
On the Benefits of Tasking with OpenMP

Alejandro Rico1(B) , Isaac Sánchez Barrera2,3 , Jose A. Joao1 ,
Joshua Randall1 , Marc Casas2 , and Miquel Moretó2,3

1 Arm Research, Austin, TX, USA
{alejandro.rico,jose.joao,joshua.randall}@arm.com
2 Barcelona Supercomputing Center, Barcelona, Spain
{isaac.sanchez,marc.casas,miquel.moreto}@bsc.es

3 Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Tasking promises a model to program parallel applications
that provides intuitive semantics. In the case of tasks with dependences,
it also promises better load balancing by removing global synchroniza-
tions (barriers), and potential for improved locality. Still, the adoption of
tasking in production HPC codes has been slow. Despite OpenMP sup-
porting tasks, most codes rely on worksharing-loop constructs alongside
MPI primitives. This paper provides insights on the benefits of tasking
over the worksharing-loop model by reporting on the experience of task-
ifying an adaptive mesh refinement proxy application: miniAMR. The
performance evaluation shows the taskified implementation being 15–
30% faster than the loop-parallel one for certain thread counts across
four systems, three architectures and four compilers thanks to better
load balancing and system utilization. Dynamic scheduling of loops nar-
rows the gap but still falls short of tasking due to serial sections between
loops. Locality improvements are incidental due to the lack of locality-
aware scheduling. Overall, the introduction of asynchrony with tasking
lives up to its promises, provided that programmers parallelize beyond
individual loops and across application phases.

Keywords: Tasking · OpenMP · Parallelism · Scaling

1 Introduction

Tasking is an important feature of multiple parallel programming models tar-
geting both shared and distributed memory, such as Thread Building Blocks
(TBB), Chapel, OmpSs, OpenACC, Kokkos, among others. OpenMP, main-
stream programming model in the high performance computing (HPC) space,
includes tasking since version 3.0 (2008) [2,5] and tasking with dependences
since version 4.0 (2013) through task constructs [6,17,18]. OpenMP also sup-
ports tasking for distributed memory with target constructs. Tasking is widely
used to offload computation to accelerators in heterogeneous systems. CUDA,
OpenCL and OpenACC kernels, and OpenMP target concepts are examples
of this. However, the adoption of tasking for shared memory (threading) has
c© Springer Nature Switzerland AG 2019
X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 217–230, 2019.
https://doi.org/10.1007/978-3-030-28596-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28596-8_15&domain=pdf
http://orcid.org/0000-0003-1282-8887
http://orcid.org/0000-0003-1616-0685
http://orcid.org/0000-0002-3571-5562
http://orcid.org/0000-0002-5154-8688
http://orcid.org/0000-0003-4564-2093
http://orcid.org/0000-0002-9848-8758
https://doi.org/10.1007/978-3-030-28596-8_15

218 A. Rico et al.

been slow. Many HPC codes include threading with OpenMP alongside MPI,
mostly through the use of worksharing-loop constructs with fork-join semantics.
For more developers to taskify their codes, the effort required and the resulting
benefits need to be considered.

This paper is an assessment of the benefits promised by tasking. These ben-
efits include an intuitive parallel work unit—a task—which can be defined as a
piece of computation on a piece of data that could be run in parallel. They also
include the ability to define data-flow semantics between tasks using dependences
and remove expensive global synchronizations and their potential load imbal-
ance. We contribute to the discussion on tasking adoption in the community
with our experience taskifying an adaptive mesh refinement (AMR) proxy-app:
miniAMR [12,16]. This proxy-app is part of the Mantevo [10] project and the
Exascale Computing Project Proxy Apps Suite [7] and models the refinement and
communication phases of AMR codes. It is programmed in MPI and OpenMP,
the OpenMP parallelization using worksharing-loop constructs only. Our taskifi-
cation focuses on removing global synchronization between communication and
computation phases to reduce the inherent load imbalance of working on blocks
at different refinement levels. A previous paper [14] improves miniAMR load
imbalance at the MPI level by changing its algorithmic implementation. In this
work, we focus on maintaining the algorithmic properties of the reference mini-
AMR implementation and replacing loop-level parallel regions by task regions.
The goal is to quantify the resulting performance benefits and report on our
experience to give guidance on how to taskify such type of parallel work and
give a sense of the effort required.

