
Design and Use of Loop-Transformation
Pragmas

Michael Kruse(B) and Hal Finkel(B)

Argonne Leadership Computing Facility, Argonne National Laboratory,
Lemont, IL 60439, USA

{mkruse,hfinkel}@anl.gov

Abstract. Adding a pragma directive into the source code is undoubt-
edly easier than rewriting it, for instance for loop unrolling. Moreover, if
the application is maintained for multiple platforms, their difference in
performance characteristics may require different code transformations.
Code transformation directives allow replacing the directives depending
on the platform, i.e. separation of code semantics and its performance
optimization.

In this paper, we explore the design space (syntax and semantics) of
adding such directive into a future OpenMP specification. Using a pro-
totype implementation in Clang, we demonstrate the usefulness of such
directives on a few benchmarks.

Keywords: OpenMP · Pragma · C/C++ · Clang · Polly

1 Introduction

In scientific computing, but also in most other kinds of applications, the majority
of execution time is spent in loops. Consequently, when it comes to improving
an application’s performance, optimizing the hot loops and their bodies is the
most obvious strategy.

While code should be written in a way that is the easiest to understand,
it will likely not the variant the will execute the fastest. Platform details such
as cache hierarchies, data temporal/spatial locality, prefetching, NUMA, SIMD,
SIMT, occupancy, branch prediction, parallelism, work-groups, etc. will have a
profound impact on application performance such that restructuring the loop is
necessary. Since an application rarely runs on just a single platform, one may end
up in multiple versions of the same code: One that is written without considering
hardware details, and (at least) one for each supported platform, possibly even
using different programming models.

OpenMP is intended to be a programming model for many architectures, and
ideally would allow to share the same code all of them. It is comparatively low-
effort to replace an OpenMP directive, for instance, using the C/C++ preproces-
sor and OpenMP 5.0 introduced direct support for this via the metadirective.

c© Springer Nature Switzerland AG 2019
X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 125–139, 2019.
https://doi.org/10.1007/978-3-030-28596-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28596-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-28596-8_9


126 M. Kruse and H. Finkel

Currently, this can only change the parallelization, offloading and vectorization
decisions, but not the structure of the code itself.

In our last year’s contribution [5], we proposed additional directives in
OpenMP for transforming loops, e.g. loop fusion/fission, interchange, unrolling
etc. In this paper, we discuss choices of syntactic and semantics elements (Sect. 2)
for such an addition, give and update on our prototype implementation (Sect. 3),
and demonstrate how loop transformation can be used in applications and the
performance improvements (Sect. 4).

2 Specification Design Considerations

In this section we explore some of the decisions to make for including loop trans-
formation directives into a potential newer OpenMP standard. By its nature,
this cannot be an exhaustive discussion, but a subjective selection of the most
important features that came up in discussion with members of the OpenMP
language committee members and others.

The first decision to make is whether to include such directive at all. Since the
“MP” in OpenMP stands for “MultiProcessing”, obviously the original targets
of OpenMP were (symmetric) multi-core and -socket platforms and still today,
most implementation are based on the pthreads API. Multiprocessing obviously
does not include sequential loop transformations, but this is not per se a reason
to exclude such transformations from OpenMP.

For one, there is a need of supporting functionality: The collapse clause has
been added in OpenMP 3.0, although it is not directly related to multiprocessing.
OpenACC [7] also supports a tile-clause. The simd construct has been added
in OpenMP 4.0, which is exploits instruction-level parallelism, which also not
included in the term multiprocessing.

Second, the scope of OpenMP has extended relative to its original goal. With
target offloading also introduced in OpenMP 4.0, it also supports accelerators
such as GPGPUs and FPGAs.

There are alternatives to not include code transformations into OpenMP:

– Continue with the current practice of compiler-specific extensions. Without
standardization, this means these will be incompatible to each other.

– Include into a future version the host languages’ specifications (C/C++/
Fortran). This would compel OpenMP to add clarifications how its direc-
tives interact with the host language’s directives. However, it is question-
able whether e.g. the C++ standard committee will add specifications of
pragma-directives. Even if all host languages add transformation directives,
their semantics are unlikely to match, complicating OpenMP compatibility
clarifications.

