l‘)

Check for
updates

Cache Line Sharing and Communication
in ECP Proxy Applications

Joshua Randall®)@®, Alejandro Rico®, and Jose A. Joao

Arm Research, Austin, TX, USA
{joshua.randall,alejandro.rico, jose.joao}@arm.com

Abstract. Scientific computing codes rely on efficient parallelization
to achieve performance. This parallel efficiency is reduced by factors
such as communication, serialization, and data sharing. In this work, we
examine interactions between OpenMP threads in the context of a Chip-
multiprocessor (CMP). We first analyze cache line sharing to observe
how often multiple threads are accessing the same data. We then look
at producer-consumer and write-invalidation interactions between these
threads. These interactions are implemented with cache coherence oper-
ations and demonstrate interference between threads. We find that none
of the codes studied show prohibitive amounts of communication and
many interactions between threads follow simple patterns. Our work dis-
covers opportunities to increase parallel efficiency in the analyzed codes
and provides motivating data for research into CMP design.

Keywords: Cache-communication + Coherence - Multi-core *
Performance analysis + Scalability

1 Introduction

Multi-core processors with an increasing number of cores have potential to signif-
icantly boost performance of parallel applications, including high-performance
computing (HPC) codes, by running multiple MPI processes and OpenMP
threads in parallel. However, that potential may be thwarted by inter-thread
communication, which can reduce single thread performance by disrupting cache
locality. We identify two examples of inter-thread communication.

First, producer-consumer communication happens when one thread (pro-
ducer) writes data that another thread (consumer) reads through a cache-to-
cache transfer from the producer private cache to the consumer private cache.
Second, write invalidation communication is when one thread running on core
A writes to a cache line that is held in one or more remote private caches. These
remote caches must be invalidated before the cache line can be brought in exclu-
sive state and written to in core A’s cache. Write invalidations can occur due

This work was in collaboration with Cray and funded in part by the DOE ECP Path-
Forward program.
© Springer Nature Switzerland AG 2019

X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 306-319, 2019.
https://doi.org/10.1007/978-3-030-28596-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28596-8_21&domain=pdf
http://orcid.org/0000-0002-5154-8688
http://orcid.org/0000-0003-1282-8887
http://orcid.org/0000-0002-3571-5562
https://doi.org/10.1007/978-3-030-28596-8_21

Cache Line Sharing and Communication in ECP Proxy Applications 307

to writes to truly shared data or due to writes to thread-private data that is on
different words within the same cache line, which is called false sharing.

Application developers may improve parallel performance by reducing inter-
thread communication. False sharing can be eliminated by allocating shared data
and private data for different threads on different cache lines through alignment
and padding. However, producer-consumer communication and write invalida-
tions of truly shared data is intrinsic to the algorithm and can only be avoided
with algorithmic changes.

In this paper, we study OpenMP inter-thread communication of HPC Proxy-
Apps with a characterization of the following interactions:

— Cache line sharing among OpenMP threads to understand how inter-thread
code and data sharing occurs on the cache hierarchy.

— Producer-consumer communication that results in direct cache-to-cache
transfers.

— Write invalidation communication that occurs when shared data is mod-
ified.

Frequency of communication interactions indicate their likelihood of impact-
ing performance and scalability of the applications, while interaction patterns
visualize data movement between cores and provide insight into possible data
movement optimizations.

2 Experimental Setup

2.1 ECP Proxy Apps

This Exascale Computing Project (ECP) [5] provides a collection of proxy appli-
cations that demonstrate a variety of multi-threading characteristics from HPC
codes.

These proxy applications model characteristics of large scale HPC codes with-
out the large code bases and problem sizes that are inherent to production HPC
codes. These miniaturized codes enable detailed analysis of how these HPC codes
run on single nodes or clusters. For our analysis, we examined behavior of these
proxy apps from the perspective of a single CMP. Specifically, we evaluated
the coherence behavior that these proxy apps demonstrate as the number of
OpenMP threads increases.

Two of the proxy applications we evaluate, CoMD and miniFE, are no longer
part of the latest release of the proxy application suite, but are still interesting to
software developers. LULESH [7] is not part of the ECP proxy application suite,
but has been a widely studied proxy app in multiple DOE exascale initiatives.

