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Abstract. OpenMP offers directives for offloading computations from
CPU hosts to accelerator devices such as GPUs. A key underlying chal-
lenge is in efficiently managing the movement of data across the host
and the accelerator. User experiences have shown that memory manage-
ment in OpenMP programs with offloading capabilities is non-trivial and
error-prone.

This paper presents OMPSan (OpenMP Sanitizer) – a static
analysis-based tool that helps developers detect bugs from incorrect
usage of the map clause, and also suggests potential fixes for the bugs.
We have developed an LLVM based data flow analysis that validates if
the def-use information of the array variables are respected by the map-
ping constructs in the OpenMP program. We evaluate OmpSan over
some standard benchmarks and also show its effectiveness by detecting
commonly reported bugs.

Keywords: OpenMP offloading · OpenMP target data mapping ·
LLVM · Memory management · Static analysis · Verification ·
Debugging

1 Introduction

Open Multi-Processing (OpenMP) is a widely used directive-based parallel pro-
gramming model that supports offloading computations from hosts to accelerator
devices such as GPUs. Notable accelerator-related features in OpenMP include
unstructured data mapping, asynchronous execution, and runtime routines for
device memory management.

OMP Target Offloading and Data Mapping. OMP offers the omp target
directive for offloading computations to devices and the omp target data direc-
tive for mapping data across the host and the corresponding device data envi-
ronment. On heterogeneous systems, managing the movement of data between
the host and the device can be challenging, and is often a major source of perfor-
mance and correctness bugs. In the OpenMP accelerator model, data movement
between device and host is supported either explicitly via the use of a map clause
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or, implicitly through default data-mapping rules. The optimal, or even cor-
rect, specification of map clauses can be non-trivial and error-prone because it
requires users to reason about the complex dataflow analysis. To ensure that
the map clauses are correct, the OpenMP programmers need to make sure that
variables that are defined in one data environments and used in another data
environments are mapped accordingly across the different device and host data
environments. Given a data map construct, its semantics depends on all the pre-
vious usages of the map construct. Therefore, dataflow analysis of map clauses is
necessarily context-sensitive since the entire call sequence leading up to a specific
map construct can impact its behavior.

1.1 OpenMP 5.0 Map Semantics

Figure 1 shows a schematic illustration of the set of rules used when mapping a
host variable to the corresponding list item in the device data environment, as
specified in the OpenMP 5.0 standard. The rest of this paper assumes that the
accelerator device is a GPU, and that mapping a variable from host to device
introduces a host-to-device memory copy, and vice-versa. However, the bugs that
we identify reflect errors in the OpenMP code regardless of the target device.

The different map types that OpenMP 5.0 supports are,

– alloc: allocate on device, uninitialized
– to: map to device before kernel execution, (host-device memory copy)
– from: map from device after kernel execution (device-host memory copy)
– tofrom: copy in and copy out the variable at the entry and exit of the device

environment.

Arrays are implicitly mapped as tofrom, while scalars are firstprivate in the
target region implicitly, i.e., the value of the scalar on the host is copied to the
corresponding item on the device only at the entry to the device environment. As
Fig. 1 shows, OpenMP 5.0 specification uses the reference count of a variable, to
decide when to introduce a device/host memory copy. The host to device memory
copy is introduced only when the reference count is incremented from 0 to 1 and
the to attribute is present. Then the reference count is incremented every time a
new device map environment is created. The reference count is decremented on
encountering a from or release attribute, while exiting the data environment.
Finally, when the reference count is decremented to zero from 1, and the from
attribute is present, the variable is mapped back to the host from the device.

1.2 The Problem

For target offloading, the map clause is used to map variables from a task’s
data environment to the corresponding variable in the device data environment.
Incorrect data map clauses can result in usage of stale data in either host or
device data environment, which may result in the following kinds of issues,

– When reading the variable on the device data environment, it does not contain
the updated value of its original variable.

