
ScalOMP: Analyzing the Scalability
of OpenMP Applications

Anton Daumen1,2(B), Patrick Carribault1, François Trahay2,
and Gaël Thomas2

1 CEA, DAM, DIF, 91297 Arpajon, France
{anton.daumen.ocre,patrick.carribault}@cea.fr

2 Télécom SudParis, Institut Polytechnique de Paris, Évry, France
{francois.trahay,gael.thomas}@telecom-sudparis.eu

Abstract. Achieving good scalability from parallel codes is becoming
increasingly difficult due to the hardware becoming more and more com-
plex. Performance tools help developers but their use is sometimes com-
plicated and very iterative. In this paper we propose a simple methodol-
ogy for assessing the scalability and for detecting performance problems
in an OpenMP application. This methodology is implemented in a perfor-
mance analysis tool named ScalOMP that relies on the capabilities of
OMPT for analyzing OpenMP applications. ScalOMP reports the code
regions with scalability issues and suggests optimization strategies for
those issues. The evaluation shows that ScalOMP incurs low overhead
and that its suggestions lead to significant performance improvement of
several OpenMP applications.

Keywords: Performance tool · Scalability · OMPT

1 Introduction

The lifespan of simulation codes is several times longer than the lifespan of
supercomputers. Thus, a single code will be used on multiple very different
architectures, making the portability and the optimization of codes difficult.
Furthermore computer architectures are more and more complex as their design
has to become more intricate in order for performance to continue increasing.
In their chase for better performance, developers rely on performance analysis
tools to understand and analyze their code.

Many performance tools provide a wide range of features, metrics, and analy-
sis. However the more features a performance tool has, the more complex it is to
use. The developer has to learn how to use the tools in order to start efficiently
using them for code analysis. Furthermore a lot of tools use an incremental
methodology for analyzing codes, the tool first reports the global behavior of
the code and the developer then focuses his analysis on important regions. The
developer then tries to detect the issues in said regions by using other features
of the tool and analyzing the source code directly, forming hypothesis and using
c© Springer Nature Switzerland AG 2019
X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 36–49, 2019.
https://doi.org/10.1007/978-3-030-28596-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28596-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-28596-8_3


ScalOMP: Analyzing the Scalability of OpenMP Applications 37

the tool to verify them and quantify the importance of a performance problem
before trying to fix it in the code.

In this paper we propose a simple methodology for analyzing the performance
of a parallel application with a focus on the scalability of OpenMP applications.
This approach is implemented in ScalOMP, that reports directly to the user the
parallel regions where time is lost due to scalability issues and to automatically
deduce the sources of these losses in order for the developer to directly know
where time was lost and why. The whole process needs to be as closely related to
the source code as possible in order for the developer to immediately understand
where an issue resides. When possible, ScalOMP provide hints on how an issue
may be solved.

The remainder of this paper is organized as follows: in Sect. 2 we present state-
of-the-art tools that illustrate the typical methodology of performance tools. We
detail our methodology in Sect. 3, and we describe ScalOMP internals in Sect. 4.
We evaluate our approach in Sect. 5, and in Sect. 6 we conclude this paper.

2 Related Work

The performance tool landscape is filled with a significant number of tools that
provide a very broad variety of features.

A lot of effort has been spent on tools that help the developper better visualize
the behavior of an application [8,15]. These tools allow developper to precisely
examine the application execution, but the analysis has to be done manually.

Automatic analysis relieve the developper from the analysis. Several works
have focused on detecting the root causes of scalability issues in parallel applica-
tions. Most of these works are focused on MPI; For example, performance models
can help finding weak scaling issues [6]. A backward replay of an execution trace
can be used for identifying the root cause of wait-states in MPI applications [5].