Inputs and Scaling. Table1 shows the scaling strategy and base input sets
used in this paper. Weak scaling, i.e., scaling problem sizes proportionally with
the number of threads, was used when possible, in order to keep the amount
of data per thread constant. For AMG, CoMD, ExaMiniMD, and LULESH,

308 J. Randall et al.

we maintained a cubic input size and doubled the volume as thread counts
doubled. Therefore, doubling threads scaled each dimension by a factor of the
cube root of 2. For miniFE, we maintained a constant z dimension and alternated
doubling the y and x dimensions as thread counts doubled. For the other proxy
applications, we applied strong scaling, where we problem size remains the same
when increasing the number of threads.

Table 1. Inputs and scaling for proxy applications

Proxy App | Scaling Used | Parameters (2 threads)

ExaMiniMD | Weak 50 50 50

AMG Weak n9%49494-P111

miniFE Weak -nx 32 -ny 16 -nz 128

LULESH Weak -s 25 -i 10

CoMD Weak -e -x 20 -y 20 -z 20 -T 4000 -N 2 -n 1
miniAMR Strong --nx 16 --ny 16 --nz 16 --num_vars 40
SWFFT Strong 2 512

XSBench Strong -t 2 -1 5000000 -s large

miniVite Strong -n 150000

2.2 DynamoRIO

We measured data accesses and data sharing of the proxy apps using
DynamoRIO [4]. DynamoRIO is a dynamic binary instrumentation tool that
includes a cache simulator. This tool does not include a detailed core model, so
it does not simulate cycles and timing, but it can produce an accurate estimation
of cache behavior. While multithreaded simulation is supported in DynamoRIO,
we had to implement coherence support on top of the latest open source version
to properly track cache line sharing. Our results were collected during the par-
allel phase of execution for each proxy application. We statically mapped one
logical thread per core in our simulations.

2.3 Compiler and Runtime System

All proxy applications were compiled using GCC version 7.1.0 and memory
traces were gathered for AARCHG64 code running the libgomp OpenMP runtime
included with GCC. All of the proxy applications use OpenMP with the excep-
tion of ExaMiniMD, which is parallelized using Kokkos. We measured cache line
communication during the entire parallel execution phase of each proxy apps.

Cache Line Sharing and Communication in ECP Proxy Applications 309

2.4 Evaluation of Cache Line Sharing

We simulated three levels of cache in DynamoRIO. A shared LLC with 2MB
per core backs up coherent 512 KB private L2 caches, which are inclusive with
64 KB L1I and L1D caches. Our simulated cache hierarchy uses a directory-based
write-back cache policy to keep the L2 caches coherent. Each L2 and its child
L1 caches perform accesses for a single thread. We measured the sharing state of
unique cache lines between all L2 caches over time, as well as how widely each of
these cache lines was shared between L2 caches. We also measured the frequency
with which each private cache shares data with each other private cache.

2.5 Evaluation of Inter-thread Communication

Producer-consumer communication may be analyzed by tracking reads and
writes at a word granularity. This analysis would be hardware agnostic and
may not reflect the communication that actually occurs between cores during
execution. We choose to analyze communication coherently to qualify communi-
cation that manifests in inter-cache transactions. In this context, communicating
reads are remote accesses to dirty cache lines, or lines that have been written
to and not evicted from the writing core’s private cache. This analysis will show
actual movement of data from communicating accesses between private caches
during execution, and will include the effects of false communication caused by
false sharing. False communication refers to unnecessary communication between
caches that are accessing different words in the same cache line. Our results show
the frequency of coherent communication during execution and reveal patterns
in this communication.

Write invalidations occur when a core writes to a cache line of which another
copy exists in another core’s cache. The writing thread must complete an invali-
dation of cache line copies in any other cache before the write may be completed.
Writing to data that is widely shared will add latency for the write operation
and increase traffic in the Network-on-Chip (NoC). We counted write invali-
dations during execution of the proxy applications to compute their frequency.
We also observe any patterns between frequently writing threads and frequently
invalidated threads.

