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Abstract In the past two decades, interest in the area of time series has soared and
many distance measures for time series have been proposed. The problem of pair-
wise similarity of time series is based on the underlying distance measure (which
is not necessarily metric or even dissimilarity measure) and is common in many
time series areas. To the best of our knowledge, there are over 40 distance measures
already proposed in the literature. Thus, there is a need to decide which measure
will be the most appropriate for our specific problem. The aim of our study is to
give a comprehensive comparison of distance measures for time series classifica-
tion enriched with extensive statistical analysis. We will follow a methodology that
assumes evaluating the efficacy of distance measures by the prism of accuracy of
1NN classifier. Experimental results carried out on benchmark datasets originated
from UCR Time Series Classification Archive are provided. We show that none of
the distance measures is the best for all datasets, however there is a group performing
statistically significantly better than the others.

Keywords Time series analysis · Classification · Distance measures · UCR
archive

1 Introduction

Year after year, we see a remarkable increase of the interests in both collecting
and mining of data. Typically, we differentiate time series problems from other data
analysis tasks, because the attributes are ordered andwemay look for a discriminatory
feature that depends on the ordering [4]. In the past 20 years, interest in the area
of time series has soared and many tasks have been deeply investigated, such as
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classification [4], clustering [29], indexing [26], prediction [50], anomaly detection
[51], motif discovery [34] and more. In our opinion, there is a problem that appears
throughout almost all of these topics: how to compare given two time series in the
most appropriate way?

The problem of pairwise similarity of time series is based on the underlying
distance measure (which are not necessarily metrics or even dissimilarity measures).
To the best of our knowledge, there are about 40 distance measures proposed already
in the literature. Some of them are based on certain feature of data, while the others
use predictions, underlying models or some transformations. Such a variety may be
confusing and makes it hard to find the most appropriate measure, especially for
application-oriented scientists. Available research includes only 2 papers providing
a partially comparison of selected distance measures.

Wang et al. [48] provide an extensive comparisonof 9 different similaritymeasures
and their 4 variants, which was carried on 38 time series datasets from UCR archive
[13]. Authors of the paper conclude, that they did not find any measure, that is
“universally better” at all datasets—some of them are better than the rest, while
beingworse on other datasets. However, dynamic timewarping (DTW; [7])—slightly
before some edit based measures: LCSS, EDR and ERP—seems to be superior to
others. And it is in line with the widespread opinion that DTW is not always the
best but in general hard to beat [45, 52]. From the other hand, the study points out
that Euclidean distance remains a quick and efficient way of measuring distances
between time series. Especially, when the training set increases, the accuracy of
elastic measures converges to that of Euclidean distance.

Serrà et al. [44] compare 7 similaritymeasures on45datasets originated fromUCR
archive. Authors of the paper suggest that, in the set of investigated distances, there
is a group of measures with no statistically significant differences: DTW, EDR and
MJC. Another finding is that the TWED measure seems to consistently outperform
all the considered distances. Euclidean distance is said to perform statistically worse
than TWED, DTW, EDR, and MJC, and even its performance on large datasets was
“not impressive”. What is more, an interesting remark is made about various post-
processing steps that may increase classification accuracy: the complexity-invariant
correction [5], the hubness correction for time series classification [42], unsupervised
clustering algorithms to prune nearest neighbor candidates [44]. For details see Serrà
et al. [44].

Despite giving interesting results, both studies take into account only some dis-
tance measures, while nowadays, due to the very dynamic increase of interest in
the time series area, there are about 40 measures available. As it is computationally
expensive, in this paper we compare 30 of them, but we plan to develop our exper-
iment in the nearest future. Our contribution is to give an extensive comparison,
supported by deep statistical analysis. We would like to create a benchmark study,
that could be used not only by researchers from different application fields, but as
well by authors of new distance measures, to assess their effectiveness. We are going
to give only basic descriptions of used similaritymeasures, provided alongwith some
reference, as our intention is to not to develop distance measures itself, but rather to
compare their efficacy.
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2 Distances’ Classification and Description

