
Chapter 3
The Impact of Parallel Programming
Interfaces on Energy

3.1 Methodology

3.1.1 Benchmarks

In order to study the characteristics of each PPI regarding the thread/process
management and synchronization/communication, fourteen parallel benchmarks
were implemented and parallelized in C language and classified into two classes:
high and low communication (HC and LC). For that, we considered the amount
of communication (i.e., data exchange), the synchronization operations needed to
ensure data transfer correctness (mutex, barriers), and operations to create/finalize
threads/processes.

Table 3.1 quantifies the communication rate for each benchmark (it also shows
their input sizes), considering 2, 3, 4, and 8 threads/processes, obtained by using
the Intel Pin Tool [74]. HC programs have several data dependencies that must
be addressed at runtime to ensure correctness of the results. Consequently, they
demand large amounts of communication among threads/processes, as it is shown
in Fig. 3.1a. On the other hand, LC programs present little communication among
threads/processes, because they are needed only to distribute the workload and to
join the final result (as it is shown in Fig. 3.1b).

Since the way a parallel application is written may influence its behavior during
execution, we have followed the guidelines indicated by [17, 36, 38] and [22].
The OpenMP implementations were parallelized using parallel loops, splitting the
number of loops iterations (for) among threads. As discussed in [22], this approach
is ideal for applications that compute on uni- and bi-dimensional structures, which
is the case. Loop parallelism can be exploited by using different scheduling types
that distribute the iterations to threads (static, guided, and dynamic) with different
granularities (number of iterations assigned to each thread as the threads request
them). As demonstrated in [69], the static scheduler with coarse granularity presents
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Table 3.1 Main characteristics of the benchmarks

Operations to exchange data

(Total per no. of threads/processes)

Benchmarks 2 3 4 8 Input size

HC Game of life 414 621 1079 1625 4096× 4096

Gauss–Seidel 20,004 20,006 20,008 20,016 2048× 2048

Gram–Schmidt 3,009,277 4,604,284 6,385,952 12,472,634 2048× 2048

Jacobi 4004 6006 8008 16,016 2048× 2048

Odd–even sort 300,004 450,006 600,008 1,200,016 150,000

Turing ring 16,000 24,000 32,000 64,000 2048× 2048

LC Calc. of the PI number 4 6 8 16 4 billions

DFT 4 6 8 16 32,368

Dijkstra 4 6 8 16 2048× 2048

Dot-product 4 6 8 16 15 billions

Harmonic series 8 12 16 32 100,000

Integral-quadrature 4 6 8 16 1 billion

Matrix multiplication 4 6 8 16 2048× 2048

Similarity of histograms 4 6 8 16 1920× 1080
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Fig. 3.1 Behavior of benchmarks. (a) High communication. (b) Low communication

the best results for the same benchmark set used in this study and, therefore, this
scheduling mechanism is used here.

As indicated by [17, 36] and [38], we have used parallel tasks for the PThreads
and MPI implementations. In such cases, the iterations of the loop were distributed
based on the best workload balancing between threads/processes. Moreover, the
communication between MPI processes was implemented by using nonblocking
operations, to provide better performance, as showed in [44].
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3.1.2 Multicore Architectures

3.1.2.1 General-Purpose Processors

Core2Quad The Intel Core2Quad is an implementation of the ×86-64 ISA. In
this study, the 45 nm Core2Quad Q8400 was used, which has 4 CPU cores running
at 2.66 GHz, and a TDP of 95 W. It uses the Intel Core microarchitecture targeted
mainly to desktop and server domains. It is a highly complex superscalar processor,
which uses several techniques to improve ILP: memory disambiguation; speculative
execution with advanced prefetchers; and a smart cache mechanism that provides
flexible performance for both single and multithreaded applications.1 As Fig. 3.2a
shows, the memory system is organized as follows: each core has a private 32 kB
instruction and 32 kB data L1 caches. There are two L2 caches of 2 MB (4 MB in
total), each of them shared between clusters of two cores. The platform has 4 GB of
main memory, which is the only memory region accessible by all the cores.

Xeon The Intel Xeon is also an ×86-64 processor. The version used in this work is
a 45 nm dual processor Xeon E5405. Each processor has 4 CPU cores (so there
are 8 cores in total), running at 2.0 GHz, with a TDP of 80 W. It also uses the
Core microarchitecture; however, unlike Core2Quad, Xeon processor E5 family is
designed for industry-leading performance and maximum energy efficiency, since
it is widely employed in HPC systems. The memory organization is similar to the
Core2Quad (Fig. 3.2a): each core has a private 32 kB instruction and 32 kB data L1
caches. There are two L2 caches of 6 MB (12 MB in total), each of them shared
between clusters of two cores. The platform has 8 GB of RAM, which is the only
memory region accessible by all the cores.
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Fig. 3.2 Memory organization of each processor used in this study. (a) Intel Core2Quad and Xeon.
(b) Intel Atom. (c) ARM Cortex-A9/A8

1Available at: http://www.intel.com/technology/architecture/coremicro.

http://www.intel.com/technology/architecture/coremicro
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3.1.2.2 Embedded Processors

Atom The Intel Atom is also an ×86-64 processor, but targeted to embedded
systems. In this study, the 32 nm Atom N2600 was used, which has 2 CPU cores
(4 threads by using Hyper-Threading support) running at 1.6 GHz, a TDP of 3.5 W.
It uses the Saltwell microarchitecture, designed for portable devices with low-power
consumption. Since the main characteristic of ×86 processors is the backward
compatibility with the ×86 instructions set, programs already compiled for these
processors will run without changes on Atom.2 The memory system is organized as
illustrated in Fig. 3.2b: each core has 32 kB instruction and 24 kB data L1 caches,
and a private 512 kB L2 cache. The platform has 2 GB of RAM, which is the
memory shared by all the cores.