3 Results and Discussion

3.1 Cache Line Sharing Analysis

Cache line sharing occurs when multiple threads read from a cache line within
the same period of time, causing the copies of that cache line to exist in multiple
private caches simultaneously. This analysis offers insight into how well data is
isolated between threads and how often different threads are operating on the
same or adjacent data.

Figure 1 shows the number of shared caches lines as a percentage of total
L2 capacity. We sampled caches at equal intervals during the parallel phase of

310 J. Randall et al.

25% :
Weak scaling = Strong scaling

20% i

15%

|
i
i
|
10%] |
|
5% 11 -
; -
0% - - - -~ : -_—— m m a s lonnl I] = IIII| |I

2 4816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 81632

ExaMiniMD AMG miniFE LULESH CoMD miniAMR SWFFT XSBench miniVite
m 2 Sharers 3-4 Sharers 5-8 Sharers W 9-16 Sharers m 17-32 Sharers

Percent of Total L2 Cache Entries

Fig. 1. Percent of L2 cache lines at various degrees of sharing

execution and averaged the shared cache line counts of these samples. These
shared cache line state counts are grouped based on how many private caches
hold cache lines at a time. OpenMP thread counts for each proxy application
sweep from 2 to 32 threads in powers of two. We separated the proxy apps by
scaling strategy and ordered them by average number of shared cache lines. For
most proxy applications, very few cache lines have more than one copy in L2
caches. Only miniVite, CoMD, and XSBench show a significant number of cache
lines in shared state. These cache line sharing rates demonstrate how well data
is isolated between threads for these proxy applications. In order to correlate
this cache line sharing to specific data and sections of code, we examined the
program counters of load instructions that resulted in cache lines transitioning
to shared state.

MiniVite shows the highest number of shared cache lines for various thread
counts, and also shows the highest number of cache lines with high degrees of
sharing. MiniVite is a graph analysis proxy app that examines connectivity of
nodes in a graph to categorize these nodes into communities. Highly shared
cache lines contain nodes in a graph that are connected to nodes in multiple
communities. For this proxy application, the number of shared cache lines is
high even for low thread counts, and some of the shared cache lines are widely
distributed amongst L2 caches. Writes to highly distributed shared cache lines
require multiple messages to invalidate copies, increasing the latency of the write
operation and increasing traffic in the on-chip network.

We weak scaled the proxy apps for which we had a clear weak scaling option,
keeping the amount of data per thread consistent. The proportion of shared
cache lines remains similar as threads scaled up for all these weak scaled proxy
apps except CoMD. CoMD shows significantly more cache line sharing when it
is run with higher thread counts. This trend is an effect of the way we scaled the
problem for CoMD. We kept the problem cubic and scaled each dimension by

Cache Line Sharing and Communication in ECP Proxy Applications 311

the cube root of 2 as thread counts doubled. Increasing the X and Y dimensions
of this problem increases the surface area between thread data, which explains
the increase in cache line sharing between 2 and 8 threads. At 16 threads and
beyond, each thread processes less than two layers in the Z dimension. This
causes atoms in some boxes to be read by both the previous and the following
threads. Because of this, the proportion of shared cache lines greatly increases
when the Z dimension is less than twice the number of threads. Maintaining the
X and Y dimensions while increasing the Z dimension would control for these
effects and eliminate cache line sharing. We confirmed that cache line sharing
stayed consistent when we scaled CoMD in only the Z dimension.

XSBench also shows a higher number of shared cache lines as the number of
threads increases. This cache line sharing primarily occurs during binary searches
of nuclide lookup tables. When multiple threads perform binary look ups of
energies from the same nuclide table, they share the first access to the halfway
point in the table. These threads share more table accesses depending on how
similar their search energies are. Increasing thread count increases the probability
of other threads accessing the same parts of the nuclide tables. These nuclide
tables are read-only during execution, so we don’t expect this cache line sharing
to translate to significant inter-cache communication.

