
Chapter 5
3D Reconstruction from RGB-D Data

Charles Malleson, Jean-Yves Guillemaut and Adrian Hilton

Abstract A key task in computer vision is that of generating virtual 3D models
of real-world scenes by reconstructing the shape, appearance and, in the case of
dynamic scenes, motion of the scene from visual sensors. Recently, low-cost video
plus depth (RGB-D) sensors have become widely available and have been applied
to 3D reconstruction of both static and dynamic scenes. RGB-D sensors contain an
active depth sensor, which provides a stream of depthmaps alongside standard colour
video. The low cost and ease of use of RGB-D devices as well as their video rate
capture of images along with depth make them well suited to 3D reconstruction. Use
of active depth capture overcomes some of the limitations of passive monocular or
multiple-view video-based approaches since reliable, metrically accurate estimates
of the scene depth at each pixel can be obtained from a single view, even in scenes
that lack distinctive texture. There are two key components to 3D reconstruction
from RGB-D data: (1) spatial alignment of the surface over time and, (2) fusion
of noisy, partial surface measurements into a more complete, consistent 3D model.
In the case of static scenes, the sensor is typically moved around the scene and
its pose is estimated over time. For dynamic scenes, there may be multiple rigid,
articulated, or non-rigidly deforming surfaces to be tracked over time. The fusion
component consists of integration of the aligned surface measurements, typically
using an intermediate representation, such as the volumetric truncated signeddistance
field (TSDF). In this chapter, we discuss key recent approaches to 3D reconstruction
from depth or RGB-D input, with an emphasis on real-time reconstruction of static
scenes.
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5.1 Introduction

The ability to model the real world in 3D is useful in various application areas from
archaeology and cultural heritage preservation to digital media production and inter-
active entertainment, robotics and healthcare. A key task in computer vision is that
of automatically generating virtual 3Dmodels of real world scenes by reconstructing
the shape, appearance and, in the case of dynamic scenes, motion of surfaces within
the scene from images, video and other sensor input.

Traditionally, 3D reconstruction has been performed by photogrammetry from
standard RGB cameras or using costly, specialized laser scanning equipment.
Recently, low-cost video plus depth (RGB-D) sensors have become widely avail-
able and have been applied to 3D reconstruction of both static and dynamic scenes.
RGB-D sensors contain an active depth sensor, which provides a stream of depth
maps alongside standard colour video. Typical depth sensors are based on infrared
structured light or time-of-flight principles (see Chap.1 for an in depth overview of
commodity depth capture devices). The low cost and ease of use of RGB-D devices
as well as their video rate capture of images along with depth make them well suited
to 3D reconstruction. Use of active depth capture overcomes some of the limitations
of passive monocular or multiple-view video-based approaches since reliable, met-
rically accurate estimates of the scene depth at each pixel can be obtained from a
single view, even in scenes that lack distinctive texture.

There are two key components to 3D reconstruction from RGB-D data:

• Spatial registration (alignment) of the surface over time
• Fusion of noisy, partial surface measurements into a more complete, consistent
3D model.

In the case of static scenes, the sensor is typically moved around the scene to
obtain more complete coverage and the registration process amounts to estimating
the sensor pose (ego motion) over time. For dynamic scenes, in addition to sensor
motion, there may be multiple rigid, articulated, or non-rigidly deforming surfaces
present, which need to be tracked over time in order to obtain a consistent surface
model. The fusion component in 3D reconstruction consists of integration of the
aligned surface measurements, typically using an intermediate representation, such
as the volumetric truncated signed distance field (TSDF) before extracting an output
mesh model.

In this chapter,we provide an overviewof several approaches to static and dynamic
3D reconstruction fromdepth orRGB-D input, some ofwhich operate online, often in
real-time, and others which require offline or batch processing. A broad overview of
recent static reconstruction approaches is presented in Sect. 5.2, followed in Sect. 5.3
by a more detailed description and evaluation of two real-time static scene recon-
struction approaches, volumetric-based KinectFusion [44] and point-based surface
fusion [33]. A brief overview of recent dynamic scene reconstruction approaches is
presented in Sect. 5.4 and concluding remarks are provided in Sect. 5.5.

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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5.2 Overview of Rigid Reconstruction Approaches

Standard cameras produce images containing colour or intensity information. These
images are inherently 2D and for general scenes, estimated correspondences between
multiple disparate images are required in order to infermetrically accurate 3Dgeome-
try if camera poses are known (multiview stereo) or 3D geometry up to a scale factor
if not (structure from motion [11, 45]). It is possible to estimate an approximate
depth directly from a single monocular image, for instance using deep learning-
based approaches, e.g. [18], however due to the ill-posed nature of the problem, such
inferred depth is typically limited in terms of metric accuracy. Active depth sensors
such as structured light or time-of-flight (ToF) cameras on the other hand, natively
output either images of metrically accurate depth values, i.e. 2.5D depth maps which
can be re-projected into 3D using the intrinsic camera calibration parameters; or in
the case of some laser scanners may directly output a 3D ‘point cloud’, with or with-
out a 2D image structure. Core approaches to registration and integration of surface
measurements in are discussed below in Sects. 5.2.1 and 5.2.2, respectively.

5.2.1 Surface Registration

Much research has been done on tracking (finding the 6DOF pose of the sensor) and
mapping (measurement integration) using multiple depth maps. If there is a large
relative motion between the point clouds to be registered, a coarse registration needs
to be performed in order to get them into approximate alignment and avoid local min-
ima when subsequently performing fine registration (see [60] for a detailed review).
Coarse registration is often performed using sparse feature matching, whereas accu-
rate fine registration is usually performed using the full data set [44].