According to our best knowledge there exist about 40 distance measures, thus there
is a strong need to classify them.Montero and Vilar [38] proposed to group measures
into four categories: model-freemeasures, model-basedmeasures, complexity-based
measures, and prediction-based measures. Wang et al. [48] in their research named
four groups of distance measures: lock-step measures, elastic measures, threshold-
based measures, and pattern-based measures. In our opinion the most universal and
covering almost all distances is categorization proposed by Esling and Agon [18]:
shape-based measures, edit-based measures, feature-based measures and structure-
based measures. We are going to follow the last classification. In this section, we
list all 30 distance measures compared in this paper. We provide most important
formulas, assuming we are given two time series: XT = (x1, x2, . . . , xT ), YT =
(y1, y2, . . . , yT ).

2.1 Shape-Based Distance Measures

This group of distance measures compares the overall shape of series looking mostly
on the raw values.

The basic measures there are derived directly from L p norms and we call them L p

distances: Manhattan distance, Minkowski distance, Euclidean distance, and Infinite
norm distance. They are relatively simple in understanding and computation, but
compare only time series of equal length and sometimes they perform poor and are
highly influenced by outliers, noise, scaling or warping. For more information, we
refer to Yi and Faloutsos [53], Antunes andOliveira [2]. The basic formulas are given
in Table 1.

Berndt and Clifford [7] proposed Dynamic TimeWarping (DTW) distance, which
not only solve most problems know from L p distances, but due to its ability to deal
with warping of the time axis became one of the most popular measure for time
series. In practice,we computeDTWusing dynamic programmingwith the following
recurrence:

�(i, j) = D(i, j) + min{�(i − 1, j − 1), �(i − 1, j), �(i, j − 1)}

Table 1 L p distances,
1 < p < ∞ Distance Formula

Manhattan
∑T

i=1 |xi − yi |
Minkowski

p
√

∑T
i=1(xi − yi )

1
p

Euclidean
√∑T

i=1(xi − yi )2

Infinite norm maxi=1,...,T |xi − yi |
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with initial conditions:

�(0, 0) = 0, �(0, i) = ∞, �(i, 0) = ∞ (i = 1, 2, . . . , n),

where � is a cumulative distance matrix, D(i, j) = d(xi , y j ), d(xi , y j ) = (xi −
y j )2. The value of DTW at position (n, n) of the matrix � is calculated then as
DTW (x, y) = √

�(n, n).
Because of the long computation time of basic DTW distance, several lower

bounding and temporal constraints techniques have been proposed. In Sect. 4 we
denote DTW with Sakoe–Chiba Band as “DTWc” and we use the window size
as in Dau et al. [13]. For more details about DTW we refer to Bagnall et al. [4],
Keogh and Ratanamahatana [30], Mori et al. [39]. We will also examine two dis-
tance measures expanding DTW with derivatives. Keogh and Pazzani [32] defined
Derivative Dynamic Time Warping (DDTW) which is a DTW distance between the
data transformed by the first (discrete) derivative. Górecki and Łuczak [22] proposed
Parametric Derivative Dynamic TimeWarping (DDDTW) as a convex combination of
the distances DTW and DDTW, what brought further performance improvements.

For irregularly spaced series, [37] proposed the Short Time Series (STS) distance
given by

dSTS(XT , YT ) =
√
√
√
√

T−1∑

i=1

(
yi+1 − yi
ti+1 − ti

− xi+1 − xi
t

′
i+1 − t

′
i

)

,

where t and t
′
are the temporal indexes of series XT and YT respectively. It is able

to measure similarity of shapes formed by both the relative change of amplitude and
the corresponding temporal information.

