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Preface

Colours become weaker in proportion to their distance from
the person who is looking at them.
Leonardo da Vinci, Treatise on Painting, 1651.

Leonardo da Vinci used aerial perspective, as defined above, to good effect.
Nevertheless, for thousands of years, artists have had to struggle to capture depth in
their images. It was only with the introduction of RGB-D sensors in recent years
that capturing depth along with colour has become possible. Moreover, Microsoft’s
release of the immensely successful Kinect for the mass consumer market in 2010
was literally a game changer, making real-time RGB-D cameras more affordable,
accessible, widespread, mainstream and more fun! While the Kinect was designed
for home game controller applications, researchers and practitioners quickly rea-
lised that its ability as a natural user interface could be deployed in many other
scenarios. And so today, RGB-D cameras are ubiquitous, ranging from expensive
industrial scanners to webcams and smartphones.

Recent years have continued to see technical developments on RGB-D sensors,
both in terms of hardware and software. Data capture is now relatively mature, but
understanding and analysing the data remains challenging. Not surprisingly, giving
its overwhelming success in many areas, deep learning has also been applied to
RGB-D; not only is it effective at processing RGB-D images, but is increasingly
used for the challenging task of monocular depth estimation, i.e. creating the -D
directly from a single standard (i.e. passive) RGB image. However, despite all these
advances, there remain many challenges, ensuring the continuation of active
research and development in RGB-D. At the data acquisition stages (depending on
which sensing technology is used), examples are coping with general scenes and
unconstrained conditions, reflections, transparent surfaces and background light.
Subsequent processing typically needs to be performed to remove noise, replace
missing depth values and merge sequential RGB-D scans or multiple RGB-D
camera outputs to reconstruct objects and scenes. Mid-level processing then con-
sists of tasks such as segmentation and object detection, which remain active
research topics both within the RGB-D community as well as the general computer
vision community.
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This book is structured to reflect such a breakdown into RGB-D data acquisition
and processing followed by RGB-D data analysis, which then sets the scene for the
final section on RGB-D applications. A set of chapters has been assembled to
provide a thorough introduction to the area, with sufficient technical detail to
prepare the reader for research and development with RGB-D imagery.

The future will continue to see increasing takeup of RGB-D. The wide avail-
ability of RGB-D sensors means that more data is becoming available, conse-
quently facilitating improvements to be made via machine learning. In addition,
further improvements in both the hardware and software will help extend the range
of possible applications. As RGB-D sensors become smaller and reduce their power
consumption, then emerging uses, that would have been impractical just a few years
ago, are becoming more widespread and mainstream. Some examples are wearable
RGB-D systems (e.g. providing navigation for the visually impaired), face recog-
nition on mobile phones (biometrics), online shopping (e.g. virtual try-on for
clothing), 3D mapping using drones and many more applications in health care,
gaming, industry, etc. The improved capability to capture 3D environment and
shapes also facilitates downstream applications, such as Augmented Reality and 3D
printing.

In the future, RGB-D sensing can continue to draw from developments in the
core technologies of image processing and computer vision. And just as Leonardo
da Vinci’s inventive mind was forever seeking out new ways of interpreting the
world, we believe researchers will continue to be pushing RGB-D sensing forward
to new approaches and applications in the future.

July 2019 Paul L. Rosin
Cardiff University, Cardiff, UK

Yu-Kun Lai
Cardiff University, Cardiff, UK

Ling Shao
Inception Institute of Artificial Intelligence, Abu Dhabi

United Arab Emirates

Yonghuai Liu
Edge Hill University, Ormskirk, UK
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Part I
RGB-D Data Acquisition and Processing

Part I of this book focuses on RGB-D data acquisition and processing. The two main
approaches for capturing RGB-D images are passive and active sensing. In addition,
with the rise of deep learning, monocular depth estimation has become possible,
and is becoming increasingly popular. For the first two approaches, the images often
have missing values (i.e. holes) which need to be filled, or low-resolution depth
maps which need to be upsampled. RGB-D video enables active depth capture in
which the sensor moves within a static scene, with the individual captures fused
to produce a 3D reconstruction of the scene. Multiple RGB-D cameras can also
be deployed, which facilitates reconstruction of dynamic scenes. Since low-cost
RGB-D sensors will not have top quality data, it is important to consider a metro-
logical analysis of their performance.

An RGB-D camera jointly captures colour and depth images, the latter describing
the 3Dgeometry of the scene. TheRGB-Dacquisition process is described inChap. 1.
Along with the RGB-D image, the second row of images shows the hole mask
indicating missing depth values, as described in Chap. 2. The third row shows a
multiple camera setup using Kinects to capture a performer’s motion (Chap. 7).

http://dx.doi.org/10.1007/978-3-030-28603-3_1
http://dx.doi.org/10.1007/978-3-030-28603-3_2
http://dx.doi.org/10.1007/978-3-030-28603-3_7


Chapter 1
Commodity RGB-D Sensors:
Data Acquisition

Michael Zollhöfer

Abstract Over the past 10 years, we have seen a democratization of range sensing
technology. While previously range sensors have been highly expensive and only
accessible to a few domain experts, such sensors are nowadays ubiquitous and can
even be found in the latest generation of mobile devices, e.g., current smartphones.
This democratization of range sensing technology was started with the release of the
Microsoft Kinect, and since then many different commodity range sensors followed
its lead, such as the Primesense Carmine, Asus Xtion Pro, and the Structure Sensor
fromOccipital. The availability of cheap range sensing technology led to a big leap in
research, especially in the context ofmore powerful static anddynamic reconstruction
techniques, starting from 3D scanning applications, such as KinectFusion, to highly
accurate face and body tracking approaches. In this chapter, we have a detailed look
into the different types of existing range sensors. We discuss the two fundamental
types of commodity range sensing techniques in detail, namely passive and active
sensing, and we explore the principles these technologies are based on. Our focus is
on modern active commodity range sensors based on time of flight and structured
light. We conclude by discussing the noise characteristics, working ranges, and types
of errors made by the different sensing modalities.

1.1 Introduction

Modern conventional color cameras are ubiquitous in our society and enable us to
capture precious memories in a persistent and digital manner. These recordings are
represented as millions of three channel pixels that encode the amount of red, green,
and blue light that reached the sensor at a corresponding sensor location and time.
Unfortunately, color images are an inherently flat 2D representation, since most of
the 3D scene informations is lost during the process of image formation.

M. Zollhöfer (B)
Stanford University, 353 Serra Mall, Stanford, CA 94305, USA
e-mail: zollhoefer@cs.stanford.edu

© Springer Nature Switzerland AG 2019
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4 M. Zollhöfer

(a) Color (b) Depth (c) Phong

Fig. 1.1 An RGB-D camera jointly captures color (a) and depth (b) images. The depth image
encodes the distance to the scene on a per-pixel basis. Green color means that this part of the scene
is close to the camera and red means that it is far away. The Phong shaded image (c) is an alternative
visualization of the 3D geometry

Over the past 10 years, we have seen a democratization of a new class of cameras
that enables the dense measurement of the 3D geometry of the observed scene, thus
overcoming the mentioned limitation of conventional color cameras. These so-called
range or depth sensors perform a dense per-pixel measurement of scene depth, i.e.,
the distance to the observed points in the scene. These measured depth values are
normally exposed to the user in the form of a depth image, which is a 2.5-dimensional
representation of the visible parts of the scene. An RGB-D sensor is the combination
of a conventional color camera (RGB) with such a depth sensor (D). It enables the
joint capture of scene appearance and scene geometry at real-time frame rates based
on a stream of color C and depth images D . Figure1.1 shows an example of such
a color (a) and depth image pair (b). The phong-shaded image (c) is an alternative
visualization of the captured 3D geometry that better illustrates the accuracy of the
obtained depth measurements. Current RGB-D sensors provide a live stream of color
and depth at over 30Hz.

Starting with the Microsoft Kinect, over the past 10 years a large number of
commodity RGB-D sensors have been developed, such as the Primesense Carmine,
Asus Xtion Pro, Creative Senz3D, Microsoft Kinect One, Intel Realsense, and the
Structure Sensor. While previous range sensors [8, 9, 19] were highly expensive and
only accessible to a few domain experts, range sensors are nowadays ubiquitous and
can even be found in the latest generation of mobile devices. Current sensors have a
small form factor, are affordable, and accessible for everyday use to a broad audience.
The availability of cheap range sensing technology led to a big leap in research
[10], especially in the context of more powerful static and dynamic reconstruction
techniques, starting from 3D scanning applications, such as KinectFusion, to highly
accurate face and body tracking approaches. One very recent example is the current
Apple iPhoneX that employs the range data captured by an off-the-shelf depth sensor
as part of its face identification system.

In the following, we review the technical foundations of such camera systems.
We will start by reviewing the Pinhole Camera model and perspective projections.
Afterward, we will introduce the ideas behind both passive as well as active depth
sensing approaches and explain their fundamental working principles. More specifi-
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cally, we will discuss how commodity RGB-D sensors based on Stereo Vision (SV),
Structured Light (SL), and Time of Flight (ToF) technology work. We conclude by
comparing the different depth sensing modalities and discussing their advantages
and disadvantages.

1.2 Projective Camera Geometry

We start by reviewing thePinhole Cameramodel, which is a simplified version of the
projective geometry of real-world cameras, since it is a basic building block for many
types of depth sensors. An illustration of the perspective projection defined by the
PinholeCameramodel can be found in Fig. 1.2.A3Dpoint v = (vx , vy, vz)T ∈ R

3 in
camera space is mapped to the sensor plane (green) based on a perspective projection
[6]. The resulting point p = (px ,py)

T ∈ R
2 on the sensor depends on the intrinsic

properties of the camera, i.e., its focal length f and the principal point c = (cx , cy)T .
Let us first assume that the principal point is at the center of the sensor plane, i.e.,
c = (0, 0)T . In the following, we show how to compute the 2D position p on the
image plane given a 3D point x and the intrinsic camera parameters. By applying
the geometric rule of equal triangles, the following relation can be obtained, see also
Fig. 1.2 for an illustration:

px

f
= vx

vz
. (1.1)

With the same reasoning, a similar relation also holds for the y-component. Reorder-
ing and solving for p leads to the fundamental equations of perspective projection
that describe how a 3D point v is projected to the sensor plane:

px = f · vx
vz

, (1.2)

py = f · vy
vz

. (1.3)

The same mapping can be more concisely represented in matrix-vector notation by
using homogeneous coordinates. Let K be the intrinsic camera matrix:

K =
⎡
⎣
f s cx
0 f cy
0 0 1

⎤
⎦ . (1.4)

Here, s is an additional skew parameter [7] and c specifies the principal point, which
we assumed to be zero so far. Given the definition of K, the perspective projection
can be represented as p̂ = Kv, where p̂ ∈ R

3 are the homogeneous coordinates of
the 2D point p. The intrinsic camera parameters can be obtained based on camera
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(a) 3D View (b) Side View

Fig. 1.2 Perspective camera geometry. The image sensor is shown in green. The Pinhole Camera
model describes how a point v ∈ R

3 is mapped to a location p ∈ R
2 on the sensor. The z-axis is the

cameras viewing direction and the x-axis is the up-vector. The perspective projection is defined by
the camera’s focal length f and the principal point c. The focal length f is the distance between
the sensor plane and the origin o of the camera coordinate system

calibration routines [3, 18]. The Pinhole Camera model is one of the basic building
blocks of range sensing approaches. It makes a few simplifying assumptions, such
as that the lens is perfect, i.e., that there are no lens distortions. Lens distortion [16]
can be tackled in a preprocessing step by calibrating the camera.

1.3 Passive Range Sensing

Similar to human 3D vision, passive range sensing is implemented based on the input
of two or multiple [15] conventional monochrome or color cameras. Here, the term
“passive” refers to the fact that passive sensors do not modify the scene to obtain the
scene depth. The special case of obtaining depth measurements based on only two
cameras [17] is known as stereo or binocular reconstruction. These systems are quite
cheap and have a low-power consumption, since they are based on two normal color
cameras. The basic setup of such a stereo camera system is illustrated in Fig. 1.3.

Scene depth can be estimated based on a computational process called triangu-
lation. The first step in the estimation of scene depth is finding correspondences
between the two camera views, i.e., pixels in the two images that observe the same
3D position in the scene. From these two corresponding points, the 3D position of
the point that gave rise to these two observations can be computed via triangula-
tion, i.e., by intersecting two rays cast through the detected point correspondences.
Finding corresponding points between two different camera views is, in general, a
highly challenging problem. Normally, the search is based on local color descriptor
matching or on solving an optimization problem. One way to simplify this search
is by exploiting the epipolar geometry between the two camera views. This reduces
the 2D search problem to a 1D search along a line. Still, solving the correspondence
problem requires sufficient local intensity and color variation in the recorded images,
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Fig. 1.3 Stereo reconstruction. Similar to human vision, stereo approaches employ two cameras
to obtain observations of the scene from two slightly different viewpoints. In the first step of stereo
reconstruction, the corresponding points in both images are computed, i.e., pixels of the images that
observe the same 3D point in the scene. Based on these matches, the 3D position can be found via
triangulation, i.e., by intersecting two rays cast through the detected point correspondences

i.e., enough features. Therefore, passive stereo reconstruction techniques work well
in highly textured regions of the scene, but the search for correspondences might fail
in featureless regions, which can result in missing depth information. Active depth
sensing approaches aim at alleviating this problem.

1.4 Active Range Sensing

Besides passive range sensing approaches, such as the stereo cameras discussed in
the last section, there are also active techniques for range sensing. Here, the term
“active” refers to the fact that these sensors actively modify the scene to simplify
the reconstruction problem. There are two classes of active approaches [13], which
are based on different working principles, the so-called Time of Flight (ToF) and
Structured Light (SL) cameras. Structured Light cameras project a unique pattern
into the scene to add additional features for matching and thus simplify feature
matching and depth computation. Therefore, they address the challenges passive
reconstruction approaches face with featureless regions in the scene. On the other
hand, Time of Flight cameras emit a (potentially modulated) light pulse and measure
its round trip time or phase shift. Since Time-of-Flight cameras do not rely on color
or texture to measure distance, they also do not struggle with texture-less scenes. In
both of the cases, modern commodity sensors normally work in the infrared (IR)
domain to not interfere with human vision and enable the simultaneous capture of
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scene appearance. In the following, we discuss both of these technologies in more
detail and highlight their advantages and disadvantages.

1.4.1 Time-of-Flight Sensors

Besides passive binocular vision, many animals have implemented active range sens-
ing approaches, e.g., the sonar used by whales is based on measuring the round trip
time of a sound wave. As the name already suggests, the basic working principle
of a Time-of-Flight camera is based on measuring the time of flight of an emitted
light pulse [5]. More specifically, a light pulse is sent out from an emitter, it then
traverses the scene until it hits an object and is reflected back to the Time-of-Flight
camera, where a sensor records its arrival. In general, there are two different types
of Time-of-Flight cameras.

The first class, Pulsed Time-of-Flight cameras, measures the round trip time of a
light pulse based on rapid shutters and a clock. For Pulsed Time-of-Flight cameras,
due to the constant known speed of light, the round trip distance can be computed by
measuring the delay between sending and receiving the light pulse. The scene depth
can then be computed as half of the measured round trip distance:

Depth = Speed of Light × Round Trip Time

2
. (1.5)

There are two types of pulsed Time-of-Flight cameras. Point-wise Time-of-Flight
sensors use a pan-tilt mechanism to obtain a time sequence of point measurements.
This technique is also known as Light Detection And Ranging (LiDAR). Matrix-
based Time-of-Flight cameras estimate a complete depth image for every time step
based on a CMOS or CCD image sensor. They employ light pulses generated by a
laser that are a few nanoseconds apart. Current commodity sensors belong to the sec-
ond category, while Light Detection And Ranging is more employed for long-range
outdoor sensing, e.g., in the context of self-driving cars. Due to the immensely high
speed of light of approximately 300,000km per second, the used clock for measur-
ing the travel time has to be highly accurate, otherwise the depth measurements are
imprecise.

The second type of Time-of-Flight camera uses a time-modulated light pulse and
measures the phase shift between the emitted and returning pulse. For Modulated
Time-of-Flight cameras, the light pulse is normally modulated by a continuous wave.
A phase detector is used to estimate the phase of the returning light pulse. Afterward,
the scene depth is obtained by the correlation between phase shift and scene depth.
Multi-frequency techniques can be employed to further improve the accuracy of
the obtained depth measurements and the effective sensing range of the cameras.
Examples of current commodity Time-of-Flight cameras that are based onmodulated
time of flight include the Microsoft Kinect One and the Creative Senz3D.
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1.4.2 Structured Light Sensors

Structured light sensing, similar to stereo reconstruction, is based on triangulation.
The key idea is to replace one of the two cameras in a stereo system by a projector.
The projector can be interpreted as an inverse camera. By projecting a known unique
structured pattern [14] into the scene, additional artificial features are introduced into
the scene. This drastically simplifies correspondencematching, thus the quality of the
reconstruction does not depend on the amount of natural color features in the scene.
Some sensors, such as the Microsoft Kinect, project a unique dot pattern [4], others
project a temporal sequence of black and white stripes. Structured Light cameras
are widespread and often used in research. The commodity sensors of this category
normally work in the infrared domain to not interfere with human vision and enable
the simultaneous capture of an additional color image. Examples of commodity
sensors based on this technology are the Microsoft Kinect, Primesense Carmine,
Asus Xtion Pro, and Intel Realsense. Actually, the Intel Realsense is a hybrid of a
passive and active sensing approach. One problem of structured light cameras is that
the sun’s infrared radiation can saturate the sensor, making the pattern indiscernible.
This results inmissing depth information. The Intel Realsense alleviates this problem
by combining active and passive vision. To this end, it combines two infrared cameras
with one infrared projector that is used to add additional features to the scene. If
the projector is overpowered by the ambient scene illumination the Intel Realsense
defaults to standard stereo matching between two captured infrared images. Normal
working ranges for such commodity sensors are between 0.5 and 12m. Similar to
stereo systems, the accuracy of such sensors directly depends on the distance to the
scene, i.e., the accuracy degrades with increasing distance. The captured depth and
color images of RGB-D sensors are not aligned, since the infrared and the color
sensor are at different spatial locations, but the depth map can be mapped to the color
image if the position and orientation of the two sensors is known.

1.5 Comparison of the Sensing Technologies

So far, we have discussed the most prevalent technologies for obtaining depth mea-
surements.More specifically,wehad a look at passive stereo reconstruction and active
structured light as well as time-of-flight sensing. These three types of approaches
are based on different physical and computational principles and thus have different
advantages and disadvantages. For example, they have differing working ranges and
noise characteristics. It is important to understand the advantages and disadvantages
of the different technologies to be able to pick the right sensor for the application
one wants to build. In the following, we compare the discussed three technologies in
detail.
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1.5.1 Passive Stereo Sensing

Stereo reconstruction is based on finding correspondences between points observed
in both camera views and triangulation to obtain the depth measurements. Thus, the
quality and density of the depth map directly depends on the amount of color and
texture features in the scene. More specifically, the quality and density of the depth
measurements degrades with a decreasing amount of available features. One extreme
case, that is often found in indoor scenes, are walls of uniform color, which can not
be reconstructed, since no reliable matches between the left and right camera can
be found. Similar to uniformly colored objects, also low light, e.g., scanning in a
dark room, can heavily impact the ability to compute reliable matches. Repeated
structures and symmetries in the scene can lead to wrong feature associations. In this
case, multiple equally good matches exist and sophisticated pruning strategies and
local smoothness assumptions are required to select the correct match. Passive stereo
is a triangulation-based technique. Therefore, it requires a baseline between the two
cameras, which leads to a larger form factor of the device. Similar to all approaches
based on triangulation, the quality of the depth measurements degrades with increas-
ing distance to the scene and improves for larger baselines. The noise characteristics
of stereo vision systems have been extensively studied [2]. One significant advantage
of passive stereo systems is that multiple devices do not interfere with each other.
This is in contrast to most active sensing technologies. In addition, stereo sensing
can have a large working range if a sufficiently large baseline between the two cam-
eras is used. Since stereo systems are built from off-the-shelf monochrome or color
cameras, they are cheap to build and are quite energy efficient. One great use case
for passive stereo sensing is outdoor 3D scene reconstruction.

1.5.2 Structured Light Sensing

Active range sensing techniques, such as structured light sensing, remove one of
the fundamental problems of passive approaches, i.e., the assumption that the scene
naturally contains a large amount of color or texture features. This is made possible,
since the projected pattern introduces additional features into the scene which can be
used for feature matching. For example, this allows to reconstruct even completely
uniformly colored objects, but comes at the price of a higher energy consumption
of the sensor, since the scene has to be actively illuminated. In addition, structured
light sensors do not work under strong sunlight, since the sensor will be oversatu-
rated by the sun’s strong IR radiation and thus the projected pattern is not visible.
Due to the projection of a structured pattern, a few problems might occur: If the
projected pattern is partially occluded from the sensor’s viewpoint, which is espe-
cially a problem at depth discontinuities in the scene, the depth cannot be reliably
computed. Normally, this leads to missing depth estimates around the object silhou-
ette, which leads to a slightly “shrunken” reconstruction. This also complicates the
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reconstruction of thin objects. The projected pattern might also be absorbed by dark
objects, reflected by specular objects, or refracted by transparent objects, all of these
situations might lead to wrong or missing depth estimates. Active structured light
depth sensing technology has a limited working range, normally up to 15m, since
otherwise too much energy would be required to consistently illuminate the scene.
The noise characteristics of structured light sensors have been extensively studied
[11, 12]. Using multiple sensors at the same timemight result in a loss of depth accu-
racy due to interference of multiple overlapping patterns, since the correspondences
can not be reliably computed. Geometric structures that are smaller than the distance
between the projected points are lost. One great use case for structured light sensing
is the face identification system of the current Apple iPhone X.

1.5.3 Time-of-Flight Sensing

In contrast to stereo vision and structured light, Time-of-Flight cameras are based
on a different physical measurement principle, i.e., measuring time of flight/phase
shift of a light pulse instead of triangulation. This leads to a different set of failure
modes and drastically different noise characteristics. One of the biggest artifacts in
time-of-flight depth images are the so-called “flying pixels” at depth discontinuities.
Flying pixels have depth values between the fore- and background values that exist
in reality. They appear if the light pulse is reflected back by multiple parts of the
scene and then measured at the same sensor location. This is related to the much
wider class of multi-path interference effects ToF cameras suffer from, i.e, multiple
indirect light paths being captured by the sensor. Examples of this are multi-path
effects caused by materials that exhibit reflections or refractions, e.g., mirrors or
glass. Even in relatively diffuse scenes, indirect bounces of the light pulse might
influence the reconstruction quality. Dark materials do not reflect light. Therefore,
no returning light pulse can be measured which leads to holes in the depth map.
Similar to other active sensing modalities, Time of Flight suffers from interference
between multiple sensors if they use the same phase shift. This can be alleviated by
using different modulation frequencies for each sensor. Similar to active Structured
Light, Time-of-Flight depth sensing struggles under strong sunlight. Since Time-of-
Flight cameras require a certain integration time to obtain a good signal-to-noise
ratio, fast motions lead to motion-blurred depth estimates. The noise characteristics
of Time-of-Flight cameras have been extensively studied [1]. One great use case
for time-of-flight sensors is body tracking in the living room to enable immersive
gaming experiences.
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1.6 Conclusion and Outlook

We had a detailed look into the different types of existing range sensors. All depth
sensing techniques have their own advantages and disadvantages and it is important
to pick the right sensor for the application one wants to build. In the future, higher
resolution sensors and projectors will further help to increase the achievable quality
of depth measurements. On the software side, deep learning techniques have the
potential to further improve the captured depth data by learning depth denoising,
upsampling, and super-resolution. This will lead to an even wider democratization
of range sensing technology and many more compelling new use cases.
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Chapter 2
Dealing with Missing Depth: Recent
Advances in Depth Image Completion
and Estimation

Amir Atapour-Abarghouei and Toby P. Breckon

Abstract Even though obtaining 3D information has received significant attention
in scene capture systems in recent years, there are currently numerous challenges
within scene depth estimation which is one of the fundamental parts of any 3D
vision system focusing on RGB-D images. This has lead to the creation of an area of
research where the goal is to complete the missing 3D information post capture. In
many downstream applications, incomplete scene depth is of limited value, and thus,
techniques are required to fill the holes that exist in terms of both missing depth and
colour scene information. An analogous problem exists within the scope of scene
filling post object removal in the same context. Although considerable research has
resulted in notable progress in the synthetic expansion or reconstruction of missing
colour scene information in both statistical and structural forms, work on the plausi-
ble completion of missing scene depth is contrastingly limited. Furthermore, recent
advances in machine learning using deep neural networks have enabled complete
depth estimation in a monocular or stereo framework circumnavigating the need for
any completion post-processing, hence increasing both efficiency and functionality.
In this chapter, a brief overview of the advances in the state-of-the-art approaches
within RGB-D completion is presented while noting related solutions in the space
of traditional texture synthesis and colour image completion for hole filling. Recent
advances in employing learning-based techniques for this and related depth estima-
tion tasks are also explored and presented.
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2.1 Introduction

Three-dimensional scene understanding has received increasing attention within
the research community in recent years due to its ever-growing applicability and
widespread use in real-world scenarios such as security systems, manufacturing and
future vehicle autonomy. As mentioned in Chap.1, a number of limitations pertain-
ing to environmental conditions, inter-object occlusion and sensor capabilities still
remain despite the extensive recent work and many promising accomplishments of
3D sensing technologies [33, 134, 149, 158]. It is due to these challenges that a novel
area of research has emerged mostly focusing on refining and completing missing
scene depth to increase the quality of the depth information for better downstream
applicability.

Although traditional RGB image inpainting and texture synthesis approaches have
been previously utilized to address scene depth completion [7, 39, 64], challenges
regarding efficiency, depth continuity, surface relief and local feature preservation
have hindered flawless operation against high expectations of plausibility and accu-
racy in 3D images [4]. In this vein, this chapter provides a brief overview of the recent
advances in scene depth completion, covering commonly used approaches designed
to refine depth images acquired through imperfect means.

Moreover, recent progress in the area of monocular depth estimation [6, 44,
55, 152] has lead to a cheap and innovative alternative to completely replace other
more expensive and performance-limited depth-sensing approaches such as stereo
correspondence [129], structure from motion [27, 41] and depth from shading and
light diffusion [1, 132] among others. Apart from computationally intensive demands
and careful calibration requirements, these conventional depth-sensing techniques
suffer from a variety of quality issues including depth inhomogeneity, missing or
invalid values and alike, which is why the need for depth completion and refinement
in post-processing arises in the first place.

As a result, generating complete scene depth from a single image using a learning-
based approach can be of significant value. Consequently, a small portion of this
chapter is dedicated to covering the state-of-the-art monocular depth estimation tech-
niques capable of producing complete depth which would eliminate any need for
depth completion or refinement.

2.2 Missing Depth

As explained in the previous chapter, different depth-sensing approaches can lead to
various issues within the acquired scene depth, which in turn make depth completion
and refinement an important post-processing step.

Passive scene-sensing approaches such as stereo correspondence [129] have long
been established as a reliable method of dense depth acquisition. Although stereo
imaging is well equipped to estimate depth where highly granular texture is present,
even the smallest of issues in calibration and synchronization can lead to noisy, invalid

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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Fig. 2.1 Examples of depth acquired via stereo correspondence (top), structured light device (bot-
tom left) and time-of-flight camera (bottom right). RGB: colour image; D: depth image; H: hole
mask indication missing depth values

or missing depth values. Additionally, missing values are prevalent in sections of the
scene that contain occluded regions (i.e. groups of pixels that are seen in one image
but not the other), featureless surfaces, sparse information for a scene object such as
shrubbery, unclear object boundaries, very distant objects and alike. Such issues can
be seen in Fig. 2.1 (top), wherein the binary mask marks where the missing depth
values are in a disparity image calculated via a stereo correspondence algorithm [65].

On the other hand, consumer devices such as structured light and time-of-flight
cameras are active range sensors that aremorewidely utilized for a variety of purposes
due to their low cost and wide availability in the commercial market with factory
calibration settings [14, 23, 46].

However, due to a number of shortcomings such as external illumination inter-
ference [23], ambient light saturation [46], inaccurate light pattern detection in the
presence of motion [125] and active light path error caused by reflective surfaces
or occlusion [126], consumer structured light devices can result in missing depth
or noisy values that are best handled by removal and subsequent filling. An exam-
ple of such a depth image and its missing values can be seen in Fig. 2.1 (bottom
left). Time-of-flight cameras can also suffer from complications detrimental to out-
put deployment due to issues such as external illumination interference [123], light
scattering caused by semi-transparent surfaces [59, 72] and depth offset for non-
reflective objects [96]. Such issues are exemplified in Fig. 2.1 (bottom right).

Completing depth images, captured through these active or passive depth-sensing
technologies, can lead to significant performance boost in any 3D vision application
even though many current systems simply cope with challenges created by noisy and
incomplete depth images without any post-processing. In the next section, we will
focus on various approaches to the problem of image completion in the context of
RGB-D imagery.

2.3 RGB-D Completion

While object removal, inpainting and surface completion [2, 15, 17–20, 36, 43,
133] has been a long-standing problem addressed within the literature in the past few
decades, depth completion is a relatively new area of researchwith its own challenges
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and limitations. However, scene depth is still represented and processed in the form
of images, and some researchers still directly apply classical RGB image inpainting
methods to depth images or use depth completion approaches heavily inspired by
RGB completion techniques. Consequently, an overview of image inpainting within
the context of scene colour image (RGB) can be beneficial for a better understanding
of the multi-facet subject of depth filling. In the following section, relevant image
inpaintingmethods are briefly discussed beforemoving on to amore detailed descrip-
tion of the depth completion literature.

2.3.1 RGB Image Inpainting

Inpainting deals with the issue of a plausibly completing a target region within the
image often created as a result of removing a certain portion of the scene. Early
image inpainting approaches attempted to smoothly propagate the isophotes (lines
within the image with similar intensity values) into this target area. However, most
of these approaches [15, 133] tend to ignore an important aspect significant to an
observer’s sense of plausibility, which is the high-frequency spatial component of
the image or texture. Consequently, later inpainting techniques began to incorporate
ideas from the field of texture synthesis (in which the objective is to generate a large
texture region given a smaller sample of texture without visible artefacts of repetition
within the larger region [42, 43, 118]) into the inpainting process to compensate for
the lack of texture commonly found in the target region post completion [2, 36, 79]
(exemplar-based inpainting).

In one of the most seminal works on image inpainting [15], the problem is
addressed using higher order partial differential equations and anisotropic diffusion
to propagate pixel values along isophote directions (Fig. 2.2). The approach demon-
strated remarkable progress in the area at the time but more importantly, it contained
a set of guidelines for image inpainting created after extensive consultations with
scene composition experts, which have now standardized the functionalities of an
inpainting algorithm. These remain highly relevant even in depth completion:

• 1:Upon completion of the inpainting process, the target region must be consistent
with the known region of the image to preserve global continuity.

• 2: The structures present within the known region must be propagated and linked
into the target region.

Fig. 2.2 Left: results of [15]. The foreground microphone has been removed and inpainted, but
the texture is not accurate, leading to a perception of blurring. Right: an example of the results and
process of exemplar-based inpainting [36]
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• 3: The structures formed within the target region must be filled with colours con-
sistent with the known region.

• 4: Texture must be added into the target region after or during the inpainting
process.

Improved inpainting approaches were subsequently proposed employing a variety
of solutions including the fast marching method [133], total variational (TV) models
[28, 121], and exemplar-based techniques [16, 36]. In one such approach, the authors
of [36] follow traditional exemplar-based texture synthesis methods [43] by priori-
tizing the order of filling based on the strength of the gradient along the target region
boundary. Although the authors of [36] are not the first to carry out inpainting via
exemplar-based synthesis [16], previous approaches are all lacking in either structure
propagation or defining a suitable filling order that could prevent the introduction of
blurring or distortion in shapes and structures. This exemplar-based method [36] is
not only capable of handling two-dimensional texture but can plausibly propagate
linear structures within the image. An example of the results of this method can be
seen in Fig. 2.2 (right), in which water texture has been plausibly synthesized after
the person is removed from the image. However, this approach cannot cope with
curved structures and is heavily dependent on the existence of similar pixel neigh-
bourhoods in the known region for plausible completion. Even though the approach
relies on fine reflectance texture within the image to prioritize patches and can fail
when dealing with large objects in more smooth depth images (Fig. 2.3—left), it has
been a great step towards focusing on granular texture within the image completion
literature.

Other image completion techniques have also been proposed that would address
different challenges in the inpainting process. For instance, certain methods use
schemes such as reformulating the problem as metric labelling [85], energy mini-
mization [12, 140],Markov randomfieldmodelswith labels assigned to patches [83],
models represented as an optimal graph labelling problem, where the shift-map (the
relative shift of every pixel in the output from its source in the input) represents the
selected label and is solved by graph cuts [119], and the use of Laplacian pyramids
[91] instead of the gradient operator in a patch correspondence search framework
due to the advantageous qualities of Laplacian pyramids, such as isotropy, rota-
tion invariance and lighter computation. There have also been attempts to complete
images in an exemplar-based framework using external databases of semantically
similar images [60, 141] (Fig. 2.3—right).

Deep neural networks have recently revolutionized the state of the art in many
computer vision tasks such as image stylization [52, 54, 76, 80], super-resolution
[111, 138] and colourization [156]. Image completion has also seen its fair share of
progress using such techniques. In [113], an approach is proposed that is capable of
predicting missing regions in an RGB image via adversarial training of a generative
model [56]. In a related work, the authors of [150] utilize an analogous framework
with similar loss functions to map the input image with missing or corrupted regions
to a latent vector,which in turn is passed through their generator network that recovers
the target content. The approach in [146] proposes a joint optimization framework
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Fig. 2.3 Left: results of exemplar-based inpainting [36] applied to RGB and depth images. Note
that the objective is to remove the object (baby) from both the RGB and depth images and to fill the
already existing holes (pre-removal) in the depth image. The approach is significantly more effec-
tive when applied to colour images. Right: result of exemplar-based inpainting using an external
database [60]

composed of two separate networks, a content encoder, based on [113], which is
tasked to preserve contextual structures within the image, and a texture network,
which enforces similarity of the fine texture within and without the target region
using neural patches [95]. The model is capable of completing higher resolution
images than [113, 150] but at the cost of greater inference time since the final output
is not achievable via a single forward pass through the network.

More recently, significantly better results have been achieved using [73], which
improves on the model in [113] by introducing global and local discriminators as
adversarial loss components. The global discriminator assesses whether the com-
pleted image is coherent as a whole, while the local discriminator concentrates on
small areaswithin the target region to enforce local consistency. Similarly, the authors
of [151] train a fully convolutional neural network capable of not only synthesizing
geometric image structures but also explicitly using image features surrounding the
target region as reference during training to make better predictions.

While these learning approaches are highly capable of generating perceptually
plausible outputs despite the significant corruption applied to the input, when it
comes to depth, they are incapable of producing high-quality outputs due in part to
the significantly higher number of target regions (holes) both large and small over the
smoother surfaces in depth images. Examples of these novel approaches applied to
depth images can be seen in Fig. 2.4, which indicates how ineffective learning-based
RGB image inpainting approaches can be within the depth modality [4].

While RGB completion techniques in various forms have previously been used
with or without modifications [100, 144, 154] to complete depth images, significant
differences between RGB and depth images prevent a successful deployment of
RGB inpainting techniques to perform depth completion. For instance, the lack of

Fig. 2.4 Results of global and local completion (GLC) [73] compared to inpainting with contextual
attention (ICA) ([151]) applied to depth images
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reflectance colour texture in depth images, large featureless regions within the depth,
overly smooth or blurred depthwhich can obscure object geometry, holes overlapping
with object boundaries and unclear stopping points that mark the termination of
structure continuation all contribute to the fact that specifically designed approaches
are required to handle the completion of depth images, leading to the importance of
the existing literature on depth completion.

Consequently, RGB inpainting is not the focus of this chapter and is only covered
here to give context to the relevant literature on depth completion. As such, the reader
is invited to refer to the wide-expanding surveys that already exist on the issues of
texture synthesis and inpainting within the context of RGB images [58, 78, 131,
139].

2.3.2 Depth Filling

One of the most important steps in addressing any problem, such as that of depth
completion, is to focus on how the problem can be formulated. Numerous research
works have attempted to solve the depth filling problem by concentrating on different
challengeswithin the domain. In this section, a general overview of themost common
formulations of the depth completion problem is presented before moving on to
discussing a brief taxonomy of the depth filling literature.

2.3.2.1 Problem Formulation

Reformulating any ill-posed problem such as depth completion can lead to solutions
suitable for particular requirements pertaining to certain situations, including time,
computation, accuracy and alike. In this section, some of the most common ways
in which depth filling has been posed and solved as a problem, and the effects each
reformulation can have on the results are discussed.

Formulating the image completion and de-noising problem as anisotropic diffu-
sion [115] has proven very successful in the context of RGB images [10, 15, 22].
Such solutions have therefore also made their way into the domain of depth image
completion, since the smoothing and edge-preserving qualities of the diffusion-based
solutions are highly desirable when dealing with depth information. This is primarily
because image gradients are stronger where depth discontinuities are most likely and
scene depth is often locally smooth within a single object.

Anisotropic diffusion is a nonlinear partial differential equation scheme [115]
which can be described as a space-variant transformation of an input image. It can
therefore generate a family of smoothed parametrized images, each of which corre-
sponds with a filter that depends on the local statistics of the input image.

More formally, if I (·, t) is a family of parametrized images, then the anisotropic
diffusion is

It = div(c(x, y, t)∇ I ) = c(x, y, t)ΔI = ∇c · ∇ I, (2.1)
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where div is the divergence operator, ∇ and Δ denote the gradient and Laplacian
operators, respectively, and c(x, y, t) is the diffusion coefficient, which can be a
constant or a function of the image gradient.

In [136], Eq. 2.1 is discretized via a 4-neighbourhood scheme, and the corre-
sponding RGB image is used to guide the depth diffusion in an iterative process. The
depth image is completed at a lower spatial resolution, and the iterative colour-guided
anisotropic diffusion subsequently corrects the depth image as it is upsampled step
by step.

The work of [107] demonstrates another example of the use of diffusion in depth
completion. The process begins by extracting edges from the corresponding RGB
image captured via a structured light device, and then the smooth and edge regions
undergo different diffusion algorithms. The separation of these regions before the
diffusion process is performed based on the observation that surfaces which need to
be smooth in the depth may be textured in the RGB image, and object boundaries
within the depth image can be missed during the RGB edge extraction process due
to the potentially low contrast in the RGB view of the scene.

While smooth surfaces and strong object boundaries can be very desirable traits
in a depth image, the implementation of an anisotropic diffusion method requires
discretization, which can lead to numerical stability issues and is computationally
intensive. The longer runtime of diffusion-based methods makes them intractable
within real-time applications.

Energy minimization is another formulation of the completion problem which
has seen significant success in the domain of RGB image inpainting [12, 140] and
has consequently been used in depth filling as well.

Energy minimization relies on certain assumptions made about the image, using
which an energy function is designed. Essentially, prior knowledge about images
and sensing devices is modelled via regularization terms that form the energy func-
tion. This function is subsequently optimized, which leads to the completion and
enhancement of the image based on the criteria set by the different terms within the
function. The approaches addressing the depth completion problem in this manner
often produce accurate and plausible results but more importantly, the capability of
these approaches to focus on specific features within the image based on the terms
added to the energy function is highly advantageous.

For example, the energy function in [31] models the common features of a depth
image captured using a structured light device. The noise model of the device and the
structure information of the depth image are taken into account using terms added
to the energy function, performing regularization during the minimization process.
Similarly, the authors of [103] assume a linear correlation between depth and RGB
values within small local neighbourhoods. An additional regularization term based
on [11] enforces sparsity in vertical and horizontal gradients of the depth image,
resulting in sharper object boundaries with less noise. The energy function in [63]
includes a data term that favours pixels surrounding hole boundaries and a smoothing
term that encourages locally smoother surfaces within the depth image. While this
leads to better geometric and structural coherency within the scene, surface relief
and texture are lost in the resulting depth image.
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The lack of accurate surface relief and texture is in fact a very common challenge
withmany depth completion techniques. This issue can be addressed by solving depth
completion as an exemplar-based inpainting problem, which has seen enormous
success in RGB images [36]. Most exemplar-based inpainting techniques operate on
the assumption that the information needed to complete the target region (with respect
to both texture and structural continuity) is contained within the known regions of
the image. As a result, plausible image completion can be achieved, at least in part,
by copying and pasting patches, sometimes in a very specific order [36], from the
known regions of the image into the target region.

However, there can be major pitfalls with using an exemplar-based technique
to complete missing values in a depth image. For instance, the lack of reflectance
colour texture on a smooth surface which leads to unified depth can confuse an
exemplar-based approach to a great degree. As can be seen in Fig. 2.3 (left), the
notable exemplar-based inpainting method of [36] is capable of filling the target
region post object removal from the RGB image in a plausible way due to existence
of visible colour texture in the background but for a depth image, where no colour
texture is present and the background only consists of a flat plane, the results are
not nearly as impressive (Fig. 2.3—left). Please note that the goal is to remove an
object (the baby) from both the RGB and depth images and plausibly complete the
remaining holes post removal and at the same time fill the existing holes in the depth
image (represented by black markings on the depth image).

Nevertheless, just as various depth completion techniques take advantage of other
inpainting approaches such as [133], with or without modifications [100, 144, 154],
exemplar-based image inpainting has also left its mark on depth completion.

For instance, in [7], object removal and depth completion of RGB-D images is
carried out by decomposing the image into separate high and low spatial frequency
components by means of Butterworth filtering in Fourier space. After the disentan-
glement of high and low frequency images, the high-frequency information (object
boundaries and texture relief) is filled using a classic texture synthesis method [43]
reformulated as a pixel-by-pixel exemplar-based inpainting approach and enhanced
by means of query expansion within the search space, and the low frequency compo-
nent (underlying shape geometry) is completed via [2]. The results are then recom-
bined in the frequency domain to generate the final output. As can be seen in Fig. 2.5,
the produced images are sharp and with no additional artefacts.

Fig. 2.5 Example of the results of [7]. An object has been removed from the RGB-D image and
the missing values in the depth image have been completed
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Fig. 2.6 Example of the results of exemplar-based RGB-D completion [5] as opposed to exemplar-
based RGB completion applied to depth images from the Middlebury dataset [66]. The artefacts
are marked with red boxes

Exemplar-based completion also makes an appearance in [9], which performs
object removal in multi-view images with an extracted depth image, and uses both
structure propagation and structure-guided filling to complete the images. The target
region is completed in one of a set of multi-view photographs casually taken in a
scene. The obtained images are first used to estimate depth via structure frommotion.
Structure propagation and structure-guided completion are employed to create the
final results after an initial RGB-D completion step. The individual steps of this
algorithm use the inpainting method in [140], and the patch-based exemplar-based
completion approach of [38] to generate the results.

The work in [5] extends on the seminal RGB inpainting technique of [36] to create
an exemplar-based approach explicitly designed to complete depth images. This is
achieved by adding specific terms focusing on the characteristics of depth images
into the priority function, which determines which patches take precedence in the
filling order. By introducing texture and boundary terms, the authors of [5] ensure
that surface relief and texture are well preserved in the depth image after completion,
leading to more plausible results with fewer artefacts. As can be seen in Fig. 2.6, the
RGB completion technique [36] applied to depth images produces many undesirable
artefacts while [5] generates sharper depth outputs.

Even though solving the depthfillingproblemusing an exemplar-based framework
has the potential to produce outputs in which structural continuity within the scene
is preserved and granular relief texture is accurately and consistently replicated in
the missing depth regions, there are still many challenges the completion process
must contend with. For instance, if the scene depth is not of a fronto-parallel view,
there is no guarantee that correct depth values can be predicted for the missing
regions via patch sampling even if the patches undergo different transformations
such as rotation, scale, shear, aspect ratio, keystone corrections, gain and bias colour
adjustments, and other photometric transformations in the search space when trying
to find similar patches to sample from [4].

To combat some of these issues, matrix completion has recently emerged as an
interesting formulation of the image completion problem, especially since it has been
observed [104] that similar patches in an RGB-D image lie in a low-dimensional
subspace and can be approximated by a matrix with a low rank. The approach in
[104] presents a linear algebraic method for low-rankmatrix completion-based depth
image enhancement to simultaneously remove noise and complete depth images
using the corresponding RGB images, even if they contain heavily visible noise. In
order to accomplish simultaneous de-noising and completion, the low-rank subspace
constraint is enforced on a matrix with RGB-D patches via incomplete factorization,
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Fig. 2.7 Demonstrating the results of the matrix completion technique of [104] using low-rank
operations (denoted by LMC) compared to joint bilateral filtering (JBF) [122], structure-guided
fusion (SGF) [120], spatio-temporal hole filling (SHF) [25] and guided inpainting and filtering
(GIF) [100]

which results in capturing the potentially scene-dependent image structures both in
the depth and colour space.

The rank differs from patch to patch depending on the image structures, so a
method is proposed to automatically estimate a rank number based on the data.
Figure2.7 demonstrates the performance capabilities of this approach compared
to other depth completion methods, such as joint bilateral filtering (JBF) [122],
structure-guided fusion (SGF) [120], spatio-temporal hole filling (SHF) [25] and
guided inpainting and filtering (GIF) [100]. This approach [104] generates particu-
larly impressive results in that the input RGB image is very noisy (Fig. 2.7—Colour
Image). Before the comparisons, a de-noising method [37] is applied to the noisy
RGB image used as an input for the comparators.

Thework in [145] points out, however, that the low-rank assumption does not fully
take advantage of the characteristics of depth images. Sparse gradient regularization
can naively penalize non-zero gradients within the image but based on statistical
observations, it is demonstrated that despite most pixels having zero gradients, there
is still a relatively significant number of pixels with gradients of 1. Therefore, a low-
gradient regularization scheme is proposed in which the penalty for gradient 1 is
reduced while non-zero gradients are penalized to allow for gradual changes within
the depth image. This regularization approach is subsequently integrated with the
low-rank regularization for depth completion.

More recently, with the advent of deep neural network, many image generation
problems such as RGB inpainting [73, 113, 146, 150, 151] are essentially formulated
as an image-to-image translation problem using a mapping function approximated
by a deep network directly supervised on ground truth samples. However, as can be
seen in Fig. 2.4, networks designed to complete RGB images might not work well
when it comes to depth. A significant obstacle to creating a neural network trained
to complete scene depth is the lack of hole-free ground truth depth images available.
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To overcome this problem, the authors of [157] create a dataset of RGB-D images
based on available surface meshes reconstructed from multi-view RGB-D scans of
large environments [29]. Reconstructed meshes from different camera poses are
rendered, which produces a supply of complete RGB-D images. This data is subse-
quently utilized to train a network that produces dense surface normals and occlusion
boundaries. The outputs are then combined with raw depth data provided by a con-
sumer RGB-D sensor to predict all depth pixels including those missing (holes).

While the formulation of a problem plays a significant role in the quality of
the solution, the desired outcome of depth completion is highly dependent on a
variety of factors, including the availability of the input data, the information domain,
computational requirements and alike. In the following section, a brief discussion of
the most successful depth completion techniques in the literature is provided.

2.3.2.2 A Taxonomy of Depth Completion

Within the literature, different depth completion techniques are often designed around
the information domain available as the input or required as the output. Some tech-
niques only utilize the spatial information locally contained within the image, while
some take advantage of the temporal information extracted from a video sequence
used to complete or homogenize the scene depth, and there are some that are based
on a combination of both (Fig. 2.8 and Table2.1).

Fig. 2.8 A diagrammatic taxonomy of depth filling based on inputs and the information domain
used during the completion process
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Table 2.1 A taxonomy of depth filling completion based on the information domain used during
the filling process

Categories Subcategories Examples

Spatial-based methods Filtering, interpolation, extrapolation [3, 89, 92, 108, 117, 148]

Inpainting-based [39, 64, 100, 120, 136]

Reconstruction-based [30, 31, 103, 147]

Temporal-based methods [13, 48, 75, 106, 130]

Spatio-temporal-based
methods

[24, 25, 122, 137]

Spatial-based depth completion approaches use the neighbouring pixel values
and other information available in a single RGB-D image to complete any missing
or invalid data in the depth image. Even though there are clear limitations to using
this type of approach, such as a possible lack of specific information that can be
construed as useful to a particular target region (hole) in the scene depth, there are
many important advantages. For instance, when temporal and motion information is
taken into consideration for depth completion, filling one frame in a video requires
processing multiple consecutive frames around it and so either the processing has
to be done offline or if real-time results are needed, the results of each frame will
appear with a delay. However, if there is no dependence on other frames, with an
efficient spatial-based method, real-time results can be generated without any delay.

One of the simplest, yet not always the best, approaches to using the spatial
information within a single RGB-D frame is to employ a filtering mechanism to
scene depth. Some common filters of choice would be the median filter [88] or the
Gaussian filter [155] but with their use comes significant blurring effects and loss of
texture and sharp object boundaries. However, there are image filtering techniques
with edge-preserving qualities, such as the bilateral filter [135] and non-local filter
[21]. On the other hand, these filters will not only preserve edges at object boundaries
but the undesirable depth discontinuities caused by depth-sensing issues as well.

There have been attempts to use the visual information present in the colour
component of the RGB-D image to improve the accuracy of the depth completion
results within or near object boundaries. This notion has also been utilized to reduce
the noise in depth images generated by upsampling procedures [49, 82], where the
goal is to increase the sharpness, accuracy and the resolution of the depth image.
Moreover, it can also be used to assist filtering approaches, as can be seen in methods
such as joint bilateral filtering [116], joint trilateral filtering [102] and alike.

A fast and non-approximate linear-time guided filtering method is proposed in
[61]. The output is generated based on the contents of a guidance image. It can
transfer the structures of the guidance image into the output and has edge-preserving
qualities like the bilateral filter but can perform even better near object boundaries
and edges by avoiding reversal artefacts. Due to its efficiency and performance, it
has been used as the basis for several depth completion methods [100, 147].
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Fig. 2.9 Left: example of the result of neighbouring pixel distribution (NPD) approach [148]
compared to temporal-based completion (TBC) of [106]; right: example of depth completion using
cross-bilateral filtering [112]

The approach in [148] completes depth images based on the depth distribution of
pixels adjacent to the holes after labelling each hole and dilating each labelled hole to
get the value of the surrounding pixels. Cross-bilateral filtering is subsequently used
to refine the results. In Fig. 2.9 (left), the results are comparedwith the temporal-based
method in [106], which will be discussed subsequently.

Similarly, in [92], object boundaries are first extracted, and then a discontinuity-
adaptive smoothing filter is applied based on the distance of the object boundary and
the quantity of depth discontinuities. The approach in [112] proposes a propagation
method, inspired by [110], that makes use of a cross-bilateral filter to fill the holes
in the image (as can be seen in Fig. 2.9—right).

In [108], an approach based on weighted mode filtering and a joint histogram of
the RGB and depth image is used. A weight value is calculated based on the colour
similarity between the target and neighbouring pixels on the RGB image and used for
counting each bin on the joint histogram of the depth image. The authors of [109], on
the other hand, use adaptive cross-trilateral median filtering to reduce the noise and
inaccuracies commonly found in scene depth obtained via stereo correspondence.
Parameters of the filter are adapted to the local structures, and a confidence kernel is
employed in selecting the filter weights to reduce the number of mismatches.

In an attempt to handle the false contours and noisy artefacts in depth estimated
via stereo correspondence, the authors of [89] employ a joint multilateral filter that
consists of kernels measuring proximity of depth samples, similarity between the
sample values and similarity between the corresponding colour values. The shape of
the filter is adaptive to brightness variations.

Various interpolation and extrapolation methods using the spatial information
within RGB-D images have also appeared in the depth completion literature. For
instance, an object-aware non-parametric interpolation method is proposed in [3],
which utilizes a segmentation step [8] and redefines and identifies holes within a set
of 12 completion cases with each hole existing in a single row of a single object. The
depth pattern is then propagated into hole regions accordingly. Figure2.10 demon-
strates the efficacy of the approach [3] compared to [2, 7, 63, 100, 133]. Additionally,
the approach [3] functions in a manner of milliseconds, making it highly effective in
real-time application, as can be seen in Table2.2.

There are other interpolation techniques that complete depth images horizontally
or vertically within target boundaries by calculating a normalized distance between
opposite points of the border (horizontally or vertically) and interpolating the pixels
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Fig. 2.10 Comparing the results of guided inpainting and filtering (GIF) [100], second-order
smoothing inpainting (SSI) [63], fast marching-based inpainting (FMM) [133], Fourier-based
inpainting (FBI) [7], diffusion-based exemplar filling (DEF) [2], object-aware interpolation (OAI)
[3] and linear and cubic interpolation using a synthetic test image with available ground truth depth

Table 2.2 Average RMSE, PBMP and runtime (test images from Middlebury [66])

Method Error (lower, better) Runtime (ms) Method Error (lower, better) Runtime (ms)

RMSE PBMP RMSE PBMP

Linear
Inter.

1.3082 0.0246 25.12 Cubic
Inter.

1.3501 0.0236 27.85

GIF [100] 0.7797 0.0383 3.521e3 SSI [63] 3.7382 0.0245 51.56e3

FMM
[133]

1.0117 0.0365 4.31e3 DEF [2] 0.6188 0.0030 8.25e5

FBI [7] 0.6944 0.0058 3.84e6 OAI [3] 0.4869 0.0016 99.09

accordingly [117]. These approaches can face performance challenges when the tar-
get region (hole) covers parts of certain structures that are neither horizontal nor ver-
tical. To prevent this potential issue, the authors of [117] propose a multi-directional
extrapolation technique that uses the neighbouring texture features to estimate the
direction in which extrapolation is to take place, rather than using the classic hori-
zontal or vertical directions that create obvious deficiencies in the completed image.

Similarly, the authors of [51] present a segmentation-based interpolation tech-
nique to upsample, refine and enhance depth images. The strategy uses segmentation
methods that combine depth and RGB information [35, 105] in the presence of tex-
ture. Alternatively, when the image is not highly textured, segmentation techniques
based on graph cuts [47] can be used to identify the surfaces and objects in the RGB
image, which are assumed to align with those in the depth image. The low-resolution
depth image is later projected on the segmented RGB image and interpolation is
subsequently performed on the output.
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While spatial-based depth completion strategies using filtering, interpolation and
extrapolation techniques are among the most used and most efficient methods, tra-
ditional inpainting-based techniques (normally used for RGB images, Sect. 2.3.1)
can yield more promising results in terms of accuracy and plausibility despite being
computationally expensive.

The approach in [120] attempts to recover the missing depth information using a
fusion-basedmethod integrated with a non-local filtering strategy. Object boundaries
and other stopping points that mark the termination of structure continuation process
are not easy to locate in depth images which generally have little or no texture, or
the boundaries or stopping points might be in the target region within the depth
image. The RGB image is thus used to assist with spotting the boundaries, and their
corresponding positions in the depth image are estimated according to calibration
parameters. The inpainting framework follows the work of [22] that takes advantage
of a scheme similar to the non-localmeans scheme tomakemore accurate predictions
for pixel values based on image textures. To solve the issue of structure propagation
termination, a weight function is proposed in the inpainting framework that takes
the geometric distance, depth similarity and structure information within the RGB
image into account.

The fast marching method-based inpainting of [133] has achieved promising suc-
cess in RGB inpainting (Sect. 2.3.1). The work of [100] improves upon this approach
for depth completion by using the RGB image to guide the depth inpainting process.
By assuming that the adjacent pixels that have similar colour values have a higher
probability of having similar depth values as well, an additional colour term is intro-
duced into the weighting function to increase the contribution of the pixels with
the same colour. The order of filling is also changed so that the pixels near edges
and object boundaries are filled later, in order to produce sharper edges. However,
even with all the improvements, this guided depth inpainting method is still not
immune to noise and added artefacts around object boundaries (as can be seen in
Figs. 2.11—bottom, 2.7 and Fig. 2.12); therefore, the guided filter [61] is used in the
post-processing stage to refine the depth image.

The work in [144] introduces an exemplar-based inpainting method to prevent
the common blurring effects produced while completing the scene depth in novel
views synthesized through depth image-based rendering. In the two separate stages
of warped depth image hole filling and warped RGB image completion, the focus is
mainly on depth-assisted colour completionwith texture. The depth image is assumed
to be only a greyscale imagewith no texture and is therefore filled using any available
background information (i.e. depth pixels are filled by being assigned the minimum
of the neighbouring values). The assumptions that depth images have no texture, that
texture and relief are not of any significant importance in depth images, and depth
holes can be plausibly filled using neighbouring background values are obviously
not true and lead to ignoring the utter importance of accurate 3D information in the
state of the art. As a result, although the inpainting method proposed in [144] to
complete newly synthesized views based on depth is reasonable, the depth filling
itself is lacking.
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Fig. 2.11 Top: local and global framework of [31]. The energy function ismade up of a fidelity term
(generated depth data characteristics) and a regularization term (joint bilateral and joint trilateral
kernels). Local filtering can be used instead of global filtering to make parallelization possible.Bot-
tom: example of the results of depth completion using energy minimization with TV regularization
(TVR) [103] compared to fast marching method-based inpainting (FMM) [133] and guided inpaint-
ing and filtering (GIF) [100]. The energy function assumes that in small local neighbourhoods, depth
and colour values are linearly correlated

Fig. 2.12 Comparing the results of guided inpainting and filtering (GIF) [100], second-order
smoothing inpainting (SSI) [63], fast marching-based inpainting (FMM) [133], Fourier-based
inpainting (FBI) [7], diffusion-based exemplar filling (DEF) [2], object-aware interpolation (OAI)
[3] and bilinear interpolation (BI) using examples from the Middlebury dataset [66]

An anisotropic diffusion-based method is proposed in [136] that can have real-
time capabilities bymeans of aGPU. TheRGB image is used to guide the diffusion in
the depth image, which saves computation in the multi-scale pyramid scheme since
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the RGB image does not change. In order to guarantee the alignment of the object
boundaries in the RGB and the depth image, anisotropic diffusion is also applied to
object boundaries.

Although inpainting-based depth filling techniques can produce reasonable and
efficient results, there is a possibility of blurring, ringing, and added artefacts espe-
cially around object boundaries, sharp discontinuities and highly textured regions.
In reconstruction-based methods, however, missing depth values are predicted using
common synthesis approaches. Since a closed-loop strategy is mostly used to resolve
the reconstruction coefficients in terms of theminimization of residuals, higher levels
of accuracy can be accomplished in depth completion. There are numerous different
models found in the literature that are used to represent the depth completion problem
as such.

For instance, in [30, 31], energy minimization is used to solve the depth comple-
tion problem, specifically depth generated by consumer depth sensors. The energy
function consists of a fidelity term that considers the characteristics of consumer
device generated depth data and a regularization term that incorporates the joint
bilateral kernel and the joint trilateral kernel. The joint bilateral filter is tuned to
incorporate the structure information and the joint trilateral kernel is adapted to the
noise model of consumer device generated depth data. Since the approach is rela-
tively computationally expensive, local filtering is used to approximate the global
optimization framework in order to make parallelization possible, which brings forth
the long-pondered question of accuracy versus efficiency. A comparison between
examples of the results generated through both local and global frameworks can be
seen in Fig. 2.11 (top).

The work of [93] in image matting inspired [103] to design an energy function
based on the assumption that in small local neighbourhoods, there is a linear corre-
lation between depth and RGB values. To remove noise and create sharper object
boundaries and edges, a regularization termoriginally proposed in [11] is added to the
energy function, which makes the gradient of the depth image both horizontally and
vertically sparse, resulting in less noise and sharper edges. A comparison between
the results of this method and inpainting methods in [100, 133] is shown in Fig. 2.11
(bottom).

Figure2.12 contains a qualitative comparison of some of the spatial-based depth
fillingmethods [3, 3, 63, 100], RGB completion techniques [2, 36, 133], and bilinear
interpolation over examples from the Middlebury dataset [66]. Table2.2 presents the
numerical evaluation of the same approaches by comparing their root mean square
error (RMSE), percentage of bad matching pixels (PBMP), and their runtime. As
you can see, even though spatial-based methods are certainly capable of achieving
real-time results (unlike temporal-based methods), the current literature epitomizes
the long-standing trade-off between accuracy and efficiency. Many of these methods
are capable of filling only small holes [3] and others are extremely inefficient [7].
Any future work will need to work towards achieving higher standards of accuracy
and plausibility in shorter periods of time.

Certain depth completion techniques in the literature take advantage of themotion
and temporal information contained within a video sequence to complete and refine
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depth images [13, 106]. One of these temporal-based approaches, commonly used
as a comparator in the literature, is the method proposed in [106] which utilizes
motion information and the difference between the depth values in the current image
and those in the consecutive frames to fill holes by giving the pixels the weighted
average values of the corresponding pixels in other frames. Although the results
are mostly plausible, one drawback is that the value of the edges of objects cannot
be accurately estimated to an acceptable level (Figs. 2.9—left), other than the fact
that there is a need for a sequence of depth images, and therefore, the holes in a
single depth image cannot be filled. Moreover, when the colour information does not
correspond with the depth data, the results often contain invalid depth values.

The well-known KinectFusion approach of [75] takes advantage of the neigh-
bouring frames to complete the missing depth during real-time 3D reconstruction.
However, camera motion and a static scene are of utmost importance and despite
being robust, the approach cannot be utilized for a static view of a scene without
any camera motion. In [13], missing depth regions are grouped into one of two cat-
egories: the ones created as a result of occlusion by foreground objects, assumed to
be in motion, and the holes created by reflective surfaces and other random factors.
Subsequently, they use the deepest neighbouring values to fill pixels according to the
groups they are placed in. Even though the assumptions might be true in many real-
life scenarios, they are not universal, and static objects can be the cause of missing
or invalid data in depth images captured via many consumer depth sensors.

The approach in [48] focuses on repairing the inconsistencies in depth videos.
Depth values of certain objects in one frame sometimes vary from the values of the
same objects in a neighbouring frame, while the planar existence of the object has not
changed.An adaptive temporal filtering is thus proposed based on the correspondence
between depth and RGB sequences. The authors of [130] note that the challenge in
detecting andmending temporal inconsistencies in depth videos is due to the dynamic
content and outliers. Consequently, they propose using the intrinsic static structure,
which is initialized by taking the first frame and refined as more frames become
available. The depth values are then enhanced by combining the input depth and
the intrinsic static structure, the weight of which depends on the probability of the
input value belonging to the structure. As can be seen in Fig. 2.13 (left), the method
proposed in [130] does not introduce artefacts into the results due to motion delay
because temporal consistency is only enforced on static regions, as opposed to [48],
which applies temporal filtering to all regions.

Temporal-based methods generate reasonable results even when spatial-based
approaches are unable to, and are necessary when depth consistency and homo-
geneity is important in a depth sequence, which it often is. On the other hand, the
dependency on other frames is a hindrance that causes delays or renders the method
only applicable as an offline approach. Moreover, there are many scenarios where a
depth sequence is simply not available but a single depth image still needs to be com-
pleted. Spatio-temporal completion approaches, however, combine the elements of
the spatial and temporal-based methods to fill holes in depth images [25, 137].

In [137], the process of depth completion is carried out in two stages. First, a
deepest depth image is generated by combining the spatio-temporal information
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Fig. 2.13 Left: example of the results of completion based on intrinsic static structure (ISS) [130]
compared to adaptive temporal filtering (ATF) [48]; right: example of the results of spatio-temporal
completion (STC) [25] compared to exemplar-based inpainting (EBI) [36] on still frames

in the depth and RGB images and used to fill the holes. Subsequently, the filled
depth image is enhanced based on the joint information of geometry and colour. To
preserve local features of the depth image, filters adapted to RGB image features
are utilized. In another widely used method, the authors of [24] use an adaptive
spatio-temporal approach to fill depth holes utilizing bilateral andKalman filters. The
approach is made up of three blocks: an adaptive joint bilateral filter that combines
the depth and colour information is used, random fluctuations of pixel values are
subsequently handled by applying an adaptiveKalmanfilter on each pixel, andfinally,
an interpolation system uses the stable values in the regions neighbouring the holes
provided by the previous blocks, and by means of a 2D Gaussian kernel, fills the
missing depth values.

In another method [25], scene depth is completed using a joint bilateral filter
applied to neighbouring pixels, the weights of which are determined based on visual
data, depth information and a temporal consistency map that is created to track the
reliability of the depth values near the hole regions. The resulting values are taken into
account when filtering successive frames, and iterative filtering can ensure increasing
accuracy as new samples are acquired and filtered. As can be seen in Fig. 2.13 (right),
the results are superior to the ones produced by the inpainting algorithm proposed in
[36].

Improvements made to what can be obtained from a regular video camera along-
side a time-of-flight camera are discussed in [122], and the main focus of the work
is on depth upsampling and colour/depth alignment. However, one of the issues
addressed is depth completion, which is performed via a multi-scale technique fol-
lowing theworks in [57, 84]. The output undergoes joint bilateral filtering and spatio-
temporal processing to remove noise by averaging values from several consecutive
frames.

The approach presented in [74] uses a sequence of frames to locate outliers with
respect to depth consistency within the frame, and utilizes an improved and more
efficient regression technique using least median of squares (LMedS) [124] to fill
holes and replace outliers with valid depth values. The approach is capable of hole
filling and sharp depth refinement within a sequence of frames but can fail in the
presence of invalid depth shared between frames or sudden changes in depth due to
fast moving dynamic objects within the scene.

While depth completion can be a useful process for creating full dense depth for
various vision-based application, learning-based monocular depth estimation tech-
niques can be an invaluable tool that can provide hole-free scene depth in a cheap
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and efficient manner, completely removing the need for any depth completion in
the process. In the next section, a brief outline of the advances made in the field of
monocular depth estimation is presented.

2.4 Monocular Depth Estimation

Over the past few years, research into monocular depth estimation, i.e. predicting
complete scene depth from a single RGB image, has significantly escalated [44,
50, 55, 87, 99, 143]. Using offline model training based on ground truth depth data,
monocular depth prediction has been made possible [44, 45, 87, 99, 162] sometimes
with results surpassing those of more classical depth estimation techniques. Ground
truth depth, however, is extremely difficult and expensive to acquire, and when it is
obtained it is often sparse and flawed, constraining the practical use of monocular
depth estimation in real-world applications. Solutions to this problem of data scarcity
include the possibility of using synthetic data containing sharp pixel-perfect scene
depth [6] for training or completely dispensing with using ground truth depth, and
instead utilizing a secondary supervisory signal during training which indirectly
results in producing the desired depth [32, 50, 55, 143].

In the following, a brief description of monocular depth estimation techniques
within three relevant areas is provided: approaches utilizing handcrafted features
based on monocular cues within the RGB image, approaches based on graphical
models and finally techniques using deep neural networks trained in various ways to
estimate depth from a single image.

2.4.1 Handcrafted Features

While binocular vision is commonly associated with depth perception in humans
and machines, estimating depth from a single image based on monocular cues and
features is technically possible for both humans and machines, even if the results
are not very accurate. Such monocular cues include size considering visual angles,
grain andmotion parallax.Monocular depth estimation techniques have utilized such
features to estimate depth from a single RGB image.

Based on the assumption that the geometric information contained within a scene
combined with motion extracted from a sequence can be valuable features for 3D
reconstruction, the authors of [70] estimate depth based on temporal continuity and
geometric perspective. In [153], different cues such as motion, colour and contrast
are combined to extract the foreground layer, which is then used to estimate depth.
Motion parameters and optical flow are calculated using structure from motion.

In [67, 68], an assumption of ground-vertical geometric structure is used as the
basis to construct a basic 3D model from a single photograph. This is accomplished
by labelling the image according to predefined geometric classes and subsequently
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creating a statistical model based on scene orientation. The authors of [81] propose
a non-parametric approach based on SIFT Flow, where scene depth is reconstructed
from an input RGB image by transferring the depth of multiple similar images and
then applying warping and optimizing procedures. The work in [97] investigates
using semantic scene segmentation results to guide the depth reconstruction process
instead of directly predicting depth based on features present in the scene. The work
in [87] also takes advantage of combining semantic object labels with depth features
to aid in the depth estimation process.

It is important to note that predicting depth based on monocular cues within the
scene is not robust enough to deal with complex and cluttered scenes even though
approaches using such features have managed to produce promising results when it
comes to scenes that contain clear predefined features and adhere to simple structural
assumptions.

2.4.2 Graphical Models

Within the current literature onmonocular depth estimation, there are approaches that
take advantage of graphical models to recover scene depth. For instance, the authors
of [40] introduce a dynamic Bayesian network model capable of reconstructing a
3D scene from a monocular image based on the assumption that all scenes contain
a floor-wall geometry. The model distinguishes said floor-wall boundaries in each
columnof the image and using perspective geometry reconstructs a 3D representation
of the scene. While the approach produces very promising results, the underlying
assumption it is built on (indoor scenes framed by a floor-wall constraint) limits the
capabilities of the approach.

The work in [127] utilizes a discriminatively trainedMarkov random field (MRF)
and linear regression to estimate depth. The images are segmented into homogeneous
regions and the produced patches are used as super-pixels instead of pixels during
the depth estimation process. This extended version of the approach [128] utilizes
the MRF in order to combine planes predicted by the linear model to describe the
3D position and orientation of segmented patches within RGB images. Since depth
is predicted locally, the combined output lacks global coherence. Additionally, the
model is manually tuned which is a detriment against achieving a learning-based
system.

The method proposed in [62] presents cascaded classification models. The
approach combines the tasks of scene categorization, object detection, multi-class
image segmentation and, most relevant here, 3D reconstruction by coupling repeated
instantiations of the sophisticated off-the-shelf classifiers in order to improve the
overall performance at each level.

In [101], monocular depth estimation is formulated as an inference problem in
a discrete/continuous conditional random field (CRF) model, in which continuous
variables encode the depth information associated with super-pixels from the input
RGB image, and the discrete ones represent the relationships between the neighbour-
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ing super-pixels. Using input images with available ground truth depth, the unary
potentials are calculated within a graphical model, in which the discrete/continuous
optimization problem is solved with the aid of particle belief propagation [71, 114].

To better exploit the global structure of the scene, [162] proposes a hierarchical
representation of the scene based on aCRF,which is capable ofmodelling local depth
information along with mid-level and global scene structures. Not unlike [101], the
model attempts to solve monocular depth estimation as an inference problem in a
graphical model in which the edges provide an encoding of the interactions within
and across the different layers of the proposed scene hierarchy.

More recently, the authors of [142] attempt to performmonocular depth estimation
using sparse manual labels for object sizes within a given scene. Utilizing these
manually estimated object sizes and the geometric relationship between them, a
coarse depth image is primarily created. This depth output is subsequently refined
using a CRF that propagates the estimated depth values to generate the final depth
image for the scene.

Monocular depth estimation techniques based on graphical models can produce
impressive results but despite their excellent generalization capabilities, deep neural
networks generate sharper and more accurate depth images, even though they can be
prone to overfitting and require larger quantities of training data.

2.4.3 Deep Neural Networks

Recent monocular depth estimation techniques using deep convolutional neural net-
works directly supervised using data with ground truth depth images have revolu-
tionized the field by producing highly accurate results. For instance, the approach in
[45] utilizes a multi-scale network that estimates a coarse global depth image and a
second network that locally refines the depth image produced by the first network.
The approach is extended in [44] to perform semantic segmentation and surface
normal estimation as well as depth prediction.

In the work by [90], a fully convolutional network is trained to estimate more
accurate depth based on efficient feature upsamplingwithin the network architecture.
In the upsampling procedure, the outputs of four convolutional layers are fused by
applying successive upsampling operations. On the other hand, the authors of [98]
point to the past successes that CRF-based methods have achieved in monocular
depth estimation and present a deep convolutional neural field model that takes
advantage of the capabilities of a continuous CRF. The unary and pairwise potentials
of the continuous CRF are learned in a deep network resulting in depth estimation
for general scenes with no geometric priors.

The work in [26] trains a supervised model for estimation formulated as a pixel-
wise classification task. This reformulation of the problem is made possible by trans-
forming the continuous values in the ground truth depth images into class labels by
discretizing the values into bins and labelling the bins based on their depth ranges.
Solving depth estimation as a classification problem provides the possibility to obtain
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confidence values for predicted depth in the form of probability distributions. Using
the obtained confidence values, an information gain loss is applied that enables
selecting predictions that are close to ground truth values during training.

Similarly, the authors of [94] also present monocular depth estimation as a pixel-
wise classification problem. Different side-outputs from the dilated convolutional
neural network architecture are fused hierarchically to take advantage of multi-scale
depth cues. Finally, soft-weighted-sum inference is used instead of the hard-max
inference, which transforms the discretized depth score to continuous depth value.
The authors of [69] attempt to solve the commonly found issue of blurring effects
in the results of most monocular depth estimation techniques by fusing features
extracted at different scales from a network architecture that includes a multi-scale
feature fusion module and a refinement module trained via an objective function that
measures errors in depth, gradients and surface normals.

While these approaches produce consistently more encouraging results than their
predecessors, the main drawback of any directly supervised depth estimation model
is its dependence on large quantities of dense ground truth depth images for training.
To combat this issue, synthetic depth images have recently received attention in the
literature. The authors of [6] take advantage of aligned nearly photorealistic RGB
images and their corresponding synthetic depth extracted from a graphically rendered
virtual environment primarily designed for gaming for training a monocular depth
estimationmodel. Additionally, a cycle-consistent adversarially trained style transfer
approach [161] is used to deal with the domain shift between the synthetic images
used for training and the real-world images the model is intended for in practice.
Figure2.14 (EST) contains examples of the results of this approach, which are very
sharp and with clear object boundaries due to the fact that pixel-perfect synthetic
depth has been used as training data. Likewise, the authors of [159] propose a similar

Fig. 2.14 Qualitative comparison of depth and ego-motion from video (DEV) [160], estimation
based on left/right consistency (LRC) [55]; SSE: semi-supervised depth estimation (SSE) [86],
depth estimation via style transfer (EST) [6]
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framework in which a separate network takes as its input both synthetic and real-
world images and produces modified images which are then passed through a second
network trained to perform monocular depth estimation.

While the use of synthetic training data can be a helpful solution to the issue
of scarcity of ground truth depth, a new class of indirectly supervised monocular
depth estimators have emerged that do not require ground truth depth, and calculate
disparity by reconstructing the corresponding view within a stereo correspondence
framework and thus use this view reconstruction as a secondary supervisory signal.
For instance, the work in [143] proposes the Deep3D network, which learns to gen-
erate the right view from the left image used as the input, and in the process produces
an intermediary disparity image. The model is trained on stereo pairs from a dataset
of 3D movies to minimize the pixel-wise reconstruction loss of the generated right
view compared to the ground truth right view. The desired output is a probabilistic
disparity map that is used by a differentiable depth image-based rendering layer in
the network architecture. While the results of the approach are very promising, the
method is very memory intensive.

The approach in [50] follows a similar framework with a model very similar to
an autoencoder, in which the encoder is trained to estimate depth for the input image
(left) by explicitly creating an inverse warp of the output image (right) in the decoder
using the estimated depth and the known inter-view displacement, to reconstruct the
input image. The technique uses an objective function similar to [143] but is not fully
differentiable.

On the other hand, the authors of [55] argue that a simple image reconstruction as
done in [50, 143] does not produce depth with high enough quality and uses bilinear
sampling [77] and a left/right consistency check between the disparities produced
relative to both the left and right images incorporated into training to produce better
results. Examples of the results of this approach can be seen in Fig. 2.14 (LRC).
Even though the results are consistently impressive across different images, blurring
effects within the depth image still persist.

In [152], the use of sequences of stereo image pairs is investigated for estimating
depth and visual odometry. It is argued that utilizing stereo sequences as training data
makes the model capable of considering both spatial (between left/right views) and
temporal (forward/backward) warp error in its learning process, and can constrain
scene depth and camera motion to remain within a reasonable scale.

While the approaches that benefit from view synthesis through learning the inter-
view displacement and thus the disparity are capable of producing very accurate and
consistent results and the required training data is abundant and easily obtainable,
there are certain shortcomings. First, the training data must consist of temporally
aligned and rectified stereo images, andmore importantly, in the presence of occluded
regions (i.e. groups of pixels that are seen in one image but not the other), disparity
calculations fail and meaningless values are generated (as can be seen in Fig. 2.14
(LRC)).

On the other hand, the work in [160] estimates depth and camera motion from
video by training depth and pose prediction networks, indirectly supervised via view
synthesis. The results are favourable especially since they include ego-motion but
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Table 2.3 Comparing the results of monocular depth estimation techniques over the KITTI dataset
using the data split in [45]. S* denotes the synthetic data captured from a graphically rendered
virtual environment

Method Training
data

Error metrics (lower, better) Accuracy metrics (higher, better)

Abs.
Rel.

Sq.
Rel.

RMSE RMSE
log

δ <

1.25
δ <

1.252
δ <

1.253

Dataset mean
[53]

[53] 0.403 0.530 8.709 0.403 0.593 0.776 0.878

Eigen et al.
Coarse [44]

[53] 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. Fine
[44]

[53] 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [99] [53] 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Zhou et al. [160] [53] 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [160] [53]+[34] 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Garg et al. [50] [53] 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Godard et al.
[55]

[53] 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Godard et al.
[55]

[53]+[34] 0.124 1.076 5.311 0.219 0.847 0.942 0.973

Zhan et al. [152] [53] 0.144 1.391 5.869 0.241 0.803 0.928 0.969

Atapour et al. [6] S* 0.110 0.929 4.726 0.194 0.923 0.967 0.984

Kuznietsov et al.
[86]

[53] 0.113 0.741 4.621 0.189 0.862 0.960 0.986

the depth outputs are very blurry (as can be seen in Fig. 2.14 (DEV)), do not consider
occlusions and are dependent on camera parameters. The training in the work of [86]
is supervised by sparse ground truth depth and the model is then enforced within a
stereo framework via an image alignment loss to output dense depth. This enables the
model to take advantage of both direct and indirect training, leading to higher fidelity
depth outputs than most other comparators, as demonstrated in Fig. 2.14 (SSE) and
Table2.3.

Within the literature, there are specificmetrics that are commonly used to evaluate
the performance ofmonocular depth estimation techniques. Given an estimated depth
image d ′

p and the corresponding ground truth depth dp at pixel p with N being the
total number of pixels for which valid ground truth and estimated depth exist, the
following metrics are often used for performance evaluation in the literature:

• Absolute relative error (Abs. Rel.) [128]:

1

N

∑

p

|dp − d ′
p|

dp
. (2.2)
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• Squared relative error (Sq. Rel.) [128]:

1

N

∑

p

||dp − d ′
p||2

dp
. (2.3)

• Linear root mean square error (RMSE) [62]:

√
1

N

∑

p

||dp − d ′
p||2. (2.4)

• Log scale invariant RMSE (RMSE log) [45]:

√
1

N

∑

p

||log(dp) − log(d ′
p)||2. (2.5)

• Accuracy under a threshold [87]:

max

(
d ′
p

dp
,
dp

d ′
p

)
= δ < threshold. (2.6)

Table2.3 provides a quantitative analysis of the state-of-the-art approaches pro-
posed in [6, 44, 50, 55, 86, 99, 152, 160]. The experiment is carried out on the test
split used in [45], which has now become a convention for evaluations within the
monocular depth estimation literature.

2.5 Conclusions

The primary focus of this chapter has been on techniques specifically designed to
complete, enhance and refine depth images. This is particularly important as there
are still several issues blocking the path to a perfect depth image such as missing
data, invalid depth values, low resolution and noise despite the significant efforts
currently underway with regard to improving scene depth capture technologies.

The depth completion problem has been formulated in a variety of different ways,
as has the related problem of RGB inpainting. Diffusion-based and energyminimiza-
tion solutions to the problem are accurate with respect to structural continuity within
the scene depth and can produce smooth surfaces within object boundaries, which
can be a desirable trait for certain applications. However, these solutions are often
inefficient, computationally expensive, and can bring forth implementation issues.
Depth images can also be completed using an exemplar-based paradigm, which can
accurately replicate object texture and relief as well as preserve the necessary geo-
metric structures within the scene. There are, of course, a variety of other problem
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formulations, such as matrix completion, labelling, image-to-image mapping and
alike, each focusing on certain traits within the desired scene depth.

Input requirements can also vary for different depth completion techniques.
Depending on the acquisition method, depth is commonly obtained along with an
aligned or easily alignable RGB image of the same scene. The information contained
within this RGB image can be used to better guide the filling approach applied to the
depth image. However, not all depth images are accompanied by a corresponding
RGB image and processing the colour information can add to the computational
requirements which may not be necessary depending on the application.

Within the depth completion literature, there are spatial-basedmethods that limit
themselves to the information in the neighbouring regions adjacent to the holes in the
depth image and possibly the accompanying RGB image. Some of these algorithms
make use of filtering techniques, while some utilize interpolation and extrapolation
approaches. The filtering, interpolation and extrapolation methods can provide fast
and clean results but suffer from issues like smoothed boundaries and blurred edges.
Some research has been focused on using inpainting-based techniques, which have
been proven successful in completing RGB images post object removal. Despite their
satisfactory results, these methods are not all efficient and can generate additional
artefacts near target and object boundaries. There are also Reconstruction meth-
ods that can generate accurate results using techniques inspired by scene synthesis
methods. However, they are mostly difficult to implement and some have a strict
dependency on the corresponding RGB view.

Temporal-based depth completion techniques make use of the motion informa-
tion and the depth in the neighbouring frames of a video to fill the hole regions in
the current depth frame. Sometimes the information in a single depth image is not
enough to complete that image, which is where spatial-based methods fall short.
Temporal-based approaches, however, do not suffer from this issue and have a larger
supply of information at their disposal. This class of methods is still not perfect, and
the need to process other frames to complete a depth image makes them more suited
for offline applications rather than real-time systems.

Additionally, various spatio-temporal-based methods have been proposed that
use both the spatial information contained within the scene depth and the temporal
continuity extracted from a sequence to perform depth completion. Although these
methods can be more accurate than spatial-based techniques and more efficient than
temporal-based approaches, they still suffer from the issues of both these categories.

Furthermore, while future avenues of research need to explicitly consider compu-
tational efficiency, within the contemporary application domains of consumer depth
cameras and stereo-based depth recovery, it is also highly likely they will be able to
exploit temporal aspects of a live depth stream. It is thus possible that both tempo-
ral and spatio-temporal techniques will become the primary areas of growth within
this domain over the coming years. This trend will be heavily supported by aspects
of machine learning as innovative solutions to the issue of acquiring high-quality
ground truth depth data become increasingly widespread.

Of course, another innovative solution to the problem of obtaining accurate 3D
scenes is to provide a cheap and efficient alternative to the current 3D capture tech-
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nologies that can produce high-fidelity hole-free scene depth, entirely circumnavigat-
ing the need for depth completion as a necessary post-processing operation. Recent
learning-based monocular depth estimation methods have made significant strides
towards achieving this goal by providing accurate and plausible depth mostly in real
time from a single RGB image.
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Chapter 3
Depth Super-Resolution with Color
Guidance: A Review

Jingyu Yang, Zhongyu Jiang, Xinchen Ye and Kun Li

Abstract Depth super-resolution (SR) with color guidance is a classic vision
problem to upsample low-resolution depth images. It has awide range of applications
in 3D reconstruction, automotive driver assistance and augmented reality. Due to the
easy acquirement of the aligned high-resolution color images, there have been many
depth SR approaches with color guidance in the past years. This chapter provides
a comprehensive survey of the recent developments in this field. We divide these
methods into three categories: regularization-based methods, filtering-based meth-
ods, and learning-based methods. Regularization-based methods make the ill-posed
SR problemwell constrained by utilizing regularization terms. Filtering-based meth-
ods upsample depth images via local filters with the instruction of guidance images.
Learning-based methods can be further divided into traditional dictionary learning
methods based on sparse representations and current popular deep learning methods.
We survey the state-of-the-art methods, discuss their benefits and limitations, and
point out some problems in this field.
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3.1 Introduction

Despite the rapid progress of depth sensing technologies, there still exists a signifi-
cant gap between depth cameras and color cameras, particularly in terms of spatial
resolution. For example, the spatial resolution of off-the-shelf smartphone cameras
can be as high as nearly 50 Megapixels; while those of commodity Time-of-Flight
(ToF) depth cameras are at the level of 200 kilo pixels, or even lower for low-cost
versions in mobile devices. Such a significant resolution gap has impeded their appli-
cations in many tasks, e.g., 3DTV, and 3D reconstruction, which requires depth maps
should have the same (or at least similar) resolution as the associated color images.
This raises the problem of depth super-resolution (SR), which is closely related to
generic image super-resolution, but also involves many additional elements.

ThedepthSRproblemhas twounique characteristics: (1) piecewise smooth spatial
distribution of depth map and (2) the available the auxiliary high-resolution color
images. Depth images and color images are two descriptions of the same scene,
and they often simultaneously present discontinuities at the same locations, which
is referred to as structural correlation. Therefore, state-of-the-art depth SR schemes
are carefully designed to exploit such structural correlation [14, 15, 29]. In practical
applications, they have slight viewpoint difference and thus view warping is required
before resolution enhancement. Moreover, structural inconsistency between RGB-D
pairs also exists. Different depths may have similar colors, and areas with intensive
color variation may have close depth values, which would seriously interfere with
the depth SR. Early works paid more attention to the inconsistency of RGB-D pairs,
while recent works tend to remedy or avoid texture-copying artifacts [19, 32, 33].
In the past decade, depth SR has evolved along with the development of generic
image SR. Similarly, depth SR methods can be mainly divided into three categories:
regularization-based methods, filtering-based methods, and learning-based methods.
This chapter reviews depth SRmethodswith color guidance following this taxonomy.

This chapter is organized as follows: Sect. 3.2 formulates the general depth SR
problem, summarizes the main challenges, and gives a taxonomy of the vast litera-
ture. Section3.3 reviews regularization-basedmethods that super-resolve depthmaps
via solving an energy function. Section3.4 overviews the category that interpolates
missing pixels at the high-resolution grids via advanced filtering schemes. Section3.5
first discusses depth SR methods with dictionary learning techniques, and then turns
to more data-driven approaches using advanced deep learning paradigms. Finally,
Sect. 3.6 draws conclusions.
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3.2 Problem Statement, Challenges, and Taxonomy

3.2.1 Challenges

The captured depth image is a degraded version of the underlying high-quality depth
image, due to the limitation of current depth capturing systems. There aremainly four
types of degradations, namely random missing depths, structured missing depths,
noise, and undersampling. Among the degradations, undersampling is a common
and important one. The degradation model of undersampling, which is an ill-posed
problem, can be described as

y = Hx + n, (3.1)

where x and y denote the vector forms of the underlying high-resolution depth map
and the captured low-resolution one, respectively. H represents the composite oper-
ator of blurring and sampling and n is additive noise.

The low resolution of depth images has hindered their widespread use, and there-
fore, there are many works to recover high-resolution depth images. Despite great
progress, there are still some problems in depth SR.

• Although there are many methods to remedy texture-copying artifacts, methods
to solve the problem is less in deep learning methods.

• How to super-resolve different degradation types and sampling ratios in low-
resolution (LR) depth images in a single model is an ongoing direction.

• Compared with a lot of color image datasets, there are less data to support deep
learning of depth related tasks.

• Most methods upsample LR depth images from regular downsampling. It maybe
better to adopt adaptive downsampling to generate LR depth images.

3.2.2 Taxonomy

There are usually three types of methods in depth SR: regularization-based methods,
filtering-based methods, and learning-based methods. Among learning-based meth-
ods, they contain traditional dictionary learning methods and current popular deep
learningmethods. In the rest of the chapter, we will introduce representative methods
in detail.

3.3 Regularization-Based Methods

In this category, the depth SR is formulated as an optimization problem, which
includes various regularization terms to make the ill-posed SR problem well con-
strained.
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Ferstl et al. [5] propose to use high order total variation regularization, named
Total Generalized Variation (TGV), to upsample the depth image, which avoids
the problem of surface flattening. Furthermore, they use an anisotropic diffusion
tensor based on the intensity image (expressed as T in Eq. (3.2)), which utilizes the
correspondence and depth pairs. The proposed tensor is claimed to not only weight
the depth gradient but also orient the gradient direction during the optimization
process. It is worth mentioning that they also propose real ToF datasets coupled with
groundtruth measurements to promote the quantitative comparison of real depth map
super-resolution.

