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Preface

OpenMP is a widely used application programming interface (API) for high-level
shared-memory parallel programming in Fortran, C, and C++. Since its introduction in
1997, OpenMP has gained support from most high-performance compiler and hard-
ware vendors. With the recent release of OpenMP specification version 5.0 by the
OpenMP Architecture Review Board (ARB) in November 2018, OpenMP added
several major new features that enhance portability of its applications and tools, and
extend its support for heterogeneous systems and task-based parallelism. Major new
features in OpenMP include: context selectors, the metadirectives, and the declare
variant construct that use them; the requires directive; memory allocators and support
for deep copy of pointer-based data structures; the descriptive loop construct; and first
and third-party tools interfaces. OpenMP 5.0 also significantly enhances many existing
features, such as by providing implicit declare target semantics and support for task
reductions. As its additions (big and small) reflect the requests of the OpenMP user
community, OpenMP 5.0 provides multi-language high-level parallelism that is
performant, productive, and portable for the entire hardware spectrum from embedded
and accelerator devices to multicore shared-memory systems.

OpenMP is important both as a stand-alone parallel programming model and as part
of a hybrid programming model for massively parallel, distributed memory systems
built from multicore, manycore, and heterogeneous node architectures. As most of the
increased parallelism in the exascale systems is expected to be within a node, OpenMP
will become even more widely used in these top end systems. Importantly, the features
in OpenMP 5.0 support applications on such systems in addition to facilitating portable
exploitation of specific system attributes.

The evolution of the specification would be impossible without active research in
OpenMP compilers, runtime systems, tools, and environments. The many additions in
OpenMP 5.0 reflect the vibrant research community that surrounds it. As we look
towards the continued evolution of the language, that research community will con-
tinue to have a central role. The papers in this volume demonstrate that while OpenMP
5.0 will significantly enhance user experiences on a wide range of systems, the research
community will offer ample potential directions for further improvements.

The community of OpenMP researchers and developers is united under the cOM-
Punity organization. This organization has held workshops on OpenMP around the
world since 1999: the European Workshop on OpenMP (EWOMP), the North
American Workshop on OpenMP Applications and Tools (WOMPAT), and the Asian
Workshop on OpenMP Experiences and Implementation (WOMPEI) attracted annual
audiences from academia and industry. The International Workshop on OpenMP
(IWOMP) consolidated these three workshop series into a single annual international
event that rotates across Europe, Asia-Pacific, and the Americas. The first IWOMP
workshop was organized under the auspices of cOMPunity. Since that workshop, the
IWOMP Steering Committee has organized these events and guided development



of the series. The first IWOMP meeting was held in 2005, in Eugene, Oregon, USA.
Since then, meetings have been held each year, in Reims, France; Beijing, China; West
Lafayette, USA; Dresden, Germany; Tsukuba, Japan; Chicago, USA; Rome, Italy;
Canberra, Australia; Salvador, Brazil; Aachen, Germany; Nara, Japan; Stony Brook,
USA; and Barcelona, Spain. Each workshop has drawn participants from research and
industry throughout the world. IWOMP 2019 continues the series with technical papers
and tutorials. The IWOMP meetings have been successful in large part due to generous
support from numerous sponsors.

The IWOMP website (www.iwomp.org) provides information on the latest event, as
well as links to websites from previous years’ events. This book contains proceedings
of IWOMP 2019. The workshop program included 22 technical papers, 2 keynote
talks, and a tutorial on OpenMP. The paper “OMPSan: Static Verification of
OpenMP’s Data Mapping Constructs,” by Prithayan Barua, Jun Shirako, Whitney
Tsang, Jeeva Paudel, Wang Chen, and Vivek Sarkar was selected for the Best Paper
Award. All technical papers were peer reviewed by at least three different members
of the Program Committee.

September 2019 Xing Fan
Bronis R. de Supinski

Oliver Sinnen
Nasser Giacaman

vi Preface

http://www.iwomp.org
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OMPSan: Static Verification
of OpenMP’s Data Mapping Constructs

Prithayan Barua1(B), Jun Shirako1, Whitney Tsang2, Jeeva Paudel2,
Wang Chen2, and Vivek Sarkar1

1 Georgia Institute of Technology, Atlanta, Georgia
prithayan@gatech.edu

2 IBM Toronto Laboratory, Markham, Canada

Abstract. OpenMP offers directives for offloading computations from
CPU hosts to accelerator devices such as GPUs. A key underlying chal-
lenge is in efficiently managing the movement of data across the host
and the accelerator. User experiences have shown that memory manage-
ment in OpenMP programs with offloading capabilities is non-trivial and
error-prone.

This paper presents OMPSan (OpenMP Sanitizer) – a static
analysis-based tool that helps developers detect bugs from incorrect
usage of the map clause, and also suggests potential fixes for the bugs.
We have developed an LLVM based data flow analysis that validates if
the def-use information of the array variables are respected by the map-
ping constructs in the OpenMP program. We evaluate OmpSan over
some standard benchmarks and also show its effectiveness by detecting
commonly reported bugs.

Keywords: OpenMP offloading · OpenMP target data mapping ·
LLVM · Memory management · Static analysis · Verification ·
Debugging

1 Introduction

Open Multi-Processing (OpenMP) is a widely used directive-based parallel pro-
gramming model that supports offloading computations from hosts to accelerator
devices such as GPUs. Notable accelerator-related features in OpenMP include
unstructured data mapping, asynchronous execution, and runtime routines for
device memory management.

OMP Target Offloading and Data Mapping. OMP offers the omp target
directive for offloading computations to devices and the omp target data direc-
tive for mapping data across the host and the corresponding device data envi-
ronment. On heterogeneous systems, managing the movement of data between
the host and the device can be challenging, and is often a major source of perfor-
mance and correctness bugs. In the OpenMP accelerator model, data movement
between device and host is supported either explicitly via the use of a map clause
c© Springer Nature Switzerland AG 2019
X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 3–18, 2019.
https://doi.org/10.1007/978-3-030-28596-8_1
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or, implicitly through default data-mapping rules. The optimal, or even cor-
rect, specification of map clauses can be non-trivial and error-prone because it
requires users to reason about the complex dataflow analysis. To ensure that
the map clauses are correct, the OpenMP programmers need to make sure that
variables that are defined in one data environments and used in another data
environments are mapped accordingly across the different device and host data
environments. Given a data map construct, its semantics depends on all the pre-
vious usages of the map construct. Therefore, dataflow analysis of map clauses is
necessarily context-sensitive since the entire call sequence leading up to a specific
map construct can impact its behavior.

1.1 OpenMP 5.0 Map Semantics

Figure 1 shows a schematic illustration of the set of rules used when mapping a
host variable to the corresponding list item in the device data environment, as
specified in the OpenMP 5.0 standard. The rest of this paper assumes that the
accelerator device is a GPU, and that mapping a variable from host to device
introduces a host-to-device memory copy, and vice-versa. However, the bugs that
we identify reflect errors in the OpenMP code regardless of the target device.

The different map types that OpenMP 5.0 supports are,

– alloc: allocate on device, uninitialized
– to: map to device before kernel execution, (host-device memory copy)
– from: map from device after kernel execution (device-host memory copy)
– tofrom: copy in and copy out the variable at the entry and exit of the device

environment.

Arrays are implicitly mapped as tofrom, while scalars are firstprivate in the
target region implicitly, i.e., the value of the scalar on the host is copied to the
corresponding item on the device only at the entry to the device environment. As
Fig. 1 shows, OpenMP 5.0 specification uses the reference count of a variable, to
decide when to introduce a device/host memory copy. The host to device memory
copy is introduced only when the reference count is incremented from 0 to 1 and
the to attribute is present. Then the reference count is incremented every time a
new device map environment is created. The reference count is decremented on
encountering a from or release attribute, while exiting the data environment.
Finally, when the reference count is decremented to zero from 1, and the from
attribute is present, the variable is mapped back to the host from the device.

1.2 The Problem

For target offloading, the map clause is used to map variables from a task’s
data environment to the corresponding variable in the device data environment.
Incorrect data map clauses can result in usage of stale data in either host or
device data environment, which may result in the following kinds of issues,

– When reading the variable on the device data environment, it does not contain
the updated value of its original variable.

– When reading the original variable, it was not updated with the latest value
of the corresponding device environment variable.
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(a) Flowchart for Enter Device Environment

(b) Flowchart for Exit Device Environment

Fig. 1. Flowcharts to show how to interpret the map clause

1.3 Our Solution

We propose a static analysis tool called OMPSan to perform OpenMP code
“sanitization”. OMPSan is a compile-time tool, which statically verifies the
correctness of the data mapping constructs based on a dataflow analysis. The
key principle guiding our approach is that: an OpenMP program is expected to
yield the same result when enabling or disabling OpenMP constructs. Our app-
roach detects errors by comparing the dataflow information (reaching definitions
via LLVM’s memory SSA representation [10]) between the OpenMP and base-
line code. We developed an LLVM-based implementation of our approach and
evaluated its effectiveness using several case studies. Our specific contributions
include:

– an algorithm to analyze OpenMP runtime library calls inserted by Clang in
the LLVM IR, to infer the host/device memory copies. We expect that this
algorithm will have applications beyond our OMPSan tool.

– a dataflow analysis to infer Memory def-use relations.
– a static analysis technique to validate if the host/device memory copies

respect the original memory def-use relations.
– diagnostic information for users to understand how the map clause affects the

host and device data environment.
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Even though our algorithm is based on clang OpenMP implementation, it can
very easily be applied to other approaches like using directives to delay the
OpenMP lowering to a later LLVM pass. The paper is organized as follows.
Section 2 provides motivating examples to describe the common issues and dif-
ficulties in using OpenMP’s data map construct. Section 3 provides the back-
ground information that we use in our analysis. Section 4 presents an overview
of our approach to validate the usage of data mapping constructs. Section 5
presents the LLVM implementation details, and Sect. 6 presents the evaluation
and some case studies. Subsection 6.3 also lists some of the limitations of our
tool, some of them common to any static analysis.

2 Motivating Examples

To motivate the utility and applicability of OMPSan, we discuss three potential
errors in user code arising from improper usage of the data mapping constructs.

2.1 Default Scalar Mapping

Example 1: Consider the snippet of code in Listing 2.1. The printf on host,
line 8, prints stale value of sum. Note that the definition of sum on line 5 does
not reach line 8, since the variable sum is not mapped explicitly using the map
clause. As such, sum is implicitly firstprivate. As Listing 2.2 shows, an explicit
map clause with the tofrom attribute is essential to specify the copy in and copy
out of sum from device.

Listing 2.1. Default scalar map

1 int A[N], sum=0, i;
2 #pragma omp target
3 #pragma omp teams distribute

parallel for reduction (+:sum)
{

4 for(i=0; i<N; i++) {
5 sum += A[i];
6 }
7 }
8 printf("\n%d",sum);

Listing 2.2. Explicit map

1 int A[N], sum=0;
2 #pragma omp target map(tofrom:sum)
3 #pragma omp teams distribute

parallel for reduction (+:sum)
{

4 for( int i=0; i<N; i++) {
5 sum += A[i];
6 }
7 }
8 printf("\n%d",sum);

2.2 Reference Count Issues

Example 2: Listing 2.3 shows an example of a reference count issue. The state-
ment in line 12, which executes on the host, does not read the updated value of A
from the device. This is again because of the from clause on line 5, which incre-
ments the reference count to 2 on entry, and back to 1 on exit, hence after line
10, A is not copied out to host. Listing 2.4 shows the usage of target update
directive to force the copy-out and to read the updated value of A on line 15.

This example shows the difficulty in interpreting an independent map con-
struct. Especially when we are dealing with the global variables and map clauses
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across different functions, maybe even in different files, it becomes difficult to
understand and identify potential incorrect usages of the map construct.

Listing 2.3. Reference Count

1 #define N 100
2 int A[N], sum=0;
3 #pragma omp target data
4 map(from:A[0:N]) {
5 #pragma omp target
6 map(from:A[0:N]) {
7 for(int i=0; i<N; i++) {
8 A[i]=i;
9 }

10 }
11 for(int i=0; i<N; i++) {
12 sum += A[i];
13 }
14 }

Listing 2.4. Update Clause

1
2 #define N 100
3 int A[N], sum=0;
4 #pragma omp target data
5 map(from:A[0:N]) {
6 #pragma omp target
7 map(from:A[0:N]) {
8 for(int i=0; i<N; i++) {
9 A[i]=i;

10 }
11 }
12 #pragma omp target
13 update from(A[0:N])
14 for(int i=0; i<N; i++) {
15 sum += A[iGhosh];
16 }
17 }

3 Background

OMPSan assumes certain practical use cases, for example, in Listing 2.3, a user
would expect the updated value of A on line 12. Having said that, a skilled ninja
programmer may very well expect A to remain stale, because of their knowledge
and understanding of the complexities of data mapping rules. Our analysis and
error/warning reports from this work are intended primarily for the former case.

3.1 Memory SSA Form

Our analysis is based on the LLVM Memory SSA [10,12], which is an imprecise
implementation of Array SSA [7]. The Memory SSA is a virtual IR, that captures
the def-use information for array variables. Every definition is identified by a
unique name/number, which is then referenced by the corresponding use.

The Memory SSA IR has the following kinds of instructions/nodes,

– INIT , a special node to signify uninitialized or live on entry definitions
– N ′ = MemoryDef(N), N ′ is an operation which may modify memory, and

N identifies the last write that N ′ clobbers.
– MemoryUse(N), is an operation that uses the memory written by the defi-

nition N , and does not modify the memory.
– MemPhi(N1, N2, ...), is an operation associated with a basic block, and Ni

is one of the may reaching definitions, that could flow into the basic block.

We make the following simplifying assumptions, to keep the analysis tractable

– Given an array variable we can find all the corresponding load and store
instructions. So, we cannot handle cases, when pointer analysis fails to dis-
ambiguate the memory a pointer refers to.
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– A MemoryDef node clobbers the array associated with its store instruction.
As a result, write to any array location, is considered to update the entire
array.

– We analyze only the array variables that are mapped to a target region.

3.2 Scalar Evolution Analysis

LLVM’s Scalar Evolution (SCEV) is a very powerful technique that can be used
to analyze the change in the value of scalar variables over iterations of a loop.
We can use the SCEV analysis to represent the loop induction variables as chain
of recurrences. This mathematical representation can then be used to analyze
the index expressions of the memory operations.

We implemented an analysis for array sections, that given a load/store, uses
the LLVM SCEV analysis, to compute the minimum and maximum values of the
corresponding index into the memory access. If the analysis fails, then we default
to the maximum array size, which is either a static array, or can be extracted
from the LLVM memory alloc instructions.

4 Our Approach

In this section, we outline the key steps of our approach with the algorithm and
show a concrete example to illustrate the algorithm in action.

4.1 Algorithm

Algorithm 1 shows an overview of our data map analysis algorithm. First, we
collect all the array variables used in all the map clauses in the entire mod-
ule. Then line 5, calls the function ConstructArraySSA, which constructs the
Array SSA for each of the mapped Array variables. (In this paper, we use
”Array SSA” to refer to our extensions to LLVM’s Memory SSA form by
leveraging the capabilities of Array SSA form [7].) Then, we call the function,
InterpretTargetClauses, which modifies the Array SSA graph, in accordance
of the map semantics of the program. Then finally ValidateDataMap checks the
reachability on the final graph, to validate the map clauses, and generates a
diagnostic report with the warnings and errors.

Example. Let us consider the example in Fig. 2a to illustrate our approach
for analysis of data mapping clauses. ConstructArraySSA of Algorithm 1, con-
structs the memory SSA form for arrays “A” and “C” as shown in Fig. 2b. Then,
InterpretTargetClauses, removes the edges between host and device nodes, as
shown in Fig. 2c, where the host is colored green and device is blue. Finally, the
loop at line 29 of the function InterpretTargetClauses, introduces the host-
device/device-host memory copy edges, as shown in Fig. 2d. For example L1 is
connected to S2 with a host-device memory copy for the enter data map pragma
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Algorithm 1. Overview of Data Mapping Analysis
1: function DataMapAnalysis(Module)

2: MappedArrayV ars = φ
3: for ArrayV ar ∈ MapClauses do

4: MappedArrayV ars = MappedArrayV ars ∪ ArrayV ar

5: ConstructArraySSA(Module, MappedArrayV ars)

6: InterpretTargetClauses(Module, MappedArrayV ars)

7: ValidateDataMap(MappedArrayV ars)

8: function ConstructArraySSA(Module, MappedArrayV ars)
9: for MemoryAccess ∈ Module do

10: ArrayV ar = getArrayVar(MemoryAccess)
11: if ArrayV ar ∈ MappedArrayV ars then

12: if MemoryAccess ∈ OMP targetOffload Region then

13: targetNode = true � If Memory Access on device
14: else

15: targetNode = false � If Memory Access on host

16: Range = SCEVGetMinMax(MemoryAccess)
17: underConstruction= GetArraySSA(ArrayV ar)
18: � could be null or incomplete

19: InsertNodeArraySSA(underConstruction,MemoryAccess, targetNode, Range
)

20: � Incrementally construct, by adding this access

21: function InterpretTargetClauses(Module, MappedArrayV ars)

22: for ArrayV ar ∈ MappedArrayV ars do
23: ArraySSA = GetArraySSA(ArrayV ar)

24: for edge, (node, Successornode) ∈ (ArraySSA) do
25: nodeIsTarget = isTargetOffload(node)
26: succIsTarget = isTargetOffload(Successornode)

27: if nodeIsTarget ! = succIsTarget then
28: RemoveArraySSAEdge(node, Successornode )

29: for dataMap ∈ dataMapClauses do
30: hostNode = getHostNode(dataMap)

31: deviceNode = getDeviceNode(dataMap)
32: mapType = getMapClauseType(dataMap)
33: � alloc/copyIn/copyOut/persistentIn/persistentOut

34: InsertDataMapEdge(hostNode, deviceNode, mapType)

35: function ValidateDataMap(MappedArrayV ars)
36: for ArrayV ar ∈ MappedArrayV ars do
37: ArraySSA = GetArraySSA(ArrayV ar)
38: for memUse ∈ getMemoryUseNodes(ArraySSA) do

39: useRange = getReadRange(memUse)

40: clobberingAccess = getClobberingAccess(ArraySSA, memUse)
41: if isPartiallyReachable(ArraySSA, clobberingAccess, memUse, useRange)

then

42: Report WARNING

43: else if isNotReachable(ArraySSA, clobberingAccess, memUse) then

44: Report ERROR

with to: A[0 : 50] on line 5. Also, we connect the INIT node with L2, to account
for the alloc:C[0 : 100], which implies an uninitialized reaching definition for
this example.
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(a) Example, user Code (b) Memory SSA for sequential version

(c) Classify Host/Device Regions
(green=host, blue=device) (d) Host/Device Memory Copies

Fig. 2. Example of data map analysis

Lastly, ValidateDataMap function, traverses the graph, resulting in the fol-
lowing observations:

– (Error) Node S4:MemUse(5) is not reachable from its corresponding defini-
tion L2 : 5 = MemPhi(0, 6)

– (Warning) Only the partial artial array section A[0 : 50], is reachable from
definition L1 : 1 = MemPhi(0, 2) to S2 : MemUse(1)〈0 : 100〉
Section 6 contains other examples of the errors and warnings discovered by

our tool.

5 Implementation

We implemented our framework in LLVM 8.0.0. The OpenMP constructs are
lowered to runtime calls in Clang, so in the LLVM IR we only see calls to the
OpenMP runtime. There are several limitations of this approach with respect to
high level analysis like the one OMPSan is trying to accomplish. For example,
the region of code that needs to be offloaded to a device is opaque since it
is moved to a separate function. These functions are in turn called from the
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OpenMP runtime library. As a result, it is challenging to perform a global data
flow analysis for the memory def-use information of the offloaded region. To
simplify the analysis, we have to compile with clang twice.

First, we compile the OpenMP program with the flag that enables parsing
the OpenMP constructs, and compile it again without the flag, so that Clang
ignores the OpenMP constructs and instead generates the baseline LLVM IR for
the sequential version. During the OpenMP compilation pass, we execute our
analysis pass, which parses the runtime library calls and generates a csv file that
records all the user specified “target map” clauses, as explained in Subsect. 5.1.

Next we compile the program by ignoring the OpenMP pragmas, and per-
form whole program context and flow sensitive data flow analysis on LLVM code
generated from the sequential version, to construct the Memory def-use chains,
explained in Subsect. 5.2. Then this pass validates if the “target map” informa-
tion recorded in the csv file, respects all the Memory def-use relations present in
the sequential version of the code.

5.1 Interpreting OpenMP Pragmas

Listing 5.1. Example map clause

1
2 #pragma omp ta rg e t
3 map( tofrom :A[ 0 : 1 0 ] )
4 for ( i = 0 ; i < 10 ; i++)
5 A[ i ] = i ;

Listing 5.2. Pseudocode for LLVM IR
with RTL calls

1 void ∗∗ArgsBase = {&A}
2 void ∗∗Args = {&A}
3 i n t 6 4 t ∗ ArgsSize = {40}
4 void ∗∗ArgsMapType = {

OMPTGTMAPTYPETO |
OMPTGTMAPTYPEFROM }

5 c a l l @ t g t t a r g e t
6 (−1 , HostAdr , 1 , ArgsBase ,
7 Args , ArgsSize , ArgsMapType )

Listing 5.1 shows a very simple user program, with a target data map clause.
Listing 5.2 shows the corresponding LLVM IR in pseudocode, after clang intro-
duces the runtime calls at Line 5. We parse the arguments of this call to interpret
the map construct. For example, the 3rd argument to the call at line 6 of List-
ing 5.2 is 1, that means there is only one item in the map clause. Line 1, that is
the value loaded into ArgsBase is used to get the memory variable that is being
mapped. Line 3, ArgsSize gives the end of the corresponding array section,
starting from ArgsBase. Line 4, ArgsMapType, gives the map attribute used
by the programmer, that is “tofrom”.

We wrote an LLVM pass that analyzes every such Runtime Library (RTL)
call, and tracks the value of each of its arguments, as explained above. Once
we obtain this information, we use the algorithm in Fig. 1 to interpret the data
mapping semantics of each clause. The data mapping semantics can be classified
into following categories,

– Copy In: A memory copy is introduced from the host to the corresponding
list item in the device environment.

– Copy Out: A memory copy is introduced from the device to the host envi-
ronment.
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– Persistent Out: A device memory variable is not deleted, it is persistent on
the device, and available to the subsequent device data environment.

– Persistent In: The memory variable is available on entry to the device data
environment, from the last device invocation.

The examples in Subsect. 6.2 illustrate the above classification.

5.2 Baseline Memory Use Def Analysis

LLVM has an analysis called the MemorySSA [10], it is a relatively cheap analysis
that provides an SSA based form for memory def-use and use-def chains. LLVM
MemorySSA is a virtual IR, which maps Instructions to MemoryAccess, which
is one of three kinds, MemoryPhi, MemoryUse and MemoryDef.

Operands of any MemoryAccess are a version of the heap before that opera-
tion, and if the access can modify the heap, then it produces a value, which is the
new version of the heap after the operation. Figure 3 shows the LLVM Memory
SSA for the OpenMP program in Listing 5.3. The comments in the listing denote
the LLVM IR and also the corresponding MemoryAccess.

Listing 5.3. OpenMP program, for Fig. 3
1 int main ( ) {
2 int A[ 1 0 ] , B [ 1 0 ] ;
3 // 2 = MemoryPhi(1 ,3)
4 for ( int i =0 ; i < 10 ; i++) {
5 // %arrayidx = gete lementptr %A, 0 , %

idxprom
6 // s tore %i .0 , %arrayidx ,
7 // 3 = MemoryDef(2)
8 A[ i ] = i ;
9 }

10 #pragma omp ta rg e t ente r data map( to :A
[ 0 : 5 ] )

11 map( a l l o c :B [ 0 : 1 0 ] )
12 #pragma omp ta rg e t
13 // 4 = MemoryPhi(2 ,5)
14 for ( int i = 0 ; i < 10 ; i++) {
15 // %arrayidx7 = gete lementptr %A, 0 , %

idxprom6
16 // %2 = load %arrayidx7
17 // MemoryUse(4)
18 int t = A[ i ] ;
19 // %arrayidx9 = gete lementptr %B, 0 , %

idxprom8
20 // s tore %2, %arrayidx9
21 // 5 = MemoryDef(4)
22 B[ i ] = t
23 }
24
25 for ( int i = 0 ; i < 10 ; i++) {
26 //arrayidx19 = gete lementptr %B, 0 , %

idxprom18
27 //%3 = load %arrayidx19
28 // MemoryUse(4)
29 p r i n t f ( ”%d” ,B[ i ] ) ;
30 }
31
32 return 0 ;
33 }

Fig. 3. Memory SSA of
Listing 5.3
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We have simplified this example, to make it relevant to our context.
LiveonEntry is a special MemoryDef that dominates every MemoryAccess within
a function, and implies that the memory is either undefined or defined before
the function begins. The first node in Fig. 3 is a LiveonEntry node. The
3 = MemoryDef(2) node, denotes that there is a store instruction which clob-
bers the heap version 2, and generates heap 3, which represents the line 8 of the
source code. Whenever more than one heap versions can reach a basic block, we
need a MemoryPhi node, for example, 2 = MemoryPhi(1, 3) corresponds to
the for loop on line 4. There are two versions of the heap reaching this node,
the heap 1, 1 = LiveonEntry and the other one from the back edge, heap 3,
3 = MemoryDef(2). The next MemoryAccess, 4 = MemoryPhi(2, 5), corre-
sponds to the for loop at line 14. Again the clobbering accesses that reach it
are 2 from the previous for loop and 5, from its loop body. The load of mem-
ory A on line 18, corresponds to the MemoryUse(4), that notes that the last
instruction that could clobber this read is MemoryAccess 4 = MemoryPhi(2, 5).
Then, 5 = MemoryDef(4) clobbers the heap, to generate heap version 5. This
corresponds to the write to array B on line 22. This is an important example of
how LLVM deliberately trades off precision for speed. It considers the memory
variables as disjoint partitions of the heap, but instead of trying to disambiguate
aliasing, in this example, both stores/MemoryDefs clobber the same heap par-
tition. Finally, the read of B on line 29, corresponds to MemoryUse(4), with
the heap version 4, reaching this load. Since this loop does not update memory,
there is no need for a MemoryPhi node for this loop, but we have left the node
empty in the graph to denote the loop entry basic block.

Now, we can see the difference between the LLVM memory SSA (Fig. 3)
and the array def-use chains required for our analysis (Fig. 2). We developed a
dataflow analysis to extract the array def-use chains from the LLVM Memory
SSA, by disambiguating the array variable that each load/store instruction refers
to. So, for any store instruction, for example line 22, Listing 5.3, we can analyze
the LLVM IR, and trace the value that the store instruction refers to, which is
“B” as per the IR, comment of line 19.

We perform an analysis on the LLVM IR, which tracks the set of memory
variables that each LLVM load/store instruction refers to. It is a context-sensitive
and flow-sensitive iterative data flow analysis that associates each MemoryDe-
f/MemoryUse with a set of memory variables. The result of this analysis is an
array SSA form, for each array variable, to track its def-use chain, similar to the
example in Fig. 2.
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6 Evaluation and Case Studies

Listing 6.1. DRACC File 23

28 int Mult(){

29

30 #pragma omp target map(to:a[0:C],b[0:C])

map(tofrom:c[0:C]) device (0)

31 {

32 #pragma omp teams

distribute parallel for

33 for(int i=0; i<C; i++){

34 for(int j=0; j<C; j++){

35 c[i]+=b[j+i*C]*a[j];

36 }

37 }

38 }

Listing 6.2. DRACC File 30

19 int init(){

20 for(int i=0; i<C; i++){

21 for(int j=0; j<C; j++){

22 b[j+i*C]=1;

23 }

24 a[i]=1;

25 c[i]=0;

26 }

~

31 int Mult(){

32

33 #pragma omp target

map(to:a[0:C],b[0:C*C]) map(from:c[0:

C*C]) device (0)

34 {

35 #pragma omp teams

distribute parallel for

36 for(int i=0; i<C; i++){

37 for(int j=0; j<C; j++){

38 c[i]+=b[j+i*C]*a[j];

For evaluating OMPSan we use the DRACC [1] suite, which is a benchmark for
data race detection on accelerators, and also includes several data mapping errors
also. Table 1 shows some distinct errors found by our tool in the benchmark [1]
and the examples of Sect. 2. We were able to find the 15 known data mapping
errors in the DRACC benchmark.

Listing 6.3. DRACC File 22

15 int init(){

16 for(int i=0; i<C; i++){

17 for(int j=0; j<C; j++){

18 b[j+i*C]=1;

19 }

20 a[i]=1;

21 c[i]=0;

22 }

23 return 0;

24 }

25

26

27 int Mult(){

28

29 #pragma omp target map(to:a[0:C]) map(

tofrom:c[0:C]) map(alloc:b[0:C*C]) device

(0)

30 {

31 #pragma omp teams

distribute parallel for

32 for(int i=0; i<C; i++){

33 for(int j=0; j<C; j++){

34 c[i]+=b[j+i*C]*a[j];

Listing 6.4. DRACC File 26

29 #pragma omp target

enter data map(to:a[0:C],b[0:C*C

],c[0:C]) device (0)

30 #pragma omp target device (0)

31 {

32 #pragma omp teams

distribute parallel for

33 for(int i=0; i<C; i++){

34 for(int j=0; j<C; j++){

35 c[i]+=b[j+i*C]*a[j];

36 }

37 }

38 }

39 #pragma omp target exit

data map(release:c[0:C])

map(release:a[0:C],b[0:C*C])

device (0)

40 return 0;

41 }

42

43 int check (){

44 bool test = false;

45 for(int i=0; i<C; i++){

46 if(c[i]!=C){

Table 1. Errors found in the DRACC Benchmark and other examples

File Name Error/Warning

DRACC File 22 Listing 6.3 ERROR Definition of :b on Line:18 is not reachable to Line:34,

Missing Clause:to:Line:32

DRACC File 26 Listing 6.4 ERROR Definition of :c on Line:35 is not reachable to Line:46

Missing Clause:from/update:Line:44

DRACC File 30 Listing 6.2 ERROR Definition of :c on Line:25 is not reachable to Line:38

Missing Clause:to:Line:36

DRACC File 23 Listing 6.1 WARNING Line:30 maps partial data of :b smaller than its total size

Example in Listing 2.1 ERROR Definition of :sum on Line:5 is not reachable to Line:6

Missing Clause:from/update:Line:6

Example in Listing 2.3 ERROR Definition of :A on Line:7 is not reachable to Line:9 Missing

Clause:from/update:8
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6.1 Analysis Time

To get an idea of the runtime overhead of our tool, we also measured the runtime
of the analysis. Table 2 shows the time to run OMPSan, on few SPEC ACCEL
and NAS parallel benchmarks. Due to the context and flow sensitive data flow
analysis implemented in OMPSan, its analysis time can be significant; however
the analysis time is less than or equal to the -O3 compilation time in all cases.

6.2 Diagnostic Information

Another major use case for OMPSan, is to help OpenMP developers understand
the data mapping behavior of their source code. For example, Listing 6.5 shows
a code fragment from the benchmark “FT” in the “NAS” suite. Our tool can
generate the following information diagnostic information on the current version
of the data mapping clause.

Table 2. Time to run OMPSan

Benchmark name -O3 compilation time (s) OMPSan Runtime (s)

SPEC 504.polbm 17 16

SPEC 503.postencil 3 3

SPEC 552.pep 7 4

SPEC 554.pcg 15 9

NAS FT 32 15

NAS MG 34 31

– Alloc: u0 imag[0 : 8421376], u0 real[0 : 8421376]
– Persistent In :: twiddle[0 : 8421376], u1 imag[0 : 8421376], u1 real[0 : 8421376]
– Persistent Out :: twiddle[0 : 8421376], u0 imag[0 : 8421376], u0 real[0 :

8421376], u1 imag[0 : 8421376], u1 real[0 : 8421376]
– Copy In:: Null, Copy Out:: Null

– tgt target teams, from::“ft.c:311” to “ft.c:331”

Listing 6.5. evolve from NAS/ft.c

307 stat ic void evo lve ( int d1 , int d2 , int d3 )

308 {
309 int i , j , k ;

311 #pragma omp ta rg e t map ( a l l o c : u0 rea l , u0 imag , u1 rea l , u1 imag , twiddle )

312 {
313 #pragma omp teams d i s t r i b u t e

314 for ( k = 0 ; k < d3 ; k++) {
315 #pragma omp p a r a l l e l for

316 for ( j = 0 ; j < d2 ; j++) {
317 #pragma omp simd

318 for ( i = 0 ; i < d1 ; i++) {
319 u0 r e a l [ . . . ] = u0 r e a l [ . . . ]∗ twiddle [ . . . ] ;

321 u0 imag [ . . . ] = u0 imag [ . . . ]∗ twiddle [ . . . ] ;
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6.3 Limitations

Since OMPSan is a static analysis tool, it includes a few limitations.

– Supports statically and dynamically allocated array variables, but cannot
handle dynamic data structures like linked lists It can possibly be addressed
in future through advanced static analysis techniques (like shape analysis).

– Cannot handle target regions inside recursive functions. It can possibly be
addressed in future work by improving our context sensitive analysis.

– Can only handle compile time constant array sections, and constant loop
bounds. We can handle runtime expressions, by adding static analysis support
to compare the equivalence of two symbolic expressions.

– Cannot handle declare target since it requires analysis across LLVM modules.
– May report false positives for irregular array accesses, like if a small section

of the array is updated, our analysis may assume that the entire array
was updated. More expensive analysis like symbolic analysis can be used
to improve the precision of the static analysis.

– May fail if Clang/LLVM introduces bugs while lowering OpenMP pragmas
to the RTL calls in the LLVM IR.

– May report false positives, if the OpenMP program relies on some dynamic
reference count mechanism. Runtime debugging approach will be required to
handle such cases.

It is interesting to note that, we did not find any false positives for the bench-
marks we evaluated on.

7 Related Work and Conclusion

Managing data transfers to and from GPUs has always been an important prob-
lem for GPU programming. Several solutions have been proposed to help the
programmer in managing the data movement. CGCM [6] was one of the first
systems with static analysis to manage CPU-GPU communications. It was fol-
lowed by [5], a dynamic tool for automatic CPU-GPU data management. The
OpenMPC compiler [9] also proposed a static analysis to insert data transfers
automatically. [8] proposed a directive based approach for specifying CPU-GPU
memory transfers, which included compile-time/runtime methods to verify the
correctness of the directives and also identified opportunities for performance
optimization. [13] proposed a compiler analysis to detect potential stale accesses
and uses a runtime to initiate transfers as necessary, for the X10 compiler. [11]
has also worked on automatically inferring the OpenMP mapping clauses using
some static analysis. OpenMP has also defined standards, OMPT and OMPD
[3,4] which are APIs for performance and debugging tools. Archer [2] is another
important work that combines static and dynamic techniques to identify data
races in large OpenMP applications.

In this paper, we have developed OMPSan, a static analysis tool to inter-
pret the semantics of the OpenMP map clause, and deduce the data transfers
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introduced by the clause. Our algorithm tracks the reference count for individ-
ual variables to infer the effect of the data mapping clause on the host and
device data environment. We have developed a data flow analysis, on top of
LLVM memory SSA to capture the def-use information of Array variables. We
use LLVM Scalar Evolution, to improve the precision of our analysis by esti-
mating the range of locations accessed by a memory access. This enables the
OMPSan to handle array sections also. Then OMPSan computes how the data
mapping clauses modify the def-use chains of the baseline program, and use this
information to validate if the data mapping in the OpenMP program respects
the original def-use chains of the baseline sequential program. Finally OMPSan
reports diagnostics, to help the developer debug and understand the usage of
map clauses of their program. We believe the analysis presented in this paper
is very powerful and can be developed further for data mapping optimizations
also. We also plan to combine our static analysis with a dynamic debugging tool,
that would enhance the performance of the dynamic tool and also address the
limitations of the static analysis.
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Abstract. Event-based performance analysis aims at modeling the
behavior of parallel applications through a series of state transitions dur-
ing execution. Different approaches to obtain such transition points for
OpenMP programs include source-level instrumentation (e.g., OPARI)
and callback-driven runtime support (e.g., OMPT).

In this paper, we revisit a previous evaluation and comparison of
OPARI and an LLVM OMPT implementation—now updated to the
OpenMP 5.0 specification—in the context of Score-P. We describe the
challenges faced while trying to use OMPT as a drop-in replacement for
the existing instrumentation-based approach and the changes in event
order that could not be avoided. Furthermore, we provide details on
Score-P measurements using OPARI and OMPT as event sources with
the EPCC and SPEC OpenMP benchmark suites.

