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Abstract. This paper describes a lightweight framework that enables
autotuning of OpenMP pragmas to ease performance tuning of OpenMP
codes across platforms. This paper describes a prototype of the frame-
work and demonstrates its use in identifying best-performing parallel
loop schedules and number of threads for five codes from the PolyBench
benchmark suite. This process is facilitated by a tool for taking a compact
search-space description of pragmas to apply to the loop nest and chooses
the best solution using model-based search. This tool offers the potential
to achieve performance portability of OpenMP across platforms without
burdening the programmer with exploring this search space manually.
Performance results show that the tool identifies different selections for
schedule and thread count applied to parallel loops across benchmarks,
data set sizes and architectures. Performance gain over the baseline with
default settings of up to 1.17×, but slowdowns of 0.5× show the impor-
tance of preserving default settings. More importantly, this experiment
sets the stage for more elaborate experiments to map new OpenMP fea-
tures such as GPU offloading and the new loop pragma.
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1 Introduction

OpenMP is an API which is used to explicitly direct thread-level, shared mem-
ory parallelism. By design, OpenMP programmers express parallelism with only
modest changes to a sequential code through the addition of pragmas that are
used by the compiler to map the code to a parallel platform. As all widely-used
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compilers understand OpenMP pragmas and can generate parallel code, such an
approach allows for a single source code that is portable across systems.

Achieving high parallel efficiency with OpenMP usually requires prescriptive
pragmas that explicitly define the program behavior, specifying, for example,
parallel schedules and number of threads to use. As pragmas become increasingly
prescriptive, the advantage of cross-architecture portability decreases. Descrip-
tive directives pass information about code semantics to the compiler to allow
it to optimize without specifying how it might choose to do that. By leaving
degrees of freedom in the mapping of OpenMP code, an application code can
more readily adapt to different data sets and architectures.

We achieve this goal through the use of autotuning. Autotuning relies on
empirical measurement to explore alternative implementations of a computation,
and has been used in the HPC community to achieve performance portability
across hardware platforms. In this work, we develop a tool we call a pragma
autotuner, as the alternative implementations it evaluates involve alternative
OpenMP pragmas. To manage the large search spaces that arise even with the
limited experiment in this paper, our approach incorporates the Search using
Random Forests (SuRF) framework, which creates a statistical model of the
search space and constrains the time required for empirical measurement [8].

For this paper, we apply the pragma autotuner to the problem of scheduling
parallel loops, designated as #pragma omp parallel for and equivalent. Even
for such a limited experiment, the search space consists of how many threads to
use, whether to use static or dynamic scheduling of loop iterations, and the chunk
size which selects the granularity of the scheduling. For architectures with large
numbers of cores, this search space can be quite large. Moreover, we envision
such a tool will be much more necessary as recent features of OpenMP gain wider
use, including GPU offload and the prescriptive loop construct which leaves the
compiler significant freedom in mapping the code.

Related Work and Contribution. Autotuning on high-performance comput-
ing has been demonstrated as an important strategy for achieving perfor-
mance portability across different architectures, starting with BLAS libraries
PhiPAC [3] and ATLAS [11], early autotuning compilers [4] and generalizations
to other scientific computing motifs [12]. A survey of autotuning for HPC can be
found here [2]. The concept of autotuning OpenMP code is well-established and
the most prevalent of these employ tuning to go beyond loop schedules, to look
at parallel tasks, function inlining, and tuning for energy [5–7,10]. Most closely
related to our paper, the work of Liao et al. performed autotuning of OpenMP
loop schedules on SMG2000, examining a larger search space and achieving a
speedup of more than 5× on 6 threads due to autotuning. However, prior work on
autotuning OpenMP requires the use of specialized libraries or specific compil-
ers, and would require more extensive adaptation as new OpenMP constructs are
added. In contrast, this paper contributes a general framework that can be used
to explore user-directed search spaces of any pragmas, even beyond OpenMP.
The centerpiece of this work, a pragma autotuner, works with the C preprocessor
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to update the pragmas at marked locations in the code. In future work, such an
approach could be fully automated using rewrite rules.

2 Search Space for Loop Scheduling

We illustrate the approach with a simple example, the main computation from
the atax benchmark from PolyBench [9]. This computation has two parallel
loops, one for initialization of the output vector, and the other nested loop to
compute the result A*Ax.