T = exp(−β|∇IH |γ )nnT + n⊥n⊥T , (3.2)

where I is the intensity image, n is the normalized direction of the image gradient
n = ∇ IH

|∇ IH | , n
⊥ is the normal vector to the gradient, and the scalars β, γ adjust the

magnitude and the sharpness of the tensor.
Yang et al. [29] propose an adaptive color-guided autoregressive (AR) model

based on the tight fit between the AR model and depth maps. The regularization is
constructed based on the AR prediction errors subject to measurement consistency.
The AR weights are computed according to both local correlation and the nonlocal
similarity. Among them, the color weight aI

x,y is designed in Eq. (3.3) to make use
of the correlations of RGB-D pairs, which utilizes a bilateral kernel to weight the
distance of local patches. Therefore, compared with the standard Non-Local Mean
(NLM) filter, it can carry shape information of local image structures. Several depth
enhancement problems are unified into an elegant depth recovery framework which
produces state-of-the-art results.

aI
x,y = exp

(
−

∑
i∈C ‖Bx ◦ (Pi

x − Pi
y)‖22

2 × 3 × σ2
2

)
, (3.3)

where σ2 controls the decay rate, ◦ is the element-wise operator. Pi
x denotes an

operator which extracts a patch centered at x in color channel i . The bilateral filter
kernel Bx is defined in the extracted patch:

Bx(x, y) = exp

(
−‖x − y‖22

2σ3
2

)
exp

(
−

∑
i∈C (Ixi − Iyi )
2 × 3 × σ4

2

)
, (3.4)

where I is the color image. σ3 and σ4 are the parameters of the bilateral kernel, which
balance the importance of the spatial distance and intensity difference, respectively.

Along this avenue, Dong et al. [3] exploit both local and nonlocal structural regu-
larization. The local regularization term consists of two local constraints in the gra-
dient domain and spatial domain, respectively. The nonlocal regularization involves
a low-rank constraint to utilize global characterization of color-depth dependency.
Liu et al. [20] also combine local and nonlocal manifolds into the regularization. The
local manifold is a smoothness regularizer, which models the local neighboring rela-
tionship of pixels in depth. The nonlocal manifold takes advantages of self-similar
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Fig. 3.1 The pipeline of paper [10]

structures to build highly data-adaptive orthogonal bases. Besides, they define a 3D
thresholding operator on local and nonlocal manifolds to enforce the sparsity on the
manifold spectral bases.

Jiang et al. [10] upsample the LR depth with both transform and spatial domain
regularization. In the transform domain, the regularization actually belongs to an
AR model, where each patch is sparsified with a PCA dictionary. In the spatial
domain regularization, they extend the standard total variation to multidirectional
total variation, which can better characterize the geometrical structures spatially
orientated at arbitrary directions. The overall pipeline is shown in Fig. 3.1

The abovemethodsmostly design effectiveweights. Theworks in [12, 18] propose
robust penalty functions, which are nonconvex, as the smoothness regularization. The
two penalty functions all have the similar essential form as presented in Eq. (3.5)
They claimed that the penalty function is robust against the inconsistency of RGB-D
pairs by adjusting gradient magnitude variation by rescaling of intensity gradients.
Therefore, they significantly reduce texture-copying artifacts.

ω(x2) = exp

(
− x2

σ

)
(3.5)

Compared with the previous methods, the works in [19, 32] explicitly deal with
texture copying artifacts. The work in [19] adapts the bandwidth to the relative
smoothness of patches, which can effectively suppress texture-copying artifacts and
preserve depth discontinuities. The method, in general, can be used in many existing
methods. Thepaper in [32]more explicitly considers the inconsistencybetween edges
of RGB-D pairs by quantizing the inconsistency. The quantization inconsistency
is embedded in the smoothness term. Experiments evaluated on multiple datasets
demonstrate the ability to mitigate texture-copying artifacts.

Zuo et al. [33] compute guidance affinities ofMarkovRandomField regularization
by multiple minimum spanning trees (MSTs). The method can preserve depth edges
due to the paths of the MSTs. Edge inconsistency between RGB-D pairs is also
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considered and embedded into the weights of edges in each MST. Therefore, it
mitigates texture-copying artifacts.

Liu et al. [20] propose two regularization terms in the graph domain. The first
regularizer utilizes the graph Laplacian, which performswell in preserving the piece-
wise smooth characteristic of depth map. A specifically designed weight matrix is
defined tomake use of depth and color images. Besides the internal smoothness prior,
an external graph gradient operator is proposed, which is the nonlocal version of the
traditional gradient operator. The external gradient consistency regularizer enforces
utilizing only the common structures of RGB-D pairs. In this way, they remedy the
inconsistency problem of RGB-D pairs.

Gu et al. [6] introduce a task-driven learning formulation to obtain the differ-
ent guidances to different enhancement tasks. Besides, dynamic depth guidance is
learned along with the iterations due to the updating of the depth image.

Generally speaking, regularization-based methods often use hand designed func-
tions to approximate image priors, such as nonlocal similarity, piecewise smooth-
ness, local correlation, and so on. Despite the careful design in these regularization
functions and their weights, they cannot completely describe real complex image
priors. Moreover, methods of this category are typically time consuming to solve the
optimization problem, which limits their applications in practical systems.

3.4 Filtering-Based Methods

Filtering-based methods aim to recover a depth map by performing weighted averag-
ing of depth values from local pixels, and theweights are predicted by someweighting
strategies derived from the color image. The representative filtering-based methods
consist of the bilateral filter, Non-local Means (NL-Means) filter, guided filter, and
others.

Eisemann et al. [4] proposed a joint bilateral filter (JBF) based on the classic
bilateral filter (BF) with the help of an additional reference image (e.g., color image).
The equation of JBF is expressed as

Ĩ p = 1

kp

∑
q∈Ω

Iq f (||p − q||)g(|| Î p − Îq ||), (3.6)

where kp is a normalization factor, and Ĩ p, Î p are the filtered output and reference
image at pixel index p, respectively. Iq is the input image at pixel index q. Ω is the
spatial support of the filter kernel. f (·) and g(·) are two Gaussian kernels given by

f (p, q) = exp

(−||p − q||2
2σ 2

D

)
, g( Î p, Îq) = exp

(
−|| Î p − Îq ||2

2σ 2
R

)
, (3.7)
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Fig. 3.2 Examples of recovered depth maps from different methods. We also show corresponding
3D views from an offset camera using the upsampled depth map (figure originated from [13])

where σD and σR are the kernel bandwidth parameters. Inspired by JBF, Kopf et
al. [13] proposed a joint bilateral upsampling (JBU), which considers recovering a
high-resolution (HR) depth map S̃ from the low-resolution (LR) depth map S and
corresponding high-resolution color image Î , see Fig. 3.2. Thus, the JBU has the
following form:

S̃p = 1

kp

∑
q↓∈Ω

Sq↓ f (||p↓ − q↓||)g(|| Î p − Îq ||), (3.8)

where S̃ is the HR filtered output and Î is the HR color image. p, q denote the indices
in the HR image and p↓, q↓ denote the indices in the LR image.

Unlike JBF and JBU, Liu et al. [17] proposed to utilize geodesic distance instead
of Euclidean distance in the filter kernels to avoid producing artifacts when the colors
of the surfaces across the depth boundaries are similar. The geodesic distance is given
by the length of the shortest path:

dG(p, q) = min
k∈K

|k|∑
i=2

(
1

r
||p(i)

k − p(i−1)
k || + λ|| Î (p(i)

k ) − Î (p(i−1)
k )||), (3.9)

where p and q are indices in the HR images. k is a path joining p and q, and |k| is the
number of nodes in path k, and K is the set of all the paths. r is the upsampling rate
and λ is a weighting parameter. Thus, the method with geodesic distance is defined
as

S̃p = 1

kp

∑
q↓∈Ω

Sq↓gG(p, q), (3.10)

where gG(p, q) is

gG(p, q) = exp(
−d2

G(p, q)

2σ 2
), (3.11)

and σ is the kernel bandwidth parameter.
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The NL-Means filter [2] shares a similar idea with the JBF method, but considers
comparing patches surrounding both pixels instead of the single pixel values at
position p and q, which is expressed as

Ĩ p = 1

kp

∑
q∈Ω

Iq f (p, q)g(p, q). (3.12)

The functions f (p, q), g(p, q) have the following form:

f (p, q) = exp(− 1
h

∑
k∈N Gσ (||k||2)(I (p + k) − I (q + k))2),

g(p, q) = exp(− 1
h

∑
k∈N Gσ (||k||2)( Î (p + k) − Î (q + k))2),

(3.13)

where h is a smoothing parameter and N is the number of pixels in patch Ω . The
pixelwise distances are weighted according to their offsets k from the central pixel
by a Gaussian kernel Gσ with standard deviation σ . Based on this, Huhle et al. [8]
extended NL-Means by adding two terms ξpk , ξ̂pk to f (p, q), g(p, q), respectively,
where

ξpk = exp(− (I (p) − I (p + k))2

h
), ξ̂pk = exp(− ( Î (p) − Î (p + k))2

h
). (3.14)

These two additional terms constrain the similarity comparison to regions of similar
depths, using the same parameter h as in the computation of the inter-patch distances.

In contrast, He et al. [7] proposed another filtering method named guided filter
under the assumption that there is a local linear model between the filtered output
Ĩ and the guidance image Î (here the color image is used as guidance image). The
guided filter has the following form:

Ĩ p =
∑
q∈Ω

Wp,q( Î )Iq , (3.15)

where Wp,q(·) is a function of the guidance image Î and independent of the input
image I . In particular, Wp,q( Î ) is explicitly expressed by

Wp,q( Î ) = 1

|ω|2
∑
q∈Ω

(
1 + ( Î p − μ) − ( Îq − μ)

σ 2

)
, (3.16)

where μ and σ are the mean and variance of Î in Ω , and |ω| is the number of pixels
in Ω . Compared with the guided filter that applies the linear regression to all pixels
covered by a fixed-sized square window non-adaptively, Lu et al. [22] proposed a
local multipoint filtering algorithm, which utilizes spatial adaptivity to define local
support regions and weighted averaging to fuse multiple estimates.
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Shen et al. [25] pointed out that there may be a completely different structure
in the guided color image and the target one, and simply passing all patterns to the
target could lead to significant errors. Thus, they proposed the concept of mutual
structure, which refers to the structural information that is contained in both images.
The mutual structure can be measured by the similarityS

S ( Ĩ p, Î p) =
(
σ( Ĩ p)

2 + σ( Î p)
2
) (

1 − ρ( Ĩ p, Î p)
2
)2

, (3.17)

where σ( Ĩ p), σ( Î p) are the variance of patch Ω centered at p in Ĩ , Î , and ρ(·) is the
normalized cross-correlation (NCC), expressed as

ρ( Ĩ p, Î p) = cov( Ĩ p, Î p)√
σ( Ĩ p)σ ( Î p)

, (3.18)

where cov( Ĩ p, Î p) is the covariance of patch Ω .
For othermethods,Min et al. [24] proposedweightedmode filtering (WMF) based

on the joint histogram. The weight based on a similarity measure between reference
and neighboring pixels is used to construct the histogram, and a final solution is then
determined by seeking a global mode on the histogram. Barron et al. [1] proposed
the bilateral solver—a form of bilateral-space optimization (FBS), which solves a
regularized least squares optimization problem to produce an output that is bilateral-
smooth and close to the input. Lo et al. [21] proposed a joint trilateral filtering
(JTF) which not only extracts spatial and range information of local pixels, but also
integrates local gradient information of the depth image to alleviate the texture-
copying artifacts. Yang et al. [28] proposed a global autoregressive depth recovery
iteration algorithm, inwhich each iteration is equivalent to a nonlocal filtering process
with a residue feedback, see Fig. 3.3.

The filtering-basedmethods enjoy simplicity in design and implementation, lower
computational complexities. However, the short-sighted local judgement cannot pro-

Fig. 3.3 Examples of depth recovery results from different methods: a color image, b FBS [1],
c FGI [15], d GlobalAR [29], and e GAR [28] (figure originated from [28])
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vide enough information to recover the global structure, andmay introduce annoying
artifacts in regions where the associated color image contains rich textures.

3.5 Learning-Based Methods

Methods of this category contain traditional dictionary learning methods and current
popular deep learning methods. Dictionary learning methods attempt to find a suit-
able dictionary from image patches. Based on the dictionary, the densely expressed
images in the real world can be converted into suitable sparse representations. Com-
pared with dictionary learning methods, deep learning methods constantly update
the network parameters until convergence in order to learn complex and nonlinear
mapping functions.

3.5.1 Dictionary Learning Methods

Methods of this category design dictionaries to represent images. The core form of
dictionary learning methods can be expressed as

min
B,αi

m∑
i=1

‖xi − Bαi‖22 + λ

m∑
i=1

‖αi‖1, (3.19)

where vector xi is the i th signal, matrix B denotes the dictionary, αi is the sparse
coefficients, λ represents the weight parameter to balance the two terms. Based on
this basic form, there are many variants of this category.

Xie et al. [27] propose a coupled dictionary for the single depth image SR. Which
contains two dictionaries for LRpatches andHRones respectively. They impose local
constraints on the coupled dictionary learning and reconstruction process, which can
reduce the prediction uncertainty and prevent the dictionary from over-fitting. The
work in [31] proposes a dictionary selection method using basis pursuit to generate
multiple dictionaries adaptively. The work [23] does not have an explicit dictionary.
However, the external HR depth patches can be viewed as a dictionary and the sparse
representation solution can be considered as seeking the most similar patch.

Li et al. [16] design three related dictionaries for LR depth patch, color patch,
and HR depth patch respectively to build the SR mapping function. The method
assumes that the LR depth image, the HR depth image, and the color image shared
the same sparse coefficients under the respective dictionaries. Kiechle et al. [11] also
jointly learn a pair of analysis operators to make the RGB-D pairs have a correlated
co-support.

The dictionaries have either fixed bases or they are learnt from a limited number of
patches, and therefore they have limited expressive ability. Moreover, the optimiza-
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tion process to find the optimal dictionary or sparse coefficients is computationally
intensive.

3.5.2 Deep Learning Methods

Recent depth recovery techniques using deep convolutional neural networks directly
supervised by ground truth depth images has revolutionized the field by highly accu-
rate results.

The work in [9] (MSG-Net) proposed a gradual up-sampling framework with a
multi-scale color guidance module, which further exploits the dependency between
color texture and depth structure. Specifically, the rich hierarchical HR intensity
features at different levels progressively resolve ambiguity in depthmapup-sampling.
TheHR features in the intensity branch act as complements of the LRdepth structures
in depth branch, as shown in Fig. 3.4. The compared results can be seen in Fig. 3.5.

Similarly, [14] employed a two-pathCNN to learn an end-to-end network to obtain
the HR depth map from the LR depth map with the assistance of the corresponding
HR color image. The architecture is designed based on the concept of joint filters,
in which a fusion branch is added to jointly filter the informative feature maps from

Fig. 3.4 The architecture of MSG-Net (adapted from [9])

Fig. 3.5 Visual comparison of 8× upsampling results. a Color image. b Ground truth. c Guided
Filtering [7]. d Ferstl et al. [5]. e MSG-Net [9] (figure originated from [9])
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Fig. 3.6 The cascade coarse-to-fine network (adapted from [14])

both the depth and guidance branches. It can leverage the guidance image as a prior
and transfer the structural details from the guidance image to the target image for
suppressing noise and enhancing spatial resolution.

The above two methods [9, 14] directly use the information of the color image
on the feature level and achieve satisfactory performance for depth map recovery. In
contrast, other methods focus on extracting accurate depth boundaries to facilitate
the process of depth recovery. Ye et al. [30] proposed a joint deep edge-inference
and depth SR framework, which first learns a binary map of depth edges from the
LR depth map and corresponding HR color image, and then takes advantage of the
edge information to guide the reconstruction of the depth map. The color branch
acts as a feature extractor to determine informative edge features from the color
image. Then, the upsampling feature maps from the depth branch are concatenated
with the feature maps extracted from the color branch at the same resolution. The
convolutional layers are added to extract the final HR edge map. Finally, a depth
filling module is designed to obtain a high-quality depth map with the help of the
extracted depth edges.

The paper in [26] proposed a deep cascaded coarse-to-fine network as shown in
Fig. 3.6. It aims to learn different sizes of filter kernels. At the coarse stage, larger
filter kernels are learned by the CNN to obtain a coarse depth map. As to the fine
stage, the coarse depth map is used as the input, and smaller filter kernels are learned
to get more accurate results. The depth edge guidance strategy fuses color difference
and spatial distance for depth image upsampling, which can alleviate texture-copying
artifacts and preserve edge details effectively.

Deep learning methods usually have better performance than traditional methods
and have real-time speed. As is well known, deep learning methods are driven by
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big data. However, there is less high-quality data available for depth SR compared
with color SR.

3.6 Conclusion

In this chapter, we have reviewed some state-of-the-art methods in depth SR with
color guidance. Due to the ill-posed nature, we first focused on regularization-based
methods, which make the problem well constrained via various regularization terms.
These regularization terms make use of depth image priors, such as nonlocal simi-
larity, piecewise smoothing and so on. We then shifted the focus to filtering-based
methods. Methods of this category upsample depth images via local filters, whose
weights are dependent on RGB-D correlations. Compared with other traditional
methods, filtering-based methods have low computational complexity. However, the
local judgement of filtering-based methods cannot provide enough information to
recover global structures. Finally, we review the learning-based methods, which
contain traditional dictionary-based methods and deep learning-based methods. The
core idea of dictionary-based methods is the sparse representation of images, espe-
cially depth images. Methods of this category learn a dictionary from limited data.
On the contrary, deep learning based methods achieve much better performance due
to their excellent learning ability. Moreover, the deep learning-based methods have
real-time speed. Despite the success of deep learning, there is an urgent need for
larger training data sets in the depth field, which are currently small when compared
with the color field. This is more obvious in real depth image datasets captured by
Kinect or ToF sensors.
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Chapter 4
RGB-D Sensors Data Quality Assessment
and Improvement for Advanced
Applications

Pablo Rodríguez-Gonzálvez and Gabriele Guidi

Abstract Since the advent of the first Kinect as a motion controller device for
the Microsoft XBOX platform (November 2010), several similar active and low-cost
range sensing devices, capable of capturing a digital RGB image and the correspond-
ing Depth map (RGB-D), have been introduced in the market. Although initially
designed for the video gaming market with the scope of capturing an approximated
3D image of a human body in order to create gesture-based interfaces, RGB-D sen-
sors’ low cost and their ability to gather streams of 3D data in real time with a frame
rate of 15–30 fps, boosted their popularity for several other purposes, including 3D
multimedia interaction, robot navigation, 3D body scanning for garment design and
proximity sensors for automotive design. However, data quality is not the RGB-D
sensors’ strong point, and additional considerations are needed for maximizing the
amount of information that can be extracted by the raw data, together with proper
criteria for data validation and verification. The present chapter provides an overview
of RGB-D sensors technology and an analysis of how random and systematic 3D
measurement errors affect the global 3D data quality in the various technological
implementations. Typical applications are also reported, with the aim of providing
readers with the basic knowledge and understanding of the potentialities and chal-
lenges of this technology.

4.1 Introduction

Generating accurate and dense 3D information is an increasing requirement in a
variety of scientific fields. Such a requirement is also the motivation to provide new
tools and algorithms in a quick and economic way. High precision applications were
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limited to expensive sensors, such as triangulation-based laser scanners and pattern
projection range devices for small volumes, or terrestrial laser scanners based on
Time of Flight (ToF) or Phase Shift (PS) detection, being possible alternatives to the
use of digital cameras and photogrammetry-based approaches [54]. For an in-depth
taxonomy and data acquisition, please refer to Chap.1. The development of the video
game industry, as well as the massive size of the video game market favoured not
only the appearance of RGB-D sensors, but also the mass production with a cost
per-unit far lower than ToF and PS devices. Originally designed just for implement-
ing gesture-based interfaces, RGB-D sensors offered new possibilities for the 3D
digitization of complex objects of small to medium size, as well as real-time 3D
acquisition [21]. As a result, RGB-D sensors have filled an application gap among
the 3D sensing techniques available (Fig. 4.1). This figure shows different 3D sensing
systems and methods, in terms of uncertainty and measurement range. According
to the International Vocabulary of Metrology (VIM) [32], the measurement uncer-
tainty of each measuring equipment or device represents the cumulative effect of the
systematic errors, associated with the concept of accuracy, and unavoidable random
errors, associated with the concept of precision. The former, once modelled, can be
eliminated through a proper calibration; the latter, depending on unpredictable causes
like electronic noise that can be only statistically characterized for making the end
user aware of the measurement system’s intrinsic limitations. Additional considera-
tions about measurement precision, accuracy and trueness can be found in Sect. 4.2.

3D point cloud reliability is a key issue in some applications, especially in mod-
elling complex objects. Thus, the characterization and later removal of the systematic
errors that cause possible distortions, are required. The present chapter is devoted
to identifying various error sources from their effect in the 3D point cloud, namely,
random or systematic [22].

The first RGB-D sensors were designed for the entertainment industry in 2010 to
capture human body poses for interaction with video games. They are characterized
by the generation of a range image, or structured point cloud, where every pixel of
the 2D image has been assigned a distance or depth value. Structured point clouds
are a constrained representation where point cloud vertices adhere to an underlying
structure, in this case, a grid with arbitrary sampling [3]. The resulting data are
organized like an image, making it possible, during meshing operations, to find
the nearest neighbours in a much more time-efficient way. On the contrary, the
widespread active terrestrial laser systems used in Geomatics deliver 3D data in the
form of an unstructured point cloud, expressed by an indefinite number of triplets
representing the x, y, z values of the measured points over the scanned scene.

Due to the need for capturing not only static scenes but also body movements,
RGB-D cameras are designed for generating a high frame rate 3D data acquisition.
The main disadvantages are their low precision in distance measurement, and their
low spatial resolution. At present, there is a trend to miniaturize RGB-D cameras,
so they can be mounted on a smartphone or a tablet, enabling gesture recognition on
non-gaming devices. In the case of sensors based on the principle of triangulation,
the smaller baseline between the emitter and receiver constrains the achievable pre-
cision.Moreover, the mass production of RGB-D cameras at affordable prices makes

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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Fig. 4.1 Comparison among different 3D sensing systems and methods in terms of uncertainty
and measurement range. Acronyms: GNSS (Global Navigation Satellite System), TLS (Terrestrial
Laser Scanners), CMM (Coordinate Measurement Machine). Adapted from [53]

their individual calibration impossible, so the systematic error component becomes
predominant over the random one [21]. Please note that this increased final error is
still suitable for non-advanced applications.

Despite these drawbacks, RGB-D sensors are a low-cost alternative to other well-
established active systems, such as laser triangulation devices, structured-light range
devices, or even TLSs for small to medium size objects. Their autonomy, portability
and high acquisition frame rate have revolutionized the field of 3D documentation
with the Kinect Fusion project [46], further refined in the following years [26].

Typical application fields are dense 3D mapping of indoor environments [13, 27]
and ‘Simultaneous Localization AndMapping’ (SLAM) tasks [56]. Other more spe-
cific applications have been developed in the field of pose recognition [59], activity
detection [37], object recognition and placement [33], 3D scene labelling and indoor
segmentation and support [60]. For additional applications please refer to Chaps. 8, 9
(object detection), 10 (foreground detection and segmentation) and 11 (pose estima-
tion).

http://dx.doi.org/10.1007/978-3-030-28603-3_8
http://dx.doi.org/10.1007/978-3-030-28603-3_9
http://dx.doi.org/10.1007/978-3-030-28603-3_10
http://dx.doi.org/10.1007/978-3-030-28603-3_11
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4.1.1 Historical Overview of RGB-D Sensing Technologies

The earliest paradigm of multimodal interaction with the environment came from
Bolt’s ‘Put-That-There’ system [5] developed atMIT from the late 70s. However, the
study and implementation of low-cost 3D sensors for managing gesture-based inter-
faces has been more a research field rather than a real industrial interest in general
purpose applications,mainly due to its relatively low social acceptance and to the high
cost of the associated devices [50]. The first mass-produced gaming gesture device
was the Nintendo ‘Power Glove’ in 1989. The device was based on ultrasound-based
position detection and derived from the NASA funded ‘Dataglove’ project where the
position was determined by magnetic tracking [14]. Despite its technical advances,
it involved a physical contact with the user, who needed to wear it. The turning
point could be dated to circa 2000, from the need for the video gaming industry
to manage 3D interactions. As a result, it provided a boost in the development of
human–machine interfaces, alternative to keyboard-driven cursors. In 1999, Richard
Marks conceived a dedicated webcam embedding some gesture recognition based
on 2D images. This was the core of the later Sony ‘EyeToy’ device [43]. Despite not
being a 3D device, it works in complete absence of contact. In 2006, Nintendo pre-
sented the ‘Wii’, which is a handheld 3D motion sensing controller for their gaming
consoles. The camera embedded in the Wii controller features an integrated multi-
object tracking of up to four simultaneous infrared (IR) light sources. As a result, the
6 Degrees-Of-Freedom (DOF) of the player’s hand holding the device are estimated,
alongwith the corresponding acceleration components. This approach, enrichedwith
gyroscopes and magnetometers, led to wearable technologies for delivering fitness
related services [40]. This device represented a major step forward in the 3D user–
machine interaction, and its low-cost (approx. $40), generated a significant boom for
the manufacturer [47].

The extremely good results of Wii caused a reaction of the competitors, who
began to search alternative ways for measuring the position and orientation of the
player, without any device held by the end user. This led Microsoft to begin the
‘Project Natal’, whose purpose was to develop a device looking at the user (like
Sony’s earlier Eyetoy), but with a full 3D vision of the scene, on the basis of which it
could generate gesture-based 3D input for a gaming console. In 2010 was produced
the first device, named Microsoft ‘Kinect’. Its 3D sensing technology, developed
by Primesense and named ‘Light coding technology,’ is based on the triangulation
principle. This approach, very similar to that employed by white light pattern projec-
tion devices, was implemented in an efficient way, packed in a single chip, coupled
with a standard colour camera and a microphone, thus allowing the production of a
small and inexpensive multimodal input unit (less than $200). The key element of
such a device was to get a 3D input from the user’s movements, able to extract from
the body posture of the player a simplified skeleton whose nodes’ relative positions
could trigger specific actions of a virtual environment like a 3D video game [10].

The Primesense device is based on triangulation. It involves the projection of a
speckle pattern of near-IR laser light constantly projected on the scene. The resulting
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Table 4.1 Summary of technical specification of RGB-D sensors available. Adapted from [15].
Abbreviations employed: SL: Structured-Light; ToF: Time-of-Flight; AS: Active Stereoscopy; PS:
Passive Stereoscopy

Device Measurement
principle

Range (m) Spatial resolution
(pixels)

Frame
rate (fps)

Field of
view (◦)

ASUS Xtion SL 0.8–4.0 640 × 480 30 57 × 43

Creative Senz 3D ToF 0.15–1.0 320 × 240 60 74 × 58

Intel D415 AS 0.16–10 1280 × 720 90 63.4 × 40.4

Intel D435 AS 0.2–4.5 1280 × 720 90 85.2 × 58

Intel Euclid AS 0.5–6.0 640 × 480 90 59 × 46

Intel R200 AS 0.5–6.0 640 × 480 90 59 × 46

Intel SR300 SL 0.2–1.5 640 × 480 90 71.5 × 55

Kinect v1 SL 0.8–4.0 640 × 480 30 57 × 43

Kinect v2 ToF 0.5–4.5 512 × 424 30 70 × 60

Occipital SL 0.8–4.0 640 × 480 30 57 × 43

Orbbec Astra S SL 0.4–2.0 640 × 480 30 60 × 49.5

Sense 3D scanner SL 0.8–4.0 640 × 480 30 57 × 43

SoftKinectic DS325 ToF 0.15–1.0 320 × 240 60 74 × 58

StereoLab ZED PS 0.5–20 4416 × 1242 100 110◦ (diag.)

image is affected by a parallax shift in the direction of the baseline between the
laser projector and the perspective center of the infrared camera. This is why all the
sensors using this type of technology are grouped in Table4.1 under the category
‘structured light.’

In 2014, Google presented project ‘Tango’ [23], with the aim of including a 3D
scanner in a phone. This limited-run experimental phone has a Kinect-like vision to
accurately annotate objects in the user’s environment. In 2015, the Chinese company
Orbbec released the ‘Astra S’, an RGB-D sensor composed of an IR camera, a coded
pattern projector and an RGB camera. All these sensors represent a re-interpretation
of the same Primesense concept, based on triangulation between an IR camera and
a structured-light pattern projector.

In 2014, a technology competing with Primesense was introduced. To update
the Kinect device, Microsoft developed a novel 3D sensor based on a flash camera
that determines the distance to objects by measuring the roundtrip travel time of an
amplitude-modulated light from the source to the target and back to the camera at
each pixel. Each pixel of the receiving unit incorporates a ToF detector that operates
using the ‘Quantum Efficiency Modulation.’

In 2016, Intel proposed its version of a low-cost RGB-D sensor, by using again
an IR pattern projection, but a double IR camera. In this case, the triangulation
occurs on the two cameras and the pattern is used for generating identifiable features
on the illuminated surface. For this reason, this approach is also known as ‘Active
Stereoscopy’.
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Driven by the market, new RGB-D sensors are being developed. In Table4.1 a
summary of RGB-D sensors is shown.

4.1.2 State of the Art

The potential for the 3D mapping of objects and indoor environments of RGB-D
sensors was recently discovered, opening new applications in several areas, from
robotics to surveillance to forensics [36]. The first generation of RGB-D sensors
(2010–2014) were all based on the triangulation principle and had a rapid diffusion
in the market. The second generation of RGB-D sensors (2014–the present) features
modifications in the acquisition system, changing from structured-light to ToF and
active stereo, increasing the application possibilities.

The advancements encompass a wide range of options. However, they are closer
to research than to commercial applications. The development that has had the most
impact is gesture and action recognition. Human action recognition from RGB-D
devices has attracted increasing attention since their appearance in 2010. This task is
based on the skeleton tracking from depth maps. However, this only works when the
human subject is facing the RGB-D sensors and in the absence of occlusions [63].
For advanced applications, such as nursing or surveillance, it is necessary to apply
additional algorithms for a proper activity recognition [63].

Indoor scene reconstruction and mobile mapping have been another active
research topic for RGB-D cameras [26, 46]. Their low cost presented an attrac-
tive opportunity, especially in the robotics field (see Chap.13 ). The first approaches
were based on the reconstruction of static environments. Then they evolved into
real-time scanning and scan integration. The later developments allowed an operator
to capture dense 3D geometry models of dynamic scenes and scene elements [64].
In this sense, RGB-D sensors have been proposed to track in real time a 3D elastic
deformable object, which is of special interest for robot dynamic manipulation [48].
For a recent overview of surface tracking, please refer to [64].

RGB-D sensors are a powerful resource for security and surveillance systems.
Presently, they are being used by some smartphone manufacturers as a part of their
face recognition system.This approach is basedon the development and improvement
of specialized algorithms, and the computation of descriptors to perform a classifi-
cation [30]. RGB-D sensors have also been used in forensic science for advanced
applications, such as body measurements for gait recognition or anthropometric pur-
poses [61]. Alternative advance applications in this field are real-time biometrics,
such as face recognition and face analysis [6]. In these tasks, the active light source
could cope with the illumination changes of RGB passive methods (which could dis-
turb the final 3Dmodel), making the RGB-D sensor an inexpensive way for real-time
analysis.

Garment modelling and design from an RGB-D camera has been addressed. This
has a twofold approach; the anthropometric measures, as mentioned in the forensic
applications, and the garment modelling [8]. The last one involves the individual

http://dx.doi.org/10.1007/978-3-030-28603-3_13


4 RGB-D Sensors Data Quality Assessment … 73

garment components and their design attributes from depth maps. In [49] a method
to capture clothes in motion was presented, based on a 4D data acquisition. The
garments of a person in motion can be estimated by segmenting the 4D data stream,
obtaining the undressed body shape and tracking the clothing surface over time. As
a result, it is possible to retarget the clothing to new body shapes.

For example, a Microsoft Kinect II has been employed to derive crop height mod-
els of a cornfield directly from the point clouds [24]. The results derived exclusively
from the 3D data without prior or supplementary measurements show an underesti-
mation of crop height and individual plant height. However, by combining multiple
RGB-D point clouds, the difference from the ground truth provided by a TLS is
reduced to a mean value of –6cm (canopy height model and plant height).

Earth Science fields, such as glaciology, stream bathymetry, and geomorphol-
ogy, have been proposed as advance application fields for RGB-D sensors, as stated
in [42]. In [25] the applicability of Kinect fusion libraries using the Kinect sensor
for capturing two common karst features in caves (stalagmites and flowstone walls)
is investigated. The Kinect sensor was compared to a Terrestrial Laser Scanner, per-
forming inside the nominal depth precision of the sensor at the given distances to the
object. In spite of a systematic overestimation of the extension of the 3D survey, the
authors stated that the ease-of-use, low-cost and real-time 3D point cloud generation
offer additional benefits for applications in geosciences. Characterization of 2D free
surface and temporal water depth field evolution was carried out with a Primesense
Carmine 1.09 and Microsoft Kinect for Windows SDK 1.8 [44].

Drone application is another advanced field. In [29] a stripped-down Microsoft
Kinect sensor was employed for an autonomous flight of a micro air vehicle in an
indoor environment, combining visual odometry and autonomous flight and map-
ping. The mean position deviation was 6.2cm, with a maximum deviation of 19cm.
In [58] an Intel Realsense R200 was attached to a drone. Applying a Visual SLAM
approach and customized camera parameters for outdoor use, a 3Dmap of a construc-
tion site was generated in real time. It can monitor construction progress, compute
earthmoving volumes and track the real-time locations and trajectories of on-site
entities (e.g. labourers, equipment, materials) even in a Global Navigation Satel-
lite System (GNSS) denied environment. Compared to photogrammetry, the average
error is 3.3 cm; however, the presence of holes in the model due to the limited sensing
range of IR sensors constrains the RGB-D applicability. Other reported problems are
related to achieving effective memory management of an onboard computer.

The use of RGB-D sensors for automotive and autonomous vehicles has similar
constraints. It requires the understanding of the environment in which the vehi-
cle is moving, including objects in the surroundings, with a process called scene
labelling [31]. For additional details please refer to Chap.17.

The use of RGB-D cameras for advanced applications also requires the use of
radiometry to obtain more complete derived products. The first radiometric calibra-
tion equation for the IR sensor for the Microsoft Kinect II is reported in [51]. It is a
reflectance-based approach that allows us to convert the recorded digital levels into
physical values. Experimental results confirm that the RGB-D sensor is valid for
exploiting the radiometric possibilities ranging from pathological analysis to agri-

http://dx.doi.org/10.1007/978-3-030-28603-3_17
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cultural and forest resource evaluation. Parallel approaches are based on RGB-D
vignetting calibration [1] to improve the visual appearance of final models, and even
to improve the tracking performance of SLAMsystems by optimizing a joint geomet-
ric and photometric cost function. More details about SLAM and RGB-D odometry
can be found in Chap.6.

4.2 Metrological Analysis of RGB-D Sensor Performance

In addition to random measurement errors typical of any 3D device, RGB-D sen-
sors, due to their low-cost components, have significant systematic errors. The latter
arise from the various components, e.g. IR emitter, lens distortions and aberrations,
mechanical tolerances in the sensor assembly. These issues contribute to the higher
percentage of the global error budget [21]. To employ an RGB-D sensor in advanced
applications, the device has to be properly calibrated in order to eliminate, or at least
greatly reduce, the systematic component of the error. As a result, the final error will
be significantly decreased.

According to the VIM [32], verification is the provision of objective evidence that
a given item fulfils specified requirements, whereas validation is the same as verifica-
tion,where the specified requirements are adequate for an intended use.Measurement
precision is the closeness of agreement between measured quantity values obtained
by replicate measurements on the same or similar objects under specified conditions.
On the contrary,measurement accuracy indicates the closeness of agreement between
a measured quantity value and a true quantity value of an object being measured (i.e.
a ‘measurand’). Please note that the latter is more a theoretical concept than a mea-
surable parameter. When the average of an infinite number of occurrences of the
same measured quantity value is compared to a reference value, the closeness of the
two is indicated as trueness instead of accuracy. This procedure becomes feasible in
reality when the ‘infinite’ number of repeated measures is substituted by a number
‘large enough’ to approximate an asymptotic value within a predefined tolerance.

For practical purposes, true quantity, or ground truth, is provided by instruments
and techniques with a higher precision than the tested one, also referred to as an
‘independent check’ [57]. This ratio should be five or more times the a priori pre-
cision of the system being tested. Under these conditions, the error deviation of the
independent check from the ground truth can be dismissed [52].

Starting from a general approach for the metrological characterization of
triangulation-based range devices [22], the metrological characterization of RGB-D
sensors has been proposed by different authors since 2011 [35], testing different
commercial sensors, calibration artefacts and configurations. However, the results
obtained showed a high variability, related to the 3D results. As an example, the def-
inition of the optimal range of work depends on the software choice. A Primesense-
based Kinect obtained the best overall performance for a range of 1–3m operating
with the OpenKinect framework [36]. With the same sensor, [2] reported an optimal
working range of 0.8–1.5m operating with the SDK; and [45] provided a range of
0.7–2 m with the OpenNI framework.

http://dx.doi.org/10.1007/978-3-030-28603-3_6
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All the studies showed that the RGB-D precision depends strongly on the distance
of the measured object, and highlights that its main limitation is the short acquisition
range. For the first generation of RGB-D sensors, based on triangulation, precision
decreases quadratically with distance [16, 21].

The spatial resolution is influenced both by optical means, as in any other active
range device, and by numeric means, given that any value in the range image is
generated by anAnalog-to-Digital (A/D) conversion of ameasured valuemadewith a
fixed number of bits. The numerical representation of themeasured values, therefore,
gives a fixed number of levels, represented by 2n, with n number of bits of the
converted value. For example, for an Intel RealSense device, such depth is 12 bits,
so the available levels are 212 = 4096. Measuring in the range 0–1 m the granularity
will be therefore dr = 1000/4096 = 0.24mm, while in the range 0–5 m will be dr
= 5000/4096 = 1.22mm. A similar behaviour is confirmed also for the Microsoft
Kinect, [36] where it has been verified that the distance measurements resolution
decreases with distance and is approximately 2mm at 1m and about 7.5mm at 5 m.

Other drawbacks are related to the limited measurement capacity of low reflec-
tivity surfaces, excessive background illumination and acquisition of surfaces near
parallel to the optical axis [11]. Moreover, shifts in the depth image due to the ther-
mal changes induced by the Peltier element heating and cooling the IR projector to
stabilize the wavelength, were also reported [42].

The high affordability of RGB-D sensors allows them to replace customToF cam-
eras. Several studies compared them, in order to assess in which case this assumption
is suitable. In [39] a Microsoft Kinect I was compared to two ToF cameras based
on PMD. The authors reported a limited ability to measure on surfaces with low
reflectivity. An angular resolution of 0.49◦ was reported, instead of the theoretical
angular resolution 0.09◦ (0.12◦ in height). For the experimental setup, a Böhler Star
was used [4] to determine the angular or lateral resolution of depth measurement
devices.

The discrepancywas explained by the authors as due to the fact thatmultiple pixels
are required to generate one depth value. Similarly, in [62] a Microsoft Kinect I was
compared to three ToF devices (SwissRanger 4000, SICK LMS_200 and Fotonic
B70). The authors stated that for smaller environments, a sphere of radius 3 m, the
structured-light based RGB-D sensor provides a less precise substitute for a laser
rangefinder. In a comparison of the Microsoft Kinect I and the SwissRanger 4000,
the measurement accuracy decreases for angles larger than 60◦ [34]. Moreover, the
structured-light sensor is affected by metallic surfaces (a typical factor in industrial
environments), since the measurement accuracy depends much more on the distance
of the camera to the objects than on the surface properties of the captured objects.

Another research topic is the comparison between the structured light and ToF
RGB-D cameras. In [17] Kinect I and Kinect II are compared using a standard cal-
ibrated metrological artefact, involving the evaluation of accuracy and precision for
different angles and distances. BothRGB-D sensors yielded a similar precision at 1m
range, but at 2m range, Kinect II (ToF) improved the results of Kinect I (structured-
light). In terms of accuracy, both devices showed a similar pattern. The decrease in
precision with range for Kinect II is lower than the first-generation device. A dedi-
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cated study of ToFMicrosoft Kinect II error source is addressed in [38]. The authors
studied the preheating time, namely the delay required to provide a reliable range
measurement. By repeatedly observing the measured distance of a planar surface
from the sensor, the resulting values vary in the first 30min up to 5mm and even-
tually reduce to 1mm. The authors also addressed the effects of different materials
on distance measurements. They concluded that by using different light intensities
for compensating the material’s absorption, the lower the intensities, the longer the
measured distances, with distance deviations up to 12mm in black areas. Regard-
ing the variation of the measurement error with the sensor-to-surface distance, the
authors reported a degradation of its standard deviation, which is dependent on the
object range according to an exponential function. Finally, the authors reported that
RGB-D sensors, if compared to standard photogrammetry approaches, performed
less accurately. In order to help users make a decision on which measurement prin-
ciple to select (triangulation or ToF) depending on their application circumstances,
in [55] a weight factor represented by the performance ratio between the two RGB-D
sensors categories is proposed.

In the study [21] five different RGB-D sensors were analysed to assess the error
components (systematic and random) using a flat target in a range from 0.55 to 1.45
m. The authors confirmed that the calibration of sensors is a critical issue. After
having estimated the systematic and the random measurement errors for the five
specimens tested, the random component was in fact significantly smaller than the
total detected error. Primesense-based devices exhibited an uncertainty that ranged
from 2 mm to 3.9mm (Kinect 1), from 1.9 to 2.9mm (Asus Xtion) and from 1.3
to 2.8mm (Structure). Realsense devices increased the uncertainty ranges from 3 to
6.9mm, while Kinect 2 yielded values from 1.4 to 2.7mm.

There are many error sources to be accounted for an RGB-D sensor. According
to [55] they can be summed up as follows:

1. Ambient background light.
2. Multi-device interference.
3. Temperature drift.
4. Systematic distance error.
5. Depth inhomogeneity at object boundaries (also called flying pixels).
6. Multi-path effects.
7. Intensity-related distance error (this bias is reported for ToF-based sensors).
8. Semi-transparent and scattering media.
9. Dynamic scenery.

In a 3D measurement process using a RGB-D camera, the causes for inaccuracies
can be classified in two categories according to [34]:

• Inaccuracies in the RGB-D camera’s pose estimation:

– Inaccuracies of the pose estimation device.
– Inaccurate relative transformation between depth camera and pose estimation
device.
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Fig. 4.2 Example of RGB-D uncertainty: a the infrared pattern used to generate the depth map;
b colour-coded depth of a planar surface

– Inaccurate alignment of world coordinate system and 3D model coordinate
system.

– Temporal offset between pose acquisition by the pose estimation device and
depth image acquisition by depth camera.

• Inaccuracies of the RGB-D camera itself:

– Random measurement errors.
– Systematic measurement errors.
– Motion blur effects.

In Fig. 4.2, the global uncertainty (random plus systematic components) is illus-
trated for the scan of a planar surface using a RealSense D415. The colour palette
was set with very narrow thresholds around the nominal sensor-to-surface distance
(approx. 910 mm), in order to make the errors more ‘readable’.

The rest of the present section is focused on the random and systematic component
discussion for an RGB-D advanced application.

4.2.1 Random Errors

Random error, mainly due to the sensor’s electronic noise, affects the depth image
either in its spatial component, as discrepancies of measured distance within a single
frame, or in its temporal evolution, as discrepancies of measured distances between
consecutive frames [41]. Due to the high frame rate of RGB-D cameras, the use
of individual depth images to estimate the spatial random component, allows us to
ignore the effects of temperature in time. These have been proved to influence the per-
formances of this category of devices over a time span of several tens of minutes [12].
In addition, the spatial characterization provides more practical applications and sta-
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tistically significant results, since it allows us to estimate the accuracy and precision
of different RGB-D devices.

Random errors are largely caused by the thermal noise of the electronic stage
capturing the IR images, and by the laser speckle produced by the material response
to coherent light. All these effects are superimposed on the deterministic content
of the probing pattern, whose image is used for estimating the parallaxes in the
different points of the frame. According to [21], it is possible to assume, and therefore
model, the global random contribution of each range image as due to ‘Additive
White Gaussian Noise’ (AWGN), similar to the thermal noise affecting CCD and
CMOS sensors. The fact that this contribution can be considered additive with good
approximation is confirmed by the literature [28].

4.2.2 Systematic Errors

The classical systematic error of RGB-D cameras is the so called ‘distance inhomo-
geneity’ [7], namely, the set of possible errors coming out of acquisitions at different
distances from the sensor.

Such errors change over a range image according to a pattern depending on the
specific device exemplar and the sensor-to-target distance. But, unlike random errors,
those are constant in time. In addition, the systematic errors are specific for each
different depth measuring technology [9].

This error can be characterized by the data acquisition of a planar surface at dif-
ferent known distances. The parametric nature of such a surface allows us to evaluate
the global uncertainty (random plus systematic components). This approach has been
studied in the literature [7, 18, 21, 38]. In 2012, Khoshelham and Elberink [36] char-
acterized the first generation of Microsoft Kinect in terms of precision and accuracy,
concluding that the systematic error is directly dependent on object distance, and it
increases at the periphery of the depth image.

To individualize the random and systematic components from the global uncer-
tainty of the RGB-D camera, there are two different approaches.

On the one hand, the averaging of several depth images is proposed. In this
approach, the number of depth images taken into account affects the results. Early
tests with a pattern projection device and a laser radar estimated an optimal averaging
level of 16, after which the averaging does not give further improvement. However, in
order to obtain a trade-off betweenmeasurement quality improvement and processing
time, an optimal number of averaged images for a pattern projection device turned
out to be 4 [19]. For obtaining a real-time averaging with a laser radar [20], the value
turned out to be further reduced to 2 without significantly affecting the measurement
performance. In [38] it is reported that increasing from 10 to 100 consecutive frames
does not improve the plane fit standard deviation, but a smoothing effect is observed
in the corners. Various authors proposed samples between 10 and 50 frames for this
approach.
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Fig. 4.3 Colour-coded error components: a Global uncertainty; b systematic component (low
frequencies) decoupled from a, c random component (high frequencies) decoupled from a

On the other hand, in [21] a different approach based on an analysis in the
frequency domain is proposed. The starting hypothesis is that the random errors,
being essentially originated by AWGN, are characterized by high frequencies. Under
this approach the RGB-D device can be considered as a black box whose specific
behaviour affects the 3D cloud differently at different spatial frequencies. So, for
the analysis of the distance errors with the flat plane, a λ-μ smoothing filter [19]
was used [21]. The filter is basically a low-pass filter that removes high special fre-
quency 3D point variations without further altering the point positions. The param-
eters should be set in compliance with the limits presented in [19], namely, λ > 0,
μ < −λ. This means considering three separate contributions for each depth sample
collected by the sensor: (i) the actual measured value (Fig. 4.3a); (ii) the systematic
error (Fig. 4.3b); (iii) the random error (Fig. 4.3c). The sum of the latter two defines
the spatial measurement uncertainty. Figure4.3 exemplifies the colour-coded devi-
ation of each depth value from the fitting plane associated with a set of points, all
nominally belonging to the same plane.

The low-pass filter applied in Fig. 4.3 has been computed inMeshlab, using λ = 1,
μ = −0.53 and 50 iterations.

4.2.3 Measurement Uncertainty

On the basis of the aforementioned approach it is possible to determine and compen-
sate the systematic errors. In Fig. 4.4, an estimation of the global spatial uncertainty
of different devices for a reference planar surface (σu), is represented. The same 3D
cloud is low-pass filtered with the λ-μ smooth algorithm and meshed. The standard
deviation between the raw 3D data and the filtered mesh represents an estimation of
the spatial random error (σr ). Once the random component is estimated, the differ-
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Fig. 4.4 Measurement uncertainty and random error component for five RGB-D sensors. Adapted
from [21]

ence between σu and σr gives an estimation of the systematic component of the error
(σs).

As expected, the trend of the global uncertainty σu generally follows a growing
trend with distance for each triangulation-based device. However, this growth does
not seem to be following a predictable behaviour, probably due to the poor (or absent)
calibration of the camera in charge of collecting the IR image from which the dis-
tances are calculated. Unlike the triangulation-based devices, theMicrosoft Kinect 2,
the only ToF-based device represented in Figs. 4.4 and 4.5, exhibits a nearly constant
value of the random error at the different distances. It shows a slow growth roughly
linear, maintaining values always lower than 1mm even at the maximum operating
range.However, the apparently poor calibration of the optoelectronic device in charge
of collecting the IR echoes from the scene tends to produce a global uncertaintymuch
more erratic than the pure random error.
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Fig. 4.5 Systematic and random error component for five RGB-D sensors. Adapted from [21]

In the following figure (Fig. 4.5) the error component decoupling for the selection
of five RGB-D devices is explicitly provided. For further details about numerical
results, please refer to [21].

4.3 Conclusions

In this chapter, an overview of RGB-D advanced applications and how random and
systematic 3D measurement errors affect the global 3D data quality in the various
technological implementations, has been presented.

The use of RGB-D sensors is somewhat hindered by their intrinsic characteris-
tics such as low thermal stability, measurement uncertainty, repeatability and repro-
ducibility. Therefore, they cannot be used without calibration for highly detailed
3D digitization works. However, the acquisition of shapes for determining volumes
independently of the fine details, or the rough digitization of human bodies for the
estimation of garment sizes is not critically affected by such details. In these cases,
low-cost devices can be effectively used.

For some more advanced applications, a proper modelling of the optical system
and an associated calibration process are required in order to enhance the RGB-D
performance by reducing the strong systematic error component typically present in
such devices.
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Chapter 5
3D Reconstruction from RGB-D Data

Charles Malleson, Jean-Yves Guillemaut and Adrian Hilton

Abstract A key task in computer vision is that of generating virtual 3D models
of real-world scenes by reconstructing the shape, appearance and, in the case of
dynamic scenes, motion of the scene from visual sensors. Recently, low-cost video
plus depth (RGB-D) sensors have become widely available and have been applied
to 3D reconstruction of both static and dynamic scenes. RGB-D sensors contain an
active depth sensor, which provides a stream of depthmaps alongside standard colour
video. The low cost and ease of use of RGB-D devices as well as their video rate
capture of images along with depth make them well suited to 3D reconstruction. Use
of active depth capture overcomes some of the limitations of passive monocular or
multiple-view video-based approaches since reliable, metrically accurate estimates
of the scene depth at each pixel can be obtained from a single view, even in scenes
that lack distinctive texture. There are two key components to 3D reconstruction
from RGB-D data: (1) spatial alignment of the surface over time and, (2) fusion
of noisy, partial surface measurements into a more complete, consistent 3D model.
In the case of static scenes, the sensor is typically moved around the scene and
its pose is estimated over time. For dynamic scenes, there may be multiple rigid,
articulated, or non-rigidly deforming surfaces to be tracked over time. The fusion
component consists of integration of the aligned surface measurements, typically
using an intermediate representation, such as the volumetric truncated signeddistance
field (TSDF). In this chapter, we discuss key recent approaches to 3D reconstruction
from depth or RGB-D input, with an emphasis on real-time reconstruction of static
scenes.
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5.1 Introduction

The ability to model the real world in 3D is useful in various application areas from
archaeology and cultural heritage preservation to digital media production and inter-
active entertainment, robotics and healthcare. A key task in computer vision is that
of automatically generating virtual 3Dmodels of real world scenes by reconstructing
the shape, appearance and, in the case of dynamic scenes, motion of surfaces within
the scene from images, video and other sensor input.

Traditionally, 3D reconstruction has been performed by photogrammetry from
standard RGB cameras or using costly, specialized laser scanning equipment.
Recently, low-cost video plus depth (RGB-D) sensors have become widely avail-
able and have been applied to 3D reconstruction of both static and dynamic scenes.
RGB-D sensors contain an active depth sensor, which provides a stream of depth
maps alongside standard colour video. Typical depth sensors are based on infrared
structured light or time-of-flight principles (see Chap.1 for an in depth overview of
commodity depth capture devices). The low cost and ease of use of RGB-D devices
as well as their video rate capture of images along with depth make them well suited
to 3D reconstruction. Use of active depth capture overcomes some of the limitations
of passive monocular or multiple-view video-based approaches since reliable, met-
rically accurate estimates of the scene depth at each pixel can be obtained from a
single view, even in scenes that lack distinctive texture.

There are two key components to 3D reconstruction from RGB-D data:

• Spatial registration (alignment) of the surface over time
• Fusion of noisy, partial surface measurements into a more complete, consistent
3D model.

In the case of static scenes, the sensor is typically moved around the scene to
obtain more complete coverage and the registration process amounts to estimating
the sensor pose (ego motion) over time. For dynamic scenes, in addition to sensor
motion, there may be multiple rigid, articulated, or non-rigidly deforming surfaces
present, which need to be tracked over time in order to obtain a consistent surface
model. The fusion component in 3D reconstruction consists of integration of the
aligned surface measurements, typically using an intermediate representation, such
as the volumetric truncated signed distance field (TSDF) before extracting an output
mesh model.

In this chapter,we provide an overviewof several approaches to static and dynamic
3D reconstruction fromdepth orRGB-D input, some ofwhich operate online, often in
real-time, and others which require offline or batch processing. A broad overview of
recent static reconstruction approaches is presented in Sect. 5.2, followed in Sect. 5.3
by a more detailed description and evaluation of two real-time static scene recon-
struction approaches, volumetric-based KinectFusion [44] and point-based surface
fusion [33]. A brief overview of recent dynamic scene reconstruction approaches is
presented in Sect. 5.4 and concluding remarks are provided in Sect. 5.5.

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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5.2 Overview of Rigid Reconstruction Approaches

Standard cameras produce images containing colour or intensity information. These
images are inherently 2D and for general scenes, estimated correspondences between
multiple disparate images are required in order to infermetrically accurate 3Dgeome-
try if camera poses are known (multiview stereo) or 3D geometry up to a scale factor
if not (structure from motion [11, 45]). It is possible to estimate an approximate
depth directly from a single monocular image, for instance using deep learning-
based approaches, e.g. [18], however due to the ill-posed nature of the problem, such
inferred depth is typically limited in terms of metric accuracy. Active depth sensors
such as structured light or time-of-flight (ToF) cameras on the other hand, natively
output either images of metrically accurate depth values, i.e. 2.5D depth maps which
can be re-projected into 3D using the intrinsic camera calibration parameters; or in
the case of some laser scanners may directly output a 3D ‘point cloud’, with or with-
out a 2D image structure. Core approaches to registration and integration of surface
measurements in are discussed below in Sects. 5.2.1 and 5.2.2, respectively.

5.2.1 Surface Registration

Much research has been done on tracking (finding the 6DOF pose of the sensor) and
mapping (measurement integration) using multiple depth maps. If there is a large
relative motion between the point clouds to be registered, a coarse registration needs
to be performed in order to get them into approximate alignment and avoid local min-
ima when subsequently performing fine registration (see [60] for a detailed review).
Coarse registration is often performed using sparse feature matching, whereas accu-
rate fine registration is usually performed using the full data set [44].

The Iterative Closest Point (ICP) algorithm introduced by Besl and McKay [2]
forms the basis ofmost registration algorithms. In ICPdata alignment is formulated as
an iterative optimizationof a 3D rigid body transformsoas tominimize a cost function
representing the distance between points on a ‘source’ (data) and their corresponding
closest points on a ‘target’ (model) surface in alternation with updating the closest
point correspondences. The translation is found directly from the centroids, and the
rotation is found by constructing a cross-covariance matrix. In practice, because the
ICP optimization converges monotonically to a local minimum, one either needs to
try several initial rotations, or use a feature-based initial coarse alignment algorithm
to increase the chance of finding the global minimum. The more complex the shape
the more initial states are required (highly symmetrical shapes are most problematic
and may result in the solution being under-constrained). Besl and McKay’s method
cannot directly handle non-overlapping data unless it is modified for robustness, for
instance by using amaximum correspondence distance [60]. If, however the sensor is
notmoved significantly between frames (as is usually the casewhen using a handheld
video rate sensor such as the Kinect [44]), the pose from the previous frame can be
used as initialization, without performing a coarse registration step.
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There exist many variants of the ICP algorithm which offer improved registration
performance and or computational efficiency (see [55] for a detailed review). For
instance, the point-to-plane method proposed by Chen and Medioni [9] minimizes
the distance from the source point to the plane that is defined by the target point and its
normal. Thismakes intuitive sense since the finite sample spacingmeans that samples
in one image will generally not coincide with corresponding samples in the other.
This has been shown to improve convergence and is preferred when surface normal
estimates are available, as is the case when depth maps are used as input [44, 54].
A normal orientation test can be used to increase robustness by preventing matching
of surfaces of opposite orientation (as could occur with thin objects). Luminance or
colour image data has also been used in the ICP framework to help constrain the
registration in cases where shape alone is ambiguous (for instance spheres). In [73],
luminance information from a colour camera used in parallel with a depth sensor is
used to establish point-to-point correspondences via a form of optical flow at each
iteration.

Obtaining closest point associations for ICP is computationally expensive. When
the points to be aligned come in a structured form (as with the 2D grid structure of
depth images), significant speedups can be introduced by using the projective data
association algorithm proposed by Blais and Levine [3]: using the intrinsic camera
calibration information, transformed 3D points from the target image are projected
into the source image to get the pixel index correspondences. Fitzgibbon [15] extends
the ICP algorithm to perform robust registration using aHuber kernel andLevenberg–
Marquardt (LM) non-linear optimization. This optimization approach yields a wider
basin of convergence than standard ICP. The ‘generalized ICP’ proposed by Segal
et al. [61] introduces a probabilistic framework and uses planar surface structure in
both the data and the model (a plane-to-plane metric).

One way of increasing the speed of convergence of ICP is by performing early
iterations on a subset of the available points for instance using a coarse-to-fine (multi-
resolution) sampling of the depthmap [44].Other usefulways of subsampling include
random subsampling and sampling based on colour information. Rusinkiewicz and
Levoy [55] propose normal-space subsampling which bins points based on normals
and samples uniformly across buckets, thus promoting correct registration of scenes
containing no large distinctive features. ICP registration can also be extended to han-
dle articulated point clouds [7, 13, 50] in which case pose parameters are iteratively
determined for each bone in a skeletal model.

5.2.2 Surface Fusion

As stated in [23], the goal of 3D surface reconstruction is to estimate a manifold
surface (with the correct topology) that accurately approximates an unknown object
surface from a set of measured 3D sample points.When additional information (such
as measurement uncertainty) is available it can aid reconstruction. There are two
classes of technique for reconstructing 3D models from 2.5D images [23]. The first
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class uses prior models with an explicit parametric representation and fits the range
data to them. The disadvantage of suchmethods is that they can only representmodels
of knownobject classes, forwhich the topological genus andmodes of shape variation
are known upfront (e.g. using a radial displacement map on a cylinder to model
a human head [22]). The second class of techniques, which generate triangulated
mesh representations is more generally applicable because it can represent arbitrary
geometry and topology (which are often not known up front). The focus of this
discussionwill be on non-parametric approaches, in particular thewidely used signed
distance function.

5.2.2.1 Signed Distance Functions

To facilitate the generation of a 3D surface model by the fusion of aligned 2.5D
depth maps it is common to use an intermediate non-parametric representation of
volumetric occupancy. A representation widely used in computer vision graphics
is the Signed Distance Function (SDF) introduced by Curless and Levoy [10]. The
SDF is simply a field whose value at any given point contains the (signed) Euclidean
distance between that point and the surface. Thus the SDF is zero at the surface
interface, positive outside it (observed free space), and negative inside it (unobserved
space). In practice, the SDF is represented in a discrete voxel grid defining the
reconstructed volume and is truncated at a certain distance from the surface i.e.
values more than a certain distance in front of a surface measurement receive a
maximum value, and values more than a certain distance, μ, behind it receive no
measurement (null). This truncation helps prevent surfaces from interferingwith each
other. Along with each Truncated Signed Distance Function (TSDF) value a weight
is maintained which reflects the confidence in the TSDF value. These weights may
depend on the confidence of a measurement (if available) or heuristics (for instance
penalizing vertices whose estimated normal is close to perpendicular to the viewing
direction orwhich are close to depth discontinuities [68]). A simpleweighted running
average update rule for the SDF and weight voxel grid can be used to incrementally
incorporate measurements into the model, which adds any previously unobserved
regions to the model, while averaging out noise in regions previously observed.

Obtaining the surface interface from the TSDF is simply a matter of extracting the
zero crossings (an iso-surface at level zero). This is an advantage over probabilistic
occupancy grids where one needs to seek the modes of the probability distribution in
the grid [44]. If only a single view is required, one can perform a direct raycast [49]
which is independent of scene complexity since areas outside the viewing frustum
need not be visited. If, however, a complete polygonal mesh model is required a
triangulation algorithm such as marching cubes is more suitable.

Originally proposed by Lorensen and Cline [36], the marching cubes algorithm
is widely used for extracting triangle meshes from constant density surfaces (iso-
surfaces) in volumetric datasets. The algorithm scans through a voxel grid and pro-
cesses one 2 × 2 × 2 cell at a time using lookup tables to determine the triangle
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topology within the cell and interpolation between vertices to find iso-surface inter-
sections. This is efficient, but results in non-uniform triangle shape and size.

The ‘marching triangles’ algorithm proposed by Hilton et al. [24] performs the
same task as marching cubes, but uses Delaunay triangulation and places vertices
according to local surface geometry thus producing triangles with more uniform
shape and size.

5.2.2.2 Other Surface Fusion Approaches

The point-based implicit surface reconstruction of Hoppe et al. [25] works with unor-
ganized points and generates simplicial surfaces (i.e. triangle meshes) of arbitrary
topology. It uses a signed distance function computed with the aid of normals esti-
mated from k-nearest neighbour PCA with a graph optimization to get consistent
orientations. When the source points come from (inherently organized) depth maps,
normals may be estimated more efficiently using the image structure.

Turk and Levoy [68] create polygon meshes frommultiple (ICP-registered) range
images and then ‘zipper’ them together, that is they remove redundant triangles and
connect (‘clip’) the meshes together. The mesh growing technique of Rutishauser et
al. [57]merges depthmaps incrementallywith particular emphasis on the (anisotropic
Gaussian) error model of their sensor and uses an explicit boundary representation
to prevent filling surfaces in the model where no measurements have been made.
Soucy and Laurendeau [63] estimate an integrated surface model piecewise from the
canonical subset of the Venn diagram of the set of range views (here, a canonical
subset contains a group of points exclusively visible in a particular combination of
range views). This membership information is used in an averaging process, taking
particular care at the intersections of subsets. The ball pivoting algorithm of Bernar-
dini et al. [1] triangulates point clouds efficiently by beginning with a seed triangle
and rotating a sphere around an edge until another point is reached, at which point
another triangle is formed.

Hilton et al. [23] introduce a mesh-based geometric fusion algorithm based on a
continuous implicit surface which (unlike previous algorithms employing discrete
representations) can better reconstruct regions of complex geometry (holes, crease
edges and thin objects). The algorithm also uses geometric constraints and statistical
tests based onmeasurement uncertainty to guide reconstruction of complex geometry.
While outperforming other integration strategies [10, 25, 57, 63, 68] in terms of
complexity and the minimum feature size, minimum crease angle and minimum
surface separation (thickness), this approach is relatively computationally expensive.

Radial Basis Functions (RBFs) have been used for interpolation of a surface from
point samples. Globally supported RBFs are good at filling in missing data, but
are computationally inefficient. Conversely, locally supported RBFs are less good
at filling in missing data, but are more computationally efficient. Ohtake et al. [48]
therefore propose to use compactly supported RBFs with a coarse-to-fine sampling
of the points. The coarse levels fill in missing data and serve as carriers for the finer
levels which add detail.
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Kazhdan et al. [32] used oriented points to define an indicator function with value
1 inside the model and 0 outside it and cast the optimization as a Poisson problem.
The resulting reconstructions are inherently watertight. Like Radial Basis Function
(RBF) approaches, the method creates smooth surfaces. This can result in spurious
protrusions from regions where no samples exist. The method is best suited to sce-
narios where the capture process has produced full surface coverage, such as single
objects captured via a moving laser scanner or segmented performers in a multiview
reconstruction setup, but is less well suited to partial coverage of larger scenes.

5.3 Real-Time Rigid Reconstruction

The first reported system that uses a low-cost depth sensor to perform real-time,
online and metrically consistent 3D reconstruction of small to medium-sized scenes
on a commodity PC is the ‘KinectFusion’ system of Newcombe et al. [29, 44],
which is described in detail in the following subsections. Since KinectFusion was
introduced, several variations on the theme of static scene reconstruction from depth
maps have been proposed. Some of these have addressed handling of larger scenes
within the limited GPUmemory budget, for instance the moving volume approach of
Roth and Vona [53], the ‘Kintinuous’ system of Whelan et al. [74], the hierarchical
data structure of Chen et al. [8], and the spatial voxel hashing approach of Niessner et
al. [46].

Keller et al. [33] propose a point-based alternative to (volumetric) KinectFusion.
The unstructured ‘surfel’ (surface element) representation is more memory efficient
than volumetric structures and manipulation (e.g. insertion/removal) of individual
entities is easier than with structured representations such as meshes. The memory
footprint of the surfel representation is significantly lower than for volumetric fusion,
but mesh extraction is less straightforward. The dense planar SLAM system of [58]
is based on the surfel fusion system of [33], but additionally detects planar regions,
which can be stored in a compressed form and used for semantic understanding of
the scene.

In SLAM++ [59], 3D models of known objects (such as chairs) are used in an
object-level SLAM system which recognizes and tracks repeated instances of these
objects in a cluttered indoor scene. The main benefits over standard approaches that
use primitive-level tracking and mapping are increased representational efficiency
and the native semantic structure of the output scene.

By allowing offline (post) processing, other recent works are able to produce
higher qualitymodels than currently possiblewith real-timemethods. Zhou et al. [77]
perform fusion of small fragments of a scene, which are each locally accurate, and
then combine them via an elastic registration scheme to produce a complete sur-
face with higher detail and reduced low-frequency distortion when compared to
using a single grid for the whole scene. The method is off-line and requires hours to
days of GPU processing time. Fuhrmann and Goesele’s floating scale reconstruction
approach [16] uses compactly supported basis functions for integration into an octree
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voxel grid structure and is formulated to take into account the fact that surface mea-
surements represent finite sample areas rather than individual points, thus avoiding
potential blurring of fine details by coarser samples that were captured from further
away. In [78], Zollhofer et al. refine a model obtained by TSDF fusion of depth maps
by using an offline shape-from-shading stage to enhance the level of reconstructed
detail compared to depth-only fusion approaches.

The KinectFusion approach of Newcombe et al. [44], described in this section
demonstrates the ability of low-cost depth sensors to quickly and cost-effectively
produce compelling 3D models of small to medium-sized static indoor scenes by
employing GPU acceleration of ICP sensor pose estimation and TSDF volumetric
measurement fusion. Online real-time reconstruction of static scenes is achieved
using a sequence of depthmaps from a handheld Kinect sensor. The core components
of the KinectFusion pipeline are model building by integration of captured depth
maps into a volumetric TSDF representation (Sect. 5.3.3) and ICP registration of
input depth maps to this model (Sect. 5.3.2). Outside the core registration and fusion
loop, a textured mesh may be extracted using marching cubes and textured using
projective texturing.

The parallelizable parts of the reconstruction pipeline may be implemented on
the GPU by using, for instance, NVidia’s CUDA toolkit [47]. Such GPU paralleliza-
tion involves uploading input data from CPU memory to GPU memory; splitting it
into parts, each of which is concurrently processed by a kernel function running in
parallel threads across hundreds or thousands of GPU processing cores; and finally
downloading the result back into CPUmemory. How the work is split up depends on
the application and performance considerations. For example a kernel may perform
an operation on one or a small block of pixels or voxels.

Preliminaries of KinectFusion are presented below in Sect. 5.3.1, followed by
details on ICP registration (Sect. 5.3.2), TSDF fusion (Sect. 5.3.3) and textured
mesh extraction (Sect. 5.3.4). Finally, in Sect. 5.3.5, a related approach proposed
by Keller et al. [33] is discussed, in which point-based fusion is used in place of
volumetric TSDF fusion.

5.3.1 Preliminaries

The input from an RGB-D sensor consists of a video rate stream of RGB colour
images, Ci (t) and depth images, Di (t), containing Cartesian depth d(u) for each
pixel u = (col, row).

A standard pinhole camera model is used to characterise the RGB-D sensor. A
fixed 3 × 3 intrinsic cameramatrixK and a 4 × 4 camera posematrixT (which varies
over time) can be used to map between world and pixel coordinates. In practice, the
RGB and depth cameras are usually not generated through the same lens aperture,
and are thus offset from one another. For simplicity of processing, the depth map
is often re-rendered from the RGB camera point of view in order to obtain direct
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pixel correspondence between them (this may be done on board the device or as a
post-process). The camera matrix K is defined as

K =
⎡
⎣
fx 0 cx
0 fy cy
0 0 1

⎤
⎦ (5.1)

where fx and fy and cx and cy are the x and y focal lengths and principal point
coordinates, respectively. A rigid body transformation matrix T contains a 3 × 3
orthonormal rotation matrix R (which has three degrees of freedom) and a 3D trans-
lation vector t:

T =
[
R t
0 1

]
(5.2)

The intrinsic parameters of the camera model can be estimated using, for instance, a
checkerboard-based approach of Zhang et al. [75].

The following describes how the camera intrinsics and pose can be used to trans-
form between 2D/2.5D image space, camera-local 3D space and global 3D space.
Given the intrinsic camera calibrationmatrix,K, an image-space depth measurement
d(u) can be converted to a camera-local 3D point, pcam(u):

pcam(u) = d(u) · K−1u̇, (5.3)

where a dot on a vector denotes its homogeneous form, u̇ = [uT 1]T . This camera-
local 3D point can be transformed to a global 3D point, pgbl , using the camera pose
T:

pgbl(u) = ρ
(
Tṗcam

)
, (5.4)

where ρ is the de-homogenization operator, ρ([aT w]T ) = a/w. Similarly, any
global 3D point, pgbl can be transformed into camera space:

pcam = ρ
(
T−1ṗgbl

)
, (5.5)

and a camera-space 3D point can be projected into the depth map using the intrinsics
as follows:

[x, y, z]T = K · pcam (5.6)

u = [x/z, y/z]T (5.7)

d(u) = z. (5.8)

Wenowdescribe how the camera pose,T is estimated online for each incoming frame,
thus allowing input depth frames to be registered for consistent surface integration.
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5.3.2 Registration Using ICP

The camera pose estimation of KinectFusion is based on the ICP algorithm with fast
projective data association [3] and the point-to-plane errormetric [9] (see Sect. 5.2.1).
The registration is done using the current depth map Di (t) as the source and a depth
map synthesized from the current volumetric TSDF model of the scene as the target.
This synthetic depth map is generated by ray-casting [49] the TSDF voxel grid
from a prediction of the sensor pose for the current current frame. By assuming
small frame-to-frame camera motion the pose of the target frame can be used as
the pose from which to ray cast and also as the initial pose of the source in the
ICP algorithm. Because any error in registration of the previous frame will have a
relatively small effect on the model, the frame-to-model registration approach yields
increased accuracy and significantly reduces the accumulation of drift that occurs in
the raw frame-to-frame case, without requiring off-line optimization for loop closure.

Thedata association and errorminimization stages of the ICP require normalsn(u)

for each pixel u. Because the depth map is organized in a grid, adjacency is known
and a given normal can be efficiently estimated using the point and its neighbours
in the depth image (without the expensive neighbour finding computations required
for general unorganized point clouds [25]). Because of their inherent noise however,
the raw depth maps produce unacceptably poor normal maps, therefore a GPU-
parallelized version of the bilateral filter [67] is applied to the depth map before
using it in the registration algorithm, smoothing out noise while preserving depth
discontinuities.

As with the normal estimation, the usually expensive data association component
of ICP can be sped up significantly by employing the image structure of the depth
images. Given global poses for both the source and target frames, each pixel index u
in the source image is un-projected to form a 3D source point which is projected onto
the target image plane to look up the target pixel index Ω(u). The target pixel at this
index is then un-projected to get the target 3D point. This data association approach
assumes that there is a small frame-to-frame transform between source and target.
To remove false correspondences, any point pair separated by a (Euclidean) distance
of more than td or whose normals have a dot product of less than ta are rejected (see
Fig. 5.1). If there is not a valid correspondence between source and target at u then
Ω(u) = null. The association is implemented in parallel on the GPUwith one thread
per source pixel.

Let pss(u) be the 3D point produced by the pixel with index u in the source depth
map (in its local coordinate system). Let ptg

(
φ(u)

)
be the global 3D point produced

by the target depth map pixel associated with pixel u in the source image.
For any estimated global source frame pose Tsg the total point-to-plane error E

is then given by

E(Tsg) =
∑

Ω(u)�=null

∣∣∣[ρ(
Tsgṗss(u)

) − ptg
(
Ω(u)

)]T
ntg

(
Ω(u)

)∣∣∣. (5.9)
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Fig. 5.1 Illustration of the fast projective data association technique. Left: each source image pixel
is un-projected (producing a point in global 3D space) and then projected onto the target image
plane to find its associated pixel index (2D coordinates) in the target image. The target image pixel
at this index is then looked up and un-projected to produce the target 3D point. Right: the source
and associated target points are checked for compatibility, rejecting inconsistent matches. Figure
from [37]

The rigid body transform that minimizes E can be formulated by linearizing the
rotation matrix (making use of a small angle assumption for incremental transforms)
and writing the transform as a 6D parameter vector x = [α, β, γ, tx , ty, tz]T , where
α, β and γ are the rotation angles (in radians) about the x , y and z-axes, respectively
and tx , ty and tz are the translation components.

As shown in [44], differentiating the linearised objective function and setting it
to zero yields a 6 × 6 symmetric linear system

∑
φ(u)�=null

aT ax =
∑

aT b (5.10)

where

aT =
[
[psg]×

∣∣∣I3×3

]T
ntg, (5.11)

[p]× :=
⎡
⎣

0 −pz py
pz 0 −px

−py px 0

⎤
⎦ (5.12)

and
b = nT

tg[ptg − psg]. (5.13)

The summands of the normal system are computed in parallel on the GPU,
summed using a parallel reduction, and finally solved on the CPU using a Cholesky
decomposition followed by forward/backward substitution. At each iteration the
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solved incremental transform vector x is converted to a 4 × 4 rigid body transform
matrix and composed onto the current pose estimate for use in the next iteration.
To speed-up convergence of the ICP registration, a coarse-to-fine approach may be
used, in which decimated versions of the depth maps are used for early iterations and
finally using all points for a more precise registration.

5.3.3 Fusion Using TSDFs

Surface integration is performed using TSDF fusion [10], integrating incoming depth
maps into the model in an online manner, integrating out noise and increasing scene
coverage as more frames are added. The voxel grid G = {S,W } consists of grids
S and W which contain, for each voxel v = (x, y, z), the truncated signed distance
function (TSDF) values s(v) and weights w(v), respectively. The voxel grid dimen-
sions and leaf size as well as its location in global coordinates need to be chosen
appropriately. The main constraint on the dimensions of the voxel grid is the limited
size of the GPU memory. The leaf size (resolution) is implicitly calculated in terms
of the physical volume and memory available. For example, a 2 m3 cubic volume
with 5123 voxels would have leaves of side 4.0 mm and require approximately 1 GB
of GPU memory using 32-bit floating point values. In the absence of constraints on
memory, the voxel leaf size should be chosen on the order of the effective size of the
input depth pixels in order to reconstruct all available detail.

For efficiency of implementation the projective signed distance function is used
(Fig. 5.2). This allows each voxel site v to be visited in parallel and the distance along
the ray used as an estimate of the TSDF s(v). The model is updated incrementally
as measurements from frame t are added using a weighted running average:

st (v) = wt−1(v)st−1(v) + wm
t (v)smt (v)

wt (v)
(5.14)

and
wt (v) = wt−1(v) + wm

t (v) (5.15)

where smt and wm
t are the input TSDF and weight values for the current frame.

The truncation distance, μ, affects the minimum thickness of objects that can be
reconstructed using the TSDF representation (surfaces thinner than μ can interfere
with each other). This distance also affects the speed of reconstruction: larger values
of μ allow bigger jumps when ray-casting (see below). If accuracy of fine detail
is important, then μ should be made as small as possible whilst remaining larger
than a few voxel leaf sides. It may also be made depth-dependent to account for the
uncertainty in the depth measurement, which in the case of the Kinect v1 sensor
increases quadratically with depth [34].

Using the pose from the last frame and the depth intrinsics, a synthetic depth image
is generated by doing a per-pixel ray cast into the signed distance voxel grid S. Rays
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Fig. 5.2 Illustration of voxel grid model generation and extraction. Left: for a given frame, signed
distance values are obtained for each voxel by projecting it onto the image plane and computing
the distance between it and this un-projected pixel. Note that the truncation is not shown. Right:
to extract a depth map, each pixel is un-projected along its ray starting at the minimum depth dmin
and evaluating the tri-linearly interpolated voxel before skipping to the next. When a zero crossing
is detected, ray-casting stops and the crossing is located more precisely. Figure from [37]

are marched from the minimum depth sensing range and in steps of 0.8µ (slightly
less than the minimum truncation distance) until the sign changes from positive
to negative indicating a zero crossing (refer to Fig. 5.2). This skipping provides a
speed-up whilst ensuring that a zero-crossing is not missed. When a zero crossing is
detected, its location is found more precisely by tri-linear interpolation of the SDF
before and after the sign change. If a negative-to-positive transition is foundmarching
stops. Each of the pixels is ray cast by a single thread in parallel on the GPU.

5.3.4 Model Extraction and Texturing

The marching cubes algorithm [36] may be used to triangulate the TSDF model and
generate an output mesh model of the scene. Each vertex of the resulting mesh is
then projected into the input RGB images (using the previously estimated camera
poses) and the corresponding pixel values looked up. A depth map is produced via
an OpenGL rendering of the mesh from the point of view of the RGB camera. This
depth map is used to check for occlusions of a given vertex with respect to the
corresponding pixel in the RGB image and also to check the proximity of the test
pixel to a depth discontinuity.

A simple weighting scheme is used to determine colours for each vertex by incre-
mental update of a weight and colour frame by frame (analogous to Eq.5.14). The
weighting scheme weights contributions from different frame according to the prox-
imity of vertex to depth discontinuities in the current frame as well as the angle
between the vertex normal and the camera ray, down weighting contributions for
pixels near depth edges and pixel corresponding to obliquely viewed surfaces. The
aim of this weighting scheme is to reduce foreground/background texture contami-
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Fig. 5.3 Reconstruction of a statue using the Asus Xtion Pro Live RGB-D sensor. a Decimated
mesh (35k vertices). b Decimated mesh with texture map applied. c Raw mesh (per-vertex colour).
d Decimated mesh (per-vertex colour). e Decimated mesh (texture map colour). f Texture map.
Figure from [37], using their reimplementation of KinectFusion

nation and ghosting caused by any inaccuracies in the model or error in the intrinsic
calibration and estimated pose of the camera. To avoid excessive ghosting of texture,
a vertex colour is no longer updated once its colour weighting exceeds a threshold.

The mesh output by marching cubes is inherently densely sampled, with no tri-
angles bigger than the voxel diagonal, even for flat, low curvature surface regions.
This can lead to unnecessarily large mesh files which are inefficient to store, render
and manipulate. Some regions with fine features or high curvature do benefit from
having small triangles, however flatter surfaces can be decimated without losing any
significant detail. The scan of a statue shown in Fig. 5.3 was produced using vox-
els of side 4.1 mm yielding a raw output mesh with 830k vertices. Using quadric
edge collapse decimation [17], the mesh can be reduced to 35k vertices, with little
loss of geometric detail, but resulting in loss of detail in the per-vertex colour due
to lower resolution sampling. Using [69], a dense texture map may be generated,
allowing the decimated mesh to represent the detailed appearance of the captured
imageswhile representing the shapemore efficiently. Two further examples of scenes
reconstructed with KinectFusion are shown in Fig. 5.4.

Due to the nature of typical sensors’ depth map generation process (see Chap. 1),
the size of reconstructed features is inherently limited. The depth maps produced
typically also suffer from significant levels of quantization and random noise causing
several mm of error in depth at typical indoor scene distances [34]. However, the
fusion of hundreds of frames from slightly different viewpoints integrates this noise
away to produce surface relief with submillimetre resolution, even when using TSDF
voxels larger than 1 mm [39].

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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Office scene. Three input depth frames (left) and meshed output model (right).

Deer scene. Input RGB and depth frame (left) and reconstruction with/without texture (right).

(a)

(b)

Fig. 5.4 Sample input and volumetric reconstructions for two indoor scenes using theKinectFusion
approach [44]. Figure from [37], using their reimplementation of KinectFusion

5.3.5 Online Surfel-Based Fusion

Keller et al. [33] propose an alternative approach to GPU-accelerated online rigid
scene reconstruction similar in many respects to KinectFusion, but using a surface
element (surfel) representation rather than a volumetric grid. Keller’s method also
contains a simple mechanism for detecting and removing dynamic outliers from the
fused representation.

The representation used for fusion and the output model is a flat (unstructured)
array of surface elements (surfels). Each surfel primitive consists of a position p,
normal n, radius r , confidence c, timestamp t (last frame observed), and colour. A
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Normals Confidence Colour(a) (b) (c)

Fig. 5.5 Close up of surfel representation for 3D scene reconstruction from RGB-D video input.
The representation consists of an unstructured set of points with additional properties including
normal, radius, confidence, and colour. The points are rendered using hexagons. The confidence
value is visualized using the following colour scale: 0 30. Figure from [37], using their
reimplementation of the approach of Keller et al. [33]

closeup of the surfel primitives is shown in Fig. 5.5 which illustrates these properties.
The density of modelled surfels corresponds directly to the input depth sample den-
sity. Correspondences between incoming depth measurements and the surfel IDs are
established by projection into a super-sampled lookup image for the current depth
frame. The fusion technique is similar to TSDF fusion, in that it is based on a run-
ning weighted average of observations. As with KinectFusion, ICP registration is
performed using a depth map synthesized from the current model. In this case, the
depthmap is synthesized by splat rendering the surfels using a graphics shader which
outputs an oriented hexagon for each surfel (as opposed to the ray-casting used in
the volumetric approach).

Upon commencement of reconstruction, new surface points are assigned zero
confidence. As the corresponding surface point is re-observed in incoming frames,
its position and normal are averaged with the incoming measurements and the con-
fidence value increased. Surfels with a confidence below a threshold value cstable
are referred to as ‘unstable’. The unstable points are excluded from the registration
stage, so as to increase robustness to outliers and any dynamic elements in the scene.

An additional feature of themethod of Keller et al. [33] is a simple online labelling
of dynamic elements in the scene. This is performed by detectingmodel surfelswhich
are outliers with respect to the current input frame, performing a region growing
operation to expand the detected dynamic region, and demoting all these surfels to
unstable status (with a weight just below the stability threshold cstable). The demotion
to unstable status aims to prevent dynamic objects from contaminating the (static
scene) model by immediately removing them from the registration point set, but
allows the points to be reintroduced, if the object stops moving (and the points attain
stable status once again).
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5.3.6 Evaluation

A 2000 frame synthetic dataset, Tabletop, was created by Malleson [37] to compare
the performance of the volumetric [42] and surfel fusion [33] in termsof reconstructed
geometry fidelity, camera pose estimation accuracy and functioning in the presence
of dynamic content in the scene. The test scene, a tabletop 1.8 m across with various
objects on it, is shown in Fig. 5.6. It contains thin and narrow structures as well as
a toy car that moves across the table. The virtual RGB-D camera moves smoothly,
around the scene as well as up and down.

The registration performance of volumetric and surfel-based fusion were evalu-
ated for four variants of the Tabletop scene. The variants are the combinations of
clean depth/simulated Kinect noisy depth (with noise simulated using [34]), and
static geometry only/with the moving car. The absolute error in position and ori-
entation with respect to ground truth is plotted in Fig. 5.7. Both the volumetric and
surfel-based approaches produce good tracking on the clean data, with or without
the moving car present. On the moving car variant the surfel-based registration fails
when the car starts moving (at frame 400). A summary of the registration and recon-
struction performance for each variant is presented in Table 5.1.

To directly compare the quality of the surface reconstruction between the volu-
metric and the surfel-based methods, tests were performed in which the two systems
were fed the ground truth camera pose trajectories, with the version of the scene
not containing the moving car. This factors out any differences resulting from error
in ICP registration and handling of dynamic geometry. To make the reconstructed
geometry of similar density between the methods, the voxel size for the volumetric
tests was chosen such as to produce roughly the same number of vertices as surfels are
produced by the surfel-based tests, roughly 1.5M in each case. Figure 5.8 visualizes
the Hausdorff distance between the ground truth geometry and the reconstructions
with each method. The RMS error for the surfel fusion method is 1.1 mm, com-
pared to 3.5 mm for the volumetric method. Qualitatively, the surfel fusion approach
does not suffer from ‘lipping’ artefacts in reconstructions from TSDF fusion—the
square edges of the cube are more faithfully reproduced. The TSDF fusion process
also cannot handle very thin objects viewed from both sides because the opposing

Fig. 5.6 Three frames from the RGB-D rendering of the 2000 frame Tabletop test scene for assess-
ing the performance of surfel-based fusion and volumetric fusion. Note the narrow and thin objects
as well as the moving car (which is static for the first 400 frames of the sequence). Figure from [37]
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Fig. 5.7 Comparison of volumetric and surfel-based ICP registration performance on the four
variants of the Tabletop sequence. a Clean depth, no moving objects. b Clean depth, with moving
car. c Noisy depth, no moving objects. d Noisy depth, with moving car (note that the car moves
from frame 400 onwards, which at which point the ICP loses track in this variant). Figure from [37]

Table 5.1 Registration and geometric accuracy for the Tabletop scene, using volumetric (Vol.) and
surfel-based (Surf.) reconstruction approaches. The variants are as follows: fixed geometry only
(F)/ with moving car (M); ground truth (GT)/ICP (ICP) camera registration; and clean (C)/noisy
(N) depth maps

RMS position
error (mm)

RMS orientation
error (deg)

RMS recon
error (mm)

Num model
elements (×106)

Variant Vol. Surf. Vol. Surf. Vol. Surf. Vol. Surf.

F GT C – – – – 3.47 1.08 1.14 1.55

F GT N – – – – 3.73 1.04 1.07 1.58

F ICP C 9.54 12.17 0.27 0.21 4.09 3.12 1.20 1.59

F ICP N 8.05 19.77 0.20 0.27 4.18 3.28 1.20 1.67

M GT C – – – – 3.56 1.08 1.08 1.65

M GT N – – – – 3.78 1.04 1.11 1.67

M ICP C 8.87 11.99 0.23 0.23 4.19 3.76 1.23 1.68

M ICP N 7.69 2139.50 0.19 138.83 4.21 (failed) – –



5 3D Reconstruction from RGB-D Data 105

Volumetric fusion Surfel fusion(a) (b)

Fig. 5.8 Hausdorff distance (0 5mm) between ground truth and reconstructed geometry
for the two fusion approaches (using ground truth camera pose, no scene motion and clean depth
maps). Note that the volumetric approach has lost the narrow and thin structures and that it exhibits
lipping artefacts on corners of the cube. Figure from [37]

surfaces can ‘cancel each other out’ leading to artefacts. The surfel fusion method
can handle thin surfaces without such artefacts, even for the zero-thickness sheet
shown in the upper right of the scene in Fig. 5.8. The surfel method is also able to
resolve the second smallest cylinder, which is not resolved by the volumetric method,
since it is the same diameter as the size of a voxel (2.2 mm). (Neither of the methods
can resolve the smallest cylinder which is a single pixel thick in some input depth
frames, and not visible at all in others.)

The method proposed by Keller et al. [33] for segmenting out dynamic regions of
the model is based on detecting inconsistencies between the incoming depth and the
surfel model. The labelling is based on the value of the confidence field of the surfels,
which begins at zero and increases as observations are added. This confidence field
is analogous to the weight in the signed distance fusion in volumetric reconstruction.
The progression of fusion is shown in Fig. 5.9, which shows surfel confidence via a
colour coding. Surfels with confidence below a threshold are labelled as ‘unstable’.
Unstable points are excluded from the ICP registration. A ‘dynamics map’ is seeded
with all registration outliers and a region growing approach based on position and
normal similarity between neighbouring points is applied. Modelled points in the
model marked in the dynamics map are demoted to unstable status. The region
growing method used is fairly simplistic and does not work robustly in all scenarios.
For example, as new model points are added at the edge of the frame (e.g. a floor or
tabletop) as the camera pans, they will initially be unstable, and thus have no ICP
correspondence, the dynamics depthmap points in this region could then be expanded
by the region growing to cover a large static area (e.g. the rest of the surface of the
desk). In the test example of the Tabletop scene, the segmentation approach is not
able to prevent the model from being corrupted when the car begins to move.