– Create a separate language specification using C/C++/Fortran with
OpenMP as its host language. This new language would probably diverge
from OpenMP over time as they might add features incompatible to each
other. Comparisons can be drawn from OpenACC, which started as an ini-
tiative to add accelerator offloading to OpenMP.



Design and Use of Loop-Transformation Pragmas 127

For the directives themselves, we distinguish three aspects: Syntax, seman-
tics and the available code transformations. The syntax describes which token
streams are accepted by the compiler and the semantics define their meaning.
Once these base rules have been defined, it should be straightforward to add
transformations consistent with these rules.

2.1 Syntax

In our first proposal [5], we suggested the following syntax

i.e. every transformation is a top-level directive. The loop-clause before the
directive could be used to refer to a loop that is not on the following line or
the result of another transformation on the next line. Since then, the OpenMP
5.0 standard was announced which includes a loop-directive. Even though a
disambiguation is possible using the parenthesis following the clause, but not
the directive, overloading the keyword might be ambiguous. Hence, we explore
alternatives in this section.

Loop Directive. OpenMP 5.0 introduced the loop construct with the goal to
give the compiler more freedom on optimization decisions. The first OpenMP
specification was designed with symmetric multiprocessing in mind, but in the
era of heterogeneous computing sensible defaults vary widely.

The idea of the loop-directive was to become the new default worksharing
construct, since in most cases, or at least before performance-optimizing an
application, the programmer does not care about how the body is executed in
parallel, as long as the default choice is reasonable. In future OpenMP revi-
sions, the loop-construct would gain features of the prescriptive worksharing-
construct and preferred when adding new features. This maxim also applies to
transformation-directives.

Clauses or (Sub-)Constructs. A transformation could be either expressed
as a construct (as in [5]), or as a clause. Constructs usually indicate to the
compiler to do something, whereas clauses pass options to the construct’s doing.
Therefore, a clause requires a construct to be added to.

Currently, OpenMP already uses both syntactic elements for what we might
consider loop transformations. For instance, #pragma omp simd can be seen as
a loop transformation that does vectorization. On the other side, the collapse
clause (valid for multiple constructs such as loop, simd, etc.) is a transformation
that occurs before the construct’s effect.

When using the loop-construct, the transformation could either be clauses
like the collapse-clause, or sub-constructs of the loop clause, similarly as every
OpenMP construct is follows after an “omp” token. However, this would be a new
syntactic element in OpenMP, since e.g. #pragma omp for simd is a combined
construct, each of them can be used independently.



128 M. Kruse and H. Finkel

The order of any OpenMP 5.0 clauses is irrelevant, but transformations car-
ried out in different orders generally result in different loop nests. This contra-
diction can be solved by either make such clauses order-dependent, require the
compiler to ignore the order and instead apply an heuristic to determine the
best order, or disallow multiple transformations on a single pragma.

If using the (sub-)construct as the primary syntax, clauses can still be allowed
as syntactic sugar where it makes sense and does not cause ambiguity. Combined
constructs could be allowed as well.

Loop Chains. Bertolacci et. al. [1] proposed a loopchain-construct with a
schedule-clause. The loopchain encloses a loop nest to transform with the sched-
ule clause that defines the transformations to apply on the loop nest, as illus-
trated in the example below (simplified from the paper).

Since the schedule applies the loop nest as a whole, the schedule must also
specify an operation on parts that are not transformed. In the excerpt, the non-
transformed part is indicated by the serial operator. If the loop chain is large
with many transformations, the schedule clause can quickly become convoluted.

Referring to Other Loops. Some transformations such as tiling and loop
fusion consume more than one loop on the next line and replace them with
potentially more than one generated loop, which may be consumed by a follow-
up transformation. For instance, the result of tiling two nested loops are four
loops, we might want the parallelize the outermost, unroll-and-jam one of the
middle loops and vectorize the innermost loop. Therefore, a syntax is needed to
refer to loops that are not directly following the transformation directive.

This can either be done by assigning names to loops and referring to them,
or with a path selector from the loop that is annotated. Loop names/identifiers
have been described in [5], but also used by IBM xlc [4] and XLang [2].