The Iterative Closest Point (ICP) algorithm introduced by Besl and McKay [2]
forms the basis ofmost registration algorithms. In ICPdata alignment is formulated as
an iterative optimizationof a 3D rigid body transformsoas tominimize a cost function
representing the distance between points on a ‘source’ (data) and their corresponding
closest points on a ‘target’ (model) surface in alternation with updating the closest
point correspondences. The translation is found directly from the centroids, and the
rotation is found by constructing a cross-covariance matrix. In practice, because the
ICP optimization converges monotonically to a local minimum, one either needs to
try several initial rotations, or use a feature-based initial coarse alignment algorithm
to increase the chance of finding the global minimum. The more complex the shape
the more initial states are required (highly symmetrical shapes are most problematic
and may result in the solution being under-constrained). Besl and McKay’s method
cannot directly handle non-overlapping data unless it is modified for robustness, for
instance by using amaximum correspondence distance [60]. If, however the sensor is
notmoved significantly between frames (as is usually the casewhen using a handheld
video rate sensor such as the Kinect [44]), the pose from the previous frame can be
used as initialization, without performing a coarse registration step.
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There exist many variants of the ICP algorithm which offer improved registration
performance and or computational efficiency (see [55] for a detailed review). For
instance, the point-to-plane method proposed by Chen and Medioni [9] minimizes
the distance from the source point to the plane that is defined by the target point and its
normal. Thismakes intuitive sense since the finite sample spacingmeans that samples
in one image will generally not coincide with corresponding samples in the other.
This has been shown to improve convergence and is preferred when surface normal
estimates are available, as is the case when depth maps are used as input [44, 54].
A normal orientation test can be used to increase robustness by preventing matching
of surfaces of opposite orientation (as could occur with thin objects). Luminance or
colour image data has also been used in the ICP framework to help constrain the
registration in cases where shape alone is ambiguous (for instance spheres). In [73],
luminance information from a colour camera used in parallel with a depth sensor is
used to establish point-to-point correspondences via a form of optical flow at each
iteration.

Obtaining closest point associations for ICP is computationally expensive. When
the points to be aligned come in a structured form (as with the 2D grid structure of
depth images), significant speedups can be introduced by using the projective data
association algorithm proposed by Blais and Levine [3]: using the intrinsic camera
calibration information, transformed 3D points from the target image are projected
into the source image to get the pixel index correspondences. Fitzgibbon [15] extends
the ICP algorithm to perform robust registration using aHuber kernel andLevenberg–
Marquardt (LM) non-linear optimization. This optimization approach yields a wider
basin of convergence than standard ICP. The ‘generalized ICP’ proposed by Segal
et al. [61] introduces a probabilistic framework and uses planar surface structure in
both the data and the model (a plane-to-plane metric).

One way of increasing the speed of convergence of ICP is by performing early
iterations on a subset of the available points for instance using a coarse-to-fine (multi-
resolution) sampling of the depthmap [44].Other usefulways of subsampling include
random subsampling and sampling based on colour information. Rusinkiewicz and
Levoy [55] propose normal-space subsampling which bins points based on normals
and samples uniformly across buckets, thus promoting correct registration of scenes
containing no large distinctive features. ICP registration can also be extended to han-
dle articulated point clouds [7, 13, 50] in which case pose parameters are iteratively
determined for each bone in a skeletal model.

5.2.2 Surface Fusion

As stated in [23], the goal of 3D surface reconstruction is to estimate a manifold
surface (with the correct topology) that accurately approximates an unknown object
surface from a set of measured 3D sample points.When additional information (such
as measurement uncertainty) is available it can aid reconstruction. There are two
classes of technique for reconstructing 3D models from 2.5D images [23]. The first



5 3D Reconstruction from RGB-D Data 91

class uses prior models with an explicit parametric representation and fits the range
data to them. The disadvantage of suchmethods is that they can only representmodels
of knownobject classes, forwhich the topological genus andmodes of shape variation
are known upfront (e.g. using a radial displacement map on a cylinder to model
a human head [22]). The second class of techniques, which generate triangulated
mesh representations is more generally applicable because it can represent arbitrary
geometry and topology (which are often not known up front). The focus of this
discussionwill be on non-parametric approaches, in particular thewidely used signed
distance function.

5.2.2.1 Signed Distance Functions

To facilitate the generation of a 3D surface model by the fusion of aligned 2.5D
depth maps it is common to use an intermediate non-parametric representation of
volumetric occupancy. A representation widely used in computer vision graphics
is the Signed Distance Function (SDF) introduced by Curless and Levoy [10]. The
SDF is simply a field whose value at any given point contains the (signed) Euclidean
distance between that point and the surface. Thus the SDF is zero at the surface
interface, positive outside it (observed free space), and negative inside it (unobserved
space). In practice, the SDF is represented in a discrete voxel grid defining the
reconstructed volume and is truncated at a certain distance from the surface i.e.
values more than a certain distance in front of a surface measurement receive a
maximum value, and values more than a certain distance, μ, behind it receive no
measurement (null). This truncation helps prevent surfaces from interferingwith each
other. Along with each Truncated Signed Distance Function (TSDF) value a weight
is maintained which reflects the confidence in the TSDF value. These weights may
depend on the confidence of a measurement (if available) or heuristics (for instance
penalizing vertices whose estimated normal is close to perpendicular to the viewing
direction orwhich are close to depth discontinuities [68]). A simpleweighted running
average update rule for the SDF and weight voxel grid can be used to incrementally
incorporate measurements into the model, which adds any previously unobserved
regions to the model, while averaging out noise in regions previously observed.

Obtaining the surface interface from the TSDF is simply a matter of extracting the
zero crossings (an iso-surface at level zero). This is an advantage over probabilistic
occupancy grids where one needs to seek the modes of the probability distribution in
the grid [44]. If only a single view is required, one can perform a direct raycast [49]
which is independent of scene complexity since areas outside the viewing frustum
need not be visited. If, however, a complete polygonal mesh model is required a
triangulation algorithm such as marching cubes is more suitable.

Originally proposed by Lorensen and Cline [36], the marching cubes algorithm
is widely used for extracting triangle meshes from constant density surfaces (iso-
surfaces) in volumetric datasets. The algorithm scans through a voxel grid and pro-
cesses one 2 × 2 × 2 cell at a time using lookup tables to determine the triangle
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topology within the cell and interpolation between vertices to find iso-surface inter-
sections. This is efficient, but results in non-uniform triangle shape and size.

The ‘marching triangles’ algorithm proposed by Hilton et al. [24] performs the
same task as marching cubes, but uses Delaunay triangulation and places vertices
according to local surface geometry thus producing triangles with more uniform
shape and size.

5.2.2.2 Other Surface Fusion Approaches

The point-based implicit surface reconstruction of Hoppe et al. [25] works with unor-
ganized points and generates simplicial surfaces (i.e. triangle meshes) of arbitrary
topology. It uses a signed distance function computed with the aid of normals esti-
mated from k-nearest neighbour PCA with a graph optimization to get consistent
orientations. When the source points come from (inherently organized) depth maps,
normals may be estimated more efficiently using the image structure.

