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Preface

Efficiently exploiting thread-level parallelism from modern multicore systems has
been challenging for software developers. While blindly increasing the number
of threads may lead to performance gains, it can also result in a disproportionate
increase in energy consumption. In the same way, optimization techniques for
reducing energy consumption, such as DVFS and power gating, can lead to
huge performance loss if used incorrectly. In this book, we present and discuss
several techniques that address these challenges. We start by providing a brief
theoretical background on parallel computing in software and the sources of power
consumption. Then, we show how different parallel programming interfaces and
communication models may affect energy consumption in different ways. Next, we
discuss tuning techniques to adapt the number of threads/operating frequency to
achieve the best compromise between performance and energy. We finish this book
with a detailed analysis of a representative example of an adaptive approach.

Alegrete, Brazil Arthur Francisco Lorenzon
Porto Alegre, Brazil Antonio Carlos Schneider Beck Filho
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Chapter 1
Runtime Adaptability: The Key for
Improving Parallel Applications

1.1 Introduction

With the increasing complexity of parallel applications, which require more com-
puting power, energy consumption has become an important issue. The power
consumption of high-performance computing (HPC) systems is expected to signifi-
cantly grow (up to 100 MW) in the next years [34]. Moreover, while general-purpose
processors are being pulled back by the limits of the thermal design power (TDP),
most of the embedded devices are mobile and heavily dependent on battery (e.g.,
smartphones and tablets). Therefore, the primary objective when designing and
executing parallel applications is not to merely improve performance but to do so
with minimal impact on energy consumption.

Performance improvements can be achieved by exploiting instruction-level
parallelism (ILP) or thread-level parallelism (TLP). In the former, independent
instructions of a single program are simultaneously executed, usually on a super-
scalar processor, as long as there are functional units available. However, typical
instruction streams have only a limited amount of parallelism [122], resulting in
considerable efforts to design a microarchitecture that will bring only marginal
performance gains with very significant area/power overhead. Even if one considers
a perfect processor, ILP exploitation will reach an upper bound [85].

Hence, to continue increasing performance and to provide better use of the extra
available transistors, modern designs have started to exploit TLP more aggressively
[7]. In this case, multiple processors simultaneously execute parts of the same
program, exchanging data at runtime through shared variables or message passing.
In the former, all threads share the same memory region, while in the latter each
process has its private memory, and the communication occurs by send/receive
primitives (even though they are also implemented using a shared memory context
when the data exchange is done intra-chip [21]). Regardless of the processor or
communication model, data exchange is usually done through memory regions that
are more distant from the processor (e.g., L3 cache and main memory) and have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
A. Francisco Lorenzon, A. C. S. Beck Filho, Parallel Computing Hits the Power Wall,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-28719-1_1
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2 1 Runtime Adaptability: The Key for Improving Parallel Applications

higher delay and power consumption when compared to memories that are closer to
it (e.g., register, L1, and L2 caches).

Therefore, even though execution time shall decrease because of TLP exploita-
tion, energy will not necessarily follow the same trend, since many other variables
are involved:

• Memories that are more distant from the processor will be more accessed for
synchronization and data exchange, increasing energy related to dynamic power
(which increases as there is more activity in the circuitry).

• A parallel application will usually execute more instructions than its sequential
counterpart. Moreover, even considering an ideal scenario (where processors are
put on standby with no power consumption), the sum of the execution times of
all threads executing on all cores tends to be greater than if the application was
sequentially executed on only one core. In consequence, the resulting energy
from static power (directly proportional to how long each hardware component
is turned on) consumed by the cores will also be more significant. There are
few exceptions to this rule, such as non-deterministic algorithms, in which
the execution of a parallel application may execute fewer instructions than its
sequential counterpart.

• The memory system (which involves caches and main memory) will be turned
on for a shorter time (the total execution time of the applications), which will
decrease the energy resulting from the static power.

Given the aforementioned discussion, cores tend to consume more energy from
both dynamic and static power, while memories will usually spend more dynamic
power (and hence energy), but also tend to save static power, which is very
significant [121]. On top of that, neither performance nor energy improvements
resultant from TLP exploitation are linear, and sometimes they do not scale as the
number of threads increases, which means that in many cases the maximum number
of threads will not offer the best results.

On top of that, in order to speed up the development process of TLP exploitation
and make it as transparent as possible to the software developer, different parallel
programming interfaces are used (e.g., OpenMP—Open Multi-Processing [22],
PThreads—POSIX Threads [17], or MPI—Message Passing Interface [38]). How-
ever, each one of these has different characteristics with respect to the management
(i.e., creation and finalization of threads/processes), workload distribution, and
synchronization.

In addition to the complex scenario of thread scalability, several optimization
techniques for power and energy management can be used, such as dynamic
voltage and frequency scaling (DVFS) [62] and power gating [47]. The former is
a feature of the processor that allows the application to adapt the clock frequency
and operating voltage of the processor on the fly. It enables software to change
the processing performance to attain low-power consumption while meeting the
performance requirements [62]. On the other hand, power gating consists of
selectively powering down certain blocks in the chip while keeping other blocks
powered up. In multicore processors, it switches off unused cores to reduce power
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consumption [84]. Therefore, in addition to selecting the ideal number of threads
to execute an application, choosing the optimal processor frequency and turning off
cores unused during the application execution may lead to significant reduction in
energy consumption with minimal impact on performance.

1.2 Scalability Analysis

Many works have associated the fact that executing an application with the maxi-
mum possible number of available threads (the common choice for most software
developers [63]) will not necessarily lead to the best possible performance. There
are several reasons for this lack of scalability: instruction issue-width saturation; off-
chip bus saturation; data-synchronization; and concurrent shared memory accesses
[51, 64, 95, 114, 115]. In order to measure (through correlation) their real influence,
we have executed four benchmarks from our set (and used them as examples
in the next subsections) on a 12-core machine with SMT support. Each one of
them has one limiting characteristic that stands out, as shown in Table 1.1. The
benchmark hotspot (HS) saturates the issue-width; fast Fourier transform (FFT),
the off-chip bus; MG, the shared memory accesses; and N-body (NB) saturates
data-synchronization. To analyze each of the scalability issues, we considered the
Pearson correlation [9]. It takes a range of values from +1 to −1: the stronger the
“r” linear association between two variables, the closer the value will be to either
+1 or −1. r ≥ 0.9 or r ≤ −0.9 means a very strong correlation (association is
directly or inversely proportional). We discuss these bottlenecks next.

Issue-Width Saturation SMT allows many threads to run simultaneously on a
core. It increases the probability of having more independent instructions to fill the
function units (FUs). Although it may work well for applications with low ILP, it
can lead to the opposite behavior if an individual thread presents enough ILP to
issue instructions to all or most of the core’s FUs. Then, SMT may lead to resource
competition and functional unit contention, resulting in extra idle cycles. Figure 1.1a
shows the performance speedup relative to the sequential version and the number of
idle cycles (average, represented by the bars, and total) as we increase the number
of threads for the HS application. As we start executing with 13 threads, two will
be mapped to the same physical core, activating SMT. From this point on, as the
number of threads grows, the average number of idle cycles increases by a small
amount or stays constant. However, the total number of idle cycles significantly

Table 1.1 Pearson
correlation between the
scalability issues and each
benchmark

HS FFT MG NB

Issue-width saturation −0.92 −0.71 −0.79 −0.78

Off-chip bus saturation −0.51 −0.98 −0.76 0.46

Shared memory accesses −0.52 −0.43 −0.96 0.80

Data-synchronization −0.54 −0.50 −0.59 0.97
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Fig. 1.1 Scalability behavior of parallel applications. (a) Issue-width saturation. (b) Off-chip bus
saturation

increases. Because this application has high ILP, there are not enough resources to
execute both threads concurrently as if each one was executed on a single core.
They become the new critical path of that parallel region, as both threads will delay
the execution of the entire parallel region (threads can only synchronize when all
have reached the barrier). Therefore, performance drops and is almost recovered
only with the maximum number of threads executing. In the end, extra resources
are being used without improving performance and potentially increasing energy
consumption, decreasing resource efficiency.

Off-Chip Bus Saturation Many parallel applications operate on huge amounts
of data that are private to each thread and have to be constantly fetched from the
main memory. In this scenario, the off-chip bus that connects memory and processor
plays a decisive role in thread scalability: as each thread computes on different data
blocks, the demand for off-chip bus increases linearly with the number of threads.
However, the bus bandwidth is limited by the number of I/O pins, which does
not increase according to the number of cores [41]. Therefore, when the off-chip
bus saturates, no further improvements are achieved by increasing the number of
threads [115]. Figure 1.2b shows the FFT execution as an example. As the number
of threads increases, execution time and energy consumption reduce until the off-
chip bus becomes completely saturated (100% of utilization). From this point on
(4 threads), increasing the number of threads does not improve performance, as
the bus cannot deliver all the requested data. There might be an increase in energy
consumption as well since many hardware components will stay active while the
cores are not being properly fed with data.

Shared Memory Accesses Threads communicate by accessing data that are
located in shared memory regions, which are usually more distant from the
processor (e.g., L3 cache and main memory), so they can also become a bottleneck.
Figure 1.2 presents the number of accesses to the L3 cache (the only cache level
shared among the cores) in the primary y-axis and the execution time normalized



1.2 Scalability Analysis 5

Fig. 1.2 Scalability behavior
of MG benchmark—shared
memory accesses
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to the sequential execution in the secondary y-axis for the MG benchmark.
When the application executes with more than four threads, the performance is
highly influenced by the increased number of accesses to L3. Other factors may
also influence L3 performance: thread scheduling, data affinity, or the intrinsic
characteristics of the application. For instance, an application with a high rate of
private accesses to L1 and L2 may also lead to an increase in the L3 accesses.
Moreover, part of the communication may be hidden from the L3 when SMT is
enabled: two threads that communicate and are executing on the same SMT core
may not need to share data outside it.

Data-Synchronization Synchronization operations ensure data integrity during
the execution of a parallel application. In this case, critical sections are implemented
to guarantee that only one thread will execute a given region of code at once, and
therefore data will correctly synchronize. In this way, all code inside a critical
section must be executed sequentially. Therefore, when the number of threads
increases, more threads must be serialized inside the critical sections. It also
increases the synchronization time (Fig. 1.3a), potentially affecting the execution
time and energy consumption of the whole application. Figure 1.3b shows this
behavior for the n-body benchmark. While it executes with 4 threads or less, the
performance gains within the parallel region reduce the execution time and energy
consumption, even if the time spent in the critical region increases (Fig. 1.3a).
However, from this point on, the time the threads spend synchronizing overcomes
the speedup achieved in the parallel region.

1.2.1 Variables Involved

Considering the prior scenario, choosing the right number of threads to a given
application will offer opportunities to improve performance and increase the energy
efficiency. However, such task is extremely difficult: besides the huge number of
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processors. (d) Different parallel regions

variables involved, many of them will change according to different aspects of the
system at hand and are only possible to be defined at runtime, such as:

• Input set: As shown in Fig. 1.4a, different levels of performance improvements
for the LULESH benchmark [57] (also used as examples in the next two items)
over its single-threaded version are reached with a different number of threads (x-
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axis). However, these levels vary according to the input set (small or medium).
While the best number of threads is 12 for the medium input set, the ideal number
for the small set is 11.

• Metric evaluated: As Fig. 1.4b shows, the best performance is reached with 12
threads, while 6 threads bring the lowest energy consumption, and 9 presents
the best trade-off between both metrics (represented by the energy-delay product
(EDP)).

• Processor architecture: Fig. 1.4c shows that the best EDP improvements of the
parallel application on a 32-core system are when it executes with 11 threads.
However, the best choice for a 24-core system is 9 threads.

• Parallel regions: Many applications are divided into several parallel regions, in
which each of these regions may have a distinct ideal number of threads, since
their behavior may vary as the application executes. As an example, Fig. 1.4d
shows the behavior of four parallel regions from the Poisson equation benchmark
[94] when running on a 24-core system. One can note that each parallel region is
better executed with a different number of threads.

• Application behavior: A DVFS enabled system adapts the operating frequency
and voltage at runtime according to the application at hand, taking advantage
of the processor idleness (usually provoked by I/O operations or by memory
requests). Therefore, a memory- or CPU-bound application will influence the
DVFS at different levels.

1.3 This Book

Efficiently exploiting thread-level parallelism from new multicore systems has been
challenging for software developers. While blindly increasing the number of threads
may lead to performance gains, it can also result in a disproportionate increase
in energy consumption. In the same way, optimization techniques for reducing
energy consumption, such as DVFS and power gating, can lead to huge performance
loss if used incorrectly. For this reason, rightly choosing the number of threads,
the operating processor frequency, and the number of active cores is essential to
reach the best compromise between performance and energy. However, such task
is extremely difficult: besides the large number of variables involved, many of
them will change according to different aspects of the system at hand and are
defined at runtime, such as the input set of the application, the metric evaluated, the
processor microarchitecture, and the behavior of the parallel regions that comprise
the application.

In this book, we present and discuss several techniques that address this
challenge.

In Chap. 2, we provide a brief background for the reader. First, we give an
overview of parallel computing in software, presenting the parallel programming
interfaces widely used in multicore architectures. Second, we present the techniques
used in software and hardware to optimize the power and energy consumption
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of parallel applications. Then, we describe the design space exploration of the
optimization of parallel applications.

Chapter 3 assesses the influence of the parallel programming interfaces that
exploit parallelism through shared variables (OpenMP and PThreads) or message
passing (MPI-1 and MPI-2) on the behavior of parallel applications with different
communication demands for embedded and general-purpose processors.

Chapter 4 presents the works that aim to optimize the execution of parallel
applications by tuning the number of threads (DCT) or by selecting the ideal
processor operating frequency through DVFS. We have conducted an extensive
research considering studies published in the main conferences and journals over the
past fifteen years. In this sense, more than fifty works were analyzed and classified
into three classes according to the optimization method: only DCT, only DVFS, and
the ones that apply both techniques.

Finally, in Chap. 5, we present in details, as a case study, Aurora, which is a new
OpenMP framework that optimizes the performance, energy, or EDP of parallel
applications by tuning the number of threads at runtime without any interference
from the software developer.



Chapter 2
Fundamental Concepts

2.1 Parallel Computing in Software

Parallel programming can be defined as the process of dividing tasks of an
application that can be executed concurrently, aiming to reduce their total execution
time [97]. It has been widely used in the development of scientific applications
that require large computing power, such as weather forecasting calculations, DNA
sequences, and genome calculation. Moreover, with the popularization of multicore
architectures, general-purpose applications (e.g., graphics editors and web servers)
have also been parallelized.

The main goal of parallel computing is to use multiple processing units for
solving problems in less time [36]. The key for parallel computing is the possibility
to exploit concurrency of a given application by decomposing a problem into sub-
problems that can be executed at the same time. As a simple example, suppose that
part of an application involves computing the summation of a large set of values. In a
sequential execution, all the values are added together in only one core, sequentially,
as depicted in Fig. 2.1a. On the other hand, with the parallel computing, the data
set can be partitioned, and the summations computed simultaneously, each on a
different processor (C0, C1, C2, and C3, in Fig. 2.1b). Then, the partial sums are
combined to get the final answer.

2.1.1 Communication Models

Parallel computing exploits the use of multiple processing units to execute parts of
the same program simultaneously. Thus, there is cooperation between the processors
that execute concurrently. However, for this cooperation to occur, processors should
exchange information at runtime. In multicore processors, this can be done through
shared variables or message passing [97]:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
A. Francisco Lorenzon, A. C. S. Beck Filho, Parallel Computing Hits the Power Wall,
SpringerBriefs in Computer Science, https://doi.org/10.1007/978-3-030-28719-1_2
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Fig. 2.1 Example of parallel computing. (a) Sequential execution. (b) Parallel execution in four
cores

Shared variable is based on the existence of an address space in the memory that
can be accessed by all processors. It is widely used when parallelism is exploited
at the level of the thread since they share the same memory address space. In this
model, the threads can have private variables (the thread has exclusive access) and
shared variables (all the threads have access). When the threads need to exchange
information between them, they use shared variables located in memory regions that
are accessed by all threads (shared memory). Each parallel programming interface
provides synchronization operations to control the access to shared variables,
avoiding race conditions.

Message passing is used in environments where memory space is distributed
or where processes do not share the same memory address space. Therefore,
communication occurs using send/receive operations which can be point-to-point
or collective ones. In the first, data exchange is done between pairs of processes. In
the latter, more than two processes are communicating.

2.1.2 Parallel Programming Interfaces

The development of applications that can exploit the full potential parallelism of
multiprocessor architectures depends on many specific aspects of their organization,
including the size, structure, and hierarchy of the memory. Operating Systems pro-
vide transparency concerning the allocation and scheduling of different processes
across the various cores. However, when it comes to TLP exploitation, which
involves the division of the application into threads or processes, the responsibility
is of the programmer. Therefore, PPIs make the extraction of the parallelism
easier, fast, and less error-prone. Several parallel programming interfaces are used
nowadays, in which the most common are Open Multi-Processing (OpenMP),
POSIX Threads (PThreads), Message Passing Interface (MPI), Threading Building
Blocks (TBB), Cilk Plus, Charm, among others.
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OpenMP is a PPI for shared memory in C/C++ and FORTRAN that consists
of a set of compiler directives, library functions, and environment variables [22].
Parallelism is exploited through the insertion of directives in the sequential code that
inform the compiler how and which parts of the code should be executed in parallel.
The synchronization can be implicit (implied barrier at the end of a parallel region)
or explicit (synchronization constructs) to the programmer. By default, whenever
there is a synchronization point, OpenMP threads enter in a hybrid state (Spin-
lock and Sleep), i.e., they access the shared memory repeatedly until the number
of spins of the busy-wait loop is achieved (Spin-lock), and then, they enter into
a sleep state until the end of synchronization [22]. The amount of time that each
thread waits actively before waiting passively without consuming CPU power may
vary according to the waiting policy that gives the number of spins of the busy-wait
loop (e.g., the standard value when omp wait policy is set to being active is 30 billion
iterations) [86].