– When reading the original variable, it was not updated with the latest value
of the corresponding device environment variable.
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(a) Flowchart for Enter Device Environment

(b) Flowchart for Exit Device Environment

Fig. 1. Flowcharts to show how to interpret the map clause

1.3 Our Solution

We propose a static analysis tool called OMPSan to perform OpenMP code
“sanitization”. OMPSan is a compile-time tool, which statically verifies the
correctness of the data mapping constructs based on a dataflow analysis. The
key principle guiding our approach is that: an OpenMP program is expected to
yield the same result when enabling or disabling OpenMP constructs. Our app-
roach detects errors by comparing the dataflow information (reaching definitions
via LLVM’s memory SSA representation [10]) between the OpenMP and base-
line code. We developed an LLVM-based implementation of our approach and
evaluated its effectiveness using several case studies. Our specific contributions
include:

– an algorithm to analyze OpenMP runtime library calls inserted by Clang in
the LLVM IR, to infer the host/device memory copies. We expect that this
algorithm will have applications beyond our OMPSan tool.

– a dataflow analysis to infer Memory def-use relations.
– a static analysis technique to validate if the host/device memory copies

respect the original memory def-use relations.
– diagnostic information for users to understand how the map clause affects the

host and device data environment.
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Even though our algorithm is based on clang OpenMP implementation, it can
very easily be applied to other approaches like using directives to delay the
OpenMP lowering to a later LLVM pass. The paper is organized as follows.
Section 2 provides motivating examples to describe the common issues and dif-
ficulties in using OpenMP’s data map construct. Section 3 provides the back-
ground information that we use in our analysis. Section 4 presents an overview
of our approach to validate the usage of data mapping constructs. Section 5
presents the LLVM implementation details, and Sect. 6 presents the evaluation
and some case studies. Subsection 6.3 also lists some of the limitations of our
tool, some of them common to any static analysis.

2 Motivating Examples

To motivate the utility and applicability of OMPSan, we discuss three potential
errors in user code arising from improper usage of the data mapping constructs.

2.1 Default Scalar Mapping

Example 1: Consider the snippet of code in Listing 2.1. The printf on host,
line 8, prints stale value of sum. Note that the definition of sum on line 5 does
not reach line 8, since the variable sum is not mapped explicitly using the map
clause. As such, sum is implicitly firstprivate. As Listing 2.2 shows, an explicit
map clause with the tofrom attribute is essential to specify the copy in and copy
out of sum from device.

Listing 2.1. Default scalar map

1 int A[N], sum=0, i;
2 #pragma omp target
3 #pragma omp teams distribute

parallel for reduction (+:sum)
{

4 for(i=0; i<N; i++) {
5 sum += A[i];
6 }
7 }
8 printf("\n%d",sum);

Listing 2.2. Explicit map

1 int A[N], sum=0;
2 #pragma omp target map(tofrom:sum)
3 #pragma omp teams distribute

parallel for reduction (+:sum)
{

4 for( int i=0; i<N; i++) {
5 sum += A[i];
6 }
7 }
8 printf("\n%d",sum);

2.2 Reference Count Issues

Example 2: Listing 2.3 shows an example of a reference count issue. The state-
ment in line 12, which executes on the host, does not read the updated value of A
from the device. This is again because of the from clause on line 5, which incre-
ments the reference count to 2 on entry, and back to 1 on exit, hence after line
10, A is not copied out to host. Listing 2.4 shows the usage of target update
directive to force the copy-out and to read the updated value of A on line 15.

This example shows the difficulty in interpreting an independent map con-
struct. Especially when we are dealing with the global variables and map clauses
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across different functions, maybe even in different files, it becomes difficult to
understand and identify potential incorrect usages of the map construct.

Listing 2.3. Reference Count

1 #define N 100
2 int A[N], sum=0;
3 #pragma omp target data
4 map(from:A[0:N]) {
5 #pragma omp target
6 map(from:A[0:N]) {
7 for(int i=0; i<N; i++) {
8 A[i]=i;
9 }

10 }
11 for(int i=0; i<N; i++) {
12 sum += A[i];
13 }
14 }

Listing 2.4. Update Clause

1
2 #define N 100
3 int A[N], sum=0;
4 #pragma omp target data
5 map(from:A[0:N]) {
6 #pragma omp target
7 map(from:A[0:N]) {
8 for(int i=0; i<N; i++) {
9 A[i]=i;

10 }
11 }
12 #pragma omp target
13 update from(A[0:N])
14 for(int i=0; i<N; i++) {
15 sum += A[iGhosh];
16 }
17 }

3 Background

OMPSan assumes certain practical use cases, for example, in Listing 2.3, a user
would expect the updated value of A on line 12. Having said that, a skilled ninja
programmer may very well expect A to remain stale, because of their knowledge
and understanding of the complexities of data mapping rules. Our analysis and
error/warning reports from this work are intended primarily for the former case.

