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Abstract. Due to the ubiquity of OpenMP and the rise of FPGA-based
accelerators in the HPC world, several research groups have attempted to
bring the two together by building OpenMP-to-FPGA compilers. This
paper is a survey of the current state of the art (with a focus on the
OpenMP target pragma). It first introduces and explains a design space
for the compilers. Design space dimensions include how FPGA infras-
tructure is generated, how work is distributed, and where/how target
outlining is done. A table concisely condenses the available information
on the surveyed projects which are also summarized and compared. The
paper concludes with possible future research directions.

1 Introduction

Fig. 1. OpenMP compilation.

OpenMP was originally inten-
ded to standardize the paral-
lel programming of CPU-based
SMP and NUMA systems. Prior
to OpenMP 4.0, CPU-based
systems were the only ones
supported. Later, OpenMP 4.0
introduced the target pragma
and allowed HPC programmers
to exploit a cluster’s hetero-
geneity by marking highly par-
allel regions of an algorithm to be offloaded to a more suited device (e.g. GPUs,
FPGAs, etc.). Figure 1 illustrates the new situation and the typical approach to
outline code for GPU and FPGA targets in the front-end of the compiler. Note
that Fig. 1 simplifies. At least for GPUs there exists a compiler whose back-end
builds code for both the host and the target. The thin dashed arrows show the
traditional compilation pipeline prior to 4.0. In bold are the new challenges for
the OpenMP implementer, as they now have to target both FPGAs and GPUs.
Figure 1 also sketches the internals of an FPGA: Acc1 through Accn denote
hardware units doing actual calculations. The other blocks represent the infras-
tructure needed in order to run these hardware units on the FPGA. As almost
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everything in the FPGA can be configured arbitrarily, one of many possible con-
figurations is shown. To make use of the accelerators, OpenMP compilers need
to solve novel problems: How to transfer data from the CPU to GPUs/FPGAs
and back? What kinds of handshaking to use? What hardware blocks to chose
to make up the FPGA configuration? What FPGA-internal bus system to use?
Over the years, several researchers answered some of those questions in various
ways.

Here we survey these papers and cover the current state of the art. Section 2
sketches the design space of OpenMP-to-FPGA compilers. Section 3 discusses
the published research using that design space.

2 Design Space

When mapping OpenMP code to FPGA-based accelerators, a tool chain has a
variety of different design decisions to choose from. This section covers feasible
approaches and identifies the dimensions that the next section uses to categorize
published systems. Of course, categories are not always black-and-white.

In this paper the term architecture refers to all components a system is built
from, how those components behave, and how they interact with each other.
An FPGA (or FPGA chip) usually consists of both a reconfigurable part and
a fixed ASIC part (for instance ARM cores, RAMs, etc.). This paper uses the
term FPGA fabric (or just fabric) to denote the reconfigurable part. A fabric
can emulate arbitrary hardware. Its configuration (the bitstream) encodes this
hardware. Without the configuration there are not even connections to the static
ASIC parts of the FPGA. Any real-world configuration thus must consists of two
parts: First functional entities, also known as kernel IPs (Intellectual Property)
that perform desired calculations from the regions inside the OpenMP program,
and second, the infrastructure for getting data to/from those functional blocks,
also known as Low-Level Platform (LLP). This part of the configuration enables
internal and external communication.

2.1 Low-Level Platform

While kernel IPs are application specific, in general and in this paper, the LLP
is composed from pre-built IPs that implement bus communication, memory
management, etc. These static LLP IPs sometimes can be configured (e.g., a
bus IP could be configured to host more than 4 bus masters). Conceptually the
compiler could generate application-specific LLP IPs from the ground up to best
fit the served kernel IPs, but we do not know of any such attempt.

There are 4 classes of LLP:

Generic-Static: Fixed and pre-built ahead of time for all OpenMP programs.
Such LLPs typically include a memory controller for FPGA memory, a com-
munication controller (PCIe), an on-chip bus system (AXI), and sometimes a
softcore CPU that manages the overall system. Because the bus system is fixed
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for all OpenMP programs, this type of LLP is limited to a constant number of
accelerator blocks.