Keywords: Performance measurement · Performance analysis ·
OpenMP

1 Introduction

The use of performance analysis tools that measure and analyze the runtime
behavior of applications is a crucial part of successful performance engineering.
Besides core-level optimizations such as proper vectorization and cache usage,
particular attention needs to be paid to efficient code parallelization. In high-
performance computing (HPC), OpenMP [26] is commonly used to parallelize
computations on the node level to take advantage of the nowadays omnipresent
multi-core CPUs. However, before the OpenMP 5.0 specification was released in
November 2018, there has been no official interface for tools to capture OpenMP-
related information. Nevertheless, performance monitoring tools have been able
to obtain OpenMP-related measurement data for quite some time using different
approaches.
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For example, TAU [30], VampirTrace [14], Scalasca’s EPIK [10], ompP [9],
and Score-P [15] all leverage the OpenMP Pragma And Region Instrumentor
OPARI [20]. OPARI is a source-to-source preprocessor that rewrites OpenMP
directives found in the source code, inserting POMP API calls [21] for instru-
mentation. These functions then have to be implemented by the respective tool
to gather relevant performance data. Meanwhile, an extended version (OPARI2)
is available using an enhanced API.

Another proposal for an OpenMP collector API was published in 2006 by
Itzkowitz et al. [12]. However, with its restricted focus on sampling-based tools,
this approach did not find widespread adoption. To the authors knowledge, it has
only been implemented and used by the Sun/Oracle Developer Studio compiler’s
OpenMP runtime and the associated performance tools, as well as the OpenUH
compiler [16] and TAU [30] as part of an evaluation by Huck et al. [11].

A first draft of the OpenMP Tools Interface (OMPT) was published by
Eichenberger et al. [6] in 2013. Based on this interface, Lorenz et al. conducted an
initial comparison between OPARI2 and OMPT in the context of Score-P [17].
However, early experiences in implementing OMPT support in both OpenMP
runtimes and tools led to significant changes of the interface before it was inte-
grated into the OpenMP specification with Technical Report 4 [24]. A slightly
updated version is now part of the OpenMP 5.0 specification [26].

In this paper, we present our experiences with this OpenMP 5.0 version of
the OMPT interface as implemented in the LLVM OpenMP runtime [3] with the
Score-P instrumentation and measurement system. We describe the challenges
encountered while trying to reconstruct the event sequences based on a logical
execution view expected by Score-P’s measurement core as well as the analy-
sis tools building on top of Score-P from the OMPT events generated by the
LLVM runtime. Moreover, we highlight major differences between the OMPT-
based data collection and our previous OPARI2-based approach. Finally, we
show a detailed overhead comparison between both approaches using the EPCC
OpenMP benchmark suite [5] and the SPEC OMP2012 benchmarks [22].

2 The OpenMP Tools Interface

In this section, we will briefly introduce the OpenMP Tools Interface (OMPT)
and highlight major changes compared to the initial draft [6] used in the study
by Lorenz et al. [17]. OMPT is a portable interface enabling tools to gain deeper
insight into the execution of an OpenMP program. The design of OMPT accom-
modates tools based on both sampling and instrumentation. For instrumenta-
tion, OMPT defines callbacks for relevant events to be dispatched during exe-
cution of a program. A tool can register callback handlers to record information
about the execution which includes, for example, the types of threads, tasks,
and mutexes, information on the stack frames, and more. Additionally, there
are inquiry functions which can be used to extract additional information from
within callback handlers, or signal handlers as typically used to implement sam-
pling tools.
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Changes to OMPT. In the OpenMP 5.0 specification, tool initialization is now
a three-way handshake protocol. This allows the OpenMP runtime to determine
early during its initialization whether a tool is present or not. At the same time,
a tool can decide against activation for a specific run.

Initially, a tool was able to identify a thread, a parallel team, or a task by an
integer ID maintained by the runtime. Tracking OpenMP entities across multi-
ple callback invocations therefore required potentially costly lookups. For most
callbacks—a notable exception are the lock and mutex callbacks—the integer ID
was replaced by storage for a 64-bit data word that a tool can use to maintain
information on behalf of an OpenMP entity, thus enabling more efficient tool
implementations.

Moreover, multiple events providing similar information have been folded
into a single event callback. While reducing the number of callbacks simplifies
the interface, it also reduces the possibilities for a tool to selectively choose a
set of interesting events. The initial proposal also contained callbacks indicating
that a thread is idling between participation in two consecutive parallel regions;
these callbacks have been removed. We will see in Sect. 3, that the implicit-task-
end event for worker threads can be dispatched late, so that the runtime might
effectively report no idle time.

In contrast, callbacks for advanced OpenMP features such as task cancellation
or task dependences have been added. While cancellation information can be
relevant for maintaining the OMPT tool data objects, we do not yet see a use
case in Score-P for logging these events. On the other hand, task-dependency
information can be interesting to perform critical path analysis in tools like
Scalasca. Another addition are callbacks for devices including callbacks for the
initialization/finalization of devices as well as for data movements between host
and devices. However, this part of OMPT is not yet implemented in the OpenMP
runtime we are using for our experiments and therefore not considered in our
implementation.

To allow a tool to relate events to source code, a pointer argument providing
an instruction address was added to various callbacks. For ease of implementa-
tion, this pointer is defined as the return address: the next instruction executed
after the runtime function implementing an OpenMP construct finished.

Since the order in which the OpenMP runtime and an attached OMPT tool
are shut down is not necessarily well-defined, an ompt finalize tool() func-
tion has been introduced. This function can be called by the tool during its
finalization and guarantees that any outstanding events that might have been
buffered by the runtime get dispatched. If the OpenMP runtime was already
finalized, however, all events have been dispatched and this function call results
in a no-op.

3 Implementing OMPT Support in Score-P

Score-P—the tool we focus on in this paper—is a highly scalable and easy-to-
use instrumentation and measurement infrastructure for profiling, event tracing,
and online analysis of HPC applications. It currently supports the analysis tools
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Scalasca [10,31], Vampir [14], Periscope [4], and TAU [30], and is open for other
tools that are based on the Open Trace Format Version 2 (OTF2) [7] or the
CUBE4 [28] profiling format as well as tools that implement a Score-P substrate
plugin [29] for event consumption. As outlined before, up until now Score-P
uses the source-level instrumentor OPARI2 to rewrite and annotate OpenMP
directives to gather OpenMP-specific performance data. To limit the number of
required changes in the analysis tools, we aim for generating the same (or at
least very similar) event sequences based on a logical execution view from the
OMPT events generated by the LLVM runtime. In the following, we describe
the various challenges encountered and how we addressed them.

During development and for the experiments in this paper we used an
OpenMP runtime implementation based on LLVM/7.0 including a patch which
implements ompt finalize tool() [2]. This implementation roughly represents
the interface as defined in Technical Report 6 [25], without callbacks for device-
related events. Semantically there is no big difference to the OMPT specification
in OpenMP 5.0. The resulting Score-P development version implementing the
new OMPT functionality can be downloaded from [8]. Compilation was consis-
tently done using the Intel compiler, version 19.0.3.199 20190206.

Event Sequence Requirements. Score-P stores event data independently
per logical execution unit in buffers called locations. Events in these loca-
tions are required to have monotonically increasing timestamps (monotonic-
ity requirement). In addition, as the Score-P event model is based on regions
that correspond to regions in the source code, most events are paired, either as
ENTER/LEAVE or BEGIN/END pairs. These pairs must be properly nested within
a location, otherwise the profile measurement or trace analysis fails (nesting
requirement). Here, special care is taken for events generated from within explicit
OpenMP tasks as the nesting requirement might be violated in task scheduling
points [18]. For parallel constructs that affect several locations, the happened-
before semantics must be reflected in the ordering of timestamps (HB require-
ment). For example, all timestamps belonging to events from within a parallel
construct must not be larger than the corresponding parallel-end timestamp.
With OPARI2’s instrumentation being entirely inside the parallel region, this
requirement is always fulfilled, and thus analysis tools rely on it to calculate
performance metrics. To minimize synchronization overhead, the OMPT speci-
fication is less strict regarding cross-location happened-before relationships, as
detailed below.

parallel Construct: Overdue Events. OPARI2 as well as OMPT use the
event sequence depicted in Fig. 1 for a parallel construct with T0 as the encoun-
tering thread. The events for each thread T0–T2 are written to individual Score-P
locations, where the encountering thread and the master child thread share one
location. With OPARI2 instrumentation, all events of all locations are dispatched
before the closing parallel-end on the encountering thread. Timestamps taken at
dispatch time are guaranteed to meet the fork-join happened-before semantics.
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Fig. 1. Event sequence and ordering for a parallel construct.

The OMPT specification, however, does not impose the requirement on non-
master child threads to dispatch the implicit-barrier-end and implicit-task-end
callbacks earlier than the corresponding parallel-end on the encountering thread,
only all implicit-barrier-begin events are guaranteed to be dispatched before the
implicit-barrier-end . That is, there might be two overdue events per non-master
child thread waiting for being dispatched even if the parallel region was already
joined, as highlighted for thread T2 in the diagram above. The only guarantee
for these overdue events is that they are dispatched before any further events on
this thread.

As a first consequence, timestamps taken when the overdue events are being
dispatched likely violate the HB requirement. The only implicit-barrier-end and
implicit-task-end timestamps guaranteed to conform to the assumed ordering are
those on the master thread. To retain the happened-before timestamp order in
Score-P, we chose to use these timestamps for all remaining implicit-barrier-end
and implicit-task-end events, thus having identical timestamps per event type
for all threads in the team.

parallel Construct: Non-deterministic Scheduling. The next conse-
quence arises from the combination of (1) the freedom of the runtime to postpone
events, (2) the mapping of OpenMP threads to Score-P locations, and (3) poten-
tial non-determinism in mapping of logical OpenMP threads to system threads.
Whereas the first item has been described above, the other items need some
additional explanation.

Score-P establishes a fixed mapping of OpenMP threads to Score-P locations
based on OpenMP nesting characteristics, where the nesting characteristic is
determined by the sequence of OpenMP thread numbers from the initial thread
to the current one. This mapping is established in implicit-task-begin events by
assigning a location to thread-local storage. The reasons for a fixed mapping are
(1) to provide the user with the logical execution view, that is, present events
per OpenMP thread number instead of per system thread, and (2) to maximize
scalability regarding memory and the number of generated output files. As each
distinct nesting characteristic is assigned a single Score-P location, locations
are reused in subsequent parallel regions if a nesting characteristic has come to
light previously1. In contrast, the system thread executing an OpenMP nesting
characteristic might change in subsequent parallel regions.
1 In addition, the master thread reuses the encountering thread’s location.
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1 implicit-task-begin 2 implicit-barrier-begin 3 implicit-barrier-end 4 implicit-task-end

Expected event order per invocation on location 2 (loc. 2) and location 3 (loc. 3)

loc. 0

loc. 1

loc. 2

loc. 3

time

invocation A invocation B invocation C ompt finalize tool

threads X triggers Y

A1 A2

A1 A2

B1A3 A4 B2

B1A3 A4 B2

C1B3 B4 C2 C3 C4

C1 C2

sequence broken here

C3 C4

B3 B4

sequence broken here

Fig. 2. Three invocations of identical nested parallel regions with two threads in each
team. For invocation B the non-master OpenMP threads of the inner regions are invert-
edly mapped to system threads, for invocation C the non-master threads of both inner
regions are mapped to the same blue system thread. A location corresponds to a unique
OpenMP ancestry sequence. (Color figure online)

In the advent of overdue events combined with a non-deterministic OpenMP
thread to system thread mapping we observe two anomalous schedules which tend
to break the monotonicity requirement and may lead to data corruption. Figure 2
illustrates these schedule decisions. Assume a parallel region with a team size of
two that executes a nested parallel region, also with team size of two, for three
subsequent invocations A, B, and C. The two inner parallel regions expose work
for four OpenMP threads with different nesting characteristics, thus Score-P will
create four locations. The Score-P locations created in invocation A are reused
in invocation B and C because of identical nesting characteristics. The first form
of the anomaly manifests in a OpenMP thread to system thread assignment switch
between invocations; while the inner region’s non-master implicit tasknwas served
by system thread i in the first invocation, it is served by system thread j in the sec-
ond one and vice versa for the other inner region, see transition from invocation A
to B in the figure. Each two system threads blue and red carry two overdue events
A3 and A4 from invocationA to be written to location 3 (blue) and location 2 (red),
respectively. Each thread triggers its overdue events before its B1 event of invoca-
tion B . In B1 the switch manifests as a location change. As no ordering is enforced
by OMPT, thread red might write B1 concurrently with thread blue writing the
overdue events A3 and A4 to location 3 and vice versa for location 2. This race con-
dition potentially violates the monotonicity requirement on either location—the
overdue events A3 and A4 need to be written before B1—or worse, leads to cor-
rupted data. Note that there is no race condition in the absence of overdue events.

The second form manifests in invocation C in Fig. 2 being executed by just
three of the four threads; the two inner region’s non-master implicit tasks get
both executed by the same system thread (blue). This time there is no issue on
location 2 as all events are delivered in the expected order. The problem arises for
location 3 during runtime shutdown. The undelivered events B3 and B4 (red) are
dispatched and will violate the monotonicity requirement. If the undelivered C3
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and C4 (blue) are dispatched concurrently, data might get corrupted in addition.
The runtime implementation we used showed this anomalies only with nested
parallel constructs.

To address these two anomalies, we need to ensure that any overdue events
for a given location are written before processing an implicit-task-begin event
from a subsequent invocation on the same location. Translated to Fig. 2, invo-
cation B and location 3, this means to write A3 and A4 from thread blue before
B1 from thread red . Thus, the first thing to do in B1 is to detect whether there
are overdue A3 and A4 events for location 3. To do so, we use location-specific
data transferred from invocation A to invocation B , saving a Score-P represen-
tation of the latest implicit task data together with synchronization handles.
This data is cleared from the location once the overdue events have been pro-
cessed completely. If the overdue event data is still available when thread red
dispatches B1, thread red takes ownership and processes A3 and A4 first—using
the location-specific data provided by thread blue in invocation A—while pre-
venting thread blue to do the same. If thread blue is first, it takes ownership
and processes A3 and A4 while blocking thread red working on B1 during this
time. Applying this synchronization for every implicit-task-begin will processes
all overdue events except the ones waiting for being dispatched when the pro-
gram finishes, here C3 and C4 from thread blue. These are explicitly triggered
by calling ompt finalize tool during Score-P’s shutdown and handled without
additional effort. The fine-grained synchronization necessary to orchestrate this
mechanism uses atomic updates and two spin-mutexes per location.

Developing this overdue-handling mechanism to maintain the established
event sequence for the parallel construct was the biggest challenge in imple-
menting support for OMPT in Score-P. Once this was achieved, implementing
other OMPT callbacks was straightforward.

4 Differences in Event Sequence and Source Information

To investigate differences emerging from using OMPT callbacks compared to the
traditional OPARI2 instrumentation, we ran experiments from the OpenMP 4.5
Examples [8,23].

Worksharing Constructs. Implicit barriers synchronize worksharing con-
structs, unless a nowait clause was given. For OPARI2, these implicit barriers
conceptually belong to the construct, that is, the events are nested inside the
enclosing construct’s ENTER and LEAVE events. In contrast, OMPT dispatches
the implicit barrier events after the worksharing’s end event. The different event
order is exemplified with a minimal example using the worksharing-loop con-
struct, see Listing 1. This event-sequence change is seen for all worksharing con-
structs.
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1 #pragma omp parallel
2 {

3 #pragma omp for
4 for (int i = 0; i<20; i++)

5 work();

6 }

1 ENTER Region: "!$omp parallel"

2 ENTER Region: "!$omp for"

3 - ENTER Region: "!$omp barrier"

4 - LEAVE Region: "!$omp barrier"

5 LEAVE Region: "!$omp for"

6 + ENTER Region: "!$omp barrier"

7 + LEAVE Region: "!$omp barrier"

8 ENTER Region: "!$omp barrier"

9 LEAVE Region: "!$omp barrier"

10 LEAVE Region: "!$omp parallel"

Listing 1: For the worksharing-loop construct, ENTER and LEAVE events for the
implicit barrier are created inside the construct (OPARI2 in red) or outside the
construct (OMPT in green).

Barriers. An OMPT implementation might distinguish between implicit and
explicit barriers, but the LLVM runtime we used currently does not. OPARI2,
on the other hand, distinguishes between barrier types. Whereas explicit bar-
riers are easily instrumented by OPARI2, implicit ones need special attention.
An implicit barrier is transformed to an instrumented explicit barrier, and for
worksharing constructs a nowait clause is added to the corresponding construct.
This way timing information can be obtained and the semantics stay unchanged.
However, there are cases where the compiler can safely merge consecutive implicit
barriers2. By transforming the implicit barrier, OPARI2 prevents the compiler
from performing this optimization.

Tasking. OPARI2 takes care that undeferred tasks will not create any events
by evaluating the if clause. Similar behavior was implemented with OMPT
by evaluating the task type. For the remaining tasks, there are some changes
regarding the sequence of events written by Score-P. In general, the OMPT
specification allows to signal the switch from one task to the next task. However,
the current implementation in the LLVM runtime first signals a switch back to
the scheduling task before switching to the next task. This additional switch
is not observed with OPARI2, which leads to a reduced number of recorded
scheduling events. Task switches in OPARI2 are triggered when a task starts
running and potentially after scheduling points have been processed [18]. As
OPARI2 does not instrument all scheduling point types yet, untied tasks will
break the nesting requirement when scheduled in an unsupported type. OMPT
provides a robust and complete picture in this regard.

With OPARI2 it is possible to measure the duration of task creation, as the
instrumentation provides distinct task-create-begin/end events. OMPT’s task-
create does not provide timing information, nevertheless we mapped it to the
task-create-begin/end pair to preserve the existing event sequence.

2 See, for example, Example barrier regions.1.c from the OpenMP 4.5 Examples
[23] where the implicit barrier of the inner parallel region is omitted.
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Table 1. Matrix of measurement setups used in the evaluation.

llvm-ompt-off llvm-ompt-on scorep-opari2 scorep-ompt
OMPT Runtime no yes no yes
Score-P Adapter — — OPARI2 OMPT

Relation to Source Code. To optimize a program after performance analysis,
a user needs to relate analysis hotspots to source code. OPARI2, as a source-
level translator, has comprehensive knowledge of source locations. Line number
and filename of instrumented OpenMP constructs are hard-coded into OPARI2’s
output files. OMPT’s means to relate OpenMP events to their source is to pro-
vide a return address (codeptr ra) as a callback argument which is mapped to
a Score-P handle dynamically. This address does not point to the correspond-
ing OpenMP construct, but to the application code being executed once the
OpenMP region related to the event is completed. Usually the instruction before
this address resolves to the corresponding filename:lineno source location3.

Other Differences Between OMPT and OPARI. In addition, we want to
mention differences regarding the following constructs just briefly:

Named criticals. While OPARI2 provides the optional name of a critcal
construct, OMPT distinguishes the underlying locks by a numeric wait id.

Atomic construct. The LLVM runtime only dispatches callbacks for atomic-
events if the compiler is not able to emit a native atomic instruction. OPARI2
is able to instrument all atomic constructs, but due to the large relative
overhead involved, it allows for deactivating this feature.

Section construct. The LLVM runtime currently does not provide events
regarding the section construct (within the sections construct) although
the specification defines the corresponding ompt callback dispatch.

omp test lock and omp test nest lock. The LLVM runtime does not yet dis-
tinguish between locks and test locks and their nested counterparts.

5 Evaluation

We used the EPCC OpenMP micro-benchmark suite [5] and the SPEC OMP2012
benchmarks version 1.0 [22] to evaluate the measurement dilation introduced by
the Score-P measurement adapters using OPARI2 and OMPT. The platform for
our evaluation is the cluster partition of the JURECA supercomputer [13] oper-
ated by the Jülich Supercomputing Centre of Forschungszentrum Jülich in Ger-
many. All measurements were taken on the same JURECA node, which consists
of two Intel Xeon E5-2680 Haswell CPUs (2.5 GHz, 12 cores each) and 128 GB
3 To convert addresses into file names and line numbers, we rely on the Binary File
Descriptor library (BFD) [1] and debug symbols in the binary.
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Fig. 3. Overhead reported by the EPCC OpenMP Benchmark Suite for individual
OpenMP constructs in the four different measurement setups with 12 threads on a
single socket of a JURECA Cluster Module [13] node.

RAM. For easier evaluation and reproducibility, we used the Jülich Benchmark-
ing Environment (JUBE) [19] in version 2.2.2 to configure and run the measure-
ments [8]. The Score-P measurements were done in profiling-only mode.

In our evaluation, we explore four different measurement setups as shown in
Table 1. As OPARI2 (scorep-opari2) does not need OMPT runtime support, we
disabled it in the LLVM runtime and provide a baseline measurement for this
setup (llvm-ompt-off). For the OMPT adapter (scorep-ompt), we used a separate
installation of the same LLVM runtime version with OMPT support enabled and
also provide a separate baseline measurement (llvm-ompt-on). Data for baseline
measurements are indicated by desaturated colors, whereas vivid colors indicate
measurements with Score-P attached. Blue indicates OMPT to be disabled in
the measurement, whereas orange indicates OMPT to be enabled.

EPCCbench. The EPCC OpenMP micro-benchmark suite was developed to
identify overheads created by individual OpenMP constructs. We use it here
to compare the overhead that Score-P adds to the OpenMP measurement of
individual constructs for each adapter—OPARI2 and OMPT—by comparing
the overhead reported by the benchmark with and without Score-P attached.

Figure 3 shows the measurements on a single node of the JURECA cluster
with 12 threads bound to a single socket4. For these measurements, we inten-
4 We used OMP PROC BIND=close and OMP PLACES={0}:12 for all measurements.
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Fig. 4. Normalized execution time of the configured SPEC OMP2012 benchmark appli-
cations for the four different measurement setups using the ref input size with 12
threads on a single socket of a JURECA Cluster Module [13] node.

tionally did not occupy both sockets of the JURECA node to eliminate potential
NUMA effects in the measurements caused by inter-socket memory accesses. We
ran the benchmark with 150 outer repetitions, a test time of 5000µs, and the
delay time set to 15µs. The EPCC benchmark uses the configured outer repeti-
tions to provide an average overhead and uncertainty bounds for it as shown in
the figure.

We notice that measurement setups llvm-ompt-off and llvm-ompt-on show
very similar performance, i.e., OMPT overhead is minimal if no tool is attached.

While most of the task constructs are equally costly with OPARI2 and
OMPT, we see a higher overhead with the Score-P OMPT adapter for ker-
nels involving worksharing and barrier constructs. Analysis revealed that the
additional overhead is caused inside Score-P by mapping codeptr ra callback
arguments to Score-P-handles concurrently5. We are confident to be able to
improve this mapping in a future implementation. However, there will always
be more overhead involved compared to OPARI2, as in this case all required
information is statically available after source-to-source translation.

SPEC OMP2012. To evaluate the influence that users may expect of the two
different Score-P adapters on measurements of real-world applications, we mea-
sured the runtime of 12 benchmarks of the SPEC OMP 2012 benchmark suite.
We used the runspec command to build the respective benchmark applications,

5 The addr2line lookup is done only once per address and is negligible.
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but used JUBE to run the experiments. To enable time measurements even
without the presence of a performance tool, we introduced coarse-grained time
measurement and output around the outer iteration, excluding initialization and
I/O where possible, to minimize external influences on the measurement.

Figure 4 shows measurements using the ref input size. As absolute execution
time with this input size spreads significantly across the different benchmarks, we
normalized the data. The average time of each application in measurement setup
llvm-ompt-off acts as the baseline for the other measurement setups reported for
that application. Therefore all of these measurements are displayed as 1, crossed
by the vertical baseline indicator. For each data point, the average of 5 runs is
reported, error bars indicating the standard deviation. The measurements show
that for most of the SPEC applications, the runtime dilation due to the Score-P
measurements is within an acceptable range independent of the adapter used.
352.nab generates a large number of worksharing and barrier events which are—
due to the contended codeptr ra lookup—likely to cause the additional overhead
seen with the OMPT adapter [27]. More than 99% of 357.applu331’s events are
flush events. For these, we also do a codeptr ra lookup, but apparently with less
contention. 351.bwaves with its numerous, subsequent parallel do constructs
revealed a smaller number of parallel and barrier events in the OMPT case, which
might be due to the compiler’s ability to fuse subsequent loops. A more in-depth
investigation is needed, though. The measurements for 376.kdtree aborted for
both the OPARI2 and the OMPT adapter, as memory requirements for the
excessive number of explicit tasks could not be fulfilled by Score-P. The reason
for the large standard deviation of the OPARI2 measurement of 372.smithwa
could not yet be determined and is still under investigation.

6 Conclusion

With the availability of an official OpenMP Tools Interface, instrumentation-
based performance tools need to consider to replace the common source-level
OPARI2 approach, mainly to reduce the maintenance burden in the long run.
In this paper, we presented the challenges implementing an OMPT tool based
on the LLVM runtime as a drop-in replacement for OPARI2 in the context of
Score-P and described the unavoidable changes in the order of OpenMP events.
OMPT provides a runtime execution view, but as Score-P-based analysis tools
historically rely upon a logical execution view, our first implementation tried
to retain the latter. This choice presented a challenge handling the parallel
construct, whereas implementing other OMPT callbacks was straightforward
and provided sufficient measurement data to serve as a replacement.

From the EPCC micro-benchmarks, we saw that OMPT overhead is mini-
mal if no tool is attached, recording task events is costly with both OPARI2 and
OMPT, and our OMPT tool consistently generates higher overhead for work-
sharing and barrier constructs. The latter is caused by contended mapping of
codeptr ra callback arguments to Score-P-handles within Score-P and will be
addressed in the future. However, this overhead does not propagate in great
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severity to real-world applications from SPEC OMP2012 but manifests in pro-
grams with a high number of codeptr ra lookups.

Once additional OpenMP runtimes with OMPT support are available from
compiler vendors, we are eager to verify whether they also provide sufficient data
to our tool to replace the source-level OPARI2 approach. In addition, we will
investigate how analysis tools consuming the Score-P measurement data have to
be adapted to deal with the remaining differences in event order.
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Abstract. Achieving good scalability from parallel codes is becoming
increasingly difficult due to the hardware becoming more and more com-
plex. Performance tools help developers but their use is sometimes com-
plicated and very iterative. In this paper we propose a simple methodol-
ogy for assessing the scalability and for detecting performance problems
in an OpenMP application. This methodology is implemented in a perfor-
mance analysis tool named ScalOMP that relies on the capabilities of
OMPT for analyzing OpenMP applications. ScalOMP reports the code
regions with scalability issues and suggests optimization strategies for
those issues. The evaluation shows that ScalOMP incurs low overhead
and that its suggestions lead to significant performance improvement of
several OpenMP applications.

Keywords: Performance tool · Scalability · OMPT

1 Introduction

The lifespan of simulation codes is several times longer than the lifespan of
supercomputers. Thus, a single code will be used on multiple very different
architectures, making the portability and the optimization of codes difficult.
Furthermore computer architectures are more and more complex as their design
has to become more intricate in order for performance to continue increasing.
In their chase for better performance, developers rely on performance analysis
tools to understand and analyze their code.

Many performance tools provide a wide range of features, metrics, and analy-
sis. However the more features a performance tool has, the more complex it is to
use. The developer has to learn how to use the tools in order to start efficiently
using them for code analysis. Furthermore a lot of tools use an incremental
methodology for analyzing codes, the tool first reports the global behavior of
the code and the developer then focuses his analysis on important regions. The
developer then tries to detect the issues in said regions by using other features
of the tool and analyzing the source code directly, forming hypothesis and using
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the tool to verify them and quantify the importance of a performance problem
before trying to fix it in the code.

In this paper we propose a simple methodology for analyzing the performance
of a parallel application with a focus on the scalability of OpenMP applications.
This approach is implemented in ScalOMP, that reports directly to the user the
parallel regions where time is lost due to scalability issues and to automatically
deduce the sources of these losses in order for the developer to directly know
where time was lost and why. The whole process needs to be as closely related to
the source code as possible in order for the developer to immediately understand
where an issue resides. When possible, ScalOMP provide hints on how an issue
may be solved.

The remainder of this paper is organized as follows: in Sect. 2 we present state-
of-the-art tools that illustrate the typical methodology of performance tools. We
detail our methodology in Sect. 3, and we describe ScalOMP internals in Sect. 4.
We evaluate our approach in Sect. 5, and in Sect. 6 we conclude this paper.

2 Related Work

The performance tool landscape is filled with a significant number of tools that
provide a very broad variety of features.

A lot of effort has been spent on tools that help the developper better visualize
the behavior of an application [8,15]. These tools allow developper to precisely
examine the application execution, but the analysis has to be done manually.

Automatic analysis relieve the developper from the analysis. Several works
have focused on detecting the root causes of scalability issues in parallel applica-
tions. Most of these works are focused on MPI; For example, performance models
can help finding weak scaling issues [6]. A backward replay of an execution trace
can be used for identifying the root cause of wait-states in MPI applications [5].

Other work focuses on detecting and reporting problems in multi-threaded
applications. For instance, imbalance issues in OpenMP parallel regions and
worksharing constructs can affect the scalability of an application [18]. Running
micro-benchmarks and building a compositional model can predict the perfor-
mance of OpenMP applications on a given machine [16]. However, this approach
is limited to memory-bound applications and only works on OpenMP applica-
tions using the static scheduler. In order to detect false-sharing, a recent work
uses the OMPT API to instrument OpenMP constructs, and collects hardware
counters at a fine granularity [9]. The collected data then train a classifier which
can then spot false sharing in applications. Automated performance modeling
can be used to examine the scalability of OpenMP runtime constructs [12], or
to analyze the memory access patterns of OpenMP applications [4].

While all of these approaches are functional and allow a developper to identify
issues, verifying every possible problem using different tools is time consuming.
Moreover each approach has its own requirements and limitations which can
make using these tools together difficult, and does not match our view on how
the performance analysis of an application should work.
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Some tools do integrate multiple analysis successfully. Intel VTune [17] pro-
vides an OpenMP time gain analysis that estimates the potential gain that
could be obtained if various performance problems (lock contention, imbalance,
scheduling overhead, etc.) were fixed. However Vtune time gain is lacking a scal-
ability analysis, which means that if a performance issue is not detected, a code
region may be wrongfully considered as having no issue. Finally, VTune uses
profiling to measure the time spent in OpenMP constructs. While this limits the
instrumentation overhead, it also affects the measurements precisions and lacks
some insight that tracing may give.

3 Performance Analysis of OpenMP Applications

As described in Sect. 2, even with modern performance tools, most of the anal-
ysis remains the work of the developer and is done manually. Our work focuses
on alleviating this burden as much as possible from the developper hands. This
section presents our approach for assessing the scalability of a multithreaded
application and how a performance analysis tool can provide developers with
optimisation hints. We implement this approach in ScalOMP, whose imple-
mentation details are described in Sect. 4.

3.1 Methodology

There are multiple sources of performance problems in OpenMP applications,
such as load imbalance, or lock contention. Once the problem is identified, the
developper may improve the performance of the application in several ways.
Some issues require code changes, while changing the execution settings may
fix some other problems. In this section, we describe a methodology for detect-
ing performance problems in OpenMP applications, and providing optimization
suggestions to the developper.

As an input, the developper provides a compiled version of the application,
along with the command line that runs it. The application is instrumented and
runs while varying the number of threads in order to measure the scalability of
each parallel region and to detect performance problems. As a result, ScalOMP
computes the parallel efficiency of each parallel region (defined by the speedup
multiplied by the initial number of threads divided by the current number of
threads), and estimates the potential time gain for each parallel region. The
output is the list of parallel regions sorted according to the potential time gain,
and for each region, a set of optimization hints and their respective potential
time gain.

Using this approach, a developper can focus on optimizing the most promising
parallel regions of his application. Moreover, the optimization hints indicate how
the performance could be improved.
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3.2 Scalability Analysis on Parallel Regions

The performance analysis of an application starts with a scalability analysis
which aims at identifying the OpenMP parallel regions that may be worth opti-
mizing. ScalOMP does this by running the application multiple times while
automatically varying the number of threads across a range given as input. For
each run, ScalOMP measures the duration of each parallel region. As a result,
ScalOMP computes the parallel efficiency of all the regions and estimates the
time lost in each by comparing their efficiency to the expected behaviour of a
perfectly scalable region [7].

Thus, ScalOMP identifies the parallel regions where most time is lost and
never underestimate a parallel region’s impact due to not detecting its issues
or wrongly quantifying their effects. These parallel regions are good candidates
for optimizations: the poor scalability of a region means that some performance
issues affects its parallel efficiency; and the significant amount of time lost means
there is good hope of gaining back time by improving the region’s performance.

3.3 Quantifying the Impact of Performance Problems

A poor parallel efficiency in an OpenMP parallel region may be caused by several
types of problems. In this section, we describe some of these problems and how a
performance analysis tool can estimate their impact on performance. As a result,
it is possible to quantify the potential time gain for each problem in each parallel
region.

Barriers. One of the main synchronization mechanisms in OpenMP is the bar-
rier that allows threads to wait for each other. This synchronization may be
explicit (when using the omp barrier directive), or implicit (e.g., at the end of
a parallel for loop). While barriers allow developers to ensure the correctness of
parallel programs, they introduce synchronization points that may degrade the
parallel efficiency.

Fig. 1. Illustration of threads passing through an OpenMP barrier

As illustrated in Fig. 1, when a set of threads pass through an OpenMP
barrier, three phases can be distinguished:
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– the imbalance phase starts when the first thread enter the barrier, and ends
when the last thread reaches the barrier. If a thread arrives late to a barrier,
it delays the other threads. This means that the ideal case is when all the
threads reach the barrier simultaneously. Hence the time lost by imbalance
is the difference between the average time a thread took to reach the bar-
rier from the last point of synchronization, and the maximum time. A long
imbalance phase may be caused by an uneven work distribution between the
threads, or by some delay that applies to a thread (such as a late MPI com-
munication). If the imbalance is significant, ScalOMP suggests to improve
the work distribution, for example by using a schedule dynamic clause in a
parallel loop.

– the walkthrough phase starts when all the threads have reached the barrier
and ends when the first thread leaves the barrier. We consider this phase to
be the incompressible time spent resolving the barrier. This is an optimistic
estimation since part of the barrier is resolved every time a thread arrives. If
the walkthrough phase takes a significant part of the overall execution time,
ScalOMP suggests to either reduce the number of OpenMP barriers, or to
improve the barrier algorithm (for instance, by choosing a more performant
OpenMP runtime)

– the startup phase starts when the first thread leaves the barrier and ends when
the last thread leaves the barrier. The time lost from threads not leaving at
the same time is paid at the next point of synchronization. For example if
there is no imbalance in the work of threads between two barriers, some tools
could detect differences in arrival times and report it as imbalance when the
real culprit is the previous barrier delay when releasing threads. ScalOMP
detects those delays and shifts the blame to the previous barrier runtime
instead.

Locks. Locking is another major synchronization mechanism in OpenMP that
may significantly impact the performance. As depicted in Fig. 2, the time spent
acquiring a lock can be separated in two phases:

– the waiting phase happens when a thread tries to acquire a lock that is
currently held by another thread. This phase corresponds to the contention
that applies to the lock. To reduce the waiting phase, ScalOMP suggests
to either change the application to reduce the number of concurrent access
to this lock, or to use another locking mechanism that is less affected by
contention (for instance MCS or AHMCS [10]).

– the acquisition phase happens when the lock is available. This phase cor-
responds to the incompressible time required for running the locking algo-
rithm. A significant part of the whole execution spent in the acquisition phase
means that the thread often acquires locks without contention. In that case,
ScalOMP suggests to either reduce the number of calls to locking primitives,
or to use another synchronization mechanism (such as the atomic directive
or a locking mechanism that works better with no contention).
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Fig. 2. Illustration of threads acquiring a lock

In order to estimate how much time is due to the contention, and to the lock
algorithm, ScalOMP measures the time spent acquiring the lock and assumes
that the fastest measured acquisition was contention free. This gives an esti-
mate of the constant time required for executing the locking algorithm, and the
remaining time is attributed to the contention on the lock.

4 Implementation

In order to compute the metrics described in Sect. 3, we implemented ScalOMP.
In this section, we detail how ScalOMP instruments an OpenMP application,
and how it measures the duration of OpenMP constructs without altering the
application behavior.