ARM We consider the Cortex-A9 processor. ARM is the world’s leading in
the market of embedded processors. Designed around a dual-issue out-of-order
superscalar, the Cortex-A family is optimized for low-power and high-performance
applications.3 The 40 nm ARM Cortex-A9 is a 32-bit processor, which implements
the ARMv7 architecture with 4 CPU cores running at 1.2 GHz and TDP of 2.5 W.
The memory system is organized as illustrated in Fig. 3.2c: each core has a private
32 kB instruction and 32 kB data L1 caches. The L2 cache of 1 MB is shared among
all cores, and the platform has 1 GB of RAM. Since the ISA and microarchitecture
of the Cortex-A8 and Cortex-A9 are similar, we also investigate the behavior of A8
based on the results obtained in the A9. The version considered is a 65 nm Cortex-
A8 which has an operating frequency of 1 GHz, a TDP of 1.8 W.

3.1.3 Execution Environment

The Performance Application Programming Interface (PAPI) [14] was used to
evaluate the behavior of processor and memory system without the influence of
the operating system (i.e., function calls, interruptions, etc.). By inserting functions
in the code, PAPI allows the developer to obtain the data directly from the
hardware counters present in modern processors. With these hardware counters,
it is possible to gather the number of completed instructions, memory accesses
(data/instructions), and the number of executed cycles to calculate performance and
energy consumption.

The energy consumption was calculated using the data provided by the authors
in [13] (for the processors) and Cacti Tool (for the memory systems), as shown in
Table 3.2. To estimate the total energy consumption (Et), we have taken into account

2Available at: http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html.
3Available at: http://www.arm.com/products/processors/cortex-a/index.php.

http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.arm.com/products/processors/cortex-a/index.php
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Table 3.2 Energy consumption for each component on each processor

ARM Intel

Cortex-A8 Cortex-A9 Atom Core2Quad Xeon

Processor—static power 0.17 W 0.25 W 0.484 W 4.39 W 3.696 W

L1-D static power 0.0005 W 0.0005 W 0.00026 W 0.0027 W 0.0027 W

L1-I static power 0.0005 W 0.0005 W 0.00032 W 0.0027 W 0.0027 W

L2—static power 0.0258 W 0.0258 W 0.0096 W 0.0912 W 0.1758 W

RAM—static power 0.12 W 0.12 W 0.149 W 0.36 W 0.72 W

Energy per instruction 0.266 nJ 0.237 nJ 0.391 nJ 0.795 nJ 0.774 nJ

L1-D—energy/access 0.017 nJ 0.017 nJ 0.013 nJ 0.176 nJ 0.176 nJ

L1-I—energy/access 0.017 nJ 0.017 nJ 0.015 nJ 0.176 nJ 0.176 nJ

L2—energy/access 0.296 nJ 0.296 nJ 0.117 nJ 1.870 nJ 3.093 nJ

RAM—energy/access 2.77 nJ 2.77 nJ 3.94 nJ 15.6 nJ 24.6 nJ

the energy consumed for the executed instructions (Einst), cache and main memory
accesses (Emem), and static energy (Estatic), as given by Eq. (3.1).

Et = Einst + Emem + Estatic (3.1)

To find the energy consumed by the instructions, Eq. (3.2) was used, where Iexe
is the number of executed instructions multiplied by the average energy spent by
each one of them (Eperinst).

Einst = Iexe × Eperinst (3.2)

The energy consumption for the memory system was obtained with Eq. (3.3),
where (L1DCacc × EL1DC) is the energy spent by accessing the L1 data cache
memory; (L1ICacc ×EL1IC) is the same, but for the L1 instruction cache; (L2acc ×
EL2) is for the L2 cache; and (L2miss × Emain) is the energy spent by the main
memory accesses.

Emem = (L1DCacc × EL1DC)+ (L1ICacc × EL1IC)+ (L2acc × EL2) (3.3)

+ (L2miss × Emain)

The static consumption of all components is given by Eq. (3.4). As static power
is consumed while the circuit is powered, it must be considered during all execution
time: (#Cycles) of application divided by the operating frequency (Freq). We have
considered the static consumption of the processor (SCPU ), L1 data (SL1DC) and
instruction (SL1IC) caches, L2 cache (SL2), and main memory (SMAIN).

Estatic =
(

#Cycles

F req

)
× (SCPU + SL1DC + SL1IC + SL2 + SMAIN) (3.4)
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3.1.4 Setup

The results presented in the next section consider an average of ten executions,
with a standard deviation of less than 1% for each benchmark. Their input sizes are
described in Table 3.1. The programs were split into 2, 3, 4, and 8 threads/processes.
Although most of the processors used in this work support only four threads, and are
not commercially available in an 8-core configuration, it is possible to approximate
the results by using the following approach: as an example, let us consider that we
have two threads executing on one core only. These threads have synchronization
points and when one thread gets there, it must wait for the other one and so on as
long as there still are synchronization points. What it is done is to gather data of each
thread executing on the core in between two synchronization points (which involves
number of instructions, memory access, execution time, etc.). This behavior would
be the same as if the two threads would be executing on two different cores, since
the cores are homogeneous (i.e., have the same organization and, therefore, the
same ILP exploitation capabilities). There may have context switches between both
threads as they are executing, but they are not considered for the calculations (in the
same way other services of the operating system are not considered).