We report better performance using tasks on multiple systems including Mar-
vell ThunderX2, IBM POWER9, Intel Skylake-SP and AMD EPYC. Overall, the
taskification experience shows that developers need to think on parallel work
across application phases, which involves larger code sections than only focusing
on individual loops. The results show that tasking provides 15–30% better per-
formance for certain thread counts and across the evaluated platforms. These
improvements are mainly due to removal of load imbalance and avoidance of
serial sections leading to a higher thread utilization.

2 The miniAMR Proxy Application

Adaptive mesh refinement (AMR) was developed as a way to model the phys-
ical domain with different levels of precision in numerical problems [3,4], with
the goal of achieving higher precision in regions where it is needed (such as
boundaries, points of discontinuity or steep gradients [4]). The physical domain
is a rectangle (a rectangular prism in 3D space) that is represented as nested
rectangular grids that share boundaries, with denser (finer) grids where higher
precision is required.

The numerical algorithm is applied to each of the rectangles of the grid, with
the corresponding communication on the boundaries between grid elements. The
grid is updated when the conditions of the domain change: an error formula is

On the Benefits of Tasking with OpenMP 219

Fig. 1. Visualization of a unit cube with a domain defined by two empty spheres, using
the vertices (left) and boundaries (right) of the grids. Colors have no special meaning.

defined to force the use of a finer grid when a threshold value is reached. The
refinement is carried out by splitting the elements of the grid into two equal parts
in all dimensions. This means that, in 2D, each rectangle is split into 4 other
rectangles (quadrants) and, in 3D, each prism is split into 8 prisms (octants).

MiniAMR is a proxy application released as part of version 3.0 of the Mantevo
suite [10,11] that is used to model the refinement/coarsening and communica-
tion routines of parallel AMR applications using MPI. The physical domain is
modelled as a unit cube in 3D space divided in blocks in all three dimensions,
which define the coarsest level of the grid.

To simulate the changes in the domain, miniAMR provides up to 16 different
types of objects (both solid and surfaces), which include spheroids, cylinders,
rectangles and planes. These objects can interact with the domain in different
ways: moving at a constant speed, bouncing on the boundaries of the outside
prism and growing on the X, Y or Z directions. Their positions determine the
regions of the domain that need more precision and, therefore, a finer grid.

To simplify the communications, miniAMR forces neighboring blocks to be
at distance 1 in the refinement level. This means that every face of a 3D block is
a neighbor of a whole face (at the same refinement level), four other faces (which
are finer) or a quarter of another face (which is coarser). A sample domain at a
given time step can be seen in Fig. 1. All these blocks occupy the same bytes in
memory; when refinement happens for a block, the resolution is doubled in each
dimension by replacing that block by 8 new blocks.

The sample computations are modeled using different stencil algorithms,
applying them to the different variables that are defined. For simplicity, we will
focus on the 7-point stencil, where each discrete point is the average of itself and
its six neighbor points in 3D space (up, down, north, south, east, west).

2.1 Baseline Parallelization of the miniAMR Code

To understand the changes to the code for taskification in Sect. 3, we first intro-
duce how the application works originally according to the source code available
in the Mantevo repository [12].

220 A. Rico et al.

Algorithm 1. miniAMR main loop
foreach time step or simulation time finished do

foreach stage in time step do
foreach communication group do

communicate;
foreach variable in communication group do

stencil;
if time for checksum then

checksum;
validate checksum;

end

end

end

end
if time for refinement then

refine;
end

end

The initial, coarsest grid is given by the number of MPI ranks in each dimen-
sion and the number of initial blocks (grid cells) per MPI rank per dimension.
The application does an initial allocation for all the blocks that can be used
(limited by a user-specified parameter). In the original code, this is implemented
as an array of structs, where each block struct contains a quadruple pointer
to double (i.e., double****) with the first indirection for the total amount of
variables, one indirection per dimension, and memory contiguity only in the Z
axis. Each dimension has two extra elements to allow for an extra face on each
side of the block to account for ghost values (as the values in the boundaries of
neighbor blocks are called in the miniAMR code). Blocks that are not in use are
marked as such so that they can be used in future refinements.