4.1 Instrumenting an OpenMP Application with OMPT

As OpenMP relies on both compiler directives and a runtime API, instrumen-
tation can be tedious. One solution consists in building a set of wrappers that
intercept the calls to the OpenMP runtime API. However, this method is spe-
cific to one OpenMP implementation and it cannot grasp the whole OpenMP
semantics. Opari [14] performs a source-to-source transformation on the applica-
tion and inserts POMP calls in the source code. This makes this approach more
portable, but it requires to recompile the application.

ScalOMP uses the OpenMP Tools interface (OMPT) that was introduced in
the OpenMP 5.0 standard [11]. OMPT makes the OpenMP runtime collaborate
with performance analysis tools: the tools register callbacks for OpenMP events,
and the OpenMP runtime then triggers the callbacks when the corresponding
events happen. With this approach, ScalOMP can collect performance data
from any OpenMP application without recompiling it.

4.2 Identifying OpenMP Parallel Regions

An application may consist of tens of OpenMP parallel regions, some of them
being invoked multiple times. Thus, ScalOMP needs to identify a parallel region
in order to aggregate the performance data from multiple calls to it. When
the application starts an OpenMP parallel region, the OMPT interface invokes
ScalOMP through a callback and provides a pointer to the OpenMP call in the
application binary. The first time ScalOMP encounter an unknown callsite, it
uses libbfd to retrieve the line of code associated with this address.
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4.3 Measuring Temporal Data

As described in Sect. 3, ScalOMP analysis of the OpenMP barriers requires
to collect several OpenMP events: ScalOMP needs to know when a thread
starts a region’s work, enters at a barrier, exits a barrier and ends the region.
The lock analysis also requires to collect information when a thread starts and
stops acquiring a lock. For each of these events, ScalOMP records a timestamp
using the TSC counter. These timestamps are then used for measuring various
durations in the thread processing. The TSC counter allows ScalOMP to record
timestamps at a low cost, but these timestamps cannot be compared accross
threads running on different sockets. Thus, ScalOMP also records a system-
wide timestamp using clock_gettime at the beginning of each region execution
in order to compare different threads timestamps.

4.4 Mitigating Instrumentation Overhead with Adaptive Sampling

While recording a timestamp using the TSC counter is lightweight, this overhead
may significantly alter the application’s performance if timestamps are recorded
too often. In order to reduce this overhead, ScalOMP uses a sampling mech-
anism. Since the OMPT interface allows to dynamically activate or de-activate
callbacks, ScalOMP only collects performance data on certain executions of a
parallel region. The idea is that while two executions of a region may not be
exactly the same, their behaviour is essentially similar.

Depending on the parallel region, the sampling frequency should be selected
carefully: if a parallel region is only repeated a few times, all its executions should
be captured, whereas a region that runs many times should only be captured
from time to time. Thus, ScalOMP uses an adaptive sampling where the first
executions are all measured, and then as the region is repeated, ScalOMP de-
activates the callbacks for some executions. The more a region is repeated, the
more often ScalOMP de-activates the OMPT callbacks.

As a result, the rare regions are all captured, while frequent regions are
sparsely captured, and the overhead of ScalOMP on the application execution
remains low.

5 Experiments and Results

In this Section, we evaluate ScalOMP implementation and assess how the per-
formance analysis can help the developper improve a parallel application. First,
we evaluate the overhead of ScalOMP on 16 applications. Then, we evaluate
how ScalOMP detects load imbalance problems, and lock contention issues.

For our evaluation, we use a machine equipped with two Intel Xeon Haswell
E5-2698 v3 processors with 16 cores each (32 cores in total), and 128GB of RAM.
The machine runs Linux version 3.10, and the applications were compiled with
Intel Compiler version 17.0.6. For OpenMP we use the open-source OpenMP
runtime from Intel now maintained in LLVM. When compiling applications, we
use the -O3 optimization level.
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We evaluate ScalOMP using several OpenMP applications:

– Mandelbrot is an application that computes the Mandelbrot set;
– HydroMM is an hydrodynamics mini-application;
– Lulesh 2.0 is a mini-application that performs an hydrodynamics simula-

tion [13];
– BT, CG, DC, EP, FT, IS, LU, MG, UA are kernels from the OpenMP

NAS Parallel Benchmarks version 3.3.1 [3];
– miniFE is a Finite Element mini-application [2];
– Snap is a particle transport mini-application [2];
– AMG is a parallel algebraic multigrid solver for linear systems [1];
– Pennant is a mini-application for hydrodynamics [1].

5.1 Overhead of ScalOMP

To evaluate the overhead of ScalOMP, we run the 16 applications described in
Sect. 5 with and without ScalOMP. For each application, the problem size is
chosen so that the reference time (i.e. the execution time when running without
ScalOMP) is between 10 and 100 s with a few exception to see how scale affects
the overhead. Each measurement is repeated 5 times and we report the average
execution time. Table 1 reports the execution time when running the application
without ScalOMP, and the overhead when running with ScalOMP.

Table 1. Overhead induced by the tool

Application Mandelbrot HydroMM Lulesh2.0 BT.B CG.C DC.A EP.D FT.C IS.D

Reference time 11.34 s 13.63 s 82.02 s 10.35 s 12.23 s 16.21 s 52.67 s 11.67 s 27.09 s

Overhead 2.24% 6.18% 12.34% 0.00% 0.03% −0.27% 3.55% −0.55% −0.01%

Application LU.C LU.D MG.D UA.B UA.D miniFE Snap AMG Pennant

Reference time 36.53 s 1352.66 s 88.06 s 12.61 s 1161.65 s 18.49 s 80.24 s 94 s 41.32 s

Overhead −0.17% 0.14% 0.12% 13.78% 4.04% 2.24% −0.64% −1.03% 2.33%

The results show that ScalOMP has little impact on the performance of
most applications. The overhead is higher for Lulesh (12.34%) because this appli-
cation performs many small parallel regions; The observed overhead goes down
to −4.31% if the size is increased to 120 (from 80) and the number of itera-
tion lowered to 350 (from 1000) so that the time stay similar. UA.B also suffers
from a significant overhead (13.78%) due to the heavy number of lock opera-
tions (8.1M locks per second per thread on average). When running UA with
a larger problem size (class D), the application take locks less often and the
ScalOMP’s overhead is reduced to 4.04%. We conclude that ScalOMP does
not significantly alter the application execution except in some extreme cases.

5.2 Detecting Imbalance Issues

ScalOMP reports that several of the applications evaluated in Sect. 5.1 suffer
from load imbalance. In this section, we focus on two of these applications.
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Mandelbrot. When running the mandelbrot application with 32 threads,
ScalOMP reports that the parallel efficiency is only 42%. ScalOMP reports
that the load imbalance between the threads in one parallel region is responsible
for all of the lost time. It suggests to improve the load balancing for this parallel
region, as it predicts a perfect load balance may save 5.37 s.

Based on this suggestion, we analyze the source code of this application. The
incriminated parallel region computes the divergence of a set of complex numbers
in the Mandelbrot set. The computation cost for each complex number depends
on how fast it diverges. The default OpenMP scheduling policy assigns many
numbers that diverge quickly to some threads while some other threads have to
process many numbers that diverge slowly. As a result, some threads finish their
loop iterations earlier than the other threads, leading to a load imbalance and a
poor parallel efficiency. As suggested by ScalOMP, we change the scheduling
policy for this parallel region to dynamic, and we observe that the application’s
execution time is reduced to 6.16 s. This means we gained 5.20 s which is close to
the 5.37 predicted. When analyzing the parallel region with dynamic ScalOMP
find the load balance to be 99.9% perfect.

HydroMM. When running HydroMM with 32 threads, ScalOMP reports
that the parallel efficiency is only 51%, and reports that the load imbalance
in one parallel region is responsible for 87% of the total lost time. ScalOMP
suggests to improve the load balancing of this parallel region, it also predicts the
performance of the application if this parallel region was perfectly load balanced.

Based on ScalOMP suggestion, we analyze the source code of HydroMM,
and change the OpenMP scheduling policy to dynamic in order to improve the
load balancing between the threads. Figure 3 reports the speedup measured for
HydroMM when using the default scheduling policy (static) and when using the
dynamic scheduling policy. It also reports the speedup predicted by ScalOMP.
We observe that changing the scheduling policy significantly improves the appli-
cation’s performance. The results also show that up to 16 threads, the speedup
obtained when applying ScalOMP suggestion is close to the predicted speedup.

For 32 threads, the predicted speedup is significantly overestimated. This
may be due to memory effects being ignored by ScalOMP: up to 16 threads,
all the threads execute on one socket of the machine, while when running 32
threads, the two sockets are used.

5.3 Detecting Locking Issues

In this section, we assess how ScalOMP detects locking issues using two appli-
cations. First, we evaluate how ScalOMP differentiates contended locks and
non-contended locks using a micro-benchmark. Then, we present a case study
on the UA kernel from the NAS Parallel Benchmarks. For both applications,
we compare the optimization suggestions provided by ScalOMP with those
obtained with Intel VTune [17].
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Fig. 3. Speedup obtained when running HydroMM

Micro-benchmark. We implemented an OpenMP application that consists in
two parallel regions. In these parallel regions, each thread acquires an OpenMP
lock, releases it, and busy waits for some time. In the first parallel region, each
thread accesses a different lock which does not suffer from contention. In the
second parallel region, all the threads access the same lock which suffers from
contention. We choose the busy wait time so that the time spent acquiring lock
is similar for both parallel region.

Table 2. Lock Micro-benchmark

Without contention With contention

Total duration (s) 14.14 14.34
Lock duration (s) 4.63 (32%) 4.35 (29.6%)

VTune Overhead 2.61% 10.19%
Lock contention 2.64 s (18.19%) 5.5 s (34.81%)
Other problems 0.67 s (4.6%) 0.02 s (0.1%)

ScalOMP Overhead 4.00% 1.04%
Lock duration 3.93 s (26.97%) 5.24 s (36.45%)
- Lock algorithm 3.40 s (23.14%) 0.03 s (0.23%)
- Lock contention 0.56 s (3.83%) 5.21 s (36.22%)

We run this micro-benchmark and analyze it with VTune and ScalOMP.
The results of this experiment are reported in Table 2. The time spent acquiring
locks and the total duration of the two regions are similar.
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VTune detects significant lock contention in the contention-free region
(18.19% of the region duration) and in the region with contention (34.81% of
the region duration). VTune also reports that 4.6% of the time spent in region
1 is lost due to “Other” problems. We conclude that VTune is able to detect the
lock contention problem in the second parallel region, but it wrongfully detects
a lock contention in the first parallel region.

ScalOMP detects that a significant time is spent in locks in the contention-
free region, and that most of it is due to the lock algorithm itself. ScalOMP
indicates that the problem is that the threads acquire too many locks. In the
second parallel region, ScalOMP detects that most of the locking time is due
to contention. We conclude that ScalOMP rightly identifies the lock problems
in the two parallel regions.

Case Study: UA. In this section, we analyze UA and apply optimizations
based on the suggestions provided by ScalOMP. Since one of these optimiza-
tions gives an incorrect result with the Intel Compilers, we use the GNU Com-
pilers version 7.3.0 in this section.

When running UA.B, ScalOMP measures a parallel efficiency of 56% with
32 threads. One parallel region is responsible for most of the time loss because of
several problems: 10% of the total execution time is lost due to load imbalance;
and 19.4% of the total execution time is spent acquiring locks in this parallel
region.

ScalOMP also points that 2 704 354 500 locks are acquired during the 8.68 s
execution of this parallel region, meaning that on average, each thread acquires
a lock every 102 ns. Due to a high number of region execution (more than 2000),
ScalOMP automatically uses the sampling mechanism described in Sect. 4.4
and records the duration of only 16% of the all locks acquisition. As a result,
the overhead induced by ScalOMP remains low, but ScalOMP still captures
a significant amount of performance data.

ScalOMP reports that most of the time spent acquiring locks is due to the
lockings algorithm, and contention on locks is low in this application. An analysis
of UA source code shows that there are 334 600 differents locks, which limits the
probability of a thread acquiring a lock that is already taken by another thread.
Moreover, most of the locks are used for protecting simple instructions such as
x = x + y.

Based on this analysis, we create two additional implementations of the appli-
cation:

– UA-Hint uses the lock hint mechanism from OpenMP 5.0 and specifies that
the locks are uncontended. This allows the OpenMP runtime to select the
lock implementation that performs the best when there is no contention;

– UA-Atomic replaces the critical sections protected by locks with OpenMP
atomic operations when possible.

We compare the performance of these two implementation with the UA-
Default implementation. Figure 4 reports the speedup of the implementations as
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Fig. 4. Speedup obtained when running UA

compared to the execution time obtained when running UA-Default with one
thread. As suggested by ScalOMP, UA-Hint performs better than UA-Default
in all cases (including in sequential) because the locking algorithm achieves better
performance when the lock is uncontended. UA-Atomic outperforms UA-Default
(by 267 on 32 threads) and UA-Hint (by 154 on 32 threads) for all the tested
number of threads. This is due to the single atomic instruction that replaces a
call to a locking function and the critical section.

We conclude that ScalOMP suggests optimizations that may significantly
improve the performance of an OpenMP application that suffers from locking
problems.

6 Conclusion

Performance analysis of an application involves a lot of work from the devel-
opper. In this paper we presented a methodology that focuses on the scalabil-
ity of an application in order to help the developer improve its performance.
We implemented this approach in ScalOMP that relies on the OMPT API
to instrument OpenMP applications. The evaluation show that ScalOMP col-
lect performance data from applications with a low overhead. The experiments
also show that ScalOMP analysis successfully detect load imbalance problems,
and locking problems in several applications. The optimization hints provided
by ScalOMP help the developer significantly improve the application’s perfor-
mance.
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Abstract. This paper describes a lightweight framework that enables
autotuning of OpenMP pragmas to ease performance tuning of OpenMP
codes across platforms. This paper describes a prototype of the frame-
work and demonstrates its use in identifying best-performing parallel
loop schedules and number of threads for five codes from the PolyBench
benchmark suite. This process is facilitated by a tool for taking a compact
search-space description of pragmas to apply to the loop nest and chooses
the best solution using model-based search. This tool offers the potential
to achieve performance portability of OpenMP across platforms without
burdening the programmer with exploring this search space manually.
Performance results show that the tool identifies different selections for
schedule and thread count applied to parallel loops across benchmarks,
data set sizes and architectures. Performance gain over the baseline with
default settings of up to 1.17×, but slowdowns of 0.5× show the impor-
tance of preserving default settings. More importantly, this experiment
sets the stage for more elaborate experiments to map new OpenMP fea-
tures such as GPU offloading and the new loop pragma.

Keywords: Autotuning · Loop scheduling · Performance portability

1 Introduction

OpenMP is an API which is used to explicitly direct thread-level, shared mem-
ory parallelism. By design, OpenMP programmers express parallelism with only
modest changes to a sequential code through the addition of pragmas that are
used by the compiler to map the code to a parallel platform. As all widely-used
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compilers understand OpenMP pragmas and can generate parallel code, such an
approach allows for a single source code that is portable across systems.

Achieving high parallel efficiency with OpenMP usually requires prescriptive
pragmas that explicitly define the program behavior, specifying, for example,
parallel schedules and number of threads to use. As pragmas become increasingly
prescriptive, the advantage of cross-architecture portability decreases. Descrip-
tive directives pass information about code semantics to the compiler to allow
it to optimize without specifying how it might choose to do that. By leaving
degrees of freedom in the mapping of OpenMP code, an application code can
more readily adapt to different data sets and architectures.

We achieve this goal through the use of autotuning. Autotuning relies on
empirical measurement to explore alternative implementations of a computation,
and has been used in the HPC community to achieve performance portability
across hardware platforms. In this work, we develop a tool we call a pragma
autotuner, as the alternative implementations it evaluates involve alternative
OpenMP pragmas. To manage the large search spaces that arise even with the
limited experiment in this paper, our approach incorporates the Search using
Random Forests (SuRF) framework, which creates a statistical model of the
search space and constrains the time required for empirical measurement [8].

For this paper, we apply the pragma autotuner to the problem of scheduling
parallel loops, designated as #pragma omp parallel for and equivalent. Even
for such a limited experiment, the search space consists of how many threads to
use, whether to use static or dynamic scheduling of loop iterations, and the chunk
size which selects the granularity of the scheduling. For architectures with large
numbers of cores, this search space can be quite large. Moreover, we envision
such a tool will be much more necessary as recent features of OpenMP gain wider
use, including GPU offload and the prescriptive loop construct which leaves the
compiler significant freedom in mapping the code.

Related Work and Contribution. Autotuning on high-performance comput-
ing has been demonstrated as an important strategy for achieving perfor-
mance portability across different architectures, starting with BLAS libraries
PhiPAC [3] and ATLAS [11], early autotuning compilers [4] and generalizations
to other scientific computing motifs [12]. A survey of autotuning for HPC can be
found here [2]. The concept of autotuning OpenMP code is well-established and
the most prevalent of these employ tuning to go beyond loop schedules, to look
at parallel tasks, function inlining, and tuning for energy [5–7,10]. Most closely
related to our paper, the work of Liao et al. performed autotuning of OpenMP
loop schedules on SMG2000, examining a larger search space and achieving a
speedup of more than 5× on 6 threads due to autotuning. However, prior work on
autotuning OpenMP requires the use of specialized libraries or specific compil-
ers, and would require more extensive adaptation as new OpenMP constructs are
added. In contrast, this paper contributes a general framework that can be used
to explore user-directed search spaces of any pragmas, even beyond OpenMP.
The centerpiece of this work, a pragma autotuner, works with the C preprocessor
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to update the pragmas at marked locations in the code. In future work, such an
approach could be fully automated using rewrite rules.

2 Search Space for Loop Scheduling

We illustrate the approach with a simple example, the main computation from
the atax benchmark from PolyBench [9]. This computation has two parallel
loops, one for initialization of the output vector, and the other nested loop to
compute the result A*Ax.

#pragma omp parallel
{

#pragma omp for
for (i = 0; i < _PB_NY; i++)

y[i] = 0;
#pragma omp for private(j)
for (i = 0; i < _PB_NX; i++) {

tmp[i] = 0;
for (j = 0; j < _PB_NY; j++)

tmp[i] = tmp[i] + A[i][j] * x[j];
for (j = 0; j < _PB_NY; j++)

y[j] = y[j] + A[i][j] * tmp[i];
}

}

The scheduling of the parallel loops uses default settings for the following
three parameters:

– Number of threads to use
– Static vs. dynamic scheduling of loop iterations to threads
– Chunk size, which is the scheduling unit

Figure 1 shows the input to our framework that permits tuning based on
these parameters for a 4-core desktop platform with a maximum of 8 threads.
We use the Search using Random Forests framework to navigate the search space
that arises from this specification.

3 Pragma Autotuner System Design

Figure 2 depicts the organization of the pragma autotuner, used to optimize
OpenMP. It needs a configuration file which has the search space definition; for
example, the loop scheduling parameters in Fig. 1(b). The original loop schedul-
ing pragmas are replaced with the mapped pragmas. For each replacement
pragma in the search space, a separate output OpenMP code file is generated.
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Fig. 1. Modified code to permit pragma autotuning (top) and search space specification
(bottom).

Fig. 2. System design of current pragma autotuner.
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The tool also takes in a parameter list which maps different replacement policies
to loops marked in the code.

One requirement for code modification of the autotuner is that it requires
manual tagging of the beginning of a loop, which is used by the tool to parse
the code and generate multiple code files with all combinations of pragmas. The
C preprocessor then replaces this mark with the selection of pragmas identified
through autotuning search. Then all the output files are executed to record the
execution times of the modified loop. Based on the times a suggestion is made
by the autotuner software regarding which pragma performs well.

The autotuner has a configuration file through which we can specify the path
of the benchmark we want to run. The benchmark source file should have proper
markers placed at the corresponding positions where we want to optimize the
loops. Later, in the problem definition, we need to define the possible options
for those markers using pragmas. We need to pass this problem definition with
parameters, their possible values and default values to SuRF, which will return
individual points in the search space to examine next.

The parser method in the autotuner then replaces the markers in the source
file with the corresponding values received from the search tool and generates
a new source file that will be saved in a temporary location in the experiment
directory. Later, the generated source files are compiled and run with the options
from the configuration file. Once the run has been completed, the execution
time will be passed to SuRF as a cost measurement. Based on the execution
time, SuRF will return the best combination suitable for the benchmark to run
efficiently. To limit the overhead associated with autotuning, the system limits
the time of the search, in the case of this paper to 10,000 s.

Sometimes we need an empty string for a parameter to indicate that the
default values or no parallelization should be used. Therefore the autotuner
supports the empty string parameter value. Whenever the value “None” has
been returned from the search tool, the parser will replace it as an empty string
in the final code generation.

The generated source is compiled with standard OpenMP compilers; we have
tested clang and gcc compilers, and gcc is used in this paper.

4 Experiment

In this section, we describe a simple experiment to demonstrate the capability of
the pragma autotuner and its ease of use. We revisit the loop scheduling problem
from Sect. 2.

4.1 Methodology

Our goal is to determine via autotuning an optimized schedule (static or
dynamic), a chunksize (1, 8 or 16 to coincide with a fully dynamic schedule
or a cache line), and number of threads (1, 2, 4 or 8). We execute this experi-
ment on a desktop platform, an Intel CORE i7-4770 with 4 Cores and 8 threads
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due to hyperthreading. We apply the system to five benchmarks from PolyBench
shown in Table 1. This subset of benchmarks were chosen as representative of
1D, 2D and 3D loop nests, and all have OpenMP parallel for loops without
reductions. We used two inputs to test adaptability, Default and Large. For each
input, Table 1 provides the settings for Schedule, Chunk and Threads identified
by the framework.

We have recently ported the system to a local cluster and are performing
multi-node experiments where the evaluations can execute in parallel across
nodes. This cluster has dual-socket, 28-core Intel Xeon Broadwell nodes. For
this experiment, we show results for just atax and, use only the Large dataset,
and set the default to 4 threads.

Table 1. PolyBench benchmarks used in this experiment.

Name Selection (default) Selection (large)

Sched Chunk Threads Sched Chunk Threads

atax dyn 8 4 stat 16 8

3 mm stat 1 4 stat 1 8

convolution-2d stat 16 4 stat 16 8

covariance dyn 8 4 stat 1 8

correlation dyn 8 4 stat 1 8

4.2 Performance Results

Figure 3(a) shows the results of the desktop system experiments, speedup over
baseline for the five benchmarks and each of the two input data sets. We observe
modest speedups for all benchmarks other than convolution-2d. The most sig-
nificant speedups of 1.17× are for the long-running correlation benchmark. We
believe the slowdown for convolution-2d is likely because we are not including
the default chunksize in our search space.

Figure 3(b) shows speedups on the cluster system for just the large dataset
and benchmark atax. As compared to a baseline using 4 threads, a speedup of
over 3× is achieved, although as a result of 28 threads.

5 Future Work: From Descriptive to Prescriptive
OpenMP

The above simple experiment shows modest performance gains, but we antici-
pate the true productivity advantage of the pragma autotuner will be to derive
pragmas for more complex codes targeting the architectural diversity of current
and future systems. This paper describes a work-in-progress as to applications
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(a) Desktop system performance results.

Name
Selection (large)

Sched Chunk Threads Speedup
atax static 8 28 3.09×

(b) Cluster system initial performance results.

Fig. 3. Performance improvements over default Baseline schedule.

of the pragma autotuner. In this section, we detail an experiment we are design-
ing to explore a search space for the #pragma omp loop that was introduced in
OpenMP 5. This construct indicates to the OpenMP compiler that the loop’s
iterations are independent but leaves it to the discretion of the compiler writer
to generate the most appropriate code. In an ongoing experiment, we wish to
replace the descriptive loop pragma with prescriptive OpenMP pragmas that
express how to optimize the loops. For example, we consider the following alter-
natives:

– A parallel for loop, with the scheduling parameters from the previous section.
– For multi-dimensional loops, we might augment the parallel for loop with a
collapse clause to assign multiple loop dimensions to a single thread dimen-
sion.

– If our target architecture supports efficient simd execution, we might want to
use the pragma omp simd directive.

– If our target architecture supports GPU offload, we might want to map coarse-
grain loops to the GPU using the pragma omp target directive.

5.1 Case Study: 27-Point Stencil

Since loop is a new feature of OpenMP that is not even supported yet by the
compilers used in our experiment, there do not currently exist benchmarks that
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use this construct. However, we note that a similar descriptive construct in
OpenACC is the #pragma acc independent pragma. We found an example use
of this pragma in the 27 point stencil code from the EPCC OpenACC Benchmark
Suite [1]. Figure 4 shows the input code (once converted to use loop), and the
autotuning search space used for the desktop system in the previous section. The
same approach can be used to derive the best mapping of the code.

This more complex experiment has a number of challenges. We plan to
explore how to compactly describe the search space, but the example in Fig. 4
illustrates the bulleted items in the above list absent the GPU offload since there
is no GPU on our target desktop system.

5.2 Handling Errors

As search spaces become more complex, as in the previous example, SuRF may
generate invalid pragma combinations, such as the following example. Here, the
middle loop has a collapse clause, which has the effect of making the j and
k loops into a single 1D loop. After collapse is applied, there is therefore no
longer a k loop to execute using the simd construct. The OpenMP compiler will
throw an error when it encounters this kind of combination.

for (iter = 0; iter < ITERATIONS; iter++) {
#pragma omp parallel for
for (i = 1; i < n+1; i++) {

#pragma omp for collapse(2)
for (j = 1; j < n+1; j++) {

#pragma omp simd
for (k = 1; k < n+1; k++) {

<27pt stencil calculation goes here>
}}}}

For erroneous configurations, the tool must minimally check the exit code
from the compiler and report to SuRF an execution time of MAX DBL so that such
configurations are avoided by the search. Ideally, we prefer to build configuration
rules into the system to detect errors before generating the code and attempting
the compilation. This encoding of OpenMP domain knowledge will increase the
complexity of the tool implementation, but reduce the tuning time, and is the
subject of future work.

5.3 Automation for Unmodified OpenMP Code

Because OpenMP has a fixed and limited collection of pragmas, we believe it
is possible to derive a collection of standard rewrite rules for generating search
spaces for pragmas that could automatically be explored for unmodified OpenMP
codes. In this way, the user of the tool need not add the markers for the C
preprocessor, but rather the tool parses the pragmas in the code to identify
rewrite rules that may apply. If possible, this would greatly expand the users for
OpenMP autotuning, and is an important area of future work.
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for (iter = 0; iter < ITERATIONS; iter++) {

// P0

#pragma omp loop

for (i = 1; i < n+1; i++) {

// P1

#pragma omp loop

for (j = 1; j < n+1; j++) {

// P2

#pragma omp loop

for (k = 1; k < n+1; k++) {

a1[i*sz*sz+j*sz+k] = (

a0[i*sz*sz+(j-1)*sz+k] + a0[i*sz*sz+(j+1)*sz+k] +

a0[(i-1)*sz*sz+j*sz+k] + a0[(i+1)*sz*sz+j*sz+k] +

a0[(i-1)*sz*sz+(j-1)*sz+k] + a0[(i-1)*sz*sz+(j+1)*sz+k] +

a0[(i+1)*sz*sz+(j-1)*sz+k] + a0[(i+1)*sz*sz+(j+1)*sz+k] +

a0[i*sz*sz+(j-1)*sz+(k-1)] + a0[i*sz*sz+(j+1)*sz+(k-1)] +

a0[(i-1)*sz*sz+j*sz+(k-1)] + a0[(i+1)*sz*sz+j*sz+(k-1)] +

a0[(i-1)*sz*sz+(j-1)*sz+(k-1)] +

a0[(i-1)*sz*sz+(j+1)*sz+(k-1)] +

a0[(i+1)*sz*sz+(j-1)*sz+(k-1)] +

a0[(i+1)*sz*sz+(j+1)*sz+(k-1)] +

a0[i*sz*sz+(j-1)*sz+(k+1)] + a0[i*sz*sz+(j+1)*sz+(k+1)] +

a0[(i-1)*sz*sz+j*sz+(k+1)] + a0[(i+1)*sz*sz+j*sz+(k+1)] +

a0[(i-1)*sz*sz+(j-1)*sz+(k+1)] +

a0[(i-1)*sz*sz+(j+1)*sz+(k+1)] +

a0[(i+1)*sz*sz+(j-1)*sz+(k+1)] +

a0[(i+1)*sz*sz+(j+1)*sz+(k+1)] +

a0[i*sz*sz+j*sz+(k-1)] + a0[i*sz*sz+j*sz+(k+1)]) * fac;

}}}}

(a) 27 point stencil input code.

problem.spec_dim(p_id=0, p_space=["None",

"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",

"#pragma omp for schedule(#P3, #P4) collapse(#P6) nthreads(#P5)",

], default="#pragma omp for schedule(#P3, #P4) nthreads(#P5)")

problem.spec_dim(p_id=1, p_space=["None",

"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",

"#pragma omp for schedule(#P3, #P4) collapse(#P6) nthreads(#P5)",

], default="#pragma omp for schedule(#P3, #P4) nthreads(#P5)")

problem.spec_dim(p_id=2, p_space=["None",

"#pragma omp for schedule(#P3, #P4) nthreads(#P5)",

"#pragma omp simd",

], default="#pragma omp simd")

problem.spec_dim(p_id=3, p_space=["static", "dynamic"], default="static")

problem.spec_dim(p_id=4, p_space=[1, 8, 16], default=1)

problem.spec_dim(p_id=5, p_space=[1, 2, 4, 8], default=1)

problem.spec_dim(p_id=6, p_space=[2,3], default=1)

(b) Customized search space for this code.

Fig. 4. 27-point stencil code input (top), and associated search space (bottom).
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6 Conclusion

This paper has described a pragma autotuner that we have developed to ease
the performance portability of OpenMP applications and reduce the program-
mer’s burden of tuning their code as they migrate to the increasingly diverse
hardware platforms, and support complex codes. We showed modest gains could
be achieved using this system for loop scheduling parameters, and discussed how
it could be extended to derive mappings for the new #pragma omp loop con-
struct. As OpenMP’s capabilities continue to expand to support a diversity of
architectures, we believe autotuning will play an increasingly important role in
achieving performance portability of current and future OpenMP codes.
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Abstract. The OpenMP accelerator model enables an efficient method
of offloading computation from host CPU cores to accelerator devices.
However, it leaves it up to the programmer to try and utilize CPU cores
while offloading computation to an accelerator. In this paper, we propose
HetroOMP, an extension of the OpenMP accelerator model that supports
a new clause hetro which enables computation to execute simultane-
ously across both host and accelerator devices using standard tasking
and work-sharing pragmas.

To illustrate our proposal for a hybrid execution model, we imple-
mented a proof-of-concept work-stealing HetroOMP runtime for the
heterogeneous TI Keystone-II MPSoC. This MPSoC has host ARM
CPU cores alongside accelerator Digital Signal Processor (DSP) cores.
We present the design and implementation of the HetroOMP runtime
and use several well-known benchmarks to demonstrate that HetroOMP
achieves a geometric mean speedup of 3.6× compared to merely using
the OpenMP accelerator model.

Keywords: OpenMP accelerator model ·
Heterogeneous architectures · Hybrid work-stealing

1 Introduction

Modern processor design relies heavily on heterogeneity to deliver high per-
formance and energy-efficiency. As a result, contemporary High Performance
Computing (HPC) systems are widely composed of accelerator devices alongside
multi-core CPU processors. Popular accelerator devices include Graphics Pro-
cessing Units [21] (GPU) and Field Programmable Gate Arrays [25] (FPGA),
while more unconventional accelerators include Digital Signal Processors [17]
(DSP). Such accelerators can be targeted using popular programming models
such as Nvidia’s CUDA [20] and Khronos OpenCL [19]. However, understand-
ing how to use CUDA and OpenCL efficiently is non-trivial. The OpenMP
4.0 [2] accelerator model was introduced to address this issue. It provides a
high-level, portable and compiler directive-based interface which aims to have a
c© Springer Nature Switzerland AG 2019
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much smaller learning curve compared to both CUDA and OpenCL. The accel-
erator model is host-centric where the programmer designates regions of code
to be offloaded from the host to an accelerator device while orchestrating a
map/copy of input and output data for that region as required. The OpenMP
compiler then generates accelerator specific low-level code and API calls into
an OpenMP runtime environment which manages input data transfers between
host and accelerator, launches compute kernels on the accelerator and transfers
results back from the accelerator to the host. Although this approach enables
high programmer productivity, a major limitation is that it does not target both
host and accelerator devices simultaneously. While offloading code to an accel-
erator, the onus is on the programmer to manually partition the workload and
run a computation on the host CPU cores.

Several factors affect the efficiency of manual partitioning: (i) the host and
accelerator devices might have very different performance characteristics; (ii)
there may be high communication latency between host and accelerator affect-
ing partition granularity; and (iii) there may be several layers of parallelism in a
compute kernel. These factors make manual partitioning an NP-hard problem.
In most cases host CPU cores remain idle or busy-wait for accelerator cores to
finish computation, thereby wasting CPU cycles and reducing energy-efficiency.
OpenMP does not provide default support to best utilize both host and accelera-
tor resources on a system. In this paper we target this limitation of the OpenMP
accelerator model by focusing on two research questions:

RQ1 : Without affecting programmer productivity, is it possible to extend
the OpenMP accelerator model to identify computation suitable for hybrid
execution over both host and accelerator device?
RQ2 : Is it possible to design and implement a high-performance OpenMP
runtime that could dynamically load balance computation across heteroge-
neous processing elements?

To address RQ1, we propose HetroOMP, an extension of the OpenMP accelerator
model with a new clause “hetro”. It enables execution of OpenMP task and
parallel for loops simultaneously across both host and accelerator devices using
compiler source-to-source translation. The critical focus on energy-efficiency
has led the HPC community to consider low-power heterogeneous ARM SoC
based embedded systems with various accelerators (GPU, DSP) on-chip as pos-
sible alternatives to conventional HPC systems. To address RQ2 we use such
an embedded system, the Texas Instruments Keystone II [24] Hawking (K2H)
Multi-Processor System-on-chip (MPSoC) which houses a quad-core ARM CPU
and eight-core DSP accelerator on-chip.

We present the design of a novel, lightweight work-stealing [6] runtime imple-
mented on K2H which enables high-performance load-balancing across both
ARM and DSP cores. Several OpenMP tasking and parallel for benchmarks
are used to compare the performance of the HetroOMP runtime to the default
OpenMP device and host-only executions using the TI OpenMP runtime. We
show that HetroOMP is highly competitive and can outperform default OpenMP.
In summary, this paper makes the following contributions:



HetroOMP: OpenMP for Hybrid Load Balancing 65

– HetroOMP, an extension to OpenMP accelerator model, which enables hybrid
parallelism across host and accelerator device.

– A lightweight runtime implementation of HetroOMP that uses work-stealing
for dynamic load-balancing across heterogeneous processing elements.

– Evaluation of HetroOMP on TI Keystone-II MPSoC by using several well-
known tasking and parallel for benchmarks.

2 Related Work

OpenACC [26] is a directive-based programming model for Nvidia GPUs.
OmpSs [10] extended the OpenMP task directives to the StarSs [22] program-
ming model supporting kernel offloads for GPUs and FPGAs [10]. Chapman et
al. [7] and Mitra et al. [18] presented implementations of OpenMP accelerator
model for TI Keystone-II MPSoC. Mitra et al. further improved the OpenMP
implementation for TI Keystone-II MPSoC [4] by presenting a framework that
automatically addressed the parallelization of code annotated with OpenMP 4.0
directives. However, none of these implementations support dynamic load bal-
ancing across both host and accelerators.

There have been prior studies on hybrid execution across host and device.
Luk et al. [16] presented a heterogeneous programming model that automatically
partitioned loop level parallelism across host and GPU for hybrid execution.
Barik et al. [5] presented another such hybrid programming model for CPU-GPU
platforms. A common limitation in both these studies is that a prior training
run of an application is mandatory to discover the optimal work partition ratio.
Ozen et al. proposed extensions to OpenMP accelerator model to support hybrid
execution across CPU and GPU. As GPUs are mostly suited for data-parallelism,
their proposed extensions were tailored for work-sharing pragmas. Linderman et
al. proposed a map-reduce based programming model for automatic distribution
of computations across heterogeneous cores and evaluated it over a CPU-GPU
based processor [15]. CnC-HC programming model [23] provided a work-stealing
based dynamic load balancing across CPUs, GPUs and FPGAs. Kumar et al.
[13] presented HC-K2H programming model for TI Keystone-II MPSoC that
used a hybrid work-stealing runtime for dynamic load balancing across ARM
and DSP cores (Sect. 3.2).

