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Abstract. The Density Matrix Renormalization Group (DMRG++) is
a condensed matter physics application used to study superconductiv-
ity properties of materials. It’s main computations consist of calculat-
ing hamiltonian matrix which requires sparse matrix-vector multiplica-
tions. This paper presents task-based parallelization and optimization
strategies of the Hamiltonian algorithm. The algorithm is implemented
as a mini-application in C++ and parallelized with OpenMP. The opti-
mization leverages tasking features, such as dependencies or priorities
included in the OpenMP standard 4.5. The code refactoring targets per-
formance as much as programmability. The optimized version achieves a
speedup of 8.0× with 8 threads and 20.5× with 40 threads on a Power9
computing node while reducing the memory consumption to 90 MB with
respect to the original code, by adding less than ten OpenMP directives.
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1 Introduction and Related Work

Nowadays the High Performance Computing (HPC) community is focusing on
the Exascale race. To succeed in this race, efforts are needed from all the
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actors, i.e., more powerful and efficient systems from architects, more flexible
and scalable programming models and system software and, last but not least,
applications that can exploit all the parallelism and computing power.

From the system architecture point of view, and looking at the current top
systems in the top500 list, they are pushing into two clear directions: hetero-
geneous accelerator-based (e.g., GPUs) and many-core systems. Also, from the
programming models and system software point of view, the efforts go to more
flexible approaches [9,12], e.g., the tasking model in OpenMP.

Looking into scientific applications, their development pushes towards two
directions: their scientific field and their performance [7]. For this reason, pro-
grammability is crucial, since applications cannot be written from scratch each
time the architecture where they run changes. To avoid this, they must rely on
programming models and runtime systems [10].

In this paper, we will focus on optimizing a critical computational kernel, a
Hamiltonian sparse matrix-vector multiplication, of the Density Matrix Renor-
malization Group (DMRG++) application parallelized with OpenMP, which is
currently a directive-based de-facto standard to program a shared memory pro-
gramming model. We present an alternative parallelization with OpenMP using
the tasking model to improve its performance and memory consumption, and at
the same time maintain its programmability.

The optimization has been an iterative process of performance analysis, code
optimization, and evaluation. This process ensures that we target the main
source of inefficiency and we improve the performance with each change. We
prove the benefits of our approach evaluating it on a POWER9 cluster hosted
at Barcelona Supercomputing Center (BSC) since the objective of this research
is to improve the performance of DRMG++ on the Summit supercomputer at
the Oak Ridge Leadership Facility (OLCF)1, that has the same architecture.

The main contribution of this paper is not only the optimization of the
DMRG++ mini-application using the OpenMP tasking model, but also, the
demonstration that the tasking model has huge benefits with very irregular
applications concerning their load imbalance, offering a flexible, powerful and
performant yet easy approach to parallelize code. The work presented in this
paper can be considered a best practice or guide for programmers when dealing
with similar problems.

The remaining of this document is organized as follows: Sect. 2 introduces the
DMRG++ application and its scientific background, how the mini-application
has been extracted, the original code and its main performance issues. In Sect. 3
we describe the environment in which the experiments have been conducted
both in hardware and software terms and explain step by step the optimizations
performed in the code and their impact. Finally, in Sect. 5 we will summarize
the conclusions we extract from this work.

1
World’s fastest and smartest supercomputer with a theoretical performance of 200 petaflops at
Oak Ridge National Laboratory as of Novemeber 2018.
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2 Application Context and Background

The Density Matrix Renormalization Group (DMRG) algorithm, used in this
work, is the preferred method to study quasi-one-dimensional systems. Strongly
correlated materials are at the heart of current scientific and technological inter-
est. These are a wide class of materials that show unusual, often technologically
useful, electronic and magnetic properties, such as metal- insulator transitions
or half-metalicity.

DMRG++ is a fully developed application that has been written entirely at
Oak Ridge National Laboratory [4–6], and uses a sparse-matrix algebra compu-
tational motif for the simulation of Hubbard-like models and spin systems. By
bringing DMRG++ to Exascale, condensed matter theorists will be able to solve
problems such as correlated electron models of ladder geometries as opposed
to just chain geometries, and multi-orbital models instead of just one-orbital
models.