To evaluate drift on real-world data, a 900 frame time-mirrored sequence (450
frames played forward and then in reverse) was generated from the Office capture
[37]. The difference between the estimated pose for the first and last frame of this
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Fig. 5.9 Splat rendering showing progression of surfel-based fusion of the Tabletop sequence. The
confidence value is visualized using the following colour scale: 0 30, where the black line
is the stability threshold. In a–c the car is stationary. In d–f the car is moving. Note the demotion
of points on the car to unstable when it starts moving as well as the low confidence of new surfels
on the moving car, each of which are not consistently observed for long enough to achieve stable
status. Figure from [37]

sequence (which should be identical) gives an indication of the global pose esti-
mation stability. The magnitude of the difference in estimated camera position and
orientation at the start and end of the sequence were evaluated for both volumetric
and surfel-based reconstruction methods and the results are shown in Fig. 5.10. Note
that the surfel-based method proves less robust on this real data, with an accumu-
lated drift of 5 cm compared to 1 cm for the volumetric method. The effect of this
is demonstrated in Fig. 5.11 which shows the final reconstructed models and posed
depth map for the first and last frames. The camera offset from the origin can be
seen in the last frame, particularly for the surfel-based method. The gradual accu-
mulation of drift in pose goes hand in hand with accumulated drift in the model.
Therefore, the depth map in the last frame is consistent with the depth map, which
means that the depth map and model are inconsistent with one another at the first
frame. This mismatch is larger for the surfel-based method on account of the greater
level of drift. The surfel-based reconstructed surface is also less complete than the
volumetric surface, since some surface regions are only briefly observed in the input,
meaning that they are treated as outliers by the fusion algorithm.

The flat array of surfels used in the surfel fusion approach has a memory footprint
proportional to reconstructed surface area, whereas that of the fully allocated volu-
metric grids of KinectFusion is proportional to scene volume (regardless of occupied
surface area). For a roughly equal sampling density, and typical scene content, the
surfel representation is far more compact. For the example scene presented here, the
2 m2 voxel grid containing 180M voxels requires 1.4 GB to store, compared to just
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Fig. 5.10 Difference in pose between corresponding frames in time-mirrored imageOffice sequence
as reconstructed using the volumetric and surfel-based approaches. Note the relatively large error
for the surfel-based approach. Figure from [37]
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Fig. 5.11 First (left) and last (right) frames in the time-mirroredOffice sequence using a volumetric
and b surfel-based reconstruction. The input depth map is shown projected into the reconstructed
model. For the surfel-based reconstruction, note the significant pose offset from identity in the
right-hand frame and misalignment of depth and model in the left-hand frame. Figure from [37]
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72 MB for the comparably detailed 1.5 M surfel array (assuming 4 byte data types
are used throughout).

Note that the density of the surfels is directly set according to the local input
sample density, and it is not necessary to define a limited spacial extent for the
reconstruction up front as with a voxel grid.

One of the most prominent reconstruction artefacts manifested by the volumetric
method is ‘lipping’ at sharp corners (which results from the projective approxima-
tion to the true signed distance function [32]). This is particularly noticeable at the
edges of the cube in Fig. 5.8. The surfel-based approach does not suffer from this
type of artefact, thus given clean data and the simulated condition of ground truth
camera pose trajectories and clean depth, it produces cleaner geometry. However
under real-world conditions, i.e. using noisy Kinect depth and ICP for camera pose
estimation, registration and reconstruction were found to be more robust using the
volumetric fusion representation. This may be due to specific implementation details
(e.g. rounding behaviour), or perhaps qualitative differences in depth maps from
ray-casting versus hexagonal splat rendering.

5.4 Dynamic Scene Reconstruction

In the case of static scene reconstruction, surface registration is equivalent to find-
ing the 6-DoF camera pose for each frame and a simple fixed TSDF voxel grid is
sufficient for measurement fusion (see Sect. 5.3). The core aspects of both static and
dynamic scene reconstruction are surface registration and surface fusion. Both these
aspects are, however, more challenging in the case of dynamic scenes, which may
contain multiple rigid, articulated, and non-rigidly deforming surfaces that need to
be tracked and consistently integrated into a surface model. This section provides a
brief summary of recent techniques for registration and fusion for dynamic scenes.

Multiple-view video has traditionally been used to capture full coverage of
dynamic 3D scenes for reconstruction (e.g. [6, 19, 64]). While high quality mod-
els can be obtained from them, adoption of multiview video reconstruction systems
has been limited by the cost and complexity of operation of multi-camera setups.
On the other hand, non-rigid structure from motion (NRSfM) approaches (e.g. [31,
35, 51, 56]) attempt to recover dynamic 3D shape and motion from a sequence of
images from a single, monocular RGB camera, making them usable with standard
video cameras and existing video footage. NRSfM is, however, a highly challenging,
under-constrained problem, since absolute depth is not known beforehand. Although
depth maps from commodity sensors tend to be noisy and incomplete, with a lower
resolution than current video cameras, their depth estimates are more robust than
those estimated from RGB images alone, particularly in low-textured or repetitively
textured regions. The availability of a reliable estimate of per-pixel depth for each
frame simplifies the reconstruction problem, however surface registration and tem-
porally consistent fusion of dynamic scenes remains a challenging problem.
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Depth maps are natively output by typical commodity RGB-D sensors (e.g.
Microsoft Kinect v1/v2) and cover only the surface seen from a specific camera view.
Certain low-level processing tasks can be performed using the depth maps directly,
such as bilateral filtering [67], motion-compensated RGB-guided upsampling [52],
depth-guided matting [70], and depth-aware video compositing. Tasks such as gen-
eral dynamic scene editing can, however benefit from more complete 3D geometry
preferably with ‘4D’ temporal consistency, i.e. 3D surfaces which have known cor-
respondences over time, which allows edits to appearance, shape and motion to be
automatically propagated over a sequence (see [4, 5, 27]). In applications where a
template scan of a non-rigid object of interest is able to be obtained beforehand (e.g.
using a static reconstruction approach without the object deforming), this template
model may be dynamically deformed to match RGB-D input of the object in a scene
by using volumetric representations, either offline (e.g. [20]) or in real-time (e.g.
[79]).

A core challenge in temporally consistent modelling is obtaining correspondences
of surface points over time. Analogous to 2D optical flow between two RGB images
(e.g. [65]), RGB-D scene flow estimates a per-pixel 3D translation (e.g. [14, 30, 71])
or translation and rotation (e.g. [26, 72]) between two RGB-D images. Frame-to-
frame flow vectors can be propagated over time to form long-term feature tracks
[65], which may use as an input to RGB-D-based dynamic scene modelling [38].

Surfacemeshes explicitly store oriented surfaces and arewidely used in themanip-
ulation of models in 3D graphics applications and media production. However, as
is the case with static scene reconstruction approaches, intermediate representations
such as volumetric and point-based, are often used to facilitate surface fusion. Fusion
of non-rigid geometry using signed distance functions may be achieved, for instance,
using a piecewise-rigid segmentation [41] or a warping field defined over a single
reference volume [21, 43].

In DynamicFusion [43], Newcombe et al. perform real-time online tracking and
reconstruction of dynamic objects from depth sensors without a template. Their
approach is to warp each input frame back to a canonical frame using a per-frame
volumetric warping field, and then performTSDF fusion in this frame. For efficiency,
only sparse warping field samples are estimated, and dense values are inferred by
interpolation. The TSDF fusion weights take into account the confidence in the
warping field, which decreases with distance from the warping field samples. The
warping field is estimated by optimizing an energy consisting of an ICP data term and
a regularization term that encourages smoothvariationof thewarping function (where
the transformation nodes are connected with edges in a hierarchical deformation
graph).

Similar to DynamicFusion, Innmann et al. [28] propose VolumeDeform, which
incorporates sparse image features from the RGB images as well as dense depth
constraints, which help in correct registration of scenes with low geometric variation.

In their Fusion4D approach, Dou et al. [12] perform online reconstruction from
multiple depth sensors for improved scene coverage. Slavcheva et al. [62] pro-
pose KillingFusion, which performs real-time, non-rigid reconstruction using TSDF
fusionwithout computing explicit point correspondences, instead directly optimizing
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a warping field between TSDFs. Because point correspondences are not computed,
however, it does not support applications which require texturemapping (e.g. appear-
ance editing).

In [40], a method for reconstruction of dynamic scenes from single-view RGB-D
data based on a sparse set of temporally coherent surfels (tracked 3D points) which
are explicitly connected using neighbourhood-based connectivity is proposed: simul-
taneous segmentation, shape and motion estimation of arbitrary scenes is performed
without prior knowledge of the shape or non-rigid deformation of the scene. This
surfel graph modelling is, however, limited in terms of the shape detail reproduced,
and does not natively output a surface mesh. As a result, a subsequent dense sur-
face reconstruction stage is required in order to obtain a detailed surface mesh. In
their ‘animation cartography’ approach, Tevs et al. [66] employ surface ‘charts’ with
shared, tracked landmarks in multiple graph structures. Probabilistic sparse match-
ing is performed on the landmarks, and dense correspondence is then established for
the remaining chart points by comparing landmark coordinates. They note that their
system does not perform well on very noisy time-of-flight depth data and suggest
using additional cues (e.g. colour) for such data.

A hybrid method for fusion and representation of dynamic scenes from RGB-D
video has been proposed [38] which uses the complementary strengths of multiple
representations at different stages of processing. Depth maps provide input 2.5D
geometry and are used along with the corresponding RGB images to generate a
graph of sparse point tracks for dense volumetric surface integration, while residual
depth maps store differences between the final output 4D model and raw input.
The intermediate surfel graph structure stores sparse, dynamic 3D geometry with
neighbourhood-based connectivity, and is used for efficient segmentation and initial
reconstruction of part shape and motion. The surfel graph representation drives a
further intermediate TSDF volumetric implicit surface representation, which is used
to integrate noisy input depth measurements into dense piecewise and global 3D
geometry. The volumetric representation is finally extracted to an explicit, dense
surface mesh suitable for dynamic scene rendering, as well as editing of shape,
appearance and motion.

5.5 Conclusion

In this chapter, an overview of techniques for reconstruction from RGB-D input was
presented and further detail provided on two approaches to real-time static scene
reconstruction, namelyKinectFusion [44] and surfel fusion [33]. Suchvolumetric and
surfel-based reconstruction approaches are able to register and integrate hundreds or
thousands of noisy depthmaps in an onlinemanner and producemetrically consistent
models of static scenes with greater coverage and less noise than the individual input
depth maps.

The frame-to-model ICP tracking approach proposed by Newcombe et al. [44]
mitigates accumulation of error, which would be more severe with frame-to-frame
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tracking and thus helps maintain the level of detail in the reconstructed models.
Assuming adequately small voxels (of the order of the depth pixel size), the main
limiting factor in reconstruction resolution is the image (domain) resolution rather
than the noise and quantization of depth values (range), which can be integrated away
over time as frames are added. (The case is similar for the surfel-based representation,
where the model resolution corresponds directly to the input sample density, rather
than depending on a separately specified voxel size.) Higher quality, larger scale
reconstructions can be achieved using offline reconstruction approaches such as that
of Zhou et al. [76], which employs global optimization of the sensor pose and scene
geometry.

Static scene reconstruction from RGB-D input is a well-developed field and cur-
rent approaches are able to produce high quality results in real-time. Temporally
consistent reconstruction of general dynamic scenes from RGB-D is a challeng-
ing open problem, however the field is fast moving and recent approaches such as
DynamicFusion [43] and KillingFusion [62] have made significant progress towards
reconstruction of dynamic, non-rigidly deforming objects through use of deforming
volumetric representations for surface integration and tracking.
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Chapter 6
RGB-D Odometry and SLAM

Javier Civera and Seong Hun Lee

Abstract The emergence of modern RGB-D sensors had a significant impact in
many application fields, including robotics, augmented reality (AR), and 3D scan-
ning. They are low-cost, low-power, and low-size alternatives to traditional range
sensors such as LiDAR. Moreover, unlike RGB cameras, RGB-D sensors provide
the additional depth information that removes the need of frame-by-frame triangu-
lation for 3D scene reconstruction. These merits have made them very popular in
mobile robotics and AR, where it is of great interest to estimate ego-motion and
3D scene structure. Such spatial understanding can enable robots to navigate au-
tonomously without collisions and allow users to insert virtual entities consistent
with the image stream. In this chapter, we review common formulations of odometry
and Simultaneous Localization and Mapping (known by its acronym SLAM) using
RGB-D stream input. The two topics are closely related, as the former aims to track
the incremental camera motion with respect to a local map of the scene, and the
latter to jointly estimate the camera trajectory and the global map with consistency.
In both cases, the standard approaches minimize a cost function using nonlinear
optimization techniques. This chapter consists of three main parts: In the first part,
we introduce the basic concept of odometry and SLAM and motivate the use of
RGB-D sensors. We also give mathematical preliminaries relevant to most odometry
and SLAM algorithms. In the second part, we detail the three main components of
SLAM systems: camera pose tracking, scene mapping, and loop closing. For each
component, we describe different approaches proposed in the literature. In the final
part, we provide a brief discussion on advanced research topics with the references
to the state of the art.
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6.1 Introduction: SLAM, Visual SLAM, and RGB-D
Sensors

Visual Odometry and Visual Simultaneous Localization and Mapping—from here
on referred to as their respective acronyms VO and VSLAM—are two tightly related
topics that aim to extract 3D information from streams of visual data in real-time.
Specifically, the goal of VO is to estimate the incremental motion (i.e., translation
and rotation) of the camera as it moves. The goal of Visual SLAM is more ambitious:
To estimate a globally consistent map of the scene and the camera trajectory with
respect to it.

In the robotics research community, SLAM is considered as a fundamental ca-
pability for autonomous robots. See [4, 25] for an illustrative tutorial covering the
earliest approaches, and [11] for a recent survey outlining the state of the art and the
most relevant future directions. While the early pioneering works on SLAM mainly
used laser scanners (e.g., [12]), the field rapidly pivoted to cameras for several rea-
sons. Among them were the progress of computer vision algorithms and improved
processors, as well as the camera’s low cost, size, and power consumption.

Most visual SLAM methods have been traditionally based on low-level feature
matching and multiple view geometry. This introduces several limitations to monoc-
ular SLAM. For example, a large-baseline motion is needed to generate sufficient
parallax for reliable depth estimation; and the scale is unobservable. This can be par-
tially alleviated by including additional sensors (e.g., stereo cameras [83], inertial
measurement units (IMUs) [18], sonar [48]) or the prior knowledge of the system
[66], or the scene [110]. Another challenge is the dense reconstruction of low tex-
ture areas [17]. Although recent approaches using deep learning (e.g., [9, 122]) have
shown impressive results in this direction, more research is needed regarding their
cost and dependence on the training data [29].

RGB-D sensors provide a practical hardware-based alternative to the challenges
and limitations mentioned above. Their availability at low cost has facilitated many
robotics and AR applications in the last decade. Intense research endeavors have pro-
duced numerous robust algorithms and real-time systems. Figure6.1 shows several
reconstruction examples from the state-of-the-art systems. Today, RGB-D cameras
stand out as one of the preferred sensors for indoor applications in robotics and AR;
and their future looks promising either on their own or in combinationwith additional
sensors.

In this chapter, wewill cover several state-of-the-art RGB-D odometry and SLAM
algorithms. Our goal is to focus on the basic aspects of geometry and optimization,
highlighting relevant aspects of the most used formulations and pointing to the most
promising research directions. The reader should be aware that, as a consequence of
condensing a vast array of works and presenting the basics in a homogeneous and
easy-to-follow manner, some individual works might present slight variations from
the formulation presented here. In general, we sacrificed extending ourselves over
particular details in favor of a clearer overview of the field.



6 RGB-D Odometry and SLAM 119

(a) RGBDSLAM [27] (b) ORB-SLAM2 [79]

(c) ElasticFusion [119] (d) RGBDTAM [16]

Fig. 6.1 State-of-the-art RGB-D SLAM systems

The rest of the chapter is organized as follows. Section6.2 will give an overview
on the most usual VO and VSLAM pipeline. Section6.3 will introduce the notation
used throughout the rest of the chapter. Section6.4 will cover the algorithms for
tracking the camera pose, Sect. 6.5 the algorithms for the estimation of the scene
structure, and Sect. 6.6 the loop closure algorithms. Section6.7 will refer to relevant
scientific works and research lines that were not covered in the previous sections.
Finally, Sect. 6.8 contains the conclusions and Sect. 6.9 provides links to some of the
most relevant online resources, mainly the state-of-the-art open-source software and
public benchmark datasets.

6.2 The Visual Odometry and SLAM Pipelines

The pipelines of RGB-D Odometry and SLAM have many components in common.
Here, wewill give a holistic view of the building blocks of standard implementations,
highlighting their connections and introducing the terminology.

The seminal work of Klein andMurray [58] proposed the architecture that is used
in most visual odometry and SLAM systems nowadays. Such architecture was later
refined in papers like [28, 78, 105] among others. Basically, the idea is to partition
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Fig. 6.2 High-level overview of VO and VSLAM systems. Ik : kth RGB-D image, ξk : kth camera
pose, ML and MG : the local and the global map

the processing into two (or more) parallel threads: one thread tracks the camera pose
in real time at video rate, and the rest update several levels of scene representations
at lower frequencies (in general, the larger and/or more complex the map, the lower
the frequency of update).

Figure6.2 illustrates a simple Tracking and Mapping architecture for RGB-D
Odometry and SLAM that we will use in this chapter. The camera tracking thread
estimates the camera motion ξk at time k given the current frame Ik and a local map
ML .ML is estimated from a set of keyframes summarizing the sequence. If SLAM
is the aim, a globally consistent mapMG is estimated by means of loop closure and
global optimization. In more detail:

• Camera Tracking: The camera tracking thread estimates the incremental camera
motion. The most simple approach is to use the frame-to-frame constraints (e.g.,
[36, 54]). This is in fact inevitable when bootstrapping the system from the first
two views. However, after initialization, it is quite usual to use more than two
views in order to achieve higher accuracy. In this case, the standard approach is to
estimate the camera motion using map-to-frame constraints with respect to a local
map built from the past keyframes (see the next paragraph).

• Scene Mapping: Mapping approaches vary, depending on the application. Volu-
metric mapping discretizes the scene volume into voxels and integrates the infor-
mation from the RGB-D views (e.g., [81, 117]). Point-based mapping performs a
nonlinear optimization of camera poses and points (e.g., [79]). In the case of VO,
the map is local and is estimated from a sliding window containing a selection of
the last frames (e.g., [28, 115]). In the case of VSLAM, the map is estimated from
a set of keyframes representative of the visited places.

• Loop Closing: In both odometry and SLAM drift is accumulated in purely
exploratory trajectories. Such drift can be corrected if a place is revisited, us-
ing approaches denoted as loop closure. First, the place is recognized by its visual
appearance (loop detection), and then the error of the global map is corrected (loop
correction) [34, 79, 117].
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6.3 Notation and Preliminaries

6.3.1 Geometry and Sensor Model

We denote an RGB-D input as I : Ω �→ R
4, where Ω ⊂ R

2 is the image plane of
width w and height h. We represent the pixel coordinates as a 2D vector p = (u, v)�
and the corresponding homogeneous coordinates as p̃ = (ũ, ṽ, λ)�. Each pixel
has RGB color and depth value, i.e., I (u, v) = (r, g, b, d)�. The depth channel
is denoted as D : Ω �→ R, and the access to it as D (u, v) = d. The Euclidean
coordinates of a 3D point k in some reference frame i (be it a camera or the
world reference) are denoted by Pi

k = (Xi
k,Y

i
k , Z

i
k

)�
or P̃i

k = (λXi
k, λY

i
k , λZ

i
k, λ
)�

in homogeneous coordinates. These two coordinates are related by the dehomog-
enization operation: Pi

k = π3D(P̃i
k). Inversely, the homogenization is denoted by

π−1
3D (Pi

k) := (Xi
k,Y

i
k , Z

i
k, 1
)�
.

The pose of camera j with respect to reference frame i is defined by the transfor-

mation T j i =
[
R j i t j i
0 1

]
∈ SE(3), R j i ∈ SO(3), t j i ∈ R

3. The rotation matrix R j i and

translation vector t j i are defined such that the transformation of point Pi
k in reference

frame i to the j th camera reference frame is

P̃ j
k = T j i P̃i

k; P j
k = R j iPi

k + t j i . (6.1)

Likewise, P̃i
k can be obtained from P̃i

k and T j i with the inverse operation:

P̃i
k = T−1

j i P̃
j
k ; Pi

k = R�
j i

(
P j
k − t j i

)
. (6.2)

As illustrated in Fig. 6.3, we adopt the standard pinhole model for the projection onto
the image plane. First, the 3D point Pi

k is transformed to the camera frame j using
Eq.6.1. The homogeneous coordinates of the projection in the image space are given
by

Fig. 6.3 The transformation
of point k from reference
frame i to camera reference
frame j , and its projection
onto the image plane using
the pinhole camera model
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p̃ j
k = (ũ j

k , ṽ
j
k , λ)� = KP j

k = K(R j iPi
k + t j i ) with K =

⎡

⎣
fx 0 u0
0 fy v0
0 0 1

⎤

⎦ , (6.3)

where K is the calibration matrix containing the coordinates of the principal point
(u0, v0)� and the focal lengths ( fx , fy) = ( f mx , f my). Here, (mx ,my) denotes the
number of pixels per unit distance in image coordinates in the x and y directions.
The pixel coordinates are finally obtained by dehomogenization: p j

k = (u j
k , v

j
k )

� =
π2D(p̃ j

k ) = ( ũ j
k

/
λ , ṽ j

k

/
λ)�. The inverse operation (i.e., homogenization) is denoted

by π−1
2D (p j

k ) := (u j
k , v

j
k , 1)

�.
Now, let reference frame i be another camera reference frame. Then, the repro-

jection of 2D point pik in frame i to frame j is defined as the following three-step
operation:

1. Backprojectpik with themeasured depth di
k to estimate the 3D pointPi

k in frame i :

Pi
k
′ = di

k

K−1π−1
2D

(
pik
)

∥∥K−1π−1
2D

(
pik
) ∥∥ . (6.4)

2. Transform this estimate from frame i to frame j :

P j i
k = π3D

(
T j iπ

−1
3D

(
Pi
k
′)) ; P j i

k = R j iPi
k
′ + t j i (6.5)

(Notice that we use the superscript j i instead of j to distinguish the ground truth
in frame j .)

3. Project the resulting 3D point to obtain its pixel coordinates in frame j .

p j i
k = π2D

(
KP j i

k

)
. (6.6)

Altogether, the reprojection of point pik to frame j is defined as follows:

p j i
k

(
pik, di

k,T j i
) = π2D

(

K

(
di
kR j iK−1π−1

2D

(
pik
)

∥
∥K−1π−1

2D

(
pik
) ∥∥ + t j i

))

. (6.7)

6.3.2 Nonlinear Optimization

Most state-of-the-art VO and VSLAM methods rely heavily on nonlinear optimiza-
tion in order to estimate the state vector x (e.g., containing the camera poses and 3D
map points) from a set of noisy measurements z = {z1, z2, . . .} (e.g., image corre-
spondences or pixel intensities).



6 RGB-D Odometry and SLAM 123

According to Bayes’ theorem, the following equation describes the conditional
probability of the state p(x|z) given the measurement model p(z|x) and the prior
over the state p(x):

p(x|z) = p(z|x)p(x)
p(z)

(6.8)

Our aim is then to find the state x that maximizes this probability. This is called the
Maximum a Posteriori (MAP) problem, and the solution corresponds to the mode of
the posterior distribution:

xMAP = argmax
x

p(x|z) = argmax
x

p(z|x)p(x)
p(z)

(6.9)

Modern VSLAM and VO methods are based on smoothing and often assume a
uniform prior p(x). The normalization constant p(z) does not depend on the state
either. Therefore, we can drop p(x) and p(z) from (6.9), turning the problem into
the Maximum Likelihood Estimation (MLE). Assuming the independence between
the measurements, this means that (6.9) becomes

xMAP = xMLE = argmax
x

p(z|x) = argmax
x

∏

k

p(zk |x). (6.10)

Suppose that the measurement model is given by zk = hk(x) + δk , where δk ∼
N (0,�k). The conditional distribution of the individual measurements is then
p(zk |x) ∼ N (hk(x),�k). Maximizing, for convenience, the log of the conditionals
leads to

xMAP = argmax
x

log(
∏

k

p(zk |x)) = argmax
x

∑

k

log(p(zk |x))

= argmax
x

∑

k

log(exp(−1

2
(zk − hk(x))��−1

k (zk − hk(x)))) = argmin
x

∑

k

||rk(x)||2�k
,

(6.11)

where ||rk(x)||�k =
√

(zk − hk(x))��−1
k (zk − hk(x)) is called theMahalanobis dis-

tance. As hk(x) is typically nonlinear, we solve (6.11) using an iterative method. A
standard approach is to use the Gauss–Newton algorithm described as follows:

1. Make an initial guess x̆.
2. Linearize (6.11) using the Taylor approximation at x̆.
3. Compute the optimal increment Δx∗ that minimizes the linearized cost function.
4. Update the state: x̆ ← x̆ + Δx∗.
5. Iterate the Step 2–4 until convergence.

The Taylor approximation in Step 2 gives
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hk(x̆ + Δx) ≈ hk(x̆) + JkΔx with Jk = ∂hk(x)
∂x

∣∣
∣∣
x̆
. (6.12)

This allows us to approximate ||rk(x̆ + Δx)||2�k
as

||rk(x̆ + Δx)||2�k
= (zk − hk(x̆ + Δx))��−1

k (zk − hk(x̆ + Δx)) (6.13)

≈ (zk − hk(x̆) − JkΔx)��−1
k (zk − hk(x̆) − JkΔx) (6.14)

= Δx�J�
k �−1

k JkΔx + (zk − hk(x̆))��−1
k (zk − hk(x̆))

− 2(zk − hk(x̆))��−1
k JkΔx. (6.15)

Now, taking the derivative of
∑

k ||rk(x̆ + Δx)||2�k
with respect to Δx and setting it

to zero, we obtain the optimal increment in the following form:

Δx∗ = −
[
∑

k

J�
k �−1

k Jk

]−1

︸ ︷︷ ︸
H−1

∑

k

J�
k �−1

k (hk(x̆) − zk)

︸ ︷︷ ︸
b

. (6.16)

The Levenberg–Marquardt algorithm, a variant of the Gauss–Newton method, in-
cludes a nonnegative damping factor λ in the update step:

Δx∗ = − (H + λ diag(H))−1 b, (6.17)

where λ is increased when the cost function reduces too slowly, and vice versa. For
more details on the adjustment rule, see [74].

Since the least squares problems are very sensitive to outliers, a common practice
is to adopt a robust weight function that downweights large errors:

xrobust = argmin
x

∑

k

ω
(||rk(x)||�k

) ||rk(x)||2�k
. (6.18)

To solve this problem iteratively, it is usually assumed that the weights are
dependent on the residual at the previous iteration, which turns the problem into
a standard weighted least squares at each iteration. This technique is called the itera-
tively reweighted least squares (IRLS). The readers are referred to [47, 121] for more
details on the robust cost functions and [5] for in-depth study of state estimation for
robotics.
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6.3.3 Lie Algebras

Standard optimization techniques assume that the state belongs to a Euclidean vec-
tor space. This does not hold for 3D rotation matrices R, belonging to the special
orthogonal group SO(3), or for six degrees-of-freedom (DoF) rigid body motions T,
belonging to the special Euclidean group SE(3). In both cases, state updates have to
be done in the tangent space of SO(3) and SE(3) at the identity, which are denoted
as so(3) and se(3). Elements of the tangent space so(3) and se(3) can be represented
as vector ω ∈ R

3 and ξ = [ω, ν]� ∈ R
6, respectively.

The hat operator (·)∧ converts ω ∈ R
3 to the space of skew symmetric matrices

of the Lie algebra and its inverse is denoted by the vee operator (·)∨:

ω∧ =
⎡

⎣
ωx

ωy

ωz

⎤

⎦

∧

=
⎡

⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎦ ∈ so(3) and
(
ω∧)∨ = ω ∈ R

3. (6.19)

We denote the exponential and logarithmic mapping between se(3) and SE(3) by
expSE(3)(ξ) and logSE3(T), respectively:

expSE(3)(ξ) :=
[
exp(ω∧) Vν

0 1

]
=
[
R t
0 1

]
= T ∈ SE(3), (6.20)

where

exp(ω∧) = I3×3 + sin (‖ω‖)
‖ω‖ ω∧ + 1 − cos (‖ω‖)

‖ω‖2
(
ω∧)2 (6.21)

and

V = I3×3 + 1 − cos ‖ω‖
‖ω‖2 ω∧ + ‖ω‖ − sin (‖ω‖)

‖ω‖3
(
ω∧)2 . (6.22)

From (6.20), the logarithm map can be obtained:

logSE(3)(T) :=
[
(logR)∨
V−1t

]
, (6.23)

where

logR = θ

2 sin θ

(
R − R�) with θ = cos−1

(
trace(R) − 1

2

)
. (6.24)

For optimization purposes, rigid body transformations can be conveniently rep-
resented as expSE(3)(Δξ)T, composed of the incremental motion Δξ ∈ se(3) and the
current estimate T ∈ SE(3). This allows to optimize the incremental update Δξ in
the tangent space of the current estimateT. Once the optimal incrementΔξ∗ is found,
the transformation matrix T is updated as
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T ← expSE(3)(Δξ ∗)T. (6.25)

Note that we follow the left-multiplication convention to be consistent with [105,
119].

We refer the readers to [19] for a reference on the representation of 6 DoF pose in
the 3D space, and to [101, 104] for introductions to Lie algebras for odometry and
SLAM.

6.4 Camera Tracking

In this section, we detail the algorithms that are most commonly used for estimating
the six DoF motion of an RGB-D camera. The methods will be divided attending to
the type of residual they minimize:

• Methods based on photometric alignment (Sect. 6.4.1). The alignment results
from the minimization of a photometric error over corresponding pixels in two
frames.

• Methods based on geometric alignment (Sect. 6.4.2).While direct methodsmin-
imize a photometric error, we refer to geometric alignment methods to those that
minimize geometric residuals either in the image or 3D domains.

Recent results suggest that direct methods present a higher accuracy than those
based on geometric alignment, both in odometry [28] and mapping [126]. Most
of the state-of-the-art systems are, because of this reason, based on dense frame
alignment. Among the weaknesses of direct methods we can name their small basin
of convergence, which can limit the accuracy in wide baselines cases, and their
sensitivity to calibration errors, rolling shutter or unsynchronisation between the
color and depth images [94].

6.4.1 Photometric Alignment

Assuming that the same scene point will have the same color in different images,
photometric alignment aims to estimate the motion between two frames by min-
imizing the pixel intensity difference. This error criterion is called a photometric
reprojection error. For each pixel pik in the reference frame i , it is given by

rphk(Δξ j i ) = Ii
(
pik
)− I j

(
p j i
k (Δξ j i )

)
, (6.26)

where p j i
k (Δξ j i ) is the reprojection of pik in frame j evaluated at the incrementally

updated transformation expSE(3)(Δξ j i )T j i . Figure6.4a illustrates this error. Notice

that in (6.26) we omitted some of the variables in the reprojection function p j i
k for
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Fig. 6.4 Different types of error criteria frequently used in the literature: aA photometric reprojec-
tion error is the pixel intensity difference between a reference pixel in frame i and its reprojection in
frame j . b Given a reference point in frame i , a geometric reprojection error is the image distance
between its match and the reprojection in frame j . c A 3D point-to-point distance is the Euclidean
distance between the backprojections of two matched points. d A 3D point-to-plane distance is the
Euclidean distance between the tangent plane at the backprojected reference point in frame i and
the backprojected reprojection of the point in frame j

readability. The full function is written as

p j i
k (Δξ j i )

(6.7)= p j i
k

(
pik, di

k, expSE(3)(Δξ j i )T j i
)
. (6.27)

The total cost function to minimize, Eph , is the weighted squared sum of the
individual photometric errors for all considered pixels:

Δξ ∗
j i = argmin

Δξ j i

E ph(Δξ j i ) = argmin
Δξ j i

∑

k

ω(rphk)
(
rphk(Δξ j i )

)2
(6.28)

with some weight function ω, e.g., constant for unweighted least squares, or robust
weight function such as Huber’s [47]. As discussed in Sect. 6.3.2, this problem can
be solved using IRLS. Once the optimal increment is found, T j i is updated using
(6.25), and this optimization process is iterated until convergence.

Kerl et al. [54] proposes a similar photometric alignment between consecutive
frames of a video, achieving very accurate odometry results. For study of different
alignment strategies, we refer to [61]. The photometric alignment can also be done
in a frame-to-map basis. For example, in [16], photometric and geometric errors are
used to track the camera pose with respect to the closest keyframe in the map.
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6.4.2 Geometric Alignment

In contrast to photometric alignment that directly uses raw pixel intensities, geomet-
ric alignment estimates the camera motion by minimizing the Euclidean distances
between the two corresponding sets of geometric primitives in 2D or 3D.

2D Point-to-Point Alignment: A geometric reprojection error is the most rep-
resentative type of 2D error used in VO and VSLAM. This error is illustrated in
Fig. 6.4b. Given a point pik in the reference frame i , it measures the image distance
between its match p j

k and the projection p j i
k (6.27) in the current frame j :

r2Dk (Δξ j i ) = ‖p j
k − p j i

k (Δξ j i )‖
σ i
k

with σ i
k = (λpyr

)Lpyr,pik , (6.29)

where σ i
k is the standard deviation of the image point pik that depends on the scale

factor of the image pyramid λpyr(> 1) and the level Lpyr,pik
at which the point was

detected.
Unlike photometric errors, geometric errors require data association. For sparse

points, this can be done by matching feature descriptors (e.g., SIFT [68], SURF [6],
ORB [89]) or extracting salient corners (e.g., Harris corner [39], FAST [88] or Shi-
Tomasi [97] features) and tracking them [71]. Aggregating r2Dk for every point k,
we obtain the total cost function analogous to (6.28):

Δξ ∗
j i = argmin

Δξ j i

E2D(Δξ j i ) = argmin
Δξ j i

∑

k

ω(r2Dk )
(
r2Dk (Δξ j i )

)2
. (6.30)

Minimizing this cost function to estimate the camera motion is called motion-only
bundle adjustment, and this method is used among others in ORB-SLAM2 [79] for
tracking.

3DPoint-to-Point Alignment: Instead ofminimizing the reprojection error in 2D
image space, one can also minimize the distance between the backprojected points
in 3D space (see Fig. 6.4c). The 3D errors can be defined over dense point clouds or
sparse ones. For the latter case, the first step should be the extraction and matching
of the sparse salient points in the RGB channels. Henry et al. [41], for example, uses
SIFT features [68], although others could be used.

Given two sets of correspondences in image i and j , the 3D geometric error is
obtained as

r3Dk (Δξ j i ) = ∥∥P j
k

′ − P j i
k (Δξ j i )

∥∥ (6.31)

with P j i
k (Δξ j i ) := π3D

(
expSE(3)(Δξ j i )T j iπ

−1
3D

(
Pi
k
′))

, (6.32)

where Pi
k
′
and P j

k

′
are the 3D points backprojected from the 2D correspondence

pik and p j
k using (6.4). Aggregating r2Dk for every point k, we obtain the total cost
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function analogous to (6.28) and (6.30):

Δξ ∗
j i = argmin

Δξ j i

E3D(Δξ j i ) = argmin
Δξ j i

∑

k

ω(r3Dk )
(
r3Dk (Δξ j i )

)2
. (6.33)

For the case of dense cloud alignment, the standard algorithm is Iterative Closest
Point (ICP) [8]. ICP alternates the minimization of a geometric distance between
points (the point-to-point distance in Eq.6.31 or the point-to-plane one defined later
in this section) and the search for correspondences (usually the nearest neighbors in
the 3D space).

The strengths and limitations of sparse and dense cloud alignment are comple-
mentary for RGB-D data. Aligning dense point clouds can lead to more accurate
motion estimation than aligning sparse ones, as they use more data. On the other
hand, ICP might diverge if the initial estimate is not sufficiently close to the real
motion. In practice, combining the two is a preferred approach: Sparse alignment,
based on feature correspondences, can produce a robust and reliable initial seed.
Afterward, dense alignment can refine such initial estimate using ICP.

3D Point-to-Plane Alignment: The point-to-plane distance, that minimizes the
distance along the target point normal, is commonly used in dense RGB-D point
cloud alignment [22, 41, 81, 118]. The residual is in this case

r3DPk (Δξ j i ) =
∣
∣∣
∣n

i
k ·
⎛

⎝Pi
k
′ − (expSE(3)(Δξ j i )T j i

)−1

⎛

⎝d ji
k

K−1π−1
2D

(
p j i
k (Δξ j i )

)

‖K−1π−1
2D

(
p j i
k (Δξ j i )

)
‖

⎞

⎠

⎞

⎠
∣
∣∣
∣,

(6.34)

where Pi
k
′
is the 3D backprojection of pik using (6.4), n

i
k is the surface normal at Pi

k
′
,

p j i
k (Δξ j i ) is the reprojection of p

i
k in frame j evaluated at the incrementally updated

transformation expSE(3)(Δξ j i )T j i , which is given by (6.27) and (6.7), and d ji
k is the

measured depth at this reprojection in frame j . This error is illustrated in Fig. 6.4d.
Aggregating r3DPk for every point k, we obtain the total cost function analogous to
(6.28), (6.30) and (6.33):

Δξ ∗
j i = argmin

Δξ j i

E3DP(Δξ j i ) = argmin
Δξ j i

∑

k

ω(r3DPk )
(
r3DPk (Δξ j i )

)2
. (6.35)

6.5 Scene Mapping

In this section, we briefly survey the main algorithms for estimating scene maps
from several RGB-D views. There are two basic types of scene representations that
are commonly used, and we will denote it as point-based maps (Sect. 6.5.1), and
volumetric maps (Sect. 6.5.2).



130 J. Civera and S. H. Lee

6.5.1 Point-Based Mapping

Representing a scene as a set of points or surfels is one of the most common alter-
natives for estimating local maps of a scene. Bundle Adjustment [112], consisting
on the joint optimization of a set of camera poses and points, is frequently used to
obtain a globally consistent model of the scene [79]. However, there are also sev-
eral recent VSLAM approaches that alternate the optimization between points and
poses, reducing the computational cost with a small impact in the accuracy, given a
sufficient number of points [84, 94, 120, 123].

In its most basic form, the map model consists of a set of n points and m RGB-D
keyframes. Every point is represented by its 3D position in the world reference frame
Pw
k . For every keyframe i , we store its pose Tiw and its RGB-D image Ii .
Similarly to camera tracking in Sect. 6.4, map optimization algorithms are based

on the photometric or geometric alignment between the keyframes. In this case,
however, both the keyframe poses and point positions are optimized.

PhotometricBundleAdjustment: Thismethodminimizes a cost function similar
to (6.28), with the difference that it does not backproject the 2D points using the
measured depths. Instead, it aims to find the 3D point that minimizes the photometric
errors in all keyframes where it was visible. Let PM = (P1, . . . ,Pk, . . . ,Pn)

� be
the set of all map points and ΔξM = (Δξ 1w, . . . , Δξ jw, . . . , Δξmw

)�
the set of

incremental transformations to the current estimates of the keyframe poses. Then,
the optimization problem is formulated as

{Δξ∗
M ,P∗

M } = argmin
ΔξM ,PM

Eph(ΔξM ,PM ) (6.36)

= argmin
Δξ jw,Pw

k

∑

j

∑

k

ω(rphk)
(
rphk(Δξ jw,Pw

k )
)2

(6.37)

with

rphk(Δξ jw,Pw
k )

=

⎧
⎪⎨

⎪⎩

0 if Pk is not visible

in frame j,

Ii
(
pik
)− I j

(
π2D
(
Kπ3D(expSE(3)(Δξ jw)T jwπ−1

3D (Pw
k ))
) )

otherwise,

where Ii
(
pik
)
is the pixel intensity at whichPw

k was detected in its reference keyframe
i (i.e., the keyframe in which the point was first detected and parameterized).

Geometric Bundle Adjustment: This method minimizes a cost function similar
to (6.30), with the difference that the reprojectionwith themeasured depth is replaced
by the projection of the current estimate of the 3D point. Using the same notation as
for the photometric bundle adjustment, the optimization problem is formulated as



6 RGB-D Odometry and SLAM 131

{Δξ∗
M ,P∗

M } = argmin
ΔξM ,PM

E2D(ΔξM ,PM ) (6.38)

= argmin
Δξ jw,Pw

k

∑

j

∑

k

ω(r2Dk)
(
r2Dk(Δξ jw,Pw

k )
)2

(6.39)

with

r2Dk(Δξ jw,Pw
k )

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if Pk is not detected

in frame j,∥∥∥
∥p

j
k − π2D

(
Kπ3D

(
expSE(3)(Δξ jw)T jwπ−1

3D (Pw
k )
))
∥∥∥
∥

σ
j
k

otherwise.

Note that σ j
k is defined in (6.29).

6.5.2 Volumetric Mapping

One of the main weaknesses of point-based representations for mapping is that they
do not model the empty and occupied space. This can be a problem for applications
such as robot navigation or occlusion modeling in AR. Volumetric mapping aims to
overcome such problems by modeling the occupancy of the whole 3D scene volume.

The most usual model for volumetric maps is the Truncated Signed Distance
Function [20], used for example in [59, 81, 116, 117]. In this representation, the 3D
world is discretized into voxels and modeled as a volumetric signed distance field
Φ : R3 → R, where we assign to each cell the distance to the nearest object, which is
defined positive if its center is outside the object and negative if it is inside it. Since
only the surfaces and their surroundings are considered, the distances are usually
truncated if larger than a threshold τ . Also, for every cell, a weight is stored that
represents the confidence on the distance measurement. The algorithm for updating
a TSDF with new depth measurements measurement was first presented in [20]. In a
few words, it consists on a weighted running average on the distance measurements
from the depth sensors.

TSDF is addressed in-depth in Chap. 5 of this book. For this reason, we do not
extend further on it and refer the reader to this chapter, and the references there and
in this section, for further detail on this topic.

http://dx.doi.org/10.1007/978-3-030-28603-3_5
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6.6 Loop Closing

Loop closing algorithms correct the drift that has accumulated during exploratory
trajectories, maintaining a consistent global representation of the environment.Loop
detection (Sect. 6.6.1), is mainly based on the visual appearance between two
keyframes of the map. When these two keyframes are imaging the same place and
the loop closure has been detected, the geometric constraint between the two is added
to the map, which is then updated according to it. This map update is known as loop
correction (Sect. 6.6.2), and we detail the pose graph formulation as an efficient
alternative for large map representations and loop closing correction.

6.6.1 Loop Detection

Due to the excellent performance of visual place recognition, many RGB-D SLAM
systems use only the RGB channels for loop detection (e.g., [16, 34, 79]). The most
used approaches are based on the bag of words model, first proposed in [100]. The
implementation in [30] is particularly suited for visual SLAM, adding robustness to
plain visual appearance by geometric and sequential consistency checks.

In the bag of words model the space of local descriptors is divided into discrete
clusters using the k-means algorithm. Each cluster is referred to as a visual word,
and the set of all visual words forms a visual dictionary. With such a partition, an
image is described as the histogram of visual word occurrences. The place querying
can be made very efficient by maintaining inverse indexes from the visual words to
the database images in which they appear.

Bag-of-words descriptors have some limitations forRGB-Dodometry andSLAM.
They assume images of sufficient texture to extract salient point features, and they do
not use the informationof the depth channel fromRGB-D images.Also, the extraction
and description of local features has a considerable computational overhead.

There are several approaches in the literature that overcome such limitations. Gee
and Mayol-Cuevas [32] proposes to find loop closure candidates without features,
by the alignment of keyframes against synthetic views of the map. Shotton et al. [99]
uses regression forests to predict correspondences between an RGB-D frame and the
map, an approach that has been refined in [13, 37, 113] among others. Glocker et al.
[33] proposed to encode each RGB-D image using randomized ferns.

6.6.2 Loop Correction

Once a loop is detected based on the appearance of two keyframes, a constraint
between the poses of both can be computed by photometric and/or geometric align-
ment. When such constraint is added to the map optimization, the global map con-
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(a) (b) (c) (d)

Keyframe Sequential edge Loop edge 

Fig. 6.5 An illustration of loop closure: a Ground truth. b Odometry result containing drift. c A
loop detection followed by the computation of the loop constraint. d The keyframe trajectory after
the pose graph optimization

sistency is achieved by accommodating this new constraint and correcting the accu-
mulated drift. For computational reasons, this correction is frequently done by pose
graph optimization. Figure6.5 illustrates a loop closure process.

A pose graph is a compact map representation composed of the set ofm keyframe
poses summarizing the trajectory, i.e., Tkfs = {T1a,T2a, . . . ,Tma} where the refer-
ence frame a is chosen from one of the keyframes as the “anchor” to the rest. As this
representation does not include map points, it is particularly useful for estimating
globally consistent maps of large areas at a reasonable cost, and is used among others
in [16, 26, 53].

Pose graph optimization aims to minimize the following cost:

argmin
Tkfs

Egraph = argmin
Tkfs

∑

(i, j)∈εedge

r�
i j�

−1
i j ri j (6.40)

where εedge denotes the set of edges (i.e., relative pose constraints) in the pose graph,
ri j and �i j are respectively the residual associated to the i th and j th camera poses
and its uncertainty. Such residual is defined as

ri j = logSE(3)(Ti j,0T jaT
−1
ia ) (6.41)

where Ti j,0 is the fixed transformation constraint from the alignment (Sect. 6.4) and
T jaT

−1
ia = T j i is the current estimate of the relative motion. For more details on the

pose graph optimization method, the reader is referred to [62, 87].

6.7 Advanced Topics

In this section, we review some of the relevant approaches in RGB-D odometry and
SLAM that, due to space reasons, were not covered in the main part of the chapter.



134 J. Civera and S. H. Lee

6.7.1 Hybrid Cost Function

In Sects. 6.4 and 6.5, we discussed different types of cost functions separately. Many
state-of-the-art methods, however, minimize a weighted sum of multiple cost func-
tions. This strategy allows for better utilization of RGB-D data, which can lead
to performance gains [23, 53, 76, 77]. In [41], 3D point-to-point error was used
for outlier rejection, and then the pose was refined by minimizing the combined 2D
point-to-point cost and 3D point-to-plane cost. In [22, 118], the joint minimization of
photometric and point-to-plane cost was used. Another popular method is to jointly
minimize the photometric and (inverse) depth cost (which is not discussed here)
[3, 16, 35, 53, 102].

6.7.2 Semantic Mapping

In recent years, there has been an impressive progress in the field of machine learning
(specifically deep learning) for visual recognition and segmentation tasks. Building
on them, there have appeared several visual SLAM algorithms that not only estimate
geometric models, but also annotate them with high-level semantic information (see
Fig. 6.6 for an illustration). The research on semantic mapping is not as mature as
geometric mapping, with challenges related to robustness, accuracy and cost. The
state-of-the-art systems, however, show promising results. Semantic mapping could
improve the accuracy and robustness of current SLAM algorithms, and widen their
applications. For example, [7] uses a combination of geometry and learning to remove
dynamic objects and create lifelong maps, achieving better accuracy than geometric
SLAM baselines. Similarly, [51] uses data association failures and region growing to
segment and remove dynamic objects, improving the system robustness and accuracy.

One can differentiate between maps based on specific object instances and object
categories. An approach like [92] adopts the map of the former type. It assumes that
a database of relevant objects in the scene is available. The map is then modeled as
a graph of keyframe and object poses, and it is optimized using the constraints
from keyframe-to-keyframe point cloud alignment and keyframe-to-object using
[24]. Object-based RGB-D SLAM has also been addressed in [108]

Most category-wise semantic mapping methods leverage 2D segmentation algo-
rithms (e.g., [40]), differing on how they transfer the labels to the 3D maps. As a few
examples, we refer to the following works for this area of research [42, 73, 75, 82,
106].
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Fig. 6.6 Illustration of results from semantic RGB-D SLAM. Different colors indicate different
object categories. Figures taken from [111]

6.7.3 Edge-Based Methods

While the majority of the existing methods consider each pixel as independent mea-
surements, edge-based methods exploit the structural regularities of indoor scenes,
modeling the scene geometry with lines or edges. This can provide an advantage
over point-based methods, especially when the scene has weak texture but strong
structural priors. One of the earliest works that demonstrated the advantage of edge-
based registration in RGB-DSLAM is [15]. Thismethod is based on an efficient edge
detection for RGB-D point clouds and 3D registration of the edge points using the
ICP algorithm. In [10], it is shown that the edge detection can be accelerated using the
previous RGB-D frame. On the other hand, [70] proposes to model the straight lines
only and incorporate their uncertainties in the pose estimation problem.Although this
work is shown to outperform [15] under lighting variations, it fails when the scene
contains few lines. To overcome this limitation, [69] uses both points and lines. In
[63], direct edge alignment is proposed that minimizes the sum of squared distances
between the reprojected and the nearest edge point using the distance transform of
the edge map. Other works propose to jointly minimize this edge distance and other
errors, e.g., a photometric error [114] and an ICP-based point-to-plane distance [93].
Later works such as [55, 124] take the image gradient direction also into account for
the direct edge alignment. As in [54], these last two works estimate the camera pose
using the iteratively reweighted least squares (IRLS) method with the t-distribution
as a robust weight function.
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6.7.4 Plane-Based Methods

Like edges, planes are abundant in man-made environments and can be modeled
explicitly for tracking and mapping. In [109], an RGB-D SLAM system is proposed
based on the 3D registration between the minimal set of point/plane primitives. This
system is improved in [2] and [1] by incorporating the guided search of points/planes
and triangulation of 2D-to-2D/3D point matches, respectively. Raposo et al. [86]
proposes an odometry method that uses planes (and points if strictly necessary) and
refines the relative pose using a direct method. In [91], a dense SLAM method is
proposed based on dense ICP with a piecewise planar map. In both [45, 72], it
is proposed to model planes in a global map, so that they are optimized together
with the keyframe poses in the graph optimization for global consistency. The main
difference is that the former uses direct image alignment in an EM framework,
while the latter combines geometric and photometric methods for the fast odometry
estimation. Besides, the latter adopts the minimal plane parameterization proposed
in [50] and does not require GPU. A visual-inertial method based on [45] is proposed
in [44]. In [31], it is proposed to use planar point features for tracking and mapping,
as they are more accurate than the traditional point features and computationally
inexpensive. Other works such as [56, 57, 65] use Manhattan world assumption,
which simplifies the incorporation of the planes into a SLAM formulation. Finally,
[85] shows that it can be beneficial to use points, lines and planes all together in a
joint optimization framework.

6.7.5 Multisensor Fusion

The constraints coming from RGB-D data can be combined with other sources of
information to increase the accuracy and robustness of the tracking and mapping
processes. For example, [64] presents a tightly coupled formulation for RGB-D-
inertial SLAM based on ElasticFusion [119]. In [60], RGB-D SLAM estimates the
configuration space of an articulated arm. Houseago et al. [43] adds odometric and
kinematic constraints from a wheeled robot with a manipulator, and [96] adds the
kinematic constraints of a humanoid robot and inertial data.

6.7.6 Nonrigid Reconstructions

The 3D reconstruction of nonrigid environments is a very relevant and challenging
area of research that has been frequently addressed usingRGB-D sensors.Newcombe
et al. [80] is one of the most representative systems, achieving impressive results for
deformable surfaces. Rünz et al. [90] is a recent work that reconstructs a scene with
multiple moving objects. Jaimez et al. [49] estimates very efficiently the odometry
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of an RGB-D camera and the flow of a scene that might contain static and dynamic
parts. Scona et al. [95] classifies the scene parts into static and dynamic, fuses the
static parts and discard the dynamic ones. A recent survey on 3D reconstruction from
RGB-D camera, including dynamic scenes, is conducted in [125]. It places emphasis
on high-quality offline reconstruction, which is complementary to the focus of this
chapter on real-time online reconstruction and camera tracking.

6.8 Conclusions

Estimating the camera ego-motion and the 3D structure of the surrounding envi-
ronment is a crucial component in many applications such as photogrammetry, AR
and vision-based navigation. For this particular tasks, RGB-D cameras provide sig-
nificant advantages over RGB cameras, as the additional depth measurements ease
the process of metric scene reconstruction. Furthermore, they impose a relatively
mild constraint on cost, size and power, making them a popular choice for mobile
platforms. As a result, both academia and industry have shown an ever-increasing
interest in RGB-D odometry and SLAM methods for the past decade.

In this chapter, we reviewed the general formulations of RGB-D odometry and
SLAM. The standard pipeline of VSLAM systems consists of three main compo-
nents: camera pose tracking, scene mapping and loop closing. For tracking and map-
ping, we discussed some of the widely used methods and highlighted the difference
in their formulations (i.e., photometric vs. geometric alignment and point-based vs.
volumetric mapping). For loop closing, we detailed the underlying principles of loop
detection and drift correction, namely the appearance-based place recognition and
pose graph optimization. Lastly, we presented a brief review of the advanced topics
in the research field today.

6.9 Resources

There are a high number of available resources in theweb related toRGB-Dodometry
and SLAM. We will refer here the most relevant open-source software and public
databases.

Code

FOVIS [46] (https://fovis.github.io/)
Implementation of a feature-based RGB-D odometry.

https://fovis.github.io/
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DVO_SLAM [52–54, 103] (https://github.com/tum-vision/dvo_slam)
Implementation of a frame-to-frame RGB-D visual Odometry.
RGBDSLAM_v2 [27] (https://github.com/felixendres/rgbdslam_v2, http://wiki.ros.
org/rgbdslam, https://openslam-org.github.io/rgbdslam.html)
Implementation of an RGB-D SLAM system, with a feature-based camera tracking
and a pose graph as map model.
ElasticFusion [119] (https://github.com/mp3guy/ElasticFusion)
RGB-D scene-centered SLAM system that models the scene as a set of surfels that
are deformed to accommodate loop closures.
RGBDTAM [16] (https://github.com/alejocb/rgbdtam)
RGB-D SLAM systemwith a pose graph asmapmodel and frame-to-frame tracking.
MaskFusion [90] (https://github.com/martinruenz/maskfusion)
A recent semantic (object-based) RGB-D SLAM system for dynamic scenes.
PlaneMatch [98] (https://github.com/yifeishi/PlaneMatch)
RGB-D SLAM algorithm that proposes a novel descriptor for planar surfaces and
exploits correspondences between them.

Databases

RGB-D SLAMDataset and Benchmark (Also known as the TUM dataset) [107]
(https://vision.in.tum.de/data/datasets/rgbd-dataset).
It contains indoor recordings with ground truth camera pose in a wide variety of
conditions: rotation-only and general motion, static and dynamic environments and
small and mid-size scene coverage.
The ETH3D dataset [94] (https://www.eth3d.net/).
A benchmark dataset for RGB-DSLAM(among others), recordedwith synchronized
global shutter cameras.
The Matterport dataset [14] (https://github.com/niessner/Matterport).
Annotated data captured throughout 90 properties with a Matterport Pro Camera.
Scannet [21] (http://www.scan-net.org/).
RGB-Dvideo dataset annotatedwith 3Dcamera poses, reconstructions, and instance-
level semantic segmentations.
The ICL-NUIMdataset [38] (https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.
html).
This dataset contain RGB-D sequences on synthetic scenes; hence with camera pose
and scene ground truth.
InteriorNet [67] (https://interiornet.org/).
Dataset containing RGB-D-inertial streams for synthetic large scale interior scenes.

https://github.com/tum-vision/dvo_slam
https://github.com/felixendres/rgbdslam_v2
http://wiki.ros.org/rgbdslam
http://wiki.ros.org/rgbdslam
https://openslam-org.github.io/rgbdslam.html
https://github.com/mp3guy/ElasticFusion
https://github.com/alejocb/rgbdtam
https://github.com/martinruenz/maskfusion
https://github.com/yifeishi/PlaneMatch
https://vision.in.tum.de/data/datasets/rgbd-dataset
https://www.eth3d.net/
https://github.com/niessner/Matterport
http://www.scan-net.org/
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
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Chapter 7
Enhancing 3D Capture with Multiple
Depth Camera Systems: A
State-of-the-Art Report

Oscar Meruvia-Pastor

Abstract Over the past decade, depth-sensing cameras rapidly found their way
into consumer products and became a staple in computer vision, robotics, and 3D
reconstruction systems. Under some circumstances, the use ofmultiple depth sensors
brings unique advantages in facilitating model acquisition, such as capture from
complementary points of view and higher sampling density, with the potential to
reduce the effects of sensor noise. Typically, multiple camera systems allow users to
obtain visual information that might be unavailable from a particular point of view
in a single-camera setup. As a result of this characteristic, the use of multiple depth
cameras has great potential for a number of applications. However, there are some
challenges that arise when implementing multi-depth camera systems, including
calibration, synchronization and registration. In this chapter, we survey how some of
these challenges have been addressed and present the most comprehensive review to
date of the techniques used to implement multiple depth-sensing camera systems. In
addition, we present a wide array of applications supported bymultiple depth camera
systems (MDCs).

7.1 Introduction

The concept that multiple cameras should facilitate capture of the 3D environment is
an intuitive one.After all,we avail of a visual system that relies on a dual-camera setup
(our eyes) to help us collect essential information about our physical environment and
support both 2D and 3D vision through mono- and stereoscopy.While the concept of
using multiple depth-sensing cameras for filming or other applications is relatively
new, the ideaof usingmultiple cameras for capturing scenes fromdifferent viewpoints
and combining the resulting images has been used widely in the film industry almost
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from the birth of motion pictures [78, 91, 105] and explored in computer graphics
research for more than 25years [13, 18, 33, 36, 54, 84, 90, 99, 103, 106].

In a way, most commercial RGB-D sensors are already multi-camera systems, as
they are based on an internal configuration that consists of arrays of dual, usually
infrared (IR) cameras, and a third, higher resolution RGB camera for color capture.
Alternatively, some depth-sensing cameras such as the ZED [80, 95], obtain high-
resolution RGB-D images in real-time using a pair of color cameras to obtain depth
from regular stereoscopy (see Chap.1 for more detailed overview of commodity
depth capture devices). In this chapter, we explore how multiple RGB-D sensors
are used to improve 3D capture. The assumption is that having more cameras will
increase our capacity to provide a more complete picture of the environment [46].
Consumer-level depth-sensing cameras have been in the market for about a decade.
With the introduction of the Kinect in 2010, Microsoft sparked an explosion of
research involving RGB-D cameras. Intel was also an early promoter of the research
and adoption of depth-sensing cameras, in particular portable ones. Its earlier portable
depth-sensing cameras were the 2013 Creative Senz series [22], quickly followed by
its RealSense series in 2016. Apart from the standalone cameras, other versions of
these cameras have been integrated in laptops, tablets and mobile phones, and come
with SDKs suitable for development by researchers and the general public [48].

Since having multiple cameras goes beyond the safety and commodity of a single,
fully integrated depth sensor, new challenges, and opportunities arise that are not
present in a single device setup, as illustrated in the video sequences published by
Kreylos since 2010 [65]. For instance, the question comes up about whether a system
must have the same type of camera or a variety of cameras and devices [19, 89, 104].
While the later would be a more flexible approach, it would be out of the scope
of this chapter, as we focus on systems that rely on the use of a homogeneous set
of cameras, which includes the vast majority of solutions involving multiple depth
sensors.A typicalMDCsconfiguration is shown inFig. 7.1, butwewill illustrate other
configurations later in this chapter. Another issue is how to map the images captured

Fig. 7.1 A typical configuration of MDCs. This is a setup suitable for motion capture. Image
reproduced with permission from [59]

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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Fig. 7.2 3D capture process: a acquisition of input data points with a calibration tool, b depth
images from different Kinect sensors, c unified point cloud after registration, and d unified point
cloud with color mapping. Image reproduced with permission from [59]

from different cameras and combine them into a single scene. This encompasses
the issues of calibration, synchronization and registration (see Fig. 7.2). Finally, an
important question is which applications benefit the most from this type of systems.
We will explore such applications later in this chapter.

Through the rest of this chapter we will use the term depth sensors and cameras
interchangeably, and wewill use the termMDCs (em-dee-cees), forMultiple Depth-
sensing Camera systems, to describe system configurations that rely on multiple
RGB-Dcameras for visual capture. It is important to note that the literature sometimes
refers to depth sensors as RGB-D cameras, and that, although most depth-sensing
cameras capture RGB-D images, some depth sensors, such as the LeapMotion [67],
do not capture RGB/color images along with the depth channel, as they rely purely
on IR stereoscopy. However, for the sake of simplicity, we will use the terms depth
sensors and RGB-D cameras interchangeably.

7.2 Implementation of MDCs

In most MDCs there are setup, calibration, and capture stages, with an optional seg-
mentation/background removal stage and a registration, fusion, or merging stage,
prior to some form of post- processing. The registration/fusion stage might happen
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online (in real-time, as the images are being recorded) or offline (as a post-processing
stage), depending on whether or not the system supports real-time interactions. In
terms of calibration, systems aim at reducing the calibration overhead and mini-
mizing the amount of human intervention or expertise required to setup a system.
Capture refers to the moment of recording, is normally straightforward, although
in some cases, researchers place an emphasis in synchronization, to make sure all
capture corresponds to the same time interval. Image registration and fusion will
take place in different ways and it is here where solutions differ the most. In some
cases, researchers also focus on aspects of post-processing, mainly considering is-
sues of cleaning and analyzing the data, such as segmentation of foreground from
background, identification of objects and/or individuals, and cognitive interpretation
of the scene or events.

7.2.1 Setup and Calibration

Inmany cases, amulti-depth camera system requires a calibration step, whichmainly
consists in establishing a common frame of reference for all cameras recording
the scene (see Fig. 7.2). This common frame of reference will be used to facilitate
registration or fusion of the 3D scene. Depending on the application, other forms
of integration, such as color matching [73, 114] and temporal synchronization or
skeleton fusion (Fig. 7.3) might also be necessary.

Fig. 7.3 A typical pipeline for MDCs, this client–server model illustrates initialization (con-
nect), calibration, segmentation (background subtraction), registration (ground rotation), and post-
processing (skeleton fusion of joints and states). Image reproduced with permission from [59]
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With regards to temporal synchronization, and especially for offline methods
and methods utilizing one computer per sensor, it is essential that all cameras are
synchronized at the beginning of the recording, because registration methods work
under the assumption that the scenes to be registered are temporarily synchronized.
Synchronization can be supported with dedicated hardware, for example, by having a
hardware-controlled trigger that starts recording or capture for all cameras at the same
time [44], or it can also be implemented with a client–server architecture where one
server sends a synchronizing signal to all clients [63]. In some caseswhere recordings
are not synchronized, it is possible to attempt to synchronize the inputs by software
a posteriori (i.e., after the recording session) [1].

Success in providing an easy way to calibrate sensors is essential for adoption
of the system. The most typical forms of calibration requires a user or a technician
to calibrate the system. In most cases, the calibration task is supported by the use
of a suitable prop or reference object used to create a common frame of reference
for all cameras that can see the object within its field of view [97]. One of the
most commonly used props for calibration is a calibration board imprinted with a
chessboard pattern, which is commonly used for stereoscopic RGB camera setups,
but cubes with identifiable patterns, and LED or Laser markers put on customized
objects, are sometimes preferred, as they provide cues for all four RGB-D channels
and are thus more suitable for RGB-D cameras [3, 66, 97]. Palasek et al. proposed
a flexible calibration for a setup with three Kinects and a double-sided chessboard
[82]. Classical chessboard patterns may not be viable when using pure IR depth
cameras (which have no RGB channel), as the texture would vanish. In many cases,
an initial calibration step can be performed once, allowing for continuous use of
the system, provided the cameras are maintained in a fixed location. The time spent
on calibrating a system can vary from little less than 5min up to 45min or more,
depending on the complexity of the installation, the number of cameras, and the
degree of knowledge required from a technician or user to setup a fully calibrated
system. Thus, it is preferable to have a system that could either (a) perform automatic
3D calibration of a scene [100] or (b) forgo calibration as part of a model fusion
or global registration process [53]. To make the MDC system user-friendly and
accessible to a wider segment of the population, calibration should be done without
requiring user expertise or hard-to-replicate calibration props. Another option is to
perform self-calibration using a combination of projectors and depth sensors [53].
Finally, there are approaches such as [63, 71, 83, 112] that allow cameras to bemoved
around in the recording environment during the capture. These approaches usually
implement algorithms to achieve registration of the scene on the fly (in real-time).

7.2.2 Sensor Interference

Most depth sensors were originally designed to be used as a single device to cap-
ture a portion of the environment. First-generation Kinects (V1) emitted structured
infrared light into a scene and figured out depth from the patterns reflected from the
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infrared light. The problem of sensor interference appeared when multiple sensors
covered overlapping regions of the target subject. To deal with the interference prob-
lem, researchers have proposed a variety of software- [87, 110] and hardware-based
solutions, including adapting the sensors with vibrational components [14], mod-
ifying them for selective scheduling of the IR projector subsystem [32], and time
multiplexing [12, 87]. While this issue was mostly present with the first generation
of Kinects, sensor interference is not considered a major problem in the literature
today, as most systems can simply cope with the level of occasional interference that
is present in the current sensors. Newer depth sensors such as the Kinect V2 (a.k.a.
Kinect for Xbox One) operate under a different principle (Time of flight, or TOF) to
resolve the depth image, and interference can be solved by changing the signal shape
[85], or by performing multi-view image fusion [60]. Furthermore, Intel reports that
their MDCs suffer from very little cross-talk when the sensors overlap in field of
view [44], whereas sensor interference is not an issue as more than 100 cameras are
facing each other in Microsoft’s Mixed Reality capture system [20] (this system is
discussed in more detail in Sect. 7.2.5). It is worth noting that depth sensors that use
exclusively stereo RGB cameras inherently remove the need for using infrared light
to resolve the depth information and are thus free from multi-sensor interference
[95]. Finally, a detailed overview on the combination of multiple TOF depth sensors
and color cameras is presented in [46].

7.2.3 Camera Registration and Model Fusion

When setting up an MDC, the precise position and orientation of the depth cameras
with respect to each other in the scene is usually unknown. As a result, the most
significant challenge when using multiple depth sensors is to find a set of affine
transformations that can be used to combine the 3D samples captured from multiple
viewpoints into a single 3D scene. This is known as the registration problem.Morell-
Gimenez et al. described the state of the art in 3D rigid registration methods up to
2014 [77], and Tam et al. surveyed 3D rigid and non rigid registration of multiple
3D datasets up to 2013 [98]. In general, most registration methods first approximate
a coarse transformation using a subset of the available data points, and then refine
it to find a more precise match of the scenes using the whole set of available data
points or a significantly larger dataset than what is used for coarse approximation.
As noted in [77], a large number of methods, such as [2, 51, 64, 94], use variations
of RANSAC [34] for coarse registration and Iterative Closest Point (ICP)[13, 18]
for fine registration, whereas others use feature matching, image warping, or smooth
fields of rigid transformations [25].Other approaches use particle filtering andmodel-
based approaches [16, 113]. After registration, the individual 3D meshes can be
seamed together by using a so-called “zippering” approach [2], or skeleton averaging
[108]. Another popular approach in terms of image registration is the depth map
fusion approach, whichwas initiallymeant for scanning subjects with a single Kinect
[79], but can also be used when using multiple Kinects [81].
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7.2.4 Post-processing of MDCs’ Resulting Data

The result of RGB-D recordings lends itself to further post-processing, benchmark-
ing, and analysis. Several RGB-D datasets to evaluate model registration or depth
map fusion approaches are publically available [4, 10, 15, 92]. For instance, Singh et
al. [92] presented a system for quick generation of RGB-D images for a large-scale
database of objects suitable for benchmarking, in a setup that would be a precursor
to current volumetric capture systems (see Fig. 7.4). Many of these datasets were de-
scribed in detail by Berger in 2014 [10], while an extensive list of RGB-D Datasets
was summarized in 2017 by Cai et al. [15].

At some point in the data capture process, it is likely that some segmentation
will be required. In many cases, the subjects of interest are the persons in the scene,
or the objects in the foreground. They can be segmented out of each scene prior to
attempting model fusion. Once the persons in a scene have been extracted from the
background, a further post-processing task would be subject identification and pose
estimation [8, 37]. Segmentation can also be of foreground from background objects
in the scene, or it can be segmentation of static versus dynamic elements. Another
typical element of post-processing is the classification of objects of interest in the
scene, such as walls, furniture, and other obstacles. This is particularly relevant for
robot vision [4].

Apart from static object analysis and classification, activity analysis using MDCs
has also been proposed. For example, in the medical field, multiple efforts have been
made to automatically classify the activity of patients to facilitate remote patient
assessment and monitoring [23, 42], while in the area of smart systems, MDCs have
been proposed to extract contextual information by combining several Kinect depth
cameras, applying neural network algorithms to support context-aware interaction
techniques, which allow users to share content and collaborate [109].

Fig. 7.4 Singh et al. presented a system for fast generation of RGB-D datasets. On the left: A Prime
Sense Carmine depth sensor mounted together with a Canon T3 using RGBD Toolkit’s mount. On
the right: a side view of all Carmines mounted with their respective Canon T3s, pointed at a photo
bench. (Image reproduced with permission from [92])
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7.2.5 Volumetric Capture

Volumetric capture is a term that describes systems that cover the whole process of
3D capture with MDCs, with the result of producing a 3D reconstruction of a static
scene or an animated sequence (sometimes referred to as a 4Dmovie, Free-Viewpoint
Video, or 4D film). One of the first articles using the term volumetric 3D capture is
the article by Maimone et al. [73], where five Kinects are used to capture an indoor
scene in the context of a telepresence application. Today’s volumetric capture studios
are commercial enterprises that derive from the research on MDCs from the past
fifteen years. In 2018, Intel introduced twomajor volumetric capture and filmmaking
projects. First, a large-scale studio to support VR and AR video productions, using a
very large array with hundreds of cameras, over a 10,000 sq. ft. (or 926m2) area [49],
and supported by a massive neuromorphic computing microprocessor architecture
[30]. Since such a large setup involves extremely high computational demands and
overall costs, Intel’s second initiative for independent filmmakers was a live studio
proposition using four Intel RealSense cameras for volumetric capture in a regular
room [50]. Intel has gone to great lengths to document how to setup and use its
RealSense D400 series cameras for this second type of MDC [44].

Almost concurrently, Microsoft launched an intermediate-size competing stu-
dio solution supported by a large array of about a hundred cameras called Mixed
Reality Capture Studios. The 3D objects captured in this platform (referred to as
“holograms”) can be used in combination with the HoloLens Mixed Reality system,
which supports multiple users collaborating on the same VR environment [75, 76].
As opposed to having an array of RGB-D sensors, Microsoft’s volumetric capture
system relies on multiple RGB and IR cameras in combination with unstructured
static IR laser light sources illuminating the capture volume, essentially breaking up
an array of RGB-D cameras into its individual components (see Fig. 7.8). TheMixed
Reality Capture studios are an implementation of a complete end-to-end solution for
the capture of 4D video, based on the work by Collet et al. [20]. This work has been
expanded byDou et al. in an approach called “Motion2Fusion” to obtain a high speed
fusion pipeline with a more robust response to changes in topology and more real-
istic results, reducing the Uncanny Valley effect from previous versions [27]. Other
recent research on volumetric capture include the work of Satnik et al. [86], who
used 3 inward looking Kinects V2 connected to a single PC to achieve volumetric
reconstruction providing a low-cost hardware solution, while a portable volumetric
capture system was presented in 2018 by Sterzentsenko et al. [96]. Their system
relies on a group of four inward looking Intel RealSense D415 sensors mounted on
tripods to capture a 360◦ view of their subjects for a low-cost and flexible MDC
system.
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7.3 Applications of MDCs

MDCs have been used to support a wide array of visual capture tasks. As can be
appreciated from the literature below, the boundaries between one area of application
and another are not well defined, as the sensors can be used to support more than
one functional objective simultaneously. In fact, at the time of introduction in 2010,
Microsoft’s Kinect was promoted as a device that could be used both for gameplay
and to operate the gaming console itself, potentially eliminating the need for hand-
held controllers in gaming environments. In hindsight, this turned out not to be the
case, but the devices still spurred significant advances in visual computing.Microsoft
popularized the use of RGB-D sensors with the introduction of the Kinect Version 1.
In 2013, a refined sensor called Kinect Version 2 was introduced, providing higher
resolution, a wider field of view, and reduction in the interference effects when using
multiple sensors. Microsoft stopped the distribution of Kinects after they eliminated
it from the Xbox gaming platform in 2015, and completely discontinued the Kinect
product line in 2017, integrating sophisticated depth-sensing capabilities in their
HoloLens Head Mounted Displays (HMD’s) and in their Mixer Reality Capture
systems. Despite Microsoft’s partial withdrawal from the market of commodity-
grade depth sensors, Intel and other hardware manufacturers provide a wide range
of alternatives to the original Kinects and continue to support the development of
RGB-D sensors, which are now embedded in laptops, tablets and mobile phones.
In the following sections, we will survey some of the most common applications of
MDCs, going from 3D scanning of static models with fixed geometry, to capturing
subjects with changeable geometry, but with fixed topology, all the way through
capture of complex and dynamic scenes with changing geometry and topology that
allow for real-time interaction.

7.3.1 Scene Reconstruction

A typical application of MDCs is to use them for scene reconstruction [1, 11].
In fact, one of the most well-publicized applications of the original Kinect is 3D
model reconstruction of static subjects or rigid objects using KinectFusion [79].
Fundamental techniques for scene reconstruction from RGB-D images are presented
in Chap.5. Here, we focus on using MDCs for scene reconstruction. A key aspect
of scene reconstruction lies on the arrangement of cameras, which can be divided
in five common setups and is highly dependent on the goal of the application [9],
as shown in Fig. 7.5. For instance, both [93] and [83] use two Kinects in a variety
of arrangements to extend the field of view of the cameras. Later, Li et al. [68] use
an outward-looking array of six sensors to create a 360◦ panoramic RGB-D scene,
whereas Kainz et al. introduced the Omnikinect, an inward looking arrangement of
eight fixed plus onemovableKinects suitable formotion capturing and reconstruction
[56]. A system with similar functionality, but available as a general purpose 3D

http://dx.doi.org/10.1007/978-3-030-28603-3_5
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Fig. 7.5 Five typical capturing setups featuring MDCs. Multiple depth cameras are evenly placed
in a virtual circle around the scene center (first on the left), multiple cameras are in line to capture a
volume with a large side length (second), multiple cameras juxtaposed and facing away from each
other, creating a panoramic view (third), and two cameras face each other, but are occluded by the
scene content (fourth). Multiple uncalibrated moving cameras (fifth), with or without partial scene
overlap in their viewing regions (Image reproduced with permission from [9])

Fig. 7.6 Comparison of single-camera SLAM result and three-camera SLAM result. a is a single-
camera SLAM result, the movement trajectory is in orange. b is a three-camera SLAM result with
the same movement trajectory as a, different colors mean different camera trajectories. (Image
reproduced with permission from [74])

scanning open source library for sets of second generation Kinects connected to
individual PCs to support multiple cameras and stream synchronization is presented
in [63]. Finally, one of the outstanding applications of MDCs is when they are used
for simultaneous localization and mapping (SLAM) [11, 102, 104, 111], as shown
in Fig. 7.6. Although not focused on MDCs, but in online 3D reconstruction using
RGB-D sensors, a 2018 state of the art report [115] covers thoroughly the area of 3D
reconstruction, whereas a 2017 comprehensive survey on the spatial arrangement of
cameras in MDCs is presented by Wang et al. [103].
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Fig. 7.7 Pipeline overview of DeepMoCap, a Retro-reflector based Motion Capture MDC system
which uses a FullyConvolutionalNetwork to learn reflector locations and their temporal dependency
among sequential frames. Image reproduced without changes from [17], used under the Creative
Commons Attribution License (CC BY 4.0) [21]

7.3.2 Gesture Capture and 3D Scanning of Individuals

One of the original applications of Microsoft’s Kinect was to capture live action dur-
ing gameplay with the goal of interpreting body motions and postures as commands
to the gaming console. This was quickly extended to other contexts and sparked a
large amount of research in gesture capture and interpretation, as well as 3D scanning
of people. For instance, Rafighi et al. [83] introduced a dual-camera system to extend
the field of view of the playing area so more people can play together while reducing
the risk of inter-player collisions. While MDCs can be used for scanning individuals
just as any other object, some MDCs have been proposed with the express intent to
produce 3D scans of people to generate models or avatars that can be later used in
games, fashion, or other applications. Such applications need to account for the vari-
ety of poses the human body can achieve [26, 57, 70, 101] and attempt to complete
the missing parts of the body that might become evident as new angles and poses
are tried by the subjects. For instance, the work of Wilson et al. [107] describes
a system to capture moving subjects from multiple angles that aims at creating a
complete coverage of the interaction from different points of view. Kilner et al. [57]
proposed a system for scanning human subjects using eight Kinects placed within a
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Fig. 7.8 Microsoft’s Mixed Reality Capture studio in Redmond featuring the making of “Hold The
World” with David Attenborough. Image used with permission from Factory 42 and Sky [31]

fixed frame surrounding a user, whereas [101] presented a system suitable for full
body scanning at home using three Kinects. Dou et al. [28] proposed another system
with eight Kinect sensors to capture a scan of a moving individual with the purpose
of achieving a complete 3D reconstruction by integrating the missing elements of
several scans over time, whereas Lin et al. [70] uses a systemwith 16 cameras to do a
relatively fast scan of an individual within three seconds. Estimation of whole body
poses in dynamic scenes using MDCs with and without markers is still an active
area of research [17, 26, 45, 108]. For instance, Desai et al. use multiple scanners of
freely moving subjects to perform a full body skeletal reconstruction [26], whereas
Wu et al. present a system to track multiple individuals occluding each other or
being occluded by other objects by averaging joint positions from complementary
viewpoints [108].

7.3.3 Performance and Motion Capture for Entertainment
and Health

Another application area of MDCs is as a motion capture (MoCap) platform for
cinematic, gaming, and studio recording contexts, as discussed in Sect. 7.2.5. Typical
setups forMoCap are shown inFigs. 7.1 and7.8.Althoughone of themain advantages
of RGB-D sensors and MDCs is to support marker-less motion capture [12], some
recent approaches propose the use of fully convolutional neural networks for motion
capture using retro-reflectors to obtainmore robust tracking results [17] (see Fig. 7.7).

Originally, Microsoft’s Kinect was introduced as a gaming console accessory, and
some of the its most successful titles were dancing games. Accordingly, MDCs have
been used by researchers for dance capture and analysis [7, 35]. MDCs can also be
used for performance enhancement. In 2013, Fuhrman proposed a system of three
Kinects to map a performer’s motion to music [35] (see Fig. 7.9). While fixed camera
approaches are standard for performance capture [59], some approaches allow for
freely moving cameras to be used to capture a scene or performance [71, 112].

Apart from applications in entertainment, motion capture MDCs have also been
proposed for use in the health case sector to study human kinetics [5], for gait analysis
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Fig. 7.9 Fuhrmann et al.
introduced an MDC system
for live sound transformation
using three sensors, with two
of them placed at 90◦ from
each other to extend the
working volume of the
trackers. Image reproduced
with permission from [35],
production: The XXth
Century Ensemble
Vienna—Peter Burwik

[6, 55], dance analysis [61], crowd behavior analysis [88], patient monitoring [40,
41], and medical assessment [24, 38, 69].

7.3.4 Telepresence, Teleconferencing, Augmented and Mixed
Reality

An exciting proposition for the use of MDCs is for application in teleconferencing
systems, as an additional depth channel allows for a more realistic experience and
free-viewpoint vision for remote conferencing [3, 58, 73]. In 2012, Maimone et al.
[73] proposed the use of MDCs for a telepresence application, while Alexiadis et al.
[3] proposed a system to reconstruct 3D models of moving users in a setup of four
Kinect cameras connected to a single PC to facilitate multiparty 3D tele-immersion.
Mixed reality applications combine elements from the synthetic, computer-mediated
imagery, with the real world. RoomAlive [53] was one of the first systems that mixed
a hybrid capture and projector system to display computer imagery on the interior of
a room for entertainment purposes using multiple projector and depth sensor pairs.
The automotive industry has become interested in the concept of developing virtual
training facilities, so researchers have proposed the use of MDCs for Mixed Reality
VirtualWorkshops [39]. In 3D telepresence, the goal is to provide a user with a virtual
reconstruction of a remote scene in real time. This can be done by placing the user in
an immersive digital world using VR HMD’s or Mixed Reality systems, such as the
Magic Leap [72], the HTC Vive [47], and the HoloLens [75]. All these devices need
depth-sensing capabilities to provide compelling Mixed Reality experiences. Mixed
and Augmented RealityMDCs have evolved to the point that the HMD integrates the
depth-sensing capability. By having multiple users wearing Mixed Reality headsets,
we have an ecosystem of MDCs where each user is wearing an RGB-D sensor that
allows them to have a partial reconstruction of their environment and a sharedMixed
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Fig. 7.10 Dou et al. presented an MDC system for real-time performance capture that is robust to
many complex topology changes and fast motions. Image reproduced with permission from [29]

Reality experience. Furthermore, one of the most notable applications of MDCs for
telepresence is the use of the HoloLens in combination with multiple depth sensors
towards the implementation of a telepresence system introduced as Holoportation.
In the Holoportation setup, an array of custom depth cameras surrounds users, some
of which are wearing the HoloLens [81], to provide scene reconstruction within
a room, with registration implemented using the Levenberg–Marquardt algorithm
(LM) and Preconditioned Conjugate Gradient (PCG) in a fusion approach [29]. In
a similar way, Joachmiczak et al. proposed an approach to combine the HoloLens
with commodity depth sensors (Kinects), putting an emphasis on supporting mixed
reality telepresence [52].More recently,MDCs have been proposed to support mixed
reality telepresence through open source platforms [62, 63] and interactive 3D tele-
immersion [26], where one user can have the feeling of being at a remote location
either by the use of VR HMDs or the HoloLens [62, 81]. One of the most impressive
MDCs to date is the system presented by Dou et al., where an array of RGB-D
cameras used to capture challenging scenes for immersive telepresence in real time.
This system allows to capture not only fast changes in the geometry of the scene,
but is robust to changes in topology [29]. For instance, a user can take off a piece
of clothing and the system will produce separate meshes accordingly (see Fig. 7.10).
Another recent approach for teleconferencing based on the use of high-resolution
ZED camera arrays is presented in [43], it has the advantage that it does not require
the user to wear any form of HMD, but at the expense of losing the immersive
experience provided by HMD’s.

7.4 Summary

Over the past decade, MDCs have rapidly evolved in many different directions,
whereas initial systems were focused on 3D reconstruction of static scenarios, more
recent systems focus on SLAM [74, 115]. Systems have also evolved from the cap-
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ture of individuals to capture of scenes withmultiple actors or players [83]. Increased
flexibility comes from the possibility of obtaining scans from participants who are
free to move and have their whole body captured and synthesized in a single textured
model [28]. Improvements in communication technology and increased network
bandwidth availability have brought forward the possibility of using MDCs for im-
mersive telepresence [81]. In terms of scale, the proposed number of cameras has
varied wildly, with Intel’s large Volumetric Capture studio [49] being an example of
massive enterprises aimed at full 3D reconstruction of scenes using large arrays of
cameras, but also reflecting the vast amount of resources required to setup and main-
tain such a large-scale system. Recent research on MDCs focuses on the possibility
of creating systems that are open source and accessible to a wider audience [52].

While we have witnessed how MDCs have been successfully proposed for many
applications, and provide indeedmore completed descriptions of the scene, there will
always be a trade-off between completeness of view and computational demands,
perhaps best illustrated by Intel’s small versus large volumetric studio setups. Re-
searchers and developers should estimate the number of ideal cameras for the ap-
plication at hand, considering the resources available. In most cases, the principle
of “less is more” will tend to hold true. One key characteristic of future MDCs will
necessarily involve flexibility, which can refer to a number of aspects. The first would
be flexibility in the number of cameras that a system supports. The second would
refer to the placement of the sensors in the capture environment (fixed versus move-
able). The third refers to the variety of sensors the system supports. The last one, but
not least important, refers to the possibility of having systems that evolve over time,
allowing for changes in configuration and scale as time goes by.
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Part II
RGB-D Data Analysis

Part I of this book described how RGB-D data is acquired, cleaned and enhanced.
Part II focuses onRGB-Ddata analysis. This level aims to understand the object-level
semantics in the scene. Once the images have been acquired, then major tasks are
segmentation, object detection, object pose estimation and semantic modelling. The
challenge is to cope with viewpoint variability, occlusion, clutter and similar looking
distractors. These provide the basis for numerous applications, some of which are
described in Part III.

RGB-D enables better estimation of saliency compared to colour alone. The first
row shows colour and depth, while the second row shows the saliency map using
only colour and followed by the saliency map using colour and depth (Chap. 9). The
bottom row shows an RGB and heatmapped depth image followed by the result of
foreground segmentation (Chap. 10).
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Chapter 8
RGB-D Image-Based Object Detection:
From Traditional Methods to Deep
Learning Techniques

Isaac Ronald Ward, Hamid Laga and Mohammed Bennamoun

Abstract Object detection from RGB images is a long-standing problem in image
processing and computer vision. It has applications in various domains including
robotics, surveillance, human–computer interaction, and medical diagnosis. With
the availability of low- cost 3D scanners, a large number of RGB-D object detection
approaches have been proposed in the past years. This chapter provides a compre-
hensive survey of the recent developments in this field. We structure the chapter into
two parts; the focus of the first part is on techniques that are based on hand-crafted
features combined with machine learning algorithms. The focus of the second part is
on the more recent work, which is based on deep learning. Deep learning techniques,
coupled with the availability of large training datasets, have now revolutionized the
field of computer vision, including RGB-D object detection, achieving an unprece-
dented level of performance. We survey the key contributions, summarize the most
commonly used pipelines, discuss their benefits and limitations and highlight some
important directions for future research.

8.1 Introduction

Humans are able to efficiently and effortlessly detect objects, estimate their sizes and
orientations in the 3D space, and recognize their classes. This capability has long
been studied by cognitive scientists. It has, over the past two decades, attracted a
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lot of interest from the computer vision and machine learning communities mainly
because of the wide range of applications that can benefit from it. For instance,
robots, autonomous vehicles, and surveillance and security systems rely on accurate
detection of 3Dobjects to enable efficient object recognition, grasping,manipulation,
obstacle avoidance, scene understanding and accurate navigation.

Traditionally, object detection algorithms operate on images captured with RGB
cameras. However, in the recent years, we have seen the emergence of low-cost 3D
sensors, hereinafter referred to as RGB-D sensors, that are able to capture depth
information in addition to RGB images. Consequently, numerous approaches for
object detection from RGB-D images have been proposed. Some of these methods
have been specifically designed to detect specific types of objects, e.g. humans, faces
and cars. Others are more generic and aim to detect objects that may belong to one
of many different classes. This chapter, which focuses on generic object detection
from RGB-D images, provides a comprehensive survey of the recent developments
in this field. We will first review the traditional methods, which are mainly based
on hand-crafted features combined with machine learning techniques. In the second
part of the chapter, we will focus on the more recent developments, which are mainly
based on deep learning.

The chapter is organized as follows; Sect. 8.2 formalizes the object detection
problem, discusses the main challenges, and outlines a taxonomy of the different
types of algorithms. Section8.3 reviews the traditional methods, which are based
on hand-crafted features and traditional machine learning techniques. Section8.4
focuses on approaches that use deep learning techniques. Section8.5 discusses some
RGB-D-based object detection pipelines and compares their performances on pub-
licly available datasets, using well-defined performance evaluation metrics. Finally,
Sect. 8.6 summarizes the main findings of this survey and discusses some potential
challenges for future research.

8.2 Problem Statement, Challenges, and Taxonomy

Object detection fromRGB-D images can be formulated as follows; given anRGB-D
image, we seek to find the location, size and orientation of objects of interest, e.g.
cars, humans and chairs. The position and orientation of an object is collectively
referred to as the pose, where the orientation is provided in the form of Euler angles,
quaternion coefficients or some similar encoding. The location can be in the form
of a 3D bounding box around the visible and/or non-visible parts of each instance
of the objects of interest. It can also be an accurate 2D/3D segmentation, i.e. the
complete shape and orientation even if only part of the instance is visible. In general,
we are more interested in detecting the whole objects, even if parts of them are
not visible due to clutter, self-occlusions, and occlusion with other objects. This is
referred to as amodal object detection. In this section, we discuss the most important
challenges in this field (Sect. 8.2.1) and then lay down a taxonomy for the state of
the art (Sect. 8.2.2).
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8.2.1 Challenges

Though RGB-D object detection has been extensively investigated, there are a num-
ber of challenges that efficient solutions should address. Below, we classify these
challenges into whether they are due to intrinsic or extrinsic factors. Extrinsic fac-
tors refer to all the external factors that might affect object detection (see Fig. 8.1).
Extrinsic challenges include:

• Occlusions and background clutter . The task of object detection algorithms is
to not only localize objects in the 3D world, but also to estimate their physical
sizes and poses, even if only parts of them are visible in the RGB-D image. In
real-life situations, such occlusions can occur at anytime, especially when dealing
with dynamic scenes. Clutter can occur in the case of indoor and outdoor scenes.
While biological vision systems excel at detecting objects under such challeng-
ing situations, occlusions and background clutter can significantly affect object
detection algorithms.