Path selectors have been for node selection in trees, such as XPath [9] on
XML. In some sense, the collapse clause, taking the number of perfectly nested
loops as an argument, is such an selector. With more complex cases, such as “the
third loop inside the following loop nest of two loops“, maintainability becomes a
problem: Adding or removing a loop before between the selector and the selected
loop requires updating the selector.



Design and Use of Loop-Transformation Pragmas 129

2.2 Semantics

Prescriptive vs. Descriptive. Code transformations are inherently prescrip-
tive: When used, the programmer is already working on performance optimiza-
tion and cares about the executions order. The loop-construct is designed to be
descriptive and, by default, applies the semantics of order(concurrent), which
allows the compiler to reorder the loop as it fits. Then changing the order using a
loop transformation directive has no meaning: As the order(concurrent) clause
allows an arbitrary permutation/thread-distribution, applying a user-defined
permutation will have an undetermined result. It is also a worksharing-construct,
meaning that it is meant to be executed in a parallel context. Non-worksharing,
simple transformed loops would just run redundantly on every thread in the con-
text.

One solution is to introduce new clauses that disable the default descriptive
and worksharing behavior, such as order(sequential) and noworksharing. To
avoid this boilerplate to be repeated with every loop construct, they might be
implicit when a loop transformation is defined.

2.3 Level of Prescriptiveness

To avoid differences in performance when using different compilers, the specifi-
cation should define the replacement code of a transformation. However, for code
that is not performance-sensitive (such as edge cases, fallback code and pro- and
epilogue), the compiler might retain some freedom. Taking the tile-construct as
an example, the following decisions are not necessarily performance-relevant:

– Fallback code for rare cases where the transformation would be invalid, such
as address range aliasing of two arrays that would cause a change in semantics.

– Where and how to execute partial tiles at the logical iteration space border:
like a full tile but with additional border conditions or separately after/before
all full tiles have been executed.

– If the iteration counter of the first iteration is not zero, divide tiles using the
logical or physical iteration space?

– Assuming only the code inside a tile is performance-relevant, the outer iter-
ation order over tiles does not need to be defined.

– If the specification allows tiling of non-perfectly nested loops, there is not
obvious way to archive this.

A sensible approach could be to leave these decisions to the compiler, but con-
sider adding clauses that fix this behavior.

OpenMP 5.0 already allows non-perfectly nested loops with the collapse-
clause and only requires code between the loops to be executed at most as many
times as it would be executed if moved inside the innermost loop, but at least
as many times as in the original loops nest. Executing code more often than in
the original code might be an unexpected side-effect of tiling. In the interest of
user-friendless, the specification could disallow non-perfectly loop nests, but add
a nestify transformation to make this behavior explicit in the code.



130 M. Kruse and H. Finkel

Transformation Order. The order in which multiple transformations are
applied on the same loop can be either defined the programmer, the specifica-
tion, or by the compiler. When defined by the programmer, the order is derived
from the syntax. Otherwise, any order in the source is ignored and either the
OpenMP specification has to specify the rule in which order transformations
are applied, or it is implementation-defined such that the compiler can apply
heuristics to determine the best ordering.

It might be straight-forward with transformations that consume one loop
and replace it with another, but not all orderings are valid with other transfor-
mations. For instance, loop interchange requires at least two loops and cannot
be applied if the previous transformation only returns a single loop. If the order
is user-defined, the compiler can emit an error. Otherwise, either the OpenMP
has to define which order to use, or the compiler developers.

However, performance optimization engineers will unlikely want to leave such
decision up to the compiler or specification. This is because when using trans-
formations, they will try to get a specific result that is optimal on the target
platform and without transformation constructs, would write an alternative code
path. A compiler “improving” its heuristic in later versions would also not helpful
since it would regress the once-archived performance.

Compatibility with Legacy Directives. Several existing constructs and
clauses in OpenMP can be interpreted as a loop transformation:

– The for, loop and distribute-constructs divide loop iterations between
threads or teams.

– The sections-constructs distributes code regions between threads.
– The simd construct vectorizes a loop such that multiple input loop itera-

tions are processed by one iteration of a generated loop, similarly to (partial)
unrolling.

With this interpretation, applying other transformations to occur before and
after the construct should be possible and make a syntax for new transformations
that resemble existing transformations preferable.