PThreads is a standard PPI for C/C++, where functions allow fine adjustment
in the grain size of the workload. Thus, the creation/termination of the threads, the
workload distribution, and the control of execution are defined by the programmer
[17]. PThreads synchronization is done by blocking threads with mutexes, which
are inserted in the code by the programmer. In this case, threads lose the processor
and wait on standby until the end of the synchronization, when they are rescheduled
for execution [117].

Cilk Plus is integrated with a C/C++ compiler and extends the language with the
addition of keywords by the programmer indicating where parallelism is allowed.
Cilk Plus enables programmers to concentrate on structuring programs to expose
parallelism and exploit locality. Thus, the runtime system has the responsibility of
scheduling the computation to run efficiently on a given platform. Besides, it takes
care of details like load balancing, synchronization, and communication protocols.
Unlike PThreads and OpenMP, Cilk Plus works at a finer grain, with a runtime
system that is responsible for efficient execution and predictable performance [79].

TBB is a library that supports parallelism based on a tasking model and can be
used with any C++ compiler. TBB requires the use of function objects to specify
blocks of code to run in parallel, which relies on templates and generic program-
ming. The synchronization between threads is done by mutual exclusion, in which
the threads in this state perform busy-waiting until the end of synchronization [79].

MPI is a standard message passing library for C/C++ and FORTRAN. It imple-
ments an optimization mechanism to provide communication in shared memory
environments [38]. MPI is like PThreads regarding the explicit exploitation of
parallelism. Currently, it is divided into three norms. In MPI-1, all processes are
created at the beginning of the execution and the number of processes does not
change throughout program execution. In MPI-2, the creation of the processes
occurs at runtime, and the number of processes can change during the execution.
In MPI-3, the updates include the extension of collective operations to include
nonblocking versions and extensions to the one-sided operations. Communication
between MPI processes occurs through send/receive operations (point-to-point or
collective ones), which are likewise explicitly handled by the programmers. When
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MPI programs are executed on shared memory architectures, message transmissions
can be done as shared memory accesses, in which messages are broken into
fragments that are pushed and popped in first-in first-out (FIFO) queues of each
MPI process [16, 21].

2.1.3 Multicore Architectures

Multicore architectures have multiple processing units (cores) and a memory system
that enables communication between the cores. Each core is an independent logical
processor with its resources, such as functional units, pipeline execution, registers,
among others. The memory system consists of private memories, which are closer to
the core and only accessible by a single core, and shared memories, which are more
distant from the core and can be accessed by multiple cores [43]. Figure 2.2 shows
an example of a multicore architecture with four cores (C0, C1, C2, and C3) and its
private (L1 and L2 caches) and shared memories (L3 cache and main memory).

Multicore processors can exploit TLP. In this case, multiple processors simul-
taneously execute parts of the same program, exchanging data at runtime through
shared variables or message passing. Regardless of the processor or communication
model, data exchange is done through load/store instructions in shared memory
regions. As Fig. 2.2 shows, these regions are more distant from the processor (e.g.,
L3 cache and main memory), and have a higher delay and power consumption when
compared to memories that are closer to it (e.g., register, L1, and L2 caches) [61].

Among the challenges faced in the design of multicore architectures, one of
the most important is related to the data access on parallel applications. When a
private data is accessed, its location is migrated to the private cache of a core, since
no other core will use the same variable. On the other hand, shared data may be
replicated in multiple caches, since other processors can access it to communicate.
Therefore, while sharing data improves concurrency between multiple processors, it
also introduces the cache coherence problem: when a processor writes on any shared

Fig. 2.2 Basic structure of a
multicore architecture with
four cores

L1 L1 L1 L1

L3

C0 C1 C2 C3

Main Memory

L2 L2 L2 L2
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data, the information stored in other caches may become invalid. In order to solve
this problem, cache coherence protocols are used.

Cache coherence protocols are classified into two classes: directory based and
snooping [88]. In the former, a centralized directory maintains the state of each
block in different caches. When an entry is modified, the directory is responsible
for either updating or invalidating the other caches with that entry. In the snooping
protocol, rather than keeping the state of sharing block in a single directory, each
cache that has a copy of the data can track the sharing status of the block. Thus, all
the cores observe memory operations and take proper action to update or invalidate
the local cache content if needed.

Cache blocks are classified into states, in which the number of states depends
on the protocol. For instance, directory based and snooping protocols are simple
three-state protocols in which each block is classified into modified, shared, and
invalid (they are often called as MSI—modified, shared, and invalid—protocol).
When a cache block is in the modified state, it has been updated in the private
cache, and cannot be in any other cache. The shared state indicates that the block in
the private cache is potentially shared, and the cache block is invalid when a block
contains no valid data. Based on the MSI protocol, extensions have been created
by adding additional states. There are two common extensions: MESI, which adds
the state “exclusive” to the MSI to indicate when a cache block is resident only in
a single cache but is clean, and MOESI, which adds the “state-owned” to the MESI
protocol to indicate that a particular cache owns the associated block and out-of-date
in memory [43].

When developing parallel applications, the software developer does not need
to know about all details of cache coherence. However, knowing how the data
exchange occurs at the hardware level can help the programmer to make better
decisions during the development of parallel applications.

2.2 Power and Energy Consumption

Two main components constitute the power used by a CMOS integrated circuit:
dynamic and static [58]. The former is the power consumed while the inputs are
active, with capacitances charging and discharging, which is directly proportional
to the circuit switching activity, given by Eq. (2.1).

Pdynamic = CV 2Af (2.1)

Capacitance (C) depends on the wire lengths of on-chip structures. The designers
in several ways can influence this metric. For example, building two smaller cores
on-chip, rather than one large, is likely to reduce average wire lengths, since most
wires will interconnect units within a single core.
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Supply voltage (V or Vdd) is the main voltage to power the integrated circuit.
Because of its direct quadratic influence on dynamic power, supply voltage has a
high importance on power-aware design.

Activity factor (A) refers to how often clock ticks lead to switching activity on
average.

Clock frequency (f ) has a fundamental impact on power dissipation because it
indirectly influences supply voltage: the higher clock frequencies can require a
higher supply voltage. Thus, the combined portion of supply voltage and clock
frequency in the dynamic power equation has a cubic impact on total power
dissipation.

While dynamic power dissipation represents the predominant factor in CMOS
power consumption, static power has been increasingly prominent in recent tech-
nologies. The static power essentially consists of the power used when the transistor
is not in the process of switching and is determined by Eq. (2.2), where the supply
voltage is V, and the total current flowing through the device is Istatic.

Pstatic = IstaticxV (2.2)

Energy, in joules, is the integral of total power consumed (P) over the time (T),
given by Eq. (2.3).

Energy =
∫ T

0
Pi (2.3)

Currently, energy is considered one of the most fundamental metrics due to the
energy restrictions: while most of the embedded devices are mobile and heavily
dependent on battery, general-purpose processors are being pulled back by the limits
of thermal design power. Also, the reduction of energy consumption on HPC is one
of the challenges to achieving the Exascale era, since the actual energy required to
maintain these systems corresponds to the power from a nuclear plant of medium
size [34]. Therefore, several techniques to reduce energy consumption have been
proposed, such as DVFS and power gating.

2.2.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling is a feature of the processor that allows
software to adapt the clock frequency and operating voltage of a processor on the
fly without requiring a reset [62]. DVFS enables software to change system-on-
chip (SoC) processing performance to attain low-power consumption while meeting
the performance requirements. The main idea of the DVFS is dynamically scaling
the supply voltage of the CPU for a given frequency so that it operates at a
minimum speed required by the specific task executed [62]. Therefore, this can yield
a significant reduction in power consumption because of the V 2 relationship shown
in Eq. (2.2).
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Reducing the operating frequency reduces the processor performance and the
power consumption per second. Also, when reducing the voltage, the leakage
current from the CPU’s transistors decreases, making the processor most energy-
efficient resulting in further gains [99]. However, determining the ideal frequency
and voltage for a given point of execution is not a trivial task. To make the DVFS
management as transparent as possible to the software developer, Operating Systems
provide frameworks that allow each CPU core to have a min/max frequency,
and a governor to control it. Governors are kernels models that can drive CPU
core frequency/voltage operating points. Currently, the most common available
governors are:

• Performance: The frequency of the processor is always fixed at the maximum,
even if the processor is underutilized.

• Powersave: The frequency of the processor is always fixed at the minimum
allowable frequency.

• Userspace: allows the user or any userspace program running to set the CPU for
a specific frequency.

• Ondemand: The frequency of the processor is adjusted according to the workload
behavior, within the range of allowed frequencies.

• Conservative: In the same way as the previous mode, the frequency of the
processor is gradually adjusted based on the workload, but in a more conservative
way.

Besides the pre-defined governors, it is possible to set the processor frequency
level manually, by editing the configurations of the CPU frequency driver.

2.2.2 Power Gating

Power gating consists of selectively powering down certain blocks in the chip while
keeping other blocks powered up. The goal of power gating is to minimize leakage
current by temporarily switching power off to blocks that are not required in the
current operating mode [59]. Power gating can be applied either at the unit-level,
reducing the power consumption of unused core functional units or at the core-
level, in which entire cores may be power gated [56, 76]. Currently, power gating
is mainly used in multicore processors to switch off unused cores to reduce power
consumption [84].

Power gating requires the presence of a header “sleep” transistor that can set
the supply voltage of the circuit to ground level during idle times. Power gating
also requires a control logic that decides when to power gate the circuit. Every
time that the power gating is applied, an energy overhead cost occurs due to
distributing the sleep signal to the header transistor before the circuit is turned off,
and turning off the sleep signal and driving the voltage when the circuit is powered
on again. Therefore, there is a break-even point, which represents the exact point in
time where the cumulative leakage energy savings is equal to the energy overhead
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incurred by power gating. If, after the decision to power gate a unit, the unit stays
idle for a time interval that is longer than the break-even point, then power gating
saves energy. On the other hand, if the unit needs to be active again before the break-
even point is reached, then power gating incurs an energy penalty [75].



Chapter 3
The Impact of Parallel Programming
Interfaces on Energy

3.1 Methodology

3.1.1 Benchmarks

In order to study the characteristics of each PPI regarding the thread/process
management and synchronization/communication, fourteen parallel benchmarks
were implemented and parallelized in C language and classified into two classes:
high and low communication (HC and LC). For that, we considered the amount
of communication (i.e., data exchange), the synchronization operations needed to
ensure data transfer correctness (mutex, barriers), and operations to create/finalize
threads/processes.

Table 3.1 quantifies the communication rate for each benchmark (it also shows
their input sizes), considering 2, 3, 4, and 8 threads/processes, obtained by using
the Intel Pin Tool [74]. HC programs have several data dependencies that must
be addressed at runtime to ensure correctness of the results. Consequently, they
demand large amounts of communication among threads/processes, as it is shown
in Fig. 3.1a. On the other hand, LC programs present little communication among
threads/processes, because they are needed only to distribute the workload and to
join the final result (as it is shown in Fig. 3.1b).

Since the way a parallel application is written may influence its behavior during
execution, we have followed the guidelines indicated by [17, 36, 38] and [22].
The OpenMP implementations were parallelized using parallel loops, splitting the
number of loops iterations (for) among threads. As discussed in [22], this approach
is ideal for applications that compute on uni- and bi-dimensional structures, which
is the case. Loop parallelism can be exploited by using different scheduling types
that distribute the iterations to threads (static, guided, and dynamic) with different
granularities (number of iterations assigned to each thread as the threads request
them). As demonstrated in [69], the static scheduler with coarse granularity presents
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Table 3.1 Main characteristics of the benchmarks

Operations to exchange data

(Total per no. of threads/processes)

Benchmarks 2 3 4 8 Input size

HC Game of life 414 621 1079 1625 4096 × 4096

Gauss–Seidel 20,004 20,006 20,008 20,016 2048 × 2048

Gram–Schmidt 3,009,277 4,604,284 6,385,952 12,472,634 2048 × 2048

Jacobi 4004 6006 8008 16,016 2048 × 2048

Odd–even sort 300,004 450,006 600,008 1,200,016 150,000

Turing ring 16,000 24,000 32,000 64,000 2048 × 2048

LC Calc. of the PI number 4 6 8 16 4 billions

DFT 4 6 8 16 32,368

Dijkstra 4 6 8 16 2048 × 2048

Dot-product 4 6 8 16 15 billions

Harmonic series 8 12 16 32 100,000

Integral-quadrature 4 6 8 16 1 billion

Matrix multiplication 4 6 8 16 2048 × 2048

Similarity of histograms 4 6 8 16 1920 × 1080
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Fig. 3.1 Behavior of benchmarks. (a) High communication. (b) Low communication

the best results for the same benchmark set used in this study and, therefore, this
scheduling mechanism is used here.

As indicated by [17, 36] and [38], we have used parallel tasks for the PThreads
and MPI implementations. In such cases, the iterations of the loop were distributed
based on the best workload balancing between threads/processes. Moreover, the
communication between MPI processes was implemented by using nonblocking
operations, to provide better performance, as showed in [44].
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3.1.2 Multicore Architectures

3.1.2.1 General-Purpose Processors

Core2Quad The Intel Core2Quad is an implementation of the ×86-64 ISA. In
this study, the 45 nm Core2Quad Q8400 was used, which has 4 CPU cores running
at 2.66 GHz, and a TDP of 95 W. It uses the Intel Core microarchitecture targeted
mainly to desktop and server domains. It is a highly complex superscalar processor,
which uses several techniques to improve ILP: memory disambiguation; speculative
execution with advanced prefetchers; and a smart cache mechanism that provides
flexible performance for both single and multithreaded applications.1 As Fig. 3.2a
shows, the memory system is organized as follows: each core has a private 32 kB
instruction and 32 kB data L1 caches. There are two L2 caches of 2 MB (4 MB in
total), each of them shared between clusters of two cores. The platform has 4 GB of
main memory, which is the only memory region accessible by all the cores.

Xeon The Intel Xeon is also an ×86-64 processor. The version used in this work is
a 45 nm dual processor Xeon E5405. Each processor has 4 CPU cores (so there
are 8 cores in total), running at 2.0 GHz, with a TDP of 80 W. It also uses the
Core microarchitecture; however, unlike Core2Quad, Xeon processor E5 family is
designed for industry-leading performance and maximum energy efficiency, since
it is widely employed in HPC systems. The memory organization is similar to the
Core2Quad (Fig. 3.2a): each core has a private 32 kB instruction and 32 kB data L1
caches. There are two L2 caches of 6 MB (12 MB in total), each of them shared
between clusters of two cores. The platform has 8 GB of RAM, which is the only
memory region accessible by all the cores.

C C C C

L1 L1 L1 L1

L2 L2

RAM

L1 L1

L2 L2

RAM

C C C C C C

L1 L1 L1 L1

L2

RA

(a) (b) (c)

M

Fig. 3.2 Memory organization of each processor used in this study. (a) Intel Core2Quad and Xeon.
(b) Intel Atom. (c) ARM Cortex-A9/A8

1Available at: http://www.intel.com/technology/architecture/coremicro.

http://www.intel.com/technology/architecture/coremicro
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3.1.2.2 Embedded Processors

Atom The Intel Atom is also an ×86-64 processor, but targeted to embedded
systems. In this study, the 32 nm Atom N2600 was used, which has 2 CPU cores
(4 threads by using Hyper-Threading support) running at 1.6 GHz, a TDP of 3.5 W.
It uses the Saltwell microarchitecture, designed for portable devices with low-power
consumption. Since the main characteristic of ×86 processors is the backward
compatibility with the ×86 instructions set, programs already compiled for these
processors will run without changes on Atom.2 The memory system is organized as
illustrated in Fig. 3.2b: each core has 32 kB instruction and 24 kB data L1 caches,
and a private 512 kB L2 cache. The platform has 2 GB of RAM, which is the
memory shared by all the cores.

ARM We consider the Cortex-A9 processor. ARM is the world’s leading in
the market of embedded processors. Designed around a dual-issue out-of-order
superscalar, the Cortex-A family is optimized for low-power and high-performance
applications.3 The 40 nm ARM Cortex-A9 is a 32-bit processor, which implements
the ARMv7 architecture with 4 CPU cores running at 1.2 GHz and TDP of 2.5 W.
The memory system is organized as illustrated in Fig. 3.2c: each core has a private
32 kB instruction and 32 kB data L1 caches. The L2 cache of 1 MB is shared among
all cores, and the platform has 1 GB of RAM. Since the ISA and microarchitecture
of the Cortex-A8 and Cortex-A9 are similar, we also investigate the behavior of A8
based on the results obtained in the A9. The version considered is a 65 nm Cortex-
A8 which has an operating frequency of 1 GHz, a TDP of 1.8 W.

3.1.3 Execution Environment

The Performance Application Programming Interface (PAPI) [14] was used to
evaluate the behavior of processor and memory system without the influence of
the operating system (i.e., function calls, interruptions, etc.). By inserting functions
in the code, PAPI allows the developer to obtain the data directly from the
hardware counters present in modern processors. With these hardware counters,
it is possible to gather the number of completed instructions, memory accesses
(data/instructions), and the number of executed cycles to calculate performance and
energy consumption.

The energy consumption was calculated using the data provided by the authors
in [13] (for the processors) and Cacti Tool (for the memory systems), as shown in
Table 3.2. To estimate the total energy consumption (Et), we have taken into account

2Available at: http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html.
3Available at: http://www.arm.com/products/processors/cortex-a/index.php.

http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.arm.com/products/processors/cortex-a/index.php
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Table 3.2 Energy consumption for each component on each processor

ARM Intel

Cortex-A8 Cortex-A9 Atom Core2Quad Xeon

Processor—static power 0.17 W 0.25 W 0.484 W 4.39 W 3.696 W

L1-D static power 0.0005 W 0.0005 W 0.00026 W 0.0027 W 0.0027 W

L1-I static power 0.0005 W 0.0005 W 0.00032 W 0.0027 W 0.0027 W

L2—static power 0.0258 W 0.0258 W 0.0096 W 0.0912 W 0.1758 W

RAM—static power 0.12 W 0.12 W 0.149 W 0.36 W 0.72 W

Energy per instruction 0.266 nJ 0.237 nJ 0.391 nJ 0.795 nJ 0.774 nJ

L1-D—energy/access 0.017 nJ 0.017 nJ 0.013 nJ 0.176 nJ 0.176 nJ

L1-I—energy/access 0.017 nJ 0.017 nJ 0.015 nJ 0.176 nJ 0.176 nJ

L2—energy/access 0.296 nJ 0.296 nJ 0.117 nJ 1.870 nJ 3.093 nJ

RAM—energy/access 2.77 nJ 2.77 nJ 3.94 nJ 15.6 nJ 24.6 nJ

the energy consumed for the executed instructions (Einst), cache and main memory
accesses (Emem), and static energy (Estatic), as given by Eq. (3.1).