ExaMiniMD _ AMG miniFE

12 16 20 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Core Core Core

LULESH CoMD miniAMR

x T

24 :'-

0 =

gw - g
Oy ﬁ-i o

8 :'-

4

08 12 16 20 U B 0 4 8 12 16 20 24 28

Core Core

XSBench

miniVite

Core Core

Fig. 2. Cache line sharing pairs with 32 cores

312 J. Randall et al.

Figure 2 shows the frequency of each pair of cores holding the same cache line
in their L2 caches. We collected this data for 32-core simulations. Darker regions
of the maps indicate higher cache line sharing. These sharing heat maps offer
a visualization of which cores share cache lines and show correlations in data
accesses between thread IDs. Shading is normalized to the maximum value for
each proxy app in order to show the behavior of these proxy apps, rather than to
compare rates of cache line sharing between them. For most of these proxy appli-
cations, cache lines are typically shared between consecutive threads. Codes that
demonstrate this pattern may benefit from a scheduler that maps consecutive
threads to adjacent cores. In the cases of ExaMiniMD, AMG, miniFE, LULESH,
and CoMD, each core shares more data with adjacent cores than any other cores.
This suggests that mapping logically neighboring threads to adjacent cores will
improve data locality and reduce communication delay between common sharers
on a chip. This tendency to share with neighboring threads also shows that clus-
tering adjacent cores may be beneficial for these proxy apps. Proxy apps with
uniformly shaded maps, such as miniAMR, SWFFT, XSBench, and miniVite,
display all-to-all sharing patterns.

While this cache line sharing analysis provides insight into how much data is
being accessed by multiple threads, it does not demonstrate how often updates
to shared data cause inter-cache communication. An application with a high
amount of shared data may never update that shared data, while another
application may frequently update relatively few cache lines. We analyze which
proxy applications demonstrate frequent cache-to-cache interactions by measur-
ing communication events caused by data updates.

3.2 Producer-Consumer Analysis

In this section, we observe producer-consumer interactions between caches dur-
ing execution of the proxy applications. These interactions are essentially read-
after-write operations. We analyze inter-thread communication from a coherence
perspective, showing how often data is still in the producing core’s cache when it
is consumed. Coherence producer-consumer relationships occur when a consum-
ing thread loads a cache line that exists in a dirty state in another private cache.
This coherence communication analysis takes into account temporal access dis-
tance and false sharing, showing inter-thread communication that may affect
performance. Accesses to remote dirty cache lines cannot be fulfilled by the
LLC and require writeback by the private cache of the producing thread. This
increases the latency of the consuming request. First, we measure the rate of
producer-consumer transactions between caches for each of the proxy apps. We
then analyze patterns in these accesses to understand how data moves between
threads.

Figure 3 shows the frequency of producer-consumer communication between
caches. We display this communication frequency per 1,000 instructions to com-
pare rates between proxy apps and establish an estimate for the frequency of
these transactions. Counting events per thousand instructions allows an estima-
tion of the frequency of these occurrences while being agnostic towards the core

Cache Line Sharing and Communication in ECP Proxy Applications 313

0.14

Weak scaling = Strong scaling

0.12

Dirty Cache Lines Consumed per Thousand
Instructions

0.02 |‘ “
O_I-IIIIIIIIII _-II ,_-II .I

2 4816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 81632
ExaMiniMD ~ AMG miniFE LULESH CoMD miniAMR SWFFT XSBench miniVite

Fig. 3. Consumption rates of modified cache lines

design. Different core designs may execute instructions at different rates and
different out-of-order execution capabilities to hide memory latency. Therefore,
a simulated core model would be needed to determine the overhead of these
communication operations. The normalization per 1,000 instructions is consid-
ering instructions executed by all threads, so the rates should be seen as rates
per thread as long as the communication happens during parallel sections. If the
number of communications grows sub-linear with the number of threads in the
weak scaling cases, we would observe a decrease in the number of communica-
tion per 1,000 with a linear increase in total instructions. CoMD and LULESH
are examples of this behavior, and they exhibit producer-consumer communica-
tion more than once per 10,000 instructions for some thread counts. For these
two proxy apps, the consuming accesses rate does not increase linearly with
thread count past four threads, while instruction counts increase proportionally
to thread count due to weak scaling.

MiniAMR, miniFE, and miniVite show consistently increases in communica-
tion with higher thread counts. MiniAMR, and miniVite are strong scaling cases
and therefore see an increase on the total number of communications while the
same work spreads across more threads. This trend is unexpected for miniFE,
because this proxy app was weak scaled for these experiments. In this case,
the number of producer-consumer interactions increases superlinearly with the
number of threads.