Specialized-Static: Specific for one OpenMP program and built at compile time.
The compiler uses some static code analyses to compose LLPs of this type
according to the needs of the OpenMP program at hand. For example, for a
throughput-heavy OpenMP program the compiler would pick a different bus
system than for compute-bound code. Similarly, an AXI streaming bus is not
added to the fabric if the code cannot make use of it. Such tailoring saves fabric
space that can be used for additional or larger kernel IPs. The LLP is static as
it does not change after it has been configured to run on the FPGA.

Generic-Dynamic and Specialized-Dynamic: pre-built for all/specialized for one
OpenMP program/s, but adapting based on runtime measurements. LLPs of
these two dynamic classes adapt themselves depending on the current runtime
requirements of the OpenMP program. They require a partially reconfigurable
FPGA [38]. The LLP could for instance use different bus systems in different
phases of the execution. After a throughput-heavy initialization, another bus
system can be used, freeing space for additional computational kernels. To the
best of our knowledge there is not yet an OpenMP-to-FPGA compiler that
employs a dynamic LLP, neither a generic one (that fits all OpenMP programs)
nor a specialized one that reconfigures itself from a tailored set of LLP-IPs.

2.2 Distribution of Work

Fig. 2. Abbreviations for devices.

OpenMP 4.0 allows computations to be
distributed over all available computing
devices. For the distribution decision,
the compiler first assigns code blocks to
the devices statically and decides how
many copies of the code block to instan-
tiate. We survey approaches that also
decide statically where to execute the
code blocks. A runtime system could
optionally schedule them dynamically.
Dynamic scheduling is outside the focus of this paper as it is – if at all on FPGAs
– used for task scheduling only [7]. Figure 2 lists some of the abbreviations used
in this paper. While conceptually it is possible to let the programmer specify the
static distribution explicitly or to use some sophisticated optimization routine to
find a best-performing distribution at compile time, existing OpenMP-to-FPGA
compilers make a rather simplistic choice and fall into either of the following
two categories: CFhw: Plain code, including the main thread, executes on the
CPU, while for target pragma annotated code, FPGA hardware is synthesized
that performs the calculation. This is called the host-centric approach. Note,
that whenever possible the hardware synthesis tool makes use of available ASIC
blocks on the FPGA (like DSPs).
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Fhw,sc: In the fpga-centric approach, both the plain code (including the main
thread) and the pragma code execute on the FPGA; the sequential code runs
on a softcore CPU on the fabric. Again, the hardware synthesis tool makes use
of ASIC blocks for both the softcore and the custom hardware.

There are other design choices. For example to use multiple FPGAs, to
employ an ASIC hardware CPU if it is available, to also offload code to a GPU,
etc. To the best of our knowledge these choices have not yet been explored.

2.3 Outlining

To the best of our knowledge, all OpenMP 4.0 compilers that support target
offloading to FPGAs so far implement this as follows: They replace the marked
code with function calls (that may be bundled into a stub). Some of the func-
tions handle the communication of data between the host and the accelerator.
One function initiates the execution of the payload code on the accelerator that
implements the marked code block. To construct this payload, the compiler out-
lines the marked code block into a separate function that is then fed into an
accelerator-specific tool chain. This can be a compiler for a GPU or a high-level
synthesis tool (HLS) in the case of an FPGA as shown in Fig. 3. Some GPU com-
pilers spit out GPU code in their back-ends. But as it still has to be explored if
this is a better choice for FPGA code, we focus on the front-end outlining options
in this survey. It is common practice to outline each target region individually.
The design choice is whether to execute the outlining on the level of the abstract
syntax tree (AST) or to do it on the immediate representation (IR) of the code.