Therefore, at the end of execution, we have all the data of each thread for
each part of code in between synchronization points. We can calculate the energy
consumption because we have the number of executed instructions, memory
accesses, and so on, and we can infer the performance since we have the execution
time of each part of code of each thread in between two synchronization points. For
each part, we consider as execution time the one presented by the slowest thread
(which simulates the behavior of one waiting for another if they were actually
executing on two cores). This approach can be easily extrapolated to a larger number
of threads.

The compiler used was the GCC-4.7.3 without optimization flags, to minimize
the influence of the compiler on the PPIs. The following distributions were used:
OpenMPI 1.6, OpenMP 3.0, and PThreads/POSIX.1-2008, running on the Linux
Debian operating system.

It is important to highlight some observations regarding the results presented
next:

• The benchmark set was developed and classified with the only purpose to eval-
uate each PPI regarding the thread/process management, workload distribution,
and synchronization/communication.

• The versions of libraries, compilers, and tools used here have been updated since
the experiments were performed.

• When this study was performed, we did not have access to processors that provide
energy consumption directly from the hardware counters.
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3.2 Results

3.2.1 Performance and Energy Consumption

Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 show the results of performance (in
seconds) and energy (in Joules) of each processor and number of threads/processes
(“1” means sequential execution) for the two benchmark classes (high and low
communication). Figures 3.3 and 3.7 show raw numbers, where the x-axis of
each chart is the energy consumption, and the y-axis is the execution time.
Figures 3.4 and 3.8 demonstrate the fraction of energy consumed by each hardware
component with respect to the total energy. Static and dynamic (S and D) energy
for the processor and memory are considered. Also, Figs. 3.5 and 3.9 present the
normalized performance and energy using the processor with the best results as the
baseline. The results are discussed in detail in the next subsections, considering both
classes of programs separately.
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Fig. 3.3 Performance (seconds) and energy consumption (joules) results for high-communication
programs. (a) OpenMP. (b) PThreads. (c) MPI-1. (d) MPI-2
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3.2.1.1 High-Communication Programs

Figure 3.3 shows the performance and energy consumption for each processor
running a different number of threads/processes. Each chart analyzes a different



3.2 Results 25

1
4

16
64

256
1024

A
R

M

A
to

m

C
2Q

X
eo

n

A
R

M

A
to

m

C
2Q

X
eo

n

A
R

M

A
to

m

C
2Q

X
eo

n

A
R

M

A
to

m

C
2Q

X
eo

n

32 kb 64 kb 128 kb 256 kb

L
at

en
cy

 (
µs

)

Process size on each processor

2 3 4 8

(a) (b)

0

10

20

30

40

32 kb 64 kb 128 kb 256 kb

M
em

. L
at

en
cy

 (
ns

)

Process size

ARM Atom
C2Q Xeon

Fig. 3.6 Overhead to execute context switching on each processor. (a) Time to execute context
switching. (b) Memory system latency for each process size during context switching

1

10

100

1000

0 200 400 600

E
xe

cu
ti

on
 T

im
e

Energy Consumption

Pareto front

1

10

100

1000

0 200 400 600

E
xe

cu
ti

on
 T

im
e

Energy Consumption

Atom - 1 Atom - 2
Atom - 3 Atom - 4
Atom - 8 A9 - 1
A9 - 2 A9 - 3
A9 - 4 A9 - 8
A8 - 1 A8 - 2
A8 - 3 A8 - 4
A8 - 8 C2Q - 1
C2Q - 2 C2Q - 3
C2Q - 4 C2Q - 8
Xeon - 1 Xeon - 2
Xeon - 3 Xeon - 4
Xeon - 8

Pareto front

(a) (b)
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programs. (a) Shared variables. (b) Message passing
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Fig. 3.8 Fraction of energy consumed by each component—LC applications (MEM: memory;
CPU: processor; D: dynamic; S: static). (a) Shared variables. (b) Message passing

parallel programming interface. Considering the performance, regardless of the
PPI used, all the processors performed better when exploiting a TLP of 8, and
Core2Quad processor achieved the lowest execution time. Comparing the best case
of each processor, Core2Quad is 4.32 times faster than Atom; 5.73 times faster
than Cortex-A9; 6.87 times faster than Cortex-A8; and 1.34 times faster than Xeon.
Considering only the embedded processors, Atom performed better, being 1.32 and
1.59 times faster than Cortex-A9 and A8, respectively.
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When the energy consumption matters, embedded processors spend less energy
than GPPs, and the A9 is the most efficient one. Considering the lowest energy
consumption in each processor: A9 consumed 25% less energy than Atom; 8%
less than A8; 61% less than Core2Quad; and 69% less energy than Xeon. In the
most significant case, this difference is even greater: A9 consumed 55% less energy
than Atom; 63% less than A8; 81% less than Core2Quad; and 84% less than Xeon.
Moreover, the processors have different behaviors according to the PPI used: if the
HC programs are parallelized using OpenMP, it is better to use the ARM Cortex-
A9 exploiting a TLP of 8. In such case, the energy consumed is 35% lower than
the best result in the Atom; and 5, 64, and 73% lower than the A8, Core2Quad,
and Xeon, respectively. In another situation, when HC programs are parallelized
using PThreads, MPI-1, or MPI-2, the lowest energy consumption is achieved by
executing the sequential versions of the benchmarks on the Cortex-A9. Therefore,
when it comes to energy and these interfaces, it is better to use one core even when
there are more available.

In this application class, in which there are many accesses to the shared memory
because of data exchange, the processor’s performance and energy are highly
influenced by the communication model (Fig. 3.3). For shared variables (OpenMP
and PThreads), there are significant performance improvements, even though it does
not increase in the same ratio as the TLP exploitation increases (i.e., when the
number of threads is equal to 2, the execution time of a parallel version is greater
than half of its sequential version and so on). In addition, parallel applications have
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similar energy consumption when one compares to their sequential counterparts in
most cases. On the other hand, when using message passing (MPI-1 and MPI-2),
even though there are performance gains, execution time decreases at a slower rate
as the TLP increases, when compared to applications implemented using OpenMP
and PThreads. The performance gains are limited by the excessive number of
send/receive operations performed by communication, becoming a bottleneck. As
a result of this poor performance improvements, energy consumption increases,
compared to the sequential version, in all cases.