Other work focuses on detecting and reporting problems in multi-threaded
applications. For instance, imbalance issues in OpenMP parallel regions and
worksharing constructs can affect the scalability of an application [18]. Running
micro-benchmarks and building a compositional model can predict the perfor-
mance of OpenMP applications on a given machine [16]. However, this approach
is limited to memory-bound applications and only works on OpenMP applica-
tions using the static scheduler. In order to detect false-sharing, a recent work
uses the OMPT API to instrument OpenMP constructs, and collects hardware
counters at a fine granularity [9]. The collected data then train a classifier which
can then spot false sharing in applications. Automated performance modeling
can be used to examine the scalability of OpenMP runtime constructs [12], or
to analyze the memory access patterns of OpenMP applications [4].

While all of these approaches are functional and allow a developper to identify
issues, verifying every possible problem using different tools is time consuming.
Moreover each approach has its own requirements and limitations which can
make using these tools together difficult, and does not match our view on how
the performance analysis of an application should work.



38 A. Daumen et al.

Some tools do integrate multiple analysis successfully. Intel VTune [17] pro-
vides an OpenMP time gain analysis that estimates the potential gain that
could be obtained if various performance problems (lock contention, imbalance,
scheduling overhead, etc.) were fixed. However Vtune time gain is lacking a scal-
ability analysis, which means that if a performance issue is not detected, a code
region may be wrongfully considered as having no issue. Finally, VTune uses
profiling to measure the time spent in OpenMP constructs. While this limits the
instrumentation overhead, it also affects the measurements precisions and lacks
some insight that tracing may give.

3 Performance Analysis of OpenMP Applications

As described in Sect. 2, even with modern performance tools, most of the anal-
ysis remains the work of the developer and is done manually. Our work focuses
on alleviating this burden as much as possible from the developper hands. This
section presents our approach for assessing the scalability of a multithreaded
application and how a performance analysis tool can provide developers with
optimisation hints. We implement this approach in ScalOMP, whose imple-
mentation details are described in Sect. 4.

3.1 Methodology

There are multiple sources of performance problems in OpenMP applications,
such as load imbalance, or lock contention. Once the problem is identified, the
developper may improve the performance of the application in several ways.
Some issues require code changes, while changing the execution settings may
fix some other problems. In this section, we describe a methodology for detect-
ing performance problems in OpenMP applications, and providing optimization
suggestions to the developper.

As an input, the developper provides a compiled version of the application,
along with the command line that runs it. The application is instrumented and
runs while varying the number of threads in order to measure the scalability of
each parallel region and to detect performance problems. As a result, ScalOMP
computes the parallel efficiency of each parallel region (defined by the speedup
multiplied by the initial number of threads divided by the current number of
threads), and estimates the potential time gain for each parallel region. The
output is the list of parallel regions sorted according to the potential time gain,
and for each region, a set of optimization hints and their respective potential
time gain.

Using this approach, a developper can focus on optimizing the most promising
parallel regions of his application. Moreover, the optimization hints indicate how
the performance could be improved.



ScalOMP: Analyzing the Scalability of OpenMP Applications 39

3.2 Scalability Analysis on Parallel Regions

The performance analysis of an application starts with a scalability analysis
which aims at identifying the OpenMP parallel regions that may be worth opti-
mizing. ScalOMP does this by running the application multiple times while
automatically varying the number of threads across a range given as input. For
each run, ScalOMP measures the duration of each parallel region. As a result,
ScalOMP computes the parallel efficiency of all the regions and estimates the
time lost in each by comparing their efficiency to the expected behaviour of a
perfectly scalable region [7].

Thus, ScalOMP identifies the parallel regions where most time is lost and
never underestimate a parallel region’s impact due to not detecting its issues
or wrongly quantifying their effects. These parallel regions are good candidates
for optimizations: the poor scalability of a region means that some performance
issues affects its parallel efficiency; and the significant amount of time lost means
there is good hope of gaining back time by improving the region’s performance.