As an on-ramp to porting the DMRG++ application to OpenPOWER, a
mini-application capturing the core algorithmic and computational structure of
the application (Kronecker Product) was developed as the foundation for the
exascale-ready implementation of DMRG++. In [8], the authors use OpenMP
for on-node parallelization to manage the node complexity, by exploiting various
“programming styles” in OpenMP 4.5 [13] (such as, SPMD style, multi-level
tasks, accelerator programming and nested parallelism).

One goal of DMRG++ is to compute the lowest eigenvalue λ (which is related
to the “ground-state” energy of the system) and the eigenvector Ψ of the full
Hamiltonian (Hfull) with N sites

HfullΨ = λΨ, or λ = minimizev �=0
v′Hfullv

v′v
(1)

where the unit norm vector attaining the minimum value of Rayleigh quotient λ
is eigenvector Ψ . The full Hamiltonian can then be written as Kronecker product
of operators on left and right

Hfull = HL ⊗ IR + IL ⊗ HR +
K∑

k=0

Ck
L ⊗ Ck

R (2)

where HL(HR), IL(IR), CL(CR) are the Hamiltonian, identity, and interaction
operators on the left (right).

The critical computational kernel in DMRG++ for computing the lowest
eigenvector is the evaluation of matrix-vector products of the Hamiltonian matrix
(Hfull) in an iterative method such as the Lanczos algorithm.

2.1 Mini-application Code Structure and Initial Analysis

The DMRG++ mini-application (Kronecker Product) consists of 12k lines of
C++ code parallelized with OpenMP. The mini-application comes with three
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input sets, each one representing a typical problem size (small, medium and
large) of the real application (solving real science). The original parallelization
of the mini-application is shown in Listing 1.1, which consisted of three OpenMP
nested loops.

Fig. 1. Data layout in the Ham-
iltonian Matrix and computa-
tion for DMRG++

Figure 1 shows the data layout and main
computations performed in the Kronecker Prod-
uct. The Hamiltonian matrix is a 2-D matrix
with each cell consisting of two, 1-D vector of
vectors (A’s and B’s). The length of each of
the vectors in a cell will be same, but will dif-
fer across the cells. The length of each element
in vector’s A and B, determines the sparsity
or the density of the cell in the Hamiltonian
Matrix. By property of the Hamiltonian Matrix
in DMRG++, the data is primarily associated
in the principal axis of the matrix and the den-
sity of the cells increase as we move closer to the center of the matrix, and the
sparsity of the cells increase as we move away from the primary diagonal. This
data layout gives rise to a significant load imbalance across the entirety of the
matrix.

In Fig. 2, we can see a trace obtained from an execution of the mini-
application with the second parallel pragma active (corresponding to jpatch).
The x axis represents the time, and the y axis OpenMP threads, 40 in this case.
The color indicates the duration of useful computation bursts; dark blue rep-
resents high values, whereas light green shows low computation, and the white
areas represent idle time due to lack of parallelism or load imbalance. The bot-
tom plot outlines the total number of actives threads as a function line, with
values ranging between 1 and 40 in this figure and all the following ones.

1 #pragma omp paral le l for schedu le ( dynamic , 1 )
2 for ( int ipatch=0; ipatch<npatches ; ipatch++){
3 std : : vector<double> YI( v s i z e [ ipatch ] , 0 . 0 ) ;
4 #pragma omp paral le l for schedu le ( dynamic , 1 ) reduct ion ( vec add : YI )
5 for ( int jpatch=0; jpatch<npatches ; jpatch++){
6 std : : vector<double> YIJ ( v s i z e [ ipatch ] , 0 . 0 ) ;
7 #pragma omp paral le l for schedu le ( dynamic , 1 ) reduct ion ( vec add : YI )
8 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ){
9 std : : vector<double> Y tmp( v s i z e [ ipatch ] , 0 . 0 ) ;

10 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
11 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
12 int has work = (A−>nnz ( ) && B−>nnz ( ) ) ;
13 i f ( ! has work ) continue ;
14 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y tmp [ 0 ] ) ;
15 for ( int i =0; i<v s i z e [ ipatch ] ; i++) YIJ [ i ] += Y tmp [ i ] ;
16 }
17 for ( int i =0; i<v s i z e [ ipatch ] ; i++) YI [ i ] += YIJ [ i ] ;
18 }
19 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] = YI [ i−i 1 ] ;
20 }