Et = Einst + Emem + Estatic (3.1)

To find the energy consumed by the instructions, Eq. (3.2) was used, where Iexe
is the number of executed instructions multiplied by the average energy spent by
each one of them (Eperinst).

Einst = Iexe × Eperinst (3.2)

The energy consumption for the memory system was obtained with Eq. (3.3),
where (L1DCacc × EL1DC) is the energy spent by accessing the L1 data cache
memory; (L1ICacc ×EL1IC) is the same, but for the L1 instruction cache; (L2acc ×
EL2) is for the L2 cache; and (L2miss × Emain) is the energy spent by the main
memory accesses.

Emem = (L1DCacc × EL1DC) + (L1ICacc × EL1IC) + (L2acc × EL2) (3.3)

+ (L2miss × Emain)

The static consumption of all components is given by Eq. (3.4). As static power
is consumed while the circuit is powered, it must be considered during all execution
time: (#Cycles) of application divided by the operating frequency (Freq). We have
considered the static consumption of the processor (SCPU ), L1 data (SL1DC) and
instruction (SL1IC) caches, L2 cache (SL2), and main memory (SMAIN).

Estatic =
(

#Cycles

F req

)
× (SCPU + SL1DC + SL1IC + SL2 + SMAIN) (3.4)
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3.1.4 Setup

The results presented in the next section consider an average of ten executions,
with a standard deviation of less than 1% for each benchmark. Their input sizes are
described in Table 3.1. The programs were split into 2, 3, 4, and 8 threads/processes.
Although most of the processors used in this work support only four threads, and are
not commercially available in an 8-core configuration, it is possible to approximate
the results by using the following approach: as an example, let us consider that we
have two threads executing on one core only. These threads have synchronization
points and when one thread gets there, it must wait for the other one and so on as
long as there still are synchronization points. What it is done is to gather data of each
thread executing on the core in between two synchronization points (which involves
number of instructions, memory access, execution time, etc.). This behavior would
be the same as if the two threads would be executing on two different cores, since
the cores are homogeneous (i.e., have the same organization and, therefore, the
same ILP exploitation capabilities). There may have context switches between both
threads as they are executing, but they are not considered for the calculations (in the
same way other services of the operating system are not considered).

Therefore, at the end of execution, we have all the data of each thread for
each part of code in between synchronization points. We can calculate the energy
consumption because we have the number of executed instructions, memory
accesses, and so on, and we can infer the performance since we have the execution
time of each part of code of each thread in between two synchronization points. For
each part, we consider as execution time the one presented by the slowest thread
(which simulates the behavior of one waiting for another if they were actually
executing on two cores). This approach can be easily extrapolated to a larger number
of threads.

The compiler used was the GCC-4.7.3 without optimization flags, to minimize
the influence of the compiler on the PPIs. The following distributions were used:
OpenMPI 1.6, OpenMP 3.0, and PThreads/POSIX.1-2008, running on the Linux
Debian operating system.

It is important to highlight some observations regarding the results presented
next:

• The benchmark set was developed and classified with the only purpose to eval-
uate each PPI regarding the thread/process management, workload distribution,
and synchronization/communication.

• The versions of libraries, compilers, and tools used here have been updated since
the experiments were performed.

• When this study was performed, we did not have access to processors that provide
energy consumption directly from the hardware counters.
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3.2 Results

3.2.1 Performance and Energy Consumption

Figures 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, and 3.9 show the results of performance (in
seconds) and energy (in Joules) of each processor and number of threads/processes
(“1” means sequential execution) for the two benchmark classes (high and low
communication). Figures 3.3 and 3.7 show raw numbers, where the x-axis of
each chart is the energy consumption, and the y-axis is the execution time.
Figures 3.4 and 3.8 demonstrate the fraction of energy consumed by each hardware
component with respect to the total energy. Static and dynamic (S and D) energy
for the processor and memory are considered. Also, Figs. 3.5 and 3.9 present the
normalized performance and energy using the processor with the best results as the
baseline. The results are discussed in detail in the next subsections, considering both
classes of programs separately.
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Fig. 3.3 Performance (seconds) and energy consumption (joules) results for high-communication
programs. (a) OpenMP. (b) PThreads. (c) MPI-1. (d) MPI-2
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processor; D: dynamic; S: static) for HC applications. (a) OpenMP. (b) PThreads. (c) MPI-1. (d)
MPI-2
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3.2.1.1 High-Communication Programs

Figure 3.3 shows the performance and energy consumption for each processor
running a different number of threads/processes. Each chart analyzes a different
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Fig. 3.7 Performance (seconds) and energy consumption (joules) results for low-communication
programs. (a) Shared variables. (b) Message passing
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CPU: processor; D: dynamic; S: static). (a) Shared variables. (b) Message passing

parallel programming interface. Considering the performance, regardless of the
PPI used, all the processors performed better when exploiting a TLP of 8, and
Core2Quad processor achieved the lowest execution time. Comparing the best case
of each processor, Core2Quad is 4.32 times faster than Atom; 5.73 times faster
than Cortex-A9; 6.87 times faster than Cortex-A8; and 1.34 times faster than Xeon.
Considering only the embedded processors, Atom performed better, being 1.32 and
1.59 times faster than Cortex-A9 and A8, respectively.



26 3 The Impact of Parallel Programming Interfaces on Energy

(a)

0
1
2
3
4
5
6
7

Shared Variables Message Passing

T
im

e 
no

rm
al

iz
ed Atom

A9

A8

C2Q

Xeon

(b)

0

0.5

1

1.5

2

2.5

3

Shared Variables Message Passing

E
ne

rg
y 

no
rm

al
iz

ed Atom

A9

A8

C2Q

Xeon

1 2 3 4 8 2 3 4 8

1 2 3 4 8 2 3 4 8

Fig. 3.9 Results normalized to Core2Quad (performance) and A9 (energy)—LC programs. (a)
Performance normalized to Core2Quad. (b) Energy normalized to A9

When the energy consumption matters, embedded processors spend less energy
than GPPs, and the A9 is the most efficient one. Considering the lowest energy
consumption in each processor: A9 consumed 25% less energy than Atom; 8%
less than A8; 61% less than Core2Quad; and 69% less energy than Xeon. In the
most significant case, this difference is even greater: A9 consumed 55% less energy
than Atom; 63% less than A8; 81% less than Core2Quad; and 84% less than Xeon.
Moreover, the processors have different behaviors according to the PPI used: if the
HC programs are parallelized using OpenMP, it is better to use the ARM Cortex-
A9 exploiting a TLP of 8. In such case, the energy consumed is 35% lower than
the best result in the Atom; and 5, 64, and 73% lower than the A8, Core2Quad,
and Xeon, respectively. In another situation, when HC programs are parallelized
using PThreads, MPI-1, or MPI-2, the lowest energy consumption is achieved by
executing the sequential versions of the benchmarks on the Cortex-A9. Therefore,
when it comes to energy and these interfaces, it is better to use one core even when
there are more available.

In this application class, in which there are many accesses to the shared memory
because of data exchange, the processor’s performance and energy are highly
influenced by the communication model (Fig. 3.3). For shared variables (OpenMP
and PThreads), there are significant performance improvements, even though it does
not increase in the same ratio as the TLP exploitation increases (i.e., when the
number of threads is equal to 2, the execution time of a parallel version is greater
than half of its sequential version and so on). In addition, parallel applications have
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similar energy consumption when one compares to their sequential counterparts in
most cases. On the other hand, when using message passing (MPI-1 and MPI-2),
even though there are performance gains, execution time decreases at a slower rate
as the TLP increases, when compared to applications implemented using OpenMP
and PThreads. The performance gains are limited by the excessive number of
send/receive operations performed by communication, becoming a bottleneck. As
a result of this poor performance improvements, energy consumption increases,
compared to the sequential version, in all cases.

As there is no optimal combination of processor and number of threads/processes
that offer at the same time the best performance with the lowest energy consumption,
one must choose which metric is the most significant. In this way, the Pareto front is
used in the charts. As Fig. 3.3 shows, it varies according to the PPI: in the OpenMP,
there is only one combination offering the lowest energy consumption (Cortex-A9
executing 8 threads) and one with the best performance (Core2Quad, also running
8 threads). When other PPIs are used, the number of combinations is greater than
three. Another interesting fact is that while we have few points when it comes to
shared memory based PPIs (OpenMP and PThreads), the Pareto front is composed
of several points when it comes MPI (Message Passing), increasing the complexity
of finding the best trade-off in energy and performance.

Moreover, there are cases in which it is possible to reduce the energy consump-
tion maintaining similar performance when embedded processors are chosen instead
of GPPs. In the most significant case, it is possible to save 76% in energy by
executing OpenMP HC programs on the Cortex-A9 with 8 threads instead of on
the Xeon with 2 threads. On the other hand, if one chooses general-purpose instead
of embedded processors aiming to reduce execution time, there is no single option
available that will not result in huge increases in energy consumption. For instance,
executing PThreads HC Applications with 8 threads on the Core2Quad instead of
their OpenMP versions on the Cortex-A9 reduces execution time by 83%. However,
it will increase the energy consumption by a factor of 3 times (304%).

In order to discuss how the processor and memory system influence each
communication model and how they synchronize, let us first consider the programs
that exchange data through shared variables. In OpenMP (Fig. 3.4a), threads come
into a busy-waiting state, accessing the shared memory repeatedly until the end of
synchronization [22]. This synchronization mechanism does not incur significant
performance overhead, so all processors have similar behavior as TLP exploitation
increases (as can be seen in Fig. 3.5a, the performance gap between the processors
remains similar).

When it comes to energy, however, only in ARM processors the energy is
reduced. For instance, while Cortex-A9 executing 8 threads saved almost 15%
of energy and performed 6.15 times better than its sequential counterpart, on the
Core2Quad, the energy increased 19% with similar performance improvements.
This is because the energy consumed due to the extra executed instructions and
accesses to the shared memory for the busy-waiting during synchronization have
less influence in the ARM processors than in the Intel ones (Fig. 3.5a). While in
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the ARM processors these accesses were performed in the L2 cache, in the Intel
processors they occurred in the main memory.

For PThreads (Fig. 3.3b), the context switching imposed by the mutex influenced
more the performance in ARM processors than Intel ones. As more TLP is exploited,
the performance gap between these two processors increases (Fig. 3.5a). In order
to understand this behavior, LMbench (a suite to measure system performance)
[80] was used to measure the impact of context switching on each processor.
Figure 3.6a shows the latency of each context switching (logarithmic scale)
considering processes with different parameters (which influences execution time,
data size, etc.) and level of TLP exploitation. One can note that context switching
(saving and restoring the contents of the register file, etc.) was slower on the
ARM processors in all cases. This happens because the average latency to access
the memory system is greater on the ARM than Intel processors, as shown in
Fig. 3.6b. On the other hand, as PThreads access less the memory system during
synchronization, the energy difference between all the processors remains almost
the same as TLP exploitation increases (Fig. 3.5b). This means that for HC programs
parallelized using PThreads, a more robust processor is the best choice, since it
provides considerable performance improvements at the same price in the energy
consumption. For instance, when TLP exploitation increases from 1 to 8, the
performance difference between Core2Quad and Cortex-A9 increases 33% (4.88
to 6.52 times), while the energy gap remains the same.

In MPI-1 and MPI-2, the amount of send/receive operations performed by each
processor to exchange data impacted in different ways the performance and energy
consumption. Intel processors performed better than ARM ones, but spending more
energy in most cases. As the number of processes increases, the performance gains
are lower in ARM processors, increasing the performance difference between them
and Intel ones (Fig. 3.5a), and influencing the energy consumption. In such cases, as
more TLP is exploited, the energy difference between ARM and Intel decreases
(Fig. 3.5b); and in the execution of 8 processes Atom got to a point where it
consumed less energy than ARM processors. This scenario worsens when MPI-2
applications are executed (Fig. 3.3d), in which, as the number of processes increases,
the performance gains are even lower in ARM processors. The reason for this is that
dynamic process creation adds an overhead in the runtime in terms of executed
instructions, mainly due to the communication using intercoms, which affects more
ARM processors than Intel [19].

3.2.1.2 Low-Communication Programs

For LC programs, the performance and energy consumption for each communica-
tion model are very similar. In this way, results are separated only by communication
model: shared variables and message passing (Fig. 3.7). As the applications are more
CPU-bound, the impact of characteristics of each communication model on the
memory system is reduced, highlighting the importance of the microarchitecture
and operating frequency. In most cases, the overall performance increases in a
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similar ratio as more TLP is exploited (i.e., when the TLP exploitation is equal
to 2, the execution time of parallel version is almost the half of sequential time and
so on). However, when the number of threads/processes is 8, performance gains are
impacted by the overhead of managing the parallelization (e.g., creation/termination
of threads or processes), which is greater in message passing implementations, since
the cost to manage processes is greater than threads [117].

All the processors perform better when they are running 8 threads/processes,
and the Core2Quad continues offering the lowest execution time. Considering the
best result of each processor, the performance difference between Intel processors
is similar as observed for HC programs (Core2Quad is 1.37 times faster than
Xeon; 4.32 times than Atom), while the performance gap between Intel and ARM
diminishes in almost 13%. For instance, the difference between Core2Quad and
Cortex-A9 decreases from 5.73 to 5.04 times, and from 6.87 to 6.04 times in relation
to the Cortex-A8.

Unlike the HC programs, energy consumption decreases as TLP exploitation
increases, regardless of the processor and communication model. In this way, all the
processors consumed less energy when executing 8 threads/processes, and in the
overall Cortex-A9 is the best choice. When one compares embedded and general-
purpose processors, the energy difference between them increases as more TLP is
exploited (Fig. 3.9b). When the number of threads increases, the memory system is
more stressed and, therefore, spends more energy in Intel processors. As this class
of applications has lower communication rate than the HC programs, it happens in a
smaller proportion. Also, the performance difference between general-purpose and
embedded processors decreases in almost 10% compared to the HC programs (e.g.,
69 to 63% in the gap between A9 and Xeon).

In cases where the developer is looking for the best trade-off between energy
and performance, there is no optimal choice. The same happens to HC programs
(even though with more points and variations). As Fig. 3.7a shows, the Pareto front
consists of three points in the results for shared variables. Two of them are the
best choice for energy (Cortex-A9 with 8 threads) and performance (Core2Quad
with 8 threads/processes). The other one (Atom running 8 threads) is the point that
improves performance over the best choice in energy with minimal impact on it. On
the other hand, if the designer aims to reduce the energy consumption maintaining
similar execution time to the best possible, there is no satisfactory option available.
For message passing (Fig. 3.7b), the Pareto front consists of only two points: one
is the best energy possible (Cortex-A9), while the other is the lowest execution
time (Core2Quad). This means that for this communication model, no option can
improve a metric without causing a major impact on another. For instance, if the
programmer wants to improve performance with minimal impact on energy, it will
reduce the execution time by only 8%, increasing energy by a factor of 15%.

There are cases in which it is possible to use embedded instead of general-
purpose processors to reduce the total energy consumption with little performance
degradation. In the most significant case, energy can be reduced by 70% with
minimal influence on performance, if a given LC program exploits a TLP of 4 or
8 executing on any embedded multicore rather than executing on the Core2Quad
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and Xeon with 1, 2, or 3 threads/processes, regardless of the communication model
used.

3.2.2 Energy-Delay Product

As shown in the previous section, there is no optimal combination of processor
and number of threads/processes that offer at the same time the best performance
with the lowest energy consumption. Moreover, according to their niche, companies
of general-purpose processors give more importance to performance, while the
embedded ones to energy. In this case, the EDP may be useful since it correlates both
metrics into a unique value. By adding an exponent x on delay (EDP = Energy ×
Delayx), as the authors in [13] have already done (but considering only sequential
applications), it is possible to change the weight of delay (performance) towards
energy, which would reflect the importance given to performance considering the
application field.

Figures 3.10, 3.11, 3.12, and 3.13 show the EDP for each processor as the impor-
tance of the delay is changed. The y-axis is the product of EDx as the exponent (x)
increases in the x-axis. Figure 3.10 shows the results of the sequential executions,
while Figs. 3.11, 3.12, and 3.13 present the most representatives results for the
parallel versions (2 and 8 threads/processes). Following the same methodology as
before, HC programs are separated by PPI, while LC programs are separated by the
geometric mean of the PPIs in each communication model. In overall, when both
energy and performance are weighted equally (i.e., when x = 1), Core2Quad is the
best choice (note that lower is better). Moreover, the difference between GPPs and
embedded processors increases as the importance of performance towards energy
increases (i.e., when the value of x increases). This reinforces the idea that GPPs
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are more focused on performance rather than energy, corroborating the authors’
research in [13].

Let us discuss the results for the sequential versions (Fig. 3.10). For HC programs
(Fig. 3.10a), Cortex-A9 provides the best EDxP until x = 0.6. After that,
Core2Quad outperforms all the processors. On the other hand, for LC programs
(Fig. 3.10b), the Cortex-A9 provides the best EDxP until x = 0.1, while Atom
is better when x is greater than 0.1 and lower than 0.41. After that, Core2Quad
outperforms all the processors. Therefore, the Core2Quad is the best choice even
in a significant part where energy is more important than performance (0.41 <

x < 0.99). Comparing only the embedded processors, in programs where memory
system is more accessed (HC programs), the ARM A9 processor has better EDxP

than the Intel Atom for any value of x. On the other hand, when the applications use
more the processor rather than memory (LC programs), Atom is the best choice in
most cases.