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < _PB_NY; i++)

y[i] = 0;
#pragma omp for private(j)
for (i = 0; i < _PB_NX; i++) {

tmp[i] = 0;
for (j = 0; j < _PB_NY; j++)

tmp[i] = tmp[i] + A[i][j] * x[j];
for (j = 0; j < _PB_NY; j++)

y[j] = y[j] + A[i][j] * tmp[i];
}

}

The scheduling of the parallel loops uses default settings for the following
three parameters:

– Number of threads to use
– Static vs. dynamic scheduling of loop iterations to threads
– Chunk size, which is the scheduling unit

Figure 1 shows the input to our framework that permits tuning based on
these parameters for a 4-core desktop platform with a maximum of 8 threads.
We use the Search using Random Forests framework to navigate the search space
that arises from this specification.

3 Pragma Autotuner System Design

Figure 2 depicts the organization of the pragma autotuner, used to optimize
OpenMP. It needs a configuration file which has the search space definition; for
example, the loop scheduling parameters in Fig. 1(b). The original loop schedul-
ing pragmas are replaced with the mapped pragmas. For each replacement
pragma in the search space, a separate output OpenMP code file is generated.
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Fig. 1. Modified code to permit pragma autotuning (top) and search space specification
(bottom).

Fig. 2. System design of current pragma autotuner.
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The tool also takes in a parameter list which maps different replacement policies
to loops marked in the code.

One requirement for code modification of the autotuner is that it requires
manual tagging of the beginning of a loop, which is used by the tool to parse
the code and generate multiple code files with all combinations of pragmas. The
C preprocessor then replaces this mark with the selection of pragmas identified
through autotuning search. Then all the output files are executed to record the
execution times of the modified loop. Based on the times a suggestion is made
by the autotuner software regarding which pragma performs well.

The autotuner has a configuration file through which we can specify the path
of the benchmark we want to run. The benchmark source file should have proper
markers placed at the corresponding positions where we want to optimize the
loops. Later, in the problem definition, we need to define the possible options
for those markers using pragmas. We need to pass this problem definition with
parameters, their possible values and default values to SuRF, which will return
individual points in the search space to examine next.

The parser method in the autotuner then replaces the markers in the source
file with the corresponding values received from the search tool and generates
a new source file that will be saved in a temporary location in the experiment
directory. Later, the generated source files are compiled and run with the options
from the configuration file. Once the run has been completed, the execution
time will be passed to SuRF as a cost measurement. Based on the execution
time, SuRF will return the best combination suitable for the benchmark to run
efficiently. To limit the overhead associated with autotuning, the system limits
the time of the search, in the case of this paper to 10,000 s.

Sometimes we need an empty string for a parameter to indicate that the
default values or no parallelization should be used. Therefore the autotuner
supports the empty string parameter value. Whenever the value “None” has
been returned from the search tool, the parser will replace it as an empty string
in the final code generation.

The generated source is compiled with standard OpenMP compilers; we have
tested clang and gcc compilers, and gcc is used in this paper.

4 Experiment

In this section, we describe a simple experiment to demonstrate the capability of
the pragma autotuner and its ease of use. We revisit the loop scheduling problem
from Sect. 2.

4.1 Methodology

Our goal is to determine via autotuning an optimized schedule (static or
dynamic), a chunksize (1, 8 or 16 to coincide with a fully dynamic schedule
or a cache line), and number of threads (1, 2, 4 or 8). We execute this experi-
ment on a desktop platform, an Intel CORE i7-4770 with 4 Cores and 8 threads
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due to hyperthreading. We apply the system to five benchmarks from PolyBench
shown in Table 1. This subset of benchmarks were chosen as representative of
1D, 2D and 3D loop nests, and all have OpenMP parallel for loops without
reductions. We used two inputs to test adaptability, Default and Large. For each
input, Table 1 provides the settings for Schedule, Chunk and Threads identified
by the framework.

We have recently ported the system to a local cluster and are performing
multi-node experiments where the evaluations can execute in parallel across
nodes. This cluster has dual-socket, 28-core Intel Xeon Broadwell nodes. For
this experiment, we show results for just atax and, use only the Large dataset,
and set the default to 4 threads.