Algorithm 1 shows the pseudo-code of the main loop that is executed after
initialization. The main loop runs for a total number of time steps or a given sim-
ulation time. This loop is divided in stages that start with the communications
between neighboring cells followed by the stencil updates, sometimes followed by
a checksum calculation. These pairs of communication and stencil are grouped
by a certain number of variables (communication group). For example, the total
number of variables is 40, while communications and stencil updates are done in
groups of 10 variables. Every few stages, the objects in the domain are moved
according to the parameters, the domain is refined/coarsened following the set-
tings, and the main loop starts again.

The communications are done for both local (intraprocess) and external
(interprocess) neighboring blocks, MPI non-blocking calls being used for the
second case. When the blocks are of the same size, the ghost values are simply
copied. If a face has four neighbors, because the neighbor grid is finer, the values

On the Benefits of Tasking with OpenMP 221

Table 1. MiniAMR versions developed in this work

Label Description

Orig Original code from Mantevo repository with stencil parallel loop fixed

Orig-dyn Orig with dynamically scheduled comm

Loop Transformation of main data structure into contiguous array

Loop-dyn Loop with dynamically scheduled comm

Task-1 Data-flow parallelization of comm and stencil. Taskloop for checksum

Task-2 Data-flow parallelization of comm, stencil and checksum

are replicated four times and the variables are divided by 4 to keep the total
value constant. Similarly, all ghost values received by the coarser face are added
up in groups of four to a single discrete point.

When splitting a block in the refinement process, each original point is repli-
cated 8 times and its variables are divided by 8 in order to preserve the total
value, as when communicating. The coarsening process is equivalent: 8 blocks
are joined to form a coarser block, so the points are added up in groups of 8 to
form a coarser point.

3 Taskification of MiniAMR

Table 1 lists the versions developed in this work towards the taskification of mini-
AMR using OpenMP. The parallelization of miniAMR in the reference code of
the Mantevo project is based on MPI and OpenMP. Message passing between
processes occurs mainly in the communication phase when the faces of blocks
(ghost values) are transferred in a process commonly known as halo exchange.
An MPI_AllReduce primitive coordinates all processes to calculate the overall
checksum. MPI is also used in other parts of the code outside of the main phases
that are outside of the scope of this analysis, such as a plotting phase to visualize
the simulated grid like the one shown in Fig. 1. OpenMP is used in the communi-
cation phase to exchange halos between threads, the computation phase (stencil)
and checksum calculation. The refinement phase is serial.

The first transformation of the code (labeled as Orig) is to correct the original
stencil OpenMP parallelization, which gives incorrect results as of February 14th,
2019 (the latest commit in the master branch at the time of writing). This
issue was communicated to miniAMR developers. Listing 1 shows the resulting
OpenMP annotation on the 7-point stencil code.

The taskification strategy is that a task communicates (comm) or computes
(stencil) the variables of one block. It is beneficial for the data belonging to
the variables of a block to be contiguous in memory so task dependencies can
be expressed as array sections. To prepare the code towards taskification, the
second transformation is to change the main data structure from a quadruple

222 A. Rico et al.

pointer (double****) with disaggregated arrays for each block, variable, and X,
Y and Z dimensions, into a contiguous array (double*). This version (labeled
as Loop) is our reference loop-parallel version using worksharing-loop constructs
only. Having a contiguous array improves performance over the original code
thanks to better prefetching coverage and accuracy due to improved locality. To
isolate this improvement from that provided by taskification, the performance
results in Sect. 5 are normalized to Loop.