As for the parallel versions (Figs. 3.11, 3.12, and 3.13), in all cases they
achieved better EDxP than their sequential counterparts, regardless of the number
of threads/processes and communication model used. Let us first consider the results
when the processors are executing HC programs using shared variables. In OpenMP
implementations (Fig. 3.11a and b), Cortex-A9 has better EDxP than the other
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Fig. 3.12 Impact of exponent, x, on product EDx of HC programs implemented with message
passing. (a) MPI-1—2 processes. (b) MPI-1—8 processes. (c) MPI-2—2 processes. (d) MPI-2—8
processes

embedded processors, no matter the value of x. In addition, as the number of threads
increases, the more important must be the performance (i.e., higher values for x)
so the GPPs can present better EDP than the embedded ones (see Table 3.3). For
PThreads implementations, the behavior is different (Fig. 3.11c and d): Cortex-A9
has the best EDP only when x < 0.36 and x < 0.19 for 2 and 8 threads, respectively.
After that, Atom is better until x = 0.55 and x = 0.61, for 2 and 8 threads,
respectively. When x is greater than these values, Core2Quad outperforms all the
processors.

Figure 3.12 shows the results when HC programs are implemented with message
passing. Let us first discuss the MPI-1 results, where the GPPs outperform
embedded ones at a very similar value of x as the one presented in PThreads.
Considering embedded processors only, the one that offers the best EDxP changes
as the number of threads increase, regardless the importance of x. In the execution
of 2 processes, Cortex-A9 has the best EDxP , while with 8 processes, Atom is the
best choice. The reason for that has already been discussed in Sect. 3.2.1: as more
TLP is exploited, the performance loss and the increases in the energy consumption
are more significant in ARM processors than in the Intel ones.

When it comes to the LC programs (Fig. 3.13), Core2Quad continues offering
the best EDxP in most cases (mainly when performance and energy have the
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Fig. 3.13 Impact of exponent, x, on product EDx of LC programs. (a) Shared variables—
2 threads. (b) Shared variables—8 threads. (c) Message passing—2 processes. (d) Message
passing—8 processes

same weight). Comparing only the embedded processors: when they communicate
through shared variables, Atom processor has better EDxP than ARM when
x > 0.38 and x > 0.47 for 2 and 8 threads, respectively. On the other hand, for
the results using message passing, Cortex-A9 has the best EDxP in the execution
with 2 processes regardless of the performance importance. When TLP exploitation
increases to 8, Atom once again outperforms Cortex-A9 for x > 1.35. Therefore,
there are specific scenarios where the best choice is one processor or another. When
the general-purpose processors are compared, Core2Quad has better EDxP than
Xeon in all cases.

Table 3.3 shows the intersection points to figure out which is the best processor in
between the intervals of x considering the charts of Figs. 3.10, 3.11, 3.12, and 3.13.
In overall, when performance is the most important parameter (x > 1), it is true that
GPP is always the best choice. However, as already discussed, looking at the other
side (energy), it depends on how much energy matters for the designer.
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Table 3.3 Intervals of x where each processor is better on the EDxP , when energy is the most
important

Embedded processors GPPs

TLP Atom Cortex-A9 Cortex-A8 Core2Quad Xeon

HC 1 – 0.0–0.60 – > 0.60 –

LC 1 0.10–0.41 0.0–0.10 – > 0.41 –

HC OMP 2 – 0.0–0.77 – > 0.7 –

Shared variables 8 – 0.0–0.81 – > 0.81 –

Figure PT 2 0.36–0.55 0.0–0.36 – > 0.55 –

8 0.19–0.61 0.0–0.19 – > 0.61 –

HC MPI-1 2 – 0.0–0.56 – > 0.56 –

Message passing 8 0.0–0.61 – – > 0.61 –

Figure MPI-2 2 – 0.0–0.42 – > 0.42 –

8 0.0–0.49 – – > 0.49 –

LC SV 2 0.37–0.48 – – > 0.49 –

Figure 8 0.48–0.56 0.0–0.48 – > 0.56 –

MP 2 – 0.0–0.42 – > 0.42 –

8 – 0.0–0.49 – > 0.49 –

3.2.3 The Influence of the Static Power Consumption

In this section, we present a study regarding the influence of the static power on
the total energy consumption of different multicore processors. First, we briefly
discuss what static power is and how it can affect the energy consumption of parallel
applications. Next, the methodology used in this experiment is presented, followed
by a discussion about the results achieved.

As already discussed in Sect. 2.2, there are two main components that constitute
the power used by a CMOS integrated circuit: dynamic and static. The former is
the power consumed while the inputs are active, with capacitance charging and
discharging, being directly proportional to the circuit switching activity. The static
power derives from the length of the transistor channel as well as the doping level
and gate thickness. As an example, although increasing doping level allows higher
on current for faster transitions, it also causes more considerable leakage. Therefore,
companies can tune the circuits during the manufacturing process to be faster and
consume more static power or vice versa [83]. In some cases, the static power in the
processor may represent up to 40% of the total energy consumption [35, 60, 83].

TLP exploitation in multicore systems affects dynamic and static power con-
sumption in different ways. The former will most likely increase as the number of
threads increase, since additional memory accesses and executed instructions are
necessary for synchronization and data exchange. On the other hand, memory will
consume less static power because it will be powered for a shorter period because
of overall performance improvements. However, since parallelization is not perfect,
some threads distributed over the processors will take longer to execute than others.
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Table 3.4 Respective energy consumed per instruction and static power when changing the
importance of static power of processor

10% 20% 30% 40%

Atom Static power (W) 0.242 0.484 0.726 0.968

Energy per instruction (nJ) 0.448 0.391 0.335 0.276

Cortex-A9 Static power (W) 0.125 0.250 0.375 0.500

Energy per instruction (nJ) 0.291 0.237 0.183 0.129

Cortex-A8 Static power (W) 0.085 0.170 0.255 0.340

Energy per instruction (nJ) 0.338 0.266 0.195 0.124

Core2Quad Static power (W) 2.195 4.390 6.585 8.780

Energy per instruction (nJ) 1.267 1.126 0.985 0.845

Xeon Static power (W) 1.848 3.696 5.544 7.392

Energy per instruction (nJ) 1.419 1.261 1.103 0.946

In such cases, the sum of all amounts of static power consumed by all the processors
will be larger than its sequential counterpart.

Considering the aforementioned scenario, this section aims to investigate the
influence of the static power consumption of the processor on parallel applications in
multicore systems. We consider four different proportions of static power in respect
to the total power consumption of the processor obtained from [13] and CACTI 5.14:
10, 20, 30, and 40%. Table 3.4 shows the static power and the energy consumption
per instruction when different ratios of static/dynamic power are considered. When
the proportion of static power increases in respect to the total power consumption of
the processor, dynamic (energy per executed instruction) will decrease in the same
amount; therefore, total energy consumption will always be the same. This analysis
involves power in the core only: the ratio of static/dynamic power consumption of
the memory system is not changed.

The results consider the geometric mean of each communication model, since
the behavior is very similar between the interfaces that implement them (standard
deviation lower than 1%). Figures 3.14 and 3.15 show the impact of static power for
each communication model on each processor in HC and LC programs, respectively.
All the charts consider the results when the static power of the processor is fixed to
10% as baseline, and show the impact on the total energy consumption when it is
changed to 20, 30, and 40%. Therefore, values lower than “1” mean that there are
energy savings.

In overall, the architecture of the processors influences how the static power
impacts the total energy consumption. In Intel processors, increasing the importance
of static power will also increase energy consumption, while one can observe
the opposite behavior for ARM processors. The amount of TLP also changes the
variation ratio: the more TLP is exploited, the more significant the impact when
changing the amount of static power on the total energy consumption. As the

4Available at: http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html.

http://www.hpl.hp.com/techreports/2008/HPL-2008-20.html
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Fig. 3.14 Impact on the total energy consumption when the static power of processor varies from
10%—HC Programs. (a) Shared variables. (b) Message passing
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Fig. 3.15 Impact on the total energy consumption when the static power of processor varies from
10%—LC programs. (a) Shared variables. (b) Message passing

parallelization is not perfect, the sum of the static power consumed by all cores is
larger than if it was sequentially executed. It means that the static power consumed
by the processors starts to be more important as more TLP is exploited.
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Table 3.5 Number of executed instructions by core per second

Comm.
model

TLP HPC programs LC programs

Atom A9 A8 C2Q Xeon Atom A9 A8 C2Q Xeon

Shared variables 2 837 899 749 4018 3286 432 744 620 1916 1441

3 875 893 743 3969 3197 427 747 623 1880 1428

4 887 882 735 3924 3136 432 718 598 1849 1421

8 835 840 700 3770 2973 431 717 598 1838 1394

Message passing 2 720 807 672 3376 2945 410 745 621 1955 1525

3 696 754 628 3347 2842 405 738 615 1932 1502

4 671 729 607 3262 2780 407 708 590 1911 1462

8 640 599 499 2759 2440 404 702 584 1892 1365

Sequential 884 905 754 3625 3342 419 733 611 1936 1541

Table 3.6 The proportion of the number of executed instructions by core per second in the parallel
versions regarding its sequential version

Comm.
model

TLP HPC programs LC programs

Atom A9 A8 C2Q Xeon Atom A9 A8 C2Q Xeon

Shared variables 2 0.95 0.99 0.99 1.11 0.98 1.03 1.02 1.01 0.99 0.94

3 0.99 0.99 0.99 1.09 0.96 1.02 1.02 1.02 0.97 0.93

4 1.00 0.97 0.97 1.08 0.94 1.03 0.98 0.98 0.96 0.92

8 0.94 0.93 0.93 1.04 0.89 1.03 0.98 0.98 0.95 0.90

AVG 0.97 0.97 0.97 1.08 0.94 1.03 1.00 1.00 0.97 0.92

Message passing 2 0.81 0.89 0.89 0.93 0.88 0.98 1.02 1.02 1.01 0.99

3 0.79 0.83 0.83 0.92 0.85 0.97 1.01 1.01 1.00 0.97

4 0.76 0.80 0.80 0.90 0.83 0.97 0.97 0.97 0.99 0.95

8 0.72 0.66 0.66 0.76 0.73 0.96 0.96 0.96 0.98 0.89

AVG 0.77 0.79 0.79 0.88 0.82 0.97 0.99 0.99 0.99 0.95

Sequential 1 1 1 1 1 1 1 1 1 1

Let us first discuss the results of the Intel processors executing HC programs
(Fig. 3.14). In such cases, the effect of changing the proportion of static power is
negligible in most cases. To better understand that, let us consider Tables 3.5 and 3.6.
The former presents the number of executed instructions by core per second. To
compare only the behavior of each PPI on each processor, Table 3.6 depicts the
number of instructions executed per second in the parallel version by its sequential
counterpart, the bigger the result, the closer it is to the behavior of its sequential
version, meaning that the processor will be executing more instructions instead of
waiting for sync and data exchange.

When doing this calculation, we can note that the LC programs have bigger
values than HC programs—which means that, even though they execute less instruc-
tions per second (Table 3.5) because of the kind of application, their parallel versions
proportionally execute more instructions per second than the HC applications, which
shows that they spend less time waiting for data exchange or sync. This can be
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observed for the message passing in Tables 3.5 and 3.6: the higher the amount of
executed processes, the higher the load imbalance, and the smaller is the number
of executed instructions per second. In this case, static power plays an important
role. When it comes to the ARM processors executing HC programs (Fig. 3.14), the
results show that in all cases, increasing static power of the processor reduces the
total energy consumption. The reason for this is that the reduction in the dynamic
power consumption is greater than the increase provided by the change in the value
of the static power in the processor.

For the LC programs (Fig. 3.15), the impact of changing the amount of static
power is greater than the observed for the HC programs. In addition, the same
behavior is observed regardless of the communication model used. Considering the
Intel processors, the higher the TLP exploitation, the greater the impact of increasing
the static power of the processor. In the sequential version, when the static power
changes from 10 to 40%, the total energy consumption increases by almost 24% on
both Atom and Core2Quad, and 18% in the Xeon processor. As for the execution
with eight threads/processes, this energy difference is even higher: 35 and 38% for
shared variables and message passing, respectively, in the Atom processor; and 28
and 30% in the Core2Quad and Xeon, respectively, regardless of the communication
model. As for ARM processors, which have a high number of executed instructions
per second (see Table 3.5), changing the static power of the processor from 10 to
40% results in energy savings in all cases: almost 8% in the Cortex-A9 and 24% in
the Cortex-A8.

Analyzing the whole scenario, Intel and ARM processors have different behav-
iors when the proportion of static power is changed in respect to the total
power consumption. In the former, regardless of the kind of application and the
communication model used, keeping static power of the processor as low as possible
saves energy in most cases, even though at different levels. On the other hand, for
ARM processors, the higher the static power, the greater the reduction in energy
consumption.

3.3 Discussion

This chapter performed a static exploration for optimal combinations of proces-
sors, communication models, and TLP exploitation to reach the best results in
performance, energy, and EDP. A great number of variables were considered: 5
multicore processors with different microarchitectures and ISAs; 14 parallel bench-
marks classified according to the communication rate; four parallel programming
interfaces classified into two classes of communication models; different levels of
TLP exploitation; and four different levels of static power of the processor. We
demonstrated that even though there are combinations with the best performance
and the lowest energy consumption, there is no single one that offers the best result
for both at the same time. However, we found some significant results, summarized
next.
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Let us first discuss performance and energy (Sect. 3.2.1), in which the most robust
processor (Core2Quad) achieved the lowest execution time, while the embedded
processor Cortex-A9 consumed less energy in all cases. For HC applications, the
PPIs matter: PThreads has shown to be the best choice for all Intel processors (GPP
or embedded), since it provides considerable performance improvements over the
others at the same price of energy consumption as the sequential version. On the
other hand, when exploiting parallel loops, OpenMP is better for ARM processors,
since the impact of the busy-waiting mechanism is lower on these processors than on
the Intel ones. In overall, MPI is the worst choice for all the processors, presenting
poor scalability: as TLP exploitation increases, performance gains are limited by its
message based communication, and energy consumption increases when compared
to its sequential version. It was expected that MPI would perform worse than
OpenMP and PThreads in HC applications on shared memory environments. This
behavior happens because each communication between MPI processes involves an
additional cost related to the construction/deconstruction of the message as well as
the message transmission.

There are different situations when analyzing the Pareto front for all the cases. In
OpenMP applications, it contains only two points: the best result for performance
(Core2Quad running 8 threads) and the best for energy consumption (Cortex-A9,
also executing 8 threads). There is no option that it will not influence considerably a
metric to improve another. For the other PPIs, there are more points to be explored,
and the impact on a metric to improve another is minimal. For instance, in MPI-1
applications with 8 processes, it is possible to reduce the energy consumption in
15% without impact on performance by changing processors (Core2Quad instead
of Xeon).

The scenario is different for LC benchmarks. For those, what matters is the
communication model rather than a specific PPI. Since they are more CPU-bound,
how the processor can exploit ILP and its operating frequency gain in importance.
Regardless of the PPI, performance increases and energy reduces as the TLP
increases, resulting in better EDP. Therefore, even though these applications scale
better than HC ones, the design space is more restricted, offering less opportunities
for optimization. The Pareto front has fewer points and alternatives to optimize a
metric with minimal impact on another, and the differences between Intel and ARM
processors are subtler.

When it comes to EDxP (energy-delayxproduct, depicted in Sect. 3.2.2), in
all cases (no matter the processor or PPI used) the parallel versions were better
than their sequential counterparts, if one considers that performance has the
same weight as energy (x = 1), and the difference in EDP between a parallel
version and its sequential counterpart increases as more importance is given to
performance. The Core2Quad processor has better EDxP in this case, regardless
of the communication model used or the number of threads/processes.

In general, GPPs are always the best choice when targeting performance only.
However, looking at the other side (energy), it depends on how much energy matters
to the designer. For instance, in HC programs using PThreads, three processors have
the best EDxP according to the importance of energy: Cortex-A9 for x < 0.36;
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Atom for 0.36 < x < 0.55; Core2Quad for larger values of x. In some scenarios,
Core2Quad is the best choice even if energy is more important (x < 1). However,
as the number of threads increase, more importance to performance must be given
(the x value must get closer to 1) so the Core2Quad still presents the best EDxP .

The PPIs influence EDP in different aspects. For OpenMP, energy consumption
in the memory system is very important, because of the busy-waiting. For PThreads,
on the other hand, a more robust processor will decrease context switching time.
For the MPI versions of the applications, as more threads execute, EDP in general
worsens for ARM processors and improves for Intel ones, since the impact of the
communication on the former is more evident.

In Sect. 3.2.3, we demonstrated that processors present different behaviors when
tuning the values of energy resultant from the static and dynamic power of the
processor. For Intel processors, by keeping the static power of the processor as low
as possible, more energy will be saved. In the most significant case, it is possible to
save 38% of energy if the hardware designer keeps the static power at 10% instead
of 40%. On the other hand, the opposite happens for the ARM processors, where the
higher the static power, the lower the total energy. For instance, it is possible to save
28% of energy if the static power represents 40% of the total energy, instead of 10%.
The number of executed threads also influences results: as more TLP is exploited,
more impact it has on tuning the static power. These results are directly related to
how long the processor spends time synchronizing and communicating. Therefore,
HC applications are more susceptible to changes in static power.



Chapter 4
Tuning Parallel Applications

4.1 Design Space Exploration of Optimization Techniques

Design space exploration (DSE) generally consists of a multi-objective optimization
problem, composed of several parameters that must be tuned to present the best
trade-off regarding the selected metrics, such as energy, performance, and EDP[87].
Figure 4.1 shows a schematic illustration of the DSE process. Firstly, the input
data that should be evaluated are provided to the DSE. These values are calculated
through any classification model, such as neural network, linear regression, and
mathematical models. Then, the DSE outputs results containing the best trade-offs
between the values and metrics.