Table 1. PolyBench benchmarks used in this experiment.

Name Selection (default) Selection (large)

Sched Chunk Threads Sched Chunk Threads

atax dyn 8 4 stat 16 8

3 mm stat 1 4 stat 1 8

convolution-2d stat 16 4 stat 16 8

covariance dyn 8 4 stat 1 8

correlation dyn 8 4 stat 1 8

4.2 Performance Results

Figure 3(a) shows the results of the desktop system experiments, speedup over
baseline for the five benchmarks and each of the two input data sets. We observe
modest speedups for all benchmarks other than convolution-2d. The most sig-
nificant speedups of 1.17× are for the long-running correlation benchmark. We
believe the slowdown for convolution-2d is likely because we are not including
the default chunksize in our search space.

Figure 3(b) shows speedups on the cluster system for just the large dataset
and benchmark atax. As compared to a baseline using 4 threads, a speedup of
over 3× is achieved, although as a result of 28 threads.

5 Future Work: From Descriptive to Prescriptive
OpenMP

The above simple experiment shows modest performance gains, but we antici-
pate the true productivity advantage of the pragma autotuner will be to derive
pragmas for more complex codes targeting the architectural diversity of current
and future systems. This paper describes a work-in-progress as to applications
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(a) Desktop system performance results.

Name
Selection (large)

Sched Chunk Threads Speedup
atax static 8 28 3.09×

(b) Cluster system initial performance results.

Fig. 3. Performance improvements over default Baseline schedule.

of the pragma autotuner. In this section, we detail an experiment we are design-
ing to explore a search space for the #pragma omp loop that was introduced in
OpenMP 5. This construct indicates to the OpenMP compiler that the loop’s
iterations are independent but leaves it to the discretion of the compiler writer
to generate the most appropriate code. In an ongoing experiment, we wish to
replace the descriptive loop pragma with prescriptive OpenMP pragmas that
express how to optimize the loops. For example, we consider the following alter-
natives:

– A parallel for loop, with the scheduling parameters from the previous section.
– For multi-dimensional loops, we might augment the parallel for loop with a
collapse clause to assign multiple loop dimensions to a single thread dimen-
sion.

– If our target architecture supports efficient simd execution, we might want to
use the pragma omp simd directive.

– If our target architecture supports GPU offload, we might want to map coarse-
grain loops to the GPU using the pragma omp target directive.

5.1 Case Study: 27-Point Stencil

Since loop is a new feature of OpenMP that is not even supported yet by the
compilers used in our experiment, there do not currently exist benchmarks that
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use this construct. However, we note that a similar descriptive construct in
OpenACC is the #pragma acc independent pragma. We found an example use
of this pragma in the 27 point stencil code from the EPCC OpenACC Benchmark
Suite [1]. Figure 4 shows the input code (once converted to use loop), and the
autotuning search space used for the desktop system in the previous section. The
same approach can be used to derive the best mapping of the code.

This more complex experiment has a number of challenges. We plan to
explore how to compactly describe the search space, but the example in Fig. 4
illustrates the bulleted items in the above list absent the GPU offload since there
is no GPU on our target desktop system.

5.2 Handling Errors

As search spaces become more complex, as in the previous example, SuRF may
generate invalid pragma combinations, such as the following example. Here, the
middle loop has a collapse clause, which has the effect of making the j and
k loops into a single 1D loop. After collapse is applied, there is therefore no
longer a k loop to execute using the simd construct. The OpenMP compiler will
throw an error when it encounters this kind of combination.

for (iter = 0; iter < ITERATIONS; iter++) {
#pragma omp parallel for
for (i = 1; i < n+1; i++) {

#pragma omp for collapse(2)
for (j = 1; j < n+1; j++) {

#pragma omp simd
for (k = 1; k < n+1; k++) {

<27pt stencil calculation goes here>
}}}}

For erroneous configurations, the tool must minimally check the exit code
from the compiler and report to SuRF an execution time of MAX DBL so that such
configurations are avoided by the search. Ideally, we prefer to build configuration
rules into the system to detect errors before generating the code and attempting
the compilation. This encoding of OpenMP domain knowledge will increase the
complexity of the tool implementation, but reduce the tuning time, and is the
subject of future work.