• Incomplete and sparse data. Data generated by RGB-D sensors can be incom-
plete and even sparse in some regions, especially along the z−, i.e. depth, direction.
Efficient algorithms should be able to detect the full extent of the object(s) of inter-
est even when significant parts of it are missing.

• Illumination. RGB-D object detection pipelines should be robust to changes in
lighting conditions. In fact, significant variations in lighting can be encountered
in indoor and outdoor environments. For example, autonomously driving drones
and domestic indoor robots are required to operate over a full day–night cycle
and are likely to encounter extremes in environmental illumination. As such, the

Fig. 8.1 Illustration of some extrinsic challenges in object detection. aObjects of interest are clearly
separated from each other and from the uniform background. b Two objects partially occluded by a
cardboard box. cSensor noise thatmight affect images.dAnoverexposed image. eAnunderexposed
image. f A cluttered image, which hinders the detection of smaller and occluded objects
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appearance of objects can be significantly affected not only in the RGB image but
also in the depthmap, depending on the type of 3D sensors used for the acquisition.

• Sensor limitations. Though sensor limitations classically refer to colour image
noise that occurs on imaging sensors, RGB-D images are also prone to other
unique sensor limitations. Examples include spatial and depth resolution. The latter
limits the size of the objects that can be detected. Depth sensor range limitations
are particularly noticeable, e.g. the Microsoft Kinect, which is only sufficiently
accurate to a range of approximately 4.5m [79]. This prevents the sensor from
adequately providing RGB-D inputs in outdoor contexts where more expensive
devices, e.g. laser scanners, may have to be used [56].

• Computation time. Many applications, e.g. autonomous driving, require real-
time object detection. Despite hardware acceleration, using GPUs, RGB-D-based
detection algorithms can be slower when compared to their 2D counterparts. In
fact, adding an extra spatial dimension increases, relatively, the size of the data.
As such, techniques such as sliding windows and convolution operations, which
are very efficient on RGB images, become significantly more expensive in terms
of computation time and memory storage.

• Training data. Despite the widespread use of RGB-D sensors, obtaining large
labelled RGB-D datasets to train detection algorithms is more challenging when
compared to obtaining purelyRGBdatasets. This is due to the price and complexity
of RGB-D sensors. Although low-cost sensors are currently available, e.g. the
Microsoft Kinect, these are usually more efficient in indoor setups. As such, we
witnessed a large proliferation of indoor datasets, whereas outdoor datasets are
fewer and typically smaller in size.

Fig. 8.2 Illustration of some intrinsic challenges in object detection. a–c Intra-class variations
where objects of the same class (chair) appear significantly different. d–f Inter-class similarities
where objects belonging to different classes (cat, cougar and lion) appear similar
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Intrinsic factors, on the other hand, refer to factors such as deformations, intra-class
variations, and inter-class similarities, which are properties of the objects themselves
(see Fig. 8.2):

• Deformations. Objects can deform in a rigid and non-rigidway.As such, detection
algorithms should be invariant to such shape-preserving deformations.

• Intra-class variations and inter-class similarities. Object detection algorithms
are often required to distinguish between many objects belonging to many classes.
Such objects, especially when imaged under uncontrolled settings, display large
intra-class variations. Also, natural and man-made objects from different classes
may have strong similarities. Such intra-class variations and inter-class similarities
can significantly affect the performance of the detection algorithms, especially if
the number of RGB-D images used for training is small.

This chapter discusses how the state-of-the-art algorithms addressed some of these
challenges.

8.2.2 Taxonomy

Figure8.3 illustrates the taxonomy that we will follow for reviewing the state-of-
the-art techniques. In particular, both traditional (Sect. 8.3) and deep learning-based
(Sect. 8.4) techniques operate in a pipeline of two or three stages. The first stage
takes the input RGB-D image(s) and generates a set of region proposals.The second
stage then refines that selection using some accurate recognition techniques. It also
estimates the accurate locations (i.e. centres) of the detected objects, their sizes
and their pose. This is referred to as the object’s bounding box. This is usually
sufficient for applications such as object recognition and autonomous navigation.
Other applications, e.g. object grasping and manipulation, may require an accurate
segmentation of the detected objects. This is usually performed either within the
second stage of the pipeline or separately with an additional segmentation module,
which only takes as input the region within the detected bounding box.

Note that, in most of the state-of-the-art techniques, the different modules of the
pipeline operate in an independent manner. For instance, the region proposal module
can use traditional techniques based on hand-crafted features, while the recognition
and localization module can use deep learning techniques.

Another important point in our taxonomy is the way the input is represented and
fed into the pipeline. For instance, somemethods treat the depthmap as a one-channel
image where each pixel encodes depth. The main advantage of this representation
is that depth can be processed in the same way as images, i.e. using 2D operations,
and thus there is a significant gain in the computation performance and memory
requirements. Other techniques use 3D representations by converting the depth map
into either a point cloud or a volumetric grid. These methods, however, require 3D
operations and thus can be significantly expensive compared to their 2D counterparts.
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Fig. 8.3 Taxonomy of the state-of-the-art traditional and deep learning methods

The last important point in our taxonomy is the fusion scheme used to merge
multimodal information. In fact, the RGB and D channels of an RGB-D image carry
overlapping aswell as complementary information. The RGB imagemainly provides
information about the colour and texture of objects. The depthmap, on the other hand,
carries information about the geometry (e.g. size, shape) of objects, although some
of this information can also be inferred from the RGB image. Existing state-of-the-
art techniques combine this complementary information at different stages of the
pipeline (see Fig. 8.3).

8.3 Traditional Methods

The first generation of algorithms that aim to detect the location and pose of objects
in RGB-D images relies on hand-crafted features1 combined with machine learning
techniques. They operate in two steps: (1) candidate region selection and (2) detection
refinement.

1Here, we defined hand-crafted or hand-engineered features as those which have been calculated
over input images using operations which have been explicitly defined by a human designer (i.e.
hand-crafted), as a opposed to learned featureswhich are extracted through optimization procedures
in learning pipelines.
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8.3.1 Candidate Region Proposals Generation

The first step of an object detection algorithm is to generate a set of candidate
regions, also referred to as hypotheses, from image and depth cues. The set will
form the potential object candidates and should cover the majority of the true object
locations. This step can be seen as a coarse recognition step in which regions are
roughly classified into whether they contain the objects of interest or not. While the
classification is not required to be accurate, it should achieve a high recall so that
object regions will not be missed.

8.3.1.1 Region Selection

The initial set of candidate regions can be generated by using (1) bottom-up
clustering-and-fitting, (2) sliding windows or (3) segmentation algorithms.

Bottom-up clustering-and-fitting methods start at the pixel and point level,
and iteratively cluster such data into basic geometric primitives such as cuboids.
These primitives can be further grouped together to form a set of complex object
proposals. In the second stage, an optimal subset is selected using some geometric,
structural, and/or semantic cues. Jiang and Xiao [35] constructed a set of cuboid
candidates using pairs of superpixels in an RGB-D image. Their method starts by
partitioning the depth map, using both colour and surface normals, into superpixels
forming piecewise planar patches. Optimal cuboids are then fit to pairs of adjacent
planar patches. Cuboids with high fitting accuracy are then considered as potential
candidate hypotheses. Representing objects using cuboids has also been used in [8,
39, 51]. Khan et al. [39] used a similar approach to fit cuboids to pairs of adjacent
planar patches and also to individual planar patches. The approach also distinguishes
between scene bounding cuboids and object cuboids.

These methods tend, in general, to represent a scene with many small compo-
nents, especially if it contains objects with complex shapes. To overcome this issue,
Jiang [34] used approximate convex shapes, arguing that they are better than cuboids
in approximating generic objects.

Another approach is to use a slidingwindowmethod [15, 80, 81]where detection
is performed by sliding, or convolving, a window over the image. At each window
location, the region of the image contained in the window is extracted, and these
regions are then classified as potential candidates or not depending on the similarity
of that region to the objects of interest. Nakahara et al. [57] extended this process
by using multi-scale windows to make the method robust to variations in the size of
objects that can be detected. Since the goal of this step is to extract candidate regions,
the classifier is not required to be accurate. It is only required to have a high recall
to ensure that the selected candidates cover the majority of the true object locations.
Thus, these types of methods are generally fast and often generate a large set of
candidates.
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Finally, segmentation-based region selection methods [6, 9] extract candidate
regions by segmenting the RGB-D image into meaningful objects and then con-
sidering segmented regions separately. These methods are usually computationally
expensive and may suffer in the presence of occlusions and clutter.

8.3.1.2 Region Description

Once candidate regions have been identified, the next step is to describe these regions
with features that characterize their geometry and appearance. These descriptors can
be used to refine the candidate region selection, either by using some supervised
recognition techniques, e.g. Support Vector Machines [80], AdaBoost [16] and hier-
archical cascaded forests [6], or by using unsupervised procedures.

In principle, any type of features which can be computed from the RGB image
can be used. Examples include colour statistics, Histogram of Oriented Gradients
(HOG) descriptor [13], Scale-Invariant Feature Transform (SIFT) [14], the Chamfer
distance [7] and Local Binary Patterns (LBPs) [31]. Some of these descriptors can
be used to describe the geometry if computed from the depth map, by treating depth
as a grayscale image. Other examples of 3D features include:

• 3D normal features. These are used to describe the orientation of an object’s
surface. To compute 3D normals, one can pick n nearest neighbours for each point,
and estimate the surface normal at that point using principal component analysis
(PCA). This is equivalent to fitting a plane and choosing the normal vector to the
surface to be the normal vector to that plane, see [41].

• Point density features [80]. It is computed by subdividing each 3D cell into
n × n × n voxels and building a histogram of the number of points in each voxel.
Song et al. [80] also applied a 3D Gaussian kernel to assign a weight to each
point, cancelling the bias of the voxel discretization. After obtaining the histogram
inside the cell, Song et al. [80] randomly pick 1000 pairs of entries and compute
the difference within each pair, obtaining what is called the stick feature [76]. The
stick feature is then concatenated with the original count histogram to form the
point density feature. This descriptor captures both the first order (point count)
and second order (count difference) statistics of the point cloud [80].

• Depth statistics. This can include the first and second order statistics as well as
the histogram of depth.

• Truncated Signed Distance Function (TSDF) [59]. For a region divided into
n × n × n voxels, the TSDF value of each voxel is defined as the signed distance
between the voxel centre and the nearest object point on the line of sight from
the camera. The distance is clipped to be between −1 and 1. The sign indicates
whether the voxel is in front of or behind a surface, with respect to the camera’s
line of sight.

• Global depth contrast (GP-D) [67]. This descriptor measures the saliency of a
superpixel by considering its depth contrast with respect to all other superpixels.
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Chaps. 9 and 10 present additional hand-crafted features which are used in RGB-D
saliency detection pipelines.

• Local Background Enclosure (LBE) descriptor [22]. This descriptor, which is
also used to detect salient objects, is designed based on the observation that salient
objects tend to be located in front of their surrounding regions. Thus, the descrip-
tor can be computed by creating patches, via superpixel segmentation [2], and
considering the angular density of the surrounding patches which have a signifi-
cant depth difference to the centre patch (a difference beyond a given threshold).
Feng et al. [22] found that LBE features outperform depth-based features such as
anisotropic Center-Surround Difference (ACSD) [36], multi-scale depth contrast
(LMH-D) [60], and global depth contrast (GP-D) [67], when evaluated on the
RGBD1000 [60] and NJUDS2000 [36] RGB-D benchmarks.

• Cloud of Oriented Gradients (COG) descriptor [70]. It extends the HOG
descriptor, which was originally designed for 2D images [10, 24], to 3D data.

• HistogramofControl Points (HOCP)descriptor [73, 74].Avolumetric descrip-
tor calculated over patches of point clouds featuring occluded objects. The descrip-
tor is derived from the Implicit B-Splines (IBS) feature.

In general, these hand-crafted features are computed at the pixel, superpixel, point,
or patch level. They can also be used to characterize an entire region by aggregating
the features computed at different locations on the region using histogram and/or
Bag-of-Words techniques, see [41]. For instance, Song et al. [80] aggregate the
3D normal features by dividing, uniformly, the half-sphere into 24 bins along the
azimuth and elevation angles. Each bin encodes the frequency of the normal vectors
whose orientation falls within that bin. Alternatively, one can use a Bag-of-Words
learned from training data to represent each patch using a histogram which encodes
the frequency of occurrences of each code word in the patch [80].

8.3.2 Object Detection and Recognition

Given a set of candidate objects, one can train, using the features described in
Sect. 8.3.1, a classifier that takes these candidates and classifies them into either
true or false detections. Different types of classifiers have been used in the literature.
Song and Xiao [80] use Support Vector Machines. Asif et al. [6] use hierarchical
cascade forests. In general, any type of classifiers, e.g. AdaBoost, can be used to
complete this task. However, in many cases, this approach is not sufficient and may
lead to excessive false positives and/or false negatives. Instead, given a set of can-
didates, other approaches select a subset of shapes that best describes the RGB-D
data whilst satisfying some geometrical, structural and semantic constraints. This
has been formulated as the problem of optimizing an objective function of the form
[34, 35]

E(x) = Ed(x) + Er (x), (8.1)

http://dx.doi.org/10.1007/978-3-030-28603-3_9
http://dx.doi.org/10.1007/978-3-030-28603-3_10
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where x is the indicator vector of the candidate shapes, i.e. x(i) = 1 means that the
i th shape is selected for the final subset. Khan et al. [39] extended this formulation
to classify RGB-D superpixels as cluttered or non-cluttered, in addition to object
detection. As such, another variable y is introduced. It is a binary indicator vector
whose i th entry indicates whether the i th superpixel is cluttered or not. This has also
been formulated as the problem of optimizing an objective function of the form

U (x, y) = E(x) +U (y) +Uc(x, y). (8.2)

Here, E(x) is given by Eq. (8.1). U (y) also consists of two potentials:

U (y) = Ud(y) +Ur (y), (8.3)

where the unary term Ud is the data likelihood of a superpixel’s label, and the pair-
wise potentialUr encodes the spatial smoothness between neighbouring superpixels.
The third term of Eq. (8.2) encodes compatibility constraints, e.g. enforcing the con-
sistency of the cuboid labelling and the superpixel labelling.
The data likelihood term Ed . This termmeasures the cost of matching the candidate
shape to the data. For instance, Jiang et al. [35] used cuboids for detection, and
defined this term as the cost of matching a cuboid to the candidate shape. On the
other hand, Jiang [34] used convex shapes, and defined Ed as a measure of concavity
of the candidate shape. Several other papers take a learning approach. For instance,
Khan et al. [39] computed seven types of cuboid features (volumetric occupancy,
colour consistency, normal consistency, tightness feature, support feature, geometric
plausibility feature and cuboid size feature), and then predicted the local matching
quality using machine learning approaches.
Thedata likelihood termUd . Khan et al. [39] used a unary potential that captures, on
each superpixel, the appearance and texture properties of cluttered and non-cluttered
regions. This is done by extracting several cues including image and depth gradient,
colour, surface normals, LBP features and self-similarity features. Then, a Random
Forest classifier was trained to predict the probability of a region being a clutter or a
non-clutter.
The regularization terms Er and Ur . The second terms of Eqs. (8.1) and (8.3) are
regularization terms, which incorporate various types of constraints. Jian [34] define
this term as

Er (x) = αN (x) + β I (x) − λA(x), (8.4)

whereα, β and λ areweights that set the importance of each term. N (x) is the number
of selected candidates, I (x)measures the amount of intersection (or overlap) between
two neighbouring candidate shapes, and A(x) is the amount of area covered by the
candidate shapes projected onto the image plane. Jiang and Xiao [35], and later Khan
et al. [39], used the same formulation but added a fourth term, O(x), which penalizes
occlusions.
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For the superpixel pairwise term of Eq. (8.3), Khan et al. [39] defined a contrast-
sensitive Potts model on spatially neighbouring superpixels, which encouraged the
smoothness of cluttered and non-cluttered regions.
The compatibility termUc. Khan et al. [39] introduced the compatibility term to link
the labelling of the superpixels to the cuboid selection task. This ensures consistency
between the lower level and the higher level of the scene representation. It consists
of two terms: a superpixel membership potential and a superpixel-cuboid occlusion
potential. The former ensures that a superpixel is associated with at least one cuboid
if it is not a cluttered region. The latter ensures that a cuboid should not appear
in front of a superpixel which is classified as clutter, i.e. a detected cuboid cannot
completely occlude a superpixel on the 2D plane which takes a clutter label.
Optimization. The final step of the process is to solve the optimization problem of
Eqs. (8.1) or (8.3). Jian [34] showed that the energy function of Eq. (8.1) can be
linearized and optimized using efficient algorithms such as the branch-and-bound
method. Khan et al. [39], on the other hand, transformed the minimization problem
into a Mixed Integer Linear Program (MILP) with linear constraints, which can be
solved using the branch-and-bound method.

8.4 Deep Learning Methods

Despite the extensive research, the performance of traditional methods is still far
from the performance of the human visual system, especially when it comes to
detecting objects in challenging situations, e.g. highly cluttered scenes and scenes
with high occlusions. In fact, while traditional methods perform well in detecting
and producing bounding boxes on visible parts, it is often desirable to capture the full
extent of the objects regardless of occlusions and clutter. Deep learning-based tech-
niques aim to overcome these limitations. They generally operate following the same
pipeline as the traditional techniques (see Sect. 8.3), i.e. region proposals extraction,
object recognition and 3D bounding box location and pose estimation. However, they
replace some or all of these building blockswith deep learning networks. This section
reviews the different deep learning architectures that have been proposed to solve
these problems. Note that these techniques can be combined with traditional tech-
niques; e.g. one can use traditional techniques for region proposals and deep learning
networks for object recognition, bounding box location and pose refinement.

8.4.1 Region Proposal Networks

In this section, we are interested in amodal detection, i.e. the inference of the full
3D bounding box beyond the visible parts. This critical step in an object detection
pipeline is very challenging since different object categories can have very different
object sizes in 3D. Region Proposal Networks (RPNs) are central to this task since
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they reduce the search space considered by the remainder of the object detection
pipeline.

We classify existing RPNs into three different categories. Methods in the first
category perform the detection on the RGB image and then, using the known camera
projection matrix, lift the 2D region to a 3D frustum that defines a 3D search space
for the object. In general, any 2D object detector, e.g. [53], can be used for this task.
However, using deep CNNs allows the extraction of rich features at varying degrees
of complexity and dimensionality, which is beneficial for the purpose of RGB-D
object detection tasks. In fact, the success of the recent object detection pipelines
can be largely attributed to the automatic feature learning aspect of convolutional
neural networks. For instance, Qi et al. [62] used the Feature Pyramid Networks
(FPN) [52], which operate on RGB images, to detect region proposals. Lahoud and
Ghanem [45], on the other hand, use the 2D Faster R-CNN [69] and VGG-16 [77],
pre-trained on the 2D ImageNet database [72], to position 2D bounding boxes around
possible objects with high accuracy and efficiency. These methods have been applied
for indoor and outdoor scenes captured by RGB-D cameras, and for scenes captured
using LIDAR sensors [12].

The rational behind these methods is that the resolution of data produced by most
3D sensors is still lower than the resolution of RGB images, and that 2D object
detectors are mature and quite efficient. RGB-based detection methods, however, do
not benefit from the additional information encoded in the depth map.

The second class of methods aim to address these limitations. They treat depth
as an image and perform the detection of region proposals on the RGB-D image
either by using traditional techniques or by using 2D convolutional networks. For
instance, Gupta et al. [29], and later Deng and Latecki [15], computed an improved
contour image from an input RGB-D image. An improved contour image is defined
as the contour image but augmented with additional features such as the gradient,
normals, the geocentric pose and appearance features such as the soft edge map
produced by running the contour detector on the RGB image. They then generalize
the multi-scale combinatorial grouping (MCG) algorithm [5, 61] to RGB-D images
for region proposal and ranking. Note that both the hand-crafted features as well as
the region recognition and ranking algorithms can be replaced with deep learning
techniques, as in [62].

Chen et al. [12] took the point cloud (produced by LIDAR sensors) and the RGB
image, and produced two types of feature maps: the bird’s eye view features and
the front view features. The bird’s eye view representation is encoded by height,
intensity, and density. First, the point cloud is projected and discretized into a 2D
grid with a fixed resolution. For each cell in the grid, the height feature is computed
as the maximum height of the points in that cell. To encode more detailed height
information, the point cloud is divided equally into m slices. A height map is com-
puted for each slice, thus obtaining m height maps. The intensity feature is defined
as the reflectance value of the point which has the highest height in each cell. Finally,
a network that is similar to the region proposal network of [68] was used to generate
region proposals from the bird’s eye view map.
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These methods require the fusion of the RGB and depth data. This can be done
by simply concatenating the depth data with the RGB data and using this as input
to the RPN. However, depth data encodes geometric information, which is distinct
from the spatial and colour information provided by monocular RGB images. As
such, Alexandre et al. [3] found that fusing amodal networks with a majority voting
scheme produced better results in object recognition tasks, with an improvement of
29% when compared to using simple RGB and depth frame concatenation. Note
that, instead of performing fusion at the very early stage, e.g. by concatenating the
input modalities, fusion can be performed at a later stage by concatenating features
computed from the RGB and D maps, or progressively using the complementarity-
aware fusion network of Chen et al. [11], see Sect. 8.4.3.

The third class of methods take a 3D approach. For instance, Song and Xia [81]
projected both the depth map and the RGB image into the 3D space forming a
volumetric scene. The 3D scene is then processed with a fully 3D convolutional
network, called a 3D Amodal Region Proposal Network, which generates region
proposals in the form of 3D bounding boxes at two different scales. Multi-scale
RPNs allow the detection of objects of different sizes. It performs a 3D sliding-
window search with varying window sizes, and produces an objectness score for
each of the non-empty proposal boxes [4]. Finally, redundant proposals are removed
using non-maximum suppression with an IoU threshold of 0.35 in 3D. Also, the
approach ranks the proposals based on their objectness score and only selects the top
2000 boxes to be used as input to the object recognition network.

3D detection can be very expensive since it involves 3D convolutional opera-
tions. In fact, it can be more than 30 times slower than its 2D counterpart. Also, the
solution space is very large since it includes three dimensions for the location and
two dimensions for the orientation of the bounding boxes. However, 3D voxel grids
produced from depth maps are generally sparse as they only contain information
near the shape surfaces. To leverage this sparsity, Engelcke et al. [18] extended the
approach of Song et al. [80] by replacing the SVM ensemble with a 3D CNN, which
operates on voxelized 3D grids. The key advantage of this approach is that it lever-
ages the sparsity encountered in point clouds to prevent huge computational cost that
occurs with 3D CNNs. In this approach, the computational cost is only proportional
to the number of occupied grid cells rather than to the total number of cells in the
discretized 3D grid as in [84].

8.4.2 Object Recognition Networks

Once region proposals have been generated, the next step is to classify these regions
intowhether they correspond to the objectswewant to detect or not, and subsequently
refine the detection by estimating the accurate location, extent, and pose (position and
orientation) of each object’s bounding box. The former is a classification problem,
which has been well solved using Object Recognition Networks (ORNs) [6, 17, 75].
An ORN takes a candidate region, and assigns to it a class label, which can be binary,
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i.e. 1 or 0, to indicate whether it is an object of interest or not, or multi-label where
the network recognizes the class of the detected objects.

There are several ORN architectures that have been proposed in the literature
[12, 15, 28, 55, 81]. In this section, we will discuss some of them based on (1)
whether they operate on 2D or 3D (and subsequently whether they are using 2D or
3D convolutions), and (2) how the accurate 3D location and size of the bounding
boxes are estimated.

8.4.2.1 Network Architectures for Object Recognition

(1) Volumetric approaches. The first class of methods are volumetric. The idea is to
lift the information in the detected regions into 3D volumes and process them using
3D convolutional networks. For instance, Maturana et al. [55] used only the depth
information to recognize and accurately detect the objects of interest. Their method
first converts the point cloud within each 3D region of interest into a 32 × 32 × 32
occupancy grid, with the z axis approximately aligned with gravity. The point cloud
is then fed into a 3D convolutional network, termed VoxNet, which outputs the class
label of the region.

Song and Xia [81] followed a similar volumetric approach but they jointly learned
the object categories and the 3D box regression from both depth and colour informa-
tion. Their approach operates as follows. For each 3D proposal, the 3D volume from
depth is fed to a 3D ConvNet, and the 2D colour patch (the 2D projection of the 3D
proposal) is fed to a 2D ConvNet (based on VGG and pre-trained on ImageNet). The
two latent representations learned by the two networks are then concatenated and
further processed with one fully connected layer. The network then splits into two
branches, each composed of one fully connected layer. The first branch is a classifi-
cation branch as it produces the class label. The second branch estimates the location
and size of the 3D amodal bounding box of the detected object. This approach has
two important features; first, it combines both colour and geometry (through depth)
information to perform recognition and regress the amodal bounding box. These
two types of information are complementary and thus combining them can improve
performance. The second important feature is that it does not directly estimate the
location and size of the bounding box but instead it estimates the residual. That is,
it first takes an initial estimate of the size of the bounding box (using some prior
knowledge about the class of shapes of interest). The network is then trained to learn
the correction that one needs to apply to the initial estimate in order to obtain an
accurate location and size of the bounding box.
(2) 2D and 2.5D approaches. In the context of object detection, 2D approaches
operate over the two spatial dimensions in the input (i.e. an RGB image), without
exploiting the data encoded in depth images. 2.5D inputs refer to inputs with attached
depth images, but importantly, these depth images are treated similarly to how colour
images are (without exploiting 3D spatial relationships, i.e. using the depth frames
as 2D maps where each pixel encodes the depth value). Finally, 3D approaches use
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the rich spatial data encoded in volumetric or point cloud representations of data (or
any other representation which represents the data over three spatial dimensions).

These 2D and 2.5D approaches are mainly motivated by the performance of the
human visual system in detecting and recognizing objects just from partial 2D infor-
mation. In fact, when the majority of an object area on the depth map is not visible,
the depth map only carries partial information. However, information encoded in the
2D image is rich, and humans can still perceive the objects and estimate their 3D
locations and sizes from such images [15]. 2D and 2.5D approaches try to mimic the
human perception and leverage the 2.5D image features directly using current deep
learning techniques.

In particular, Deng and Latecki [15] followed the same approach as Song and
Xia [81] but operate on 2D maps using 2D convolutional filters. The main idea is to
regress the 3D bounding box just from the RGB and depth map of the detected 2D
regions of interests. Their approach replaces the 3D ConvNet of Song and Xia [81]
with a 2D ConvNet that processes the depth map. Thus, it is computationally more
efficient than the approaches which operate on 3D volumes, e.g. [15].
(3) Multi-view approaches. The 2D and 2.5D approaches described above can
be extended to operate on multi-view inputs. In fact, many practical systems, e.g.
autonomous driving, acquireRGB-Ddata frommultiple viewpoints. Central tomulti-
view techniques is the fusionmechanismused to aggregate information fromdifferent
views (see also Sect. 8.4.3),which can bemultiple images and/or depthmaps captured
frommultiple viewpoints. Some of the challengeswhich need to be addressed include
catering for images gathered at varying resolutions.

Chen et al. [12] proposed a Multi-View 3D network (MV3D), a region-based
fusion network, which combines features from multiple views. The network jointly
classifies region proposals and regresses 3D bounding box orientations. The pipeline
operates in two stages: multi-view ROI pooling and deep fusion. The former is
used to obtain feature vectors of the same length, since features from different
views/modalities usually have different resolutions. The deep fusion network fuses
multi-view features hierarchically to enable more interactions among features of the
intermediate layers from different views.

8.4.2.2 Pose Estimation

One of the main challenges in amodal object detection from RGB-D images is how
to accurately estimate the pose of the bounding box of the detected object, even if
parts of the objects are occluded. Early works such as Song and Xia [81] do not
estimate orientation but use the major directions of the room in order to orient all
proposals. This simple heuristic works fine for indoor scenes, e.g. rooms. However,
it cannot be easily extended to outdoor scenes or scenes where no prior knowledge
of their structure is known.

Another approach is to perform an exhaustive search of the best orientations over
the discretized space of all possible orientations. For example, Maturana et al. [55]
performed an exhaustive search over n = 12 orientations around the z axis and
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selected the one with the largest activation. At training time, Maturana et al. [55]
augmented the dataset by creating n = 12 to n = 18 copies of each input instance,
each rotated 360◦/n intervals around the z-axis (assuming that the z axis is known).
At testing time, the activations of the output layer over all the n copies are aggregated
by pooling. This approach, which can be seen as a voting scheme, has been also used
to detect landing zones from LIDAR data [54].

Gupta et al. [28] considered the problem of fitting a complete 3D object model
to the detected objects, instead of just estimating the location, orientation, and size
of the object’s bounding box. They first detect and segment object instances in the
scene and then use a convolutional neural network (CNN) to predict the coarse pose
of the object. Gupta et al. [28] then use the detected region (segmentation mask) to
create a 3D representation of the object by projecting points from the depth map. The
Iterative Closest Point (ICP) algorithm [71] is then used to align 3D CAD models to
these 3D points.

Finally, some recent approaches regress pose in the same way as they perform
recognition, i.e. using CNNs. This is usually achieved using a region recognition
network, which has two branches of fully connected layers; one for recognition and
another one for bounding box regression [12, 15]. Existing methods differ in the way
the bounding boxes are parameterized. For instance, Cheng et al. [12] represent a
bounding box using its eight corners. This is a redundant representation as a cuboid
can be described with less information. Deng and Latecki [15] used a seven-entry
vector [xcam, ycam, zcam, l,w, h, θ ]where [xcam, ycam, zcam] corresponds to the coor-
dinates of the bounding box’s centroid under the camera coordinate system. [l,w, h]
represents its 3D size, and θ is the angle between the principal axis and its orienta-
tion vector under the tilt coordinate system. Note that these methods do not directly
regress the pose of the bounding box. Instead, starting from an initial estimate pro-
vided by the Region Proposal Network, the regression network estimates the offset
vector, which is then applied to the initial estimate to obtain the final pose of the
bounding box.

8.4.3 Fusion Schemes

In the context of RGB-D object detection, we aim to exploit the multiple modalities
that are present in RGB-D images, which carry complementary information (colour
and depth data). This, however, requires efficient fusion mechanisms. In this section,
we discuss some of the strategies that have been used in the literature.
(1) Early fusion. In this scheme, the RGB image and the depth map are concatenated
to form a four-channel image [30]. This happens at the earliest point in the network,
i.e. before any major computational layers process the image. The concatenated
image is then processedwith 2Dor 3Dconvolutional filters. This schemewas adopted
in [32] for the purpose of saliency detection.
(2) Late fusion. In this scheme, the RGB image and the depth map are processed
separately, e.g. using two different networks, to produce various types of features.
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These features are then fused together, either by concatenation or by further process-
ing using convolutional networks. Eitel et al. [17], for example, used two networks,
one for depth and one for the RGB image, with each network separately trained on
ImageNet [40]. The feature maps output by the two networks are then concatenated
and presented to a final fusion network, which produces object class predictions. This
approach achieved an overall accuracy of 91.3% ± 1.4% on theWashington RGB-D
Object Dataset, see Table8.3 for more details regarding pipeline performance.

Note that, Chen et al. [12] showed that early and late fusion approaches perform
similarly when tested on the hard category of the KITTI dataset, scoring an average
precision of 87.23% and 86.88%.
(3) Deep fusion. Early and late fusion schemes are limited in that they only allow
the final joint predictions to operate on early or deep representations, so useful infor-
mation can be discarded. Chen et al. [12] introduced a deep learning fusion scheme,
which fuses features extracted frommultiple representations of the input. The fusion
pipeline uses element-wise mean pooling operations instead of simple concatena-
tions (as in early or late fusion). Chen et al. [12] showed that this fusion mechanism
improved performance by about 1% compared to early and late fusion.
(4) Sharable features learning and complementarity-aware fusion. The fusion
methods described above either learn features from colour and depth modalities
separately, or simply treat RGB-D as a four-channel data. Wang et al. [83] specu-
late that different modalities should contain not only some modal-specific patterns
but also some shared common patterns. They then propose a multimodal feature
learning framework for RGB-D object recognition. First, two deep CNN layers are
constructed, one for colour and another for depth. They are then connected with
multimodal layers, which fuse colour and depth information by enforcing a common
part to be shared by features of different modalities. This produces features reflecting
shared properties as well as modal-specific properties from different modalities.

Cheng et al. [11] proposed a fusion mechanism, termed complementarity-aware
(CA) fusion, which encourages the determination of complementary information
from the different modalities at different abstraction levels. They introduced a CA-
Fuse module, which enables cross-modal, cross-level connections and modal/level-
wise supervisions, explicitly encouraging the capture of complementary information
from the counterpart, thus reducing fusion ambiguity and increasing fusion efficiency.

8.4.4 Loss Functions

In general, the region proposal network (RPN) and the object recognition network
(ORN) operate separately. The RPN first detects candidate regions. The ORN then
refines the detection by discarding regions that do not correspond to the objects
of interest. The ORN then further refines the location, size, and orientation of the
bounding boxes. As such, most of the state-of-the-art techniques train these networks
separately using separate loss functions.
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Loss functions inform the network on how poorly it completed its designated
task over each training batch using a scalar metric (referred to as the loss, cost or
inverse fitness). The calculation of the loss should incorporate error that the algorithm
accumulated during the completion of its task, as the network will change its weights
in order to reduce the loss, and thus the error. For example, in object classification
networks, the loss might be defined as the mean squared error between the one-hot
encoded ground truth labels, and the network’s output logits. For object detection
networks, the IoU (see Fig. 8.4) of the detected region and the ground truth region
may be incorporated. In this way the loss function design is task-dependant, and
performance increases have been observed to be contingent on the loss function’s
design [85]. Typically, loss functions are hand-crafted, though weightings between
terms can be learned [37]. Naturally, numerous loss functions have been devised to
train networks to accomplish various tasks [38].

A common loss function that has been used for classification (in the RPN as well
as in the ORN) is the softmax regression loss. Let θ be the parameters of the network,
m the number of training samples, nc the number of classes, and yi ∈ {1, . . . , nc}
the output of the network for the training sample xi . The softmax regression loss is
defined as

L(θ) = −
m∑

i=1

nc∑

k=1

1(yi = k) log
(
p(yi = k|xi ; θ)

)
. (8.5)

Here, 1(s) is equal to 1 if the statement s is true and 0 otherwise. This loss function
has been used by Gupta et al. [28] to train their region proposal network, which also
provides a coarse estimation of each object’s pose.

Song and Xia [81], on the other hand, trained their multi-scale region proposal
network using a loss function that is a weighted sum of two terms: an objectness
term and a box regression term:

L(p, p∗, t, t∗) = Lcls(p, p
∗) + λpL1_smooth(t, t∗), (8.6)

where p∗ is the predicted probability of this region being an object and p is the
ground truth, Lcls is the log loss over the two categories (object vs. non-object) [26],
and t is a 6-element vector, which defines the location and scale of the bounding
box of the region. The second term, which is the box regression loss term, is defined
using the smooth L1 function as follows:

L1_smooth(x) =
{
0.5x2 if |x | < 1,

|x | − 0.5, otherwise.
(8.7)

Song and Xia [81] also used a similar loss function to train their ORN. The only dif-
ference is in the second term, which is set to zero when the ground truth probability
p is zero. This is because there is no notion of a ground truth bounding box for back-
ground RoIs. Hence, the box regression term is ignored. Finally, Maturana et al. [55]
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used the multinomial negative log-likelihood plus 0.001 times the L2 weight norm
for regularization.

8.5 Discussion and Comparison of Some Pipelines

In this section, we discuss some pipelines for object detection from RGB-D data and
compare their performance on standard benchmarks.Wewill first review examples of
the datasets that have been used for training and testing the techniques (Sect. 8.5.1),
discuss different performance evaluation metrics (Sect. 8.5.1), and finally compare
and discuss the performance of some of the key RGB-D-based object detection
pipelines (Sect. 8.5.3).

8.5.1 Datasets

Many of the state-of-the-art algorithms rely on large datasets to train their models
and evaluate their performance. Both traditional machine learning and advanced
deep learning approaches require labelled datasets in the form of RGB-D images
and their corresponding ground truth labels. The labels can be in the form of 2D
bounding boxes highlighting the object regions in the RGB image and/or the depth
map, oriented 3Dbounding boxes (3DBBX) delineating the 3D regions of the objects,
and/or exact segmentations (in the form of segmentation masks) of the objects of
interest.

Table8.1 summarizes the main datasets and benchmarks that are currently avail-
able in the literature. Note that several types of 3D sensors have been used for the
acquisition of these datasets. For instance, the SUN RGB-D dataset was constructed
using four different sensors: the Intel RealSense 3D Camera, the Asus Xtion LIVE
PRO, and Microsoft Kinect v1 and v2. Intel Asus and Microsoft Kinect v1 sen-
sors use infrared (IR) light patterns to generate quantized depth maps, an approach
known as structured light, whereas Microsoft Kinect v2 uses time-of-flight ranging.
These sensors are suitable for indoor scenes since their depth range is limited to a
few metres. On the other hand, The KITTI dataset, which includes outdoor scene
categories, has been captured using a Velodyne HDL-64E rotation 3D laser scanner.

Note that some datasets, such as the PASCAL3D+, are particularly suitable for
testing the robustness of various algorithms to occlusions, since an emphasis was
placed on gathering data with occlusions.
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Table 8.1 Examples of datasets used for training and evaluating object detection pipelines from
RGB-D images

Name Description Size

KITTI 2015 [56] Cluttered driving scenarios
recorded in and around Karlsruhe
in Germany

400 annotated dynamic scenes
from the raw KITTI dataset

KITTI 2012 [23] As above 389 image pairs and more than
200,000 3D object annotations

SUN RGB-D [79] Indoor houses and universities in
North America and Asia

10, 335 images, 800 object
categories, and 47 scene categories
annotated with 58,657 bounding
boxes (3D)

NYUDv2 [58] Diverse indoor scenes taken from
three cities

1,449 RGB-D images over 464
scenes

PASCAL3D+ [89] Vehicular and indoor objects
(augments the PASCAL VOC
dataset [19])

12 object categories with 3,000
instances per category

ObjectNet3D [88] Indoor and outdoor scenes 90,127 images sorted into 100
categories. 201,888 objects in
these images and 44,147 3D shapes

RGBD1000 [60] Indoor and outdoor scenes
captured with a Microsoft Kinect

1, 000 RGB-D images

NJUDS2000 [36] Indoor and outdoor scenes 2,000 RGB-D images

LFSD [50] Indoor (60) and outdoor (40)
scenes captured with a Lytro
camera

100 light fields each composed
from raw light field data, a focal
slice, an all-focus image and a
rough depth map

Cornell Grasping
[1]

Several images and point clouds of
typical graspable indoor objects
taken at different poses

1,035 images of 280 different
objects

ModelNet10 [87] Object aligned 3D CAD models
for the 10 most common object
categories found in the SUN2012
database [90]

9,798 total instances split amongst
10 object categories, each with
their own test/train split

ModelNet40 [87] Object aligned 3D CAD models
for 40 common household objects

12,311 total instances split
amongst 40 object categories, each
with their own test/train split

Caltech-101 [20] Single class object centric images
with little or no clutter. Most
objects are presented in a
stereotypical pose

9,144 images sorted into 101
categories, with 40 to 800 images
per category

Caltech-256 [27] Single class images with some
clutter

30,607 images sorted into 256
categories with an average of 119
images per category

Washington RGB-
D [46]

Turntable video sequences at
varying heights of common
household objects

300 objects organized into 51
categories. Three video sequences
per object
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(a) Intersection over Union (IoU). (b) Precision-recall.

Fig. 8.4 a Illustration of the Intersection over Union (IoU) metric in 2D. b Illustration of how
precision and recall are calculated fromamodel’s test results. Recall is the ratio of correct predictions
to total objects in the dataset. It measures how complete the predictions are. Precision is the ratio
of correct predictions to total predictions made, i.e. how correct the predictions are

8.5.2 Performance Criteria and Metrics

Object detection usually involves two tasks; the first is to assess whether the object
exists in the RGB-D image (classification) and the second is to exactly localize the
object in the image (localization). Various metrics have been proposed to evaluate
the performance of these tasks. Below, we discuss the most commonly used ones,
see also [42].
Computation time. Object detection algorithms operate in two phases; the training
phase and the testing phase. While, in general, algorithms can afford having a slow
training phase, the computation time at runtime is a very important performance
criterion. Various applications may have different requirements. For instance, time-
critical applications such as autonomous driving and surveillance systems should
operate in real time. Other applications, e.g. offline indexing of RGB-D images
and videos, can afford slower detection times. However, given the large amount of
information they generally need to process, real-time detection is desirable. Note that,
there is often a trade-off between computation time at runtime and performance.
Intersection over Union (IoU). It measures the overlap between a ground truth label
and a prediction as a proportion of the union of the two regions, see Fig. 8.4. IoU
is a useful metric for measuring the predictive power of a 2D/3D object detector.
IoU thresholds are applied to sets of detections in order to precisely define what
constitutes a positive detection. For example, an IoU > 0.5 might be referred to as a
positive detection. Such thresholds are referred to as overlap criterion.
Precision–recall curves. Precision and recall are calculated based on a model’s test
results, see Fig. 8.4. The precision–recall curve is generated by varying the threshold
which determines what is counted as a positive detection of the class. The model’s
precision at varying recall values are then plotted to produce the curve.
Average Precision (AP). It is defined as the average value of precision over the
interval from recall r = 0 to r = 1, which is equivalent to measuring the area under
the precision–recall curve (r here is the recall):
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AP =
∫ 1

0
precision(r)dr. (8.8)

Mean Average Precision (mAP) score. It is defined as the mean average precision
over all classes and/or over all IoU thresholds.
F- and E-Measures. These are two measures which combine precision and recall
into a single number to evaluate the retrieval performance. The F-measure is the
weighted harmonic mean of precision and recall. It is defined as

Fα = (1 + α) × precision × recall

α × precision + recall
, (8.9)

where α is a weight. When α = 1 then

F1 ≡ F = 2 × precision × recall

precision + recall
. (8.10)

The E-Measure is defined as E = 1 − F , which is equivalent to

E = 2

(
1

precision
+ 1

recall

)−1

. (8.11)

Note that the maximum value of the E-measure is 1.0 and the higher the E-measure
is, the better is the detection algorithm. The main property of the E-measure is that
it quantifies how good are the results retrieved in the top of the ranked list. This is
very important since, in general, the user of a search engine is more interested in the
first page of the query results than in the later pages.
Localization performance. The localization task is typically evaluated using the
Intersection over Union threshold (IoU) as discussed above.

8.5.3 Discussion and Performance Comparison

Tables8.2 and 8.3 summarize the performance, on various datasets and using vari-
ous performancemetrics, of some traditional and deep learning-based RGB-D object
detection pipelines. Below, we discuss the pipelines whose performances are high-
lighted in bold in Table8.3, with a focus on analysing the operational steps which
allow them to offer increased performance.

The Deep Sliding Shapes model for amodal 3D object detection in RGB-D
images [81] extends its predecessor [80], which used hand-crafted features and
SVMs. The network begins by replacing the 3D exhaustive search with a 3D multi-
scale RPN, which produces 3D RoIs. Non-maximum suppression with an IoU con-
straint of less than 0.35 is enforced on the RPN output to reduce the number of RoIs.
Each RoI is then projected to 2D and fed to a VGG-19-based deep feature extrac-
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tor [77], which produces the class labels as well as the 3D bounding boxes of the
detected objects.

Sun et al. [82] proposed an object detection framework for a mobile manipulation
platform. The framework is composed of an RPN, an ORN and a Scene Recognition
Network (SRN). Its main feature is that the convolutional operations of the three
modules are shared, subsequently reducing the computational cost. The ORN, which
achieved a mean average precision (mAP) of 52.4% on the SUN RGB-D dataset,
outperformed Faster R-CNN [69], RGB-D RCNN [29] and DPM [21].

Another example is the object detection pipeline of Qi et al. [62], which produces
the full extents of an object’s bounding box in 3D from RGB-D images by using four
subnetworks, namely:

• A joint 2D RPN/ORN. It generates 2D region proposals from the RGB image,
and classifies them into one of the nc object categories.

• A PointNet-based network. It performs 3D instance segmentation of the point
clouds within 3D frustums extended from the proposed regions.

• A lightweight regression PointNet (T-Net). It estimates the true centre of the
complete object and then transforms the coordinates such that the predicted centre
becomes the origin.

• A box estimation network. It predicts, for each object, its amodal bounding box
for the entire object even if parts of it are occluded.

The approach simultaneously trains the 3D instance segmentation PointNet, the T-
Net and the amodal box estimation PointNet, using a loss function that is defined as
a weighted sum of the losses of the individual subnetworks. Note that Qi et al. [62]’s
network architecture is similar to the architecture of the object classification network
of [63, 65] but it outputs the object class scores as well as the detected object’s
bounding box. The work also shares some similarities to [45], which used hand-
crafted features.

8.6 Summary and Perspectives

In this chapter, we have reviewed some of the recent advances in object detection
fromRGB-D images. Initiallywe focused on traditionalmethods, which are based on
hand-crafted features combined with machine learning techniques. We then shifted
our attention to more recent techniques, which are based on deep learning networks.
In terms of performance, deep learning-based techniques significantly outperform
traditional methods. However, thesemethods require large datasets for efficient train-
ing. We expect that in the near future, this will become less of an issue since RGB-
D sensors are becoming cheaper and annotated RGB-D datasets will thus become
widely available.

Although they achieve remarkable performance compared to traditional methods,
deep learning techniques are still in their infancy. For instance, amodal object detec-
tion, i.e. estimating the entire 3D bounding box of an object, especially when parts
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of the object are occluded, still remains challenging especially in highly cluttered
scenes. Self-occluding objects also challenge deep learning-based pipelines, espe-
cially when dealing with dynamic objects that deform in a non-rigid way [33, 44].
Similarly, object detection performance for objects at various scales, particularly at
small scales, is still relatively low. In fact, the performance comparison of Table8.3
does not consider the robustness of the methods to scale variation.

Existing techniques focus mainly on the detection of the bounding boxes of the
objects of interest. However, many situations, e.g. robust grasping, image editing,
and accurate robot navigation, require the accurate detection of object boundaries.
Several works have attempted to achieve this using, for example, template matching.
This, however, remains an open problem.

Another important avenue for future research is how to incorporate spatial rela-
tionships and relationships between semantic classes in deep learning-based RGB-D
object detection pipelines. These relationships are important cues for recognition
and it has been already shown in many papers that they can significantly boost the
performance of traditional techniques [43]. Yet, this knowledge is not efficiently
exploited in deep learning techniques.

Finally, there are many aspects of object detection from RGB-D images that have
not been covered in this chapter. Examples include saliency detection [11, 47, 66,
78], which aims to detect salient regions in an RGB-D image. Additionally, we have
focused in this chapter on generic objects in indoor and outdoor scenes. There is,
however, a rich literature on specialized detectors which focus on specific classes of
objects, e.g. humans and human body parts such as faces and hands (see Chaps. 9
and 10).

Acknowledgements This work is supported by ARC DP 150100294 and ARC DP 150104251.

References

1. Cornell grasping dataset (2018). http://pr.cs.cornell.edu/grasping/rect_data/data.php.
Accessed 13 Dec 2018

2. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) SLIC superpixels compared
to state-of-the-art superpixelmethods. IEEETrans PatternAnalMach Intell 34(11):2274–2282.
https://doi.org/10.1109/TPAMI.2012.120

3. Alexandre LA (2014) 3D object recognition using convolutional neural networks with transfer
learning between input channels. In: IAS

4. Alexe B, Deselaers T, Ferrari V (2010) What is an object? In: 2010 IEEE computer society
conference on computer vision and pattern recognition, pp 73–80. https://doi.org/10.1109/
CVPR.2010.5540226

5. Arbeláez P, Pont-Tuset J, Barron J, Marques F, Malik J (2014)Multiscale combinatorial group-
ing. In: Computer vision and pattern recognition

6. Asif U, Bennamoun M, Sohel FA (2017) RGB-D object recognition and grasp detection using
hierarchical cascaded forests. IEEE Trans Robot 33(3):547–564. https://doi.org/10.1109/TRO.
2016.2638453

7. BarrowHG,TenenbaumJM,BollesRC,WolfHC (1977) Parametric correspondence and cham-
fer matching: two new techniques for image matching. In: Proceedings of the 5th International

http://dx.doi.org/10.1007/978-3-030-28603-3_9
http://dx.doi.org/10.1007/978-3-030-28603-3_10
http://pr.cs.cornell.edu/grasping/rect_data/data.php
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/CVPR.2010.5540226
https://doi.org/10.1109/CVPR.2010.5540226
https://doi.org/10.1109/TRO.2016.2638453
https://doi.org/10.1109/TRO.2016.2638453


198 I. R. Ward et al.

joint conference on artificial intelligence - volume 2, IJCAI’77, . Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, pp 659–663. http://dl.acm.org/citation.cfm?id=1622943.
1622971

8. Bleyer M, Rhemann C, Rother C (2012) Extracting 3D scene-consistent object proposals and
depth from stereo images. In: European conference on computer vision. Springer, pp 467–481

9. Bo L, Ren X, Fox D (2014) Learning hierarchical sparse features for RGB-(D) object recog-
nition. Int J Robot Res 33(4):581–599

10. Buch NE, Orwell J, Velastin SA (2009) 3D extended histogram of oriented gradients (3DHOG)
for classification of road users in urban scenes. In: BMVC

11. Chen H, Li Y (2018) Progressively complementarity-aware fusion network for RGB-D salient
object detection. In: The IEEE conference on computer vision and pattern recognition (CVPR)

12. Chen X, Ma H, Wan J, Li B, Xia T (2017) Multi-view 3D object detection network for
autonomous driving. In: IEEE CVPR, vol 1, p 3

13. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE
computer society conference on computer vision and pattern recognition (CVPR’05), vol 1, pp
886–893. https://doi.org/10.1109/CVPR.2005.177

14. LoweDG(2004)Distinctive image features from scale-invariant keypoints. Int JComputVision
(IJCV)

15. Deng Z, Latecki LJ (2017) Amodal detection of 3D objects: inferring 3D bounding boxes from
2D ones in RGB-depth images. In: Conference on computer vision and pattern recognition
(CVPR), vol 2, p 2

16. Schapire RE (2013) Explaining adaboost, pp 37–52. https://doi.org/10.1007/978-3-642-
41136-6-5

17. Eitel A, Springenberg JT, Spinello L, Riedmiller MA, Burgard W (2015) Multimodal deep
learning for robust RGB-D object recognition. arXiv:1507.06821

18. Engelcke M, Rao D, Wang DZ, Tong CH, Posner I (2017) Vote3deep: Fast object detection
in 3D point clouds using efficient convolutional neural networks. In: 2017 IEEE international
conference on robotics and automation (ICRA). IEEE, pp 1355–1361

19. Everingham M, Van Gool L, Williams C, Winn J, Zisserman A (2010) The PASCAL visual
object classes (VOC) challenge. In: 2010 IEEE Conference on computer vision and pattern
recognition (CVPR)

20. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training
examples: an incremental bayesian approach tested on 101 object categories. In: 2004 confer-
ence on computer vision and pattern recognition workshop, pp. 178–178

21. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with dis-
criminatively trainedpart-basedmodels. IEEETransPatternAnalMach Intell 32(9):1627–1645

22. Feng D, Barnes N, You S, McCarthy C (2016) Local background enclosure for RGB-D salient
object detection. In: 2016 IEEEconference on computer vision andpattern recognition (CVPR),
pp. 2343–2350. https://doi.org/10.1109/CVPR.2016.257

23. Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the KITTI vision
benchmark suite. In: Conference on computer vision and pattern recognition (CVPR)

24. Getto R, Fellner DW (2015) 3D object retrieval with parametric templates. In: Proceedings of
the 2015 Eurographics workshop on 3D object retrieval, 3DOR ’15. Eurographics Association,
Goslar Germany, Germany, pp 47–54. https://doi.org/10.2312/3dor.20151054

25. Gidaris S, Komodakis N (2016) Attend refine repeat: active box proposal generation via in-out
localization. CoRR arXiv:1606.04446

26. Girshick RB (2015) Fast R-CNN. CoRR arXiv:1504.08083
27. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Technical Report

7694, California Institute of Technology. http://authors.library.caltech.edu/7694
28. Gupta S, Arbeláez P, Girshick R, Malik J (2015) Aligning 3D models to RGB-D images

of cluttered scenes. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 4731–4740

29. Gupta S, Girshick RB, Arbeláez P, Malik J (2014) Learning rich features from RGB-D images
for object detection and segmentation. CoRR arXiv:1407.5736

http://dl.acm.org/citation.cfm?id=1622943.1622971
http://dl.acm.org/citation.cfm?id=1622943.1622971
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1007/978-3-642-41136-6-5
https://doi.org/10.1007/978-3-642-41136-6-5
http://arxiv.org/abs/1507.06821
https://doi.org/10.1109/CVPR.2016.257
https://doi.org/10.2312/3dor.20151054
http://arxiv.org/abs/1606.04446
http://arxiv.org/abs/1504.08083
http://authors.library.caltech.edu/7694
http://arxiv.org/abs/1407.5736


8 RGB-D Image-Based Object Detection: From Traditional Methods … 199

30. Han J, Zhang D, Cheng G, Liu N, Xu D (2018) Advanced deep-learning techniques for salient
and category-specific object detection: a survey. IEEE Signal Process Mag 35(1):84–100.
https://doi.org/10.1109/MSP.2017.2749125

31. He D, Wang L (1990) Texture unit, texture spectrum, and texture analysis. IEEE Trans Geosci
Remote Sens 28(4):509–512. https://doi.org/10.1109/TGRS.1990.572934

32. Hou Q, Cheng M, Hu X, Borji A, Tu Z, Torr PHS (2016) Deeply supervised salient object
detection with short connections. CoRR arXiv:1611.04849

33. Jermyn IH, Kurtek S, Laga H, Srivastava A (2017) Elastic shape analysis of three-dimensional
objects. Synth Lect Comput Vis 12(1):1–185

34. Jiang H (2014) Finding approximate convex shapes in RGBD images. In: European conference
on computer vision. Springer, pp 582–596

35. JiangH,Xiao J (2013)A linear approach tomatching cuboids inRGBD images. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp 2171–2178

36. Ju R, Ge L, GengW, Ren T, Wu G (2014) Depth saliency based on anisotropic center-surround
difference. In: 2014 IEEE international conference on image processing (ICIP), pp 1115–1119.
https://doi.org/10.1109/ICIP.2014.7025222

37. Kendall A, Cipolla R (2017) Geometric loss functions for camera pose regression with deep
learning. CoRR arXiv:1704.00390

38. Khan S, Rahmani H, Shah SAA, Bennamoun M (2018) A guide to convolutional neural net-
works for computer vision. Morgan and Claypool Publishers

39. Khan SH, He X, Bennamoun M, Sohel F, Togneri R (2015) Separating objects and clutter
in indoor scenes. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp 4603–4611

40. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. In: Proceedings of the 25th international conference on neural information
processing systems - volume 1, NIPS’12. Curran Associates Inc., USA, pp 1097–1105. http://
dl.acm.org/citation.cfm?id=2999134.2999257

41. Laga H, Guo Y, Tabia H, Fisher RB, Bennamoun M (2018) 3D shape analysis: fundamentals,
theory, and applications. Wiley

42. Laga H, Guo Y, Tabia H, Fisher RB, Bennamoun M (2019) 3D shape analysis: fundamentals,
theory, and applications. Wiley

43. Laga H, Mortara M, Spagnuolo M (2013) Geometry and context for semantic correspondences
and functionality recognition in man-made 3D shapes. ACM Trans Graph (TOG) 32(5):150

44. Laga H, Xie Q, Jermyn IH, Srivastava A (2017) Numerical inversion of SRNF maps for elastic
shape analysis of genus-zero surfaces. IEEE Trans Pattern AnalMach Intell 39(12):2451–2464

45. Lahoud J, Ghanem B (2017) 2D-driven 3D object detection in RGB-D images. In: The IEEE
international conference on computer vision (ICCV)

46. Lai K, Bo L, Ren X, Fox D (2013) RGB-D object recognition: features, algorithms, and a large
scale benchmark. In: Consumer depth cameras for computer vision. Springer, pp 167–192

47. Lei Z, Chai W, Zhao S, Song H, Li F (2017) Saliency detection for RGB-D images using opti-
mization. In: 2017 12th international conference on computer science and education (ICCSE),
pp 440–443. https://doi.org/10.1109/ICCSE.2017.8085532

48. Li B (2016) 3D fully convolutional network for vehicle detection in point cloud. CoRR
arXiv:1611.08069

49. Li B, Zhang T, Xia T (2016) Vehicle detection from 3D lidar using fully convolutional network.
arXiv:1608.07916

50. Li N, Ye J, Ji Y, Ling H, Yu J (2017) Saliency detection on light field. IEEE Trans Pattern Anal
Mach Intell 39(8):1605–1616. https://doi.org/10.1109/TPAMI.2016.2610425

51. Lin D, Fidler S, Urtasun R (2013) Holistic scene understanding for 3D object detection with
RGBD cameras. In: Proceedings of the IEEE international conference on computer vision, pp
1417–1424

52. Lin TY, Dollár P, Girshick RB, He K, Hariharan B, Belongie SJ (2017) Feature pyramid
networks for object detection. In: CVPR, vol 1, p 4

https://doi.org/10.1109/MSP.2017.2749125
https://doi.org/10.1109/TGRS.1990.572934
http://arxiv.org/abs/1611.04849
https://doi.org/10.1109/ICIP.2014.7025222
http://arxiv.org/abs/1704.00390
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1109/ICCSE.2017.8085532
http://arxiv.org/abs/1611.08069
http://arxiv.org/abs/1608.07916
https://doi.org/10.1109/TPAMI.2016.2610425


200 I. R. Ward et al.

53. Long J, ShelhamerE,Darrell T (2014) Fully convolutional networks for semantic segmentation.
CoRR arXiv:1411.4038

54. Maturana, D., Scherer, S.: 3D convolutional neural networks for landing zone detection from
LiDAR. In: 2015 IEEE international conference on robotics and automation (ICRA), pp 3471–
3478. https://doi.org/10.1109/ICRA.2015.7139679

55. Maturana D, Scherer S (2015) VoxNet: a 3D convolutional neural network for real-time object
recognition. In: IEEE/RSJ international conference on intelligent robots and systems, pp 922–
928

56. Menze M, Geiger A (2015) Object scene flow for autonomous vehicles. In: Conference on
computer vision and pattern recognition (CVPR)

57. NakaharaH,YonekawaH, Sato S (2017)An object detector based onmultiscale slidingwindow
search using a fully pipelined binarized CNN on an FPGA. In: 2017 international conference
on field programmable technology (ICFPT), pp 168–175. https://doi.org/10.1109/FPT.2017.
8280135

58. Nathan Silberman Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and support inference
from RGB-D images. In: ECCV (2012)

59. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohi P, Shotton J,
Hodges S, Fitzgibbon A (2011) Kinectfusion: Real-time dense surface mapping and tracking.
In: 2011 10th ieee international symposium on mixed and augmented reality, pp 127–136.
https://doi.org/10.1109/ISMAR.2011.6092378

60. Peng H, Li B, Xiong W, Hu W, Ji R (2014) RGB-D salient object detection: a benchmark and
algorithms. In: ECCV

61. Pont-Tuset J, Arbeláez P, Barron J, Marques F, Malik J (2015)Multiscale combinatorial group-
ing for image segmentation and object proposal generation. arXiv:1503.00848

62. Qi CR, Liu W, Wu, C, Su H, Guibas LJ (2018) Frustum pointnets for 3D object detection from
RGB-D data. In: The IEEE conference on computer vision and pattern recognition (CVPR)

63. QiCR, SuH,MoK,Guibas LJ (2017) Pointnet: Deep learning on point sets for 3D classification
and segmentation. In: Proceedings of computer vision and pattern recognition (CVPR), vol 1(2).
IEEE, p 4

64. Qi CR, Su H, Nießner M, Dai A, Yan M, Guibas LJ (2016) Volumetric and multi-view CNNs
for object classification on 3D data. CoRR arXiv:1604.03265

65. Qi CR, Yi L, Su H, Guibas LJ (2017) Pointnet++: deep hierarchical feature learning on point
sets in a metric space. In: Advances in neural information processing systems, pp 5099–5108

66. Qu L, He S, Zhang J, Tian J, Tang Y, Yang Q (2017) RGB-D salient object detection via
deep fusion. IEEE Trans Image Process 26(5):2274–2285. https://doi.org/10.1109/TIP.2017.
2682981

67. Ren J, Gong X, Yu L, Zhou W, Yang MY (2015) Exploiting global priors for RGB-D saliency
detection. In: 2015 IEEE conference on computer vision and pattern recognition workshops
(CVPRW), pp 25–32. https://doi.org/10.1109/CVPRW.2015.7301391

68. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with
region proposal networks. In: Advances in neural information processing systems, pp 91–99

69. Ren S, He K, Girshick RB, Sun J (2015) Faster R-CNN: towards real-time object detection
with region proposal networks. CoRR arXiv:1506.01497

70. Ren Z, Sudderth EB (2016) Three-dimensional object detection and layout prediction using
clouds of oriented gradients. In: 2016 IEEE conference on computer vision and pattern recog-
nition (CVPR), pp 1525–1533. https://doi.org/10.1109/CVPR.2016.169

71. Rusinkiewicz S, LevoyM (2001) Efficient variants of the ICP algorithm. In: Proceedings Third
international conference on 3-d digital imaging and modeling, pp 145–152. https://doi.org/10.
1109/IM.2001.924423

72. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge.
Int J Comput Vis (IJCV) 115(3):211–252. https://doi.org/10.1007/s11263-015-0816-y

73. Sahin C, Kouskouridas R, Kim T (2016) Iterative hough forest with histogram of control points
for 6 dof object registration from depth images. CoRR arXiv:1603.02617

http://arxiv.org/abs/1411.4038
https://doi.org/10.1109/ICRA.2015.7139679
https://doi.org/10.1109/FPT.2017.8280135
https://doi.org/10.1109/FPT.2017.8280135
https://doi.org/10.1109/ISMAR.2011.6092378
http://arxiv.org/abs/1503.00848
http://arxiv.org/abs/1604.03265
https://doi.org/10.1109/TIP.2017.2682981
https://doi.org/10.1109/TIP.2017.2682981
https://doi.org/10.1109/CVPRW.2015.7301391
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/CVPR.2016.169
https://doi.org/10.1109/IM.2001.924423
https://doi.org/10.1109/IM.2001.924423
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1603.02617


8 RGB-D Image-Based Object Detection: From Traditional Methods … 201

74. Sahin C, Kouskouridas R, Kim T (2017) A learning-based variable size part extraction archi-
tecture for 6d object pose recovery in depth. CoRR arXiv:1701.02166

75. Schwarz M, Schulz H, Behnke S (2015) RGB-D object recognition and pose estimation based
onpre-trained convolutional neural network features. In: 2015 IEEE international conference on
robotics and automation (ICRA), pp 1329–1335. https://doi.org/10.1109/ICRA.2015.7139363

76. Shotton J, Girshick R, Fitzgibbon A, Sharp T, Cook M, Finocchio M, Moore R, Kohli P,
Criminisi A, Kipman A et al (2013) Efficient human pose estimation from single depth images.
IEEE Trans Pattern Anal Mach Intell 35(12):2821–2840

77. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556

78. Song H, Liu Z, Xie Y, Wu L, Huang M (2016) RGBD co-saliency detection via bagging-based
clustering. IEEE Signal Processing Lett 23(12):1722–1726

79. Song S, Lichtenberg SP, Xiao J (2015) Sun RGB-D: a RGB-D scene understanding benchmark
suite. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE,
pp 567–576

80. Song S, Xiao J (2014) Sliding shapes for 3D object detection in depth images. In: European
conference on computer vision. Springer, pp 634–651

81. Song S, Xiao J (2016) Deep sliding shapes for a modal 3D object detection in rgb-d images.
In: CVPR

82. Sun H, Meng Z, Tao PY, Ang MH (2018) Scene recognition and object detection in a unified
convolutional neural network on a mobile manipulator. In: 2018 IEEE international conference
on robotics and automation (ICRA), pp 1–5. https://doi.org/10.1109/ICRA.2018.8460535

83. Wang A, Cai J, Lu J, Cham TJ MMSS: multi-modal sharable and specific feature learning for
RGB-D object recognition. In: Proceedings of the IEEE international conference on computer
vision, pp 1125–1133

84. WangDZ, Posner I (2015)Voting for voting in online point cloud object detection. In: Robotics:
science and systems

85. Ward IR, Jalwana MAAK, Bennamoun M (2019) Improving image-based localization with
deep learning: the impact of the loss function. CoRR arXiv:1905.03692

86. Wu Z, Song S, Khosla A, Tang X, Xiao J (2014) 3D shapenets for 2.5d object recognition and
next-best-view prediction. CoRR

87. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D shapenets: a deep rep-
resentation for volumetric shapes. In: 2015 IEEE conference on computer vision and pattern
recognition (CVPR), pp 1912–1920. https://doi.org/10.1109/CVPR.2015.7298801

88. Xiang Y, Kim W, Chen W, Ji J, Choy C, Su H, Mottaghi R, Guibas L, Savarese S (2016)
ObjectNet3D: a large scale database for 3D object recognition. In: European conference on
computer vision. Springer, pp 160–176

89. Xiang Y, Mottaghi R, Savarese S (2014) Beyond pascal: a benchmark for 3D object detection
in the wild. In: 2014 IEEE winter conference on applications of computer vision (WACV).
IEEE, pp 75–82

90. Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) SUN database: large-scale scene
recognition from abbey to zoo. In: 2010 IEEE computer society conference on computer vision
and pattern recognition, pp 3485–3492. https://doi.org/10.1109/CVPR.2010.5539970

http://arxiv.org/abs/1701.02166
https://doi.org/10.1109/ICRA.2015.7139363
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/ICRA.2018.8460535
http://arxiv.org/abs/1905.03692
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2010.5539970


Chapter 9
RGB-D Salient Object Detection:
A Review

Tongwei Ren and Ao Zhang

Abstract Salient object detection focuses on extracting attractive objects from the
scene, which serves as a foundation of various vision tasks. Benefiting from the
progress in acquisition devices, the depth cue is convenient to obtain, and is used in
salient object detection in RGB-D images in combination with the color cue. In this
chapter, we comprehensively review the advances in RGB-D salient object detection.
We first introduce the task and key concepts in RGB-D salient object detection. Then,
webriefly review the evolution of salient object detection technology, especially those
for RGB images, since many RGB-D salient object detection methods derive from
the existing RGB ones. Next, we present the typical RGB-D salient object detection
methods, evaluate their performance on public datasets, and summarize their issues.
Finally, we discuss some open problems and suggestions for future research.

9.1 Introduction

When introducing salient object detection from a cognitive perspective, it refers
to finding objects, which attract more attention than the surrounding regions when
the human visual system perceives the scene. The task of salient object detection in
computer vision is inspired by early tasks, which try to simulate human attention [13,
17], a concept that has been studied in cognitive psychology for many years [27].
Because of the complexity of human visual system, the criterion of judging whether
an object is salient cannot be explicitly listedwith a couple of simple standards. There
are many factors that can influence the judgement of salient objects, for example,
salient objects are context dependent. The change of scene or even the change of
location in the same scene may cause a difference in the saliency rank of objects.
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Fig. 9.1 Examples of salient object detection. a Original images. b Groundtruths of salient object
detection. c Saliency maps. The saliency maps are generated by Guo et al. [11]

Both local contrast and global contrast with other objects in the same context should
be taken into consideration.

When introducing the salient object from a precise and computational perspective,
it refers to segmenting the entire objects, which are the most attention-grabbing
compared to surrounding regions, rather than only parts of the objects [2]. Referring
to somepopular salient object detection dataset construction [1, 4, 5, 33], the concrete
way of judging whether an object is salient, is to ask a couple of annotators to choose
the most attention-grabbing object in the scene. Figure9.1 shows an example of
salient object detection.

Saliency analysis technologymainly includesfixationprediction and salient object
detection. Different from fixation prediction, salient object detection aims to extract
the entire attractive objects rather than presenting the gaze points by highlighting a
few spots on heat maps, which is more useful to serve as a foundation of various
vision tasks, such as object detection, information retrieval, and video analysis.

In recent years, benefiting from the progress of acquisition devices, depth cues can
be conveniently obtained by depth cameras and binocular cameras, and its potential in
salient object detection is explored. In reality, the human visual system perceives both
color and depth information from the scene, and uses them together in distinguishing
salient objects. Depth cues help to distinguish salient objects from the background,
especially when the objects have complex structure or texture. Figure9.2 shows a
comparison between saliency maps using color cue and saliency maps using both
color and depth cues. Thus, it is useful to combine depth cues with color cues in
salient object detection on RGB-D images.

However, due to the performance limitation of current acquisition devices, the
depth maps are usually of low quality, low resolution and accuracy in particular,
which brings serious noise and can mislead salient object detection. How to handle
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Fig. 9.2 Examples of comparison between saliency maps using only color cue and saliency maps
using both color cue and depth cue. a Original images. b Depth maps. c Saliency maps using only
color cue. d Saliency maps using both color cue and depth cue. The saliency maps are generated
by Guo et al. [11]

the low quality of depth maps in salient object detection has not yet been solved.
Moreover, color cues and depth cues play complementary roles in salient object
detection, but they conflict with each other sometimes. How to combine color cues
and depth cues while handling their inconsistency still needs further investigation.

In this chapter, we comprehensively review the advances in RGB-D salient object
detection, and the rest of the chapter is organized as follows. In Sect. 9.2, we briefly
review the evaluation of salient object detection, especially those on RGB images,
since many RGB-D salient object detection methods derive from the existing RGB
ones. In Sect. 9.3, we present the typical RGB-D salient object detection meth-
ods, evaluate their performance on public datasets, and summarize their issues. In
Sect. 9.6, we discuss some open problems and suggestions for future research.

9.2 Salient Object Detection Evolution

In the past decades, great progress has been made in salient object detection on RGB
images. A large number of RGB salient object detection methods are proposed,
and they achieve significant performance. These methods explore the effectiveness
of color cues in salient object detection, while providing the useful inspiration for
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Fig. 9.3 Examples of co-saliency object detection. a Image series. b Saliencymaps. cGroundtruths
of co-saliency object detection. The saliency maps are generated by Cong et al. [6]

depth cue in RGB-D salient object detection. The early RGB salient object detection
methods are mainly based on handcrafted features of global or local contrast, while
there are many corresponding RGB-D methods [8, 9, 14–16, 18, 22, 25, 28, 31].
These methods perform well on images which have simple and high-contrast salient
objects and background, but easily suffer from many problems on complex images,
such as incomplete objects. To improve the completeness of the detected salient
objects, graph-based models are used to propagate the saliency among adjacent and
similar regions, which can effectively enhance the missing parts in the salient objects
while suppressing the residual saliency on the background. Graph-based methods
also inspire some RGB-D salient object detection methods [11, 22]. Recently, deep
learning-based methods show their remarkable abilities in salient object detection,
including deep neural networks, multi-context deep networks, multi-scale deep net-
works, symmetrical networks, and weakly supervised deep networks [3, 12, 23].

Beyond extracting salient objects from a single image, co-saliency detection
focuses on detecting common salient objects from several related images [6, 7,
10, 26]. By exploring the inter-image correspondence among images, co-saliency
can extract the salient objects with similar appearances from multiple images effec-
tively. Compared to RGB-D salient object detection, the multiple images used in
co-saliency detection have the same modality, i.e., color cue, but not different ones.
Moreover, co-saliency detection requires that the objects should be salient in all the
images, but the objects are usually only present in the color cue or the depth cue in
RGB-D salient object detection. Figure9.3 shows an example of co-saliency object
detection. Recently, some researchworks combine co-saliency detection andRGB-D
salient object detection, and extracts common salient objects from multiple RGB-D
images.

Video salient object detection aims to extract salient objects from video sequences
[29, 30]. From a certain perspective, video salient object detection can be treated as
a special co-saliency detection, in which all the adjacent video frames contain the
common salient objects with similar appearances. Figure9.4 shows an example of
video salient object detection. Nevertheless, video salient object detection is usually
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Fig. 9.4 Examples of video salient object detection. a Video frames. b Saliency maps. c
Groundtruths of video salient object detection. The saliency maps are generated byWang et al. [30]

conducted in a different way. In one aspect, the adjacent video frames are similar
in both objects and background. And it follows that inter-frame analysis can pro-
vide little additional information compared to single frame analysis. From another
perspective, the motion cues that can be estimated from the adjacent frames usually
plays a key role in salient object detection, because the moving objects are easy to
attract human attention. The exploration [29, 30] of motion cues has some similar
characteristics to that of depth cues, for example, the estimated object motion is usu-
ally inaccurate and the detection results on color cues and motion cues conflict each
other sometimes. Thus, the studies on video salient object detection, especially on
the fusion of color cues and motion cues, may provide useful inspiration to RGB-D
salient object detection.

9.3 RGB-D Salient Object Detection

Based on the numbers ofmodalities and images used in salient object detection,RGB-
D salient object detection can be roughly classified into three categories: depth-based
salient object detection, depth- and color-based salient object detection, and RGB-D
co-saliency detection.

9.3.1 Depth-Based Salient Object Detection

Depth-based salient object detection aims to explore the effectiveness of depth cues
in salient object detection directly and independently, i.e., extracting salient objects
from depth maps without considering color cues.
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Based on the assumption that depth is intrinsic in biological vision, Ouerhani et
al. [21] investigated the power of depth in saliency analysis, and pointed out that
depth cue is beneficial in predicting human gazes. Ju et al. [15, 16] proposed the first
depth-based salient object detection method with the assumption that salient objects
stand out from their surroundings in depth. The method is based on anisotropic
center-surround difference, and refines its results by integrating the 3D spatial prior.
However, they used fixedweights to combine depth contrast from different directions
to predict pixel level saliency, which might lead to low quality on some specific
directions of the saliency map. There is also another disadvantage that the area
chosen to generate depth contrast in each direction for a single pixel was fixed,
which may lead to a vague saliency map under some condition, especially when the
salient object takes up a big portion of the whole image.

In order to detect salient objects easier and more accurate, Sheng et al. [24]
enhanced the depth comparisonbetween salient objects and the background insteadof
extracting features from depth maps directly, based on the fact that contrast between
pixels in many depth maps is not obvious due to various view points used to capture
depth maps.

The depth cue is simpler than the color cue in saliency analysis because it only
contains one channel rather than three. However, it suffers from the problems of low
quality, which tends to hamper the accurate salient object detection. Moreover, the
depth maps of natural images are usually connected, which prevents segmenting the
salient objects from the background without the assistance of color cue [31].

9.3.2 Depth- and Color-Based Salient Object Detection

As compared to only using depth cues, it is a common and better solution to combine
depth cues and color cues in salient object detection. Early works usually directly
treat the depth cue as a complement channel of the color cue [14] or mix the features
from depth cues with those from color, luminance and texture [8], which ignores the
differences among different modalities in saliency representation.

To study whether and how depth information influences visual saliency, Lang et
al. [18] built a 3D eye fixation dataset using Kinect to study the power of depth in
attention prediction. They drew a set of conclusions based on their observations,
including (i) Humans are likely to fixate on areas with closer depth. (ii) The majority
of fixation consists of only a few interesting objects both in 2D and 3D. (iii) There is
a nonlinear relationship between depth and saliency and the relationship is different
under different scenes with different depth ranges. (iv) The incorporation of depth
cues will cause a huge difference between fixation distribution of 2D version and
fixation distribution of 3D version, especially in complex scenes. Based on the above
observations, they integrated depth into 2Dmethods as a probabilistic prior and found
that the predictive power could be increased by 6–7%. However, they combine the
depth prior through simple summation or multiplication, which are not efficient
enough and suffer when there are conflicts between color cues and depth cues.
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Basedon theobservations that there are obvious depthgaps between salient objects
and background and some domain knowledge of stereoscopic photography, Niu et
al. [20] proposed to compute the saliency based on the global disparity contrast, and
leverage domain knowledge of stereoscopic photography in salient object detection.
However, there are drawbacks that they considered the depth cue as the fourth chan-
nel of color cue that ignores the differences among different modalities in saliency
representation, and there are some certain salient objects whose depth comparison
between background are consistent rather than abrupt which is conflicted with their
basic assumption.

Peng et al. [22] built a RGB-D dataset using Kinect and combined depth and exist-
ing 2D models for improvement. They proposed a multi-level saliency map combi-
nation method. For low level saliency maps, a multi-contextual feature combining
local, global and background contrast to measure pixel-wise saliency is employed.
The feature performs a fixed, passive measurement of depth contrast. For mid level
saliency maps, a graph-based propagation method is adopted, which are helpful in
reducing the saliency value in the background area. Notably, most of the contrast-
based methods without further optimization would suffer from the problem of high
saliency in the background, while graph-based methods show a better performance
on this problem. For high-level saliency maps, some spatial priors are incorporated.
Because of the fact that most of the salient objects occur in the central area of the
scene, spatial priors could contribute to eliminating some interference from back-
ground objects with high contrast for color cue or depth cue. Finally, they combine
three levels’ saliencymaps by adding the first two levels’ saliencymaps and thenmul-
tiplying high level saliency maps. Despite the delicate process of multi-contextual
features in low level and diverse feature extraction in different levels, the combina-
tion method consists of simply summation and multiplication, which cannot make
an effective combination of different saliency maps.

To eliminate the regions with high depth contrast in the background, Feng et
al. [9] computed a local background enclosure feature, then applied the priors on
depth, spatial, and background, and refined the boundaries of salient objects with
Grabcut segmentation. There are several improvements compared to Ju et al. [15,
16] on how to take advantage of depth cues, including (i) Incorporation of angular
information could be considered as a kind of contrast with adaptive weights which
ameliorated the problem brought by fixed weights of contrast in different directions
in [15, 16]. (ii) The area of contrast for each pixel was reduced compared to Ju et
al. [15, 16], which only drew attention to distinguishing salient objects from local
background.

Guo et al. [11] further proposed a salient object detectionmethodbased on saliency
evolution, which generated accurate but incomplete salient objects by fusing the
saliency analysis results on color cues and depth cues, and refined the saliency maps
by propagating saliency among adjacent and similar regions in super-pixel level. The
main contribution of Guo et al. [11] was that they proposed an effective method to
combine color cue and depth cue. To be more specific, the saliency evolution strat-
egy implemented with a single-layer cellular automata can reduce the high saliency
regions in the background and improve the completeness of salient objects. How-
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ever, if some parts of the salient object are very thin compared to the main part, like
a tentacle of an alien, the final saliency map would be vague in these thin parts, due
to the fact that evolution strategy tends to assign higher saliency value when most of
its surrounding area has high saliency value, while the surrounding of the thin parts
do not have high saliency value.

Wang and Wang [28] proposed a multistage salient object detection method,
which generated color cue and depth cue-based saliency maps, weighted them with
depth bias and 3D spatial prior, and fused all the saliency maps by multilayer cel-
lular automata. Different from Guo et al. [11] which utilized a single-layer cellular
automata on the multiplication of different saliency maps, they use a multilayer cel-
lular automata to fuse all saliency maps directly, which shows superior performance.

Song et al. [25] exploited different features on multiple levels and generated
several multi-scale saliency maps by performing a discriminative saliency fusion
on hundreds of corresponding regional saliency results. To be more specific, the
discriminative saliency fusion employed a random forest regressor to find the most
discriminative ones, which would be used in generating multi-scale saliency maps.
Different frommany other proposed fusion methods that use weighted summation or
multiplication, the discriminative fusion is nonlinear which will not suffer when the
amount of salient results exceed one hundred. Based on several generatedmulti-scale
saliency maps, a further fusion is needed to generate a final saliency map. Bootstrap
learning was employed to combine these saliency maps, which performed salient
objects segmentation at the same time. Evidently, the segmentation contributed to
both reducing the saliency value in the background and refining the boundary of
saliency objects.

In recent years, similar to that in many other vision tasks, deep learning shows
its power in salient object detection. However, recent deep learning methods mainly
pay their attention to color cue, while there are few of them taking advantage of
both color cue and depth cue. In the following part, we introduce two RGB-D salient
object detection methods which are deep learning based.

Qu et al. [23] designed a Convolutional Neural Network (CNN) to fuse different
low level saliency cues into hierarchical features for automatic detection of salient
objects. They adopted well-designed saliency feature vectors as the input instead
of directly feeding raw images to the network, which could take advantage of the
knowledge in the previous advances in salient object detection and reduced learning
ambiguity to detect the salient object more effectively. Moreover, it integrates Lapla-
cian propagation with the learned CNN to extract a spatially consistent saliency map.
Thanks to the superiority of CNN in fusing different feature vectors, the performance
is improved compared to other non-deep learning-based methods, but they ignored
the strong power of CNN in feature extraction.

Han et al. [12] transferred the structure of the RGB-based deep neural network
to be applicable for depth cue, and fused the deep representations of both color and
depth views automatically to obtain the final saliency map. Different from Qu et
al. [23], CNN is used in all of stages including feature extraction and feature fusion.

Chen and Li [3] designed a complementarity-aware fusion module and explored
the complement across all levels in order to obtain sufficient fusion results. There is a
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difference between Han et al. [12] and Chen and Li [3] that Han et al. [12] combined
depth cue and color cue after feature extraction, Chen and Li [3] fused two cues from
the beginning of the feature extraction and performed fusion in every stage of the
process.

9.3.3 RGB-D Co-saliency Detection

RGB-D co-saliency detection aims to further explore the inter-image correspondence
and to perform better in salient object detection.

Fu et al. [10] utilized the depth cue to enhance identification of similar foreground
objects via a proposed RGB-D co-saliency map, as well as to improve detection of
object-like regions and provide depth-based local features for region comparison.
Moreover, they formulated co-segmentation in a fully connected graph structure
togetherwithmutual exclusion constraints to dealwith the imageswhere the common
object appears more than or less than once.

Song et al. [26] proposed a RGB-D co-saliency method via bagging-based clus-
tering, which generates the saliency maps on single images, clusters them into weak
co-saliency maps, and integrates the weak co-saliency maps adaptively into the final
saliency map based on a clustering quality criterion.

Cong et al. [7] proposed an iterative RGB-D co-saliency method, which utilizes
the existing single saliency maps as the initialization, and generates the final RGB-D
co-saliency map by using a refinement cycle model.

Another method proposed by Cong et al. [6] utilized the depth cue to enhance
identification of co-saliency. It calculated the intra saliency maps on each single
image and the inter saliency maps based on the multi-constraint feature matching,
refined the saliency maps with cross label propagation, and integrated all the original
and optimized saliency maps to the final co-saliency result.

9.4 Evaluation

9.4.1 Datasets

There are many datasets for RGB salient object detection, such as MSRA10K [5]
and XPIE [32], but the datasets for RGB-D salient object detection are quite scarce.

For depth- and color-based salient object detection, also for depth- based salient
object detection, there are two existing datasets: RGBD1000 [22] and NJU2000 [16].
Specifically, RGBD1000 dataset consists of 1000 RGB-D images with the maximum
resolution of 640× 640,which are captured byKinect. RGBD1000 also provides two
versions of depth cues, including raw depthmap and smoothed depthmap. Figure9.5
shows an overview ofRGBD1000.NJU2000 dataset consists of 2000RGB-D images
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Fig. 9.5 Overview of RGB1000. a Original images. b Raw depth maps. c Smoothed depth maps.
d Groundtruths of salient object detection

Fig. 9.6 Overview of NJU2000. a Original images. bDepth maps. cGroundtruths of salient object
detection

with the maximum resolution of 600× 600, whose depth cues are generated by a
depth estimation algorithm. Figure9.6 shows an overview of NJU2000.

ForRGB-Dco-saliency detection, there are two typical datasets: RGBDCoseg183
[10] and RGBD Cosal150 [6]. Specifically, RGBD Coseg183 dataset consists of 183
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Fig. 9.7 Overview of NJU1000. a Original images. b Depth maps. c Groundtruths of co-saliency
object detection

RGB-D images captured by Kinect, which are divided into 16 groups and each group
contains 12–36 images, and the maximum resolution of the images is 640× 480;
RGBD Cosal150 dataset consists of 150 RGB-D images with the estimated depth
cues, which are divided into 21 groups and each group contains 2–20 images, and
the maximum resolution of the images is 600× 600. Figure9.7 shows an overview
of Coseg183 [10] and RGBD Cosal150 [6].

9.4.2 Metrics

The evaluation of RGB-D salient object detection performance uses the samemetrics
as other salient object detection tasks. By comparing the generated saliency map to
the manually labeled groundtruth, several evaluation metrics can be calculated for
quantitative evaluation, including Area Under the Curve (AUC), F-measure, and
Mean Absolute Error (MAE). Specifically, AUC metric calculates the area under
Receiver Operating Characteristic (ROC) curve, which is better if larger. F-measure
calculates a weighted harmonic mean of precision P and recall R, which is defined
as follows:

Fβ = (1+ β2)P × R

β2 × P + R
, (9.1)

where β2 is usually set to 0.3 to emphasize the precision. A larger Fβ score means
better performance.

Weighted F-measure calculates the F-measure with weighted precision Pw and
recall Rw, which is defined as follows:

Fw
β = (1+ β2)Pw × Rw

β2 × Pw + Rw
. (9.2)

Itwill be lower thannormal F-measure. The specific calculation ofweighted precision
Pw and recall Rw can be referred in [19].



214 T. Ren and A. Zhang

MAE is calculated based on the difference between the salient object detection
result S and the groundtruth G, which is defined as follows:

MAE = 1

w × h

w∑

i=1

h∑

j=1

|S(i, j) − G(i, j)|, (9.3)

where w and h are the width and height of the image. A smaller MAE score means
better performance.

9.4.3 Comparison Analysis

We compared the performance of typical RGB-D salient object detection methods.
All the results are provided by the authors or generated by their source codes. For
depth-based salient object detection, we compared Ju et al. [16] and Sheng et al. [24];
for depth- and color-based salient object detection, we compared Lang et al. [18],
Niu et al. [20], Peng et al. [22], Guo et al. [11], Qu et al. [23], and Chen and Li [3];
for RGB-D co-saliency detection, we compared Song et al. [26] and Cong et al. [6].

Tables9.1, 9.2 and 9.3 show the performance of the compared methods in depth-
based salient object detection, depth- and color-based salient object detection, and
RGB-D co-saliency detection, respectively.

We can see that
(i) As shown in Table9.1, Sheng et al. [24] is slightly better than Ju et al. [16]

in all three metrics. A possible explanation would be discussed as follows. They
both employed depth cue as the basic cue to generate saliency maps. However, Ju et
al. [16] only emphasized the depth contrast on the origin depth map, and they fixed
the weights of depth contrast from different directions rather than using adaptive
weights, which may lead to low quality on some specific direction of the saliency
map. Ju et al. [16] also used the weighted summation of the biggest contrast values
among a relatively large area from different directions in depth maps to calculate
pixel level salient value, which would lead to a vague saliency map, especially when
the salient object takes up a big portion of the whole image. As shown in Fig. 9.1,
prediction of a small salient object is relatively more accurate than that of a big
salient object. By contrast, Sheng et al. [24] developed a new preprocessing method
to enhance the depth contrast on depth maps and then used the preprocessed depth
map to generate saliency maps.

(ii) By comparing methods of Lang et al. [18], Niu et al. [20], Peng et al. [22] and
Guo et al. [11] in Table9.2, which used both color cues and depth cues without deep
learning modules, we find that Guo et al. [11] outperform other methods and Peng et
al. [22] take the second place. A possible explanation would be discussed as follows.
Lang et al. [18] and Niu et al. [20] combined color cues and depth cues simply by
adding or multiplying saliency maps generated with different cues. Similarly, Peng
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Fig. 9.8 Examples of Ju et at. [16]. a Original images. b Saliency maps. c Groundtruths of salient
object detection

et al. [22] calculated the final saliency map by adding the first two levels’ saliency
maps and multiplying the third level’s saliency maps (Fig. 9.8).