The third version (labeled Task-1) is the taskification of the communica-
tion, stencil and checksum phases on top of Loop. In the original code, the loop
in the communication phase traverses all blocks and each iteration performs

On the Benefits of Tasking with OpenMP 223

ghost value exchanges between a block face and a neighbor face at the same
or different refinement level. This loop is distributed across threads with an
omp parallel for construct. In this taskification, this worksharing-loop con-
struct is removed and a task is defined for each exchange inside the loop. Listing
2 shows the task code for a face exchange at same refinement level. Tasks read
and write to a part of the block and the dependence is set for the whole block.
This could be improved by arranging halos with ghost values in separate arrays
and having dependences only on halos instead, or by adding a separate depen-
dence for each halo and variable. However, both of these solutions add complexity
either to the data structure or to the directive readability, so this is not included
in the version evaluated here. We expect support for multidependences [8,17]
in OpenMP 5.0 to help with the directive readability issue (we must restrict
this effort to OpenMP 4.5 features due to current compiler support). Stencil
computations are taskified with an inout dependence on the block they operate
on, and therefore depend on the previous communication tasks that write to
that block. With this data-flow dependence strategy, a pair of parallel and
single directives surround the loop iterating over the stages in the main loop,
therefore removing the implicit barrier between the communication and stencil
phases that worksharing-loop constructs in the original code imply.

At this point there is data flow between communication and stencil com-
putation. Due to being inside a parallel-single pair, the worksharing-loop
construct around checksum executes serially on one thread. Given that check-
sum does not execute on every iteration, this taskification uses a taskloop con-
struct [15], which executes the iterations of checksum over the blocks in tasks,
and therefore has the same implicit barrier after the checksum loop as the previ-
ous worksharing-loop construct. Listing 3 shows the corresponding task code. To
make sure prior tasks complete before checksum, a taskwait primitive is placed
before the checksum task loop. The refinement phase is outside of the task region
and therefore remains serial as in the original code. Taskifying the refinement
phase to overlap iterations across timesteps is a potential improvement left for
future work.

224 A. Rico et al.

The fourth version (labeled as Task-2) builds on top of Task-1 and replaces
the taskloop-based taskification of checksum by data-flow using dependencies.
Listing 4 shows the task code. The loop iterating over the variables in the block
is brought inside the task and the partial checksum variable becomes an array
with an entry for each variable. This removes the taskwait before the checksum
phase and allows hoisting the checksum for a given block as soon as its stencil
is complete. The taskwait moves down after the creation of checksum tasks so
checksum validation happens once all checksum tasks are complete.

Given the intrinsic load imbalance of the communication phase due to dif-
ferent block communications happening at different refinement levels, Table 1
includes two more versions of the code. Orig-dyn and Loop-dyn use dynamic
scheduling by adding the clause schedule(dynamic) to the parallel loop in the
communication phase to mitigate this imbalance and have another point of com-
parison between statically-scheduled loops and tasking.

This effort covers the shared memory portion of the application by replac-
ing loop-level parallelization of communication, stencil and checksum with task-
level parallelization to compare both models. The taskification of the MPI part
promises further improvements given that it already uses asynchronous message
passing. The evaluation of MPI communication tasking is left as future work.

4 Experimental Methodology

The experiments focus on comparing the worksharing-loop parallel and task-
based implementations of miniAMR described in Sect. 3. As in prior work [1],
they are run on multiple systems with different architectural and microarchi-
tectural features and using different OpenMP C/C++ compiler and runtime

On the Benefits of Tasking with OpenMP 225

Table 2. Systems used for evaluation

System

Name Marvell ThunderX2 IBM POWER9 Intel Skylake-SP AMD EPYC

Part no CN9975 8335-GTH Xeon Platinum 8160 7401P

Processors 2 2 2 1

Memory 16xDDR4-2666 16xDDR4-2666 12xDDR4-2666 8xDDR4-2666

Processor

Cores 28 20 24 24

L1D cache 32KB/core 32KB/core 32KB/core 32KB/core

L2 cache 256KB/core 512KB/2 cores 1MB/core 512KB/core

L3 cache 32MB 120MB 33MB 64MB

NoC Ring - Mesh 4-die MCM

Software

Compilers GNU-8.2 GNU-8.1 GNU-8.1 GNU-8.2

Arm 19.1 IBM XL 16.1 Intel 19.0

systems to quantify the sensitivity to the underlying system features and run-
time implementation. Table 2 shows the testbed systems and compilers used in
this work.