Furthermore, existing combined constructs can be redefined as a sequence of
transformations, instead of a textual definition. For instance,

could be defined as

Note that this is different from



Design and Use of Loop-Transformation Pragmas 131

Table 1. Safety modes for transformation directives. Green is for safe transformations,
red may have changed the code’s semantics as does orange but only in corner cases.

Heuristic Default Fallback Force

always valid originalor transformed transformed transformed transformed

valid with rtc originalor rtc transformed rtc warning

invalid original transformed warning warning

impossible original warning warning warning

which might be more efficient if the number of iterations is not a multiple of
the vector width. Using this transformation extension, it is possible to choose
between the variants.

Semantic Safety. Generally, the OpenMP specification requires compilers to
apply its directives without regard to whether it is semantically valid to do, i.e.
the user guarantees that it is. This ensures that otherwise conservative compilers
still honor the OpenMP directive, but defers the responsibility to the program-
mer.

In some scenarios the user might want the compiler to do a validity check.
For instance, the programmer might be unsure themselves or the transforma-
tion is added by an autotuner trying out different loop transformations without
understanding the code. For these cases, the directives may support options to
instruct the compiler to verify semantic validity.

Table 1 shows how safety modes handle different situations for applying a
code transformation. “Always valid” refers to code to which the transformation
can be applied without changing its semantics. In the case of unrolling this is
any loop since unrolling cannot change the code’s effect (except execution time).
“Valid with rtc” refers to code that can be transformed under conditions that
can be checked dynamically. For instance, a transformation may require that two
memory regions are not overlapping (alias), which can be checked at runtime if
the compiler can deduce which addresses are accessed. “Invalid” means that
the compiler cannot determine a reasonable runtime condition, i.e. must assume
that the transformation will change the code’s semantics. “Impossible” is code
that the compiler can structurally impossible to transform, such as reversing a
while-loop.

Note that these categories may depend on compiler capabilities; e.g. a com-
piler may have deduced the number of iterations of a while-loop. For the sake of
a standardization, OpenMP should define minimum requirements for compilers
to support with everything beyond being a quality-of-implementation.

Without OpenMP, the compiler would heuristically determine whether a
transformation is profitable or not. Hence, it might apply it or not (indicated by



132 M. Kruse and H. Finkel

“original” in Table 1), but if it does, it has to ensure that the semantics do not
change.

The default behavior of OpenMP directives1 is to always apply even if it
the code’s semantics changes. It does not add a runtime check, meaning that
the program result can also change in the “Valid with rtc” case. The compiler
should emit a warning to the user if the transformation could not be applied at
all.

With fallback semantics, the compiler must not emit semantically invalid
code, but is allowed to generate fallback code in case a runtime condition fails.
Still, it should warn if the transformation directive had no effect. In contrast to
the heuristic approach, the compiler skips the profitability check and trusts the
directive that the transformation is profitable.

Due to the possible fallback, it is still possible that the non-transformed
code is executed without compiler warning and surprise the performance engi-
neer. Instead force semantics can be used, which guarantees that either the
transformed code is executed, or the compiler emits a warning. An additional
required clause could change the warning to an hard error.

Another idea is a hint clause, which informs the compiler that the transfor-
mation is valid (i.e. skips the validity check), but still considers the profitability,
possibly with a bump in favor of applying the transformation instead of the
compiler’s usual conservativeness.

2.4 Transformations

In addition to the general syntax and semantics, the available transformations
have to be defined, including when they are applicable and what the result is. A
convenient approach is to think of transformations as replacements: Remove the
code it applies to and insert the result instead. Any follow-up transformation can
apply on the transformed code as if the replacement was written in the source
code. This should happen internally in the compiler, not textually.

In the remainder of the chapter, we try to define a selected set of transfor-
mations.

Loop Peeling. Some loop transformations work best when the loop is a multiple
of a constant, such as (partial) unrolling, vectorization and tiling. If this is not a
case, some iterations have to be extracted out of the main loop, which by itself is
also a transformation. Unlike to relying on the implicit peeling, explicitly using a
peeling transformation allows more options and naming the resulting prologue-
and epilogue-loop to be referenced in follow-up transformations.