3.1 Memory SSA Form

Our analysis is based on the LLVM Memory SSA [10,12], which is an imprecise
implementation of Array SSA [7]. The Memory SSA is a virtual IR, that captures
the def-use information for array variables. Every definition is identified by a
unique name/number, which is then referenced by the corresponding use.

The Memory SSA IR has the following kinds of instructions/nodes,

– INIT , a special node to signify uninitialized or live on entry definitions
– N ′ = MemoryDef(N), N ′ is an operation which may modify memory, and

N identifies the last write that N ′ clobbers.
– MemoryUse(N), is an operation that uses the memory written by the defi-

nition N , and does not modify the memory.
– MemPhi(N1, N2, ...), is an operation associated with a basic block, and Ni

is one of the may reaching definitions, that could flow into the basic block.

We make the following simplifying assumptions, to keep the analysis tractable

– Given an array variable we can find all the corresponding load and store
instructions. So, we cannot handle cases, when pointer analysis fails to dis-
ambiguate the memory a pointer refers to.
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– A MemoryDef node clobbers the array associated with its store instruction.
As a result, write to any array location, is considered to update the entire
array.

– We analyze only the array variables that are mapped to a target region.

3.2 Scalar Evolution Analysis

LLVM’s Scalar Evolution (SCEV) is a very powerful technique that can be used
to analyze the change in the value of scalar variables over iterations of a loop.
We can use the SCEV analysis to represent the loop induction variables as chain
of recurrences. This mathematical representation can then be used to analyze
the index expressions of the memory operations.

We implemented an analysis for array sections, that given a load/store, uses
the LLVM SCEV analysis, to compute the minimum and maximum values of the
corresponding index into the memory access. If the analysis fails, then we default
to the maximum array size, which is either a static array, or can be extracted
from the LLVM memory alloc instructions.

4 Our Approach

In this section, we outline the key steps of our approach with the algorithm and
show a concrete example to illustrate the algorithm in action.

4.1 Algorithm

Algorithm 1 shows an overview of our data map analysis algorithm. First, we
collect all the array variables used in all the map clauses in the entire mod-
ule. Then line 5, calls the function ConstructArraySSA, which constructs the
Array SSA for each of the mapped Array variables. (In this paper, we use
”Array SSA” to refer to our extensions to LLVM’s Memory SSA form by
leveraging the capabilities of Array SSA form [7].) Then, we call the function,
InterpretTargetClauses, which modifies the Array SSA graph, in accordance
of the map semantics of the program. Then finally ValidateDataMap checks the
reachability on the final graph, to validate the map clauses, and generates a
diagnostic report with the warnings and errors.

Example. Let us consider the example in Fig. 2a to illustrate our approach
for analysis of data mapping clauses. ConstructArraySSA of Algorithm 1, con-
structs the memory SSA form for arrays “A” and “C” as shown in Fig. 2b. Then,
InterpretTargetClauses, removes the edges between host and device nodes, as
shown in Fig. 2c, where the host is colored green and device is blue. Finally, the
loop at line 29 of the function InterpretTargetClauses, introduces the host-
device/device-host memory copy edges, as shown in Fig. 2d. For example L1 is
connected to S2 with a host-device memory copy for the enter data map pragma
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Algorithm 1. Overview of Data Mapping Analysis
1: function DataMapAnalysis(Module)

2: MappedArrayV ars = φ
3: for ArrayV ar ∈ MapClauses do

4: MappedArrayV ars = MappedArrayV ars ∪ ArrayV ar

5: ConstructArraySSA(Module, MappedArrayV ars)

