, denoted T1

wr−→ T2,
if T1 writes some data object x and T2 subsequently reads the version of x
which T1 wrote; i.e., tτ1

Write〈x〉〈T1〉 < tτ2
Read〈x〉〈T2〉, and for no other 〈T3, τ3〉 ∈ S with

x ∈ WriteSet〈T3〉 is it the case that tτ1
Write〈x〉〈T1〉 < tτ3

Write〈x〉〈T3〉 < tτ2
Read〈x〉〈T2〉.

Note that effective time assignments are used throughout these definitions.
For T1

zz−→ T2, zz ∈ {rw,ww,wr} is called the type of the edge, which is
furthermore outgoing from T1 and incoming to T2.

A schedule S is conflict serializable if DSG〈S〉 contains no directed cycles.
(Cycles in the DSG are always taken to be directed in this work.) If S is conflict
serializable, then an equivalent serial order is any (irreflexive) total order ≺ of
TransOf〈S〉 for which T1 ≺ T2 implies that there is no directed path in DSG〈S〉
from T2 to T1. Less formally, if there is an edge of the form T1

zz−→ T2, with zz ∈
{rw,ww,wr}, then T1 must precede T2 in any equivalent serial order. The order
≺ is commit-order preserving if for every distinct pair {T1, T2} ⊆ TransOf〈S〉,
tEnd〈T1〉 < tEnd〈T2〉 implies T1 ≺ T2.

Definition 2.8 (The temporal sense of edges). Given a schedule S, an edge
T1

zz−→ T2 in DSG〈S〉, with zz ∈ {rw,ww,wr} is called (temporally) forward if T1

commits before T2 (tEnd〈T1〉 < tEnd〈T2〉) and (temporally) backward if T2 commits
before T1 (tEnd〈T2〉 < tEnd〈T1〉). If T1

zz−→ T2 is a forward (resp. backward) edge,

this may be noted explicitly via T1
f :zz−−→ T2 (resp. T1

b:zz−−→ T2). If the type
of an edge (rw, ww, or wr) is unimportant, and only its temporal direction is

relevant, this may be denoted via T1
f :-−−→ T2 or T1

b:-−−→ T2. For T1
d:zz−−→ T2, with

zz ∈ {rw,ww,wr} and d ∈ {f , b}, d :zz is called the sensed type of the edge.

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 395

Note that a temporally backward edge T1
b:zz−−→ T2 must always connect con-

current transactions, regardless of the type zz. An edge T1 −→ T2 in which T2

ends before T1 begins is never possible in any DSG.
DSG〈S〉 has the unisense property if either all edges are temporally forward

or else all edges are temporally backward.

Observation 2.9 (Consequences of unisense edges). Let S be a schedule
over Trans〈D〉.
(a) If DSG〈S〉 has the unisense property, then it must be acyclic.
(b) If DSG〈S〉 is conflict serializable, then there is an equivalent serial order ≺

which is commit-order preserving iff DSG〈S〉 has the unisense property with
all forward edges.

Proof. (a) First assume that all edges are forward. Then, for any cycle T1
f :-−−→

T2
f :-−−→ . . .

f :-−−→ Tn
f :-−−→ T1, it must be the case that tEnd〈T1〉 < tEnd〈T2〉 <

. . . tEnd〈Tn〉 < tEnd〈T1〉, which is impossible. Thus, no such cycle is possible. The
proof for all backward edges is analogous.

(b) This is immediate from the definition of equivalent serial order (see Sum-
mary 2.7). �
Observation 2.10 (Impossible edges). Let S be a schedule over Trans〈D〉.
(a) In DSG〈S〉, edges of sensed type b:ww and b:wr are not possible.
(b) In DSG〈S〉 with 〈T1, τ1〉, 〈T2, τ2〉 ∈ S distinct, if T2 uses RBWE in S; i.e., if

τ2 = RBWE, then no edge of the form T1
f :wr−−→ T2 is possible when T1 ‖ T2.

Proof. (a) Let 〈T1, τ1〉, 〈T2, τ2〉 ∈ S. For an edge of the form T1
-:ww−−−→ T2 (resp.

T1
-:wr−−→ T2) to exist in DSG〈S〉, it must be the case that tτ1

Write〈T1〉〈x〉 < tτ2
Write〈T2〉〈x〉

(resp. tτ1
Write〈T1〉〈x〉 < tτ2

Read〈T2〉〈x〉) for some x ∈ WriteSet〈T1〉 ∩ WriteSet〈T2〉 (resp.
x ∈ WriteSet〈T1〉∩ReadSet〈T2〉). Since tτ1

Write〈T1〉〈x〉 = tEnd〈T1〉 for both τ1 = RRWE
and τ1 = RBWE, it follows that tEnd〈T1〉 = tτ1

Write〈T1〉〈x〉 < tτ2
Write〈T2〉〈x〉 = tEnd〈T2〉

(resp. tEnd〈T1〉 = tτ1
Write〈T1〉〈x〉 < tτ2

Read〈T2〉〈x〉 < tEnd〈T2〉); i.e., that T1 commits before
T2, making any such edge forward.

(b) For an edge of the form T1
f :wr−−→ T2 to exist in DSG〈S〉, there must be an

x ∈ WriteSet〈T1〉 ∩ ReadSet〈T2〉 with tτ1
Write〈T1〉〈x〉 < tτ2

Read〈T2〉〈x〉. Since τ2 = RBWE,
tτ2

Read〈T2〉〈x〉 = tStart〈T2〉, which implies that tEnd〈T1〉 = tτ1
Write〈T1〉〈x〉 < tτ2

Read〈T2〉〈x〉 =
tStart〈T2〉, and so T1 and T2 are not concurrent. �

3 Concurrency-Based Isolation Levels

In this section, local isolation levels, also called concurrency-based isolation lev-
els, are examined in detail, with a focus on how transactions run at different
levels of isolation relate to each other. Although the study is formal, the proper-
ties of fundamental variants such as read committed (RC) and snapshot isolation
(SI) are based upon the way that corresponding levels behave in PostgreSQL [13].

396 S. J. Hegner

Definition 3.1 (Concurrency-based properties of a transaction). Infor-
mally, a concurrency-based property (also called local property) of a Teff-
transaction is one which is based only upon the properties of that transaction,
and how it relates to those other transactions in a schedule S with which it is
concurrent. Three main ways of characterizing such properties are the following.

Locks: Lock-based characterization of isolation was the first to be studied sys-
tematically, [8,9, Sect. 7.6]. More modern approaches, including S2PL and
SS2PL [3], were developed subsequently; however, these approaches have
fallen out of favor with the rise of MVCC.

Anomalies: The main ideas (dirty read, lost update, phantom) are developed
in the early lock-based approach of [8], and are also used in the SQL standard
[10, Part 2]. They are somewhat tied to the older SVCC, and due to a lack
of rigorous definition, are also subject to multiple interpretations [2].

DSG: In this approach, the properties are based upon edges between concurrent
transactions in the DSG. It is well suited to the modern MVCC architecture,
providing clean, direct characterizations of isolation levels such as snapshot
isolation (SI).

In this work, the focus is upon DSG-based characterization, since the study of
serialization in Sect. 4 is based upon it, and a systematic investigation does not
appear to have been conducted previously.

Definition 3.2 (Winner and loser transactions). Let S ∈ Sched〈D〉. As
shown in Observation 2.10, edges of (sensed) type b:ww and b:wr are never
possible in a DSG〈S〉 when all transactions have effective time assignment RRWE
or RBWE. Since those are the only effective time assignments considered, such
edge types will not be considered further. Of the four remaining types, f :rw, b:rw,
f :ww, and f :wr, any such edge has a winner and a loser. For all edges of type rw
or wr, regardless of sense, the winner is always the first committer. Specifically,
in the case of an edge T1

b:rw−−→ T2, the winner is T2, while for T1
f :rw−−→ T2 and

T1
f :wr−−→ T2, the winner is T1.
For edges of type f :ww, there are two principal variants, first-committer wins

(FCW) and first-updater wins (FUW). With FCW, the winner is the transaction
which commits first wins, exactly as for the other three types of edges. With
FUW, it is the first transaction which declares a write, according to request, not
effective times, which wins. The situation is a bit complex, since there may be
a (nonempty) set X ⊆ DObj〈D〉 which each transaction writes. It is the first

writer over all such data objects which wins. Formally, for an edge T1
f :ww−−−→ T2,

transaction T1 wins if min({tReq

Write〈T1〉〈x〉 | x ∈ X}) < min({tReq

Write〈T2〉〈x〉 | x ∈ X});
otherwise, T2 wins.

The choice of FCW or FUW is a system-wide policy, since it must be applied
to pairs of transactions. Most existing systems use FUW, although Pyrrho [5]
(see also Discussion 4.7) is a notable exception.

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 397

Definition 3.3 (General local DSG-based isolation levels). A local DSG-
based isolation level for a transaction T is defined by three items, the effec-
tive time assignment used by T , a set of sensed edge types, and a read-only
status. Formally, recall from Summary 2.4 that TASetEff = {RRWE,RBWE},
and let CEdges = {f :rw, b:rw, f :ww, f :wr}, RWmode = {RW,RO}. Then, define
an isolation-policy triple to be an ordered triple 〈τ,Δ, μ〉 with τ ∈ TASetEff,
Δ ⊆ CEdges, and μ ∈ RWmode. In 〈τ,Δ, μ〉, τ identifies the effective time
assignment used by the transaction, Δ identifies the types of concurrent edges
which are forbidden or impossible to loser transactions, and μ indicates whether
the transaction is read-write or read-only. The set of all isolation-policy triples
over D is denoted PolTr〈D〉. A local DSG-based isolation level is defined by such
a triple.

In general, a loser transaction with a forbidden edge type must abort in order
to satisfy the isolation level. It is very important to understand why only loser
transactions may forbid edge types. Consider, for example, an edge of the form
T1

b:rw−−→ T2 in DSG〈S〉. According to the conditions spelled out in Definition 3.2,
T2 is the winner and T1 is the loser because T2 commits first (backward edge).
Now let x ∈ ReadSet〈T1〉 ∩ WriteSet〈T2〉. At the time at which T2 commits,
it may not be known that T1 intends to read x; i.e., it may be the case that
tReq

Write〈T2〉〈x〉 ≤ tEnd〈T2〉 < tReq

Read〈T1〉〈x〉. Since committed transactions cannot be rolled
back, there is no reasonable way that such a policy could be enforced, other than
by delaying the commit of T2. As such delays are not part of the model, it is
impossible for the winner to enforce an edge-prohibition policy.

Discussion 3.4 (Named DSG-based isolation levels). Using the notion
of concurrency-based property of Definition 3.1, six named isolation levels are
summarized in Table 1. Column 2 indicates the effective time assignment used,
while columns 3–6 indicate the status of members of CEdges for that policy,
with “P” indicating that the edge type is prohibited for the loser transaction,
“X” indicating that it is impossible for the loser transaction to have such an

Table 1. Concurrency properties of transaction classes

Policy Eff time assign Status conc edge type RW mode Used in practice?

f :rw b:rw f :ww f :wr

RC RRWE RW Y

RCX RRWE P RW ?

SI RBWE P X RW Y

SIX RBWE P P X RW Y

RCRO RRWE X X RO Y

RCXRO RRWE X P X RO ?

SIRO RBWE X X X RO Y

SIXRO RBWE X P X X RO Y

398 S. J. Hegner

edge under the indicated policy, and blank indicating allowed. These policies are
discussed in detail, including the meaning of the abbreviations, in Definitions
3.5, 3.6, and Discussion 3.7.

Definition 3.5 (RRWE-based isolation levels). The fundamental RRWE-
based isolation level is read committed RC. Its representation as a policy triple
is 〈RRWE, ∅,RW〉. This may be taken as the definition of the name; thus
RC = 〈RRWE, ∅,RW〉. In accordance with RRWE, all reads are performed at
request time, while writes are performed at the end of the transaction. There
are no further restrictions on allowable edges of the DSG. RC is very common
isolation level in real systems, usually offered via the READ COMMITTED SQL iso-
lation level.

Although not widely used in real systems, an important theoretical variant
of RC for this work is read-committed with excluded backward dependencies, or
RCX = 〈RRWE, {b:rw},RW〉. It differs from RC only in that backward rw-edges
are not allowed, subject, of course, to the general limitation that only a loser
transaction may prohibit an edge. As will be seen in Corollary 4.6, it is the
weakest local isolation level which guarantees serializability of schedules.

Definition 3.6 (RBWE-based isolation levels). The fundamental RBWE-
based isolation level is snapshot isolation SI = 〈RBWE, {f :ww, f :wr},RW〉. All
effective reads are performed at the beginning of the transaction, while writes
are performed at the end. SI is very common isolation level in real systems, often
offered using the REPEATABLE READ2 or SERIALIZABLE SQL isolation level.

For the reader who has learned that concurrent writes are prohibited under
SI, it may seem strange that forward ww-edges are allowed for the winner. To
understand this better, consider an edge T1

f :ww−−−→ T2 in the DSG, with T1 ‖
T2, and suppose that x ∈ WriteSet〈T1〉 ∩ WriteSet〈T2〉. If both T1 and T2 run
with isolation SI, then since only one of them can be the winner (as defined in
Definition 3.2), the edge is not allowed. However, suppose that T1 runs under SI
but T2 runs under RC (or RCX) isolation. If FCW is used for conflict resolution,
then since T1 commits first, it is the winner. Although T2 is the loser, its isolation
level permits concurrent writes. As it writes x after T1 commits, that write is
completely outside of the lifetime of T1. If conflicts are resolved via FUW, then
either T1 or T2 may be the winner. However, even if the winner runs under SI, if
the loser runs under RC or RCX, then by a similar argument, both transactions
will write x. One must be very careful when asserting that concurrent writes
are prohibited under SI when characterizing a mixed-level setting. A transaction
running under RC plays by different rules than one running under SI; the SI
transaction cannot impose its rules on its RC neighbor.

Note, however, that T1
f :wr−−→ T2 is impossible when the loser transaction

(which must be T2) runs under SI, since with RBWE reading from a concurrent
transaction cannot occur.

2 Strictly speaking, SI does not provide READ COMMITTED isolation. See [2, Remark 9]
for details.

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 399

The level snapshot isolation with backward rw exclusion is SIX =
〈RBWE, {b:rw, f :ww, f :wr},RW〉. It is the same as SI, save for that backward
rw-edges are not allowed. It bears the same relationship to SI as RCX does to
RC. It is the sole mode of isolation of Pyrrho, described in Discussion 4.7. As a
simple example, suppose that, in schedule S, T1 running under SIX reads x and
writes y, so tStart〈T1〉 = tRBWE

Read〈T1〉〈x〉 < tRBWE
Write〈T1〉〈y〉 = tEnd〈T1〉, and T2, also running

under SIX, writes x, so tStart〈T2〉 < tRBWE
Write〈T2〉〈x〉 = tEnd〈T1〉. Then T1

d:rw−−−→ T2 in
DSG〈S〉. If d = f ; i.e., if the edge is forward, then both transactions may com-
mit. However, if d = b; i.e., if the edge is backward, then the loser must abort.
Under FCW, as is the case in Pyrrho (see Discussion 4.7), this loser is always T1.

Discussion 3.7 (Read-only transactions). Since it is possible to define
a transaction to be read only in SQL, a read-only mode is also supported
in the isolation model presented here. RCRO = 〈RRWE, {f :rw, f :ww},RO〉 is
essentially the same as RC with read-only mode enabled. Similarly, SIRO =
〈RBWE, {f :rw, f :ww, f :wr},RO〉 is essentially the same as SI, with read-only
mode enabled. Analogously, RCXRO = 〈RRWE, {f :rw, b:rw, f :ww},RO〉 and
SIXRO = 〈RBWE, {f :rw, b:rw, f :ww, f :wr},RO〉.

Observe that an edge of the form T1
f :rw−−→ T2 is not possible if the loser (which

must be T2) is read only.

Definition 3.8 (Ordering of policy triples). Policy triples admit a natural
ordering. For TASetEff, use the order RRWE < RBWE, and for RWmode, use the
order RW < RO. Then define 〈τ1,Δ1, μ1〉 ≤ 〈τ2,Δ2, μ2〉 iff τ1 ≤ τ2, Δ1 ⊆ Δ2,
and μ1 ≤ μ2. The idea is that lesser policies in this ordering correspond to
lower levels of isolation. The intuition behind the ordering on TASetEff is that
RBWE imposes more constraints than does RRWE. For example, even under
RRWE, a transaction T could perform all of its reads at the very beginning; this
would be the case if tReq

Read〈T 〉〈x〉 = tStart〈T 〉 for every x ∈ ReadSet〈T 〉. Similarly, the
intuition behind the ordering on RWmode is that prohibiting writes is a stronger
condition than allowing them. Finally, it is clear that prohibiting (or rendering
impossible) more types of edges results in a more restrictive policy. For the set
CBIso = {RC,RCX,SI,SIX,RCRO,SIRO,RCXRO,SIXRO}, RC < RCX < SIX <
SIXRO, RC < SI < SIX, RC < RCRO < SIRO, SI < SIRO, and RCX < RCXRO.

4 Multiscope Serializable Isolation

In this section, the main ideas of multiscope serializable isolation are developed.

Definition 4.1 (Transactions with isolation). A transaction with isolation
is an ordered pair 〈T, ι〉 in which T ∈ Trans〈D〉 and ι is a local DSG-based isola-
tion level. The isolation level ι may be represented either as a member of CBIso,
or else as a policy triple. Thus, 〈T,RCX〉 and 〈T, 〈RRWE, {b:rc},RWmode〉〉
have exactly the same meaning. The set of all transactions with isolation over
D is denoted TransIso〈D〉. A transaction with isolation 〈T, ι〉 carries strictly

400 S. J. Hegner

more information than a transaction with effective time assignment 〈T, τ〉. For
ι = 〈τ,Δ, μ〉 ∈ PolTr, define πTASetEff〈ι〉 = τ ; then 〈T, πTASetEff〈ι〉〉 = 〈T, τ〉 is the
associated transaction with effective time assignment.

Definition 4.2 (Schedule augmentation strategies). When a transaction
is ready to commit, a test must be made to determine whether that commit
should be allowed. If so, it is added to the set of committed transactions. If
not, it must be rejected. To formalize this, begin by defining 〈S, 〈T, ι〉〉 with
S ∈ SchedIso〈D〉 and 〈T, ι〉 ∈ TransIso〈D〉 to be an augmentation pair over D
if adding 〈T, πTASetEff〈ι〉〉 to S results in a schedule with the property that each
transaction in S must either have committed before T , or else run concurrently
with T : for every T ′ ∈ TransOf〈S〉, one of tEnd〈T ′〉 < tEnd〈T 〉 or T ‖ T ′ must
hold. Think of S as the collection of existing transactions, with 〈T, πTASetEff〈ι〉〉
a candidate to be added to S. An (augmentation) test routine is a function
α : AugPr〈D〉 → {0, 1}, with 〈S, 〈T, ι〉〉 �→ 1 indicating that 〈T, πTASetEff〈ι〉〉 should
commit and be added to S, and 〈S, 〈T, ι〉〉 �→ 0 indicating that it should not.

A central example is AugTestb:rw, defined on elements by 〈S, 〈T, ι〉〉 �→ 1 iff
DSG〈S ∪ {〈T, πTASetEff〈ι〉〉}〉 does not contain an edge of the form T

b:rw−−→ T ′ or
T ′ b:rw−−→ T for a 〈T ′, τ ′〉 ∈ S, with T the loser transaction for that edge. Another is
AugTestPolTr, defined on elements by 〈S, 〈T, ι〉〉 �→ 1 iff DSG〈S ∪{〈T, πTASetEff〈ι〉〉}〉
does not contain any edges involving T which are forbidden by ι. More precisely,
if ι = 〈τ,Δ, μ〉, then no new edge of a type in Δ is allowed in the case that T is the
loser transaction associated with that edge. Finally, for κ ∈ PolTr〈D〉, AugTest≥κ

is defined on elements by 〈S, 〈T, ι〉〉 �→ 1 iff ι ≥ κ and AugTestPolTr(〈T, ι〉) = 1.
Thus, AugTest≥κ allows 〈T, πTASetEff〈ι〉〉 to be added to S iff ι provides DSG-based
isolation at level κ or greater, and adding 〈T, πTASetEff〈ι〉〉 to DSG〈S〉 does not
result in new edges which are forbidden for T by ι.

These examples are local in scope in that the test conditions depend only
upon the transaction 〈T, ι〉 to be added and certain properties of those transac-
tions in S which run concurrently with it. The reference routine for serialization,
which is global in scope, is AugTestDSG, defined on elements by 〈S, 〈T, ι〉〉 �→ 1 iff
DSG〈S ∪ {〈T, ι〉}〉 does not contain any cycles which include T . Other examples
which are not local in scope are considered in Summarys 4.10 and 4.12.