We can either the first k iterations into an prologue before the loop or the
last k iterations into an epilogue after the loop. Peeling the first iterations is
always possible, but for peeling the last iterations the number of iterations must
be known in advance, which is the case of canonical loops as defined by OpenMP.
1 Our previous paper [5] suggested to use safe semantics as the default, in conflict to

the normal OpenMP behavior.



Design and Use of Loop-Transformation Pragmas 133

Fig. 1. (a) Strip-mining, (b) Stripe-mining

The number of iterations to peel can either be specified directly as the number
k or indirectly as a goal to archive. A goal can be:

1. Make remaining main loop have a multiple of a constant number of iterations;
useful for the aforementioned transformations.

2. Make the first access to an array aligned; useful for vectorized loads/stores
and accesses that are faster when the compiler knows they are aligned.

Peeling might be necessary spanning multiple loops in a loop nests, since
transformations like tiling and unroll-and-jam also apply on multiple nested
loops.

Collapse. This combines multiple nested loops into a single logical loop that can
be referred to by other transformations. It should not change the execution order
of the inner body. OpenMP added a clause with similar semantics in version 3.0
and even assigns logical iteration numbers to loop body executions. A collapse
loop-transformation would allow using this functionality independently of other
constructs.

Strip- and Stripe-Mining. Strip-mining can be seen as one-dimensional tiling.
In contrast to tiling in general, the execution order is not changed, i.e. like
unrolling never changes the program’s result. Unlike unrolling, it increases the
control-flow complexity and therefore is only intended to be used in combination
with other transformations. For instance, partial unrolling can be implemented
by strip-mining followed by a full unroll of the inner loop. The name is inspired
by the term from open-pit mining: The pit is deepened by one strip at a time,
as visualized in Fig. 1a.

In contrast, stripe-mining does change the execution order: Each inner loop
processes a constant number of iterations that are equidistantally distributed
over the iteration space. As shown in Fig. 1b, each form a set of stripes, lending
to the transformation’s name.



134 M. Kruse and H. Finkel

3 Prototype Implementation

We created an implementation of some transformation directives in Clang and
Polly, which we already described in [6]. Because such transformations are not
part of OpenMP yet, use a hybrid of Clang’s native syntax for loop transfor-
mation extensions and OpenMP construct/clauses syntax. The general syntax
is:

Our code is available on Github2 Currently, it should be considered as pro-
totype quality and is not intended for use in production. For instance, it may
crash on syntax errors instead of diagnostic output.

In addition to the transformations mentioned in [6], we implemented
unrolling, unroll-and-jam, thread-parallelization and peeling for tiled loops. The
parallelization transformation, in contrast to OpenMP’s worksharing constructs,
can be combined with other transformations. It should become unnecessary once
the interaction between OpenMP’s parallelization constructs and loop transfor-
mations have been specified. We unfortunately did not implement loop distribu-
tions such that it had to be replicated manually for the evaluation.

4 Evaluation

In this section, we explore how transformation directives can be useful to improve
the performance of a selection of kernels. Please keep in mind that we do not
intend to discover new techniques how to improve these kernels over typically
hand-optimized kernels in specialized libraries or in literature. Instead, we want
to illustrate how these directives help exploring common optimization tech-
niques. This is most relevant if no hand-optimized library for the kernel in
question is available for a platform.

Unless mentioned otherwise, the execution time was measured on an Intel
Core i7 7700HQ (Kaby Lake architecture), 2.8 Ghz with Turbo Boost off and
compiled using the -ffast-math switch. When using parallelism, we use all 8
hardware threads (4 physical cores).

4.1 heat-3d

2 https://github.com/SOLLVE/clang/tree/pragma and
https://github.com/SOLLVE/polly/tree/pragma.

https://github.com/SOLLVE/clang/tree/pragma
https://github.com/SOLLVE/polly/tree/pragma


Design and Use of Loop-Transformation Pragmas 135

The benchmark “heat-3d” from Polybench [8] is 3-dimensional 10-point stencil.
We are using a volume of 8003 and 10 time-steps. Typical for repeated sten-
cil codes, it alternatingly switches input- and output arrays. Its 3rd dimension
makes it more difficult for the hardware prefetcher.

The baseline can be improved only slightly using OpenMP parallelism
(#pragma omp parallel for collapse(2) and #pragma omp simd for the
innermost loop). Tiling improves the performance even more on just a single
thread, but can further improved with threading.