Another very important aspect of similarity measures is a tendency to put time
serieswith high complexity level further apart than simple ones [5]. In order to fix this
distortion, a Complexity-Invariant dissimilarity measure (CID) has been proposed
by the authors. The general formula is as follows

dCID(XT , YT ) = CF(XT , YT ) · d(XT , YT ),

where d(XT , YT ) is a distance which will be adjusted, CF(XT , YT ) is a complexity
correction factor defined as

CF(XT , YT ) = max{CE(XT ),CE(YT )}
min{CE(XT ),CE(YT )} ,

where CE(XT ) stands for a complexity estimator of XT . Now, we can observe,
that when the complexity of both time series is equal, we get dCID(XT , YT ) =
d(XT , YT ) and, that increase of complexity difference results in increase of dis-
tance between time series. As a complexity estimator [5] proposed CE(XT ) =√∑T−1

t=1 (Xt − Xt+1)2.
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2.2 Edit-Based Distance Measures

Edit-based distances use theminimal number of operation necessary to transform one
series into another. They were initially proposed to measure the similarity between
two sequences of strings and use the minimal number of edit operations (delete,
insert, replace) necessary to transform one series into another.

As edit-based distances may be computed for time series of different length, in
this section we will assume we are given two time series: XN = (x1, x2, . . . , xN )

and YM = (y1, y2, . . . , yM). For clarification and simplicity, in all other sections the
notation is as mentioned in the introduction to Sect. 2.

The LCSS distance was proposed by Vlachos et al. [47] and measures the sim-
ilarity between time series in terms of the longest common subsequence, with the
addition that gaps and unmatched regions are permitted. LCSS is robust to noise and
we expect that it should be more accurate than DTW in the presence of outliers and
noise. The measure has two constant parameters. The first one, δ controls the size of
the window for matching given point from one series to a point in the other series.
The second one, ε, is the matching threshold: two points are considered to match if
their distance is less than ε. Given

L(i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for i = 0
0 for j = 0
1 + L[i − 1, j − 1] for |xi − y j | < ε

and |i − j | ≤ δ

max(L[i − 1, j], L[i, j − 1]) in other cases,

we can compute [43]

LCSS(XN,YM) = N + M − 2L(N , M)

N + M
.

The Edit Distance on Real Sequence (EDR) is an adaptation of the edit distance
that finds the minimal number of edit operations to convert one series to another [11].
Similarly to LCSS, EDR permits gaps and unmatched regions, but penalizes such
occurrences with a value equal to their length. Computation of the EDRmeasure can
be converted into an iteration using dynamic programming as follows

EDR(XN,YM) =

⎧
⎪⎨

⎪⎩

N for i = 0
M for j = 0
min{(EDR(Rest(XN),Rest(YM)) + dedr(x1, y1),
EDR(Rest(XN),YM) + 1,EDR(XN,Rest(YM)) + 1} otherwise,

where Rest((XN)) = (x2, x3, . . . , xN ) and dedr stands for the distance between two
points in the series computed along to the rule: if xi and yi are closer to each other
in the absolute sense than ε, it is equal to 1. Otherwise, it is equal to 0.

The third variation of edit distance is the Edit Distance with a Real Penalty (ERP)
[10] that may be considered as a combination of DTW and EDR. It uses the L1
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distance between elements of time series as the penalty for local shifting of time
series. Penalization is carried out by setting a constant g and adding the euclidean
distance of the unmatched points to g. The ERP measure is given by

ERP(XN,YM) =

⎧
⎪⎨

⎪⎩

∑N
i=1 |y1 − g| if M − 1 = 0

∑M
i=1 |x1 − g| if N − 1 = 0

min{(EDR(Rest(XN),Rest(YM)) + dedr(x1, y1),
EDR(Rest(XN),YM) + 1,EDR(XN,Rest(YM)) + 1} otherwise.

2.3 Feature-Based Distances

These distances look at some aspect of the time series by extracting certain feature.
Then, based on it, a similarity measure is calculated.