3.3 Quantifying the Impact of Performance Problems

A poor parallel efficiency in an OpenMP parallel region may be caused by several
types of problems. In this section, we describe some of these problems and how a
performance analysis tool can estimate their impact on performance. As a result,
it is possible to quantify the potential time gain for each problem in each parallel
region.

Barriers. One of the main synchronization mechanisms in OpenMP is the bar-
rier that allows threads to wait for each other. This synchronization may be
explicit (when using the omp barrier directive), or implicit (e.g., at the end of
a parallel for loop). While barriers allow developers to ensure the correctness of
parallel programs, they introduce synchronization points that may degrade the
parallel efficiency.

Fig. 1. Illustration of threads passing through an OpenMP barrier

As illustrated in Fig. 1, when a set of threads pass through an OpenMP
barrier, three phases can be distinguished:



40 A. Daumen et al.

– the imbalance phase starts when the first thread enter the barrier, and ends
when the last thread reaches the barrier. If a thread arrives late to a barrier,
it delays the other threads. This means that the ideal case is when all the
threads reach the barrier simultaneously. Hence the time lost by imbalance
is the difference between the average time a thread took to reach the bar-
rier from the last point of synchronization, and the maximum time. A long
imbalance phase may be caused by an uneven work distribution between the
threads, or by some delay that applies to a thread (such as a late MPI com-
munication). If the imbalance is significant, ScalOMP suggests to improve
the work distribution, for example by using a schedule dynamic clause in a
parallel loop.

– the walkthrough phase starts when all the threads have reached the barrier
and ends when the first thread leaves the barrier. We consider this phase to
be the incompressible time spent resolving the barrier. This is an optimistic
estimation since part of the barrier is resolved every time a thread arrives. If
the walkthrough phase takes a significant part of the overall execution time,
ScalOMP suggests to either reduce the number of OpenMP barriers, or to
improve the barrier algorithm (for instance, by choosing a more performant
OpenMP runtime)

– the startup phase starts when the first thread leaves the barrier and ends when
the last thread leaves the barrier. The time lost from threads not leaving at
the same time is paid at the next point of synchronization. For example if
there is no imbalance in the work of threads between two barriers, some tools
could detect differences in arrival times and report it as imbalance when the
real culprit is the previous barrier delay when releasing threads. ScalOMP
detects those delays and shifts the blame to the previous barrier runtime
instead.

Locks. Locking is another major synchronization mechanism in OpenMP that
may significantly impact the performance. As depicted in Fig. 2, the time spent
acquiring a lock can be separated in two phases:

– the waiting phase happens when a thread tries to acquire a lock that is
currently held by another thread. This phase corresponds to the contention
that applies to the lock. To reduce the waiting phase, ScalOMP suggests
to either change the application to reduce the number of concurrent access
to this lock, or to use another locking mechanism that is less affected by
contention (for instance MCS or AHMCS [10]).

– the acquisition phase happens when the lock is available. This phase cor-
responds to the incompressible time required for running the locking algo-
rithm. A significant part of the whole execution spent in the acquisition phase
means that the thread often acquires locks without contention. In that case,
ScalOMP suggests to either reduce the number of calls to locking primitives,
or to use another synchronization mechanism (such as the atomic directive
or a locking mechanism that works better with no contention).



ScalOMP: Analyzing the Scalability of OpenMP Applications 41

Fig. 2. Illustration of threads acquiring a lock

In order to estimate how much time is due to the contention, and to the lock
algorithm, ScalOMP measures the time spent acquiring the lock and assumes
that the fastest measured acquisition was contention free. This gives an esti-
mate of the constant time required for executing the locking algorithm, and the
remaining time is attributed to the contention on the lock.

4 Implementation

In order to compute the metrics described in Sect. 3, we implemented ScalOMP.
In this section, we detail how ScalOMP instruments an OpenMP application,
and how it measures the duration of OpenMP constructs without altering the
application behavior.