In spite of the similarity between the fusion methods of Peng et al. [22], Lang
et al. [18] and Niu et al. [20], Peng et al. [22] incorporated different levels’ depth
contrast, e.g., local contrast, global contrast, and background contrast. Notably, Peng
et al. [22] also employed graph-basedmethod to generate saliencymaps of the second
level, which contributed to reducing high saliency maps in the background. All the
above works of Peng et al. [22] helped to generate saliency maps with high quality.
By contrast, Guo et al. [11] proposed a new method to combine depth cue and color
cue in salient object detection. They generated saliency maps using color cue and
saliencymaps using depth separately,which are both of lowquality.Aftermultiplying
two saliency maps, Guo et al. [11] conducted a refinement step by employing a
single-layer cellular automaton that boosted the final performance. Figure9.9 shows a
comparison between the abovemethods. To conclude, simply calculating summation
and multiplication are not efficient ways to fuse different saliency maps. There is
still a demand for exploiting other efficient fusing strategies.

(iii) By comparing two deep learning-based methods, Qu et al. [23] and Chen and
Li [3], we find that Chen’s method is better than Qu’s method. A possible explanation
would be discussed as follows. Qu et al. [23] only used the deep learning module
to fuse two saliency maps generated independently with depth cue and color cue.
By contrast, Qu et al. [23] employed Convolutional Neural Network (CNN) both to
extract features from RGB images and depth maps and fuse saliency maps, which
utilized the power of CNN in feature extraction. Thus, Qu et al. [23] can make a
better performance.

(iv) Table9.2 shows that the deep learning-based methods, e.g., Qu et al. [23] and
Chen and Li [3], outperform other methods, which shows the power of deep learning
in saliency feature representation.
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Fig. 9.9 Examples of saliency maps using both color cue and depth cue without deep learning
modules. a Original images. b Groundtruths. c Results of Lang et al. [18]. d Results of Niu et
al. [20]. e Results of Peng et al. [22]. f Results of Guo et al. [11]

Table 9.1 Evaluation of different depth-based salient object detection methods on RGBD1000 and
NJU2000 datasets

RGBD1000 NJU2000

AUC Fβ MAE AUC Fβ MAE

Ju et al. [16] 0.92 0.67 0.16 0.93 0.75 0.19

Sheng et
al. [24]

0.95 0.68 0.15 0.95 0.78 0.16

(v) By comparing Tables9.1 and 9.2, the depth-based methods are not inferior to
many methods based on color and depth. It shows that the effective combination of
color cue and depth cue is not yet achieved. Simply multiplying or adding saliency
maps generated with different cues are not efficient.

(vi) By comparing Tables9.1 and 9.3, the performance of RGB-D co-saliency
detection is better than that on single images. It shows that the analysis of inter-
image correspondence is beneficial to salient object detection.
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Table 9.2 Evaluation of different depth- and color-based salient object detection methods on
RGBD1000 and NJU2000 datasets

RGBD1000 NJU2000

AUC Fβ Fw
β MAE AUC Fβ Fw

β MAE

Lang et al. [18] 0.16 0.33 0.31 0.29

Niu et al. [20] 0.80 0.47 0.23 0.18 0.81 0.61 0.35 0.22

Peng et al. [22] 0.46 0.11 0.34 0.21

Guo et al. [11] 0.55 0.55 0.10 0.43 0.60 0.20

Qu et al. [23] 0.88 0.64 0.12 0.83 0.64 0.20

Chen and Li [3] 0.82 0.83

Table 9.3 Evaluation of different RGB-D co-saliency detection methods on RGBD Coseg183 and
RGBD Cosal150 datasets

RGBD Cosal183

AUC Fβ MAE

Song et al. [26] 0.97 0.83 0.05

Cong et al. [6] 0.96 0.84 0.14

9.5 Discussion

By analyzing all abovemethods, we summarize threemain points related to the effect
of depth cue in salient object detection, which may give some inspiration for future
RGB-D salient object detection models’ design:

The first point is about feature extraction. In the past few years, there are mainly
two ways to extract features in depth maps, including various contrast-based meth-
ods and deep learning-based methods. It should be noted that graph-based methods
are not ways to extract features. They are used to make refinement or generate final
saliency maps. For contrast-based methods, a bunch of different contrasts are devel-
oped tomake a better performance,while there are relatively less deep learning-based
methods paying attention to depth feature extraction.

The second point is about saliency map fusion. With the incorporation of depth
cue, there is often aneed to fuse several candidate saliencymaps, or some intermediate
results. The amount of saliencymaps or intermediate results required to fuse are quite
different in various proposed models from two to three hundred. Especially when the
amount is as high as three hundred, the effectiveness of fusion strategywillmatter a lot
for the final results. The simplest strategies are weighted summation and point-wise
multiplication, while there are many other more effective ones, like evolution-based
fusion [11], multilayer cellular-based fusion [28], random forest regressor selection-
based fusion [25], bootstrap-based fusion [25], and deep learning-based fusion [3,
12, 23].
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The third point is about refinement of saliency maps, which includes two aspects:
eliminate saliency in the background and make better segmentation in the fore-
ground. Most of contrast-based methods without further refinement will suffer from
high saliency in the background, due to the fact that there are many objects in the
background that have strong contrast with surrounding areas for either color cue or
depth cue. To avoid the high saliency in the background, graph-based methods are
proposed which propagate saliency based on some specific seed points instead of
generating saliency value directly on the whole image or depth map. For the second
aspect, there is often an incompleteness of salient objects or vagueness in some spe-
cific areas, because many parts are not obviously distinct from the background or big
enough to be detected by some proposed models. In this condition, refinement like
using Grabcut [9] and bootstrap-based segmentation [25] can help to make a better
segmentation of foreground objects.

9.6 Conclusion

In this chapter, we comprehensively reviewed the advances in RGB-D salient object
detection, including depth-based salient object detection, depth- and color-based
salient object detection and RGB-D co-saliency. We first introduced the evolution of
salient object detection, and analyzed the relationship between RGB-D salient object
detection and salient object detection on other media, e.g., RGB images, multiple
images for co-saliency detection and videos. Furthermore, we presented the typical
methods of these three categories, and evaluated their performance on four public
datasets.

Though many RGB-D salient object detection methods have been proposed, there
are still many unsolved issues. The low quality of depth maps may influence the
performance of RGB-D salient image detection methods. How to enhance depth
maps or improve the robustness to depth noise will be a critical issue for RGB-D
salient object detection. Moreover, compared to the datasets for RGB salient object
detection, the datasets for RGB-D salient object detection are scarce and their sizes
are smaller. It would be a significant benefit to construct a large-scale datasets for
RGB-D salient object detection.
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Chapter 10
Foreground Detection and Segmentation
in RGB-D Images

Runmin Cong, Hao Chen, Hongyuan Zhu and Huazhu Fu

Abstract Depth information available in RGB-D images facilitate many computer
vision tasks. As a newly emerging and significant topic in the computer vision com-
munity, foreground detection and segmentation for RGB-D images have gained a lot
of research interest in the past years. In this chapter, an overview of some foreground-
based tasks in RGB-D images is provided, including saliency detection, co-saliency
detection, foreground segmentation, and co-segmentation.We aim at providing com-
prehensive literature of the introduction, summaries, and challenges in these areas.
We expect this review to be beneficial to the researchers in this field and hopefully,
encourage more future works in this direction.

10.1 Introduction

As a traditional task in computer vision, foreground detection and segmentation have
gained more attention from academia and industry. In general, the foreground object
is defined as the salient target in an image. As we all know, the human visual system
has the ability to allocate more attention to attractive parts or objects for further
processing. Thus, the visual saliency detection task expects the computer to also
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have the ability to automatically identify salient regions from the input data [13,
73, 80], which has been applied in retrieval [66], retargeting [41], compression [30],
enhancement [25, 43, 47], coding [40], foreground annotation [5], quality assessment
[24], thumbnail creation [75], action recognition [77], and video summarization [35].
Image segmentation is also a fundamental problem in image processing and computer
vision, which plays a significant role in object detection [12], object recognition [69],
object tracking [1], and so on. It is essentially a technology to group image pixels
into a set of regions with certain foreground labels.

When faced with a scene , the human visual system can not only perceive the
appearance of the target but also capture the depth information of the scene. The
development of imaging devices and sensors has made the acquisition of depth map
simple and convenient, laying the data foundation for the task of RGB-D foreground
detection and segmentation. From the depth map, we can capture many useful at-
tributes for foreground extraction from the complex background, such as shape rep-
resentation, contour information, internal consistency, and surface normal. In this
chapter, we will review and summarize some depth-guided saliency detection and
segmentation tasks, including

• RGB-D saliency detection. This task aims at making full use of depth cue to
enhance the identification of the salient objects from a given image.

• RGB-D co-saliency detection. This task aims at detecting the common and salient
regions from an RGB-D image group containing multiple related images.

• RGB-D semantic segmentation. This task aims at classifying each pixel in an
image to a predefined category to support higher level reasoning with the help of
the depth information.

• RGB-D co-segmentation. This task aims at extracting similar foreground objects
from among a set of related images by combining the depth information and
multiple image corresponding constraint.

10.2 RGB-D Saliency Detection

Salient object detection aims at identifying the most human-attractive object/objects
in a scene. It has been a fundamental task in computer vision and serves as an impor-
tant auxiliary stage for a large range of computer/robotic vision tasks. The traditional
salient object detection is based on RGB inputs to measure the distinctiveness of the
object appearance. However, when salient object and background share a similar
color or the scenario is under weak illumination, the previous RGB-induced saliency
detection methods will encounter challenges to distinguish the salient object.

Fortunately, the synchronized depth information, equipped by the off-the-shelf
sensors such as Kinect or RealSense, provides additional geometry cues to assist the
inference of the salient object. Figure10.1 illustrates some examples predicted by
state-of-the-art RGB andRGB-D saliency detectionmodels [7, 33], respectively. The
comparison in Fig. 10.1 well verifies the complementarity of the depth modality in
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Fig. 10.1 Saliency examples to show the cross-modal complementarity. RGB_Sal and RGBD_Sal
denote the saliency map inferred by Hou et al. [33] and Chen and Li [7] using the RGB image and
the RGB-D image pair, respectively

saliency inference. Specifically, it is hard to localize the salient object adequately and
highlight the salient regions uniformly simply with the RGB channels, especially in
the cases of the similar appearance between salient object and background, complex
background, and the intra-variable salient regions. In contrast, the RGB-D saliency
detection model is able to leverage the synchronized RGB and depth images to
collaboratively localize the salient object and refine the salient details. It is also
easy to note that in some cases, only one modality carries discriminative saliency
cues. Thus, it is the key question that how to combine the two modalities for desired
complementary and collaborative decision.

10.2.1 Methods Based on Handcrafted Features

Early efforts on RGB-D salient object detection are mainly based on handcrafted fea-
tures. Table10.1 shows the comparison of these works in terms of feature designing,
saliency inference, and the multi-modal fusion schemes. The main difference among
these RGB-D salient object detection models is the design of depth-induced saliency
features. Most of the previous works [17, 19, 48, 50, 82] directly use the raw depth
value as the feature and a popular assumption is that the closer object is more likely
to be salient due to photographic habits, which is adopted in [19, 48]. However, in a
considerable of scenes, some background regions also hold small depth values due to
the geometry structure. Desingh et al. [18] used the surface normal as the feature to
measure the distinctiveness of the segmented 3D surfaces/regions. Considering the
scene structure of the depth, Ju et al. [37] replaced the absolute depth with relative
depth for contrast and proposed to evaluate the center-surround difference in diverse
directions. Feng et al. [20] estimated the proportion of the object distinguishing from
the background and designed a saliency cue named “local background enclosure”. To
further improve the representative ability for the objects with different scales, Song
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Table 10.1 Comparison of the RGB-D salient object detection models based on handcrafted fea-
tures

Methods Year Depth feature Inference scheme Fusion scheme

LSSA [48] 2012 Original depth values Global
contrast + local
contrast

/

DRM [18] 2013 Surface normals
(superpixels)

Global contrast Result fusion (SVM)

NLPR [50] 2014 Original depth values
(superpixels)

Global
contrast + local con-
trast + background-
prior

Feature
fusion + result fusion

SRDS [19] 2014 Original depth values Global contrast Result fusion

ACSD [37] 2014 Anisotropic
Center-Surround
Difference
(superpixels)

Local contrast /

DCMC [17] 2016 Original depth values
(superpixels)

Global contrast Feature fusion

LBE [20] 2016 Local Background
Enclosure
(superpixels)

Local contrast Feature fusion

SE [26] 2016 Anisotropic
Center-Surround
Difference
(superpixels)

Global
contrast + local
contrast

Feature
fusion + result fusion

MDSF [62] 2017 Average depth
values + histogram
(multi-scale
superpixels)

Global contrast Feature fusion

MBP [82] 2018 Original depth values Global contrast Result fusion

et al. [62] segmented the RGB-D image pair into different numbers of superpixels
to form the multi-scale representation.

Another focus is the inference system for the depth-induced saliency. Inspired
by the previous RGB-induced saliency detection frameworks, most of the inference
systems for depth-induced saliency propose that the regions with distinguished depth
values in its local or global contexts will bemore salient. Desingh et al. [18] leveraged
the global contrast method [10] widely used in RGB saliency detection to compute
the saliency score of each region. The similar global contrast framework is also used
in [17, 26, 50] to consider the depth structure globally. Instead of measuring the
feature discrepancy with all other regions in the image, the works [20, 37] contrasted
the feature discrepancy in a local context. Regarding the advantages of the global-
and local contrast solutions, some works [26, 48, 50] resorted to a hybrid scheme
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that comparing the feature difference in multiple contexts jointly by combining the
global contrast, local contrast and the background-prior contrast strategies.

Finally, themulti-modal fusion problem is typically solved by concatenating RGB
and depth features as joint inputs such as in [17, 20, 62], or separately contrasting the
RGB and depth cues and combining the inference from twomodalities bymultiplica-
tion [19], summation [82], or other designs [18], which are termed as “feature fusion”
and “result fusion” schemes respectively. Besides, some works [26, 50] combine the
two fusion strategies to use the cross-modal information in both feature design and
saliency inference stages.

10.2.2 Methods Based on Deep Learning Techniques

Recent efforts resort to the convolutional neural network (CNN) to learn more pow-
erful RGB-D representations. Among these CNN-based solutions, the “two-stream”
architecture is the most typical one, which means each of the RGB and depth data
is separately processed by a stream and then fused for joint prediction. Table10.2
compares the CNN-based RGB-D salient object detection models in terms of net-
work patterns and training schemes. Due to the insufficiency of the training samples,
a promising scheme for training the depth stream is to use the models well trained
in the RGB modality such as the VGG net [60] as initialization. To this end, the
three-channel HHA [28] (horizontal disparity, height above ground and the angle of
the local surface normal) representations encoded from the single-channel depth val-
ues are widely used as inputs of the depth modality. Besides, the stage-wise training
scheme is also adopted in some works to facilitate better fusion results.

According to the convergence point of twomodalities, the two-stream architecture
can be categorized into three patterns:

Table 10.2 Comparison of the RGB-D salient object detection models based on convolutional
neural networks

Method Year Input of the
depth stream

Training
scheme of the
depth stream

Fusion
scheme

End-to-end or
stage-wise
training

DF [54] 2017 Handcrafted
features

Train from
scratch

Early fusion Stage-wise

CTMF [29] 2017 HHA Fine-tune
RGB CNN

Late fusion Stage-wise

MMCI [9] 2018 HHA Fine-tune
RGB CNN

Multi-level
fusion

Stage-wise

PCA-Net [7] 2018 HHA Original VGG Multi-level
fusion

End-to-end

TA-Net [8] 2019 HHA Original VGG Multi-level
fusion

End-to-end
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Fig. 10.2 The comparison of different two-stream multi-modal fusion patterns

Early fusion. As shown in Fig. 10.2a, the “early fusion” scheme combines the
cross-modal features in a shallow point. The combined features are then forwarded
to learn high-level multi-modal representations and joint decision via the following
shared stream. For example, in [54], low-level features are first crafted from RGB
and depth images using the contrasting paradigms in multiple contexts separately.
The contrasting results from each modality, serving as feature vectors, are then con-
catenated as joint inputs to train a CNN from scratch. The motivation for the early
fusion scheme is to enable the output of each subsequent layer to be a heteroge-
neous multi-modal representation. However, due to the cross-modal discrepancy, it
is hard to train a shared deep network which can well extract representations from
both modalities, especially when the training samples are insufficient. Also, the early
fusion scheme makes it hard to inherit the well-trained networks such as the VGG
model as initialization, while training the cross-modal network from scratch may
decrease the performance. As a result, the “early fusion” results show similar char-
acteristics as the ones generated by the methods with handcrafted features, denoting
its failure in learning and combining high-level cross-modal representations.

Late fusion. Another pipeline follows the late fusion pattern shown in Fig. 10.2b,
whichmeans that each of theRGBand depth data is separately learned by a respective
model-specific stream and the high-level features from two streams are combined
for joint prediction. Compared to the early fusion pattern, the late fusion one eases
the training of each modality due to the availability of readily fine-tuning existing
well-trained models. In [29], two fully connected layers at the end of each stream
were combined by mapping into another shared fully connected layer to learn joint
representations. This multi-modal fusion architecture achieves promising high-level
cross-modal combination and impressive performance in jointly localizing the salient
object. Besides, accounting for the insufficiency of the training samples, this work
also proposes two transfer learning strategies to facilitate the learning of the depth
stream. They argue that it allows better training of the depth stream if initialize it with
the trained RGB saliency detection network rather than the original model trained
with the ImageNet. The reason lies in that the former initialization strategy enjoys
smaller cross-task discrepancy and endows the depth stream with pre-understanding
on saliency detection. The original VGG model is learned for the image classifica-
tion task, which naturally differs from the pixel-wise one (i.e., saliency detection).
Another strategy is to introduce deep supervisions in the intermediate layer of the
depth stream to enhance the update of the parameters in its shallow layers.
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Multi-level fusion. It has been acknowledged that different layers in a CNN
contribute to saliency detection in a level-specific manner. Concretely, the deeper
layers carry more global contexts and are more responsible for localizing the salient
object, while the shallower layers provide more spatial details for refining the object
boundaries. Despite the effectiveness of the early or late fusion pattern in exploring
multi-modal representations and collaborative inference, it is hard to take the cross-
modal complementarity residing in multiple layers into account simultaneously with
performing multi-modal fusion only in an early or late point.

To exploit the cross-modal complementarity inmultiple levels, recent works focus
on designing amulti-level fusion pattern (Fig. 10.2c), inwhich the cross-modal fusion
is implemented inmultiple layers to generatemulti-levelmulti-modal representations
for inference. In [9], two cross-modal fusion paths were designed for collaborative
localization and refinement of the salient object respectively. The stream for each
modality contains a global reasoning branch equipped by a fully connected layer and
a local capturing branch performed by dilated convolutional layers. The predictions
from global and local branches in each modality are then combined respectively
and then summed as the final inference. More recently, Chen and Li [7] proposed
a progressive top-down cross-level cross-modal fusion path, in which the cross-
modal complements are densely combined in each level and the saliency map is
progressively enhanced from coarse to fine. Apart from the design on how to combine
cross-modal residing multiple levels sufficiently, this work innovatively proposed
to model the cross-modal complementarity as a residual function and recast the
problem of incorporating cross-modal complements into approximating the residual.
This reformulation reveals the cross-modal complementarity explicitly and eases the
cross-modal fusion effectively. To solve the multi-modal fusion problem in both the
bottom-up and top-down processes simultaneously, Chen andLi [8] designed another
stream to distil cross-modal cues in the encoding path. The cross-modal cues are then
selected and combined by an attention-aware top-down path.

10.3 RGB-D Co-saliency Detection

With the explosive growth of data volume, multiple relevant images with common
objects need to be processed collaboratively. Co-saliency detection aims at detecting
the common and salient regions from an image group containing multiple related
images [13, 80, 81], which has been applied in object co-detection [27], foreground
co-segmentation [6], and image matching [68]. This task is more challenging due to
the fact that the categories, locations, and intrinsic attributes are entirely unknown.
For the co-salient object in an image group, there are two properties that should
be satisfied, i.e., (a) the object should be salient with respect to the background
in each individual image and (b) the object should be similar in appearance and
repeated occurrence among multiple images. Figure10.3 provides some examples of
co-saliency detection task. As shown, all the cows should be detected as the salient
objects in each individual image. However, only the brown cow is the common
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Fig. 10.3 Illustration of the co-saliency detection. The first row presents the input images and the
second row shows the co-salient objects

object in the whole image group. Therefore, the inter-image correspondence among
multiple images plays an important role in representing the common attribute and
discriminating the salient objects.

As mentioned earlier, a depth map can provide many useful attributes (e.g., shape,
contour, and surface normal), and the superiority has been demonstrated in many
computer vision tasks, including scene understanding, object detection, image en-
hancement, and saliency detection. Considering the depth cue with the inter-image
correspondence jointly, we can achieve RGB-D co-saliency detection. At present,
there are two commonly used datasets for this task, i.e., RGB-D Coseg183 dataset
[22] and RGB-DCosal150 dataset [14]. The RGB-DCoseg183 dataset1 contains 183
RGB-D images with corresponding pixel-wise ground truth in total that distributed
in 16 image groups. The RGB-D Cosal150 dataset2 includes 21 image groups con-
taining a total of 150 RGB-D images, and the pixel-wise ground truth for each image
is provided. Due to the challenging nature of this task and limited data sources, only a
fewmethods have been proposed to achieve RGB-D co-saliency detection. In the fol-
lowing introduction, we will focus on how to capture the inter-image correspondence
and utilize the depth cue in different models.

Song et al. [63] proposed an RGB-D co-saliency detection method via bagging-
based clustering and adaptive fusion. First, some candidate object regions were
generated based on RGB-D single saliency maps through the gPb-owt-ucm [2] seg-
mentation technique. Then, in order to make regional clustering more robust to
different image sets, the inter-image correspondence was explored via feature bag-
ging and regional clustering. Note that, three depth cues, including average depth
value, depth range, and the Histogram of Oriented Gradient (HOG) on the depth
map, were extracted to represent the depth attributes of each region in this paper. For
each clustering group, the corresponding cluster-level weak co-saliency maps were
obtained. Finally, considering the quality of clustering result, a clustering quality
(CQ) criterion was devised to adaptively combine the weak co-saliency maps into

1http://hzfu.github.io/proj_rgbdseg.html.
2https://rmcong.github.io/proj_RGBD_cosal.html.

http://hzfu.github.io/proj_rgbdseg.html
https://rmcong.github.io/proj_RGBD_cosal.html
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Fig. 10.4 Framework of the method [14]. a The input RGB-D images. b The intra-saliency maps
produced by existing single saliency method collaborating with depth information. c The inter-
image corresponding relationship by combining the superpixel-level multi-constraint-based sim-
ilarity matching and image-level hybrid feature-based similarity matching. d The inter- saliency
maps by integrating the corresponding relationships and intra-saliency maps. e The co-saliency
maps with cross-label propagation

the final co-saliency map for each image in a discriminative way. In this paper, the
inter-image correspondence was formulated as a clustering process, and the depth
feature was used as a supplement to color feature in an explicit way. However, the
clustering method may be sensitive to the noise and degenerate the accuracy of the
algorithm.

Taking the depth cue as an additional feature, Cong et al. [14] proposed a co-
saliency detection method for RGB-D images by using the multi-constraint feature
matching and cross-label propagation. The framework is shown in Fig. 10.4. The
main contributions of this paper lie in two aspects, i.e., (a) the inter-image relation-
ship was modeled at two scales including multi-constraint- based superpixel-level
similarity matching and hybrid feature-based image-level similarity matching and
(b) the cross-label propagation scheme was designed to refine the intra- and inter-
saliency maps in a crossway and generate the final co-saliency map. In this paper,
the inter-saliency of a superpixel was computed as the weighted sum of the intra-
saliency of corresponding superpixels in other images, where the superpixel-level
feature matching result provides the corresponding relationship between the super-
pixels among different images, and the weighted coefficient is calculated by the
image-level similarity measurement.

In [15], a co-saliency detection method for RGB-D images was proposed that
integrates the intra-saliency detection, hierarchical inter-saliency detection based
on global and pairwise sparsity reconstructions, and energy function refinement.
The hierarchical sparsity representation was first used to capture the inter-image
correspondence in co-saliency detection. The framework is shown in Fig. 10.5. In
this paper, the depth cue was used as an additional feature, and the correspond-
ing relationship among multiple images was simulated as a hierarchical sparsity
framework considering the global and pairwise sparsity reconstructions. The global
inter-saliency reconstruction model described the inter-image correspondence from
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Fig. 10.5 Framework of the method [15] that integrates the intra-saliency detection, hierarchical
inter-saliency detection based on global and pairwise sparsity reconstructions, and energy function
refinement

the perspective of the whole image group via a common reconstruction dictionary,
while the pairwise inter-saliency reconstruction model utilized a set of foreground
dictionaries produced by other images to capture local inter-image information. In
addition, an energy function refinement model, including the unary data term, spatial
smooth term, and holistic consistency term, was proposed to improve the intra-image
smoothness and inter-image consistency and to generate the final co-saliency map.

For co-saliency detection, more attention should be paid to inter-image formula-
tion rather than the intra-saliency calculation. In other words, we can directly use the
existing single-image saliency model as initialization in co-saliency detection. How-
ever, the existing co-saliency detection methods mainly rely on the designed cues
or initialization and lack the refinement cycle. Therefore, Cong et al. [16] proposed
an iterative co-saliency detection framework for RGB-D images, which can effec-
tively exploit any existing 2D saliency model to work well in RGB-D co-saliency
scenarios by making full use of the depth information and inter-image correspon-
dence. The framework is shown in Fig. 10.6, which integrates the addition scheme,
deletion scheme, and iteration scheme. The addition scheme aimed at introducing
the depth information into the 2D saliency model and improving the performance
of single saliency map. The deletion scheme focused on capturing the inter-image
correspondence via a designed common probability function. The iterative scheme
was served as an optimization process through a refinement cycle to further improve
the performance.

Generally, the depthmaphas the following three properties, i.e., (a) the depth value
of the salient object is larger than the background, (b) the high-quality depth map can
provide sharp and explicit boundary of the object, and (c) the interior depth value
of the object appears smoothness and consistency. Inspired by these observations,
a novel depth descriptor, named Depth Shape Prior (DSP), was designed based on
depth propagation and region grow, which aims to exploit the shape attribute from
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the depth map and convert the RGB saliency into RGB-D saliency. Several identified
superpixels are selected as the root seeds first, and then theDSPmap can be calculated
via depth smoothness and depth consistency. Figure10.7 provides an illustration of
the DSP descriptor, which effectively captures the shape of the salient object from
the depth map. Note that, any RGB saliency map can be converted to an RGB-D
saliency map by introducing the DSP descriptor.

In [16], the deletion scheme was designed to capture the corresponding relation-
ship among multiple images, suppress the common and non-common backgrounds,
and enhance the common salient regions from the perspective of multiple images.
As we all know, the common object is defined as the object with repeated occurrence
in most of the images. Based on this definition, a common probability function was
used to evaluate the likelihood that a superpixel belongs to the common regions, and
it was defined as the sum of maximummatching probability among different images.

10.4 RGB-D Semantic Segmentation

The ambition of achieving artificial intelligence cannot be achieved without the
help of semantic understanding. Semantic segmentation/scene labeling is such an
important component which aims to classify each pixel in an image to a predefined
category to support higher level reasoning. Most scene labeling work deals with
outdoor scenarios. On the other hand, indoor scenes are more challenging given poor
lighting condition, cluttered object distribution and large object variations among
different scene types.



232 R. Cong et al.
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Fig. 10.8 A typical pipeline of recent RGB-D semantic segmentation system
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Fig. 10.9 Existingmethods could be classified according to their inputs, features and context fusion
methods. More details please refer to Sects. 10.4.1–10.4.3

Since the introduction of Kinect-V1, the rapid development of semiconductor
has significantly reduced the cost and size of RGB-D cameras, which makes its
large-scale application possible in the coming few years. RGB-D cameras have an
additional depth sensor which makes higher level scene understanding more robust
and accurate. Indoor RGB-D scene labeling has wide applications, such as human–
computer interaction, augmented reality and robotics. To leverage the complementary
information between RGB and depth channels, researchers have spent tremendous
efforts in terms of effective representation learning to efficient scene parsing in-
ference. Although much progress has been achieved in the past few years, indoor
scene labeling is still challenging due to the large intra-object variation, spatial layout
changes, occluded objects, and low-light conditions.

A typical RGB-D semantic segmentation system consists of following compo-
nents with a typical pipeline shown in Fig. 10.8: (1) Data: typical inputs includes
RGBandDepth Images/Frames; (2)FeatureRepresentation: the inputwill be trans-
formed to discriminative representations for further learningmodules; (3) Inference:
together with the labeled annotations, the incoming features will be used to train the
classifier to output; with the classifier responses, some methods may use graphical
model or other statistical models to perform further inference. Recent methods could
be categories according to the differences in these three stages, as shown in Fig. 10.9.



10 Foreground Detection and Segmentation in RGB-D Images 233

10.4.1 Input: From Raw Pixel to Point Cloud

The input to the existing system is quite diverse. Besides RGB and Depth image,
HHA encoding [28] is another measure which is recently become popular whose
channels represents horizontal disparity, height above ground, and norm angle re-
spectively.

Moreover, the input is not limited to static images, the sequential RGB-D video
frames [31] have also been applied to solve video indoor scene labeling problem.
Alternatively, 3D point clouds and volumetric representation [51–53, 76] are also
becoming popular though at a higher computational cost.

10.4.2 Feature: From Handcrafted to Data-Driven

Given diverse inputs, many descriptors have been proposed for representing the
scenes. Handcrafted features were used in several previous works on RGB-D scene
labeling, including SIFT [59], KDES [55] and other sophisticated features [42].
However, these low-level features require a lot of hand-crafting and combinations,
which is hard to generalize to new tasks and modalities.

To avoid the limitations of hand-craft features, the unsupervised feature learning
has been proposed, such as multi-modal learning [49], deep autoencoders [71], and
convolutional deep belief networks [61]. Although these methods achieve promising
performance, the learning process does not consider the supervised information,
hence the learned features are redundant and less discriminative.

With the advances of 2DCNNand the availability of depth sensors enable progress
in RGB-D segmentation. Several works [44, 72] encoded depth to HHA image, and
then RGB image and HHA image were fed into two separate networks, and the two
predictions were summed up in the last layer.

10.4.3 Context Fusion: From Local to Global

Achieving satisfactory RGB-D semantic segmentation requires integration of con-
texts from various scales and various modalities. The contexts from local regions
convey rich details for visually pleasing results; on the other hand, the contexts from
a larger receptive field make the method easier to differentiate between ambiguous
categories. Moreover, complementary information from RGB and depth channels
should also be leveraged to learn more discriminative features. To balance the in-
formation from local and global contexts, and effectively leverage the contexts from
complementary modalities, different methods have been proposed.

• Mutual Fusion: Cheng et al. [11] proposed a locality-sensitive deconvolution
network by building a feature affinity matrix to perform weighted average pool-
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ing and unpooling with gated fusion. Wang et al. [72] divided the features into the
sharable and non-sharable part to learned discriminative features for fully convolu-
tional networks.Wang et al. [71] proposed to usemultiple layer’s encoder–decoder
structure to learn complementary features.

• RNN Fusion: Li et al. [44] developed a novel Long Short-Term Memorized Con-
text Fusion (LSTM-CF)Model that captures and fuses contextual information from
multiple channels of photometric and depth data, and incorporates this model into
deep convolutional neural networks (CNNs) for end-to-end training.

• Guidance Fusion: Some recent research argued that depth information is more
important than the RGB counterparts, hence they proposed to use depth as a guide
to help learn better features from RGB modalities. For example, Lin et al. [45]
discretized depth into different layers, and then a context-aware receptive field was
introduced to allow better focus on the contextual information from each layer,
and the adjacent features were fused together. Kong and Fowlkes [39] proposed
a depth-aware gating module that adaptively selects the pooling field size in a
convolutional network architecture in a recurrent fashion such that the fine-grained
details are preserved for distant objects while larger receptive fields are used for
those nearby.Wang andNeumann [74] presented Depth-aware CNNby leveraging
depth similarity between pixels in the process of information propagation without
introducing any additional networks and achieved faster and better indoor scene
labeling accuracy.

• Geometric Fusion: 3D CNNs [64, 65] on volumetric representations have been
proposed to solve the RGB-D object detection problem, however, suffers from
the high memory and computational cost. Recently, many deep learning frame-
works [51–53, 76] have been proposed to overcome the limitations of 3D volumes
by leveraging point clouds. Qi et al. [53] built a k-nearest neighbor graph on top
of 3D point cloud with the node corresponds to a set of points associated with a
feature extracted by a unary CNN from 2D images. The PointNet [51, 52] was
proposed by representing each point with three coordinates (x, y, z) with addi-
tional dimensions from surface normals or other local or global features, which
significantly reduce the computational costs. Wang et al. [76] used PointNet with
an output of a similarity matrix yielding point-wise group proposals, a confidence
map which was used to prune the proposals, and a semantic segmentation map to
assign the class label for each group.

• Hybrid Fusion: Actually, existing fusion methods can also be adopted in a hybrid
manner. For example, He et al. [31] used spatiotemporal correspondences across
frames to aggregate information over space and time. In [34], the RNN fusion in
[44] was extended to point cloud semantic segmentation with a novel slice pooling
layer to project unordered points’ features to an ordered sequence of feature vectors
so that RNN fusion could be further applied.
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10.4.4 Future Directions

Our survey only covers a small fraction of the existing literature, including

• Beyond full supervision: most state-of-the-art methods are based on full super-
vision, which requires access to dense pixel-wise annotation. However, collecting
such dense annotation is time consuming and expensive [58]. Recently, Shun et al.
[67] proposed to use weak supervision for RGB-D object detection and instance
segmentation, which is an area less explored in the community.

• Beyond class segmentation: most segmentation methods still produce class seg-
mentation, e.g., all pixels of the same category are assigned the same label. On the
other hand, people are also interested in knowing “what, where, and how many”
of the objects in the scene, which could facilitate higher level tasks, such as visual
navigation and robot object manipulation [57]. With the recent advents in deep
learning object detection and RGB-D instance segmentation dataset [3, 79], we
envision the instance-level RGB-D segmentation will have further development.

10.5 RGB-D Image Co-segmentation

As an interesting extension of single RGB-D image segmentation, themultiple RGB-
D image applications are also studied. In this section, we introduce two branches of
multiple RGB-D image applications, RGB-D image co-segmentation, and RGB-D
video segmentation.

10.5.1 RGB-D Image Co-segmentation

RGB-D image co-segmentation aims at extracting similar foreground objects from
among a set of related images by combining the depth information and multiple
image corresponding constraint [23, 36, 38, 56]. In contrast to the foreground from
the single image, co-segmentation makes use of the information in multiple images
to infer the primary objects to extract. Existing methods operate on RGB images
and utilize descriptors such as color histograms, texture to perform co-segmentation.
However, color-based features have limitations, as they cannot distinguish foreground
from a similarly colored background, and are sensitive to illumination differences
amongmultiple images.These issues are illustrated inFig. 10.10c,where the common
foreground object is merged with a background object of similar color in the second
row, and illumination change causes the target to be missed in the third row.

To address this problem, the depth cue is introduced into co-segmentation, which
can help to reduce ambiguitieswith color descriptors. How to effectively utilize depth
information in co-segmentation is not straightforward. In single RGB-D image seg-
mentation, depth can be treated as an additional color channel, since the depth over a
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(a) RGB image (b) Depth image (c) Result with RGB (d) Result with RGBD

Fig. 10.10 The example of co-segmentation on RGB and RGB-D images. Given a set of RGB
images (a) and the corresponding depth maps (b). Co-segmentation on RGB images (c) may exhibit
errors on the similarly colored background objects (second row) or illumination change (third row).
By contrast, the co-segmentation on RGB-D images notably improves the result

foreground object is generally consistent yet distinct from the background [46]. How-
ever, in co-segmentationwhere commonalities among images are exploited, different
depth values for the same object in different images can creatematching problems. Fu
et al. [22] presented an object-basedRGB-D image co-segmentationmethod based on
RGB-D co-saliency maps, which capitalizes on depth cues to enhance identification
of common foreground objects among images. Depth was utilized to provide addi-
tional local features for region comparison and to improve the selection of object-like
regions [28]. Objectness has been used in co-segmentation to overcome limitations
of low-level features in separating complex foregrounds and backgrounds [70], but
such methods have been formulated with an assumption that exactly one common
object exists in all of the images. This RGB-D co-segmentation method [22] first
generated a foreground candidate pool for each image by using RGB-D-based object
proposal generator [28]. For each candidate region, an RGB-D co-saliency score was
computed and added to the RGB-D objectness score calculated in candidate genera-
tion to measure the likelihood that the candidate belongs to the foreground. With the
candidates and their likelihood scores, a candidate selection graph was built, with
each node representing a candidate in an image, and pairwise edges added to connect
all pairs of candidates among all of the images. Mutual exclusion constraints were
also introduced between nodes to restrict candidate selection within the same image.
The graph was formulated as a binary integer quadratic program (IQP) problem,
which is optimized by using the fixed-point iteration technique.
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10.5.2 Extension: RGB-D Video Segmentation

Video could be considered as multiple images with temporal constraint. The goal of
video foreground segmentation is to detect and separate the primary objects from the
background in a video [4]. This task has importance for many vision applications
such as activity recognition and video retrieval.

RGB-D video segmentation has attracted much interest because of the wide avail-
ability of affordable RGB-D sensors. While these uses of depth are suitable for pre-
cise region extraction in image segmentation, the video segmentation task addressed
is instead driven by relationships among regions in different frames. For example,
Hickson et al. [32] proposed an efficient and scalable algorithm for segmenting 3D
RGB-D point clouds by combining depth, color, and temporal information using a
multistage, hierarchical graph-based approach. The study shows that the multistage
segmentation with depth then color yields better results than a linear combination
of depth and color. In [78], a spatiotemporal RGB-D video segmentation framework
was proposed to automatically segment and track objects with continuity and con-
sistency over time in a long RGB-D video. The method could automatically extract
multiple objects of interest and track them without any user input hint.

Besides the general RGB-D video segmentation, the foreground extraction is also
proposed. In [21], an RGB-D video foreground segmentation method was given,
which takes advantage of depth data and can extractmultiple foregrounds in the scene.
This video segmentation was addressed as an object proposal selection problem
formulated in a fully connected graph where a flexible number of foregrounds may
be chosen. In the graph, each node represented a proposal, and the edges modeled
intra-frame and inter-frame constraints on the solution. The proposalswere generated
based on an RGB-D video saliency map in which depth-based features are utilized
to enhance identification of foregrounds.

10.6 Conclusions

The development of imaging devices and sensors has made the acquisition of depth
map simple and convenient, laying the data foundation for the task of RGB-D fore-
ground detection and segmentation. From the depth map, we can capture many use-
ful attributes for foreground extraction from the complex background, such as shape
representation, contour information, internal consistency, and surface normal. In this
chapter, deriving from depth cue, we review different types of foreground detection
and segmentation algorithms, summarize the existing methods, and discuss the chal-
lenges and future works. At present, how to effectively exploit the depth information
to enhance the identification and segmentation has not yet reached a consensus. In
the future, combining the explicit and implicit depth information to obtain a more
comprehensive depth representation is a meaningful attempt for depth-guided visual
tasks.
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Chapter 11
Instance- and Category-Level 6D Object
Pose Estimation

Caner Sahin, Guillermo Garcia-Hernando, Juil Sock and Tae-Kyun Kim

Abstract Interest in estimating the 6D pose, i.e. 3D locations and rotations, of
an object of interest has emerged since its promising applications in fields such as
robotics and augmented reality. To recover poses from objects that have been seen in
advance, instance-level methods have been presented to overcome challenges such
as occlusion, clutter and similarly looking distractors. The problem has recently
been addressed at the category level, where poses of object instances from a given
category that have not been seen a priori are estimated, introducing new challenges
such as distribution shifts and intra-class variations. In this chapter, the 6D object
pose estimation problem at the levels of both instances and categories is presented,
discussed, and analysed by following the available literature on the topic. First, the
problem and its associated challenges are formulated and presented. To continue,
instance-level methods are dissected depending on their architectures and category-
level methods are examined according to their search space dimension. Popular
datasets, benchmarks and evaluationmetrics on the problemare presented and studied
with respect to the challenges that they present. Quantitative results of experiments
available in the literature are analysed to determine how methods perform when
presented with different challenges. The analyses are further extended to compare
threemethods byusingour own implementations aiming to solidify alreadypublished
results. To conclude, the current state of the field is summarised and potential future
research directions are identified.
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11.1 Introduction

6D object pose estimation is an important problem in the realm of computer vision
that aims to infer the 3D position and 3D orientation of an object in camera-centred
coordinates [56]. It has extensively been studied in the past decade given its impor-
tance in many rapidly evolving technological areas such as robotics and augmented
reality. Particularly, increasing ubiquity of Kinect-like RGB-D sensors and low-cost
availability of depth data facilitate object pose estimation scenarios related to the
above-mentioned areas.

Robotic manipulators that pick and place the goods from conveyors, shelves,
pallets, etc., facilitate several processes comprised within logistics systems, e.g.
warehousing, material handling, packaging [11, 31, 42, 61]. The Amazon Pick-
ing Challenge (APC) [18] is an important example demonstrating the promising role
of robotic manipulation for the completion of such tasks. APC integrates many tasks,
such as mapping, motion planning, grasping, object manipulation, with the goal of
autonomously moving items by robotic systems from a warehouse shelf into a tote.
Regarding the automated handling of items by robots, accurate object detection and
6D pose estimation is an important task that when successfully performed improves
the autonomy of the manipulation. Household robotics is another field where the
ability to recognize objects and accurately estimating their poses is a key element.
This capability is needed for such robots, since they should be able to navigate
in unconstrained human environments, calculating grasping and avoidance strate-
gies. In this scenario, unlike industrial applications, the workspace is completely
unknown, and thus making indispensable the existence of 6D pose estimators, which
are highly robust to changing, dynamic environments. Aerial images are required
to be automatically analysed to recognise abnormal behaviours in target terrains
[1]. Unmanned aerial vehicles perform surveillance and reconnaissance functions to
ensure high-level security detecting and estimating 6D poses of interested objects
[4, 16, 41]. Virtual reality (VR) and augmented reality (AR) systems need to know
accurate positions, poses, and geometric relations of objects to place virtual objects
in the real world [6, 25, 38].

11.2 Problem Formulation

6D object pose estimation is addressed in the literature at the level of both instances
and categories. Instance-level 6D object pose estimation tasks require the same sta-
tistical distribution on both source data, from which a classifier is learnt, and target
data, on which the classifiers will be tested. Hence, instance-based methods estimate
6D poses of seen objects, mainly aiming to report improved results in overcoming
instances’ challenges such as viewpoint variability, occlusion, clutter and similar-
looking distractors. However, instance-based methods cannot easily be generalised
for category-level 6D object pose estimation tasks, which inherently involve the chal-
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lenges such as distribution shift among source and target domains, high intra-class
variations and shape discrepancies between objects.

We formulate instance-level 6D object pose estimation as a prediction problem
as follows: Given an RGB-D image I where an instance S of the interested object
O exists, the 6D object pose estimation is casted as a joint probability estimation
problem and formulated it as given below:

(x, θ)∗ = argmax
x,θ

p(x, θ |I, S) (11.1)

where x = (x, y, z) is the 3D translation and θ = (r, p, y) is the 3D rotation of
the instance S. (r, p, y) depicts the Euler angles, roll, pitch and yaw, respectively.
According to Eq.11.1, methods for the 6D object pose estimation problem target to
maximise the joint posterior density of the 3D translation x and 3D rotation θ . This
formulation assumes that there only exists one instance of the interested object in
the RGB-D image I , and hence, producing the pair of pose parameters (x, θ ), which
is of the instance S. Note that this existence is known a priori by any 6D object pose
estimation method.

When the image I involves multiple instances S = {Si |i = 1, . . . , n} of the
object of interest, the problem formulation becomes

(xi , θi )∗ = argmax
xi ,θi

p(xi , θi |I,S ), i = 1, . . . , n. (11.2)

Note that the number of instancesn is known apriori by themethod.Given an instance
C of a category of interest c, the 6D object pose estimation problem is formulated at
the level of categories by transforming Eq.11.1 into the following form:

(x, θ)∗ = argmax
x,θ

p(x, θ |I,C, c). (11.3)

Note that Eq.11.3 assumes that there is only one instance of the category of interest
in the RGB-D image I (known a priori by any 6D object pose estimation approach),
and hence, producing the pair of object pose parameters (x, θ ), which is of the
instance C . When the image I involves multiple instances C = {Ci |i = 1, . . . , n}
of the category of interest, Eq. 11.2 takes the following form, where the number of
instances n is known in advance:

(xi , θi )∗ = argmax
xi ,θi

p(xi , θi |I,C , c), i = 1, . . . , n. (11.4)

11.3 Challenges of the Problem

Anymethod engineered for 6D object pose estimation has to copewith the challenges
of the problem in order to work robustly in a generalised fashion. These challenges
can be categorised according to the level at which they are observed: challenges of
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instances and challenges of categories. Note that instances’ challenges can also be
observed at the level of categories, but not the other way round.

11.3.1 Challenges of Instances

The challenges mainly encountered at the level of instances are viewpoint variability,
texture-less objects, occlusion, clutter and similar-looking distractors.

Viewpoint variability. Testing scenes, where target objects are located, can be
sampled to produce sequences that are widely distributed in the pose space by
[0◦ − 360◦], [−180◦ − 180◦], [−180◦ − 180◦] in the roll, pitch and yaw angles,
respectively. As the pose space gets wider, the amount of data required for training
a 6D estimator increases in order to capture reasonable viewpoint coverage of the
target object.

Texture-less objects. Texture is an important information for RGBcameras, which
can capture and represent a scene by 3 basic colours (channels): red, green and
blue. An object of interest can easily be distinguished from the background or any
other instances available in the scene, if it is sufficiently textured. This is mainly
because the texture on the surface defines discriminative features which represent
the object of interest. However, when objects are texture-less, this discriminative
property disappears, and thus making methods strongly dependent on the depth
channel in order to estimate 6D poses of objects.

Occlusion. As being one of the most common challenges observed in 6D object
pose estimation, occlusion occurs when an object of interest is partly or completely
blocked by other objects existing in the scene. Naive occlusion is handled by either
modelling it during an off-line training phase or engineering a part-based approach
that infers the 6D pose of the object of interest from its unoccluded (occlusion-
free) parts. However, the existence of severe occlusion gives rise to false positive
estimations, degrading methods’ performance.

Clutter. Clutter is a challenge mainly associated with complicated backgrounds
of images in which existing objects of interest even cannot be detected by the naked
eye. Several methods handle this challenge by training the algorithms with cluttered
background images. However, utilising background images diminishes the general-
isation capability of methods, making those data dependent.

Similar-Looking Distractors. Similar-looking distractors along with similar-
looking object classes, is one of the main challenges in 6D object pose recovery.
When the similarity is in the depth channel, 6D pose estimators become strongly
confused due to the lack of discriminative selection of shape features. This defi-
ciency is compensated by RGB in case there is no colour similarity.
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11.3.2 Challenges of Categories

The challenges mainly encountered at category-level 6D object pose estimation are
intra-class variation and distribution shift.

Intra-class variation. Despite the fact that instances from the same category typi-
cally have similar physical properties, they are not exactly the same.While texture and
colour variations are seen in the RGB channel, geometry and shape discrepancies are
observed in depth channel. Geometric dissimilarities are related to scale and dimen-
sions of the instances, and shape-wise, they appear different in case they physically
have extra parts out of the common ones. Category-level 6D object pose estima-
tors handle intra-class variations during training by using the data of the instances
belonging to the source domain.

Distribution shift. Any 6D pose estimator working at the level of categories is
tested on the instances in the target domain. Since the objects in the target domain
are different than those of the source domain, there is a shift between the marginal
probability distributions of these two domains. Additionally, this distribution shift
itself also changes as the instances in the target domain are unseen by the 6D pose
estimator.

11.4 Methods

In this section, we analyse instance-level object pose estimation methods architec-
ture wise, and category-level object pose estimators according to their search space
dimension.

11.4.1 Instance-Based Methods

This family involves template-based, point-to-point, conventional learning-based,
and deep learning methods.

Template-based. Template-basedmethods involve an off-line template generation
phase. Using the 3D model M of an interested object O , a set of RGB-D templates
are synthetically rendered from different camera viewpoints. Each pair of RGB and
depth images is annotated with 6D pose and is represented with feature descriptors.
The 3D model M can either be a CAD or a reconstructed model. A template-based
method takes an RGB-D image I as input on which it runs a sliding window during
an on-line test phase. Each of the windows is represented with feature descriptors
and is compared with the templates stored in a memory. The distances between each
window and the template set are computed. The 6D pose of a template is assigned
to the window that has the closest distance with that template [26, 29, 39, 46].
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Point-to-point. These methods simultaneously estimate object location and pose
by establishing for each scene point a spatial correspondence to a model point,
and then rotationally aligning the scene to model point cloud. To this end, point
pair features (PPF) are used along with a voting scheme. Both models and scenes
are represented with point pair features. During an on-line stage, a set of point
pair features are computed from the input depth image ID . Created point pairs are
comparedwith the ones stored in the global model representation. This comparison is
employed in the feature space, and a set of potential matches, and the corresponding
6D pose are obtained [10, 11, 14, 15, 27, 34].

Conventional Learning-based. Conventional learning-based can be divided into
two depending on their off-line step: (i) holistic-based and (ii) part-based. In holistic
learning, the process of generating holistic training data is the same as the template
generation phase of ‘template-basedmethods’. In part-based learning, a set of patches
is extracted from each pair of RGB and depth images available in the holistic training
data. Each of the extracted patches is annotated with 6D pose and is represented with
features. The holistic and part-based training data are separately used to train a
regressor, which can be a random forest, a nearest neighbour classifier or an SVM.
Further, during an on-line inference stage, an RGB-D image I is taken as input by
a conventional learning-based method. If the method is holistic, bounding boxes are
extracted from I by running a sliding window over the image and fed into a holistic
regressor [5, 51]. When the method is based on parts, extracted patches are sent to
a part-based regressor [7, 8, 35, 40, 48, 49, 54]. Both types of regressors output
6D pose parameters (x, θ). Several conventional learning-based methods employ a
final pose refinement step in order to further improve the 6D pose [35]. As ICP-like
algorithms are used to further refine the pose, classifier/regressor itself can be also
engineered so that this refinement included architecture wise [48, 49, 54].

Deep learning. The current paradigm in the community is to learn deep discrim-
inative feature representations. Wohlhart et al. [57] utilise a convolutional neural
network (CNN) structure to learn discriminative descriptors and then pass them to
a nearest neighbour classifier in order to find the closest object pose. However, this
approach has one main limitation, which is the requirement of background images
during training along with the holistic ones belonging to the object, thus making its
performance dataset specific. The studies in [13, 33] learn deep representation of
parts in an unsupervised fashion only from foreground images using auto-encoder
architectures. The features extracted during the inference stage are fed into a Hough
forest in [13], and into a codebook of pre-computed synthetic local object patches
in [33] to get pose hypotheses. While Wohlhart and Lepetit [57] focus on learning
feature embeddings based on metric learning with triplet comparisons, Balntas et al.
[3] further examine the effects of using object poses as guidance to learning robust
features for 3D object pose estimation in order to handle symmetry issue.

Recent methods adopt CNNs for 6D object pose estimation by just taking RGB
images as inputs without a depth channel [58]. BB8 [45] and Tekin et al. [55] perform
corner-point regression followed by PnP for 6D pose estimation. A computationally
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expensive post-processing step is typically used, examples being iterative closest
point (ICP) [7] or a verification network [32].

11.4.2 Category-Based Methods

There have been a large number of methods addressing object detection and pose
estimation at the level of categories. However, none of these methods are engineered
to estimate the full 6D poses of the instances of a given category as formulated in
Sect. 11.2, out of the architecture presented in [47]. Our classification for category-
level methods is based on the dimension concerned.

2D. One line of methods is based on visual perception of the RGB channel.
Deformable part models [2, 19, 43] are designed to work in RGB, detecting objects
of the category of interest in 2D. A more recent paradigm is to learn generic fea-
ture representations on which fine-tuning will be applied afterwards. CNN-based
approaches [21] have been developed for this purpose, however, they require large-
scale annotated images to provide the generalisation on feature representations [12].
Since these approaches work in the context of RGB modality, the success of such
methods is limited to coarse/discrete solutions in 2D. Several studies exploit 3D
geometry by fusing depth channel with RGB [24, 30]. They mainly use CNN archi-
tectures in order to learn representations, which are subsequently fed into SVM clas-
sifiers. Even though performance improvement is achieved, they are not generalised
well to go beyond 2D applications.

3D. Methods engineered for 3D object detection focus on finding the bounding
volume of objects and do not predict the 6D pose of the objects [17, 23, 37, 59].
While Zhou and Tuzel [60] directly detect objects in 3D space taking 3D volumetric
data as input, the studies in [9, 36, 44] first produce 2D object proposals in 2D images
and then project these proposals into 3D space to further refine the final 3D bounding
box location.

4D. SVM-based sliding shapes (SS) [52] method detects objects in the context of
depth modality naturally tackling the variations of texture, illumination and view-
point. The detection performance of this method is further improved in deep sliding
shapes (Deep SS) [53], where more powerful representations encoding geometric
shapes are learnt with CNNs. These two methods run sliding windows in the 3D
space, mainly concerning 3D object detection of bounding boxes aligned around the
gravity direction rather than full 6D pose estimation. The system in [22], inspired by
Song and Xiao [52], estimates detected and segmented objects’ rotation around the
gravity axis using a CNN. It combines individual detection/segmentation and pose
estimation frameworks. The ways the methods above [22, 52, 53] address the chal-
lenges of categories are relatively naive. Both SS and the method in [22] rely on the
availability of large-scale 3D models in order to cover the shape variance of objects
in the real world. Deep SS performs slightly better with respect to the categories’
challenges, however, its effort is limited to the capability of CNNs.
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6D. The study in [47] presents ‘Intrinsic Structure Adaptors (ISA)’, a part-based
random forest architecture, for full 6Dobject pose estimation at the level of categories
in depth images. To this end, 3D skeleton structures are derived as shape-invariant
features, and are used as privileged information during the training phase of the
architecture.

11.5 Datasets

Every dataset used in this study is composed of several object classes, for each of
which a set of RGB-D test images are provided with ground truth object poses.

11.5.1 Datasets of Instances

The collected datasets of instances mainly differ from the point of the challenges
that they involve (see Table11.1).

Viewpoint (VP) + Clutter (C). Every dataset involves the test scenes in which
objects of interest are located at varying viewpoints and cluttered backgrounds.

VP + C + Texture-less (TL). Test scenes in the LINEMOD [26] dataset involve
texture-less objects at varying viewpoints with cluttered backgrounds. There are 15
objects, for each of which more than 1100 real images are recorded. The sequences
provide views from 0◦ to 360◦ around the object, 0–90◦ tilt rotation, ∓45◦ in-plane
rotation, and 650–1150mm object distance.

Table 11.1 Datasets collected: each dataset shows different characteristics mainly from the chal-
lenge point of view (VP: viewpoint, O: occlusion, C: clutter, SO: severe occlusion, SC: severe
clutter, MI: multiple instance, SLD: similar-looking distractors, BP: bin picking)

Dataset Challenge # Obj. classes Modality # Total frame Obj. dist.
(mm)

LINEMOD VP + C + TL 15 RGB-D 15,770 600–1200

MULT-I VP + C + TL
+ O + MI

6 RGB-D 2067 600–1200

OCC VP + C + TL
+ SO

8 RGB-D 9209 600–1200

BIN-P VP + SC + SO
+ MI + BP

2 RGB-D 180 600–1200

T-LESS VP + C + TL +
O + MI + SLD

30 RGB-D 10,080 600–1200
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VP + C + TL + Occlusion (O) + Multiple Instance (MI). Occlusion is one
of the main challenges that make the datasets more difficult for the task of object
detection and 6Dpose estimation. In addition to close and far range 2Dand 3Dclutter,
testing sequences of theMultiple-Instance (MULT-I) dataset [54] contain foreground
occlusions and multiple object instances. In total, there are approximately 2000 real
images of 6 different objects, which are located at the range of 600–1200mm. The
testing images are sampled to produce sequences that are uniformly distributed in
the pose space by [0◦ − 360◦], [−80◦ − 80◦], and [−70◦ − 70◦] in the yaw, roll, and
pitch angles, respectively.

VP + C + TL + Severe Occlusion (SO). Occlusion, clutter, texture-less objects,
and change in viewpoint are the most well-known challenges that could successfully
be dealt with the state-of-the-art 6D object detectors. However, heavy existence of
these challenges severely degrades the performance of 6Dobject detectors.Occlusion
(OCC) dataset [7] is one of the most challenging datasets in which one can observe
up to 70–80% occluded objects. OCC includes the extended ground truth annotations
of LINEMOD: in each test scene of the LINEMOD [26] dataset, various objects are
present, but only ground truth poses for one object are given. Brachmann et al. [7]
form OCC considering the images of one scene (bench wise) and annotating the
poses of 8 additional objects.

VP + SC + SO + MI + Bin Picking (BP). In bin-picking scenarios, multiple
instances of the objects of interest are arbitrarily stocked in a bin, and hence the
objects are inherently subjected to severe occlusion and severe clutter. Bin-Picking
(BIN-P) dataset [13] is created to reflect such challenges found in industrial settings.
It includes 183 test images of 2 textured objects under varying viewpoints.

VP + C + TL + O + MI + Similar-Looking Distractors (SLD). Similar-looking
distractor(s) along with similar-looking object classes involved in the datasets
strongly confuse recognition systems causing a lack of discriminative selection of
shape features. Unlike the above-mentioned datasets and their corresponding chal-
lenges, the T-LESS [28] dataset particularly focuses on this problem. The RGB-D
images of the objects located on a table are captured at different viewpoints covering
360◦ rotation, and various object arrangements generate occlusion. Out-of-training
objects, similar-looking distractors (planar surfaces), and similar-looking objects
cause 6 DoF methods to produce many false positives, particularly affecting the
depth modality features. T-LESS has 30 texture-less industry-relevant objects, and
20 different test scenes, each of which consists of 504 test images.

11.6 Evaluation Metrics

Several evaluation metrics have been proposed to determine whether an estimated
6D pose is correct. The multi-modal analyses of instance-level methods presented in
Sect. 11.7 are based on the Average Distance (AD) metric [26], and the multi-modal
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analyses of category-level methods are based on 3D Intersection over Union (IoU)
[52]. These two metrics are detailed in this section.

AverageDistance (AD). This is one of the most widely used metrics in the lit-
erature [26]. Given the ground truth (x̄, θ̄ ) and estimated (x, θ) poses of an object
of interest O , this metric outputs ωAD, the score of the average distance between
(x̄, θ̄ ) and (x, θ). It is calculated over all points s of the 3D model M of the object
of interest:

ωAD = avg
s∈M

||(R̄s + T̄ ) − (Rs + T )|| (11.5)

where R̄ and T̄ depict rotation and translation matrices of the ground truth pose
(x̄, θ̄ ), while R and T represent rotation and translation matrices of the estimated
pose (x, θ). Hypotheses ensuring the following inequality are considered as correct:

ωAD ≤ zωΦ (11.6)

where Φ is the diameter of the 3D model M , and zω is a constant that determines the
coarseness of a hypothesis which is assigned as correct. Note that, Eq.11.5 is valid
for objects whosemodels are not ambiguous or do not have any subset of views under
which they appear to be ambiguous. In case the model M of an object of interest has
indistinguishable views, Eq. 11.5 transforms into the following form:

ωAD = avg min
s1∈M,s2∈M

||(R̄s1 + T̄ ) − (Rs2 + T )|| (11.7)

where ωAD is calculated as the average distance to the closest model point. This
function employsmany-to-one point matching and significantly promotes symmetric
and occluded objects, generating lower ωAD scores.

Intersection over Union. This metric is originally presented to evaluate the per-
formance of the methods working in 2D space. Given the estimated and ground truth
bounding boxes B and B̄ and assuming that they are aligned with image axes, it
determines the area of intersection B ∩ B̄, and the area of union B ∪ B̄, and then
comparing these two, outputs the overlapping ratio ωIoU:

ωIoU = B ∩ B̄

B ∪ B̄
(11.8)

According to Eq.11.8, a predicted box is considered to be correct if the overlapping
ratio ωIoU is more than the threshold τIoU = 0.5. This metric is further extended to
work with 3D volumes calculating overlapping ratio ωIoU3D over 3D bounding boxes
[52]. The extended version assumes that 3D bounding boxes are aligned with gravity
direction, but makes no assumption on the other two axes.

In this study, we employ a twofold evaluation strategy for the instance-level 6D
object detectors using the AD metric: (i) Recall. The hypotheses on the test images
of every object are ranked, and the hypothesis with the highest weight is selected
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as the estimated 6D pose. Recall value is calculated comparing the number of cor-
rectly estimated poses and the number of the test images of the interested object.
(ii) F1 scores. Unlike recall, all hypotheses are taken into account, and F1 score,
the harmonic mean of precision and recall values are presented. For evaluating the
category-level detectors, the 3D IoU metric is utilised, and Average Precision (AP)
results are provided.

11.7 Multi-modal Analyses

At the level of instances, we analyse ten baselines on the datasets with respect to
both challenges and the architectures. Two of the baselines [26, 54] are our own
implementations. The first implementation is of Linemod [26]. Since it is one of the
methods been at the forefront of 6D object pose estimation research, we choose this
method for implementation to enhance our analyses on the challenges. It is based
on templates, and frequently been compared by the state of the art. We compute the
colour gradients and surface normal features using the built-in functions and classes
provided by OpenCV. Our second implementation is a latent-class Hough forest
(LCHF) [54]. There are a high number of learning-based 6D object pose estimation
methods in the literature, using random forests as regressors. We have implemented
LCHF, since it demonstrates the characteristics of such regressors. The features in
LCHF are the part-based version of the features introduced in [26]. Hence, we inherit
the classes given by OpenCV in order to generate part-based features used in LCHF.
We train each method for the objects of interest by ourselves and using the learnt
classifiers, we test those on all datasets. Note that the approaches use only foreground
samples during training/template generation. In this section, ‘LINEMOD’ refers to
the dataset, whilst ‘Linemod’ is used to indicate the method itself.

At the level of categories, we analyse four baselines [22, 47, 52, 53], one of which
is our own implementation [47]. The architecture presented in [47] is a part-based
random forest architecture. Its learning scheme is privileged. The challenges of the
categories are learnt during training in which 3D skeleton structures are derived as
shape-invariant features. In the test stage, there is no skeleton data, and the depth
pixels are directly used as features in order to vote the 6D pose of an instance, given
the category of interest.

11.7.1 Analyses at the Level of Instances

Utilising the ADmetric, we compare the chosen baselines along with the challenges,
(i) regarding the recall values that each baseline generates on every dataset, (ii)
regarding the F1 scores. The coefficient zω is 0.10, and in case we use different
thresholds, we will specifically indicate in the related parts.
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Table 11.2 Methods’ performance are depicted object-wise based on recall values computed using
the average distance (AD) evaluation protocol

Method ch. ape bvise cam can cat dril duck box glue hpunch iron lamp phone AVER

Kehl et al. [33] RGB-D 96.9 94.1 97.7 95.2 97.4 96.2 97.3 99.9 78.6 96.8 98.7 96.2 92.8 95.2

LCHF [54] RGB-D 84 95 72 74 91 92 91 48 55 89 72 90 69 78.6

Linemod [26] RGB-D 95.8 98.7 97.5 95.4 99.3 93.6 95.9 99.8 91.8 95.9 97.5 97.7 93.3 96.3

Drost et al. [15] D 86.5 70.7 78.6 80.2 85.4 87.3 46 97 57.2 77.4 84.9 93.3 80.7 78.9

Kehl et al. [32] RGB 65 80 78 86 70 73 66 100 100 49 78 73 79 76.7

(a) LINEMOD dataset

Method ch. camera cup joystick juice milk shampoo AVER

LCHF [54] RGB-D 52.5 99.8 98.3 99.3 92.7 97.2 90

Linemod [26] RGB-D 18.3 99.2 85 51.6 72.2 53.1 63.2

(b) MULT-I dataset

Method ch. ape can cat drill duck box glue hpunch AVER

Xiang et al. [58] RGB-D 76.2 87.4 52.2 90.3 77.7 72.2 76.7 91.4 78

LCHF [54] RGB-D 48.0 79.0 38.0 83.0 64.0 11.0 32.0 69.0 53

Hinters et al. [27] RGB-D 81.4 94.7 55.2 86.0 79.7 65.5 52.1 95.5 76.3

Linemod [26] RGB-D 21.0 31.0 14.0 37.0 42.0 21.0 5.0 35.0 25.8

Xiang et al. [58] RGB 9.6 45.2 0.93 41.4 19.6 22.0 38.5 22.1 25

(c) OCC dataset

Method ch. cup juice AVER

LCHF [54] RGB-D 90.0 89.0 90

Brachmann et al. [7] RGB-D 89.4 87.6 89

Linemod [26] RGB-D 88.0 40.0 64

(d) BIN-P dataset

Fig. 11.1 Success of each baseline on every dataset is shown, recall values are computed using the
average distance (AD) metric

Recall-onlyDiscussions: Recall-only discussions are based on the numbers provided
in Table11.2, and Fig. 11.1.

Clutter, Viewpoint, Texture-less objects. Highest recall values are obtained on
the LINEMOD dataset (see Fig. 11.1), meaning that the state-of-the-art methods for
6D object pose estimation can successfully handle the challenges, clutter, varying
viewpoint and texture-less objects. LCHF, detectingmore than half of the objectswith
over 80% accuracy ‘box’ and ‘glue’ being the most difficult ones (see Table11.2a),
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Fig. 11.2 a–gChallenges encountered during test are exemplified (green renderings are hypotheses,
and the red ones are ground truths)

since these objects have planar surfaces, confusing the features extracted in the depth
channel (example images are given in Fig. 11.2a).

Occlusion. In addition to the challenges of LINEMOD dataset, occlusion is intro-
duced in MULT-I. Linemod’s performance decreases since occlusion affects holistic
feature representations in both colour and depth channels. LCHF performs better
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on this dataset than Linemod. Since LCHF is trained using the parts coming from
positive training images, it can easily handle occlusion by using the information
acquired from occlusion-free parts of the target objects. However, LCHF perfor-
mance degrades on ‘camera’. In comparison with the other objects in the dataset,
‘camera’ has relatively smaller dimensions. In most of the test images, there are
non-negligible amounts of missing depth pixels (Fig. 11.2b) along the borders of this
object, and thus confusing the features extracted in depth channel. In such cases,
LCHF is prone to detect similar-looking out of training objects and generate many
false positives (see Fig. 11.2c). The hypotheses produced by LCHF for ‘joystick’ are
all considered as false positives (Fig. 11.2d). When the recall that LCHF produces is
evaluated on the ‘joystick’ object setting zω to the value of 0.15, an 89% accuracy is
observed.

Severe Occlusion. OCC involves challenging test images where the objects of
interest are cluttered and severely occluded. The best performance on this dataset
is caught by Xiang et al. [58], and there is still room for improvement in order
to fully handle this challenge. Despite the fact that the distinctive feature of this
benchmark is the existence of ‘severe occlusion’, there are occlusion-free target
objects in several test images. In case the test images of a target object include
unoccluded and/or naively occluded samples (with the occlusion ratio up to 40–50%
of the object dimensions) in addition to severely occluded samples, methods produce
relatively higher recall values (e.g. ‘can, driller, duck, holepuncher’, Table11.2c).
On the other hand, when the target object has additionally other challenges such as
planar surfaces, methods’ performance (LCHF and Linemod) decreases (e.g. ‘box’,
Fig. 11.2e).

Severe Clutter. In addition to the challenges discussed above, BIN-P inher-
ently involves severe clutter, since it is designed for bin-picking scenarios, where
objects are arbitrarily stacked in a pile. According to the recall values presented in
Table11.2d, LCHF and Brachmann et al. [7] perform 25% better than Linemod.
Despite having severely occluded target objects in this dataset, there are unoc-
cluded/relatively less occluded objects at the top of the bin. Since our current analyses
are based on the top hypothesis of each method, the produced success rates show
that the methods can recognise the objects located on top of the bin with reasonable
accuracy (Fig. 11.2f).

Similar-Looking Distractors. We test both Linemod and LCHF on the T-LESS
dataset. Since most of the time the algorithms fail, we do not report quantitative
analyses, instead we discuss our observations from the experiments. The dataset
involves various object classes with strong shape and colour similarities. When the
background colour is different than that of the objects of interest, colour gradient
features are successfully extracted. However, the scenes involve multiple instances,
multiple objects similar in shape and colour, and hence the features queried exist
in the scene at multiple locations. The features extracted in depth channel are also
severely affected by the lack of discriminative selection of shape information. When
the objects of interest have planar surfaces, the detectors cannot easily discriminate
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foreground and background in depth channel, since these objects in the dataset are
relatively smaller in dimension (see Fig. 11.2g).

Part-based versus Holistic approaches. Holistic methods [15, 26, 27, 32, 58]
formulate the detection problem globally. Linemod [26] represents the windows
extracted from RGB and depth images by the surface normals and colour gradient
features. Distortions along the object borders arising from occlusion and clutter,
i.e. the distortions of the colour gradient and surface normal information in the test
processes, mainly degrade the performance of this detector. Part-based methods [7,
8, 13, 33, 54] extract parts in the given image. Despite the fact that LCHF uses the
same kinds of features as in Linemod, LCHF detects objects extracting parts, thus
making the method more robust to occlusion and clutter. As illustrated in Table11.2,
the part-basedmethodLCHF consistently overperforms the holisticmethodLinemod
on all datasets.

Template based versus Random forest based. Template-based methods, i.e.
Linemod, match the features extracted during test to a set of templates, and hence
they cannot easily be generalised well to unseen ground truth annotations. Methods
based on random forests [7, 8, 13, 54] efficiently benefit the randomisation embed-
ded in this learning tool, consequently providing good generalisation performance
on new unseen samples. Table11.2 clearly depicts that methods based on random
forests [7, 8, 13, 54] generate higher recall values than template-based Linemod.

RGB-D versus Depth. Methods utilising both RGB and depth channels demon-
strate higher recall values than methods that are of using only depth, since RGB
provides extra clues to ease the detection. This is depicted in Table11.2a where
learning- and template-based methods of RGB-D perform much better than point-
to-point technique [15] of depth channel.

RGB-DversusRGB (CNNstructures).More recent paradigm is to adoptCNNs to
solve 6D object pose estimation problem taking RGB images as inputs. In Table11.2,
the methods [32, 58] are based on CNN structures. According to Table11.2a, SSD-
6D, the deep approach of Kehl et al. [32] produces 76.7% recall value. Despite the
fact that it shows theminimumperformance on the LINEMODdataset, it is important
to consider that the method is trained and tested only on RGB channel, while the
rest of methods additionally use the depth data. The method of Xiang et al. [58] is
evaluated on OCC dataset in both RGB-D and RGB channels. The best performance
on the OCC dataset is demonstrated by the deep method of Xiang et al. [58], in case
it is trained and is evaluated in RGB-D channel. However, its performance degrades
when trained only using RGB data.

Robotic manipulators that pick and place the items from conveyors, shelves, pal-
lets, etc., need to know the pose of one item per RGB-D image, even though there
might be multiple items in its workspace. Hence, our recall-only analyses mainly
target to solve the problems that could be encountered in such cases. Based on the
analyses currently made, one can make important conclusions, particularly from the
point of the performances of the detectors. On the other hand, recall-based analyses
are not enough to illustrate which dataset is more challenging than the others. This
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is especially true in cluttered scenarios where multiple instances of target objects
are severely occluded. Therefore, in the next part, we discuss the performance of the
baselines from another perspective, regarding precision–recall curves and F1 scores,
where the 6D detectors are investigated sorting all detection scores across all images.

Precision–Recall Discussions: Our precision–recall discussions are based on the F1
scores provided in Table11.3, and Fig. 11.3a.

Wefirst analyse the performance of themethods [26, 32, 33, 54] on theLINEMOD
dataset. On average, Kehl et al. [33] outperform other methods proving the benefit of
learning deep features. Despite estimating 6D in RGB images, SSD-6D [32] exhibits
the advantages of using CNN structures for 6D object pose estimation. LCHF and
Linemod demonstrate lower performance, since the features used by these methods
are manually crafted. The comparison between Figs. 11.1 and 11.3a reveals that the
results produced by the methods have approximately the same characteristics on the
LINEMOD dataset with respect to recall and F1 scores.

The methods tested on the MULT-I dataset [15, 26, 32, 33, 54] utilise the geom-
etry information inherently provided by depth images. Despite this, SSD-6D [32],
estimating 6D pose only from RGB images, outperforms other methods, showing
the superiority of CNNs for the 6D problem over other frameworks.

Table 11.3 Methods’ performance are depicted object-wise based on F1 scores computed using
the average distance (AD) evaluation protocol

Method ch. ape bvise cam can cat dril duck box glue hpunch iron lamp phone AVER

Kehl et al. [33] RGB-D 0.98 0.95 0.93 0.83 0.98 0.97 0.98 1 0.74 0.98 0.91 0.98 0.85 0.93

LCHF [54] RGB-D 0.86 0.96 0.72 0.71 0.89 0.91 0.91 0.74 0.68 0.88 0.74 0.92 0.73 0.82

Linemod [26] RGB-D 0.53 0.85 0.64 0.51 0.66 0.69 0.58 0.86 0.44 0.52 0.68 0.68 0.56 0.63

Kehl et al. [32] RGB 0.76 0.97 0.92 0.93 0.89 0.97 0.80 0.94 0.76 0.72 0.98 0.93 0.92 0.88

(a) LINEMOD dataset

Method ch. camera cup joystick juice milk shampoo AVER

Kehl et al. [33] RGB-D 0.38 0.97 0.89 0.87 0.46 0.91 0.75

LCHF [54] RGB-D 0.39 0.89 0.55 0.88 0.40 0.79 0.65

Drost et al. [15] D 0.41 0.87 0.28 0.60 0.26 0.65 0.51

Linemod [26] RGB-D 0.37 0.58 0.15 0.44 0.49 0.55 0.43

Kehl et al. [32] RGB 0.74 0.98 0.99 0.92 0.78 0.89 0.88

(b) MULT-I dataset
Method ch. ape can cat dril duck box glue hpunch AVER

LCHF [54] RGB-D 0.51 0.77 0.44 0.82 0.66 0.13 0.25 0.64 0.53

Linemod [26] RGB-D 0.23 0.31 0.17 0.37 0.43 0.19 0.05 0.30 0.26

Brachmann et al. [8] RGB - - - - - - - - 0.51

Kehl et al. [32] RGB - - - - - - - - 0.38

(c) OCC dataset

Method ch. cup juice AVER

LCHF [54] RGB-D 0.48 0.29 0.39

Doumanoglou et al. [13] RGB-D 0.36 0.29 0.33

Linemod [26] RGB-D 0.48 0.20 0.34

(d) BIN-P dataset
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Fig. 11.3 a Success of each baseline on every dataset is shown, F1 scores are computed using the
average distance (AD) metric. b Precision–recall curves of averaged F1 scores for Tejani et al. [54]
and Hinterstoisser et al. [26] are shown: from left to right, LINEMOD, MULT-I, OCC, BIN-P

LCHF [54] and Brachmann et al. [8] best perform on OCC with respect to F1
scores.As this dataset involves test imageswhere highly occluded objects are located,
the reported results depict the importance of designing part-based solutions.

Themost important difference is observed on theBIN-P dataset.While the success
rates of the detectors on this dataset are higher than 60% with respect to the recall
values (see Fig. 11.1), according to the presented F1 scores, their performance is less
than 40%. Taking into account all the hypotheses and challenges of this dataset, i.e.
severe occlusion and severe clutter, we observe strong degradation in the accuracy
of the detectors.

In Fig. 11.3b, we lastly report precision–recall curves of LCHF and Linemod.
Regarding these curves, one can observe that as the datasets are gettingmore difficult,
from the point of challenges involved, the methods produce less accurate results.

11.7.2 Analyses at the Level of Categories

Our analyses at the level of categories are based on Table11.4 and Fig. 11.4.
Table11.4 depicts the test results of the methods [22, 47, 52, 53] on the RMRC
dataset [50] evaluated using the metric in [52]. A short analysis on the table reveals
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ISA demonstrates 50% average precision. The highest value ISA reaches is on the
toilet category, mainly because of the limited deviation in shape in between the
instances. ISA next best performs on bed, with 52% mean precision. The accuracy
on both the categories bed and table are approximately the same. Despite the fact
that all forests used in the experiments undergo a relatively a naive training process,
the highest number of the instances during training are used for the chair category.
However, ISA performs worse on this category since the images in the test dataset
poses strong challenges of the instances, such as occlusion, clutter, and high diversity
from the shape point of view. On average, Deep SS [53] outperforms other methods
including ISA. In the real experiments, the use of the forest trained on less number
of data and ground truth information degrades the performance of ISA across the
problem’s challenges. Sample results are lastly presented in Fig. 11.4. In these fig-
ures, the leftmost images are the inputs of ISA, and the 2nd and the 3rd columns
demonstrate the estimations of the forests, whose training is based on Q1&Q2&Q3

Table 11.4 3D object detection comparison on the RMRC dataset [50] using the evaluation metric
in [52]

Method Input channel Bed Chair Table Toilet Mean

Sliding shapes [52] Depth 33.5 29 34.5 67.3 41.075

[22] on instance seg. Depth 71 18.2 30.4 63.4 45.75

[22] on estimated model Depth 72.7 47.5 40.6 72.7 58.375

Deep sliding shapes [53] Depth 83.0 58.8 68.6 79.2 72.40

ISA [47] Depth 52.0 36.0 46.5 67.7 50.55

Fig. 11.4 Sample results generated by ISA on real data: (for each triplet) each row is for per scene.
First column depicts depth images of scenes. Estimations in the middle belong to ISAs trained using
Q1&Q2&Q3 (using 3D skeleton representation as privileged data), and hypotheses on the right are
of ISAs trained on Q1 only (no 3D skeleton information)
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Fig. 11.5 Sample unsuccessful results generated by ISA on real data: (first row) the category of
interest is table. (second row) the interested category is chair. All hypotheses are of ISAs trained
using Q1&Q2&Q3 (using 3D skeleton representation as privileged data)

and Q1, respectively. Training the forest using the quality function Q1&Q2&Q3

stands for utilising 3D skeleton representation as privileged data for training. How-
ever, in case the forest is trained using the quality function Q1, ISA does not use
any skeleton information during training. For further details, check the architecture
of ISA [47]. Figure11.5 demonstrates several failed results. Since ISA is designed
to work on the depth channel, planar surfaces confuse the features extracted from
the test images with the features learnt during training, consequently resulting in
unsuccessful estimations.

11.8 Discussions and Conclusions

We outline our key observations which provide guidance for future research.
At the level of instances reasonably accurate results have been obtained on tex-

tured objects at varying viewpointswith cluttered backgrounds. In caseswhere occlu-
sion is introduced in the test scenes, depending on the architecture of the baseline,
good performance is demonstrated. Part-based solutions can handle the occlusion
problem better than the ones global, using the information acquired from occlusion-
free parts of the target objects. However, heavy existence of occlusion and clutter
severely affects the detectors. It is possible that modelling occlusion during train-
ing can improve the performance of a detector across severe occlusion. But when
occlusion is modelled, the baseline could be data-dependent. In order to maintain
the generalisation capability of the baseline, contextual information can additionally
be utilised during the modelling. Currently, similar-looking distractors along with
similar looking object classes seem the biggest challenge in recovering instances’
6D, since the lack of discriminative selection of shape features strongly confuse
recognition systems. One possible solution could be considering the instances that
have strong similarity in shape in the same category. In such a case, detectors trained
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using the data coming from the instances involved in the same category can report
better detection results.

Architecture-wise, template-based methods matching model features to the scene
and random forest based learning algorithms, along with their good generalisation
performance across unseen samples, underlie object detection and 6D pose estima-
tion. The recent paradigm in the community is to learn deep discriminative feature
representations. Several methods address 6D pose estimation with the use of deep
features [13, 33]. Depending on the availability of large-scale 6D annotated depth
datasets, feature representations can be learnt on these datasets that can be customised
for the 6D problem.

These implications are related to automation in robotic systems. The implications
can provide guidance for robotic manipulators that pick and place the items from
conveyors, shelves, pallets, etc. Accurately detecting objects and estimating their fine
pose under uncontrolled conditions improves the grasping capability of the manipu-
lators. Beyond accuracy, the baselines are expected to show real-time performance.
Although the detectors we have tested cannot perform in real-time, their run-time
could be improved with parallelisation.

At the level of categories, DPMs [2, 19, 21, 43], being at the forefront of the
category-level detection research, mainly present RGB-based discrete solutions in
2D. Several studies [24, 30] combine depth data with RGB. Although promising,
they are not capable enough for the applications beyond 2D. More recent methods
working at the level of categories are engineered to work in 3D [9, 17, 36, 59]
and 4D [22, 52, 53]. The ways the methods [9, 17, 22, 36, 52, 53, 59] address
the challenges of categories are relatively simple. They rely on the availability of
large-scale 3D models in order to cover the shape variance of objects in the real
world. Unlike the 3D/4D methods, ISA [47] is a dedicated architecture that directly
tackles the challenges of the categories, intra-class variations, distribution shifts,
while estimating objects’ 6D pose. The recent introduction of new datasets with
6D object pose annotations, e.g., [20] is likely to lead to the development of new
approaches for 6D object pose estimation in the presence of new challenges such as
human–object and robot–object interaction.
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Chapter 12
Geometric and Semantic Modeling
from RGB-D Data

Song-Hai Zhang and Yu-Kun Lai

Abstract With the increasing availability of RGB-D cameras, using RGB-D data
for geometric and semantic modeling has received significant interest in recent years.
Geometric modeling aims to build an accurate geometric representation for 3D ob-
jects or scenes, whereas semantic modeling focuses on analyzing and understanding
semantic objects in the captured scenes. They have many applications ranging from
robotic navigation to VR/AR. In this chapter, we will overview recent efforts on this
research topic, in particular, research using advanced machine learning techniques,
exploiting the complementary characteristics of geometry and image information in
RGB-D data, and incorporating prior knowledge.

12.1 Introduction

Geometric and semantic modeling produces digital- and object-level representations
of real-world scenes, which is key to a wide range of applications, including 3D
environment understanding, mixed reality, as well as the next generation of robotics.
Geometric modeling aims to build an accurate geometric representation for 3D ob-
jects or scenes, whereas semantic modeling focuses on analyzing and understanding
semantic objects in the captured scenes.

Currently, consumer-level color and depth (RGB-D) cameras (e.g., Microsoft
Kinect and Intel RealSense) are now widely available and are affordable to the
general public. Ordinary people can now easily obtain 3D data of their real-world
environments. Meanwhile, other booming 3D technologies in areas such as aug-
mented reality, stereoscopic movies, and 3D printing are also becoming common in
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our daily life. There is an ever-increasing need for ordinary people to digitize their
living environments. Helping ordinary people quickly and easily acquire 3D digital
representations of their living surroundings is an urging yet still challenging problem
in the research field. In recent decades, we have seen a massive increase in digital
images available on the Internet. Benefiting from such data, research on 2D images
has been significantly boosted, by mining and exploiting the huge amount of 2D
image data. In contrast, while the growth of 3D digital models has been accelerating
over the past few years, the growth remains slow in comparison, mainly because
making 3D models is a demanding job which requires expertise and is time con-
suming. Fortunately, the prevalence of low-cost RGB-D cameras along with recent
advances in modeling techniques offers a great opportunity to change this situation.
In the longer term, big 3D data has the potential to change the landscape of 3D visual
data processing.

This chapter focuses on digitizing real-world scenes, which has received signif-
icant interest in recent years. It has many applications which may fundamentally
change our daily life. With such techniques, furniture stores can offer 3D models of
their products online so that customers can better view the products and choose the
furniture they would buy. People without interior design experience can give digital
representations of their homes to experts or expert systems [34, 65] for advice on
better furniture arrangement. Anyonewith Internet access can virtually visit digitized
museums all over the world [60]. Moreover, the modeled indoor scenes can be used
for augmented reality [26] and serve as a training basis for intelligent robots to better
understand real-world environments [43].

Nevertheless, high-fidelity scene modeling is still a challenging problem, es-
pecially from RGB-D data. The difficulties mainly come from two aspects [10]:
First, objects often have complicated 3D geometry, non-convex structures, often with
messy surroundings and substantial variation between parts. Second, depth informa-
tion captured by consumer-level scanning devices is often noisy, may be distorted,
and can have large gaps. To address these challenges, various methods have been
proposed in the past few years and this is still an active research area in both the
computer graphics and computer vision communities.

Benefiting from the increasing amount of public RGB-D datasets, learning-based
methods such as 2D and 3D convolutional neural networks (CNNs), achieve impres-
sive results to tackle both geometric and semantic modeling problems from RGB-D
data, including gap filling of 3D shapes [6], object detection [21, 51], and seman-
tic segmentation [39]. Meanwhile, unlike treating geometric and semantic modeling
separately, semantic SLAM (Simultaneous Localization andMapping) [5] shows an-
other trend for scene modeling that integrates metric information, semantic informa-
tion, and data associations into a single optimization framework and thus improves
localization performance and loop closure, as well as semantic segmentation (see
Chap.6 for more discussions on RGB-D SLAM techniques).

This chapter significantly extends our earlier survey paper [9] and includes key
developments in recent years. The rest of the chapter will be organized as follows.
We first briefly introduce in Sect. 12.2 different types of RGB-D data and publicly
available RGB-D datasets. After that, in Sects. 12.3 and 12.4, we systematically
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categorize existinggeometricmodeling and semanticmodelingmethods respectively,
overview each technique and examine their advantages and disadvantages. Finally, in
Sect. 12.5, we summarize the current state of the art and elaborate on future research
directions.

12.2 RGB-D Data and Public Datasets

The depth image along with an aligned RGB image forms an RGB-D image frame,
which depicts a single view of the target scene, including both the color and the
shape. Such RGB-D image frames can be reprojected to 3D space to form a colored
3D point cloud. RGB-D images and colored point clouds are the two most common
representations of RGB-D data. RGB-D images are mostly used by the computer
vision community as they bear the same topology as images, while in the computer
graphics community, RGB-D data is more commonly viewed as point clouds. Point
clouds obtained from a projective camera are organized (a.k.a. structured or ordered)
point clouds because there is a one-to-one correspondence between points in the
3D space and pixels in the image space. This correspondence contains adjacency
information between 3D points which is useful in certain applications, e.g., to sim-
plify algorithms or make algorithms more efficient as neighboring points can be
easily obtained. With the correct camera parameters, organized colored point clouds
and the corresponding RGB-D images can be transformed into each other. If such
an equivalent RGB-D image does not exist for a colored point cloud, then the point
cloud is unorganized (a.k.a. unstructured or unordered). To fully depict a target scene,
multiple RGB-D image frames captured from different views are typically needed.
As scannerless cameras are usually used, scene RGB-D data captured is essentially
RGB-D image streams (sequences) which can later be stitched into a whole scene
point cloud using 3D registration techniques.

Depending on the operation mechanism, there is a fundamental limitation of all
active (e.g., laser-based) RGB-D scanning systems, that they cannot capture depth
information on surfaces with highly absorptive or reflective materials. However,
these kinds of materials, such as mirrors, window glass, and shiny steels, are very
common in real-world scenes. Apart from this common limitation, consumer-level
RGB-D cameras have some other drawbacks caused by their low cost. First, the
spatial resolution of such cameras is generally low (512× 484 pixels in the latest
Kinect). Second, the depth information is noisy and often has significant camera
distortions. Third, even for scenes without absorptive or reflective materials, the
depth images may still involve small gaps around object borders. In general, the
depth information obtained by cheap scanning devices is not entirely reliable, which
practical scene modeling algorithms must take into consideration. See Chaps. 2 and
3 for detailed discussion of techniques to address incompleteness and low resolution
of RGB-D images.

The popularity of RGB-D cameras and the abundance of research on RGB-D
data analysis have resulted in a number of public RGB-D datasets as well as 3D
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Object/Scene datasets in recent years. The wider availability of large-scale RGB-D
repositories stimulates the development of data-driven approaches for scene model-
ing. Although most of these datasets are built and labeled for specific applications,
such as scene reconstruction, object detection and recognition, scene understanding
and segmentation, as long as they provide full RGB-D image streams of scenes, they
can be used as training data and benchmarks for scene modeling including geomet-
ric modeling and semantic modeling. Here, we briefly describe some popular ones,
which are summarized in Table 12.1.

ScanNet [15]: This dataset is an RGB-D video dataset containing 2.5 million
views (RGB-D images) of real-world environments in 1513 scans acquired in 707
distinct locations. The data is annotated with estimated calibration parameters, cam-
era poses, 3D surface reconstructions, textured meshes, dense object-level semantic
segmentation, and aligned CAD models. This dataset is the largest one so far.