Taking into account correlation in time series, we may define at least several
measures.Golay et al. [21] defined distance based onPearson’s correlation coefficient
as follows:

dPC(XT , YT ) = 2(1 − PC),

where PC denotes Pearson’s correlation coefficient.
Warren Liao [49] proposed to use cross-correlation between two series and based

on it, formulated

dCC(XT , YT ) =
√

(1 − CC0(X,Y ))
∑max

k=1 CCk(X,Y )
,

where CCk(X,Y ) is the cross-correlation between two series at lag k.
Let ρ̂XT = (ρ̂1,XT , . . . , ρ̂L ,XT )

T , ρ̂YT = (ρ̂1,YT , . . . , ρ̂L ,YT )
T be the estimated auto-

correlation vectors of XT , YT (respectively), for some L such that ρ̂i,XT , ρ̂i,YT ≈ 0
for i > L . Peña and Galeano [40] proposed the following distance:

dACF(XT , YT ) =
√

(ρ̂XT − ρ̂YT )
T�(ρ̂XT − ρ̂YT ),

where� is amatrix ofweights, which define the importance of correlation at different
lags. Obviously, to emphasize slightly different aspect of the data, it is possible to
replace autocorrelations by partial autocorrelations and obtain dPC.

The first-order temporal correlation coefficient is defined by

CORT(XT , YT ) =
∑T−1

i=1 (Xt+1 − Xt )(Yt+1 − Yt )
√∑T−1

i=1 (Xt+1 − Xt )2
√∑T−1

i=1 (Yt+1 − Yt )2
.

The CORT coefficient reflect the dynamic behaviors of the series [38]. The related
dissimilarity measure was proposed by Chouakria and Nagabhushan [12] and it is
defined as
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dCORT(XT , YT ) = φk[CORT(XT , YT )] · d(XT , YT ),

where φk(·) is an adaptive tuning function to automatically modulate a conventional
data distance according to the temporal correlation. Chouakria and Nagabhushan
proposed φk(u) = 2

1+exp(ku)
, k ≥ 0.

Another aspect of time series may be revealed by the Discrete Fourier Transform.
Based on thatwemay compute Euclidean distance dFC between the first n coefficients
[1]:

FC(XT , YT ) =
√
√
√
√

n∑

i=0

((ai − a
′
i )
2 + (bi − b

′
i )
2).

There at least several distances based on the frequency domain of the time series.
Caiado et al. [9] proposed the Euclidean distance dP between the periodogram coor-
dinates as follows:

dP(XT , YT ) = 1

n

√
√
√
√

n∑

k=1

(IXT (λk) − IYT (λk))2,

where IXT (λk) and IYT (λk) for k = 1, . . . , n are periodograms ofXT andYT (respec-
tively).

Alternatively, de Lucas [14] introduced distance measure based on integrated
periodogram, arguing that—due to some properties of integrated periodogram—it
presents several advantages over the previous one. The distance is defined as

dIP(XT , YT ) =
∫ π

−π

|FXT (λ) − FYT (λ)|dλ,

where FXT (λ j ) = C−1
XT

∑ j
i=1 IXT (λi ) and FYT (λ j ) = C−1

YT

∑ j
i=1 IYT (λi ), with

CXT = ∑
i IXT (λi ), CYT = ∑

i IYT (λi ).
Kakizawa et al. [24] proposed a general spectral disparity measure between two

time series as

dLLR(XT , YT ) =
∫ π

−π

W̃

(
fXT (λ)

fYT (λ)

)

dλ,

where fXT and fYT are spectral densities of XT and YT . W̃ = W (x) + W (x−1),
W (x) = log(αx + (1 − α)) − α log x , with 0 < α < 1. W (·) is a divergence func-
tion satisfying regular quasi-distance conditions for dLLR .

Alternatively, Díaz and Vilar [16] described the two following distances. The first
one is defined as



416 T. Górecki and P. Piasecki

dGLK(XT , YT ) =
n∑

k=1

[
Zk − μ̂(λk) − 2 log(1 + eZk−μ̂(λk ))

]
−

−
n∑

k=1

[
Zk − 2 log(1 + eZk )

]
,

where Zk = log(IXT (λk)) − log(IYT (λk)) and μ̂(λk) is the local maximum log-
likelihood estimator of μ(λk) = log( fXT (λk) − log( fYT (λk) computed by local lin-
ear fitting.