Listing 1.1. Original code

In this trace, one must note that the workload in different parallel loops
(arranged in columns) is not uniform across the execution. We also observe
that the main bottleneck is the load imbalance (marked as the white space on
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Fig. 2. Original code time line showing useful duration (Color figure online)

each column of threads) since the variability of the workload happens within the
parallel loop, too. The important load imbalance within each loop results in very
poor overall efficiency, while in reality, we know there is potential concurrency
between many of these loops. The core of the problem lies at the too synchronous
structure of the parallel do OpenMP construct. We will explore code refactoring
based on medium or coarse grain tasks to expose the potential concurrency.

3 Code Optimization and Evaluation

In this section, we are going to explain the different steps we have taken to
improve the performance of the Kronecker Product mini-app. For each stage, we
include the proposed source code, explain the modifications together with their
motivation, and show the performance evaluation and memory consumption of
that version. The optimization process has been iterative and incremental, and
for this reason, all the new versions are based on modifications from the previous
one and their performance is also compared with it.

3.1 Environment and Methodology

All the experiments have been performed on the CTE-Power cluster [3,15] hosted
at BSC. The cluster consists of 2 login and 52 compute nodes, each of them with
2 IBM Power9 8335-GTH 2.4 GHz processors (20 cores per processor, 4 SMT
per core adding 160 SMTs per node), 512 GB of main memory at 2666 MHz
distributed in 16 dimms and 4 NVIDIA V100 GPUs with 16 GB HBM2 memory.
In all our experiments we have not used the GPUs nor the SMT, therefore we
will use maximum 40 threads per core.

We have used GCC 8.1.0 as C and C++ compiler and its OpenMP run-
time implementation and linked with IBM ESSL 5.4 library. Traces have been
obtained using Extrae 3.5.4 [1,11] and visualized with Paraver [2,14].

All numbers reported (both for time and memory) are the average of 5 inde-
pendent runs of 10 consecutive iterations, to be able to compare all versions
to each other. In all cases, the relative error is below 5%, therefore, we do not
show error bars on the charts for the sake of clarity. All experiments have been
performed in one compute node of CTE-Power.
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3.2 First Taskification

As we have seen from Fig. 2, the main performance issue is load imbalance. The
current parallelization using nested parallelism worsens this problem due to the
implicit barrier necessary at the end of each parallel loop. For this reason, the
first modification of the code consists of removing the nested parallelism and
using a task approach instead. In previous work, Chatterjee et al. [8] already
explored a task version of this Kernel, but there is minimal overlap with this
new version, illustrated in Listing 1.2.
1 #pragma omp paral le l
2 #pragma omp single
3 for ( int ipatch=0; ipatch<npatches ; ipatch++){
4 for ( int jpatch=0; jpatch<npatches ; jpatch++){
5 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
6 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
7 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
8 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
9 int has work = (A−>nnz ( ) && B−>nnz ( ) ) ;

10 i f ( has work ){
11 //Tasks in charge o f dgemms . Red .
12 #pragma omp task depend( inout : Y tmp [ 0 : v s i z e [ ipatch ] ] ) f i rstpr ivate (A,B)
13 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y tmp [ 0 ] ) ;
14 //Reduction ta sks . Green .
15 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) depend( in : Y tmp [ 0 : v s i z e [ ipatch ] ] )
16 {
17 int i l o c a l =0;
18 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
19 delete [ ] Y tmp ;
20 } } } } }

Listing 1.2. First Taskification

We keep only one parallel region (line 1) and add a single region (line 2)
where the tasks will be created. We define two kinds of tasks: a computation
task, that perform dgemm operations, and a reduction task, that accumulates
partial results from the first one into the return array. To pass intermediate
results from a dgemm task to its corresponding reduction task, we use temporal
arrays which are allocated sequentially by the same thread that creates the tasks.
To guarantee the correctness of the program the first task has an out dependence
on the temporary array and the second one has an in dependence. Additionally,
we define an inout dependence on a fraction of the return array to avoid several
tasks reducing on the same portion of Y simultaneously.