We run miniAMR with multiple variations of input parameters that affect
different parts of the application. We test multiple block sizes and number of
variables, which directly affect parallel work duration - often a performance lim-
iting factor [9,13]. The default block size in miniAMR is 10×10×10 and previous
papers used 64 × 64 × 64 [14]. We use 16 × 16 × 16 as a reasonable input and
8×8×8 as a deliberately small block size to stress tasking overheads. The default
number of variables is 40. We use 40 and 160 as a deliberately large input to
isolate tasking overheads. We test checksum frequencies of one every five, and
one every ten stages, which affects tasking look ahead as checksum validation
implies a barrier. We test 10 and 40 stages per time step which affects refinement
frequency—more stages per time step means less relative time spent in the refine-
ment phase. The number of overall refinements is 4, maximum blocks is 3000
and simulation starts with 1 block. The simulated object, position, direction and
speed is defined with parameters: --num objects 1 --object 2 0 -1.1 -1.1
-1.1 0.060 0.060 0.060 1.1 1.1 1.1 0.0 0.0 0.0. The memory footprint
of these runs is between 900 MB and 20 GB.

Experiments compare the execution time of the multiple variants (lower is
better) varying the number of OpenMP threads in one MPI rank. The execu-
tion time of each phase is measurable only for the worksharing-loop versions,
and therefore not relevant in this study because when global synchronizations
are removed the execution of multiple phases overlap. The executions are done
multiple times to mitigate variation across runs. Most systems show a small vari-
ation between runs, so one of them is shown here except for EPYC. This system
showed the largest variation, so experiments were run 10 times and the results
shown are the average after removing outliers (±2 × standard deviation).

226 A. Rico et al.

1 2 4 8 16 28 56
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e ThunderX2

1 socket 2 s.

1 2 4 8 16 20 40

POWER9

1 socket 2 s.

1 2 4 8 16 24 48
Number of Threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e Skylake-SP

1 socket 2 s.

1 2 4 6 12 18 24
Number of Threads

EPYC

1 die 2 d. 3 d. 4 d.

 Orig Orig-dyn Loop Loop-dyn Task-1 Task-2

Fig. 2. Execution time of multiple miniAMR implementations on testbed systems;
normalized to Loop

5 Performance Evaluation

Figure 2 shows the normalized execution time (lower is better) of the multiple
implementations of miniAMR, each subplot corresponding to a different plat-
form, and each cluster of bars being for a different number of threads. All results
are using the GNU compiler and normalized to the Loop implementation. The
parameters for this execution are: checksum frequency is every 5 stages, number
of refinements is 4, blocks are 16× 16× 16, with 40 variables and 40 stages per
timestep. We focus on this configuration as it is a representative input after dis-
cussion with application developers. A discussion of the performance variations
of sweeping parameters is included later in this section.

In all cases, Loop is faster than the original version of the code (Orig) because
of improved locality while accessing the main data structure, which is a con-
tiguous array instead of being segregated per dimension. The two task imple-
mentations are generally better than the Loop version due to load imbalance
mitigation in the communication phase and, for the larger core counts, also the
stencil phase. Loop-dyn also improves over Loop due to better load balancing
and outperforms tasking in some cases. However, in most cases, tasking is supe-
rior to dynamically-scheduled loops due to the serial portion in between parallel
loops becoming increasingly important with increasing thread counts (Amdahl’s
Law).