The second distance is given by

dISD(XT , YT ) =
∫ π

−π

(m̂XT (λ) − m̂YT (λ))2dλ,

where m̂XT (λ) and m̂YT (λ) are local linear smoothers of the log-periodograms
obtained with the maximum local likelihood criterion.

Moving on to an another characteristic, Aßfalg et al. [3] proposed a distance
measure dT Q based on Threshold Queries, using given τ parameter as a threshold in
order to transform a time series into a sequence of time stamps, when the threshold
is crossed. Let us denote the time stamps for a certain threshold τ as a sequence
(t1, t2, . . . , tn). For a time series XT and a threshold τ we define the interval set
S(XT , τ ) = {(t1, t2), (t3, t4), . . . , (tn−1, tn)}. The distance between time series XT

and YT , represented by the interval sets S(XT , τ ) and S(YT , τ ) is given by

TQuest(XT ,YT ) = 1

|S(XT , τ )|
∑

s∈S(XT ,τ )

min
s ′∈S(XT ,τ )

d(s, s ′)+

+ 1

|S(YT , τ )|
∑

s ′∈S(YT ,τ )

min
s∈S(YT ,τ )

d(s ′, s),

where the distance between two intervals s = (sl, su) and s ′ = (s ′
l , s

′
u) is computed

as
d(s, s ′) =

√
(sl − s ′

l )
2 + (su − s ′

u)
2.

The TQuest measure is based on an interesting feature extraction idea, but—in our
opinion—it is highly dependent on user’s specialist knowledge, as the τ parameter
must be set.

The symbolic approximation representation (SAX) has been introduced by Lin
et al. [33] and became one of the best symbolic representation for most time series
problems [27]. The original data are first transformed into the piecewise aggregate
approximation (PAA) representation [53] and then into a discrete string. For the full
outline of MINDIST dissimilarity measure based on SAX representation see Lin
et al. [35].
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2.4 Structure-Based Distances

The last group of distance measures try to find some higher level structures and then
compare time series on these basis. This category can be subdivided into two another
groups: model-based—aiming to fit a model and then to compare coefficients thor-
ough certain distance function and compression-based, which work by compression
ratios.

The first category is represented by the distance described by Piccolo [41] as
the Euclidean distance between coefficients derived from AR representation of pro-
cesses:

dPIC(XT , YT ) =
√
√
√
√

k∑

j=1

(π̂
′
j,XT

− π̂
′
j,YT

)2,

where the vectors of AR(k1) and AR(k2) for XT and YT are denoted respectively by
�̂XT = (π̂1,XT , . . . , π̂k1,XT ) and �̂YT = (π̂1,YT , . . . , π̂k2,YT ), k = max(k1, k2),
π̂

′
j,XT

= π̂ j,XT if j ≤ k1 and π̂
′
j,XT

= 0 otherwise and analogously π̂
′
j,YT

= π̂ j,YT if

j ≤ k2 and π̂
′
j,YT

= 0 otherwise. In case of nonstationary series, a differencing is
carried out. To fit truncated AR(∞) model, a criterion such as BIC or AIC is used.
There are at least two another distances (proposed by [25, 36]) based on the idea of
fitting an ARIMA model to each series and then measure the dissimilarity between
the models, but we will not use them due to implementation problems.

The distances from the second group compare levels of complexity of time series.
Alternative to previous sections and paragraphs, complexity-based approaches do not
rely on specific feature or knowledge of underlyingmodels, but on evaluating the level
of shared information by both series [38]. Keogh et al. [31] proposed compression-
based dissimilarity measure defined as

dCDM(XT , YT ) = C(XT , YT )

C(XT )C(YT )
.

The CDM distance is descended from normalized compression distance (NCD) pro-
posed by Lin et al. [34], using the compressed size of XT—C(XT )—as an approxi-
mation of Kolmogorov complexity.