6: InterpretTargetClauses(Module, MappedArrayV ars)

7: ValidateDataMap(MappedArrayV ars)

8: function ConstructArraySSA(Module, MappedArrayV ars)
9: for MemoryAccess ∈ Module do

10: ArrayV ar = getArrayVar(MemoryAccess)
11: if ArrayV ar ∈ MappedArrayV ars then

12: if MemoryAccess ∈ OMP targetOffload Region then

13: targetNode = true � If Memory Access on device
14: else

15: targetNode = false � If Memory Access on host

16: Range = SCEVGetMinMax(MemoryAccess)
17: underConstruction= GetArraySSA(ArrayV ar)
18: � could be null or incomplete

19: InsertNodeArraySSA(underConstruction,MemoryAccess, targetNode, Range
)

20: � Incrementally construct, by adding this access

21: function InterpretTargetClauses(Module, MappedArrayV ars)

22: for ArrayV ar ∈ MappedArrayV ars do
23: ArraySSA = GetArraySSA(ArrayV ar)

24: for edge, (node, Successornode) ∈ (ArraySSA) do
25: nodeIsTarget = isTargetOffload(node)
26: succIsTarget = isTargetOffload(Successornode)

27: if nodeIsTarget ! = succIsTarget then
28: RemoveArraySSAEdge(node, Successornode )

29: for dataMap ∈ dataMapClauses do
30: hostNode = getHostNode(dataMap)

31: deviceNode = getDeviceNode(dataMap)
32: mapType = getMapClauseType(dataMap)
33: � alloc/copyIn/copyOut/persistentIn/persistentOut

34: InsertDataMapEdge(hostNode, deviceNode, mapType)

35: function ValidateDataMap(MappedArrayV ars)
36: for ArrayV ar ∈ MappedArrayV ars do
37: ArraySSA = GetArraySSA(ArrayV ar)
38: for memUse ∈ getMemoryUseNodes(ArraySSA) do

39: useRange = getReadRange(memUse)

40: clobberingAccess = getClobberingAccess(ArraySSA, memUse)
41: if isPartiallyReachable(ArraySSA, clobberingAccess, memUse, useRange)

then

42: Report WARNING

43: else if isNotReachable(ArraySSA, clobberingAccess, memUse) then

44: Report ERROR

with to: A[0 : 50] on line 5. Also, we connect the INIT node with L2, to account
for the alloc:C[0 : 100], which implies an uninitialized reaching definition for
this example.
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(a) Example, user Code (b) Memory SSA for sequential version

(c) Classify Host/Device Regions
(green=host, blue=device) (d) Host/Device Memory Copies

Fig. 2. Example of data map analysis

Lastly, ValidateDataMap function, traverses the graph, resulting in the fol-
lowing observations:

– (Error) Node S4:MemUse(5) is not reachable from its corresponding defini-
tion L2 : 5 = MemPhi(0, 6)

– (Warning) Only the partial artial array section A[0 : 50], is reachable from
definition L1 : 1 = MemPhi(0, 2) to S2 : MemUse(1)〈0 : 100〉
Section 6 contains other examples of the errors and warnings discovered by

our tool.

5 Implementation

We implemented our framework in LLVM 8.0.0. The OpenMP constructs are
lowered to runtime calls in Clang, so in the LLVM IR we only see calls to the
OpenMP runtime. There are several limitations of this approach with respect to
high level analysis like the one OMPSan is trying to accomplish. For example,
the region of code that needs to be offloaded to a device is opaque since it
is moved to a separate function. These functions are in turn called from the
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OpenMP runtime library. As a result, it is challenging to perform a global data
flow analysis for the memory def-use information of the offloaded region. To
simplify the analysis, we have to compile with clang twice.

First, we compile the OpenMP program with the flag that enables parsing
the OpenMP constructs, and compile it again without the flag, so that Clang
ignores the OpenMP constructs and instead generates the baseline LLVM IR for
the sequential version. During the OpenMP compilation pass, we execute our
analysis pass, which parses the runtime library calls and generates a csv file that
records all the user specified “target map” clauses, as explained in Subsect. 5.1.