Fig. 3. First Taskification: Task Execution Timeline (Color figure online)

Figure 3 shows a trace of this version. In this case, the color represents which
task is being executed by each thread: the computing task is labeled as red
and the reduction task as green. This version allows exploiting more parallelism,
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with many pink tasks running concurrently and avoiding periodic barriers. Nev-
ertheless, we can still see other problems: (a) the duration of computation tasks
has a considerable variability, with some tasks taking 18µs while the average is
150µs, and (b) a single thread must allocate all the buffers before creating the
corresponding task, which adds significant overhead. The second situation can be
better appreciated with the pulsations of the bottom function plot in the figure,
that shows the total number of pending tasks generated. When it starts execut-
ing regions with fine grain tasks, the number of ready tasks decrease quickly,
and there are not enough tasks to fill every thread.

Fig. 4. Original vs first taskification

In Fig. 4, we can observe the
speedup of the Original version with
the nested work sharing and the task-
ified code. On the x axis we plot
the number of OpenMP threads used,
and the y axis shows the speedup
with respect to the First Taskifi-
cation version executed sequentially
(i.e., with no OpenMP pragmas).
Comparing one version to the other,
we can see a speedup of 41.65× with

one thread when using the taskified version, which reveals the huge impact on
the performance introduced by the nested worksharings. We can see the biggest
difference at 20 OpenMP threads, with a value of 457.82×. Comparing the per-
formance of the First Taskification version with respecto to ideal, it goes up to
10.55× using 20 OpenMP threads, which indicates that there is still margin to
improve the performance in subsequent versions. On the other hand, the speedup
of the original code is around 0.045× for 4 threads and above.

Fig. 5. Total memory usage in GB for each version
and different number of threads

In Fig. 5, we observe the
total memory used in GB
by each version depending
on the number of OpenMP
threads used. As we can
see, the memory consump-
tion is not a critical fac-
tor in our situation, but we
want to demonstrate that
this techniques don’t increase
the memory usage. In addi-
tion, memory usage is indeed

a critical factor to scientifics using DMRG++, so porting this changes to the
original application will allow them to use bigger inputs. In the First Taskifi-
cation version since all the buffers are allocated at the beginning, the memory
usage is higher than in the original one, and when using 20 threads the memory
increases from 1.47 GB to 1.64 GB. The rest of versions will be presented in the
following sub-sections.
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3.3 Tasks Distinction Based on Grain Size

In the First Taskification version, we see an issue with the very fine-grained tasks,
which introduce a relevant overhead. To address this, in Tasks’ Size Distinction
version we define 3 kinds of tasks: Fine grain tasks with a low computational
load, will do both the computation and the reduction (line 11); Coarse grain
compute task (line 16); and the corresponding reduction task (line 19). The
decision if a task has a high or a low load is taken based on a threshold that
can be set by the user. The code corresponding to this version can be seen in
Listing 1.3.
1 #pragma omp paral le l
2 #pragma omp single
3 for ( int ipatch=0; ipatch<npatches ; ipatch++){
4 for ( int jpatch=0; jpatch<npatches ; jpatch++){
5 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
6 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
7 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
8 i f (A−>nnz ( ) && B−>nnz ( ) ){
9 i f ( v s i z e [ ipatch ] <= Threshold ){

10 //Create s i n g l e task f o r smal l p i e c e s o f work
11 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) f i rstpr ivate (A, B)
12 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y[ i 1 ] ) ;
13 } else{
14 //Create compute task and reduct ion task f o r l a r g e r p i e c e s
15 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
16 #pragma omp task depend( inout : Y tmp [ 0 : v s i z e [ ipatch ] ] ) f i rstpr ivate (A, B)
17 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y tmp [ 0 ] ) ;
18 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) depend( in : Y tmp [ 0 : v s i z e [ ipatch ] ] )
19 {
20 int i l o c a l =0;
21 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
22 delete [ ] Y tmp ;
23 } } } } } }

Listing 1.3. Tasks’ Size Distinction

Fig. 6. Tasks’ Size Distinction: Task Execution Timeline (Color figure online)

In Fig. 6, we plot a trace showing the behavior of this version. In this case, fine
grain tasks are represented in red, compute tasks in green and reduction tasks
in grey. Using this strategy, the application can exploit more parallelism, and
there is less overhead of task creation, since the average task size has increased
and the total number of tasks has decreased. The function at the bottom shows
how this version can make better usage of the threads, reducing the number of
pulsations from Fig. 3 of First Taskification.