SceneNN [25]: This is an RGB-D scene dataset consisting of 100 scenes, all
of which are reconstructed into triangle meshes and have per-vertex and per-pixel
annotation of object labels. The data is also annotated with axis-aligned bounding
boxes, oriented bounding boxes, and object poses.

PiGraphs [44]: Savva et al. released an RGB-D dataset on their research of
relations between human poses and arrangements of object geometry in the scene.
This dataset consists of 26 scans captured with Kinect v1 devices and reconstructed
with the VoxelHashing. This dataset has more complete and clean semantic labels,
including object parts and object instances.

Cornell RGB-D Dataset [2, 29]: This dataset contains RGB-D data of 24 office
scenes and 28 home scenes, all of which are captured by Kinect. RGB-D images of
each scene are stitched into scene point clouds using an RGB-D SLAM algorithm.
Object-level labels are given on the stitched scene point clouds.

Washington RGB-D Scenes Dataset [30]: This dataset consists of 14 indoor
scenes containing objects in 9 categories (chair, coffee table, sofa, table, bowls, caps,
cereal boxes, coffee mugs, and soda cans). Each scene is a point cloud created by
aligning a set of Kinect RGB-D image frames using Patch VolumesMapping. Labels
of background and the 9 object classes are given on the stitched scene point clouds.

NYU Depth Dataset [47, 48]: This dataset contains 528 different indoor scenes
(64 in the first version [47] and 464 in the second [48]) captured from large US cities
with Kinect. The captured scenes mainly consist of residential apartments, including
living rooms, bedrooms, bathrooms, and kitchens. Dense labeling of objects at the
class and instance levels is provided for 1449 selected frames. This dataset does not
contain camera pose information because it is mainly built for segmentation and
object recognition in single frames. To get full 3D scene point clouds, users may
need to estimate camera poses from the original RGB-D streams.

Sun RGB-D Dataset [50]: This dataset is captured by four different sensors
and contains 10,335 RGB-D images, at a similar scale as PASCAL VOC. The whole
dataset is densely annotated and includes 146,6172Dpolygons and64,5953Dbound-
ing boxes with accurate object orientations, as well as a 3D room layout and scene
category for each image.
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SUN 3D Dataset [61]: This dataset contains 415 RGB-D image sequences cap-
tured by Kinect from 254 different indoor scenes, in 41 different buildings across
North America, Europe, and Asia. Polygons of semantic class and instance labels
are given on frames and propagated through the whole sequences. Camera pose for
each frame is also provided for registration.

SUNCG Dataset & House3D [52]: SUNCG dataset is a richly annotated, large-
scale dataset of 3D scenes, which contains over 45K different scenes with manu-
ally created realistic room and furniture layouts. All of the scenes are semantically
annotated at the object level. Sourced from the SUNCG dataset, House3D [59] is
built as a virtual 3D environment consisting of over 45K indoor 3D scenes, rang-
ing from studios to multi-storey houses with swimming pools and fitness rooms.
All 3D objects are fully annotated with category labels. Agents in the environment
have access to observations of multiple modalities, including RGB images, depth,
segmentation masks, and top-down 2D map views. In particular, SUNCG dataset
and House3D environment have also received a lot of attention in the community of
scene modeling.

12.3 Geometric Modeling

The main objective of geometric modeling is to fully recover 3D geometry of 3D
objects or scenes. Geometric modeling from RGB-D data is a fundamental problem
in computer graphics. Ever since the 1990s, researchers have investigated methods
for digitizing the shapes of 3D objects using laser scanners, although 3D scanners
were hardly accessible to ordinary people until recently. Early works typically start
by registering a set of RGB-D images captured by laser sensors (i.e., transforming
RGB-D images into a global coordinate system) using iterative closest point registra-
tion (ICP) [4, 11], and fuse the aligned RGB-D frames into a single point cloud or a
volumetric representation [14] which can be further converted into 3Dmesh models.
Different from expensive and accurate laser scanners, the prevalence of consumer-
level RGB-D cameras poses challenges to traditional registration and fusion algo-
rithms of geometricmodeling. The limitations of RGB-D data have been explained in
Sect. 12.2. Benefiting from the robotics community, a series of vision-based SLAM
techniques and systems are proposed to cope with low-quality of RGB-D data cap-
tured by consumer-level RGB-D cameras, and achieve real-time performance.

A well-known technique is the KinectFusion system [26] which provides model
creation using a moving Kinect camera. Similar to traditional schemes, KinectFu-
sion adopts a volumetric representation of the acquired scene bymaintaining a signed
distance value for each grid voxel. Each frame is registered to the whole constructed
scene model rather than the previous frames using a coarse-to-fine iterative ICP
algorithm. This frame-to-model registration scheme has more resistance to noise
and camera distortions, and can perform efficiently to allow real-time applications.
The system is easy to use and achieves real-time performance with GPU accelera-
tion. However, it also has some drawbacks. RGB information has been neglected by
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the system. And the volumetric representation based mechanism significantly limits
its usage for large and complex scenes, as memory consumption is in proportion to
the voxel number of the volumetric representation. Reconstructing large-scale scenes
evenwith amoderate resolution to depict necessary details requires extensive amount
of memory, which easily exceeds thememory capacity of ordinary computers. More-
over, the acquisition and registration errors inevitably exist, and can be significant
for consumer-level scanning devices. Although using frame-to-model registration
is more robust than frame-to-frame registration, it is still not a global optimization
technique. Errors will keep accumulating over the long acquisition process, when
scanning larger scenes with longer moving trajectories. Error accumulation can re-
sult in the loop closure problem which generates misalignment when reconstructing
large rooms using KinectFusion when the camera trajectory forms a closed loop.

ElasticFusion [58] is another type of visual SLAM method that uses “surfels”, a
point-based representation of 3D scenes, rather than a volume representation. Be-
yond KinectFusion, it estimates camera poses not only by the ICP algorithm for the
depth information, but also with RGB information for correspondences under the
color consistency assumption. The fused model is represented as a surfel set. Each
surfel is composed of center position, radius, normal, color (RGB), and a timestamp.
ElasticFusion also includes loop closure detection by utilizing the randomized fern
encoding approach. Ferns encode an RGB-D image as a string of code made up of
the values of binary tests on each of the RGB-D channels in a set of fixed pixel
locations. Attempts are made to find a matching predicted view for each frame in the
fern encoding database. If a match is detected, the method attempts to register the
views together and check if the registration is globally consistent with the model’s
geometry. If so, it reflects this registration in the map with a nonrigid deformation,
which brings the surface into global alignment.

Various state-of-the-art RGB-D SLAM algorithms have been proposed in recent
years [1]. They can be divided into two types: sparse mapping and dense mapping.
For sparse mapping, only some sparsely selected keyframes are used for reconstruc-
tion which can quickly provide rough structure of the target scene, while for dense
mapping, the whole RGB-D stream is used which can give detailed reconstruction
as long as sufficient data is available. In both cases, the key technique is feature point
matching, which is the basis for both transform estimation and loop closure detection.
Due to the poor quality of depth images obtained by low-cost scanning devices, most
sparse mapping systems mainly rely on distinctive feature descriptors detected from
RGB images (e.g., SIFT [32], SURF [3] or ORB [40]) to find corresponding point
pairs. As real-world scenes usually contain large textureless areas, e.g., walls with
uniform colors, or repeated patterns, e.g., tiled floors, even state-of-the-art feature
descriptors may easily generate falsely matched point correspondences. To reduce
the impact of falsely detected point correspondences on reconstruction, theRANSAC
(RANdom SAmple Consensus) algorithm [20] is often adopted to determine a subset
of correspondences which conforms to a consistent rigid transform. RANSAC is an
iterative, randomized approach to estimating parameters of a mathematical model (in
this case a rigid transform) that fits observed data (in this case sample points) which
is robust to outliers that often occur in low-quality RGB-D data [55]. However, this
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may still fail in challenging cases. In practice, manual correction of some falsely es-
timated transforms is often needed in sparse mapping applications [10]. In contrast,
with the help of dense depth streams, a frame-to-frame ICP registration algorithm
can provide stronger cues for inferring camera poses. Thus, dense mapping RGB-D
SLAM systems [18, 23] currently provide more automatic and robust solutions to
modeling scenes with consumer-level RGB-D sensors.

Although the geometry of 3D scenes or models are generated by fusing RGB-D
data from different views, data missing still often occurs due to RGB-D sensor
visibility. The increasingly available public RGB-D datasets make it possible to re-
construct and complete 3D shapes using learning-based methods, which provides
nice solutions to this ill-posed problem. Deep learning on 3D shapes has made sig-
nificant progress in recent years, achieving state-of-the-art performance for typical
tasks such as 3D object classification and semantic segmentation [7, 13, 37]. For 3D
shape reconstruction and completion, most methods utilize a volumetric represen-
tation to allow flexible topological changes, and reconstruct 3D scenes either from
RGB images [12, 27, 49, 54, 62] or depth images [19, 53, 63]. For shape completion,
representative methods [46, 57] are also based on volumetric representations, and
thus have similar drawbacks of limited resolution.

Some recent effort [6, 16, 22] was made to address this limitation. The basic
idea of these methods is to use a coarse-to-fine strategy, where initially a coarse 3D
shape is reconstructed, which is then refined using detailed information. Specifically,
Dai et al. [16] proposed a 3D-Encoder-Predictor Network (3D-EPN) that predicts an
initial coarse yet complete volume representation, which is refined using an iterative
synthesis process whereby similar voxels to the predicted patch are used to augment
the patch detail. This was extended by [22] by introducing a dedicated local 3D
CNN for patch refinement. These methods still require expensive processing during
patch refinement. A more efficient solution was proposed in [6] based on a 3D
cascaded fully convolutional network (3D-CFCN) architecture, which is end-to-end
trainable, and produces iteratively refined geometry through the network. As a result,
the method is able to efficiently generate high-resolution volumetric representation
of shapes in a single pass.

12.4 Semantic Modeling

The main objective of geometric modeling of scenes is to fully recover 3D geome-
try. These methods take the target scene as a whole regardless of what contents are
presented therein, and thus cannot provide a semantic representation of the modeled
scene. Semantic modeling is a type of modeling algorithms which focuses on re-
constructing scenes down to the level of specific objects. Typically, RGB-D data of
each semantic region is separated from the surrounding environment and fitted using
either existing object models, part models or even geometric primitives (e.g., planes
or cylinders).
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Semantic modeling produces a semantically meaningful representation of the
modeled scene (e.g., knowing the scene contains a table and four chairs), and the
scene understanding results are beneficial for many higher level applications, or
even necessary to make them possible, such as furniture rearrangement of indoor
scenes [66]. Furthermore, semantic information can be used to improve geometric
modeling results. In cluttered real-world scenes, it is not practically possible to cap-
ture every single corner of the scene due to occlusion. Nevertheless, the occluded
structure can be inferred with simple semantic knowledge such as desk surfaces be-
ing horizontal planes or chairs being plane symmetric. As the basic shapes of most
interior objects are already known from prior knowledge, semantic modeling sys-
tems typically only require sparse RGB-D images, so that the modeling process is
much simpler compared with traditional geometric modeling in terms of the effort
for data acquisition.

In general, semantic modeling is processed on the sparse or dense geometric in-
formation (e.g., a point cloud)modeled from the input RGB-D data, and is essentially
a semantic segmentation of the scene geometry. However, automatically separating
a scene into different levels of semantic regions is still a challenging problem. On the
one hand, to understand what objects are present in the scene, each object must be
separated from its surroundings. On the other hand, recognizing the type and shape of
an object is ultimately important for determining whether an adjacent region belongs
to the object or not, and hence helps with effective segmentation. This is an intricate
chicken-and-egg problem. To break the inter-dependency, human prior knowledge
is often adopted in the form of semantic or contextual rules. As there is no universal
definition of semantics, there are significant differences for modeling algorithms in
taken the advantages of semantic or contextual information. Therefore, based on the
level of semantic information being processed or produced, we classify semantic
modeling methods into two categories: primitive-based methods (Sect. 12.4.1) and
model-based methods (Sect. 12.4.2).

12.4.1 Primitive-Based Methods

The core of primitive-based methods is finding best-fitting primitives for the input
RGB-D data. Due to the robustness to outliers, existing work [20] utilizes random
sample consensus (RANSAC) as the primitive fitting algorithm to distinguish be-
tween inliers and outliers. However, RANSAC needs to solve many constraints and
can run into instability when these constraints contain an excessive amount of noise.
As a one-model approach, RANSAC can only estimate multiple model instances one
by one [36, 60]. In the case when multiple models exist, the Hough transform [17]
is used for robust estimation of models by determining instances of objects within
a certain class of shapes. The most obvious disadvantage of the Hough transform
is the huge time complexity in estimating complex models from large-scale input
scans. Thus, Hough transform is typically used when the problem can be converted
into a 2D parameter space [36, 60]. It is very common to see duplicated primitives
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because of the noisy and incomplete data. A consistent scene representation is nec-
essary for global consolidation. Based on different applications, different types of
global consolidation methods are used with different a priori assumptions.

For large-scale interior architectural modeling, the box assumption is the foun-
dation of the state-of-the-art architectural modeling approach [60]. Based on this
assumption, the method segments the input point cloud into a set of horizontal 2D
slices, and projects the points in each slice onto a 2D plane. Then, the line segments
detected in the 2D space are merged into 2D rectangles and combined with other
slices to form 3D cuboids. As each planar primitive may form general polygonal
shapes other than rectangles, convex hull or alpha-shape algorithms are needed to
determine the space extent [42]. In the large-scale scenes, primitive-based methods
have been extended to model interior furniture. This is because the furniture in the
scene normally comes from a small number of prototypes and repeats multiple times.
A supervised method is proposed in [28] which contains two stages. Each object
of interest is pre-scanned and represented as a set of stable primitives along with
necessary inter-part junction attributes in the learning stage, and the whole scene is
segmented and each segment is fitted with primitives in the modeling stage. Then
all repeated furniture can be modeled through hierarchical matching. The main ad-
vantage of this method is that variation between furniture parts can be handled by
specifying the degree-of-freedom of each stable primitive in the pre-scanned object.
Differently, Mattausch et al. [33] proposed an unsupervised method for modeling
also by detecting repeated objects. In this work, the scene point cloud is converted
into a collection of near planar patch primitives first. Then, the patches can be clus-
tered in a Euclidean embedding space based on spatial configurations of neighboring
patches and their geometric similarity. Thus, the repeated objects can be modeled.
The merit of this approach is that the primitives become semantic abstraction of ob-
jects, not just meaningless generic geometric shapes, and the repeated objects can be
robustly recovered from noisy and incomplete data due to the repeated occurrences
of instances in the training data.

Convex decomposition is another method for shape composition. Ren et al. [67]
proposed an approach to decomposing arbitrary 2D and 3D shapes into a minimum
number of near-convex parts. However, this type of decomposition cannot guarantee
the models are formed by primitive shapes. A lot of CAD models are designed by
a combination of primitive shapes. As a result, these objects can be modeled by
using primitive-based approaches. Li et al. [31] introduced an iterative constrained
optimization scheme to globally consolidate locally fitted primitives by considering
the mutual relations between orientation, equality, and placement. Recently, Tulsiani
et al. [56] learned to assemble objects using volumetric primitives. They used a deep
neural network to estimate the parameters of primitives such as the number, size, and
orientation, and the obtained reconstruction allows an interpretable representation
for the input object. However, this is an unsupervised method, and therefore the fitted
primitives may not correspond to semantic parts. The method is also only able to
obtain an approximate reconstruction due to the use of a relatively small number of
primitives.
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12.4.2 Model-Based Methods

Despite attempts with certain levels of success as we described in the previous sub-
section, primitive-based methods have fundamental limitations in modeling interior
objects. For example, both [28, 33] only tackle large-scale public or office buildings
withmany repeated objects, but in outer scenes and typical home environments many
objects only occur once (e.g., a television or a bed). Moreover, many objects (e.g.,
keyboards, desk lamps and various types of chairs) are too complex to be depicted
in detail using a set of simple primitives. Thus, primitive-based methods can only
offer an approximation to the target scene.

3D repositories of objects offer the possibility for object-level semantic modeling.
Eachobject is regarded as a sample in the object feature space.Alongwith the samples
growing, the semantic modeling tends to build an implicit description of the feature
of a certain semantic object. Model-based approaches thus take advantages of such
information to semantically segment 3D scenes into objects. Many existing data-
driven methods show that if we have sufficient 3D objects, the results tend to be
reasonable. The growing availability of accessible 3D models online (e.g., in the
Trimble 3D Warehouse) has made it possible. Model-based methods thus represent
a new trend in the scene modeling.

Nan et al. [35] use a search-classify strategy and a region growing method to find
independent point clouds from high-quality laser scans and assign a semantic label
for each meaningful object. They first train classifiers with Randomized Decision
Forests (RDF) for individual predefined object categories. In the online stage, they
first over-segment the input point cloud. Starting from a seed region in the over-
segmentation, the point cloud of an individual object is detected and separated from
the background by iteratively adding regions which helps to increase classification
confidence. After that, a deform-to-fit technique is used to adapt 3D models in the
training set to fit the segmented and classified point cloud objects. Their method
relies on high-quality scans, to make the problem more tractable.

Shao et al. [45] present an interactive approach to semantic modeling of indoor
scenes from sparse sets of low-quality Kinect scans. To avoid problems brought
in by poor-quality depth images, they rely on user interaction to reliably segment
RGB-D images into regions with semantic labels manually assigned. Then an auto-
matic algorithm is used to find the best-matched model for each object and arranged
them to reconstruct the target scene. For complex scenes with many object instances,
Shao’s method [45] requires extensive user assistance for segmentation and label-
ing to resolve ambiguity due to noise and occlusion. Neighboring objects normally
have strong contextual relationships (e.g., monitors are found on desks, and chairs
are arranged around tables). Such relationships provide strong cues to determine se-
mantic categories of each object, and has been used in a number of recognition and
retrieval tasks, delivering significant improvements in precision. By utilizing such
information, Chen et al. [10] propose an automatic solution to this problem. They
exploit co-occurrence contextual information in a 3D scene database, and use this in-
formation to constrain modeling, ensuring semantic compatibility between matched
models.
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Hu et al. [24] propose an automatic learning-based approach to semantic labeling
(that assigns object labels to individual points), and instance segmentation (that
decomposes the input point cloud into a set of disjoint subsets each corresponding to
an individual object). To facilitate feature extraction, point clouds are first split into
a set of patches, using an improved dynamic region growing strategy. Then the main
idea of this method is to exploit patch clusters as an intermediate representation to
bridge the gap between low-level patches and high-level object semantics. Through
patch clusters, patch contextual information is learned from the training set and used
in the test stage to improve patch classification performance. Segmenting a point
cloud into patches is not trivial, and both under-segmentation and over-segmentation
can result in poor patches and overall degradation of performance. This paper further
develops a multi-scale approach to selecting locally suitable scales with the guidance
of learned contextual information.

The performance of model-based methods relies heavily on the quality, diversity
and the number of existing 3D models as well as scenes that represent plausible
combinations of models. Novel scenes or scene items without representation in the
existing 3Dmodel database are likely to lead to poor results. CNN based methods re-
lieve the problem to some extent by better capturing the implicit features of semantic
objects. CNNs have already shown their success in representing implicit features in
images. We can regard pixels as 2D regular grid. It is intuitive to extend CNNs to 3D
regular grids, i.e., VoxelNet [68], to cope with semantic segmentation of the scene.
However, the volume representation is required as input, which needs voxelization
from point clouds or RGB-D data. The volume with high resolution to preserve de-
tails of complex scenes leads to heavy complexity of CNNs on 3D. PointNet [8] and
PointNet++ [38] made a good attempt to learn CNNs directly on point clouds. They
achieve input order invariance by using a symmetric function over inputs.

12.5 Conclusion

In this chapter,we present an extensive survey of indoor scenemodeling fromRGB-D
data. We first briefly introduce some public datasets in this area. We divide methods
into two categories: geometric modeling and semantic modeling, and overview var-
ious indoor scene modeling techniques along with their advantages and limitations
in each category. However, from the reviewed methods we can see that robust mod-
eling of real-world complex, cluttered or large-scale indoor scenes remains an open
problem because of numerous challenges. Generally, researchers in this area have
reached a consensus that utilizing prior knowledge is the right direction to improve
modeling algorithms, especially when the data is incomplete and noisy. In fact, with
simple prior knowledge, even traditional geometric modeling methods can benefit
significantly. Zhou et al. [41] use an observation that scene parts which have been
scanned particularly thoroughly tend to be points of interest (POI). By detecting POI
from the scanning trajectory and protecting local geometry in POI, they can signif-
icantly improve reconstruction results of complex scenes. Yang et al. [64] extend
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the classic SLAM framework to object level using the prior knowledge by semantic
object detection in RGB channels. Therefore, where to get more human prior knowl-
edge and how to make better use of human prior knowledge have become a focus of
current indoor scene modeling research. We hope this survey gives valuable insights
into this important topic and encourages new research in this area.
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Part III
RGB-D Applications

Part III of this book focuses on RGB-D data applications. Since low-cost RGB-D
sensorswere brought to themarket a decade ago, a plethora of applications have taken
advantage of them. There is enormous scope for RGB-D sensors to drive natural user
interfaces, e.g. using the user’s hand or full body as a controller. Another big user of
RGB-D has been for health care; two examples are included here: monitoring and
therapy. Robots are increasingly entering both the home and workplace, and also
find use in health care, e.g. for elderly care, as well as in manufacturing. Another
emerging technology is for the development of self-driving cars, which require a
bank of sensors—often including RGB-D—to enable navigation.

Some examples of applications using RGB-D imagery: ‘Cosero’ (a service robot),
see Chap. 13, hand pose estimation, see Chap. 16, visualisation of the LIDAR depth
map used for autonomous driving, see Chap. 17.
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Chapter 13
Semantic RGB-D Perception
for Cognitive Service Robots

Max Schwarz and Sven Behnke

Abstract Cognitive robots need to understand their surroundings not only in terms
of geometry, but they also need to categorize surfaces, detect objects, estimate their
pose, etc. Due to their nature, RGB-D sensors are ideally suited to many of these
problems, which is why we developed efficient RGB-D methods to address these
tasks. In this chapter, we outline the continuous development and usage of RGB-D
methods, spanning three applications: Our cognitive service robot Cosero, which
participated with great success in the international RoboCup@Home competitions,
an industrial kitting application, and cluttered bin picking for warehouse automation.
We learn semantic segmentation using convolutional neural networks and random
forests and aggregate the surface category in 3D by RGB-D SLAM. We use deep
learning methods to categorize surfaces, to recognize objects and to estimate their
pose. Efficient RGB-D registration methods are the basis for the manipulation of
known objects. They have been extended to non-rigid registration, which allows for
transferring manipulation skills to novel objects.

13.1 Introduction

The need for truly cognitive robots, i.e. robots that can react to and reason about their
environment, has been made very clear in recent years. Applications like personal
service robots, elderly care, guiding robots, all require higher levels of cognition
than what is available today. But also classical domains of robotics, like industrial
automation, will benefit greatly from smarter robots which truly relieve the load of
their human coworkers.
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A key stepping stone towards higher cognitive function is environment percep-
tion. The ready availability of affordable RGB-D sensors, starting with theMicrosoft
Kinect, now encompassing a multitude of sensors with different properties, has
sparked the development of many new perception approaches. Especially in the
robotics community,which is not only interestedwithperceiving the environment, but
also especially interacting with it, the direct combination of color information with
geometry offers large advantages over classical sensors which capture the modalities
separately.

The interest in our group in RGB-D sensors started with our work in the field of
cognitive service robots. An increasing number of research groups worldwide are
working on complex robots for domestic service applications. Autonomous service
robots require versatile mobile manipulation and human-robot interaction skills in
order to really become useful. For example, they should fetch objects, serve drinks
and meals, and help with cleaning. The everyday tasks that we perform in our house-
holds are highly challenging to achieve with a robotic system, though, because the
environment is complex, dynamic, and structured for human rather than robotic
needs.

We have developed cognitive service robots since 2008, according to the require-
ments of the annual international RoboCup@Home competitions [72]. These com-
petitions benchmark integrated robot systems in predefined test procedures and in
open demonstrations within which teams can show the best of their research. Bench-
marked skills comprise mobility in dynamic indoor environments, object retrieval
and placement, person perception, complex speech understanding, and gesture recog-
nition.

Starting from the methods developed for our Cognitive service robot Cosero,
described in Sect. 13.3,wewill showhowprovenRGB-Dmethods and key ideaswere
carried over to subsequent robotic systems in other applications, susch as industrial
kitting (Sect. 13.4) and cluttered bin picking for warehouse automation (Sect. 13.5).

13.2 Related Work

Service Robots Prominent examples of service robots include Armar [1], developed
atKIT, that has demonstratedmobilemanipulation in a kitchen environment [68]. The
Personal Robot 2 (PR2 [39]), developed by Willow Garage, popularized the Robot
Operating System (ROS [46]) that is used by many research groups. It is equipped
with two 7-DOF compliant arms on a liftable torso. For mobility, the robot drives
on four individually steerable wheels, similar to our Cosero robot. PR2 perceives its
environment using 2D and 3D laser scanners, and a structured light RGB-D sensor
in the head. Bohren et al. [9] demonstrated fetching drinks from a refrigerator and
delivering them to users with the PR2 platform. Beetz et al. [6] used a PR2 and a
custom-built robot to cooperatively prepare pancakes.

Another example isRollin’ Justin [10], developed atDLR. Similarly, it is equipped
with two compliant arms and a four-wheeled mobile base. The robot demonstrated
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several dexterous manipulation skills such as making coffee by operating a pad
machine [5] and cleaning windows [35]. Further examples are HoLLie [22], devel-
oped at FZI Karlsruhe, and Care-O-Bot 4 [30], recently introduced by Fraunhofer
IPA.

The RoboCup Federation holds annual competitions in its @Home league [27],
which serve as a general benchmark for service robots. Since research labs usu-
ally focus on narrow tasks, this competition is especially important for guiding and
evaluating the research on service robotics in a more holistic perspective. Systems
competing in the 2017 edition, which was held in Nagoya, Japan, are described in the
corresponding team description papers [40, 67, 69]. Most of these custom-designed
robots consist of a wheeled mobile base with LiDAR and RGB-D sensors and a sin-
gle manipulator arm, although humanoid shapes with two arms are becoming more
common. Notably, RGB-D sensors play a large role in the competition, since they
offer highly semantic environment understanding (see [27, 67]) at very low cost.

Mapping In order to act in complex indoor environments, service robots must
perceive the room structure, obstacles, persons, objects, etc. Frequently, they are
equipped with 2D or 3D laser scanners to measure distances to surfaces. Registering
the laser measurements in a globally consistent way yields environment maps. Graph
optimization methods [66] are often used to solve the simultaneous localization and
mapping (SLAM) problem. Efficient software libraries are available to minimize the
registration error [28, 33]. 2D maps represent walls and obstacles only at the height
of a horizontal scan plane [37]. If 3D laser scanners are used [54, 74], the full 3D
environment structure can be modeled.

In recent years, RGB-D cameras (see Chap. 1) became available tomeasure geom-
etry and colored texture of surfaces in smaller indoor environments. Registering these
measurements yields colored 3D environment models (see Chap.5, [14, 29, 70, 71]).

Semantic Perception In addition to modelling the environment geometry and
appearance, semantic perception is needed for many tasks. This involves the cat-
egorization of surfaces, the detection and recognition of objects and the estimation
of their pose. Surface categorization is also known as object-class segmentation. The
task is to assign a class label to every pixel or surface element. For example, Her-
mans et al. [23] train random decision forests to categorize pixels in RGB-D frames.
They estimate camera motion and accumulate pixel decisions in a 3D semantic map.
Spatial consistency is enforced by a pairwise Conditional Random Field (CRF).

In contrast, Eigen et al. [13] process single frames at multiple resolutions. They
train convolutional neural networks (CNN) to predict depth, surface normals, and
semantic labels. The network is initialized with pre-trained features [31]. Long et
al. [36] combined upsampled predictions from intermediate layers with a final full-
resolution layer which leads to more refined results. A whole-image classification
network was adapted to a fully convolutional network and finetuned for semantic
segmentation. Another example of a convolutional architecture for semantic seg-
mentation is the work of Badrinarayanan et al. [3]. They use a multi-stage encoder-
decoder architecture that first reduces spatial resolution through maximum pooling

http://dx.doi.org/10.1007/978-3-030-28603-3_1
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and later uses the indices of the local pooling maxima for non-linear upsampling to
produce class labels at the original resolution.

For thedetectionof objects, e.g., implicit shapemodels [34] andHough forests [17]
have been proposed. In recent years, CNNs have also been successfully used for the
detection of objects in complex scenes. Girshick et al. [20], for example, use a
bottom-up method for generating category-independent region proposals and train a
CNN to categorize size-normalized regions. To accelerate detection, all regions are
processed with a single forward pass of the CNN [19]. Another line of research is
to directly train CNNs to regress object bounding boxes [15, 53]. Ren et al. [47]
developed a region proposal network (RPN) that regresses from anchors to regions
of interest. More methods are discussed in Chap.8.

For estimating the pose of objects in 3D data, often voting schemes are used.
Drost et al. [12] and Papazov et al. [44] proposed point pair features, defined by
two points on surfaces and their normals, which vote for possible object poses.
This approach has been recently extended by Choi et al. [11] to incorporate color
information from RGB-D sensors. In recent years, CNNs also have been trained to
estimate object pose [4, 65]. 3D convolutional neural networks have been used for
modeling, detection, and completion of 3D shapes [73]. For an in-depth review of
6D pose estimation methods, we refer to Chap.11.

13.3 Cognitive Service Robot Cosero

Since 2008, the Autonomous Intelligent Systems group at University of Bonn has
been developing cognitive service robots for domestic service tasks [61]. According
to the requirements of the RoboCup@Home competitions, we developed the cog-
nitive service robot Cosero, shown in Fig. 13.1, that balances the aspects of robust
mobility, human-likemanipulation, and intuitive human-robot-interaction. The robot
is equipped with an anthropomorphic torso and two 7DoF arms that provide adult-
like reach and support a payload of 1.5kg each. The grippers consist of two pairs
of Festo FinGripper fingers on rotary joints, which conform to grasped objects.
Cosero’s torso can be twisted around and lifted along the vertical axis to extend its
workspace, allowing the robot to grasp objects from a wide range of heights—even
from the floor. Its narrow base moves on four pairs of steerable wheels that provide
omnidirectional driving. For perceiving its environment, Cosero is equipped with
multimodal sensors. Four laser range scanners on the ground, on top of the mobile
base, and in the torso (rollable and pitchable) measure distances to objects, persons,
or obstacles for navigation purposes. The head is mounted on a pan-tilt joint and
features a Microsoft Kinect RGB-D camera for object and person perception in 3D
and a directed microphone for speech recognition. A camera in the torso provides
a lateral view onto objects in typical manipulation height. Cosero is controlled by a
high-performance Intel Core-i7 quad-core notebook, located on the rear part of the
base.

http://dx.doi.org/10.1007/978-3-030-28603-3_8
http://dx.doi.org/10.1007/978-3-030-28603-3_11
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Fig. 13.1 Cognitive service robot Cosero with sensors marked and perceptional modules

13.3.1 Environment Perception

RGB-D SLAM For modelling 3D geometry and appearance of objects, we devel-
oped an efficient RGB-D-SLAM method, based on Multi-Resolution Surfel Maps
(MRSMaps [59]). The key idea is to represent the distribution of points in voxels
and their color using a Gaussian. For registering RGB-D views, local multiresolution
is used, i.e., the vicinity of the sensor is modeled in more detail than further-away
parts of the environment. Graph optimization [33] is used to globally minimize reg-
istration error between key views. Figure13.2a shows a resulting map of an indoor
scene. To reduce the need for sensor motion and to avoid looking only into free space,
we constructed a sensor head with four RGB-D cameras that view four orthogonal
directions [55]. Figure13.2b shows a map of a room that has been created by moving
this multi-sensor in a loop.

Motion Segmentation RGB-D SLAM assumes static scenes. By modeling multi-
ple rigid bodies as MRSMap and estimating their relative motion by expectation-
maximization (EM), a dense 3D segmentation of the dynamic scene is obtained [60].
Figure13.3a shows an example. From common and separate motion, a hierarchy of
moving segments can be inferred [56], as shown in Fig. 13.3b.

Semantic Segmentation We developed several approaches for object-class seg-
mentation. One method is using random forests (RF) to label RGB-D pixels [50]
based on rectangular image regions that are normalized in size and position by depth
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Fig. 13.2 RGB-DSLAM: aMulti-resolution surfelmapobtained by registeringRGB-Dviews [59];
b RGB-D map of a room obtained from four moving RGB-D cameras [55]

Fig. 13.3 Motion segmentation: a Three rigid bodies and their motion modeled as MRSMap [60];
bMotion hierarchy inferred from common/separate motions [56]

and computed efficiently from integral images. Both training and recall have been
accelerated by GPU. To obtain a 3D semantic map, we estimate camera motion by
RGB-D SLAM and accumulate categorizations in voxels [64].

We developed a method to smooth the noisy RF pixel labels that is illustrated
in Fig. 13.4a. It over-segments the scene in RGB-D superpixels and learns relations
between them that are modeled as a Conditional Random Field (CRF), based on
pair-wise features such as color contrast and normal differences. We also proposed
CNN-based methods for semantic segmentation [24, 26, 48], with innovations, such
as additional input features derived from depth, like height above ground [49] or
distance from wall [26] (Fig. 13.4b), and size-normalization of covering windows
from depth [49].

For temporal integration,wedirectly trained theNeuralAbstractionPyramid [7]—
a hierarchical, recurrent, convolutional architecture for learning image interpretation
(Fig. 13.5a)—for object class segmentation of RGB-D video sequences [45]. It learns
to recursively integrate semantic decisions over time. Figure13.5b shows an example
result.
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Fig. 13.4 Semantic segmentation: a Random forest labeling is refined by a superpixel-CRF [41];
b CNN segmentation based on semantic and geometric features [26].

Fig. 13.5 Recurrent temporal integration for semantic segmentation: aNeural Abstraction Pyramid
(NAP) architecture [7]; b NAP-based semantic segmentation [45]

13.3.2 Object Perception

When attempting manipulation, our robot captures the scene geometry and appear-
ance with its RGB-D camera. In many situations, objects are located well separated
on horizontal support surfaces, such as tables, shelves, or the floor. To ensure good
visibility, the camera is placed at an appropriate height above and distance from the
surface, pointing downwards with an angle of approximately 45◦. To this end, the
robot aligns itself with tables or shelves using the rollable laser scanner in its hip in
its vertical scan plane position. Figure13.6a shows a scene.

Object Segmentation An initial step for the perception of objects in these simple
scenes is to segment the captured RGB-D images into support planes and objects
on these surfaces. Our plane segmentation algorithm rapidly estimates normals from
the depth images of the RGB-D camera and fits a horizontal plane through the points
with roughly vertical normals by RANSAC [63]. The points above the detected sup-
port plane are grouped to object candidates based on Euclidean distance. All points
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Fig. 13.6 Object perception: a RGB-D view of a tabletop scene. Detected objects are represented
by a fitted red ellipse; b Recognized objects

Fig. 13.7 3D Object detection: a 6D object detection using Hough forest [2]; b Generating object
proposals separately in semantic channels [18]

within a range threshold form a segment that is analyzed separately. In Fig. 13.6a,
the detected segments are shown.

Object Detection and Pose Estimation For the detection and pose estimation
of objects in complex RGB-D scenes, we developed a Hough Forest [17] based
approach [2] that is illustrated in Fig. 13.7a.Decision trees do not only learn to catego-
rize pixels, but also vote for object centers in 3D. Each detected object votes for object
orientations, which yields detection of objects with the full 3D pose. Figure13.7b
illustrates an extension of a saliency-based object discovery method [18], which
groups RGB-D superpixels based on semantic segmentation [26] and detects objects
per class. This improves the generated object proposals.

For categorizing objects, recognizing known instances, and estimating object
pose, we developed an approach that analyzes an objectwhich has been isolated using
table-top segmentation. The RGB-D region of interest is preprocessed by fading out
the background of the RGB image (see Fig. 13.8 top left). The depth measurements
are converted to an RGB image as well by rendering a view from a canonical eleva-
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Fig. 13.8 Object categorization, instance recognition, and pose estimation based on features
extracted by a CNN [52]. Depth is converted to a color image by rendering a canonical view
and encoding distance from the object vertical axis

Fig. 13.9 Object detection based on geometric primitives [43]: a Point cloud captured by Cosero’s
Kinect camera; b Detected cylinders; c Detected objects

tion and encoding distance from the estimated object vertical axis by color, as shown
in Fig. 13.8 bottom left. Both RGB images are presented to a convolutional neural
network, which has been pretrained on the ImageNet data set for categorization of
natural images. This produces semantic higher-layer features, which are concate-
nated and used to recognize object category, object instance, and to estimate the
azimuth viewing angle onto the object using support vector machines and support
vector regression, respectively. This transfer learning approach has been evaluated
on the Washington RGB-D Object data set and improved the state-of-the-art [52].

Primitive-Based Object Detection Objects are not always located on horizontal
support surfaces. For a bin pickingdemonstration,wedeveloped an approach todetect
known objects which are on top of a pile, in an arbitrary pose in transport boxes.
The objects are described by a graph of shape primitives. Figure13.9 illustrates the
object detection process. First, individual primitives, like cylinders of appropriate
diameter are detected using RANSAC. The relations between these are checked. If
they match the graph describing the object model, an object instance is instantiated,
verified and registered to the supporting 3D points. This yields object pose estimates
in 6D. Based on this, mobile bin picking has been demonstrated with Cosero [43].
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Fig. 13.10 Object tracking: a Cosero approaching a watering can; b A multi-view 3D model of
the watering can (MRSMap, upper right) is registered with the current RGB-D frame to estimate its
relative pose T, which is used to approach and grasp it; c Joint object detection and tracking using
a particle filter, despite occlusion

The method has been extended to the detection of object models that combine 2D
and 3D shape primitives [8].

Object Tracking Cosero tracks the pose of known objects using models represented
as multi-resolution surfel maps (MRSMaps, [59]), which we learn from moving an
RGB-D sensor around the object and performing SLAM. Our method estimates the
camera poses by efficiently registering RGB-D key frames. After loop closing and
globallyminimizing the registration error, the RGB-Dmeasurements are represented
in a multiresolution surfel grid, stored as an octree. Each volume element represents
the local shape of its points as well as their color distribution by a Gaussian. Our
MRSMaps also come with an efficient RGB-D registration method which we use for
tracking the pose of objects inRGB-D images.Theobject pose canbe initializedusing
our planar segmentation approach. Figure13.10a,b illustrates the tracking with an
example. To handle difficult situations, like occlusions, we extended this approach
to joint detection and tracking of objects modeled as MRSMaps using a particle
filter [38] (see Fig. 13.10c).

Non-rigidObjectRegistration Tobe able tomanipulate not only knownobjects, but
also objects of the same category that differ in shape and appearance, we extended the
coherent point driftmethod (CPD) [42] to efficiently performdeformable registration
between dense RGB-D point clouds (see Fig. 13.11a). Instead of processing the
dense point clouds of the RGB-D images directly with CPD, we utilize MRSMaps to
perform deformable registration on a compressed measurement representation [58].
The method recovers a smooth displacement field which maps the surface points
between both point clouds. It can be used to establish shape correspondences between
a partial view on an object in a current image and aMRSMap object model. From the
displacement field, the local frame transformation (i.e., 6D rotation and translation)
at a point on the deformed surface can be estimated. By this, we can determine how
poses such as grasps or tool end-effectors change by the deformation between objects
(Fig. 13.11b).



13 Semantic RGB-D Perception for Cognitive Service Robots 295

Fig. 13.11 Object manipulation skill transfer: a An object manipulation skill is described by grasp
poses and motions of the tool tip relative to the affected object; b Once these poses are known for
a new instance of the tool, the skill can be transferred

Fig. 13.12 Mobile manipulation demonstrations: a Picking laundry from the floor; b Cooking an
omelette; c Pushing a chair; d Watering a plant; e Bin picking

13.3.3 Robot Demonstrations at RoboCup Competitions

The developed perceptual components for the robot environment and workspace
objects were the basis for many demonstrations of in RoboCup@Home league com-
petitions [72], the top venue for benchmarking domestic service robots.

Mobile Manipulation Several predefined tests in RoboCup@Home include object
retrieval and placement.We often used open challenges to demonstrate further object
manipulation capabilities. For example, in the RoboCup 2011 Demo Challenge,
Cosero was instructed where to stow different kinds of laundry, picked white laundry
from the floor (Fig. 13.12a), and put it into a basket. In the final round, our robot
demonstrated a cooking task. It moved to a cooking plate to switch it on. For this, we
applied our real-time object tracking method (Sect. 13.3.2) in order to approach the
cooking plate and to estimate the switch grasping pose. Then, Cosero drove to the
location of the dough and grasped it. Back at the cooking plate, it opened the bottle
by unscrewing its lid and poured its contents into the pan (Fig. 13.12b).

In the RoboCup 2012 final, Cosero demonstrated the approaching, bi-manual
grasping, and moving of a chair to a target pose (Fig. 13.12c). It also approached and
grasped a watering can with both hands and watered a plant (Fig. 13.12d). Both were
realized through registration of learned 3D models of the objects (Sect. 13.3.2). The
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Fig. 13.13 Tool use demonstrations: a Grasping sausages with a pair of tongs. b Bottle opening;
c Plant watering skill transfer to unknown watering can

Fig. 13.14 Human-robot interaction and tool use: a Following a guide through a crowd; b Recog-
nizing pointing gestures; c Using a dustpan and a swab; d Using a muddler

robot also demonstrated our bin picking approach, which is based on primitive-based
object detection and pose estimation (Fig. 13.12e).

Tool Use In the RoboCup 2013 Open Challenge, Cosero demonstrated tool-use
skill transfer based on our deformable registration method (Sect. 13.3.2). The jury
chose one of two unknown cans. The watering skill was trained for a third instance
of cans before. Cosero successfully transferred the tool-use skill and executed it
(Fig. 13.13c). In the final, Cosero demonstrated grasping of sausages with a pair
of tongs (Fig. 13.13a). The robot received the tongs through object hand-over from
a team member. It coarsely drove behind the barbecue that was placed on a table
by navigating in the environment map and tracked the 6-DoF pose of the barbecue
using MRSMaps (Sect. 13.3.2) to accurately position itself relative to the barbecue.
It picked one of two raw sausages from a plate next to the barbecue with the tongs
and placed it on the barbecue. While the sausage was grilled, Cosero handed the
tongs back to a human and went to fetch and open a beer. It picked the bottle opener
from a shelf and the beer bottle with its other hand from a table. Then it executed a
bottle opening skill [57] (Fig. 13.13b).

In the RoboCup 2014 final, Cosero grasped a dustpan and a swab in order to clean
some dirt from the floor (Fig. 13.14c). After pouring out the contents of the dustpan
into the dustbin, it placed the tools back on a table and started to make caipirinha.
For this, it used a muddler to muddle lime pieces (Fig. 13.14d).
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Cosero also demonstrated awareness and interaction with humans (Fig. 13.14).
Since the methods for these capabilities mainly use LIDAR tracking and RGB com-
puter vision techniques and are thus out of scope for this chapter, we refer to [62]
for details.

Competition Results We participated in four international RoboCup@Home and
four RoboCup German Open @Home competitions 2011–2014. Our robot systems
performed consistently well in the predefined tests and our open demonstrations con-
vinced the juries which consisted of team leaders, members of the executive commit-
tee, and representatives of the media, science, and industry. Our team NimbRo won
three international competitions 2011–2013 and four German Open competitions
2011–2014 in a row and came in third at RoboCup 2014 in Brazil.

13.4 Kitting-Type Picking in the STAMINA Project

Techniques that were developed for the Cosero system are applicable to amuchwider
range of problems. As a first application, we investigated industrial bin picking in
the STAMINA project [25]. The project targeted shop floor automation, in particular
the automation of kitting tasks, where a robotic system needs to collect objects from
different sources according to a kitting order. The completed kit is then delivered to
the manufacturing line.

13.4.1 System Description

Figure13.15 shows the STAMINA robot during a typical kitting task. The system
consists of a movable base equipped with an industrial arm, carrying a 4-DoF endef-
fector for grasping a wide variety of items. The system carries three ASUSXtion Pro
RGB-D cameras for perceiving the workspace, and a PrimeSense Carmine RGB-D
camera at the wrist for close-range object perception.

Themain difficulty lies in detection andpose estimation of the parts to be collected.
We employ a two-stage work flow for this purpose (see Fig. 13.16). Here, methods
developed for the Cosero system are re-used. In the first stage, a segmentation of the
scene into individual parts is performed, following the RGB-D tabletop segmentation
method described in Sect. 13.3.2.

After identifying a possible target part, the wrist camera is positioned above it
and the part is recognized and its pose is estimated. Here, we employ the RGB-D
registration method described in Sect. 13.3.2. A key advantage is that we can use the
quality of the registration (measured using observation likelihoods for each matched
surfel pair) for judging whether we actually (a) have identified a part of the correct
type and (b) the registration was successful. Figure13.17 shows a typical object
perception process.
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Fig. 13.15 The STAMINA cognitive robot performing an industrial kitting task in the experimental
kitting zone at PSA Peugeot Citroën

Fig. 13.16 Flow diagram of the two-staged perception pipeline

Fig. 13.17 RGB-D registration in a bin picking context: a Detected objects with selected grasp
target and fine registration using wrist-mounted RGB-D camera; b Pick-and-place process with
outside, top, and 3D visualization views
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Table 13.1 Bin picking results. The replanning column gives the number of times replanning of
the arm trajectory was necessary. This condition was detected automatically. Taken from [32]

Task Trials Replanning Success rate Time [s]

5 parts 4 1 4/4 856 ± 105

4 parts 6 3 6/6 723 ± 96

3 parts 3 1 3/3 593 ± 106

2 parts 3 1 3/3 325 ± 16

1 part 14 4 14/14 234 ± 105

13.4.2 Evaluation

The STAMINA system was evaluated in realistic trials performed at PSA Peugeot
Citroën, conducted in a 1,200m2 logistics kitting zone. The tests ranged from isolated
“baseline” tests showcasing the robustness of the perception and motion planning
methods (see Table13.1 for brief results) to larger system-level and integrated tests,
which proved overall robustness to a wide variety of possible situations and failures.
We refer to [32] for full details on the evaluation.

13.5 Cluttered Bin Picking in the Amazon Robotics
Challenge

The Amazon Picking Challenge (APC) 2016 and the subsequent Amazon Robotics
Challenge 2017 were further opportunities to continue development of the so-far
established object perception methods and to test them in realistic situations. The
challenge required participants to pick requested items out of highly cluttered,
unsorted arrangements in narrow shelf bins or crowded shipment totes.

In contrast to the STAMINA application discussed in Sect. 13.4, the highly clut-
tered arrangements of different object require semantic segmentation of the scene
into single objects, as geometry alone is insufficient for separation. Since a vacuum
gripper is used to grasp the objects, requirements on pose estimation can be relaxed,
though, since suitable vacuuming spots can be found on the live RGB-D input.

13.5.1 System Description

Figure13.18 shows an overview of the system at APC 2016. It consists of a Universal
Robots UR10 6-DoF robotic arm equipped with a custom 2-DoF endeffector. The
endeffector consists of a linear joint for reaching into the narrow shelf bins, and a
vacuum suction cup on a rotary joint, which allows to apply suction from above or
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Fig. 13.18 Our system at the Amazon Picking Challenge 2016. Left: Full system including robotic
arm, endeffector, shelf, and red tote. Right: Custom-built endeffector with linear and rotatory joints,
two Intel RealSense SR300 RGB-D cameras, and lighting

(a) RGB frame (b) Upper depth (c) Lower depth (d) Stereo depth (e) Fused result

Fig. 13.19 RGB-D fusion from two sensors. Note the corruption in the left wall in the lower depth
frame, which is corrected in the fused result

from the front. The endeffector carries two Intel RealSense SR300 RGB-D cameras
and illuminates the scene using own LED lighting to stay independent of outside
lighting effects.

The RGB-D streams are interpreted by a separate vision computer. It carries four
NVIDIA Titan X GPUs for on-site retraining of the deep learning models.

13.5.1.1 RGB-D Preprocessing

The decision to include two RGB-D cameras was made because of the difficult
measurement situation inside the shelf bin.We observed that the nature of the sensors
resulted in asymmetric effects, such as corruption of depth measurements on one of
the bin walls (see Fig. 13.19). Depth completion alone (e.g. as presented in Chap.2
did not yield sufficient results, as complete areas were missing. The second camera,
mounted with 180◦ angle with respect to the first camera, had the measurement
problems on the other side and thus can be used to correct for these effects. For
breaking the tie between the two depth sources, an additional depth stream can be
computed using stereo information from the two RGB cameras. For details on the
RGB-D fusion strategy, we refer to [51].

http://dx.doi.org/10.1007/978-3-030-28603-3_2
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Fig. 13.20 Two-stream architecture for RGB-D object detection [51]. Input images in both modal-
ities are processed individually using CNNs φ and ψ . The concatenated feature maps are then used
in the classical Fast R-CNN pipeline using RoI pooling and a classification network

13.5.1.2 Object Perception

For separating the objects in these cluttered situations, we designed an RGB-D object
detection method. We followed up on research begun with the depth colorization
method described in Sect. 13.3.2 and further investigated means of leveraging the
depth modalities in deep-learning settings. For a modern object detection approach
based on Faster R-CNN [47], we benchmarked different methods of incorporating
depth in [51], such as a depth-based region proposal generator, a geometry-based
encoding called HHA (horizontal disparity, height above ground, angle to gravity)
either downsampled and provided to the classifier component, or processed in parallel
to the RGB stream in a two-stream architecture. The best-performing method was
to learn a separate depth feature extractor using a self-supervised approach called
Cross Modal Distillation [21]. Here, the depth CNN is trained to imitate the output
of a pre-trained RGB CNN on RGB-D frames. In this way, expensive annotation
of RGB-D frames can be avoided. The trained depth CNN is then used in parallel
with the pre-trained RGBCNN in a two-stream architecture (see Fig. 13.20).We also
obtained small but consistent gains by combining the object detection results with
the semantic segmentation approach described in Sect. 13.3.1.

13.5.2 Evaluation

The system was evaluated during the Amazon Picking Challenge 2016, where it
performed highly successfully and reached a second place in the Stow competition
(tote → shelf) and third place in the Pick competition (shelf → tote). Our system
actually performed the highest number of correct grasps during the pick competition
(see Table13.2), highlighting the robustness, speed, and precision of the presented
RGB-D perception methods, but dropped three items while moving them, with the
subsequent penalties leading to the third place.
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Table 13.2 Picking run at APC 2016

Bin Item Pick Drop Report Bin Item Pick Drop Report

A Duct tape × × × G Scissors × × ×
B Bunny

book
� � ×b H Plush

bear
� × �

C Squeaky
eggs

� × � I Curtain � × �

D Crayonsa � × � J Tissue
box

� × �

E Coffee � � ×2 K Sippy
cup

� × �

F Hooks � × � L Pencil
cup

� � ×2

Sum 10 3 7

The table shows the individual picks (A-L) executed during the official picking run
aMisrecognized, corrected on second attempt
bIncorrect report, resulting in penalty

Fig. 13.21 Object detection in scenes with cluttered background. The frames are part of a publicly
released RGB-D dataset of 129 frames, captured in a cluttered workshop environment. See http://
centauro-project.eu/data_multimedia/tools_data for details

In addition to the system-level evaluation during the APC 2016, we also evaluated
our methods on in-house datasets. These consists of a 333-frame bin picking dataset,
and a 129-frame RGB-D dataset with tools in front of highly cluttered background,
captured for the CENTAURO disaster response project1 (see Fig. 13.21). Here it
demonstrated highly robust detection with 97% mAP score (see Table13.3). The
combination of the RGB-D object detector with semantic segmentation was also
investigated and yielded small but consistent improvements (see Table13.3). We
refer to [51] for details.

1https://www.centauro-project.eu.

http://centauro-project.eu/data_multimedia/tools_data
http://centauro-project.eu/data_multimedia/tools_data
https://www.centauro-project.eu
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Table 13.3 Object detection results on the APC and CENTAURO tools datasets. Det+Seg F1 is
the semantic segmentation network boosted with object detection results

Dataset Object detection Semantic segmentation

Mean AP F1 Seg F1 Det+Seg F1

APC shelf 0.912 0.798 0.813 0.827

APC tote 0.887 0.779 0.839 0.853

CENTAURO
tools

0.973 0.866 0.805 –

13.6 Conclusion

In this chapter, we described semantic RGB-D perception approaches developed for
our cognitive service robot Cosero, industrial kitting in the STAMINA project, and
cluttered bin picking for the Amazon Picking Challenge 2016.

We developed several object perception methods to implement the variety of
manipulation skills of our robot. We segment scenes at high frame-rate into sup-
port surfaces and objects. In order to align to objects for grasping, we register
RGB-D measurements on the object with a 3D model using multi-resolution sur-
fel maps (MRSMaps). Through deformable registration of MRSMaps, we transfer
object manipulation skills to differently shaped instances of the same object cate-
gory. Tool-use is one of the most complex manipulation skills for humans and robots
in daily life. We implemented several tool-use strategies using our perception and
control methods.

The outstanding results achieved at multiple national and international Robo-
Cup@Home competitions clearly demonstrate the versatility and robustness of the
introducedmethods. The development and benchmarking of the systemgave usmany
insights into the requirements for complex personal service robots in scenarios such
as cleaning the home or assisting the elderly. Challenges like RoboCup@Home show
that a successful system not only consists of valid solutions to isolated problems—the
proper integration of the overall system is equally important.

We also successfully demonstrated applicability of the developed methods for
object detection, semantic segmentation, and RGB-D registration on other systems
and in other domains, such as bin picking and disaster response.

Despite a large number of successful demonstrations, our systems are limited
to short tasks in partially controlled environments. In order to scale towards real
application in domestic service scenarios, we need to address open issues—and
many of these are related to RGB-D perception. Object recognition and handling
that scales to the large variety of objects in our daily homes is still an open research
problem. Significant progress has been made, e.g. through deep learning methods,
but occlusions and material properties like transparency or highly reflective surfaces
make it still challenging to analyze typical household scenes. Similarly, perceiving
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people and understanding their actions in the many situations possible in everyday
environments is a challenge.

One promising approach to address these challenges is transfer learning which
leverages the feature hierarchies from the large RGB data sets to the small robotic
data sets at hand, requiring only few annotated training examples. Another line of
research is to instrument the environment with a multitude of sensors in order to
track all objects continuously with high accuracy [16].
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Chapter 14
RGB-D Sensors and Signal Processing
for Fall Detection

Susanna Spinsante

Abstract Globally, falls are a major public health problem, and an important cause
of morbidity and mortality in the older population. As such, fall detection is one
of the most important application areas within the framework of Ambient-Assisted
Living (AAL) solutions. Studies report that the majority of falls occur at home, as
a person’s living environment is filled with potential hazards, predominantly in the
living room and in the bedroom. In addition, recent studies report that fall kinematics
varies depending on the weight and size of the falling person, and that most people
fall in the evening or during the night. All these features may be captured by RGB-D
sensors properly installed in the environment, and detected by suitable processing
of the signals generated by the sensors themselves. Fall detection based on RGB-D
signal processing has gained momentum in the past years, thanks to the availability
of easy-to-use sensors that are able to provide not only raw RGB-D signals but also
preprocessed data like joints and skeleton spatial coordinates; additionally, depth sig-
nal processing allows to maintain adequate privacy in human monitoring, especially
at the levels deemed acceptable by monitored subjects in their own home premises.
This chapter will first provide an overview of the RGB-D sensors mostly used in
fall detection applications, by discussing their main properties and the modalities by
which they have been used and installed. Then, the most relevant signal processing
approaches aimed at fall detection will be presented and analyzed, together with an
overview of their performances, advantages and limitations, as discussed and pre-
sented in the most relevant and up-to-date literature. The aim of the chapter is to
provide the reader with a basic understanding of what is reasonably expectable, in
terms of detection capability, from RGB-D sensors, applied to fall detection; what
are the main depth signal processing approaches according to the sensor usage, and
what type of information can be extracted from them.
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14.1 Depth Sensing for Real-World Knowledge

Traditional video cameras and imaging sensors, commonly referred to as RGB sen-
sors, provide the user with a two-dimensional (2D) knowledge of the physical world,
thus missing the third dimension, i.e., depth, which is fundamental to capture and
understand the complexity of the objects surrounding each of us in our real-world
experience, see Chaps. 13 and 17. This limitation becomes even more critical when
thinking about some of the recent technological developments that are expected to
disrupt our common habits like autonomous driving and robot-based manufacturing
[19, 27]. Driven by the needs posed by new consumer applications in a variety of
fields, and supported by the ever-increasing availability of computational resources,
even onboard mobile devices, the research, development and commercialization of
imaging technologies able to sense the third dimension have advanced tremendously
in just a few years, thus making it possible to easily find high-resolution and high-
speed sensors at affordable costs. Before the invention of theMicrosoft Kinect sensor,
depth cameras, mainly based on the Time Of Flight (TOF) technique, were exploited
in a restricted set of computer vision domains, due to the high price of such devices,
often joint with poor quality (see Chap. 1). The low-cost but high-resolution depth
and visual (RGB) sensing made available for widespread use with the introduction
of Kinect as an off-the-shelf technology has opened up new opportunities to explore
fundamental problems in computer vision including object and activity recognition,
people tracking, 3D mapping and localization.

Based on the definition provided by Geng in [25], surface imaging deals with
measurement of the (x, y, z) coordinates of points on the surface of an object. Typ-
ically, real-world objects have a nonplanar surface, that has to be described in a
three-dimensional space. For this reason, surface imaging is also known as 3D sur-
face imaging. By the measurement, a map of the depth (or range) coordinate (z) is
obtained, as a function of the position (x, y) in a Cartesian coordinate system. This
process is also known as depth mapping.

Twomain approaches have been traditionally applied in range sensing, namely, tri-
angulation and TOF. The former may be implemented as a passive approach through
the use of stereovision, or as an active one, by resorting to structured light. Stereovi-
sion emulates humans’ vision principle, retrieving depth information by processing
of the same scene from two different points of view. This way, depth is computed
starting from the disparity information of the identical pixels between two images
taken at different positions. Depth is inversely proportional to disparity and depends
on hardware parameters related to the cameras (typically RGB ones) used. As such,
stereovision requires knowledge of the geometry of the cameras that constitute the
entire system, and calibration has to be performed every time the system configu-
ration changes. The active approach for triangulation relies on structured light, in
which cameras project an infrared light pattern onto the scene and estimate the dis-
parity given by the perspective distortion of the pattern, due to the varying object’s
depth [5].

http://dx.doi.org/10.1007/978-3-030-28603-3_13
http://dx.doi.org/10.1007/978-3-030-28603-3_17
http://dx.doi.org/10.1007/978-3-030-28603-3_1
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On the other hand, TOFcameras aswell as LIghtDetectionAndRanging (LIDAR)
scanners measure the time that light emitted by an illumination unit requires to
hit an object surface and travel back to a detector. Different from LIDARs, that
require mechanical components to scan the surrounding environment [26], distance
computation in TOF cameras is performed by integrated circuits, using standard
CMOS or CCD technologies. In fact, the distance is measured indirectly, from the
phase shift of the modulated optical signal emitted by a LED or laser switched on
and off very quickly, reflected by an object and captured back by the camera lens.
The correlation between the transmitted and the received signals is calculated, and
the result represents the delay associated with the round-trip path of the emitted and
reflected signal. By repeating the computation for each pixel, its depth is obtained
from the delay value. Finally, the whole depth frame is generated.

Most of the mass-market RGB-D cameras rely on structured light or TOF ap-
proaches [41]. These RGB-D cameras often suffer from very specific noise char-
acteristics and sometimes very challenging data distortions, which, in most cases,
have to be taken into account with respect to the requirements of the application
one wants to address, and tackled by properly designed processing algorithms. Ad-
ditionally, structured light based RGB-D cameras, such as the first version of Kinect
(V1), and TOF cameras like the second one (V2) feature several functional differ-
ences, related to the camera’s resilience against background light, which is critical
for outdoor applications, the quality of depth data, and the robustness in dealing with
semi-transparent media and the so-called multi-path effect, resulting from indirect
paths taken by the active light [49]. Finally, structured light based solutions require
a baseline between the illumination unit and the sensor, which is not required by
TOF devices. Stereo-based systems are typically much cheaper and smaller than
other solutions, as they allow to obtain 3D information of the scene just from a cou-
ple of RGB cameras. However, the easiness of adoption comes at the expense of a
quite demanding preprocessing step finalized to solve the so-called correspondence
problem. Additionally, to improve the accuracy in the disparity estimation process,
a stereo system needs a minimum amount of baseline length, which directly affects
its physical size. TOF devices exhibit a lower software complexity, but require fast
hardware, such as the pulse width modulation (PWM) drivers used for waveforms
generation, which increases the cost of the final system. Nevertheless, the depth res-
olution provided by TOF devices is better than the others, and can go down to a few
millimeters [28]. Another benefit is the possibility of use a TOF camera in outdoor
scenarios, which is not directly possible for structured-light systems like the Kinect
V1 sensor, because solar light strongly affects infrared cameras [24]. In such cases,
suitable countermeasures should be taken.

For a long time, the detection and identification of objects and humans in the
wild, i.e., in real-world settings, have been hot research issues and complex tasks to
tackle. In fact, despite the great amount of algorithms developed within the computer
vision realm to process video and image signals and extract the information of inter-
est, RGB-based object segmentation and tracking algorithms are not always reliable
in uncontrolled environments, where clutter or sudden changes in the illumination
conditions may occur frequently. By effectively combining depth and RGB data,
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light-invariant object segmentation based on depth information is obtained (at least
at medium–low ambient light levels) as well as surface texture invariance. Object
tracking and identification accuracy can be increased exploiting the depth, motion
and appearance information of an object [50]. Last but not least, the inherent privacy-
preserving capability of depth cameras increases acceptance by the monitored sub-
jects, thus allowing to take computer vision out of the lab, into real environments
(e.g., people’s homes) [47]. Human Action Recognition (HAR) is at the founda-
tion of many different applications related to behavioral analysis, surveillance, and
safety, and it has been a very active research area in the past years. The release of
inexpensive RGB-D sensors fostered researchers working in this field: indoor ap-
plications for Active and Assisted Living (AAL), which do not require very high
depth resolution and precision, have been easily implemented using both structured
light sensors, as Kinect V1, and TOF devices, like Kinect V2, in particular. Such de-
vices represented a very good compromise between cost, performance, and usability,
and allowed implementation of unobtrusive and privacy-preserving solutions, with
respect to classic video-based analysis.

As of today, manufacturing of the Kinect sensor and adapter has been discontin-
ued, but the Kinect technology continues to live on in other commercial products.
Above all, the wealth of depth-based algorithms and processing approaches whose
development was incredibly pushed by the availability of the Kinect technology,
remains and continues to be effectively applicable, thanks to new devices that have
appeared in the market to replace the previous ones.

14.2 Consumer RGB-D Sensors

In November 2010, Microsoft released the Kinect RGB-D sensor as a new Natural
User Interface (NUI) for its XBOX 360 gaming platform. The Kinect, like other
RGB-D sensors, provided color information as well as the estimated depth for each
pixel in a captured frame, being an order of magnitude cheaper than similar sensors
that had existed before it.

The availability of Kinect as a low-cost tool that could be easily interfaced to a
computer, and whose signals could bemanipulated by using programming languages
common within the academic research practice, like MATLAB or Visual Studio,
made it possible to kickstart an incredible amount of research projects and activities
related not only to fall detection, but also to themore general domain of human action
recognition.

Kinect has been discontinued, but alternative sensors appear in the market, a
couple of which are briefly outlined in the following sections.
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14.2.1 Microsoft® Kinect™ Sensor

The per-pixel depth sensing technology based on the structured light approach [25]
and used in Kinect V1 was developed by PrimeSense and covered as United States
Patent US7433024 [20]. For this reason, the depth measurement performed by the
sensor was not known in detail. The infrared projector onboard the device emitted a
single beam, which was transformed in a pattern of speckles using a transparency,
on which the image of the pattern was impressed. A specific scheme of speckles may
help in the process of image correlation computation: for example, the use of a quasi-
periodic pattern may improve the knowledge of the spatial frequency spectrum. This
way, an infrared speckle pattern was projected by the sensor, then captured by an
integrated infrared camera, and compared part-by-part to reference patterns stored
in the device, previously captured at known depths. The comparison process was
performed through a correlation algorithm between a group of speckles inside the
captured image, and the same group inside the reference image. The sensor then
estimated the per-pixel depth, based on which reference patterns the projected one
matched best. The depth data provided by the infrared sensor was then correlated to a
calibrated RGB camera to obtain an RGB image and the depth value associated with
each pixel of the frame. A popular unified representation of this data is the so-called
point cloud, i.e., a collection of points in the 3D space.

Originally, Kinect was officially launched as a camera-based controller for games.
Almost immediately, hackers and independent developers started to create open-
source drivers for this sensor, to use it in different ways and applications. Kinect V1
and Kinect V2, two versions of the sensor, succeeded over the years, with the second
one based on the TOF approach. Table14.1 reports the main characteristics of both,
whereas Fig. 14.1 shows the Kinect V2 device.

Table 14.1 Main features of Kinect V1 and Kinect V2 (manufacturer’s specification)

Feature Kinect v1 Kinect v2

Depth sensing technology Structured light Time of flight

RGB image resolution 640×480 @15/30 fps 1920×1080 @30 fps

1280×960 @12 fps (15 fps with low light)

IR image resolution 640×480 @30 fps 512×424 @30 fps

Depth sensing resolution 640×480 @30 fps 512×424 @30 fps

320×240 @30 fps

80×60 @30 fps

Depth sensing range [0.4, 3] m (near mode) [0.5, 4.5] m
[0.8, 4] m (normal mode)

Field of view 57◦ horizontal 70◦ horizontal

43◦ vertical 60◦ vertical

Skeleton tracking Skeleton with 20 joints Skeleton with 25 joints

Up to 2 subjects Up to 6 subjects

Audio Multi-array microphone Multi-array microphone
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Fig. 14.1 The Kinect V2
device and its onboard
sensors

While it is quite easy-to-use depth or RGB data from a Kinect sensor apart,
the infrared and RGB cameras onboard the device have different fields of view
and different reference systems with different origins, so a specific area in a depth
frame does not correspond to the same area inside the corresponding RGB frame.
Coordinates mapping between video and depth frames has to be implemented if the
two types of data have to be used jointly in a given application. As a consequence,
it is necessary to calibrate both the infrared (IR) and RGB cameras, in order to use
their information jointly. The following parameters can be computed by a calibration
procedure:

• intrinsic parameters: coefficients that allowconversion between image coordinates
and 3D coordinates, and depend on the camera lens;

• distortion coefficients: parameters that depend on lens distortion;
• extrinsic parameters: coefficients required to convert the systems of coordinates
of different cameras, and depend on the mutual position of the cameras.

Some libraries available at those time, like the ones included in the SDK by
Microsoft and OpenNI, provided built-in functionalities but were not very accurate.
As a consequence, in [14], the built-in methods mentioned above are compared
against a calibration-based solution based on the open-source RGBDemo toolkit,
and on the approach presented by Zhang in [56]. Starting from a pixel belonging
to the depth frame, to obtain the corresponding pixel inside the RGB frame the
following steps need to be implemented:

• transformation between the depth frame coordinate space and the 3D depth camera
coordinate space, based on the intrinsic parameters of the depth camera;

• conversion between the 3Ddepth camera coordinate space and the 3DRGBcamera
coordinate space based on the extrinsic parameters of both the cameras;

• conversion between the 3D RGB camera coordinate space and the 2D RGB image
coordinate space, based on the intrinsic parameters of the RGB camera;

• removal of the lens distortion exploiting the distortion coefficients.

The mathematical relations between the different coordinate systems is defined
by the pinhole camera model. The different coordinate systems are the depth camera
coordinate system [Xd Yd Zd ]T , the depth frame coordinate system [xd yd 1]T , the
RGB camera coordinate system

[
Xrgb Yrgb Zrgb

]T
, and the RGB frame coordinate

system
[
xrgb yrgb 1

]T
. The relationship between the camera coordinate system, and
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the image one is defined by [29] as

⎡

⎣
xd
yd
1

⎤

⎦ = Kd

⎡

⎣
Xd

Yd
Zd

⎤

⎦ (14.1)

where Kd is the matrix that contains the intrinsic parameters of the IR camera, and:

Kd =
⎡

⎣
fx 0 cx
0 fy cy
0 0 1

⎤

⎦ (14.2)

In the above equation, f is the focal length, and fx = ax f , fy = ay f are used to
differentiate the focal length along both the directions. The parameters cx and cy take
into account the translation between the coordinates [Xd Yd Zd ]T and [xd yd 1]T . The
conversion between the depth camera coordinates [Xd Yd Zd ]T and the RGB camera
coordinates

[
Xrgb Yrgb Zrgb

]T
needs a rotation matrix R, and a translation vector

t = [t1 t2 t3]T . Together, they define the mutual positions of both the systems:

⎡

⎣
Xrgb

Yrgb
Zrgb

⎤

⎦ = R

⎡

⎣
Xd

Yd
Zd

⎤

⎦ +
⎡

⎣
t1
t2
t3

⎤

⎦ (14.3)

Finally, the coordinates in the RGB frame, can be retrieved based on Eq. (14.1), by
using the intrinsic parameters of the RGB camera:

⎡

⎣
xrgb
yrgb
1

⎤

⎦ = Krgb

⎡

⎣
Xrgb

Yrgb
Zrgb

⎤

⎦ (14.4)

The pixel coordinates
[
xrgb yrgb

]T
inside the RGB frame correspond to the pixel

[xd yd ]T inside the depth frame.
The image distortion introduced by the lenses can be removed by exploiting

the distortion coefficients, as described in [30]. Although specific distortion models
have been proposed for the depth camera of the Kinect sensor, the RGB distortion
model can be applied to the depth frame too. The official Microsoft SDK and the
OpenNI SDK provided methods that, taking as an input the coordinates of a pixel
in the depth frame, were able to output the corresponding coordinates of the pixel
in the RGB frame that corresponded to the same 3D point. These solutions did not
require any calibration procedure and were very easy to use, but not so accurate.
The RGBDemo tool required the calibration parameters of the device and provided
solutions to compute them, based on some OpenCV primitives.

The approach detailed above follows one of the RGBDemo tool, but does not
require any additional library, so it can be integrated into different solutions without
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dependencies. The intrinsic, extrinsic and distortion coefficients used as calibration
parameters are evaluated with the same tool provided by RGBDemo, because each
Kinect device has its own lenses, and its own intrinsic/extrinsic parameters. The good
news is that they do not depend on the position or setup configuration, therefore the
calibration step needs to be performed just once.

14.2.2 Intel® RealSense™ Depth Cameras

In 2015, Intel announced a family of stereoscopic and highly portable consumer
RGB-D sensors, that included subpixel disparity accuracy, assisted illumination, and
were able to operate well even in outdoor settings. Keselman et al. in [34] provided a
comprehensive overview of these imaging systems called Intel RealSense cameras.
The general relationship between disparity d and depth z is described by

z = f · B
d

(14.5)

where the focal length of the imaging sensor f is in pixels, while the baseline be-
tween the camera pair B is in the desired depth units (typically m or mm). Errors in
the disparity space are usually constant for a stereo system, and due to imaging prop-
erties and quality of the matching algorithm. As the active texture projector available
on the Intel RealSense modules generates a texture which makes image matching
unambiguous, the disparity errors are strongly reduced.Devices belonging to the Intel
R200 family share similar (or identical) images, projectors, and imaging processor,
thus providing very similar performance in terms of depth estimation accuracy. Each
unit is individually calibrated in the factory, down to a subpixel-accurate camera
model for all the three lenses on the board. Undistortion and rectification are done in
hardware for the left-right pair of imagers, and performed on the host for the color
camera.

Figure14.2 shows a RealSense device belonging to the R200 family, which ob-
tains higher accuracy results in passive, well-illuminated conditions. The minimum
distance the R200 can detect is a function of its fixed disparity search range. This is
a hard limit in real-world space, of around half a meter at 480×360 resolution. At
lower resolutions, the minimum distance moves closer to the camera, as the fixed

Fig. 14.2 The RealSense
R200 sensor by Intel (from
https://www.intel.it/)

https://www.intel.it/


14 RGB-D Sensors and Signal Processing for Fall Detection 317

range covers a larger fraction of the field of view. For example, it is roughly one third
of a meter at 320×240.

The R400 family is a follow up of the R200 one, featuring basic improvements
in the stereoscopic matching algorithm, that has been expanded to include various
new techniques. The correlation cost function has been expanded too, integrating
other matchingmeasures beyond the simple Census correlation available in the R200
series.Optimizations inASICdesign allow theRS400 family to exhibit a lower power
consumption than the R200, when running on the same input image resolutions.

14.2.3 Orbbec® Depth Cameras

In 2017, a new depth sensor was launched in the market, called camera-computer
Orbbec Persee (http://orbbec3d.com/product-astra/). The innovative feature of this
device is the incorporated ARM processor aimed at replacing the traditional con-
figuration based on the use of a laptop or PC, connected by cable to the sensor.
Additionally, the all-in-one camera-computer is shipped at a quite affordable cost,
compared to Kinect or RealSense devices.

Similar to Kinect, the Orbbec device includes an RGB camera, a depth camera,
an IR projector, and twomicrophones. Several SDKs are compatible with the device,
for software development. Among them is the Astra SDK, supported by the same
company that manufactures the sensor, and the OpenNI framework for 3D natural
interaction sensors. Table14.2 summarizes the main technical features of the Persee
camera. From the samemanufacturer, other devices are also available, like theOrbbec
Astra S, with a depth range of [0.4, 2] m, and the Astra Mini, a “naked” version of
the sensor with no enclosure featuring a very small form factor. They are all shown
in Fig. 14.3.

Coroiu et al. in [15] show that it is possible to safely exchange the Kinect sensor
with the Orbbec sensor. In some conditions, it is even possible to mix the training
and testing data generated by the two different devices. According to the authors’
experiments over 16 classifiers used in pose recognition algorithms, the choice of the
sensor does not affect the accuracy of the process. However, for other 7 classifiers,

Table 14.2 Main features of the Orbbec Persee camera (manufacturer’s specification)

Feature Orbbec persee

Depth sensing technology Structured light

RGB image resolution 1280×720 @30 fps

Depth sensing resolution 640×480 @30 fps

Depth sensing range [0.6, 8.0] m (optimal [0.6, 5.0] m)

Field of view 60◦ horizontal, 49.5◦ vertical (73◦ diagonal)

Audio 2 microphones

http://orbbec3d.com/product-astra/
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Fig. 14.3 The Orbbec devices: a Persee camera-computer, b Astra S, and c Astra mini

mixing the data generated from the two sensors resulted in a major drop in accuracy.
From these outcomes, it is possible to say that the even if the sensors are equivalent
from the point of view of their performances in-depth acquisition, mixing the data
generated from them can result in a loss of accuracy, in some cases. While it is
not clear what is the physical resolution of the depth sensor of the Persee camera-
computer, the camera can produce a point cloudwith a resolution of up to 1280×1024
at 5 Hz. By limiting the requested resolution to 640×480, the frame rate increases
up to 30 Hz, as reported in Table14.2.

14.2.4 Depth Measurement Accuracy

Since its appearance in the market, the Kinect sensor raised a great interest among
researchers, for the possibility to exploit such a low cost and easy-to-use tool in even
complex applications, like contactlessmeasurement systems based on the availability
of the depth information. In mapping and navigation, that are typical applications
in the robotic domain, a prior knowledge of the depth error estimation is critical.
Even in fall detection, where distance measurements are collected to understand the
relative position of the subject’s center of mass with respect to the floor, the depth
measurement accuracy may affect the reliability of the processing algorithms used
to detect and classify a fall event.

As already mentioned, Kinect V1 adopted a structured-light method, projecting
patterns of many stripes at once, for the acquisition of a multitude of samples simul-
taneously. In Kinect V2, the better quality TOF technology with active sensors was
used, to measure the distance of a surface by calculating the round-trip time of an
emitted pulse of light.

According to He et al. [28], the errors that may occur in TOF depth measurements
can be of two types: systematic and non-systematic. Systematic errors are caused
by the intrinsic properties and the imaging conditions of the camera system; they
can be identified and corrected in the calibration process. Non-systematic errors are
caused by unpredictable features of the environment [7] and by imperfections of the
sensor. Non-systematic errors vary randomly, and it is difficult to determine a general
mathematical model for describing their exact behavior. Theymight not be corrected,
but an upper bound can be estimated in specific, restricted ambient conditions. When
the environment does not substantially change, estimated error bounds obtained with
significant statistics can be used with a great probability of success.
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Lachat et al. [37] analyzed photometric and depth data, to determine the depth
error considering the average value of a window of 10×10 central pixels of the depth
image of a wall. The variation between the real distance of the sensor to the wall
(measured by tachometry) and the values of the depth maps were assumed as the
sensor error. Yang et al. in [53] evaluated the Kinect V2’s depth accuracy, and also
proposed a method to improve it, by applying the trilateration principle and using
multiple devices. According to the results of this work, where the depth accuracy was
assessed using a planar surface and measuring distances with an AGPtek Handheld
Digital Laser Point Distance Meter (measuring range: 40m, accuracy: ±2mm, laser
class: class II, laser type: 635nm), the accuracy error distribution of Kinect V2
satisfies an elliptical cone with 60-degree angle in vertical direction and 70-degree
angle in the horizontal direction. As Kinect V2 is not able to measure the depth
within a range of 0.5m, the resolution in such a range is set to 0. The mean depth
resolution and max resolution increase with distance, so a coarser depth image is
generated when the range at which the sensor is used increases; a larger tilt angle
leads to a lower depth resolution and a larger standard deviation; when the distance
is larger than 2m, the max resolution and standard deviation increase faster. More
details can be found in [53].

In [10], the errors computed by capturing images of a checkerboard at several
distances from the RGB-D sensor under test, are the basis for generating a paramet-
ric model of polynomial or exponential type, representing the Root Mean Square
(RMS) depth error throughout the sensor’s operating range. Using curve fittings
methods, an equation is obtained that generalizes the RMS error as a function of the
distance between the sensor and the checkerboard pattern, without the need to model
geometrically the sensor’s data capture method, as it was done in many previous
works.

A quantitative comparison of calibration methods for RGB-D sensors using
different technologies is presented in [51]. Three calibration algorithms have been
compared by applying their results to three different RGB-D sensors. The obtained
parameters for each camera have been tested in different situations, and applied in
3D reconstruction of objects, which is a quite demanding application. In general,
consumer RGB-D sensors exhibit acceptable accuracy for many applications, but in
some cases, they work at the limit of their sensitivity, near to the minimum feature
size that can be perceived. In these cases, calibration processes are critical in order to
increase the sensor’s accuracy and enable it to meet the requirements of such kinds
of applications.

14.3 Processing of RGB-D Signals for Fall Detection

Fall detection is a widely investigated field of research, in which many different
solutions have been proposed over the years, by resorting to a wide range of different
technologies. In recent times, the additional challenge of fall prevention has gained
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interest, with the aim of designing solutions that can help to prevent and hopefully
to avoid falls, and not only automatically detect them.

In the literature, the first approaches to fall detection tried to use wearable devices.
In [8], tri-axial accelerometers are placed on the trunk and the thigh of 10 volunteers
that perform Activities of Daily Living (ADL) and simulate falls. Kangas et al. [31]
used a tri-axial accelerometer attached to belt at the waist, involving elderly people in
a test campaign to performADLs. Alternative research approaches used cameras as a
source of information to detect risky activities [2, 4, 18, 48]. Compared to wearable-
based solutions, the camera approach overcomes the problem of invasiveness of the
sensing devices, but at the same time it suffers from ambient illumination variations
and introduces issues related to the limited covered area.

The availability of cheap depth sensors enabled an improvement of the robustness
in camera-based approaches for fall detection solutions. In particular, the Kinect
sensor has been used in different implementations [23, 43, 44, 46].

14.3.1 The Importance of Fall Detection

A fall is defined by theWorld Health Organization (WHO) as an event, which results
in a person coming to rest inadvertently on the ground or floor or other lower level.
This problem affects particularly the aged population: approximately 28–35% of
people aged 65 and over fall each year, increasing to 32–42% of those over 70 years
old.1 These numbers are confirmed in developed countries, like the EU28 group,
where approximately 100,000 older people die from consequences of a fall each
year. Both intrinsic (older age, neurodegenerative disorders, Parkinson’s disease,
impairment in muscle strength, balance, and vision) and extrinsic factors (effects
of medications, loose carpets, slippery floors, poor lighting, clutter and obstacles
on stairways) influence the occurrence of a fall event [6]. Even the fear of falling
represents another traumatic consequence for elderly, because it can reduce their
autonomy. If the intrinsic factors can be reduced, the extrinsic ones are more difficult
to control and avoid.

Besides the direct consequences correlated to a fall (like superficial cuts, broken or
fractured bones, and abrasions or tissue damage), the so-called long-life, defined as
involuntarily remaining on the ground for an hour or more following a fall, represents
a serious risk for the health. As stated in [8], half of elderly people who experience
a long-life die within 6 months. Taking into account all these aspects, reliable and
secure systems for automatic fall detection and notification (like those exploiting
inertial sensors, infrared, vibration, acoustic, and magnetic sensors, video cameras,
RGB-D, and radar sensors) can provide a valuable support to alleviate the impact
of falls on elderly’s quality of life, and are strongly recommended. They should
ensure an adequate robustness against false alarms, being not invasive at the same
time. The proportion of elderly people is increasing worldwide, and many of them

1https://www.who.int/ageing/projects/falls_prevention_older_age/en/.

https://www.who.int/ageing/projects/falls_prevention_older_age/en/
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prefer living at home rather than in nursing homes. For this reason, a wide range of
technology-based applications have been developed to assist the elderly in their own
premises.

Within the domain of non-wearable approaches to fall detection and, in a broader
sense, homemonitoring, proposals adopting depth cameras (RGB-D sensors) gained
interest in recent years, as they enable event detection without infringing the moni-
tored subject’s privacy. However, RGB-D sensors suffer from the limited detection
range. Additionally, depth sensors using the structured light approach (like the re-
cent Orbbec Astra Mini device2) are prone to light changing conditions and possible
destructive interference, in multiple sensors configuration [42]. However, this last
limitation can be overcome resorting to TOF sensors, like Kinect V2.

Reliable monitoring systems can be beneficial not only to tackle fall detection
issues, but also to comprehensively evaluate the pattern of life of an individual.
Irregularities in the pattern of life of a monitored subject can be used for early
detection of deteriorating health conditions (e.g., initial symptoms of dementia), and
can even provide the opportunity for timely and more effective treatment [16, 21].

14.3.2 Approaches to Fall Detection Based on RGB-D
Signals

Fall detection approaches based on computer vision have the advantage of being
less intrusive than those exploiting wearable sensors, even if capturing videos or
images may be perceived as a privacy infringement by the monitored subject. In
recent years,many researchers focused on designing fall detection systems exploiting
depth image information, to both improve the detection accuracy and keep a higher
level of preserved privacy. In fact, the availability of depth information allows to
implement simpler identification procedures to detect human subjects. Additionally,
the advantages of this technology, with respect to classical video-based ones, are: the
reduced susceptibility to variations in light intensity; the provision of 3D information
by a single camera (while a stereoscopic system is necessary in the RGB domain to
achieve the same goal); better privacy retention, as it is far more difficult than with
videos to recognize the facial details of the people captured by the depth camera.

In fall detection systems based on the use of depth sensors, two main configura-
tions have been investigated: the one adopting the sensor in front or almost-front view,
and the one in which the sensor is installed on the ceiling, and top-view depth frames
are acquired and processed by the system. The most relevant difference between the
above-mentioned configurations is that the latter cannot rely on the skeleton joints
coordinates that are usually available, automatically or through proper elaboration,
when the depth sensor is used in front view. As a consequence, in the top-view con-
figuration, additional processing steps need to be performed on the raw depth data

2https://orbbec3d.com/astra-mini/.

https://orbbec3d.com/astra-mini/
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provided by the sensor, to detect and segment a human subject’s blob over which fall
detection or action recognition is then carried out.

14.3.2.1 Front-View Approaches

Yun et al. in [55] propose a system to analyze pose and motion dynamics, which is
focused on measuring the intensity and temporal variation of pose change and pose
motion in single camera views, instead of relying on bounding boxes. Since it is
a broadly accepted intuition that a falling person usually undergoes large physical
movement and displacement in a short-time interval, features allowing for a more
accurate detection could be obtained by studying the intensity and temporal varia-
tions of pose change and body movement. Among the measures that can be used to
characterize pose andmotion dynamics, centroid velocity, head-to-centroid distance,
histogram of oriented gradients, and optical flow are used, thus studying the statistics
of the change or difference between pose andmotion descriptors. This approach aims
for a simple and effective solution avoiding the need to combine multiple cameras.
By the proposed approach, the authors show how to characterize pose and motion
dynamics, based on the aforementioned measures; how to extract compact features
based on the mean and variance of the pose and motion dynamics; and finally how
to detect a human by combining depth information and background mixture models.
The proposed fall detection scheme obtains a high detection rate along with a low
false positive rate when experimented on a dataset including 1008 RGB videos and
1008 depth videos captured in front view, 50% of which, approximately, contain
human falls and the remaining ones contain lying down activities.

In [35], a features-fusion approach is shown to be effective in obtaining high detec-
tion ratewith small false alarms, in experiments on anRGB-Dvideo dataset, captured
in front view. In the proposed scheme, foreground human detection is performed by
differencing RGB frames, then Speeded-Up Robust Features (SURF) keypoints are
used to mark the blob boundary, thus identifying the target bounding box. Local
shape and motion features are extracted from target contours, instead of structural
features from rigid bounding boxes. Histogram of Oriented Gradients (HOG) and
Histogram of Oriented Optical Flow (HOOF)-based features are then computed and
used to encode global shape and motion. The main contribution of this work consists
of forming contours of target persons in depth images based on morphological skele-
ton; extracting local shape andmotion features from target contours; encoding global
shape and motion in HOG and HOOF features from RGB images, and combining
various shape and motion features for enhanced fall detection.

Panahi et al. in [45] select two models to be used for fall detection. The former
one, that relies on previous works such as [54], only considers abnormalities asso-
ciated with the subject detected to lie on the floor, neglecting the speed of falling.
This is based on the idea that an elderly tends to use a bed or a sofa to rest, due
to myasthenia and problems in sitting and standing, and the falling of an elderly is
not necessarily realized at high speed. In the second model, similar to [36], slowly
lying down on the ground is recognized as a normal activity, and retaining time in
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an abnormal pose is considered, to take a final decision. A silhouette of fitted cubes
using 3D momentum, as well as joint tracking, are exploited for feature extraction.
The proposedmethods are tested over a database including 30 videos of fall positions
along with 40 videos captured from different routine activities such as sitting, bend-
ing, grabbing objects from under table, performed by five different persons. The use
of the subject’s centroid distance from the floor efficiently contributes to improving
the results. This research outperforms similar works where color images or devices
like accelerometers are used, attaining 100% and 97.5% sensitivity and specificity,
respectively.

In [22], the joint use of an RGB-D camera-based system and wearable devices
is investigated, to check the effectiveness of a data fusion approach to tackling fall
detection, mainly addressing the associate synchronization issues. The datasets cre-
ated in a lab settings to test and validate the proposed algorithm are available too
[12, 13].

The work by Abobakr et al. [1] proposes an end-to-end deep learning architecture
composed of convolutional and recurrent neural networks to detect fall events from
front-view depth frames. The deep convolutional network (ConvNet) analyses the
human body and extracts visual features from the input frames. Bymodeling complex
temporal dependencies between subsequent frame features, using Long-Short-Term
Memory (LSTM) recurrent neural networks, fall events are detected. Both models
are combined and jointly trained in an end-to-end ConvLSTM architecture. This
way the model learns visual representations and complex temporal dynamics of fall
motions simultaneously.

Fall detection solutions based on processingRGB-D signals captured from sensors
in front view may suffer from occlusions and other environmental factors (such as
passing subjects or pets) that can prevent from a correct identification of falls. For
these reasons, alternative approaches based on the use of depth sensors mounted on
the ceiling have been considered. Such a placement of the sensor has advantages and
can lead to simplification of the algorithms devoted to distinguishing the accidental
falls from ADLs.