5.3 Automation for Unmodified OpenMP Code

Because OpenMP has a fixed and limited collection of pragmas, we believe it
is possible to derive a collection of standard rewrite rules for generating search
spaces for pragmas that could automatically be explored for unmodified OpenMP
codes. In this way, the user of the tool need not add the markers for the C
preprocessor, but rather the tool parses the pragmas in the code to identify
rewrite rules that may apply. If possible, this would greatly expand the users for
OpenMP autotuning, and is an important area of future work.
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for (iter = 0; iter < ITERATIONS; iter++) {

// P0

#pragma omp loop

for (i = 1; i < n+1; i++) {

// P1

#pragma omp loop

for (j = 1; j < n+1; j++) {

// P2

#pragma omp loop

for (k = 1; k < n+1; k++) {

a1[i*sz*sz+j*sz+k] = (

a0[i*sz*sz+(j-1)*sz+k] + a0[i*sz*sz+(j+1)*sz+k] +

a0[(i-1)*sz*sz+j*sz+k] + a0[(i+1)*sz*sz+j*sz+k] +

a0[(i-1)*sz*sz+(j-1)*sz+k] + a0[(i-1)*sz*sz+(j+1)*sz+k] +

a0[(i+1)*sz*sz+(j-1)*sz+k] + a0[(i+1)*sz*sz+(j+1)*sz+k] +

a0[i*sz*sz+(j-1)*sz+(k-1)] + a0[i*sz*sz+(j+1)*sz+(k-1)] +

a0[(i-1)*sz*sz+j*sz+(k-1)] + a0[(i+1)*sz*sz+j*sz+(k-1)] +

a0[(i-1)*sz*sz+(j-1)*sz+(k-1)] +

a0[(i-1)*sz*sz+(j+1)*sz+(k-1)] +

a0[(i+1)*sz*sz+(j-1)*sz+(k-1)] +

a0[(i+1)*sz*sz+(j+1)*sz+(k-1)] +

a0[i*sz*sz+(j-1)*sz+(k+1)] + a0[i*sz*sz+(j+1)*sz+(k+1)] +

a0[(i-1)*sz*sz+j*sz+(k+1)] + a0[(i+1)*sz*sz+j*sz+(k+1)] +

a0[(i-1)*sz*sz+(j-1)*sz+(k+1)] +

a0[(i-1)*sz*sz+(j+1)*sz+(k+1)] +

a0[(i+1)*sz*sz+(j-1)*sz+(k+1)] +

a0[(i+1)*sz*sz+(j+1)*sz+(k+1)] +

a0[i*sz*sz+j*sz+(k-1)] + a0[i*sz*sz+j*sz+(k+1)]) * fac;

}}}}

(a) 27 point stencil input code.

problem.spec_dim(p_id=0, p_space=["None",

"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",

"#pragma omp for schedule(#P3, #P4) collapse(#P6) nthreads(#P5)",

], default="#pragma omp for schedule(#P3, #P4) nthreads(#P5)")

problem.spec_dim(p_id=1, p_space=["None",

"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",

"#pragma omp for schedule(#P3, #P4) collapse(#P6) nthreads(#P5)",

], default="#pragma omp for schedule(#P3, #P4) nthreads(#P5)")

problem.spec_dim(p_id=2, p_space=["None",

"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",

"#pragma omp simd",

], default="#pragma omp simd")

problem.spec_dim(p_id=3, p_space=["static", "dynamic"], default="static")

problem.spec_dim(p_id=4, p_space=[1, 8, 16], default=1)

problem.spec_dim(p_id=5, p_space=[1, 2, 4, 8], default=1)

problem.spec_dim(p_id=6, p_space=[2,3], default=1)

(b) Customized search space for this code.

Fig. 4. 27-point stencil code input (top), and associated search space (bottom).
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6 Conclusion

This paper has described a pragma autotuner that we have developed to ease
the performance portability of OpenMP applications and reduce the program-
mer’s burden of tuning their code as they migrate to the increasingly diverse
hardware platforms, and support complex codes. We showed modest gains could
be achieved using this system for loop scheduling parameters, and discussed how
it could be extended to derive mappings for the new #pragma omp loop con-
struct. As OpenMP’s capabilities continue to expand to support a diversity of
architectures, we believe autotuning will play an increasingly important role in
achieving performance portability of current and future OpenMP codes.
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