In Fig. 7 (left), we plot the speedup obtained by the Tasks’ Size Distinction
version, which is computed with respect the First Taskification version when exe-
cuted sequentially. As it can be seen, the previous version has a better performance
when using a single thread, due to the if-else structure introduced in Tasks’ Size
Distinction version. Nevertheless, this fact allows for a better scaling, reaching a
speedup of 1.19× and 1.6× when using 20 and 40 OpenMP threads, respectively.
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Fig. 7. First Taskification vs Tasks’ Size Distinction (Left). Tasks’ Size Distinction vs
Priorities (Right)

3.4 Priorities and Buffer Reuse

In this version, we are going to address two problems from the Tasks’ Size
Distinction version: (a) the scheduling of the tasks to improve the performance,
and (b) reusing buffer to improve the memory consumption. The new code is
shown in Listing 1.4. To decrease memory consumption, instead of allocating one
Y tmp array for each task, we allocate a buffer of N arrays (line 1) that are reused
by the different tasks. Each buffer establishes the dependence between compute
and reduction tasks (previously Y tmp), and also creates an anti-dependence
between two compute tasks that use the same buffer.

1 double∗ bu f f e r s [NBUFF] ; // Set o f bu f f e r s to l im i t memory usage
2 #pragma omp paral le l
3 #pragma omp single
4 for ( int ipatch=0; ipatch<npatches ; ipatch++){
5 for ( int jpatch=0; jpatch<npatches ; jpatch++){
6 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
7 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
8 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
9 i f (A−>nnz ( ) && B−>nnz ( ) ){

10 i f ( v s i z e [ ipatch ] <= Threshold ){
11 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) f i rstpr ivate (A, B) priority (0 )
12 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , &Y[ i 1 ] ) ; //New kron mult c a l l
13 } else{
14 mybuff = next = ( next+1)%NBUFF;
15 int pr i o = v s i z e [ ipatch ] > PrioThreeshold ; //Dynamic p r i o r i t y
16 #pragma omp task depend( inout : b u f f e r s [ mybuff ] ) \
17 f i rstpr ivate (mybuff , ipatch ,A,B) priority ( p r i o )
18 {
19 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
20 bu f f e r s [ mybuff ] = Y tmp ;
21 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , Y tmp) ;
22 }
23 #pragma omp task depend( inout :Y[ i 1 : i 2 ] , b u f f e r s [ mybuff ] ) \
24 f i rstpr ivate (mybuff ) priority (10)
25 {
26 double∗ Y tmp=bu f f e r s [ mybuff ] ;
27 int i l o c a l =0;
28 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
29 delete [ ] Y tmp ;
30 } } } } } }

Listing 1.4. Priorities and Buffer Reuse

Task priorities have also been added to help on improving the schedule of
the tasks (i.e., schedule the bigger tasks first, followed by the smaller ones).
Reduction tasks (line 23) have been assigned with the highest priority, to free
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buffer positions as soon as possible. The coarse grain compute tasks are assigned
a variable priority depending on their workload (line 16).

Fig. 8. Priorities and Buffer Reuse: Task Execution and Task Order Timelines (Color
figure online)

Figure 8 shows a task execution timeline of this version (top), where the task
coloring corresponds to the one in Fig. 6, and the task execution order (middle),
where green stands for older tasks (instantiated early) and blue for younger ones.
We can see the execution of tasks instantiated “late” (dark blue) are intermixed
with the execution of tasks instantiated “early” (light green). Coalescing the
priorities of the tasks as explained earlier, the execution timeline is now more
compact, thereby leveraging more parallelism and almost removing pulsations
of tasks (bottom function plot).

