Chapter 5 ®
Case Study: DCT with Aurora e

5.1 The Need for Adaptability and Transparency

Figure 5.1a shows the usual way of finding the best number of threads to run a
parallel application [68, 70, 71]. First, the source code is compiled and executed
n times with a different number of threads, where n is the number of available
cores in the processor microarchitecture. In this phase, one also has to consider
that each application may contain p parallel regions, in which each region can be
better executed with a different number of threads. Therefore, the search space
corresponds to the execution of n” combinations of number of threads for each
application, where p is greater or equal to 1. After the offline training period, the
best configuration is selected, and the next executions will be performed with the
configuration found in this step.

In order to understand the huge design space exploration concerning the selection
of the ideal number of threads to run a parallel application, let us consider an
application with 5 parallel regions running on a 32 multicore processor. In such
a case, there will be 32° possible combinations, which results in 33,554,432
executions before selecting the ideal configuration. Supposing that each execution
would spend 1 min (60 s), it would be necessary approximately 65 days to find the
best configuration. However, if there is any change in the application behavior (e.g.,
input set size) or the execution environment, the executions must be performed
again.

Therefore, Aurora was developed to cope with the challenge of selecting the best
number of threads to execute each parallel region of an OpenMP application [73].
It automatically finds, at runtime and according to a given metric defined a priori
by the user, the ideal number of threads for each parallel region of any OpenMP
application. Moreover, it can also readapt according to a change in the behavior
of a particular parallel region during program execution. Because of its dynamic
adaptability, Aurora deals with the intrinsic characteristics of the application as
well as the microarchitecture on which it will execute; it also takes into account

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019 55
A. Francisco Lorenzon, A. C. S. Beck Filho, Parallel Computing Hits the Power Wall,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-28719-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28719-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-28719-1_5

56 5 Case Study: DCT with Aurora

Fig. 5.1 Adaptation of |
OpenMP applications. (a)
Brute force. (b) Aurora {}

OpenMP Application |

| Compilation |

N executions with
different number of
threads

<

Select the ideal

configuration @
<~

Execution with the ideal
configuration

OpenMP Application

Execution with TLP
adaptation

(a) (b)

the current input set and application changes at runtime, resulting in significant
performance and energy improvements.

Aurora was built on top of the original OpenMP library and is completely trans-
parent to both designer and end user. Given an OpenMP application binary, Aurora
runs on it without any code changes. Therefore, existing OpenMP applications do
not need to be annotated, recompiled, or pass through any code transformation.
Such transparency is achieved by redirecting the calls originally targeted for the
dynamically linked OpenMP library to Aurora. This retargeting is configured by
simply setting an environment variable in the Operating System.

5.2 Aurora: Seamless Optimization of OpenMP Applications

5.2.1 Integration to OpenMP

As already described in Chap.2.1.2, parallelism in OpenMP is exploited through
the insertion of directives in the sequential code that inform the compiler how and
which parts of the application should be executed in parallel [22]. OpenMP provides
three ways for exploiting parallelism: parallel loops, sections, and tasks. Parallel
sections and tasks are only used in very particular cases: when the programmer must
distribute the workload over the threads in a similar way as PThreads, and when the
application uses recursion (i.e., sort algorithms), respectively. On the other hand,
parallel loops are used to parallelize applications that work on multidimensional
data structures (i.e., array, grid, etc.), so the loop iterations (for) can be split into
multithread executions. Therefore, parallel loops are by far the most used approach

5.2 Aurora: Seamless Optimization of OpenMP Applications 57

#include <stdio.h>
#include <omp.h>

void main() { ! initialize env () |
for (int i=0; i<N; i++) { gomp parallel start()
#pragma omp parallel gomp_resolve num threads ()
{
#pragma omp for— | | gomp loop init () |

for (int 3=0; j<M; J++)
//parallel loop
} | gomp_parallel end() |

} I team destructor () |

Fig. 5.2 OpenMP execution environment with the respective libgomp functions

(all the aforementioned benchmark sets are implemented in this way). For now,
Aurora works to optimize parallel loops and does not influence in any way other
OpenMP applications that are parallelized using sections or tasks.

All functionalities provided by OpenMP are implemented into the libgomp, a
GNU Offloading and Multi-Processing Runtime Library. This library is dynamically
linked to applications that use OpenMP, so any modifications in its code are
completely transparent to user applications. Aurora was incorporated into this
library. In order to better understand how Aurora works, let us first consider Fig. 5.2,
which illustrates the regular way for parallelizing an iterative application with
parallel loops [22] and the respective main functions implemented by libgomp.
When the program starts executing, the initialize_env() function is called, which
is responsible for initializing all the environment variables used by OpenMP during
the application execution. When the program reaches the directive #pragma omp
parallel (used to indicate a parallel region), functions to create and define the
number of threads (gomp_resolve_num_threads()) are called. Within the parallel
region, the directive #pragma omp for indicates the loop that must be parallelized.
At the end of the parallel region, the function gomp_parallel_end() joins the threads
and finalizes the parallel region environment. Finally, when the application ends,
team_destructor() concludes the entire OpenMP environment.

Aurora functionalities were split into four functions (discussed in details
next). They were incorporated into the libgomp functions previously mentioned.
Algorithm 1 depicts the modifications done in the source code of each function
in order to support Aurora functions. /ibgomp also has another function called
gomp_loop_init(), which was not modified as its job is to distribute the workload
between the already defined threads.

auroralnitEnv() is responsible for recognizing the Aurora optimization tar-
get defined by the environment variable (OMP_AURORA) and for initializing
the necessary data structures, libraries, and variables used to control the search

58 5 Case Study: DCT with Aurora

Algorithm 1 OpenMP functions that were modified to integrate Aurora
optimization
1: function INITIALIZE_ENV(void)

2: Initialization of OpenMP environment (variables, CPU affinity, wait policy, etc.)
3: if OMP_AURORA isdefined then
4: aurora_metric < get the value defined by the user in OMP_AURORA
5: aurora_start_search < get the value defined by the user in AURORA_START
6: auroralnitEnv(aurora_metric, aurora_start_search)
7: end if
8: end function
9: function GOMP_PARALLEL_START(x fn, xdata, num_threads)
10: ptrToRegion < gets pointer to fnn address region
11: if Aurora is Enabled then
12: num_threads < auroraResolveNumThreads(ptrToRegion)
13: else
14: num_threads <— gomp_resolve_num_threads(num_threads, 0)
15: end if
16: gomp_team_start(fin, data, num_threads, 0, gomp_new_team(num_threads))

17: end function

18: function GOMP_PARALLEL_END(void)
19: if OMP_AURORA isdefined then

20: auroraEndParallelRegion();
21: end if
22: finalize parallel region environment