When crossing socket or die boundaries (e.g., 56 cores in ThunderX2 are in
two sockets, see Table 2), the dynamically-scheduled configurations (Orig-dyn,
Loop-dyn, Task-1 and Task-2) show worse performance than statically-scheduled

On the Benefits of Tasking with OpenMP 227

4725 4750 4775 4800 4825 4850
Timestamp (ms)

0
2
4
6
8

10
12
14
16
18
20
22
24
26

T
hr

ea
d

Loop

4725 4750 4775 4800 4825 4850
Timestamp (ms)

Task-2

communication stencil checksum

Fig. 3. Execution timelines of Loop (left) and Task-2 (right). White color is idle time

ones (Orig and Loop) in most cases. This is due to a large drop in perfor-
mance of execution of both stencil and communications due to NUMA/NUCA
effects. Static scheduling suffers heavily from load imbalance at the large core
counts tested across sockets but has better caching behavior due to the same
blocks being processed in the same threads across stages. With dynamic schedul-
ing, each block is processed in potentially different threads across stages. The
result is that the drop in instructions per cycle (IPC) on each thread for static
scheduling is smaller than for dynamic scheduling when going from one socket
to two sockets. In the case of EPYC, this is noticeable already at 12 threads
because only 6 threads are co-located within the same die so over 6 threads is
already a cross-chiplet execution paying larger NUMA latencies. Given the lack
of performance counters that measure accesses to remote NUMA domains in the
evaluated platforms, we plan to further analyze the impact of cross-socket/cross-
chiplet accesses using simulated platforms in future work.

Figure 3 shows a timeline of the Loop (left) and Task-2 (right) versions show-
ing execution of parallel loops and tasks, respectively, on the 28 threads of one
ThunderX2 socket. Both timelines show the same duration. In the Loop time-
line, light green is communication and turquoise is stencil compute. In the Task-
2 timeline, the colors are the same and dark purple refers to checksum tasks.
The Loop timeline shows a clear imbalance across threads in the communica-
tion phase, with certain threads consistently doing less work than others due to
working on blocks at different refinement levels. The Task-2 timeline shows com-
munication, stencil and checksum tasks concurrently executing as they become
ready, leading to incidental locality improvement and little idle time. This inci-
dental locality improvement happens more often with lower thread counts (4–8).
Some consumer tasks execute faster due to executing back-to-back with their
producer, e.g., communications of a block happening right after its stencil com-
putation, or vice versa. In the absence of a locality-aware scheduler, this is less
likely on larger thread counts and we observe a larger drop in task performance.

Looking across systems, the Task-2 version results in over 90% useful time
on threads, i.e., communication/stencil/checksum, with a few threads achieving

228 A. Rico et al.

1 2 4 8 16 28 56
Number of Threads

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 E
xe

c.
 T

im
e ThunderX2

1 socket 2 s.

1 2 4 8 16 20 40
Number of Threads

POWER9

1 socket 2 s.

1 2 4 8 16 24 48
Number of Threads

Skylake-SP

1 socket 2 s.

 Orig Orig-dyn Loop Loop-dyn Task-1 Task-2

Fig. 4. Execution time with proprietary compilers: Arm Compiler on ThunderX2 (left),
IBM XL on POWER9 (middle) and Intel Compiler on Skylake-SP (right)

just over 80% utilization due to task creation time not being accounted as useful.
The Loop version gets a lower utilization of between 40% and 80%. The threads
that spend more than half of the time idle are those that repeatedly operate on
blocks at the lower refinement levels.

Figure 4 shows the normalized execution time on ThunderX2 using Arm Com-
piler, on POWER9 using IBM XL, and on Skylake-SP using Intel compiler. The
tasking versions achieve similar gains on ThunderX2 with the exception of dual
socket which performs better. On POWER9, tasking gets smaller gains and
Loop-dyn performs the same in certain thread counts. On Skylake-SP, the task-
ing advantage over the loop-parallel versions is even larger than with GNU.