In Fig. 7(right), we plot the speedup obtained of the Priorities and Buffer
Reuse version compared with the Tasks’ Size Distinction. The speedup has been
computed in both cases with respect to the First Taskification version executed
sequentially. One should note that this new version performs better than the
previous one, in particular for a high number of thread count. With 16 OpenMP
threads, the execution is 1.28× faster than the Tasks’ Size Distinction version.
We can also see that the performance improves for 20 and 40 threads, although
it is still far from the ideal one. Despite this fact, this is the first version which
performance improves when using 40 OpenMP threads. Regarding the memory
usage, it has been reduced achieving values equal to the Original version, as
shown in Fig. 5.

3.5 Overlap Iterations

One of the issues detected in the Priorities and Reuse Buffer version is the imbal-
ance at the end of the iteration, produced by the lack of parallelism and coarse
grained tasks that need to be executed at that moment. Taking into account that
the real application performs several iterations of this kernel, overlapping differ-
ent iterations can reduce the impact of the imbalance. To achieve this, we move
the parallel region up to include several iterations, as can be seen in Listing 1.5.
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1 #pragma omp paral le l
2 #pragma omp single
3 for ( int i t s =0; i t s<NITS ; i t s++){
4 //same code from L i s t i n g 1 .4
5 }

Listing 1.5. Overlap iterations

Fig. 9. Overlap Iterations: Task Execution Timeline (Color figure online)

In Fig. 9 we can see a trace of this version including 5 iterations. The color
represents the task being executed: red for fine grain tasks including compu-
tation and reduction, green for coarse grain compute tasks, and grey for
reduction tasks. Although we can visually detect the five iterations, we can
see that the tasks belonging to different iterations are executed concurrently,
thereby increasing the parallelism and reducing the imbalance.

Fig. 10. Priorities vs Overlap It. (Left). Overlap It. vs Nested Tasks (Right)

Figure 10 (left) shows the speedup for the Overlap Iterations version. We can
see that its performance is slightly better than the Priorities version, except in
the case of 40 threads, where it obtains an improved gain of 1.24×. Because the
unbalance increase as we add more threads, we will have a better benefit from
overlapping iterations.

3.6 Nested Tasks

Upon further analysis of the Overlap Iterations version, we observe that grey
tasks, with an average duration of few microseconds, are limiting the scalabil-
ity. To address this issue, we implement a new task decomposition, with two
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levels of tasks. This strategy takes into account that the load only depends on
ipatch.

1 char∗ s e n t i n e l = new char [ npatches ] ( ) ; //Dependence token
2 #pragma omp paral le l
3 #pragma omp single
4 for ( int i t s =0; i t s<NITS ; i t s++){
5 for ( int ipatch=0; ipatch<npatches ; ipatch++){
6 int f i n e g r a i n = v s i z e [ ipatch ] <= Threshold ;
7 //New ex t e rna l task . I t w i l l generate more ta sks based on s i z e o f ipatch
8 #pragma omp task depend( inout : s e n t i n e l [ ipatch ] ) priority (10)
9 for ( int jpatch=0; jpatch<npatches ; jpatch++){

10 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
11 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
12 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
13 i f (A−>nnz ( ) && B−>nnz ( ) ){
14 // F ine g ra in branch . Each task w i l l always take the same path
15 i f ( f i n e g r a i n ){
16 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , &Y[ i 1 ] ) ;
17 } else{
18 double∗∗ bu f f e r = new double ∗ ;
19 #pragma omp task depend( out : bu f f e r ) f i rstpr ivate (A,B, bu f f e r , ipatch ) priority

(0 )
20 {
21 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
22 bu f f e r [ mybuff ] = Y tmp ;
23 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , Y tmp) ;
24 }
25 #pragma omp task depend( inout :Y[ i 1 : i 2 ] )depend( in : bu f f e r ) f i rstpr ivate ( bu f f e r )

priority (5 )
26 {
27 double∗ Y tmp=bu f f e r [ mybuff ] ;
28 int i l o c a l =0;
29 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
30 delete [ ] Y tmp ;
31 delete [ ] b u f f e r ;
32 } } } }
33 #pragma omp taskwait
34 } } }

Listing 1.6. Nested Tasks

For each ipatch, a single task is created, and inside this task, there are two
paths depending on the threshold of the ipatch size set by the user. If the ipatch
is considered fine grain, then the computation and reduction are computed (line
16). On the other hand, if the ipatch is deemed to be coarse grain, then two
tasks are created: the compute task (line 19) and the reduction task (line 25).
To guarantee that ipatches from different iterations are executed in the correct
order (i.e., they do not overtake each other) a sentinel is used to generate a
dependence (line 8).