The DSE phase can be performed in different moments of the application
execution. It can use offline or online information provided by the processor
architecture and the execution of an application, and with or without adaptation at
runtime. Furthermore, it can also be transparent or not: transparency is related to the
need for special tools or compilers, programmer influence, or change in the source
or binary codes in any of the DSE phases. In this book, we classify the strategies
used to optimize parallel applications into two groups, as described below.

No Runtime Adaptation and no Transparency In this kind of approach, the
DSE is fully performed before the application execution. It comprises prediction
models which use a variety of statistical models to analyze current and historical
values of the target architecture and applications to make predictions. However, the
data obtained by the prediction are used only to decide the best configuration to
run an application. Therefore, there is no decision-making and adaptation of the
parallel application at runtime. A predictive model consists of four necessary steps,
as Fig. 4.2 shows. In the first step, data from the architecture and applications are
collected to generate the model. Then, a statistical model is formulated by applying
some method (e.g., linear regression or a neural network) over the collected data.
After, predictions are made for the new input data. In the last step, additional data

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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are used to validate the model. Because such approaches rely on the need for special
compilers, tools, or programmer influence, they do not present transparency to the
user.

Runtime Adaptation and/or Transparency In this class of approaches, the mod-
els consider information from the behavior (e.g., architecture, OS, and application)
obtained before the application execution or at runtime to make decisions and adjust
the application execution. In this case, different characteristics of the application
that are only known at runtime, such as the length of the input, can be considered.
Adaptation using dynamic information is essential for applications with variable
behavior, in which the workload constantly changes, and with many parallel regions,
in which each of them may have different behavior. Such adaptation processes can
either rely on the use of special compilers and tools or be transparent to the user.

4.2 Dynamic Concurrency Throttling

We start by presenting the studies that comprise the approaches where the definition
of the ideal number of threads to execute a parallel application is performed before
the application execution, that is, the approaches that use prediction models. In
this case, there is no adaptation of the parallel execution at runtime. Then, we
discuss the studies that perform adaptation at runtime and/or are transparent to the
programmer/end user.
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4.2.1 Approaches with no Runtime Adaptation and no
Transparency

In 2001 and 2002, Taylor et al. [118, 119] proposed a model that uses analyt-
ical models to predict the performance of three kernels from the NAS Parallel
Benchmark (BT, LU, and SP). The model consists of performance coupling,
which quantifies the interaction between adjacent kernels in a parallel application,
giving more accuracy to the model. Results were validated on a machine with 80
processors, showing that the higher the performance coupling, the better the model
accuracy.

Engin et al. [49] refined and adapted a multilayer neural network to predict the
performance of parallel applications on two different high-performance platforms
(IBM Blue Gene and Intel Itanium 2). The proposed model predicts the performance
of SMG2000 application within 5–7% error across a large multidimensional param-
eter space. However, there is a large overhead due to the time required to gather each
data point in the training set. An extended version of the work was published by
Karan et al. [107], where two benchmarks were added: a semi-coarsening multigrid
solver and LINPACK.

In order to reduce the overhead of performance prediction models, Leo et al.
[127] propose an approach that uses partial executions of an application to predict
its entire behavior. The idea is to predict the overall execution time of a large-
scale application through the execution of a short test drive of the application. Two
benchmarks from the ASCI Purple Suite were used to validate the model on ten
different multicore platforms. The results show that the proposed model can predict
the performance with an accuracy up to 97% or even higher. Moreover, in the best
case, it adds an overhead of only 1% on the total execution time.

Bradley et al. [5] explore the use of regression to predict the performance of a
larger number of processors through training data obtained from a smaller number of
processors. Three techniques are proposed: one that applies a multivariate regression
over the execution time from the training step to predict the performance of a larger
number of processors, and two other techniques that refine this model by using
pre-processor information for handling computation and communication separately.
The model was validated by running seven benchmarks from the NAS Parallel
Benchmark, and Sweep3d on the Atlas cluster with 1152 four-way AMD Opteron
nodes. Results show a prediction error from 6.2% to 17.3%.

A framework for the automatic construction of performance skeletons to predict
performance on distributed environments is proposed by Sukhdeep et al. [110]. The
approach captures the execution behavior of an application and automatically gen-
erates a skeleton of a program that reflects its entire behavior. The framework was
validated through the execution of six kernels from the NAS Parallel Benchmarks on
a cluster of 10 Intel Xeon dual CPU. Results show that the automatically generated
performance skeletons can predict application performance with an average error
of 8%.
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Sharkawi et al. [106] propose a methodology to predict the performance of
HPC applications running on different architectures. The method uses data obtained
from the executions on the base machine to predict the performance of other four
systems (IBM JS22, p570, ×3550, and ×3650). Basically, benchmarks are executed
on the base machine to get application performance metrics, which are correlated
with data from the target platform through a genetic algorithm. The model was
validated through the execution of the SPEC CFP2006 benchmark suite on the base
machine and the target platforms. Results show an average error of 7.2% when the
performance is predicted to the same system where the data were collected, and an
average error up to 12.8% for different ISAs.

Artificial neural networks (ANNs) were used by Tiwari et al. [120] to predict the
power and energy usage for memory and CPU when executing the certain HPC
computational kernels. These ANNs were trained using empirical data gathered
on the target architecture. The approach was validated running three distinct
computational kernels (matrix multiplication, stencil, and LU factorization) on an
Intel Xeon E5530 (which has 2 quad-core processors). The results show that, once
the networks are trained, they can predict the performance, power and energy
consumption for the CPU and memory with a maximum error of 5.5%.

Cabrera et al. [18] propose an analytical model to predict the energy consumption
for the high-performance LINPACK running on HPC systems. The proposed
approach is based on the performance model presented in Chou et al. [25]. The
authors added to the model new parameters regarding the energy required to perform
communication and computation. The energy model was validated on a cluster with
24 nodes, each one containing an Intel Xeon dual-core. Results show that the model
predicted the energy with 1% of error in the best case. However, it achieved an error
of 67% in the worst case.

Song et al. [111] present a unified performance and power model for the
NekBone mini-application using a combination of empirical analysis and micro-
benchmarking. The approach considers the impact of computation and communi-
cation, and quantitatively predicts their impact on both performance and energy
consumption. The model was validated on a cluster with 64 nodes, each one with
a dual-socket AMD Opteron processor. The results show that the model provides
performance and energy prediction with a maximum error of 5% when predicting
the behavior for up to 1024 cores.

Considering HPC applications, a model for software estimation of power
consumption in an HPC environment is proposed by Witkowski et al. [125]. A mul-
tivariate linear regression is used to find out the hardware data with high correlation
with power consumption and to build the model. Several benchmarks were used to
train and validate the model, such as Abinit, NAMD, Intel LINPACK, HMMER,
among others, on three distinct machines: a dual-core Intel Xeon 3.0 GHz; a quad-
core Intel Xeon 2.33 GHz; and a dual-core AMD Opteron 2.2 GHz. Results show
that the proposed model can predict the power consumption of HPC applications
with a maximum error up to 7.88%

An energy prediction mechanism for OpenMP applications using a random
forest modeling (RFM) approach in compilers is proposed by Benedict et al. [8].
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The approach is expressed in five steps: (1) an analyzer entity does an initial
analysis of OpenMP applications regarding parallelism and code regions. (2) The
optimizer entity finds the optimal energy solution for the identified code regions
considering performance concerns. (3) The optimizer entity prepares a list of the
best configurations and submits them to the prediction mechanism. (4) The energy
consumption and performance for each configuration are predicted by using the
RFM. (5) Finally, the predicted results are sent to the optimizer entity, where it
would provide the best solution. The proposed approach was validated by running
different OpenMP applications (NAS benchmarks, matrix multiplications, n-body
simulations, and stencil applications) on four Intel Xeon E5-4560, each offering
8 cores. From the experiments, the authors observed that RFM predicted the
applications almost accurately with R2 (coefficient of determination) of 0.998 in
the best case (the closer to 1, the better), and 0.814 in the worst case.

DwarfCode, a performance prediction for hybrid applications, is proposed by
Zhang et al. [128]. It uses computation and communication traces to predict the
performance of MPI-OpenMP and MPI-ACC applications. DwarfCode captures
these traces and generates a shorter benchmark of the entire application which
mimics its behavior. Then, this shorter benchmark is executed on the target platform
to predict the application’s performance. The model was validated running the
NAS parallel Benchmarks on three clusters, each with a different number of nodes.
Results show that the approach can predict the performance of MPI applications
with an error rate lower than 10% for computing and communication-intensive
applications.

A prediction framework that matches executions signatures for performance
predictions of HPC applications using a single small-scale application execution
is proposed by Jayakumar et al. [50]. The framework extracts execution signatures
of applications and performs automatic phase identification of different application
phases. Then, these signatures are matched with the execution profiles of reference
kernels stored in a database and used to predict the performance of the application
phases during execution time. To validate the prediction framework, three large-
scale real scientific applications (GTC, Sweep3d, and SMG2000) were executed
on an 800-core heterogeneous cluster and a 3600-core cluster. The results achieved
show that the proposed framework can predict the energy consumption with errors
in the range 0.4–18.7%.

4.2.2 Approaches with Runtime Adaptation and/or
Transparency

Considering that the CPU availability can change during the execution due to
thermal overload and transient errors, Ding et al. [31] study how a parallel
execution can cope with changes in the CPU availability. The goal is to decide
at runtime the best strategy to employ when the number of CPUs available to an
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application is changed, considering the energy-delay product. The approach uses
performance counters (or data) provided by the architecture and a power model
statistic. Based on this information, it decides the ideal number of CPUs, threads,
and voltage/frequency levels to use when a variation in the resource availability
occurs. The approach was implemented using a full system simulator (Virtutech
Simics 3.0) and validated through the execution of two applications: fast Fourier
transform and multigrid. Compared to the baseline, in which there is no adaptation
in the platform when the available resources change, the approach reduced the EDP
up to 83.3%.

Thread Reinforcer [92] is an example of work that presents a certain level of
transparency to the user, but cannot adjust the number of threads dynamically, at
runtime. It consists of a framework that runs in two steps: (1) the application binary
is executed multiple times with a different number of threads for a short period
(e.g., 100 ms), while Thread Reinforcer searches for the appropriate configuration.
(2) Once this configuration is found, the application is fully re-executed with
the number of threads defined in the first step. By executing the application
binary already compiled, Thread Reinforcer is a particular case that keeps binary
compatibility. However, it works well only for applications that have a short
initialization period—thus introducing a small overhead—and it considers that all
parallel regions of an application have the same behavior.

The approaches proposed in [55] and [115] already present some adaptability
through the definition of the number of threads at runtime. Jung et al. [55] present
performance models for generating adaptive parallel code for SMT architectures.
In their work, an analysis is applied during compile time to filter parallel loops in
OpenMP in which the overhead from the thread management (creation/termination,
workload distribution, and synchronization) is higher than its own workload. Then,
at runtime, the master thread uses the compilation time analysis to dynamically
estimate whether it should use the SMT feature of the processor or not. This
approach is also dependent on a compiler and can only be applied for SMT
processors.

Suleman et al. propose the feedback-driven threading (FDT) framework [115],
which can adapt the number of threads considering contention for locks and memory
bandwidth. The framework consists of a specific compiler that samples a portion of
parallel regions of an application implemented with OpenMP, inserts instructions
at the entry and exit of the critical section, and executes it sequentially to analyze
synchronization and communication points. It then uses this analysis to estimate the
optimal number of threads for the given parallel region. The application is executed
with the estimated number of threads and cannot readapt at runtime. Furthermore,
FDT considers that all threads are homogeneous and ignores fundamental hardware
characteristics that are highly correlated to the parallel application behavior: FDT
assumes that bandwidth requirement increases linearly with the number of threads,
ignoring cache contention and data-sharing between the threads. Moreover, FDT
does not consider the effects of the SMT feature (discussed in Sect. 1.2), by
assuming that only one thread executes per core.
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More adaptive solutions, which consider runtime and continuous adaptation,
include [3, 20, 28, 29, 63, 91, 96]. However, these solutions rely on (i) support from
hardware/OS or a special compiler/tool; and (ii) the need for recompilation or a
previous offline analysis, as discussed next.

In [28], Curtis-Maury et al. propose a framework for nearly optimal online
adaptation of multithreaded code for low-power and high-performance execution.
The approach has an offline phase in which data from hardware counters are
collected, and profiles of parallel execution are analyzed. Then, at runtime, the
framework uses the information obtained in the offline phase to adapt the number
of threads and achieve optimal performance or energy consumption. A solution
proposed by Curtis-Maury et al. is ACTOR [29], a system that dynamically
changes the number of threads to improve energy efficiency. ACTOR is divided
into three steps: (1) artificial neural networks (ANNs) are trained offline to model
the relationship between performance counter events and the resulting performance
with a different number of threads; (2) at runtime, the derived ANN models are used
to predict the performance of parallel regions that were previously identified by the
programmer with special function calls from the ACTOR library; (3) the parallel
regions are executed with the predicted number of threads. Although the number
of threads is predicted at runtime in [28] and [29], an offline phase is required
before the execution of each parallel application. Therefore, if either the input set or
processor is changed, the offline analysis must be re-executed, which significantly
increases the total execution time of the entire framework.

Thread Tailor [63] is a framework that dynamically adjusts the number of threads
to optimize system efficiency, such as cache and memory space. The approach works
as follows: (1) programmers create a parallel application that uses a high number of
threads; (2) the binary created is profiled offline to collect statistics regarding the
number of threads, communication, and synchronization to form a communication
graph; (3) at runtime, a dynamic compiler takes a quick snapshot of the system
state to determine how many free resources are available and to decide the optimum
number of threads; (4) based on that information, the dynamic compiler generates
code for the new threads, intercepts future calls to thread creations, and redirects
them to the new threads. However, as Thread Tailor works for PThreads and
MPI, it requires huge effort from the programmer to develop a parallel application
that is able to use a high number of threads/processes, since the developer must
explicitly implement thread/process management (creation/termination), workload
distribution, synchronization and communication points between threads/processes.

Parcae [96] is a framework that comprises a compiler and runtime system to
optimize the overall system performance. The compiler (Nona) identifies paralleliz-
able regions in a sequential program and applies multiple parallelizing transforms
(data-parallel with critical sections and a pipeline transform) to each region.
When the application is executing, the Parcae runtime system (Decima monitor
and the Morta executor) monitors the program performance and system events
to determine the best configuration for the parallel application. However, Parcae
relies on system support (compiler, monitor, and executor) to modify sequential
applications at compilation and execution time. Therefore, if there are any changes
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in the environment (input set or microarchitecture), the application needs to be
recompiled.

Porterfield et al. [91] propose an adaptive runtime system that automatically
adjusts the number of threads based on online measurements of system resource
usage. The approach extends Qthreads (a parallel library [123]) to be used with
MAESTRO, a dynamic runtime library for power and concurrency adaptation of
parallel applications [90]. However, it is dependent on ROSE source-to-source
compiler [93] to obtain OpenMP directives and map the functions and data
structures to the Qthreads library. OpenMPE [3] is an extension designed for energy
management of OpenMP applications, in which the programmers expose energy
saving opportunities through the insertion of directives in OpenMP codes. However,
it works only for the Insieme compiler and runtime system from the Insieme
Project [53].

Based on a combination of Amdahl’s law with regression analysis, Ju et al. [54]
propose a model to estimate the optimal number of threads for heterogeneous
many-core systems. The model considers information obtained from a prediction
model to dynamically adjust the number of threads and processing cores at runtime.
The model was validated by executing applications from the PARSEC suite on a
heterogeneous system consisting of one Intel Xeon Phi Coprocessor and Xeon E5-
2670 CPU. Compared to the traditional way that parallel applications are executed
on heterogeneous systems, the proposed model improved the performance up to
48.6% and reduced the energy up to 59%.

More transparent approaches, which do not need support from special compilers,
include [72, 112, 113]. In Srinath et al. [112], ParallelismDial (PD), a model
that automatically tunes a program’s performance to the underlying system is
proposed. It monitors the system efficiency, regulates the degree of parallelism,
and continuously adapts the execution through a heuristic to an optimum point
of operation. The heuristic used to find the best degree of parallelism is based on
the hill-climbing search algorithm, which works as follows: (1) the parallel region
runs with only one thread to establish a sequential measure; (2) the same region is
executed with three degrees of parallelism (low, medium, and high); (3) the search
is refined to the best interval and continues until the optimum point be reached.

In Srinath et al. [113], ParallelismDial was extended to Varuna system. It
comprises two components: (1) an analytical engine which continuously monitors
changes in the system using hardware performance counters, models the execution
behavior, and determines the optimum degree of parallelism; and (2) a manager that
automatically regulates the execution to match the degree of parallelism determined
by the analytical engine. PD and Varuna comprise a monitor system that intercepts
thread and task creation from PThreads, TBB, and Prometheus libraries, and create
a pool of tasks to optimize their degree of parallelism. However, to do so efficiently,
PD and Varuna create a large number of fine-grained tasks. Consequently, it requires
more effort from the programmer, that is, the programmer is required to create as
many threads as possible, each one with the lowest possible workload. Because
of this intrinsic characteristic, PD and Varuna focus on recursive applications
that are mostly concentrated on big data. Besides that, they cannot optimize
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OpenMP applications due to limitations of the system (virtual tasks) used to control
parallelism [1]. Finally, LAANT [72] is a library that automatically adjusts the
number of threads of OpenMP applications. In this approach, code must be modified
by the programmer to include additional function calls in each parallel region of
interest in the application.

4.3 Dynamic Voltage and Frequency Scaling

4.3.1 Approaches with no Runtime Adaptation and no
Transparency

Snowdon et al. [109] and [108] propose a model to predict performance and energy
under different DVFS levels. Given a workload execution at one frequency setpoint,
the model predicts the runtime and energy at any other CPU frequency setpoint.
The model consists of three steps: (1) data sets are generated to calibrate the
model using least-squares linear regression; (2) the model is validated through
comparison with the measured power and performance; (3) the model is built to
predict performance and energy. Results were validated through the execution of
different applications from the MiBench suite, SPEC CINT95, and elsewhere on a
PXA255 processor, based on an ARMv5T-compatible XScale core. The maximum
error for performance prediction was 3.7%, and the average error was 0.72%. As for
energy prediction, the maximum error was 4.9%, and the average error was 1.5%.