14.3.2.2 Top-View Approaches

In 2014, the work by Kepski et al. [33] demonstrated how to achieve a reliable
fall detection with a low computational cost and a very low level of false positive
alarms, by exploiting the joint use of a body-worn tri-axial accelerometer, and a
ceiling-mounted RGB-D camera. The former was used to detect a potential fall by
identifying the impact shock. The generated fall hypothesis was then verified using
the distance to the ground of the topmost points of the subject’s blob captured by the
top-view depth frames. This sensor-fusion approach allowed the authors to ignore a
lot of false positive alarms, which would be generated by the use of the accelerometer
alone.

Many other approaches aimed at fall detection and based on the fusion of RGB-
D and other sensor types followed, as extensively reported in [11], where systems
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based on radar and RGB-D sensors are reviewed. Both radar and RGB-D sensors
enable contactless and nonintrusive monitoring, which is an advantage for practi-
cal deployment and users’ acceptance and compliance, compared with other sensor
technologies like video cameras or wearables.

In Chap.18, the use of depth sensors alone, in top-view configuration, is thor-
oughly addressed, to showhow this specificmodalitymay achieve high performances
even in crowded environments, byminimizing occlusions and being themost privacy-
compliant approach at the same time. As presented in the same chapter, the first step
in people detection and tracking from top-view captured depth frames is the seg-
mentation, to retrieve the monitored subject’s silhouette [38]. To this aim, several
methods can be used, ranging from classical handcraft features based approaches, to
deep learning techniques [39, 40].

In [32], the depth images from a ceiling-mounted Kinect camera are processed.
Human silhouettes are obtained after background subtraction, and shape-based fea-
tures are extracted. A binary Support Vector Machine (SVM) classifier fed with the
obtained features is used to classify the fall events from non-fall events. The method
proposed by the authors, tested on a publicly available dataset [36], classifies falls
from other actions with an accuracy of 93.04%. In the dataset, 10 videos over 1000
depth frames containing falls and other actions, like standing, walking and sudden
falls, are considered. A total of 782 non-fall sequences and 422 fall, and a fixed
background sequence, are used in the simulation. Two classes of fall and non-fall
frames categories are labeled manually; half of the sequences are used for training
and other half for testing. The method works offline, on previously captured depth
sequences of predetermined length.

The approach proposed by Gasparrini et al. in [23] relies exclusively on the use of
the Kinect depth sensor, in a top-view configuration, and on low-complexity depth
frame processing, being aimed at a real-time implementation to be effectively used
out of lab settings. Four main steps maybe identified, namely: preprocessing and
segmentation, object distinguishing algorithm, identification of human subject, and
people tracking and fall detection. Figure14.4 provides a graphic summary of the
main steps included in the original algorithm, the details of which can be found in
[23].

All the elements captured in the depth scene are recognized by means of an ad
hoc segmentation algorithm, which analyzes the raw depth data directly provided by
the sensor. The system extracts the elements, and implements a solution to classify
all the blobs in the scene. Anthropometric relationships and features are exploited to
recognize one or more human subjects among the blobs. Once a person is detected,
tracking algorithm follows the silhouette between different frames. The use of a
reference depth frame, containing the static surrounding background of the scene,
allows to extract a human subject even during interaction with other objects, such
as chairs or desks. In addition, the problem of blob fusion is taken into account and
efficiently solved through an inter-frame processing algorithm. A fall is identified
when the distance between the depth sensor and the blob centroid associated with
the person becomes comparable with the floor distance. This implies that in some
situations, where the blob is on the ground but its central point is not sufficiently

http://dx.doi.org/10.1007/978-3-030-28603-3_18
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Fig. 14.4 Diagram summarizing the main steps of the algorithm proposed in [23]

close to the floor, the fall is not detected. These conditions may occur in cases of
falls on the knees, or when the person falls but ends sitting on the ground, and the
central point of the blob is dislocated within the shoulders or in the head area.

Experimental tests showed the effectiveness of the proposed solution, even in
complex scenarios. A MATLAB implementation of the algorithm, working offline,
was tested over a dataset acquired in a laboratory setting. The data collection protocol
took into account the sensor setup (ceiling-mounted in top-view configuration), and
the expected performances, summarized as follows:

• ability to detect falls in which the person ends lying on the ground;
• ability to detect falls in which the person ends sitting on the ground;
• ability to detect falls in which the person is lying on the ground on the knees,
possibly interacting with objects present in the environment while falling;

• ability to manage the recovery of the person, that is to differentiate a fall in which
the subject remains on the ground, from one in which the person is able to get up
after the fall.

The data acquisition protocol included 32 types of falls, and 8 ADLs that can be
confused with a fall, like picking up objects from the ground, bending, squatting, sit-
ting down on a chair or sofa. These actions were performed by 20 subjects (5 females,
15males) of age in 21–55, thus resulting in 800 sequences of depth frames (320×240
@ 30 fps), collected with the associated sequences of RGB frames (640×480 @ 30
fps) used as ground truth to evaluate the performance of the algorithm.

Following the offline and prototype implementation in MATLAB, a C++ version
of the proposed algorithm was implemented and tested for real-time execution, on
a desktop PC featuring Windows 7 O.S., Intel i5 processor, and 4GB RAM. The
algorithm is natively adaptable to several depth sensors, once a 320×240 resolution
and a30 fps frame rate are set, as it only requires rawdepthdata as input.Anembedded
real-time implementation was also realized on a development platform, featuring
Ubuntu Linaro 12.11 O.S., ARM Cortex-A9 Quad Core architecture processor, and
2GB RAM. In this case, the frame rate supported by the board was slightly lower
than 30 fps, but the system still worked properly.
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14.3.3 A Sample Real-Time Implementation

The algorithm designed in [23] and briefly discussed in the previous section has been
further tested in a lab setting, and finally translated into a real-time software, ready to
be used in pilots involving experiments in real settings. The original MATLAB ver-
sion was converted into a Python one, which required some changes in the functional
workflow.

The basic physical unit that needs to be installed is composed of a commer-
cial depth sensor (a Kinect V1 device in the project herein discussed), and a mini-
computer interfacing the sensor over a USB connection, running the real-time fall
detection algorithm, and connected to the home Wi-Fi network. Then, based on the
total area of the apartment to be monitored, and on the arrangement of the rooms
within the apartment, the amount of units needed (sensor + mini-computer) may
vary. For example, if the height of the apartment ceiling is limited (i.e., <3m) and
the area covered by a single Kinect is not enough to include the whole subject’s
shape when fallen, it is possible to install two sensors in such a way as to make the
corresponding covered areas adjacent, thus obtaining a wider field of view. In order
to limit as much as possible the hardware requirements of the system, each mini-
computer is configured in such a way as to be able to run up to three independent
instances of the real-time fall-detection algorithm, processing the input depth signals
generated by up to three different Kinect devices.

Before moving to the pilot installation in a real setting, the Python code was
tested again over the same dataset used for the MATLAB one, in order to check if
the unavoidable implementation constraints had changed the expected performances.
Considering the warning case as a distinct class of the dataset from fall and ADL, 3
classes are identified and 800 sequences overall, out of which 160 are classified as
ADL, 319 are classified as fall, and 320 are classified as warning. By this approach,
the resulting accuracy is 95.5%, taking into account that one sequence of the dataset
has not been classified because the person’s blob was not segmented at all. On the
other hand, assuming to have two possible outputs, and therefore considering fall
and warning within the same class, the system is characterized by the following
performance: TP (true positive) = 629, TN (true negative) = 159, FP (false positive)
= 1, FN (false negative) = 10, and therefore an accuracy of 98.5%. The confusion
matrix resulting from the tests on the complete dataset is shown in Fig. 14.5.

Fig. 14.5 Confusion matrix
obtained by testing the
MATLAB implementation of
the algorithm on the
complete dataset
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Fig. 14.6 In this sample sequence from a to d, the algorithm cannot correctly locate the central
point of the blob within the head area. The subject recovers from a fall on the knees, then leaves
the area covered by the sensor. The incorrect tracking of the subject makes it not possible for the
algorithm to correctly classify the fall

Most of the errors from the algorithm consist of classifying as a fall a depth
sequence that is labeled as awarning. Other errors are somehow related to the choice
of the time thresholds. This occurs, for example, when the subject falls on his knees,
but remains on this position for less time than the threshold. This way, the fall is
actually recognized as an ADL. In other cases, the algorithm cannot correctly locate
the head of the subject, thus failing to track the subject when recovering after a fall.
One example is shown in Fig. 14.6.

The tracking of the subject may be lost when the blob falls at the boundaries of the
area covered by the sensor, as shown in Fig. 14.7. In this condition, the fall detection
algorithm does not work.

In order to limit the impact of tracking loss on the fall detection algorithm out-
comes, the performance of the subject identification function and the blob tracking
function have been improved during the implementation of the Python version. This
way, blobs are identified at each frame and tracked correctly even when a blob fu-
sion takes place. A comparison among the original frame acquired from the depth
sensor and the blob map obtained from the algorithm is shown in Fig. 14.8a and b,
respectively. The improvement of this function also allowed to reduce the overall
computational burden of the algorithm, by providing a better quality information to
the following processing steps. In order to avoid the loss of the subject’s tracking due
to unexpected situations, an additional check on the user’s position has been added,
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Fig. 14.7 In the sample sequence from a to d the blob of the subject is located at the boundaries
of the area covered by the sensor and the tracking is lost

Fig. 14.8 a Original depth frame acquired from the sensor. b Blob map generated by the algorithm
in the Python implementation

opting for reporting the possible loss of tracking, and documenting the situation with
the acquisition of a video, or a frame, of the last known position of the subject.

Following the additional changes described above, the performance of the Python
code has been tested for the second time on the same dataset used to check the
original MATLAB version. Figure 14.9 shows the confusion matrix obtained. The
overall accuracy goes down to 93.27%: despite the 5% reduction, the performance
is still acceptable, and traded off with a truly real-time behavior. In fact, several
execution optimizations have been integrated into the Python implementation; this
way, small deviations in the processed data, with respect to the original routines,
have been inevitably introduced in terms of accuracy.

As discussed byDebard et al. in [17], in camera-based fall detection systems, real-
life data poses significant challenges, typically resulting in higher false alarm rates
than those obtained in controlled lab environments. By analyzing the outcomes of the
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Fig. 14.9 Confusion matrix
obtained by testing the
Python implementation of
the algorithm on the
complete dataset

Python algorithm on the lab recorded dataset, we found that the degradation is mostly
due to the incorrect detection of ADL that are classified as fall. Considering that we
are working on a system focused on fall detection, this means we are probably going
to receive an increased amount of false alarms, but this is practically more acceptable
than an increased probability of missing true fall events.

About the real-time behavior of the algorithm, the following resultswere obtained:
the MATLAB version running on a notebook equipped with Intel i7-7700HQ CPU
@ 2.80 GHz and 16 GB RAM featured a processing time for single frame that varies
from 50 to 100ms; the Python version, tested on the pilot configuration (i.e., Intel
NUC i3-7100U, 8GB RAM DDR4, and 128 GB NVMe SSD) provided 12–22ms
processing time per frame. As such, the requirement of a real-time frame processing
has been fulfilled.

During the experimentationof the system in the real setting of the lady’s apartment,
some issues emerged. The most relevant one is due to the presence of a door on the
wardrobe, the position of which may affect the proper detection of the subject within
the depth frames captured by the sensor covering that area. In fact, when the door
is open, a shaded area appears in the depth frame, over which the algorithm is not
able to identify the person or maintain the correct tracking. This effect depends on
the projection of the IR pattern on the door surface: as shown in the sequence of
depth frames in Fig. 14.10, the black area appearing in the bottom-right side of the
frame, when the door is open, corresponds to null depth values. As a consequence, the
routines executed by the algorithm raise exceptions and the person’s blob detection
and tracking fail. Correspondingly, the systemgenerates a number of fall notifications
that are not correct.

Another critical situation emergeswhen thepersonmoves near to the boundaries of
the area covered by the sensor. In this case, as shown in the sequence of depth frames
in Fig. 14.11, the tracking is not lost, but the central point of the blob (highlighted
by the circle in the leftmost frame) gets misplaced and close to the floor, as the head
is not detected. This way, a fall notification is raised, which is not correct.

The problems highlighted above are related to the physical displacement of the
sensors, that cannot be arbitrarily chosen as it happens, on the contrary, in a lab
setting. When dealing with a pilot installation in a real environment, many con-
straints are to be faced and traded off, to ensure the least obtrusiveness and the most
acceptable performance. In any case, the issues presented can be quite efficiently
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Fig. 14.10 Sequence of depth frames captured by the Kinect located over the wardrobe (from left
to right). When the wardrobe door is open, the depth sensing fails (black area in the frames) and
the algorithm raises errors

Fig. 14.11 Sequence of depth frames captured by the Kinect located over the living area (from
left to right). When the person moves near to the boundaries, tracking is not lost but the incorrect
placement of the blob central point causes an error fall notification

addressed through additional checks on the position of the subject, or the position of
the wardrobe door, within the algorithm.

14.4 Future Perspectives

Despite the remarkable corpus of knowledge generated on the topic of automatic fall
detection systems, as stated in the recent survey by Xu et al. [52], the domain of so-
lutions based on RGB-D sensors still confronts challenges on theories and practice.
Some of the open challenges are related to intrinsic limitations of the sensors, like
the finite Field Of View (FOV), which need to be overcome by the use of systems
including multiple devices, joint with proper algorithmic solutions able to synchro-
nize the signals generated from the different sensors, and process them as a single,
composite view of the monitored environment. This carries an unavoidable increase
in complexity and computational requirements for the hardware (HW) platforms that
should support a real-time execution of the software. Alternative approaches do not
require to merge the views of each sensor into a single one, but then require to ensure
person re-identification, in order to avoid losing continuity in the monitoring.
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Another big and still mostly unsolved challenge is related to the availability of data
captured in real-world settings, to train the classifiers used in automatic fall detection
systems. The use of laboratory simulated falls has been an accepted approach in the
research and academic community for a long time, due to the relevant difficulties
associated with recording real-world falls. Just to mention one of the main issues,
the rarity of falls means that recording them is both costly and time consuming. In
2012, Bagalà et al. [3] estimated that to collect 100 falls, 100,000 days of activity
would need to be recorded, assuming a fall incidence of one fall per person every
three years. The authors highlight the importance of testing fall-detection algorithms
in real-life conditions in order to produce more effective automated alarm systems
with higher acceptance. A large, shared real-world fall database could, potentially,
provide an enhanced understanding of the fall process and the information needed
to design and evaluate high-performance fall detectors.

Despite this challenge, the focus is now moving to real-world fall data due to
the external validity issues inherent in simulated fall based testing, as presented
in Sect. 14.3.3. Real-world data, by its very nature provides high ecological valid-
ity and therefore contributes to higher external validity. As highlighted in [9], to
increase robustness and make results comparable, larger standardized datasets are
needed containing data from a range of participant groups. Measures that depend on
the definition and identification of non-falls should be avoided, keeping the focus
on sensitivity, precision, and F-measure, as the most suitable robust measures for
evaluating the real-world performance of a fall detection system.
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Chapter 15
RGB-D Interactive Systems on Serious
Games for Motor Rehabilitation Therapy
and Therapeutic Measurements

Gabriel Moyà-Alcover, Ines Ayed, Javier Varona and Antoni Jaume-i-Capó

Abstract Serious games are games designed for a primary purpose different from
that of pure entertainment, and the cognitive and motor activities required by these
games attract the attention of users. In this chapter, we systematically review the use
of RGB-D serious games in motor rehabilitation programs and survey the state of
the art. The chapter then focuses on the design of serious games for motor rehabili-
tation therapy and where we present a development framework and implementation
guidelines for RGB-D interactive systems for motor rehabilitation therapy and ther-
apeutic measurements. In RGB-D-based interactive systems, users stand in front of
the screen and interact with the video game using their bodymovements.We describe
a RGB-D nonparametric approach for background subtraction, that uses both depth
and color information in a unified way, to segment the patient. Finally, we show three
different case studies where we applied the presented method. The first one consists
of an interactive system based on a RGB-D sensor to calculate the Functional Reach
Test (FRT). The second one consists on a RGB-D interactive system to improve the
balance and postural control of adults with cerebral palsy. The last one consists of
three serious games to improve the balance and postural control in elderly people.
With conducted experiments and clinical studies, we demonstrate the validity of
these systems.
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15.1 Introduction

RGB-D-based interfaces have become very popular in rehabilitation settings, there
are many applications of RGB-D in health care, see Chap.14. With the emergence
of low-cost, vision-based interfaces, see Chap.1, both engineers and healthcare
practitioners were increasingly attracted to the development and deployment of
vision-based interactive systems for motor rehabilitation. Among RGB-D interfaces
available in the market, Microsoft Kinect drew the most interest. RGB-D sensors
provide color and depth data enabling full body tracking and gesture recognition.
In addition, they offer a natural human–computer interaction, without the need to
hold a physical controller, which reinforced its acceptance among therapists and
patients. Therefore, it has been widely used and validated by researchers in different
interactive applications.

On one hand, several research studies investigated the use of RGB-D sensors in
motor rehabilitation therapy such as gait retraining [9], analysis of activities of daily
living [10], guidance and movement correction [12], training static balance [29], and
balance and postural control [22]. Many researchers largely focused on turning an
existing set of physical therapy exercises into serious games or deploying existing
commercial games and studying their effectiveness. Serious games are computer
games designed to reach a specific goal in an engaging and entertaining way rather
than pure entertainment. In health care, for instance, serious games are developed
with the ultimate purpose of treatment, recovery, and rehabilitation. As we are only
considering motor rehabilitation in this work, serious games have been demonstrated
to be highly promising in this area [41] as they help motivating patients along therapy
sessions [34]. As amatter of fact,motivation is very important especially in long-term
therapies and among chronic patients who receive repetitive activities that become
boring with time [7, 18]. Furthermore, it has been shown that rehabilitation results
were better with motivated patients [34].

On the other hand, researchers conducted studies to validate the use of RGB-D
interfaces for therapeutic measurements in order to measure the effectiveness of a
therapy, for instance, measurement of Shoulder Range of Motion for the evaluation
and diagnosis of adhesive capsulitis instead of using a goniometer [31], gait assess-
ment by providing spatiotemporal and kinematic variables [37], balance tests such
as Functional reach test [20] and Timed Up and Go test [8], and so forth. Developing
such systems may help in quantifying the therapeutic evolution of patients at their
homes thus avoiding unnecessary displacements to the hospital or rehabilitation cen-
ter. In fact, patients usually perform rehabilitation exercises independently at home
and receive, from time to time, a visit from a physiotherapist in order to check their
performance and measure the effectiveness of the treatment [27, 32, 36]. To ensure
an effective therapy, it is very important to measure its clinical outcomes bymeans of
reliable and valid tests.Many tools and tests exist that serve for this purpose, however
there are only few mechanisms that could be used at home without the facilities and
equipment provided at hospitals or rehabilitation centers [16, 21]. For this reason,

http://dx.doi.org/10.1007/978-3-030-28603-3_14
http://dx.doi.org/10.1007/978-3-030-28603-3_1
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RGB-D interfaces based on low- cost, vision-based systems represent an affordable
alternative to be deployed at home.

That said, developing such interfaces for a target population that present some
motor limitations or physical disabilities with the aim of rehabilitation requires a
framework and some design guidelines; many problems were identified because of
using non-tailored games such as commercial video game for rehabilitation [2]. This
need for a common framework has become obvious with the popular increase of
vision-based interactive serious games and measurements. Furthermore, some tech-
niques have been shown to be motivating for patients such as background subtraction
and mirror feedback, where the background is removed to minimize distractions and
users can see themselves on the screen all the time, hence allowing them to immerse
themselves in the virtual environment.

Therefore in this work, we summarize our contribution to this area of research.
The remainder of this paper is organized as follows. In Sect. 15.2, we present the
state of the art of vision-based games used for balance rehabilitation. In Sect. 15.3,
we detail themethod deployed to develop and implement RGB-D interactive systems
for motor rehabilitation. Next, we present three case studies illustrating the method
presented in the previous section. The last section is devoted to conclusions and
proposed further work.

15.2 State of the Art

Many researchers have investigated the effectiveness of serious games using RGB-
D input devices for motor rehabilitation. We conducted a systematic literature
research in the Web of Science electronic database using Kitchenham guidelines
[28]. Searches were undertaken using a combination of keywords such as “Kinect”,
“virtual reality”, “serious games”, “RGB-D”, and “motor rehabilitation”, for publi-
cations between 2007 and 2018. We identified 92 results using the aforementioned
keywords, and an examination of both title and abstract yielded a final set of 49 stud-
ies. 46 articles used Microsoft Kinect and the other 3 used PrimeSense as the input
RGB-D device for interaction. To these studies, we performed quality assessment
using the Downs and Black checklist [14] and selected the first 10 having the highest
scores to analyze. Rehabilitation after stroke had the biggest share of publications
focusing mainly on upper extremity recovery.

For instance, Sin and Lee [44] studied the effects of additional training using
Xbox commercial games on upper extremity function of post-stroke patients. Partic-
ipants were randomized into two groups, where the experimental group had a 30-min
conventional therapy plus 30 min of Virtual Reality (VR) training whereas the con-
trol group had only 30 min of conventional training. The VR training consisted of
games from Kinect sports (Boxing and Bowling) and Kinect adventure (Rally Ball,
20,000 Leaks, and Space Pop). The authors reported significant improvements in
the range of motion of the upper extremity, Fugl-Meyer Assessment, and the Box
and Block Test scores of both groups comparing to the baseline, with significant
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differences between the experimental and control group at the end of the 6-week
intervention. Similarly, Turkbey et al. [45] conducted a randomized controlled trial
of sub-acute stroke patients, where experimental group had 20 sessions of Xbox
Kinect training (playing Bowling and Mouse Mayhem Kinect games) in addition to
the same conventional therapy training received by controls. Results showed that the
experimental group had significantly greater improvements than the control group
in Box and Blocks Test, Wolf Motor Function Test, and Brunnstrom motor recov-
ery stages. Despite both studies reported better results in favor of the experimental
group, these results could be biased due to the total intervention time given that the
experimental group had additional VR training in comparison to the control group.
This limitation was overcome by the study conducted by Lee et al. [30], where both
experimental and control groups received the same training duration. Participants
in the experimental group had 45-min VR training plus 45 min of standard therapy
while the subjects in control group had 90 min of standard therapy. Games from
Kinect Sports (Darts, Golf, Table Tennis, and Bowling), Kinect Adventures (Space
pop, Rally Ball, and River rush), and Your Shape Fitness Evolved (Virtual smash and
Light race) packages were selected for the VR training. Both groups improved over
time andmaintained this improvement at the 3-month follow-up, however there were
no significant differences between the two groups. The experimental group exhibited
higher pleasure than the control group.

The VR training of the above studies included Xbox Kinect Commercial games
such as Kinect sports like Bowling, Boxing, and Darts, and Kinect adventures games
like Rally Ball, 20,000 Leaks, Space Pop, etc. These games have not been designed
specifically for rehabilitation. Hence in other studies, the authors used prototype
games specific for rehabilitation. For example, Askin et al. [3] deployed two games
of KineLabs developed by a research team of Hong Kong Polytechnic University
for stroke rehabilitation (Good View Hunting to clean or delete dirty spots and
Hong Kong Chef for making food). They randomized chronic stroke patients into
two groups; the first group underwent 20 sessions of physical therapy (PT) plus 20
sessions of Kinect-based VR training and the second group received only 20 sessions
of PT. Results indicated that both groups had benefited from the intervention training,
however there were greater improvements in the group who received the additional
VR training.Again, these resultsmay bear somebias due to the nonequivalent amount
of rehabilitation. Furthermore, in the randomized controlled trial conducted by Shin
et al. [43], chronic hemiparetic stroke of experimental group underwent conventional
occupational therapy (OT) plus VR rehabilitation using PrimeSense sensor. The VR
training consists of a “rehabilitation training” module that asks the participant to
imitate specific motions that are performed by an avatar and “Rehabilitation games”
that facilitate rehabilitation exercises using gaming concepts. For the same amount
of rehabilitation, the experimental group performed conventional OT only for 20 ses-
sions over 4 weeks. As a result, the group who combined the conventional therapy
with the VR training showed significant improvements in some items of SF-36 eval-
uating the Health-related quality of life; participants had significant improvement
in role limitation due to emotional problems compared to baseline, and exhibited
significant improvement in role limitation due to physical problems compared to the
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group having OT alone. In addition, both groups exhibited significant improvements
in Hamilton Depression Rating Scale (HAMD) and upper extremity Fugl-Meyer
Assessment (FMA) compared to baseline, although no inter-group differences were
observed. In the same way, many researchers examined the feasibility and effec-
tiveness of using RGB-D devices for postural stability and balance in people with
Parkinson’s disease [42], rehabilitation of patients with Multiple Sclerosis [33], bal-
ance, mobility skills, and fear of falling in women with fibromyalgia [11], balance,
functional mobility and quality of life in geriatric individuals [26], and improving
upper limb motor outcomes in children with Cerebral Palsy [49] by deploying either
commercial or prototype games. To sum up, most studies suggest that deploying
video games using RGB-D device input for rehabilitation is feasible, motivating,
and exhibits promising results, however these results cannot be generalized due to
the small sample sizes of participants recruited and the restriction of patients profiles,
hence more research is needed to include a higher number of participants and tackle
long-term effects.

15.3 Methodology

In this section, we present a method for implementing RGB-D serious games for
rehabilitation. First, we describe the PROGame framework in order to guarantee that
products are developed and validated by following a coherent and systematic method
that leads to high-quality serious games. Then, we present a set of detailed guidelines
for the specific case of vision-based interactive systems for motor rehabilitation
therapy. From guidelines, we deduced that it is important for the user to delete the
background in order to avoid distractors, for this reason we present a background
subtraction method. Finally, we present 3 different study cases where we used the
method to implement different vision-based systems for rehabilitation purposes.

15.3.1 PROGame Framework

Given the interdisciplinary nature of serious games development and based on
similarities between serious game development requirements and web application
requirements [25], and similarities between serious game for motor rehabilitation
implementation and the clinical trial involving new drugs [19], we proposed a new
framework for the development of serious games for motor rehabilitation therapy
(PROGame) [1]. This framework is a two-dimensional process flow, where the basic
development activities (planning and control, modeling, construction, and valida-
tion) are structured into three increments. The final activity of the model is a clinical
study aimed at demonstrating the suitability of the serious game for the target therapy
(see Fig. 15.1).
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Fig. 15.1 Process flow for serious game development [1]

The first dimension includes three main activities. First in project initiation activ-
ity, a detailed specification of the game’s requirements and constraints are defined.
Then, four basic development activities are performed, adapted from the web appli-
cation development model. These activities are: planning and control, modeling,
construction, and evaluation. Finally, a clinical study is performed to quantify the
improvement of a rehabilitation therapy based on types of functional exercises. A
successful clinical study requires a definition of the experiment, participants, and
measurements according to the final goals and type of the therapy suggested.

1. Project initiation activity: It is an entry point of the project where context, opera-
tional objectives, and restrictions for the serious game are identified by engineers
and physiotherapists together, resulting in a detailed specification of the game’s
requirements and constraints.

2. Iterative flow: It contains the following four basic development activities:

• Planning and control: It aims to achieve incremental project management for
the development of serious games.

• Modeling: It permits the development of models that enable the development
team a better understanding of the requirements and design of the serious
game.

• Construction: It consists in producing executable software units mirroring
the conceived design. This activity includes the production and testing of the
software units that are part of an increment.

• Evaluation: It aims to find and correct the errors of the serious game before
making it available to the patients. It can be done by playing the game, while
considering some aspects such as possible and safe interaction, effective ther-
apy, and engaging game.
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3. A final clinical study: The objective of a clinical study is quantifying the improve-
ment of a rehabilitation therapy based on types of functional exercises. A suc-
cessful clinical study requires a definition of the experiment, participants, and
measurements according to the final goals and type of the therapy suggested.

The second dimension deals with the incremental development. The three core
phases of the clinical trial already described are supported within this dimension.
These phases have been included as three different increments: interaction mech-
anism, interaction elements, and serious game; where interaction mechanism aims
to design an interaction mechanism to capture the selected therapy while consider-
ing existing technology, and interaction elements are designed in a way that pushes
the patients to perform the therapy correctly. Finally, the aim of the final increment
(serious game) is to design a serious game that encourages the patient to perform the
therapy regularly.

15.3.2 Guidelines for Developing Motor Rehabilitation
Serious Games

To ensure a successful serious games development, wewere able, through our experi-
ence in implementing vision-based serious games formotor rehabilitation, to identify
7 main design issues [23]. These design issues detailed how to define the dimensions
of PROGame framework, and in our case the dimensions of vision-based interactive
systems for motor rehabilitation therapy and therapeutic measurements:

1. Development Paradigm: Usually engineers and physiotherapists find difficulty
when it comes to clearly defining the objectives of serious games and therapy
because they use different jargon. Opting for a prototype development paradigm
may help in overcoming this problem and ensuring a good communication
between the two teams [40].

2. Interaction Mechanism: When transferring an existing therapy to a serious game,
the selected rehabilitation therapy becomes the means of interaction with the
serious game. As many patients have difficulty in holding a physical device,
vision- based interfaces can be used as an input device. These interfaces play a
key role in adapting to the users’ capabilities and enhancing their perception to
the game [46]. An example of vision-based interaction which can be implemented
by detecting the users’ silhouette, the skin color, or the hand motion is depicted
in Fig. 15.2.

3. Interaction Elements: Selecting interaction elements must ensure an optimal level
of motivation for the users. It is demonstrated that patients can perform rehabili-
tation activities faster when the interaction objects are related to themes of their
interest [22].

4. Feedback: Feedback is very important in serious games because it allows the
users to understand the game, feel in control, and be aware of their current state
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Fig. 15.2 Vision-based interaction which can be implemented by detecting the users’ silhouette,
the skin color or the hand motion

Fig. 15.3 Visual feedback in
a serious game

(see Fig. 15.3). In vision-based systems, the user has no interaction device of
reference, hence providing visual and audible feedback is critical [7, 24].

5. Adaptability: Serious game users have different capabilities and characteristics.
A good serious game should be adaptable to the skills and evolution of each user
by defining a set of configuration parameters that can be customized and adapted
to each user. Such parameters include size and position of interaction objects,
maximum playing time, mirror effect, contact time, and user distance from the
RGB-D sensor.

6. Monitoring: In order to monitor the progress of each user, the system should save
user’s information, configuration parameters, and patient’s performance along
the therapy sessions. For example, an xml file for each user can be created and
maintained by the game where data like date of the session, level pattern, play-
ing time, user distance from monitor device, and contact time are saved, hence
simplifying the monitoring task performed by the therapists. Thus, the system
is best designed to be accessed by two different types of users: the patient and
the specialist; where each one has different objectives when interacting with the
system.

7. Clinical evaluation: A clinical evaluation is conducted in order to see the effec-
tiveness of rehabilitation on the patients. Optimally, a clinical evaluation should
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Fig. 15.4 Design intervention using pre and post assessments [1]

define the experiment, the participants, and the measurements according to the
goals and type of the therapy. It is recommended to include a pre-assessment and
post-assessment of every measurement as presented in Fig. 15.4, a control group,
and a larger number of measurements.

15.3.3 Background Subtraction

In this kind of applications, the user can be easily distracted by the scene background
as there can be moving elements such as the physiotherapists, or moving objects
through a window. Another source of problems are background objects that can
be mislead with the interaction objects due to similar colors or shapes. In order to
avoid these problems, a background subtraction process based on a Kernel Density
Estimation (KDE) model is applied [38] and the background is substituted with a
predefined image, see Fig. 15.6.

Low-cost RGB-D devices that are able to capture depth and color images simul-
taneously at a frame rate up to 30 fps are available off the shelf. Depth information
can help to overcome typical problems of color-based algorithms, adding physical
information to the background model.

Adding a depth channel to KDE background model is not an obvious process
because the depth channel differs in its characteristics from the color channels. In
particular, the depth channel has a significant amount of missing information, where
the sensor is unable to estimate the depth at certain pixels.

In order to select the regions that belong to the foreground, that is, where the user
lies in an image sequence, we use a nonparametric algorithm that is capable to mix
the color and depth information in a low-level way using the previous information
as the reference to segment the current frame.

The scene modeling consists on a Kernel Density Estimation (KDE) process.
Given the last n observations of a pixel, denoted by xi , i = 1, . . . , n in the d-
dimensional observation spaceRd , which enclose the sensor data values, it is possible
to estimate the probability density function (pdf) of each pixel with respect to all
previously observed values [17].

P(x) = 1

n
|H|− 1

2

n∑

i=1

K (H− 1
2 (x − xi )) , (15.1)

where K is a multivariate kernel, satisfying
∫
K (x)dx = 1 and K (u) ≥ 0. H is the

bandwidth matrix, which is a symmetric positive d×d-matrix.
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Diagonal matrix bandwidth kernels allow different amounts of smoothing in each
of the dimensions and are the most widespread due to computational reasons [47].
The most commonly used kernel density function is the Normal function and in our
approach N (0,H) is selected

H =

⎛

⎜⎜⎜⎝

σ 2
1 0 · · · 0
0 σ 2

2 · · · 0
...

...
. . .

...

0 0 · · · σ 2
d

⎞

⎟⎟⎟⎠

The final probability density function can be written as

P(x) = 1

n

n∑

i=1

d∏

j=1

1√
2πσ 2

j

e
− 1

2

(x j−xi j )
2

σ2j . (15.2)

Given this estimate at each pixel, a pixel is considered foreground if its probability
is under a certain threshold.

In order to use the previously described scene model with color and depth infor-
mation in a unified way, we need to perform a special treatment to sensor Absent
Depth Observation (ADO). In our approach, we maintain a statistical model to dif-
ferentiate the ones caused by the scene physical configuration from the other ones
caused by the foreground objects.

15.4 Case Studies

PROGame framework is a two-dimensional process flow, where the basic devel-
opment activities (planning and control, modeling, construction, and validation)
are structured into three increments. The final activity of the model is a clinical
study aimed at demonstrating the suitability of the serious game for the target ther-
apy. Guidelines for serious games development are more specific defining 7 main
issues: development paradigm, interaction mechanism, interaction elements, feed-
back, adaptability, monitoring, and clinical evaluation. Within this framework and
following the guidelines defined, we present the following case studies. Background
subtraction was applied so the user can see himself/herself on the screen all the time
and interact with the system without distractions.

15.4.1 Functional Reach Test

In order to measure the evolution of a therapy program and be able to adjust it,
it is important to measure its clinical outcomes using reliable and valid tests. The
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functional reach test [15] is one of the most common clinical measures used in
measuring balance of an individual bymeasuring his limits of stabilitywhile standing.
The test also detects limitations in daily activities and is helpful in detecting the risk
of falls. In this test, the user is instructed to stand close to a wall and reach as far as he
can, while raising his hand at 90◦ of shoulder flexion with a closed fist and without
taking a step or touching the wall. The result of the test is the distance of reach. The
test is performed three times and the average of the last two is considered as the
final result. As the use of vision-based interactive applications for rehabilitation is
growing, the same RGB-D device used by the patient for rehabilitation can also be
used by the physiotherapist for clinical measurements.

15.4.1.1 Proposed System

We transferred the FRT into our experimental system as an interaction mechanism
using Microsoft Kinect, thus the maximum distance that a user can reach forward
can be measured automatically [4]. Using skeletal tracking information provided by
Kinect, the system can measure the FRT in three steps. First, the physiotherapist
asks the user to stand close to the wall facing the sensor with the right posture as to
perform the FRT. When the physiotherapist confirms that the position performed is
correct, the initial position is indicated to the system which stores the users’ hand
coordinates in that position. Second, the user is asked to reach forward as far as
he can; the final position is then validated by the physiotherapist and stored by the
system. Third, the system computes the difference between the initial position and
the end position, hence the FRT result. The user can see himself and text messages
on the screen to inform him about his movement execution (see Fig. 15.5).

15.4.1.2 Experiment

14 healthy adults (11 men; aged between 22 and 48 years) accepted to perform
the FRT using the system on one hand and on the standard way on the other hand
in order to validate the confidence of the measurements obtained by the system
comparing to those obtained by the physiotherapist manually. Each participant used

Fig. 15.5 Screenshot of the experimental system. Left image depicts initial position, right image
depicts final position
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the experimental system three times and performed the FRT in the standard way three
times. To avoid pre-learning effect, the order of the trials was randomly chosen, for
example, one can perform the test on the standardway (FRT1), using the experimental
system (ES1), ES2, FRT2, ES3, and FRT3. Consequently, a within-subjects design
was used with the standard FRT as a control group. A demonstration of how the
system works was done before the beginning of the experiment. The measurement
used was the distance in cm between the final position and last position for both the
experimental system and the standard FRT.

15.4.1.3 Results and Conclusions

The comparison between measures obtained from the experimental system and the
standard FRT yielded an average absolute difference of 2.84cm (±2.62), and statis-
tically significant differences were found applying a paired t-student test for the data.
These preliminary results suggest that Microsoft Kinect is reliable and adequate in
calculating the standard Functional Reach test (FRT).

15.4.2 Games for Patients with Cerebral Palsy

Cerebral palsy is the most common motor disability in children characterized by
poor coordination and muscle weakness. Many children and adults with CP attend
physiotherapy treatment to improve balance and postural control with the ultimate
goal of improving their quality of life. In fact, balance control is very important in
the performance of the majority of functional tasks. The treatment consists mainly
of postural orientation exercises, exercises to strengthen the neck, back, and upper
limb musculature, and coordination exercises. As these types of exercises must be
repeated weekly and for a long period, both children and adults who are attending the
program usually get demotivated and abandon the therapy. Therefore, we designed a
serious game that aims to improve balance, increase motivation in users, and achieve
high adherence to this long-term therapy [22].

15.4.2.1 Serious Game

The game consists in erasing motivational elements appearing on the screen by
changing the user gravity center. We used the Continuously Adaptive Mean Shift
(camshift) [6] algorithm to track an object based on color as a fundamental property,
then we defined an appropriate mask for each interaction screen and applied the
computer vision techniques to determine whether there is any interaction. A pointer
was projected on the user’s hand, so when the user touches the item displayed on
the screen, the part of the interaction object that intersects with the pointer is erased.
The contact duration with an element to completely erase it can be customized by
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Fig. 15.6 Performance of the system in the ASPACE rehabilitation room

the therapist. Maximum playing time, mirror effect, and user distance can also be
customized and adapted to different users.

15.4.2.2 Clinical Study

In order to quantify the rehabilitation improvement using the serious game, we con-
ducted a clinical study in the rehabilitation center ofASPACE inSpain (see Fig. 15.6).
Nine adults with CP (range 27–57 years) agreed to undergo the 24-week study. In the
study, the participants played the serious game for at least 20 min each session, with
an average of one session per week. Repetitions were set according to participants’
tolerance for fatigue and physiotherapist’s recommendations. All participants were
pre- and post-assessed before and after the 24-week study period using Berg Balance
Scale (BBS), Functional Reach Test (FRT), and Balance Tinetti Test.

15.4.2.3 Results and Conclusions

Upon completion of the clinical study, significant improvements in balance and
gait were noted. There was a significant difference between pre- (29.5±3.9) and
post-assessment (34.1cm±2.2) results of BBS. In FRT, scores had improved sig-
nificantly for both hands; right upper limb (pre- (8.6 cm±1.4) and post-assessment
(10.1cm±2.0), p=0.007) and left upper limb (pre- (8.3 cm±2.0 2.0) and post-
assessment (10.1cm±3.7), p=0.052). Furthermore, results of both Tinetti Balance
section (TBS) and Tinetti gait section (TGS) were promising, resulting in a signif-
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icant difference between pre- (16.0cm±4.0) and post-assessment (21.0cm±2.8)
measures of Total Tinetti Score (TTS). Results showed also that motivation and
adherence improved, and users were interested in continuing the rehabilitation with
games after the end of the study.

In conclusion, results indicate that it is feasible to use interactive serious games in
therapy programs for adults with cerebral palsy to improve motivation and thereby
enhance balance and gait motor performance.

15.4.3 Fall Prevention Games for Elderly People

Elderly people are prone to falls. However, it has been demonstrated that exercising
and physical activity help in reducing the risk of falls. The existing therapy exer-
cises for fall prevention include reaching in different directions, small and large
lateral steps, weight shifting to both sides, neck movements (flexion, extension, lat-
eral flexion, and rotation), shoulder movements (flexion, extension, adduction and
abduction), trunk movements (flexion, extension, lateral flexion, and rotation), knee
movements (flexion and extension), and hip movements (flexion, extension, rotation,
adduction, and abduction) [39, 48]. Based on the framework and guidelines detailed
above, we transferred these exercises into a set of vision-based serious games for
elderly people [5].

15.4.3.1 Serious Games

Aspresented inFig. 15.7,wedesigned anddeveloped three serious games usingUnity
and Microsoft Kinect for older adults to train their balance and postural control, thus
minimizing their risk of falls:

• Reach game: The user has tomove his centre of mass (COM) in order to reach with
his hands one of the five balls located on his user plan, two symmetric items are
added on the level of hips that can be eliminated by doing weight shifting move-
ments. Once the user touches a ball, it disappears and reappears after a determined
time set by the physiotherapist according to the user’s speed.

• HitIt: Soccer balls fall randomly within the same plan of the user. To hit them, the
user needs to make lateral steps, and touch them with his head when they are at
his level. The game can be also played in a seated position. The user has to make
lateral movements of the trunk to be able to touch the elements with his head.

• WatchOut: In contrast to HitIt game, here the user has to move laterally in order
to escape falling eggs instead of catching them. Falling items fall randomly within
the same plan of the user with adaptable falling rate and speed.
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Fig. 15.7 Three examples of fall prevention games. Top image depicts the WatchOut game. Left
image illustrates the Reach game, right image details the HitIt game

15.4.3.2 Case Study

Twoparticipants (age: 78 and72years)were recruited fromelderly houseofManouba
in Tunisia. Along a period of 5weeks, each participant underwent one 30-min session
per day at a rate of 3 days a week. The rehabilitation program was divided between
the three games, where the duration of each game was set by the therapist according
to its understanding and its acceptability by the participants. Participants could have
a break time between 3 and 6 min each 5 min of play according to their fatigue level.
Balance was assessed using the Tinetti balance test as a pre-assessment and post-
assessment test. Other measurements such as adherence, game scores, and adverse
events were noted along the intervention. Gaming was assisted by an occupational
therapist and monitored by the research team.

15.4.3.3 Results and Conclusions

The two participants attended 86.6% of the sessions with an average 30-min length
each of which ensured a very high adherence. Plus, they both reported enjoyment
during the playtime. For Tinetti scores, they showed a similar trend; there was an
improvement of 4 points in the balance section score, while almost no difference
was noted in the gait section. In fact, one participant moved from high risk for falls
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range to the risk for falls range, while the other participant stayed at high risk for falls
range [13, 35]. Regarding the game score, it improved over time although there were
no significant differences between the two participants nor between the scores at the
beginning and end of the intervention. Finally, no adverse effects were registered
during the sessions.

These findings, despite the small sample size, suggest that game-based rehabili-
tation can be useful to improve balance in elderly people and can be incorporated in
fall prevention programs under the supervision of physiotherapists.

15.5 Conclusion

In this chapter, we presented an overall overview of the use of RGB-D-based inter-
active systems in serious games for motor rehabilitation and therapeutic measures.

First, we performed a systematic review from 2007 onwards where we identified
49 articles which we quality assessed using Downs and Black [14] and analyzed the
top 10 for this chapter.

Next, we focused on the design of RGB-D-based serious games for health pur-
poses. We presented the PROGame framework, a two-dimensional incremental pro-
cess flow for serious game development for motor rehabilitation therapy. Then, we
developed specific guidelines to ensure a successful RGB-D therapeutic serious
games development, consisting of 7 main design issues.

After that, we described a background subtraction process based on a Kernel
Density Estimation, to avoid the patient being distracted by the scene background
as there can be moving elements such as the physiotherapists, or moving objects
through a window.

Finally, we presented three different case studies where we applied the presented
method. First, we presented an interactive system based on RGB-D to calculate the
Functional Reach Test (FRT), one of the most widely used balance clinical mea-
surements. We conducted a validation experiment in which results showed that there
are no statistically significant differences with manual FRT. Second, we described
an RGB-D interactive system to improve the balance and postural control of adults
with cerebral palsy. We conducted a 24-week physiotherapy intervention program
after which patients moved from high fall risk to moderate fall risk according to the
Tinetti Balance Test. Third, we showed three RGB-D serious games to improve the
balance and postural control in elderly people. We conducted a 5-week physiother-
apy intervention program and the patients showed an improvement of 4 points in the
total score of Tinetti Balance Test over the study period.

About future research directions of serious games for motor rehabilitation, we
want to remark that the studies often discuss the results of a clinical trial, but most
of them do not conduct follow-ups. The fact of avoiding to study a long-term effec-
tiveness could delay their implementation on real environments.
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Chapter 16
Real-Time Hand Pose Estimation Using
Depth Camera

Liuhao Ge, Junsong Yuan and Nadia Magnenat Thalmann

Abstract In recent years, we have witnessed a steady growth of the research in real-
time 3D hand pose estimation with depth cameras, since this technology plays an
important role in various human–computer interaction applications. In this chapter,
we first review existing techniques and systems for real-time 3D hand pose estima-
tion. Then, we will discuss two point-set-based methods for 3D hand pose estima-
tion from depth images: (1) point-set-based holistic regression method that directly
regresses holistic 3D hand pose; (2) point-set-based point-wise regression method
that generates dense outputs for robust 3D hand pose estimation. Extensive experi-
ments are conducted to evaluate the effectiveness of these two methods. We will also
discuss the limitations and advantages of the proposed methods.

16.1 Introduction

In recent years, we have witnessed a rapid growth in virtual reality (VR) and aug-
mented reality (AR) applications. Traditionalmechanical devices, such as keyboards,
mice, and joysticks, are cumbersome and unsuitable for immersive interactions in
VR/AR applications. Can users directly use their bare hands to naturally interact with
the virtual objects in the VR/AR environment? Thanks to the development of camera
techniques and computer vision, vision-based hand pose estimation has become an
important and promising technology for human–computer interaction [1, 2].
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Fig. 16.1 Overview of 3D hand pose estimation from depth images. The input is a depth image;
human hand is segmented from the depth image for hand pose estimation; the output is a set of 3D
hand joint locations representing the 3D hand pose. The estimated 3D hand pose can be applied in
various applications. The two snapshots of applications on the left are from our self-built systems

With the emergence of commercial depth cameras in the past 10 years, e.g.,
Microsoft Kinetic, Intel RealSense, Primesense Carmine, many research works have
focused on 3D hand pose estimation from depth images [20, 25, 27, 42, 53, 58,
68, 72, 73], in which the 3D locations of hand joints are estimated. Compared with
traditional cameras that capture intensity or color in the scene, depth cameras are
robust in low-light environment, can capture 3D spatial information of the object and
are invariant to color and texture. These properties make depth camera suitable for
robust 3D hand pose estimation.

In this chapter, we investigate the problem of 3D hand pose estimation from
depth images. As presented in Fig. 16.1, the input is a depth image capturing the
hand gesture. Human hand is segmented from the input depth image for hand pose
estimation. The output is a set of 3D hand joint locations representing the 3D hand
pose. The estimated 3D hand pose can be used for various applications such as virtual
object manipulation, virtual 3D drawing, virtual keyboard, etc.

Although 3Dhand pose estimation fromdepth images has aroused a lot of research
attention in recent years, it is still challenging to achieve efficient and robust hand
pose estimation performance. First, estimating 3D hand pose from depth images is
a high-dimensional and nonlinear regression problem. Second, hand pose in single
depth images often suffers from severe self-occlusion problem. Third, the depth
images captured from range sensors are usually noisy and may have data missing. In
this chapter, we aim at solving these challenges for robust 3D hand pose estimation
from single depth images. Convolutional Neural Networks (CNNs)-based methods
for 3D hand pose estimation with depth cameras usually take 2D depth images as
input, which cannot fully utilize the 3D spatial information in the depth image. To
better leverage the depth information, we propose to directly take the 3D point cloud
as input to the neural network for 3D hand pose estimation.

The major contributions of this chapter include the following:

• A point-set-based holistic regression method for 3D hand pose estimation is pre-
sented. The 3D point cloud extracted from the depth image is directly taken as
network input to holistically regress 3D hand joint locations. To handle varia-
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tions of hand global orientations, the hand point cloud is normalized with more
consistent global orientations.

• A point-set-based point-wise regression method for 3D hand pose estimation is
presented. The point-wise regression network directly takes the 3D point cloud
as input and generates heat-maps as well as unit vector fields on the input point
cloud. A post-processing method is proposed to infer 3D hand joint locations from
the estimated heat-maps and unit vector fields.

• We conduct comprehensive experiments on three challenging hand pose datasets
[47, 50, 58] to evaluate our methods. Experimental results show that our methods
can achieve superior accuracy performance in real time.

The remainder of this chapter is organized as follows. Section16.2 presents a
literature review on hand pose estimation methods and related datasets. The point-
set-based holistic regression method is presented in Sect. 16.3. Section16.4 presents
our point-set-based point-wise regression method. Section16.5 presents extensive
experiments to evaluate the effectiveness of our methods. The conclusions are drawn
in Sect. 16.6.

16.2 Literature Review

Since directly using hand as an interface for human–computer interaction is very
attractive but challenging, a lot of research works have focused on hand pose esti-
mation in the past 30 years [7, 8, 11, 28, 31, 35, 58, 64, 66, 67, 72]. Methods for
3D hand pose estimation from depth images can be categorized into model-driven
approaches, data-driven approaches, and hybrid approaches [48].

Model-driven approaches fit an explicit deformable hand model to depth images
by minimizing a handcrafted cost function. The commonly used optimization meth-
ods are Particle Swarm Optimization (PSO) [28], Iterative Closest Point (ICP) [49,
75], and their combination [34]. Many hand models have been proposed. Oikono-
midis et al. [29] propose a polygonal mesh hand model using geometric primitives.
Qian et al. [34] approximate the 3D hand model using 48 spheres. Sridhar et al. [45]
propose a Gaussian mixture model of hand which is also applied in [46, 70]. Melax
et al. [21] propose to use a rigid-body representation of the hand model. Taylor
et al. [53] create the hand model based on linear blend skinning and approximate
loop subdivision, which is also applied in [16, 59]. Tkach et al. [55] propose to use
sphere-meshes as the 3D hand model. Romero et al. [40] propose a realistic hand
model which can capture nonrigid shape of hand pose and is learned from 3D scans
of hands. Joo et al. [14] use a rigged hand mesh as the hand model for total capture
of human.

However, there are some shortcomings for themodel-drivenmethods. For instance,
somemodel-driven methods usually need to explicitly define the anatomical size and
hand motion constraints of the hand to match to the input depth image. Also, due
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to the high-dimensional hand pose parameters, they can be sensitive to initialization
for the iterative model-fitting procedure to converge to the optimal pose.

In contrast to model-driven methods, the data-driven methods do not need the
explicit specification of the hand size and motion constraints. Rather, such informa-
tion is automatically encoded in the training data. Therefore, many recent methods
are built upon such a scheme [5, 27, 47, 51, 52, 68].

Data-driven approaches learn a mapping from depth image to hand pose from
training data. Some early works [38, 39, 41] focus on example-based method that
searches themost similar images in a dataset to the input hand image, but cannotwork
well in high- dimensional space. Inspired by the pioneering work [43] of human pose
estimation, [15, 18, 19, 47, 50, 63, 68] apply random forests and their variants as a
discriminativemodel. In [68], the authors propose to use the random forest to directly
regress for the hand joint angles from depth images, in which a set of spatial-voting
pixels cast their votes for hand pose independently and their votes are clustered into
a set of candidates. The optimal one is determined by a verification stage with a
hand model. A similar method is presented in [52], which further adopts transfer
learning to make up for the inconsistency between synthesis and real-world data. As
the estimations from random forest can be ambiguous for complex hand postures,
pre-learned hand pose priors are sometimes utilized to better fuse independently
predicted hand joint distributions [17, 20]. In [47], the cascaded pose regression
algorithm [6] is adapted to the problem of hand pose estimation. Particularly, the
authors propose to first predict the root joints of the hand skeleton, based on which
the rest joints are updated. In thisway, the hand pose constraints can bewell preserved
during pose regression.

Limited by the handcrafted features, data-drivenmethods based on random forests
are difficult to outperform current CNN-based methods in hand pose estimation.
With the success of deep neural networks in various computer vision tasks and the
emergence of large hand pose datasets [47, 50, 58, 72, 73], many of the recent 3D
hand pose estimation methods are based on CNNs [3, 4, 9, 10, 12, 24, 27, 58, 61,
71]. However, deep learning based methods require large amount of training data to
train the deep neural network. In addition, it is not easy to explicitly utilize the hand
model as a prior in the neural networks.

Tompson et al. [58] first propose to apply CNNs in 3D hand pose estimation.
They use CNNs to generate heat-maps representing the 2D probability distributions
of hand joints in the depth image, and recover 3Dhandpose fromestimated heat-maps
and corresponding depth values using model-based inverse kinematics. Oberweger
et al. [24, 26] instead directly regress 3D coordinates of hand joints or a lower
dimensional embedding of 3D hand pose from depth images. They also propose a
feedback loop network [27] to iteratively refine the 3D hand pose. Zhou et al. [74]
propose to directly regress hand model parameters from depth images. Sinha et
al. [44] extract activation features from CNNs to synchronize hand poses in nearest
neighbors by using the matrix completion algorithm. Ye et al. [71] propose a spatial
attention network with a hierarchical hybrid method for hand pose estimation. Guo
et al. [12] propose a region ensemble network that directly regresses 3D hand pose
from depth images. Chen et al. [3] improve [12] through iterative refinement. Wan
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et al. [62] propose a dense pixel-wise estimation method that applies an hourglass
network to generate 2D and 3D heat-maps as well as 3D unit vector fields, from
which the 3D hand joint locations can be inferred. Moon et al. [22] propose a voxel-
to-voxel prediction method that estimates per-voxel probability in a 3D volume of
each hand joint using a 3D CNN. Rad et al. [36] consider the problem of transfer
learning between synthetic images and real images. Theymap the real image features
to the feature space of synthetic images. This method can leverage the large synthetic
hand pose dataset and limited real data with hand pose annotation.

16.3 Point-Set-Based Holistic Regression for 3D Hand Pose
Estimation

16.3.1 Overview

In this chapter, we propose a point-set-based holistic regression method for 3D hand
pose estimation from single depth images, as illustrated in Fig. 16.2. Specifically,
we first detect hand region from the original input depth image, then crop the hand
from the original image. The cropped hand depth image is converted to a set of 3D
points; the 3D point cloud of the hand is downsampled and normalized in an oriented
bounding box to make our method robust to various hand orientations. The hierar-
chical PointNet [33] takes the 3D coordinates of normalized points attached to the
estimated surface normals as the input, and holistically regresses a low-dimensional
representation of the 3D hand joint locations which are then recovered in the cam-
era coordinate system. We estimate the surface normals by performing PCA on the
nearest neighboring points of the query point in the sampled point cloud to fit a local

Fig. 16.2 Overview of our proposed Hand PointNet-based method with holistic regression for
3D hand pose estimation in single depth images. We normalize the 3D point cloud in an oriented
bounding box (OBB) to make the network input robust to global hand rotation. The 3D coordinates
of sampled and normalized points attachedwith estimated surface normals are fed into a hierarchical
PointNet [33], which is trained in an end-to-end manner, to extract hand features and regress 3D
joint locations. The fingertip refinement PointNet can further improve the estimation accuracy of
fingertip locations
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plane [13]. The fingertip locations are further refined by a basic PointNet, which
takes the neighboring points of the estimated fingertip location as input.

16.3.2 PointNet Revisited

Basic PointNet: PointNet [32] is a type of neural network that directly takes a
set of points as the input and is able to extract discriminative features of the point
cloud. Each input point xi ∈ R

D (i = 1, . . . , N ) is mapped into a C-dimensional
feature vector through multi-layer perceptron (MLP) networks, of which the weights
across different points are shared. A vector max operator is applied to aggregate
N point feature vectors into a global feature vector that is invariant to permuta-
tions of input points. Finally, the C-dimensional global feature vector is mapped
into an F-dimensional output vector using MLP networks. It has been proved
in [32] that PointNet has the ability to approximate arbitrary continuous set func-
tions, given enough neurons in the network. Mathematically, given a set of input
points X = {xi }Ni=1 ∈ X , a continuous set function f : X → R

F can be arbitrarily
approximated by the PointNet, as proved in [32].

f (x1, x2, . . . , xN ) ≈ γ

(
MAX
i=1,...,N

{h (xi )}
)

, (16.1)

where γ and h are MLP networks, MAX is a vector max operator.

Hierarchical PointNet: Themain limitation of the basic PointNet is that it cannot
capture local structures of the point cloud in a hierarchical way. To address this prob-
lem, Qi et al. [33] proposed a hierarchical PointNet which has better generalization
ability due to its hierarchical feature extraction architecture. In this work, we exploit
the hierarchical PointNet for 3D hand pose estimation. The hierarchical PointNet
consists of L point set abstraction levels. At the lth level (l = 1, . . . , L − 1), Nl

points are selected as centroids of local regions; the k-nearest neighbors of the cen-
troid point are grouped as a local region; a basic PointNet with shared weights across
different local regions is applied to extract a Cl-dimensional feature of each local
region, which represents the geometry information of the local region; Nl centroid
points with d-dimensional coordinates and Cl-dimensional features are fed into the
next level. At the last level, a global point cloud feature is abstracted from the whole
input points of this level by using a basic PointNet.

16.3.3 Point Cloud Normalization

The hand depth image is first converted to a set of 3D points using the depth camera’s
intrinsic parameters. The 3D point set is then downsampled to N points.
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One challenge of 3D hand pose estimation is the large variation in global ori-
entation of the hand. To make our method robust to various hand orientations, we
normalize the hand point cloud. The objective for hand point cloud normalization
is to transform the original hand point cloud into a canonical coordinate system in
which the global orientations of the transformed hand point clouds are as consistent
as possible. This normalization step ensures that our method is robust to variations
in hand global orientations.

In this work, we propose a simple yet effective method to normalize the 3D hand
point cloud in OBB, instead of applying any additional networks to estimate the
hand global orientation or transform the hand point cloud. OBB is a tightly fitting
bounding box of the input point cloud [60]. The orientation of OBB is determined
by performing principal component analysis (PCA) on the 3D coordinates of input
points. The x , y, z axes of the OBB coordinate system (C.S.) are aligned with the
eigenvectors of input points’ covariance matrix, which correspond to eigenvalues
from largest to smallest, respectively. The original points in camera C.S. are first
transformed into OBB C.S., then these points are shifted to have zero mean and
scaled to a unit size:

pobb = (
Rcam
obb

)T · pcam,

pnor = (
pobb − p̄obb

)/
Lobb,

(16.2)

where Rcam
obb is the rotation matrix of the OBB in camera C.S.; pcam and pobb are

3D coordinates of point p in camera C.S. and OBB C.S., respectively; p̄obb is the
centroid of point cloud

{
pobbi

}N

i=1; Lobb is the maximum edge length of OBB; pnor

is the normalized 3D coordinate of point p in the normalized OBB C.S.
During training, the ground truth 3D joint locations in camera C.S. also apply the

transformation in Eq.16.2 to obtain the 3D joint locations in the normalized OBB
C.S. During testing, the estimated 3D joint locations in the normalized OBB C.S.
φ̂
nor

m are transformed back to those in camera C.S. φ̂
cam

m (m = 1, . . . , M):

φ̂
cam

m = Rcam
obb ·

(
Lobb · φ̂

nor

m + p̄obb
)

. (16.3)

16.3.4 Holistic Regression Network

We design a 3D hand pose regression network which can be trained in an end-to-
end manner. The input of the hand pose regression network is a set of normalized
points Xnor = {

xnori

}N

i=1 = {(
pnori , nnor

i

)}N

i=1, where pnori is the 3D coordinate of
the normalized point, and nnor

i is the corresponding 3D surface normal, which is
approximated by performing PCA on the nearest neighboring points of the query
point in the sampled point cloud to fit a local plane [13]. These N points are then
fed into a hierarchical PointNet [33], which has three point set abstraction levels.
The first two levels group input points into N1 = 512 and N2 = 128 local regions,
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respectively. Each local region contains k = 64 points. These two levels extract
C1 = 1280- and C2 = 256-dimensional features for each local region, respectively.
The last level extracts a 1024-dimensional global feature vector which is mapped to
an F-dimensional output vector by three fully connected layers. Each MLP network
is composed of several fully connected layers. All fully connected layers are followed
by batch normalization and ReLU except for the last layer of the last MLP network.
We do not use dropout layer in our implementation.

Since the degree of freedom of human hand is usually lower than the dimen-
sion of 3D hand joint locations (3 × M), the PointNet is designed to output an
F-dimensional (F < 3 × M) representation of hand pose to enforce hand pose con-
straint and alleviate infeasible hand pose estimations, which is similar to [26]. In the
training phase, given T training samples with the normalized point cloud and the
corresponding ground truth 3D joint locations

{(
Xnor

t ,Φnor
t

)}T
t=1, we minimize the

following objective function:

w∗ = argmin
w

T∑
t=1

∥∥αt − F
(
Xnor

t ,w
)∥∥2 + λ‖w‖2 (16.4)

where w denotes network parameters;F represents the hand pose regression Point-
Net; λ is the regularization strength; αt is an F-dimensional projection of Φnor

t .
By performing PCA on the ground truth 3D joint locations in the training dataset,
we can obtain αt = ET · (

Φnor
t − u

)
, where E denotes the principal components,

and u is the empirical mean. During testing, the estimated 3D joint locations are
reconstructed from the network outputs:

Φ̂
nor = E · F (

Xnor ,w∗) + u. (16.5)

16.3.5 Fingertip Refinement Network

To further improve the estimation accuracy of fingertip locations, we design a finger-
tip refinement network which takes K nearest neighboring points of the estimated
fingertip location as input and outputs the refined 3D location of the fingertip. Note
that we only refine fingertips for straightened fingers. We first check each finger
is bent or straightened by calculating joint angles using the joint locations. For the
straightened finger, we find the K nearest neighboring points of the fingertip location
in the original point cloud with upper limit of point number to ensure real-time per-
formance. The K nearest neighboring points are then normalized in OBB, which is
similar to the method in Sect. 16.3.3. A basic PointNet takes these normalized points
as input and outputs the refined fingertip 3D location. During the training stage, we
use the ground truth joint locations to calculate joint angles; for the fingertip loca-
tion used in the nearest neighbor search, we add a 3D random offset within a radius
of r = 15mm to the ground truth fingertip location in order to make the fingertip
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refinement network more robust to inaccurate fingertip estimations. During the test-
ing stage, we use joint locations estimated by the hand pose regression network for
calculating joint angles and searching nearest neighboring points.

16.4 Point-Set-Based Point-Wise Regression for 3D Hand
Pose Estimation

16.4.1 Overview

In Sect. 16.3, we propose to holistically regress 3D coordinates of hand joints from
point sets with the help of PointNet [32, 33]. However, the direct mapping from
input representation to 3D hand pose is highly nonlinear and difficult to learn, which
makes the holistical regression method difficult to achieve high accuracy [57]. An
alternative way is to generate a set of heat-maps representing the probability distribu-
tions of joint locations on 2D image plane [58], which has been successfully applied
in 2D human pose estimation [23, 65]. However, it is nontrivial to lift 2D heat-maps
to 3D joint locations [30, 37, 56]. One straightforward solution is to generate vol-
umetric heat-maps using 3D CNNs, but this solution is computationally inefficient.
Wan et al. [62] recently propose a dense pixel-wise estimation method. Apart from
generating 2D heat-maps, this method estimates 3D offsets of hand joints for each
pixel of the 2D image. However, this method suffers from two limitations. First, as
it regresses pixel-wise 3D estimations from 2D images, the proposed method may
not fully exploit the 3D spatial information in depth images. Second, generating
3D estimations for background pixels of the 2D image may distract the deep neural
network from learning effective features in the hand region.

To tackle these problems, we aim at regressing point-wise estimations directly
from 3D point cloud. We define point-wise estimations as the offsets from the 3D
points in the point cloud to the hand joint locations (Fig. 16.3).

Compared with the holistic regression method proposed in Sect. 16.3 that holisti-
cally regresses 3D hand pose parameters from point cloud using a holistic regression
PointNet, this point-wise regression method estimates the point-wise closeness and
offset directions to hand joints from the input point cloud using a stacked point-
to-point regression PointNet, which is able to capture local evidence for estimating
accurate 3D hand pose.

16.4.2 Point-Wise Estimation Targets

The point-wise estimations can be defined as the offsets from points to hand joint
locations.However, estimating offsets for all points in the point set is unnecessary and
maymake the per-point vote noisy. Thus, we only estimate offsets for the neighboring
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Fig. 16.3 Overview of our proposed point-wise regression method for 3D hand pose estimation
from single depth images. We propose to directly take N sampled and normalized 3D hand points
as network input and output a set of heat-maps as well as unit vector fields on the input point cloud,
reflecting the closeness and directions from input points to J hand joints, respectively. From the
network outputs, we can infer point-wise offsets to hand joints and estimate the 3D hand pose with
post-processing. We apply the hierarchical PointNet [33] with two-stacked network architecture
which feeds the output of onemodule as input to the next. For illustration purpose, we only visualize
the heat-map, unit vector field and offset field of one hand joint

points of the hand joint. We define the element in the target offset fields V for point
pi (i = 1, . . . , N ) and ground truth hand joint location φ∗

j ( j = 1, . . . , J ) as

V
(
pi ,φ

∗
j

) =
{

φ∗
j − pi pi ∈ PK

(
φ∗

j

)
and

∥∥φ∗
j − pi

∥∥ ≤ r,
0 otherwise; (16.6)

wherePK
(
φ∗

j

)
is a set of K nearest neighboring points (KNN) of the ground truth

hand joint location φ∗
j in the point set Pobb; r is the maximum radius of ball for

nearest neighbor search; in our implementation,we set K as 64 and r as 80mm
/
Lobb.

We combine KNN with ball query for nearest neighbor search in order to guarantee
that both the number of neighboring points and the scale of neighboring region are
controllable.

However, it is difficult to train a neural network that directly generates the offset
field due to the large variance of offsets. Similar to [62], we decompose the target
offset fieldsV into heat-maps H reflecting per-point closeness to hand joint locations:

H
(
pi ,φ

∗
j

) =
{
1 − ∥∥φ∗

j − pi
∥∥/

r pi ∈ PK
(
φ∗

j

)
and

∥∥φ∗
j − pi

∥∥ ≤ r,
0 otherwise;

(16.7)
and unit vector fields U reflecting per-point directions to hand joint locations:

U
(
pi ,φ

∗
j

) =
{(

φ∗
j − pi

)/∥∥φ∗
j − pi

∥∥ pi ∈ PK
(
φ∗

j

)
and

∥∥φ∗
j − pi

∥∥ ≤ r,
0 otherwise.

(16.8)
Different from [62] that generates heat-maps and unit vector fields on 2D images,
our proposed method generates heat-maps and unit vector fields on the 3D point
cloud, which can better utilize the 3D spatial information in the depth image. In
addition, generating heat-maps and unit vector fields on 2D images with large blank
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background regions may distract the neural network from learning effective features
in the hand region. Although this problem can be alleviated by multiplying a binary
handmask in the loss function, ourmethod is able to concentrate on learning effective
features of the hand point cloud in a natural way without using any mask, since the
output heat-maps and unit vector fields are represented on the hand point cloud.

16.4.3 Point-Wise Regression Network

Weexploit the hierarchical PointNet [33] for learning heat-maps and unit vector fields
on 3Dpoint cloud.Different from the hierarchical PointNet for point set segmentation
adopted in [33], our proposed point-to-point regression network has a two-stacked
network architecture in order to better capture the 3D spatial information in the 3D
point cloud.

As illustrated in Fig. 16.4, the input of the network is a set of d-dimensional
coordinates with Cin-dimensional input features, i.e., 3D surface normals that are
approximated by fitting a local plane for the nearest neighbors of the query point in
the point cloud. Similar to the network architecture for set segmentation proposed
in [33], a single module of our network extracts a global feature vector from point
cloud using three set abstraction levels and propagates the global feature to point
features for original points using three feature propagation levels. In the feature
propagation level, we use nearest neighbors of the interpolation point in Nl points to
interpolate features for Nl−1 points [33]. The interpolated Cl-dimensional features
of Nl−1 points are concatenated with the corresponding point features in the set
abstraction level and are mapped to Cl−1-dimensional features using per-point MLP,
of which the weights are shared across all the points. The heat-map and the unit
vector field are generated from the point features for the original point set using
per-point MLP.

Fig. 16.4 An illustration of a single network module, which is based on the hierarchical Point-
Net [33]. Here, “SA” stands for point set abstraction layers; “FP” stands for feature propagation
layers; “MLP” stands for multi-layer perceptron network. The dotted shortcuts denote skip links
for feature concatenation



366 L. Ge et al.

Inspired by the stacked hourglass networks for human pose estimation [23], we
stack two hierarchical PointNet modules end-to-end to boost the performance of the
network. The two hierarchical PointNet modules have the same network architecture
and the same hyper-parameters, except for the hyper-parameter in the input layer. The
output heat-map and unit vector field of the first module are concatenated with the
input and output point features of the first module as the input into the second hierar-
chical PointNet module. For real-time consideration, we only stack two hierarchical
PointNet modules.

We apply intermediate supervision when training the two-stacked hierarchical
PointNet. The loss function for each training sample is defined as

L =
T∑
t=1

J∑
j=1

N∑
i=1

[(
Ĥ (t)
i j − H

(
pi ,φ

∗
j

))2 +
∥∥∥Û (t)

i j − U
(
pi ,φ

∗
j

)∥∥∥2
]
, (16.9)

where T is the number of stacked network modules, in this work T = 2; Ĥ (t)
i j and

Û
(t)
i j are elements in the heat-maps and unit vector fields estimated by the t th net-

work module, respectively; H
(
pi ,φ

∗
j

)
and U

(
pi ,φ

∗
j

)
are elements in the ground

truth heat-maps and ground truth unit vector fields defined in Eqs. 16.7 and 16.8,
respectively.

16.4.4 Hand Pose Inference

During testing, we infer the 3D hand pose from the heat-maps Ĥ and the unit vector
fields Û estimated by the last hierarchical PointNet module. According to the defini-
tion of offset fields, heat-maps and unit vector fields in Eqs. 16.6–16.8, we can infer
the offset vector V̂ i j from point pi to joint φ̂ j as:

V̂ i j = r ·
(
1 − Ĥi j

)
· Û i j . (16.10)

According to Eq. 16.6, only the offset vectors for the neighboring points of the
hand joint are used for hand pose inference, which can be found from the estimated
heat-map reflecting the closeness of points to the hand joint. We denote the estimated
heat-map for the j th hand joint as Ĥ j that is the j th column of Ĥ . We determine the
neighboring points of the j th hand joint as the points corresponding to the largest M
values of the heat-map Ĥ j . The indices of these points in the point set are denoted as
{im}Mm=1. The hand joint location φ̂ j can be simply inferred from the corresponding

offset vectors V̂ im j and 3D points pim (m = 1, . . . , M) using weighted average:

φ̂ j =
∑M

m=1
wm

(
V̂ im j + pim

)/∑M

m=1
wm, (16.11)
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where wm is the weight of the candidate estimation. In our implementation, we set
the weight wm as the corresponding heat-map value Ĥim j , and set M as 25.

16.4.5 Post-processing

There are two issues in our point-to-point regression method. The first issue is that
the estimation is unreliable when the divergence of the M candidate estimations are
large in 3D space. This is usually caused by missing depth data near the hand joint.
The second issue is that there is no explicit constraint on the estimated 3D hand pose,
although the neural network may learn joint constraints in the output heat-maps and
unit vector fields.

To tackle the first issue, when the divergence of the M candidate estimations is
larger than a threshold, we replace the estimation result with the result of the holistic
regression method that directly regresses 3D coordinates of hand joints, since the
holistic regression method does not have this issue. In order to save the inference
time, instead of training a separate PointNet for direct hand pose regression, we
add three fully connected layers for direct hand pose regression to the pretrained
two-stacked hierarchical PointNet. The three fully connected layers are trained to
directly regress the 3D coordinates of hand joints from the features extracted by the
second hierarchical PointNetmodule. The divergence of theM candidate estimations
is defined as the sum of standard deviations of x , y, and z coordinates of candidate
estimations. In our implementation, we set the divergence threshold as 7.5mm

/
Lobb.

Experimental results in Sect. 16.5 will show that although only a small portion of the
hand joint estimations requires to be replaced by the direct regression results, this
replacement strategy can improve the estimation accuracy to some extent.

To tackle the second issue, we explicitly constrain the estimated 3D hand pose Φ̂

on a lower dimensional space learned by principal component analysis (PCA). By
performing PCA on the ground truth 3D joint locations in the training dataset, we can
obtain the principal components E = [e1, e2, . . . , eH ] (H < 3J ) and the empirical
mean u. The constrained 3Dhand pose can be calculated using the following formula:

Φ̂cons = E · ET ·
(
Φ̂ − u

)
+ u. (16.12)

In our implementation, we set the number of principle components H as 30. Finally,
the estimated 3D hand joint locations in the normalized OBB C.S. are transformed
back to joint locations in the camera C.S. Φ̂

cam
.
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16.5 Experiments

We evaluate our proposed methods on three public hand pose datasets: NYU [58],
MSRA [47], and ICVL [50].

The NYU dataset [58] contains more than 72K training frames and 8K testing
frames. Each frame contains 36 annotated joints. Following previous works [10, 27,
58], we estimate a subset of M = 14 joints. We segment the hand from the depth
image using randomdecision forest (RDF) similar to [50]. Since the segmented hands
may contain arms with various lengths, we augment the training data with random
arm lengths.

The MSRA dataset [47] contains more than 76K frames from 9 subjects. Each
subject contains 17 gestures. In each frame, the hand has been segmented from the
depth image and the ground truth contains M = 21 joints. The neural networks are
trained on 8 subjects and tested on the remaining subject. We repeat this experiment
9 times for all subjects and report the average metrics. We do not perform any data
augmentation on this dataset.

The ICVL dataset [50] contains 22K training frames and 1.6K testing frames.
The ground truth of each frame contains M = 16 joints. We apply RDF for hand
segmentation and augment the training data with random arm lengths as well as
random stretch factors.

We evaluate the hand pose estimation performance with two metrics: the first
metric is the per-joint mean error distance over all test frames; the second metric is
the proportion of good frames in which the worst joint error is below a threshold,
which is proposed in [54] and is more strict.

All experiments are conducted on a workstation with two Intel Core i7 5930K,
64GB of RAM and an NVIDIA GTX1080 GPU. The deep neural networks are
implemented within the PyTorch framework.

16.5.1 Holistic Regression Versus Point-Wise Regression

To evaluate our proposed point-wise regression method, we compare our holistic
regression method proposed in Sect. 16.3 with our point-wise regression method
proposed in Sect. 16.4. As shown in Fig. 16.5 (left), the point-wise regressionmethod
outperforms the holistic regression method when the error threshold is smaller than
45mm. But when the error threshold is larger than 45mm, the point-wise regression
method performs worse than the holistic regression method. This may be caused
by the large divergence of the candidate estimations in some results, as described
in Sect. 16.4.5. By combining the point-wise method with the holistic regression
method as described in Sect. 16.4.5, the estimation accuracy can be further improved,
as shown in Fig. 16.5 (left). Furthermore, the performance of the combinationmethod
is superior to or onparwith the holistic regressionmethodover all the error thresholds.
In this experiment, only 7.9% of joint locations estimated by point-wise regression
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Fig. 16.5 Self-comparison of different methods on NYU dataset [58]. Left: the comparison of our
point-wise regression method and holistic regression method on the proportion of good frames.
We use two-stacked network for point-wise regression in this figure. Right: the impact of point-to-
point regressionmethod, stacked network architecture, and post-processingmethods on the per-joint
mean error distance (R: root, T: tip). “P2P Reg.” stands for point-to-point regression. The overall
mean error distances are shown in parentheses

method are replaced by the results of holistic regression method, which indicates that
the estimation results are dominated by the point-wise regression method, and the
holistic regression method is complementary with the point-wise regression method.
In addition, adding the PCA constraint can further improve the estimation accuracy
slightly.

We also evaluate the impact of the stacked network architecture for hierarchical
PointNet. As shown in Fig. 16.5 (right), the two-stacked network evidently performs
better than the single network module, which indicates the importance of the stacked
network architecture on our point-wise regression method. We also observe that the
mean error distance on finger tips are larger than those on the other joints. One
explanation is that the fingertips are relatively small compared to other hand parts,
thus the accurate 3D locations of fingertips are difficult to predict.

16.5.2 Comparisons with Existing Methods

We compare our proposed holistic regression method and point-wise regression
method with 16 existing methods: latent random forest (LRF) [50], hierarchical
regression with random forest (RDF, Hierarchical) [47], local surface normal based
random forest (LSN) [63], collaborative filtering [5], 2D heat-map regression using
2D CNNs (Heat-map) [58], feedback loop based 2D CNNs (Feedback Loop) [27],
hand model parameter regression using 2D CNNs (DeepModel) [74], Lie group
based 2D CNNs (Lie-X) [69], improved holistic regression with a pose prior using
2D CNNs (DeepPrior++) [24], hallucinating heat distribution using 2D CNNs (Hal-
lucination Heat) [4], multi-view CNNs [9], 3D CNNs [10], crossing nets using deep
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generative models (Crossing Nets) [61], region ensemble network (REN) [12], pose-
guided structured REN (Pose-REN) [3], and dense 3D regression using 2D CNNs
(DenseReg) [62]. We evaluate the proportion of good frames over different error
thresholds, the per-joint mean error distances as well as the overall mean error dis-
tance on NYU [58], ICVL [50] and MSRA [47] datasets, as presented in Figs. 16.6,
16.7, and 16.8, respectively.

As can be seen in Figs. 16.6, 16.7, and 16.8, our method can achieve superior
performance on these three datasets. On NYU [58] and ICVL [50] datasets, our
method outperforms other methods over almost all the error thresholds and achieves
the smallest overall mean error distances on these two datasets. Specifically, on
NYU dataset [58], when the error threshold is between 15 and 20mm, the propor-
tions of good frames of our point-wise regression method is about 15% better than
DenseReg [62] and 20% batter than Pose-REN [3]; on ICVL dataset [50], when the
error threshold is between 10 and 15mm, the proportion of good frames of our point-
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Fig. 16.8 Comparison with existing methods on MSRA [47] dataset. Left: the proportions of
good frames and the overall mean error distances (in parentheses). Right: the per-joint mean error
distances and the overall mean error distances (R: root, T: tip)

wise regression method is more than 10% better than those of DenseReg [62] and
Pose-REN [3] methods. On MSRA dataset [47], our methods outperform most of
other methods over almost all the error thresholds. These experimental results show
that our PointNet-based methods perform better than the methods using 2D image or
3D volume as the input. Our PointNet-based methods can extract geometric features
of the hand directly from the 3D point cloud, which are more efficient than 2D or
3D CNNs.

16.5.3 Runtime and Model Size

The runtime of our holistic regression method is 20.5ms per frame on average,
including 1.7ms for farthest point sampling (FPS), 6.5ms for surface normal approx-
imation, 9.2ms for the hand pose regression network forward propagation, 3.1ms for
fingertip refinement. Thus, our holistic regression method runs in real time at about
48 fps. In addition, the number of parameters in the hand pose regression network is
about 2.3 × 106 (2.3M). The number of parameters in the fingertip refinement net-
work is about 1.4 × 105 (142K). In total, there are about 2.5 × 106 (2.5M) param-
eters in these two networks. These parameters are stored in 32-bit float and the total
size of parameters is 9.8MB.

The runtime of our point-wise regression method is 23.9ms per frame on average,
including 8.2ms for point sampling and surface normal calculation, 15.1ms for
the two-stacked hierarchical PointNet forward propagation, 0.6ms for hand pose
inference and post-processing. Thus, our point-wise regression method runs in real
time at about 41.8 fps. In addition, themodel size of the network is 17.2MB, including
11.1MB for the point-wise regression network which is a two-stacked hierarchical
PointNet and 6.1MB for the additional holistic regression module which consists of
three fully connected layers.
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16.6 Conclusions

In this chapter, we propose a novel approach that directly takes the 3D point cloud
of hand as the network input for 3D hand pose estimation. For the network output,
we propose two approaches: holistic regression method and point-wise regression
method. In the holistic regression method, we holistically regress 3D hand joint
locations. In the point-wise regression method, we propose to output heat-maps
as well as unit vector fields on the point cloud, reflecting the per-point closeness
and directions to hand joints. We infer 3D hand joint locations from the estimated
heat-maps and unit vector fields using weighted fusion. Our proposed point-wise
regression method can also be easily combined with the holistic regression method
to achieve more robust performance. Experimental results on three challenging hand
pose datasets show that our method achieves superior accuracy performance in real
time.
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Chapter 17
RGB-D Object Classification for
Autonomous Driving Perception

Cristiano Premebida, Gledson Melotti and Alireza Asvadi

Abstract Autonomous driving systems (ADS) comprise, essentially, sensory per-
ception (including AI-ML-based techniques), localization, decision-making, and
control. The cornerstone of an ADS is the sensory perception part, which is involved
in most of the essential and necessary tasks for safe driving such as sensor-fusion,
environment representation, scene understanding, semantic segmentation, object
detection/recognition, and tracking.Multimodal sensor-fusion is an established strat-
egy to enhance safety and robustness of perception systems in autonomous driving.
In this work, a fusion of data from color-camera (RGB) and 3D-LIDAR (D-distance),
henceforth designated RGB-D, will be particularly addressed, highlighting use-cases
on road-users classification using deep learning. 3D-LIDAR data, in the form of
point-cloud, can be processed directly by using the PointNet network or, alterna-
tively, by using depth-maps, known as range-view representation, which is a suitable
representation to train state-of-the-art Convolutional Neural Network (CNN) mod-
els and to make the combination with RGB-images more practical. Experiments are
carried out using the KITTI dataset on object classification, i.e., vehicles, pedestri-
ans, cyclists. We report extensive results in terms of classification performance of
deep-learning models using RGB, 3D, and RGB-D representations. The results show
that RGB-Dmodels have better performance in comparison with 3D and range-view
models but, in some circumstances RGB-only achieved superior performance.
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17.1 Introduction

RGB-D data analysis and processing in mobile robotics and some autonomous sys-
tems applications have been, traditionally, related to the off-the-shelf RGB-D sen-
sors, e.g. MS Kinect and Asus Xtion camera-sensors. The substantial majority of
the RGB-D machine/computer vision applications and datasets are based on these
standalone sensor technologies. In terms of use-cases and applications, as described
in [4, 6], RGB-D vision systems can be involved in one or more of the following:
object detection and tracking, human activity analysis, object and scene recogni-
tion, SLAM (Simultaneous Localization And Mapping), localization, hand gesture
analysis. These applications are related to robotics domain and, most of them, to
autonomous driving as well.

In autonomous and automated driving, to date, there is no suitable standalone
RGB-D technology similar to the ones used in mobile robots. Although stereo sys-
tems can estimate distance, actually they do not measure distance like radars or
LIDARs sensors. Therefore, in order to develop a suitable RGB-D- based perception
system for autonomous driving, ADAS (Advanced Driver-Assistance Systems) or
related applications in outdoors, a color monocular camera and a LIDAR sensor—
both mounted onboard the vehicle—can be considered. In such a multi-sensor sys-
tem, the camera contributes to RGB components and D (distance/depth) data comes
from the LIDAR sensor. The use of LIDAR in combination with a camera to provide
an RGB-D representation of the environment brings extra challenges, because the
extrinsic and intrinsic (for the camera) calibration parameters are necessary and, on
the other hand, D-channel’s data is sparse—as shown in Fig. 17.1 (second row) and
described in Sect. 17.2.

Sensor technology, together with sensor-fusion and inference algorithms (e.g.,
Bayesian networks, machine learning), play an important role in autonomous driv-
ing perception. Although cameras are the most commonly used sensors, deployed
as monocular or stereo systems, they have some disadvantages such as strong sen-
sitivity to external illumination variations, limited field of view, inability to directly
measure distance, or dimension of detected objects [3]. To compensate and comple-
ment cameras, LIDARs and radar sensors are the most adopted solution in automated
and self-driving vehicles [5, 10, 13, 16, 22]. But there are some drawbacks as well.
Besides the cost, current LIDAR technologies depend on moving parts (a scanning
mechanism), and their performance degrades in harshweather conditions (e.g., strong
fog, rain, and snow). Radar, on the other hand, is unable to provide high-resolution
of detected obstacles which hinders recognition.

The implications of sensor-fusion in autonomous driving, for example, camera
and LIDAR perception systems, are positive in the sense that safety and reliability
increase but, such systems need to cope with data alignment, synchronization, and
calibration [12]. A number of camera-LIDAR fusion approaches have been reported
in the literature. For example, Caltagirone et al. [5] proposed amultimodal system for
road detection using fully convolutional neural networks (FCN), camera data, and
LIDAR-based range-view representation. They proposed cross fusion FCN archi-
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Fig. 17.1 Sparseness of LIDAR point-cloud, as projected to the image-plane, can be verified in the
second row. A dense (non-sparse) LIDAR depth-map, in the third row, can be generated from the
original point-cloud. This is an example of range view (RV) map representation. Note, however,
that some unsampled pixels are still present

tecture to learn integration levels using the cross connections between the camera
and LIDAR processing pipelines. Although existing works on camera (or vision)-
based perception have a significant parcel in the current perception systems and
ADAS developments, multimodal solutions using camera together with LIDAR are
becoming more and more frequent as shown in the recent survey [10].

Perception systems for autonomous driving rely, basically, on sensor data and
AI/ML techniques to interpret vehicles’ surrounding environments in tasks related
to object detection (e.g., pedestrians, cyclists, vehicles detection), road marks and
lane detection, traffic sign recognition, obstacle/object detection and tracking, among
others [9, 11, 26]. Recently, thework-horse technique for supervised object detection
and recognition is deep learning [10, 13]. Convolutional Neural Networks (CNNs) is
a deep-learningmethodwhich gained remarkable popularity due to impressive image
classification performance and its capability of “automatic” feature-map extrac-
tion [15]. Under appropriate conditions, i.e., if a LIDAR-mapping representation
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is provided, a CNN can be directly used on LIDAR data as well [1, 2, 17, 19, 27].
The scientific community normally distinguishes the LIDAR-based representations
into two types, range view (RV) and bird’s eye view (BV) [8, 21]. The LIDAR-
based representation used in this work belongs to the RV category hence, the raw
LIDAR data is processed to create a so-called distance/depth-map (DM)—as shown
in Fig. 17.1—which can then be fed into a CNN architecture. On the other hand, deep
NNs which cope with 3D point-clouds directly are available such as PointNet [7]
and LaserNet [21]. However, by transforming the LIDAR data into a 2D image (i.e.,
RV representation) the LIDAR-camera data integration/fusion can be performed in
a straightforward manner, allowing the development of different fusion strategies.

This chapter addresses RGB-D object classification using CNN networks imple-
mented as supervised classifiers, where RGB-D is obtained by combining data from
a monocular camera and a LIDAR sensor. The test-case described in this work is a
three-class object classification problem, where the categories are cars, cyclists, and
pedestrians. Many experiments were conducted on a classification dataset, built up
from the KITTI object detection database [12], to assess CNN-models trained under
different conditions in terms of input data individually, i.e., RGB, 3D, and DM,
and a RGB+D early fusion strategy. Results on object classification, using single-
sensor and RGB-D (camera-Lidar) deep-NN models, are reported in terms of ROC
(Receiver Operating Characteristic) curves, confusion matrices, and F-score; com-
parative results using two 8-bit decoding techniques for DMgeneration are discussed
as well.

The remaining of this chapter is organized as follows. 3D LIDAR-based depth-
map encoding (in the form of a RV map) using Bilateral filtering is described in
Sect. 17.2. The learning models and the experimental results are reported and dis-
cussed in Sect. 17.3. Finally, Sect. 17.4 concludes this chapter.

17.2 Depth-Map Encoding for 3D-LIDAR Range-View
Representation

A 3D-LIDAR is, in simple terms, a sensing technology composed of a set of laser
emitters and receptors, a rotating mechanism, and a detection firmware, which out-
puts a set of measurement distance/range values, as well as intensity (also known as
reflection returns). Most of the current state-of-the-art LIDAR sensors allow high-
resolution and full-covered 360◦ field of view. A 360◦ LIDAR, for example, the
Velodyne with 64 channels, when mounted on the roof of a vehicle allows the obser-
vation of the scenery in the form of a 3D point-cloud, as shown in Fig. 17.2 (middle
row).