Turk and Levoy [68] create polygon meshes frommultiple (ICP-registered) range
images and then ‘zipper’ them together, that is they remove redundant triangles and
connect (‘clip’) the meshes together. The mesh growing technique of Rutishauser et
al. [57]merges depthmaps incrementallywith particular emphasis on the (anisotropic
Gaussian) error model of their sensor and uses an explicit boundary representation
to prevent filling surfaces in the model where no measurements have been made.
Soucy and Laurendeau [63] estimate an integrated surface model piecewise from the
canonical subset of the Venn diagram of the set of range views (here, a canonical
subset contains a group of points exclusively visible in a particular combination of
range views). This membership information is used in an averaging process, taking
particular care at the intersections of subsets. The ball pivoting algorithm of Bernar-
dini et al. [1] triangulates point clouds efficiently by beginning with a seed triangle
and rotating a sphere around an edge until another point is reached, at which point
another triangle is formed.

Hilton et al. [23] introduce a mesh-based geometric fusion algorithm based on a
continuous implicit surface which (unlike previous algorithms employing discrete
representations) can better reconstruct regions of complex geometry (holes, crease
edges and thin objects). The algorithm also uses geometric constraints and statistical
tests based onmeasurement uncertainty to guide reconstruction of complex geometry.
While outperforming other integration strategies [10, 25, 57, 63, 68] in terms of
complexity and the minimum feature size, minimum crease angle and minimum
surface separation (thickness), this approach is relatively computationally expensive.

Radial Basis Functions (RBFs) have been used for interpolation of a surface from
point samples. Globally supported RBFs are good at filling in missing data, but
are computationally inefficient. Conversely, locally supported RBFs are less good
at filling in missing data, but are more computationally efficient. Ohtake et al. [48]
therefore propose to use compactly supported RBFs with a coarse-to-fine sampling
of the points. The coarse levels fill in missing data and serve as carriers for the finer
levels which add detail.
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Kazhdan et al. [32] used oriented points to define an indicator function with value
1 inside the model and 0 outside it and cast the optimization as a Poisson problem.
The resulting reconstructions are inherently watertight. Like Radial Basis Function
(RBF) approaches, the method creates smooth surfaces. This can result in spurious
protrusions from regions where no samples exist. The method is best suited to sce-
narios where the capture process has produced full surface coverage, such as single
objects captured via a moving laser scanner or segmented performers in a multiview
reconstruction setup, but is less well suited to partial coverage of larger scenes.

5.3 Real-Time Rigid Reconstruction

The first reported system that uses a low-cost depth sensor to perform real-time,
online and metrically consistent 3D reconstruction of small to medium-sized scenes
on a commodity PC is the ‘KinectFusion’ system of Newcombe et al. [29, 44],
which is described in detail in the following subsections. Since KinectFusion was
introduced, several variations on the theme of static scene reconstruction from depth
maps have been proposed. Some of these have addressed handling of larger scenes
within the limited GPUmemory budget, for instance the moving volume approach of
Roth and Vona [53], the ‘Kintinuous’ system of Whelan et al. [74], the hierarchical
data structure of Chen et al. [8], and the spatial voxel hashing approach of Niessner et
al. [46].

Keller et al. [33] propose a point-based alternative to (volumetric) KinectFusion.
The unstructured ‘surfel’ (surface element) representation is more memory efficient
than volumetric structures and manipulation (e.g. insertion/removal) of individual
entities is easier than with structured representations such as meshes. The memory
footprint of the surfel representation is significantly lower than for volumetric fusion,
but mesh extraction is less straightforward. The dense planar SLAM system of [58]
is based on the surfel fusion system of [33], but additionally detects planar regions,
which can be stored in a compressed form and used for semantic understanding of
the scene.

In SLAM++ [59], 3D models of known objects (such as chairs) are used in an
object-level SLAM system which recognizes and tracks repeated instances of these
objects in a cluttered indoor scene. The main benefits over standard approaches that
use primitive-level tracking and mapping are increased representational efficiency
and the native semantic structure of the output scene.

By allowing offline (post) processing, other recent works are able to produce
higher qualitymodels than currently possiblewith real-timemethods. Zhou et al. [77]
perform fusion of small fragments of a scene, which are each locally accurate, and
then combine them via an elastic registration scheme to produce a complete sur-
face with higher detail and reduced low-frequency distortion when compared to
using a single grid for the whole scene. The method is off-line and requires hours to
days of GPU processing time. Fuhrmann and Goesele’s floating scale reconstruction
approach [16] uses compactly supported basis functions for integration into an octree
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voxel grid structure and is formulated to take into account the fact that surface mea-
surements represent finite sample areas rather than individual points, thus avoiding
potential blurring of fine details by coarser samples that were captured from further
away. In [78], Zollhofer et al. refine a model obtained by TSDF fusion of depth maps
by using an offline shape-from-shading stage to enhance the level of reconstructed
detail compared to depth-only fusion approaches.

The KinectFusion approach of Newcombe et al. [44], described in this section
demonstrates the ability of low-cost depth sensors to quickly and cost-effectively
produce compelling 3D models of small to medium-sized static indoor scenes by
employing GPU acceleration of ICP sensor pose estimation and TSDF volumetric
measurement fusion. Online real-time reconstruction of static scenes is achieved
using a sequence of depthmaps from a handheld Kinect sensor. The core components
of the KinectFusion pipeline are model building by integration of captured depth
maps into a volumetric TSDF representation (Sect. 5.3.3) and ICP registration of
input depth maps to this model (Sect. 5.3.2). Outside the core registration and fusion
loop, a textured mesh may be extracted using marching cubes and textured using
projective texturing.

The parallelizable parts of the reconstruction pipeline may be implemented on
the GPU by using, for instance, NVidia’s CUDA toolkit [47]. Such GPU paralleliza-
tion involves uploading input data from CPU memory to GPU memory; splitting it
into parts, each of which is concurrently processed by a kernel function running in
parallel threads across hundreds or thousands of GPU processing cores; and finally
downloading the result back into CPUmemory. How the work is split up depends on
the application and performance considerations. For example a kernel may perform
an operation on one or a small block of pixels or voxels.

Preliminaries of KinectFusion are presented below in Sect. 5.3.1, followed by
details on ICP registration (Sect. 5.3.2), TSDF fusion (Sect. 5.3.3) and textured
mesh extraction (Sect. 5.3.4). Finally, in Sect. 5.3.5, a related approach proposed
by Keller et al. [33] is discussed, in which point-based fusion is used in place of
volumetric TSDF fusion.

5.3.1 Preliminaries

The input from an RGB-D sensor consists of a video rate stream of RGB colour
images, Ci (t) and depth images, Di (t), containing Cartesian depth d(u) for each
pixel u = (col, row).