As in general, the host and the accelerator do not share memory, data needs
to be shipped to the accelerator (and back) so that the kernel IP can access it.
Hence, the compiler and the runtime system must solve three problems. First,
identify the values that need to be passed to the outlined code. Used techniques
range from naively copying all the data in the scope to relying on compiler
analyses or programmer specifications (data map clause) to limit the amount of
moved data and to thus gain performance. Second, create a parameter list for the
payload function (fed into the accelerator tool chain). Used techniques range from
naively creating one parameter for each value, to bundling values in structs or
arrays. For FPGAs, fewer parameters result in fewer bus ports in the generated
FPGA hardware which saves valuable resources on the fabric that then can be
used for the functional entities. Despite the importance, most papers do not
reveal how they generate parameter lists. Third, generate API calls to transfer
values to the accelerator. Value transfer routines can be asynchronous (non-
blocking) or synchronous (blocking). What works best depends on the accelerator
hardware. Both techniques are used to transfer data to/from computing devices.
For FPGAs, their ASIC devices constrain what transfer method works best for
any given application. While conceptually it is possible to tailor the transfer
routines to fit the LLP (and vice versa), to the best of our knowledge there is
not yet an OpenMP-to-FPGA compiler that exploits this option.
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Fig. 3. Front-end outlining options in an OpenMP-to-FPGA compiler.

Ability to Compose Streams: It is state-of-the-art to outline each code block
individually. This implies that modified data is shipped back from the accelerator
to the host CPU even if the next outlined code block uses the same data. In this
case, regardless of the type of accelerator, transfer cost can be saved. On FPGAs,
this optimization idea may have an even larger impact than on GPUs as two
subsequent target regions could use a streaming design to exploit pipeline-style
parallelism for better performance. To the best of our knowledge this has not
yet been explored.

2.4 Supported Pragmas

When distributing/mapping a code block to the FPGA, compilers may or may
not be able to exploit OpenMP pragmas. For the discussion, we distinguish
between OpenMP pragmas that are defined in the standard and HLS-specific
ones defined by tool vendors. OpenMP-to-FPGA projects that use HLS-tools
often pass through the latter to the HLS tool chain when they outline the code
according to Fig. 3.

As the surveyed projects are still prototypes, they ignore most of the regular
OpenMP pragmas. Tables 1 and 2 hold a positive list of those pragmas that they
support, in the sense that a pragma somehow affects the code they build during
outlining and that they feed into the HLS tool chain. As mentioned before, data
shipment between host and FPGA matters. Hence, Tables 1 and 2 also cover
whether a system supports the map clauses of the target pragma.

2.5 Optimization Techniques

OpenMP compilers also differ w.r.t. the (few) optimization technique they apply
along their pipelines. This is outside the scope of this survey.

2.6 High-Level Synthesis

As shown in Fig. 3, the OpenMP-to-FPGA tool chain uses a High-level syn-
thesis (HLS) tool to transform C/C++ code into FPGA hardware. The design
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spaces comprises three different types of HLS: Data path based (DP), finite state
machine based (FSM), and hybrid HLS [31]. A DP-based HLS produces the best
hardware for C/C++ code that is highly data parallel. It does not work well for
code that has many branches in it [16]. FSM-based HLS tools can translate most
programs (with the exception of programs that use recursion, malloc, or func-
tion pointers). Unfortunately, FSMs in hardware in general suffer from a higher
latency than DP designs. Hybrid HLS tools are most commonly used because
they (try to) combine the advantages of the two pure types: Vivado HLS [40],
Intel OpenCL SDK for FPGA [18], or Intel Quartus Prime (previously Altera
Quartus) [20] are well known hybrid commercial tools. LegUp [9] is a alternative
from the research community. There also is a commercial fork available [25].
CoDeveloper [17] is a special HLS that only accepts the Impulse-C language. It
does not fit into any of the above categories.

Which type of HLS to use for each target region is a design space decision. All
surveyed projects treat every region the same way and use the same hardware
synthesis for it, even though (at least conceptually) the decision can be made on
a per-region basis as the amount of parallelism varies among them.