Next we compile the program by ignoring the OpenMP pragmas, and per-
form whole program context and flow sensitive data flow analysis on LLVM code
generated from the sequential version, to construct the Memory def-use chains,
explained in Subsect. 5.2. Then this pass validates if the “target map” informa-
tion recorded in the csv file, respects all the Memory def-use relations present in
the sequential version of the code.

5.1 Interpreting OpenMP Pragmas

Listing 5.1. Example map clause

1
2 #pragma omp ta rg e t
3 map( tofrom :A[ 0 : 1 0 ] )
4 for ( i = 0 ; i < 10 ; i++)
5 A[ i ] = i ;

Listing 5.2. Pseudocode for LLVM IR
with RTL calls

1 void ∗∗ArgsBase = {&A}
2 void ∗∗Args = {&A}
3 i n t 6 4 t ∗ ArgsSize = {40}
4 void ∗∗ArgsMapType = {

OMPTGTMAPTYPETO |
OMPTGTMAPTYPEFROM }

5 c a l l @ t g t t a r g e t
6 (−1 , HostAdr , 1 , ArgsBase ,
7 Args , ArgsSize , ArgsMapType )

Listing 5.1 shows a very simple user program, with a target data map clause.
Listing 5.2 shows the corresponding LLVM IR in pseudocode, after clang intro-
duces the runtime calls at Line 5. We parse the arguments of this call to interpret
the map construct. For example, the 3rd argument to the call at line 6 of List-
ing 5.2 is 1, that means there is only one item in the map clause. Line 1, that is
the value loaded into ArgsBase is used to get the memory variable that is being
mapped. Line 3, ArgsSize gives the end of the corresponding array section,
starting from ArgsBase. Line 4, ArgsMapType, gives the map attribute used
by the programmer, that is “tofrom”.

We wrote an LLVM pass that analyzes every such Runtime Library (RTL)
call, and tracks the value of each of its arguments, as explained above. Once
we obtain this information, we use the algorithm in Fig. 1 to interpret the data
mapping semantics of each clause. The data mapping semantics can be classified
into following categories,

– Copy In: A memory copy is introduced from the host to the corresponding
list item in the device environment.

– Copy Out: A memory copy is introduced from the device to the host envi-
ronment.
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– Persistent Out: A device memory variable is not deleted, it is persistent on
the device, and available to the subsequent device data environment.

– Persistent In: The memory variable is available on entry to the device data
environment, from the last device invocation.

The examples in Subsect. 6.2 illustrate the above classification.

5.2 Baseline Memory Use Def Analysis

LLVM has an analysis called the MemorySSA [10], it is a relatively cheap analysis
that provides an SSA based form for memory def-use and use-def chains. LLVM
MemorySSA is a virtual IR, which maps Instructions to MemoryAccess, which
is one of three kinds, MemoryPhi, MemoryUse and MemoryDef.

Operands of any MemoryAccess are a version of the heap before that opera-
tion, and if the access can modify the heap, then it produces a value, which is the
new version of the heap after the operation. Figure 3 shows the LLVM Memory
SSA for the OpenMP program in Listing 5.3. The comments in the listing denote
the LLVM IR and also the corresponding MemoryAccess.

Listing 5.3. OpenMP program, for Fig. 3
1 int main ( ) {
2 int A[ 1 0 ] , B [ 1 0 ] ;
3 // 2 = MemoryPhi(1 ,3)
4 for ( int i =0 ; i < 10 ; i++) {
5 // %arrayidx = gete lementptr %A, 0 , %

idxprom
6 // s tore %i .0 , %arrayidx ,
7 // 3 = MemoryDef(2)
8 A[ i ] = i ;
9 }

10 #pragma omp ta rg e t ente r data map( to :A
[ 0 : 5 ] )