A standard pinhole camera model is used to characterise the RGB-D sensor. A
fixed 3 × 3 intrinsic cameramatrixK and a 4 × 4 camera posematrixT (which varies
over time) can be used to map between world and pixel coordinates. In practice, the
RGB and depth cameras are usually not generated through the same lens aperture,
and are thus offset from one another. For simplicity of processing, the depth map
is often re-rendered from the RGB camera point of view in order to obtain direct
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pixel correspondence between them (this may be done on board the device or as a
post-process). The camera matrix K is defined as

K =
⎡
⎣
fx 0 cx
0 fy cy
0 0 1

⎤
⎦ (5.1)

where fx and fy and cx and cy are the x and y focal lengths and principal point
coordinates, respectively. A rigid body transformation matrix T contains a 3 × 3
orthonormal rotation matrix R (which has three degrees of freedom) and a 3D trans-
lation vector t:

T =
[
R t
0 1

]
(5.2)

The intrinsic parameters of the camera model can be estimated using, for instance, a
checkerboard-based approach of Zhang et al. [75].

The following describes how the camera intrinsics and pose can be used to trans-
form between 2D/2.5D image space, camera-local 3D space and global 3D space.
Given the intrinsic camera calibrationmatrix,K, an image-space depth measurement
d(u) can be converted to a camera-local 3D point, pcam(u):

pcam(u) = d(u) · K−1u̇, (5.3)

where a dot on a vector denotes its homogeneous form, u̇ = [uT 1]T . This camera-
local 3D point can be transformed to a global 3D point, pgbl , using the camera pose
T:

pgbl(u) = ρ
(
Tṗcam

)
, (5.4)

where ρ is the de-homogenization operator, ρ([aT w]T ) = a/w. Similarly, any
global 3D point, pgbl can be transformed into camera space:

pcam = ρ
(
T−1ṗgbl

)
, (5.5)

and a camera-space 3D point can be projected into the depth map using the intrinsics
as follows:

[x, y, z]T = K · pcam (5.6)

u = [x/z, y/z]T (5.7)

d(u) = z. (5.8)

Wenowdescribe how the camera pose,T is estimated online for each incoming frame,
thus allowing input depth frames to be registered for consistent surface integration.
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5.3.2 Registration Using ICP

The camera pose estimation of KinectFusion is based on the ICP algorithm with fast
projective data association [3] and the point-to-plane errormetric [9] (see Sect. 5.2.1).
The registration is done using the current depth map Di (t) as the source and a depth
map synthesized from the current volumetric TSDF model of the scene as the target.
This synthetic depth map is generated by ray-casting [49] the TSDF voxel grid
from a prediction of the sensor pose for the current current frame. By assuming
small frame-to-frame camera motion the pose of the target frame can be used as
the pose from which to ray cast and also as the initial pose of the source in the
ICP algorithm. Because any error in registration of the previous frame will have a
relatively small effect on the model, the frame-to-model registration approach yields
increased accuracy and significantly reduces the accumulation of drift that occurs in
the raw frame-to-frame case, without requiring off-line optimization for loop closure.

Thedata association and errorminimization stages of the ICP require normalsn(u)

for each pixel u. Because the depth map is organized in a grid, adjacency is known
and a given normal can be efficiently estimated using the point and its neighbours
in the depth image (without the expensive neighbour finding computations required
for general unorganized point clouds [25]). Because of their inherent noise however,
the raw depth maps produce unacceptably poor normal maps, therefore a GPU-
parallelized version of the bilateral filter [67] is applied to the depth map before
using it in the registration algorithm, smoothing out noise while preserving depth
discontinuities.

As with the normal estimation, the usually expensive data association component
of ICP can be sped up significantly by employing the image structure of the depth
images. Given global poses for both the source and target frames, each pixel index u
in the source image is un-projected to form a 3D source point which is projected onto
the target image plane to look up the target pixel index Ω(u). The target pixel at this
index is then un-projected to get the target 3D point. This data association approach
assumes that there is a small frame-to-frame transform between source and target.
To remove false correspondences, any point pair separated by a (Euclidean) distance
of more than td or whose normals have a dot product of less than ta are rejected (see
Fig. 5.1). If there is not a valid correspondence between source and target at u then
Ω(u) = null. The association is implemented in parallel on the GPUwith one thread
per source pixel.

Let pss(u) be the 3D point produced by the pixel with index u in the source depth
map (in its local coordinate system). Let ptg

(
φ(u)

)
be the global 3D point produced

by the target depth map pixel associated with pixel u in the source image.
For any estimated global source frame pose Tsg the total point-to-plane error E

is then given by

E(Tsg) =
∑

Ω(u)�=null

∣∣∣[ρ(
Tsgṗss(u)

) − ptg
(
Ω(u)

)]T
ntg

(
Ω(u)

)∣∣∣. (5.9)
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Fig. 5.1 Illustration of the fast projective data association technique. Left: each source image pixel
is un-projected (producing a point in global 3D space) and then projected onto the target image
plane to find its associated pixel index (2D coordinates) in the target image. The target image pixel
at this index is then looked up and un-projected to produce the target 3D point. Right: the source
and associated target points are checked for compatibility, rejecting inconsistent matches. Figure
from [37]

The rigid body transform that minimizes E can be formulated by linearizing the
rotation matrix (making use of a small angle assumption for incremental transforms)
and writing the transform as a 6D parameter vector x = [α, β, γ, tx , ty, tz]T , where
α, β and γ are the rotation angles (in radians) about the x , y and z-axes, respectively
and tx , ty and tz are the translation components.

As shown in [44], differentiating the linearised objective function and setting it
to zero yields a 6 × 6 symmetric linear system

∑
φ(u)�=null

aT ax =
∑

aT b (5.10)

where

aT =
[
[psg]×

∣∣∣I3×3

]T
ntg, (5.11)

[p]× :=
⎡
⎣

0 −pz py
pz 0 −px

−py px 0

⎤
⎦ (5.12)

and
b = nT

tg[ptg − psg]. (5.13)

The summands of the normal system are computed in parallel on the GPU,
summed using a parallel reduction, and finally solved on the CPU using a Cholesky
decomposition followed by forward/backward substitution. At each iteration the
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solved incremental transform vector x is converted to a 4 × 4 rigid body transform
matrix and composed onto the current pose estimate for use in the next iteration.
To speed-up convergence of the ICP registration, a coarse-to-fine approach may be
used, in which decimated versions of the depth maps are used for early iterations and
finally using all points for a more precise registration.