23: gomp_team_end()
24: end function

25: function TEAM_DESTRUCTOR(void)

26: if OMP_AURORA isdefined then

27: auroradestructEnv();

28: end if

29: pthread_key_delete(gomp_thread_destructor)
30: end function

algorithm (described in Chap.5.2.2). The pseudocode of this function can be
seen in Algorithm 2. auroralnitEny is called from the original initialize_env()
only if Aurora optimization is enabled, as presented in lines 3—7 in Algorithm 1.
If OMP_AURORA is not defined, the OpenMP execution follows its standard
behavior.

auroraResolveNumThreads() sets the number of threads that execute each
parallel region based on the current state of the search algorithm. Also, it initializes
the counters for collecting data from the execution environment of the current
parallel region. Algorithm 3 depicts the pseudocode of this function: if the parallel
region is a new region, the search algorithm will start the search from the initial
state (S0) and with the number of threads defined either by the environment variable
AURORA_START or by 2 that is the standard value used by Aurora. Also, if the
search algorithm is in the END state, the best number of threads (bnt) found to

5.2 Aurora: Seamless Optimization of OpenMP Applications 59

Algorithm 2 Initialization of Aurora environment

1: function AURORAINITENV(metric, startSearch)

2 numCores < get the total number of cores through sysconf

3 threadStartSearch < get the number of threads defined to start the search
4 Initialize hardware counters to get the parallel region behavior

S: for i in max Number Of ParallelRegions do

6 Initialize the variables used to monitor/control the parallel region i

7 i.e., startSearch, metric, actualstate

8 end for

9: end function

execute a parallel region is returned. Otherwise, the actual number of threads (ant) is
returned. auroraResolveNumThreads is called by the gomp_parallel_start()' when
Aurora is active, replacing the original gomp_resolve_num_threads() function, as
depicted in Algorithm 1.

Algorithm 3 Setting up the number of threads

1: function AURORARESOLVENUMTHREADS(ptrToRegion)
2 idR < get the id of the parallel region from ptrToRegion
3 if idR is anewRegion then

4: auroraKernel[idR].state < SO

5: end if

6 switch auroraKernel[idR].state do

7 start monitoring the parallel region behavior

8

case END
9: return auroraKernel[idR].bnt
10: case Default
11: return auroraKernel[idR].ant

12: end function

auroraEndParallelRegion() is executed after the parallel region to get its
execution time, energy, or EDP, depending on the optimization metric defined by
the user. Execution time is extracted by the omp_get_wtime() function, provided
by OpenMP, while energy is obtained directly from the hardware counters present
in modern processors. In the case of Intel processors, the running average power
limit (RAPL) library is used to get energy and power consumption of CPU-level
components [40], while the APM library is used for AMD processors [39]. Such
functions and libraries were incorporated to Aurora, being totally transparent to the
user. That is, there is no need to make any modifications in the Operating System
(package installation, kernel recompilation, etc.) to use them.

L\GOMP_parallel_start is also named as GOMP_parallel.

60 5 Case Study: DCT with Aurora

Using either one of the objectives of execution time, energy, or EDP, auroraEnd-
ParallelRegion() performs one step of the search algorithm (which is explained
in the next subsection) and, according to this algorithm, it defines the number of
threads that will be used for the execution of this parallel region in the next iteration.
auroraEndParallelRegion() is implemented inside gomp_parallel_end() function,
and it is called when Aurora is active, as depicted in Algorithm 1.

auroraDestructEnv() concludes and destroys Aurora environment at the end of
application execution, when Aurora is active (Algorithm 1). It was implemented
inside team_destructor() OpenMP function.

To use Aurora, the user simply has to replace the original OpenMP libgomp with
Aurora’s libgomp. This new library includes all original OpenMP functionalities
plus the new functions of Aurora. When the environment variable OMP_AURORA
is set in the Linux Operating System, the thread management system of Aurora
is used instead of the original OpenMP functions. This environment variable
can be configured to the following values (and, therefore, optimization metrics):
performance, energy, or EDP. If the variable is not set, Aurora will not influence
the execution of that OpenMP application (i.e., the application executes with the
original OpenMP functions). In this way, any existing binary code can benefit from
Aurora without any modifications or need for recompilation.

5.2.2 Search Algorithm

The heuristic used by Aurora is divided into two phases. The first one investigates
the scalability of the parallel region and reduces the size of the space exploration,
exponentially increasing the number of threads (i.e., 2, 4, 8, 16, ...) while there are
potential improvements (states Initial, Doubling, and Exponential in Algorithm 4,
Fig. 5.3, and Table 5.1). The second phase performs a hill-climbing based algorithm
in the interval of threads defined in the first phase (states Exponential, Search, and
Lateral). Intuitively, finding the optimal number of threads to execute any parallel
region is a convex optimization problem. In this specific problem, it means that
there will be only one specific number of thread that delivers the best result for a
given metric and parallel region. Hill-climbing algorithms are very suitable for such
problems and are also known for having low complexity and being fast, which is
essential to reduce the technique overhead (since it is executed at runtime). Other
authors have already shown that when hill-climbing is used along with another
approach to guide the search, in most cases such algorithms will reach a near-
ideal solution, escaping from the local minima and plateaus [52, 116]. As the search
algorithm implemented by Aurora learns towards the best number of threads during
application execution, all the computation done in the search phase is not wasted
(i.e., it is used by the application), reducing the overhead of Aurora.

5.2 Aurora: Seamless Optimization of OpenMP Applications 61

Algorithm 4 Search algorithm implemented by Aurora

1: function SEARCHALGORITHM()

2 if state '= END then

3 metricMsmt < get time, energy, or EDP according to the target metric
4: switch state do

5: case Initial:

6: lastNT < currentNT <« threadStartSearch;

7 state <— Doubling;

8 case Doubling:

9: bestMetricMsmt < metricMsmt;

10: bestNT < currentNT;

11: currentNT < currentNT x 2;

12: state < Exponential;

13: case Exponential:

14: step < LHZNT ;

15: if metricMsmt < bestMetricMsmt then
16: bestMetricMsmt < metricMsmt;
17: bestNT <« currentNT;

18: if currentNT x 2 < numCores then
19: It < currentNT;

20: currentNT < bestNT x 2;

21: else

22: currentNT -= step;

23: state < Search;

24 end if

25: else

26: if bestNT == MmGores then

27: currentNT -= step;

28: else

29: currentNT += step;

30: end if

31: state < Search;

32: end if

33: case Search:

34: if metricMsmt < bestMetricMsmt then
35: bestNT < currentNT;

36: bestMetricMsmt < metricMsmt;
37: end if

38: step < ‘”#;

39: currentNT += step;

40: if step == 1 then

41: state < Lateral;

42: end if

43: case Lateral:

44 if metricMsmt < bestMetricMsmt then
45: bestNT < currentNT;

46: end if

47: Performs lateral movement to avoid minimum locals
48: state < END;

49: else

50: if workloadVariation == true then

51: run Aurora search algorithm again

52: end if

53: end if

54: end function

Basically, the algorithm works as follows (Algorithm 4): the search starts by the
Initial state (line 5), where the initial number of threads (threadStartSearch) and
the current number of threads (currentNT) are defined. Then, the parallel region is
executed with the initial number of threads (e.g., 2 threads) and the state changes to

62 5 Case Study: DCT with Aurora

Expo-
nential

Fig. 5.3 States and transitions of the search algorithm

Table 5.1 States of the search algorithm

State Operation
Initial Execution with the initial number of threads
Doubling Double the number of threads

Exponential | Compare the results achieved in SO and S1, and exponentially increases the
number of threads while either there are improvements or when the max
number of hardware threads is met. Then, state changes to Search

Search Search the ideal number of threads in the interval of candidates defined in S2.
When there are only two candidates, state changes to Lateral

Lateral Define the best number of threads and performs lateral movement

END Aurora begins to monitor the behavior of the parallel region

Doubling. In this state (line 8), the best result so far (bestMetricMsmt) is updated
with the result obtained by the execution with the number of threads defined in the
Initial state, the number of threads is doubled, and state changes to Exponential.
In this state (line 13), the measured metric (time, energy, or EDP) is evaluated,
and the number of threads continues to double while the measured metric keeps
improving and the maximum number of hardware threads available is not reached
(lines 15-32). Then, the state changes to Search. Once in there (line 33), Aurora
knows the interval of potential candidates for the ideal number of threads, which is
in the range between the last number of threads executed and the best number of
threads found so far and starts the second phase.

To better understand the second phase, let us consider that the interval of potential
candidates lies in the range of 8—16 threads. Then, the algorithm searches for the best
number of threads in this range. It will start executing with 12 threads (the average
amount between 8 and 16) and then compares to the best result so far to decide the
next range (which will be between 8 and 12 or 12 and 16). This process is repeated
until the best number of threads is found (state Search). After that, state Lateral
starts, in which lateral movement (line 47) is performed to avoid minimal locals
and plateaus. This movement is performed by testing a neighboring configuration
(number of threads) at another point in the search space that has not yet been
tested. When Aurora converges to the best number of threads for a particular parallel
region, it begins to monitor the behavior of such region. If there is any change in
the workload, which in this work a variation of 30% was considered, the search
algorithm starts its execution again.

5.3 Evaluation of Aurora 63

5.3 Evaluation of Aurora

5.3.1 Methodology

Fifteen applications written in C/C+-4- and parallelized with OpenMP from assorted
benchmarks suites were chosen according to the scalability issues discussed in
Sect. 1.2:

¢ Seven kernels from the NAS Parallel Benchmark [4]: block tri-diagonal solver
(BT), conjugate gradient (CG), discrete 3D fast Fourier transform (FT), lower—
upper Gauss—Seidel solver (LU), multigrid on a sequence of meshes (MG),
scalar penta-diagonal solver (SP), and unstructured adaptive mesh (UA). As
the original version of NAS is written in FORTRAN, the OpenMP-C version
developed in [103] is considered.

* Two applications from the Rodinia Benchmark Suite [23]: hotspot (HS) which
iteratively solves a series of differential equations and streamcluster (SC), a
dense linear algebra algorithm for data mining.

* Six applications from different domains: n-body (NB)—computes a simulation
of a dynamical system of particles [10]; fast Fourier transform (FFT)—calculates
the discrete Fourier transform of a given sequence [89]; STREAM (ST)—
measures sustainable memory bandwidth [78]; Jacobi (JA) method iteration—
computes the solutions of a diagonally dominant system of linear equations
[94]. Poisson (PO)—computes an approximate solution to the Poisson equation
in a rectangular region [94]; and the high-performance conjugate gradient
benchmark (HPCG), a stand-alone code that measures the performance of basic
operations [32].

Two different input sets for each benchmark were considered: small and medium.
Table 5.2 depicts the Pearson correlation between each scalability issue (discussed
in Chap.2) and the application. As can be observed, the chosen applications do
not scale for different reasons, according to Sect. 1.2. All the data used for the
scalability analysis was obtained directly from hardware using Intel Performance
Counter Monitor (PCM) [124], Intel Parallel Studio, and Performance Application
Programming Interface (PAPI) [15].

As one can note in Fig. 5.4, the chosen benchmarks also cover a wide range of
different TLP behaviors. The TLP was measured as defined by the authors in [12]:
the average amount of concurrency exhibited by the program during its execution
when at least one core is active, and it is expressed in Equation 5.1. ¢; is the fraction
of time that i cores are concurrently running different threads, n is the number
of cores, and 1 — ¢q is the non-idle time fraction. The closer this value is to 1.0
(normalized to the total number of cores available), the more TLP is available [12].

Z:’l:l Cii

1—co

TLP = 5.1

5 Case Study: DCT with Aurora

64

uoneordde yoea s309JJe jey) ansst A)[IQe[eds JO UONE[ALIOD S, U0sIedd ISIYSIy senfea pjog

UOTJBZIUOIYOUAS
LLO— | #9°0— | 81'0— | 19°0— | 8L'0— | OL0— | L90— | 89°0— | ¥9°0— | IT'0— | 80— | ¥L'0— | 8€0— | £€50— | 96°0 -ere
$9S89008
98'0— | 0L0 | 600 |T60— 960— | 980— | ¥6'0— | 96'0— +S0— | 060— | C80 | ¥6°0— | €L0— | SLO— | I80 Azowow pareyg
uoneInjes
9L0— | Z80— | S90— | 6L°0— | 88°0— | ¥6'0— | 9¥'0— | 98°0— | CS0— | C9°0— | 06'0— | S8°0— | S6'0— | L6°0— | 6€°0 snq diyo-fo
uoneIrnyes ndur
16°0— $6°0— 06°0— €L0— 6L0— ¥L0— | €80~ | 9L0— | T6'0— T80— | 690— | €L0— | €90— | IL0O— 8L0O— IpIm-onssy | WNIPIN
UOTJRZIUOIYOUAS
80— | 19°0— | I190— | ¥9°'0— | 6S0— | ¥C0— ¥6'0 | ¥SO0— ¥S0— | S6'0 |T60 | 6¥'0— 190— 0S0— | L60 -eleq
$9S89008
8L0— | S8°0— | 96'0— | 16'0— | 060— | 98°0— | IL0 | 16'0— TSO0— | €80—|CS0 |8LO0— | ILO0— €¥0— | 080 Asowaw pareysg
uoneInjes
89'0— | C80— | 08°0— | 6L0— | 9L°0— | ¥6°0— | 9S°0— | 80— | IS0— | IL0O— | LS0— | ¥8°0— | 06'0— | 86'0— | 9%'0 snq digo-go
uoneInjes ndur
06°0— | 16°0— | L80— | SL'O— | I80— | S90— #80— | 08°0— | I6'0— | 08°0— | 08°0— T6'0— 9S0— ILO— | 80— IpIm-onssy [rewrs
Id DD nT Ld DN | DOdH Ood oS SH dS VI vn LS| Jd4d4 aN