Rountree et al. [100] present an analytic framework to predict the applications
performance under different DVFS configurations. The framework is processor-
independent and uses a single performance counter, namely Leading Loads. The
approach was validated through the execution of different kernels from the NAS
Parallel Benchmarks and SPEC CPU benchmarks, and the results show improve-
ments concerning the accuracy compared to the existing approaches. Mifakhutdinov
et al. [81] propose a DVFS performance predictor for realistic memory systems.
The framework, CRIT+BW, considers two variables when predicting the memory
performance: memory access latency and effects of prefetching. CRIT+BW was
evaluated using two different application classes from SPEC 2006 benchmarks:
memory-intensive and prefetch-heavy. Results show that when CRIT+BW is used
together with DVFS, energy consumption can be saved by up to 65% when
compared to the execution without DVFS and CRIT+BW, while previously DVFS
approaches were able to reduce the energy consumption by less than 34%.

Rossi et al. [99] propose an offline approach based on a multiple linear regression
model that estimates the power consumption for different DVFS policies: perfor-
mance, ondemand, and powersave. Then, the programmer can use the predicted
values to select the DVFS policy that provides the lowest power consumption. Mar-
ques et al. [33] perform an extensive study addressing multidimensional frequency
scaling for multicore embedded systems. Different hardware components were
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evaluated and had the operating frequency changed, such as processor, L2 cache,
and RAM. The main idea is to find the combination of frequency for each hardware
component that delivers the lowest energy consumption and EDP when running
parallel applications. Results showed that by selecting the ideal configuration before
the application execution, it is possible to improve the EDP by up to 46.4% when
compared to the standard way that frequencies are configured.

4.3.2 Approaches with Runtime Adaptation and/or
Transparency

A power-aware algorithm that automatically and transparently adapts CPU voltage
and frequency to reduce energy consumption with minimal impact on performance
is proposed by Hsu and Feng [46]. The algorithm schedules CPU frequency in such
a way that energy savings are obtained with a performance slowdown lower than
the maximum provided by the user. At every second, the algorithm analyzes the
actual power consumption and takes decisions regarding the ideal CPU frequency.
To validate the proposed algorithm, different applications from the NAS Parallel
Benchmark and SPEC suite were executed on an AMD Athlon64 processor and
on an Opteron-based cluster with four quad-cores. Compared to the application’s
execution without changing the CPU frequency, the proposed algorithm reduced the
energy consumption up to 25% at the cost up to 5% on performance degradation.

Hotta et al. [45] propose PowerWatch, a power-performance optimization model
that adapts the processor frequency at runtime but relies on an offline phase. In
the approach, a parallel application is split into several regions by the programmer.
Then, each region is executed with different processor frequencies during the offline
phase. Finally, the optimization algorithm determines the best processor operating
frequency for each region and will rerun the application with such frequency
values. Another hybrid approach is the Pack & Cap [27], which manages the CPU
voltage–frequency setting and the use of thread affinity (but does not perform
Thread Throttling) to optimize performance within a power budget. It consists of
an offline phase where a large volume of data (performance, energy, temperature)
are collected to train a multinomial logistic regression (MLR) classifier. Then, at
runtime, the MLR classifier selects the optimal configuration to execute the rest of
the application.

Runtime approaches, which do not need offline analysis but need special com-
pilers/tools to enable the runtime adaptation, are discussed next. DEP+BURST[2]
is an online DVFS performance predictor to manage multithreaded applications
that run on top of the Java virtual machine. Wu et al. [126] propose a dynamic
compiler system that interacts with the application during execution to reduce
energy consumption by applying different DVFS schemes. Hsu and Feng [46]
propose PART, an automatic power-aware runtime system that adapts the CPU
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operating frequency in order to reduce the energy consumption with a minimal
performance slowdown.

Next, online and transparent mechanisms are detailed. Rizvandi et al. [98]
propose a maximum-minimum-frequency DVFS algorithm (MMF-DVFS). It uses a
linear combination of the maximum and minimum processor frequencies that reduce
the energy consumption with minimal impact on the system’s performance. Ge et al.
[37] present the CPU Management Infra-Structure for Energy Reduction (CPU-
MISER), a runtime DVFS scheduler for multicore-based power-aware clusters. It
consists of a monitor that collects performance events from the application using
hardware counters and predicts the application’s workload based on the predicted
value, the DVFS scheduler to determine the CPU frequency for the rest of the
application. Miftakhutdinov [82] proposes a performance predictor to control the
CPU frequency level at runtime. The model measures the workload characteristics
for each parallel region and estimates the performance at different CPU frequency
levels. Then, when the region is re-executed, the CPU frequency is set to the level
that offers the best performance. Chen et al. [24] propose a model with the same
purpose, but to predict the best CPU frequency level and voltage for multicore
embedded systems, aiming to reduce the energy consumption. In the approach, the
user must define a given performance loss factor so the model can reduce the energy
consumption accordingly.

4.4 DCT and DVFS

4.4.1 Approaches with no Runtime Adaptation and no
Transparency

Abhishek and Margaret [11] propose a thread criticality predictor for parallel
applications. The main idea is to predict the slowest thread of an application, disable
such thread, or adjust the operating frequency of the processor, and then redistribute
the workload among the remaining threads. The model was validated on an ARM-
based-in-order (32 cores) simulator running benchmarks from the SPLASH-2 and
PARSEC suite. Results show that the approach can improve the performance up to
31.8% and reduce energy consumption by 15% on average, when compared to the
execution without the approach.

The work developed by Basmadjian and Meer [6] presents a methodology
for estimating the dynamic power consumption of multicore processors. The
proposed mathematical model considers different components, such as chip-level
(frequency and voltage), inter-die communication (active cores and dies involved
in the communication/computation), and die-level (cores and off-chip caches). The
authors also consider the impact of DVFS on the energy consumption. Two synthetic
benchmarks were executed on Intel and AMD multicore processors to validate the
approach. Results show that the model provides an accuracy within a maximum
error of 5% when predicting the energy consumption of a parallel application.
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A technique to predict the number of threads and DVFS level that offers the
best performance and energy consumption for parallel applications is proposed by
Sensi et al. [101]. The idea is to execute the program using few configurations and
then predict the behavior of the other settings through multiple linear regression.
The proposed technique was validated by executing the PARSEC benchmark on a
machine with 24 cores and 13 possible CPU frequency levels. The results show that
performance and power consumption can be predicted with an average of 96% of
accuracy by executing only 1% of the total possible configurations.

4.4.2 Approaches with Runtime Adaptation and/or
Transparency

Li and Martinez [67] investigate techniques to reduce the energy consumption of
parallel applications under given performance restrictions. The proposed approach
takes place in the possible number of active processors and different CPU frequency
levels available. Because many parallel applications are generally not written to
change the number of processors at runtime, the authors approximate the behavior
by simulating the technique in two phases: (1) each application is executed once
for every combination of the processor number and DVFS level, and collect the
energy and performance for each instance of the parallel region. (2) The authors
simulated different optimization mechanisms with Matlab to find the combination
of the processor number and DVFS level that offers the best results. To validate the
technique, the authors simulated a 16-processor CMP and executed six applications.
The authors concluded that for a parallel region and a performance target, the choice
of operating points that minimize power consumption is nontrivial.

In order to address the gap between power and parallelism in processors
versus memory system, Porterfield et al. [90] propose MAESTRO. It is a dynamic
runtime power and concurrency adaptation of parallel applications. MAESTRO was
designed to run within the application’s address space and communicate directly
with the application and thread scheduling. When MAESTRO detects the memory
is saturated, it reduces the pressure on memory either by slowing all the cores
through DVFS or by turning off a subset of cores. To incorporate the functionalities
of MAESTRO on applications and to dynamically adapt DVFS and number of
cores, an API threading interface has been created. Experimental evaluations were
performed on an AMD Phenom processor running five applications from the NAS
Parallel Benchmark. Compared to the execution without DVFS and number of cores
adaptation, MAESTRO reduced the power consumption up to 9.5%.

Li et al. [65] propose a library to save energy with no performance loss for hybrid
MPI/OpenMP applications. The library has an offline phase to train a model that
will be used at runtime to determine the ideal configuration (number of threads and
CPU frequency) for each OpenMP region. Seven applications from the NAS Parallel
Benchmarks were executed on a cluster with three different node architectures. The
results show a high accuracy of the model in all cases: more than 75% of the samples
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have less than 10% error. Moreover, the proposed model yields substantial energy
savings (4.18% on average and up to 13.8%) with negligible performance loss. In
order to use this library, the user has to instrument the applications with functions
calls around each OpenMP region and selected MPI operations (collectives and
MPI_Waitall). Although this library does not require special compiler/tools, the
user needs to modify and recompile the source code, in addition to having prior
knowledge of MPI functions. Also, if the user wants to use another processor, it is
necessary to rerun the entire training set.

LIMO [20] is a dynamic system that monitors the application at runtime,
being able to adapt the execution accordingly. However, this solution requires
hardware modifications to determine the working set size of a thread, as well as
additional operating system support for detecting threads that block due to busy-
wait (spin loop). Consequently, it cannot be applied to any existing commercial
microarchitecture. Also, LIMO relies on compiler support to insert special system
calls and to modify loop bodies. Therefore, applications need to be recompiled to
take advantage of LIMO functionalities.

Li et al. [66] present different models based on statistical analysis to estimate
the application power and execution time under different concurrency and CPU
frequency configurations. The approach uses static information to get the number of
threads and CPU frequency that offers the best results. Then, during the execution,
an algorithm adjusts the number of threads and CPU frequency to improve the
performance or reduce energy consumption. Applications from the NAS Parallel
Benchmark MZ and the ASC Sequoia codes were executed on two nodes, each
with four AMD Opteron quad-core processors. Compared to the execution with four
processors and four cores per processor, running at the highest processor frequency,
the proposed model reduced the energy consumption up to 13.8% with negligible
performance loss.

Hwang and Chung [48] propose a dynamic power management technique for
reducing the energy consumption of multicore-based embedded mobile devices. The
idea is to define at runtime the appropriate number of active cores to execute each
phase of the program. As an example, when the application execution enters in a
serial region, only one core is computing, then, all the other cores can be tuned
off to save energy. The approach works only for OpenMP 2.0 and depends on the
OMPi, a portable C compiler for OpenMP V2.0 [30]. In order to define which
cores will be turned off and at what time of the execution it will occur, directives
of the power management library are inserted into the OpenMP code during the
compilation by the OMPi compiler. The proposed system was validated on two
multicore processors (Intel Quad core and an ARM-11 MPCore) running eight
programs from the NAS Parallel Benchmark. As the applications from the NAS
are highly parallel, the authors intentionally added serial functions in the programs
to increase the serial portions of the benchmark. Compared to the DVFS technique,
the proposed approach can reduce the power consumption by 18% on average.

Two adaptive techniques to reduce the energy consumption through resource
management on multicore processors are introduced in Hankendi and Coskun [42].
The first technique dynamically packs the active threads onto a variable number
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of cores and jointly uses DVFS to optimize performance while meeting the power
constraints. In the other one, an adaptive resource allocation strategy to improve
the energy efficiency is proposed. The two techniques require static information
obtained from a multinomial logistic regression model. The input of the model are
functions of the system performance counter values, per-core temperatures, and the
current operating point. The output is the optimal configuration, which is accessed
in the form of a lookup table during execution. The PARSEC benchmark was used
to train the regression model and validate the proposed model. Executions were
performed on an AMD 12-core server which comprises two 6 core. Compared to
the state of the art, the first technique reduced the energy consumption by 51.6%,
while the second one improved the energy efficiency by 17%.

In Alessi et al. [3], an extension for OpenMP (OpenMPE) designed for energy
management is presented. The approach allows programmers to expose energy
saving opportunities through (1) characterizing application behavior by providing
a semantic region structure; (2) setting per-code region multi-objective goals and
constraints; (3) exposing application-level tunable parameters. OpenMPE exploits
DVFS, they adjust the number of threads and application-level content adaptation.
OpenMPE works only for the Insieme compiler and runtime system from the
Insieme Project. The approach was validated through the execution of a video
decoder application on an ARM big.LITTLE architecture comprising a Cortex-A15
and a Cortex-A7, and on an Intel i7 quad-core. Compared to the Linux ondemand
governor, OpenMPE saved up to 77% and 31% of energy on the mobile and general-
purpose platform, respectively.

Shafik et al. [104] propose an adaptive and scalable energy minimization model
for OpenMP programs, which comprises two steps: (1) code annotations are inserted
by the programmer in the sequential and parallel parts of the code to enable energy
minimization with specified performance requirements; (2) the runtime system
reads these performance requirements and uses this information to guide the energy
minimization. The same method, but aiming to improve lifetime reliability through
balanced thermal controls while meeting a given power budget, was presented by
Shafik et al. in [105].

Nornir [102] is a runtime system that monitors the application execution and
adjusts the resources configurations (DVFS, number of threads, and thread place-
ment) in order to satisfy either performance or power consumption requirements.
To use Nornir, the user has to install a system to manage the features provided
by the OS (e.g., DVFS management and energy profiling), and instrument the
parallel programming framework with Nornir functions. Marathe et al. [77] propose
Conductor, a runtime system that dynamically selects the ideal number of threads
and DVFS state to improve performance under a power constraint for hybrid
applications (MPI + OpenMP). First the application is monitored in order to gauge
its representative behavior, and then, a local search algorithm is applied to find and
select the configuration to reduce power with minimal impact on execution time.
For that, Conductor needs code modifications to insert functions.



Chapter 5
Case Study: DCT with Aurora

5.1 The Need for Adaptability and Transparency

Figure 5.1a shows the usual way of finding the best number of threads to run a
parallel application [68, 70, 71]. First, the source code is compiled and executed
n times with a different number of threads, where n is the number of available
cores in the processor microarchitecture. In this phase, one also has to consider
that each application may contain p parallel regions, in which each region can be
better executed with a different number of threads. Therefore, the search space
corresponds to the execution of np combinations of number of threads for each
application, where p is greater or equal to 1. After the offline training period, the
best configuration is selected, and the next executions will be performed with the
configuration found in this step.

In order to understand the huge design space exploration concerning the selection
of the ideal number of threads to run a parallel application, let us consider an
application with 5 parallel regions running on a 32 multicore processor. In such
a case, there will be 325 possible combinations, which results in 33,554,432
executions before selecting the ideal configuration. Supposing that each execution
would spend 1 min (60 s), it would be necessary approximately 65 days to find the
best configuration. However, if there is any change in the application behavior (e.g.,
input set size) or the execution environment, the executions must be performed
again.

Therefore, Aurora was developed to cope with the challenge of selecting the best
number of threads to execute each parallel region of an OpenMP application [73].
It automatically finds, at runtime and according to a given metric defined a priori
by the user, the ideal number of threads for each parallel region of any OpenMP
application. Moreover, it can also readapt according to a change in the behavior
of a particular parallel region during program execution. Because of its dynamic
adaptability, Aurora deals with the intrinsic characteristics of the application as
well as the microarchitecture on which it will execute; it also takes into account
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Fig. 5.1 Adaptation of
OpenMP applications. (a)
Brute force. (b) Aurora
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the current input set and application changes at runtime, resulting in significant
performance and energy improvements.

Aurora was built on top of the original OpenMP library and is completely trans-
parent to both designer and end user. Given an OpenMP application binary, Aurora
runs on it without any code changes. Therefore, existing OpenMP applications do
not need to be annotated, recompiled, or pass through any code transformation.
Such transparency is achieved by redirecting the calls originally targeted for the
dynamically linked OpenMP library to Aurora. This retargeting is configured by
simply setting an environment variable in the Operating System.

5.2 Aurora: Seamless Optimization of OpenMP Applications

5.2.1 Integration to OpenMP

As already described in Chap. 2.1.2, parallelism in OpenMP is exploited through
the insertion of directives in the sequential code that inform the compiler how and
which parts of the application should be executed in parallel [22]. OpenMP provides
three ways for exploiting parallelism: parallel loops, sections, and tasks. Parallel
sections and tasks are only used in very particular cases: when the programmer must
distribute the workload over the threads in a similar way as PThreads, and when the
application uses recursion (i.e., sort algorithms), respectively. On the other hand,
parallel loops are used to parallelize applications that work on multidimensional
data structures (i.e., array, grid, etc.), so the loop iterations (for) can be split into
multithread executions. Therefore, parallel loops are by far the most used approach
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#include <stdio.h>
#include <omp.h>

void main(){
for(int i=0; i<N; i++){
#pragma omp parallel
{

#pragma omp for
for(int j=0; j<M; j++)
//parallel loop

}  
}

}

initialize_env()
gomp_parallel_start()

gomp_resolve_num_threads()
…

team_destructor()

gomp_parallel_end()

gomp_loop_init()

Fig. 5.2 OpenMP execution environment with the respective libgomp functions

(all the aforementioned benchmark sets are implemented in this way). For now,
Aurora works to optimize parallel loops and does not influence in any way other
OpenMP applications that are parallelized using sections or tasks.

All functionalities provided by OpenMP are implemented into the libgomp, a
GNU Offloading and Multi-Processing Runtime Library. This library is dynamically
linked to applications that use OpenMP, so any modifications in its code are
completely transparent to user applications. Aurora was incorporated into this
library. In order to better understand how Aurora works, let us first consider Fig. 5.2,
which illustrates the regular way for parallelizing an iterative application with
parallel loops [22] and the respective main functions implemented by libgomp.
When the program starts executing, the initialize_env() function is called, which
is responsible for initializing all the environment variables used by OpenMP during
the application execution. When the program reaches the directive #pragma omp
parallel (used to indicate a parallel region), functions to create and define the
number of threads (gomp_resolve_num_threads()) are called. Within the parallel
region, the directive #pragma omp for indicates the loop that must be parallelized.
At the end of the parallel region, the function gomp_parallel_end() joins the threads
and finalizes the parallel region environment. Finally, when the application ends,
team_destructor() concludes the entire OpenMP environment.