11 map( a l l o c :B [ 0 : 1 0 ] )
12 #pragma omp ta rg e t
13 // 4 = MemoryPhi(2 ,5)
14 for ( int i = 0 ; i < 10 ; i++) {
15 // %arrayidx7 = gete lementptr %A, 0 , %

idxprom6
16 // %2 = load %arrayidx7
17 // MemoryUse(4)
18 int t = A[ i ] ;
19 // %arrayidx9 = gete lementptr %B, 0 , %

idxprom8
20 // s tore %2, %arrayidx9
21 // 5 = MemoryDef(4)
22 B[ i ] = t
23 }
24
25 for ( int i = 0 ; i < 10 ; i++) {
26 //arrayidx19 = gete lementptr %B, 0 , %

idxprom18
27 //%3 = load %arrayidx19
28 // MemoryUse(4)
29 p r i n t f ( ”%d” ,B[ i ] ) ;
30 }
31
32 return 0 ;
33 }

Fig. 3. Memory SSA of
Listing 5.3
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We have simplified this example, to make it relevant to our context.
LiveonEntry is a special MemoryDef that dominates every MemoryAccess within
a function, and implies that the memory is either undefined or defined before
the function begins. The first node in Fig. 3 is a LiveonEntry node. The
3 = MemoryDef(2) node, denotes that there is a store instruction which clob-
bers the heap version 2, and generates heap 3, which represents the line 8 of the
source code. Whenever more than one heap versions can reach a basic block, we
need a MemoryPhi node, for example, 2 = MemoryPhi(1, 3) corresponds to
the for loop on line 4. There are two versions of the heap reaching this node,
the heap 1, 1 = LiveonEntry and the other one from the back edge, heap 3,
3 = MemoryDef(2). The next MemoryAccess, 4 = MemoryPhi(2, 5), corre-
sponds to the for loop at line 14. Again the clobbering accesses that reach it
are 2 from the previous for loop and 5, from its loop body. The load of mem-
ory A on line 18, corresponds to the MemoryUse(4), that notes that the last
instruction that could clobber this read is MemoryAccess 4 = MemoryPhi(2, 5).
Then, 5 = MemoryDef(4) clobbers the heap, to generate heap version 5. This
corresponds to the write to array B on line 22. This is an important example of
how LLVM deliberately trades off precision for speed. It considers the memory
variables as disjoint partitions of the heap, but instead of trying to disambiguate
aliasing, in this example, both stores/MemoryDefs clobber the same heap par-
tition. Finally, the read of B on line 29, corresponds to MemoryUse(4), with
the heap version 4, reaching this load. Since this loop does not update memory,
there is no need for a MemoryPhi node for this loop, but we have left the node
empty in the graph to denote the loop entry basic block.

Now, we can see the difference between the LLVM memory SSA (Fig. 3)
and the array def-use chains required for our analysis (Fig. 2). We developed a
dataflow analysis to extract the array def-use chains from the LLVM Memory
SSA, by disambiguating the array variable that each load/store instruction refers
to. So, for any store instruction, for example line 22, Listing 5.3, we can analyze
the LLVM IR, and trace the value that the store instruction refers to, which is
“B” as per the IR, comment of line 19.

We perform an analysis on the LLVM IR, which tracks the set of memory
variables that each LLVM load/store instruction refers to. It is a context-sensitive
and flow-sensitive iterative data flow analysis that associates each MemoryDe-
f/MemoryUse with a set of memory variables. The result of this analysis is an
array SSA form, for each array variable, to track its def-use chain, similar to the
example in Fig. 2.
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6 Evaluation and Case Studies

Listing 6.1. DRACC File 23

28 int Mult(){

29

30 #pragma omp target map(to:a[0:C],b[0:C])

map(tofrom:c[0:C]) device (0)

31 {

32 #pragma omp teams

distribute parallel for

33 for(int i=0; i<C; i++){

34 for(int j=0; j<C; j++){

35 c[i]+=b[j+i*C]*a[j];

36 }

37 }

38 }

Listing 6.2. DRACC File 30

19 int init(){

20 for(int i=0; i<C; i++){

21 for(int j=0; j<C; j++){

22 b[j+i*C]=1;

23 }

24 a[i]=1;

25 c[i]=0;

26 }

~

31 int Mult(){

32

33 #pragma omp target

map(to:a[0:C],b[0:C*C]) map(from:c[0:

C*C]) device (0)

34 {

35 #pragma omp teams

distribute parallel for

36 for(int i=0; i<C; i++){

37 for(int j=0; j<C; j++){

38 c[i]+=b[j+i*C]*a[j];

For evaluating OMPSan we use the DRACC [1] suite, which is a benchmark for
data race detection on accelerators, and also includes several data mapping errors
also. Table 1 shows some distinct errors found by our tool in the benchmark [1]
and the examples of Sect. 2. We were able to find the 15 known data mapping
errors in the DRACC benchmark.