SIBWYOUSq YOB pue SANSST AJ[IQR[EOS 9Y) UdaMIS] UONB[ALIOD UOSIBdd T'S IqEL

5.3 Evaluation of Aurora 65

12 7——{ O4-Cores _O8-Cores B 24-Cores M 32-Cores |

0.8 1
0.4 A
0.2 4 I
0.0 -
JA S HS SC

NB FFT ST UA PO HPCG MG BT LU CG Fr

Relative TLP
(=)
(o)}

(a)

1.2 7——{ O4-Cores O8-Cores m24-Cores B 32-Cores |
1.0

0.8 A
0.6
0.4 A
0.2
0.0 -
JA SP HS SC

NB FFI ST UA PO HPCG MG BT IU CG FT

Relative TLP

(b)

Fig. 5.4 TLP available for each benchmark—normalized w.r.t. the maximum number of threads
in each processor. (a) Small input set. (b) Medium input set

Table 5.3 Main characteristics of each processor

Intel Core Intel Xeon

15-4460 i7-6700 E5-2630 E5-2640
Microarchitecture Haswell Skylake Sandy Bridge Ivy Bridge
cores 4 4 2x6 2x8
threads 4 8 24 32
CPU frequency 3.2GHz 3.4GHz 2.3GHz 2.0GHz
L1 cache 4 x 32KB 4 x 32KB 12 x 32KB 16 x 32KB
L2 cache 4 x 256 KB 4 x 256 KB 12 x 256 KB 16 x 256 KB
L3 cache 6 MB 8§MB 30MB 40 MB
RAM 16 GB 32GB 32GB 64 GB

The closer the TLP value is to 1.0 (normalized to the total number of cores
available), the more TLP is available. As an example, NB has the lowest TLP
available, where only 10% of the execution is performed in parallel when the 32-
core system is considered, while the FT benchmark presents the highest TLP, in
which more than 95% of the application is executed in parallel.

The experiments were performed on four different multicore processors
(Table 5.3), each one with the Ubuntu Operating System with Kernel v. 4.4.0
in all the machines. The CPU frequency was configured to adjust according to the
workload application, using ondemand as DVFS governor, which is the standard
governor used in most Linux versions. The applications were compiled with
gcc/g++ 6.3, using the optimization flag -O3, and the OpenMP distribution version
4.0. The results presented in the next session are the average of ten executions with
a standard deviation lower than 0.5%.

66 5 Case Study: DCT with Aurora

Aurora was evaluated in the following scenarios:

* Baseline: the application executes with the maximum number of threads avail-
able in the system;

* OMP_Dynamic: a built-in feature of OpenMP that dynamically adjusts the
number of threads of each parallel region, aiming to make the best use of system
resources, such as memory and processor. OMP_Dynamic is generally used to
avoid oversubscription, in the way that the number of threads is defined based
on the load average utilization of processes on the system [26]. This feature
is enabled by using the environment variable OMP_DYNAMIC or through the
insertion of the omp_set_dynamic() in the source code [22];

¢ State-of-the-art approaches: Aurora was also compared to the most cited
approaches in the area:

— Feedback-Driven Threading (FDT): The number of threads is defined
based on the contention for locks and memory bandwidth (as discussed in
Sect. 4.2.2) [115].

— Varuna: A high-level comparison with it was performed, by faithfully imple-
menting the Varuna programming model (as defined in [113]) and applying it
to the benchmarks.

¢ Static Approaches: in order to measure the efficiency of the search algorithm
used by Aurora, two static and offline approaches were implemented:

— Oracle Solution: The execution of each parallel region with the optimal
number of threads for each metric, without the cost of the learning curve.
The optimal number of threads was obtained through an exhaustive execution
of each parallel region of each application with 1 to n threads, where n is the
maximum number supported by hardware.

— Genetic Algorithm (GA): It was implemented to demonstrate how Aurora’s
hill-climbing fares against such classes of heuristics. GA is a search meta-
heuristic based on natural selection and genetics. It uses a concept of a
population, which is a set of individual solutions (chromosomes), that can
evolve to an optimum solution through generations.

5.3.2 Results

We start by discussing how Aurora handles the scalability issues discussed in
Sect. 1.2: off-chip bus saturation, shared memory accesses, data-synchronization,
and issue-width saturation. Then, we present a comparison between Aurora and the
following executions in Sect. 5.3.2.2: baseline, OMP_Dynamic, FDT, and Varuna,
while Sect. 5.3.2.3 compares Aurora to the results achieved by the genetic algorithm.
Section 5.3.2.4 discusses the efficiency of the search algorithm implemented by
Aurora through the comparison to the Oracle solution. Finally, Sect.5.3.2.5 draws
the limitations of Aurora at this time.

5.3 Evaluation of Aurora 67

5.3.2.1 Handling Scalability

As a result of its runtime analysis, the search algorithm used by Aurora can detect
the point in which the number of threads saturates any metric. As a first example, let
us consider the off-chip bus saturation (as discussed in Sect. 1.2) and the execution
of HPCG with medium input set on the 24-core system. This benchmark has two
main parallel regions that are better executed with a different number of threads
(Table 5.4) each. Figure 5.5a shows that when the second region is executed with
more than 12 threads, the off-chip bus saturates (100% of utilization), and no further
EDP improvements are achieved. By using its continuous monitoring and avoiding
this saturation, Aurora was able to reduce the EDP of the whole application by 15%
when compared to the baseline execution (24 threads). The very same behavior can
be observed in FFT and ST (regardless of the input set) and JA for the medium input
set (Table 5.2), but at different improvement ratios.

In applications with high communication demands, there is an optimal point in
which the overhead imposed by the shared memory accesses does not overcome
the gains achieved by the parallelism exploitation, as discussed in Sect. 1.2. Aurora
detected this point for all benchmarks in this class: SC, MG, and BT; LU (with
small input); PO, UA, and SP (with medium input) (Table 5.2). For instance, let us
consider the SP benchmark running on the 24-core system. This application has nine
main parallel regions, in which each one is better executed with a different number
of threads. Figure 5.5b shows that when the number of shared memory accesses
from all threads in the first parallel region starts to increase (after six threads—
primary y-axis), no further improvements in the EDP are achieved (secondary y-
axis). As shown in the same figure and Table 5.4, Aurora found the best number of
threads to execute this parallel region, providing EDP gains of 58% when compared
to the baseline execution (24 threads).