3 Background

3.1 TI Keystone-II MPSoC

Recent work [17] has considered the TI ARM/DSP K2H SoC for HPC workloads.
It has 4 ARM Cortex-A15 cores running at up to 1.4 GHz and 8 TI C66x floating-
point DSP cores running at up to 1.2 GHz. The ARM cores have 32 KB of L1
cache each and 4 MB of shared L2 cache while DSP cores can have 32 KB of L1
cache and 1 MB of L2 cache each. The ARM cores have hardware managed cache
coherence, while the DSP cores do not. Additionally, there is no cache coherence
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between ARM and DSP cores. Both ARM and DSP cores share the same memory
bus to off-chip DDR memory but have separate address spaces. The Multicore
Shared Memory Controller in K2H provides 6 MB of shared scratchpad mem-
ory (SRAM) between ARM and DSP cores. The Multicore Navigator provides
hardware queues (henceforth mentioned as HardwareQueue) that can be used to
communicate and dispatch tasks between ARM and DSP cores. There are two
queue managers with 8192 queues each and 64 descriptor memory regions per
queue manager.

3.2 Hybrid Work-Stealing Methodology

We address RQ2 (Sect. 1) by implementing a hybrid work-stealing runtime. It
shares characteristics with HC-K2H [13] which supported an async–finish [8]
based parallel programming model. An async–finish program is represented
as “finish{ async S1; S2 } S3;”. Here, the async clause creates a task S1
that could run in parallel to task S2. Statement finish starts a finish scope
and ensures both tasks S1 and S2 are completed before starting the execution
of S3. HC-K2H supports the forasync loop-level parallelism construct which
recursively divides a for loop’s iterations into two halves with each recursion
step being an async.

Fig. 1. Work-stealing imple-
mentation

HC-K2H used a hybrid work-stealing runtime
for dynamic load balancing of async tasks across
ARM and DSP cores. Work-stealing is a very effi-
cient strategy for distributing work in a parallel
system and is implemented as shown in Fig. 1. It
consists of a pool of threads, where each thread
(worker) maintains a data structure (deque) to
push the local set of tasks (from the tail end).
When a worker becomes idle, it attempts to pop
a task from the tail of its deque. If it fails to pop,
then it becomes a thief and searches for a victim
in the thread pool from which to steal a task (from
the head end).

This double ended software deque (henceforth mentioned as CilkDeque) was
introduced by the Cilk language [11]. HC-K2H used a similar CilkDeque based
work-stealing implementation for ARM cores (ARM WS). As DSP cores do not
support CilkDeque which could be accessed directly by any other DSP or ARM
cores, HC-K2H used a separate work-stealing runtime for DSP cores (DSP WS)
that used HardwareQueue instead of CilkDeque. A HardwareQueue differs sig-
nificantly from a CilkDeque as it is not double-ended and can be used only in
two modes, either as a Last-In-First-Out (LIFO) queue or as a First-In-First-Out
(FIFO) queue. DSP WS uses the LIFO implementation of HardwareQueue where
all three operations push, pop and steal happen only from the tail end. When-
ever ARM or DSP workers go idle in HC-K2H, they first attempted an intra-arch
steal before attempting an inter-arch steal. ARM workers can directly perform
inter-arch steals from DSP worker’s HardwareQueue. As DSP workers cannot
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1 int *A /* size=N*/, *B /* size=N*/, *C /* size=N*/, N;
2 int cache line = omp cache granularity();

3 int MIN CHUNK = cache line/sizeof(int);

4 main() {
5 int i;
6 #pragma omp target map(tofrom:C[0:N]) \
7 map(to:A[0:N], B[0:N], N)
8 #pragma omp parallel for firstprivate(A, B, C) \
9 private(i) schedule(hetro, MIN CHUNK)

10 for(i=0; i<N; i++) {
11 C[i] = A[i] + B[i];
12 }
13 }

(a) Parallel vector addition in HetroOMP by using work-
sharing pragma

1 int* A /* size=N*/, N;
2 int cache line = omp cache granularity();

3 int MIN CHUNK = cache line/sizeof(int);

4 void msort(int left , int right) {
5 if(right -left > MIN CHUNK) {
6 int mid = left+(right -left )/2;
7 #pragma omp task untied \
8 firstprivate(left , mid) hetro(A:N)
9 msort(left , mid);

10 msort(mid+1, right);
11 #pragma omp taskwait
12 merge(left , mid , right );
13 } else {
14 sequentialSort(left , right );
15 }
16 }
17 main() {
18 #pragma omp target map(to:N) \
19 map(tofrom:A[0:N])
20 #pragma omp parallel \
21 firstprivate(A,N) hetro
22 #pragma omp single
23 msort(0, N-1);
24 }

(b) Parallel recursive MergeSort in
HetroOMP by using tasking pragma

(c) Example of false sharing happening across ARM and DSP cores during
a hybrid execution. ARM cache line size is 64 bytes whereas for DSP it is
128 bytes. Cache write back from DSP can overwrite the results calculated
by ARM unless ARM also operates on 128 bytes cache line granularity.

Fig. 2. HetroOMP programming model. Underlined code in Figs. 2(a) and (b) are
HetroOMP specific code in standard OpenMP.

access ARM’s CilkDeque, a shared HardwareQueue was used by ARM workers
to offer tasks to DSP workers for inter-arch stealing.

4 HetroOMP Programming Model

HetroOMP addresses RQ1 (Sect. 1) by extending the OpenMP accelerator model
with a new clause, hetro, which can be used to perform hybrid execution of com-
putation kernels with work-sharing and tasking pragmas. Figure 2 shows usage of
the hetro clause in two different OpenMP programs, a parallel for based vec-
tor addition in Fig. 2(a), and task-based parallel divide-and-conquer implemen-
tation of MergeSort in Fig. 2(b). HetroOMP specific code in both these examples
has been underlined. Removing the HetroOMP code will leave a valid OpenMP
4.0 program that simply offloads computation to the accelerator. Clause hetro
could be used in three different ways: (a) as a clause to pragma omp parallel
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indicating the scope of hybrid execution, (b) as a parameter to schedule clause
in pragma omp for, with an optional chunk size showing hybrid execution of
loop iterations, and (c) as a clause to pragma omp task along with the name
and count of all writable type shared variables in this task, e.g., “Var1:Count1,
Var2:Count2, ..., VarN:CountN” (detailed explanation in Sect. 6.2).

False sharing is a well-known performance bottleneck in shared memory
parallel programs. However, it can also affect the correctness of a HetroOMP
program. This could happen due to differences in cache line sizes and cache
coherency protocols across host and accelerator. To understand this, consider
Fig. 2(c) that represents the execution of a HetroOMP program shown in
Fig. 2(a) with a chunk size of 16 instead of MIN CHUNK. The total number of
chunks (tasks) generated would be N/16 with each chunk 64 bytes in size. ARM
cores (host) on K2H are cache coherent with L1 cache line size of 64 bytes,
whereas DSP cores (device) are not cache coherent and have L1 cache line size
of 128 bytes. Cache coherent ARM cores compute Chunk1 and Chunk3 with
results automatically written back to the main memory. Chunk2 is calculated
later by a DSP core, and explicit write-back of L1 cache is performed for the
result to appear on main memory. However, this 128 byte write-back could pos-
sibly corrupt the result of either Chunk1 or Chunk3. HetroOMP programmers
can resolve this either by using chunk size in multiples of 32 (128 bytes) or by
padding the result C vector such that each chunk is of size 128 bytes (or it’s
multiple). HetroOMP provides a new API omp get min ganularity to calcu-
late the cache line granularity. Programmers can follow conventional task cutoff
techniques for controlling the task granularity of compute-bound programs that
does not depend on MIN CHUNK (e.g., Fib in Sect. 7).

5 Design of HetroOMP Runtime

5.1 Limitations of HardwareQueue

Recall from Sect. 3.2, HC-K2H uses HardwareQueue for implementing DSP WS
where all three operations, push, pop and steal happen at the tail end (LIFO).
In spite of design simplicity, such a HardwareQueue based work-stealing runtime
suffers from two subtle issues unlike the CilkDeque: (a) load imbalance among
DSP cores leading to frequent steals, and (b) cache write-back and invalidation
operation (henceforth mentioned as CacheWBInv) at every end finish scope.

CilkDeque is designed to support push and pop operations from the tail end
(LIFO) and stealing operations from the head end (FIFO). LIFO accesses by vic-
tims improves locality whereas FIFO accesses by thieves reduce load imbalance
(frequent steals). In regular divide-and-conquer applications, older tasks (avail-
able on the head) are more computationally intensive than the recently created
tasks (available on tail). Hence, stealing from FIFO end will execute a more sig-
nificant chunk of computation than from LIFO end. However, HardwareQueue
based DSP WS in HC-K2H lacked this benefit as both victim and thief workers
operated from the same side, thereby leading to frequent steals.
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The other limitation of HardwareQueue based DSP WS is mandatory CacheW-
BInv at every end finish scope. Recall, HardwareQueue is directly accessible to
all ARM and DSP cores. Due to this some of the async tasks generated within
a finish scope can execute at cache coherent ARM cores while some of them
could execute at cache incoherent DSP cores. As task owner (DSP) itself is cache
incoherent, they cannot discover that an async task was stolen unless they per-
form explicit CacheWBInv at every end finish scope. This is a costly operation
that won’t affect the performance of flat finish based kernels (e.g., parallel
for) but can significantly hamper the performance of task parallelism based
applications containing nested finish scopes.

5.2 Private Deque Based DSP WS

HetroOMP has been designed considering two main factors (a) CacheWBInv
is not required at every end finish scope but it should be done only when
a steal happens between two cache-incoherent processors under a finish scope,
and (b) DSP WS can reap the benefits of work-stealing only if it also allows steal
operations from its head end (FIFO) and push/pop from its tail end (LIFO).
These two factors are accounted in HetroOMP by using a private deque [3]
(henceforth mentioned as PvtDeque) based implementation of DSP WS instead of
HardwareQueue. Acar et. al. originally introduced PvtDeque but in the context
of reducing the overheads associated with memory fence operations in CilkDeque.
PvtDeque differs from CilkDeque only in terms of steal operation as it doesn’t
allow a thief to steal a task directly. The thief has to make an entry in the
communication cell hosted by a victim which keeps checking this communication
cell during its push and pop operations. If they notice a waiting thief, they steal
a task (on the thief’s behalf) from the head end (FIFO) of its PvtDeque and
then transfer it to the thief. For implementing a PvtDeque for each DSP core
in HetroOMP, we reconfigured the default 1 MB L2 cache available to each
DSP such that 512 KB remained as L2 cache and the rest as un-cached SRAM
containing the PvtDeque.

6 Implementation of HetroOMP Runtime

6.1 Source-to-Source Translation of a HetroOMP Program

We extended the OpenMP-to-X [12] framework, such that it can perform source-
to-source translation of HetroOMP code into a C program with calls to the Het-
roOMP runtime. OpenMP-to-X uses Clang LibTooling [1] and was designed to
perform source-to-source translation of an OpenMP program into a HClib [14]
program. Figure 3 shows the result of this source-to-source translation for the
program shown in Fig. 2(b). The underlined code in Fig. 3 demonstrates the mod-
ifications to default HC-K2H program to support the HetroOMP runtime API
calls. Translation of HetroOMP to C code begins from the main method. Pragma
target map (Fig. 2(b), Line 18) gets replaced with an API call for variable ini-
tialization at DSP (Fig. 3, Line 43). The tofrom and to clauses are ignored as
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1 int* A /* size=N*/, N;
2 int cache_line = DSP_CACHE_LINE; // 128 bytes
3 int MIN_CHUNK = cache_line/sizeof(int);
4 void msort(int left , int right) {
5 if(right -left > MIN_CHUNK) {
6 int mid = left+(right -left )/2;
7 /* start new nested finish scope */
8 finish=allocate ();
9 setup_current_finish(finish );

10 finish ->writable_vars(A, sizeof(int)*N);
11 finish->incoherentCoreSteals=false;

12 /* launch task */
13 task=create_task(msort , left , mid);
14 if(ARM) {
15 push CilkDeque(task);

16 }
17 if(DSP) {
18 push PrivateL2Deque(task);

19 help incoherentCore steal();

20 }
21 ATOMIC(finish ->pendingAsyncs ++);
22 /* this will create nested async -finish */
23 msort(mid+1, right);

24 /* end current finish scope */
25 while(finish ->pendingAsyncs >0) {
26 if(tasks_on_my_deque ()>0) {
27 help incoherentCore steal();

28 pop_and_execute ();
29 }
30 else steal_and_execute ();
31 }
32 if(finish->incoherentCoreSteals) {
33 cacheWbInv(finish->get writable vars());

34 }
35 setup_current_finish(finish ->parent );
36 /* continue seqential execution */
37 merge(left , mid , right );
38 } else {
39 sequentialSort(left , right );
40 }
41 }
42 main() {
43 initialize_at_DSP_device(A, N);
44 hybrid execution(true);

45 msort(0, N-1);
46 }

Fig. 3. Source-to-source translation of HetroOMP program shown in Fig. 2(b). All
underlined code are the changes in HC-K2H runtime code to support HetroOMP.

data does not need to be copied between host and accelerator device as shared
DDR memory between ARM and DSP is being utilized. Clause hetro on pragma
parallel (Fig. 2(b), Line 12) indicates hybrid execution across host and accel-
erator (Fig. 3, Line 44). Without the hetro clause DSP-only offload will occur.
The translation of code in Fig. 2(a) happens in a similar fashion. The only dif-
ference being, the pragma parallel for will be converted to a forasync API
with chunk size MIN CHUNK to avoid false sharing.

In this prototype implementation of the HetroOMP translator, a naive app-
roach toward source code translation for pragma task and pragma taskwait is
adopted. The pragma task is replaced with an async creation (Fig. 3, Lines 13–
21) and pragma taskwait is replaced with an end finish scope (Fig. 3, Lines 25–
35). In order to decide when to generate the start finish scope, a boolean flag is
used. It is set to true at pragma parallel (Fig. 2(b), Line 20). After this when
the translator encounters a pragma task (Fig. 2(b), Line 7), it will first gener-
ate a start finish scope (Fig. 3, Lines 8–11) followed by an async creation. The
boolean flag is then set to false. Any further pragma task will then be translated
to an async only. This flag is reset to true again at pragma taskwait (Fig. 2(b),
Line 11).

6.2 HetroOMP Code Flow

In Fig. 3, the call to recursive msort method first creates a finish object at
Line 8. This finish object then stores the pointer to its parent finish (Line 9),
and the list of writable type shared variables under this finish scope (Line 10).
These writable type shared variables are the ones indicated by the user in the
hetro clause to pragma omp task (Fig. 2(b), Line 8).

HetroOMP has a boolean counter incoherentCoreSeals at each finish
(Fig. 3, Line 11) for tracking when CacheWBInv is required at the end finish
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scope. ARM cores in HetroOMP directly push a task to CilkDeque (Line 15).
HC-K2H did it differently as in that case ARM cores pushed few tasks to shared
HardwareQueue in advance for DSPs to steal. Delaying it until an actual steal
request from DSP helps HetroOMP understand the finish scope from where
a task went to a cache incoherent core. A DSP core in HetroOMP first pushes
a task to the tail of its PvtDeque (Line 18) and then executes the method
help incoherentCore steal to transfer a task to any waiting thief (Line 19). At
the end finish scope both ARM and DSP cores find and execute tasks until there
are no more pending under this finish scope (Line 25). If tasks are available on
local deque then while inspecting, both ARM and DSP workers in HetroOMP
first execute the method help incoherentCore steal (Line 27) for transferring
a task to any waiting thief followed by popping a task for self-execution (Line 28).
Each DSP in HetroOMP has a dedicated HardwareQueue based communication
cell where a thief (ARM/DSP) can indicate its steal request. Another Hardware-
Queue is shared between ARM and DSP where an ARM core can push a task for
DSPs to steal. For transferring a task to a waiting thief (at an incoherent core), a
DSP can steal a task from the head of its PvtDeque and then move it to waiting
thief (ARM/DSP), whereas an ARM worker steals a task from the head of its
CilkDeque and pushes it to shared HardwareQueue (for DSP). As a thief receives
a task from the head end of either of the deques, the number of steals can be
reduced between cache incoherent workers. Whenever a core transfers a task via
help incoherentCore steal, it will first perform a CacheWBInv followed by
updating the counter incoherentCoreSeals in the current finish as true. For
stealing, each core first attempts an intra-arch steal followed by an inter-arch
steal upon failing (Line 30). Once out of the spin loop but before ending cur-
rent finish scope, both ARM and DSP will do a CacheWBInv for all writable
type shared variables (Line 33) based on the status of incoherentCoreSeals
(Line 32). This technique avoids costly cache flushes in HetroOMP at every end
finish scope.

7 Experimental Methodology

Across all experimental evaluations two broad categories of OpenMP bench-
marks were used: (a) recursive divide-and-conquer applications that used nested
task and taskwait pragmas, and (b) applications using parallel for loop prag-
mas. Each of these benchmarks is described in Table 1. We have chosen only
those benchmarks where it was straightforward to remove false sharing between
ARM and DSP either by loop tiling, by padding of shared data structures, or
by altering task granularity. Padding was only applied as last strategy.

Five different versions of each benchmark were used: (a) OpenMP ARM-only
implementation that runs only on ARM cores, (b) OpenMP DSP-only implemen-
tation that runs only on DSP cores, (c) HetroOMP version that uses the hetro
clause but supports all 3 configurations (ARM-only, DSP-only, and Hybrid), (d)
HC-K2H version that also supports all 3 configurations similar to HetroOMP,
and (e) Sequential ARM implementation that executes on ARM and is obtained
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Table 1. Benchmarks used for the evaluation of HetroOMP

Name Description Common settings Source OpenMP
category

Fib Calculate Nth
Fibonacci number

N = 40. Task cutoff at N = 20 HC-K2H [13] Tasking

Matmul Multiplication of
two matrices

Size = 1024× 1024. Task cutoff
at 6xMIN CHUNK

Cilk [11] Tasking

Knapsack Solves 0–1 knapsack
problem using
branch and bound
technique

N = 500 and capacity = 20000.
Task cutoff at depth= 10

Cilk Tasking

MergeSort Merge sort
algorithm

Array size = 4096× 4096. Task
cutoff at 4xMIN CHUNK

Authors Tasking

Heat Heat diffusion using
Jacobi type
iterations

nx =8192, ny = 2048 and
nt =10.
Task cutoff at MIN CHUNK

Cilk Tasking

BFS Breadth first search
algorithm

Input as graph4M.txt.
Chunks=512 (first parallel
for) and
Chunks=4192 (second
parallel for)

Rodinia [9] Parallel for

Hotspot Iterative thermal
simulation

grid rows = grid cols = 4096,
sim time = 10,
temp file = temp 4096,
power file =power 4096.
Chunks=1

Rodinia Parallel for

Srad Diffusion method
based on partial
differential equations

rows = cols = 4096, y1 =
x1 = 0, y2 = x2 = 127,
lambda = 0.5, iterations = 2.
Chunks=1

Rodinia Parallel for

LUD Decomposes a matrix
as the product of
a lower triangular
matrix and an
upper triangular
matrix

Matrix dimension = 4096 and
block size = 64. Chunks= 1

Rodinia Parallel for

B+Tree Similar to binary
search tree but
each node can have
up to
n− 1 keys instead of
just two

file = mil.txt and
command = command2.txt.
Chunks=32

Rodinia Parallel for

by removing all OpenMP pragmas. For all three configurations (ARM-only,
DSP-only, and Hybrid) the measurements are reported using all available cores
under that configuration, i.e., ARM-only uses all 4 ARM cores, DSP-only uses all
8 DSP cores, and Hybrid uses all 12 cores (4 ARMs and 8 DSPs). Task cutoff in
tasking type and total chunks in parallel for type benchmarks were chosen
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such that they achieved the best performance in each of the four parallel ver-
sions. A static schedule was used in both OpenMP multicore and accelerator
model variants of each benchmark as it delivered the best performance. Each
of the five implementations was executed ten times and we report the mean
of the execution time, along with a 95% confidence interval. To generate ARM
binaries, the ARM Linaro gcc compiler version 4.7.3 was used with these flags:
-O3 -mcpu=cortex-a15 -mfpu=vfpv4 -mfloat-abi=hard -fopenmp. To gen-
erate DSP binaries with OpenMP, the TI CLACC OpenMP Accelerator Model
Compiler version 1.2.0 was used with these flags: --hc=‘‘-O3 -fopenmp -marm
-mfloat-abi=hard’’ --tc=‘‘-O3’’. To generate DSP binaries for HC-K2H
and HetroOMP the TI C66x compiler cl6x version 8.0.3 was used with flags:
abi=eabi -mv6600 -op3 -ma multithread -O3.

8 Experimental Evaluation

8.1 Total Number of Steals in PvtDeque v/s HardwareQueue
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Ratio of total steals in DSP_WS (HC-K2H / HetroOMP)

Fig. 4. Total number of DSP-only steals in
HC-K2H normalized to HetroOMP

In Sect. 5 we described our choice of
PvtDeque based implementation for
DSP WS in HetroOMP. It is basically
for reducing load imbalance between
DSP workers by supporting FIFO
steal operations. In this section the
benefit of this approach is illustrated.
For each benchmark, we calculated
the total number of steals during
DSP-only execution across both HC-
K2H and HetroOMP runtimes. The
ratio between the result obtained for
HC-K2H and that of HetroOMP is then measured. Results of this experiment
are shown in Fig. 4. We can observe that the total number of steals among
DSP workers in HC-K2H is 76× (Hotspot) to 4.5× (MergeSort) of that in Het-
roOMP. The reason for this wide variation is task granularity as there are always
lesser number of steals for coarse granular tasks than fine granular tasks. Both
HetroOMP and HC-K2H execute a parallel for loop in a recursive divide-and-
conquer fashion. Hence, for both tasking and parallel for type benchmarks,
FIFO steals based PvtDeque displace a significant chunk of computation unlike
the LIFO steal based HardwareQueue implementation inside HC-K2H.

8.2 Performance Analysis

In this section, we describe the performance of HetroOMP on K2H. For this
study, all three versions of each benchmark (HetroOMP, HC-K2H, and OpenMP)
were executed, first by using all four ARM cores only (ARM-only), and then by
using all eight DSP cores only (DSP-only). Apart from this, hybrid execution
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Fig. 5. Speedup over sequential execution at ARM. Benchmarks in (a)–(e) are of task-
ing type whereas those in (f)–(j) are parallel for type.
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of HetroOMP and HC-K2H implementations was also performed across all four
ARM and eight DSP cores (Hybrid). The speedup was then calculated for each
execution (ARM-only, DSP-only, and Hybrid) over Sequential execution on ARM
core. Results of this experiment are shown in Fig. 5. OpenMP’s DSP-only exe-
cution of Heat and LUD did not complete due to which the results of these
experiments are missing in Figs. 5(e) and (i).

Tasks Based Benchmarks: Figures. 5(a)–(e) show the experimental results
for tasking benchmarks. These benchmarks recursively spawn and synchronize
on asynchronous tasks similar to MergeSort implementation shown in Fig. 2(b).
We can observe that due to the reduced number of steals in DSP WS and due
to the reduced number of CacheWBInv operations, HetroOMP outperformed
HC-K2H for both DSP-only and Hybrid executions. Matmul is an outlier as its
performance with both these runtimes are in the same ballpark. This is due
to high steal ratio in Matmul, unlike all other benchmarks. It was found to be
around 65% for DSP-only and Hybrid execution in both these runtimes. ARM WS
implementation is similar across HetroOMP and HC-K2H resulting in identical
performance. Hybrid execution of HetroOMP always outperformed ARM-only
and DSP-only based OpenMP executions (except Knapsack).

Parallel for Type Benchmarks: Figures 5(f)–(j) show the experimental
results for parallel for benchmarks. ARM-only execution is again identical
across both HetroOMP and HC-K2H (explained above). For DSP-only and
Hybrid executions, HetroOMP performance relative to HC-K2H was in the range
0.86×–1.7× (higher is better). In spite of the benefits of FIFO steals, PvtDeque
also has a limitation that it performs slightly weak for coarse granular tasks. It is
because the victim is not able to quickly respond to a steal request while execut-
ing coarse granular tasks compared to fine granular tasks. Also, due to an implicit
barrier at the end of pragma omp for, these benchmarks are of flat finish type,
i.e., a single level of task synchronization. Optimizations for reducing CacheW-
BInv in HetroOMP are suitable only for nested finish type benchmarks and
hence are not enabled during the execution of flat finish benchmarks. Here too
Hybrid execution of HetroOMP always outperformed ARM-only and DSP-only
based OpenMP executions. BFS is an outlier as even with bigger chunk sizes
(see Table 1), both HC-K2H and HetroOMP incurred tasking overheads due to
the largest number of tasks (around 120 K while the average number across five
benchmarks was 53K). Unlike HC-K2H and HetroOMP, OpenMP executions
used static schedule where tasks are statically assigned to the threads. Over-
all, HetroOMP and HC-K2H obtained a geometric mean speedup of 3.6× and
2.6× respectively over DSP-only OpenMP execution.

9 Conclusion and Future Work

In this paper, we studied the limitations of the OpenMP accelerator model by
using a heterogeneous MPSoC. We demonstrated that for achieving optimal



76 V. Kumar et al.

performance, it is essential to utilize the computing power of all the process-
ing elements instead of solely using the accelerator. We proposed extensions
to the standard OpenMP accelerator model to enable simultaneous execution
across both host and accelerator devices. We presented and evaluated a novel
hybrid work-stealing runtime for OpenMP that efficiently executed computation
across all processing elements of a heterogeneous SoC and outperformed stan-
dard OpenMP accelerator model. As a future work, we aim to extend HetroOMP
with energy efficient execution capabilities.

Acknowledgments. We are grateful to the anonymous reviewers for their suggestions
on improving the presentation of the paper, and to Eric Stotzer from Texas Instruments
for shipping a brand new TI Keystone-II MPSoC to IIIT Delhi.
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Abstract. Recent reliability issues with one of the fastest supercom-
puters in the world, Titan at Oak Ridge National Laboratory (ORNL),
demonstrated the need for resilience in large-scale heterogeneous com-
puting. OpenMP currently does not address error and failure behavior.
This paper takes a first step toward resilience for heterogeneous sys-
tems by providing the concepts for resilient OpenMP offload to devices.
Using real-world error and failure observations, the paper describes
the concepts and terminology for resilient OpenMP target offload,
including error and failure classes and resilience strategies. It details
the experienced general-purpose computing graphics processing unit
(GPGPU) errors and failures in Titan. It further proposes improve-
ments in OpenMP, including a preliminary prototype design, to support
resilient offload to devices for efficient handling of errors and failures in
heterogeneous high-performance computing (HPC) systems.
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1 Introduction
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potentially configurable, types of processors, accelerators and memory/storage
in a single platform, adds significant complexity to the HPC hardware/software
ecosystem. The diverse set of compute and memory components in today’s and
future HPC systems require novel resilience solutions.

There is only preliminary work in resilience for heterogeneous HPC systems,
such as checkpoint/restart for GPGPUs using OpenCL with VOCL-FT [16].
There is also fine-grain transaction-based application-level checkpoint/restart
with the Fault Tolerance Interface (FTI) [2]. Rolex [12] is an initial set of C/C++
language extensions for fine-grain resilience, which specify how data variables
and code block execution may be repaired during program execution.

In contrast, the Titan supercomputer at ORNL experienced severe GPGPU
reliability issues over its life time (2012–2019). In late 2016, 12 out of Titan’s
18,688 GPGPUs failed per day [21]. Approximately 11,000 GPGPUs were
replaced in the 2017–2019 time frame due to failures or high failure probabil-
ity. The only mitigation available was application-level checkpoint/restart, which
was never designed to efficiently handle such high failure rates. Titan’s successor,
the Summit supercomputer at ORNL [20], has 27,648 GPGPUs. While it is the
expectation that Titan’s severe reliability issues were a rather unique experience,
hope is not a strategy. There is an urgent need for fine-grain and low-overhead
resilience capabilities at the parallel programming model that permit specifying
what types of errors and failures should be handled and how.

Efficient software-based solutions to fill gaps in detection, masking, recovery,
and avoidance of errors and failures require coordination. Based on the underly-
ing execution model and intrinsic resilience features of the hardware, the various
components in a heterogeneous system can be organized into protection domains.
Employed resilience solutions can handle errors and failures in specific compo-
nents and granularities where it is most appropriate to do so and in coordination
with the rest of the system, which prevents errors from propagating and failures
from cascading beyond these protection domains.

This paper describes concepts for resilience in OpenMP based on real-world
observations from the largest heterogeneous HPC system in the world. It focuses
on offload to devices as a first step toward resilience in OpenMP. The paper
describes the used concepts and terminology, including general fault, error and
failure classes. It derives error and failure scopes and classes for OpenMP target
offload and maps them to the experienced GPGPU errors and failures in Titan.
Using these concepts, this paper proposes improvements to enable resilience for
OpenMP offload to devices and details a preliminary prototype design based on
the concept of quality of service (QoS).

2 System Model

This section describes the involved concepts and terminology for OpenMP target
offload. It continues with a short overview of general fault, error and failure
classes and common terms that will be used in this context. It further defines
the error and failure scopes and classes for OpenMP target offload.
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2.1 OpenMP Target Offload

An OpenMP thread offloads the code and data of a target region in the form
of a target task from the host device (parent device) to a target device using a
target construct. The target device can be specified by a device number, otherwise
the default device number is used. The target task may be undeferred, i.e., the
OpenMP thread waits for the completion of the target task, or deferred, i.e., the
OpenMP thread does not wait for the completion of the target task. Target task
input and output data is mapped to and from the host device to the target device.
Space for target task runtime data may be allocated on the target device.

The work presented in this paper primarily focuses on an OpenMP thread
running on a conventional processor core and offloading a target region as a target
task to a GPGPU. It does not focus on an OpenMP thread executing an OpenMP
task on the host device, as the shared memory aspects are significantly more
complex and require different error and failure models. This work is, however,
applicable to a great extend to offloading a target region as a target task to other
types of target devices that OpenMP may support.

The system model assumes that target task input data is transferred or made
accessible to the target device before the target task starts, target task runtime
data is allocated before it starts, and target task output data is transferred to
or made accessible to the host device after it ends. Only the target task modifies
its input, output, and runtime data during its execution, i.e., the data is not
shared with the host device. The target task is typically a parallel execution on
the GPGPU and the data may be shared between threads on the GPGPU, i.e.,
target task data may be shared within the target device during its execution.

2.2 Faults, Errors and Failures

Error and failure behavior in OpenMP is currently undefined. Consequently,
implementations are left to handle them (or not) in a non-uniform way. In gen-
eral, a fault is an underlying flaw/defect in a system that has potential to cause
problems. A fault can be dormant and can have no effect. When activated during
system operation, a fault leads to an error and an illegal system state. A failure
occurs if an error reaches the service interface of a system, resulting in behavior
that is inconsistent with the system’s specification. Prior work [11,19] identified
the following general fault, error and failure classes and common terms:

– {benign,dormant,active} {permanent,transient,intermittent} {hard,soft} fault
• Benign: An inactive fault that does not activate.
• Dormant: An inactive fault that potentially becomes active at some point.
• Active: A fault that causes an error at the moment it becomes active.
• Permanent: The presence of the fault is continuous in time.
• Transient: The presence of the fault is temporary.
• Intermittent: The presence of the fault is temporary and recurring.
• Hard: A fault that is systematically reproducible.
• Soft: A fault that is not systematically reproducible.
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• The following common terms map to these fault classes:
∗ Latent fault: Any type of dormant fault.
∗ Solid fault: Any type of hard fault.
∗ Elusive fault: Any type of soft fault.

– {undetected,detected} {unmasked,masked} {hard,soft} error
• Undetected: An error whose presence is not indicated.
• Detected: An error whose presence is indicated by a message or a signal.
• Masked: An error whose impact is compensated so that the system spec-

ification is satisfied despite the incorrect state; its propagation is limited.
• Unmasked: An error that has not been compensated and has the potential

to propagate.
• Hard: An error caused by a permanent fault.
• Soft: An error caused by a transient or intermittent fault.
• The following common terms map to these error classes:

∗ Latent error or silent error: Any type of undetected error.
∗ Silent data corruption (SDC): An undetected unmasked hard or soft

error.
– {undetected,detected} {permanent,transient,intermittent} {complete,partial,

Byzantine} failure
• Undetected: A failure whose occurrence is not indicated.
• Detected: A failure whose occurrence is indicated by a message or a signal.
• Permanent: The presence of the failure is continuous in time.
• Transient: The presence of the failure is temporary.
• Intermittent: The failure is temporary but recurring in time.
• Complete: A failure that causes service outage of the system.
• Partial: A failure causing a degraded service within the functional speci-

fication.
• Byzantine: A failure causing an arbitrary deviation from the functional

specification.
• The following common terms map to these failure classes:

∗ Fail-stop: An undetected or detected failure that completely halts sys-
tem operation, which often causes an irretrievable loss of state.

∗ Fail-safe: A mode of system operation that mitigates the consequences
of a system failure.

While a fault is the cause of an error, its manifestation as a state change is
considered an error, and the transition to an incorrect service is observed as a
failure (see Fig. 1). A fault-error-failure chain is a directed acyclic graph (DAG)
with faults, errors and failures represented by its vertices. In a system composed
of multiple components, errors may be transformed into other errors and propa-
gate through the system generating further errors, which may eventually result
in a failure. A failure cascade occurs when the failure of a component A causes
an error and subsequently a failure in component B interfaced with A.
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Fig. 1. Relationship between fault, error and failure

2.3 OpenMP Target Offload Error and Failure Scopes and Classes

In terms of hardware errors and failures, OpenMP offloading has a host device
and target device scope. In terms of software errors and failures, OpenMP thread
and target task scopes exist. The host device and OpenMP thread scopes are not
considered in this work due to the complex shared memory aspects it involves.
Only target device and target task errors and failures are considered. The follow-
ing error and failure classes are defined:

– {undetected, detected} {unmasked, masked} {hard, soft} target device error
– {undetected, detected} {unmasked, masked} {hard, soft} target task error
– {undetected, detected} {permanent, transient, intermittent} {complete, par-

tial, Byzantine} target device failure
– {undetected, detected} {permanent, transient, intermittent} {complete, par-

tial, Byzantine} target task failure

A total of 16 error classes for target devices and target tasks are defined
based on the general error classes. Undetected masked errors are rather irrele-
vant, as the masking makes them undetectable by any error detector. Detected
masked errors are less relevant, as the masking already limits error propaga-
tion. A resilience strategy may still do something about a detected masked
error though, such as to avoid it in the future. Undetected errors may become
detectable through a resilience strategy. Undetected errors that do not become
detectable are problematic, as no resilience strategy is able to deal with them.

A total of 36 failure classes for target devices and target tasks are defined based
on the general error failure classes. Undetected failures may become detectable
through a resilience strategy. Undetected failures that do not become detectable
are problematic, as no resilience strategy is able to deal with them.

3 Observed Errors and Failures

This section provides an overview of the observed and inferred errors and failures
in the Titan supercomputer at ORNL that are relevant for OpenMP target
offload with GPGPUs. It maps these errors and failures the previously defined
OpenMP offloading error and failure classes.
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3.1 GPGPU Errors and Failures in Titan

The Titan supercomputer deployed at ORNL in November 2012 as the fastest
in the world will be decommissioned in 2019, still being the 9th fastest. It is a
hybrid-architecture Cray XK7 with a theoretical peak performance of 27 PFlops
and a LINPACK performance of 17.95 PFlops. Each of Titan’s 18,688 com-
pute nodes consists of an NVIDIA K20X Kepler GPGPU and a 16-core AMD
Opteron processor. A significant amount of work has been published about the
observed and inferred errors and failures in Titan [9,13–15,21]. The following
Titan GPGPU (target device/task) errors can be mapped to the previously
defined OpenMP offloading error classes (see Table 1 for a summary):

– Target device error correcting code (ECC) double-bit error: A detected
unmasked soft error in target device memory. This error is detected and sig-
naled by the target device. It typically transitions to a target task abort.

– Target device SDC: An undetected unmasked soft error in target device mem-
ory or logic. It is not signaled and can propagate to a target task SDC, a
target task abort, or a target task delay, including an indefinite delay (hang).

– Target task SDC: An undetected unmasked soft error in target task data. It is
not signaled and can transition to a target task abort or a target task delay,
including an indefinite delay. It may propagate to incorrect target task output.

These Titan GPGPU (target device/task) failures can be mapped to the pre-
viously defined OpenMP offloading failure classes (see Table 2 for a summary):

– Target device Peripheral Component Interconnect (PCI) bus width degrade: A
detected transient, intermittent or permanent partial failure of the PCI con-
nection between the host device and the target device. It is typically caused by
a PCI hardware failure. This failure results in degraded transfer performance
for target task input and output data. It can cascade to a target task delay.