5.3.3 Fusion Using TSDFs

Surface integration is performed using TSDF fusion [10], integrating incoming depth
maps into the model in an online manner, integrating out noise and increasing scene
coverage as more frames are added. The voxel grid G = {S,W } consists of grids
S and W which contain, for each voxel v = (x, y, z), the truncated signed distance
function (TSDF) values s(v) and weights w(v), respectively. The voxel grid dimen-
sions and leaf size as well as its location in global coordinates need to be chosen
appropriately. The main constraint on the dimensions of the voxel grid is the limited
size of the GPU memory. The leaf size (resolution) is implicitly calculated in terms
of the physical volume and memory available. For example, a 2 m3 cubic volume
with 5123 voxels would have leaves of side 4.0 mm and require approximately 1 GB
of GPU memory using 32-bit floating point values. In the absence of constraints on
memory, the voxel leaf size should be chosen on the order of the effective size of the
input depth pixels in order to reconstruct all available detail.

For efficiency of implementation the projective signed distance function is used
(Fig. 5.2). This allows each voxel site v to be visited in parallel and the distance along
the ray used as an estimate of the TSDF s(v). The model is updated incrementally
as measurements from frame t are added using a weighted running average:

st (v) = wt−1(v)st−1(v) + wm
t (v)smt (v)

wt (v)
(5.14)

and
wt (v) = wt−1(v) + wm

t (v) (5.15)

where smt and wm
t are the input TSDF and weight values for the current frame.

The truncation distance, μ, affects the minimum thickness of objects that can be
reconstructed using the TSDF representation (surfaces thinner than μ can interfere
with each other). This distance also affects the speed of reconstruction: larger values
of μ allow bigger jumps when ray-casting (see below). If accuracy of fine detail
is important, then μ should be made as small as possible whilst remaining larger
than a few voxel leaf sides. It may also be made depth-dependent to account for the
uncertainty in the depth measurement, which in the case of the Kinect v1 sensor
increases quadratically with depth [34].

Using the pose from the last frame and the depth intrinsics, a synthetic depth image
is generated by doing a per-pixel ray cast into the signed distance voxel grid S. Rays
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Fig. 5.2 Illustration of voxel grid model generation and extraction. Left: for a given frame, signed
distance values are obtained for each voxel by projecting it onto the image plane and computing
the distance between it and this un-projected pixel. Note that the truncation is not shown. Right:
to extract a depth map, each pixel is un-projected along its ray starting at the minimum depth dmin
and evaluating the tri-linearly interpolated voxel before skipping to the next. When a zero crossing
is detected, ray-casting stops and the crossing is located more precisely. Figure from [37]

are marched from the minimum depth sensing range and in steps of 0.8µ (slightly
less than the minimum truncation distance) until the sign changes from positive
to negative indicating a zero crossing (refer to Fig. 5.2). This skipping provides a
speed-up whilst ensuring that a zero-crossing is not missed. When a zero crossing is
detected, its location is found more precisely by tri-linear interpolation of the SDF
before and after the sign change. If a negative-to-positive transition is foundmarching
stops. Each of the pixels is ray cast by a single thread in parallel on the GPU.

5.3.4 Model Extraction and Texturing

The marching cubes algorithm [36] may be used to triangulate the TSDF model and
generate an output mesh model of the scene. Each vertex of the resulting mesh is
then projected into the input RGB images (using the previously estimated camera
poses) and the corresponding pixel values looked up. A depth map is produced via
an OpenGL rendering of the mesh from the point of view of the RGB camera. This
depth map is used to check for occlusions of a given vertex with respect to the
corresponding pixel in the RGB image and also to check the proximity of the test
pixel to a depth discontinuity.

A simple weighting scheme is used to determine colours for each vertex by incre-
mental update of a weight and colour frame by frame (analogous to Eq.5.14). The
weighting scheme weights contributions from different frame according to the prox-
imity of vertex to depth discontinuities in the current frame as well as the angle
between the vertex normal and the camera ray, down weighting contributions for
pixels near depth edges and pixel corresponding to obliquely viewed surfaces. The
aim of this weighting scheme is to reduce foreground/background texture contami-
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Fig. 5.3 Reconstruction of a statue using the Asus Xtion Pro Live RGB-D sensor. a Decimated
mesh (35k vertices). b Decimated mesh with texture map applied. c Raw mesh (per-vertex colour).
d Decimated mesh (per-vertex colour). e Decimated mesh (texture map colour). f Texture map.
Figure from [37], using their reimplementation of KinectFusion

nation and ghosting caused by any inaccuracies in the model or error in the intrinsic
calibration and estimated pose of the camera. To avoid excessive ghosting of texture,
a vertex colour is no longer updated once its colour weighting exceeds a threshold.

The mesh output by marching cubes is inherently densely sampled, with no tri-
angles bigger than the voxel diagonal, even for flat, low curvature surface regions.
This can lead to unnecessarily large mesh files which are inefficient to store, render
and manipulate. Some regions with fine features or high curvature do benefit from
having small triangles, however flatter surfaces can be decimated without losing any
significant detail. The scan of a statue shown in Fig. 5.3 was produced using vox-
els of side 4.1 mm yielding a raw output mesh with 830k vertices. Using quadric
edge collapse decimation [17], the mesh can be reduced to 35k vertices, with little
loss of geometric detail, but resulting in loss of detail in the per-vertex colour due
to lower resolution sampling. Using [69], a dense texture map may be generated,
allowing the decimated mesh to represent the detailed appearance of the captured
imageswhile representing the shapemore efficiently. Two further examples of scenes
reconstructed with KinectFusion are shown in Fig. 5.4.

Due to the nature of typical sensors’ depth map generation process (see Chap. 1),
the size of reconstructed features is inherently limited. The depth maps produced
typically also suffer from significant levels of quantization and random noise causing
several mm of error in depth at typical indoor scene distances [34]. However, the
fusion of hundreds of frames from slightly different viewpoints integrates this noise
away to produce surface relief with submillimetre resolution, even when using TSDF
voxels larger than 1 mm [39].

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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Office scene. Three input depth frames (left) and meshed output model (right).

Deer scene. Input RGB and depth frame (left) and reconstruction with/without texture (right).

(a)

(b)

Fig. 5.4 Sample input and volumetric reconstructions for two indoor scenes using theKinectFusion
approach [44]. Figure from [37], using their reimplementation of KinectFusion

5.3.5 Online Surfel-Based Fusion

Keller et al. [33] propose an alternative approach to GPU-accelerated online rigid
scene reconstruction similar in many respects to KinectFusion, but using a surface
element (surfel) representation rather than a volumetric grid. Keller’s method also
contains a simple mechanism for detecting and removing dynamic outliers from the
fused representation.