4.1 Instrumenting an OpenMP Application with OMPT

As OpenMP relies on both compiler directives and a runtime API, instrumen-
tation can be tedious. One solution consists in building a set of wrappers that
intercept the calls to the OpenMP runtime API. However, this method is spe-
cific to one OpenMP implementation and it cannot grasp the whole OpenMP
semantics. Opari [14] performs a source-to-source transformation on the applica-
tion and inserts POMP calls in the source code. This makes this approach more
portable, but it requires to recompile the application.

ScalOMP uses the OpenMP Tools interface (OMPT) that was introduced in
the OpenMP 5.0 standard [11]. OMPT makes the OpenMP runtime collaborate
with performance analysis tools: the tools register callbacks for OpenMP events,
and the OpenMP runtime then triggers the callbacks when the corresponding
events happen. With this approach, ScalOMP can collect performance data
from any OpenMP application without recompiling it.

4.2 Identifying OpenMP Parallel Regions

An application may consist of tens of OpenMP parallel regions, some of them
being invoked multiple times. Thus, ScalOMP needs to identify a parallel region
in order to aggregate the performance data from multiple calls to it. When
the application starts an OpenMP parallel region, the OMPT interface invokes
ScalOMP through a callback and provides a pointer to the OpenMP call in the
application binary. The first time ScalOMP encounter an unknown callsite, it
uses libbfd to retrieve the line of code associated with this address.



42 A. Daumen et al.

4.3 Measuring Temporal Data

As described in Sect. 3, ScalOMP analysis of the OpenMP barriers requires
to collect several OpenMP events: ScalOMP needs to know when a thread
starts a region’s work, enters at a barrier, exits a barrier and ends the region.
The lock analysis also requires to collect information when a thread starts and
stops acquiring a lock. For each of these events, ScalOMP records a timestamp
using the TSC counter. These timestamps are then used for measuring various
durations in the thread processing. The TSC counter allows ScalOMP to record
timestamps at a low cost, but these timestamps cannot be compared accross
threads running on different sockets. Thus, ScalOMP also records a system-
wide timestamp using clock_gettime at the beginning of each region execution
in order to compare different threads timestamps.

4.4 Mitigating Instrumentation Overhead with Adaptive Sampling

While recording a timestamp using the TSC counter is lightweight, this overhead
may significantly alter the application’s performance if timestamps are recorded
too often. In order to reduce this overhead, ScalOMP uses a sampling mech-
anism. Since the OMPT interface allows to dynamically activate or de-activate
callbacks, ScalOMP only collects performance data on certain executions of a
parallel region. The idea is that while two executions of a region may not be
exactly the same, their behaviour is essentially similar.

Depending on the parallel region, the sampling frequency should be selected
carefully: if a parallel region is only repeated a few times, all its executions should
be captured, whereas a region that runs many times should only be captured
from time to time. Thus, ScalOMP uses an adaptive sampling where the first
executions are all measured, and then as the region is repeated, ScalOMP de-
activates the callbacks for some executions. The more a region is repeated, the
more often ScalOMP de-activates the OMPT callbacks.

As a result, the rare regions are all captured, while frequent regions are
sparsely captured, and the overhead of ScalOMP on the application execution
remains low.

5 Experiments and Results

In this Section, we evaluate ScalOMP implementation and assess how the per-
formance analysis can help the developper improve a parallel application. First,
we evaluate the overhead of ScalOMP on 16 applications. Then, we evaluate
how ScalOMP detects load imbalance problems, and lock contention issues.

For our evaluation, we use a machine equipped with two Intel Xeon Haswell
E5-2698 v3 processors with 16 cores each (32 cores in total), and 128GB of RAM.
The machine runs Linux version 3.10, and the applications were compiled with
Intel Compiler version 17.0.6. For OpenMP we use the open-source OpenMP
runtime from Intel now maintained in LLVM. When compiling applications, we
use the -O3 optimization level.