Fig. 11. Nested Tasks: Task Execution Timeline (Color figure online)
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In Fig. 11, we can see a task execution timeline of this version with five
iterations overlapped. Here, the external task is red, while grey and green are
the reduction and compute tasks respectively, like in the previous versions.
This version has reduced the number of tasks created and parallelized the tasks’
creation, which reduces the overhead from Overlap Iterations version. However,
it presents a severe imbalance at the end, caused by the creation of tasks near
the end, which limits its performance and will be addressed in future work.

Figure 10 (right), shows the speedup obtained with the Nested Tasks version
over the Overlap Iterations. We can see a slight gain of performance of 1.06× and
1.05× using 8 and 16 OpenMP threads respectively; with 40 OpenMP threads
the gain is even smaller, reaching 1.03×, caused by the big unbalance at the
end of the execution shown in Fig. 11. Besides, this version reduces the memory
usage for all the number of threads, with the higher difference from Original
version at 90 MB when using 40 OpenMP threads, being the best one both in
terms of execution time and memory usage, as illustrated in Fig. 5.

4 Summary and Best Practices

In this section, we summarize all the results obtained by the different optimiza-
tions and we present the lessons learned with this work as some best practices
and guidelines for developers facing similar challenges.

In Fig. 12 we can see the speedup of the different versions presented with
respect to the sequential execution of the First Taskification code. The perfor-
mance of the Original code is not shown because its performance is too far from
the optimized versions to be displayed on the same scale; nevertheless, it can be
found in Fig. 4.

Fig. 12. Performance summary of the different versions

The most important improvement was obtained when adding the tasking
model instead of the nested loop parallelism (585× with 40 threads). The fol-
lowing optimizations provided incremental gain, less spectacular but significant
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in global and especially when scaling to a high number of threads. Comparing
the First Taskification and Nested Tasks versions we observe a speedup of 1,24×
with 8 threads and 3,32× with 40 threads. We conclude that these fine grain
optimizations are necessary when scaling applications to a high number of cores.

The limiting factor of the last version (Nested Tasks) seems to be the NUMA
effect when using two sockets and the late instantiation of some “big” tasks,
leaving a significant load imbalance at the end. As future work, we can try to
mitigate this effect by using higher priorities for tasks that will create more tasks.

The main lesson learned with this work is the potential of the tasking model
to address irregular problems, even for codes with a regular structure with loops,
where a parallel loop construct can be used straight forward. Also, we have
seen the high impact on the performance of synchronizations imposed by the par-
allel construct. We highlight how using clauses like priorities or dependences
to fine tune the parallelization are crucial to achieving good scalability to a high
number of threads while keeping the flexibility of the runtime to schedule them.

5 Conclusions

In this study, we have presented the modifications done to the Kronecker Product
mini-application with the OpenMP tasking model. We have demonstrated the
benefits of using this model, both in terms of performance and programmability
for algorithms with such irregular computation. Besides, this work can be con-
sidered as a best practice for other researchers dealing with similar algorithms,
including uneven workloads, huge imbalances or granularity problems.

Applying the described changes to the mini-application, we report a speedup
of 8.0× with 8 OpenMP threads of the Nested Tasks version with respect to the
serial code and 20.5× with 40 threads. Also, the memory usage decreases 90 MB,
from Original version. The optimization has been done keeping the number of
changes to the source code to a minimum. Moreover, the number of pragmas has
been reduced increasing the programmability and maintainability of the code.

We consider this kind of work, not only an optimization and best practice
programming guidelines, but also useful for co-design effort to the OpenMP
community. For example, the if-else structure to generate a different kind of
tasks depending on its load is not as elegant as one would want. The compiler
could generate the code for the two branches given the corresponding syntax.

As future work, imbalances from Nested Tasks version will be addressed. Also,
some features from OpenMP 5.0 may be used, like the mutexinoutset dependence
type. Finally, a hybrid approach with MPI may help to reduce the NUMA effect
detected when scaling from 20 to 40 cores.
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