As there is no optimal combination of processor and number of threads/processes
that offer at the same time the best performance with the lowest energy consumption,
one must choose which metric is the most significant. In this way, the Pareto front is
used in the charts. As Fig. 3.3 shows, it varies according to the PPI: in the OpenMP,
there is only one combination offering the lowest energy consumption (Cortex-A9
executing 8 threads) and one with the best performance (Core2Quad, also running
8 threads). When other PPIs are used, the number of combinations is greater than
three. Another interesting fact is that while we have few points when it comes to
shared memory based PPIs (OpenMP and PThreads), the Pareto front is composed
of several points when it comes MPI (Message Passing), increasing the complexity
of finding the best trade-off in energy and performance.

Moreover, there are cases in which it is possible to reduce the energy consump-
tion maintaining similar performance when embedded processors are chosen instead
of GPPs. In the most significant case, it is possible to save 76% in energy by
executing OpenMP HC programs on the Cortex-A9 with 8 threads instead of on
the Xeon with 2 threads. On the other hand, if one chooses general-purpose instead
of embedded processors aiming to reduce execution time, there is no single option
available that will not result in huge increases in energy consumption. For instance,
executing PThreads HC Applications with 8 threads on the Core2Quad instead of
their OpenMP versions on the Cortex-A9 reduces execution time by 83%. However,
it will increase the energy consumption by a factor of 3 times (304%).

In order to discuss how the processor and memory system influence each
communication model and how they synchronize, let us first consider the programs
that exchange data through shared variables. In OpenMP (Fig. 3.4a), threads come
into a busy-waiting state, accessing the shared memory repeatedly until the end of
synchronization [22]. This synchronization mechanism does not incur significant
performance overhead, so all processors have similar behavior as TLP exploitation
increases (as can be seen in Fig. 3.5a, the performance gap between the processors
remains similar).

When it comes to energy, however, only in ARM processors the energy is
reduced. For instance, while Cortex-A9 executing 8 threads saved almost 15%
of energy and performed 6.15 times better than its sequential counterpart, on the
Core2Quad, the energy increased 19% with similar performance improvements.
This is because the energy consumed due to the extra executed instructions and
accesses to the shared memory for the busy-waiting during synchronization have
less influence in the ARM processors than in the Intel ones (Fig. 3.5a). While in
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the ARM processors these accesses were performed in the L2 cache, in the Intel
processors they occurred in the main memory.

For PThreads (Fig. 3.3b), the context switching imposed by the mutex influenced
more the performance in ARM processors than Intel ones. As more TLP is exploited,
the performance gap between these two processors increases (Fig. 3.5a). In order
to understand this behavior, LMbench (a suite to measure system performance)
[80] was used to measure the impact of context switching on each processor.
Figure 3.6a shows the latency of each context switching (logarithmic scale)
considering processes with different parameters (which influences execution time,
data size, etc.) and level of TLP exploitation. One can note that context switching
(saving and restoring the contents of the register file, etc.) was slower on the
ARM processors in all cases. This happens because the average latency to access
the memory system is greater on the ARM than Intel processors, as shown in
Fig. 3.6b. On the other hand, as PThreads access less the memory system during
synchronization, the energy difference between all the processors remains almost
the same as TLP exploitation increases (Fig. 3.5b). This means that for HC programs
parallelized using PThreads, a more robust processor is the best choice, since it
provides considerable performance improvements at the same price in the energy
consumption. For instance, when TLP exploitation increases from 1 to 8, the
performance difference between Core2Quad and Cortex-A9 increases 33% (4.88
to 6.52 times), while the energy gap remains the same.

In MPI-1 and MPI-2, the amount of send/receive operations performed by each
processor to exchange data impacted in different ways the performance and energy
consumption. Intel processors performed better than ARM ones, but spending more
energy in most cases. As the number of processes increases, the performance gains
are lower in ARM processors, increasing the performance difference between them
and Intel ones (Fig. 3.5a), and influencing the energy consumption. In such cases, as
more TLP is exploited, the energy difference between ARM and Intel decreases
(Fig. 3.5b); and in the execution of 8 processes Atom got to a point where it
consumed less energy than ARM processors. This scenario worsens when MPI-2
applications are executed (Fig. 3.3d), in which, as the number of processes increases,
the performance gains are even lower in ARM processors. The reason for this is that
dynamic process creation adds an overhead in the runtime in terms of executed
instructions, mainly due to the communication using intercoms, which affects more
ARM processors than Intel [19].

3.2.1.2 Low-Communication Programs

For LC programs, the performance and energy consumption for each communica-
tion model are very similar. In this way, results are separated only by communication
model: shared variables and message passing (Fig. 3.7). As the applications are more
CPU-bound, the impact of characteristics of each communication model on the
memory system is reduced, highlighting the importance of the microarchitecture
and operating frequency. In most cases, the overall performance increases in a
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similar ratio as more TLP is exploited (i.e., when the TLP exploitation is equal
to 2, the execution time of parallel version is almost the half of sequential time and
so on). However, when the number of threads/processes is 8, performance gains are
impacted by the overhead of managing the parallelization (e.g., creation/termination
of threads or processes), which is greater in message passing implementations, since
the cost to manage processes is greater than threads [117].