– Target device PCI bus disconnect: A detected permanent complete failure of
the PCI connection between the host device and the target device or a detected
permanent complete failure of the target device. It is typically caused by a PCI
hardware or GPGPU failure. This failure can cascade to a target task abort.

– Target device dynamic page retirement (DPR): A detected transient complete
failure of the target device memory. It is typically caused by the GPGPU when
preventing or repairing a detected permanent partial failure of the target device
memory. This failure can cascade to a target task abort.

– Target device SXM power off: A detected permanent complete failure of the
target device. It is typically caused by a voltage fault. This failure can cascade
to a target task abort.

– Target task abort: A detected permanent complete failure of a target task. It
is typically caused by a target task error or a target device error or failure.

– Target task delay: A detected permanent partial failure of a target task. It is
typically caused by target task SDC or a target device PCI width degrade.
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Table 1. Mapping of Titan GPGPU errors to the OpenMP offloading error classes

Error Error class

Target device ECC
double-bit error

Detected unmasked soft
target device error

Target device SDC Undetected unmasked soft
target device error

Target task SDC Undetected unmasked soft
target task error

Table 2. Mapping of Titan GPGPU failures to the OpenMP offloading failure classes

Failure Failure class

Target device PCI width
degrade

Detected transient partial target device failure

Detected intermittent partial target device failure

Detected permanent partial target device failure

Target device PCI disconnect Detected permanent complete target device failure

Target device DPR Detected transient complete target device failure

Target device SXM power off Detected permanent complete target device failure

Target task abort Detected permanent complete target task failure

Target task delay Detected permanent partial target task failure

4 Resilience for OpenMP Target Offload

Errors may propagate or transition to failures and failures may cascade in other
parts of the system, such as the host device and OpenMP threads, depending
on employed resilience strategies. Since OpenMP currently does not employ
resilience strategies, a target task abort failure will cascade to an OpenMP thread
abort failure and a target task delay failure will cascade to an OpenMP thread
delay failure. Additionally, any complete target device failure will cascade to an
OpenMP thread abort failure. Target task SDC may propagate to a OpenMP
thread SDC, which then may transition to an OpenMP thread delay or abort fail-
ure or propagate to incorrect OpenMP thread output. This section discusses the
individual needs for changes in the OpenMP standard and implementations to
employ a reasonable set of resilience strategies for OpenMP offload to devices.

4.1 Error and Failure Detection and Notification

Errors and failures need to be detected and employed resilience strategies need
to be notified in order to be able to deal with them.

Errors and failures detected by the target device are reported to the OpenMP
runtime after attempted target task execution. Employed resilience strategies
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may transparently handle them. However, some resilience strategies need appli-
cation feedback to decide on the course of action, such as to asses if an error
or failure is acceptable. A reporting and feedback capability for device-detected
errors and failures is needed in OpenMP. This could be implemented using func-
tion callbacks and an OpenMP language feature for defining resilience policies
using the previously defined OpenMP offloading error and failure classes. Since
detailed error and failure information could be helpful to make decisions, such as
to assess the severity of a target device ECC double-bit error, OpenMP support
for target device error reporting to the application is needed.

Errors and failures may also be detected by the application, such as by check-
ing the correctness of target task output. A notification capability for application-
detected errors and failures is needed in OpenMP to enable the use of resilience
strategies by the application. This could be implemented using an OpenMP
language feature for raising error notifications to the OpenMP runtime.

4.2 Fail-Fast and Graceful Shutdown

The fail-fast resilience strategy is designed to detect and report errors and fail-
ures as soon as possible. It also stops normal operation if there is no other
resilience strategy in place to handle a specific error or failure. At the very least,
the default error and failure behavior of OpenMP in general should be defined as
fail-fast. This permits resilience strategies that are in place outside of OpenMP
to efficiently handle errors and failures. A primary example is application-level
checkpoint/restart, where any computation an application continues after an
unrecoverable error or failure is wasted time.

For OpenMP target offload, fail-fast means that the host device detects and
reports errors and failures as soon as possible. It also means that the OpenMP
runtime aborts target tasks impacted by the error or failure as soon as possible.
For performance failures, such as the target device PCI width degrade that can
cascade to a target task delay, this means aborting a target task. The resilience
strategy of graceful degradation, which would risk/accept a target task delay is
described in the following subsection. The fail-fast strategy can also be employed
in conjunction with application-level error or failure detection, such as through
an application-level correctness check of the target task output and a correspond-
ing abort upon error detection.

Graceful shutdown avoids error propagation and failure cascades beyond the
component that is being shutdown. An uncontrolled stop of normal operation,
such as a crash, can result in errors or failures in other system components. Oper-
ating system (OS) features usually prevent such effects by triggering cleanup
procedures, such as after a crash. However, the OS may not have control over
everything an OpenMP application is involved in, such as when an OS bypass
is employed for networking/storage or a workflow software framework is used.
Another example is the clean execution of an Message Passing Interface (MPI)
abort after an OpenMP abort due to a target task failure. Error handlers can
perform application-level cleanup during a graceful shutdown, but they would
need to be triggered by the OpenMP runtime upon a fail-fast abort.
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4.3 Graceful Degradation

Graceful degradation continues operation after an error or failure at the cost of
performance or correctness that is deemed acceptable. In case of a performance
failure, such as the target device PCI width degrade that can cascade to a target
task delay, this means not aborting a target task and accepting the possible
performance degradation, but reporting the failure to the application/user.

In case of a resource outage, such as the target device PCI disconnect that
can cascade to a target task abort, this means continuing operation with less
resources while employing a resilience strategy for aborted tasks. For example,
an aborted task may be re-executed on a different target device using a rollback
recovery strategy (described in the following subsection) while the failed target
device is removed from OpenMP’s pool of target devices. This requires OpenMP
support for shrinking the number of target devices after a failure.

In case of a detected error, graceful degradation means to continue operation
despite the error and to accept a possible error propagation. The application
may need to make a decision if an error is acceptable.

4.4 Rollback Recovery

The rollback recovery resilience strategy transparently re-executes an erroneous
or failed target task using the original target task input. The re-execution may be
performed on the same target device, assuming that it is available and has not
been removed from OpenMP’s pool of target devices due to graceful degradation.
If it has been removed, the re-execution is performed on a different target device.
Successive target task errors or failures may result in corresponding successive
re-executions. The number of successive rollbacks should be restricted to avoid
endless rollbacks. On systems where the target task input is not copied to the
target device but used in-place, the input may be backed up before offloading to
assure its integrity, i.e., to protect it from being corrupted.

An OpenMP language extension is needed to specify the rollback recovery
resilience strategy and its parameters, such as the maximum number of rollbacks,
for each target task. The OpenMP runtime relies on target device error and failure
detection and on application error detection notification to initiate rollbacks.

4.5 Redundancy

Redundancy in space executes target tasks at the same time on different target
devices, while redundancy in time executes them sequentially on the same target
device. A mix between both executes them on multiple target devices, where at
least one target device is being reused. Common levels of redundancy are two
and three, where two redundant target tasks detect a target task error and detect
and mask a target task failure. Three redundant target tasks detect and mask
a target task error and two target task failures. Error detection uses target task
output comparison, while error masking uses the output of the majority. Failure
detection and masking uses the output of the fastest surviving target task.
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An OpenMP language extension is needed to specify the redundancy resilience
strategy and its parameters, such as redundancy level (2 or 3) and resource usage
(space, time or both). The OpenMP runtime relies on target device error and
failure detection and on application error detection notification. It also relies on
target task output comparison (e.g., bit-wise comparison or error bounds).

5 Preliminary Prototype

We detail in this section some aspects of the design and implementation of
our solution for OpenMP target offload resilience. Both are driven by software
engineering concerns, best-practices in extreme scale computing and available
standards and libraries.

5.1 Design Details

Because our work is in the context of complex software components (a compiler),
a standard (OpenMP) and a set of new concepts (QoS), one of our main chal-
lenges from a design and software engineering point-of-view is the separation of
concerns. It is for example beneficial to have a clear separate implementation of
the QoS and OpenMP support, and enable a fine-grain interaction of the result-
ing libraries. By doing so, it becomes easier to define, implement, modify and
maintain each component, as well as explicitly and precisely define how these
components interact. We believe this is especially critical when using complex
production-level software such as a main-stream compiler (Low Level Virtual
Machine (LLVM)). Another level of complexity comes from the asynchronous
aspect of the problem we are trying to solve: the QoS runtime needs to asyn-
chronously interact with the OpenMP runtime to enable system monitoring,
fault detection and potentially recovery.

Our design centers on a novel concept for QoS and corresponding OpenMP
language and runtime extensions. The QoS language extensions allow application
developers to specify their resilience strategy without focusing on the implemen-
tation details. The QoS runtime extensions create a corresponding contract that
maps application resilience requirements to the underlying hardware and soft-
ware capabilities.

A QoS contract is defined as a set of QoS parameters that reflect the users’
resilience requirements by identifying the requested resilience strategies. We pro-
pose a QoS language that provides all the required semantics to manipulate QoS
parameters which can be applied to both application’s data and tasks. These
parameters are handled via generic “get/set” interfaces, and can be expressed
as: (1) key/value pairs; (2) bounded values; and (3) ranges of values. The inter-
face uses the block concept, similarly to OpenMP, to define the scope in which
parameters are valid and the QoS contract with the runtime system. To simplify
the definition of new QoS contracts, predefined QoS classes offer coherent sets of
parameter that achieve popular resilience strategies. By using these classes, users
only need to specify a few, if any, parameters, and let the system manage QoS
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policies that are already available. The following example uses QoS key/value
pairs for specifying triple redundancy for a target task:

#pragma omp qoskv resilience (TASK_REDUNDANCY, BOOL, TRUE)

#pragma omp qoskv resilience (TASK_REDUNDANCY_FACTOR, INT, 3)

{

#pragma omp target ...

...

}

An implementation of OpenMP is extended to offer an event-based QoS-
aware runtime for resilience with a QoS Scheduler and QoS Negotiation Schemes
at its core (see Fig. 2). The QoS Negotiation Schemes drive the method to enforce
the QoS requirements, specifying the type of contract that the application and
the system establish. Two types of schemes are proposed: (1) best effort, for
which the system will match the requirements without strong guarantees, i.e.,
breaches of QoS contracts are possible, reported, but do not stop the execution of
the application; (2) guaranteed, for which the system will match the requirements
with strong guarantees, i.e., the application will stop in the event of a breach.

Fig. 2. Core components of a QoS-aware parallel programming model runtime

The QoS Scheduler instantiates QoS parameters and resilience strategies,
deploying a QoS contract that relies on system services (e.g., for monitoring
of task offloading and error/failure detection), as well as resource allocators
(e.g., for deploying a task on a specific GPGPU). The QoS scheduler ensures
that everything complies with the QoS contract. If a discrepancy is observed, a
breach of contract will be raised (software exception). This generates an event
that activates the configured responses, such as resilience actions. Application
developers are able to specify a function (handler) that would be automatically
called by the QoS scheduler upon a breach of a QoS contract. This enables a
programmatic way to handle breaches of QoS contracts when custom actions



Concepts for OpenMP Target Offload Resilience 89

are required, without imposing complex modifications of the application’s code.
Figure 3 presents an overview of the core components that are involved for the
specification, implementation and control of QoS contract.

Our design requires coordination between the QoS and OpenMP runtimes.
Such an inter-runtime coordination requires the following capabilities: (i) noti-
fications, e.g., in order to guarantee progress, a runtime should be able to raise
an event to generically notify another runtime/library for coordination pur-
poses (e.g., resource management); and (ii) a key/value store shared by run-
times/libraries, for example to store and load QoS parameters. Fortunately, the
PMIx [4] standard supports these features and existing libraries can easily be
extended to be PMIx compliant by using the PMIx reference implementation.

Fig. 3. Schematic overview of the QoS solution

5.2 Implementation Details

As previously stated, our QoS library, ORQOS, developed to provide the QoS
runtime capabilities, is based on PMIx. We also extended the OpenMP runtime
to be PMIx-compliant, which ultimately enables inter-library communication
and coordination. Practically, our prototype is therefore composed of our QoS
library, ORQOS, and an extension of OpenMP based on the LLVM 7.0.0 release.
Specifically, the QoS directives and clauses for OpenMP were added to clang
and LLVM. As a result, the QoS library is fairly easy to maintain because of its
limited size and can potentially be reused in a different context. For example,
we are considering reusing it with other programming languages, such as MPI.
Similarly, the LLVM extensions remain fairly limited and easy to maintain.

Figure 4 shows the workflow for compiling OpenMP code with QoS exten-
sions. When the OpenMP code is compiled, it is transformed into an intermediate
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code with the QoS directives converted into calls to ORQOS. These calls perform
two tasks: (i) initialize PMIx to permit data exchange between libraries through
its key/value store; and (ii) store QoS key/value pairs to make them accessible
to other runtimes. After generating the intermediate code, LLVM creates the
binary with all the required library dependencies, including PMIx and ORQOS.
At runtime, a PMIx server that is hosting the key/value store is implicitly cre-
ated when the ORQOS and OpenMP runtimes connect to it. This enables inter-
runtime coordination through PMIx key/value pairs and PMIx events. Moni-
toring and enforcement of QoS contracts is implemented only in the ORQOS
runtime, limiting the need for further modifying other components.

Fig. 4. Compile-time workflow and run-time interactions of the prototype using LLVM.

6 Related Work

The current state of practice for HPC resilience is global application-level check-
point/restart. It is a single-layer approach that burdens the user with employing
a strategy at extreme coarse granularity, i.e., the job level. Part of the current
state of practice for HPC resilience are also hardware solutions at extreme fine
granularity, such as ECC for memories, redundant power supplies, and manage-
ment systems for monitoring and control.

The current state of research is more advanced and includes fault-tolerant
MPI, fault-aware MPI, redundant MPI, proactive fault tolerance, containment
domains, and resilient algorithms. MPI solutions provide resilience at process
granularity. Fault-tolerant MPI [3] and fault-aware MPI [10] require global recon-
figuration and either local or global recovery. Redundant MPI [8] has signifi-
cant overheads. Containment domains [5], or sometimes referred to as recovery
blocks, use finer-grain checkpoint/restart strategies, such as at the sequential
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execution block level (e.g., task) or the parallel execution block level (e.g., par-
allel loop, iteration or application phase). There is also fine-grain transaction-
based application-level checkpoint/restart with the FTI [2] essentially imple-
ments containment domains at the parallel execution block level. Resilient algo-
rithms [1,6,7,18] utilize data redundancy, computational redundancy, or self
stabilization. Individual solutions tend to be algorithm specific.

Resilience Oriented Language Extensions (Rolex) [12] offers C/C++ data
type qualifiers for resilience and C/C++ pragma directives for fault tolerant exe-
cution blocks. While developed independently from OpenMP, Rolex does offer
OpenMP-like resilient programming. It does not offer support for heterogeneous
systems. Rolex is also not transparent, as it requires the application program-
mer to specify resilience strategies in detail. Another OpenMP pragma-based
resilience scheme explored in DIvergent NOde cloning (DINO) [17] focuses on
data protection by immediately performing correctness check after the last use
of a variable based on a vulnerability factor metric. This scheme is limited to
soft errors in memory.

There is only preliminary work in resilience for heterogeneous systems.
VOCL-FT [16] offers checkpoint/restart for computation offloaded to GPGPUs
using OpenCL. VOCL-FT transparently intercepts the communication between
the originating process and the local or remote GPGPU to automatically recover
from ECC errors experienced on the GPGPU during computation.

7 Conclusion

This paper is motivated by experiences with GPGPU errors and failures from the
largest heterogeneous HPC system in the world. It offers concepts for resilience
using target offload as a first step toward resilience in OpenMP. It describes
the underlying concepts and terminology and the observed errors and failures.
It derives error and failure classes for OpenMP target offload from the obser-
vations using the underlying concepts and terminology. This paper proposes a
number of improvements to enable OpenMP target offload resilience, including
a preliminary prototype design and some implementation aspects using a novel
concept for QoS.

Future work includes improving the prototype to demonstrate the proposed
improvements on a large-scale heterogeneous HPC system with a scientific appli-
cation. Its evaluation will use appropriate metrics, such as, ease of use, perfor-
mance, and resilience. The ease of use evaluation identifies how much effort
in terms of additional lines of code and implementation time is required to
use the QoS capabilities. The performance evaluation compares an unmodified
OpenMP with the developed prototype under error- and failure-free conditions.
The resilience evaluation performs error and failure injection experiments and
measures the time to correct solution under various error and failure conditions
with different QoS contracts. Additional future work will focus on the OpenMP
language extensions for QoS, specifically on clearly defining QoS parameters and
classes. Other future work could also focus on the reuse of our QoS library in the
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context of other HPC programming languages. For instance, it would be inter-
esting to investigate whether the concept of QoS could be used in the context
of MPI to specify resilience, performance and energy consumption requirements
in a portable manner. In this context, users could use QoS contracts to specify
requirements at both the application and job level but let the runtime find the
best compromise to satisfy all or most of the expressed requirements. If possible
this would enable a new set of capabilities without drastically increase the size
and complexity of standards such as OpenMP and MPI.
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Abstract. Due to the ubiquity of OpenMP and the rise of FPGA-based
accelerators in the HPC world, several research groups have attempted to
bring the two together by building OpenMP-to-FPGA compilers. This
paper is a survey of the current state of the art (with a focus on the
OpenMP target pragma). It first introduces and explains a design space
for the compilers. Design space dimensions include how FPGA infras-
tructure is generated, how work is distributed, and where/how target
outlining is done. A table concisely condenses the available information
on the surveyed projects which are also summarized and compared. The
paper concludes with possible future research directions.

1 Introduction

Fig. 1. OpenMP compilation.

OpenMP was originally inten-
ded to standardize the paral-
lel programming of CPU-based
SMP and NUMA systems. Prior
to OpenMP 4.0, CPU-based
systems were the only ones
supported. Later, OpenMP 4.0
introduced the target pragma
and allowed HPC programmers
to exploit a cluster’s hetero-
geneity by marking highly par-
allel regions of an algorithm to be offloaded to a more suited device (e.g. GPUs,
FPGAs, etc.). Figure 1 illustrates the new situation and the typical approach to
outline code for GPU and FPGA targets in the front-end of the compiler. Note
that Fig. 1 simplifies. At least for GPUs there exists a compiler whose back-end
builds code for both the host and the target. The thin dashed arrows show the
traditional compilation pipeline prior to 4.0. In bold are the new challenges for
the OpenMP implementer, as they now have to target both FPGAs and GPUs.
Figure 1 also sketches the internals of an FPGA: Acc1 through Accn denote
hardware units doing actual calculations. The other blocks represent the infras-
tructure needed in order to run these hardware units on the FPGA. As almost
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everything in the FPGA can be configured arbitrarily, one of many possible con-
figurations is shown. To make use of the accelerators, OpenMP compilers need
to solve novel problems: How to transfer data from the CPU to GPUs/FPGAs
and back? What kinds of handshaking to use? What hardware blocks to chose
to make up the FPGA configuration? What FPGA-internal bus system to use?
Over the years, several researchers answered some of those questions in various
ways.

Here we survey these papers and cover the current state of the art. Section 2
sketches the design space of OpenMP-to-FPGA compilers. Section 3 discusses
the published research using that design space.

2 Design Space

When mapping OpenMP code to FPGA-based accelerators, a tool chain has a
variety of different design decisions to choose from. This section covers feasible
approaches and identifies the dimensions that the next section uses to categorize
published systems. Of course, categories are not always black-and-white.

In this paper the term architecture refers to all components a system is built
from, how those components behave, and how they interact with each other.
An FPGA (or FPGA chip) usually consists of both a reconfigurable part and
a fixed ASIC part (for instance ARM cores, RAMs, etc.). This paper uses the
term FPGA fabric (or just fabric) to denote the reconfigurable part. A fabric
can emulate arbitrary hardware. Its configuration (the bitstream) encodes this
hardware. Without the configuration there are not even connections to the static
ASIC parts of the FPGA. Any real-world configuration thus must consists of two
parts: First functional entities, also known as kernel IPs (Intellectual Property)
that perform desired calculations from the regions inside the OpenMP program,
and second, the infrastructure for getting data to/from those functional blocks,
also known as Low-Level Platform (LLP). This part of the configuration enables
internal and external communication.

2.1 Low-Level Platform

While kernel IPs are application specific, in general and in this paper, the LLP
is composed from pre-built IPs that implement bus communication, memory
management, etc. These static LLP IPs sometimes can be configured (e.g., a
bus IP could be configured to host more than 4 bus masters). Conceptually the
compiler could generate application-specific LLP IPs from the ground up to best
fit the served kernel IPs, but we do not know of any such attempt.

There are 4 classes of LLP:

Generic-Static: Fixed and pre-built ahead of time for all OpenMP programs.
Such LLPs typically include a memory controller for FPGA memory, a com-
munication controller (PCIe), an on-chip bus system (AXI), and sometimes a
softcore CPU that manages the overall system. Because the bus system is fixed
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for all OpenMP programs, this type of LLP is limited to a constant number of
accelerator blocks.

Specialized-Static: Specific for one OpenMP program and built at compile time.
The compiler uses some static code analyses to compose LLPs of this type
according to the needs of the OpenMP program at hand. For example, for a
throughput-heavy OpenMP program the compiler would pick a different bus
system than for compute-bound code. Similarly, an AXI streaming bus is not
added to the fabric if the code cannot make use of it. Such tailoring saves fabric
space that can be used for additional or larger kernel IPs. The LLP is static as
it does not change after it has been configured to run on the FPGA.

Generic-Dynamic and Specialized-Dynamic: pre-built for all/specialized for one
OpenMP program/s, but adapting based on runtime measurements. LLPs of
these two dynamic classes adapt themselves depending on the current runtime
requirements of the OpenMP program. They require a partially reconfigurable
FPGA [38]. The LLP could for instance use different bus systems in different
phases of the execution. After a throughput-heavy initialization, another bus
system can be used, freeing space for additional computational kernels. To the
best of our knowledge there is not yet an OpenMP-to-FPGA compiler that
employs a dynamic LLP, neither a generic one (that fits all OpenMP programs)
nor a specialized one that reconfigures itself from a tailored set of LLP-IPs.

2.2 Distribution of Work

Fig. 2. Abbreviations for devices.

OpenMP 4.0 allows computations to be
distributed over all available computing
devices. For the distribution decision,
the compiler first assigns code blocks to
the devices statically and decides how
many copies of the code block to instan-
tiate. We survey approaches that also
decide statically where to execute the
code blocks. A runtime system could
optionally schedule them dynamically.
Dynamic scheduling is outside the focus of this paper as it is – if at all on FPGAs
– used for task scheduling only [7]. Figure 2 lists some of the abbreviations used
in this paper. While conceptually it is possible to let the programmer specify the
static distribution explicitly or to use some sophisticated optimization routine to
find a best-performing distribution at compile time, existing OpenMP-to-FPGA
compilers make a rather simplistic choice and fall into either of the following
two categories: CFhw: Plain code, including the main thread, executes on the
CPU, while for target pragma annotated code, FPGA hardware is synthesized
that performs the calculation. This is called the host-centric approach. Note,
that whenever possible the hardware synthesis tool makes use of available ASIC
blocks on the FPGA (like DSPs).
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Fhw,sc: In the fpga-centric approach, both the plain code (including the main
thread) and the pragma code execute on the FPGA; the sequential code runs
on a softcore CPU on the fabric. Again, the hardware synthesis tool makes use
of ASIC blocks for both the softcore and the custom hardware.

There are other design choices. For example to use multiple FPGAs, to
employ an ASIC hardware CPU if it is available, to also offload code to a GPU,
etc. To the best of our knowledge these choices have not yet been explored.

2.3 Outlining

To the best of our knowledge, all OpenMP 4.0 compilers that support target
offloading to FPGAs so far implement this as follows: They replace the marked
code with function calls (that may be bundled into a stub). Some of the func-
tions handle the communication of data between the host and the accelerator.
One function initiates the execution of the payload code on the accelerator that
implements the marked code block. To construct this payload, the compiler out-
lines the marked code block into a separate function that is then fed into an
accelerator-specific tool chain. This can be a compiler for a GPU or a high-level
synthesis tool (HLS) in the case of an FPGA as shown in Fig. 3. Some GPU com-
pilers spit out GPU code in their back-ends. But as it still has to be explored if
this is a better choice for FPGA code, we focus on the front-end outlining options
in this survey. It is common practice to outline each target region individually.
The design choice is whether to execute the outlining on the level of the abstract
syntax tree (AST) or to do it on the immediate representation (IR) of the code.

As in general, the host and the accelerator do not share memory, data needs
to be shipped to the accelerator (and back) so that the kernel IP can access it.
Hence, the compiler and the runtime system must solve three problems. First,
identify the values that need to be passed to the outlined code. Used techniques
range from naively copying all the data in the scope to relying on compiler
analyses or programmer specifications (data map clause) to limit the amount of
moved data and to thus gain performance. Second, create a parameter list for the
payload function (fed into the accelerator tool chain). Used techniques range from
naively creating one parameter for each value, to bundling values in structs or
arrays. For FPGAs, fewer parameters result in fewer bus ports in the generated
FPGA hardware which saves valuable resources on the fabric that then can be
used for the functional entities. Despite the importance, most papers do not
reveal how they generate parameter lists. Third, generate API calls to transfer
values to the accelerator. Value transfer routines can be asynchronous (non-
blocking) or synchronous (blocking). What works best depends on the accelerator
hardware. Both techniques are used to transfer data to/from computing devices.
For FPGAs, their ASIC devices constrain what transfer method works best for
any given application. While conceptually it is possible to tailor the transfer
routines to fit the LLP (and vice versa), to the best of our knowledge there is
not yet an OpenMP-to-FPGA compiler that exploits this option.
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Fig. 3. Front-end outlining options in an OpenMP-to-FPGA compiler.

Ability to Compose Streams: It is state-of-the-art to outline each code block
individually. This implies that modified data is shipped back from the accelerator
to the host CPU even if the next outlined code block uses the same data. In this
case, regardless of the type of accelerator, transfer cost can be saved. On FPGAs,
this optimization idea may have an even larger impact than on GPUs as two
subsequent target regions could use a streaming design to exploit pipeline-style
parallelism for better performance. To the best of our knowledge this has not
yet been explored.

2.4 Supported Pragmas

When distributing/mapping a code block to the FPGA, compilers may or may
not be able to exploit OpenMP pragmas. For the discussion, we distinguish
between OpenMP pragmas that are defined in the standard and HLS-specific
ones defined by tool vendors. OpenMP-to-FPGA projects that use HLS-tools
often pass through the latter to the HLS tool chain when they outline the code
according to Fig. 3.

As the surveyed projects are still prototypes, they ignore most of the regular
OpenMP pragmas. Tables 1 and 2 hold a positive list of those pragmas that they
support, in the sense that a pragma somehow affects the code they build during
outlining and that they feed into the HLS tool chain. As mentioned before, data
shipment between host and FPGA matters. Hence, Tables 1 and 2 also cover
whether a system supports the map clauses of the target pragma.

2.5 Optimization Techniques

OpenMP compilers also differ w.r.t. the (few) optimization technique they apply
along their pipelines. This is outside the scope of this survey.

2.6 High-Level Synthesis

As shown in Fig. 3, the OpenMP-to-FPGA tool chain uses a High-level syn-
thesis (HLS) tool to transform C/C++ code into FPGA hardware. The design
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spaces comprises three different types of HLS: Data path based (DP), finite state
machine based (FSM), and hybrid HLS [31]. A DP-based HLS produces the best
hardware for C/C++ code that is highly data parallel. It does not work well for
code that has many branches in it [16]. FSM-based HLS tools can translate most
programs (with the exception of programs that use recursion, malloc, or func-
tion pointers). Unfortunately, FSMs in hardware in general suffer from a higher
latency than DP designs. Hybrid HLS tools are most commonly used because
they (try to) combine the advantages of the two pure types: Vivado HLS [40],
Intel OpenCL SDK for FPGA [18], or Intel Quartus Prime (previously Altera
Quartus) [20] are well known hybrid commercial tools. LegUp [9] is a alternative
from the research community. There also is a commercial fork available [25].
CoDeveloper [17] is a special HLS that only accepts the Impulse-C language. It
does not fit into any of the above categories.

Which type of HLS to use for each target region is a design space decision. All
surveyed projects treat every region the same way and use the same hardware
synthesis for it, even though (at least conceptually) the decision can be made on
a per-region basis as the amount of parallelism varies among them.

3 Survey

Tables 1 and 2 illustrate which design space decisions existing approaches took.
The columns are ordered with the latest system first. As most authors have not
named their systems, we use the name of the first author instead. We did not find
more recent papers than the cited ones. There are references to code archives if
systems are available for download. However, unfortunately none of the systems
ran out-of-the box for us. The rows of the table are grouped according to the
design space discussion in Sect. 2. Some areas of the table give more details on
the design space aspects. In the HLS section the table lists which tools have
been used. The Misc. rows mention which compiler frameworks and libraries
have been used to build the system (e.g., Clang [24], LLVM [28,36], Mercurium
[2], GCC [35], Nanos++ [3], or libomptarget [42]), for which FPGA boards
they can be used, how the structure of the target systems looks, and whether
the system offers a complete workflow that does not require any intermediate
manual work along the tool chain. Simplified block diagrams sketch the target
structure. Here M stands for memory, B for bus interconnect, C for CPU, G
for GPU, A for application specific kernel IP, S for synchronization core, D for
hardware debugger, and T for timer. Lines represent physical connections and
parts in cyan live on the fabric. The superscripts give additional information on
a component (e.g., Cxeon for a Xeon CPU). The subscripts show instance counts
or memory sizes (e.g., C4 for a 4-core CPU, An for n application specific kernel
IPs, M2gb for a memory block with 2 gigabytes of storage).
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Table 1. Project overview (2019–2014)

3.1 Projects

Below we describe the essence of the systems and their main contributions. Read-
ers may skip the lines in fine print that detail the corresponding cells of the table.
In bold is the name of the addressed cell of Tables 1 and 2. Most papers eval-
uate their compilers. Where appropriate, we summarize the evaluation results
with respect to the benchmarks used, the method of comparison, and the main
evaluation results obtained.

Knaust’s host-centric prototype uses Clang to outline omp target regions at
the level of the LLVM IR and feeds them into Intel’s OpenCL HLS to generate
a hardware kernel for the FPGA. This approach relies on an undocumented IR
interface of the HLS. For the communication between host and FPGA, Knaust
uses Intel’s OpenCL API. It is unique how this work exploits a state-of-the-art
commercial HLS with low transformation efforts.
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Table 2. Project overview (2014–2006)

LLP: The internals of the LLP cannot be classified exactly because Intel’s SDK is
proprietary. However, the Floorplan Optimization Guide of the SDK mentions that the
LLP is loaded only once and that partial reconfiguration is used to hot-swap kernel
IP bitstreams at runtime [19]. Pragmas: Knaust passes the unroll pragma to the
underlying HLS. From the map clauses of the target pragma, only array sections are
unsupported.

Evaluation: Two Sobel filters (unoptimized and optimized for FPGAs) run on
a 4096 ·2160 ·8 bit matrix. The CPU-only version is compiled without -fopenmp.
The pure optimized kernel for the FPGA is 4× as fast as one CPU core, but this
can hardly amortize the cost of transfer and initialization.

OmpSs@FPGA by Bosch et al. improves and generalizes the work by
Filgueras et al. Memory on the accelerator is used for data sharing (stream-
ing). This is the only system in the surveyed set that not only outlines code to
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the FPGA but also addresses the GPU. Moreover, the tasks are dynamically
scheduled onto the devices.

LLP: The authors do not describe the structure of the LLP in detail. However, in
contrast to Filgueras et al. there are hints that it falls into the specialized-static class.

Evaluation: On three benchmarks (matrix multiplication, n-body, Cholesky
decomposition) the authors compare the baseline runtime (measured on a
CARM-A52

4 with 4 GB of shared memory) with their FPGA versions. For the
Cholesky decomposition, the performance drops by about 2×. For n-body, the
FPGA version is 15× faster. The matrix multiplication on the FPGA achieves
6× the GFLOP/s.

Ceissler et al. propose HardCloud, a host-centric extension for OpenMP 4.X.
There is no outlining of code blocks. Instead, HardCloud makes pre-synthesized
functional units for FPGAs easier to use in existing OpenMP code.

LLP: While the authors do not describe the internals of their LLP, the first figure in
[12] suggests it to be generic-static. Complete Workflow: Users need to manually
design hardware and synthesize it to a kernel IP as there is no outlining. HardCloud
automates the data transfer and device control.

Evaluation: The authors claim to have achieved speed-ups on the HARP 2
platform between 1.1× and 135×. However there is no further information about
the context or the benchmark codes.

Sommer et al. use Clang to extract omp target regions from the source
program (at AST-level) and feed them into the Vivado HLS that then gener-
ates kernel IPs. Calls to their Thread Pool Composer (TPC) API (now called
TaPaSCo) injected into the program implement the host-to-FPGA communica-
tion. The strength of the prototype is that it fully supports omp target (includ-
ing its map clause). This project is the first that integrated libomptarget.

LLP: TPC assembles a specialized-static LLP from the following set: the kernel IPs,
configuration files describing the IPs, and an architecture configuration file describing
for example what bus system to use (only AXI in their work).

Evaluation: For 6 benchmarks from the Adept benchmark suite [1], the
authors compare the runtime of -O3-optimized i7 CPU code (4 cores) to their
FPGA-only version (with HLS pragmas). The CPU outperforms the FPGA ver-
sion by 3× to 3.5× (without the HLS pragmas: 6× to 9×).

In the system by Podobas et al. the compiler extracts task-annotated func-
tions and synthesizes a specialized system on a chip (SoC) for them. It rewrites
the main program to use these units and compiles it to run on a softcore CPU
that is also placed on the FPGA. While their first system builds isolated FPGA
hardware per task, the authors later fuse task kernel IPs for resource shar-
ing. To do so they use Gecode [32] to solve constraint programs in which the
constraints express what to share.
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LLP: Altera Quartus builds the specialized-static LLP. It connects the kernel IPs and
assigns an own address space on a shared Avalon bus to each of them. It also connects
auxiliary blocks and the softcore to that bus. Pragmas: The behaviour of the pragmas
parallel and single slightly differ from the OpenMP specification. If both pragmas
are written consecutively in the source code, the system replaces them by a function
call that initializes the LLP. The behaviour of just one pragma is left open. HLS:
The authors use the custom hardware synthesis tool fpBLYSK. Depending on the
command line flags, their HLS can generate purely FSM-based designs that execute
one instruction per state, or it can combine several instructions into each FSM state,
giving the design a DP taste.

Evaluation: The authors study three basic benchmarks (π, Mandelbrot, and
prime numbers). For the first two compute-bound benchmarks, the FPGA ver-
sion outperforms both CPU-only versions (57-core Intel Xeon PHI and 48-core
AMD Opteron 6172) by a factor of 2 to 3. However, for the memory-bound third
benchmark, the CPU versions are about 100 times faster.

Filgueras et al. add support for the Xilinx Zynq FPGA [41] to the OmpSs
framework [6] that provides task offloading to any kind of supported accelera-
tor. Although their prototype exclusively uses the FPGA’s ASIC CPUs for the
sequential portion of the source code (fpga-centric, Fhw,hc). The authors claim
any work distribution to be possible (e.g., CFhw). The system is the first that
combines this flexibility with the task based paradigm (including task depen-
dencies).

LLP: The authors do not describe in detail how the compiler builds the LLP. Pragmas:
The task pragma is extended so that it can be used to annotate functions and to
specify dependencies between tasks (clauses in, out, or inout). Compiler Toolkit:
A custom pass implemented in the Mercurium framework outlines and injects calls
for data shipment. The Nanos++ OpenMP runtime provides task parallelism and
dependency-based task scheduling.

Evaluation: On four numeric benchmarks (two matrix multiplications with
different matrix sizes, complex covariance, and Cholesky decomposition) the
FPGA version achieves speed-ups between 6× to 30× compared to a single
ARM A9 core.

The system by Choi et al. is fpga-centric. Its main objective is to exploit
the information on parallelism that the programmers provide in (six supported)
pragmas, to generate better, more parallel hardware. The compiler synthesizes
one kernel IP per thread in the source program (for example a code block anno-
tated with parallel num threads(4) specifies 4 hardware threads). The sup-
port for the reduction clause of parallel or parallel for is unique, although
the authors do not elaborate on how they achieve reduction on variables in hard-
ware.