Listing 6.3. DRACC File 22

15 int init(){

16 for(int i=0; i<C; i++){

17 for(int j=0; j<C; j++){

18 b[j+i*C]=1;

19 }

20 a[i]=1;

21 c[i]=0;

22 }

23 return 0;

24 }

25

26

27 int Mult(){

28

29 #pragma omp target map(to:a[0:C]) map(

tofrom:c[0:C]) map(alloc:b[0:C*C]) device

(0)

30 {

31 #pragma omp teams

distribute parallel for

32 for(int i=0; i<C; i++){

33 for(int j=0; j<C; j++){

34 c[i]+=b[j+i*C]*a[j];

Listing 6.4. DRACC File 26

29 #pragma omp target

enter data map(to:a[0:C],b[0:C*C

],c[0:C]) device (0)

30 #pragma omp target device (0)

31 {

32 #pragma omp teams

distribute parallel for

33 for(int i=0; i<C; i++){

34 for(int j=0; j<C; j++){

35 c[i]+=b[j+i*C]*a[j];

36 }

37 }

38 }

39 #pragma omp target exit

data map(release:c[0:C])

map(release:a[0:C],b[0:C*C])

device (0)

40 return 0;

41 }

42

43 int check (){

44 bool test = false;

45 for(int i=0; i<C; i++){

46 if(c[i]!=C){

Table 1. Errors found in the DRACC Benchmark and other examples

File Name Error/Warning

DRACC File 22 Listing 6.3 ERROR Definition of :b on Line:18 is not reachable to Line:34,

Missing Clause:to:Line:32

DRACC File 26 Listing 6.4 ERROR Definition of :c on Line:35 is not reachable to Line:46

Missing Clause:from/update:Line:44

DRACC File 30 Listing 6.2 ERROR Definition of :c on Line:25 is not reachable to Line:38

Missing Clause:to:Line:36

DRACC File 23 Listing 6.1 WARNING Line:30 maps partial data of :b smaller than its total size

Example in Listing 2.1 ERROR Definition of :sum on Line:5 is not reachable to Line:6

Missing Clause:from/update:Line:6

Example in Listing 2.3 ERROR Definition of :A on Line:7 is not reachable to Line:9 Missing

Clause:from/update:8
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6.1 Analysis Time

To get an idea of the runtime overhead of our tool, we also measured the runtime
of the analysis. Table 2 shows the time to run OMPSan, on few SPEC ACCEL
and NAS parallel benchmarks. Due to the context and flow sensitive data flow
analysis implemented in OMPSan, its analysis time can be significant; however
the analysis time is less than or equal to the -O3 compilation time in all cases.

6.2 Diagnostic Information

Another major use case for OMPSan, is to help OpenMP developers understand
the data mapping behavior of their source code. For example, Listing 6.5 shows
a code fragment from the benchmark “FT” in the “NAS” suite. Our tool can
generate the following information diagnostic information on the current version
of the data mapping clause.

Table 2. Time to run OMPSan

Benchmark name -O3 compilation time (s) OMPSan Runtime (s)

SPEC 504.polbm 17 16

SPEC 503.postencil 3 3

SPEC 552.pep 7 4

SPEC 554.pcg 15 9

NAS FT 32 15

NAS MG 34 31

– Alloc: u0 imag[0 : 8421376], u0 real[0 : 8421376]
– Persistent In :: twiddle[0 : 8421376], u1 imag[0 : 8421376], u1 real[0 : 8421376]
– Persistent Out :: twiddle[0 : 8421376], u0 imag[0 : 8421376], u0 real[0 :

8421376], u1 imag[0 : 8421376], u1 real[0 : 8421376]
– Copy In:: Null, Copy Out:: Null

– tgt target teams, from::“ft.c:311” to “ft.c:331”