All the processors perform better when they are running 8 threads/processes,
and the Core2Quad continues offering the lowest execution time. Considering the
best result of each processor, the performance difference between Intel processors
is similar as observed for HC programs (Core2Quad is 1.37 times faster than
Xeon; 4.32 times than Atom), while the performance gap between Intel and ARM
diminishes in almost 13%. For instance, the difference between Core2Quad and
Cortex-A9 decreases from 5.73 to 5.04 times, and from 6.87 to 6.04 times in relation
to the Cortex-A8.

Unlike the HC programs, energy consumption decreases as TLP exploitation
increases, regardless of the processor and communication model. In this way, all the
processors consumed less energy when executing 8 threads/processes, and in the
overall Cortex-A9 is the best choice. When one compares embedded and general-
purpose processors, the energy difference between them increases as more TLP is
exploited (Fig. 3.9b). When the number of threads increases, the memory system is
more stressed and, therefore, spends more energy in Intel processors. As this class
of applications has lower communication rate than the HC programs, it happens in a
smaller proportion. Also, the performance difference between general-purpose and
embedded processors decreases in almost 10% compared to the HC programs (e.g.,
69 to 63% in the gap between A9 and Xeon).

In cases where the developer is looking for the best trade-off between energy
and performance, there is no optimal choice. The same happens to HC programs
(even though with more points and variations). As Fig. 3.7a shows, the Pareto front
consists of three points in the results for shared variables. Two of them are the
best choice for energy (Cortex-A9 with 8 threads) and performance (Core2Quad
with 8 threads/processes). The other one (Atom running 8 threads) is the point that
improves performance over the best choice in energy with minimal impact on it. On
the other hand, if the designer aims to reduce the energy consumption maintaining
similar execution time to the best possible, there is no satisfactory option available.
For message passing (Fig. 3.7b), the Pareto front consists of only two points: one
is the best energy possible (Cortex-A9), while the other is the lowest execution
time (Core2Quad). This means that for this communication model, no option can
improve a metric without causing a major impact on another. For instance, if the
programmer wants to improve performance with minimal impact on energy, it will
reduce the execution time by only 8%, increasing energy by a factor of 15%.

There are cases in which it is possible to use embedded instead of general-
purpose processors to reduce the total energy consumption with little performance
degradation. In the most significant case, energy can be reduced by 70% with
minimal influence on performance, if a given LC program exploits a TLP of 4 or
8 executing on any embedded multicore rather than executing on the Core2Quad
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and Xeon with 1, 2, or 3 threads/processes, regardless of the communication model
used.

3.2.2 Energy-Delay Product

As shown in the previous section, there is no optimal combination of processor
and number of threads/processes that offer at the same time the best performance
with the lowest energy consumption. Moreover, according to their niche, companies
of general-purpose processors give more importance to performance, while the
embedded ones to energy. In this case, the EDP may be useful since it correlates both
metrics into a unique value. By adding an exponent x on delay (EDP = Energy ×
Delayx), as the authors in [13] have already done (but considering only sequential
applications), it is possible to change the weight of delay (performance) towards
energy, which would reflect the importance given to performance considering the
application field.

Figures 3.10, 3.11, 3.12, and 3.13 show the EDP for each processor as the impor-
tance of the delay is changed. The y-axis is the product of EDx as the exponent (x)
increases in the x-axis. Figure 3.10 shows the results of the sequential executions,
while Figs. 3.11, 3.12, and 3.13 present the most representatives results for the
parallel versions (2 and 8 threads/processes). Following the same methodology as
before, HC programs are separated by PPI, while LC programs are separated by the
geometric mean of the PPIs in each communication model. In overall, when both
energy and performance are weighted equally (i.e., when x = 1), Core2Quad is the
best choice (note that lower is better). Moreover, the difference between GPPs and
embedded processors increases as the importance of performance towards energy
increases (i.e., when the value of x increases). This reinforces the idea that GPPs
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tion. (b) Low communication
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Fig. 3.11 Impact of exponent, x, on product EDx of HC programs implemented with shared
variables. (a) OpenMP—2 threads. (b) OpenMP—8 threads. (c) PThreads—2 threads. (d)
PThreads—8 threads

are more focused on performance rather than energy, corroborating the authors’
research in [13].

Let us discuss the results for the sequential versions (Fig. 3.10). For HC programs
(Fig. 3.10a), Cortex-A9 provides the best EDxP until x = 0.6. After that,
Core2Quad outperforms all the processors. On the other hand, for LC programs
(Fig. 3.10b), the Cortex-A9 provides the best EDxP until x = 0.1, while Atom
is better when x is greater than 0.1 and lower than 0.41. After that, Core2Quad
outperforms all the processors. Therefore, the Core2Quad is the best choice even
in a significant part where energy is more important than performance (0.41 <

x < 0.99). Comparing only the embedded processors, in programs where memory
system is more accessed (HC programs), the ARM A9 processor has better EDxP

than the Intel Atom for any value of x. On the other hand, when the applications use
more the processor rather than memory (LC programs), Atom is the best choice in
most cases.

As for the parallel versions (Figs. 3.11, 3.12, and 3.13), in all cases they
achieved better EDxP than their sequential counterparts, regardless of the number
of threads/processes and communication model used. Let us first consider the results
when the processors are executing HC programs using shared variables. In OpenMP
implementations (Fig. 3.11a and b), Cortex-A9 has better EDxP than the other
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Fig. 3.12 Impact of exponent, x, on product EDx of HC programs implemented with message
passing. (a) MPI-1—2 processes. (b) MPI-1—8 processes. (c) MPI-2—2 processes. (d) MPI-2—8
processes

embedded processors, no matter the value of x. In addition, as the number of threads
increases, the more important must be the performance (i.e., higher values for x)
so the GPPs can present better EDP than the embedded ones (see Table 3.3). For
PThreads implementations, the behavior is different (Fig. 3.11c and d): Cortex-A9
has the best EDP only when x < 0.36 and x < 0.19 for 2 and 8 threads, respectively.
After that, Atom is better until x = 0.55 and x = 0.61, for 2 and 8 threads,
respectively. When x is greater than these values, Core2Quad outperforms all the
processors.