3 Survey

Tables 1 and 2 illustrate which design space decisions existing approaches took.
The columns are ordered with the latest system first. As most authors have not
named their systems, we use the name of the first author instead. We did not find
more recent papers than the cited ones. There are references to code archives if
systems are available for download. However, unfortunately none of the systems
ran out-of-the box for us. The rows of the table are grouped according to the
design space discussion in Sect. 2. Some areas of the table give more details on
the design space aspects. In the HLS section the table lists which tools have
been used. The Misc. rows mention which compiler frameworks and libraries
have been used to build the system (e.g., Clang [24], LLVM [28,36], Mercurium
[2], GCC [35], Nanos++ [3], or libomptarget [42]), for which FPGA boards
they can be used, how the structure of the target systems looks, and whether
the system offers a complete workflow that does not require any intermediate
manual work along the tool chain. Simplified block diagrams sketch the target
structure. Here M stands for memory, B for bus interconnect, C for CPU, G
for GPU, A for application specific kernel IP, S for synchronization core, D for
hardware debugger, and T for timer. Lines represent physical connections and
parts in cyan live on the fabric. The superscripts give additional information on
a component (e.g., Cxeon for a Xeon CPU). The subscripts show instance counts
or memory sizes (e.g., C4 for a 4-core CPU, An for n application specific kernel
IPs, M2gb for a memory block with 2 gigabytes of storage).
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Table 1. Project overview (2019–2014)

3.1 Projects

Below we describe the essence of the systems and their main contributions. Read-
ers may skip the lines in fine print that detail the corresponding cells of the table.
In bold is the name of the addressed cell of Tables 1 and 2. Most papers eval-
uate their compilers. Where appropriate, we summarize the evaluation results
with respect to the benchmarks used, the method of comparison, and the main
evaluation results obtained.

Knaust’s host-centric prototype uses Clang to outline omp target regions at
the level of the LLVM IR and feeds them into Intel’s OpenCL HLS to generate
a hardware kernel for the FPGA. This approach relies on an undocumented IR
interface of the HLS. For the communication between host and FPGA, Knaust
uses Intel’s OpenCL API. It is unique how this work exploits a state-of-the-art
commercial HLS with low transformation efforts.
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Table 2. Project overview (2014–2006)

LLP: The internals of the LLP cannot be classified exactly because Intel’s SDK is
proprietary. However, the Floorplan Optimization Guide of the SDK mentions that the
LLP is loaded only once and that partial reconfiguration is used to hot-swap kernel
IP bitstreams at runtime [19]. Pragmas: Knaust passes the unroll pragma to the
underlying HLS. From the map clauses of the target pragma, only array sections are
unsupported.

Evaluation: Two Sobel filters (unoptimized and optimized for FPGAs) run on
a 4096 ·2160 ·8 bit matrix. The CPU-only version is compiled without -fopenmp.
The pure optimized kernel for the FPGA is 4× as fast as one CPU core, but this
can hardly amortize the cost of transfer and initialization.

OmpSs@FPGA by Bosch et al. improves and generalizes the work by
Filgueras et al. Memory on the accelerator is used for data sharing (stream-
ing). This is the only system in the surveyed set that not only outlines code to
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the FPGA but also addresses the GPU. Moreover, the tasks are dynamically
scheduled onto the devices.

LLP: The authors do not describe the structure of the LLP in detail. However, in
contrast to Filgueras et al. there are hints that it falls into the specialized-static class.

Evaluation: On three benchmarks (matrix multiplication, n-body, Cholesky
decomposition) the authors compare the baseline runtime (measured on a
CARM-A52

4 with 4 GB of shared memory) with their FPGA versions. For the
Cholesky decomposition, the performance drops by about 2×. For n-body, the
FPGA version is 15× faster. The matrix multiplication on the FPGA achieves
6× the GFLOP/s.

Ceissler et al. propose HardCloud, a host-centric extension for OpenMP 4.X.
There is no outlining of code blocks. Instead, HardCloud makes pre-synthesized
functional units for FPGAs easier to use in existing OpenMP code.