Processing a sequence of transactions, in order to build a schedule, is for-
malized as follows. An ordered schedule over D is a sequence C = 〈〈T1, ι1〉,
〈T2, ι2〉, . . . , 〈Tk, ιk〉〉 with the properties that {〈Ti, πTASetEff〈ιi〉〉) | 1 ≤ i ≤ k} ∈
Sched〈D〉 and for 1 ≤ i < j ≤ k, one of tEnd〈Ti〉 < tEnd〈Tj〉 or Ti ‖ Tj must hold. The
stepwise commit-basedDSGconstruction ofS usingαbeginswith the empty sched-
ule ∅, and adds, in the order specified by C, each pair of the form 〈Ti, πTASetEff〈ιi〉〉
which α classifies as acceptable. Formally, Step〈C,α, 0〉 = ∅; Step〈C,α, i + 1〉 =
Step〈C,α, i〉∪{〈Ti+1, πTASetEff〈ιi+1〉〉} if α(〈Step〈C,α, i〉, 〈Ti+1, πTASetEff〈ιi+1〉〉〉) = 1;
Step〈C,α, i + 1〉 = Step〈C,α, i〉 otherwise.

Remark 4.3 (FUW and delayed commit). In the formalism of Definition 4.2,
if adding 〈T, πTASetEff〈ι〉〉 to S results in a forbidden edge of the form T ′ -:-−→ T or
T

-:-−→ T ′, then T is not permitted to commit. With FUW, it may be the case that

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 401

T ′ has not yet committed when the test is performed. To maximize concurrency,
many systems will suspend T until it is known whether or not T ′ commits. If T ′

does not commit, T may continue. Although space limitations preclude formaliz-
ing this idea (which involves introducing suspendable transactions with flexible
time points), omitting it does not alter the main results developed here. In any
case, this issue does not arise with FCW. Indeed, with FCW, all transactions in
S will have committed before T .

Definition 4.4 (Serial properties of augmentation strategies). An aug-
mentation test routine α is serializable generating (abbreviated SerGen) if for
any ordered schedule C of length k, Step〈C,α, k〉 is conflict serializable. Thus,
it produces serializable schedules when only transactions which pass its test are
allowed. This is the global-scope meaning of serializability, as intended in the
SERIALIZABLE isolation level of SQL. The routine α is commit-order SerGen if
it is SerGen and some equivalent serial order is commit-order preserving.

The routine α is serializable preserving (abbreviated SerPres) if for any aug-
mentation pair 〈S′, 〈T, ι〉〉 over D with α(〈S′, 〈T, ι〉〉) = 1, T does not participate
in any cycle of S′ ∪ {〈T, πTASetEff〈ι〉〉}. In particular, if S′ is conflict serializable,
then so too is S′ ∪ {〈T, πTASetEff〈ι〉〉}. Observe that SerPres always implies SerGen.

In contrast to SerGen, the property of SerPres is local in scope; it does not
depend upon properties of the extant schedule S, except those which result from
concurrency of its transactions with 〈T, τ〉. (Note that S′ is universally quantified
in the definition of SerPres; it can be the result of running and committing trans-
actions at any level of isolation.) Thus, as elaborated in Discussion 5.1, SerPres
is an appropriate semantics for SERIALIZABLE when applied to a single transac-
tion, since, on the one hand, it provides SerGen behavior when all transactions
run at that level, and, on the other hand, it provides a meaningful contribution
to serializability even when other transactions run at different levels of isolation.

AugTestDSG is always SerPres (and hence SerGen). The interesting question
is whether there are simpler, local isolation levels which also provide these prop-
erties. This is established in the affirmative below.

Theorem 4.5 (AugTestb:rw is both SerGenandSerPres). The augmentation test
AugTestb:rw is both serializable generating and serializable preserving.

Proof. Let 〈S, 〈T, ι〉〉 ∈ AugPr〈D〉. For T to be part of a cycle in S ∪
{〈T, πTASetEff〈ι〉〉}, it must have at least one outgoing edge. Since it is the last trans-
action to commit, that outgoing edge must be backward. However, AugTestb:rw
prohibits edges of type b:rw for the loser transaction, and since T commits last,
it must be the loser for any rw-edge (see Definition 3.2). Thus, T cannot have
outgoing edges of type b:rw. Since outgoing edges of types b:ww and b:wr are
not possible (see Observation 2.10(a)), T cannot have any outgoing edges at all,
so it cannot be involved in a cycle of 〈S, 〈T, ι〉〉 ∈ AugPr〈D〉. Hence AugTestb:rw
is SerPres, and so also SerGen. �

402 S. J. Hegner

Corollary 4.6 (AugTest≥RCX). The augmentation test routines AugTest≥RCX

and AugTest≥SIX are both SerPres(and hence SerGen), with AugTest≥RCX the
weakest such test defined by a policy triple.

Proof. The proof follows immediately from Observation 4.5 and the fact that
RCX and SIX prohibit edges of type b:rw. �
Discussion 4.7 (Serialization in Pyrrho). The Pyrrho RDBMS [5,6]
employs SIX for its only isolation level. In view of Corollary 4.6, it thus pro-
vides a working instance of true SERIALIZABLE isolation which is based entirely
upon a local property of transactions. A unique feature of Pyrrho is that it uses
pure FCW for conflict resolution; transactions are never blocked for any reason.

Discussion 4.8 (Wide cursor stability). Some RDBMSs offer a feature
called cursor stability [9, Sect. 7.6.2] as part the isolation level READ COMMITTED.
Suppose that transaction T1, running under RC, reads and then later writes
data object x. Suppose further that transaction T2 also runs under RC and also
writes x, and commits between the two operations of T1. Formally, tRRWE

Read〈T1〉〈x〉 <
tRRWE

Write〈T2〉〈x〉 < tEnd〈T2〉 < tRRWE
Write〈T1〉〈x〉 < tEnd〈T1〉. This behavior is not serializable

because in the serialization T1 ≺ T2, the final write of x is by T2, not by T1

as it should be; and in T2 ≺ T1, T1 does not read the initial value of x, before
T2 wrote it. Cursor stability prevents this “in between” write by T2, either by
locking x between the read and write of T1, or else by T1 rereading x after the
commit of T2. However, it does this only when the read and the write of T1 are
part of the same SQL statement. With serialization, this behavior is not permit-
ted, regardless of the “distance” between tRRWE

Read〈T1〉〈x〉 and tRRWE
Write〈T1〉〈x〉, since there

is an edge T1
b:rw−−→ T2 which is not allowed RCX or any stronger isolation level.

Thus, RCX effectively provides wide cursor stability, which does not require the
read and the write to be part of the same statement. If the loser runs under an
isolation which is SerPres, cursor stability is automatic.

If preservation of commit order is desired in the serialization, then AugTestb:rw
is actually optimal in the following sense.

Theorem 4.9 (Optimality of AugTestb:rw). AugTestb:rw is a globally opti-
mal commit-order-preserving SerGen augmentation test routine, in the pre-
cise sense that any other such routine AugTest′ with the property that
AugTest′(〈S, 〈T, τ〉〉) = 1 but AugTestb:rw(〈S, 〈T, τ〉〉) = 0 for some 〈S, 〈T, τ〉〉 ∈
AugPr〈D〉 cannot be commit-order preserving.

Proof. The proof follows immediately from Observation 2.9(b), since the pres-
ence of any backward edge in the DSG implies that commit order must be
violated in any serialization.

Summary 4.10 (SSI— a preemptive serializable-preserving strategy).
The SerGen strategy SSI (serializable SI) [4,7] is used to implement the
SERIALIZABLE isolation level of PostgreSQL [12]. Define a dangerous structure

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 403

(DS) to be a path in the DSG of the form T2
-:-−→ T1

b:rw−−→ T0 in which T0 commits
first and T1 ‖ T2. (Note that T0 ‖ T1 is automatic since the edge is backward.)
T0 and T2 may be the same transaction, in which case {T0, T1} forms a cycle by
itself. As shown in [7, Thm. 2.1], if all transactions run under SI, then every cycle
of the DSG contains a DS. To represent this in terms of an augmentation routine,
define AugTestSSI on elements by 〈S, 〈T, ι〉〉 �→ 0 iff T is the last transaction to
commit in a DS of DSG〈S〉.

It is worth noting that it is not necessary to require that all transactions
run under SI; RC is sufficient. However, a proof will not be presented here;
only the original SI-based SSI will be evaluated. Unfortunately, while serializable
generating, AugTestSSI is not serializable preserving.

Proposition 4.11 (Serialization properties of SSI). AugTestSSI is SerGen
but not SerPres.

Proof. The proof that AugTestSSI is SerGen is found in [4,7]. To show that it is not

SerPres, it suffices to present a counterexample. In Fig. 1, a DSG cycle T0
f :rw−−→

T4
b:rw−−→ T3

f :rw−−→ T2
b:rw−−→ T1

b:rw−−→ T0. consisting of five transaction is shown.
Time increases horizontally, with the beginning and end of each transaction
marked by a vertical bar; the commit order is 〈T0, T3, T1, T2, T4〉. The reads
and writes of each transaction are depicted by r〈-〉 and w〈-〉 respectively, Each
transaction Ti runs under SSI, so as Teff-transactions, 〈Ti, τi〉 = 〈Ti,RBWE〉.
The last transaction to commit, T4, is not part of any DS. So, letting S′ =
{〈Ti, τi〉 | 0 ≤ i ≤ 3}, it is immediate that AugTestSSI〈S′, 〈Ti, τi〉〉 = 1. �

r〈x4〉 w〈x0〉
T0

r〈x0〉 w〈x1〉
T1

r〈x2〉 w〈x3〉
T3

r〈x1〉 w〈x2〉
T2

r〈x3〉 w〈x4〉
T4

b:rw

b:rw

b:rw

f :rw

f :rw

Fig. 1. DSG with no DS involving the last transaction to commit

Summary 4.12 (SSN). Recently, a preemptive SerGen strategy which relies on
a more complex “dangerous structure” than does SSI has been developed [15].
Dubbed serializable safety net, or SSN for short, it is of particular relevance
to this work in that any local level of isolation which is at least as strong as
RC may be serialized, thus reinforcing the observation that local isolation and
serialization are orthogonal. As is the case with SSI, SSN is not serializable

404 S. J. Hegner

preserving. While space limitations preclude a full proof, the reader familiar with
the construction in [15] can verify easily that the schedule of Fig. 1 provides the
necessary counterexample.

5 Conclusions and Further Directions

Discussion 5.1 (Conclusions). The semantics of including serializable isola-
tion, global in scope, in a mixed-mode setting with levels of local scope, such
as RC and SI, has been investigated. Two alternatives have been identified. In
the first, serializable generating (SerGen), the serializable level has meaning only
when all transactions run at that level. SSI and SSN fall into that category.
While highly effective when used exclusively, they revert to a lower level other-
wise, with little or no additional benefit. The second is serializable preserving
(SerPres), which has the property that, regardless of the DSG consisting of all
committed transactions, adding a new transaction will never result in a new
cycle. Used for SERIALIZABLE, it provides a semantics which is both local and
global in scope, in line with the original intent of the SQL standard. The aug-
mentation test AugTestDSG which examines the entire DSG for cycles has this
property, although it has large space complexity.3 Identified in this paper is a
far less complex option, in which a standard local complexity level, such as RC
or SI, is augmented to disallow all backward rw-dependencies (resulting in RCX
or SIX). As elaborated in Discussion 5.2, it is proposed that this alternative be
explored more thoroughly, as a suitable implementation of SQL SERIALIZABLE.

An additional issue arises if SI is used to implement REPEATABLE READ in
an RDBMS, while RCX is used to implement SERIALIZABLE. The unusual (and
likely unwanted) situation arises that the two are incomparable as local levels
of isolation. Put another way, SI offers higher isolation than RCX in one way —
it prohibits concurrent writes, even though it offers lower isolation in another
— it permits backward rw-dependencies. This can be remedied by implementing
SERIALIZABLE as SIX, but it nevertheless shows that complex decisions must be
made when enlisting a single isolation level to serve multiple scopes.

Discussion 5.2 (Further directions). The following two topics are proposed
for further investigations.

Performance measurement for RCX and SIX: Although SIX is used in the
Pyrrho system (see Discussion 4.7), it has not been compared for performance
to alternatives such as SSI (used in PostgreSQL). Since SIX appears to perform
well in Pyrrho, it may be the case that although it will have a higher number
of false positives (aborted transactions due to concurrency conflicts) than SSI,
(since every DS must contain a backward dependency), it may nevertheless
be completely satisfactory for many transaction mixes. Advantages of RCX

3 It should be noted that one experimental system, called PSSI, has taken exactly the
approach of constructing the entire DSG (with all transactions running under SI) to
achieve serializable generating behavior, reporting good results [14].

Transaction Isolation in Mixed-Level and Mixed-Scope Settings 405

and SIX (over SSI and SSN) include that they are far simpler to implement,
and that they provides serializable-preserving isolation. It is thus proposed to
study their performance experimentally. In addition, a parallel comparison of
FUW and FCW is warranted, given the success of FCW in Pyrrho.

Extension to lock-based approaches: Due to space limitations, the local
levels of isolation studied in this paper have been limited to those which are
DSG based. However, locked-based levels, such as S2PL and SS2PL, are also
of importance, as they are the classical local isolation levels which deliver
serializable-preserving behavior. An investigation of how they fit into the
framework of this paper is therefore warranted.

References

1. Adya, A., Liskov, B., O’Neil, P.E.: Generalized isolation level definitions. In: Lomet,
D.B., Weikum, G. (eds.) Proceedings of the 16th International Conference on Data
Engineering, San Diego, California, USA, 28 February - 3 March 2000, pp. 67–78
(2000)

2. Berenson, H., Bernstein, P.A., Gray, J. Melton, J., O’Neil, E.J., O’Neil, P.E.: A
critique of ANSI SQL isolation levels. In: Proceedings of the 1995 ACM SIGMOD
International Conference on Management of Data, San Jose, California, 22–25 May
1995, pp. 1–10 (1995)

3. Breitbart, Y., Georgakopoulos, D., Rusinkiewicz, M., Silberschatz, A.: On rigorous
transaction scheduling. IEEE Trans. Softw. Eng. 17(9), 954–960 (1991)

4. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases.
ACM Trans. Database Syst. 34(4), 20 (2009)

5. Crowe, M.: The Pyrrho database management system. https://pyrrhodb.uws.ac.
uk/index.htm. Accessed 2019-03-30

6. Crowe, M.: Transactions in the Pyrrho database engine. In: Hamza, M.H. (ed.)
IASTED International Conference on Databases and Applications, part of the
23rd Multi-Conference on Applied Informatics, Innsbruck, Austria, 14–16 February
2005, pp. 71–76. IASTED/ACTA Press (2005)

7. Fekete, A., Liarokapis, D., O’Neil, E.J., O’Neil, P.E., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

8. Gray, J., Lorie, R.A., Putzolu, G.R., Traiger, I.L.: Granularity of locks and degrees
of consistency in a shared data base. In: Nijssen, G.M. (ed.) Modelling in Data Base
Management Systems, Proceeding of the IFIP Working Conference on Modelling
in Data Base Management Systems, Freudenstadt, Germany, 5–8 January 1976,
North-Holland, pp. 365–394 (1976)

9. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, Burlington (1993)

10. Melton, J. (ed.): ISO/IEC 9075:2011, Information Technology – Database Lan-
guages – SQL. ANSI, (The 2011 SQL Standard) (2011)

11. Papadimitriou, C.: The Theory of Database Concurrency Control. Computer Sci-
ence Press (1986)

12. Ports, D.R.K., Grittner, K.: Serializable snapshot isolation in PostgreSQL. Proc.
VLDB Endow. 5(12), 1850–1861 (2012)

13. PostgreSQL: The World’s Most Advanced Open Source Relational Database.
https://www.postgresql.org. Accessed 30 Mar 2019

https://pyrrhodb.uws.ac.uk/index.htm
https://pyrrhodb.uws.ac.uk/index.htm
https://www.postgresql.org

406 S. J. Hegner

14. Revilak, S., O’Neil, P.E., O’Neil, E.J.: Precisely serializable snapshot isolation
(PSSI). In: Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, 11–16 April 2011, Hannover, Germany, pp. 482–493 (2011)

15. Wang, T., Johnson, R., Fekete, A., Pandis, I.: Efficiently making (almost) any
concurrency control mechanism serializable. VLDB J. 26(4), 537–562 (2017)

16. Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann,
Burlington (2002)

Data Warehouses

Data Reduction in Multifunction OLAP

Ali Hassan(B) and Patrice Darmon

R&D Umanis, 7-9 rue Paul Vaillant Couturier, 92300 Levallois-Perret, France
{ahassan,pdarmon}@umanis.com

Abstract. Multifunction OLAP allows to associate several types of
aggregation functions to the same measure: general, dimensional for each
analysis axis, hierarchical for each hierarchy and differentiated for each
granularity level. These functions are generally non-commutative, so, an
execution order between the functions is predefined. Pivot tables and sev-
eral diagram types (bars, pies, etc.) are used to visualize interactively the
result of an OLAP query. Unfortunately, no works investigate readability
issues in multifunction OLAP. Therefore, we propose a post-processing
method to reduce data size of the multifunction OLAP query result in
order to improve the readability. This method aggregates data at higher
granularity levels, i.e., doing a Rollup operation. It starts by studying
the current query to find the functions that have already been executed.
Then, it finds all possible Rollup operations, which respect the execution
order and the aggregation constraints, and it calculates its data size. We
propose several strategies to select a Rollup that gives a readable dia-
gram and keeps as many details as possible: looking at the data size only,
the number of implicated granularity levels and the number or the type
of implicated dimensions. Once a Rollup is selected, we find the functions
that realize it and we execute them in the right execution order.

Keywords: OLAP · Multifunction aggregation · Data reduction

1 Introduction

In business, decision support systems are used by decision makers to manage
their company. These systems are powered by data from the internal production
systems and external environment of the enterprise. However, the exploitation of
this distributed and heterogeneous information needs extracting, transforming
and loading (ETL) it into a form suitable to the analysis [13]. Therefore, data
warehouses are used where the data are modeled according to a multidimensional
model. This type of modeling represents the analyzed data (measures) as points
in a multidimensional space. These measures are observed according to several
dimensions. Each dimension has several levels of granularity/detail organized
in hierarchies. Aggregation functions are used to obtain a more global view of
measures values at less detailed levels.

Classically, data warehouse provides the aggregation of a measure over all the
multidimensional space with an identical aggregation function. In order to over-
come this limitation, [7,8] proposed a multidimensional model expressive enough
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 409–424, 2019.
https://doi.org/10.1007/978-3-030-28730-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-28730-6_25

410 A. Hassan and P. Darmon

to associate several aggregation functions with the same measure. For example,
such a model allows to analyze the average annual precipitation, which is calcu-
lated by the sum of daily precipitation. However, the average precipitation of a
department (a subdivision of regions in the French administrative geographical
system) is calculated by the average precipitation of all cities. Since the functions
are generally not commutative, the proposed model control calculation validity
by planning an execution order between the aggregation functions. For example,
it is necessary to aggregate the precipitation by the sum over the dimension
“Date” before aggregating them by the average on the dimension “Geography”.

Illustration of the Problem

Most of decision support systems rely on an OLAP approach (On Line Analyti-
cal Processing) facilitating interactive analysis and data synthesis. Decision mak-
ers can use OLAP operators (e.g. Rollup and Drill-down) to modify and refine
measures analysis and navigate multidimensional space. The data are therefore
grouped according to selected levels and aggregated using aggregation functions.
The result of an OLAP query is typically visualized using a pivot table and dia-
grams (bars, pie, etc.). For example, the pivot table at the top of Fig. 1 shows
the average daily precipitation (the first two days of January and February) by
department. We can see that such a table has an acceptable readability, although
it displays 120 information. The display of the same amount of data in bar chart
can significantly reduce the readability (see the bottom left part of Fig. 1) or
becomes completely unreadable using a pie chart (see the bottom right part of
Fig. 1).

The aim of this paper is to propose a system that automatically adjusts the
size of data to display in order to keep the readability of used charts.

Fig. 1. Visualization of average precipitation by day and by department.

Data Reduction in Multifunction OLAP 411

The article is organized as follows. Section 2 reviews related work. Section 3
describes the background of the multifunction multidimensional model and the
case study. Section 4 is devoted to the proposed data reduction method. Section 5
presents the implementation of our proposal. We conclude in Sect. 6.

2 Related Work

Several works in the literature [1,17] propose methods to select the “best” visu-
alization technique according to the user’s goal and the features of data (e.g.
its size, its type and the number of its dimensions). But these works do not
discuss how to visualize the data when the data size exceeds the limits of the
“best” visualization technique. Thus, several methods have been used to allow
the visualization of large size of data. These methods can be classified into two
categories [14]: (1) visualization methods. (2) data reduction methods.