Figure 3.12 shows the results when HC programs are implemented with message
passing. Let us first discuss the MPI-1 results, where the GPPs outperform
embedded ones at a very similar value of x as the one presented in PThreads.
Considering embedded processors only, the one that offers the best EDxP changes
as the number of threads increase, regardless the importance of x. In the execution
of 2 processes, Cortex-A9 has the best EDxP , while with 8 processes, Atom is the
best choice. The reason for that has already been discussed in Sect. 3.2.1: as more
TLP is exploited, the performance loss and the increases in the energy consumption
are more significant in ARM processors than in the Intel ones.

When it comes to the LC programs (Fig. 3.13), Core2Quad continues offering
the best EDxP in most cases (mainly when performance and energy have the
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Fig. 3.13 Impact of exponent, x, on product EDx of LC programs. (a) Shared variables—
2 threads. (b) Shared variables—8 threads. (c) Message passing—2 processes. (d) Message
passing—8 processes

same weight). Comparing only the embedded processors: when they communicate
through shared variables, Atom processor has better EDxP than ARM when
x > 0.38 and x > 0.47 for 2 and 8 threads, respectively. On the other hand, for
the results using message passing, Cortex-A9 has the best EDxP in the execution
with 2 processes regardless of the performance importance. When TLP exploitation
increases to 8, Atom once again outperforms Cortex-A9 for x > 1.35. Therefore,
there are specific scenarios where the best choice is one processor or another. When
the general-purpose processors are compared, Core2Quad has better EDxP than
Xeon in all cases.

Table 3.3 shows the intersection points to figure out which is the best processor in
between the intervals of x considering the charts of Figs. 3.10, 3.11, 3.12, and 3.13.
In overall, when performance is the most important parameter (x > 1), it is true that
GPP is always the best choice. However, as already discussed, looking at the other
side (energy), it depends on how much energy matters for the designer.
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Table 3.3 Intervals of x where each processor is better on the EDxP , when energy is the most
important

Embedded processors GPPs

TLP Atom Cortex-A9 Cortex-A8 Core2Quad Xeon

HC 1 – 0.0–0.60 – > 0.60 –

LC 1 0.10–0.41 0.0–0.10 – > 0.41 –

HC OMP 2 – 0.0–0.77 – > 0.7 –

Shared variables 8 – 0.0–0.81 – > 0.81 –

Figure PT 2 0.36–0.55 0.0–0.36 – > 0.55 –

8 0.19–0.61 0.0–0.19 – > 0.61 –

HC MPI-1 2 – 0.0–0.56 – > 0.56 –

Message passing 8 0.0–0.61 – – > 0.61 –

Figure MPI-2 2 – 0.0–0.42 – > 0.42 –

8 0.0–0.49 – – > 0.49 –

LC SV 2 0.37–0.48 – – > 0.49 –

Figure 8 0.48–0.56 0.0–0.48 – > 0.56 –

MP 2 – 0.0–0.42 – > 0.42 –

8 – 0.0–0.49 – > 0.49 –

3.2.3 The Influence of the Static Power Consumption

In this section, we present a study regarding the influence of the static power on
the total energy consumption of different multicore processors. First, we briefly
discuss what static power is and how it can affect the energy consumption of parallel
applications. Next, the methodology used in this experiment is presented, followed
by a discussion about the results achieved.

As already discussed in Sect. 2.2, there are two main components that constitute
the power used by a CMOS integrated circuit: dynamic and static. The former is
the power consumed while the inputs are active, with capacitance charging and
discharging, being directly proportional to the circuit switching activity. The static
power derives from the length of the transistor channel as well as the doping level
and gate thickness. As an example, although increasing doping level allows higher
on current for faster transitions, it also causes more considerable leakage. Therefore,
companies can tune the circuits during the manufacturing process to be faster and
consume more static power or vice versa [83]. In some cases, the static power in the
processor may represent up to 40% of the total energy consumption [35, 60, 83].

TLP exploitation in multicore systems affects dynamic and static power con-
sumption in different ways. The former will most likely increase as the number of
threads increase, since additional memory accesses and executed instructions are
necessary for synchronization and data exchange. On the other hand, memory will
consume less static power because it will be powered for a shorter period because
of overall performance improvements. However, since parallelization is not perfect,
some threads distributed over the processors will take longer to execute than others.
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Table 3.4 Respective energy consumed per instruction and static power when changing the
importance of static power of processor

10% 20% 30% 40%

Atom Static power (W) 0.242 0.484 0.726 0.968

Energy per instruction (nJ) 0.448 0.391 0.335 0.276

Cortex-A9 Static power (W) 0.125 0.250 0.375 0.500

Energy per instruction (nJ) 0.291 0.237 0.183 0.129

Cortex-A8 Static power (W) 0.085 0.170 0.255 0.340

Energy per instruction (nJ) 0.338 0.266 0.195 0.124

Core2Quad Static power (W) 2.195 4.390 6.585 8.780

Energy per instruction (nJ) 1.267 1.126 0.985 0.845

Xeon Static power (W) 1.848 3.696 5.544 7.392

Energy per instruction (nJ) 1.419 1.261 1.103 0.946

In such cases, the sum of all amounts of static power consumed by all the processors
will be larger than its sequential counterpart.