The representation used for fusion and the output model is a flat (unstructured)
array of surface elements (surfels). Each surfel primitive consists of a position p,
normal n, radius r , confidence c, timestamp t (last frame observed), and colour. A
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Normals Confidence Colour(a) (b) (c)

Fig. 5.5 Close up of surfel representation for 3D scene reconstruction from RGB-D video input.
The representation consists of an unstructured set of points with additional properties including
normal, radius, confidence, and colour. The points are rendered using hexagons. The confidence
value is visualized using the following colour scale: 0 30. Figure from [37], using their
reimplementation of the approach of Keller et al. [33]

closeup of the surfel primitives is shown in Fig. 5.5 which illustrates these properties.
The density of modelled surfels corresponds directly to the input depth sample den-
sity. Correspondences between incoming depth measurements and the surfel IDs are
established by projection into a super-sampled lookup image for the current depth
frame. The fusion technique is similar to TSDF fusion, in that it is based on a run-
ning weighted average of observations. As with KinectFusion, ICP registration is
performed using a depth map synthesized from the current model. In this case, the
depthmap is synthesized by splat rendering the surfels using a graphics shader which
outputs an oriented hexagon for each surfel (as opposed to the ray-casting used in
the volumetric approach).

Upon commencement of reconstruction, new surface points are assigned zero
confidence. As the corresponding surface point is re-observed in incoming frames,
its position and normal are averaged with the incoming measurements and the con-
fidence value increased. Surfels with a confidence below a threshold value cstable
are referred to as ‘unstable’. The unstable points are excluded from the registration
stage, so as to increase robustness to outliers and any dynamic elements in the scene.

An additional feature of themethod of Keller et al. [33] is a simple online labelling
of dynamic elements in the scene. This is performed by detectingmodel surfelswhich
are outliers with respect to the current input frame, performing a region growing
operation to expand the detected dynamic region, and demoting all these surfels to
unstable status (with a weight just below the stability threshold cstable). The demotion
to unstable status aims to prevent dynamic objects from contaminating the (static
scene) model by immediately removing them from the registration point set, but
allows the points to be reintroduced, if the object stops moving (and the points attain
stable status once again).
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5.3.6 Evaluation

A 2000 frame synthetic dataset, Tabletop, was created by Malleson [37] to compare
the performance of the volumetric [42] and surfel fusion [33] in termsof reconstructed
geometry fidelity, camera pose estimation accuracy and functioning in the presence
of dynamic content in the scene. The test scene, a tabletop 1.8 m across with various
objects on it, is shown in Fig. 5.6. It contains thin and narrow structures as well as
a toy car that moves across the table. The virtual RGB-D camera moves smoothly,
around the scene as well as up and down.

The registration performance of volumetric and surfel-based fusion were evalu-
ated for four variants of the Tabletop scene. The variants are the combinations of
clean depth/simulated Kinect noisy depth (with noise simulated using [34]), and
static geometry only/with the moving car. The absolute error in position and ori-
entation with respect to ground truth is plotted in Fig. 5.7. Both the volumetric and
surfel-based approaches produce good tracking on the clean data, with or without
the moving car present. On the moving car variant the surfel-based registration fails
when the car starts moving (at frame 400). A summary of the registration and recon-
struction performance for each variant is presented in Table 5.1.

To directly compare the quality of the surface reconstruction between the volu-
metric and the surfel-based methods, tests were performed in which the two systems
were fed the ground truth camera pose trajectories, with the version of the scene
not containing the moving car. This factors out any differences resulting from error
in ICP registration and handling of dynamic geometry. To make the reconstructed
geometry of similar density between the methods, the voxel size for the volumetric
tests was chosen such as to produce roughly the same number of vertices as surfels are
produced by the surfel-based tests, roughly 1.5M in each case. Figure 5.8 visualizes
the Hausdorff distance between the ground truth geometry and the reconstructions
with each method. The RMS error for the surfel fusion method is 1.1 mm, com-
pared to 3.5 mm for the volumetric method. Qualitatively, the surfel fusion approach
does not suffer from ‘lipping’ artefacts in reconstructions from TSDF fusion—the
square edges of the cube are more faithfully reproduced. The TSDF fusion process
also cannot handle very thin objects viewed from both sides because the opposing

Fig. 5.6 Three frames from the RGB-D rendering of the 2000 frame Tabletop test scene for assess-
ing the performance of surfel-based fusion and volumetric fusion. Note the narrow and thin objects
as well as the moving car (which is static for the first 400 frames of the sequence). Figure from [37]
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Fig. 5.7 Comparison of volumetric and surfel-based ICP registration performance on the four
variants of the Tabletop sequence. a Clean depth, no moving objects. b Clean depth, with moving
car. c Noisy depth, no moving objects. d Noisy depth, with moving car (note that the car moves
from frame 400 onwards, which at which point the ICP loses track in this variant). Figure from [37]

Table 5.1 Registration and geometric accuracy for the Tabletop scene, using volumetric (Vol.) and
surfel-based (Surf.) reconstruction approaches. The variants are as follows: fixed geometry only
(F)/ with moving car (M); ground truth (GT)/ICP (ICP) camera registration; and clean (C)/noisy
(N) depth maps

RMS position
error (mm)

RMS orientation
error (deg)

RMS recon
error (mm)

Num model
elements (×106)

Variant Vol. Surf. Vol. Surf. Vol. Surf. Vol. Surf.

F GT C – – – – 3.47 1.08 1.14 1.55

F GT N – – – – 3.73 1.04 1.07 1.58

F ICP C 9.54 12.17 0.27 0.21 4.09 3.12 1.20 1.59

F ICP N 8.05 19.77 0.20 0.27 4.18 3.28 1.20 1.67

M GT C – – – – 3.56 1.08 1.08 1.65

M GT N – – – – 3.78 1.04 1.11 1.67

M ICP C 8.87 11.99 0.23 0.23 4.19 3.76 1.23 1.68

M ICP N 7.69 2139.50 0.19 138.83 4.21 (failed) – –
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Volumetric fusion Surfel fusion(a) (b)

Fig. 5.8 Hausdorff distance (0 5mm) between ground truth and reconstructed geometry
for the two fusion approaches (using ground truth camera pose, no scene motion and clean depth
maps). Note that the volumetric approach has lost the narrow and thin structures and that it exhibits
lipping artefacts on corners of the cube. Figure from [37]

surfaces can ‘cancel each other out’ leading to artefacts. The surfel fusion method
can handle thin surfaces without such artefacts, even for the zero-thickness sheet
shown in the upper right of the scene in Fig. 5.8. The surfel method is also able to
resolve the second smallest cylinder, which is not resolved by the volumetric method,
since it is the same diameter as the size of a voxel (2.2 mm). (Neither of the methods
can resolve the smallest cylinder which is a single pixel thick in some input depth
frames, and not visible at all in others.)