The tile sizes were determined using trial-and-error, a task which could also
be done by an autotuner. More advanced time-tiling techniques such as diamond-
overlap and tiling and could also result in an improvement.

4.2 syr2k

Polybench’s “syr2k” is a rank-2k matrix-matrix update; we are benchmarking
matrices of size 40002 and 2000 ∗ 5200. We run this benchmark on a 2-socket
Intel Xeon Gold 6152 CPU (22 cores each, 88 threads in total) with an NVidia
Tesla V100-SXM2 GPU.

We use the default DATASET EXTRALARGE for Polybench’s “syr2k”. In contrast
to the stencils, we can gain very high speed-ups.

While loop distribution does not gain a lot by itself, tiling (by 256× 96 × 16)
improves the performance by a factor more than 11, followed by a speed-up
of another 4x with a loop interchange. With parallelization on all 44 cores (88
threads), the execution time has improved by a factor of 140 over the original
loop.

Interestingly, while single-threaded performance of the Polly-optimized ver-
sion (using a tile size of 32 in all dimensions and not interchange) is worse, with
parallelization it is even better with a speed-up factor of 330. Evidently, the
shared memory bandwidth of the shared caches changes the bottleneck, such
that the tile size optimized for single-thread performance is worse. Replication
of Polly’s optimized loop nest using pragmas replicates the same performance.
We might be able to further improve the performance by searching for a tile size



136 M. Kruse and H. Finkel

that minimized the traffic higher-level caches. Using #pragma omp parallel
for alone utilizing 88 OpenMP threads yields an improvement of the factor 31.

The performance characteristics changes when offloading to the GPU. With a
straightforward #pragma omp target teams distribute collapse(2) of the
outer loops and #pragma omp parallel for reduction of the inner loops, the
kernel computes in 2.7 s, which is slower than the best CPU performance. Only
with an additional unroll-and-jam did we beat the two CPUs. Tiling did not
show any improvement.

4.3 covariance

The main issue with the covariance benchmarks from Polybench is that the
fastest iterator moves the outer data array dimensions leading to strided accesses
which cause most of cache lines unused. If we just transpose the data array
(manually), execution time already shrinks to 15 s. The problem can be lessened
with tiling. Unlike the non-tiled version, parallelism improves the execution time
only marginally.

Polly’s sub-optimal choice of a tile size of 32 for each dimensions also leads
to lower performance, for both, the parallel- and single-threaded cases.

4.4 dgemm

In [5], we already optimized Polybench’s “gemm” kernel, but because of lack of
support by LLVM’s loop vectorizer, we could only vectorize the innermost loop.



Design and Use of Loop-Transformation Pragmas 137

This is sub-optimal because this means that the register dependency is also car-
ried by the innermost loop, restricting the CPU’s ability to reorder instructions.

Fig. 2. Replication of Polly’s matrix-multiplication optimization using directives;
Libraries marked with (*) were precompiled from the Ubuntu software repository, hence
not optimized for the evaluation system

To avoid this problem, Polly’s matrix-multiplication optimization [3] unroll-
and-jams non-inner loops and relies on LLVM’s SLP vectorizer to combine the
unrolled iterations into vector instructions. We replicate this behavior in Fig. 2.
The isl redirect-clause ensures that the packed arrays’ data layout follow the
changed access pattern. For production implementations of the array packing,
this should be derived automatically by the compiler.

Unfortunately, the performance is even worse than with the innermost-loop
vectorization because, unlike with Polly’s output, the SLP vectorizer does vec-
torize the jammed loops. We are working on identifying and fixing the issue in
the prototype version.

4.5 456.hmmer

The most performance-critical code of “456.hmmer” from SPEC CPU 2006 is
shown in Fig. 3. Even though it is just one loop, it does 3 logical computations,
of which 2 have no loop-carried dependencies. Separating the sequential compu-
tation allows the parallelization and/or vectorization of the two other parts.

The vectorization speed-up (of the entire 456.hmmer run on an Intel Xeon
E5-2667 v3 (Haswell architecture) running at 3.20 GHz) is shown in the graph.
Earlier versions of Polly only separated one of the computations (using the
-polly-stmt-granularity=bb option). However, the current version separates
all 3 computations using its automatic optimizer. The same would be possible
using a loop distribute directive.