Considering the aforementioned scenario, this section aims to investigate the
influence of the static power consumption of the processor on parallel applications in
multicore systems. We consider four different proportions of static power in respect
to the total power consumption of the processor obtained from [13] and CACTI 5.14:
10, 20, 30, and 40%. Table 3.4 shows the static power and the energy consumption
per instruction when different ratios of static/dynamic power are considered. When
the proportion of static power increases in respect to the total power consumption of
the processor, dynamic (energy per executed instruction) will decrease in the same
amount; therefore, total energy consumption will always be the same. This analysis
involves power in the core only: the ratio of static/dynamic power consumption of
the memory system is not changed.

The results consider the geometric mean of each communication model, since
the behavior is very similar between the interfaces that implement them (standard
deviation lower than 1%). Figures 3.14 and 3.15 show the impact of static power for
each communication model on each processor in HC and LC programs, respectively.
All the charts consider the results when the static power of the processor is fixed to
10% as baseline, and show the impact on the total energy consumption when it is
changed to 20, 30, and 40%. Therefore, values lower than “1” mean that there are
energy savings.

In overall, the architecture of the processors influences how the static power
impacts the total energy consumption. In Intel processors, increasing the importance
of static power will also increase energy consumption, while one can observe
the opposite behavior for ARM processors. The amount of TLP also changes the
variation ratio: the more TLP is exploited, the more significant the impact when
changing the amount of static power on the total energy consumption. As the

4Available at: http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html.

http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
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Fig. 3.14 Impact on the total energy consumption when the static power of processor varies from
10%—HC Programs. (a) Shared variables. (b) Message passing
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Fig. 3.15 Impact on the total energy consumption when the static power of processor varies from
10%—LC programs. (a) Shared variables. (b) Message passing

parallelization is not perfect, the sum of the static power consumed by all cores is
larger than if it was sequentially executed. It means that the static power consumed
by the processors starts to be more important as more TLP is exploited.
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Table 3.5 Number of executed instructions by core per second

Comm.
model

TLP HPC programs LC programs

Atom A9 A8 C2Q Xeon Atom A9 A8 C2Q Xeon

Shared variables 2 837 899 749 4018 3286 432 744 620 1916 1441

3 875 893 743 3969 3197 427 747 623 1880 1428

4 887 882 735 3924 3136 432 718 598 1849 1421

8 835 840 700 3770 2973 431 717 598 1838 1394

Message passing 2 720 807 672 3376 2945 410 745 621 1955 1525

3 696 754 628 3347 2842 405 738 615 1932 1502

4 671 729 607 3262 2780 407 708 590 1911 1462

8 640 599 499 2759 2440 404 702 584 1892 1365

Sequential 884 905 754 3625 3342 419 733 611 1936 1541

Table 3.6 The proportion of the number of executed instructions by core per second in the parallel
versions regarding its sequential version

Comm.
model

TLP HPC programs LC programs

Atom A9 A8 C2Q Xeon Atom A9 A8 C2Q Xeon

Shared variables 2 0.95 0.99 0.99 1.11 0.98 1.03 1.02 1.01 0.99 0.94

3 0.99 0.99 0.99 1.09 0.96 1.02 1.02 1.02 0.97 0.93

4 1.00 0.97 0.97 1.08 0.94 1.03 0.98 0.98 0.96 0.92

8 0.94 0.93 0.93 1.04 0.89 1.03 0.98 0.98 0.95 0.90

AVG 0.97 0.97 0.97 1.08 0.94 1.03 1.00 1.00 0.97 0.92

Message passing 2 0.81 0.89 0.89 0.93 0.88 0.98 1.02 1.02 1.01 0.99

3 0.79 0.83 0.83 0.92 0.85 0.97 1.01 1.01 1.00 0.97

4 0.76 0.80 0.80 0.90 0.83 0.97 0.97 0.97 0.99 0.95

8 0.72 0.66 0.66 0.76 0.73 0.96 0.96 0.96 0.98 0.89

AVG 0.77 0.79 0.79 0.88 0.82 0.97 0.99 0.99 0.99 0.95

Sequential 1 1 1 1 1 1 1 1 1 1

Let us first discuss the results of the Intel processors executing HC programs
(Fig. 3.14). In such cases, the effect of changing the proportion of static power is
negligible in most cases. To better understand that, let us consider Tables 3.5 and 3.6.
The former presents the number of executed instructions by core per second. To
compare only the behavior of each PPI on each processor, Table 3.6 depicts the
number of instructions executed per second in the parallel version by its sequential
counterpart, the bigger the result, the closer it is to the behavior of its sequential
version, meaning that the processor will be executing more instructions instead of
waiting for sync and data exchange.

When doing this calculation, we can note that the LC programs have bigger
values than HC programs—which means that, even though they execute less instruc-
tions per second (Table 3.5) because of the kind of application, their parallel versions
proportionally execute more instructions per second than the HC applications, which
shows that they spend less time waiting for data exchange or sync. This can be
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observed for the message passing in Tables 3.5 and 3.6: the higher the amount of
executed processes, the higher the load imbalance, and the smaller is the number
of executed instructions per second. In this case, static power plays an important
role. When it comes to the ARM processors executing HC programs (Fig. 3.14), the
results show that in all cases, increasing static power of the processor reduces the
total energy consumption. The reason for this is that the reduction in the dynamic
power consumption is greater than the increase provided by the change in the value
of the static power in the processor.