Pragmas: The system is limited to OpenMP constructs for which the compiler can
statically determine the number of threads to use. Nested parallelism is possible,
although limited to two levels. HLS: The extended LegUp generates parallel hard-
ware for parallel and parallel for and utilizes the other pragmas (atomic, etc.) to
synchronize between the threads. For atomic and critical, a hardware mutex core is
synthesized.
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Evaluation: With the best compiler configuration for the FPGA versions, 7
benchmarks (Black-Scholes option pricing, simulated light propagation, Mandel-
brot, line of sight, integer set division, hash algorithms, double-precision floating
point sine function) show a geomean speed-up of 7.6× and a geomean area-delay
product of 63% compared to generated sequential hardware.

Cilardo et al. think of OpenMP as a system-level design language (e.g., for
heterogeneous targets like the Xilinx Zynq) and present a compiler that uniquely
supports the complete OpenMP 3.1 specification. They map the whole OpenMP
program to the FPGA (where they use softcore processors to run threads with
many branches). Note, that the authors even map nested parallelism (i.e., nested
omp work sharing constructs) to hardware (by exploiting the tree-like structure
to minimize path lengths for common control signals).

LLP: The Xilinx Embedded Development Kit (EDK) [39] was used to build the LLP,
but the authors only reveal that they use the MicroBlaze [37] softcore for the sequen-
tial parts. Pragmas: As their custom front-end only supports OpenMP-parsing, it is
unlikely that HLS pragmas are passed through.

Evaluation: When comparing their sieve of Eratosthenes to the results from
Leow et al. the authors see twice the speed-up. Furthermore, a runtime overhead
inspection of the implemented OpenMP directives (private, firstprivate,
dynamic, static, and critical) shows significantly less overhead than the SMP
versions on an Intel i7 (6×, 1.2×, 3.1×, 10.5×, and 2.64×, respectively).

Cabrera et al. extend OpenMP 3.0 with new semantics for task and target
to ease the offloading to pre-synthesized functional units, i.e., hand-built kernel
IPs. There is no outlining of code blocks. Their main contribution is that they
provide support for SGI’s RASC platform [33] and a multi-threaded runtime
library layer with a bitstream cache that enables parallel computation on both
the host and the FPGA even while the bitstream is being uploaded.

LLP: The target system is embedded into an SGI Altix 4700 server and a proprietary
generic-static LLP provided by SGI is used. Pragmas: The work introduces the pragma
block that helps to guide loop restructuring and data partitioning of arrays. HLS:
Xilinx ISE 9.1 (now part of the Vivado Design Suite) is used to generate bitstreams.
Compiler Toolkit: Offloading is implemented as a plugin for the Mercurium compiler.
The host-side code compiles with GCC 4.1.2 and links against a custom runtime library.

Evaluation: The paper only shows runtimes of a matrix multiplication (322,
642, and 1282) without any comparisons with CPU codes.

Leow et al. view OpenMP programs as a hardware description language that
programmers use to explicitly control the parallelism of the resulting hardware.
In contrast to other systems, the result is a single hardware entity (Fhw) without
any outlining and work distribution at all.

HLS, Compiler Toolkit: The translation is integrated into the C-Breeze compiler
framework as a custom high-level synthesis pass. It can generate both Handel-C [29]
and VHDL code, but different restrictions apply. For example, the VHDL back-end
cannot deal with global variables in the input program.
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Evaluation: For the first two of the benchmarks (matrix multiplication, sieve
of Eratosthenes, Mandelbrot), the FPGA versions achieves speed-ups of 25×
and 7× over a symmetrical SMP (UltraSPARC III with 8GiB). For Mandelbrot,
the FPGA version is slower than the SMP, even though all SMP codes were
compiled with -O0.

3.2 Discussion

The surveyed projects are prototypes focusing only on a small subset of OpenMP
pragmas and require users with compiler- and/or FPGA-expertise. Almost half
of the tools still require manual outlining and invoking of HLS tools, and for
only three systems the source code is available.

About half the systems are host-centric. The general idea is to achieve perfor-
mance and efficiency by standing on the shoulders of giants. Research falls into
two groups. Systems in one group (Ceissler and Cabrera) assume pre-synthesized,
highly optimized and efficient kernel IPs that need to be interconnected. The
underlying hope is that the generated glue hardware is not that crucial for perfor-
mance. Because of the pre-built kernels those systems are tied tightly to specific
FPGA platforms, e.g., Intel HARP2, Amazon AWSF1, or SGI RASC.

The other group outlines code blocks and feeds them into an HLS tool chain
for building the kernel IP. The hope is that vendors invest enough money and
man power into these tools so that they synthesize efficient FPGA hardware.
As shown in Fig. 3, outlining can either be done on the level of ASTs or at the
IR-level. The latter approach (taken by Knaust) not only suffers from not being
future-proof as current HLS tools only provide undocumented IR-level interfaces.
The other disadvantage is that it is complicated to pass HLS pragmas to the HLS
tool. The problem is that such pragmas need to be transformed into unofficial
IR annotations that are even more likely to change or to become unavailable
in the future. AST-based outlining does not have these disadvantages because
passing HLS pragmas is easy as ASTs can be trivially converted to C code and
because using the HLS on AST-level can be expected to work for the foreseeable
future. The main problem of using an HLS from a certain vendor is that only
this vendor’s FPGAs can be used.

The fpga-centric approaches understand a whole OpenMP program as a high-
level description of the FPGA hardware that has to be built, i.e., the FPGA is no
longer used as an accelerator but it is the only device. This group of researchers
usually builds specific compilers that focus on optimizing transformations for
pragmas that are directly relevant for the hardware synthesis. Depending on
the size and the importance of the sequential code blocks, systems either use a
softcore processor on the fabric for it, or they include the sequential code into
the kernel IP. On the one hand, FPGAs programmed with compilers that use the
pragma information are claimed to perform better because the programmer can
specify application-specific parallelism. The main drawback, on the other hand,
is that host CPUs (optimized for memory-intensive sequential workloads) stay
unused. The general problem of the fpga-centric approaches is that in general
they only work for a specific FPGA and/or tool chain.
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4 Conclusion and Future Work

The basic technical issues of host-centric target offloading with a CFhw work
distribution have been covered extensively, both with outlining on the AST- or
IR-level. Similarly, the fpga-centric compilers that treat OpenMP as some sort
of hardware/system-level description languages use basic mapping regimes to
assemble FPGA bitstreams for targets and to distribute the work in various
ways.

The field is in a proof-of-concept state. We think that what is needed now
is a focus on performance and efficiency. There is not yet a benchmark to quan-
titatively compare systems. Little work has been done so far on optimization.
For example, self-adapting, dynamic LLPs may be the better infrastructure and
may free FPGA resources for functional entities/kernel IPs. Instead of treat-
ing each omp target region in isolation, it may be promising to explore how
to automatically connect kernel IPs in a streaming fashion (as human FPGA
engineers usually do). Currently, FPGA-expertise is required to achieve better
performance than leaving the FPGA unused. This burden needs to be taken
from the OpenMP programmer, i.e., they should no longer need to be experts
in HLS pragmas and in the tools of FPGA vendors.

From our perspective, the key to all of this is a better code analysis that not
only spans across all the OpenMP pragmas used in a given code, but that also
spans from IR-level to low-level HLS transformations. We feel that at least there
should be a (to be designed) interface between the various tools along the tool
chain to convey optimization-related analysis data.

Acknowledgments. The authors acknowledge the financial support by the Federal
Ministry of Education and Research of Germany in the framework of ORKA-HPC
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Abstract. Heterogeneous architectures which integrate general purpose
CPUs with specialized accelerators such as GPUs and FPGAs are becom-
ing very popular since they achieve greater performance/energy trade-
offs than CPU-only architectures. To support this trend, the OpenMP
standard has introduced a set of offloading constructs that enable to
execute code fragments in accelerator devices. The current offloading
model heavily depends on the compiler supporting each target device,
with many architectures still unsupported by the most popular compilers
(e.g. GCC and Clang). In this article, we introduce a new methodology
for offloading OpenMP annotated code to accelerator devices. In our pro-
posal, the software compilation and/or hardware synthesis processes to
program the accelerator are independent from the host OpenMP com-
piler. As a consequence, multiple device architectures can be easily sup-
ported through their specific compiler/design tools. Also, the designer
is able to manually optimize the original offloaded code or provide an
alternative input to the design flow (e.g. VHDL/Verilog or third party
IP cores for FPGA), thus leading to an effective speed-up of the applica-
tion. In order to enable the proposed methodology, a powerful runtime
infrastructure that dynamically loads and manages the available device-
specific implementations has been developed.

Keywords: OpenMP · Offloading · GPU · FPGA

1 Introduction

Heterogeneous computing architectures which combine general purpose CPUs
and dedicated accelerators such as GPUs and FPGAs have become extensively
used both in large processing centers and on embedded systems. These plat-
forms outperform homogeneous multi-core CPU systems in terms of computing
capabilities and especially energy efficiency (operations per watt) [1]. In order
to facilitate the design for hardware accelerators, programming models such as
OpenCL [2] and CUDA [3] have emerged and powerful hardware synthesis tools
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have been introduced by the industry to enable the use of high-level languages
such as C, C++ and OpenCL to generate FPGA-based accelerators.

The performance of a code executing on a CPU (host device), can be
improved by offloading a code fragment (target region or kernel) to a hard-
ware accelerator (target device), like a GPU or FPGA. Since its origin, OpenMP
has proven to be an efficient and widely used model for programming shared-
memory symmetric multiprocessor (SMP) architectures. In recent versions, the
standard [4] has introduced a set of extensions to support code offloading to
accelerators. This model relies on the compiler to support the generation of the
executable code for the accelerator device. The implementation of the OpenMP
offloading features in GCC [5] and Clang [6] is still under development, with
many architectures still unsupported.

This paper introduces a new offloading methodology which allows both large
compatibility with different device architectures and flexibility in the design of
the computation kernels. In our approach, the SW compilation/HW synthesis
and (optionally) design flows for the accelerator device are independent from
the OpenMP compiler. In order to support the above, a flexible and interoper-
able runtime infrastructure has been developed, which fully integrates with the
standard OpenMP runtime.

The rest of this paper is organized as follows. In Sect. 2, the proposed
offloading methodology is introduced. Section 3 describes the implemented run-
time infrastructure, which we evaluate over some heterogeneous architectures in
Sect. 4. Section 5 provides related work. Finally, Sect. 6 concludes the paper and
discusses future work.

2 Methodology

2.1 Motivation

As explained in the previous section, one drawback of the current offloading
process in OpenMP is the fact that target devices must be supported by the
OpenMP compiler. Also, this scheme leaves the designer with very little or no
flexibility to modify the design in some scenarios such as offloading to hardware
accelerators, in which specific optimizations as well as code/algorithm modifica-
tions are required to generate efficient implementations.

This work focuses on the development of a new OpenMP offloading method-
ology. The key idea of our approach is to dissociate the OpenMP compiler from
device specific compilation/synthesis processes and provide an efficient mecha-
nism to integrate device implementations with the host executable during run-
time. In order to make it possible, a runtime infrastructure which integrates with
the OpenMP runtime is developed.

The elementary requirements that the proposed infrastructure has to meet
are summarized as follows:

1. Allowing the development of new device implementations after compilation
of the host code. Runtime mechanisms are defined for dynamic loading of the
new device-specific implementations.



OpenMP Dynamic Device Offloading in Heterogeneous Platforms 111

2. Enabling the runtime infrastructure to identify, during execution time, all the
available implementations as well as computing resources required to execute
them.

3. Enabling the runtime infrastructure to provide dynamic task allocation during
execution time. The designer will be able to use runtime library routines to
set the target device.

4. Allowing device-specific implementations to optionally include performance
metadata, like memory requirements, execution time or power consumption.
Similarly, identified computing resources may include information such as
memory size and clock frequency. This could be used to guide device selection
at runtime. In order to use this information, new OpenMP runtime functions
should be defined.

Let offloading to FPGA serve as an example of application. A proof-of-
concept implementation of OpenMP offloading to FPGA which integrates with
the LLVM offloading infrastructure has already been presented in [7]. It uses
Vivado HLS to generate the hardware from the C/C++ original code. Despite
the fact that the designer can add synthesis directives (pragmas) in the original
code to be used by the high-level synthesis tool, the code cannot be modified
with the aim of optimizing the generated hardware. In practice, it is well known
by hardware designers that a deep knowledge of the synthesis tool and wisely
modifying the input code (along with the use of directives) are key points to get
an efficient hardware design.

Our approach is based on generating a host binary which integrates device-
specific implementations during runtime and breaking apart the device code
compilation flow. Then, the original code of the OpenMP target regions can
be used as an input to the HLS tool though the designer is able to get into the
design flow and generate an optimized code as well. Moreover, hardware descrip-
tion languages such as VHDL or Verilog or even external IP cores can be used
depending on the designer preferences. The integration of these implementations
is supported by the proposed runtime infrastructure. In addition, high flexibility
in terms of supported devices is provided since designers use device-specific com-
pilers or synthesis tools no matter whether they are supported by the current
OpenMP compilers.

2.2 Target Platforms and Supported Devices/Accelerators

With the increasing importance of heterogeneous platforms which integrate
CPUs, GPUs and FPGA-based hardware accelerators, supporting as many tar-
gets as possible is at the core of our methodology. From OpenMP API 4.0
(released in 2013) some directives to instruct the compiler and runtime to offload
a region of code to a device are available to the programmer [4,8]. However, sup-
port for the target devices must be included into the compiler infrastructure
in order to allow device offloading. In practice, offloading support in the most
commonly used compilers is still immature [5,6]. In our approach, by making
the device-specific design flow independent from the OpenMP compiler, it is



112 Á. Álvarez et al.

possible to offload a code region to almost any target provided that device com-
pilers or synthesis tools are available to the designer. We will focus on proving
the compatibility of the proposed methodology with: (i) GPUs, which can be
programmed through OpenCL or propietary languages such as CUDA, and (ii)
FPGA devices, through high-level synthesis or hardware description languages.

2.3 Offloading Design Flow

Consider a computation node with a host device (CPU) connected to one or
multiple accelerators. The starting point in the OpenMP accelerator model flow
is a source file with standard OpenMP code, in which the region of code (known
as target region) to be offloaded to an accelerator (known as target device) is
specified by the target directive.

OpenMP
C/C++ Code

Proposed
Runtime
Library

CPU

Fat Binary
.exe

GPU

Source Code
Device binaries
(shared object)

.so 

Source Code

New Code

Device specific files
(e.g. FPGA bitstream,

GPU code)

Extraction

Runtime
Dynamic Loading

Compilation
+

Linking

(optional)

Provides the runtime
infrastructure.

SW Compilation / HW Synthesis

Host
(CPU) 

Device
(e.g. FPGA, GPU) 

Execution
Platform

Fig. 1. Design flow for the proposed OpenMP dynamic device offloading methodology.

In our proposal (summarized in Fig. 1), the original input source file has to
be compiled and linked with a library which provides a runtime infrastructure
to allow the use of the new dynamic offloading methodology. This infrastructure
integrates with the standard OpenMP runtime and will be detailed in Sect. 3.
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When a compiler supports offloading to a certain architecture, a binary for each
target is commonly inserted into the host fat binary file. In order to support
any potential target device, the source code corresponding to the target region
has to be included in the fat binary as well. Then, this code is extracted to be
used as the input of a separate compilation/synthesis flow. Automation of these
steps and integration of the proposed methodology into an existing OpenMP
open-source compiler are out of the scope of this paper.

The compilation/synthesis of the target code for the accelerator device are
dissociated from the OpenMP compilation process in the presented methodology.
On the one hand, the original source code of the target region can be directly
used to program the accelerator (e.g. as the input to a high-level synthesis tool to
generate an RTL design for FPGA). Also, the OpenMP code may be converted
to an OpenCL kernel to be executed on a GPU/FPGA [12]. On the other hand,
the designer has the possibility of modifying the code to achieve an effective
speed-up of the application in a particular device or even taking a different
approach, such as VHDL or Verilog in the case of FPGA or CUDA for a GPU
from NVIDIA. This flexibility is one of the biggest advantages of the proposed
methodology. Compilation/synthesis for the accelerator are carried out prior
to the program execution. Compilation at runtime, also known as just-in-time
(JIT) compilation, would not be feasible in terms of performance (e.g. FPGA
bitstream generation is too time-consuming) and flexibility (the designer must
be able to provide new code). New device implementations can be generated and
new accelerators can be supported without recompiling the host code.

In order to run the target region in the accelerator device, the necessary
executable code for the host is generated in the form of a shared object (i.e. a
dynamic library). The tasks performed by these shared objects include managing
the device status, the data transfer and the execution on the device. They are
not inserted into the fat binary—instead, they are designed to integrate with the
original host binary during runtime. Also, some device specific files can be pro-
duced in the design process, such as a bitstream to configure an FPGA device.
Different implementations to accelerate the target region in multiple devices
may be available. A single shared object can contain different implementations,
or individual shared objects corresponding to each accelerator can be used (e.g.
lib GPU.so, lib FPGA.so, etc). During execution time, the runtime infrastruc-
ture is able to identify all the available devices and implementations.

3 Proposed Runtime Infrastructure

In this section, the features and implementation details of the proposed run-
time infrastructure are presented. First, we illustrate how it can be used from a
programmer’s point of view. Then, internal implementation details are given.
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3.1 Programmer’s Perspective

The runtime library provides the programmer with a set of routines to select and
check the accelerator device during execution time. Their functionality could be
added to their OpenMP counterparts (see Table 1). It is fully interoperable with
the OpenMP runtime and all functions are designed to have a C binding, so
that it supports C and C++. An example of the use of the runtime library to
offload a code region from a programmer’s perspective is shown in Listing 1.
In the code, two concurrent OpenMP host threads are created, with identifiers
‘0’ and ‘1’. In thread 0, some code in function1 will be executed on the CPU.
In thread 1, some compute-intensive code is marked for offloading with the omp
target directive. This code will be moved to the accelerator with device number
‘2’, which is assumed to be an FPGA in the execution platform. In the example,
the map clause has been used to explicitly indicate the variables to be copied to
and from the device data environment.

Table 1. OpenMP runtime library routines modified to enable the new methodology.

Function Description

void omp set default device(int device num) Selects the default target device

int omp get default device(void) Returns the default target device

int omp get num devices(void) Returns the number of target devices

3.2 Implementation Details

As a result of the proposed design flow, two kinds of files are used at execution
time:

The host binary (required), which includes the original code and an imple-
mentation corresponding to every target region marked for offloading for, at
least, the CPU. Implementations for other devices may be included into the
executable as well when supported by the OpenMP compiler.

Shared objects (optionally), which include implementations for one or mul-
tiple additional target devices, corresponding to one or various of the target
regions marked for offloading.

During the host program execution, the runtime infrastructure is initialized
the first time that a runtime routine or target region is executed. The available
shared objects containing device implementations are loaded and some runtime
lists are built: (i) a list of devices, (ii) a list of target-region functions and (iii)
a list of implementations for each function. This data structures are shown in
Fig. 2 and explained below.
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Listing 1. Device offloading example with the proposed infrastructure.

1 #define GPU 1

2 #define FPGA 2

3

4 void host_code(char *image_in , char *image_out , int width , int height)

5 {

6 UC_set_default_device (FPGA);

7 omp_set_num_threads (2);

8

9 #pragma omp parallel

10 {

11 int id = omp_get_thread_num ();

12 // ----Thread #0----

13 if(id == 0){

14 function1 ();

15 }

16 // ----Thread #1----

17 if(id == 1){

18 #pragma omp target map(to: image_in [0: width*height], width ,

height) map(from: image_out [0: width*height ])

19 {

20 int x, y;

21 for(y=0; y<height; y++){

22 for(x=0; x<width; x++){

23 // Some computation

24 image_out[y*width + x] = image_in[y*width + x] * 0.5;

25 }

26 }

27 }

28 }

29 }

30 }

Devices. The accelerators devices supported by the host compiler and the ones
defined in loaded shared objects are added to the global list of devices. Device 0
corresponds to the CPU and is always present. Every element in the list of devices
contains metadata (such as name, type, status...) and pointers to device-specific
management functions, which are detailed in Subsect. 3.3. Also, performance
characteristics can be included (number of cores, memory size...). The above
may be useful to add new functionality to the OpenMP runtime in the future,
such as guiding the device selection process during execution.

Functions. For each target region marked for offloading with the target direc-
tive in the code, a target-region function is extracted and added to the global
list of functions. Every element in the list contains information related to the
arguments of the function (number, type and direction) and points to a list of
implementations targeting one or more target devices (al least, the default CPU
version is available).

Implementations. The available implementations for each target-region func-
tion are added to the list of implementations. Every element in the list contains
data (such as the target device), pointers to implementation-specific manage-
ment functions (explained in Subsect. 3.3) and a pointer to the executable code.
Overall, the information handled by the proposed runtime method is organized
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Fig. 2. Overview of data structures built by the runtime infrastructure.

in a table of target-region implementations, as represented in Table 2. In this
version of the runtime, each device is associated with only one implementation
and vice versa (i.e. for target region 0—first row in the table—Impl.(0,0) cor-
responds to Device 0, Impl.(0,1) to Device 1...). When the device required
for offloading of a target region does not have an implementation available, the
default implementation (Implementation 0) is launched on the CPU. The table
of target-region implementations allows to integrate our proposal with the cur-
rent OpenMP offloading methodology since it uses a similar approach.

Table 2. Table of target-region implementations handled by the runtime.

Device 0 Device 1 . . . Device N

Function 0 Impl. (0,0) Impl. (0,1) . . . Impl. (0,N)

Function 1 Impl. (1,0) Impl. (1,1) . . . Impl. (1,N)
...

...
...

...
...

Function K Impl. (K,0) Impl. (K,1) . . . Impl. (K,N)
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3.3 Management of Devices and Implementations

For every device and implementation, a set of functions are provided to manage
and configure the accelerator and the execution during runtime. These functions
are summarized in Table 3. The runtime infrastructure internally employs these
functions, although the tasks they perform are specific for each device/implemen-
tation. Owing to that reason, they are defined in the shared objects containing
device implementations (default versions are in the host binary as well).

Table 3. Internal runtime routines to manage devices and implementations.

Function Description

Device open device() Checks if the device is in the execution
platform. If present, initializes the
device. Allocates memory in the host
to store device data

close device() Releases the device. Deletes device
data stored in the host memory

lock device() Disables access to the device from
other host thread

unlock device() Enables access to the device from other
host thread

Implementation init implementation() Initializes the implementation (e.g.
allocates memory in the device)

close implementation() Clears the implementation (e.g.
deallocates memory in the device)

Figure 3 shows the execution flow when a code region is offloaded to a device,
in order to illustrate how the runtime infrastructure makes use of the above func-
tions. As an example, consider offloading to a GPU through OpenCL. The imple-
mentation and management functions have been loaded from a shared object.
When the runtime is initialized, all the available devices are recognized and
opened. Only the devices included in the global device list can be recognized. In
this case, opening the device means initializing the OpenCL variables related to
the device, such as the context and the queue, as well as allocating memory in the
host to store these new information. When the host requires the execution of the
target region, the required implementation is initialized, which in this example
builds the OpenCL kernel and creates the buffers to store the transferred data in
the GPU memory. Before and after the execution, lock and unlock routines set
the device as busy/idle to control access to the device from other host threads
while it is being used. If the host thread terminates, the implementation and
devices are closed, deleting the stored information and releasing the allocated
memory from the host and the device. Otherwise, the implementation is not
closed by the runtime, since it is frequent that the target region needs to be
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executed repeatedly (e.g. when processing a sequence of video frames). In this
case, a ‘soft’ initialization is performed in successive executions. For example,
there might be no need to rebuild the kernel or reallocate memory buffers—in
the ‘soft’ initialization, this is checked to decide whether they can be reused from
previous executions.

Initialize
Implementation

in Device
Lock Device Unlock Device

Close
Implementation

in Device

NoYes

Copy Data In Execution
in Device

Copy Data
Out

Execute
again?

Execute Implementation

Fig. 3. Execution flow for device offloading performed by the runtime infrastructure.

3.4 Host Code Transformation

Previously, the implemented runtime support has been discussed. Allowing the
execution of different device implementations requires some host side support. As
a consequence, the host code needs to be preprocessed and transformed during
compilation in order to enable the connection to multiple device implementa-
tions. Listing 2 shows how the code in Listing 1 is modified by replacing the
target region by a call to a wrapper function which eventually manages the
execution of any device implementation.

In Listing 3, the simplified implementation for the wrapper is shown. The
arguments passed to the wrapper derive from the explicit mapping of variables
defined by the programmer. When a target region is executed for the first time,
an initialization is performed by building a list of the associated device implemen-
tations (which corresponds to a row in Table 2). This is carried out in code line
17, with target1 struct being an element with information about the target-
region function as described in Sect. 3.2, and implementation struct array
being an array of pointers to elements with information about each implemen-
tation as described in Sect. 3.2. An array of pointers to every implementation
itself is then built (code line 19). The particular code for each device is external
to the host code, since it is embedded in a shared object file. All shared objects
available at the moment of execution are dynamically loaded at startup. The
number of devices and implementations is unknown at the moment of compi-
lation of the fat binary. The above allows to support new devices or optimize
existing implementations without recompiling the host code. When the initial-
ization for a target region has already been completed, the currently selected
device is obtained and used to select the implementation to be launched (code
lines 24-25).
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Listing 2. Transformed host code, in which target regions marked in the original code
are replaced by a wrapper function.

1 #define GPU 1
2 #define FPGA 2
3

4 void host_code(char *image_in , char *image_out , int width , int height)
5 {
6 UC_set_default_device(FPGA);
7 omp_set_num_threads (2);
8

9 #pragma omp parallel
10 {
11 int id = omp_get_thread_num ();
12 // ----Thread #0----
13 if(id == 0){
14 function1 ();
15 }
16 // ----Thread #1----
17 if(id == 1){
18 wrapper1(image_in , image_out , width , height);
19 }
20 }
21 }

Listing 3. Code generated at the moment of compilation to connect the transformed
host code to different device implementations (simplified).

1 // Create function pointer type

2 typedef int (* ptr_function)(char*, char*, int , int);

3 // Declare array of pointers to implementations

4 static ptr_function *implementations = NULL;

5

6 static int num = 0, initialized = 0;

7

8 // Wrapper to connect host code to different implementations

9 int wrapper1(char* image_in char* image_out , int width , int height)

10 {

11 ptr_function fn;

12 // Initialize list of implementations for current target region

13 if(initialized == 0) {

14 num = UC_get_num_devices ();

15 implementations = (ptr_function *) calloc(num , sizeof(ptr_function));

16

17 (void) UC_Init_Impl( &target1_struct , &implementation_struct_array);

18 for(int i=0; i<num; i++){

19 implementations[i] = implementation_struct_array[i]->function;

20 }

21 initialized = 1;

22 }

23 // Select and launch implementation

24 fn = implementations[UC_get_default_device ()];

25 return fn(image_in , image_out , width , height);

26 }

4 Experimental Evaluation

In this section, a proof-of-concept of the proposed methodology is presented. The
runtime infrastructure has been evaluated using two heterogeneous architectures:
a Zynq UltraScale+ MPSoC (CPU-FPGA) and a PC (CPU-GPU).

The serial video processing system represented in Fig. 4 is used as a test case.
First, an RGB frame is taken from a camera. The image is converted to grayscale
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and a sobel filter is applied, which is an edge detection algorithm. The output
image is shown on screen.

Read Image RGB to
Grayscale

Edge 
Detection Show Image

Fig. 4. Block diagram of the video processing sequence used as a test case.

The system is parallelized using OpenMP with four host threads concurrently
executing the four tasks in which the system is divided. Therefore, a pipeline
is established with four images being processed at the same time. In order to
evaluate the proposed methodology, the edge detection function is marked for
offloading with a target directive. In order to program the GPU attached to the
PC, an OpenCL kernel has been generated. For execution on the Zynq MPSoC
device, Xilinx SDSoC has been used to produce the driver functions for the host
(dynamically loaded by the runtime) and the files to program the Zynq device (a
hardware accelerator for the FPGA logic has been generated from the original
target code with Vivado High-Level Synthesis). The host application code along
with the developed runtime structure has been compiled with GCC for both x86
and ARM architectures.

Tables 4 and 5 summarize the execution time of the previously described
example over two heterogeneous platforms: (i) a Xilinx ZCU102 board featuring
a Zynq UltraScale+ MPSoC with 1.20 GHz 4 cores ARM Cortex-A53 CPU inte-
grated with FPGA programmable logic and (ii), a laptop PC with 2.30 GHz 4
cores Intel Core i7-3610QM CPU and a NVIDIA GT630M GPU, both running
Linux. In the experiments, the input images are 640× 480 and obtained from
the filesystem to avoid being limited by the camera framerate. The results are
averaged over 100 executions.

Table 4. Performance on Xilinx ZCU102 - Zynq MPSoC ARM Cortex-A53 + FPGA.

Mode Frames per second

Serial (CPU) 9.2

Parallel + Offloading (CPU) 16.9

Parallel + Offloading (FPGA) 39.5

Table 5. Performance on PC - Intel Core i7-3610QM CPU + NVIDIA GT630M GPU.

Mode Frames per second

Serial (CPU) 79.2

Parallel + Offloading (CPU) 147.3

Parallel + Offloading (GPU) 295.3
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5 Related Work

Several previous researches have studied and implemented code offloading from
OpenMP annotated programs to accelerator devices. Liao et al. [8] first reviewed
the OpenMP Accelerator Model when support for heterogeneous computation
was introduced in the OpenMP API 4.0 back in 2013. They presented an ini-
tial implementation built upon an OpenMP compiler based on ROSE [9], with
support for GPUs from NVIDIA by generating CUDA code.

More recently, some authors have worked to include OpenMP offloading sup-
port into the LLVM compiler infrastructure. To cite some of them, Bertolli et
al. [10] focused on delivering efficient OpenMP offloading support for Open-
Power systems and describe an implementation targeting NVIDIA GPUs. Their
approach automatically translates the target region code to PTX language and
eventually to low-level native GPU assembly, called SASS. Different optimization
strategies were integrated into Clang with the aim of maximizing performance
when compared to CUDA-based implementations. The CUDA device driver is
used to map data to/from the GPU. In [11], Antao et al. generalize the pre-
vious approach to handle compilation for multiple host and device types and
describe their initial work to completely support code generation for OpenMP
device offloading constructs in LLVM/Clang. Pereira et al. [12] developed an
open-source compiler framework based on LLVM/Clang which automatically
converts OpenMP annotated code regions to OpenCL/SPIR kernels, while pro-
viding a set of optimizations such as tiling and vectorization. Lastly, a proof-
of-concept implementation of OpenMP offloading to FPGA devices which also
integrates with the LLVM infrastructure was presented by Sommer et al. [7]. In
their work, Vivado HLS is used for generating the hardware from the C/C++
target regions. Compared to previous work, our proposal describes an alterna-
tive offloading methodology in which the device-specific compilation is no longer
attached to the OpenMP host compiler, thus requiring little compiler support
and integration effort.

6 Conclusions and Future Work

This paper introduces a new OpenMP device offloading methodology. In our
proposal, the device-specific software compilation and/or hardware synthesis
processes are dissociated from the OpenMP host compiler. The advantages of
this approach include: (i) support for multiple devices (i.e. different architecture
GPUs, FPGAs...), while the standard offloading method heavily depends on the
compiler supporting each architecture; (ii) large design flexibility (in terms of
languages, design tools...) is provided to program the accelerator devices, being
specially demanded by hardware designers to generate efficient FPGA imple-
mentations (iii) little compiler support and integration effort is required. To
allow the application of the proposed methodology, we have presented a flex-
ible runtime infrastructure that dynamically loads and manages the available
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device-specific implementations. Our future work includes integrating the pre-
sented runtime into an open-source compiler infrastructure and exploring the
use of performance data to guide the selection of an available accelerator device
during execution time.
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Abstract. Adding a pragma directive into the source code is undoubt-
edly easier than rewriting it, for instance for loop unrolling. Moreover, if
the application is maintained for multiple platforms, their difference in
performance characteristics may require different code transformations.
Code transformation directives allow replacing the directives depending
on the platform, i.e. separation of code semantics and its performance
optimization.

In this paper, we explore the design space (syntax and semantics) of
adding such directive into a future OpenMP specification. Using a pro-
totype implementation in Clang, we demonstrate the usefulness of such
directives on a few benchmarks.

Keywords: OpenMP · Pragma · C/C++ · Clang · Polly

1 Introduction

In scientific computing, but also in most other kinds of applications, the majority
of execution time is spent in loops. Consequently, when it comes to improving
an application’s performance, optimizing the hot loops and their bodies is the
most obvious strategy.

While code should be written in a way that is the easiest to understand,
it will likely not the variant the will execute the fastest. Platform details such
as cache hierarchies, data temporal/spatial locality, prefetching, NUMA, SIMD,
SIMT, occupancy, branch prediction, parallelism, work-groups, etc. will have a
profound impact on application performance such that restructuring the loop is
necessary. Since an application rarely runs on just a single platform, one may end
up in multiple versions of the same code: One that is written without considering
hardware details, and (at least) one for each supported platform, possibly even
using different programming models.

OpenMP is intended to be a programming model for many architectures, and
ideally would allow to share the same code all of them. It is comparatively low-
effort to replace an OpenMP directive, for instance, using the C/C++ preproces-
sor and OpenMP 5.0 introduced direct support for this via the metadirective.

c© Springer Nature Switzerland AG 2019
X. Fan et al. (Eds.): IWOMP 2019, LNCS 11718, pp. 125–139, 2019.
https://doi.org/10.1007/978-3-030-28596-8_9
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Currently, this can only change the parallelization, offloading and vectorization
decisions, but not the structure of the code itself.

In our last year’s contribution [5], we proposed additional directives in
OpenMP for transforming loops, e.g. loop fusion/fission, interchange, unrolling
etc. In this paper, we discuss choices of syntactic and semantics elements (Sect. 2)
for such an addition, give and update on our prototype implementation (Sect. 3),
and demonstrate how loop transformation can be used in applications and the
performance improvements (Sect. 4).

2 Specification Design Considerations

In this section we explore some of the decisions to make for including loop trans-
formation directives into a potential newer OpenMP standard. By its nature,
this cannot be an exhaustive discussion, but a subjective selection of the most
important features that came up in discussion with members of the OpenMP
language committee members and others.

The first decision to make is whether to include such directive at all. Since the
“MP” in OpenMP stands for “MultiProcessing”, obviously the original targets
of OpenMP were (symmetric) multi-core and -socket platforms and still today,
most implementation are based on the pthreads API. Multiprocessing obviously
does not include sequential loop transformations, but this is not per se a reason
to exclude such transformations from OpenMP.

For one, there is a need of supporting functionality: The collapse clause has
been added in OpenMP 3.0, although it is not directly related to multiprocessing.
OpenACC [7] also supports a tile-clause. The simd construct has been added
in OpenMP 4.0, which is exploits instruction-level parallelism, which also not
included in the term multiprocessing.

Second, the scope of OpenMP has extended relative to its original goal. With
target offloading also introduced in OpenMP 4.0, it also supports accelerators
such as GPGPUs and FPGAs.

There are alternatives to not include code transformations into OpenMP:

– Continue with the current practice of compiler-specific extensions. Without
standardization, this means these will be incompatible to each other.

– Include into a future version the host languages’ specifications (C/C++/
Fortran). This would compel OpenMP to add clarifications how its direc-
tives interact with the host language’s directives. However, it is question-
able whether e.g. the C++ standard committee will add specifications of
pragma-directives. Even if all host languages add transformation directives,
their semantics are unlikely to match, complicating OpenMP compatibility
clarifications.

– Create a separate language specification using C/C++/Fortran with
OpenMP as its host language. This new language would probably diverge
from OpenMP over time as they might add features incompatible to each
other. Comparisons can be drawn from OpenACC, which started as an ini-
tiative to add accelerator offloading to OpenMP.
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For the directives themselves, we distinguish three aspects: Syntax, seman-
tics and the available code transformations. The syntax describes which token
streams are accepted by the compiler and the semantics define their meaning.
Once these base rules have been defined, it should be straightforward to add
transformations consistent with these rules.

2.1 Syntax

In our first proposal [5], we suggested the following syntax

i.e. every transformation is a top-level directive. The loop-clause before the
directive could be used to refer to a loop that is not on the following line or
the result of another transformation on the next line. Since then, the OpenMP
5.0 standard was announced which includes a loop-directive. Even though a
disambiguation is possible using the parenthesis following the clause, but not
the directive, overloading the keyword might be ambiguous. Hence, we explore
alternatives in this section.

Loop Directive. OpenMP 5.0 introduced the loop construct with the goal to
give the compiler more freedom on optimization decisions. The first OpenMP
specification was designed with symmetric multiprocessing in mind, but in the
era of heterogeneous computing sensible defaults vary widely.