138 M. Kruse and H. Finkel

Fig. 3. 456.hmmer hotspot code

5 Conclusion

Loop – and more generally, code – -transformation directives can be a useful
tool to improve a hot code’s performance without going too low-level. Com-
pletely automatic optimizers such as Polly rely on heuristics which are neces-
sarily approximation they do not know the code’s dynamic properties (such as
number of loop iterations) and have an incomplete performance model of the tar-
get machine. They are also conservative, i.e. rather do nothing than to regress
performance.

Transformation directives take the burden of profitability analysis off the
compile and to the programmer who either knows which transformations are
beneficial or can try out multiple approaches, possibly assisted by an autotuner.

We seek to add such transformation directives into a future OpenMP specifi-
cation, to replace the current compiler-specific pragmas and ensure composabil-
ity with OpenMP’s directives. We discussed some design choices for syntax and
semantics that have to be made with various (dis-)advantages in terms of com-
patibility, consistency, complexity of implementation and ease of understanding.

Acknowledgments. This research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software, applica-
tions, hardware, advanced system engineering, and early testbed platforms, in support
of the nation’s exascale computing imperative.

This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.



Design and Use of Loop-Transformation Pragmas 139

References

1. Bertolacci, I., Strout, M.M., de Supinski, B.R., Scogland, T.R.W., Davis, E.C.,
Olschanowsky, C.: Extending OpenMP to Facilitate loop optimization. In: de Supin-
ski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.)
IWOMP 2018. LNCS, vol. 11128, pp. 53–65. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98521-3 4

2. Donadio, S., et al.: A language for the compact representation of multiple program
versions. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.)
LCPC 2005. LNCS, vol. 4339, pp. 136–151. Springer, Heidelberg (2006). https://
doi.org/10.1007/978-3-540-69330-7 10

3. Gareev, R., Grosser, T., Kruse, M.: High-performance generalized tensor operations:
a compiler-oriented approach. ACM Trans. Archit. Code Optim. 15(3), 34:1–34:27
(2018). https://doi.org/10.1145/3235029

4. IBM: Product documentation for XL C/C++ for AIX, V13.1.3 (2015)
5. Kruse, M., Finkel, H.: A proposal for loop-transformation pragmas. In: de Supinski,

B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta, J. (eds.) IWOMP
2018. LNCS, vol. 11128, pp. 37–52. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-98521-3 3

6. Kruse, M., Finkel, H.: User-directed loop-transformations in Clang. In: 2018
IEEE/ACM 5th Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC), pp. 49–58, November 2018. https://doi.org/10.1109/LLVM-HPC.
2018.8639402

7. OpenACC-Standard.org: The OpenACC Application Programming Interface Ver-
sion 4.0, November 2017

8. Pouchet, L.N., Yuki, T.: Polybench 4.2.1 beta. https://sourceforge.net/projects/
polybench

9. Spiegel, J., Robie, J., Dyck, M.: XML Path Language (XPath) 3.1. W3C rec-
ommendation, W3C, March 2017. https://www.w3.org/TR/2017/REC-xpath-31-
20170321/

https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1007/978-3-319-98521-3_4
https://doi.org/10.1007/978-3-540-69330-7_10
https://doi.org/10.1007/978-3-540-69330-7_10
https://doi.org/10.1145/3235029
https://doi.org/10.1007/978-3-319-98521-3_3
https://doi.org/10.1007/978-3-319-98521-3_3
https://doi.org/10.1109/LLVM-HPC.2018.8639402
https://doi.org/10.1109/LLVM-HPC.2018.8639402
https://sourceforge.net/projects/polybench
https://sourceforge.net/projects/polybench
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/2017/REC-xpath-31-20170321/

	Design and Use of Loop-Transformation Pragmas
	1 Introduction
	2 Specification Design Considerations
	2.1 Syntax
	2.2 Semantics
	2.3 Level of Prescriptiveness
	2.4 Transformations

	3 Prototype Implementation
	4 Evaluation
	4.1 heat-3d
	4.2 syr2k
	4.3 covariance
	4.4 dgemm
	4.5 456.hmmer

	5 Conclusion
	References