2.1 Visualization Methods

These methods aim to visualize all data. Three methods are proposed to improve
the visualization of large size of data.
Visual Reduction. Due to the limited size of the display screen, the represen-
tation of large size of data will easily clutter visually. To resolve this problem,
several methods are proposed, such as using a miniature representation of infor-
mation [9], pixel-oriented visualization methods that use each pixel to visualize a
data value [12], spatial displacement methods to solve overlay problem [24] and
methods of dimensions re-ordering that reduce visual clutter without reducing
the amount of information [21]. However, all these techniques propose to visu-
alize each data element, which does not necessarily facilitate the reading and
observation of the data.
Progressive Methods. Progressive visual analytics [23] uses partial results to
display the data. It produces more complete results over time. This allows to
respond to queries immediately. The main problem with these methods is that
the result remains unconvincing until all progress is complete.
Predictive Methods. Predictive visual analytics [18] uses the techniques of
pre-fetching where the performance of a system depends on the predictability of
future requests. However, these methods work well only in case of limited user
interactions [14].

2.2 Data Reduction Methods

These methods are intended to reduce the size of data before sending them to
the visualization procedure. Three strategies are proposed in the state of art.
Sampling and Filtering Methods. The sampling [4] and filtering [2] are
traditionally used to select a subset of data before the visualization. However,
sampling and filtering may eliminate valuable information, and generally cannot
provide an overview of the data distribution [15].

412 A. Hassan and P. Darmon

Approximation Methods. These methods propose to aggregate the data so
that it has the same visualization (image) as the basic data. M4 [10] is a specific
approximate method for temporal data. It proposes to aggregate the temporal
data according to the number of pixels used to display the result. A multidi-
mensional generalization of this method is proposed in VDDA [11]. However,
the number of dimensions used for displaying the data are predefined (fixed). In
other words, this method does not reduce the number of dimensions according
to the size of data to display.
Hierarchical Exploration (Data Cube) Methods. Most of the works using
these kind of methods propose to use a tree index based on binned aggregation
to reduce the size of the data cube. imMens [16] and Nanocubes [15] propose to
pre-aggregate and store in memory all possible aggregations on all dimensions.
Gaussian Cubes [25] and TopKube [19] extended Nanocubes. The first one by
adding columns containing varied statistics to perform more advanced aggrega-
tion operations. The second one by including ranking information to reply to
Top-K queries.

However, the previous four proposals have a high memory cost and use a
tree index where the highest level concerns the spatial dimension, the lowest
level concerns the temporal dimension and the intermediate levels concern the
thematic dimensions. Which requires to aggregate the data in the same order
for all case studies (first over the temporal dimension, then over the thematic
dimensions, and finally over the spatial dimension).

Hashedcubes [20] overcomes the previous problems. It proposes a new struc-
ture that allows to quickly query a large quantity of multidimensional data with-
out storing in memory all possible aggregations. The main idea is to integrate
all dimensions into a single hierarchy in a carefully selected order. However, this
proposal does not allow to treat multiple hierarchies.

The issue of readability of visualized data has been dealt with some works.
[22] for spatial data and [3,5] for the readability of pivot tables propose post-
processing methods to reduce the size of data to be visualized. These methods
consist in grouping and aggregating (clustering) data. After identifying the clus-
ters, a new representation for each cluster is defined.

Unfortunately, none of this work studies how to reduce the size of data in
the context of multifunction OLAP. So, in this article, we propose a method to
improve the readability of the results of multifunction OLAP queries.

3 Preliminaries

In this section, we present the conceptual model of multifunction multidimen-
sional data base and the case study.

3.1 Multifunction Multidimensional Conceptual Data Model

Let us define a finite set of non-redundant names: N = {n1, n2, ...} and a finite
set of aggregation functions: F = {f1, f2, ...}.

Data Reduction in Multifunction OLAP 413

Definition 1. A fact Fi is defined by (nFi, Mi):

– nFi ∈N is the fact name,
– Mi = {m1, ...,mpi} is a set of measures.

Definition 2. A dimension Di is defined by (nDi, Ai, Hi):

– nDi ∈N is the dimension name,
– Ai = {ai1, ..., airi}

⋃{Idi, Alli} is the attributes of the dimension,
– Hi = {Hi

1, ...,H
i
si} is the hierarchies of the dimension.

The dimension’s attributes are organized in hierarchies from the most detailed
granularity (Idi) up to the most general one (Alli).

Definition 3. A hierarchy Hj is defined by (nHj , Pj , ≺Hj):

– nHj ∈N is the hierarchy name,
– Pj = {pj1, ..., pjqj} is a set of attributes (Pj ⊆ Ai) called parameters,
– ≺Hj= {(pjx, p

j
y) | pjx ∈ P j ∧ pjy ∈ P j} is a binary relation (antisymmetric and

transitive) determining a navigation path on the dimension.
– WeakHj : P j → 2A

i\P j

is a function that associates to each parameter a set
of attributes of the dimension, called weak attributes.

Assuming M =
⋃n

i=1 M
i, H =

⋃m
i=1 H

i, P i =
⋃si

j=1 P
j and P =

⋃m
i=1 P

i.

Definition 4. A multidimensional schema is defined by (F, D, Star, Aggregate):

– F = {F1, ..., Fn} is a set of facts,
– D = {D1, ...,Dm} is a finite set of dimensions,
– Star: F → 2D is a function relating each fact to its analysis axes (dimensions),
– Aggregate: M → 2IN

∗×F ×2D×2H×2P ×IN−
associates each measure to its aggre-

gation functions. It defines 4 types of aggregation functions:
• General: aggregates measure values with any parameter,
• Dimensional: aggregates the measure on all the considered dimension,
• Hierarchical: aggregates the measure on the whole concerned hierarchy,
• Differentiated: aggregates the measure between two parameters.

To consider the non-commutativity between functions, IN∗ gives an execution
order to each function. IN− indicates the constraint, i.e., if the aggregation is
calculated from a specific level (using a negative value) or not (using 0).

3.2 Case Study

The schema in the left part of Fig. 2 (obtained thanks to the “Star” function)
illustrates our example to analyze the average precipitation. The fact “Precip-
itation” is analyzed according to three dimensions: “Geography”, “Dates” and
“Time”. Each dimension is composed of one hierarchy. The “Time” dimension
organizes the hourly granularities at which precipitations are recorded during

414 A. Hassan and P. Darmon

Fig. 2. Multifunction multidimensional conceptual case study schemata.

the day. Here, we should indicate that the precipitation is recorded during the
day cumulatively, which means that the precipitation of a day is the last value
(MAX) recorded during this day.

Thanks to “Aggregate” function, an aggregation schema can be obtained
for each measure. The aggregation schema of our measure of the average pre-
cipitation “Pre” is shown in the right part of Fig. 2. Precipitation should be
aggregated on the “Time” dimension (having an execution order 1) before the
“Dates” dimension (with execution orders of value 2) and finally on the “Geog-
raphy” dimension (having execution orders equal to 3).

As the precipitation is cumulative during the day, it is aggregated on the
“Time” dimension using MAX (dimensional function). In addition, the precip-
itation is aggregated on the “Dates” dimension to the “Year” level using the
SUM (dimensional function) and above using the AVG (differentiated function).

The “Geography” dimension has several differentiated functions AVG and
AVG W which aggregates the data from the level directly below the considered
one (constraint -1). The function, weighted average AVG W(X, Y) returns the
average of X weighed by Y. AVG W(X, Y) =

∑
(X×Y)∑

Y . Thus, the precipitation
is weighted by the surface of the current level of the “Geography” dimension for
calculating it on the higher level. By example, the regional average precipitation
is not calculated from the precipitation of cities directly but it is calculated from
the departmental precipitation weighted by the surface of the department.

4 Data Reduction Method

Our proposal is based on a method of post-processing of the results of multifunc-
tion OLAP queries. This method reduces the size of data to display according
to used diagram type. For example, bar charts can normally display more data
than pie charts. So, pie charts need to aggregate data more than bar charts.

Data Reduction in Multifunction OLAP 415

This method consists in aggregating the data automatically to a less detailed
granularity, i.e., doing a Rollup. This method involves several steps: (1) study the
current OLAP query. (2) find possible Rollup operations. (3) calculate the data
size for all possible Rollups. (4) choose a Rollup operation based on a selection
strategy. (5) realize the chosen Rollup. These steps are detailed in the following:

4.1 Study the Current OLAP Query

Our method examines firstly the current OLAP query, exploiting the aggrega-
tion schema of the concerned measure, to find the maximum execution order of
aggregation functions that were already executed during the query. Algorithm 1
details this operation. This algorithm takes as input the measure and the current
set of parameters, where each parameter belongs to a different dimension and it
presents a granularity level selected to observe the measure.

The algorithm searches the function used to aggregate the measure at each
parameter. If the parameter is not the finest granularity (line 3), we check firstly
whether there is a differentiated aggregation function concerning the parameter
(line 4). Otherwise, we look for a hierarchical function (lines 5–6). If there is no
result, then we search a dimensional function (lines 7–8). If it is not found, we
look for the general function of the measure (lines 9–10). It is important to note
that the aggregation functions cover the multidimensional schema completely [8],
i.e., for each parameter (granularity level), there is a well-known function for
aggregating the measure. Therefore, arriving on line 10, the algorithm necessarily
finds an aggregation function. Once the aggregation functions are found, we find
the maximum execution order (lines 11–12).

Algorithm 1: Study current query
Input: current measure mc ∈ M , current set of parameters Psc ⊆ P
Output: Max execution order

1 Max execution order ← 0;

2 foreach P
DiHj
c ∈ Psc do

3 if (P
DiHj
c �= Idi) then

4 Agg ← find differentiated aggregation function(mc, P
DiHj
c);

5 if (Agg is Null) then
6 Agg ← find hierarchical aggregation function(mc, Hj);
7 if (Agg is Null) then
8 Agg ← find dimensional aggregation function(mc, Di);
9 if (Agg is Null) then

10 Agg ← find general aggregation function(mc);

11 if (Agg.execution order > Max execution order) then
12 Max execution order ← Agg.execution order;

13 return Max execution order;

For example, in the query of Fig. 1, the current parameters of dimensions
“Dates” and “Geography” are “Day” and “Department” respectively. The cur-
rent parameter of a dimension unconsidered in the query is the extremity param-
eter. Thus, the current parameter of “Time” dimension in Fig. 1 is “AllTime”.

416 A. Hassan and P. Darmon

Using the aggregation schema (the right part of Fig. 2), Algorithm 1 finds that
the measure is aggregated at levels “Department” and “AllTime” using the
aggregation functions AVG and MAX which have the execution orders 3 and
1 respectively. Thus, the max execution order already used is 3. Concerning the
parameter “Day”, there is no aggregation because it is the finest granularity.

4.2 Find Possible Rollup Operations

To reduce the data size, we propose to aggregate the result of the current OLAP
query without re-querying the database. But since the data are already aggre-
gated and the aggregation functions are non-commutative, not all aggregations
are possible. By controlling the calculation validity of aggregation functions,
Algorithm 2 finds the possible Rollup operations and eliminates those which are
forbidden. We can determine the possible Rollups by the Cartesian product of
lists of possible parameters on each dimension. A parameter is considered as
“possible” if the two following conditions are met:

– execution order condition: the function aggregating the measure at this
parameter has an execution order equal to or greater than the maximum
execution order already executed;

– constraint condition: the aggregation at this parameter is feasible from
current parameters.

Algorithm 2: Find possible Rollups
Input: current measure mc ∈ M , current parameters Psc ⊆ P ,

Max execution order (from Algorithm 1)
Output: possible Rollups

1 foreach dimension Di ∈ D do

2 p
DiHj
c ← P i ∩ Psc; /* the current parameter of Di */

3 possible parametersDi .add(p
DiHj
c);

4 for pDi ← (p
DiHj
c +≺ 1) to AllDi do

5 Agg ← find aggregator(mc, p
Di);

6 if (Agg.execution order ≥ Max execution order) and
((Agg.constraint=0) or
(∃p ∈ possible parametersDi | p = pDi +≺ Agg.constraint)1) then

7 possible parametersDi .add(pDi);

8 possible Rollups ← ∏m
i=1 possible parametersDi ;

9 possible Rollups ← possible Rollups \Psc;
10 return possible Rollups;

1

1 (p +≺ i) returns the parameter at the i-th position relative to p: (i = 1) returns the
directly upper parameter; (i < 0) returns a lower parameter.

Data Reduction in Multifunction OLAP 417

Algorithm 2 takes three inputs: the measure, current parameters and maxi-
mum execution order (resultant of Algorithm 1). To find the possible parameters
on a dimension (lines 1 to 7), the algorithm starts by identifying the current
parameter of this dimension. To do this it only has to intersect the current
parameters (Psc) with the parameters of the dimension (P i) because each cur-
rent parameter belongs to a different dimension (line 2). This current parameter
is considered as “possible” (line 3). All upper parameters (pDi) are checked if
they meet the execution order and constraint conditions (lines 4 to 7). So the
function “find aggregator()”, which is equivalent to lines 4 to 10 of Algorithm 1,
searches the aggregation function for each upper parameter (line 5). Then, we
check the execution order condition (first condition of line 6). We also check:

– if the function has a constraint 0 (second condition of line 6), that means
aggregation can be calculated from any lower parameter including the current
parameter. In this case the constraint condition is accomplished, or

– if the specific lower parameter (pDi +≺ Agg.constraint), from which the
considered aggregation must be calculated, is “possible” (third condition of
line 6). In this case also the constraint condition is accomplished.

The result of the Cartesian product (line 8) includes the current analysis (Psc).
We must remove it (line 9).

For example, for the query of Fig. 1, on one side, any aggregation (Rollup) on
the dimension “Dates” is forbidden because their aggregation functions have an
execution order (2) lower than the maximum execution order already executed
(3). So, there is only one possible parameter (the current parameter “Day”).
On the other side, with an execution order 3, all aggregations on “Geography”
dimension are possible. Concerning “Time” dimension, the current parameter
“AllTime” is the extremity one, so there is no other possible parameter. Thus:
possible parametersDates = [Day]
possible parametersGeography = [Department, Region, Country, AllGeography]
possible parametersTime = [AllTime]
By doing the Cartesian product and removing the current analysis [Day, Depart-
ment, AllTime], three Rollups are possible:
[[Day, Region, AllTime], [Day, Country, AllTime], [Day, AllGeography, AllTime]]

4.3 Calculate the Data Size for All Possible Rollups

In order to choose a Rollup, it is necessary to know the resulting data size of
each Rollup operation. To calculate this data size, we distinguish two cases:

– perfect data: we have perfect data if the measure has a value for all pos-
sible combinations of members of parameters (levels) involved in the query.
For example, considering the schema in Fig. 2, we have perfected data if the
precipitation of all cities is recorded every three hours every day. In this case,
to calculate the data size for each Rollup, we only need to multiply the num-
ber of each parameter members in the result of concerned Rollup. We can
find the number of parameters’ members by analyzing the basic query result

418 A. Hassan and P. Darmon

headers (in line and in column). For example, looking at the headers of the
pivot table of Fig. 1, we find that there are 20 days (20 members), 3 regions
and 1 country. Thus, the data size of the three possible Rollups resulting from
the previous step is calculated as follows:

• Size of [Day, Region, AllTime] = 20 × 3 × 1 = 60
• Size of [Day, Country, AllTime] = 20 × 1 × 1 = 20
• Size of [Day, AllGeography, AllTime] = 20 × 1 × 1 = 20

– imperfect data: we have imperfect data if the measure does not have a
value for all combinations of parameters’ members, i.e., it has null values. For
example, in the pivot table of Fig. 1, we do not know the daily precipitation
for some cities (gray cells). In this case, we have to go through the whole
result of the basic query (120 cells of pivot table of Fig. 1) to calculate the
exact data size of a Rollup. Thus, the data size of the three possible Rollups
concerning Fig. 1 is as follows:

• Size of [Day, Region, AllTime] = 58
• Size of [Day, Country, AllTime] = 20
• Size of [Day, AllGeography, AllTime] = 20

We can note here that the data size calculation is simpler and faster for perfect
data than for imperfect data. Furthermore, the more data are aggregated at
higher parameters, the less the difference between perfect and imperfect data
sizes is important. Therefore, for a small percentage of null data value, the data
can be considered perfect.

4.4 Choose a Rollup Operation Based on a Selection Strategy

Our method reduces the data size according to used diagram type (e.g. bar,
pie). It is ruled by parameters expressing the maximum allowed size for each
type of diagram. As, the data readability issue is relative (i.e., what is readable
for someone is not necessarily readable for the other), we assume that these limits
are set by the user himself. For example, a user could determine the maximum
size for bar and pie charts by 60 and 20 respectively. In other words, a bar chart
can have maximum 60 bars and a pie chart can have up to 20 sectors.

To automate the Rollup selection, we propose five strategies. To explain
these strategies, we use Table 1. In this table, the column “Query” identifies
the basic query “Current” and the different possible Rollups (from “Rollup1”
to “Rollup5”). The columns “Levels” determine the concerned granularity levels
(parameters) of the different dimensions. The columns “Changes” determine the
number of parameters implicated in the Rollup operation on each dimension
(i.e., how many levels we go up). The column “Size” determines the data size of
the basic query and Rollup operations.

Data Reduction in Multifunction OLAP 419

Table 1. Rollup choice.

Query Levels Changes Size

Geography Dates Time Geography Dates Time

Current City Day Every 3 hours 0 0 0 135

Rollup1 City Day Half-day 0 0 2 62

Rollup2 Region Year Every 3 hours 2 2 0 55

Rollup3 Department Month Quarter-Day 1 1 1 50

Rollup4 AllGeography Day Every 3 hours 4 0 0 45

Rollup5 City AllDates Quarter-Day 0 3 1 40

In Table 1, we notice that, the data size of the basic query (precipitation
by city, day and every three hours) is 135. “Rollup1” aggregates the data at
“Half-day” parameter on the “Time” dimension. Its data size is 62. It has no
changes on “Geography” and “Dates” dimensions, but the number of parameters
implicated on the “Time” dimension is 2, i.e., we go up two levels (“Quarter-
Day” and “Half-day”).

In the following, we present the different selection strategies considering that
the maximum allowed size is 60:

1. “the closest” strategy: this strategy selects the Rollup with the data size
closest to the maximum allowed size even if it is greater than that size. Thus,
this strategy chooses “Rollup1” in Table 1 to be executed because it has the
closest data size (62) to the maximum allowed size (60).

2. “the closest less” strategy: this strategy selects the Rollup having a data
size that is both less than and the closest to the maximum allowed size. Thus,
it chooses, in Table 1, “Rollup2” having a data size (55).

3. “the most detailed” strategy: this strategy selects the Rollup having
a data size smaller than maximum allowed size and which changes the
granularity levels the least, in other words, that has the minimum number
of implicated parameters (the minimum sum of “Changes”). For example,
all “Rollup2”, “Rollup3”, “Rollup4” and “Rollup5” have a data size less
than 60. The number of implicated parameters (Nb Pimp) is calculated by∑m

i=1 ChangesDi
= ChangesGeography + ChangesDates + ChangesTime. So,

Nb Pimp of “Rollup2”= 2 + 2 + 0 = 4
Nb Pimp of “Rollup3”= 1 + 1 + 1 = 3
Nb Pimp of “Rollup4”= 4 + 0 + 0 = 4
Nb Pimp of “Rollup5”= 0 + 3 + 1 = 4
Thus, this strategy chooses “Rollup3” having the minimum Nb Pimp.

4. “grouped Rollups” strategy: this strategy selects the Rollup which has
on one side a data size lower than the maximum allowed size and on the other
side the least number of implicated dimensions. In other words, this strat-
egy chooses the Rollup that has the most dimensions having 0 “Changes”,
i.e., the changes are grouped over few dimensions. For example, “Rollup2”,
“Rollup3”, “Rollup4” and “Rollup5” have respectively 2, 3, 1 and 2 impli-
cated dimensions. Therefore, this strategy chooses “Rollup4” to be executed.

420 A. Hassan and P. Darmon

5. “by dimension preferences” strategy: this strategy allows users to spec-
ify whether they prefer to make aggregations (“Changes”) over some dimen-
sions more than others. So, this strategy selects Rollup having the least sum
of changes over the non-preferred dimensions. For example, let’s assume that
the user prefers doing the aggregations over “Dates” dimension. The sums of
“Changes” of “Rollup2”, “Rollup3”, “Rollup4” and “Rollup5” over the non-
preferred dimensions (“Geography” and “Time”) are respectively 2, 2, 4 and
1. Thus, this strategy chooses “Rollup5” to be executed.