Aurora similarly detects the point where the synchronization time overlaps
the gains provided by TLP exploitation. This behavior can be observed in some
benchmarks, such as n-body (NB) with small or medium input, or Jacobi(JA) and
SP with small input set (Table 5.2). In these benchmarks, the higher the number of
threads, the greater the time spent synchronizing, which can worsen the results, as
already discussed in Sect. 1.2. The n-body benchmark with the medium input set
executing on the 32-core system (Fig. 5.5¢) can be discussed as an example. When
increasing the number of threads from 1 to 3, performance improves. However,
from this point on, the time that the threads spend synchronizing overcomes the
gains achieved by the parallelism exploitation (Fig.5.5¢), increasing the energy
consumption and EDP of the whole application. As demonstrated in Table 5.4,
by avoiding this extra overhead in the synchronization time and setting the right
number of threads, Aurora reduced the execution time by 79%, energy by 89%, and
EDP by 98%.

Aurora also converges to the best number of threads for applications that are
negatively influenced by the issue-width saturation. Some examples are: hotspot
(HS), FT, and CG with any input set; and UA and PO with the small input
(Table 5.2). Let us consider the hotspot benchmark with the medium input set

5 Case Study: DCT with Aurora

68

¥9°8 vv‘9 1°6°C 7ce A] %9 1°1°C I°r‘c, v2or's Y299 76C v vC
8y 99° 7TT (A 8 v Y9y 11 LTT ¥L°01°C€| 0T9°0C §TC TTT
89°9 99° [(A 8v°9 9vy [[AR () B d | 99° [e W
v v Sl ¥ v ‘0l 1€ TTe ¥ ‘v ‘0l v ol 1°1°€ 17T°¢ 89 °G1 9‘9°Cl Ty vee
vS1 Y 9C19 Y1 7€ 7€l Y 701y 1°€‘1 1°€°T | Te'SICe 9C1‘9 [A Tee
S1%9 [A I €TC €1y 9 01 ‘v °9 €°1C €1°C) sr9zel 7199 ¥TT YV T S| ds
9 14 [4 9 14 [4 ! 01 4 € W
SI 9 [C 14! 9 [4 8¢ cl € € S vI
¥ 14 I C 14 C I 1 4! 8 4 14
Y79 Y79 [1°1°¢ 7TT Yv v vy LT°T [T°1 I1°€1‘9 I1%°9 §TS vy
TETETE| T YT YT 888 vy vITEEl | T YT Il 8y YV Y| TETE9L | YT VT VT 888 vvy
9V Ce 9V v 18 Ty 9V e ¥ ‘T Y 18 [0 SN 4 0 R e 8 v v T8 vy Y W
8 9 C 1 9 14 1 1 01 9 C 14
999 99° T1°C 11 999 9% °9 11 LT°T| 9T Tl 0l 99Tl 7Ty vy
e TETE| T T YT 888 YV TeETETE | T YT I 88y YV ¥ | TeETETE | TI YT T 888 vy
01 ‘0l ‘z€ 9°99C 18 Ty 99 ‘Ce ¥ 9 v 18 TUY | VLTI TE |l TL9YC €8 Y'Yy S| vn
9 14 1 4 14 14 1 1 Cl 14 [14 4\
9 14 1 C 14 14 1 I 4! 14 [¥ S| LS
14 4 [4 14 [1 1 14! 9 C 14 4\
14 C 1 C 14 C 1 I 9 14 4 ¥ S| Ldd
€ 14 14 14 € € € € € 14 14 14 4\
€ 14 € € € 14 € € € 14 14 14 S| daN
[43 ¥ 8 14 [43 ¥ 8 14 [43 ¥ 8 Y| $9105¢ -"00I1d
dad A310ug QOUBWLIOJIOJ

eloIny Aq punoj speaIy) Jo IquinN $°S d[qel,

69

5.3 Evaluation of Aurora

8 °C¢€ Tl e Ty €y 9 ¢ 9°CT Ty Ty (4543 (47 (S vy
TETETE| YT YT VT ¥°L8 vy TETETE TTYT VT vy 8 vy TETETE| YT YT VT v°L8 vy Yy W
8 °0¢ 8 “¥T (4% €y 991 9°C1 [4a% (44 v1°ce 8¥C Sy vy
TETETE| T YT YT ¥y 8 YYy 91°TETE TI YT YT vv°8 vy TETETE YT YT YT vv°8 vy S Id
TETE YTy 8°8 vy v1°TE ¥T ¥T 8°8 vy T€ 1€ ¥T ‘vT 8°8 vy W
91°C¢ YT 8°8 vy 91 ‘91 [A 7 8°8 vy (4543 ¥ vT 8°8 vy S DD
(454! 744! £y €Y (40! ¥T 01 (9% (4% 44! ¥ Tl ¥ 8 vy W
9TY1 TTTT 8°8 vy ST 01 7T 01 8y €y 1€°LT 7T T 8°8 vy S ni
(4543 €T €T 8°8 vy (4543 €T €T 8°8 vy (4543 ¥T T 8°8 vy
(4 vT 'y 8°C ¥ T €9 €Ty 8°1 v°C T€ 01 vT 8 8°C vel W
6T ‘8T T e 8°8 vy 6T ‘8T 7Tt 8y vy 0€ ‘1€ €2°TC 8°8 vy
8T8 9 8°C ¥C 8T 9 TT9 8°C v 8T ‘01 €29 8°C vc| S Ld
9°8 v°9 T T¢ 9°9 ¥ 9 1T 1T 91 01°8 (43 Ty
89 99 €°C €T 8°9 9y T TT 91 ‘91 01 ‘C1 v ¢ vy W
9°8 9°8 T T v'8 ¥°9 17 17 Trol 01°8 (43 €°¢
8°8 89 €T €T 8°9 9°9 (44 TT 01 ‘8 8°9 €T vl S DN
8°9 [A0% €T - 8y 8y €°1 - (4] 19 ¥ T -| N
8°8 9°9 (44 €T 9°9 9y 4! 4! 0€ ‘8 01 ‘01 (4 ¥¥| S| DOdH
91 Cl € 4 91 Cl € ¥ 91 4! L v N
91 Cl 8 14 91 Cl 8 ¥ 91 Cl 8 v S Od
Sl L L ¥ 6 L L 14 Sl 6 L v N
6 4 8 14 6 L 8 ¥ 6 €C 8 v S S
91 Cl ¥ 14 91 Cl ¥ ¥ 91 Cl 4 AA!
91 Cl ¥ 14 91 01 ¥ ¥ 91 Cl 4 v S SH