The idea of the loop-directive was to become the new default worksharing
construct, since in most cases, or at least before performance-optimizing an
application, the programmer does not care about how the body is executed in
parallel, as long as the default choice is reasonable. In future OpenMP revi-
sions, the loop-construct would gain features of the prescriptive worksharing-
construct and preferred when adding new features. This maxim also applies to
transformation-directives.

Clauses or (Sub-)Constructs. A transformation could be either expressed
as a construct (as in [5]), or as a clause. Constructs usually indicate to the
compiler to do something, whereas clauses pass options to the construct’s doing.
Therefore, a clause requires a construct to be added to.

Currently, OpenMP already uses both syntactic elements for what we might
consider loop transformations. For instance, #pragma omp simd can be seen as
a loop transformation that does vectorization. On the other side, the collapse
clause (valid for multiple constructs such as loop, simd, etc.) is a transformation
that occurs before the construct’s effect.

When using the loop-construct, the transformation could either be clauses
like the collapse-clause, or sub-constructs of the loop clause, similarly as every
OpenMP construct is follows after an “omp” token. However, this would be a new
syntactic element in OpenMP, since e.g. #pragma omp for simd is a combined
construct, each of them can be used independently.
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The order of any OpenMP 5.0 clauses is irrelevant, but transformations car-
ried out in different orders generally result in different loop nests. This contra-
diction can be solved by either make such clauses order-dependent, require the
compiler to ignore the order and instead apply an heuristic to determine the
best order, or disallow multiple transformations on a single pragma.

If using the (sub-)construct as the primary syntax, clauses can still be allowed
as syntactic sugar where it makes sense and does not cause ambiguity. Combined
constructs could be allowed as well.

Loop Chains. Bertolacci et. al. [1] proposed a loopchain-construct with a
schedule-clause. The loopchain encloses a loop nest to transform with the sched-
ule clause that defines the transformations to apply on the loop nest, as illus-
trated in the example below (simplified from the paper).

Since the schedule applies the loop nest as a whole, the schedule must also
specify an operation on parts that are not transformed. In the excerpt, the non-
transformed part is indicated by the serial operator. If the loop chain is large
with many transformations, the schedule clause can quickly become convoluted.

Referring to Other Loops. Some transformations such as tiling and loop
fusion consume more than one loop on the next line and replace them with
potentially more than one generated loop, which may be consumed by a follow-
up transformation. For instance, the result of tiling two nested loops are four
loops, we might want the parallelize the outermost, unroll-and-jam one of the
middle loops and vectorize the innermost loop. Therefore, a syntax is needed to
refer to loops that are not directly following the transformation directive.

This can either be done by assigning names to loops and referring to them,
or with a path selector from the loop that is annotated. Loop names/identifiers
have been described in [5], but also used by IBM xlc [4] and XLang [2].

Path selectors have been for node selection in trees, such as XPath [9] on
XML. In some sense, the collapse clause, taking the number of perfectly nested
loops as an argument, is such an selector. With more complex cases, such as “the
third loop inside the following loop nest of two loops“, maintainability becomes a
problem: Adding or removing a loop before between the selector and the selected
loop requires updating the selector.
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2.2 Semantics

Prescriptive vs. Descriptive. Code transformations are inherently prescrip-
tive: When used, the programmer is already working on performance optimiza-
tion and cares about the executions order. The loop-construct is designed to be
descriptive and, by default, applies the semantics of order(concurrent), which
allows the compiler to reorder the loop as it fits. Then changing the order using a
loop transformation directive has no meaning: As the order(concurrent) clause
allows an arbitrary permutation/thread-distribution, applying a user-defined
permutation will have an undetermined result. It is also a worksharing-construct,
meaning that it is meant to be executed in a parallel context. Non-worksharing,
simple transformed loops would just run redundantly on every thread in the con-
text.

One solution is to introduce new clauses that disable the default descriptive
and worksharing behavior, such as order(sequential) and noworksharing. To
avoid this boilerplate to be repeated with every loop construct, they might be
implicit when a loop transformation is defined.

2.3 Level of Prescriptiveness

To avoid differences in performance when using different compilers, the specifi-
cation should define the replacement code of a transformation. However, for code
that is not performance-sensitive (such as edge cases, fallback code and pro- and
epilogue), the compiler might retain some freedom. Taking the tile-construct as
an example, the following decisions are not necessarily performance-relevant:

– Fallback code for rare cases where the transformation would be invalid, such
as address range aliasing of two arrays that would cause a change in semantics.

– Where and how to execute partial tiles at the logical iteration space border:
like a full tile but with additional border conditions or separately after/before
all full tiles have been executed.

– If the iteration counter of the first iteration is not zero, divide tiles using the
logical or physical iteration space?

– Assuming only the code inside a tile is performance-relevant, the outer iter-
ation order over tiles does not need to be defined.

– If the specification allows tiling of non-perfectly nested loops, there is not
obvious way to archive this.

A sensible approach could be to leave these decisions to the compiler, but con-
sider adding clauses that fix this behavior.

OpenMP 5.0 already allows non-perfectly nested loops with the collapse-
clause and only requires code between the loops to be executed at most as many
times as it would be executed if moved inside the innermost loop, but at least
as many times as in the original loops nest. Executing code more often than in
the original code might be an unexpected side-effect of tiling. In the interest of
user-friendless, the specification could disallow non-perfectly loop nests, but add
a nestify transformation to make this behavior explicit in the code.
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Transformation Order. The order in which multiple transformations are
applied on the same loop can be either defined the programmer, the specifica-
tion, or by the compiler. When defined by the programmer, the order is derived
from the syntax. Otherwise, any order in the source is ignored and either the
OpenMP specification has to specify the rule in which order transformations
are applied, or it is implementation-defined such that the compiler can apply
heuristics to determine the best ordering.

It might be straight-forward with transformations that consume one loop
and replace it with another, but not all orderings are valid with other transfor-
mations. For instance, loop interchange requires at least two loops and cannot
be applied if the previous transformation only returns a single loop. If the order
is user-defined, the compiler can emit an error. Otherwise, either the OpenMP
has to define which order to use, or the compiler developers.

However, performance optimization engineers will unlikely want to leave such
decision up to the compiler or specification. This is because when using trans-
formations, they will try to get a specific result that is optimal on the target
platform and without transformation constructs, would write an alternative code
path. A compiler “improving” its heuristic in later versions would also not helpful
since it would regress the once-archived performance.

Compatibility with Legacy Directives. Several existing constructs and
clauses in OpenMP can be interpreted as a loop transformation:

– The for, loop and distribute-constructs divide loop iterations between
threads or teams.

– The sections-constructs distributes code regions between threads.
– The simd construct vectorizes a loop such that multiple input loop itera-

tions are processed by one iteration of a generated loop, similarly to (partial)
unrolling.

With this interpretation, applying other transformations to occur before and
after the construct should be possible and make a syntax for new transformations
that resemble existing transformations preferable.

Furthermore, existing combined constructs can be redefined as a sequence of
transformations, instead of a textual definition. For instance,

could be defined as

Note that this is different from
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Table 1. Safety modes for transformation directives. Green is for safe transformations,
red may have changed the code’s semantics as does orange but only in corner cases.

Heuristic Default Fallback Force

always valid originalor transformed transformed transformed transformed

valid with rtc originalor rtc transformed rtc warning

invalid original transformed warning warning

impossible original warning warning warning

which might be more efficient if the number of iterations is not a multiple of
the vector width. Using this transformation extension, it is possible to choose
between the variants.

Semantic Safety. Generally, the OpenMP specification requires compilers to
apply its directives without regard to whether it is semantically valid to do, i.e.
the user guarantees that it is. This ensures that otherwise conservative compilers
still honor the OpenMP directive, but defers the responsibility to the program-
mer.

In some scenarios the user might want the compiler to do a validity check.
For instance, the programmer might be unsure themselves or the transforma-
tion is added by an autotuner trying out different loop transformations without
understanding the code. For these cases, the directives may support options to
instruct the compiler to verify semantic validity.

Table 1 shows how safety modes handle different situations for applying a
code transformation. “Always valid” refers to code to which the transformation
can be applied without changing its semantics. In the case of unrolling this is
any loop since unrolling cannot change the code’s effect (except execution time).
“Valid with rtc” refers to code that can be transformed under conditions that
can be checked dynamically. For instance, a transformation may require that two
memory regions are not overlapping (alias), which can be checked at runtime if
the compiler can deduce which addresses are accessed. “Invalid” means that
the compiler cannot determine a reasonable runtime condition, i.e. must assume
that the transformation will change the code’s semantics. “Impossible” is code
that the compiler can structurally impossible to transform, such as reversing a
while-loop.

Note that these categories may depend on compiler capabilities; e.g. a com-
piler may have deduced the number of iterations of a while-loop. For the sake of
a standardization, OpenMP should define minimum requirements for compilers
to support with everything beyond being a quality-of-implementation.

Without OpenMP, the compiler would heuristically determine whether a
transformation is profitable or not. Hence, it might apply it or not (indicated by
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“original” in Table 1), but if it does, it has to ensure that the semantics do not
change.

The default behavior of OpenMP directives1 is to always apply even if it
the code’s semantics changes. It does not add a runtime check, meaning that
the program result can also change in the “Valid with rtc” case. The compiler
should emit a warning to the user if the transformation could not be applied at
all.

With fallback semantics, the compiler must not emit semantically invalid
code, but is allowed to generate fallback code in case a runtime condition fails.
Still, it should warn if the transformation directive had no effect. In contrast to
the heuristic approach, the compiler skips the profitability check and trusts the
directive that the transformation is profitable.

Due to the possible fallback, it is still possible that the non-transformed
code is executed without compiler warning and surprise the performance engi-
neer. Instead force semantics can be used, which guarantees that either the
transformed code is executed, or the compiler emits a warning. An additional
required clause could change the warning to an hard error.

Another idea is a hint clause, which informs the compiler that the transfor-
mation is valid (i.e. skips the validity check), but still considers the profitability,
possibly with a bump in favor of applying the transformation instead of the
compiler’s usual conservativeness.

2.4 Transformations

In addition to the general syntax and semantics, the available transformations
have to be defined, including when they are applicable and what the result is. A
convenient approach is to think of transformations as replacements: Remove the
code it applies to and insert the result instead. Any follow-up transformation can
apply on the transformed code as if the replacement was written in the source
code. This should happen internally in the compiler, not textually.

In the remainder of the chapter, we try to define a selected set of transfor-
mations.

Loop Peeling. Some loop transformations work best when the loop is a multiple
of a constant, such as (partial) unrolling, vectorization and tiling. If this is not a
case, some iterations have to be extracted out of the main loop, which by itself is
also a transformation. Unlike to relying on the implicit peeling, explicitly using a
peeling transformation allows more options and naming the resulting prologue-
and epilogue-loop to be referenced in follow-up transformations.

We can either the first k iterations into an prologue before the loop or the
last k iterations into an epilogue after the loop. Peeling the first iterations is
always possible, but for peeling the last iterations the number of iterations must
be known in advance, which is the case of canonical loops as defined by OpenMP.
1 Our previous paper [5] suggested to use safe semantics as the default, in conflict to

the normal OpenMP behavior.
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Fig. 1. (a) Strip-mining, (b) Stripe-mining

The number of iterations to peel can either be specified directly as the number
k or indirectly as a goal to archive. A goal can be:

1. Make remaining main loop have a multiple of a constant number of iterations;
useful for the aforementioned transformations.

2. Make the first access to an array aligned; useful for vectorized loads/stores
and accesses that are faster when the compiler knows they are aligned.

Peeling might be necessary spanning multiple loops in a loop nests, since
transformations like tiling and unroll-and-jam also apply on multiple nested
loops.

Collapse. This combines multiple nested loops into a single logical loop that can
be referred to by other transformations. It should not change the execution order
of the inner body. OpenMP added a clause with similar semantics in version 3.0
and even assigns logical iteration numbers to loop body executions. A collapse
loop-transformation would allow using this functionality independently of other
constructs.

Strip- and Stripe-Mining. Strip-mining can be seen as one-dimensional tiling.
In contrast to tiling in general, the execution order is not changed, i.e. like
unrolling never changes the program’s result. Unlike unrolling, it increases the
control-flow complexity and therefore is only intended to be used in combination
with other transformations. For instance, partial unrolling can be implemented
by strip-mining followed by a full unroll of the inner loop. The name is inspired
by the term from open-pit mining: The pit is deepened by one strip at a time,
as visualized in Fig. 1a.

In contrast, stripe-mining does change the execution order: Each inner loop
processes a constant number of iterations that are equidistantally distributed
over the iteration space. As shown in Fig. 1b, each form a set of stripes, lending
to the transformation’s name.
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3 Prototype Implementation

We created an implementation of some transformation directives in Clang and
Polly, which we already described in [6]. Because such transformations are not
part of OpenMP yet, use a hybrid of Clang’s native syntax for loop transfor-
mation extensions and OpenMP construct/clauses syntax. The general syntax
is:

Our code is available on Github2 Currently, it should be considered as pro-
totype quality and is not intended for use in production. For instance, it may
crash on syntax errors instead of diagnostic output.

In addition to the transformations mentioned in [6], we implemented
unrolling, unroll-and-jam, thread-parallelization and peeling for tiled loops. The
parallelization transformation, in contrast to OpenMP’s worksharing constructs,
can be combined with other transformations. It should become unnecessary once
the interaction between OpenMP’s parallelization constructs and loop transfor-
mations have been specified. We unfortunately did not implement loop distribu-
tions such that it had to be replicated manually for the evaluation.

4 Evaluation

In this section, we explore how transformation directives can be useful to improve
the performance of a selection of kernels. Please keep in mind that we do not
intend to discover new techniques how to improve these kernels over typically
hand-optimized kernels in specialized libraries or in literature. Instead, we want
to illustrate how these directives help exploring common optimization tech-
niques. This is most relevant if no hand-optimized library for the kernel in
question is available for a platform.

Unless mentioned otherwise, the execution time was measured on an Intel
Core i7 7700HQ (Kaby Lake architecture), 2.8 Ghz with Turbo Boost off and
compiled using the -ffast-math switch. When using parallelism, we use all 8
hardware threads (4 physical cores).

4.1 heat-3d

2 https://github.com/SOLLVE/clang/tree/pragma and
https://github.com/SOLLVE/polly/tree/pragma.

https://github.com/SOLLVE/clang/tree/pragma
https://github.com/SOLLVE/polly/tree/pragma


Design and Use of Loop-Transformation Pragmas 135

The benchmark “heat-3d” from Polybench [8] is 3-dimensional 10-point stencil.
We are using a volume of 8003 and 10 time-steps. Typical for repeated sten-
cil codes, it alternatingly switches input- and output arrays. Its 3rd dimension
makes it more difficult for the hardware prefetcher.

The baseline can be improved only slightly using OpenMP parallelism
(#pragma omp parallel for collapse(2) and #pragma omp simd for the
innermost loop). Tiling improves the performance even more on just a single
thread, but can further improved with threading.

The tile sizes were determined using trial-and-error, a task which could also
be done by an autotuner. More advanced time-tiling techniques such as diamond-
overlap and tiling and could also result in an improvement.

4.2 syr2k

Polybench’s “syr2k” is a rank-2k matrix-matrix update; we are benchmarking
matrices of size 40002 and 2000 ∗ 5200. We run this benchmark on a 2-socket
Intel Xeon Gold 6152 CPU (22 cores each, 88 threads in total) with an NVidia
Tesla V100-SXM2 GPU.

We use the default DATASET EXTRALARGE for Polybench’s “syr2k”. In contrast
to the stencils, we can gain very high speed-ups.

While loop distribution does not gain a lot by itself, tiling (by 256× 96 × 16)
improves the performance by a factor more than 11, followed by a speed-up
of another 4x with a loop interchange. With parallelization on all 44 cores (88
threads), the execution time has improved by a factor of 140 over the original
loop.

Interestingly, while single-threaded performance of the Polly-optimized ver-
sion (using a tile size of 32 in all dimensions and not interchange) is worse, with
parallelization it is even better with a speed-up factor of 330. Evidently, the
shared memory bandwidth of the shared caches changes the bottleneck, such
that the tile size optimized for single-thread performance is worse. Replication
of Polly’s optimized loop nest using pragmas replicates the same performance.
We might be able to further improve the performance by searching for a tile size
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that minimized the traffic higher-level caches. Using #pragma omp parallel
for alone utilizing 88 OpenMP threads yields an improvement of the factor 31.

The performance characteristics changes when offloading to the GPU. With a
straightforward #pragma omp target teams distribute collapse(2) of the
outer loops and #pragma omp parallel for reduction of the inner loops, the
kernel computes in 2.7 s, which is slower than the best CPU performance. Only
with an additional unroll-and-jam did we beat the two CPUs. Tiling did not
show any improvement.

4.3 covariance

The main issue with the covariance benchmarks from Polybench is that the
fastest iterator moves the outer data array dimensions leading to strided accesses
which cause most of cache lines unused. If we just transpose the data array
(manually), execution time already shrinks to 15 s. The problem can be lessened
with tiling. Unlike the non-tiled version, parallelism improves the execution time
only marginally.

Polly’s sub-optimal choice of a tile size of 32 for each dimensions also leads
to lower performance, for both, the parallel- and single-threaded cases.

4.4 dgemm

In [5], we already optimized Polybench’s “gemm” kernel, but because of lack of
support by LLVM’s loop vectorizer, we could only vectorize the innermost loop.
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This is sub-optimal because this means that the register dependency is also car-
ried by the innermost loop, restricting the CPU’s ability to reorder instructions.

Fig. 2. Replication of Polly’s matrix-multiplication optimization using directives;
Libraries marked with (*) were precompiled from the Ubuntu software repository, hence
not optimized for the evaluation system

To avoid this problem, Polly’s matrix-multiplication optimization [3] unroll-
and-jams non-inner loops and relies on LLVM’s SLP vectorizer to combine the
unrolled iterations into vector instructions. We replicate this behavior in Fig. 2.
The isl redirect-clause ensures that the packed arrays’ data layout follow the
changed access pattern. For production implementations of the array packing,
this should be derived automatically by the compiler.

Unfortunately, the performance is even worse than with the innermost-loop
vectorization because, unlike with Polly’s output, the SLP vectorizer does vec-
torize the jammed loops. We are working on identifying and fixing the issue in
the prototype version.

4.5 456.hmmer

The most performance-critical code of “456.hmmer” from SPEC CPU 2006 is
shown in Fig. 3. Even though it is just one loop, it does 3 logical computations,
of which 2 have no loop-carried dependencies. Separating the sequential compu-
tation allows the parallelization and/or vectorization of the two other parts.

The vectorization speed-up (of the entire 456.hmmer run on an Intel Xeon
E5-2667 v3 (Haswell architecture) running at 3.20 GHz) is shown in the graph.
Earlier versions of Polly only separated one of the computations (using the
-polly-stmt-granularity=bb option). However, the current version separates
all 3 computations using its automatic optimizer. The same would be possible
using a loop distribute directive.
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Fig. 3. 456.hmmer hotspot code

5 Conclusion

Loop – and more generally, code – -transformation directives can be a useful
tool to improve a hot code’s performance without going too low-level. Com-
pletely automatic optimizers such as Polly rely on heuristics which are neces-
sarily approximation they do not know the code’s dynamic properties (such as
number of loop iterations) and have an incomplete performance model of the tar-
get machine. They are also conservative, i.e. rather do nothing than to regress
performance.

Transformation directives take the burden of profitability analysis off the
compile and to the programmer who either knows which transformations are
beneficial or can try out multiple approaches, possibly assisted by an autotuner.

We seek to add such transformation directives into a future OpenMP specifi-
cation, to replace the current compiler-specific pragmas and ensure composabil-
ity with OpenMP’s directives. We discussed some design choices for syntax and
semantics that have to be made with various (dis-)advantages in terms of com-
patibility, consistency, complexity of implementation and ease of understanding.
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Abstract. OpenMP has been quickly evolving to meet the insatiable
demand for productive parallel programming on high performance com-
puting systems. Creating a robust and optimizing OpenMP compiler has
become increasingly challenging due to the expanding capabilities and
complexity of OpenMP, especially for its latest 5.0 release. Although
OpenMP’s syntax and semantics are very similar between C/C++ and
Fortran, the corresponding compiler support, such as parsing and low-
ering are often separately implemented, which is a significant obsta-
cle to support the fast changing OpenMP specification. In this paper,
we present the design and implementation of a standalone and unified
OpenMP parser, named ompparser, for both C/C++ and Fortran. omp-
parser is designed to be useful both as an independent tool and an inte-
gral component of an OpenMP compiler. It can be used for syntax and
semantics checking of OpenMP constructs, validating and verifying the
usage of existing constructs, and helping to prototype new constructs.
The formal grammar included in ompparser also helps interpretation of
the OpenMP standard. The ompparser implementation supports the lat-
est OpenMP 5.0, including complex directives such as metadirective. It
is released as open-source from https://github.com/passlab/ompparser
with a BSD-license. We also demonstrate how it is integrated with the
ROSE’s open-source OpenMP compiler.

Keywords: OpenMP · Parser · Intermediate representation ·
Compiler

1 Introduction

To meet the demand of productive parallel programming on existing and emerg-
ing high-performance computing systems, the OpenMP standard has been evolv-
ing significantly in recent years [10]. Since the creation of the standard in 1997
that specified a handful of directives, substantial amount of new constructs have
been introduced and most existing APIs have been enhanced in each revision.
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The latest version of OpenMP 5.0, released in 2018, has more than 60 direc-
tives. Compiler support thus requires more efforts than before [5]. Compilation
of OpenMP programs for both C/C++ and Fortran includes parsing, syntax
and semantics checking, generation of compiler intermediate representation (IR)
of OpenMP constructs, and code transformation to support computing devices
including CPUs, GPUs and SIMD units. A full compiler implementation of the
latest OpenMP standard for both C/C++ and Fortran would involve a large
amount of development efforts spanning multiple years.

Many OpenMP compilers use a high-level IR that is language neutral (or close
to neutral) to represent C/C++ and Fortran OpenMP programs. For example,
OpenMP support in GNU compiler [8] operates on its high-level and unified
IR (named GENERIC and GIMPLE) for C/C++ and Fortran. OpenMP sup-
port in IBM XLC compiler [4] also uses its high-level AST-style and unified
IR for C/C++ and Fortran for transformation. ROSE’s OpenMP implemen-
tation [6] operates on the same unified AST representing both C/C++ and
Fortran OpenMP input codes. It lowers the AST to generates standard C/C++
or Fortran code with calls to OpenMP runtime functions as its output. OpenMP
support in LLVM is an exception so far. The OpenMP compilation for C/C++
are performed within the Clang frontend [1,3] and for Fortran within the Flang
Fortran frontend [2,9]. There is however effort of extending LLVM IR with intrin-
sic [11] to perform OpenMP transformation in the LLVM IR, demonstrating the
feasibility of OpenMP transformation in a unified and mid-level type of IR.

Our effort to create a standalone and unified OpenMP parser, named as
ompparser, is motivated by the facts that (1) the differences in terms of syntax
and semantics of OpenMP constructs between C/C++ and Fortran are minor,
and (2) current OpenMP compilers develop their own parsers, which represent
redundant work. The contribution of our work includes:

– ompparser can be used standalone for static source code analysis, e.g. tools
for semantics checking or similarity analysis between C/C++ and Fortran
programs.

– Integrating omppaser into an OpenMP compiler implementation can reduce
the development efforts. There will be no need to create and maintain two
separate parsers for C/C++ and Fortran, or separate parsers for different
compilers.

– ompparser provides a complete reference OpenMP grammar in the Backus-
Naur Form that formally describes the latest OpenMP language constructs.
This will help users understand the rules and restriction of the OpenMP
standard, which no longer contains a reference grammar in its recent versions.

In the rest of the paper, we describe the design and interface of the omp-
parser in Sect. 2, the ompparser implementation including lexer, grammars and
intermediate representation in Sect. 3, and how it can be used as a standalone
tool or to be integrated into a compiler in Sect. 4. The paper concludes in Sect. 5.
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2 The Design and Interface of Ompparser

The ompparser is designed to work as an independent tool or to be integrated
into a compiler to parse OpenMP constructs in both C/C++ and Fortran form.
It takes a string of C/C++ pragma processing directive or Fortran comment as
input and generates OpenMPIR object as its output representation. OpenMPIR
is designed to be in the same form for semantically equivalent C/C++ and
Fortran OpenMP constructs. ompparser does not parse the code regions affected
by OpenMP constructs. In our current design, it does not parse C/C++ or
Fortran expressions or identifiers. ompparser preserves them as plain strings
in the OpenMPIR for the compiler to parse. It however provides a callback
interface to allow a host compiler to parse expressions and identifiers. ompparser
expects the callback to produce compiler-specific IR objects for expressions and
identifiers and ompparser attaches those objects as opaque to the OpenMPIR
generated for the OpenMP constructs.

The workflow is shown in Fig. 1 and the public interface is shown in Fig. 2.
The parseOpenMP method accepts a string of an OpenMP directive to parse, e.g.
pragma omp parallel shared (a, b). The optional langParse parameter can be used
by the caller of the parseOpenMP method to pass a language-specific callback
function for parseOpenMP to parse language-specific expressions, identifiers, and
variables. The langParse callback should return a pointer to a compiler-specific
IR object to ompparser which attaches that object as opaque object to the Open-
MPIR. If no langParse callback is provided when the parseOpenMP is called,
language-specific expressions, identifiers, and variables are attached as literal
string to the OpenMPIR object. When ompparser is used by a compiler, the
compiler may choose to use the OpenMPIR directly returned by ompparser or
translate OpenMPIR to the IR of the compiler. Section 3.3 provides the descrip-
tion of the IR and methods to access the IRs. ompparser can also be used as
standalone library, used for source code analysis.

Fig. 1. Ompparser integration with an OpenMP compiler
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typedef enum OMPLang {

C, Cplusplus, Fortran,

} OMPLang_t;

//Set the base language for the paser

void OMPSetLang(OMPLang_t lang);

// _input: a string of an input OpenMP directive/commet

// _langParse: a callback function for expression parsing

OpenMPDirective* parseOpenMP(const char* _input,

void * _langParse(const char*));

Fig. 2. Ompparser’s interface functions

3 Implementation

To help describe the details of our work, we categorize the directives and clauses
of the standard based on the complexity of the language constructs.

For directives, we have the following categories:

– A declare target region can contain multiple function declarations/definitions,
which would result in multiple additional declarations. It has no association
with the immediate execution of any user code. Declarative directives in the
latest 5.0 standard include declare simd, declare target, declare mapper, declare
reduction and declare variant.

– An executable directive has immediate executable code associated with it.
Most executable directives have a simple structure with a directive name and
a clause list.

– Metadirective is a special case of executable directive since the directive-variant
parameter of the when and default clause could also be a directive construct.

– Each combined directives is considered as a single directive.

For clauses, we categorize them into three classes:

– clauses with no, one or multiple OpenMP-defined constant parameters, for
example, nowait, untied, default in parallel.

– clauses with only a language expression or list as its parameters, e.g.
num threads, private, shared, etc, and

– clauses with one or multiple parameters of OpenMP-defined constants, and
then a language expression or list, e.g. map, depend, allocate, reduction, etc.

3.1 Lexer for Tokenizing Keywords, Expressions and Identifiers

The first step of parsing uses a lexer or scanner to tokenize OpenMP keywords,
as well as C/C++ or Fortran expressions and identifiers used in the directives
and clauses. We use FLEX (Fast Lexical analyzer generator) lexer generator
to generate the lexer based on the regular expressions and action rules for the
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matching tokens. For directives and clauses that require no parameters (class
1 and class 2 mentioned above) as well as OpenMP-defined constants, lexer
returns the enum representation of the construct to the parser when the token
is matched.

For clauses that have parameters, expression and identifiers (class 3 men-
tioned above), we use the Flex mechanism for conditionally activating rules
based on state to process tokens. This feature makes the Flex rules better orga-
nized and versatile to deal with the large number of clauses in OpenMP. We
take the reduction clause as an example and its Flex rules are shown in Fig. 3.

reduction([reduction-modifier,] reduction-identifier : list)

1 reduction { yy_push_state(REDUCTION_STATE);return REDUCTION; }

2 <REDUCTION_STATE>inscan/{blank}*, { return MODIFIER_INSCAN; }

3 <REDUCTION_STATE>task/{blank}*, { return MODIFIER_TASK; }

4 <REDUCTION_STATE>default/{blank}*, { return MODIFIER_DEFAULT; }

5 };’(’nruter{"(">ETATS_NOITCUDER<

6 };’)’nruter;)(etats_pop_yy{")">ETATS_NOITCUDER<

7 };’,’nruter{",">ETATS_NOITCUDER<

8 ;)ETATS_RPXE(etats_hsup_yy{":">ETATS_NOITCUDER<

return ’:’; }

9 };’+’nruter{"+">ETATS_NOITCUDER<

10 ...

11 <REDUCTION_STATE>min/{blank}*: { return MIN; }

12 <REDUCTION_STATE>max/{blank}*: { return MAX; }

13 ;)ETATS_RPXE(etats_hsup_yy{.>ETATS_NOITCUDER<

current_string = yytext[0]; }

Fig. 3. Flex rules for the reduction clause

To recognize expressions, we develop an expression tokenizer to identify indi-
vidual expressions from a list without the need to fully parse the expression. A
string for a list of expressions separated by “,” is split into a list of strings of
expressions. The same approach is used for handling shape expression or range-
specification used in array sections (e.g. c[42][0:6:2][:]) and other places. While
processing the string, the expression tokenizer pairs up brackets (“(”, “)”, “[”,
“]”, etc) used in an expression and ignore other characters within a bracket pair.
Using this approach, the expression tokensizer is able to handle all the cases of
expressions in C/C++ and Fortran. For one special case, in some clauses we will
encounter the form type id;. “type” refers to the data type, and “id” refers to the
user-defined identifier. In this case, we take the type and id as one expression.
Unlike the normal expression, we need to save the space as well. Then C compiler
can compile this expression correctly for us.

3.2 Parser for OpenMP Constructs

This section describes the Bison grammar for OpenMP directives. With Flex
rules and Bison grammar, a parser is automatically generated. Bison is a look
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ahead left to right (LALR) parser generator. Compared to Left to Right (LL)
parser generators, an LALR parser parses the text by the flexible production
rules, which enables developers to create a grammar for complex OpenMP struc-
tures. Besides, LALR parser is much easier than LL parser to construct grammar
since it can be left-recursive.

The grammar structures for executable and declarative directives are very
similar. Declare mapper is used to explain how the grammar was generated
in Bison, since it represents other declarative directives as well as most exe-
cutable directives. Figure 4 shows the grammar of declare mapper directive. The
enum values of directive name, which is tokenized by the lexer, is used for
start of directive grammar. Declare mapper has two directive-related parameters:
mapper identifier and type var, which are considered as mapper parameters.
Mapper identifier includes two identifiers: default and user defined identifier.
Default identifier uses DEFAULT as terminal symbol, and user defined identifier
uses EXPR STRING as terminal symbol. For type var, the reason why we use
EXPR STRING as token was introduced in last section. Mapper clauses are con-
cluded into a declare mapper clause optseq. All attributes must be stored into
OpenMP intermediate representation (IR) by putting an action in the middle of
a rule (Mid-Rule Actions in Bison’s term).

openmp_directive : declare_mapper_directive ;

declare_mapper_directive : DECLARE MAPPER mapper_parameter declare_mapper_clause_optseq ;

{ current_directive = new OpenMPDeclareMapperDirective(); } 
(intermediate action add directive to data structure)

                              ;

                   | EXPR_STRING              
                   ;

type_var : EXPR_STRING
      ;

{std::cout<< $1 <<"\n";((OpenMPDeclareMapperDirective*)current_directive)->setTypeVar($1);}

Fig. 4. The grammar for declare mapper directive

The grammar structure for most clauses are very similar. Schedule clause is
used as an example to explain how grammar was generated for OpenMP clause.
Figure 5 shows the grammar of schedule clause. Schedule clause has multiple
parameters. In those schedule parameters, kind is the only non-optional param-
eter. Schedule clause should be added to its directive right after kind parameter
since we have all parameters information after rule of kind parameter. The infor-
mation of two modifiers should be stored separately as the Fig. 5 shows. Since
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those two modifiers are optional and different from each other, recursive gram-
mar can not distinguished them. We use two global variables to store them. At
last, chunk size is stored as independent attributes.

schedule_clause : SCHEDULE  '('                                     schedule_parameter                               ')' ;

schedule_parameter : schedule_kind

       ;

   ;

schedule_kind : schedule_enum_kind
      | schedule_enum_kind ',' chunk_size
      ;

schedule_enum_kind : STATIC 
        | DYNAMIC   

                 | GUIDED     
                 | AUTO      
                 | RUNTIME  
                 ;

chunk_size : EXPT_STRING
              | MODIFIER_NOMONOTONIC 
              | MODIFIER_SIMD 

     ;

     | MODIFIER_NOMONOTONIC 
     | MODIFIER_SIMD 
     ;

{secondParameter = OMPC_SCHEDULE_MODIFIER_simd;}

secondParameter, OMPC_SCHEDULE_KIND_runtime);}

{current_clause->addLangExpr($1);}

secondParameter = OMPC_SCHEDULE_KIND_unknown;}

Fig. 5. The grammar for schedule clause

Metadirective is a special directive which contains nested directive and clause
structure. Information of nested directives and clauses should be stored appropri-
ately. As Fig. 6 shows, Metadirective has two kinds of clauses. The when clause
is similar to other clauses, but it has a context selector and directive variant
which may be a directive on its own. A context selector has two parts: spec-
ification and trait set selector. Especially, when construct is used as trait set
selector, Construct directive will be added as current directive. Therefore, we
have designed a nested directive structure. To solve this problem, information of
directives and clauses should be stored via two global variables. After construct
directive finished its parses, clause and directive should switch back to when and
metadirective. Directive-variant also has own directive and clause, same method
can be used to handle it. Additionally, it may nest with another directives, but
grammar will handle nested directive automatically. Default clause only has one
parameter – directive variant. Default clause can be parsed in same way of when
clause.

For error handling, both syntax and semantic errors will be checked by gram-
mar. Once an error is found, an corresponding error message will be printed.
Then the program won’t be crashed but a null pointer will be returned to host
compiler/tool to indicates the parsing failed. In this project, a single clause
can be used by several directives. And each directive maintains its own clause
sequence. Each clause will be added to the directive through an intermediate
action. A combined directive is considered as a new directive rather than a
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openmp_directive : metadirective_directive ;

metadirective_directive : METADIRECTIVE metadirective_clause_optseq ;

{ current_directive = new OMPD_metadirective(); } 
(intermediate action add directive to data structure)

metadirective_clause_seq : metadirective_clause
                          | metadirective_clause_seq metadirective_clause
                         | metadirective_clause_seq ',' metadirective_clause
                          ;

metadirective_clause : when_clause
                        | default_clause
                       ;

when_clause : WHEN when_variant_directive  ')'

   ;

when_variant_directive : variant_directive
 | /* empty*/ 
 ;

trait_set_selector : trait_set_selector_name  '=' '{' trait_selector_list '}'
                 ;

trait_set_selector_name : USER
   | CONSTRUCT
   | DEVICE
   | IMPLEMENTATION 
   ;

trait_selector_list : trait_selector
                 | trait_selector_list trait_selector
                 | trait_selector_list ',' trait_selector
                 ;

rait_selector : condition_selector
                 | construct_selector
                 | device_selector
                 | implementation_selector
                  ;

{((OpenMPWhenClause*)current_parent_clause)->
setVariantDirective(current_directive);}

{ current_parent_directive = current_directive;
  current_parent_clause = current_clause;}

{ current_directive = current_parent_directive;
  current_clause = current_parent_clause;
  current_parent_directive = NULL;
  current_parent_clause = NULL;}

{ current_parent_directive = current_directive;
  current_parent_clause = current_clause;}

{((OpenMPVariantClause*)current_parent_clause)
            >addConstructDirective(current_directive);
 current_directive = current_parent_directive;
 current_clause = current_parent_clause;
 current_parent_directive = NULL;
 current_parent_clause = NULL; }

Fig. 6. The grammar for Metadirective

nested directive. If a combined directive is used as nested directive, Bison will
report a reduce-reduce error.

3.3 OpenMP Intermediate Representation

The intermediate representation of ompparser is an abstract syntax tree for an
OpenMP directive. The root node of the tree is the object of the directive and
the child nodes are usually the objects for the clauses. Nodes for clauses are
stored in a map structure with a clause type as its keys, and a vector of clause
objects as its values. For the same kind of clauses that may be used multiple
times, e.g. reduction(+:a) and reduction(-:b), the clause objects are stored in the
vector of the clause map. With this data structure, searching clauses of a specific
kind takes constant time. Searching a specific clause of a specific kind is also fast,
since in general we anticipate users would not use the same kind of clause for
many times in a directive. Cases where users include many clause in the same
directive (e.g. map clause) are uncommon.