ScalOMP: Analyzing the Scalability of OpenMP Applications 43

We evaluate ScalOMP using several OpenMP applications:

– Mandelbrot is an application that computes the Mandelbrot set;
– HydroMM is an hydrodynamics mini-application;
– Lulesh 2.0 is a mini-application that performs an hydrodynamics simula-

tion [13];
– BT, CG, DC, EP, FT, IS, LU, MG, UA are kernels from the OpenMP

NAS Parallel Benchmarks version 3.3.1 [3];
– miniFE is a Finite Element mini-application [2];
– Snap is a particle transport mini-application [2];
– AMG is a parallel algebraic multigrid solver for linear systems [1];
– Pennant is a mini-application for hydrodynamics [1].

5.1 Overhead of ScalOMP

To evaluate the overhead of ScalOMP, we run the 16 applications described in
Sect. 5 with and without ScalOMP. For each application, the problem size is
chosen so that the reference time (i.e. the execution time when running without
ScalOMP) is between 10 and 100 s with a few exception to see how scale affects
the overhead. Each measurement is repeated 5 times and we report the average
execution time. Table 1 reports the execution time when running the application
without ScalOMP, and the overhead when running with ScalOMP.

Table 1. Overhead induced by the tool

Application Mandelbrot HydroMM Lulesh2.0 BT.B CG.C DC.A EP.D FT.C IS.D

Reference time 11.34 s 13.63 s 82.02 s 10.35 s 12.23 s 16.21 s 52.67 s 11.67 s 27.09 s

Overhead 2.24% 6.18% 12.34% 0.00% 0.03% −0.27% 3.55% −0.55% −0.01%

Application LU.C LU.D MG.D UA.B UA.D miniFE Snap AMG Pennant

Reference time 36.53 s 1352.66 s 88.06 s 12.61 s 1161.65 s 18.49 s 80.24 s 94 s 41.32 s

Overhead −0.17% 0.14% 0.12% 13.78% 4.04% 2.24% −0.64% −1.03% 2.33%

The results show that ScalOMP has little impact on the performance of
most applications. The overhead is higher for Lulesh (12.34%) because this appli-
cation performs many small parallel regions; The observed overhead goes down
to −4.31% if the size is increased to 120 (from 80) and the number of itera-
tion lowered to 350 (from 1000) so that the time stay similar. UA.B also suffers
from a significant overhead (13.78%) due to the heavy number of lock opera-
tions (8.1M locks per second per thread on average). When running UA with
a larger problem size (class D), the application take locks less often and the
ScalOMP’s overhead is reduced to 4.04%. We conclude that ScalOMP does
not significantly alter the application execution except in some extreme cases.

5.2 Detecting Imbalance Issues

ScalOMP reports that several of the applications evaluated in Sect. 5.1 suffer
from load imbalance. In this section, we focus on two of these applications.



44 A. Daumen et al.

Mandelbrot. When running the mandelbrot application with 32 threads,
ScalOMP reports that the parallel efficiency is only 42%. ScalOMP reports
that the load imbalance between the threads in one parallel region is responsible
for all of the lost time. It suggests to improve the load balancing for this parallel
region, as it predicts a perfect load balance may save 5.37 s.

Based on this suggestion, we analyze the source code of this application. The
incriminated parallel region computes the divergence of a set of complex numbers
in the Mandelbrot set. The computation cost for each complex number depends
on how fast it diverges. The default OpenMP scheduling policy assigns many
numbers that diverge quickly to some threads while some other threads have to
process many numbers that diverge slowly. As a result, some threads finish their
loop iterations earlier than the other threads, leading to a load imbalance and a
poor parallel efficiency. As suggested by ScalOMP, we change the scheduling
policy for this parallel region to dynamic, and we observe that the application’s
execution time is reduced to 6.16 s. This means we gained 5.20 s which is close to
the 5.37 predicted. When analyzing the parallel region with dynamic ScalOMP
find the load balance to be 99.9% perfect.