The method proposed by Keller et al. [33] for segmenting out dynamic regions of
the model is based on detecting inconsistencies between the incoming depth and the
surfel model. The labelling is based on the value of the confidence field of the surfels,
which begins at zero and increases as observations are added. This confidence field
is analogous to the weight in the signed distance fusion in volumetric reconstruction.
The progression of fusion is shown in Fig. 5.9, which shows surfel confidence via a
colour coding. Surfels with confidence below a threshold are labelled as ‘unstable’.
Unstable points are excluded from the ICP registration. A ‘dynamics map’ is seeded
with all registration outliers and a region growing approach based on position and
normal similarity between neighbouring points is applied. Modelled points in the
model marked in the dynamics map are demoted to unstable status. The region
growing method used is fairly simplistic and does not work robustly in all scenarios.
For example, as new model points are added at the edge of the frame (e.g. a floor or
tabletop) as the camera pans, they will initially be unstable, and thus have no ICP
correspondence, the dynamics depthmap points in this region could then be expanded
by the region growing to cover a large static area (e.g. the rest of the surface of the
desk). In the test example of the Tabletop scene, the segmentation approach is not
able to prevent the model from being corrupted when the car begins to move.

To evaluate drift on real-world data, a 900 frame time-mirrored sequence (450
frames played forward and then in reverse) was generated from the Office capture
[37]. The difference between the estimated pose for the first and last frame of this
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Fig. 5.9 Splat rendering showing progression of surfel-based fusion of the Tabletop sequence. The
confidence value is visualized using the following colour scale: 0 30, where the black line
is the stability threshold. In a–c the car is stationary. In d–f the car is moving. Note the demotion
of points on the car to unstable when it starts moving as well as the low confidence of new surfels
on the moving car, each of which are not consistently observed for long enough to achieve stable
status. Figure from [37]

sequence (which should be identical) gives an indication of the global pose esti-
mation stability. The magnitude of the difference in estimated camera position and
orientation at the start and end of the sequence were evaluated for both volumetric
and surfel-based reconstruction methods and the results are shown in Fig. 5.10. Note
that the surfel-based method proves less robust on this real data, with an accumu-
lated drift of 5 cm compared to 1 cm for the volumetric method. The effect of this
is demonstrated in Fig. 5.11 which shows the final reconstructed models and posed
depth map for the first and last frames. The camera offset from the origin can be
seen in the last frame, particularly for the surfel-based method. The gradual accu-
mulation of drift in pose goes hand in hand with accumulated drift in the model.
Therefore, the depth map in the last frame is consistent with the depth map, which
means that the depth map and model are inconsistent with one another at the first
frame. This mismatch is larger for the surfel-based method on account of the greater
level of drift. The surfel-based reconstructed surface is also less complete than the
volumetric surface, since some surface regions are only briefly observed in the input,
meaning that they are treated as outliers by the fusion algorithm.

The flat array of surfels used in the surfel fusion approach has a memory footprint
proportional to reconstructed surface area, whereas that of the fully allocated volu-
metric grids of KinectFusion is proportional to scene volume (regardless of occupied
surface area). For a roughly equal sampling density, and typical scene content, the
surfel representation is far more compact. For the example scene presented here, the
2 m2 voxel grid containing 180M voxels requires 1.4 GB to store, compared to just
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Fig. 5.10 Difference in pose between corresponding frames in time-mirrored imageOffice sequence
as reconstructed using the volumetric and surfel-based approaches. Note the relatively large error
for the surfel-based approach. Figure from [37]

Volumetric fusion

Surfel fusion

(a)

(b)

Fig. 5.11 First (left) and last (right) frames in the time-mirroredOffice sequence using a volumetric
and b surfel-based reconstruction. The input depth map is shown projected into the reconstructed
model. For the surfel-based reconstruction, note the significant pose offset from identity in the
right-hand frame and misalignment of depth and model in the left-hand frame. Figure from [37]
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72 MB for the comparably detailed 1.5 M surfel array (assuming 4 byte data types
are used throughout).

Note that the density of the surfels is directly set according to the local input
sample density, and it is not necessary to define a limited spacial extent for the
reconstruction up front as with a voxel grid.

One of the most prominent reconstruction artefacts manifested by the volumetric
method is ‘lipping’ at sharp corners (which results from the projective approxima-
tion to the true signed distance function [32]). This is particularly noticeable at the
edges of the cube in Fig. 5.8. The surfel-based approach does not suffer from this
type of artefact, thus given clean data and the simulated condition of ground truth
camera pose trajectories and clean depth, it produces cleaner geometry. However
under real-world conditions, i.e. using noisy Kinect depth and ICP for camera pose
estimation, registration and reconstruction were found to be more robust using the
volumetric fusion representation. This may be due to specific implementation details
(e.g. rounding behaviour), or perhaps qualitative differences in depth maps from
ray-casting versus hexagonal splat rendering.

5.4 Dynamic Scene Reconstruction

In the case of static scene reconstruction, surface registration is equivalent to find-
ing the 6-DoF camera pose for each frame and a simple fixed TSDF voxel grid is
sufficient for measurement fusion (see Sect. 5.3). The core aspects of both static and
dynamic scene reconstruction are surface registration and surface fusion. Both these
aspects are, however, more challenging in the case of dynamic scenes, which may
contain multiple rigid, articulated, and non-rigidly deforming surfaces that need to
be tracked and consistently integrated into a surface model. This section provides a
brief summary of recent techniques for registration and fusion for dynamic scenes.

Multiple-view video has traditionally been used to capture full coverage of
dynamic 3D scenes for reconstruction (e.g. [6, 19, 64]). While high quality mod-
els can be obtained from them, adoption of multiview video reconstruction systems
has been limited by the cost and complexity of operation of multi-camera setups.
On the other hand, non-rigid structure from motion (NRSfM) approaches (e.g. [31,
35, 51, 56]) attempt to recover dynamic 3D shape and motion from a sequence of
images from a single, monocular RGB camera, making them usable with standard
video cameras and existing video footage. NRSfM is, however, a highly challenging,
under-constrained problem, since absolute depth is not known beforehand. Although
depth maps from commodity sensors tend to be noisy and incomplete, with a lower
resolution than current video cameras, their depth estimates are more robust than
those estimated from RGB images alone, particularly in low-textured or repetitively
textured regions. The availability of a reliable estimate of per-pixel depth for each
frame simplifies the reconstruction problem, however surface registration and tem-
porally consistent fusion of dynamic scenes remains a challenging problem.
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Depth maps are natively output by typical commodity RGB-D sensors (e.g.
Microsoft Kinect v1/v2) and cover only the surface seen from a specific camera view.
Certain low-level processing tasks can be performed using the depth maps directly,
such as bilateral filtering [67], motion-compensated RGB-guided upsampling [52],
depth-guided matting [70], and depth-aware video compositing. Tasks such as gen-
eral dynamic scene editing can, however benefit from more complete 3D geometry
preferably with ‘4D’ temporal consistency, i.e. 3D surfaces which have known cor-
respondences over time, which allows edits to appearance, shape and motion to be
automatically propagated over a sequence (see [4, 5, 27]). In applications where a
template scan of a non-rigid object of interest is able to be obtained beforehand (e.g.
using a static reconstruction approach without the object deforming), this template
model may be dynamically deformed to match RGB-D input of the object in a scene
by using volumetric representations, either offline (e.g. [20]) or in real-time (e.g.
[79]).