Listing 6.5. evolve from NAS/ft.c

307 stat ic void evo lve ( int d1 , int d2 , int d3 )

308 {
309 int i , j , k ;

311 #pragma omp ta rg e t map ( a l l o c : u0 rea l , u0 imag , u1 rea l , u1 imag , twiddle )

312 {
313 #pragma omp teams d i s t r i b u t e

314 for ( k = 0 ; k < d3 ; k++) {
315 #pragma omp p a r a l l e l for

316 for ( j = 0 ; j < d2 ; j++) {
317 #pragma omp simd

318 for ( i = 0 ; i < d1 ; i++) {
319 u0 r e a l [ . . . ] = u0 r e a l [ . . . ]∗ twiddle [ . . . ] ;

321 u0 imag [ . . . ] = u0 imag [ . . . ]∗ twiddle [ . . . ] ;
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6.3 Limitations

Since OMPSan is a static analysis tool, it includes a few limitations.

– Supports statically and dynamically allocated array variables, but cannot
handle dynamic data structures like linked lists It can possibly be addressed
in future through advanced static analysis techniques (like shape analysis).

– Cannot handle target regions inside recursive functions. It can possibly be
addressed in future work by improving our context sensitive analysis.

– Can only handle compile time constant array sections, and constant loop
bounds. We can handle runtime expressions, by adding static analysis support
to compare the equivalence of two symbolic expressions.

– Cannot handle declare target since it requires analysis across LLVM modules.
– May report false positives for irregular array accesses, like if a small section

of the array is updated, our analysis may assume that the entire array
was updated. More expensive analysis like symbolic analysis can be used
to improve the precision of the static analysis.

– May fail if Clang/LLVM introduces bugs while lowering OpenMP pragmas
to the RTL calls in the LLVM IR.

– May report false positives, if the OpenMP program relies on some dynamic
reference count mechanism. Runtime debugging approach will be required to
handle such cases.

It is interesting to note that, we did not find any false positives for the bench-
marks we evaluated on.

7 Related Work and Conclusion

Managing data transfers to and from GPUs has always been an important prob-
lem for GPU programming. Several solutions have been proposed to help the
programmer in managing the data movement. CGCM [6] was one of the first
systems with static analysis to manage CPU-GPU communications. It was fol-
lowed by [5], a dynamic tool for automatic CPU-GPU data management. The
OpenMPC compiler [9] also proposed a static analysis to insert data transfers
automatically. [8] proposed a directive based approach for specifying CPU-GPU
memory transfers, which included compile-time/runtime methods to verify the
correctness of the directives and also identified opportunities for performance
optimization. [13] proposed a compiler analysis to detect potential stale accesses
and uses a runtime to initiate transfers as necessary, for the X10 compiler. [11]
has also worked on automatically inferring the OpenMP mapping clauses using
some static analysis. OpenMP has also defined standards, OMPT and OMPD
[3,4] which are APIs for performance and debugging tools. Archer [2] is another
important work that combines static and dynamic techniques to identify data
races in large OpenMP applications.

In this paper, we have developed OMPSan, a static analysis tool to inter-
pret the semantics of the OpenMP map clause, and deduce the data transfers
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introduced by the clause. Our algorithm tracks the reference count for individ-
ual variables to infer the effect of the data mapping clause on the host and
device data environment. We have developed a data flow analysis, on top of
LLVM memory SSA to capture the def-use information of Array variables. We
use LLVM Scalar Evolution, to improve the precision of our analysis by esti-
mating the range of locations accessed by a memory access. This enables the
OMPSan to handle array sections also. Then OMPSan computes how the data
mapping clauses modify the def-use chains of the baseline program, and use this
information to validate if the data mapping in the OpenMP program respects
the original def-use chains of the baseline sequential program. Finally OMPSan
reports diagnostics, to help the developer debug and understand the usage of
map clauses of their program. We believe the analysis presented in this paper
is very powerful and can be developed further for data mapping optimizations
also. We also plan to combine our static analysis with a dynamic debugging tool,
that would enhance the performance of the dynamic tool and also address the
limitations of the static analysis.
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