In Fig. 1, two types of diagram are used (bar and pie chart). So, our method
should select two Rollups to be executed, one for each diagram. Considering
that the maximum size of a bar chart is 60 and of a pie chart is 20, our method
chooses the Rollup [Day, Region, AllTime] (having data size 58, see Sect. 4.3) to
aggregate the data to be displayed in the bar chart and [Day, Country, AllTime]
(having data size 20, see Sect. 4.3) to aggregate the data to be displayed in the
pie chart.

4.5 Realize the Chosen Rollup

Once a Rollup is selected, it must be executed. Algorithm 3 describes how our
method finds the aggregation functions needed to realize a Rollup. It takes three
inputs: the measure, current parameters and the chosen Rollup’s parameters. It
finds functions that aggregate the measure on all the dimensions between the
current parameter and the Rollup’s parameter of the same dimension (lines 1
to 10). It starts by determining the current parameter (pDiHj

c) and the Rollup’s
parameter (pDiHj

R) of the concerned dimension by intersecting the current param-
eters (Psc) and the Rollup’s parameters (PsR) with the dimension’s parameters
(P i) respectively (lines 2 and 3).

Algorithm 3: Realize chosen Rollup
Input: current measure mc ∈ M , current parameters Psc ⊆ P ,

chosen Rollup’s parameters PsR ⊆ P
Output: aggregation to do

1 foreach dimension Di ∈ D do

2 p
DiHj
c ← P i ∩ Psc; /* the current parameter of Di */

3 p
DiHj

R ← P i ∩ PsR; /* the chosen Rollup’s parameter of Di */

4 repeat

5 if (p
DiHj
c �= p

DiHj

R) then

6 Agg ← find aggregator(mc, p
DiHj

R);
7 aggregation to do.add(Agg);
8 if (Agg.constraint < 0) then

9 p
DiHj

R ← p
DiHj

R +≺ Agg.constraint; /* intermediate level */

10 until (Agg.constraint = 0) or (p
DiHj
c = p

DiHj

R);

11 return aggregation to do

Data Reduction in Multifunction OLAP 421

We check if the current parameter and the Rollup’s parameter are not identi-
cal (line 5), i.e., if there is an aggregation to do. Then, we find the function that
aggregates the measure at the Rollup’s parameter (line 6). We add it to a list of
functions to be executed (line 7). If this function does not aggregate the measure
directly from the current parameter (i.e., it has a constraint < 0 (line 8)), then,
we find the intermediate lower parameter (pDiHj

R +≺Agg.constraint) from which
the aggregation is calculated (line 9). It is considered as a new Rullop’s parame-
ter (pDiHj

R). Afterwards, we repeat the steps to find the aggregation function for
this new Rullop’s parameter until we find a function that aggregates the measure
directly from the current parameter (i.e., it has a constraint = 0) or the Rullop’s
parameter becomes identical to the current parameter (line 10).

After executing this algorithm, the found functions should be executed
according to their execution order. If there are two functions that have the
same execution order on the same dimension, then these functions are ordered
from the most detailed level to the most general level.

If the function is algebraic, intermediate values have to be stored [6]. For
example, to avoid the non-desired average of the averages, the algebraic function
AVG requires storing the intermediate SUM and COUNT.

In our example, to improve the readability of the bar chart, we realize the
Rollup [Day, Country, AllTime] from the current parameters [Day, Department,
AllTime] (Fig. 1) for the measure of the average precipitation “Pre”. The execu-
tion of Algorithm 3 finds that there is no aggregation to do on the “Dates” and
“Time” dimensions. It also finds that the measure is aggregated at the parameter
“Country” by the weighted average function AVG W(Pre, R Surface) (with an
execution order 3) from an intermediate parameter “Region” (see Fig. 2). During
the second repetition, it finds that the aggregation at the parameter “Region” is
realized from the current parameter “Department” by the function AVG W(Pre,
D Surface) (having an execution order 3). Thus, the found functions are executed
in the following order:

1. aggregation by AVG W(Pre, D Surface) at [Day, Region, AllTime]
2. aggregation by AVG W(Pre, R Surface) at [Day, Country, AllTime]

In addition, to improve the readability of the pie chart, Algorithm 3 finds
that the realization of the Rollup [Day, Region, AllTime] is directly feasible from
the current parameters by the function AVG W(Pre, D Surface).

Thus, these aggregated data for both Rollups can be displayed as in Fig. 3.

5 Implementation

In this section, we demonstrate the feasibility of our proposal. Our method is
implemented as an extension of the prototype “OLAP-Multi-Functions” [8] (see
Fig. 4). This prototype has an architecture in two levels:

– Interface level: this level is developed using Java. It allows to create and
visualize the multifunction multidimensional schemata and query the data
warehouse.

422 A. Hassan and P. Darmon

Fig. 3. Improved visualization of average precipitation.

– Storage level: an RDBMS (Oracle) is used to store the meta-schema and
the data warehouse. An SQL query generator is developed as stored proce-
dures. This generator translates (considering the multifunction context) user
interactions (OLAP queries) into SQL queries.

Fig. 4. Method implementation (Prototype).

Our method is developed in Java. It takes the result of an OLAP query in
JSON format (Data.JSON file). An extension of the Mondrian schema is used to
describe the multifunction schemata (Mondrian.xml file). In this extension, we
describe the association of several aggregation functions to the same measure.
Our method takes as input these two files (Data.JSON and Mondrian.xml).

The five steps of the method are executed sequentially (one after another).
In the case of imperfect data, the execution of step 3 (calculate the data size
for all possible Rollups) could be an expensive operation. So, in this case, a
parallel execution (multithreading) of this step is preferred. We use one thread
for each possible Rollup. If several data visualizations are used (e.g. bar, pie),
then a multiple execution of steps 4 (choose a Rollup operation) and 5 (realize
the chosen Rollup) is necessary. Thus, a parallel execution (one thread per type
of visualization) is used.

Data Reduction in Multifunction OLAP 423

The data reduction results are stored by visualization type (e.g. Bar.JSON
and Pie.JSON files) before being sent to the corresponding visualization.

6 Conclusion

In this paper, we proposed a method to adjust (reduce) the displayed data size in
the context of the multifunction OLAP where a single measure can be associated
with several aggregation functions that are not commutative. Our proposal is a
data post-processing method to perform Rollup operations to reduce the data
size of the OLAP query result, according to the type of diagram in order to
improve the readability.

Our method consists of five steps that must be performed sequentially. The
first step studies the current OLAP query in order to find the maximum exe-
cution order already executed. The second step eliminates all Rollups that
require an aggregation function that has an execution order lower than that
found in the first step. The third step calculates the data sizes of all possible
Rollups. It distinguishes between cases of perfect and imperfect data. We pro-
pose for the fourth step, which selects a Rollup to be executed, five strategies:
(1) “the closest” and (2) “the closest less” that choose according to the data
sizes. (3) “the most detailed” that chooses according to the number of impli-
cated parameters. (4) “grouped Rollups” chooses according to the number of
implicated dimensions. (5) “by dimension preferences” chooses according to the
preferences expressed by the users. Once a Rollup is chosen, the fifth step looks
for the necessary aggregation functions that will be executed according to their
execution order.

We plan to generalize our method by studying the data reduction in the case
of a multi-measure analysis. We also envisage to study the data reduction when
the measures are analyzed (observed) on several granularity levels of the same
dimension.

References

1. Abela, A.: Advanced Presentations by Design: Creating Communication that
Drives Action. Wiley, Hoboken (2013)

2. Ahlberg, C., Shneiderman, B.: Visual information seeking: tight coupling of
dynamic query filters with starfield displays. In: Readings in Human–Computer
Interaction, pp. 450–456. Morgan Kaufmann (1995). ISBN: 978-0-08-051574-8

3. Boschetti, M.A., Golfarelli, M., Graziani, S.: An exact method for shrinking pivot
tables. Omega (2019). https://doi.org/10.1016/j.omega.2019.03.002

4. Dix, A., Ellis, G.: By chance enhancing interaction with large data sets through
statistical sampling. In: The Working Conference on AVI, pp. 167–176 (2002)

5. Golfarelli, M., Graziani, S., Rizzi, S.: Shrink: an OLAP operation for balancing
precision and size of pivot tables. Data Knowl. Eng. 93, 19–41 (2014)

6. Gray, J., Bosworth, A., Lyaman, A., Pirahesh, H.: Data cube: a relational aggre-
gation operator generalizing group-by, cross-tab, and sub-totals. In: ICDE, pp.
152–159 (1996)

https://doi.org/10.1016/j.omega.2019.03.002

424 A. Hassan and P. Darmon

7. Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: OLAP in multifunc-
tion multidimensional databases. In: Catania, B., Guerrini, G., Pokorný, J. (eds.)
ADBIS 2013. LNCS, vol. 8133, pp. 190–203. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40683-6 15

8. Hassan, A., Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Differentiated multiple
aggregations in multidimensional databases. In: Hameurlain, A., Küng, J., Wag-
ner, R., Cuzzocrea, A., Dayal, U. (eds.) Transactions on Large-Scale Data- and
Knowledge-Centered Systems XXI. LNCS, vol. 9260, pp. 20–47. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-47804-2 2

9. Jerding, D.F., Stasko, J.T.: The information mural: a technique for displaying and
navigating large information spaces. IEEE TVCG 4(3), 257–271 (1998)

10. Jugel, U., Jerzak, Z., Hackenbroich, G.: M4: a visualization-oriented time series
data aggregation. Proc. VLDB 7, 797–808 (2014)

11. Jugel, U., Jerzak, Z., Hackenbroich, G., Markl, V.: VDDA: automatic visualization-
driven data aggregation in relational databases. VLDB J. 25(1), 53–77 (2016)

12. Keim, D.A.: Pixel-oriented visualization techniques for exploring very large data
bases. J. Comput. Graph. Stat. 5(1), 58–77 (1996)

13. Kimball, R.: The Data Warehouse Toolkit: Practical Techniques for Building
Dimensional Data Warehouses, vol. 121, 2nd edn. Wiley, Hoboken (2002)

14. Li, M., Choudhury, F., Bao, Z., Samet, H., Sellis, T.: ConcaveCubes: supporting
cluster-based geographical visualization in large data scale. Comput. Graph. Forum
37(3), 217–228 (2018)

15. Lins, L., Klosowski, J.T., Scheidegger, C.: Nanocubes for real-time exploration of
spatiotemporal datasets. IEEE TVCG 19(12), 2456–2465 (2013)

16. Liu, Z., Jiang, B., Heer, J.: imMens: real-time visual querying of big data. Comput.
Graph. Forum 32, 421–430 (2013)

17. Marty, R.: Applied Security Visualization, 1st edn. Addison-Wesley Professional,
Boston (2008)

18. Meyer, M., Takahashi, S., Vilanova, A.: The state-of-the-art in predictive visual.
Comput. Graph. Forum 36(3), 539–562 (2017)

19. Miranda, F., Lins, L., Klosowski, J.T., Silva, C.T.: TopKube: a rank-aware data
cube for real-time exploration of spatiotemporal data. IEEE TVCG 24(3), 1394–
1407 (2018)

20. Pahins, C.A., Stephens, S.A., Scheidegger, C., Comba, J.L.: Hashedcubes: simple,
low memory, real-time visual exploration of big data. IEEE TVCG 23(1), 671–680
(2017)

21. Peng, W., Ward, M.O., Rundensteiner, E.A.: Clutter reduction in multi-
dimensional data visualization using dimension reordering. In: IEEE Symposium
on Information Visualization, pp. 89–96 (2004)

22. Silva, R., Moura-Pires, J., Santos, M.Y.: Spatial clustering in SOLAP systems to
enhance map visualization. IJDWM 8(2), 23–43 (2012)

23. Stolper, C.D., Perer, A., Gotz, D.: Progressive visual analytics: user-driven visual
exploration of in-progress analytics. IEEE TVCG 20(12), 1653–1662 (2014)

24. Trutschl, M., Grinstein, G., Cvek, U.: Intelligently resolving point occlusion. In:
Proceedings of the IEEE Symposium on Information Visualization, pp. 131–136
(2003)

25. Wang, Z., Ferreira, N., Wei, Y., Bhaskar, A.S., Scheidegger, C.: Gaussian cubes:
real-time modeling for visual exploration of large multidimensional datasets. IEEE
TVCG 23(1), 681–690 (2017)

https://doi.org/10.1007/978-3-642-40683-6_15
https://doi.org/10.1007/978-3-642-40683-6_15
https://doi.org/10.1007/978-3-662-47804-2_2

A Framework for Learning Cell
Interestingness from Cube Explorations

Patrick Marcel1(B) , Veronika Peralta1 , and Panos Vassiliadis2

1 University of Tours, Blois, France
{patrick.marcel,veronika.peralta}@univ-tours.fr

2 University of Ioannina, Ioannina, Greece
pvassil@cs.uoi.gr

Abstract. In this paper, we discuss the problem of organizing the dif-
ferent ways of computing the interestingness of a particular cell derived
from a cube in the context of a hierarchical, multidimensional space. We
start from an in-depth study of the interestingness aspects in the study
of human behavior and include in our survey the approaches taken by
computer-science efforts in the area of data mining and user recommen-
dations. We move on to structure interestingness along different funda-
mental, high level aspects, and, due to their high-level nature, we also
move towards much more concrete data-oriented definitions of interest-
ingness aspects.

Keywords: Interestingness · Data cube · Cells · OLAP explorations ·
Novelty · Peculiarity · Surprise · Relevance

1 Introduction

Given a cell of a datacube and a user’s exploration over this datacube, how to
assign to this cell a score reflecting its interestingness for the exploration?

The significance of the answer to the above question, cannot be underesti-
mated. A cell is the most granular piece of information in a BI session, thus, in
this paper it is the epicenter of our search, both because it can be of value per se,
and because the interestingness of groups of cells can be based on the interest-
ingness of individual cells. We need better systems at recommending questions,
data and highlights to the users. Understanding what is important for a user
is key to this goal and a cell interestingness score is a pre-requisite for this. If
we manage to successfully score (i.e., understand) which cells matter more to
each user, this would allow to better understand how users navigate cubes by
studying logs of user sessions, categorize these cube explorations, and make on-
line recommendations. Apart from the aforementioned practical considerations,
from the research point of view, succeeding in structuring the aspects of inter-
estingness will allow to structure our knowledge on existing methods, as well
as provide the basis to benchmark and compare such methods and help develop
new ones for supporting cube exploration in aspects not successfully covered yet.
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 425–440, 2019.
https://doi.org/10.1007/978-3-030-28730-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_26&domain=pdf
http://orcid.org/0000-0003-3171-1174
http://orcid.org/0000-0002-9236-9088
http://orcid.org/0000-0003-0085-6776
https://doi.org/10.1007/978-3-030-28730-6_26

426 P. Marcel et al.

To the best of our knowledge, there is a gap in the literature in answering
the motivating question of the paper. Although interestingness measures have
attracted a lot of attention in other communities, like for instance Data Mining,
for measuring the interestingness of a pattern [9], or Recommender Systems, for
measuring the quality of recommendations [16], to our knowledge there exists no
principled study or survey for the interestingness of a cell in cube exploration.

We consider the context of cube exploration as follows. We assume a
user performing exploratory data analysis over a hierarchical, multidimensional
nature of data [15]. After a while, the user acquires an overarching informational
goal that their exploration tries to address. During the exploration, the user
devises queries to acquire new information. Each such query brings in new data
and constructs a new cube that is presented to the user. We call this Q&A a
transition, and it constitutes a step in the overall exploration of the user. The
user, thus, practically covers areas of the hierarchical multidimensional space at
each step (possibly at different levels of granularity), and progressively, for each
such area, some kind of expectation on its values is constructed or updated (call
it a “model” if you will). In each transition the user makes, each new observation,
is (0) relevant or not to the user’s informational need and either (1) reinforces
the expectation or (2) contradicts it, or (3) just creates expectations for newly
explored places where none existed before. Each new observation, is therefore,
assessed with respect to its novelty, relevance, surprise and peculiarity. Each
such criterion covers a different aspect of interestingness.

Our contributions in this paper, are structured as follows: In Sect. 2 we
discuss earlier proposals of interestingness measures and in Sect. 3, we study
the forces that affect interestingness computation and structure them around
high level aspects of interestingness – specifically, novelty, relevance, surprise
and peculiarity. In Sect. 4, we provide exemplary algorithms and methods for
assessing the high level aspects of a cell’s interestingness, on the basis of low-
level measures, and Sect. 5 describes the experiments we ran to showcase the
framework. Section 6 concludes the paper and suggests open roads for future
work.

2 Related Work

Although there is little work proposing measures for quantifying the interest-
ingness of a cell in a datacube, several measures can be borrowed from close
research areas and adapted to cells. In this subsection we discuss interestingness
measures proposed for (i) pattern mining, (ii) cube exploration and summaries,
and (iii) recommendation.

Interestingness Criteria for Pattern Mining. In [9], the authors point out that
interestingness is a broad concept and identify from the literature 9 crite-
ria to determine whether or not a pattern is interesting: conciseness, gener-
ality/coverage, reliability, peculiarity, diversity, novelty, surprisingness, utility
and actionability/applicability. They categorize these criteria in 3 groups: (i)

A Framework for Learning Cell Interestingness from Cube Explorations 427

objective measures, based only on the raw data (generality, reliability, peculiar-
ity, diversity, conciseness), like for instance the classical support, (ii) subjective
measures, considering both the data and the user (surprise and novelty), like
for instance the informational content [3], and (iii) semantic measures, based on
the semantics and explanations of the patterns (utility and actionability), like
for instance measures based on user preferences [26]. We note that according to
De Bie [3], subjective interestingness is particularly well adapted for exploratory
data mining, whose goal is to pick patterns that will result in the best updates of
the user’s belief state, while presenting a minimal strain on the user’s resources.
One challenge is to define and update the belief of the user. De Bie proposes to
model it as a background distribution over patterns representing the belief the
user attaches to patterns being present in the data.

Most of the criteria introduced above can be reused in our context, except
diversity (that would concern groups of cells) and reliability (since data in cubes
are assumed reliable by construction).

Interestingness Criteria for Summaries. In [9], authors also review interesting-
ness measures for what they call summaries, i.e., aggregated cross-tabs corre-
sponding to the result of an OLAP query, where numeric values (i.e., mea-
sures) are aggregated by several criteria (i.e., dimensions). Out of the 9 criteria
defined for pattern interestingness, 4 are adapted to summaries: diversity (pro-
portional distribution of classes in the summary versus the number of classes),
conciseness/generality (level of aggregation), peculiarity (a cell in a summary
is peculiar if it is differs from the other cells in the summary) and surprising-
ness/unexpectedness (a summary is surprising if it deviates from user’s expecta-
tions). According to the classification of [9], the first three criteria are objective
and the last one is subjective. Note that except for peculiarity, and to a lesser
extent, conciseness, the criteria concern the interestingness of the whole sum-
mary instead of the interestingness of each cell.

To the best of our knowledge, such peculiarity measures are the cornerstone
of discovery-driven analysis [22–25] for measuring cell interestingness in the con-
text of cube exploration. Discovery-driven analysis guides the exploration of a
datacube by providing users with interestingness values for measuring the pecu-
liarity of the cells in a data cube, according to statistical models, e.g., based on
the maximum entropy principle, and leveraging the intrinsic structure of multi-
dimensional information. From an initial user query, the system automatically
calculates 3 kinds of interestingness values for each cell in the query result:
(i) SelfExp measures the difference between the observed and anticipated val-
ues (the latter are calculated statistically by computing the mean of subsets of
attributes), (ii) InExp is obtained as the maximum of SelfExp over all cells
that are under this cell (those that result from a drill down), and (iii) PathExp
is calculated as the maximum of SelfExp over all cells reachable by drilling
down along a given path. The DIFF, INFORM and RELAX advanced OLAP
operators proposed in [22,23,25] use such interestingness values to recommend
relevant cells for explaining drops or increases, or for recommending areas of a
cube that should surprise the user, based on their history with the cube.

428 P. Marcel et al.

In the context of OLAP, other works propose further measures concerning (or
related to) interestingness of a cross-tab, a query result or a set of cells. Without
trying to be exhaustive, we mention here some of those works, illustrating the
diversity of the proposed measures.

Klemettinen et al. [17] use skewness, as a peculiarity measure of asymmetry
in data distribution, for discovering interesting paths and guiding the navigation
in a datacube. Given a cuboid, the possible drill-downs are explored, measuring
skewness and generating skew-based navigation rules for the more significant
paths. Skewness is computed observing the underlying facts (the raw data that
is aggregated), looking for outliers or substantial differences with other facts.
Based on skewness, Kumar et al. [18] propose interestingness measures based on
the unexpectedness of skewness in navigation rules and navigation paths.