Figure4 shows the frequency of each pair of cores exhibiting producer-
consumer cache transactions for a 32-core configuration. XSBench has negligible
occurrences of producer-consumer relationships between cores with almost no
writes to shared data, so its data has been omitted from this figure. To under-
stand the code causing each of these communication patterns and what data is
being communicated, we examined the program counters that caused communi-
cation between core pairs.

314 J. Randall et al.

ExaMiniMD __AMG

8
g
i
n
o
&
n
8

B
=

=

>
Consuming Core

[
S
L}
>

o s ol
‘.II\:\\

(I
S

5!

Consuming Core
ooe o N

5> 8

II:I:"

1
Consuming Core

[S)

o » ®
o & ®

mil

™

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Producing Core Producing Core Producing Core

LULESH _ CoMD miniAMR

N
>3
h
)
=3
N
=)
I

B
n
|
=
=
[}

.

[
S
n

L}

[
S

[
S

[S)
[S)

Consuming Core
IS
b
n

>
||
1
Consuming Core
>
Consuming Core

o & @
o & ®
o & ®

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Producing Core Producing Core Producing Core

SWFFT miniVite

S
&
S
&

=
=

[

S
(R
> 3

[§]

Consuming Core
]

>
Consuming Core

o & ®
o & ®

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Producing Core Producing Core

Fig. 4. Producer-Consumer coherence communication patterns with 32 cores

Multiple proxy applications show producer-consumer relationships between
neighboring threads. This communication occurs in a single direction for AMG,
LULESH, miniAMR, and miniFE, with threads producing data that is consumed
primarily by threads with a higher ID. This one-sided communication could
occur at the beginning of each iteration after neighboring threads updated their
data. The final data updated by one thread would be the first data read by
the following thread during a compute interval. Although both the previous and
next thread would eventually read the updated data, the data would have been
evicted by the producing thread’s cache before the previous thread consumes
that data at the end of its work iteration. A hardware agnostic evaluation of
communication would observe this behavior as symmetric communication, but
our coherent analysis reveals this communication may occur between caches
asymmetrically and may be predictable, which would enable data to be pushed
from producer to consumer in hardware or software.

ExaMiniMD shows symmetrical producer-consumer relationships, where
threads produce data that is read by previous or following threads. This may be
because ExaMiniMD uses dynamic scheduling, which makes thread interactions
less predictable.

The four boxes of all-to-all communication for AMG occur during the
BuildlJLaplacian27pt routine, when all threads are accumulating into the same
array. While each thread accesses a different index of this array for their accu-

Cache Line Sharing and Communication in ECP Proxy Applications 315

mulations, false sharing causes 8 words of this array to map to the same cache
line. Therefore, groups of 8 threads perform modifications to the same cache line,
causing the cache line to migrate between that group of threads. The smaller
boxes of communication between threads 0-3 and threads 28-31 suggest that
the beginning of the shared array is offset within a cache line. This false com-
munication could be avoided if the accumulation array is padded such that each
thread index in the array maps to a different cache line. The compiler might
also be able to avoid this situation by recognizing that threads accumulate to
consecutive indices of the array and allocating one cache line for each index. It
might also be beneficial if the code was written to utilize OpenMP’s reduction
capability instead of implementing its own reduction.

Significant communication to or from core 0, such as in the cases of LULESH,
CoMD, SWFFT, and miniVite, are caused by serial sections of code. Serial
sections may be problematic for scalability, and communication within these
serial sections is on the critical path for the entire process, so this might introduce
more overhead than communication within parallel sections.

The communication pattern of LULESH shows a one-to-all communication
pattern, with significant consumption of data from thread 0 by all other threads.
This communication occurs in the libgomp library when thread 0 broadcasts
function pointers. LULESH has many consecutive short parallel regions, so this
work distribution communication is frequent. This fine-grained parallel loop pat-
tern is detrimental due to the work distribution (fork) and barrier (join) costs,
and the serial sections in between loops limiting scaling. A coarser-grained par-
allelization strategy would mitigate these issues and reduce the amount of one-
to-many communications like the ones exhibited by LULESH.