Dissimilarity measure based on permutation distribution clustering (PDC) uses
permutation �(X

′
T ) ofm-dimensional embedding of XT . Dissimilarity between two

time series XT and YT is expressed in terms of divergence between distribution of
these permutations, denoted by P(XT ), P(YT ). Specifically, Brandmaier [8] pro-
posed the α-divergence between P(XT ) and P(YT ) as a dissimilarity between time
series XT and YT .
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3 Experimental Design

We performed experiments on 47 real time series that come from the UCR time
series repository [13]. Each dataset from the database is split into training and testing
subsets. Within the data, the number of classes ranges from 2 to 50, the number of
time series per dataset go from 56 to 9236, and time series lengths ranges from 60
to 1882 samples. All time series instances are z-normalized.

In our paper, we will follow the methodology proposed by Keogh and Kasetty
[28], which assumes evaluating the efficacy of distance measure by the prism of
accuracy of 1NN classifier. While one should be aware that the proposed approach
can not deliver us the overall evaluation of a distance measure, there seems to be
more pros than cons of the chosen method. For example, Wang et al. [48] pointed
out three aspects: the simplicity of implementation, performance directly dependent
on distance choice and relatively (to other, often more complex classifiers) good
performance. For more information we refer to Batista et al. [5], Ding et al. [17], Tan
et al. [46], Xi et al. [52].

Specifically, for each dataset, we computed the classification error rate on a test
subset. When a parameter to train the 1NN classifier was needed, we tried to use
values proposed already in the literature (referred in the Sect. 2).

4 Results

The results are presented in Tables 2 and 3. We computed there the absolute error
rates on the test subset with the 1NN classifier for each of 30 distance measures. In
Fig. 1 we presented ranks for all considered distances.

If we look at the overall result, we can observe that none of the compared distances
achieves the best performance for all, or even the most of datasets. In fact, the lowest
error rates are computed for DDDTW (15 wins), DDTW (9 wins), DTW (8 wins)
ahead of ERP (6 wins), EDR (5 wins), LCSS (5 wins) and DTWc (5 wins). There are
also CORT and ISDmeasures with 4wins both, but the others are significantly worse.
It may be the evidence for superiority of elastic measures and those connected with
DTW distance over the rest. From the other hand, looking at average ranks, one may
be surprised by the good performance of L p norms: MAN, ED, and MIN. It is also
worth mentioning about CID distance. It achieved better average rank than DTW,
while in fact it only improves Euclidean distance by simple complexity correction
factor.

Looking at certain datasets, we see, that some of them are almost perfectly classi-
fied (e.g., Coffee, DiatSizeRed, GunPoint, Plane), what could mean that their classes
are relatively easy to recognize by the algorithm. Another interesting fact is, that
there are datasets, which are better classified by some group of distances. For exam-
ple, performance of L p norms is relatively good for MALLAT, SynthetCont, while
clearly worse for CricketX, CricketY, Haptics, what may indicate cases, where we
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Fig. 1 Box plot of ranks of each measure across all datasets. Boxes are colored according to the
category of a measure: shape-based (blue), edit-based (green), feature-based (orange), structure-
based (gray)

should pay attention to shape (without editing) or not. Correlation-based distances
(e.g. ACF, PACF, CCOR)may be considered as a good choice for datasets:ECGFive,
Trace.

To assess the differences between examined methods, we performed a detailed
statistical comparison.We tested the hypothesis that there are no differences between
1NN classifiers using different measures. Firstly, we employed the test proposed by
Iman andDavenport [23], which is a less conservative variant of Friedman’s ANOVA
[19]. The test is recommended by Demšar [15] and Garcia and Herrera [20]. If the
hypotheses is rejected, we can proceed with the post hoc test to provide all pair-
wise comparisons. In this way we can detect the statistically significant differences
between certain classifiers. Garcia and Herrera [20] proved that the procedure pre-
sented in Bergmann and Hommel [6] is the most powerful post hoc comparison test.
It is based on the idea of finding all elementary hypotheses, which cannot be rejected.
However, finding all the possible exhaustive sets of hypotheses for a certain com-
parison is extremely computationally expensive. Thus, we are able to compare in a
post hoc test up to 9 classifiers.