Fabris and Freitas [7] defined interestingness measures for attribute-value
pairs in a data cube: the I1 measure reflects the difference between the observed
probability of an attribute-value pair and the average probability in the sum-
mary and the I2 measure reflects the degree of correlation among two attributes.
Both measures can be seen as value-based conciseness.

Djedaini et al. use supervised classification techniques for learning two inter-
est measures for OLAP queries: focus, that indicates to what extent a query
is well detailed and related to other queries in an exploration, indicating that
the user investigates in details precise facts and learns from this investigation
[5], and contribution, that highlights to what extent a query is important for an
exploration, contributing to its interest and quality [4].

Finally, we mention two recent works [21,27] that are concerned with detect-
ing the validity of insights gained by users when examining query answers. As
other works measuring peculiarity by leveraging the nature of OLAP cubes, this
is again achieved by statistical tests comparing data at different levels of details.

Interestingness Criteria for Recommendations. There is a long discussion about
interestingness in the area of evaluating recommender systems [11,14,16]. We
mention [16] as an excellent recent survey on the topic. The survey presents 4
criteria (diversity, serendipity, novelty, and coverage), in addition to the tradi-
tional accuracy, for evaluating the quality of a recommendation.

Query recommendation techniques (see e.g., [2,6]) are usually evaluated
with interestingness measures coming from the literature on recommender sys-
tems exposed above. We mention the more OLAP-specific foresight measure [2],
that quantifies how distant is the recommendation from the current point of
exploration.

3 Interestingness Aspects for Cube Exploration

How can we define interestingness? To the best of our knowledge, there is no
formal definition. Online resources1 propose “Interest is a feeling or emotion
that causes attention to focus on an object, event, or process”. In contemporary
1 https://en.wikipedia.org/wiki/Interest (emotion).

https://en.wikipedia.org/wiki/Interest_(emotion)

A Framework for Learning Cell Interestingness from Cube Explorations 429

psychology of interest, the term is used as a general concept that may encompass
other more specific psychological terms, such as curiosity [19] and to a much
lesser degree surprise [20] and novelty [8].

In this section, we derive from our study of the literature the criteria of the
interestingness of a cell, by listing what influences them. We can conclude from
our study of related work that interestingness is a degree attributed to a piece
of information, regarding the curiosity and surprise it generates. This piece of
information under consideration may spark the will to continue exploring the
source of information to close some knowledge gap, or get novel information.
But how can we pass from such a high level description of interestingness, to
a more concrete one? Our approach is a two level modeling. At the first level,
we discuss high-level aspects of interestingness, like the ones deduced from the
study of human behavior. Second, we provide data-oriented measures of interest-
ingness, substantiating the aforementioned high-level aspects, on the grounds of
the available information. This section presents the first level, while next section
provides examples of concrete measures (the second level of our approach) and
describes their computation. A proof of concepts implementing some measures
is described in Sect. 5.

3.1 Interestingness Aspects

We now present 4 fundamental, high-level interestingness aspects: relevance,
novelty, surprise, and peculiarity.

Relevance as a Measure for the User’s Curiosity. Curiosity is the main
driver of knowledge acquisition. Data exploration, especially in an environment
of Business Intelligence, is primarily related to the answering of an open question.
So, it is realistic to assume that the user comes with a question for a particular
subset of the multidimensional space, and her exploration has to do with “a
walk” within this sub-space in order to answer the question. We will call the
aspect of interestingness that pertains to curiosity as the relevance of the cell
with respect to the exploration and its underlying user goal.

The main force, thus, of the assessment of relevance is the modeling of the
user intentions. Basically, we can discriminate between (a) the case where a
description of the user intention is given vs. (b) the case where no such knowledge
is available. In the former, we deal with an expression of the user’s interest as the
space of a user goal. In the latter, we need to learn the user goal from the history
of past activity, which, in turn, relies on the availability of the coordinates of the
cells of the queries in the exploration and the schema of the cube.

Novelty. Novelty is also an aspect of interestingness that mainly pertains to the
need of users to learn information previously unknown. The simple reporting of
data that have not been previously reported might increase their interestingness.

The main force behind novelty is the existence of a history. A lesser influence
is the availability of results (cell coordinates are sufficient to understand if the

430 P. Marcel et al.

cell have never been seen). Without the knowledge of the history of the user’s
queries, novelty is practically a wild guess. When dealing with novelty, we are
not primarily interested in the intention of the user, although it can affect the
attention that a user pays to a particular cell (in other words, we assume all
cells being equally probable to have been observed by the user).

Surprise. Not surprisingly, surprise is a major aspect of interestingness. Sur-
prise occurs when our previous beliefs are disconfirmed or contradicted. This can
happen either directly, when the expected value of an event proves to be signifi-
cantly different than the actual value, or implicitly, when the disconfirmation of
a certain fact deduces the disconfirmation of a dependent fact.

Clearly, the main prerequisite for evaluating surprise is the existence of a
previous belief of the user. Without the existence of a structured model for the
estimation of the previous beliefs, the assessment of surprise is impossible; for
this case, it is only possible to measure some objective peculiarity intrinsic to the
data (see below). Surprise can be measured using models leveraging the history
of the user with the datacube, for instance to estimate belief.

Peculiarity. Consistently with the literature on cubes, we use peculiarity to
denote an intrinsic property of the data, i.e., the cell’s value, when considered
together with other cells related to it.

Peculiarity of a cell cannot be assessed in vacuum. Most typically, it can
be assessed against the cells of the same query. Taken to extremes, it can also
be evaluated by comparing the cell to all the previous cells of the history of
the exploration – or even, to all the cells of the full history of the user with
the datacube, i.e., including past explorations. Finally, peculiarity may also be
calculated with respect to the unseen cells of the cube. The full instance, i.e.,
with measure values, of cells considered are prerequisites for this criteria.

3.2 Definition of Interestingness

We define interestingness of a cell as a vector of scores, defined over a set of
interestingness measures.

Definition 1 (Cell interestringness). Given a user’s exploration over a dat-
acube, the interestingness of a cell of this exploration is a tuple of scores for a
list of interestingness measures.

We intentionally do not differentiate between high-level and data-oriented
criteria. We support an extensible approach towards which criteria would an
interestingness assessment tool include, especially as we cannot provide any com-
pleteness proof on our list of high-level interestingness aspects.

A Framework for Learning Cell Interestingness from Cube Explorations 431

4 Detecting Interesting Cells in an Exploration

In this Section, armed with the tools of the previous sections, we revisit the orig-
inating question of our introduction: How do we compute the different aspects of
the interestingness of a cell? To this end, and without trying to be exhaustive, we
provide some alternatives per high-level aspect and discuss their computation.

4.1 Relevance

Assessing the relevance of a cell practically answers the question: how close is
this cell to the subset of the multidimensional space that the user intents to
explore? Two fundamental notions hide behind this formulation of the prob-
lem, the specification of an area of interest and the understanding of the user’s
intention.

As already mentioned, we define the space of a user goal as the framing
of a subspace of the multidimensional space (either intentionally via selection
predicates, or explicitly, at the extensional level, as a set of cells) for which the
user wants to obtain information. In the former case, we refer to the intentional
specification of a user goal whereas in the latter to refer to the extensional area
of interest of the goal, with the explicit set of cells defined by this framing. Then,
given a specific exploration, with a user goal as its underlying motive, we define
relevance as the degree to which the cell overlaps with the area of interest of the
exploration’s motivating goal.

Concerning the user intentions, as already mentioned, we discriminate
between (a) the case we have no such information, and, (b) the case we have an
expression of the user’s intentions. Let us proceed in exploring both cases.

Relevance Without Knowledge of the User’s Intent. Let’s start with
the case where no model for the user’s intent is given a priori. To assess the
relevance of a cell, we need to quantify how “close” or “central” the cell is to the
subspace induced by the exploration of the user. Practically speaking, we need
an algorithm that enumerates the cells that have been visited by the user during
her exploration. Due to the hierarchical nature of the space, the easiest way to
compare cells is by referring all cells to a common level of granularity (i.e., the
node in the lattice of group-by’s [13] that is (a) dominated by all the nodes to
which history queries correspond, and, (b) the highest among all the candidates
of (a)). For simplicity, in this paper, we assume this is the lowest possible node
of the group-by lattice, i.e., the level of the facts, that we call C0.

Now, we need an algorithm that computes the area of interest, starting with
its most detailed form, at the level of C0 (see Algorithm 1). The input to this
algorithm is the history of user queries of an exploration. The output is the
detailed area of interest. Basically, for every aggregate cell that is part of a
query result, the algorithm detects its detailed cells, increases a score for each
of the times this cell has contributed to the computation of a query result and
adds it to the detailed area of interest, returned by the algorithm.

432 P. Marcel et al.

Algorithm 1: ComputeDetailedAreaOfInterest
Data:
a history of user queries Q
a basic cube C0

a set of dimension hierarchies defining the multidimensional space set of
models D
Result:
a Detailed Area of Interest S0, with all its cells annotated with a relevance
indicator

1 begin
2 for every query q ∈ Q do
3 for every cell r ∈ q.cells do
4 Let r0 be the set of descendants of r at the most detailed level, r0

⊆ C0 ;
5 for every detailed cell r0i ∈ r0 do
6 increase r0i .score by 1;
7 S0 = S0 ∪ r0i ;

8 return the detailed area of interest S0

Having computed the detailed area of interest of a user goal, we can now
proceed to answer the question “What is the relevance of a cell c to an area
of interest, say S?” Let S be the area of interest of the session, and S0 =
{cS

1 , . . . , cS
k } be the set of cells corresponding to the cells of S at the detailed

cube C0. Let c = 〈a1, . . . , an, v1, . . . , vm〉 be the cell we are interested in and c0 =
{cc

1, . . . , c
S
l } be the set of descendant cells corresponding to c at the most detailed

level. Then, relevance(c | S) is a function fR that calculates the percentage of
c0 that also lies within S0 (see Algorithm 2).

Algorithm 2: ComputeSimpleRelevance
Data:
a cell c
a history of user queries Q
a basic cube C0, and a set of dimension hierarchies defining the
multidimensional space set of models D
Result:
the relevance of c to Q computed via S0

1 begin
2 S0 = computeDetailedAreaOfInterest(Q);
3 Let c0 be the set of descendants of c at the most detailed level, c0 ⊆ C0 ;
4 return relevance(c|Q) = |S0 ∩ c0| / |c0| ; /* Other variants of the

formula can be envisaged */

A Framework for Learning Cell Interestingness from Cube Explorations 433

Variants. A more liberal definition of relevance can compute a distance function
of the two sets. A more strict definition might take the frequency of the visits of
the user to each member of S0 during the exploration. Then, each cell is weighted
by how many times it has been visited by the user during the exploration. Then,
relevance is defined as the fraction of the sum of the weights of the common cells
of the two sets over the sum of weights of the cells of S0.

A side-effect problem, that we leave aside for the moment concerns the most
concise description of S0 by rolling up regions of C0 completely covered by
cuboids at an ancestor level at the lattice of group-by’s.

Relevance in the Presence of Knowledge of the User’s Intent. Assume
now that we have the expression of a user goal. Here, we do not discriminate
between an induced goal by a user profile, or a deliberate expression of the
goal by the user. We assume that the goal is expressed as a boolean predicate φ
(typically - but not obligatorily - expressed as the conjunction of simple atomic
selection formulae). There are several ways to compute the relevance of a cell c
to φ. Note that φ may not be part of the query that retrieves c. The user may
(a) compare cells within the area of the original goal with similar/peer cells, or,
(b) put the values she observes in context by rolling-up in a way that produces
aggregate values broader than the original goal’s selection condition.
Variants. The simplest way is to see whether c satisfies the goal φ. To do that,
both c and φ must be converted to the same level of detail – again to their highest
common descendant in the lattice of group-by’s. Then, relevance in its simplest
form is Boolean and evaluates to true or false if all descendants of c satisfy φ, or
numerical, if a percentage is computed. In these variants, the history of queries
is not taken into consideration – only the intentional space of the user goal.

If we want to assess relevance given the history too, we can resort to the
computation of the previous subsection that did not take the user goal into
consideration. Assume now that we convert φ to the lowest possible level and
obtain φ0 [10]. In this case, we can isolate the subset of the explored space that
is relevant to the user goal, via σφ0(S0), with S0 as previously defined, and
then search for its (simple or weighted) intersection with c0 (also as previously
defined).

4.2 Novelty

As already mentioned, novelty refers to the second facet of curiosity, obtaining
new knowledge, and for all practical concerns, it deals with whether the user has
seen a cell before or not. Due to the hierarchical nature of the multidimensional
space, novelty does not only concern the previous appearance of a cell per se,
but also, whether the user has been exposed to ancestor or descendant cells too.

Given a datacube C, the history Q of queries of an exploration, and the set
H of the cells of the queries of Q, we have several alternatives for the evaluation
of novelty, which in all cases is a function fN assessing novelty(c | H) or novelty
(c | H,C).

434 P. Marcel et al.

1. We define the strict novelty of a cell c as its absence from H or not. Thus,
the strict novelty is Boolean, and refers to the cell per se, in the context of
the exploration’s query history.

2. We define the coverage novelty of c based on the fraction of cells of the
datacube C covered by c (e.g., all the descendants of c) that the user has seen
during the exploration: 1 − |cov(c,H)|

|cov(c,C)| , where cov(c, S) denotes the cells of S

covered by c.
3. We define the inferred novelty of a cell c as the extent of overlap of c with

the cells of H, even via ancestor or descendant relationships. For each cell
of H, say cH , that is related via an ancestor or descendant relationship with
c, we count the complement of the weight of cH over c. This can be done in
many ways, and here we mention the simplest ones. Assume cH is an ancestor
of c, then the respective weight is the fraction of the cell’s measures, if the
aggregate function is distributive (i.e., not avg). Alternatively, the fraction
can be the inverse of the cardinality of cH ’s descendants at the level of c. The
roles are inverted if the relationship is a descendant rather than an ancestor
one. In all these cases, the inferred novelty is a real number that can easily
be normalized in the range [0 .. 1]

4. We can also define inferred novelty at the detailed level by comparing the
detailed descendants of c and the descendants of the members of H, say H0

at the level of C0. The percentage of descendants of c at the detailed level
that also belong to the H0 define the inferred novelty of c at the detailed
level.

4.3 Surprise

Surprise is a fundamental aspect of interestingness. Where relevance describes
the general area of data within which the user wants to walk around, and has to
do with why he is interested in a cell, surprise relates to the divergence of what
she sees with her previous belief of what she expected to find. Surprise instigates
further searches or actions, in order to adapt our challenged beliefs to the new
data, and opens new ways of looking at the data. The fundamental premise upon
which surprise can be computed is the modeling of the user’s previous beliefs.

How then do we structure a model of beliefs for the cells of a multidimen-
sional space? Fundamentally, there are two ways of handling beliefs: (a) the
objective way, where there is a function that assigns an expected value to a
measure, independently of what the user has seen in her exploration, and, (b)
the subjective way, where the expectation of a cell’s value is dependent upon the
previous cells that the user has seen in her exploration. The objective evaluation
is very demanding, in the sense that it requires that the user has full knowl-
edge of the cube - or even, the sub-cube that she explores and some way to
express this knowledge as a potential value. The subjective mechanism is more
dynamic: it can start with the user being tabula rasa and, progressively, as cells
are observed, her beliefs for the next cells that are related to the previously seen
ones are updated.

A Framework for Learning Cell Interestingness from Cube Explorations 435

Surprise Assessment. We give two indicative ways to compute surprise, one
objective and one subjective.

The value-based surprise for a cell c, surprise(c) is the difference between the
actual value of a measure M of the cell, say m, compared against its expected
value, for instance m.

The probability-based surprise of a cell. Assume a probability distribution
P over the set of all potential values for the cells of C. This distribution is
used to represent a user’s belief, i.e., for a cell c = 〈a1, . . . , an, v1, . . . , vm〉 the
probability that the user attaches to the statements “the ith measure of c is
vi”. The surprise brought by c is a function over this probability, for instance
surprise(c) = −log(P (c)).

A fundamental aspect of a model for user beliefs is belief refreshment. As
the exploration unravels, the beliefs of the user are updated with every new cell
he observes. A mechanism for belief update is out of the scope of this paper,
but could follow the general principle given in [3]. However, this does not fun-
damentally alter the mechanism for interestingness assessment that we propose,
as, at any time point, when a cell appears, we can assume that the user has an
expected value for it.

4.4 Peculiarity

Peculiarity is an intrinsic property of the data: it makes a particular cell to be
set apart from its peers, typically due to the divergence of its measure values
from a typical value distribution. Peculiarity can be used to estimate surprise in
the absence of any other model for the user (e.g., if we know nothing about what
the user expects to see, we can possibly assume that very small or high values
in the sales, i.e., outliers, could be interesting). Peculiarity is not restricted to
naive outlierness, as it can be due to a more complex pattern (e.g., how a cell
evolves over time).

Assessing peculiarity can be performed in a plethora of ways (e.g., via iso-
lating extreme values, assessing how close a value is to its “neighboring” values,
performing clustering of the values, information theoretic approaches) [1]. It is
beyond the scope of this paper to discuss outlier detection methods, either simple
or advanced. We refer the interested reader to [1,12] for an extensive coverage.

5 Experiments

This section showcases our framework through preliminary experiments over a
small set of real user explorations.

5.1 Experimental Setup

In our experiments, we reuse the dataset described in [5], consisting of naviga-
tion traces collected in the context of a French project on energy vulnerability.

436 P. Marcel et al.

Traces consist of logged OLAP sessions2 of volunteer students of a Master degree
in Business Intelligence, answering some high-level information needs defined by
their lecturer, using Saiku3 to ask the queries and see the results. In the present
paper, we analyzed 11 sessions, whose sizes range from 12 to 69 queries, 411
queries in total, with an average of 37 queries per session, and an overall of
14,384 cells. Both queries and sessions were manually inspected and labelled by
the lecturer. Queries were assigned a binary label regarding their focus on the
phenomenon analyzed by the student during the session. The term focus is used
as in [5]: “When focused, an analyst would expect more precise queries, related
to what she is currently analyzing. On the contrary, when exploring the data,
the analyst would prefer more diverse queries, for a better data space coverage”.

Sessions were graded from A (lowest) to D (highest grade) with respect to
the combination of two characteristics, specifically, (a) the extent to which the
queries of the session are semantically linked to their previous query (and not
ad-hoc) and (b) the progressive stabilization of an area of interest in the multi-
dimensional space (as opposed to everlasting, ad-hoc explorations of the space).
Among the 11 sessions analyzed, 4 sessions were labelled B, 3 labelled C and 4
labelled D.

We have developed a prototype session analyzer to analyze the logs of the
users. Our prototype loads the sessions of each user, and for each of them eval-
uates the queries one by one, in order. Each time a query is evaluated, the user
history is updated, the detailed area of interest (cf. Algorithm1) is refreshed and
the cell interestingness measures are computed. We implemented the extraction
of 4 basic measures, one per high level aspect described in the previous section:
(i) simple relevance, as of Algorithm 2, (ii) strict binary novelty, i.e., the cell is
previously seen or not, (iii) a limited form of surprise, called positional surprise,
computed as minus log of the product of the member’s probability of appear-
ance in the user history4, and (iv) simple peculiarity hereafter called outlierness,
calculated as z-score w.r.t. the rest of the cells in the query result to which it
belongs. Our goal is to confront the measures with the labels assigned to the
sessions and queries, looking for correlations between interestingness, user focus,
and session quality.

Our prototype is written in Java 8 and ran on a MacBook Pro Core I5 with
16 GB RAM running MacOS Mojave 10.14.3. The average processing time per
cell is 1071.55 ms, with a minimum of 376 ms, a maximum of 10663 ms and a
standard deviation of 248.11. The computation of relevance constitutes by far
the majority of the computation time. The average processing time per query
is 37.18 s, with a standard deviation of 85.02. Comparatively, the average con-
sideration time (i.e., the time the user took between two consecutive queries) is
29.42 s, with a standard deviation of 65.59.

2 We do not distinguish between the terms session and exploration in what follows.
3 https://www.meteorite.bi/products/saiku.
4 In this implementation, the user belief is agnostic of measure values, and the metric

therefore characterizes how surprising it is that the user visits this particular cell.

https://www.meteorite.bi/products/saiku

A Framework for Learning Cell Interestingness from Cube Explorations 437

Table 1. Average and standard deviation (in brackets) of measures per query labels

Relevance Novelty Surprise Peculiarity

Not focused 0.68 (0.43) 0.56 (0.50) 0.77 (0.25) 0.61 (0.90)

Focused 0.78 (0.31) 0.71 (0.46) 0.82 (0.26) 0.66 (0.78)

5.2 Lessons Learned

Our first experiment investigates whether the queries with a higher focus obtain
higher values for these interestingness measures compared to the queries with
less focus.