70 5 Case Study: DCT with Aurora

120% 12 — 25 123
¢ [[—uiilization —o—EDP F g [— SM-Accesses —o—EDP]| &
=) w 4
- 11 B 2 20 1 §
S g z g
= 108 3 st @
> Aurora t 2 i
] 106 & ; s
= T Ev© T
= 1 0.4 S s E
S =] = 5 <
s 102 E 5 =
=) T B 5 =

S s =
0% N . N N N N N 0 Z £ 0 . s z
1 4 7 10 13 16 19 22 1 4 7 10 13 16 19 22
Threads # Threads
(a) (b)
300 : 2 18 —Cycles —°—Time —O—Energy 12 =
B Parallel Region S 16t £
e . =
o 250 OCritical Region ; 14 f g
é 200 212t 08 g
= g 1o} 06 T
£ 150 Aurora = 8b 3
= o= g
g 100 / = 6 04 %
S 4 F
= s £ 02 g
T2 5
0 I ol oy 2
1357 91113151719212325272931 I 4 7 10 13 16 19 22
Threads #Threads

(©) (d)

Fig. 5.5 Scalability behavior. (a) HPCG—2nd parallel region. (b) SP—I1st parallel region. (c)
n-body. (d) Hotspot

executing on the 24-core system. In this case, the optimal number of threads for
EDP is 12 (see Table 5.4). As Fig.5.5d shows, when increasing the number of
threads from 12 to 13, the number of cycles that the threads spend without issuing
any instruction abruptly increases. Therefore, performance decreases and energy
consumption increases (Fig. 5.5d). Once more, by avoiding the excessive increment
in the number of threads, Aurora improved performance by 21% and reduced EDP
and energy by 44% and 25%, respectively.

Finally, as discussed in Chap. 1, it is important to note that there are cases in
which the characteristic that influences the thread scalability changes according to
the input set (Table 5.2). As a specific example, let us consider JA application. When
it is executed with the small input set, the time that the threads spend synchronizing
limits the application scalability. When executed with the medium input set, the
off-chip bus becomes the main limiting factor because of the larger amount of data
available.

5.3.2.2 Performance, Energy, and EDP

Table 5.4 depicts the number of threads found by Aurora that offers the best result
in performance, energy, and EDP to execute the main parallel regions of each

5.3 Evaluation of Aurora 71

application. As an example, let us consider the LU application executing with the
medium input on the 8-core system and targeting the EDP. It has two main parallel
regions: the ideal number of threads for the first is four, while for the second the
number is three. Moreover, depending on the input set, the ideal number of threads
for each parallel region may vary. This is the case of the CG application running
on the 32-core system. When changing the input set from small to medium, the
workload of the second parallel region changes, increasing its TLP. Now, the best
EDP for this region is achieved with 32 threads instead of 16. The ideal number of
threads also varies when the target optimization metric changes. The ST executing
on the 32-core system is an example: 12 threads is the best choice for performance,
4 threads for energy consumption, and 6 threads for EDP.

Figures 5.6, 5.7, and 5.8 present the results for the entire benchmark set
when running the medium input set, along with their geometric mean (Gmean)

1.5 4{ 04-Cores O8-Cores E24-Cores M 32-Cores }—

o
St
Y n
A 1.0
o
=
" 05 1
=
B
&~
0.0 -
NB FFT ST UA JA PO HPCG MG FT Gmean
(a)
>, 1.5 74{ 04-Cores O8-Cores B24-Cores l32-C0res}—
o
£ 10
o
>
<
S
)
m 0.0 a
FFT PO HPCG MG FT Gmean
()
a 15 4{ 04-Cores O8-Cores E24-Cores M32-Cores }—
a
=
o L0
>
=
=
< 0.5 1
m I
0.0 -
LU

FFT JA SP HS PO HPCG MG BT FT Gmean

©

Fig. 5.6 Aurora vs Baseline (medium input): lower than 1.0 means that Aurora is better. (a)
Performance. (b) Energy consumption. (¢) Energy-delay product

72 5 Case Study: DCT with Aurora

4‘ O04-Cores O8-Cores BW24-Cores M 32-Cores }—

:.;} 1.5 7
)
=¥
> 1.0
>
=
=]
= 0.5 1
) |I

0.0 -

FFT ST PO HPCG MG FT Gmean
(a)
>, 15 74{ O04-Cores O8-Cores B24-Cores HM32-Cores }—
o
£ 10
S
N
>
EO'SA ‘ “ “ “ ‘ ‘ “ ‘ ‘ ‘ “ ‘ “
<
p—
2, Ll
& 0.0 -
FFT UA JA SP HS PO HPCG MG BT LU FT Gmean
()

a 13 4{ 04-Cores O8-Cores H24-Cores B 32-Cores }—
Q
=
o 1.0
>
=
<
< 0.5 -
"ol | | | |

0.0 - I

A

FFT ST 18) JA SP HS PO HPCG MG BT LU FT Gmean

(©

Fig. 5.7 Aurora vs OMP_Dynamic (medium input): lower than 1.0 means that Aurora is better.
(a) Performance. (b) Energy consumption. (¢) Energy-delay product

considering the four multicore systems. Figure 5.6 compares Aurora to the base-
line (represented by the black line), while Figs.5.7 and 5.8 compare Aurora to
OMP_Dynamic and FDT framework (also represented by a black line), respec-
tively. Results are normalized according to the setup to be compared (baseline,
OMP_Dynamic, or FDT), so values below 1 mean that Aurora is better. They are
presented for performance, energy consumption, and EDP. For each metric, we show
the result for Aurora when it is set to optimize the particular metric. As an example,
Fig. 5.6b shows the energy savings achieved by Aurora over the baseline when set
to reduce the energy consumption. Table 5.4 summarizes the results for the small
input set considering the geometric mean for the four multicore systems.