HydroMM. When running HydroMM with 32 threads, ScalOMP reports
that the parallel efficiency is only 51%, and reports that the load imbalance
in one parallel region is responsible for 87% of the total lost time. ScalOMP
suggests to improve the load balancing of this parallel region, it also predicts the
performance of the application if this parallel region was perfectly load balanced.

Based on ScalOMP suggestion, we analyze the source code of HydroMM,
and change the OpenMP scheduling policy to dynamic in order to improve the
load balancing between the threads. Figure 3 reports the speedup measured for
HydroMM when using the default scheduling policy (static) and when using the
dynamic scheduling policy. It also reports the speedup predicted by ScalOMP.
We observe that changing the scheduling policy significantly improves the appli-
cation’s performance. The results also show that up to 16 threads, the speedup
obtained when applying ScalOMP suggestion is close to the predicted speedup.

For 32 threads, the predicted speedup is significantly overestimated. This
may be due to memory effects being ignored by ScalOMP: up to 16 threads,
all the threads execute on one socket of the machine, while when running 32
threads, the two sockets are used.

5.3 Detecting Locking Issues

In this section, we assess how ScalOMP detects locking issues using two appli-
cations. First, we evaluate how ScalOMP differentiates contended locks and
non-contended locks using a micro-benchmark. Then, we present a case study
on the UA kernel from the NAS Parallel Benchmarks. For both applications,
we compare the optimization suggestions provided by ScalOMP with those
obtained with Intel VTune [17].



ScalOMP: Analyzing the Scalability of OpenMP Applications 45

Fig. 3. Speedup obtained when running HydroMM

Micro-benchmark. We implemented an OpenMP application that consists in
two parallel regions. In these parallel regions, each thread acquires an OpenMP
lock, releases it, and busy waits for some time. In the first parallel region, each
thread accesses a different lock which does not suffer from contention. In the
second parallel region, all the threads access the same lock which suffers from
contention. We choose the busy wait time so that the time spent acquiring lock
is similar for both parallel region.

Table 2. Lock Micro-benchmark

Without contention With contention

Total duration (s) 14.14 14.34
Lock duration (s) 4.63 (32%) 4.35 (29.6%)

VTune Overhead 2.61% 10.19%
Lock contention 2.64 s (18.19%) 5.5 s (34.81%)
Other problems 0.67 s (4.6%) 0.02 s (0.1%)

ScalOMP Overhead 4.00% 1.04%
Lock duration 3.93 s (26.97%) 5.24 s (36.45%)
- Lock algorithm 3.40 s (23.14%) 0.03 s (0.23%)
- Lock contention 0.56 s (3.83%) 5.21 s (36.22%)

We run this micro-benchmark and analyze it with VTune and ScalOMP.
The results of this experiment are reported in Table 2. The time spent acquiring
locks and the total duration of the two regions are similar.



46 A. Daumen et al.

VTune detects significant lock contention in the contention-free region
(18.19% of the region duration) and in the region with contention (34.81% of
the region duration). VTune also reports that 4.6% of the time spent in region
1 is lost due to “Other” problems. We conclude that VTune is able to detect the
lock contention problem in the second parallel region, but it wrongfully detects
a lock contention in the first parallel region.

ScalOMP detects that a significant time is spent in locks in the contention-
free region, and that most of it is due to the lock algorithm itself. ScalOMP
indicates that the problem is that the threads acquire too many locks. In the
second parallel region, ScalOMP detects that most of the locking time is due
to contention. We conclude that ScalOMP rightly identifies the lock problems
in the two parallel regions.

Case Study: UA. In this section, we analyze UA and apply optimizations
based on the suggestions provided by ScalOMP. Since one of these optimiza-
tions gives an incorrect result with the Intel Compilers, we use the GNU Com-
pilers version 7.3.0 in this section.

When running UA.B, ScalOMP measures a parallel efficiency of 56% with
32 threads. One parallel region is responsible for most of the time loss because of
several problems: 10% of the total execution time is lost due to load imbalance;
and 19.4% of the total execution time is spent acquiring locks in this parallel
region.