The first result comes from Table 1. We average all focused vs non-focused
cells and compare the values. The focused category consistently demonstrates
higher values for all the measures, with novelty having a 15% difference in
the values and relevance a 10%, even though this is nuanced by the standard
deviation.

Then, one can refine the above result by assessing whether there is any differ-
ence in their behavior of these measures during the progression of the sessions.
As session lengths are different, for each query we compute the percentage of
progress with respect to the session, as an indicator of how deep the analyst was
in her search during that session. To reduce the visual clutter, we organize the
demonstration by ranges of 10 steps, where the average value is shown for each
category.

Figure 1 shows how the four measures evolve along the progression of the
sessions, distinguishing by query labels. Concerning novelty, we see that focused

Fig. 1. Evolution of the four interestingness measures (y-axis) with respect to the %
progress in a session (x-axis) for focused vs non-focused queries

438 P. Marcel et al.

queries soon demonstrate higher amounts of novelty compared to non-focused
ones (which seem to revolve around the same cells). Only very later in the
session is this difference equalized or surpassed (and indeed at low levels of
novelty anyway). So overall, focused queries demonstrate more novelty than the
non-focused ones. The same phenomenon is observed for surprise, but with less
variations. Concerning relevance, as already mentioned, we measure relevance as
the subset of the detailed multidimensional space that is revisited, as an indicator
of what the user is looking at. Practically, this is acting as the counterpart of
novelty, albeit here we are found in the detailed multidimensional space rather
than the space of the actual aggregated cells. Here, we observe that the non-
focused queries, due to the repetition, obtain higher values than the focused
ones. Only later in the session, when the focused queries are returning to the well-
established area of exploration to finalize conclusions is the situation reversed.
For peculiarity, things are pretty much equal throughout the entire session, apart
from a few cases where focused queries contain a little bit more outlier cells than
non-focused ones. This justifies the small 5% advantage they have in the total
scoring of Table 1.

Fig. 2. Evolution of the four interestingness measures (y-axis) with respect to the %
progress in a session (x-axis) for session labels

Figure 2 shows how the four measures evolve along the progression of the ses-
sion arranged by session label. The following general behaviors can be observed:

– B sessions are erratic, and novelty is low, one could say they are not really
analyzing, in that users are merely comparing with novel facts.

– In C sessions, all measures are high, there is too much movement, indicating
that they are focused, but not enough. The fact that novelty and relevance are

A Framework for Learning Cell Interestingness from Cube Explorations 439

high at the same time is not contradictory: users stay in the same detailed
area, but keep rolling-up, drilling-down. In other words, they keep investi-
gating, but seem inconclusive, which is corroborated by the fact that those
sessions are often longer than D sessions, that get straight to the point. And
also by the fact that outlierness tends to increase in the end.

– In D sessions, relevance keeps increasing, novelty is high then collapses, like
surprise, and then start increasing again. This indicates that the sessions are
more focused in the end. Outlierness is very high in the beginning, which
could have sparked the session.

6 Conclusions

This paper has addressed the problem of measuring the interestingness of the
cells of a data cube, analyzed by a user during a session of data exploration. We
have assumed a hierarchically-structured multidimensional space and, within
this context, we have proposed criteria of interestingness at both a high-level
and a data-oriented level.

We have kept our discussion independent from the particular model of OLAP
operations that can be applied to the data, or from technological aspects influ-
encing it. We believe that the paper opens the road for a more directed research
of interestingness assessment and recommendation algorithms with specific tar-
gets among the high-level aspects discussed here. Our experiments provide a
proof of concept in this direction, showing how even simple measures can help
the analysis of user behavior. Extending the framework beyond the realm of
clean, simply structured multidimensional spaces, in the realm of an arbitrarily
structured and populated database schema, is a clear path for future work.

References

1. Aggarwal, C.C.: Data Mining - The Textbook. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-14142-8

2. Aligon, J., Gallinucci, E., Golfarelli, M., Marcel, P., Rizzi, S.: A collaborative fil-
tering approach for recommending OLAP sessions. Decis. Support Syst. 69, 20–30
(2015)

3. Bie, T.D.: Subjective interestingness in exploratory data mining. In: Tucker, A.,
Höppner, F., Siebes, A., Swift, S. (eds.) IDA 2013. LNCS, vol. 8207, pp. 19–31.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41398-8 3

4. Djedaini, M., Drushku, K., Labroche, N., Marcel, P., Peralta, V., Verdeau, W.:
Automatic assessment of interactive OLAP explorations. Inf. Syst. 82, 148–163
(2019)

5. Djedaini, M., Labroche, N., Marcel, P., Peralta, V.: Detecting user focus in OLAP
analyses. In: Kirikova, M., Nørv̊ag, K., Papadopoulos, G.A. (eds.) ADBIS 2017.
LNCS, vol. 10509, pp. 105–119. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66917-5 8

6. Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: QueRIE: collaborative
database exploration. IEEE Trans. Knowl. Data Eng. 26(7), 1778–1790 (2014)

https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-319-14142-8
https://doi.org/10.1007/978-3-642-41398-8_3
https://doi.org/10.1007/978-3-319-66917-5_8
https://doi.org/10.1007/978-3-319-66917-5_8

440 P. Marcel et al.

7. Fabris, C.C., Freitas, A.A.: Incorporating deviation-detection functionality into the
OLAP paradigm. In: SBBD, pp. 274–285 (2001)

8. Förster, J., Marguc, J., Gillebaart, M.: Novelty categorization theory. Soc. Pers.
Psychol. Compass 4(9), 736–755 (2010)

9. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM
Comput. Surv. 38(3), 9 (2006)

10. Gkesoulis, D., Vassiliadis, P., Manousis, P.: CineCubes: aiding data workers gain
insights from OLAP queries. Inf. Syst. 53, 60–86 (2015)

11. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recom-
mendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)

12. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn.
Morgan Kaufmann, Burlington (2011)

13. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes effi-
ciently. In: SIGMOD, pp. 205–216 (1996)

14. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

15. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Multidimensional Databases and Data
Warehousing. Synthesis Lectures on Data Management. Morgan & Claypool Pub-
lishers, San Rafael (2010)

16. Kaminskas, M., Bridge, D.: Diversity, serendipity, novelty, and coverage: a survey
and empirical analysis of beyond-accuracy objectives in recommender systems. TiiS
7(1), 2:1–2:42 (2017)

17. Klemettinen, M., Mannila, H., Toivonen, H.: Interactive exploration of interesting
findings in the telecommunication network alarm sequence analyzer (TASA). Inf.
Softw. Technol. 41(9), 557–567 (1999)

18. Kumar, N., Gangopadhyay, A., Bapna, S., Karabatis, G., Chen, Z.: Measuring
interestingness of discovered skewed patterns in data cubes. Decis. Support Syst.
46(1), 429–439 (2008)

19. Litman, J.: Curiosity and the pleasures of learning: wanting and liking new infor-
mation. Cogn. Emot. 19(6), 793–814 (2005)

20. Reisenzein, R., Meyer, W.U., Niepel, M.: Surprise. In: Ramachandran, V.S. (ed.)
Encyclopedia of Human Behavior, 2nd edn. Elsevier, London (2012)

21. Salimi, B., Gehrke, J., Suciu, D.: Bias in OLAP queries: detection, explanation,
and removal. In: SIGMOD, pp. 1021–1035 (2018)

22. Sarawagi, S.: Explaining differences in multidimensional aggregates. In: Proceed-
ings of VLDB, pp. 42–53 (1999)

23. Sarawagi, S.: User-adaptive exploration of multidimensional data. In: Proceedings
of VLDB, pp. 307–316 (2000)

24. Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven exploration of OLAP
data cubes. In: EDBT, pp. 168–182 (1998)

25. Sathe, G., Sarawagi, S.: Intelligent rollups in multidimensional OLAP data. In:
Proceedings of VLDB, pp. 531–540 (2001)

26. Yao, Y., Chen, Y., Yang, X.D.: A measurement-theoretic foundation of rule inter-
estingness evaluation. In: Young Lin, T., Ohsuga, S., Liau, C.J., Hu, X. (eds.)
Foundations and Novel Approaches in Data Mining. SCI, vol. 9. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11539827 3

27. Zhao, Z., Stefani, L.D., Zgraggen, E., Binnig, C., Upfal, E., Kraska, T.: Controlling
false discoveries during interactive data exploration. In: SIGMOD, pp. 527–540
(2017)

https://doi.org/10.1007/11539827_3

Towards a Cost Model to Optimize
User-Defined Functions in an ETL
Workflow Based on User-Defined

Performance Metrics

Syed Muhammad Fawad Ali(B) and Robert Wrembel

Poznan University of Technology, Poznan, Poland
fawadali.ali@gmail.com, robert.wrembel@cs.put.poznan.pl

Abstract. Today’s ETL tools provide capabilities for developing cus-
tom code as user-defined functions (UDFs) to extend the expressiveness
of standard ETL operators. However, a custom code of an UDF may exe-
cute inefficiently due to its poor implementation (e.g., due to the lack of
using parallel processing or adequate data structures). In this paper we
address the problem of the optimization of UDFs in data-intensive work-
flows and presented our approach to construct a cost model to determine
the degree of parallelism for parallelizable UDFs.

Keywords: ETL workflow · ETL execution optimization ·
User-defined functions · Cost model · Parallelization

1 Introduction

An industry accepted architecture for integrating data sources (DSs) is a data
warehouse architecture [32]. The integration is implemented by means of the
extract-transform-load (ETL) layer where the so-called ETL processes (work-
flows) are run. They are responsible for: (1) ingesting data from data sources,
(2) transforming heterogeneous data into a common data model and schema,
(3) cleaning, normalizing, and eliminating data duplicates, (4) loading data into
a central repository - a data warehouse (DW). An ETL process has to finish
its work within a given time window. Since, (1) such a process moves large
volumes of data between DSs and a DW, (2) executes complex cleaning and
de-duplication algorithms, its execution is time consuming and typically takes
hours to complete. For this reason, one of the most important and only partially
solved problem in ETL management is performance optimization. Despite over
two decades of research on this topic, it has been only partially solved [4].

In most of the state-of-the-art commercial ETL engines [11], the performance
of an ETL process depends on its designer, i.e., he/she is responsible for using
appropriate components and orchestrating them manually into an efficient work-
flow. In practice, only the simplest optimization techniques have been applied so
far, i.e, the so-called push down and balance optimization, cf. Sect. 5. In research
c© Springer Nature Switzerland AG 2019
T. Welzer et al. (Eds.): ADBIS 2019, LNCS 11695, pp. 441–456, 2019.
https://doi.org/10.1007/978-3-030-28730-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28730-6_27&domain=pdf
http://orcid.org/0000-0001-5886-8193
http://orcid.org/0000-0001-6037-5718
https://doi.org/10.1007/978-3-030-28730-6_27

442 S. M. F. Ali and R. Wrembel

(only) approaches two basic techniques have been developed so far, namely: (1)
task reordering supported by simple cost functions and reordering heuristics and
(2) parallel processing, cf. Sect. 5.

Big data add to the ETL optimization problem more complexity that results
from: (1) bigger data volumes, and (2) much more complex and diverse data
models and formats that need to be processed by ETL. The most common
and industry accepted architecture for big data integration is a data lake (DL)
[27,30]. It is a repository that stores large data collections in their native formats.
As a consequence, the integration of data is executed on the fly. This feature
calls for yet more efficient execution of ETL processes.

Traditional ETL tools are designed to work well with simple data formats
(e.g., table-like) and have limited capabilities to efficiently deal with the volume,
variety, and velocity of big data. For example, the messy and noisy nature of big
data demands new types of operators for data pre-processing tasks, such as clas-
sification, clustering, collaborative filtering, outlier-detection, or de-duplication
that specifically fit the ever-changing characteristics of the data.

To overcome the limited expressive power provided by the standard ETL
operators, most ETL tools provide the functionality to write custom code as
user defined functions (UDFs). A custom UDF code may be written in multi-
ple programming languages, e.g., Java, Scala, Python, PL/SQL, Transact SQL,
by the ETL developer. Therefore, an UDF may be more prone to errors and
inefficient, which may result in a performance bottleneck due to its poor code
and high computational complexity. UDFs are treated as black boxes by an ETL
engine. Optimizing the execution of black boxes is challenging as their semantics,
internal algorithms, and performance characteristics are unknown. As a conse-
quence, it is difficult to assess the run-time and space complexity for a black-box.
However, if an UDF is already optimized, or is configurable to be optimized by
an ETL framework without changing its code, it may ease the development of
an efficient ETL process.

In the research literature there exist some approaches to optimizing UDFs
in ETL processes, cf. Sect. 5. Some of them apply parallel processing to UDFs.
Most methods either require manual annotation of an UDF, or use static code
analysis of an UDF to understand its semantics. The semantics extracted from
the UDF code analysis is then used by a cost-based optimizer for performance
optimization. Annotating UDFs manually requires more effort on top of manu-
ally writing UDFs and is equally error prone. Moreover, the discussed approaches
do not cater whether the parallelism is required at the first place or not, resulting
in utilizing computing resources unnecessarily, or do not take into consideration
the required degree of parallelism.

This paper contributes a cost model for UDFs, which are treated
as black-box operators. The cost model enables the optimization of already
parallelizable (e.g., MapReduce-based [8] or Spark-based [35]) UDFs in an ETL
workflow. Our optimization approach draws upon determining the right degree
of parallelism for an UDF (or a set of UDFs) to satisfy user-defined performance
metrics. In the current work, we consider execution time and monetary cost as
the performance metrics. To determine the right degree of parallelism and to

Cost Model to Optimize UDFs in an ETL Workflow 443

generate an optimal configuration for an UDF to be executed in a distributed
environment, the cost model must provide the following functionality. First, it
must answer the below questions.

– Is an UDF parallelizable?
– If an UDF is parallelizable, will it profit from parallel processing to satisfy

user-defined performance metrics?
– If an UDF profits from parallel processing, what will be the adequate (sub-

optimal, optimal) parallelization parameters? In this research we consider
the following parameters: (1) the number of data partitions, (2) the number
of mapper and reducer tasks (in case of a MapReduce-based UDF), (3) the
number of nodes in a cluster, (4) a physical and software configuration of the
cluster.

Second, the cost model must support generating an optimized configuration
for an already parallelizable UDF to be executed in a distributed framework.
Notice that the configuration may also support a sub-optimal execution plan.

This paper is organized as follows. Section 2 outlines a running example.
Section 3 discusses the motivation for the cost model. Section 4 presents our cost
model. Section 5 discusses the related work. Section 6 concludes the paper and
points out steps for the future work.

2 Running Example

In this section we present a use case that is to find similar addresses in a
dataset, using an ETL workflow. The use case represents the solution to data
de-duplication, duplicate web pages detection in web crawling, plagiarism detec-
tion, recommendations based on similar user profiles, and document clustering.
Finding similar records often requires re-reading the same dataset multiple times.
Detecting similar records in a huge amount of data is a computationally-intensive
task and it often requires parallel processing.

2.1 Overview of the Use Case

Set-similarity joins using MapReduce (SSJ-MR) [33] is one of the parallel
approaches using the MapReduce framework to detect similar records based
on string similarity. SSJ-MR uses three components, namely: join-attribute, set-
similarity function, and a similarity threshold.

Figure 1 illustrates the workflow for SSJ-MR approach. The workflow is
divided into three stages and each stage processes data using MapReduce. Also
each stage can be solved by either of the two approaches, e.g., TO1 or TO2 -
for the Token Ordering stage, PG1 or PG2 - for the Pair Generation stage, and
RJ1 or RJ2 - for the Record Join stage.

Stage 1 - Token Ordering (TO). It computes data statistics using MapRe-
duce in order to generate partitioning keys called signatures, which are used in
stage 2. The signatures are generated by tokenizing the incoming record into

444 S. M. F. Ali and R. Wrembel

Fig. 1. Set-similarity join workflow

a wordset. For example, the record string “Parallelizing the custom code” is
tokenzied into wordset [“Parallelizing”, “the”, “custom”, “code”]. Each element
in the wordset is a signature, which is used as a partitioning key instead of using
actual join attribute value, because partitioning records using an entire string
for partitioning (e.g., hash-based partitioning) is a difficult task.

Stage 2 - RID Pair Generation (PG). IT extracts a record ID (RID) and
join-attribute value for each record, computes the similarity of the join-attribute
values, and propagates the RID pair of similar records to the next stage. The
similarity is computed in the Reduce phase of MapReduce, using signatures from
the previous stage as partitioning keys.

Stage 3 - Record Join (RJ), uses the RID pair of similar records from
the previous stage and generates actual pairs of joined records.

The explanation of the use case clearly indicates that SSJ-MR is a
computationally-intensive process divided into multiple stages (considered as
multiple UDFs in this paper).

2.2 Use Case for Running Example

In the example, we use Pentaho Data Integrator (PDI)1 to implement the SSJ-
MR algorithm as an ETL workflow to efficiently detect similar records in a large
amount of datasets. The SSJ-MR algorithm is divided into three stages and
executed in Amazon EMR Cluster2 - a Hadoop [6] managed framework that
makes it feasible to process vast amounts of data across dynamically scalable
Amazon EC2 instances3. Each stage of SSJ-MR may be executed in a differently
configured Amazon EMR cluster, if proposed by the cost model. Finally, data
are stored in a data warehouse.

Our example ETL process is shown in Fig. 2. The first step - START indicates
the start of the ETL workflow in PDI. The next step - FetchData fetches data
from a data store. FetchConfig fetches the configuration for each of the Amazon
EMR jobs s1:TokenOrdering, s2:PairGeneration, and s3:RecordJoin (generated
by the cost model) to be executed in parallel in the Amazon EMR cluster.
Finally, StoreData step stores the resulted data set a DW.

1 https://github.com/pentaho/pentaho-kettle.
2 https://aws.amazon.com/emr/.
3 https://aws.amazon.com/ec2/.

https://github.com/pentaho/pentaho-kettle
https://aws.amazon.com/emr/
https://aws.amazon.com/ec2/

Cost Model to Optimize UDFs in an ETL Workflow 445

Fig. 2. The running example scenario

3 Motivation

The work presented in this paper is motivated based on our previous work [2],
where we presented an extendible theoretical ETL framework. Its architecture is
shown in Fig. 3. The extendible ETL framework consists of four modules, namely:
(1) an UDFs Component, (2) a Recommender, (3) a Cost Model Library, and
(4) a Monitoring Agent.

The UDF Component allows ETL developers to easily write parallelizable
UDFs by separating parallelization concerns from the code. It contains a library
of Parallel Algorithmic Skeletons (PASs) or parallelizable code templates. These
PASs are designed to be executed in a distributed environment like MapReduce
or Spark. The component provides to the ETL developer: (1) the already par-
allelizable code of some commonly used big data operators (a.k.a Case-based
PASs) including: sentiment analysis, de-duplication of rows, outlier detection
and (2) a list of Generic PASs (e.g., worker-farm model, divide and conquer,
branch and bound, systolic, MapReduce). The ETL developer chooses either a
Case-based PAS or a Generic PAS, depending on his/her requirements.

The Recommender module works together with the Cost Model Library and
the Monitoring Agent to generate optimized ETL workflows. The Recommender
includes an extendible set of machine learning algorithms (e.g., similarity, rec-
ommendation, prediction algorithms) to optimize a given ETL workflow and to
generate a more efficient version of the workflow. To this end, it uses perfor-
mance statistics collected during past ETL executions by a dedicated module,
called Monitoring Agent. For collecting statistics we rely on standard data pro-
filing methods, e.g., [1] and execution monitoring, e.g., [13]. The statistics are
stored in a repository, called Knoweldge Base. It also stores optimized configura-
tion plans collected during several ETL workflow executions. It is updated every
time when a new configuration (or a new use case) is identified and validated by
the cost model.

As shown in Fig. 3, an input to the UDFs Component is either the Generic
PAS or the Case-based PAS, along with optional parameters: an input format
and/or an output format of a dataset, a maximum execution time constraint,
and distributed machine specifications.

In our running example, the ETL developer may choose the SSJ-MR algo-
rithm from the Case-based PAS for the de-duplication of datasets. The ETL

446 S. M. F. Ali and R. Wrembel

Fig. 3. The architecture of the Extendible ETL Framework

developer may also provide an execution time constraint (e.g., the entire de-
duplication ETL workflow must execute within a window of, say, 900 s) and a
monetary cost constraint (e.g., the execution cost of running an ETL workflow
while using the Amazon EMR cluster must not exceed, say, $15).