Aurora Versus Baseline As observed in Fig.5.6 and Table 5.4, in most cases
Aurora shows improvements regarding any metric. If one considers the geometric
mean (Gmean bars in each figure) in any scenario, Aurora is most of the times

5.3 Evaluation of Aurora 73

« 15 74{ O4-Cores O8-Cores m24-Cores H32-Cores }—
&
> 1.0
>
.g
= 0.5
m |
0.0 -
ST HS PO HPCG MG BT FT Gmean
(a)
>, 15 74{ 04-Cores O8-Cores W24-Cores M32-Cores }—
ol
£ 10
S
2]
>
3 “ “ | “ ‘ “ “ “ “ ‘ “ “
<
=
: |
e 0.0 -
FFT HS PO HPCG MG BT LU FT Gmean
(b)
a ls 4{ O4-Cores O8-Cores B24-Cores M 32-Cores }—
a
=
© 1.0
>
E
=]
2 0.5
" I 1l |I
0.0 -
FFT ST UA JA SP HS PO HPCG MG BT LU FT Gmean

(©

Fig. 5.8 Aurora vs FDT (medium input): lower than 1.0 means that Aurora is better. (a)
Performance. (b) Energy consumption. (¢) Energy-delay product

Table 5.4 Summary of the results for the small input w.r.t. the geometric mean: lower than 1.0
means that Aurora is better

Performance Energy EDP

Baseline |OMP |FDT |Baseline |OMP |FDT |Baseline |OMP |FDT
4-core 0.98 0.75 0.84 |0091 0.85 0.83 |0.90 0.63 0.72
8-core 091 0.83 0.78 |0.89 0.85 0.80 |0.80 0.71 0.62
24-core | 0.85 0.81 0.67 |0.76 0.83 0.67 |0.68 0.70 0.44
32-core | 0.88 0.84 0.69 | 0.66 0.78 0.73 |0.54 0.62 0.48

better. In very specific scenarios where the design space exploration is limited, it
presents similar results as the baseline. Considering the best case, execution time
was reduced by 16% with the medium input set executing on the 32-core system.

74 5 Case Study: DCT with Aurora

The best scenario for energy consumption and EDP is with the small input set and
the 32-core system: energy is reduced by 34%, and EDP is improved by 47%. When
considering the overall geometric mean (entire benchmark set and all processors),
Aurora provided 10% of performance improvements, 20% of energy reductions, and
28% of EDP improvements.

Aurora Versus OMP_Dynamic This specific implementation of OMP_Dynamic
considers the last 15 min of execution to define the number of threads [22]. It does
not use any search algorithm nor considers each parallel region in particular. For
this reason, it is worse than the OpenMP baseline in many cases. The advantage of
potentially decreasing the overhead, since it is not often called, does not compensate
the fact that it is not able to get near to the optimal number of threads. Considering
the best case for each metric (Gmean) in Fig. 5.6 and Table 5.4 Aurora reduced the
execution time by 26% (medium input and the 4-core machine), energy consumption
by 24% (medium input and the 32-core system), and EDP by 38% (small input and
the 4-core system). In the overall (Gmean), Aurora was 11% faster, saved 17% of
energy, and improved EDP by 32%.

Aurora Versus FDT As observed in Fig. 5.8 and Table 5.4, Aurora outperforms
FDT in all scenarios. In the best case (small input set and the 24-core machine),
Aurora improved (Gmean) the execution time by 34%, energy consumption by
34%, and EDP by 56%. In the overall, the improvements were of 26%, 25%,
and 45%, respectively. In very particular cases, results of FDT are similar as
Aurora’s when performance is considered. These are with applications that are
in the group of scalability issues that FDT handles, such as FFT (off-chip bus
saturation) and JA (synchronization). However, as already discussed, FDT ignores
many fundamental hardware characteristics, converging to a non-optimal number of
threads in many times. Moreover, the training phase of FDT executes each parallel
region in single-threaded mode until the standard deviation of the observed metric
(memory bandwidth usage or synchronization time) is stable. It leads to a higher
overhead for applications that present medium or high TLP. Because of this, in many
cases FDT is worse than the baseline and OMP_Dynamic.

Varuna-PM One representative application was selected from each benchmark
class (NB, SC, ST, and FT) and implemented them using the programming model
employed by Varuna. They were executed with two different amounts of threads
(1566 and 10k threads, taken from [113]) on the 32-core machine. Table 5.5 shows
that these versions are slower than the OpenMP baseline. In particular, for the NB
benchmark, which has its scalability limited by data-synchronization, the greater
the number of threads, the greater the time the threads spend synchronizing. This
increases the execution time and energy consumption (as discussed in Chap. 3). It is
important to emphasize that these results do not consider the improvements provided
by the analytic engine and the manager system of Varuna. However, even if the
analytic engine could improve performance by 15% and reduce energy consumption
by 31% (values taken from [113]), it would not be enough to provide the same
levels of performance and energy as the OpenMP baseline, in most cases. The main

5.3 Evaluation of Aurora 75

Table 5.5 Times that Varuna-PM is slower than baseline

Small Medium

threads | Metric FT |SC ST |NB FT |SC ST |NB

1566 Performance | 1.8 1.6 |13 1644 | 1.8 20 |12 161.7
Energy 1.4 1.1 1.0 330 |14 1.6 | 1.1 45.0
EDP 2.5 1.8 |14 54216 |2.6 3.1 |13 7274.8

10k Performance | 3.1 6.6 3.6 1020.8 | 2.1 37 |22 1026.9
Energy 1.9 45 |24 204.8 | 1.6 27 |15 1026.0
EDP 59 129.6 |86 |209072 33 [10.1 3.3 |1053593

reason for these results is that Varuna was developed to be used in different kinds
of applications (e.g., big data and ones that are recursively implemented), since it
creates as many threads as possible. Therefore, Aurora and Varuna can be seen as
two orthogonal approaches.

5.3.2.3 Distinct Approaches, Similar Convergence

Genetic algorithm is a search metaheuristic based on natural selection and genetics.
It uses a concept of a population, which is a set of individual solutions (chromo-
somes), that can evolve to an optimum solution through generations. As GA requires
minimum previous information on the problem at hand, it is widely used in many
different situations. For our experiments, we started with a random population with
a fixed size of 30 to 40 individuals (depending on the application). We modeled
the chromosome to represent the global solution (i.e., the number of threads for
each parallel region). Thus, we had to run the entire application for each new
chromosome. Our population evolved by randomly selecting new chromosomes,
giving higher chances for those with the best results in EDP. While applying the
crossover guarantees the propagation of the best individuals characteristics, the
mutation ensures the whole solution space can be searched. The probability for the
crossover and the mutation to happen is of 0.9 and 0.001, respectively.

While the GA performs a global search, trying for different combinations for
each parallel region, Aurora splits the problem into local searches (one for each
region). The GA does find local optimums and escape them through the generations.
However, it tends to perform worse when the space exploration is too large,
represented by applications with many parallel regions. GMEAN_GA in Fig 5.9
shows the EDP (y-axis) given by the geometric mean of our benchmark set through
the generations (x-axis). We also include the geometric mean of Aurora’s execution
(GMEAN_AURORA). All the results are normalized by the Oracle execution
(represented as the constant line in 1). GMEAN_GA and GMEAN_AURORA
lines clearly show that the GA converges to a similar result as Aurora over
the generations (Fig.5.9 truncates at generation 26), and when one considers
the geometric mean, Aurora performs slightly better. We can also see the worst

76 5 Case Study: DCT with Aurora

—0— MAX_GA
<&~ MAX_AURORA
—— GMEAN_GA

[0 0 0000 OO OO OO O -0~ 00O | 3 GMEAN AURORA
14 r y
14 —O0— MIN_GA
13 O+ MIN_AURORA

CcooQooDoO0ooo0DOo0oDO0000000000

— Oracle

EDP normalized to Oracle

0.9 U U ST U NN TN TN U N W N N W TN N NN S W NN S AN T N W O W TN S AT U N SN NN U AT U T U W W 0 W W N 1
Generations

Fig. 5.9 Genetic algorithm convergence and Aurora

(MAX_GA and MAX_AURORA) and the best (MIN_GA and MIN_AURORA)
cases from the executed applications for the GA and Aurora, respectively.