CoMD, SWFFT, and miniVite each show an all-to-one communication pat-
tern, with thread 0 consuming a significant amount of data from all other threads.
These consumption patterns occur due to code serialization, where there is a non-
parallelized loop with thread 0 iterating over data produced by other threads. For
CoMD, serialized reads occur when the atoms in boxes are being updated. This
function is serialized per process, which limits scaling with OpenMP threads.
For SWFFT, this behavior is the only occurrence of producer-consumer relation-
ships. We observe this behavior when thread 0 distributes data between FFT
steps. These serial phases substantially limit OpenMP scalability for SWFFT.
For miniVite, serialization happens when thread 0 updates the ownership of
graph elements for its process. The serialized loops reduce the parallel efficiency
of OpenMP threads due to Amdahl’s law. Avoiding serialization or finding a way
to parallelize the loops would help scalability.

Preemptively moving data to caches of consuming threads might mitigate
some of the overhead of these communications. This could be done in software
by cache stashing, or in hardware via data movement prediction or prefetching.

3.3 Write Invalidation Analysis

Write operations to cache lines in shared state experience additional latency,
because the write operation must wait for other copies of the cache line to

316 J. Randall et al.

g
w
¥y

Weak scaling | Strong scaling

o
e) =
N W W

o
—
w

Cache Line Write Invalidations per Thousand
Instructions

0.1
0.05 |
OIIIIIIIIIIIIIII ,-II _-ul _II

24816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 816322 4 81632
ExaMiniMD AMG miniFE LULESH CoMD miniAMR SWEFFT XSBench miniVite

Fig. 5. Write invalidation rates

be invalidated. Write operations to cache lines with more sharers require more
invalidation messages, which increases latency and network traffic. The latency
might be covered up by an out-of-order core, but the additional network traffic
might delay other memory operations. Invalidating cache lines from other caches
can also induce future cache misses, which would be unnecessary in the case
of false communication. We measured the frequency of write invalidations to
understand how this communication occurs in the proxy apps.

Figure5 shows write invalidations per 1,000 instructions. CoMD and
LULESH experience on average at least one write-invalidation every 10k instruc-
tions even for low thread counts. MiniFE, miniVite, and SWFFT each show
increases in write invalidation rates as thread counts increase.

Figure 6 shows how frequently the core on the x-axis invalidates cache lines
from the core on the y-axis. XSBench has negligible occurrences of cache-to-
cache write invalidations, so it has been omitted from this analysis. Similar to
our previous analysis, we tracked program counters causing these invalidations
to find out how this communication corresponds to the code.

For AMG, the invalidations to adjacent threads primarily occur during the
relaxation routine. The invalidations between groups of neighbors, which appear
as square boxes on the graph, are due to the same false sharing that we observed
when analyzing AMG’s producer-consumer communication patterns. Padding
this array so that threads access disparate cache lines would reduce invalidation
traffic as well as producer-consumer coherence traffic.

In CoMD, the invalidated cores are not always adjacent. The writes causing
these invalidations occur primarily when threads are sorting atoms in each box
after atoms are exchanged. The strange slope of the interactions occurs because
the sorting loop is parallelized over the total boxes of the process including halo
boxes, while force calculations are parallelized over only the local boxes. Cores
28-31 process halo boxes during this phase, while private caches at this time are

Cache Line Sharing and Communication in ECP Proxy Applications 317

ExaMiniMD AMG miniFE

2
15

| |

IS
3

I
1>

b
=

>

e oo
S
>

HHNN
8 8
":E:::

[P
S

S

Invalidated Core
IS

Invalidated Core

5 5
1
o
Invalidated Core

o & ®
o~ @

0 4 8 12 16 20 24 28

=

4 8 12 16 20 24 28 4 8 12 16 20 24 28

Writing Core Writing Core Writing Core
LULESH CoMD miniAMR
-
. 28 -__-'.‘ . 28 . 28 = -
-
524 =, 524 m g2 5 o
O 20 - O 20 © 20 - =
g - k=1 =1 - =
216 - 216 216 -
© © ©] -
E12 S12 S12 L] e
g s g s g s -
g | g
4 - 4 4I. -
0 0 0
4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Writing Core Writing Core Writing Core
28 28
2 24 2 24
Q Q
© 20 © 20
o o
216 816
[} [}
12 12
g s g
| |
4
0
4 8 12 16 20 24 28 12 16 20 24 28