The p-value from the Iman and Davenport’s test performed for all classifiers
is equal to 0. We can, therefore, proceed with the post hoc tests. The results of
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multiple comparisons are given in Table 5. We have chosen for the comparison 9
distance measures, which achieved best average ranks. The p-value from the Iman
and Davenport’s for these measures was equal to 0.

Based on the Fig. 1 and Table 4, we see that there is one measure that significantly
outperform most of the rest—DDDTW. In the group of 9 best classifiers, using p-
values obtained from Bergmann–Hommel post hoc test, we can make a division
of distances into 3 groups (Table 5). We observe, that there are not statistically
significant differences between DDDTW and DTWc as well as LCSS. MAN distance
is theworst performing one in the group (taking into accountmean ranks), but the post
hoc test did not signalize differences with DTW—which is considered to be one of
the most efficient measure—and EDR. Another interesting fact is, that CID distance
may be treated as statistically equal to much more computationally expensive elastic
measures such as DTW, DTWc, EDR, ERP, LCSS. In Fig. 2 we provided plot of
critical differences (CD) from Bergmann–Hommel post hoc test, shown in Demšar
[15].

Table 4 p-values in the Bergmann–Hommel post hoc test for best 9 measures (taking into account
average ranks). Statistically significant differences (p < 0.05) are in bold

ERP LCSS DTWc DDTW EDR CID DTW MAN

DDDTW 0.021 0.118 0.053 0.016 0.005 0.000 0.000 0.000

ERP 1.000 1.000 1.000 1.000 0.275 1.000 0.034

LCSS 1.000 1.000 1.000 0.118 1.000 0.008

DTWc 1.000 1.000 0.174 1.000 0.015

DDTW 1.000 0.334 1.000 0.039

EDR 0.879 1.000 0.118

CID 1.000 1.000

DTW 0.682

Table 5 Results of the Bergmann–Hommel post hoc test: division into groups

Mean rank Group 1 Group 2 Group 3

DDDTW 4.82 *

ERP 7.91 *

LCSS 8.22 * *

DTWc 8.28 *

DDTW 8.67 *

EDR 9.13 * *

CID 9.37 * *

DTW 10.16 * *

MAN 10.84 *
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Fig. 2 Plot of critical differences from Bergmann–Hommel post hoc test. Groups of classifiers that
are not statistically significantly different (at p = 0.05) are connected

We decided to provide comparisons of pairs of classifiers (Fig. 3). We can see,
that DDDTW is observably better than DTW and LCSS (most of the points is above
the diagonal). Looking at DDDTW and MAN, we see that there are some datasets
classified better with the MAN distance, but it occurs extremely rarely. In most cases
performance of DDDTW is far better (points are distant to the diagonal). Comparing
ERP with MAN and DTW we observed, that the edit-based measure achieves lower
error rates than both shape-based distances. The plot of CID and ED shows, that
adding a simple complexity correction factor results in a considerable increase of
accuracy.

5 Conclusion

In this article, we have compared efficacy of 30 distance measures on 47 datasets,
by the prism of 1NN classifier accuracy. Similarly to Serrà et al. [44], Wang et al.
[48], we have observed, that there is no measure distinctly better than the others or
appropriate for a majority of datasets. Thus, there is still a place for new ones, maybe
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Fig. 3 Comparison of error rates

connecting some properties of already existing measures. From the other hand, best
average ranks were achieved by modifications of DTW distance—DDDTW, DDTW,
DTWc and by edit-based distances—LCSS, ERP, EDR. Thus, we may draw two
conclusions. First, processing shape of time series in a smart way may be a direction
for future researches. Second, comparing time series by the mean of edit operations
brings remarkable results. Finally, we have also observed, that there are some datasets
that are classified better with some groups of measures. It would be highly desirable
to find a set ofmetadata, which could help us to choose themost appropriatemeasure.

Since this study only discussed 30 of about 40 available distance measures, there
is still potential to develop the presented comparison. We plan to cover all available
distance measures in the nearest future and, as well, extend the number of datasets
for testing them. It would be also interesting to confront conclusions made during
these analyses with different time series mining tasks, e.g. with clustering.
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