Based on the input from the ETL developer, the UDF Component will choose
the optimal code with distributed machine configurations with the help of the
Recommender, Monitoring Agent, and the cost model provided by the Extendible
ETL Framework. In the example, the optimal code variant selection is based on
23 possible combination of ETL workflows to be executed in the Amazon EMR
cluster (i.e., there are three stages, and for each stage there are two code possi-
bilities). The optimal combination of code variants for an ETL workflow having
multiple UDFs (stages) is supported by the cost model discussed in Sect. 4. Once
the optimal code variant is selected and distributed framework configurations are
generated, the code variant chosen by the Extendible ETL Framework will be
executed in a distributed architecture (e.g., Amazon EMR Cluster).

4 Proposed Cost Model

To optimize the execution of parallelizable UDFs in an ETL workflow according
to some user-defined performance metrics, i.e., execution time and monetary
costs, the use of the cost model is as follows.

– Stage 1 - Feasibility : the cost model will first determine the feasibility to
parallelize UDFs, i.e., whether it makes sense to parallelize an UDF, in order
to satisfy the user-defined performance metrics.

– Stage 2 - Degree of Parallelism: the cost model will reason on the right degree
of parallelism, i.e., how much to parallelize (e.g., choosing the appropriate
number of partitions to distribute the data to be transformed in parallel).

– Stage 3 - Optimal Code Generation: the cost model will guide the creation
of an efficient configuration for distributed machines, so that the UDF is

Cost Model to Optimize UDFs in an ETL Workflow 447

executed optimally in a distributed environment, adhering to the execution
performance and monetary cost constraints defined by the developer as an
input to the UDF component.

4.1 Stage 1 - Feasibility

The cost model is used by the Simulator to simulate an UDF execution in a
non-distributed parallel environment. The simulation helps in finding out if it
makes sense to execute the UDF in a non-distributed environment by comparing
the actual execution time of the UDF with the user-defined performance metrics.
If the execution time is lower than or equal to the required execution time, the
framework would execute the UDF in the non-distributed environment.

Further extension is planned to the Simulator to be able to identify the
core aspects about an UDF such as: execution time of the UDF for a given
dataset, the number of rows processed per second, the number of bytes pro-
cessed per second, the size of data, the used distributed machine configuration
as well as memory, IO, and CPU usage characteristics, in the spirit of [13]. The
performance data extracted from the simulator will then be used to predict the
optimal configuration for an UDF execution.

4.2 Stage 2 - Degree of Parallelism

The right degree of parallelism is to assure the user-defined performance metrics
and it can be achieved by tuning certain performance parameters depending on
the distributed environment and programming paradigm. For example, perfor-
mance tuning of a MapReduce UDF to be executed in Hadoop is dependent on
190 configurations. Optimal settings for these parameters depend upon a work-
flow, data characteristics, and distributed machine configurations. However, a
fraction of parameters play an important role in achieving the performance opti-
mization and a lack of knowledge of these parameters is mostly the cause of
performance problems [14].

The parameters that seem to be critical to the optimal execution of UDFs
in a distributed framework include:

– The number of partitions/shards: represents appropriate number of partitions
(neither too few nor too many) for the MapReduce and Spark jobs executing
on top of the Hadoop framework.

– Machine configurations: represents appropriate processing power of a dis-
tributed machine along with optimal configuration of the critical parameters.

– Parallel processing architecture: include a degree of parallelism, partitions
schuffling scheme (for Spark jobs), the number of Mapper and Reducer tasks
(for MapReduce jobs).

4.3 Stage 3 - Optimal Code Generation

The critical parameters (described in Sect. 4.2), are of vital importance in order
to satisfy the user-defined performance metrics. The cost model uses obliga-
tory user-defined performance metrics: (1) maximum execution time for an ETL

448 S. M. F. Ali and R. Wrembel

workflow (T) and (2) maximum monetary cost for an ETL workflow to be exe-
cuted in the distributed environment (B), as an input from the ETL developer.
Optional parameters include: (1) the size of a dataset (R) in terms of the number
of rows and (2) configuration of a distributed machine (M).

In order to find out the right degree of parallelism, the proposed cost model
will be used as follows (also shown in Fig. 4).

Fig. 4. The processing workflow of the cost model

– Step 1 : checks for a user code input either as the Generic PAS or Case-based
PAS, (c.f., Sect. 3). If the ETL developer selects the Generic PAS, the cost
model executes Step 2, otherwise it executes Step 4.

– Step 2 : if the ETL developer selects the Generic PAS, then an UDF provided
by the ETL developer is first executed in the Simulator to collect run-time
execution statistics, e.g., execution time, estimated monetary cost, the num-
ber of rows processed per second, the number of bytes processed per second,
the size of data, the current configuration of a distributed machine as well as
memory, CPU, and IO usage characteristics.
At this point, the cost model is only interested in the execution time and
estimated monetary cost. If both are within the user-defined performance
metrics constraints, then the processing is stopped, otherwise the processing
continues to Step 3.

– Step 3 : the output from the Simulator will be used as an input to this step.
First, similar execution statistics are searched in the Knowledge Base (c.f.,
Sect. 3). If there is any optimal configuration found in the Knowledge Base
similar to the input parameters, then such a code and machine configuration
will be used as an optimal code to be executed in the distributed framework.
Otherwise, the cost model will be used with new configuration parameters to
estimate an optimal code and machine configuration. The new configuration
parameters can be suggested by the Recommender with the help of prediction
algorithms.

Cost Model to Optimize UDFs in an ETL Workflow 449

– Step 4 : for the Case-based PAS, where a user selects a use case, e.g., SSJ-MR
(c.f., Sect. 2) there exists multiple code variants. Therefore, there are nm pos-
sible variants, which correspond to an NP-hard problem and can be mapped
to Multiple Choice Knapsack Problem (MCKP) [17] as a special case of our
problem. The MCKP is defined as follows:
Given m classes N 1 ... Nm of items to pack in a knapsack of capacity c, where
each item j ∈ N i, i = 1,2,....,m, has profit pij and weight wij , the problem
is to choose exactly one item from each class such that the sum of profits is
maximized while the sum of weights does not exceed capacity c.
In order to show MCKP as a special case of the running example, we intro-
duce the following terms. Let Minimize(Z) be an optimal solution containing
exactly one program from each stage with minimum execution time, while
remaining within budget B. Note that we want to calculate the execution
time T ij of a program variant N j from each stage m, such that the total cost
C ij of the entire ETL workflow is ≤B.

According to the aforementioned definition of MCKP, we can map:
• m classes in MCKP definition to m stages in the running example,
• c weight constraint to B budget constraint,
• w ij cost of item for class to cij cost of variant j at stage i,
• pij profit of each item to T ij execution time of each variant at each stage.

Then, we can find out the optimal solution as follows:

Minimize(Z)
m∑

i=1

∑
j∈Ni

Ti,j · xi,j

subject to
m∑

i=1

∑
j∈Ni

Cij · xij ≤ B,

∑
j∈Ni

xij = 1, i = 1, . . . ,m,

xij ∈ {0, 1}, j ∈ Ni, i = 1, . . . ,m.

If the optimal configuration solution is found by the MCKP step, the solution
is handed over to the distributed machine to be executed in parallel, otherwise
the best possible solution with all the relevant statistics and machine config-
uration is sent to Step 3 as an input, in order to generate a (sub-)optimal
solution.

4.4 Preliminary Results

As a preliminary evaluation of our approach we used the running example (c.f.,
Sect. 2.2), where each stage has two variants. For stage 1, i.e., Token Ordering,
the first variant is called Basic Token Ordering (BTO) and the second one is
One Phase Token Ordering (OPTO). For stage 2, i.e., RID Pair Generation, the
first variant is called Basic Kernel (BK) and the second one is Indexed Kernel

450 S. M. F. Ali and R. Wrembel

(PK). For stage 3, i.e., Record Join, the first variant is Basic Record Join (BRJ)
and the second variant is One Phase Record Join (OPRJ).

In Table 1, column Stage stores the number of the stage, cf. Sects. 4.1, 4.2,
and 4.3. Column Algorithm stores the aforementioned algorithm variants of each
stage. Column #Nodes [exec cost/h] represents the per hour execution cost asso-
ciated to a n-node micro-cluster configuration (Amazon Web Service applies per
hour billing cycle). For example, column 2 [0.4$/h] represents execution cost
per hour for a 2-nodes micro-cluster, 4 [0.8$/h] represents execution cost for a
4-nodes micro-cluster, etc.

The costs are estimated based on a machine type mentioned in [33] and
near equivalent configuration available for Amazon EC2 instances4. We used
the Linux machine on t3.2xlarge, 4 vCPUs, and 16 GB RAM, at a main cost
of $0.164/hour plus $0.036/hour as a buffer cost, which eventually results in
$0.2/hour per node.

Then, each cell under 2 [0.4$/h], 4 [0.8$/h], 8 [1.6$/h], and 10 [2.0$/h]
stores execution time in seconds of a given algorithm in a given micro-cluster
in a given stage. Thus, Table 1 includes 24 variants of execution times. The
execution times of each variant of each stage are taken from the already carried
out evaluation in [33].

Table 1. Execution time in seconds of each stage for self-joining the DBLP dataset on
different cluster sizes

#Nodes [exec cost/h]
Stage Algorithm 2 [0.4$/h] 4 [0.8$/h] 8 [1.6$/h] 10 [2.0$/h]
1 BTO 191.98 125.51 91.85 84.02

OPTO 175.39 115.36 94.82 92.80
2 BK 753.39 371.08 198.70 164.57

PK 682.51 330.47 178.88 145.01
3 BRJ 255.35 162.53 107.28 101.54

OPRJ 97.11 74.32 58.35 58.11

In order to evaluate the correctness of our MCKP-based cost model, we
mapped our problem on to the Linear Integer Programming Model. The cost
model is implemented in Java, which utilizes the lp solve5 library to generate the
optimized (i.e., minimum execution time with respect to the allocated budget)
combination of available machine configurations to execute each stage of our
running example. lp solve is a mixed integer linear programming (MILP) solver
based on the revised Simplex method [9] and the Branch-and-bound method [23]
for integers. The implementation of the cost model is accessible via our online
git repository6.

4 https://calculator.s3.amazonaws.com/index.html.
5 http://lpsolve.sourceforge.net/.
6 https://github.com/fawadali/MCKPCostModel.

https://calculator.s3.amazonaws.com/index.html
http://lpsolve.sourceforge.net/
https://github.com/fawadali/MCKPCostModel

Cost Model to Optimize UDFs in an ETL Workflow 451

The shaded cells in Table 1 represent execution costs of the selected algo-
rithms at each stage that are minimal (optimal) for a given maximum budget
of $1.6. Thus, for the first stage OPTO is suggested to be executed on 2 nodes,
for the second stage PK is selected to be executed on 4 nodes, and for the third
stage OPRJ is selected to be executed 2 nodes.

The blacked cells and the shaded one with value 97.11 represent execution
costs of the selected algorithms at each stage that are minimal (optimal) for a
given maximum budget of $4.0. That is, for the first stage BTO is suggested to
be executed on 8 nodes, for the second stage PK is selected to be executed on
10 nodes, and for the third stage OPRJ is selected to be executed on 2 nodes.

The results show that the cost model provides the best possible configura-
tion for a set of ETL activities to be executed in a cloud based pay-as-you-go
environment.

In the future, we will conduct experiments with different use cases in order
to fine-tune the MCKP algorithm.

5 Related Work

So far, two promising techniques for an ETL process optimization were pro-
posed, i.e.: task reordering and parallel processing. The first technique applies
reordering of tasks in order to produce a more efficient ETL process. In the
simplest case, called push down, the most selective tasks are moved towards the
beginning of an ETL process (towards data sources) to reduce a data volume as
soon as possible [19]. IBM extended push down to balance optimization, where
some tasks are moved towards the end of an ETL process and some are moved
towards the beginning [18,24].

In more advanced approaches, an ETL process is assigned an estimated exe-
cution cost [13], and next, by using reordering of steps, alternative processes are
produced with their estimated costs [20,28]. This technique uses the principles
of cost-based query optimization. As the reordering problem is NP-complete,
[22,28] propose some reordering heuristics. In [21] the reordering of operators
is based on their semantics, e.g., a highly selective operator would be placed
(re-ordered) at the beginning of a workflow, similarly as in the push down and
balanced optimization.

The second technique applies parallel processing to an ETL process. In the
simplest case (available in commercial ETL engines), uploading data into a data
warehouse is executed in parallel (e.g., the IBM Netezza nzload command, the
Oracle import command). In a more advanced approach [25], an ETL process
is partitioned into linear sub-processes. Next, data parallelization is applied to
each of the sub-processes. Finally, all flows are executed with multi-threading.

None of the aforementioned approaches support the optimization of ETL
processes with user-defined functions. The reordering of operators is based on the
semantics of the operators, which are well known and understood for traditional
operators. However, the semantics of UDFs are typically unknown. UFDs have
been handled by other approaches, which can be segregated into two classes, i.e.,

452 S. M. F. Ali and R. Wrembel

(1) that require manual annotation of UDFs, and (2) that perform code-analysis
on an UDF to explore the options for optimization.

[15,16] describe a framework for the optimization of data flows, where user
defined functions are treated as black boxes. The framework consists of the
Nephele execution engine and the PACT compiler to execute UDFs, based on
the PACT programming model [5] (PACT is a generalization of the MapReduce
framework [8]). The PACT implementation allows the flexibility to parallelize
tasks by giving parallel hints in the code. Such hints are later exploited by a
cost-based optimizer that generates parallel execution plans. The optimization
is based on: (1) re-ordering of UDFs in a workflow and (2) the execution of
UDFs in a parallel environment. To optimize UDFs, the optimization program
discovers the unknown or hidden algebraic properties of the UDFs, by means
of static code analysis. The discovered properties are then used to reorder the
UDFs in a workflow. A cost based optimizer (model) is used to compute all
the possible alternatives and valid re-orderings to generate an efficient execution
plan. A plan with a minimum estimated cost is selected and submitted for a
parallel execution.

In [10], the authors propose an inherently parallel UDF framework, called
SQL/MR, which enables the parallelization of UDFs in a massively-parallel
shared-nothing database. The proposed framework is based on the character-
istics of map and reduce functions in the MapReduce framework. That is, the
instances of the SQL/MR function will execute in parallel on each node in a
parallel database, just like the map and reduce tasks execute in parallel across
a cluster in MapReduce. To achieve parallelism, SQL/MR requires a definition
of the Row and Partition functions and corresponding execution models for the
SQL/MR function instances. The Row function is described as an equivalent to
a map function in MapReduce. Row functions perform row-level transformation
and processing. The execution model of the Row function allows independent
processing of each input row by exactly one instance of the SQL/MR function,
thus, allowing the execution engine to control parallelism. The Partition func-
tion is similar to the reduce function in MapReduce. Exactly one instance of
the SQL/MR functions is used to independently process each group of rows
defined by the PARTITION BY clause in a query. Independent processing of
each partition allows the execution engine to achieve parallelism at the level of a
partition. The dynamic cost-based re-optimizers are used to collect the statistics
at run-time and may change the order of UDFs to improve performance.

Another approach discussed in [12] is inspired by [10,16] and it uses anno-
tations in an UDF to generate an optimized query plan for relational database
operators and UDFs in complex data workflows. The aforementioned approaches
achieve optimization by means of rewriting execution plans either by applying
reordering of traditional operators in a workflow or by performing code analysis
on UDFs.

In [26] an extensible logical optimizer for UDF-heavy workflow (SOFA) is
discussed, which rewrites an execution plan based on automatically inferring the
semantics of a MapReduce style UDF (instead of manually annotating the UDF)

Cost Model to Optimize UDFs in an ETL Workflow 453

and a small set of rewrite rules. To infer the semantics, SOFA requires: (1) a set
of properties, which are either annotated by the developer, e.g., a cost function,
resource consumption, the number of input rows or the number of output rows
and (2) automatically detectable properties, e.g., parallelization function of an
operator (e.g., map and reduce), a schema information, and read/write behavior
at the attribute level. The paper introduced the so-called Operator Property
Graph to infer the properties of UDFs by modeling relationships between a new
UDF operator and (pre-defined) properties. Based on the identified properties,
SOFA is able to re-write an execution plan.

The approaches discussed above require from the developer to follow certain
code-based keywords or parallelism hints (e.g., PARTITION BY, ORDER BY)
to enable parallelism. These approaches do not consider an UDF as a black-
box and require parsing of an UDF code for parallel execution. Moreover, the
discussed approaches tend to utilize all the hardware resources to achieve paral-
lelism and do not cater whether the parallelism is required at the first place or
not, or does not take into consideration the required degree of parallelism.

In contrast, the approach proposed in this paper first assesses if the per-
formance of an UDF may increase by applying parallelization. If so, then, the
cost model proposes the optimal configuration by using simulation, recommen-
dation, and prediction algorithms for the UDF (or a set of UDFs within an ETL
workflow) to be executed in the distributed framework. The main advantage of
our approach is that it does not require code annotations, which let the ETL
developer not to be restricted to a framework or cost-model specific to a given
programming language. Instead, the developer may use any programming lan-
guage, supported by an ETL engine, to write UDFs, and the proposed cost model
will not be dependent on the language to generate the optimal configuration for
an UDF.

Finally, for learning a behavioural model of an UDF, apparently, a black-box
testing approach is promising. [31] overviews techniques for building models that
can be represented as state diagrams and that can be built based on experiments
run on a black-box software. The most recent state of the art in this field is pre-
sented in [34]. The authors review the approaches that build performance models
based on metrics such as execution time, memory usage, and wait times. The
authors provide numerous approaches based on: statistics, time series analysis,
data mining, and neural networks.

6 Conclusion

This paper is the continuation of our work [2–4], where we presented the
Extendible ETL Framework to allow the ETL developer to efficiently write
parallelizable UDFs by applying the parallelizable code templates (a.k.a Par-
allel Algorithmic Skeletons - PAS). The ETL developer may choose either the
Generic PAS to fill in the PAS with user-defined code or the Case-based PAS,
as a standard algorithmic code to be executed in a distributed framework.

In this paper, we presented a preliminary contribution towards a cost model
to determine the best possible configuration for an UDF generated either via

454 S. M. F. Ali and R. Wrembel

the Generic PAS or the Case-based PAS. In particular, this paper contributes:
(1) the cost model for optimizing execution of an UDF (as a black-box), (2)
the method for selecting a (sub-)optimal configuration of a parallel execution
environment for an UDF. The proposed method uses simulation, recommenda-
tion, and prediction algorithms to generate the best possible configuration for an
UDF generated by means of the Generic PAS. For the Case-based PAS, the cost
model uses Multiple Choice Knapsack Problem (MCKP) along with the recom-
mendation and prediction algorithms (if required) to generate a (sub-)optimal
configuration of a parallel run-time environment for an UDF.

In the next steps, we will conduct experiments with different use cases in
order to verify the applicability of the MCKP algorithm to our problem. Further-
more, we will develop a simulator, recommendation, and prediction algorithms
for the proposed cost model. Finally, we will incorporate the cost model into our
Extendible ETL Framework.

At this stage of our research, a still open issue is to discover the most adequate
model of an UDF. To resolve this issue, in the forthcoming future we will also
experiment on the techniques for building behavioural models for black boxes,
as mentioned in Sect. 5.

Some papers proposed methods for designing ETL processes at a concep-
tual level, e.g., [7,29]. Other unexplored fields of optimization include concep-
tual ETL design and transformations from a conceptual to physical design. The
latter, while generating implementations could consider some user preferences,
envisaged data characteristics, physical parameters of a run-time environment.

Acknowledgements. The work of Fawad Ali is partially supported by the Euro-
pean Commission through the Erasmus Mundus Joint Doctorate project Information
Technologies for Business Intelligence-Doctoral College (IT4BI-DC).

The work of Robert Wrembel is partially supported by: (1) the grant No.
2015/19/B/ST6/02637 of the National Science Center and (2) the grant of the Polish
National Agency for Academic Exchange, within the Bekker programme.