In this chapter, the point-cloud (PC) generated by the LIDAR is defined as the
set of points PC = {pc1,pc2, . . . ,pcn}, in rectangular coordinates, where each ele-
ment pci = (x, y, z)i , i = 1, . . . , n, represents the position of a point belonging to
PC . In order to facilitate and allow direct processing of PC into a CNN classi-
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Fig. 17.2 Example of an image obtained through a passive sensor (color camera) in the first row,
while the second row shows, for the same scene, the point-cloud obtained by a 3D-LIDAR (Velodyne
HDL-64E sensor). The last row shows the projection of the point-cloud in the 2D image-plane. The
camera and LIDAR data pictured here are based on the KITTI database [12]

fier an “image-like”, also called range view (RV), representation of the PC is very
convenient. Therefore, assuming the calibration matrices between a LIDAR and an
RGB camera, and the camera intrinsic parameters, are known then a set of points P
can be obtained by projecting the 3D point-cloud to the image-plane. Let us denote
P = {p1,p2, . . . ,pn} with pi = (u, v, r)i , where (u, v)i represents the position in
pixel coordinates and ri is the range value (range-distance variable) as measured by
the LIDAR. The position of pi , in pixel coordinates, is calculated according to

⎡
⎣
u
v
1

⎤
⎦

i

= P (i)
rect R

(0)
rect T

cam
lidarpci (17.1)

where
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• u and v represent the position pixel coordinates;
• Pi

rect is projection matrix;
• R(0)

rect is rectifying rotation matrix;
• T cam

lidar is the matrix containing the matrix of rotation and translation (LIDAR to
camera).

Equation17.1 can be expanded as follows:
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(17.2)
where fu and fv are focal lengths, cu and cv are principal point, and b(i)

x denotes
a baseline (in meters) with respect to reference camera zero. Figure17.2 shows an
example of the 3D point-cloud projected in the 2D image-plane. In the first row,
there is a 2D image obtained by a monocular camera, the second row shows LIDAR
data and the last row shows the projection of the 3D point-clouds.

The set of points P is then used to build a distance/depth-map (DM), which
is equivalent to a range-view representation. Although n’s order of magnitude is
of thousands of points, still the number of unsampled points in the image-plane is
significant.1 Therefore, to obtain a dense, or high-resolution, depth-map (DM) it is
necessary to estimate, as much as possible, the values of ri in unsampled locations of
the map. To estimate the unsampled pixels’ values in P , a spatial filtering technique
can be used. Thus, given a mask M with size m × m pixels, the points in P that
belong toM are weighted to estimate the range pixel’s value located in the center of
M.

One possible approach to obtain a depth-map is the Bilateral Filter [25]. By
applying the sliding window technique principle, which is based on a local mask
M, Bilateral filtering is used to estimate unsampled locations in P to achieve a
dense depth-map (DM) which will serve, in combination with RGB data, as input
to a RGB-D-CNN model on object classification. The DM generation comprises
two steps: (1) Upsampling using Bilateral interpolation, and (2) DM 8-bit encoding
(“Range Inverse” or “Range Linear”).

Figure17.3 shows the 8-bit depth-mapprofile using range-inverse and range-linear
methods. The main difference between these methods is that range-inverse assigns
more bits (i.e., more information) at near ranges while range-linear quantization
is homogeneous regardless of the range values. This can be useful because some
precision may be lost due to the 8-bit conversion.2

1Considering images of 1392 × 512 pixels resolution.
2More details at https://developers.google.com/depthmap-metadata/encoding.

https://developers.google.com/depthmap-metadata/encoding
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Fig. 17.3 Resulting profile curves, on 8-bit depth-map encoding, using range-inverse (red) and
range-linear (blue) techniques

17.2.1 Bilateral Filter for LIDAR-Based Depth-Map

Bilateral filter (BF) [25], a well-known spatial filtering method in image processing,
aims to eliminate noise and preserve edges in images. BF name derives from the
reason that the filter combines two components: intensity filtering (pixels having
similar values) and domain filtering (pixels at nearby spatial locations) [25]. Each
output pixel of the filtered image is a function of the pixel values of the original
image, taking into account a certain local mask M.

Let k0 = (u, v)0 denote the location of interest, which is the center of M, and r∗
0

be the variable to be estimated, i.e., the depth/distance (ri ) at k0. Thus, following the
notations in [23], the BF can be expressed by

r∗
0 = 1

W

∑
ki∈M

Gσs (||k0 − ki ||)︸ ︷︷ ︸
domain weight

Gσr (|r0 − ri |)︸ ︷︷ ︸
depth weight

×ri (17.3)

W =
∑
ki∈M

Gσs (||k0 − ki ||)Gσr (|r0 − ri |) (17.4)

where W is a normalization factor that ensures the weights sum to one, Gσs weights
the point ki inversely proportional to a distance (here we use the Euclidean distance)
between the center of theM and the sampled locationski to the position of interestk0,
and Gσr controls the influence of the sampled points based on their values ri (range
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Fig. 17.4 Depth-map using the Bilateral filter with mask size 13 × 13. In the first row, the DMwas
generated using range-linear quantization while, in the second row, range-inverse was used instead

data in the DM-map). In other words, Gσr smooths differences in intensities and Gσs

influences smoothing in position. Because BF considers distances in the spatial and
intensity (depth) domains, different functions can be applied to each component i.e.,
spatial location and the pixel depth’s value. The gain-components Gσs and Gσr can
be calculated according to

Gσs = 1

1 + (||x0 − xi ||) (17.5)

Gσr = 1

1 + (|r0 − ri |) . (17.6)

Figure17.4 shows an example of a dense depth-map (DM), using BF with a mask
size 13 × 13, taking as input the LIDAR-points as given in Fig. 17.2. In the first row,
the DM was obtained using range-linear 8-bit encoding while the resulting DM in
the second row used range-inverse.

17.3 Experiments and Results

To evaluate single-sensormodels, RGB (camera-only) and RV (range-view, or depth-
map—DM), and the combined model, i.e., RGB-D, a three-category object classi-
fication dataset, containing color images and LIDAR data, was generated from the
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KITTI’s 2D object detection database. The experiments are performed using dif-
ferent deep-NN architectures, as classifiers, for the different data representations:
RGB, “D” (i.e., DM), and RGB-D. In summary, deep-NNmodels were trained using
camera and LIDAR data separately and in combination, the latter is designated by
RGB-D model.

Results are reported in terms of confusion matrix, classification performance
measures (F-score and AUC—area under ROC-curve), and plots are shown for the
receiver operating characteristic (ROC) curves, allowing amore detailed and accurate
analysis of the results on “pedestrians”, “car”, and “cyclists” classification. F-score
and true-positives were calculated considering a threshold of 0.5.

17.3.1 Dataset

A reliable and significant dataset containing labeled camera-images and high-
resolution 3D-LIDAR data collected in real-world conditions is a very challeng-
ing and demanding work [12, 18, 28]. The KITTI database is a state-of-the-art
public available dataset that allows benchmarking object detection using camera
(mono and/or stereo) and 3D-LIDAR data gathered in traffic roads and urban sce-
narios. Based on the 2D object detection from KITTI, we created a “classification”
dataset where the classes are given in the form of 2D bounding box tracklets: car,
van, truck, pedestrian and cyclist, tram and misc. We composed the dataset in three
classes/categories of interest: pedestrian, car (van, truck, and small car), and cyclist.
A 70% split was used for training (10% of that for validation) and the remaining 30%
was used as the testing set. Table 17.1 gives a summary of the classification dataset
employed in this work.

Depth maps (DMs), using a Bilateral filter approach with a mask size of 13 × 13,
were generated from 3D-LIDAR data to compose the classification dataset corre-
sponding to the D-channel. Figure17.5 shows some examples of “car”, “cyclist”,
and “pedestrians” in RGB color space and DM’s representation. The differences in
DMs are due to the 8-bit encoding techniques. Additionally, a point-cloud based
dataset was created to allow the training of a PointNet network.

Table 17.1 Summary of the classification dataset

Sub-datasets Car Cyclist Pedestrian #Total

Training 20,632 1025 2827 24,484

Validation 2293 114 314 2721

Testing 9825 488 1346 11,659

Total 32,750 1627 4487 38,864

% of total 84.3 4.2 11.5 100
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Fig. 17.5 In the first row,we have examples of cars, cyclists, and pedestrians as seen by amonocular
camera. The second and third lines show the corresponding DMs generated from LIDAR data using
Bilateral filter, with mask size of 13 × 13, and 8-bit linear and inverse range encoding, respectively

17.3.2 Deep Neural Network Models

Experiments were performed using three deep networks, AlexNet [14], Inception
V 3 [24], and PointNet [7]. The first two networks were used on RGB-images, DMs,
and RGB-D representations, while the PointNet was trained directly on 3D-points3

extracted from the LIDAR data. The networks were trained from scratch for the
pedestrian, car, and cyclist classes, using the training dataset given in Table17.1.

The AlexNet CNN architecture used in the experiments on object classification
consists of 11 × 11, 5 × 5 and three 3 × 3 convolution layers, with max pooling;
further details are described in [20]. We used batch normalization in the first two
layers, instead of the local normalization scheme, and in the last layer we use the
so f tmax activation functionwith three classes (i.e., nc = 3), instead of 1000 classes,
and dropout of 50%. The image size should be the same to feed the network, there-
fore, all RGB-images and DMs were resized to the size of 227 × 227. The AlexNet
network was trained on 30 epochs, with a batch size equal to 64, stochastic gradi-
ent descent optimizer with lr = 0.001 (learning rate), decay = 10−6 (learning rate
decay over each update), momentum = 0.9, and categorical cross-entropy as loss
function.

Inception V 3, which contains 42 layers, is one of the state-of-the-art CNNs which
has been achieved very satisfactory results on image classification. The main contri-

3Although not being the focus of this chapter, results using PointNet are presented for sake of
completeness and comparison.
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bution of Inception V 3 was the idea of introducing convolutional factorization layers
(by reducing the number of parameters/connections, for example, two 3 × 3 convo-
lution layers replaces a 5 × 5 convolution layer) and a classifier-auxiliary acting as a
regularizer, as well as a new structure to image reduction after the convolution layers
(grid size reduction), instead of using only max pooling [24].

LIDAR-based object recognition uses, on most of the cases, a 2D-like repre-
sentation of the 3D point-clouds, e.g., RV, BV, or multi-view, to feed and train a
CNN model. Conversely, the PointNet can be used to process unordered 3D point-
clouds directly [7]. PointNet considers permutation invariance (order), transforma-
tion invariance and point interaction. Basically, the 3D-LIDAR point set is processed
by two multi-layer perceptron (MLP) stages, by performing feature transformations
and aggregations, which increase the feature-space dimension to 64 and then to 1024
dimensions; in the second MLP a max pooling is applied to create a global feature
vector and, to complete the architecture, a (512,256,nc) MLP-layer is used to pro-
cess the global feature vector for the subsequent classification/output layer. However,
because the input layer has to have the same dimension for all classes the number
of LIDAR-points (np) per object, which is the network input, has to be the same
as well; therefore, in the classification problem considered here, upsampling and
downsampling strategies were necessary to guarantee np is the same regardless the
size, distance to the sensor, and the class of the object.

17.3.3 Single-Sensor Models Performance: RGB Versus
Depth

Experiments on RGB-images and DMs were performed using Inception V3 and
AlexNet architectures, where the CNN’s inputs receive color images (a 3-channel
model) or DMs (single channel) depending on the model under evaluation. The
implemented CNN’s architecture and parameters for both LIDAR DM-maps, using
range linear (RL) and inverse (RI ) quantization techniques, are the same. Addi-
tionally, a PointNet-based model was learned using the 3D-points that belong to the
labeled-objects. Consequently, and considering single-sensor technology, we have
four deep-NN models regarding input data: RGB, DM using range-linear quanti-
zation (DMRL ), DM using range-inverse (DMRI ), and 3D-point based architecture
(PointNet). To train the PointNet the labeled examples are in the form of a set of 3D
point-sets which were extracted from the input (raw) point-cloud.

The resulting confusion matrices, calculated on the testing set, are given in
Table17.2 for RGB and DMs. Experiments using PointNet were performed by
increasing number of points per input-example np = {64, 128, 256, 512} points.
The results on the testing set, having 1000 epochs during the training, are shown
in Table17.3 where the PointNet-model with np = 256 achieved the best clas-
sification performance. In terms of average F-score, the performance for np =
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Table 17.2 Confusion matrices on the testing set: single-sensor modalities

Ground
truth class

Inception V3 architecture

RGB images LIDAR DMRL LIDAR DMRI

Ped. Car Cyc. Ped. Car Cyc. Ped. Car Cyc.

Pedestrian 1300 31 15 1127 213 6 1206 108 32

Car 45 9773 7 265 9511 49 53 9742 30

Cyclist 22 19 447 210 115 163 55 72 361

AlexNet architecture
Pedestrian 1295 42 9 1062 254 30 1114 201 31

Car 52 9768 5 38 9781 6 87 9729 9

Cyclist 99 30 359 47 123 318 84 127 266

Table 17.3 Confusion matrix for a LIDAR-based PointNet model

GT PointNet—predicted class on the testing set

np = 64 np = 128 np = 256 np = 512

Ped. Car Cyc. Ped. Car Cyc. Ped. Car Cyc. Ped. Car Cyc.

Ped. 1173 134 39 1160 146 40 1174 140 32 1163 128 55

Car 128 9655 42 111 9676 38 68 9724 33 89 9680 56

Cyc. 109 103 276 93 100 295 55 74 359 95 102 291

64, 128, 256, 512 are 82.80%, 84.04%, 88.66%and 83.54%, respectively. The values
in the confusion matrices were calculated using a threshold equal to 0.5.

TheROCcurves forAlexNet and Inceptionmodels are shown inFig. 17.6, together
with their corresponding value ofAUC (AreaUnderCurve). It can be seen, in terms of
DMs representations, that the Inception is more suitable to be used in DMRI while
AlexNet works better with DMRL . From the results in Table17.2, the RGB-CNN
achieved the best overall results for all classes. On the other hand, the results yielded
by the LIDAR-based representations were not homogeneous. By using DMRL , the
AlexNet achieved good results for “car” and ‘cyclist” while Inception was superior
when usingDMRI representation. In terms of LIDARdata quantization, it can be seen
that Inception V3 using DMRI produced the best results. In summary, RGB-models
perform better than LIDAR-models overall however, concerning LIDAR represen-
tation, Inception-DMRI performed better than 3D point-sets (PointNet). Finally, in
terms of AUC as per given in Fig. 17.6, the RGB-models attained the overall best
performance compared to LIDAR-models.
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Fig. 17.6 ROCs, on the testing set, calculated for the Inception and AlexNet CNN-architectures
having as inputs: RGB (3 channels), DMRL , and DMRI (1 channel). AUC are shown in the legends
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Table 17.4 RGB-D object classification performance

Ground
truth class

Inception V3 AlexNet

RGB-D RL RGB-D RI RGB-D RL RGB-D RI

Ped. Car Cyc. Ped. Car Cyc. Ped. Car Cyc. Ped. Car Cyc.

Pedestrian 1262 49 35 1246 57 43 1291 45 10 1292 46 8

Car 103 9689 33 74 9725 26 60 9748 17 49 9764 12

Cyclist 57 49 382 56 42 390 80 31 377 40 25 423

17.3.4 RGB-D: Camera and LIDAR Data

The confusion matrices calculated on the testing set for CNN-models trained using
RGB-D representation i.e., four channel models, are provided in Table17.4. In terms
of true-positives, per class, the model where the DMs were interpolated using range-
inverse encoding achieved the best results. Considering the values of AUC and the
ROC curves, shown in Fig. 17.7, the performance for both models are very close,
however the RGB-D-AlexNet is relatively favored. In summary, when combining
camera and LIDAR data to obtain RGB-D models the range-inverse quantization,
applied to DMs, achieved better results than range-linear maps.

To allow amore comprehensive analysis of all the deep-networks discussed in this
section, Table17.5 provides the results for the implemented CNN-models in terms of
the average F-score (in %). Because of the unbalanced nature of the dataset, F-score
is an appropriatemeasure to summarize classification performance. Based on the val-
ues highlighted in bold, RGB-Inception V3 has the overall best performance out of
the DMs and RGB-D representations. The AlexNet achieved its best results by incor-
porating RGB and DMRI , i.e., using RGB-D representation, which is close to the
RGB-Inception V3. Although the PointNet yielded good performance, DMs repre-
sentation provided more significant results in terms of LIDAR-based deep-networks.
Finally, the RGB-D models demonstrated to be useful and a promising representa-
tion specifically when compared to LIDAR-based models and also achieved the best
results for the AlexNet architecture.

17.3.4.1 Discussion on Performance with Respect to Objects’ Distance

To evaluate classification performance relative to the objects’ distance, the RGB-D
dataset was organized according to the average distance of the objects as measured
by the LIDAR (which is mounted on the vehicle’s roof [12]). Figure17.8 shows the
distribution of the number of labeled examples versus the distance—ranging from 5
up to 65m (in 15m steps). The distributions show that the majority of the examples
are at a distance up to 35 m.
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Fig. 17.7 ROC curves for the RGB-D CNN-architectures (4 channels)

Table 17.5 F-score performance (in %), averaged over the three classes, for all the deep-networks
discussed in this chapter

Inception V3 AlexNet PointNet

RGB DMRL DMRI RGBDRL RGBDRI RGB DMRL DMRI RGBDRL RGBDRI 3D

F1 96.24 73.13 89.55 90.48 90.97 91.83 86.21 83.79 92.24 94.99 88.66

Fig. 17.8 Percentage of classes versus distance, as per measured by the 3D-LIDAR
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Fig. 17.9 F-score performance versus distance, ranging from 5 up to 70 m. First row gives RGB-
D-Inception V3 results, per object class, followed by RGB-D-AlexNet results

The main idea in this section is to show the deep-networks performance on object
classification using RGB-D in comparison with RGB inputs. Because LIDAR pro-
vides distance/range measurements, an analysis in terms of the objects’ distance is
relevant to investigate how consistent the CNN results are for increasing distances.
The average F-score was the performance metric selected, whilst the RGB-based
results serve as the baseline for comparisons. Figure17.9 shows, for both RGB-
D-CNN-models using Inception and AlexNet (dashed-plots), the values of F-score
relative to the objects’ distance. The plots also show that the RGB-D models are
more sensitive to the distance, which is an expected behavior because the LIDAR
resolution is strongly affected by the distance; for example, “distant” objects are
perceived as a small set of points by the LIDAR. Another conclusion drawn from
Fig. 17.9 is that the RGB-D Inception-based networks are more sensitive than the
AlexNet models. Finally, the results for the “car” category demonstrated to be more
consistent regardless the distance.

17.4 Conclusions and Remarks

RGB-D object classification using deep-networks, based on camera (RGB) and 3D-
LIDAR (Depth) data representations, has been addressed in this chapter. Three object
classes were considered: pedestrian, cyclist, car. Object labels were extracted from
the KITTI Object database. For the 3D-LIDAR data, and by using Bilateral filtering,
depth-maps (DM) were calculated to allow a direct implementation of range-view
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2D-CNN-models—AlexNet [14] and Inception V3 [24]. As part of the process to
obtain the DMs two 8-bit quantization techniques, range-inverse and range-linear
encoding, were implemented and compared in terms of classification performance.
Additionally, a PointNet [7] network which operates on unordered 3D point-sets
directly was used in the experiments as well.

Experiments were conducted to investigate and compare the classification per-
formance of the deep-network models in terms of sensor modalities and data rep-
resentations. In the single-modality case, i.e., by training the deep-networks using
camera-images (RGB) or LIDARdata individually, theAlexNet and the InceptionV3
networkswere trained and tested onRGB,DMRL , andDMRI representations; RL and
RI stand for range-linear and range-inverse quantization respectively. The PointNet,
on the other hand, was used on 3D-LIDAR-points directly. Multi-modality sensor
data representation i.e., RGB-D, was addressed by aggregating RGB and DM-map
into 4-channels input-layers of the CNNs; these models are designated by RGB-D RL

and RGB-D RI according to the quantization technique employed. Therefore, RGB-
D-based AlexNet and Inception networks were trained, evaluated and compared with
the single-modalities networks.

Results of the deep-network models were analyzed in terms of F-score, confusion
matrices, and ROC curves. The results on the single-modality case indicate that the
RGB-based Inception V3 network achieved the best classification performance in
terms of camera versus LIDAR-based models, also for the AlexNet using images
which was better than the LIDAR-DMs. LIDAR-wise performance, the Inception
model using DMRI was slightly better than the PointNet (LIDAR only) which means
the PointNet results are very competitive. The RGB-D network outperformed the
LIDAR-based networks, as well as the RGB-AlexNet. This indicates the combina-
tion of RGB and LIDAR, in the form of RGB-D input-representation, works well
compared to most of the single-modality cases. However, the RGB-Inception V3
demonstrated to be marginally better than the RGB-D models.

Based on the results related to the objects’ distance with respect to the sensors
onboard the vehicle, the classification performance specifically for the “cyclist” cate-
gory is negatively affected by the distance increases. In summary, the main message
that can be drawn from the results is that the RGB-D outperformed the LIDAR-
based models, both range-view CNN and 3D-point PointNet, demonstrating that
RGB complements LIDAR.
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Chapter 18
People Counting in Crowded
Environment and Re-identification

Emanuele Frontoni, Marina Paolanti and Rocco Pietrini

Abstract Nowadays, detecting people and understanding their behaviour automat-
ically is one of the key aspects of modern intelligent video systems. This interest
arises from societal needs. Security and Video Analytics, Intelligent Retail Environ-
ment and Activities of Daily Living are just a few of the possible applications. The
problem remains largely open due to several serious challenges such as occlusion,
change of appearance, complex and dynamic background. Nevertheless, in recent
years, privacy concerns are arising making these system designs more challenging,
also to cope with different worldwide country regulations. Popular sensors for this
task are RGB-D cameras because of their availability, reliability and affordability.
Studies have demonstrated the great value (both in accuracy and efficiency) of depth
camera in coping with severe occlusions among humans and complex background.
In particular, RGB-D cameras show their great potential if used in a top-view con-
figuration achieving high performances even in a crowded environment (considering
at least 3 people per square meter in the area of the camera) minimizing occlusions
and also being the most privacy-compliant approach. The first step in people detec-
tion and tracking is the segmentation to retrieve people silhouette, for this reason
different methods will be covered in this chapter, ranging from classical handcraft
feature based approaches to deep learning techniques. These techniques also solve
the nontrivial problem of blob collision, occurringwhen two ormore people are close
enough to form a unique blob from the camera point of view.Multilevel segmentation
andwater filling algorithmswill be presented to the reader in this chapter as handcraft
feature based, in addition a deep learning approach is also introduced from the litera-
ture. In the methods presented in this chapter, the elaboration occurs live (there is no
image recording) and occurs on the edge, following an IoT paradigm. Live analysis
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also strengthens the aforementioned concept of privacy compliance. The last part of
this chapter is dedicated to person re-identification (re-id), which is the process to
determine if different instances or images of the same person, recorded in different
moments, belong to the same subject. Person re-id has many important applications
in video surveillance, because it saves human efforts on exhaustively searching for
a person from large amounts of video sequences. Identification cameras are widely
employed in most of the public places like malls, office buildings, airports, stations
andmuseums. These cameras generally provide enhanced coverage and overlay large
geospatial areas because they have non-overlapping fields-of-views. Huge amounts
of video data, monitored in real time by law enforcement officers are used after the
event for forensic purposes, are provided by these networks. An automated analysis
of these data improves significantly the quality of monitoring, in addition to process-
ing the data faster. Handcrafted anthropomorphic features coupled with a machine
learning approach will be exploited in this chapter, then a deep leaning approach in
comparison is presented. Different metrics are then adopted to evaluate the above
algorithms and to compare them.

18.1 Introduction

Nowadays, detecting and tracking people is an utmost important and challenging
task for various applications. It can be viably used in many interactive and intelligent
systems such as visual surveillance and human–computer interaction. Recently, a
considerable research has been made towards this topic and robust methods have
been developed to track isolated or a small number of humans in case of the existence
of transient occlusion [15, 72]. Nonetheless, tracking in crowded situations with a
high number of people present in the image is experiencing many issues such as
the exhibition of persistent occlusion, change of appearance, dynamic and complex
background [41]. Indeed, these issues are the cause of the severe problems in the
case of crowded environment since the conventional surveillance technologies cease
to understand the image [68].

The methods dealing with people counting problems can be divided into twofold:
detection-based methods and mapping-based methods. The first ones refer to run-
ning a detector, counting or clustering the output. The different features can include
body, head, skin, hair, etc. For effective detection algorithms, they can have a high
output accuracy for not highly crowded environments, but are not scalable for large
crowds [68]. Themapping-basedmethods are referring to feature extraction andmap-
ping them to a value. They use edge points, background, texture, optical flow, etc., as
the features. Compared to detection-based methods, these methods can be scalable
to large crowds. To address people detecting and tracking problems, sensors viably
adopted are RGB-D cameras. Compared to conventional cameras, their performance
results in increased reliability, availability and affordability. The efficiency and accu-
racy of depth cameras have been proven to be elevated in caseswith severe occlusions
among humans and complex background [53]. The combination of high-resolution
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depth and visual information opens up new opportunities in many applications in the
field of activity recognition and people tracking. Tracking and detection results can
be significantly improved by the use of reliable depth maps [32].

In existing works, depth cameras are often placed either vertically overhead (top-
view configuration) [8], or horizontally at the same level as humans (front-view
configuration) [21]. The preferred choice is the RGB-D camera in a top-view config-
uration since it offers greater suitability compared with a front-view configuration.
It moreover reduces the problem of occlusions and has the ability of being privacy
preserving since a person’s face is not recorded by the camera [32]. In [33], it has
been shown that top-view people counting applications are the most accurate (with
accuracy up to 99%) even in highly crowded scenarios, defined as situations with
more than three people per square meter. However, this configuration is showing
also an important limitation: inability to retrieve features connected to the front view,
since the front-view configuration has been highly employed bymany state-of-the-art
approaches [60, 61].

In the literature exist several datasets using RGB-D technology for the study of
person re-id mainly in the front-view configuration such as VIPeR [19], the iLIDS
multi-camera tracking scenario [58], ETHZ [11], CAVIAR4REID [4, 6]. They cover
many aspects of the existing problems such as shape deformation, occlusions, illumi-
nation changes, very-low-resolution images and image blurring. The top-viewdataset
is introduced in [31], called TVPR (Top- View Person Re-identification) dataset.

There have been many vision techniques and algorithms proposed in the literature
in the past years for person detection and tracking. In general, we can distinguish
the following: segmentation using background subtraction, water filling, statistical
algorithms, machine learning, and finally deep learning techniques.

This chapter is organized as follows: Sect. 18.2 is giving the state of the art on
the algorithms and approaches for person detection and tracking, Sect. 18.3 is giving
results and use cases and in final Sect. 18.4 the conclusions are given.

18.2 Algorithms and Approaches

Many vision techniques and algorithms for person detection and tracking have been
proposed during the past years. In this section, we give the state of the art on algo-
rithms and techniques applied for tracking and detecting humans from top-view
RGB-D data, covering both early and recent literature. In particular, the approaches
related to segmentation using background subtraction, water filling, statistical algo-
rithms, and finally machine learning and deep learning techniques are considered.

18.2.1 Approaches Using Background Subtraction

In most of the approaches, it is necessary to remove the background to obtain better
accuracy in the next stages. In re-id, the methods that use the same reference back-
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ground frame are not useful since data are grabbed from different cameras and with
different backgrounds [49]. The most Naïve approach for background elimination
method is the manual silhouette segmentation as proposed in [1]. Many works in the
literature [48, 64, 65] use Gaussian mixture models (GMMs) for the background
classification, introduced by [52]. The limitation is the sensitivity to fast illumina-
tion variations. Another approach is proposing the notion of a structure element [23],
referring to a probabilistic element of an entire image class and widely employed for
background elimination [12, 50]. The main advantage is that it can be used in the
case of still images of a dataset with different backgrounds. However, the limitation
is that it is time consuming. In [25], the authors use depth information from the
Kinect camera, by exploiting the distance between the head and the floor.

In [67], a system is proposed for passenger counting in buses basedon stereovision.
The counting system involves different steps dedicated to the detection, segmenta-
tion, tracking and counting. The height maps have been segmented for highlighting
the passengers’ heads at different levels, resulting in kernels-binary images con-
taining information related to the heads [34]. It makes use of the idea of computed
tomography (CT) and the depth images are segmented to different layers along the
transverse plane. The depth images are segmented into K layers as the CT slides
with a fixed value of depth spacing between two adjacent layers. Then, based on the
classic contour finding algorithm, the region of each slide can be found. Afterwards,
an SVM classifier is trained to classify the activities. Another work is proposing a
method of low-level segmentation and tracking, namely, the system detects the inter-
actions with products on the shelves but also the movement of the people inside the
store [43].

The authors [17] employ Microsoft Kinect depth sensor in an on-ceiling configu-
ration and propose an automatic indoor fall detectionmethod based on the analysis of
depth frames. A segmentation algorithm is used to recognize the elements acquired.
It extracts the elements and implements a solution to classify all the blobs in the
scene. The human subjects are recognized by anthropometric relationships and fea-
tures. In [10], an approach is presented for low-level body part segmentation based
on RGB-D data gathered from the RGB-D sensor. The object classes are certain
human body parts. In order to generate data for training the classifier, the authors
make use of synthetic representation of the human body in a virtual environment in
combination with Kinect skeleton tracking data.

The approach with multiple depth cameras is presented in [55], with the goal
to develop real-time indoor surveillance system for tracking. The system tries to
overcome the well-known problems such as severe occlusion, similar appearance,
illumination changes, etc. It is based on the background subtraction of the stitched
top-view images. Different phases have been employed in the detection scheme such
as the graph-based segmentation, the head hemiellipsoid model, and the geodesic
distance map, resulting in improved robustness and efficiency when compared to
other state-of-the-art techniques.

The algorithm proposed in [24] shows an improvement of the classical segmen-
tation techniques. It begins with nearest neighbour interpolation in order to fill the
holes in the depth map. After that, the median filter with a 5 × 5 window on the depth
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array is executed to smoothen the data. In order to extract the person, the algorithm
extracts the floor and removes its corresponding pixels from the depth map. After
that, to confirm the presence of the tracked subject as well as to provide head’s loca-
tion, a Support Vector Machine (SVM) based person finder is used. The algorithm
shows promising results in achieving high sensitivity and specificity of fall detection
in poor lighting conditions. Method for people counting in public transportation has
also been presented in [36] using a segmentation approach. Data from Kinect sensor
contains an image database of 1–5 persons, with and without body poses of holding
a handrail. However, in this case, the image is processed in blocks with the goal to
find potential local maxima, in order to find head candidates in the next step. Finally,
non-head objects are filtered out.

The approach in [5] employs a novel active sensor based on a Time of Flight
(TOF) technology applied in real time people tracking system, successful also in
severe low-lighting conditions. A simple background subtraction procedure based
on a pixel-wise parametric statistical model is performed. The system has proven
to be reliable by the experiments conducted under changing lighting conditions and
involving multiple people in close interaction.

A method using top-view camera system is presented in [45], used for human
detection. The authors introduce a new feature descriptor to train a head-shoulder
detector by the usage of discriminative class scheme, with excellent runtime perfor-
mance. A final tracking step reliably propagates detection providing stable tracking
results.

The papers [38, 39] have addressed the problem of the tracking of 3D human
gestures by particle filtering and by using the Xtion PRO-LIVE camera. A hybrid
2D–3D method is proposed, consisting in separating human body in two parts; head
and shoulders tracked in the 2D space, and arms tracked in the 3D space.

18.2.2 Water Filling

Water Filling is a computer vision algorithm adopted by many researchers while
considering RGB-D cameras in top-view configuration.

In [71], the authors have built a system which uses vertical Kinect sensor for peo-
ple counting, and the depth information is used to remove the effect of the appearance
variation. They propose a novel unsupervised water filling method that can find suit-
able local minimum regions (people heads) with the property of robustness, locality
and scale-invariance, even in crowded scenarios. The limitation is seen in the fact
that water filling cannot handle the situation, where some moving object is closer to
the sensor than head.

People counting system using water filling technique is also presented in [7]. In
this case, the sensor is placed perpendicular to the ceiling. Water filling algorithm
is used for the determination of the people’s heads. Robot Operating System (ROS)
is used to capture depth information from the Kinect sensor, and the images are
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processed by using open-source library OpenCV. Some minor contributions have
been obtained such as elimination of chattering, tracking the person lost in the image
for a short time.

Water filling algorithm finds local minimum regions in depth images simulating
the rain and the flooding of ground, with some raindrop, with a uniform distribution.
Moving the raindrops towards the local minimum points puddles are formed since
the water flows to some local minimum regions. Contour lines can be computed
considering the distance from the local minimum as a function of the total raindrops.
A depth image can be seen as a function f (x, y) that can be non-derivable or even
discontinuous, due to the noise of depth sensor. Finding people means to find local
minimum regions in f . The problem can be defined as finding the region A and N
satisfying the following equation [71]:

EA(f (x, y)) + η � EN\A(f (x, y)) (18.1)

where A ∈ N , A is the local region and N is its neighbourhood, both of arbitrary
shape, E(·) is an operation to relate the depth information in the region to a real value
reflecting the total depth information in the region. η is a threshold to ensure that
depth in A should be lower than N \ A within a tolerance. Zhang et al. [71] define an
additional measure function g(x, y) as

Definition 18.1 g(x, y) is a measure function of f (x, y) ⇐⇒ ∃ε > 0,∀(x1, y1),
(x2, y2), s.t. ‖(x1 − x2)2 + (y1 − y2)2‖ < ε, if f (x1, y1) � f (x2, y2)

f (x1, y1) + g(x1, y1) � f (x2, y2) + g(x2, y2) (18.2)

g(x1, y1) � g(x2, y2)
g(x1, y1) � 0, g(x2, y2) � 0

The form of g(x, y) can be trivial, for example, a zero function. The use of g(x, y)
helps to infer the f (x, y). Definition of g(x, y) allows us to solve efficiently the
equation and be robust to noise.

A general solution of g(x, y) is not necessary for these contexts, but a proper
nontrivial form is acceptable. The form of the function f (x, y) can be seen as a
land with humps and hollows. In the hump, raindrops flow to the neighbourhood
hollow due to the force of gravity. Step by step the hollow region will be filled
with raindrops. Function g(x, y) represents the quantity of raindrop in the point
(x, y). When the rain stops, regions that collected rain drops can be classified as
hollow. Algorithm 18.1 proposed by Liciotti et at. [30] is an improved version of
the original method proposed in [71]. In particular, the drops are chosen according
to the segmentation of the foreground image (line 4). This procedure improves the
execution time of the algorithm. The main characteristics are depicted in Fig. 18.1.
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Fig. 18.1 The main characteristics of water filling algorithm. A, B, C correspond to three people,
respectively, and D is a noise region (figure a). Region A has smaller scale compared with B and
C, and the absolute height of A is larger than noise region D. After the water filling process (figure
b), the measure function g(x, y) which reflects the property of f (x, y) is obtained (figure c). Finally,
the people are detected by a threshold operation on measure function g(x, y)

Algorithm 18.1 Water Filling
1: function WaterFilling( f (x, y),T ,K)
2: g(x, y) = 0
3: M ,N = size(f (x, y))
4: f g(x, y) = (bg(x, y)âˆ’f (x, y)) > T where f g(x, y) is the foreground and bg(x, y) the back-

ground
5: for k = 1 : K do
6: x = rand(1,M ), y = rand(1,N ) with (x, y) ∈ f g(x, y)
7: while True do
8: d(xn, yn) = f (xn, yn) + g(xn, yn)âˆ’(f (x, y) + g(x, y))where (xn, yn) is the neighbour-

hood of (x, y)
9: (x∗, y∗) = arg min d(xn, yn)
10: if d(x∗, y∗) < 0 then
11: x = x∗, y = y∗
12: else
13: g(x, y) = g(x, y) + 1
14: break
15: end if
16: end while
17: end for
18: return g(x, y) > T
19: end function

The total number of raindrops isK = tMN , where t is usually set to be 100. Every
iteration (line 5), (x, y) is randomly generated through a discrete uniform distribution
(line 6). If there is a point (x∗, y∗) in the neighbourhood of (x, y) that satisfies Eq.18.2
then the raindrop in (x, y) flows towards (x∗, y∗) and the loop is restarted until a local
minimum is reached. When a local minimum is reached, the measure function g(·)
is increased (line 13). After all the K raindrops find their stable places, measure
function g(x, y) is calculated and by applying a threshold T , it is possible to extract
the heads of people that are under the camera (line 18).
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RGB Segmentation(a) (b)

Fig. 18.2 Multilevel segmentation algorithm. Head recognition (b): different colours of the blob
highlight the head of the people detected in the scene (a). Images from [29]

18.2.3 Multilevel Segmentation

TheMultilevel Segmentation algorithm overcomes the limitations of common binary
segmentation methods in case of collisions among people. In a normal segmentation,
when two people collide they become a single blob (person). Multilevel segmenta-
tion ensures that, when a collision occurs, even if two people are in a single blob,
their heads are detected and taken into account as discriminant elements [13]. In
Fig. 18.2, it is possible to see the head of each person obtained by the multilevel
segmentation algorithm. In case of collisions both people’s heads are detected in the
yellow blob (Figs. 18.2a and b). Multilevel segmentation is explained in detail in the
pseudocode Algorithm 18.2. The MultiLevelSegm function takes the foreground
image (f (x, y)) as input. FindPointMax function calculates the highest point in
the image (max) and its location coordinates (pointmax). In line 3, the level counter
assumes the threshold value, a fixed value corresponding to average height of the
human head ([13] adopted the value 10cm, which is quite reasonable). When the
segmentation level becomes negative (above the floor) the iteration stops. In line 5,
there is a segmentation function that yields in output a binary image with blobs repre-
sentative of moving objects that are above the segmentation level (max − level). This
binary image is the input of FindContours, a function that returns a vector of points
for each blob. Then, the FilterContours function deletes noise (condition on size
and shape can be applied). The highest point/depth value (FindPointMax function)
of each blob identified by means of the FilterMask function is then inserted in the
vector points. Finally, MultiLevelSegm function returns a vector with all maxi-
mum local points. The length of this vector is exactly the number of people in the
current frame.
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Algorithm 18.2 Multi level segmentation algorithm
1: function multiLevelSegm(f (x, y))
2: (max, pointmax) = findPointMax(f (x, y))
3: level = threshold
4: while (max − level) > 0 do
5: flevel(x, y) = f (x, y) > (max − level)
6: contours = findContours(flevel(x, y))
7: filterContours(contours)
8: for each contour i ∈ contours do
9: fmask (x, y) = filterMask(flevel(x, y), i)
10: vmax, pmax = findPointMax(fmask (x, y))
11: if pmax /∈ points then
12: points.pushBack(pmax)
13: end if
14: end for
15: level = level + threshold
16: end while
17: return points
18: end function

18.2.4 Semantic Segmentation with Deep Learning

One of themain problems in computer vision is the semantic segmentation of images,
video and 3D data. Semantic segmentation is one of the high-level tasks that leads to
complete scene understanding. Scene understanding started with the goal of build-
ing machines that can see like humans to infer general principles and current situ-
ations from imagery, but it has become much broader than that. Applications such
as image search engines, autonomous driving, computational photography, vision
for graphics, human–machine interaction, were unanticipated and other applications
keep arising as scene understanding technology develops [16]. As a core problem
of high-level CV, while it has enjoyed some great success in the past 50 years, a
lot more is required to reach a complete understanding of visual scenes. In the past,
such a problem has been addressed using different traditional CV andmachine learn-
ing techniques. Despite the popularity of those kinds of methods, the deep learning
marked a significant change so that many CV problems are being tackled using deep
architectures, usually Convolutional Neural Networks (CNNs), which are surpassing
other approaches by a large margin in terms of accuracy and sometimes even effi-
ciency. This section presents a particular case study describing five approaches from
the literature based on CNN architectures and implementation methods for seman-
tic segmentation. In this case, the goal is to segment people heads from a top-view
configuration, so different CNN architectures have been tested for this. People heads
are always visible from a top-view configuration and thus after successful detection,
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counting became trivial, because we already have a binary mask to apply common
computer vision algorithm to extract contours. In Sect. 18.3, a comparison between
the different architectures is reported from [33].

18.2.4.1 U-NET

U-Net architecture proposed in [47] is shown in Fig. 18.3. It is composed of twomain
parts:

• contracting path (left side);
• expansive path (right side).

The first path follows the typical architecture of a CNN. It consists of the repeated
application of two 3 × 3 convolutions (unpadded convolutions), each followed by
a Rectified Linear Unit (ReLU) and a 2 × 2 max pooling operation with stride 2
for downsampling. At each downsampling step, the number of feature channels is
doubled. Every step in the expansive path consists of an upsampling of the feature
map followed by a 2 × 2 convolution (“up-convolution”) that halves the number of
feature channels, a concatenation with the corresponding cropped feature map from
the contracting path, and two 3 × 3 convolutions, each followed by a ReLU. At the
final layer, a 1 × 1 convolution is used to map each 32-component feature vector
to the desired number of classes. Similarly, the authors of [46] revisited the classic
U-Net by removing two levels of max pooling and changing the ReLU activation
function with a LeakyReLU (Fig. 18.4). Another U-Net architecture is proposed
in [33]. In particular, a batch normalization is added after the first ReLU activation
function and after each max pooling and upsampling functions (Fig. 18.5).

Fig. 18.3 U-Net architecture
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Fig. 18.4 U-Net2 architecture

Fig. 18.5 U-Net3 architecture [33]

18.2.4.2 SegNet

SegNet, presented by Vijay et al. in [2], is depicted in Fig. 18.6. The architecture
consists of a sequence of non-linear processing layers (encoders) and a corresponding
set of decoders followed by a pixel-wise classifier. Typically, each encoder consists
of one or more convolutional layers with batch normalization and a ReLU non-
linearity, followed by non-overlapping max pooling and subsampling. The sparse
encoding, due to the pooling process, is upsampled in the decoder using the max
pooling indices in the encoding sequence. The max pooling indices are used in
the decoders to perform upsampling of low-resolution feature maps. This has the
important advantage of retaining high-frequency details in the segmented images
and also reducing the total number of trainable parameters in the decoders. The
entire architecture can be trained end-to-end using stochastic gradient descent. The
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Fig. 18.6 SegNet architecture

raw SegNet predictions tend to be smooth even without a Conditional Random Field
(CRF) based post processing.

18.2.4.3 ResNet

He et al. in [22] observed that deepening traditional feed-forward networks often
results in an increased training loss. In theory, however, the training loss of a shallow
network should be an upper bound on the training loss of a corresponding deep
network. This is due to the fact that increasing the depth by adding layers strictly
increases the expressive power of themodel.Adeep network can express all functions
that the original shallow network can express by using identity mappings for the
added layers. He et al. proposed residual networks that exhibit significantly improved
training characteristics. A ResNet is composed of a sequence of residual units (RUs)
shown in Fig. 18.7. The output xn of the nth RU in a ResNet is computed as

xn = xn−1 + F(xn−1;Wn) (18.3)

where F(xn−1;Wn) is the residual, which is parametrized byWn. In this way, instead
of computing the output xn directly, F only computes a residual that is added to the
input xn−1. This design can be referred to skip connection, since there is a connection
from the input xn−1 to the output xn that skips the actual computation F . It has been
empirically observed that ResNets have superior training properties over traditional
feed-forward networks. This can be explained by an improved gradient flow within
the network.
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Fig. 18.7 Residual unit

18.2.4.4 FractalNet

Fractal network is introduced by Larsson et al. in [26]. Let C denote the index of
a truncated fractal fC(·) (i.e., a few stacked layers) and the base case of a truncated
fractal is a single convolution:

f1(z) = conv(z)

According to the expansion rule,

z′ = conv(z)

fC+1(z) = conv(conv(z′) ⊕ fC(z′))

can be defined recursively for the successive fractals, where ⊕ is a join operation
and conv(·) is a convolution operator. Two blobs are merged by the join operation
⊕. As these two blobs contain features from different visual levels, joining them can
enhance the discrimination capability of our network.Generally, this operation can be
summation, maximization and concatenation. In order to enlarge the receptive field
and enclose more contextual information, downsampling and upsampling operations
are added in the above expansion rule. In particular, a max pooling with a stride of
2 and a deconvolution also with a stride of 2 are added. After the downsampling
operation, the receptive field of a fractal becomes broader.When combining different

Fig. 18.8 FractalNet architecture
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receptive fields through the join operation, the network can harnessmulti-scale visual
cues and promote itself in discriminating. The Fractal Net architecture is depicted in
Fig. 18.8.

18.2.5 Re-identification

Person re-id has many important applications in video surveillance, because it saves
human efforts on exhaustively searching for a person from large amounts of video
sequences. Identification cameras are widely employed in most of public places
like malls, office buildings, airports, stations and museums. These cameras generally
provide enhanced coverage and overlay large geospatial areas because they have non-
overlapping fields-of-views. Huge amounts of video data, monitored in real time by
law enforcement officers are used after the event for forensic purposes, are provided
by these networks.

In this context, robust modelling of the entire body appearance of the individual is
essential, because other classical biometric cues (face, gait) may not be available, due
to sensors’ scarce resolution or low frame rate. Usually, it is assumed that individuals
wear the same clothes between the different sightings. The model has to be invariant
to pose, viewpoint, illumination changes and occlusions: these challenges call for
specific human-based solutions.

An automated analysis of these data improves significantly the quality of moni-
toring, in addition to processing the data faster [56]. The behaviour characterization
of people in a scene and their long-term activity can be possible using video analy-
sis, which is required for high-level surveillance tasks in order to alert the security
personnel. Over the past years, in the field of object recognition a significant amount
of research has been performed by comparing video sequences. Colour-based fea-
tures of video sequences are usually described with the use of a set of keyframes
that characterizes well a video sequence. The HSV colour histogram and the RGB
colour histogram are robust against the perspective and the variability of resolution
[20]. The clothing colour histograms taken over the head, trousers and shirt regions,
together with the approximated height of the person, have been used as discrimi-
native features. Research works on person re-id can be divided into two categories:
feature-based and learning-based [37]. The use of anthropometric measures for re-id
was proposed for the first time in [35]. In this case, height was estimated from RGB
cameras as a cue for associating tracks of individuals coming from non-overlapping
views. In [18], the authors proposed the use of local motion features to re-identify
people across camera views. They obtained correspondence between body parts of
different persons through space–time segmentation. On these body parts, colour and
edge histograms are extracted. In this approach, person re-id is performed by match-
ing the body parts based on the features and correspondence. Shape and appearance
context, which computes the co-occurrence of shape words and visual words for per-
son re-id is proposed in [59]. Human body is partitioned into L parts with the shape
context and a learned shape dictionary. Then, these parts are further segmented into
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M subregions by a spatial kernel. The histogram of visual words is extracted on
each subregion. Consequently, for the person re-id the L × M histograms are used as
visual features. In [12], the appearance of a pedestrian is represented by combining
three kinds of features (sampled according to the symmetry and asymmetry axes
obtained from silhouette segmentation): the weighted colour histograms, the maxi-
mally stable colour regions and recurrent highly structured patches. Another method
to face the problem of person re-id is learning discriminant models on low-level
visual features. Adaboost is used to select an optimal ensemble of localized features
for pedestrian recognition in [20]. The partial least squares method is used to perform
person re-id in [51]. Instead, Prosser et al. [44] have used a ranking SVM to learn the
ranking model. In the past years, it is well-known to use metric learning for person
re-id. A probabilistic relative distance comparison model has been proposed in [73].
It maximizes the probability that the distance between a pair of true match is smaller
than the distance between an incorrect match pair. In [40], the authors investigate
whether the re-id accuracy of clothing appearance descriptors can be improved by
fusing them with anthropometric measures extracted from depth data, using RGB-D
sensors, in unconstrained settings. They also propose a dissimilarity-based frame-
work for building and fusing the multimodal descriptors of pedestrian images for
re-id tasks, as an alternative to the widely used score-level fusion.

Recently, CNNs are being widely employed to solve the problem of person re-id.
Deep Learning models in the person re-id problem are still suffering from the lack
of training data samples. The reason for this is that most of the datasets provide
only two images per individual [27]. Several CNNmodels have been proposed in the
literature to improve the performance of person re-id. Specifically, two models have
been employed in re-id area: a classification model and a Siamese model based on
either pair or triplet comparisons.

The model based on classification requires determining the individual identity.
In [63], a novel feature extraction model called Feature Fusion Net (FFN) is pro-
posed for pedestrian image representation. The presented model makes use of both
CNN feature and handcrafted features. The authors utilize both colour histogram
features and texture features. The extracted features are followed by a buffer layer
and a fully connected layer which are acting as the fusion layer. The effectiveness was
demonstrated on the three challenging datasets. In [62], a hybrid deep architecture
for person re-id is presented, composed of Fisher vectors and multiple supervised
layers. The network has been trained employing the linear discriminative analysis
(LDA) as an objective function, with the goal of maximizingmargin between classes.
The authors in [66] propose a method based on learning deep feature representations
from multiple domains by using CNNs with the aim to discover effective neurons
for each training dataset. The authors propose Domain Guided Dropout algorithm in
order to improve the feature learning process by discarding useless neurons. They
evaluate on various datasets, with the limitation that some neurons are effective only
for a specific data set and useless for another one. The authors in [28] designed a
multi-scale context-aware network. The network is learning powerful features over
the body and body parts. It can capture knowledge of the local context by stack-
ing convolutions of multiple scales in each layer. They also propose to learn and
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locate deformable pedestrian parts through networks of spatial transformers with
new spatial restrictions, instead of using predefined rigid parts.

Since the person re-id research area lacks training instances, Siamese network
models have been widely and viably employed. Siamese neural network is a type of
neural network architectures which contains two or more identical sub-networks. A
Siamese network is employed as pairwise (in the case of two sub-networks), or triplet
(the case of three sub-networks). Some examples of pairwise research can be found
in [14, 57, 69]. The authors in [57] combined four CNNs, each of them embedding
images from different scale or different body part. Each of sub-CNN is trained with
adaptive list-wise loss function. In addition, they adopted sharpness parameter and an
adaptive margin parameter to automatically focus more on the hard negative samples
in the training process. In [69], a Siamese neural network has been proposed to learn
pairwise similarity. The method can learn at the same time the colour feature, texture
feature and metric in a unified framework. The network is a symmetrical structure
containing two sub-networks, which are connected by Cosine function. Binomial
deviance is also used to dealwith the big variations of person images [14]. The authors
propose a novel type of features based on covariance descriptors—the convolutional
covariance features. There are three steps, first a hybrid network is trained for person
recognition, next another hybrid network is employed to discriminate the gender,
and finally the output of the two networks are passed through the coarse-to-fine
transfer learning method to a pairwise Siamese network in order to accomplish the
final person re-id. In [9], the authors presented a scalable distance driven feature
learning framework based on the deep neural network in order to produce feature
representation from a raw person images. A CNN network is trained by a set of
triplets to produce features that can satisfy the relative distance constraints. In [70],
a supervised learning framework is proposed to generate compact and bit-scalable
hashing codes from raw images. Training images were organized into a batch of
triplet samples, two images with the same label and one with a different label. The
deep convolutional neural network is utilized to train the model in an end-to-end
fashion, with the simultaneous optimization of the discriminative image features and
hash functions. In [54], a three-stage training is proposed: a deep convolutional neural
network is first trained on an independent dataset labelled with attributes, then it is
fine-tuned on another dataset that is only labelled with person IDs using a particular
triplet loss they define, and finally, the updated network predicts attribute labels for
the target dataset.

18.2.5.1 Person Re-identification in Top-View Configuration

The re-id in top-view configuration has been studied in [31, 42]. In order to face
this task, the authors have built a dataset namely TVPR1 (Top-View Person Re-
identification). An Asus Xtion PRO LIVE RGB-D camera has been used because it
allows to acquire colour and depth information in an affordable and fast way. The

1http://vrai.dii.univpm.it/re-id-dataset.

http://vrai.dii.univpm.it/re-id-dataset
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camera is installed on the ceiling above the area to be analysed. Data of 100 people
are collected, acquired across intervals of days and at different times. Each person
walked with an average gait within the recording area in one direction, stopping for
a few seconds just below the camera, then it turned around and repeated the same
route in the opposite direction, always stopping under the camera for a while. This
choice is due to its greater suitability compared with a front-view configuration,
usually adopted for gesture recognition or even for video gaming. The top-view
configuration reduces the problem of occlusions [30] and has the advantage of being
privacy preserving, because the face is not recorded by the camera. The process
of extraction of a high number of significant features derived from both depth and
colour information is presented. The first step is the processing of the data acquired
from the RGB-D camera. The camera captures depth and colour images, both with
dimensions of 640 × 480 pixels, at a rate up to approximately 30 fps and illuminates
the scene/objects with structured light based on infrared patterns. Seven out of the
nine features selected are the anthropometric features extracted from the depth image:

• distance between floor and head, d1;
• distance between floor and shoulders, d2;
• area of head surface, d3;
• head circumference, d4;
• shoulders circumference, d5;
• shoulders breadth, d6;
• thoracic anteroposterior depth, d7.

The remaining two colour-based features are acquired by the colour image, such
as in [3], with n = 10 bin quantization, for both H channel and S channel.

• colour histogram for the head/hair, Hh;
• colour histogram for the outwear, Ho.

It has also been defined in three descriptors: TVH, TVD and TVDH.

• TVH is the colour descriptor:

TVH = {Hp
h ,Hp

o } (18.4)

• TVD is the depth descriptor:

TVH = {dp
1 , dp

2 , dp
3 , dp

4 , dp
5 , dp

6 , dp
7 } (18.5)

• Finally, TVDH is the signature of a person defined as:

TVDH = {dp
1 , dp

2 , dp
3 , dp

4 , dp
5 , dp

6 , dp
7 ,Hp

h ,Hp
o } (18.6)

Figure18.9 depicts the set of features considered: anthropometric and the colour-
based ones.

The 100 people dataset was acquired in 23 registration sessions. Each of the 23
folders contains the video of one registration session. The recording time [s] for
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Fig. 18.9 Anthropometric and colour-based features

Fig. 18.10 Snapshots of a registration session of the recorded data, in an indoor scenario, with
artificial light. People had to pass under the camera installed on the ceiling. The sequences a–e, b–f
correspond to the sequences d–h, c–g respectively for the training and testing sets of the classes
8-9 for the registration session g003 [31]

the session and the number of persons of that session are reported in Table18.1.
Acquisitions have been performed in 8 days and the total recording time is about
2000s. Registrations are made in an indoor scenario, where people pass under the
camera installed on the ceiling. Another big issue is environmental illumination. In
each recording session, the illumination condition is not constant, because it varies in
function of the different hours of the day and it also depends on natural illumination
due to weather conditions. The video acquisitions, in this scenario, are depicted in
Fig. 18.10, which are examples of person registration respectively with sunlight and
artificial light. Each person during a registration session walked with an average gait
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Table 18.1 Time [s] of registration for each session and the number of people of that session [31]

Session Time [s] # People Session Time [s] # People

g001 68.765 4 g013 102.283 6

g002 53.253 3 g014 92.028 5

g003 50.968 2 g015 126.446 6

g004 59.551 3 g016 86.197 4

g005 75.571 4 g017 95.817 5

g006 128.827 7 g018 57.903 3

g007 125.044 6 g019 82.908 5

g008 75.972 3 g020 87.228 4

g009 94.336 4 g021 42.624 2

g010 116.861 6 g022 68.394 3

g011 101.614 5 g023 56.966 3

g012 155.338 7

Total 2004.894 100

within the recording area in one direction, then it turned back and repeated the same
route in the opposite direction. This methodology is used for a better split of TVPR in
training set (the first passage of the person under the camera) and testing set (when the
person passed again under the camera). The recruited people are aged between 19–36
years: 43 females and 57 male; 86 with dark hair, 12 with light hair and 2 are hair-
less. Furthermore, of these people 55 have short hair, 43 have long hair. The subjects
were recorded in their everyday clothing like T-shirts/sweatshirts/shirts, loose-fitting
trousers, coats, scarves and hats. In particular, 18 subjects wore coats and 7 subjects
wore scarves. All videos have fixed dimensions and a frame rate of about 30 fps.
Videos are saved in native .oni files, but can be converted to any other format. Colour
stream is available in a non-compressed format. Figure18.11 reports the histogram
of each extracted anthropometric feature. Due to the dissimilarity of the analysed
subjects a Gaussian curve is obtained from the data. The CumulativeMatching Char-
acteristic (CMC) curve represents the expectation of finding the correct match in the
top nmatches. It is equivalent to the Receiver Operating Characteristic (ROC) curve
in detection problems. This performance metric evaluates recognition problems, by
some assumptions about the distribution of appearances in a camera network. It
is considered the primary measure of identification performance among biometric
researchers. As well-established in recognition and in re-id tasks, for each testing
item we ranked the training gallery elements using standard distance metrics. Three
distance measures have been examined as the matching distance metrics: the L1
City block, the Euclidean Distance and the Cosine Distance. To evaluate the TVPR,
performance results are reported in terms of recognition rate, using the CMC curves,
illustrated in Fig. 18.12. In particular, the horizontal axis is the rank of the matching
score, and the vertical axis is the probability of correct identification. Considering the
dataset, a comparison among TVH and TVD in terms of CMC curves are depicted, to
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(a) (b)

(c) (d)

(f)(e)

(g)

Fig. 18.11 Statistics histogram for each feature (18.11a d1 distance between floor and head; 18.11b
d2 distance between floor and shoulders; 18.11c d3 area of head surface; 18.11d d4 Head circumfer-
ence, 18.11e d5 shoulders circumference, 18.11f d6 shoulders breadth; 18.11g d7 thoracic antero-
posterior depth). The resultant Gaussian curve (in red) is due to the dissimilarity of the analysed
subjects [31]
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Fig. 18.12 The CMC curves obtained on TVPR Dataset [42]

compare the ranks returned by using these different descriptors. Figure18.12a pro-
vides the CMC obtained for TVH. Figure18.12b represents the CMC obtained for
TVD. These results are compared with the average obtained by TVH and TVD. The
average CMC is displayed in Fig. 18.12c. It is observed that the best performance
is achieved by the combination of descriptors. In Fig. 18.12d, it can be seen that the
combination of descriptors improves the results obtained by each of the descriptor
separately. This result is due to the depth contribution that can be more informative.
In fact, the depth outperforms the colour, giving the best performance for rank val-
ues higher than 15 (Fig. 18.12b). Its better performance suggests the importance and
potential of this descriptor.

18.3 Results and Use Cases

In this section, the results of experiments performed for testing the performance
of multilevel segmentation and water filling, DCNNs for people counting and re-id
feature based approach are reported.



418 E. Frontoni et al.

Table 18.2 Image processing algorithms performances

Algorithm Precision Recall F1-score

Multilevel segmentation 0.9390 0.9872 0.9625

Water filling 0.9365 0.7564 0.8369

Fig. 18.13 CBSR dataset

In particular, themultilevel segmentation andwater filling algorithms are assessed
evaluating a restricted part of CBSR Dataset.2 This dataset includes a total of 3884
images with 6094 heads. It contains depth images after background subtraction and
in the ground truth the heads are manually painted as red colour.

Table18.2 shows the results of algorithms in term of Precision, Recall and F1-
score. The algorithms reach high values of performances. However, when the heads
are along the edge of image their accuracies are decreased. Instead, the multilevel
segmentation algorithm looksmore accurate thanwater filling algorithm (Fig. 18.13).

Regarding the evaluation of deep learning approaches TVHeads3 dataset has been
used. It contains depth images of people from top-view configuration. In particular,
the purpose of this dataset is to localise the heads of people who are present below
the camera. It contains a total of 1815 depth images (16 bit) with a dimension of
320 × 240 pixels. Furthermore, after an image preprocessing phase, the depth images
are also converted, with an appropriate scaling, in order to obtain images (8 bit),
where the heads silhouette is highlighted by improving image contrast and brightness
(Fig. 18.14).

Each CNN implementation is trained with two types of depth images:

• 16-bit: original images acquired by depth sensor;
• 8-bit: scaled images in order to highlight the heads’ silhouette, improving the
images contrast and brightness.

2https://goo.gl/MwtWKR.
3http://vrai.dii.univpm.it/tvheads-dataset.

https://goo.gl/MwtWKR
http://vrai.dii.univpm.it/tvheads-dataset
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8 bit Depth image. 16 bit Depth image. Ground truth.(a) (b) (c)

Fig. 18.14 TVHeads dataset. It consists of 8-bit scaled depth images (a), 16-bit original images
(b) and the corresponding ground truth (c) [33]

Table 18.3 Jaccard and Dice indices of different CNN architectures. From [33]

Net Bit Jaccard Jaccard Dice Dice

Train Validation Train Validation

Fractal [26] 8 0.960464 0.948000 0.979833 0.973306

16 0.961636 0.947762 0.980443 0.973180

U-Net [47] 8 0.896804 0.869399 0.945595 0.930138

16 0.894410 0.869487 0.944262 0.930188

U-Net2 [46] 8 0.923823 0.939086 0.960403 0.968586

16 0.923537 0.938208 0.960249 0.968119

U-Net3[33] 8 0.962520 0.931355 0.980902 0.964458

16 0.961540 0.929924 0.980393 0.963690

SegNet [2] 8 0.884182 0.823731 0.938531 0.903347

16 0.884162 0.827745 0.938520 0.905756

ResNet [22] 8 0.932160 0.856337 0.964889 0.922609

16 0.933436 0.848240 0.965572 0.917889

Table 18.4 Semantic segmentation results of different ConvNet architectures. From [33]

Net Bit Accuracy Precision Recall F1-score

Fractal [26] 8 0.994414 0.991400 0.993120 0.992235

16 0.994437 0.992667 0.993297 0.992970

U-Net [47] 8 0.992662 0.946475 0.950483 0.948408

16 0.992569 0.945083 0.948957 0.946938

U-Net2 [46] 8 0.993156 0.970013 0.969206 0.969568

16 0.993165 0.967884 0.970557 0.969123

U-Net3[33] 8 0.994572 0.990451 0.990387 0.990419

16 0.994559 0.989382 0.989411 0.989396

SegNet [2] 8 0.992683 0.946304 0.953136 0.949625

16 0.992699 0.946237 0.953342 0.949658

ResNet [22] 8 0.993789 0.968399 0.968374 0.968359

16 0.993819 0.968765 0.969256 0.968992
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Table 18.5 Qualitative result of prediction. From [33]

8-bit 16-bit Label

FractalNet [26]

U-Net [47]

U-Net2 [46]

U-Net3 [33]

SegNet [2]

ResNet [22]
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In this case, training, test and validation are chosen, respectively, to learn model
parameters. Once this phase is completed, the best model is also evaluated over the
never before seen test set. In the following experiments, 70%, 10% and 20% of the
datasets are chosen, respectively, for training, test and validation. Furthermore, dif-
ferent combinations of hyperparameters are tested, a learning rate equal to 0.001
and an Adam optimization algorithm have been used. Semantic segmentation per-
formances are divided into two different tables. Table18.3 shows Jaccard and Dice
indices for training and for validation, respectively, while Table18.4 reported the
results in terms of accuracy, precision, recall and F1-score. Both tables refer to a
learning process conducted during 200 epochs. In Table18.3, the best CNN archi-
tecture is the U-Net3 8-bit version. Indeed, Jaccard index reaches a value equal to
0.962520. The second best is Fractal Net 16-bit version also obtaining higher values
as regards validation performances. Table18.4 reports the best CNN architecture, in
terms of accuracy, is U-Net3 8-bit version, while Fractal Net 16-bit version exceeds
slightly in precision, recall and F1-score metrics. Qualitative results in Table18.5.

18.4 Conclusions

The RGB-D cameras installed in top-view configuration have several advantages for
tracking and detecting people especially in a heavy crowded environment with values
of accuracy that reaches 99%. The aim of this chapter is to demonstrate the potential
of these sensors installed in top-view configuration for two tasks: people counting
and re-id. These kind of solutions are successfully applied in several applications
because of their great suitability compared with a front-view configuration, usually
adopted for gesture recognition or even for video gaming. The combination of depth
information coupled with visual images provides their success in retail domain.

Future works would include the integration of these systems with an audio frame-
work and the use of other types of RGB-D sensors, such as time of flight (TOF)
ones. The system can additionally be integrated as a source of high semantic-level
information in a networked ambient intelligence scenario, to provide cues for dif-
ferent problems, such as detecting abnormal speed and dimension outliers, that can
alert of a possible uncontrolled circumstance. Further investigation will be devoted
to improve the top-view configuration approach for people counting and re-id by
extracting other comprehensive features and setting up it for the real-time process-
ing of video images, in particular, in the retail scenario.
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7. Coşkun A, Kara A, Parlaktuna M, Ozkan M, Parlaktuna O (2015) People counting system by
using Kinect sensor. In: 2015 International symposium on innovations in intelligent systems
and applications (INISTA), pp 1–7. https://doi.org/10.1109/INISTA.2015.7276740

8. Dan B, Kim YS, Jung J, Ko S (2012) Robust people counting system based on sensor fusion.
IEEE Trans Consum Electron 58(3):1013–1021. https://doi.org/10.1109/TCE.2012.6311350

9. Ding S, Lin L, Wang G, Chao H (2015) Deep feature learning with relative distance compari-
son for person re-identification. Pattern Recognit 48(10):2993–3003. https://doi.org/10.1016/
j.patcog.2015.04.005. http://www.sciencedirect.com/science/article/pii/S0031320315001296

10. Dittrich F, Woern H, Sharma V, Yayilgan S (2014) Pixelwise object class segmentation based
on synthetic data using an optimized training strategy. In: 2014 First international conference
on networks & soft computing (ICNSC2014), pp 388–394. IEEE

11. Ess A, Leibe B, Gool LV (2007) Depth and appearance for mobile scene analysis. In: 2007
IEEE 11th international conference on computer vision, pp 1–8. https://doi.org/10.1109/ICCV.
2007.4409092

12. Farenzena M, Bazzani L, Perina A, Murino V, Cristani M (2010) Person re-identification by
symmetry-driven accumulation of local features. In: 2010 IEEE computer society conference
on computer vision and pattern recognition, pp 2360–2367. https://doi.org/10.1109/CVPR.
2010.5539926

13. Ferracuti N, Norscini C, Frontoni E, Gabellini P, PaolantiM, Placidi V (2019) A business appli-
cation of RTLS technology in intelligent retail environment: Defining the shopper’s preferred
path and its segmentation. J Retail Consum Serv 47:184–194

14. Franco A, Oliveira L (2017) Convolutional covariance features: conception, integration and
performance in person re-identification. Pattern Recognit 61:593–609. https://doi.org/10.1016/
j.patcog.2016.07.013. http://www.sciencedirect.com/science/article/pii/S0031320316301625

15. Frontoni E, Zingaretti P (2005) A vision based algorithm for active robot localization. In:
2005 International symposium on computational intelligence in robotics and automation, pp
347–352. IEEE

16. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Garcia-Rodriguez J (2017)
A review on deep learning techniques applied to semantic segmentation. arXiv:1704.06857

17. Gasparrini S, Cippitelli E, Spinsante S, Gambi E (2014) A depth-based fall detection system
using aKinect® sensor. Sensors 14(2):2756–2775. https://doi.org/10.3390/s140202756. http://
www.mdpi.com/1424-8220/14/2/2756

18. Gheissari N, Sebastian TB, Hartley R (2006) Person reidentification using spatiotemporal
appearance. In: IEEE conference on computer vision and pattern recognition, pp 1528–1535.
IEEE

19. Gray D, Brennan S, Tao H (2007) Evaluating appearance models for recognition, reacquisition,
and tracking. In: IEEE international workshop on performance evaluation for tracking and
surveillance, Rio de Janeiro

https://doi.org/10.1109/VSPETS.2005.1570904
https://doi.org/10.1109/VSPETS.2005.1570904
http://arxiv.org/abs/1511.00561
https://doi.org/10.1109/AVSS.2006.92
http://dx.doi.org/10.5244/C.25.68
https://doi.org/10.1109/INISTA.2015.7276740
https://doi.org/10.1109/TCE.2012.6311350
https://doi.org/10.1016/j.patcog.2015.04.005
https://doi.org/10.1016/j.patcog.2015.04.005
http://www.sciencedirect.com/science/article/pii/S0031320315001296
https://doi.org/10.1109/ICCV.2007.4409092
https://doi.org/10.1109/ICCV.2007.4409092
https://doi.org/10.1109/CVPR.2010.5539926
https://doi.org/10.1109/CVPR.2010.5539926
https://doi.org/10.1016/j.patcog.2016.07.013
https://doi.org/10.1016/j.patcog.2016.07.013
http://www.sciencedirect.com/science/article/pii/S0031320316301625
http://arxiv.org/abs/1704.06857
https://doi.org/10.3390/s140202756
http://www.mdpi.com/1424-8220/14/2/2756
http://www.mdpi.com/1424-8220/14/2/2756


18 People Counting in Crowded Environment and Re-identification 423

20. GrayD, TaoH (2008) Viewpoint invariant pedestrian recognitionwith an ensemble of localized
features. In: European conference on computer vision, pp 262–275. Springer

21. Han J, Pauwels EJ, de Zeeuw PM, de With PHN (2012) Employing a RGB-D sensor for real-
time tracking of humans acrossmultiple re-entries in a smart environment. IEEETrans Consum
Electron 58(2):255–263. https://doi.org/10.1109/TCE.2012.6227420

22. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

23. Jojic N, Perina A, Cristani M, Murino V, Frey B (2009) Stel component analysis: modeling
spatial correlations in image class structure. In: 2009 IEEE conference on computer vision and
pattern recognition, pp 2044–2051. https://doi.org/10.1109/CVPR.2009.5206581

24. KepskiM, Kwolek B (2014) Detecting human falls with 3-axis accelerometer and depth sensor.
In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, pp 770–773. https://doi.org/10.1109/EMBC.2014.6943704

25. Kouno D, Shimada K, Endo T (2012) Person identification using top-view image with depth
information. In: 2012 13th ACIS international conference on software engineering, artificial
intelligence, networking and parallel/distributed computing, pp 140–145. https://doi.org/10.
1109/SNPD.2012.47

26. Larsson G, Maire M, Shakhnarovich G (2016) Fractalnet: ultra-deep neural networks without
residuals. arXiv:1605.07648

27. Lavi B, Serj MF, Ullah I (2018) Survey on deep learning techniques for person re-identification
task. CoRR. arXiv:1807.05284

28. Li D, Chen X, Zhang Z, Huang K (2017) Learning deep context-aware features over body and
latent parts for person re-identification

29. Liciotti D, Frontoni E,ManciniA, Zingaretti P (2016) Pervasive system for consumer behaviour
analysis in retail environments. Video analytics. Face and facial expression recognition and
audience measurement. Springer, Berlin, pp 12–23

30. Liciotti D, Massi G, Frontoni E, Mancini A, Zingaretti P (2015) Human activity analysis
for in-home fall risk assessment. In: 2015 IEEE international conference on communication
workshop (ICCW), pp 284–289. IEEE

31. Liciotti D, Paolanti M, Frontoni E, Mancini A, Zingaretti P (2017) Person re-identification
dataset with RGB-D camera in a top-view configuration. In: Nasrollahi K, Distante C, Hua G,
Cavallaro A, Moeslund TB, Battiato S, Ji Q (eds) Video analytics. Face and facial expression
recognition and audience measurement. Springer International Publishing, Cham, pp 1–11

32. Liciotti D, Paolanti M, Frontoni E, Zingaretti P (2017) People detection and tracking from an
RGB-D camera in top-view configuration: review of challenges and applications. In: Battiato
S, Farinella GM, Leo M, Gallo G (eds) New trends in image analysis and processing - ICIAP
2017, pp 207–218. Springer International Publishing, Cham

33. Liciotti D, Paolanti M, Pietrini R, Frontoni E, Zingaretti P (2018) Convolutional networks for
semantic heads segmentation using top-view depth data in crowded environment. In: 2018 24th
international conference on pattern recognition (ICPR), pp 1384–1389. IEEE

34. Lin S, Liu A, Hsu T, Fu L (2015) Representative body points on top-view depth sequences
for daily activity recognition. In: 2015 IEEE international conference on systems, man, and
cybernetics, pp 2968–2973. https://doi.org/10.1109/SMC.2015.516

35. Madden C, Piccardi M (2005) Height measurement as a session-based biometric for people
matching across disjoint camera views. In: Image and vision computing conference. Wickliffe
Ltd

36. Malawski F (2014) Top-view people counting in public transportation using Kinect. Chall Mod
Technol 5(4):17–20

37. Messelodi S, Modena CM (2015) Boosting Fisher vector based scoring functions for person
re-identification. Image Vis Comput 44:44–58

38. Migniot C, Ababsa F (2013) 3D human tracking in a top view using depth information recorded
by the xtion pro-live camera. In: Bebis G, Boyle R, Parvin B, Koracin D, Li B, Porikli F, Zordan
V, Klosowski J, Coquillart S, Luo X, Chen M, Gotz D (eds) Advances in visual computing.
Springer, Berlin, pp 603–612

https://doi.org/10.1109/TCE.2012.6227420
https://doi.org/10.1109/CVPR.2009.5206581
https://doi.org/10.1109/EMBC.2014.6943704
https://doi.org/10.1109/SNPD.2012.47
https://doi.org/10.1109/SNPD.2012.47
http://arxiv.org/abs/1605.07648
http://arxiv.org/abs/1807.05284
https://doi.org/10.1109/SMC.2015.516


424 E. Frontoni et al.

39. Migniot C, Ababsa F (2016) Hybrid 3D–2D human tracking in a top view. J R-Time Image
Process 11(4):769–784. https://doi.org/10.1007/s11554-014-0429-7

40. Pala F, Satta R, Fumera G, Roli F (2016) Multimodal person reidentification using RGB-D
cameras. IEEE Trans Circuits Syst Video Technol 26(4):788–799

41. Paolanti M, Liciotti D, Pietrini R, Mancini A, Frontoni E (2018) Modelling and forecasting
customer navigation in intelligent retail environments. J Intell Robot Syst 91(2):165–180

42. PaolantiM, Romeo L, Liciotti D, Pietrini R, Cenci A, Frontoni E, Zingaretti P (2018) Person re-
identification with RGB-D camera in top-view configuration throughmultiple nearest neighbor
classifiers and neighborhood component features selection. Sensors 18(10):3471

43. Paolanti M, Romeo L, Martini M, Mancini A, Frontoni E, Zingaretti P (2019) Robotic retail
surveying by deep learning visual and textual data. Robot Auton Syst 118:179–188

44. Prosser BJ, Zheng WS, Gong S, Xiang T, Mary, Q (2010) Person re-identification by support
vector ranking. In: BMVC, vol 2, p 6

45. Rauter M (2013) Reliable human detection and tracking in top-view depth images. In: 2013
IEEE conference on computer vision and pattern recognition workshops, pp 529–534. https://
doi.org/10.1109/CVPRW.2013.84

46. Ravishankar H, Venkataramani R, Thiruvenkadam S, Sudhakar P, Vaidya V (2017) Learning
and incorporating shape models for semantic segmentation. In: International conference on
medical image computing and computer-assisted intervention, pp 203–211. Springer

47. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image
segmentation

48. Roy A, Sural S, Mukherjee J (2012) A hierarchical method combining gait and phase
of motion with spatiotemporal model for person re-identification. Pattern Recognit Lett
33(14):1891–1901. https://doi.org/10.1016/j.patrec.2012.02.003. http://www.sciencedirect.
com/science/article/pii/S0167865512000359. Novel pattern recognition-basedmethods for re-
identification in biometric context

49. Saghafi MA, Hussain A, Zaman HB, Saad MHM (2014) Review of person re-identification
techniques. IET Comput Vis 8(6):455–474. https://doi.org/10.1049/iet-cvi.2013.0180

50. Satta R, Fumera G, Roli F (2011) Exploiting dissimilarity representations for person re-
identification. In: Pelillo M, Hancock ER (eds) Similarity-based pattern recognition. Springer,
Berlin, pp 275–289

51. SchwartzWR,Davis LS (2009) Learning discriminative appearance-basedmodels using partial
least squares. In: 2009 XXII Brazilian symposium on computer graphics and image processing
(SIBGRAPI), pp 322–329. IEEE

52. Stauffer C, GrimsonWEL (1999) Adaptive background mixture models for real-time tracking.
In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recog-
nition (Cat. No PR00149), vol 2, pp 246–252. https://doi.org/10.1109/CVPR.1999.784637

53. Sturari M, Liciotti D, Pierdicca R, Frontoni E, Mancini A, Contigiani M, Zingaretti P (2016)
Robust and affordable retail customer profiling by vision and radio beacon sensor fusion.
Pattern Recognit Lett 81:30–40. https://doi.org/10.1016/j.patrec.2016.02.010. http://www.
sciencedirect.com/science/article/pii/S016786551600057X

54. Su C, Zhang S, Xing J, Gao W, Tian Q (2016) Deep attributes driven multi-camera person
re-identification. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision - ECCV
2016. Springer International Publishing, Cham, pp 475–491

55. Tseng T, Liu A, Hsiao P, Huang C, Fu L (2014) Real-time people detection and tracking for
indoor surveillance using multiple top-view depth cameras. In: 2014 IEEE/RSJ international
conference on intelligent robots and systems, pp. 4077–4082. https://doi.org/10.1109/IROS.
2014.6943136

56. Tu PH, Doretto G, Krahnstoever NO, Perera AA, Wheeler FW, Liu X, Rittscher J, Sebastian
TB, Yu T, Harding, KG (2007) An intelligent video framework for homeland protection. In:
Unattended ground, sea, and air sensor technologies and applications IX, vol 6562, p 65620C.
International Society for Optics and Photonics

57. Wang J, Wang Z, Gao C, Sang N, Huang R (2017) DeepList: learning deep features with
adaptive listwise constraint for person reidentification. IEEETrans Circuits Syst Video Technol
27(3):513–524. https://doi.org/10.1109/TCSVT.2016.2586851

https://doi.org/10.1007/s11554-014-0429-7
https://doi.org/10.1109/CVPRW.2013.84
https://doi.org/10.1109/CVPRW.2013.84
https://doi.org/10.1016/j.patrec.2012.02.003
http://www.sciencedirect.com/science/article/pii/S0167865512000359
http://www.sciencedirect.com/science/article/pii/S0167865512000359
https://doi.org/10.1049/iet-cvi.2013.0180
https://doi.org/10.1109/CVPR.1999.784637
https://doi.org/10.1016/j.patrec.2016.02.010
http://www.sciencedirect.com/science/article/pii/S016786551600057X
http://www.sciencedirect.com/science/article/pii/S016786551600057X
https://doi.org/10.1109/IROS.2014.6943136
https://doi.org/10.1109/IROS.2014.6943136
https://doi.org/10.1109/TCSVT.2016.2586851


18 People Counting in Crowded Environment and Re-identification 425

58. Wang T, Gong S, Zhu X, Wang S (2014) Person re-identification by video ranking. In: Fleet D,
Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision - ECCV 2014. Springer International
Publishing, Cham, pp 688–703

59. Wang X, Doretto G, Sebastian T, Rittscher J, Tu P (2007) Shape and appearance context
modeling

60. Wang Z, Hu R, Liang C, Yu Y, Jiang J, Ye M, Chen J, Leng Q (2016) Zero-shot person re-
identification via cross-view consistency. IEEE Trans Multimed 18(2):260–272. https://doi.
org/10.1109/TMM.2015.2505083

61. Wu A, Zheng W, Lai J (2017) Robust depth-based person re-identification. IEEE Trans Image
Process 26(6):2588–2603. https://doi.org/10.1109/TIP.2017.2675201

62. Wu L, Shen C, van den Hengel A (2017) Deep linear discriminant analysis on Fisher
networks: a hybrid architecture for person re-identification. Pattern Recognit 65:238–250.
https://doi.org/10.1016/j.patcog.2016.12.022. http://www.sciencedirect.com/science/article/
pii/S0031320316304447

63. Wu S, Chen YC, Li X, Wu AC, You JJ, Zheng WS (2016) An enhanced deep feature represen-
tation for person re-identification

64. Xiang JP (2012) Active learning for person re-identification. In: 2012 International conference
onmachine learning and cybernetics, vol 1, pp 336–340. https://doi.org/10.1109/ICMLC.2012.
6358936

65. Xiang ZJ, Chen Q, Liu Y (2014) Person re-identification by fuzzy space color histogram.
Multimed Tools Appl 73(1):91–107. https://doi.org/10.1007/s11042-012-1286-7.

66. Xiao T, Li H, Ouyang W, Wang X (2016) Learning deep feature representations with domain
guided dropout for person re-identification

67. Yahiaoui T, Meurie C, Khoudour L, Cabestaing F (2008) A people counting system based on
dense and close stereovision. In: Elmoataz A, Lezoray O, Nouboud F,Mammass D (eds) Image
and signal processing. Springer, Berlin, pp 59–66

68. Ye W, Xu Y, Zhong Z (2007) Robust people counting in crowded environment. In: 2007 IEEE
international conference on robotics and biomimetics (ROBIO), pp 1133–1137. https://doi.
org/10.1109/ROBIO.2007.4522323

69. Yi D, Lei Z, Li SZ (2014) Deep metric learning for practical person re-identification
70. Zhang R, Lin L, Zhang R, Zuo W, Zhang L (2015) Bit-scalable deep hashing with regularized

similarity learning for image retrieval and person re-identification. IEEE Trans Image Process
24:4766–4779. https://doi.org/10.1109/TIP.2015.2467315

71. Zhang X, Yan J, Feng S, Lei Z, Yi D, Li SZ (2012) Water filling: unsupervised people counting
via vertical Kinect sensor. In: 2012 IEEE 9th international conference on advanced video and
signal-based surveillance, pp 215–220. https://doi.org/10.1109/AVSS.2012.82

72. Zhao T, Nevatia R, Wu B (2008) Segmentation and tracking of multiple humans in crowded
environments. IEEETrans PatternAnalMach Intell 30(7):1198–1211. https://doi.org/10.1109/
TPAMI.2007.70770

73. Zheng WS, Gong S, Xiang T (2011) Person re-identification by probabilistic relative distance
comparison

https://doi.org/10.1109/TMM.2015.2505083
https://doi.org/10.1109/TMM.2015.2505083
https://doi.org/10.1109/TIP.2017.2675201
https://doi.org/10.1016/j.patcog.2016.12.022
http://www.sciencedirect.com/science/article/pii/S0031320316304447
http://www.sciencedirect.com/science/article/pii/S0031320316304447
https://doi.org/10.1109/ICMLC.2012.6358936
https://doi.org/10.1109/ICMLC.2012.6358936
https://doi.org/10.1007/s11042-012-1286-7
https://doi.org/10.1109/ROBIO.2007.4522323
https://doi.org/10.1109/ROBIO.2007.4522323
https://doi.org/10.1109/TIP.2015.2467315
https://doi.org/10.1109/AVSS.2012.82
https://doi.org/10.1109/TPAMI.2007.70770
https://doi.org/10.1109/TPAMI.2007.70770


Appendix
References

1. Cornell graspingdataset. http://pr.cs.cornell.edu/grasping/rect_data/data.php.
Accessed 13 Dec 2018

2. MRPT (mobile robot programming toolkit). http://www.mrpt.org
3. OpenSLAM. http://openslam.org/
4. AbobakrA,HossnyM,AbdelkaderH,Nahavandi S (2018) RGB-D fall detec-

tion via deep residual convolutional LSTM networks. In: Digital image com-
puting: techniques and applications (DICTA), pp 1–7

5. Abrams A, Hawley C, Pless R (2012) Heliometric stereo: shape from sun
position. In: European conference on computer vision (ECCV), pp 357–370

6. Achanta R,Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient
region detection. In: IEEE conference on computer vision and pattern recog-
nition, pp 1597–1604

7. AchantaR, ShajiA, SmithK,LucchiA, FuaP, SüsstrunkS (2012) SLIC super-
pixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern
Anal Mach Intell 34(11):2274–2282

8. de Aguiar E, Stoll C, Theobalt C, Ahmed N, Seidel HP, Thrun S (2008)
Performance capture from sparsemulti-viewvideo.ACMTransGraph (TOG)
27(3):1

9. Ahmed N (2012) A system for 360 degree acquisition and 3D animation
reconstruction using multiple RGB-D cameras. In: International conference
on computer animation and social agents

10. Ahmed N (2013) Spatio-temporally coherent 3D animation reconstruction
from multi-view RGB-D images using landmark sampling. In: Proceedings
of the international multiconference of engineers and computer scientists 2,
vol 1, pp 441–445

11. Ahmed N, Junejo I (2014) Using multiple RGB-D cameras for 3D video
acquisition and spatio-temporally coherent 3D animation reconstruction. Int
J Comput Theory Eng 6

© Springer Nature Switzerland AG 2019
P. L. Rosin et al. (eds.), RGB-D Image Analysis and Processing,
Advances in Computer Vision and Pattern Recognition,
https://doi.org/10.1007/978-3-030-28603-3

427

http://pr.cs.cornell.edu/grasping/rect_data/data.php
http://www.mrpt.org
http://openslam.org/
https://doi.org/10.1007/978-3-030-28603-3


428 Appendix: References

12. Alcover EA, Jaume-i Capó A, Moyà-Alcover B (2018) PROGame: a process
framework for serious game development for motor rehabilitation therapy.
PloS one 13(5):e0197383

13. Alexa M (2003) Differential coordinates for local mesh morphing and defor-
mation. Vis Comput 19(2):105–114

14. Alexandre LA (2014) 3D object recognition using convolutional neural net-
works with transfer learning between input channels. In: IAS

15. Alexandrov SV, Prankl J, Zillich M, VinczeM (2016) Calibration and correc-
tion of vignetting effects with an application to 3D mapping. In: IEEE/RSJ
international conference on intelligent robots and systems (IROS), vol 2016-
Novem, pp 4217–4223

16. Alexe B, Deselaers T, Ferrari V (2010) What is an object? In: Conference on
computer vision and pattern recognition, pp 73–80

17. Alexiadis DS, Zarpalas D, Daras P (2013) Real-time, full 3-d reconstruction
of moving foreground objects from multiple consumer depth cameras. IEEE
Trans Multimed 15(2):339–358

18. Alexiadis S, Kordelas G, Apostolakis KC, Agapito JD, Vegas J, Izquierdo E,
Daras P (2012) Reconstruction for 3D immersive virtual environments. In:
International workshop on image analysis for multimedia interactive services
(WIAMIS), pp 1–4

19. Almomani R, Dong M (2013) SegTrack: a novel tracking system with
improved object segmentation. In: ICIP, pp 3939–3943

20. Alnowami M, Alnwaimi B, Tahavori F, Copland M, Wells K (2012) A quan-
titative assessment of using the Kinect for Xbox360 for respiratory surface
motion tracking. In: Holmes DR III, Wong KH (eds) Proceedings of SPIE,
vol 8316, p 83161T

21. Amer K, Samy M, ElHakim R, Shaker M, ElHelw M (2017) Convolutional
neural network-based deep urban signatures with application to drone local-
ization. In: IEEE international conference on computer vision workshop
(ICCVW), pp 2138–2145

22. Anand A, Koppula HS, Joachims T, Saxena A (2011) Contextually guided
semantic labeling and search for 3D point clouds. CoRR abs/1111.5358

23. Anderson F, Annett M, Bischof WF (2010) Lean on Wii: physical reha-
bilitation with virtual reality wii peripherals. Stud Health Technol Inform
154(154):229–34

24. Andreasson H, Triebel R, BurgardW (2005) Improving plane extraction from
3D data by fusing laser data and vision. In: International conference on intel-
ligent robots and systems, pp 2656–2661

25. Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J (2005)
SCAPE: shape completion and animation of people. ACM SIGGRAPH
24:408–416

26. Annesley J, Orwell J, Renno, J (2005) Evaluation ofMPEG7 color descriptors
for visual surveillance retrieval. In: IEEE international workshop on visual
surveillance and performance evaluation of tracking and surveillance, pp 105–
112



Appendix: References 429

27. Arbelaez P, Maire M, Fowlkes C, Malik J (2009) From contours to regions:
an empirical evaluation. In: IEEE conference on computer vision and pattern
recognition (CVPR), pp 2294–2301

28. Arbeláez P, Pont-Tuset J, Barron J, Marques F, Malik J (2014) Multiscale
combinatorial grouping. In: Computer vision and pattern recognition

29. Arias P, Facciolo G, Caselles V, Sapiro G (2011) A variational framework for
exemplar-based image inpainting. Comput Vis 93(3):319–347

30. Armeni I, Sax A, Zamir AR, Savarese S (2017) Joint 2D-3D-semantic data
for indoor scene understanding. arXiv:1702.01105

31. Asfour T, Regenstein K, Azad P, Schroder J, Bierbaum A, Vahrenkamp N,
Dillmann R (2006) Armar-III: an integrated humanoid platform for sensory-
motor control. In: IEEE-RAS international conference on humanoid robots
(humanoids)

32. Asif U, BennamounM, Sohel FA (2017) RGB-D object recognition and grasp
detection using hierarchical cascaded forests. IEEE Trans Robot 33(3):547–
564
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