LLP: While the authors do not describe the internals of their LLP, the first figure in
[12] suggests it to be generic-static. Complete Workflow: Users need to manually
design hardware and synthesize it to a kernel IP as there is no outlining. HardCloud
automates the data transfer and device control.

Evaluation: The authors claim to have achieved speed-ups on the HARP 2
platform between 1.1× and 135×. However there is no further information about
the context or the benchmark codes.

Sommer et al. use Clang to extract omp target regions from the source
program (at AST-level) and feed them into the Vivado HLS that then gener-
ates kernel IPs. Calls to their Thread Pool Composer (TPC) API (now called
TaPaSCo) injected into the program implement the host-to-FPGA communica-
tion. The strength of the prototype is that it fully supports omp target (includ-
ing its map clause). This project is the first that integrated libomptarget.

LLP: TPC assembles a specialized-static LLP from the following set: the kernel IPs,
configuration files describing the IPs, and an architecture configuration file describing
for example what bus system to use (only AXI in their work).

Evaluation: For 6 benchmarks from the Adept benchmark suite [1], the
authors compare the runtime of -O3-optimized i7 CPU code (4 cores) to their
FPGA-only version (with HLS pragmas). The CPU outperforms the FPGA ver-
sion by 3× to 3.5× (without the HLS pragmas: 6× to 9×).

In the system by Podobas et al. the compiler extracts task-annotated func-
tions and synthesizes a specialized system on a chip (SoC) for them. It rewrites
the main program to use these units and compiles it to run on a softcore CPU
that is also placed on the FPGA. While their first system builds isolated FPGA
hardware per task, the authors later fuse task kernel IPs for resource shar-
ing. To do so they use Gecode [32] to solve constraint programs in which the
constraints express what to share.
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LLP: Altera Quartus builds the specialized-static LLP. It connects the kernel IPs and
assigns an own address space on a shared Avalon bus to each of them. It also connects
auxiliary blocks and the softcore to that bus. Pragmas: The behaviour of the pragmas
parallel and single slightly differ from the OpenMP specification. If both pragmas
are written consecutively in the source code, the system replaces them by a function
call that initializes the LLP. The behaviour of just one pragma is left open. HLS:
The authors use the custom hardware synthesis tool fpBLYSK. Depending on the
command line flags, their HLS can generate purely FSM-based designs that execute
one instruction per state, or it can combine several instructions into each FSM state,
giving the design a DP taste.

Evaluation: The authors study three basic benchmarks (π, Mandelbrot, and
prime numbers). For the first two compute-bound benchmarks, the FPGA ver-
sion outperforms both CPU-only versions (57-core Intel Xeon PHI and 48-core
AMD Opteron 6172) by a factor of 2 to 3. However, for the memory-bound third
benchmark, the CPU versions are about 100 times faster.

Filgueras et al. add support for the Xilinx Zynq FPGA [41] to the OmpSs
framework [6] that provides task offloading to any kind of supported accelera-
tor. Although their prototype exclusively uses the FPGA’s ASIC CPUs for the
sequential portion of the source code (fpga-centric, Fhw,hc). The authors claim
any work distribution to be possible (e.g., CFhw). The system is the first that
combines this flexibility with the task based paradigm (including task depen-
dencies).

LLP: The authors do not describe in detail how the compiler builds the LLP. Pragmas:
The task pragma is extended so that it can be used to annotate functions and to
specify dependencies between tasks (clauses in, out, or inout). Compiler Toolkit:
A custom pass implemented in the Mercurium framework outlines and injects calls
for data shipment. The Nanos++ OpenMP runtime provides task parallelism and
dependency-based task scheduling.

Evaluation: On four numeric benchmarks (two matrix multiplications with
different matrix sizes, complex covariance, and Cholesky decomposition) the
FPGA version achieves speed-ups between 6× to 30× compared to a single
ARM A9 core.