Writing Core Writing Core

Fig. 6. Coherence invalidation patterns with 32 cores

filled with local box data. This communication may be reduced by splitting the
loops that include halo boxes to iterate over local boxes before iterating over
the halo boxes. Although this would decrease the write-invalidation traffic, this
would introduce additional overhead from adding a separate parallel loop. Cores
30 and 31 invalidate data in core 0’s cache because of the serialized updates
preceding this operation.

For higher thread counts, miniVite shows a significant increase in write inval-
idations. Some of these write invalidations occur at the end of the Louvain itera-
tion, when threads are overwriting the communities that nodes belong to. Write
invalidations are also observed when information is updated for these communi-
ties after the Louvain iteration, overwriting data cached by threads during the
iteration. The irregularity of graph accesses results in no discernible relationship
between writing cores and invalidated cores.

Write invalidations caused by thread 0 of LULESH primarily occur in lib-
gomp and are caused by the frequent serialization issue that we observed in the
producer-consumer analysis.

In SWFFT, write invalidations increase with more threads. All invalidating
writes come from core 0, exposing the same issue described in our analysis of
producer-consumer patterns. These invalidations occur during the distribution
phases, which are not parallelized with OpenMP.

318 J. Randall et al.

Write invalidations are necessary when caches continue to hold data when it
is written to by threads in a different core. This communication could be reduced
by flushing cache lines in software when the data is expected to be updated, or
the update could be predicted in hardware and flushed from private caches.

4 Related Work

Several publications include characterizations of inter-thread communication for
specific multi-threaded workloads.

Barrow-Williams et al. [2] studied communication among threads for the
SPLASH-2 [9] and PARSEC [3] benchmarks. Their work observed communica-
tion on a word granularity, showing producers and consumers in the application
regardless of cache characteristics.

Hillenbrand et al. [6] quantified inter-thread communication for the PARSEC
benchmark suite as the number of threads scaled up and measured this commu-
nication on a word granularity. Their approach abstracts out the hardware archi-
tecture, while our evaluation considers direct cache-to-cache communication.

In contrast to these two works, we examine data consumption and invali-
dation that occurs between caches at runtime. We include the effects of false
sharing and disregard communication operations that do not result in cache-to-
cache transactions, i.e., produced data that is evicted before being consumed
by another cache. We believe our hardware-focused communication analysis is a
better indicator of the impact communication has on performance.

Bienia et al. [3] introduced the PARSEC benchmark suite and characterized
scalability as well as cache behavior. The authors measured and reported cache
line sharing as the fraction of cache entries in shared state. We account for cache
line sharing differently, by counting each unique shared state cache line once.
Our approach to measuring cache line sharing shows how much data is shared
between caches, without counting copies of the data. Bienia et al. also measured
traffic from accesses to shared cache lines, but they did not differentiate by
whether these accesses were communicating modified data.

Abadal et al. [1] measured the frequency of multicast operations in a Network-
on-Chip during execution of SPLASH-2 and PARSEC benchmarks. They mea-
sured these multicasts for broadcast-based coherence as well as a directory-based
coherence. The authors state that multicasts in a directory-based design are pri-
marily due to write invalidations, which we measure in this paper.

Richards et al. [8] analyzed the performance of the ECP Proxy Apps with a
focus on profiling, instruction mix, cache misses and memory bandwidth. The
inter-thread cache-to-cache communication analysis in this paper complements
their report with cache line sharing, producer-consumer interactions, and write
invalidations in the context of OpenMP thread scaling.

5 Conclusion

In this work, we studied cache line sharing and cache-to-cache communica-
tion among OpenMP threads in HPC proxy applications. We identified CoMD,

Cache Line Sharing and Communication in ECP Proxy Applications 319

XSbench, and miniVite as proxy apps that showed high cache line sharing. We
then examined how often producer-consumer and write invalidation transactions
occur. LULESH, CoMD, and miniVite showed the highest rates of communica-
tion among the proxy apps we studied.