ScalOMP also points that 2 704 354 500 locks are acquired during the 8.68 s
execution of this parallel region, meaning that on average, each thread acquires
a lock every 102 ns. Due to a high number of region execution (more than 2000),
ScalOMP automatically uses the sampling mechanism described in Sect. 4.4
and records the duration of only 16% of the all locks acquisition. As a result,
the overhead induced by ScalOMP remains low, but ScalOMP still captures
a significant amount of performance data.

ScalOMP reports that most of the time spent acquiring locks is due to the
lockings algorithm, and contention on locks is low in this application. An analysis
of UA source code shows that there are 334 600 differents locks, which limits the
probability of a thread acquiring a lock that is already taken by another thread.
Moreover, most of the locks are used for protecting simple instructions such as
x = x + y.

Based on this analysis, we create two additional implementations of the appli-
cation:

– UA-Hint uses the lock hint mechanism from OpenMP 5.0 and specifies that
the locks are uncontended. This allows the OpenMP runtime to select the
lock implementation that performs the best when there is no contention;

– UA-Atomic replaces the critical sections protected by locks with OpenMP
atomic operations when possible.

We compare the performance of these two implementation with the UA-
Default implementation. Figure 4 reports the speedup of the implementations as



ScalOMP: Analyzing the Scalability of OpenMP Applications 47

Fig. 4. Speedup obtained when running UA

compared to the execution time obtained when running UA-Default with one
thread. As suggested by ScalOMP, UA-Hint performs better than UA-Default
in all cases (including in sequential) because the locking algorithm achieves better
performance when the lock is uncontended. UA-Atomic outperforms UA-Default
(by 267 on 32 threads) and UA-Hint (by 154 on 32 threads) for all the tested
number of threads. This is due to the single atomic instruction that replaces a
call to a locking function and the critical section.

We conclude that ScalOMP suggests optimizations that may significantly
improve the performance of an OpenMP application that suffers from locking
problems.

6 Conclusion

Performance analysis of an application involves a lot of work from the devel-
opper. In this paper we presented a methodology that focuses on the scalabil-
ity of an application in order to help the developer improve its performance.
We implemented this approach in ScalOMP that relies on the OMPT API
to instrument OpenMP applications. The evaluation show that ScalOMP col-
lect performance data from applications with a low overhead. The experiments
also show that ScalOMP analysis successfully detect load imbalance problems,
and locking problems in several applications. The optimization hints provided
by ScalOMP help the developer significantly improve the application’s perfor-
mance.



48 A. Daumen et al.

References

1. Coral-2 benchmarks. Technical report, Lawrence Livermore National Lab. (LLNL),
Livermore, CA, USA. https://asc.llnl.gov/coral-2-benchmarks/index.php

2. Coral benchmarks. Technical report, Lawrence Livermore National Lab. (LLNL),
Livermore, CA, USA. https://asc.llnl.gov/CORAL-benchmarks/

3. NAS parallel benchmarks applications (NPB). Technical report, NASA Advanced
Supercomputing Division. https://www.nas.nasa.gov/publications/npb.html

4. Barthou, D., Rubial, A.C., Jalby, W., Koliai, S., Valensi, C.: Performance tuning
of x86 OpenMP codes with MAQAO. In: Müller, M., Resch, M., Schulz, A., Nagel,
W. (eds.) TTools for High Performance Computing 2009, pp. 95–113. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11261-4_7

5. Bohme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait
states in large-scale parallel applications. In: 2010 39th International Conference
on Parallel Processing, pp. 90–100 (2010)

6. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
p. 45 (2013)

7. Coarfa, C., Mellor-Crummey, J.M., Froyd, N., Dotsenko, Y.: Scalability analysis of
SPMD codes using expectations. In: Proceedings of the 21th Annual International
Conference on Supercomputing, ICS 2007, Seattle, Washington, USA, 17–21 June
2007, pp. 13–22 (2007)