The system by Choi et al. is fpga-centric. Its main objective is to exploit
the information on parallelism that the programmers provide in (six supported)
pragmas, to generate better, more parallel hardware. The compiler synthesizes
one kernel IP per thread in the source program (for example a code block anno-
tated with parallel num threads(4) specifies 4 hardware threads). The sup-
port for the reduction clause of parallel or parallel for is unique, although
the authors do not elaborate on how they achieve reduction on variables in hard-
ware.

Pragmas: The system is limited to OpenMP constructs for which the compiler can
statically determine the number of threads to use. Nested parallelism is possible,
although limited to two levels. HLS: The extended LegUp generates parallel hard-
ware for parallel and parallel for and utilizes the other pragmas (atomic, etc.) to
synchronize between the threads. For atomic and critical, a hardware mutex core is
synthesized.
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Evaluation: With the best compiler configuration for the FPGA versions, 7
benchmarks (Black-Scholes option pricing, simulated light propagation, Mandel-
brot, line of sight, integer set division, hash algorithms, double-precision floating
point sine function) show a geomean speed-up of 7.6× and a geomean area-delay
product of 63% compared to generated sequential hardware.

Cilardo et al. think of OpenMP as a system-level design language (e.g., for
heterogeneous targets like the Xilinx Zynq) and present a compiler that uniquely
supports the complete OpenMP 3.1 specification. They map the whole OpenMP
program to the FPGA (where they use softcore processors to run threads with
many branches). Note, that the authors even map nested parallelism (i.e., nested
omp work sharing constructs) to hardware (by exploiting the tree-like structure
to minimize path lengths for common control signals).

LLP: The Xilinx Embedded Development Kit (EDK) [39] was used to build the LLP,
but the authors only reveal that they use the MicroBlaze [37] softcore for the sequen-
tial parts. Pragmas: As their custom front-end only supports OpenMP-parsing, it is
unlikely that HLS pragmas are passed through.

Evaluation: When comparing their sieve of Eratosthenes to the results from
Leow et al. the authors see twice the speed-up. Furthermore, a runtime overhead
inspection of the implemented OpenMP directives (private, firstprivate,
dynamic, static, and critical) shows significantly less overhead than the SMP
versions on an Intel i7 (6×, 1.2×, 3.1×, 10.5×, and 2.64×, respectively).

Cabrera et al. extend OpenMP 3.0 with new semantics for task and target
to ease the offloading to pre-synthesized functional units, i.e., hand-built kernel
IPs. There is no outlining of code blocks. Their main contribution is that they
provide support for SGI’s RASC platform [33] and a multi-threaded runtime
library layer with a bitstream cache that enables parallel computation on both
the host and the FPGA even while the bitstream is being uploaded.

LLP: The target system is embedded into an SGI Altix 4700 server and a proprietary
generic-static LLP provided by SGI is used. Pragmas: The work introduces the pragma
block that helps to guide loop restructuring and data partitioning of arrays. HLS:
Xilinx ISE 9.1 (now part of the Vivado Design Suite) is used to generate bitstreams.
Compiler Toolkit: Offloading is implemented as a plugin for the Mercurium compiler.
The host-side code compiles with GCC 4.1.2 and links against a custom runtime library.

Evaluation: The paper only shows runtimes of a matrix multiplication (322,
642, and 1282) without any comparisons with CPU codes.

Leow et al. view OpenMP programs as a hardware description language that
programmers use to explicitly control the parallelism of the resulting hardware.
In contrast to other systems, the result is a single hardware entity (Fhw) without
any outlining and work distribution at all.

HLS, Compiler Toolkit: The translation is integrated into the C-Breeze compiler
framework as a custom high-level synthesis pass. It can generate both Handel-C [29]
and VHDL code, but different restrictions apply. For example, the VHDL back-end
cannot deal with global variables in the input program.
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Evaluation: For the first two of the benchmarks (matrix multiplication, sieve
of Eratosthenes, Mandelbrot), the FPGA versions achieves speed-ups of 25×
and 7× over a symmetrical SMP (UltraSPARC III with 8GiB). For Mandelbrot,
the FPGA version is slower than the SMP, even though all SMP codes were
compiled with -O0.