Aurora functionalities were split into four functions (discussed in details
next). They were incorporated into the libgomp functions previously mentioned.
Algorithm 1 depicts the modifications done in the source code of each function
in order to support Aurora functions. libgomp also has another function called
gomp_loop_init(), which was not modified as its job is to distribute the workload
between the already defined threads.

auroraInitEnv() is responsible for recognizing the Aurora optimization tar-
get defined by the environment variable (OMP_AURORA) and for initializing
the necessary data structures, libraries, and variables used to control the search
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Algorithm 1 OpenMP functions that were modified to integrate Aurora
optimization
1: function INITIALIZE_ENV(void)
2: Initialization of OpenMP environment (variables, CPU affinity, wait policy, etc.)
3: if OMP _AURORA is def ined then
4: aurora_metric ← get the value defined by the user in OMP_AURORA
5: aurora_start_search ← get the value defined by the user in AURORA_START
6: auroraInitEnv(aurora_metric, aurora_start_search)
7: end if
8: end function

9: function GOMP_PARALLEL_START(∗f n, ∗data, num_threads)
10: ptrT oRegion ← gets pointer to fn address region
11: if Aurora is Enabled then
12: num_threads ← auroraResolveNumThreads(ptrToRegion)
13: else
14: num_threads ← gomp_resolve_num_threads(num_threads, 0)
15: end if
16: gomp_team_start(fn, data, num_threads, 0, gomp_new_team(num_threads))
17: end function

18: function GOMP_PARALLEL_END(void)
19: if OMP _AURORA is def ined then
20: auroraEndParallelRegion();
21: end if
22: finalize parallel region environment
23: gomp_team_end()
24: end function

25: function TEAM_DESTRUCTOR(void)
26: if OMP _AURORA is def ined then
27: auroradestructEnv();
28: end if
29: pthread_key_delete(gomp_thread_destructor)
30: end function

algorithm (described in Chap. 5.2.2). The pseudocode of this function can be
seen in Algorithm 2. auroraInitEnv is called from the original initialize_env()
only if Aurora optimization is enabled, as presented in lines 3–7 in Algorithm 1.
If OMP_AURORA is not defined, the OpenMP execution follows its standard
behavior.

auroraResolveNumThreads() sets the number of threads that execute each
parallel region based on the current state of the search algorithm. Also, it initializes
the counters for collecting data from the execution environment of the current
parallel region. Algorithm 3 depicts the pseudocode of this function: if the parallel
region is a new region, the search algorithm will start the search from the initial
state (S0) and with the number of threads defined either by the environment variable
AURORA_START or by 2 that is the standard value used by Aurora. Also, if the
search algorithm is in the END state, the best number of threads (bnt) found to
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Algorithm 2 Initialization of Aurora environment

1: function AURORAINITENV(metric, startSearch)
2: numCores ← get the total number of cores through sysconf
3: threadStartSearch ← get the number of threads defined to start the search
4: Initialize hardware counters to get the parallel region behavior
5: for i in maxNumberOf ParallelRegions do
6: Initialize the variables used to monitor/control the parallel region i

7: i.e., startSearch, metric, actualstate
8: end for
9: end function

execute a parallel region is returned. Otherwise, the actual number of threads (ant) is
returned. auroraResolveNumThreads is called by the gomp_parallel_start()1 when
Aurora is active, replacing the original gomp_resolve_num_threads() function, as
depicted in Algorithm 1.

Algorithm 3 Setting up the number of threads

1: function AURORARESOLVENUMTHREADS(ptrT oRegion)
2: idR ← get the id of the parallel region from ptrToRegion
3: if idR is a newRegion then
4: auroraKernel[idR].state ← S0
5: end if
6: switch auroraKernel[idR].state do
7: start monitoring the parallel region behavior
8: case END

9: return auroraKernel[idR].bnt
10: case Def ault

11: return auroraKernel[idR].ant
12: end function

auroraEndParallelRegion() is executed after the parallel region to get its
execution time, energy, or EDP, depending on the optimization metric defined by
the user. Execution time is extracted by the omp_get_wtime() function, provided
by OpenMP, while energy is obtained directly from the hardware counters present
in modern processors. In the case of Intel processors, the running average power
limit (RAPL) library is used to get energy and power consumption of CPU-level
components [40], while the APM library is used for AMD processors [39]. Such
functions and libraries were incorporated to Aurora, being totally transparent to the
user. That is, there is no need to make any modifications in the Operating System
(package installation, kernel recompilation, etc.) to use them.

1GOMP_parallel_start is also named as GOMP_parallel.
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Using either one of the objectives of execution time, energy, or EDP, auroraEnd-
ParallelRegion() performs one step of the search algorithm (which is explained
in the next subsection) and, according to this algorithm, it defines the number of
threads that will be used for the execution of this parallel region in the next iteration.
auroraEndParallelRegion() is implemented inside gomp_parallel_end() function,
and it is called when Aurora is active, as depicted in Algorithm 1.

auroraDestructEnv() concludes and destroys Aurora environment at the end of
application execution, when Aurora is active (Algorithm 1). It was implemented
inside team_destructor() OpenMP function.

To use Aurora, the user simply has to replace the original OpenMP libgomp with
Aurora’s libgomp. This new library includes all original OpenMP functionalities
plus the new functions of Aurora. When the environment variable OMP_AURORA
is set in the Linux Operating System, the thread management system of Aurora
is used instead of the original OpenMP functions. This environment variable
can be configured to the following values (and, therefore, optimization metrics):
performance, energy, or EDP. If the variable is not set, Aurora will not influence
the execution of that OpenMP application (i.e., the application executes with the
original OpenMP functions). In this way, any existing binary code can benefit from
Aurora without any modifications or need for recompilation.

5.2.2 Search Algorithm

The heuristic used by Aurora is divided into two phases. The first one investigates
the scalability of the parallel region and reduces the size of the space exploration,
exponentially increasing the number of threads (i.e., 2, 4, 8, 16, . . . ) while there are
potential improvements (states Initial, Doubling, and Exponential in Algorithm 4,
Fig. 5.3, and Table 5.1). The second phase performs a hill-climbing based algorithm
in the interval of threads defined in the first phase (states Exponential, Search, and
Lateral). Intuitively, finding the optimal number of threads to execute any parallel
region is a convex optimization problem. In this specific problem, it means that
there will be only one specific number of thread that delivers the best result for a
given metric and parallel region. Hill-climbing algorithms are very suitable for such
problems and are also known for having low complexity and being fast, which is
essential to reduce the technique overhead (since it is executed at runtime). Other
authors have already shown that when hill-climbing is used along with another
approach to guide the search, in most cases such algorithms will reach a near-
ideal solution, escaping from the local minima and plateaus [52, 116]. As the search
algorithm implemented by Aurora learns towards the best number of threads during
application execution, all the computation done in the search phase is not wasted
(i.e., it is used by the application), reducing the overhead of Aurora.
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Algorithm 4 Search algorithm implemented by Aurora

1: function SEARCHALGORITHM()
2: if state != END then
3: metricMsmt ← get time, energy, or EDP according to the target metric
4: switch state do
5: case Initial:
6: lastNT ← currentNT ← threadStartSearch;
7: state ← Doubling;
8: case Doubling:
9: bestMetricMsmt ← metricMsmt;
10: bestNT ← currentNT ;
11: currentNT ← currentNT × 2;
12: state ← Exponential;
13: case Exponential:
14: step ← lastNT

2 ;
15: if metricMsmt ≤ bestMetricMsmt then
16: bestMetricMsmt ← metricMsmt;
17: bestNT ← currentNT ;
18: if currentNT × 2 ≤ numCores then
19: lt ← currentNT ;
20: currentNT ← bestNT × 2;
21: else
22: currentNT -= step;
23: state ← Search;
24: end if
25: else
26: if bestNT == numCores

2 then
27: currentNT -= step;
28: else
29: currentNT += step;
30: end if
31: state ← Search;
32: end if
33: case Search:
34: if metricMsmt ≤ bestMetricMsmt then
35: bestNT ← currentNT ;
36: bestMetricMsmt ← metricMsmt;
37: end if
38: step ← step

2 ;
39: currentNT += step;
40: if step == 1 then
41: state ← Lateral;
42: end if
43: case Lateral:
44: if metricMsmt ≤ bestMetricMsmt then
45: bestNT ← currentNT ;
46: end if
47: Performs lateral movement to avoid minimum locals
48: state ← END;
49: else
50: if workloadV ariation == true then
51: run Aurora search algorithm again
52: end if
53: end if
54: end function

Basically, the algorithm works as follows (Algorithm 4): the search starts by the
Initial state (line 5), where the initial number of threads (threadStartSearch) and
the current number of threads (currentNT) are defined. Then, the parallel region is
executed with the initial number of threads (e.g., 2 threads) and the state changes to
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Initial Dou-
bling

Expo-
nential

Search Lateral END

Fig. 5.3 States and transitions of the search algorithm

Table 5.1 States of the search algorithm

State Operation

Initial Execution with the initial number of threads

Doubling Double the number of threads

Exponential Compare the results achieved in S0 and S1, and exponentially increases the
number of threads while either there are improvements or when the max
number of hardware threads is met. Then, state changes to Search

Search Search the ideal number of threads in the interval of candidates defined in S2.
When there are only two candidates, state changes to Lateral

Lateral Define the best number of threads and performs lateral movement

END Aurora begins to monitor the behavior of the parallel region

Doubling. In this state (line 8), the best result so far (bestMetricMsmt) is updated
with the result obtained by the execution with the number of threads defined in the
Initial state, the number of threads is doubled, and state changes to Exponential.
In this state (line 13), the measured metric (time, energy, or EDP) is evaluated,
and the number of threads continues to double while the measured metric keeps
improving and the maximum number of hardware threads available is not reached
(lines 15–32). Then, the state changes to Search. Once in there (line 33), Aurora
knows the interval of potential candidates for the ideal number of threads, which is
in the range between the last number of threads executed and the best number of
threads found so far and starts the second phase.

To better understand the second phase, let us consider that the interval of potential
candidates lies in the range of 8–16 threads. Then, the algorithm searches for the best
number of threads in this range. It will start executing with 12 threads (the average
amount between 8 and 16) and then compares to the best result so far to decide the
next range (which will be between 8 and 12 or 12 and 16). This process is repeated
until the best number of threads is found (state Search). After that, state Lateral
starts, in which lateral movement (line 47) is performed to avoid minimal locals
and plateaus. This movement is performed by testing a neighboring configuration
(number of threads) at another point in the search space that has not yet been
tested. When Aurora converges to the best number of threads for a particular parallel
region, it begins to monitor the behavior of such region. If there is any change in
the workload, which in this work a variation of 30% was considered, the search
algorithm starts its execution again.
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5.3 Evaluation of Aurora

5.3.1 Methodology

Fifteen applications written in C/C++ and parallelized with OpenMP from assorted
benchmarks suites were chosen according to the scalability issues discussed in
Sect. 1.2:

• Seven kernels from the NAS Parallel Benchmark [4]: block tri-diagonal solver
(BT), conjugate gradient (CG), discrete 3D fast Fourier transform (FT), lower–
upper Gauss–Seidel solver (LU), multigrid on a sequence of meshes (MG),
scalar penta-diagonal solver (SP), and unstructured adaptive mesh (UA). As
the original version of NAS is written in FORTRAN, the OpenMP-C version
developed in [103] is considered.

• Two applications from the Rodinia Benchmark Suite [23]: hotspot (HS) which
iteratively solves a series of differential equations and streamcluster (SC), a
dense linear algebra algorithm for data mining.

• Six applications from different domains: n-body (NB)—computes a simulation
of a dynamical system of particles [10]; fast Fourier transform (FFT)—calculates
the discrete Fourier transform of a given sequence [89]; STREAM (ST)—
measures sustainable memory bandwidth [78]; Jacobi (JA) method iteration—
computes the solutions of a diagonally dominant system of linear equations
[94]. Poisson (PO)—computes an approximate solution to the Poisson equation
in a rectangular region [94]; and the high-performance conjugate gradient
benchmark (HPCG), a stand-alone code that measures the performance of basic
operations [32].

Two different input sets for each benchmark were considered: small and medium.
Table 5.2 depicts the Pearson correlation between each scalability issue (discussed
in Chap. 2) and the application. As can be observed, the chosen applications do
not scale for different reasons, according to Sect. 1.2. All the data used for the
scalability analysis was obtained directly from hardware using Intel Performance
Counter Monitor (PCM) [124], Intel Parallel Studio, and Performance Application
Programming Interface (PAPI) [15].

As one can note in Fig. 5.4, the chosen benchmarks also cover a wide range of
different TLP behaviors. The TLP was measured as defined by the authors in [12]:
the average amount of concurrency exhibited by the program during its execution
when at least one core is active, and it is expressed in Equation 5.1. ci is the fraction
of time that i cores are concurrently running different threads, n is the number
of cores, and 1 − c0 is the non-idle time fraction. The closer this value is to 1.0
(normalized to the total number of cores available), the more TLP is available [12].

T LP =
∑n

i=1 cii

1 − c0
(5.1)
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Fig. 5.4 TLP available for each benchmark—normalized w.r.t. the maximum number of threads
in each processor. (a) Small input set. (b) Medium input set

Table 5.3 Main characteristics of each processor

Intel Core Intel Xeon

i5-4460 i7-6700 E5-2630 E5-2640

Microarchitecture Haswell Skylake Sandy Bridge Ivy Bridge

# cores 4 4 2 × 6 2 × 8

# threads 4 8 24 32

CPU frequency 3.2 GHz 3.4 GHz 2.3 GHz 2.0 GHz

L1 cache 4 × 32 KB 4 × 32 KB 12 × 32 KB 16 × 32 KB

L2 cache 4 × 256 KB 4 × 256 KB 12 × 256 KB 16 × 256 KB

L3 cache 6 MB 8 MB 30 MB 40 MB

RAM 16 GB 32 GB 32 GB 64 GB

The closer the TLP value is to 1.0 (normalized to the total number of cores
available), the more TLP is available. As an example, NB has the lowest TLP
available, where only 10% of the execution is performed in parallel when the 32-
core system is considered, while the FT benchmark presents the highest TLP, in
which more than 95% of the application is executed in parallel.

The experiments were performed on four different multicore processors
(Table 5.3), each one with the Ubuntu Operating System with Kernel v. 4.4.0
in all the machines. The CPU frequency was configured to adjust according to the
workload application, using ondemand as DVFS governor, which is the standard
governor used in most Linux versions. The applications were compiled with
gcc/g++ 6.3, using the optimization flag -O3, and the OpenMP distribution version
4.0. The results presented in the next session are the average of ten executions with
a standard deviation lower than 0.5%.
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Aurora was evaluated in the following scenarios:

• Baseline: the application executes with the maximum number of threads avail-
able in the system;

• OMP_Dynamic: a built-in feature of OpenMP that dynamically adjusts the
number of threads of each parallel region, aiming to make the best use of system
resources, such as memory and processor. OMP_Dynamic is generally used to
avoid oversubscription, in the way that the number of threads is defined based
on the load average utilization of processes on the system [26]. This feature
is enabled by using the environment variable OMP_DYNAMIC or through the
insertion of the omp_set_dynamic() in the source code [22];

• State-of-the-art approaches: Aurora was also compared to the most cited
approaches in the area:

– Feedback-Driven Threading (FDT): The number of threads is defined
based on the contention for locks and memory bandwidth (as discussed in
Sect. 4.2.2) [115].

– Varuna: A high-level comparison with it was performed, by faithfully imple-
menting the Varuna programming model (as defined in [113]) and applying it
to the benchmarks.

• Static Approaches: in order to measure the efficiency of the search algorithm
used by Aurora, two static and offline approaches were implemented:

– Oracle Solution: The execution of each parallel region with the optimal
number of threads for each metric, without the cost of the learning curve.
The optimal number of threads was obtained through an exhaustive execution
of each parallel region of each application with 1 to n threads, where n is the
maximum number supported by hardware.

– Genetic Algorithm (GA): It was implemented to demonstrate how Aurora’s
hill-climbing fares against such classes of heuristics. GA is a search meta-
heuristic based on natural selection and genetics. It uses a concept of a
population, which is a set of individual solutions (chromosomes), that can
evolve to an optimum solution through generations.

5.3.2 Results

We start by discussing how Aurora handles the scalability issues discussed in
Sect. 1.2: off-chip bus saturation, shared memory accesses, data-synchronization,
and issue-width saturation. Then, we present a comparison between Aurora and the
following executions in Sect. 5.3.2.2: baseline, OMP_Dynamic, FDT, and Varuna,
while Sect. 5.3.2.3 compares Aurora to the results achieved by the genetic algorithm.
Section 5.3.2.4 discusses the efficiency of the search algorithm implemented by
Aurora through the comparison to the Oracle solution. Finally, Sect. 5.3.2.5 draws
the limitations of Aurora at this time.



5.3 Evaluation of Aurora 67

5.3.2.1 Handling Scalability

As a result of its runtime analysis, the search algorithm used by Aurora can detect
the point in which the number of threads saturates any metric. As a first example, let
us consider the off-chip bus saturation (as discussed in Sect. 1.2) and the execution
of HPCG with medium input set on the 24-core system. This benchmark has two
main parallel regions that are better executed with a different number of threads
(Table 5.4) each. Figure 5.5a shows that when the second region is executed with
more than 12 threads, the off-chip bus saturates (100% of utilization), and no further
EDP improvements are achieved. By using its continuous monitoring and avoiding
this saturation, Aurora was able to reduce the EDP of the whole application by 15%
when compared to the baseline execution (24 threads). The very same behavior can
be observed in FFT and ST (regardless of the input set) and JA for the medium input
set (Table 5.2), but at different improvement ratios.

In applications with high communication demands, there is an optimal point in
which the overhead imposed by the shared memory accesses does not overcome
the gains achieved by the parallelism exploitation, as discussed in Sect. 1.2. Aurora
detected this point for all benchmarks in this class: SC, MG, and BT; LU (with
small input); PO, UA, and SP (with medium input) (Table 5.2). For instance, let us
consider the SP benchmark running on the 24-core system. This application has nine
main parallel regions, in which each one is better executed with a different number
of threads. Figure 5.5b shows that when the number of shared memory accesses
from all threads in the first parallel region starts to increase (after six threads—
primary y-axis), no further improvements in the EDP are achieved (secondary y-
axis). As shown in the same figure and Table 5.4, Aurora found the best number of
threads to execute this parallel region, providing EDP gains of 58% when compared
to the baseline execution (24 threads).