For the LC programs (Fig. 3.15), the impact of changing the amount of static
power is greater than the observed for the HC programs. In addition, the same
behavior is observed regardless of the communication model used. Considering the
Intel processors, the higher the TLP exploitation, the greater the impact of increasing
the static power of the processor. In the sequential version, when the static power
changes from 10 to 40%, the total energy consumption increases by almost 24% on
both Atom and Core2Quad, and 18% in the Xeon processor. As for the execution
with eight threads/processes, this energy difference is even higher: 35 and 38% for
shared variables and message passing, respectively, in the Atom processor; and 28
and 30% in the Core2Quad and Xeon, respectively, regardless of the communication
model. As for ARM processors, which have a high number of executed instructions
per second (see Table 3.5), changing the static power of the processor from 10 to
40% results in energy savings in all cases: almost 8% in the Cortex-A9 and 24% in
the Cortex-A8.

Analyzing the whole scenario, Intel and ARM processors have different behav-
iors when the proportion of static power is changed in respect to the total
power consumption. In the former, regardless of the kind of application and the
communication model used, keeping static power of the processor as low as possible
saves energy in most cases, even though at different levels. On the other hand, for
ARM processors, the higher the static power, the greater the reduction in energy
consumption.

3.3 Discussion

This chapter performed a static exploration for optimal combinations of proces-
sors, communication models, and TLP exploitation to reach the best results in
performance, energy, and EDP. A great number of variables were considered: 5
multicore processors with different microarchitectures and ISAs; 14 parallel bench-
marks classified according to the communication rate; four parallel programming
interfaces classified into two classes of communication models; different levels of
TLP exploitation; and four different levels of static power of the processor. We
demonstrated that even though there are combinations with the best performance
and the lowest energy consumption, there is no single one that offers the best result
for both at the same time. However, we found some significant results, summarized
next.
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Let us first discuss performance and energy (Sect. 3.2.1), in which the most robust
processor (Core2Quad) achieved the lowest execution time, while the embedded
processor Cortex-A9 consumed less energy in all cases. For HC applications, the
PPIs matter: PThreads has shown to be the best choice for all Intel processors (GPP
or embedded), since it provides considerable performance improvements over the
others at the same price of energy consumption as the sequential version. On the
other hand, when exploiting parallel loops, OpenMP is better for ARM processors,
since the impact of the busy-waiting mechanism is lower on these processors than on
the Intel ones. In overall, MPI is the worst choice for all the processors, presenting
poor scalability: as TLP exploitation increases, performance gains are limited by its
message based communication, and energy consumption increases when compared
to its sequential version. It was expected that MPI would perform worse than
OpenMP and PThreads in HC applications on shared memory environments. This
behavior happens because each communication between MPI processes involves an
additional cost related to the construction/deconstruction of the message as well as
the message transmission.

There are different situations when analyzing the Pareto front for all the cases. In
OpenMP applications, it contains only two points: the best result for performance
(Core2Quad running 8 threads) and the best for energy consumption (Cortex-A9,
also executing 8 threads). There is no option that it will not influence considerably a
metric to improve another. For the other PPIs, there are more points to be explored,
and the impact on a metric to improve another is minimal. For instance, in MPI-1
applications with 8 processes, it is possible to reduce the energy consumption in
15% without impact on performance by changing processors (Core2Quad instead
of Xeon).

The scenario is different for LC benchmarks. For those, what matters is the
communication model rather than a specific PPI. Since they are more CPU-bound,
how the processor can exploit ILP and its operating frequency gain in importance.
Regardless of the PPI, performance increases and energy reduces as the TLP
increases, resulting in better EDP. Therefore, even though these applications scale
better than HC ones, the design space is more restricted, offering less opportunities
for optimization. The Pareto front has fewer points and alternatives to optimize a
metric with minimal impact on another, and the differences between Intel and ARM
processors are subtler.

When it comes to EDxP (energy-delayxproduct, depicted in Sect. 3.2.2), in
all cases (no matter the processor or PPI used) the parallel versions were better
than their sequential counterparts, if one considers that performance has the
same weight as energy (x = 1), and the difference in EDP between a parallel
version and its sequential counterpart increases as more importance is given to
performance. The Core2Quad processor has better EDxP in this case, regardless
of the communication model used or the number of threads/processes.

In general, GPPs are always the best choice when targeting performance only.
However, looking at the other side (energy), it depends on how much energy matters
to the designer. For instance, in HC programs using PThreads, three processors have
the best EDxP according to the importance of energy: Cortex-A9 for x < 0.36;
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Atom for 0.36 < x < 0.55; Core2Quad for larger values of x. In some scenarios,
Core2Quad is the best choice even if energy is more important (x < 1). However,
as the number of threads increase, more importance to performance must be given
(the x value must get closer to 1) so the Core2Quad still presents the best EDxP .

The PPIs influence EDP in different aspects. For OpenMP, energy consumption
in the memory system is very important, because of the busy-waiting. For PThreads,
on the other hand, a more robust processor will decrease context switching time.
For the MPI versions of the applications, as more threads execute, EDP in general
worsens for ARM processors and improves for Intel ones, since the impact of the
communication on the former is more evident.

In Sect. 3.2.3, we demonstrated that processors present different behaviors when
tuning the values of energy resultant from the static and dynamic power of the
processor. For Intel processors, by keeping the static power of the processor as low
as possible, more energy will be saved. In the most significant case, it is possible to
save 38% of energy if the hardware designer keeps the static power at 10% instead
of 40%. On the other hand, the opposite happens for the ARM processors, where the
higher the static power, the lower the total energy. For instance, it is possible to save
28% of energy if the static power represents 40% of the total energy, instead of 10%.
The number of executed threads also influences results: as more TLP is exploited,
more impact it has on tuning the static power. These results are directly related to
how long the processor spends time synchronizing and communicating. Therefore,
HC applications are more susceptible to changes in static power.
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