3.2 Discussion

The surveyed projects are prototypes focusing only on a small subset of OpenMP
pragmas and require users with compiler- and/or FPGA-expertise. Almost half
of the tools still require manual outlining and invoking of HLS tools, and for
only three systems the source code is available.

About half the systems are host-centric. The general idea is to achieve perfor-
mance and efficiency by standing on the shoulders of giants. Research falls into
two groups. Systems in one group (Ceissler and Cabrera) assume pre-synthesized,
highly optimized and efficient kernel IPs that need to be interconnected. The
underlying hope is that the generated glue hardware is not that crucial for perfor-
mance. Because of the pre-built kernels those systems are tied tightly to specific
FPGA platforms, e.g., Intel HARP2, Amazon AWSF1, or SGI RASC.

The other group outlines code blocks and feeds them into an HLS tool chain
for building the kernel IP. The hope is that vendors invest enough money and
man power into these tools so that they synthesize efficient FPGA hardware.
As shown in Fig. 3, outlining can either be done on the level of ASTs or at the
IR-level. The latter approach (taken by Knaust) not only suffers from not being
future-proof as current HLS tools only provide undocumented IR-level interfaces.
The other disadvantage is that it is complicated to pass HLS pragmas to the HLS
tool. The problem is that such pragmas need to be transformed into unofficial
IR annotations that are even more likely to change or to become unavailable
in the future. AST-based outlining does not have these disadvantages because
passing HLS pragmas is easy as ASTs can be trivially converted to C code and
because using the HLS on AST-level can be expected to work for the foreseeable
future. The main problem of using an HLS from a certain vendor is that only
this vendor’s FPGAs can be used.

The fpga-centric approaches understand a whole OpenMP program as a high-
level description of the FPGA hardware that has to be built, i.e., the FPGA is no
longer used as an accelerator but it is the only device. This group of researchers
usually builds specific compilers that focus on optimizing transformations for
pragmas that are directly relevant for the hardware synthesis. Depending on
the size and the importance of the sequential code blocks, systems either use a
softcore processor on the fabric for it, or they include the sequential code into
the kernel IP. On the one hand, FPGAs programmed with compilers that use the
pragma information are claimed to perform better because the programmer can
specify application-specific parallelism. The main drawback, on the other hand,
is that host CPUs (optimized for memory-intensive sequential workloads) stay
unused. The general problem of the fpga-centric approaches is that in general
they only work for a specific FPGA and/or tool chain.
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4 Conclusion and Future Work

The basic technical issues of host-centric target offloading with a CFhw work
distribution have been covered extensively, both with outlining on the AST- or
IR-level. Similarly, the fpga-centric compilers that treat OpenMP as some sort
of hardware/system-level description languages use basic mapping regimes to
assemble FPGA bitstreams for targets and to distribute the work in various
ways.

The field is in a proof-of-concept state. We think that what is needed now
is a focus on performance and efficiency. There is not yet a benchmark to quan-
titatively compare systems. Little work has been done so far on optimization.
For example, self-adapting, dynamic LLPs may be the better infrastructure and
may free FPGA resources for functional entities/kernel IPs. Instead of treat-
ing each omp target region in isolation, it may be promising to explore how
to automatically connect kernel IPs in a streaming fashion (as human FPGA
engineers usually do). Currently, FPGA-expertise is required to achieve better
performance than leaving the FPGA unused. This burden needs to be taken
from the OpenMP programmer, i.e., they should no longer need to be experts
in HLS pragmas and in the tools of FPGA vendors.

From our perspective, the key to all of this is a better code analysis that not
only spans across all the OpenMP pragmas used in a given code, but that also
spans from IR-level to low-level HLS transformations. We feel that at least there
should be a (to be designed) interface between the various tools along the tool
chain to convey optimization-related analysis data.
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