8. Coulomb, K., Degomme, A., Faverge, M., Trahay, F.: An open-source tool-chain
for performance analysis. Tools High Perform. Comput. 2011, 37–48 (2012)

9. Ghane, M., Malik, A.M., Chapman, B., Qawasmeh, A.: False sharing detection in
OpenMP applications using OMPT API. In: International Workshop on OpenMP,
pp. 102–114 (2015)

10. Guerraoui, R., Guiroux, H., Lachaize, R., Quéma, V., Trigonakis, V.: Lock-unlock:
is that all? A pragmatic analysis of locking in software systems. ACM Trans. Com-
put. Syst. (TOCS) 36(1), 1 (2019)

11. Huck, K.A., Malony, A.D., Shende, S., Jacobsen, D.W.: Integrated measurement
for cross-platform OpenMP performance analysis. In: DeRose, L., de Supinski,
B.R., Olivier, S.L., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2014. LNCS,
vol. 8766, pp. 146–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11454-5_11

12. Iwainsky, C., et al.: How many threads will be too many? On the scalability of
OpenMP implementations. In: Träff, J.L., Hunold, S., Versaci, F. (eds.) Euro-Par
2015. LNCS, vol. 9233, pp. 451–463. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48096-0_35

13. Karlin, I., Keasler, J., Neely, J.: LULESH 2.0 updates and changes. Technical
report, Lawrence Livermore National Lab. (LLNL), Livermore, CA, USA (2013)

14. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for periscope, Scalasca, Tau, and Vampir. In: Brunst, H., Müller, M., Nagel,
W., Resch, M. (eds.) Tools for High Performance Computing 2011, pp. 79–91.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31476-6_7

15. Müller, M.S., et al.: Developing scalable applications with Vampir, Vampirserver
and Vampirtrace. In: Parallel Computing (PARCO), vol. 15, pp. 637–644 (2007)

https://asc.llnl.gov/coral-2-benchmarks/index.php
https://asc.llnl.gov/CORAL-benchmarks/
https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1007/978-3-642-11261-4_7
https://doi.org/10.1007/978-3-319-11454-5_11
https://doi.org/10.1007/978-3-319-11454-5_11
https://doi.org/10.1007/978-3-662-48096-0_35
https://doi.org/10.1007/978-3-662-48096-0_35
https://doi.org/10.1007/978-3-642-31476-6_7


ScalOMP: Analyzing the Scalability of OpenMP Applications 49

16. Putigny, B., Goglin, B., Barthou, D.: A benchmark-based performance model for
memory-bound HPC applications. In: 2014 International Conference on High Per-
formance Computing & Simulation (HPCS), pp. 943–950 (2014)

17. Reinders, J.: VTune performance analyzer essentials (2005)
18. Woodyard, M.: An experimental model to analyze OpenMP applications for system

utilization. In: Chapman, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.)
IWOMP 2011. LNCS, vol. 6665, pp. 22–36. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21487-5_3

https://doi.org/10.1007/978-3-642-21487-5_3
https://doi.org/10.1007/978-3-642-21487-5_3

	ScalOMP: Analyzing the Scalability of OpenMP Applications
	1 Introduction
	2 Related Work
	3 Performance Analysis of OpenMP Applications
	3.1 Methodology
	3.2 Scalability Analysis on Parallel Regions
	3.3 Quantifying the Impact of Performance Problems

	4 Implementation
	4.1 Instrumenting an OpenMP Application with OMPT
	4.2 Identifying OpenMP Parallel Regions
	4.3 Measuring Temporal Data
	4.4 Mitigating Instrumentation Overhead with Adaptive Sampling

	5 Experiments and Results
	5.1 Overhead of ScalOMP
	5.2 Detecting Imbalance Issues
	5.3 Detecting Locking Issues

	6 Conclusion
	References