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

2. Ali, S.M.F.: Next-generation ETL framework to address the challenges posed by
Big Data. In: International Workshop Design, Optimization, Languages and Ana-
lytical Processing of Big Data (DOLAP) (2018)

3. Ali, S.M.F., Mey, J., Thiele, M.: Parallelizing user-defined functions in the ETL
workflow using orchestration style sheets. Int. J. Appl. Math. Comput. Sci.
(AMCS) 29, 69–79 (2019)

4. Ali, S.M.F., Wrembel, R.: From conceptual design to performance optimization of
ETL workflows: current state of research and open problems. VLDB J. 26, 1–25
(2017)

5. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.:
Nephele/PACTs: a programming model and execution framework for web-scale
analytical processing. In: ACM Symposium on Cloud Computing, pp. 119–130
(2010)

Cost Model to Optimize UDFs in an ETL Workflow 455

6. Borthakur, D.: The Hadoop distributed file system: Architecture and design.
Hadoop Project Website, vol. 11, p. 21 (2007)

7. Caruccio, L., Deufemia, V., Polese, G.: Visual data integration based on description
logic reasoning. In: International Database Engineering Applications Symposium,
pp. 19–28 (2014)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

9. Evans, J.P., Steuer, R.E.: A revised simplex method for linear multiple objective
programs. Math. Program. 5(1), 54–72 (1973)

10. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: a practical approach
to self-describing, polymorphic, and parallelizable user-defined functions. VLDB
Endowment 2(2), 1402–1413 (2009)

11. Gartner: Magic Quadrant for Data Integration Tools. https://www.gartner.com/
doc/3883264/magic-quadrant-data-integration-tools. Accessed 18 Mar 2019

12. Große, P., May, N., Lehner, W.: A study of partitioning and parallel UDF execu-
tion with the SAP HANA database. In: International Conference on Scientific and
Statistical Database Management, p. 36. ACM (2014)

13. Halasipuram, R., Deshpande, P.M., Padmanabhan, S.: Determining essential statis-
tics for cost based optimization of an ETL workflow. In: International Conference
on Extending Database Technology (EDBT), pp. 307–318 (2014)

14. Herodotou, H., et al.: Starfish: a self-tuning system for big data analytics. In:
Conference on Innovative Data Systems Research (CIDR), vol. 11, pp. 261–272
(2011)

15. Hueske, F., et al.: Peeking into the optimization of data flow programs with
MapReduce-style UDFs. In: International Conference on Data Engineering
(ICDE), pp. 1292–1295 (2013)

16. Hueske, F., et al.: Opening the black boxes in data flow optimization. VLDB
Endowment 5(11), 1256–1267 (2012)

17. Ibaraki, T., Hasegawa, T., Teranaka, K., Iwase, J.: The multiple choice knapsack
problem. J. Oper. Res. Soc. Japan 21(1), 59–93 (1978)

18. IBM: IBM InfoSphere DataStage Balanced Optimization. IBM Whitepaper.
Accessed 18 Mar 2019

19. Informatica: How to Achieve Flexible, Cost-effective Scalability and Perfor-
mance through Pushdown Processing. https://www.informatica.com/downloads/
pushdown wp 6650 web.pdf. Accessed 18 Mar 2019

20. Jovanovic, P., Romero, O., Simitsis, A., Abelló, A.: Incremental consolidation of
data-intensive multi-flows. IEEE Trans. Knowl. Data Eng. 28(5), 1203–1216 (2016)

21. Karagiannis, A., Vassiliadis, P., Simitsis, A.: Scheduling strategies for efficient ETL
execution. Inf. Syst. 38(6), 927–945 (2013)

22. Kumar, N., Kumar, P.S.: An efficient heuristic for logical optimization of ETL
workflows. In: VLDB Workshop on Enabling Real-Time Business Intelligence, pp.
68–83 (2010)

23. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4),
699–719 (1966)

24. Lella, R.: Optimizing BDFS jobs using InfoSphere DataStage Balanced Opti-
mization. https://www.ibm.com/developerworks/data/library/techarticle/dm-
1402optimizebdfs/index.html. Accessed 18 Mar 2019

25. Liu, X., Iftikhar, N.: An ETL optimization framework using partitioning and par-
allelization. In: ACM Symposium on Applied Computing, pp. 1015–1022 (2015)

26. Rheinländer, A., Heise, A., Hueske, F., Leser, U., Naumann, F.: SOFA: an exten-
sible logical optimizer for UDF-heavy data flows. Inf. Syst. 52, 96–125 (2015)

https://www.gartner.com/doc/3883264/magic-quadrant-data-integration-tools
https://www.gartner.com/doc/3883264/magic-quadrant-data-integration-tools
https://www.informatica.com/downloads/pushdown_wp_6650_web.pdf
https://www.informatica.com/downloads/pushdown_wp_6650_web.pdf
https://www.ibm.com/developerworks/data/library/techarticle/dm-1402optimizebdfs/index.html
https://www.ibm.com/developerworks/data/library/techarticle/dm-1402optimizebdfs/index.html

456 S. M. F. Ali and R. Wrembel

27. Russom, P.: Data lakes: purposes, practices, patterns, and platforms. TDWI white
paper (2017)

28. Simitsis, A., Vassiliadis, P., Sellis, T.K.: State-space optimization of ETL work-
flows. IEEE Trans. Knowl. Data Eng. 17(10), 1404–1419 (2005)

29. Skoutas, D., Simitsis, A., Sellis, T.: Ontology-driven conceptual design of ETL
processes using graph transformations. J. Data Semant. 13, 120–146 (2009)

30. Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling: the challenging
journey from the wild to the lake. In: Conference on Innovative Data Systems
Research (CIDR) (2015)

31. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)
32. Vaisman, A.A., Zimányi, E.: Data Warehouse Systems - Design and Implementa-

tion. Data-Centric Systems and Applications. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54655-6

33. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using MapRe-
duce. In: ACM SIGMOD International Conference on Management of Data (2010)

34. Witt, C., Bux, M., Gusew, W., Leser, U.: Predictive performance modeling for
distributed batch processing using black box monitoring and machine learning.
Inf. Syst. 82, 34–52 (2019)

35. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1007/978-3-642-54655-6

Author Index

Aklouche, Billel 105
Alattar, Munqath 33
Ali, Syed Muhammad Fawad 441
Al-Mallah, Mouaz 53
Amann, Bernd 302
Amaral, Glenda 215
Andritsos, Periklis 235, 251
Antol, Matej 337
Auge, Tanja 357
Awwad, Tarek 285

Baazizi, Mohamed-Amine 302
Bennani, Nadia 285
Bernard, Gaël 235, 251
Bielikova, Maria 186
Böhm, Klemens 3
Bounhas, Ibrahim 105
Broneske, David 69
Brunie, Lionel 285

Chen, Xiao 69

Darmon, Patrice 409
Dohnal, Vlastislav 337
dos Santos Mello, Ronaldo 123
Dulai, Tibor 89
Durand, Gabriel Campero 69

ElShawi, Radwa 53
Endres, Markus 321
Evangelidis, Georgios 20

Fouché, Edouard 3

Guerra, Francesco 169
Guizzardi, Giancarlo 215

Hannou, Fatma-Zohra 302
Hardock, Sergey 139
Hassan, Ali 409
Hegner, Stephen J. 390
Heuer, Andreas 151, 357
Hlavac, Patrik 186

Kastner, Johannes 321
Koch, Andreas 139

Kosch, Harald 285
Kozierkiewicz, Adrianna 201

Marcel, Patrick 425
Marten, Dennis 151
Meyer, Holger 151
Mitschang, Bernhard 373

Nagy, Zsuzsanna 89

Ougiaroglou, Stefanos 20

Paganelli, Matteo 169
Peralta, Veronika 425
Petrov, Ilia 139
Pietranik, Marcin 201
Pohl, Constantin 267
Ponos, Pavlos 20
Popovic, Daniel 3

Rehn-Sonigo, Veronika 285
Riegger, Christian 139

Saake, Gunter 69
Sakr, Sherif 53
Sali, Attila 33
Santana, Luiz Henrique Zambom 123
Sattler, Kai-Uwe 267
Sherif, Youssef 53
Simko, Jakub 186
Slimani, Yahya 105
Sottovia, Paolo 169
Stach, Christoph 373

Vassiliadis, Panos 425
Velegrakis, Yannis 169
Vinçon, Tobias 139

Werner-Stark, Agnes 89
Wrembel, Robert 441

Xu, Yinlong 69

Zoun, Roman 69

	Preface
	Organization
	Abstracts of Invited Talks
	Location-in-Time Data: Compression vs. Augmentation
	Evolution of Data Management Systems: State of the Art and Open Issues
	Semantic Relational Learning
	Contents
	Data Mining
	Unsupervised Artificial Neural Networks for Outlier Detection in High-Dimensional Data
	1 Introduction
	2 Related Work
	2.1 High-Dimensional Outlier Detection
	2.2 ANNs for Outlier Detection

	3 ANN-Based Approaches
	3.1 Requirements and General Idea
	3.2 Autoencoder
	3.3 Self-Organising Maps
	3.4 Restricted Boltzmann Machine

	4 Evaluation
	4.1 Parameter Selection
	4.2 Outlier Detection Quality Evaluation
	4.3 Runtime Evaluation

	5 Conclusions
	References

	Improving Data Reduction by Merging Prototypes
	1 Introduction
	2 Background Knowledge
	3 The dRHC and dRHC2 Algorithms
	4 The Proposed Algorithms
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusions and Future Work
	References

	Keys in Relational Databases with Nulls and Bounded Domains
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Strongly Possible Keys
	4.1 Implication Problem
	4.2 Armstrong Tables
	4.3 Weak Similarity Graph

	5 Matroids, Matchings and Strongly Possible Keys
	5.1 Necessary Conditions

	6 Strongly Possible Key Discovery
	7 Conclusion and Future Directions
	A Appendix
	References

	Machine Learning
	ILIME: Local and Global Interpretable Model-Agnostic Explainer of Black-Box Decision
	1 Introduction
	2 Background
	2.1 Influence Functions
	2.2 LIME

	3 Local Explainer ILIME
	4 Global Attribution Using ILIME
	5 Experimental Results
	5.1 How Faithful ILIME to the Model Being Explained?
	5.2 Can We Trust the Explanations of ILIME?
	5.3 Can We Trust the Whole Model?

	6 Conclusion and Future Work
	References

	Heterogeneous Committee-Based Active Learning for Entity Resolution (HeALER)
	1 Introduction
	2 Heterogeneous Committee-Based Active Learning for Entity Resolution
	2.1 The Global Workflow
	2.2 Initial Training Dataset Generation
	2.3 Heterogeneous Committee
	2.4 Training Data Candidate Selection

	3 Evaluation
	3.1 Experimental Setting
	3.2 Initial Training Dataset Evaluation
	3.3 Heterogeneous-Committee Evaluation
	3.4 Overall Evaluation and Comparison

	4 Related Work
	5 Conclusions and Future Work
	References

	Document and Text Databases
	Using Process Mining in Real-Time to Reduce the Number of Faulty Products
	Abstract
	1 Introduction
	1.1 Real-Time Data Processing
	1.2 Process Mining
	1.3 Real-Time Process Mining
	1.4 The Content of This Study

	2 Background
	2.1 The Manufacturing Process
	2.2 The Log Files
	2.3 The Creation Process of the Main Log File
	2.4 Monitoring Software

	3 Design and Development of the Test Environment
	3.1 Simulator Software
	3.2 Analyzer Software

	4 The New Method, the RTSDA
	4.1 Criteria for Applying the Method
	4.2 Data Visualization Considerations
	4.3 Data Storing
	4.4 Data Processing

	5 Application of RTSDA to Real Data
	5.1 Evaluation of the Method

	6 Conclusion and Future Work
	Acknowledgment
	References

	Pseudo-Relevance Feedback Based on Locally-Built Co-occurrence Graphs
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Term Co-occurrence Graphs
	3.2 Local Co-occurrence Graphs-Based PRF

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion

	5 Conclusion and Future Work
	References

	Big Data
	Workload-Awareness in a NoSQL-Based Triplestore
	1 Introduction
	2 Background and Related Work
	3 WA-RDF
	3.1 Data Fragmentation
	3.2 Data Querying

	4 Experimental Evaluation
	5 Conclusion
	References

	nativeNDP: Processing Big Data Analytics on Native Storage Nodes
	1 Introduction
	2 Related Work
	3 nativeNDP Framework
	3.1 System Stack
	3.2 Interfaces and Abstractions

	4 Experimental Evaluation
	4.1 Datasets and Operations
	4.2 Experimental Setup
	4.3 Experiment 1 – Baseline
	4.4 Experiment 2 – Pushdown Cluster
	4.5 Experiment 3 – Pushdown NDP Device

	5 Conclusion
	References

	Calculating Fourier Transforms in SQL
	1 Introduction
	2 State of the Art
	3 Fourier Transform in SQL
	3.1 Theory of Fourier Transforms
	3.2 Translation into SQL

	4 Experimental Evaluation
	4.1 Calculating Fourier Transforms
	4.2 Short-Time Fourier Transform

	5 Conclusion
	References

	Novel Applications
	Finding Synonymous Attributes in Evolving Wikipedia Infoboxes
	1 Introduction
	2 Problem Statement
	3 The Approach
	3.1 Positive and Negative Evidence for Synonymy
	3.2 Holistic Approach for Synonym Discovery

	4 Experimental Evaluation
	4.1 Dataset Description
	4.2 Qualitative Evaluation of the Effectiveness
	4.3 Quantitative Evaluation of the Effectiveness
	4.4 Case Study

	5 Related Work
	6 Conclusion
	References

	Web-Navigation Skill Assessment Through Eye-Tracking Data
	1 Introduction
	2 Related Work
	2.1 Web Navigation Definition
	2.2 Web Navigation as an Ability
	2.3 Web Navigation as a Layout
	2.4 Web Navigation as a Process
	2.5 Web Literacy Estimating

	3 Experiment: Influence of Web-Navigation Skill on User Behavior
	3.1 Experiment Goals
	3.2 Questionnaire
	3.3 Apparatus
	3.4 Session Description
	3.5 Participants
	3.6 Data
	3.7 Normalization
	3.8 Results

	4 Conclusions
	References

	Ontologies and Knowledge Management
	Updating Ontology Alignment on the Concept Level Based on Ontology Evolution
	1 Introduction
	2 Related Works
	3 Basic Notions
	4 Updating Ontology Alignment on a Concept Level
	5 Experimental Verification
	6 Future Works and Summary
	References

	On the Application of Ontological Patterns for Conceptual Modeling in Multidimensional Models
	1 Introduction
	2 Multidimensional Modeling and Ontology Patterns
	2.1 Multidimensional Modeling
	2.2 Ontological Patterns as Tools for Conceptual Modeling

	3 Piecing It All Together
	3.1 Applying to Dimensions
	3.2 Applying to Facts

	4 Case Illustration on Education: Student Attendance
	5 Conclusions
	References

	Process Mining and Stream Processing
	Accurate and Transparent Path Prediction Using Process Mining
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 LaFM: Loop-Aware Footprint Matrix
	4.1 LaFM Data Structure
	4.2 Training Phase: Building LaFM
	4.3 Prediction Phase: Using LaFM

	5 Evaluation Procedure
	6 LaFM: Evaluation
	7 c-LaFM: Clustered Loop-Aware Footprint Matrix
	8 c-LaFM: Evaluation
	9 Conclusion
	References

	Contextual and Behavioral Customer Journey Discovery Using a Genetic Approach
	1 Introduction
	2 Customer Journey Discovery
	3 Related Work
	4 A Genetic Algorithm for Customer Journey Discovery
	4.1 Preprocessing
	4.2 Initial Population
	4.3 Assignment of Actual Journeys
	4.4 CJM Evaluation Criteria
	4.5 Stopping Criterion
	4.6 Genetic Operations

	5 Evaluation Using Synthetic Datasets
	5.1 Datasets
	5.2 Metrics
	5.3 Settings
	5.4 Results

	6 Experiments Using Real Datasets
	7 Conclusion
	References

	Adaptive Partitioning and Order-Preserved Merging of Data Streams
	1 Introduction
	2 Related Work
	2.1 Determining the Number of Partitions
	2.2 State Handling

	3 Data Stream Processing
	3.1 Linear Road Streaming Benchmark
	3.2 Adaptive Partitioning
	3.3 Order-Preserving Merge

	4 Experimental Analysis
	4.1 Micro-benchmarks
	4.2 Linear Road

	5 Conclusion
	References

	Data Quality
	CrowdED and CREX: Towards Easy Crowdsourcing Quality Control Evaluation
	1 Introduction
	2 Crowdsourcing Quality Control
	3 Specifications
	4 State-of-the-Art of Crowdsourcing Evaluation Datasets
	5 CrowdED: Crowdsourcing Evaluation Dataset
	5.1 Raw Data Preparation
	5.2 Data Collection
	5.3 Data Structure and Statistics

	6 CREX: CReate, Enrich, eXtend
	6.1 Data Preparation Component (CREX-D)
	6.2 Campaign Management Component (CREX-C)

	7 CrowdED and CREX Re-usability
	7.1 Usability in Quality Control Evaluation
	7.2 Compliance with the FAIR Principles

	8 Conclusion
	References

	Query-Oriented Answer Imputation for Aggregate Queries
	1 Introduction
	2 Imputation Model
	3 Related Work
	4 Query Imputation Process
	5 Experiments
	6 Conclusion
	References

	Optimization
	You Have the Choice: The Borda Voting Rule for Clustering Recommendations*-14pt
	1 Introduction
	2 Related Work
	3 Background
	3.1 The k-means and k-means++ Clustering Algorithms
	3.2 Similarity Measures

	4 Borda Social Choice Clustering
	4.1 The Borda Social Choice Voting Rule
	4.2 The Borda Clustering Algorithm
	4.3 Convergence
	4.4 Complexity

	5 Synthetic Experiments
	5.1 Benchmark Settings
	5.2 Evaluation

	6 Quality Experiments
	6.1 Settings
	6.2 Lessons Learned

	7 Conclusion and Outlook
	References

	BM-index: Balanced Metric Space Index Based on Weighted Voronoi Partitioning*-10pt
	1 Introduction
	1.1 Problem Definition and Contributions

	2 Related Work
	2.1 Backgrounds and Indexing of Pivot Permutations
	2.2 Searching of Pivot Permutations

	3 Balanced Indexing with Weighted Voronoi Partitioning
	3.1 Weighted Voronoi Partitioning in Metric Space
	3.2 Setting Weights
	3.3 Balancing Cells
	3.4 Consistency of One Step in Weight Modification
	3.5 Convergence of the Balancing Algorithm
	3.6 Indexing with Recursive Weighted Voronoi Partitioning

	4 Efficiency Evaluation
	4.1 Setup
	4.2 Querying Performance
	4.3 Construction Costs
	4.4 Overall Efficiency of the Proposed Algorithm

	5 Conclusions and Future Work
	References

	Theoretical Foundation and New Requirements
	ProSA—Using the CHASE for Provenance Management
	1 Introduction
	2 Basic Notions and State of the Art
	2.1 The CHASE Algorithm
	2.2 Data Provenance

	3 Invertible Query Evaluation
	3.1 Research Data Management
	3.2 CHASE&BACKCHASE
	3.3 Provenance Using CHASE

	4 Many Application Areas – One Tool: ChaTEAU
	4.1 Theoretical Foundation of ChaTEAU
	4.2 ChaTEAU

	5 ProSA Using ChaTEAU
	6 Other Applications of the CHASE
	7 Conclusion and Future Work
	References

	ECHOES: A Fail-Safe, Conflict Handling, and Scalable Data Management Mechanism for the Internet of Things
	1 Introduction
	2 Application Case
	3 Requirement Specification
	4 Related Work
	5 The ECHOES Protocol
	6 Implementation of ECHOES
	7 Evaluation
	8 Conclusion
	References

	Transaction Isolation in Mixed-Level and Mixed-Scope Settings
	1 Introduction
	2 Transactions, Schedules, and Serialization
	3 Concurrency-Based Isolation Levels
	4 Multiscope Serializable Isolation
	5 Conclusions and Further Directions
	References

	Data Warehouses
	Data Reduction in Multifunction OLAP
	1 Introduction
	2 Related Work
	2.1 Visualization Methods
	2.2 Data Reduction Methods

	3 Preliminaries
	3.1 Multifunction Multidimensional Conceptual Data Model
	3.2 Case Study

	4 Data Reduction Method
	4.1 Study the Current OLAP Query
	4.2 Find Possible Rollup Operations
	4.3 Calculate the Data Size for All Possible Rollups
	4.4 Choose a Rollup Operation Based on a Selection Strategy
	4.5 Realize the Chosen Rollup

	5 Implementation
	6 Conclusion
	References

	A Framework for Learning Cell Interestingness from Cube Explorations
	1 Introduction
	2 Related Work
	3 Interestingness Aspects for Cube Exploration
	3.1 Interestingness Aspects
	3.2 Definition of Interestingness

	4 Detecting Interesting Cells in an Exploration
	4.1 Relevance
	4.2 Novelty
	4.3 Surprise
	4.4 Peculiarity

	5 Experiments
	5.1 Experimental Setup
	5.2 Lessons Learned

	6 Conclusions
	References

	Towards a Cost Model to Optimize User-Defined Functions in an ETL Workflow Based on User-Defined Performance Metrics
	1 Introduction
	2 Running Example
	2.1 Overview of the Use Case
	2.2 Use Case for Running Example

	3 Motivation
	4 Proposed Cost Model
	4.1 Stage 1 - Feasibility
	4.2 Stage 2 - Degree of Parallelism
	4.3 Stage 3 - Optimal Code Generation
	4.4 Preliminary Results

	5 Related Work
	6 Conclusion
	References

	Author Index