Aurora similarly detects the point where the synchronization time overlaps
the gains provided by TLP exploitation. This behavior can be observed in some
benchmarks, such as n-body (NB) with small or medium input, or Jacobi(JA) and
SP with small input set (Table 5.2). In these benchmarks, the higher the number of
threads, the greater the time spent synchronizing, which can worsen the results, as
already discussed in Sect. 1.2. The n-body benchmark with the medium input set
executing on the 32-core system (Fig. 5.5c) can be discussed as an example. When
increasing the number of threads from 1 to 3, performance improves. However,
from this point on, the time that the threads spend synchronizing overcomes the
gains achieved by the parallelism exploitation (Fig. 5.5c), increasing the energy
consumption and EDP of the whole application. As demonstrated in Table 5.4,
by avoiding this extra overhead in the synchronization time and setting the right
number of threads, Aurora reduced the execution time by 79%, energy by 89%, and
EDP by 98%.

Aurora also converges to the best number of threads for applications that are
negatively influenced by the issue-width saturation. Some examples are: hotspot
(HS), FT, and CG with any input set; and UA and PO with the small input
(Table 5.2). Let us consider the hotspot benchmark with the medium input set
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Fig. 5.5 Scalability behavior. (a) HPCG—2nd parallel region. (b) SP—1st parallel region. (c)
n-body. (d) Hotspot

executing on the 24-core system. In this case, the optimal number of threads for
EDP is 12 (see Table 5.4). As Fig. 5.5d shows, when increasing the number of
threads from 12 to 13, the number of cycles that the threads spend without issuing
any instruction abruptly increases. Therefore, performance decreases and energy
consumption increases (Fig. 5.5d). Once more, by avoiding the excessive increment
in the number of threads, Aurora improved performance by 21% and reduced EDP
and energy by 44% and 25%, respectively.

Finally, as discussed in Chap. 1, it is important to note that there are cases in
which the characteristic that influences the thread scalability changes according to
the input set (Table 5.2). As a specific example, let us consider JA application. When
it is executed with the small input set, the time that the threads spend synchronizing
limits the application scalability. When executed with the medium input set, the
off-chip bus becomes the main limiting factor because of the larger amount of data
available.

5.3.2.2 Performance, Energy, and EDP

Table 5.4 depicts the number of threads found by Aurora that offers the best result
in performance, energy, and EDP to execute the main parallel regions of each
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application. As an example, let us consider the LU application executing with the
medium input on the 8-core system and targeting the EDP. It has two main parallel
regions: the ideal number of threads for the first is four, while for the second the
number is three. Moreover, depending on the input set, the ideal number of threads
for each parallel region may vary. This is the case of the CG application running
on the 32-core system. When changing the input set from small to medium, the
workload of the second parallel region changes, increasing its TLP. Now, the best
EDP for this region is achieved with 32 threads instead of 16. The ideal number of
threads also varies when the target optimization metric changes. The ST executing
on the 32-core system is an example: 12 threads is the best choice for performance,
4 threads for energy consumption, and 6 threads for EDP.

Figures 5.6, 5.7, and 5.8 present the results for the entire benchmark set
when running the medium input set, along with their geometric mean (Gmean)
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Fig. 5.6 Aurora vs Baseline (medium input): lower than 1.0 means that Aurora is better. (a)
Performance. (b) Energy consumption. (c) Energy-delay product
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Fig. 5.7 Aurora vs OMP_Dynamic (medium input): lower than 1.0 means that Aurora is better.
(a) Performance. (b) Energy consumption. (c) Energy-delay product

considering the four multicore systems. Figure 5.6 compares Aurora to the base-
line (represented by the black line), while Figs. 5.7 and 5.8 compare Aurora to
OMP_Dynamic and FDT framework (also represented by a black line), respec-
tively. Results are normalized according to the setup to be compared (baseline,
OMP_Dynamic, or FDT), so values below 1 mean that Aurora is better. They are
presented for performance, energy consumption, and EDP. For each metric, we show
the result for Aurora when it is set to optimize the particular metric. As an example,
Fig. 5.6b shows the energy savings achieved by Aurora over the baseline when set
to reduce the energy consumption. Table 5.4 summarizes the results for the small
input set considering the geometric mean for the four multicore systems.

Aurora Versus Baseline As observed in Fig. 5.6 and Table 5.4, in most cases
Aurora shows improvements regarding any metric. If one considers the geometric
mean (Gmean bars in each figure) in any scenario, Aurora is most of the times
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Fig. 5.8 Aurora vs FDT (medium input): lower than 1.0 means that Aurora is better. (a)
Performance. (b) Energy consumption. (c) Energy-delay product

Table 5.4 Summary of the results for the small input w.r.t. the geometric mean: lower than 1.0
means that Aurora is better

Performance Energy EDP

Baseline OMP FDT Baseline OMP FDT Baseline OMP FDT

4-core 0.98 0.75 0.84 0.91 0.85 0.83 0.90 0.63 0.72

8-core 0.91 0.83 0.78 0.89 0.85 0.80 0.80 0.71 0.62

24-core 0.85 0.81 0.67 0.76 0.83 0.67 0.68 0.70 0.44

32-core 0.88 0.84 0.69 0.66 0.78 0.73 0.54 0.62 0.48

better. In very specific scenarios where the design space exploration is limited, it
presents similar results as the baseline. Considering the best case, execution time
was reduced by 16% with the medium input set executing on the 32-core system.
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The best scenario for energy consumption and EDP is with the small input set and
the 32-core system: energy is reduced by 34%, and EDP is improved by 47%. When
considering the overall geometric mean (entire benchmark set and all processors),
Aurora provided 10% of performance improvements, 20% of energy reductions, and
28% of EDP improvements.

Aurora Versus OMP_Dynamic This specific implementation of OMP_Dynamic
considers the last 15 min of execution to define the number of threads [22]. It does
not use any search algorithm nor considers each parallel region in particular. For
this reason, it is worse than the OpenMP baseline in many cases. The advantage of
potentially decreasing the overhead, since it is not often called, does not compensate
the fact that it is not able to get near to the optimal number of threads. Considering
the best case for each metric (Gmean) in Fig. 5.6 and Table 5.4 Aurora reduced the
execution time by 26% (medium input and the 4-core machine), energy consumption
by 24% (medium input and the 32-core system), and EDP by 38% (small input and
the 4-core system). In the overall (Gmean), Aurora was 11% faster, saved 17% of
energy, and improved EDP by 32%.

Aurora Versus FDT As observed in Fig. 5.8 and Table 5.4, Aurora outperforms
FDT in all scenarios. In the best case (small input set and the 24-core machine),
Aurora improved (Gmean) the execution time by 34%, energy consumption by
34%, and EDP by 56%. In the overall, the improvements were of 26%, 25%,
and 45%, respectively. In very particular cases, results of FDT are similar as
Aurora’s when performance is considered. These are with applications that are
in the group of scalability issues that FDT handles, such as FFT (off-chip bus
saturation) and JA (synchronization). However, as already discussed, FDT ignores
many fundamental hardware characteristics, converging to a non-optimal number of
threads in many times. Moreover, the training phase of FDT executes each parallel
region in single-threaded mode until the standard deviation of the observed metric
(memory bandwidth usage or synchronization time) is stable. It leads to a higher
overhead for applications that present medium or high TLP. Because of this, in many
cases FDT is worse than the baseline and OMP_Dynamic.

Varuna-PM One representative application was selected from each benchmark
class (NB, SC, ST, and FT) and implemented them using the programming model
employed by Varuna. They were executed with two different amounts of threads
(1566 and 10k threads, taken from [113]) on the 32-core machine. Table 5.5 shows
that these versions are slower than the OpenMP baseline. In particular, for the NB
benchmark, which has its scalability limited by data-synchronization, the greater
the number of threads, the greater the time the threads spend synchronizing. This
increases the execution time and energy consumption (as discussed in Chap. 3). It is
important to emphasize that these results do not consider the improvements provided
by the analytic engine and the manager system of Varuna. However, even if the
analytic engine could improve performance by 15% and reduce energy consumption
by 31% (values taken from [113]), it would not be enough to provide the same
levels of performance and energy as the OpenMP baseline, in most cases. The main
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Table 5.5 Times that Varuna-PM is slower than baseline

Small Medium

# threads Metric FT SC ST NB FT SC ST NB

1566 Performance 1.8 1.6 1.3 164.4 1.8 2.0 1.2 161.7

Energy 1.4 1.1 1.0 33.0 1.4 1.6 1.1 45.0

EDP 2.5 1.8 1.4 5421.6 2.6 3.1 1.3 7274.8

10k Performance 3.1 6.6 3.6 1020.8 2.1 3.7 2.2 1026.9

Energy 1.9 4.5 2.4 204.8 1.6 2.7 1.5 1026.0

EDP 5.9 29.6 8.6 209072 3.3 10.1 3.3 1053593

reason for these results is that Varuna was developed to be used in different kinds
of applications (e.g., big data and ones that are recursively implemented), since it
creates as many threads as possible. Therefore, Aurora and Varuna can be seen as
two orthogonal approaches.

5.3.2.3 Distinct Approaches, Similar Convergence

Genetic algorithm is a search metaheuristic based on natural selection and genetics.
It uses a concept of a population, which is a set of individual solutions (chromo-
somes), that can evolve to an optimum solution through generations. As GA requires
minimum previous information on the problem at hand, it is widely used in many
different situations. For our experiments, we started with a random population with
a fixed size of 30 to 40 individuals (depending on the application). We modeled
the chromosome to represent the global solution (i.e., the number of threads for
each parallel region). Thus, we had to run the entire application for each new
chromosome. Our population evolved by randomly selecting new chromosomes,
giving higher chances for those with the best results in EDP. While applying the
crossover guarantees the propagation of the best individuals characteristics, the
mutation ensures the whole solution space can be searched. The probability for the
crossover and the mutation to happen is of 0.9 and 0.001, respectively.

While the GA performs a global search, trying for different combinations for
each parallel region, Aurora splits the problem into local searches (one for each
region). The GA does find local optimums and escape them through the generations.
However, it tends to perform worse when the space exploration is too large,
represented by applications with many parallel regions. GMEAN_GA in Fig 5.9
shows the EDP (y-axis) given by the geometric mean of our benchmark set through
the generations (x-axis). We also include the geometric mean of Aurora’s execution
(GMEAN_AURORA). All the results are normalized by the Oracle execution
(represented as the constant line in 1). GMEAN_GA and GMEAN_AURORA
lines clearly show that the GA converges to a similar result as Aurora over
the generations (Fig. 5.9 truncates at generation 26), and when one considers
the geometric mean, Aurora performs slightly better. We can also see the worst
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(MAX_GA and MAX_AURORA) and the best (MIN_GA and MIN_AURORA)
cases from the executed applications for the GA and Aurora, respectively.

As observed, the GA can find better solutions than Aurora in its best case, but
cannot achieve Aurora’s result in the worst case (an application with many parallel
regions) because of its coarse tuning characteristics. Furthermore, Fig. 5.9 omits the
GA training time, which can easily exceed several hours and must be re-executed
when anything in the system changes, such as the input size or microarchitecture.
Aurora, on the other hand, can quickly adapt at runtime.

5.3.2.4 Evaluating the Efficiency of Aurora’s Search Algorithm

Table 5.6 depicts (in percentage) how the results obtained by Aurora differ from the
Oracle solution. We consider the geometric mean (Gmean) of the entire benchmark
set for each processor and metric. The difference between ours and the optimal
solution reflects the overhead of our technique, so we can measure the cost of
the learning curve. As one can observe, these overheads are not very significant
when compared to the best possible solution. The overhead is originated from two
situations: the execution of the search algorithm itself, and the execution of a given
parallel region with a number of threads that is not the ideal while the search
algorithm is trying different possibilities to converge to the ideal number. Aurora
showed higher overheads in the following situations:

1. The best result is achieved with either the maximum number of threads or a
number close to it, which is the case of the FT and CG benchmarks executing on
the 24 and 32-core systems.

2. The parallel region has a relatively small number of interactions but executes for
a significant time, such as HPCG.
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Table 5.6 Learning overheads (%) for Aurora w.r.t. the geometric mean for all the benchmarks

Performance Energy EDP

4-core 8-core 24-core 32-core 4-core 8-core 24-core 32-core 4-core 8-core 24-core 32-core

S 0.7 0.9 2.9 9.9 0.9 1.4 0.9 4.1 1.8 2.1 2.6 6.6

M 1.0 0.7 2.4 3.1 0.9 2.0 1.6 3.0 2.8 1.9 2.5 5.4

3. Applications that have short execution time (i.e., less than 10 s), such as the MG.
Its Oracle version takes only 1.45 s to execute on the 32-core system with the
small input set.

4. Applications with many parallel regions, in which most of them have a low
workload, as in the UA benchmark. UA has 54 parallel regions, and 44 of them
take less than 0.5 s to execute regardless of the target processor.

Moreover, the higher the number of hardware threads available in the system,
the greater the space exploration that must be covered. However, even though the
overhead of the search algorithm increases, it does so in small rates, as can be
observed when one compares the averages of the 24- and 32-core systems to the
4- and 8-core ones.

We also measured the execution time of the hill-climbing algorithm alone (con-
sidering only the specific calls to the respective function of the search algorithm).
We consider the 32-core machine, which is the one that has the largest design space
to be explored. Our experiments show that it presents an overhead of only 0.020%
w.r.t. to the total execution time (geometric mean considering all benchmarks and
inputs). In the worst case (MG benchmark, small input set), the search algorithm
adds only 0.267% to the total execution time.

5.3.2.5 Limitations of Aurora

As already extensively discussed throughout this paper, Aurora works only with
OpenMP and, more specifically, with the OpenMP parallel directive. However, it
is important to remember that, as previously discussed in this chapter, sections and
tasks are seldom used. In cases where there are parallel regions implemented in a
different API or using unsupported OpenMP directives, Aurora will still work to find
the ideal number of threads for each OpenMP parallel directive region. Therefore,
it will not influence the execution of those other parallel regions.

Moreover, there are other scenarios where Aurora will also present some limita-
tions: (1) The application is being parallelized to run on distributed systems, using
some hybrid approach, in which the iterations of the outer loop are distributed to
different nodes using a message passing library, and the inner loops are parallelized
with OpenMP. For such hybrid approaches, Aurora will work for the OpenMP
regions. (2) Multiple parallel loops are embedded inside an OpenMP parallel
directive, using the clause collapse, which specifies how many loops in a nested
loop should be collapsed into one large iteration space. In this scenario, Aurora
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will work to optimize the number of threads of the nested parallel loop. (3) The
programmer wants to distribute the thread across the available sockets in an SMP
architecture (e.g., match the number of threads of the outer loop with the number of
sockets). Such applications will not benefit from Aurora’s search algorithm because
the number of threads for each parallel region is defined a priori (statically) by
the programmer. This is usually done by very experienced programmers and is not
significantly used nowadays.

Another requirement for Aurora is an interface to access performance counters
for power dissipation and execution time. Current Intel platforms (all models
manufactured after the Sandy Bridge microarchitecture, including i3, i5, i7, i9,
Atom, Xeon, and Xeon Phi processors), AMD (some models from the Bobcat and
Bulldozer family, and all models from the Zen family), and IBM Power9 Family
provide all the hardware counters for execution time and power dissipation that
Aurora needs. Some architectures (such as ARM) currently provide only the former,
which prevent automatic optimization for energy and EDP. An alternative would be
to estimate power based on the available performance counters, although this could
lead to potentially wrong decisions by the search algorithm.

As observed in the experiments, Aurora presented its worst results executing
applications with high TLP. In such cases, executing with the highest possible
number of threads, as the baseline does, is already the best solution. Therefore,
Aurora will waste time (1) with its learning algorithm and (2) executing the parallel
regions with non-optimal number of threads during this process. In conclusion,
when most parallel regions of an application have high TLP, Aurora may bring
some small overhead compared to the baseline. Large input sets tend to alleviate this
overhead, since each parallel region will proportionally execute more times using
the ideal number of threads and less time in the process of learning.



Chapter 6
Conclusions

Efficiently exploiting thread-level parallelism has been challenging for software
developers. As many parallel applications do not scale with the number of cores, not
always using the maximum number of available cores running at the highest possible
operating frequency will deliver the best performance or energy consumption.
However, as discussed in this book, the task of rightly choosing the ideal amount
of threads and the CPU operating frequency is not straightforward: many variables
are involved (e.g., off-chip bus saturation and overhead of data-synchronization),
which will change according to different aspects of the system at hand (e.g., input
set, microarchitecture) and even during execution.

In this context, many works have been proposed to optimize the execution of
parallel applications through the adaptation of the number of threads and the CPU
operating frequency. As discussed in this book, they can be characterized according
to the adaptability and transparency. The works that do not present adaptability
at runtime can test many configurations without incurring in any overhead during
the application execution, but their training time can take several hours. Besides
that, when the environment changes, the offline analysis must be re-executed. On
the other hand, approaches that provide adaptability at runtime can deal with the
environment changes and select the ideal configuration as the application executes.
However, this adaptability adds an overhead to the application execution. Therefore,
runtime approaches must be efficient (find a solution close enough to the best
possible one) and fast (converge to the solution within a few steps).

Most of the proposed approaches found in the literature and discussed in this
book were designed to: (1) work only on homogeneous systems (same ISA and
microarchitecture). Therefore, considering that heterogeneous multicore systems
(HMS) are becoming more and more popular, we believe that one future direction
is to design approaches to optimize the execution of applications in those systems.
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(2) target performance or energy. Nowadays, different non-functional requirements
are becoming more important, such as the processor aging and reliability. (3)
consider only one parallel API. However, heterogeneous systems may demand
different communication models and, therefore, will probably need a mix of
different APIs to communicate with each other.
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