Testing other application parameters to verify the sensitivity of this analysis
showed some variations in the results, but they do not change the conclusions
above. Going to arbitrarily small 8× 8× 8 blocks to stress task creation overhead,
indeed shows smaller benefit of the task versions and they scale worse overall,
especially across sockets where they perform significantly worse, but still work
better than Loop within single socket cases. Going to 160 variables to isolate
task creation overhead, and a checksum frequency of 10 for larger task-scheduling
look-ahead, shows a bit better results for tasking but not significantly better than
the ones using 40 variables or a checksum frequency of 5. Going to a checksum
frequency of 10 instead of 5 also shows a bit better results for tasking and the
benefit of Task-2 over Task-1 is also larger.

6 Conclusion

The benefits of tasking come mainly from a higher level view of parallelization by
the programmer. Introducing asynchrony by parallelizing across program phases
enables a higher utilization of threads thanks to removing global synchroniza-
tions, not having serial code between loops and, compared to static scheduling,
avoiding load imbalance. Due to the lack of locality-aware scheduling in the
tested runtimes (to the best of our knowledge), locality improvements by con-
sumer tasks executing after producer tasks was incidental. Also, tasking suffers

On the Benefits of Tasking with OpenMP 229

from worse NUCA/NUMA behavior because tasks operating on the same blocks
may execute on different threads across sockets and chiplets. Our experiments
suggest that locality/affinity semantic extensions for tasking in OpenMP have
potential for significant performance improvement and scaling across NUMA
domains if paired with balanced data allocation.

Parallelizing across program phases requires a mindset change if the pro-
grammer tends to parallelize loops or small sections after having parallelized
at the MPI level. This strategy of focusing on small code portions when par-
allelizing with OpenMP limits scaling because sections between parallel regions
remain serial. Tasking helps think in terms of larger code sections thanks to task
dependences—a task can execute anytime during the task region as soon as its
dependencies are satisfied.

A potentially-beneficial extension to the OpenMP standard for this taskifica-
tion effort would have been the ability to specify dependences in taskloops. This
way the Task-2 implementation could have been written in a easier and clearer
way building on top of Task-1 code. This is an extension that is on-going work
by the OpenMP committee and this paper shows a potential use case for it.

Lastly, we encountered several compiler issues with tasks that were reported
to developers. Some compilers failed to compile certain constructs or generated
incorrect results. These issues did not happen with worksharing-loop constructs,
which shows the different maturity of both models.

Acknowledgments. This work was in collaboration with Cray and funded in part
by the DOE ECP PathForward program. It has been partially supported by the Span-
ish Government through Programa Severo Ochoa (contract SEV-2015-0493), by the
Spanish Ministry of Economy and Competitiveness (contract TIN2015-65316-P), by
the Generalitat de Catalunya (contracts 2017-SGR-1414 and 2017-SGR-1328), by the
European Unions’s Horizon 2020 Framework Programme under the Mont-Blanc project
(grant agreement number 779877), and by the Arm-BSC Centre of Excellence initiative.
I. Sánchez Barrera has been partially supported by the Spanish Ministry of Education,
Culture and Sport under Formación del Profesorado Universitario fellowship num-
ber FPU15/03612. M. Casas has been partially supported by the Spanish Ministry
of Economy, Industry and Competitiveness under Ramón y Cajal fellowship number
RYC-2017-23269. M. Moretó has been partially supported by the Spanish Ministry
of Economy, Industry and Competitiveness under Ramón y Cajal fellowship number
RYC-2016-21104.

References

1. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes
for an irregular fast multipole method application. In: de Supinski, B.R., Olivier,
S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) IWOMP 2017. LNCS,
vol. 10468, pp. 92–106. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65578-9 7

2. Ayguadé, E., et al.: A proposal for task parallelism in OpenMP. In: Chapman,
B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D. (eds.) IWOMP 2007.
LNCS, vol. 4935, pp. 1–12. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-69303-1 1

https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1007/978-3-540-69303-1_1
https://doi.org/10.1007/978-3-540-69303-1_1

230 A. Rico et al.

3. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrody-
namics. J. Comput. Phys. 82, 64–84 (1989). https://doi.org/10.1016/0021-
9991(89)90035-1

4. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differ-
ential equations. J. Comput. Phys. 53, 484–512 (1984). https://doi.org/10.1016/
0021-9991(84)90073-1

5. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of OpenMP task scheduling
strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol.
5004, pp. 100–110. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-79561-2 9

6. Duran, A., Perez, J.M., Ayguadé, E., Badia, R.M., Labarta, J.: Extending the
OpenMP tasking model to allow dependent tasks. In: Eigenmann, R., de Supinski,
B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 111–122. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79561-2 10

7. ECP Proxy Apps Suite. https://proxyapps.exascaleproject.org/
8. Garcia-Gasulla, M., Mantovani, F., Josep-Fabrego, M., Eguzkitza, B., Houzeaux,

G.: Runtime mechanisms to survive new HPC architectures: a use case in human
respiratory simulations. Int. J. High Perform. Comput. Appl. (2019). https://doi.
org/10.1177/1094342019842919

9. Gautier, T., Perez, C., Richard, J.: On the impact of OpenMP task granularity.
In: de Supinski, B.R., Valero-Lara, P., Martorell, X., Mateo Bellido, S., Labarta,
J. (eds.) IWOMP 2018. LNCS, vol. 11128, pp. 205–221. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3 14

10. Heroux, M.A., et al.: Improving performance via mini-applications. Techni-
cal report. SAND2009-5574, Sandia National Laboratories (2009). http://www.
mantevo.org/MantevoOverview.pdf

11. Mantevo Project. https://mantevo.org/
12. MiniAMR Adaptive Mesh Refinement (AMR) Mini-app. https://github.com/

Mantevo/miniAMR
13. Rico, A., Ramirez, A., Valero, M.: Available task-level parallelism on the cell BE.

Sci. Program. 17(1–2), 59–76 (2009). https://doi.org/10.3233/SPR-2009-0269
14. Sasidharan, A., Snir, M.: MiniAMR - a miniapp for adaptive mesh refinement.

Technical report. University of Illinois Urbana-Champaign (2016). http://hdl.
handle.net/2142/91046

15. Teruel, X., Klemm, M., Li, K., Martorell, X., Olivier, S.L., Terboven, C.: A proposal
for task-generating loops in OpenMP*. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 1–14. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 1

16. Vaughan, C.T., Barrett, R.F.: Enabling tractable exploration of the performance
of adaptive mesh refinement. In: 2015 IEEE International Conference on Cluster
Computing, pp. 746–752 (2015). https://doi.org/10.1109/CLUSTER.2015.129

17. Vidal, R., et al.: Evaluating the impact of OpenMP 4.0 extensions on relevant
parallel workloads. In: Terboven, C., de Supinski, B.R., Reble, P., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2015. LNCS, vol. 9342, pp. 60–72. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24595-9 5

18. Virouleau, P., et al.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11454-5 2

https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1007/978-3-540-79561-2_10
https://proxyapps.exascaleproject.org/
https://doi.org/10.1177/1094342019842919
https://doi.org/10.1177/1094342019842919
https://doi.org/10.1007/978-3-319-98521-3_14
http://www.mantevo.org/MantevoOverview.pdf
http://www.mantevo.org/MantevoOverview.pdf
https://mantevo.org/
https://github.com/Mantevo/miniAMR
https://github.com/Mantevo/miniAMR
https://doi.org/10.3233/SPR-2009-0269
http://hdl.handle.net/2142/91046
http://hdl.handle.net/2142/91046
https://doi.org/10.1007/978-3-642-40698-0_1
https://doi.org/10.1109/CLUSTER.2015.129
https://doi.org/10.1007/978-3-319-24595-9_5
https://doi.org/10.1007/978-3-319-11454-5_2

	On the Benefits of Tasking with OpenMP
	1 Introduction
	2 The miniAMR Proxy Application
	2.1 Baseline Parallelization of the miniAMR Code

	3 Taskification of MiniAMR
	4 Experimental Methodology
	5 Performance Evaluation
	6 Conclusion
	References