As observed, the GA can find better solutions than Aurora in its best case, but
cannot achieve Aurora’s result in the worst case (an application with many parallel
regions) because of its coarse tuning characteristics. Furthermore, Fig. 5.9 omits the
GA training time, which can easily exceed several hours and must be re-executed
when anything in the system changes, such as the input size or microarchitecture.
Aurora, on the other hand, can quickly adapt at runtime.

5.3.2.4 Evaluating the Efficiency of Aurora’s Search Algorithm

Table 5.6 depicts (in percentage) how the results obtained by Aurora differ from the
Oracle solution. We consider the geometric mean (Gmean) of the entire benchmark
set for each processor and metric. The difference between ours and the optimal
solution reflects the overhead of our technique, so we can measure the cost of
the learning curve. As one can observe, these overheads are not very significant
when compared to the best possible solution. The overhead is originated from two
situations: the execution of the search algorithm itself, and the execution of a given
parallel region with a number of threads that is not the ideal while the search
algorithm is trying different possibilities to converge to the ideal number. Aurora
showed higher overheads in the following situations:

1. The best result is achieved with either the maximum number of threads or a
number close to it, which is the case of the FT and CG benchmarks executing on
the 24 and 32-core systems.

2. The parallel region has a relatively small number of interactions but executes for
a significant time, such as HPCG.

5.3 Evaluation of Aurora 77

Table 5.6 Learning overheads (%) for Aurora w.r.t. the geometric mean for all the benchmarks

Performance Energy EDP

4-core| 8-core| 24-core| 32-core| 4-core| 8-core| 24-core| 32-core| 4-core| 8-core| 24-core| 32-core
S107 |09 2.9 9.9 0.9 1.4 109 4.1 1.8 2.1 2.6 6.6
M/ 1.0 |07 24 3.1 0.9 2.0 1.6 3.0 2.8 1.9 2.5 5.4

3. Applications that have short execution time (i.e., less than 10s), such as the MG.
Its Oracle version takes only 1.45s to execute on the 32-core system with the
small input set.

4. Applications with many parallel regions, in which most of them have a low
workload, as in the UA benchmark. UA has 54 parallel regions, and 44 of them
take less than 0.5 s to execute regardless of the target processor.

Moreover, the higher the number of hardware threads available in the system,
the greater the space exploration that must be covered. However, even though the
overhead of the search algorithm increases, it does so in small rates, as can be
observed when one compares the averages of the 24- and 32-core systems to the
4- and 8-core ones.

We also measured the execution time of the hill-climbing algorithm alone (con-
sidering only the specific calls to the respective function of the search algorithm).
We consider the 32-core machine, which is the one that has the largest design space
to be explored. Our experiments show that it presents an overhead of only 0.020%
w.r.t. to the total execution time (geometric mean considering all benchmarks and
inputs). In the worst case (MG benchmark, small input set), the search algorithm
adds only 0.267% to the total execution time.

5.3.2.5 Limitations of Aurora

As already extensively discussed throughout this paper, Aurora works only with
OpenMP and, more specifically, with the OpenMP parallel directive. However, it
is important to remember that, as previously discussed in this chapter, sections and
tasks are seldom used. In cases where there are parallel regions implemented in a
different API or using unsupported OpenMP directives, Aurora will still work to find
the ideal number of threads for each OpenMP parallel directive region. Therefore,
it will not influence the execution of those other parallel regions.

Moreover, there are other scenarios where Aurora will also present some limita-
tions: (1) The application is being parallelized to run on distributed systems, using
some hybrid approach, in which the iterations of the outer loop are distributed to
different nodes using a message passing library, and the inner loops are parallelized
with OpenMP. For such hybrid approaches, Aurora will work for the OpenMP
regions. (2) Multiple parallel loops are embedded inside an OpenMP parallel
directive, using the clause collapse, which specifies how many loops in a nested
loop should be collapsed into one large iteration space. In this scenario, Aurora

78 5 Case Study: DCT with Aurora

will work to optimize the number of threads of the nested parallel loop. (3) The
programmer wants to distribute the thread across the available sockets in an SMP
architecture (e.g., match the number of threads of the outer loop with the number of
sockets). Such applications will not benefit from Aurora’s search algorithm because
the number of threads for each parallel region is defined a priori (statically) by
the programmer. This is usually done by very experienced programmers and is not
significantly used nowadays.

Another requirement for Aurora is an interface to access performance counters
for power dissipation and execution time. Current Intel platforms (all models
manufactured after the Sandy Bridge microarchitecture, including i3, i5, i7, 19,
Atom, Xeon, and Xeon Phi processors), AMD (some models from the Bobcat and
Bulldozer family, and all models from the Zen family), and IBM Power9 Family
provide all the hardware counters for execution time and power dissipation that
Aurora needs. Some architectures (such as ARM) currently provide only the former,
which prevent automatic optimization for energy and EDP. An alternative would be
to estimate power based on the available performance counters, although this could
lead to potentially wrong decisions by the search algorithm.

As observed in the experiments, Aurora presented its worst results executing
applications with high TLP. In such cases, executing with the highest possible
number of threads, as the baseline does, is already the best solution. Therefore,
Aurora will waste time (1) with its learning algorithm and (2) executing the parallel
regions with non-optimal number of threads during this process. In conclusion,
when most parallel regions of an application have high TLP, Aurora may bring
some small overhead compared to the baseline. Large input sets tend to alleviate this
overhead, since each parallel region will proportionally execute more times using
the ideal number of threads and less time in the process of learning.

	5 Case Study: DCT with Aurora
	5.1 The Need for Adaptability and Transparency
	5.2 Aurora: Seamless Optimization of OpenMP Applications
	5.2.1 Integration to OpenMP
	5.2.2 Search Algorithm

	5.3 Evaluation of Aurora
	5.3.1 Methodology
	5.3.2 Results
	5.3.2.1 Handling Scalability
	5.3.2.2 Performance, Energy, and EDP
	5.3.2.3 Distinct Approaches, Similar Convergence
	5.3.2.4 Evaluating the Efficiency of Aurora's Search Algorithm
	5.3.2.5 Limitations of Aurora