A core challenge in temporally consistent modelling is obtaining correspondences
of surface points over time. Analogous to 2D optical flow between two RGB images
(e.g. [65]), RGB-D scene flow estimates a per-pixel 3D translation (e.g. [14, 30, 71])
or translation and rotation (e.g. [26, 72]) between two RGB-D images. Frame-to-
frame flow vectors can be propagated over time to form long-term feature tracks
[65], which may use as an input to RGB-D-based dynamic scene modelling [38].

Surfacemeshes explicitly store oriented surfaces and arewidely used in themanip-
ulation of models in 3D graphics applications and media production. However, as
is the case with static scene reconstruction approaches, intermediate representations
such as volumetric and point-based, are often used to facilitate surface fusion. Fusion
of non-rigid geometry using signed distance functions may be achieved, for instance,
using a piecewise-rigid segmentation [41] or a warping field defined over a single
reference volume [21, 43].

In DynamicFusion [43], Newcombe et al. perform real-time online tracking and
reconstruction of dynamic objects from depth sensors without a template. Their
approach is to warp each input frame back to a canonical frame using a per-frame
volumetric warping field, and then performTSDF fusion in this frame. For efficiency,
only sparse warping field samples are estimated, and dense values are inferred by
interpolation. The TSDF fusion weights take into account the confidence in the
warping field, which decreases with distance from the warping field samples. The
warping field is estimated by optimizing an energy consisting of an ICP data term and
a regularization term that encourages smoothvariationof thewarping function (where
the transformation nodes are connected with edges in a hierarchical deformation
graph).

Similar to DynamicFusion, Innmann et al. [28] propose VolumeDeform, which
incorporates sparse image features from the RGB images as well as dense depth
constraints, which help in correct registration of scenes with low geometric variation.

In their Fusion4D approach, Dou et al. [12] perform online reconstruction from
multiple depth sensors for improved scene coverage. Slavcheva et al. [62] pro-
pose KillingFusion, which performs real-time, non-rigid reconstruction using TSDF
fusionwithout computing explicit point correspondences, instead directly optimizing
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a warping field between TSDFs. Because point correspondences are not computed,
however, it does not support applications which require texturemapping (e.g. appear-
ance editing).

In [40], a method for reconstruction of dynamic scenes from single-view RGB-D
data based on a sparse set of temporally coherent surfels (tracked 3D points) which
are explicitly connected using neighbourhood-based connectivity is proposed: simul-
taneous segmentation, shape and motion estimation of arbitrary scenes is performed
without prior knowledge of the shape or non-rigid deformation of the scene. This
surfel graph modelling is, however, limited in terms of the shape detail reproduced,
and does not natively output a surface mesh. As a result, a subsequent dense sur-
face reconstruction stage is required in order to obtain a detailed surface mesh. In
their ‘animation cartography’ approach, Tevs et al. [66] employ surface ‘charts’ with
shared, tracked landmarks in multiple graph structures. Probabilistic sparse match-
ing is performed on the landmarks, and dense correspondence is then established for
the remaining chart points by comparing landmark coordinates. They note that their
system does not perform well on very noisy time-of-flight depth data and suggest
using additional cues (e.g. colour) for such data.

A hybrid method for fusion and representation of dynamic scenes from RGB-D
video has been proposed [38] which uses the complementary strengths of multiple
representations at different stages of processing. Depth maps provide input 2.5D
geometry and are used along with the corresponding RGB images to generate a
graph of sparse point tracks for dense volumetric surface integration, while residual
depth maps store differences between the final output 4D model and raw input.
The intermediate surfel graph structure stores sparse, dynamic 3D geometry with
neighbourhood-based connectivity, and is used for efficient segmentation and initial
reconstruction of part shape and motion. The surfel graph representation drives a
further intermediate TSDF volumetric implicit surface representation, which is used
to integrate noisy input depth measurements into dense piecewise and global 3D
geometry. The volumetric representation is finally extracted to an explicit, dense
surface mesh suitable for dynamic scene rendering, as well as editing of shape,
appearance and motion.

5.5 Conclusion

In this chapter, an overview of techniques for reconstruction from RGB-D input was
presented and further detail provided on two approaches to real-time static scene
reconstruction, namelyKinectFusion [44] and surfel fusion [33]. Suchvolumetric and
surfel-based reconstruction approaches are able to register and integrate hundreds or
thousands of noisy depthmaps in an onlinemanner and producemetrically consistent
models of static scenes with greater coverage and less noise than the individual input
depth maps.

The frame-to-model ICP tracking approach proposed by Newcombe et al. [44]
mitigates accumulation of error, which would be more severe with frame-to-frame
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tracking and thus helps maintain the level of detail in the reconstructed models.
Assuming adequately small voxels (of the order of the depth pixel size), the main
limiting factor in reconstruction resolution is the image (domain) resolution rather
than the noise and quantization of depth values (range), which can be integrated away
over time as frames are added. (The case is similar for the surfel-based representation,
where the model resolution corresponds directly to the input sample density, rather
than depending on a separately specified voxel size.) Higher quality, larger scale
reconstructions can be achieved using offline reconstruction approaches such as that
of Zhou et al. [76], which employs global optimization of the sensor pose and scene
geometry.

Static scene reconstruction from RGB-D input is a well-developed field and cur-
rent approaches are able to produce high quality results in real-time. Temporally
consistent reconstruction of general dynamic scenes from RGB-D is a challeng-
ing open problem, however the field is fast moving and recent approaches such as
DynamicFusion [43] and KillingFusion [62] have made significant progress towards
reconstruction of dynamic, non-rigidly deforming objects through use of deforming
volumetric representations for surface integration and tracking.
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