Analysis of patterns in coherence traffic between cores running OpenMP
threads provided insights into data movement between threads in these proxy
applications. This analysis demonstrates to application developers how often
communication in their code manifests as cache-to-cache communication at run
time. In some cases, the patterns we observe reveal code serialization and false
communication between threads. Application developers can use our method-
ology and results of our analysis to find where to parallelize serial sections of
their code that cause considerable data movement, and where they can isolate
data used by different threads to prevent false communication. When commu-
nication between threads is unavoidable, locality-aware thread placement and
improvements in CMP architecture may reduce the overhead of this communi-
cation. Our characterization is useful for hardware designers considering data
movement optimizations between caches or changes in the coherence protocol.

References

1. Abadal, S., Mestres, A., Martinez, R., Alarcin, E., Cabellos-Aparicio, A., Martinez,
R.: Multicast on-chip traffic analysis targeting manycore NoC design. In: 2015 23rd
FEuromicro International Conference on Parallel, Distributed, and Network-Based
Processing, pp. 370-378, March 2015. https://doi.org/10.1109/PDP.2015.26

2. Barrow-Williams, N., Fensch, C., Moore, S.: A communication characterisation
of SPLASH-2 and PARSEC. In: 2009 IEEE International Symposium on Work-
load Characterization (IISWC), pp. 86-97, October 2009. https://doi.org/10.1109/
IISWC.2009.5306792

3. Bienia, C., Kumar, S., Singh, J.P.; Li, K.: The PARSEC benchmark suite: charac-
terization and architectural implications. In: Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, pp. 72-81 (2008).
https://doi.org/10.1145/1454115.1454128

4. DynamoRIO. https://www.dynamorio.org/

ECP Proxy Apps Suite. https://proxyapps.exascaleproject.org/

6. Hillenbrand, D., Tao, J., Balzer, M.: ALPS: a methodology for application-level
communication characterization of Parsec 2.1. In: Proceedings of the International
Conference on Computational Science, ICCS 2011. vol. 4, pp. 2086-2095 (2011).
https://doi.org/10.1016/j.procs.2011.04.228

7. Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH).
https://computation.llnl.gov/projects/co-design/lulesh

8. Richards, D., Aziz, O., Cook, J., Finkel, H., et al.: Quantitative performance assess-
ment of proxy apps and parents. Technical report, Lawrence Livermore National Lab
(LLNL), Livermore, CA (United States) (2018). https://proxyapps.exascaleproject.
org/wp-content /uploads/2018/04/AD-CD-PA-1040PerfCompare.pdf

9. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 pro-
grams: characterization and methodological considerations. ACM SIGARCH Com-
put. Archit. News 23(2), 24-36 (1995). https://doi.org/10.1145/225830.223990

o

https://doi.org/10.1109/PDP.2015.26
https://doi.org/10.1109/IISWC.2009.5306792
https://doi.org/10.1109/IISWC.2009.5306792
https://doi.org/10.1145/1454115.1454128
https://www.dynamorio.org/
https://proxyapps.exascaleproject.org/
https://doi.org/10.1016/j.procs.2011.04.228
https://computation.llnl.gov/projects/co-design/lulesh
https://proxyapps.exascaleproject.org/wp-content/uploads/2018/04/AD-CD-PA-1040PerfCompare.pdf
https://proxyapps.exascaleproject.org/wp-content/uploads/2018/04/AD-CD-PA-1040PerfCompare.pdf
https://doi.org/10.1145/225830.223990

	Cache Line Sharing and Communication in ECP Proxy Applications
	1 Introduction
	2 Experimental Setup
	2.1 ECP Proxy Apps
	2.2 DynamoRIO
	2.3 Compiler and Runtime System
	2.4 Evaluation of Cache Line Sharing
	2.5 Evaluation of Inter-thread Communication

	3 Results and Discussion
	3.1 Cache Line Sharing Analysis
	3.2 Producer-Consumer Analysis
	3.3 Write Invalidation Analysis

	4 Related Work
	5 Conclusion
	References