There are three methods that are related to how the clause objects are added
to directive object – appendOpenMPClause, searchOpenMPClause and normal-
izeClause. appendOpenMPClause can be used to add a clause after the clause
parameters are identified. searchOpenMPClause is used to search clauses of a
specific kind and parameters from the OpenMPIR map. normalizeClause can be
used to combine objects for the same kind of clause that also have identical
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parameters but variable list. For example, objects for two clauses reduction(+:a)
and reduction(+:b) can be normalized into one object with two variables, reduc-
tion(+:a,b). Clause normalization can be performed alone after a directive is
fully parsed or performed while adding a clause to the clause map of a directive
in the appendOpenMPClause method. For the later approach, the appendOpen-
MPClause methods would call searchOpenMPClause methods to retrieve a list
of clause objects of the same kind as the one being appended. It then searches
to determine whether there’s a matching clause to combine with. A new clause
is created only if no such clause exist and the reference to this new clause is
returned. Otherwise, the existing clause is updated with new information and
reference to the clause is returned.

In ompparser, OpenMPIR is implemented with two main C++ classes, the
OpenMPDirective class and OpenMPClause class, shown in Fig. 7. The OpenM-
PDirective class can be used to instantiate most OpenMP directives that only
have OpenMP-defined clause names. For directives that may have extra param-
eters, such as declare variant variant func id clause1 clause2 ..., the OpenMPDi-
rective class need to be extended to include more fields for those parameters.
Similarly directives that allows for user-defined clause names, for instance the
requires directive, it needs to be extended to include user-defined clause names.
Figure 7 shows the OpenMPDeclareVariantDirective class. For clauses, the Open-
MPClause class is used to instantiate OpenMP clauses that have no parameters
(class 1 and 2 clauses). For clauses with parameters (class 3), a subclass is needed
that includes the fields for the extra parameters of the clause. Figure 7 shows
the OpenMPReductionClause class. The OpenMPClause class has a field of vector
named as expressions for storing strings of expressions (or list items) specified
for a clause. The expressionNodes field is a vector that can be used to store the
opaque objects returned by the callback for parsing language expressions.

3.4 Unparsing and Testing

In ompparser, toString and generateDOT methods are provided to unparse the
OpenMPIR to its original source code and in a DOT graphic file, respectively.
An automated test driver is also implemented. The test driver takes test cases
included in source files as its input, creates OpenMPIR, and unparses it to a
text output for correctness checking. All the cases in the input file are checked
automatically by the test driver and a summary will be printed in the end.

4 Preliminary Results

We are actively developing ompparser to add more OpenMP 5.0 support. Still,
we have conducted preliminary evaluation of its current version.

4.1 Used as a Standalone Parser

To evaluate our initial implementation, we use two simple examples in Fig. 8,
which are C and Fortran programs that share the same functionality. Ompparser
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Fig. 7. OpenMPIR architecture

produces the identical OpenMPIR (Fig. 9a) except that the code in Fortran has
a second OpenMPIR since the !$omp end parallel is considered as OpenMP code
as well (Fig. 9b). Ompparser can merge the OpenMPIR for end with the IR for
begin through a normalization step. In the source code, there are two shared
clauses. But in the OpenMPIR, they are combined to one after normalization.

The metadirective in the latest OpenMP 5.0 is also supported in ompparser.
The example shown in Fig. 10a can switch conditionally between sequential and
parallel computing with metadirective. In its OpenMPIR, the parallel directive is
attached to default clause as a child node (Fig. 10b).

Ompparser is also able to determine syntax errors existing in the input. For
example, the OpenMP 5.0 code #pragma omp parallel if(task: n<3) is provided
by user. In if clause, it can have an optional directive-name-modifier, such as
task, parallel and so on. But it has to be the same as the directive. In this case, if
clause cannot have task as modifier because it belongs to parallel directive. Only
parallel modifier is allowed in this particular if clause. ompparser will report the
syntax error and return null object to the host, which indicates that the parsing
failed.

4.2 ROSE Integration

We have also integrated ompparser into the ROSE compiler framework. Devel-
oped at LLNL, ROSE [6,7] is an open source compiler infrastructure to
build source-to-source program transformation and analysis tools for Fortran
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1 void foo(int m,int n) {

2 #pragma omp parallel shared(m)

shared(n)

3 if (omp_get_thread_num() < m)

4 printf("%d\n",n);

5 }

(a) C

1 subroutine foo(m,n)

2 integer m,n

3 !$omp parallel shared(m) shared(n)

4 if (OMP_GET_THREAD_NUM()<m) then

5 PRINT*, n

6 end if

7 !$omp end parallel

8 end subroutine foo

(b) Fortran

Fig. 8. OpenMP source code in C/C++ and Fortran

parallel

shared

expr
 m

expr
 n

(a) parallel in C and
Fortran

end

end_paired_directive
 parallel

(b) end in Fortran

Fig. 9. OpenMPIR for parallel in both C and Fortran

77/95/2003, C, C++, OpenMP, and UPC applications. Internally, ROSE gen-
erates a uniform abstract syntax tree (AST) as its intermediate representation
(IR) for input codes. Sophisticated compiler analyses, transformations and opti-
mizations are developed on top of the AST and encapsulated as simple function
calls, which can be readily leveraged by tool developers.

Figure 11 shows how ompparser is integrated with ROSE. ROSE uses EDG
to parse C/C++ codes, and OpenFortranParser (OFP) to parse Fortran codes.
However, neither of these two frontends recognizes pragmas or comments for
OpenMP constructs. As a result, OpenMP directives are represented as strings
in ROSE’s AST generated from these two frontends. A separate phase, called
OpenMP parsing, is added after the two frontends to parse these OpenMP
strings. Before using ompparser, two separate parsers were used for parsing
C/C++ pragmas and Fortran comments for OpenMP constructs, respectively.
The parsing results were first attached to AST as special OpenMP attributes and
later translated to dedicated AST nodes representing OpenMP constructs. The
ROSE AST has builtin support for OpenMP nodes representing both C/C++
and Fortran, as much as possible, in a uniform way. The unparser is able to parse
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1 #define n 10000

2 void foo(int* m) {

3 int i;

4 #pragma omp metadirective

5 when(user={condition(n<20)}: )

6 default(parallel for private(i)

shared(m, n))

7 for(i=0;i<n;i++)

8 goo(m, n);

9 }

(a) Source Code in C

metadirective

default when

parallel_for

private shared

expr
 i

expr
 m

expr
 n

user_condition
 n<20

(b) OpenMPIR of metadirective

Fig. 10. A metadirective example

Fig. 11. OpenMP parsing and unparsing in ROSE and ompparser integration

the same AST into two different output languages (e.g. C or Fortran) as long as
their semantics are equivalent.

We replaced the two OpenMP parsers in ROSE with ompparser, as shown
in Fig. 11. A translator is implemented in ROSE to convert the OpenMPIR
produced by omppaser to ROSE’s OpenMP AST. The code size and complexity
of translator is very similar with the original module in ROSE that generates
OpenMP AST. During the conversion, the language expressions are parsed by
ROSE’s expression parser to produce their AST representation. We have tested
the integrated ompparser inside ROSE, using the same examples mentioned in
Sect. 4.1. The output of unparsed ROSE AST is identical to its input code when
code in Fig. 9 is used. ROSE unparser’s support for metadirective is still under
development.

5 Conclusion

OpenMP is becoming more and more capable and complicated. It requires a sig-
nificant amount of efforts for compiler developers to keep their implementations,
including parsing, up-to-date. It is not cost effective for every OpenMP compiler
to maintain its own parsers while all parsers share the very similar functionality.
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In this paper, we have presented a standalone and unified OpenMP parser,
named ompparser, which can be developed, maintained and used independently.
We also took the ROSE compiler framework as an example to demonstrate how
to integrate ompparser into other compiler and tools. The initial results show
that ompparser’s design can support the latest OpenMP 5.0 features such as
metadirective. It can also be easily leveraged by an OpenMP compiler. We plan
to add more features into ompparser and make it more useful to the OpenMP
community.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344, and supported by the U.S. Dept. of Energy, Office of Science, Advanced
Scientific Computing Research (SC-21), under contract DE-AC02-06CH11357. LLNL-
CONF-774801. This material is also based upon work supported by the National Sci-
ence Foundation under Grant No. 1833332 and 1652732.

References

1. OpenMP Support in Clang/LLVM. https://openmp.llvm.org/
2. OpenMP Support in Flang/LLVM. https://github.com/flang-compiler
3. Antao, S.F., et al.: Offloading support for OpenMP in Clang and LLVM. In: Pro-

ceedings of the Third Workshop on LLVM Compiler Infrastructure in HPC, pp.
1–11 (2016)

4. Hayashi, A., Shirako, J., Tiotto, E., Ho, R., Sarkar, V.: Exploring com-
piler optimization opportunities for the OpenMP 4.x accelerator model on a
POWER8+GPU platform. In: Proceedings of the Third International Workshop
on Accelerator Programming Using Directives, WACCPD 2016, pp. 68–78. IEEE
Press, Piscataway (2016). https://doi.org/10.1109/WACCPD.2016.7

5. Leontiadis, I., Tzoumas, G.: OpenMP C Parser, December 2001
6. Liao, C., Quinlan, D.J., Panas, T., de Supinski, B.R.: A ROSE-based OpenMP 3.0

research compiler supporting multiple runtime libraries. In: Sato, M., Hanawa, T.,
Müller, M.S., Chapman, B.M., de Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol.
6132, pp. 15–28. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13217-9 2

7. Liao, C., Yan, Y., de Supinski, B.R., Quinlan, D.J., Chapman, B.: Early experiences
with the OpenMP accelerator model. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 84–98. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 7

8. Novillo, D.: OpenMP and automatic parallelization in GCC. In: In the Proceedings
of the GCC Developers (2006)

9. Ozen, G., Atzeni, S., Wolfe, M., Southwell, A., Klimowicz, G.: OpenMP GPU
offload in Flang and LLVM. In: LLVM-HPC2018: The Fifth Workshop on the
LLVM Compiler Infrastructure in HPC, pp. 1–9, November 2018

10. de Supinski, B.R., et al.: The ongoing evolution of OpenMP. Proc. IEEE 106(11),
2004–2019 (2018)

11. Tian, X., et al.: LLVM framework and IR extensions for parallelization, SIMD
vectorization and offloading. In: Third Workshop on the LLVM Compiler Infras-
tructure in HPC, LLVM-HPC@SC 2016, Salt Lake City, UT, USA, 14 November
2016, pp. 21–31 (2016). https://doi.org/10.1109/LLVM-HPC.2016.008

https://openmp.llvm.org/
https://github.com/flang-compiler
https://doi.org/10.1109/WACCPD.2016.7
https://doi.org/10.1007/978-3-642-13217-9_2
https://doi.org/10.1007/978-3-642-13217-9_2
https://doi.org/10.1007/978-3-642-40698-0_7
https://doi.org/10.1109/LLVM-HPC.2016.008


The TRegion Interface and Compiler
Optimizations for OpenMP

Target Regions

Johannes Doerfert(B) , Jose Manuel Monsalve Diaz , and Hal Finkel

Argonne Leadership Computing Facility, Argonne National Laboratory,
Argonne, IL 60439, USA

{jdoerfert,jmonsalvediaz,hfinkel}@anl.gov

Abstract. OpenMP is a well established, single-source programming
language extension to introduce parallelism into (historically) sequen-
tial base languages, namely C/C++ and Fortran. To program not only
multi-core CPUs but also many-cores and heavily parallel accelerators,
OpenMP 4.0 adopted a flexible offloading scheme inspired by the hier-
archy in many GPU designs. The flexible design of the offloading scheme
allows to use it in various application scenarios. However, it may also
result in a significant performance loss, especially because OpenMP
semantics is traditionally interpreted solely in the language front-end as a
way to avoid problems with the “sequential-execution-minded” optimiza-
tion pipeline. Given the limited analysis and transformation capabilities
in a modern compiler front-end, the actual syntax used for OpenMP
offloading can substantially impact the observed performance. The com-
piler front-end will always have to favor correct but overly conservative
code, if certain facts are not syntactically obvious.

In this work, we investigate how we can delay (target specific) imple-
mentation decisions currently taken early during the compilation of
OpenMP offloading code. We prototyped our solution in LLVM/Clang,
an industrial strength OpenMP compiler, to show that we can use
semantic source code analyses as a rational instead of relying on the user
provided syntax. Our preliminary results on the rather simple Rodinia
benchmarks already show speedups of up to 1.55×.

Keywords: Compiler optimizations · GPU · Accelerator offloading

1 Introduction

Parallel execution and accelerator offloading are requirements for any HPC work-
load. Furthermore, it is now impossible to imagine anything, from mobile devices
to supercomputers, without multi-cores and heavily parallel accelerators. It is
only consequential that programming languages and language extensions evolved
to help with massive parallel execution and accelerator offloading. A longstand-
ing contender in this field is OpenMP. Its popularity is partially due to the
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single source approach that enables gradual adaption of parallel and offloaded
execution (almost) seamlessly into existing C/C++ and Fortran projects.

According to the academic literature, as well as various “best practice guide-
lines”, effective OpenMP accelerator offloading (for GPUs) requires combined
OpenMP constructs [5,15–17]. Figure 1a shows the “inferior” case in which the
OpenMP target (or target teams) pragma is used on its own, presumably with
nested parallel directives that activate the threads of the created target team(s).
A slightly modified version of the code, illustrating the “desirable” case, is shown
in Fig. 1b. Here, the parallel is combined with the target construct causing
each thread in the initial team to execute the outer loop on its own before the
inner loop iterations are again shared among all threads in the team. While this
conceptually changes the way the program is executed, it is not an externally
observable difference. As such, it is not different from other program transfor-
mations that are performed by a compiler to bridge the gap between high-level
programming abstractions and the actual hardware.

In this work we examine the current support of OpenMP target offloading
directives in the LLVM/Clang [14] compiler, especially with the transformation
sketched in Fig. 1 in mind. We discuss engineering challenges that arise when
the legality of this transformation is determined in the current code generation
scheme. To facilitate this optimization, as well as others to come, we introduce
the TRegion interface, a new abstraction layer designed to eliminate various
problems transformations for OpenMP offloaded code currently face. To show-
case the potential of our solution, we evaluate our prototype implementation on
four Rodinia v3.1 [6] benchmarks that come with OpenMP target directives. For
three of them, LLVM/Clang falls back to a slower execution mode while we can
apply a more elaborate version of the aforementioned transformation to achieve
speedups up to 1.55× on a NVIDIA K40, and up to 1.36× on a NVIDIA V100.

The remainder of this paper is organized as follows: In Sect. 2, concepts rel-
evant to this work are discussed. Afterwards, in Sect. 3, we introduce the TRe-
gion abstraction layer to gradually lower OpenMP target offloading directives.
In Sect. 4 we describe the two transformations we added to the LLVM middle-
end. One optimization aims to perform the optimization introduced with the
motivating example in Fig. 1 while the other will eliminate overhead caused by
the TRegion abstraction if that fails. Note that both are aware of the seman-
tics of the TRegion abstraction and interact with it not only for analysis but
also for transformation purposes. Our prototype implementation is evaluated in
Sect. 6. After we compare this work to related approaches in Sect. 5, we provide
a conclusion and discuss next steps in Sect. 7.

2 Background

This section briefly introduces key OpenMP offloading concepts as well as imple-
mentation details of the LLVM/Clang compiler front-end. For a more thorough
description of the OpenMP directives and detailed semantics we recommend the
OpenMP language standard [18]. For more information on the design decisions
that shaped the LLVM/Clang front-end, we refer to the works of Bertolli et
al. [3,4], Antão et al. [1], Bercea et al. [2], and Jacob et al. [10].
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#pragma omp target
for(int i = 0; i < N; i++)

#pragma omp parallel for
for (int j = 0; j < M; j++)

work(i, j);

(a) Code with standalone target direc-
tive as found in the Rodinia v3.1 [6] nw

(needleman-wunsch) benchmark.

#pragma omp target parallel
for(int i = 0; i < N; i++)

#pragma omp for
for (int j = 0; j < M; j++)

work(i, j);

(b) Code with combined target

parallel directive as often recom-
mended to achieve high performance.

Fig. 1. Syntactically different but semantically equivalent code patterns that can easily
result in significant performance differences. (teams omitted for simplicity)

2.1 OpenMP Target, Teams, and Parallel

Even though most accelerator are heavily parallel devices, the offloading and
parallelization are separate concepts in OpenMP. The former is expressed with
#pragma omp target while the latter is denoted either as #pragma omp teams, to
spawn teams of threads with one concurrently running thread per team, or as
#pragma omp parallel, to start parallel execution with all threads in the encoun-
tering team. Even though these directives regularly occur together, e.g., as a
combined #pragma omp target teams parallel, it is unclear if that is due to the
application design or because of the performance hit separate directives tend to
cause (ref. Sect. 6). The existence and occasional use of the different concepts in
separation, as well as the ubiquitous warnings to combine them, can arguably
be interpreted as a hint towards the need for efficient support.

The general implementation of target, teams, and parallel is similar in all
major C/C++ compilers. Each construct will cause the enclosed code to be
outlined in (at least) a separate function. These functions are then passed to,
and eventually called from, runtime functions that implement the respective
directive semantics, e.g., orchestrate the offloading in case of target. In addition
to outlining, the front-end will perform various other required tasks, e.g., emit
code to communicate explicitly and implicitly captured variables [2].

This “early outlining” approach allows rapid integration of new features and
bears little risk of miscompilations due to the function level abstraction and the
indirection through the runtime library. Though, this approach will inevitably
prevent any optimization to cross the boundary between sequential and parallel
code as long as the semantics of the runtime library are not explicitly encoded [7].

2.2 Accelerator Execution Mode—SPMD Vs. Non-SPMD

While the single source approach taken by OpenMP is arguably beneficial for
productivity and maintainability of the source, it makes it implicitly harder to
achieve maximum performance when the accelerator execution model is sub-
stantially different from the one on the host. This problem is known espe-
cially when offloading to a GPU. These devices, in contrast to a CPU, expect
to be utilized through multiple levels of parallelism, commonly via single-
program-multiple-data (SPMD) execution. OpenMP provides a way to express
this natively, namely outer-level parallelism through teams, SPMD execution
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through parallel, and inner-level parallelism through simd. Compound usage
of all four directives (incl. target) often results in relatively good performance.
However, any non-trivial separated usage of the directives might not. The reason
is the (possible existence of) intermediate code which requires a different execu-
tion model. To implement single thread, host-like execution required for target
regions (with or without teams) on SPMD (=GPU) devices, different schemes
have been proposed [3,4]. Since they were mostly syntax driven, it is hard for
the user to understand the performance differences of semantically equivalent
OpenMP code. Even if the performance implications are clear, the combined
directives are less flexible. They might simply not fit the needs of an application
with a modular design that is developed for various different platforms.

3 The TRegion Interface

The TRegion interface is a simple, concise, and explicit interface for an OpenMP
device runtime library, thus the part of the runtime that orchestrates OpenMP
offloading related tasks on the device. The interface is constructed to be an easy
target for OpenMP front-ends by minimizing the amount and complexity of code
needed to use it. The idea is to avoid complex logic and target dependent code
in the front-ends and instead use the compiler middle-end for the former and
target specific device runtime implementations of the interface for the latter. In
addition, the TRegion interface is designed to aid compiler analysis and transfor-
mation by encoding source code information, as well as implementation choices,
explicitly. That means the interface calls have are various constant arguments to
choose the runtime behavior. Assuming the runtime implementation is at some
point inlined, the abstraction layer will be completely eliminated. Even if not,
the overhead is limited to a (few) conditional(s) for each runtime call.

The general structure to be emitted by the front-end for an OpenMP target
directive is depicted in Fig. 2. The interface call arguments are shown and dis-
cussed in Sect. 3.2. As illustrated, there are two distinct runtime calls surround-
ing the user code in the target region, one for initialization and one for de-
initialization. When the target region code is translated, all parallel regions
are outlined. These new functions, as well as the communicated values, are then
passed to a __kmpc_target_region_parallel runtime call.

It is important to stress that the TRegion interface does not require logic or
target specific code generation in the front-end. Instead, it should be possible to
translate each OpenMP directive in isolation, without the need for much state
kept in the front-end, and exactly the same way regardless of the actual target.

void kernel(/* mapped variables */) {
int8_t ThreadKind = __kmpc_target_region_init (...);
if (ThreadKind != 1) return; // (surplus) worker thread
// User defined target region code with parallel regions
// replaced by __kmpc_target_region_parallel (...) calls.
__kmpc_target_region_deinit (...);

}

Fig. 2. Code generated by the front-end for an OpenMP target region.
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3.1 Design Rationale

The TRegion design has various consequences important for the performance
and transformability of the code. First, the (device) runtime is required to pro-
vide a default implementation for each functionality necessary to orchestrate
offloading (ref. Sect. 3.3). This is different than the current situation (in LLVM/
Clang) where a substantial part of the responsibility is carried by the language
front-end. Second, the TRegion interface exposes source information and imple-
mentation choices as (constant) arguments (ref. Sect. 3.2). This allows analyses
to easily pick up relevant source information from the runtime calls, and trans-
formations to completely change the implementation by altering the arguments.
Third, the TRegion code generated for the OpenMP directives is not (substan-
tially) altering the original user code structure. Lastly, the TRegion abstraction
will completely vanish once the device runtime library is linked into the user
code and optimized through standard compiler techniques, e.g., inter-procedural
constant propagation and subsequent dead code elimination.

3.2 Argument Semantic

Argument semantics are now discussed in the order they appear in Fig. 4: The
Ident pointer specifies source location information. It is not used for semantic
reasoning by the target region interface. The argument IsSPMDMode, which can
be boolean or ternary to include the value -1 for “unknown”, determines the logi-
cal execution mode (ref. Sect. 2.2). The bit-field RequiredRTFeatures informs the
runtime which OpenMP features are potentially required in the target region
to allow for limiting capabilities in favor of performance (ref. Sect. 3.4). The
NumThreads argument determines the maximal number of threads allowed to
participate in the subsequent parallel execution. The WorkFn function pointer
identifies the code that will be executed in parallel, e.g., an outlined parallel
region. The pointer and size pairs, SharedValues/SharedValuesBytes, and
PrivateValues/PrivateValuesBytes, specify the values communicated between
the sequential and parallel program part. The runtime has to make sure the
values are accessible by all parallel threads, e.g., by copying them to shared
memory1. Note that only shared values need to be copied back. If the boolean
flag AdjSharedMemPointers is set, the caller placed shared and private values
adjacent in a shared memory area, eliminating the need for copies.

Default Argument Values. The arguments for the TRegion interface can be
set conservatively to the values shown in Fig. 3. This way front-ends can be kept
simple, without the need to perform any source code analysis. Though, “smart”
front-ends can still initialize the arguments based on syntactic reasoning.
1 The current TRegion design (and its implementation) can deal with “first-level”

shared variables, e.g., sharing and modifying a pointer to a global value. However,
“higher-level” sharing, e.g., sharing a pointer to a master stack variable, is not possi-
ble. While there is no reason we could not reuse the existing scheme, as described by
Bercea et al. [2], we are still in the process of determining if a middle-end solution
is sensible.
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Argument Default

Ident nullptr

IsSPMDMode false/-1
RequiredRTFeatures (uint64_t)-1

NumThreads varying
WorkFn varying
SharedValues varying
SharedValuesBytes varying
PrivateValues varying
PrivateValuesBytes varying
AdjSharedMemPointers false

Fig. 3. Conservative default argument
values for the TRegion interface.

While the “varying” arguments have
to be set early, they are basically
determined the same way as we do
it for parallel directives on the host
already. The IsSPMDMode flag con-
servatively false for the “init” and
“deinit” calls, and -1, which represents
“unknown”, for “parallel” calls. If not
specialized during the later optimiza-
tion phase, an “unknown” value may
require the implementation to deter-
mine the execution mode at runtime.
The extra state is useful as orphaned
“parallel” calls are then no different to
the ones syntactically contained in a
target region.

// Runtime initialization based on the arguments. Returns
// thread characterization , e.g., team master or worker.
int8_t __kmpc_target_region_init( ident_t *Ident ,

bool IsSPMDMode , uint64_t RequiredRTFeatures );

// Runtime de-initialization based on the arguments.
void __kmpc_target_region_deinit( ident_t *Ident ,

bool IsSPMDMode , uint64_t RequiredRTFeatures );

// Type for parallel region callbacks.
typedef void (* ParallelWorkFnTy )(void * /* SharedValues */,

void * /* PrivateValues */)

// Start parallel execution. The callback attribute allows
// LLVM to optimize across the sequential -parallel
// boundary (ref. Doerfert and Finkel [8]).
__attribute__ (( callback(WorkFn , SharedValues , PrivateValues )))
void __kmpc_target_region_parallel( ident_t *Ident ,

int16_t IsSPMDMode , uint64_t RequiredRTFeatures ,
uint16_t NumThreads , ParallelWorkFnTy WorkFn ,
void *SharedValues , uint16_t SharedValuesBytes ,
void *PrivateValues , uint16_t PrivateValuesBytes ,
bool AdjSharedMemPointers );

Fig. 4. The function declarations that make up the main target region interface.

3.3 Interface Semantic

The TRegion interface is a compiler internal abstraction layer designed to be
targeted by different front-ends and implemented by different device runtime
libraries. While the first part allows us to define the semantics on a high-level, the
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second requires a dependable contract linking front-ends and implementations.
To this end, we detail the semantics of each interface function in the following,
and also elaborate the freedom and guarantees implementations have.

The init function ( __kmpc_target_region_init):
Any device runtime specific initialization code can be executed when the init
function is called. This will happen before any other target region related code
is executed. The arguments determine the execution mode and the runtime fea-
tures (potentially) required during the target region execution. One such feature,
discussed further in Sect. 4.2, is a generic state machine we added to our device
runtime library to support this work. All threads of all teams (which were started
by the host elsewhere) will enter the init function in order to be categorized via
the return value. For now, we distinguish three types of threads:

0, for “surplus” threads that shall directly terminate.
1, for “executor” threads that execute the target region.

-1, for “worker” threads that help execute parallel sub-regions.

Note that all team masters have to be executor threads but there can be more.
In SPMD-mode, hence if IsSPMDMode is true, all threads that participate in any
execution are expected to be executors, all others have to be surplus threads.

The de-init function ( __kmpc_target_region_deinit):
Any device runtime specific deinitialization (= tear down) code can be executed
when the de-init function is called. This will happen for each executor thread
after all user code in the target region was executed. Neither worker, nor surplus
threads will reach the de-init function.

The parallel function (__kmpc_target_region_parallel):
The purpose of the parallel function is to orchestrate the parallel execution of
the code region provided through the WorkFn argument. In SPMD-mode, hence
if IsSPMDMode is true or if it is -1 (=unknown) and the runtime check determines
SPMD-mode execution, all threads of a team that are supposed to participate in
the parallel execution will reach the parallel function. Each encountering thread,
up to a limit imposed by the NumThreads argument and potentially other factors,
will then call the work function with the shared and private values, SharedValues
and PrivateValues, as arguments. We delay the soundness discussion and other
considerations to Sect. 4.1. In non-SPMD-mode, the implementation has to
ensure that the shared and private values passed to the work function, stored in
SharedValues[0:SharedValuesBytes] and PrivateValues[0:PrivateValuesBytes]
respectively, are accessible by all participating threads2. If AdjSharedMemPointers
is set, the implementation can assume this to be true.

The callback attribute, as known to LLVM and Clang, guarantees that the
work function is called with the specified pointer arguments, or equivalent inputs,
as arguments. Furthermore, neither is otherwise used, inspected, or modified in

2 See also footnote 1 on Page 5.
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a way that is observable from the outside. As a result, inter-procedural opti-
mizations for scalar code, e.g., inter-procedural constant propagation, attribute
deduction, alias analysis, argument promotion, etc., can be applied as-if the
TRegion runtime call was not there but the work function was directly called [8].

3.4 Required Runtime Features

Any OpenMP runtime comes with various features necessary to ensure the func-
tionality defined in the standard, but not always needed in actual code. Further-
more, our proposed solution will shift even more responsibilities to the runtime,
though mostly in the form of fallback implementations.

Given that many features require initialization and will cause overheads even
if they are not explicitly used, it comes naturally to disable the ones known not
required during the execution of a program (part). This is especially true for
target offloading because accelerators are often more resource-constraint than
general purpose CPUs.

Our prototype will, when SPMD-mode is enabled, follow the lead by the
current LLVM/Clang implementation and set the RequiredRTFeatures to the
most optimistic value. In the future, we expect to provide, and utilize, more fine
grained choices for non-SPMD-mode execution.

3.5 Reduction Support

Our prototype implementation already supports scalar reduction with builtin
types and operators through an interface in the same spirit as the one shown
in Fig. 4. Given that we are currently extending the capabilities towards a mix-
and-match system as described by Gonzalo et al. [9], we want to postpone the
interface description until all requirements have been determined.

4 Target Region Transformations

To showcase that the TRegion interface enables LLVM middle-end optimization
of target regions in a reasonable manner, we implemented two distinct transfor-
mations working directly on the TRegion encoding. Both optimizations are, to
some degree, already performed by LLVM/Clang. However, they are based on an
intra-procedural front-end analysis performed only on the immediate neighbor-
hood of the target directive. Our proposed alternatives work on the generated
LLVM-IR and are guided by an inter-procedural analysis. The key is awareness
of the TRegion interface semantics (ref. Sects. 3.2 and 3.3) and the interaction
with the runtime calls that exposed information and implementation choices.

4.1 SPMD-Mode Execution of Target Regions

As discussed in Sect. 2.2, SPMD-mode is the native execution model for GPUs.
If OpenMP target offloading code is written with a host-centric execution model
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in mind, performance easily suffers. So far, the LLVM/Clang compiler only uses
syntactic reasoning to justify execution of target (teams) regions in SPMD-mode.
That means, if it is not syntactically known that there is a single parallel region
nested at the outermost level of an target (teams) region, it is executed in non-
SPMD mode and with a state machine for the worker threads (ref. Sect. 4.2).
In contrast, our TRegion Clang front-end prototype does not (yet) perform
any syntax based reasoning and instantiates the TRegion arguments with their
conservative defaults (ref. Sect. 3.2). Thus, the IsSPMDMode argument set to false,
or -1 (=unknown) for “parallel” calls. As part of the code optimizations the
middle-end “openmp-opt” pass will, if it determines SPMD-mode execution is
sound, modify these arguments to change the behavior of the device runtime.
Our prototype implementation uses an inter-procedural walk of the device code,
starting at the target region entry point, to collect information about functions
and potentially executed side-effects. During this process various OpenMP API
functions, functions in the OpenMP runtime implementation, as well as compiler
builtin functions are recognized. This allows us to refine the set of instructions
that might actually result in an arbitrary side-effect and also to identify all
instructions that cannot be reached without entering a parallel region.

Once all information is collected, our SPMD-mode soundness predicate is
checked. The idea is that SPMD-mode execution is legal as long as it is not dis-
tinguishable for an (external) observer (through language defined channels). To
simplify the following reasoning, we introduce two invariants which are preserved
for instructions potentially reachable without entering a parallel region.

Uniform Control The path taken by any thread in SPMD-mode is equal to
the path that the master would have taken in non-SPMD-mode.

Uniform Memory The memory, including the register file, visible to any
thread in SPMD-mode at any program point is equal to the view the master
would have had at that program point in non-SPMD-mode execution.

Note that both invariants initially hold. Hence, before any instruction was exe-
cuted on the device, the memory accessible by any thread in the team is the
same and all have the same control flow history.

SPMD-Mode Soundness Predicate. Instructions without direct externally
visible side-effects3, including branch instructions, are safe to be executed in
SPMD-mode because the uniform memory invariant guarantees that all threads
in the team will end up with the same result. This also preserves both invariants.

The invariants guarantee that all threads in a team encounter a “parallel”
TRegion interface call together with their master and with the same memory
state, at least if they are not already inside a parallel region. Furthermore, in
SPMD-mode execution, the TRegion interface call lets all participating threads
call the work function directly (ref. Sect. 3.3). The situation is therefore not

3 Reading special registers, e.g., the block index register thread.x in CUDA, is mod-
eled as a builtin call in LLVM-IR and considered a side-effect here.
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distinguishable from a single master encountering the TRegion call and the
implementation replicating its state across the required number of workers.

Given that the state at the beginning of the parallel region can be assumed
indistinguishable, and the execution inside is the same, the state afterwards will
also be. However, there is an implicit barrier at the end of the parallel execution
in non-SPMD-mode, hence “at the end of” the TRegion runtime call. Assuming
this barrier is replicated for SPMD-mode execution, and that the team threads
not required for the parallel region will wait at this barrier, we can conclude
that the outermost TRegion parallel call can safely be executed in SPMD-mode.
As a result, all calls to the parallel TRegion runtime are SPMD-mode safe. They
are either the outermost one for the team, or reached from within a parallel
region in which the behavior is indistinguishable between both execution modes.

Lastly, we consider instructions that may cause side-effects and which are
potentially encountered outside of parallel regions. While certain side-effects
are safe, e.g., accesses to the local stack, it is generally not sound to execute
them in SPMD-mode. There are various potential problems, including:

Data Races Replicating side-effects can introduce data race if the whole team
is not executing the instructions in lock step.

Observable Effects Replication of certain side-effects, e.g., I/O, can be
directly observed externally.

Divergence Replicating side-effects allows for the memory and control flow
to diverge between threads, e.g., by querying the thread id from the runtime.

#pragma omp barrier
#pragma omp master
shared_mem = side_effect ();
#pragma omp barrier
result = shared_mem;

Fig. 5. Guard code generated for
generic side-effects in target master
only code.

To avoid these problems in SPMD-mode
execution the side-effects need to be
guarded such that only a single thread
encounters them. Since the side-effect has
to be visible for all threads in the team,
synchronization afterwards is necessary.
Finally, the side-effect instruction could
produce a result that needs to be shared
between the team threads. Our prototype
“openmp-opt” pass will, assuming a call to the side_effect function, produce the
code shown in Fig. 5. However, it will only do so if it can prove that the guarded
code cannot distinguish between single-threaded execution in SPDM-mode and
single-threaded execution in non-SPMD-mode. This basically means that the
guarded code does not contain a nested parallel region. Such a region would
in SPMD-mode not have the team threads available as they are stuck in the
guard code barrier. Note that this only becomes a correctness issue if the dyn-
var internal control variables (ICV) [18, Sect. 2.5.1] is set to false, a condition
we can currently not exclude statically.

4.2 Specialized State Machine Generation

In case it is impossible to use SPMD-mode execution there is still optimization
potential. A generic state machine implementation in the runtime, e.g. as shown
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in Fig. 6a, is far from optimal, especially for GPU targets. Similar to Clang right
now, our prototype generate state machines specialized to a target region. This
will replace the indirect call with an if-cascade that checks the work function
pointer against known work functions. Unlike Clang, we can easily identify par-
allel work functions inter-procedurally and determine if a fallback indirect call
is necessary. Furthermore, we plan to use control dependences which may allow
chaining of known work functions without the need to traverse the if-cascade
again. Figure 6b illustrates specialization if the target region contains exactly
two parallel regions, outlined as KnownWorkFn0 and KnownWorkFn1, which are exe-
cuted in this order once each.

void rt_state_machine () {
barrier (); // activation signal
bool IsActive = false;
ParallelWorkFnTy WorkFn = rt_get_work_fn (& IsActive );
if (! WorkFn) return;
if (IsActive)

WorkFn(rt_get_shared_values_ptr (), // indirect call
rt_get_private_values_ptr ());

barrier (); // finished signal
rt_state_machine (); // recursion or loop

}

(a) Generic state machine implementation in the device runtime.

void specialized_state_machine () {
barrier (); // activation signal
KnownWorkFn0(/* no shared values */ NULL , // direct call

rt_get_private_values_ptr ());
barrier (); // finished signal
barrier (); // activation signal
KnownWorkFn1(rt_get_shared_values_ptr (), // direct call

/* no private values */ NULL);
barrier (); // finished signal

}

(b) Specialized state machine implementation in the user code.

Fig. 6. State machine implementations: generic (top) and specialized (bottom).

5 Related Work

Liao et al. [15] argue that combined OpenMP offloading directives are “more
useful and more intuitive than their separate forms”. They come to this conclu-
sion because of “the native fit” of the execution model to the accelerator one and
after discussing inferior implementations required for separate directives.

While the evaluation by Larkin [13] seems to show that various compilers
perform better with a combined target construct than with separate ones, it is
unclear if that was the (main) reason for the performance differences.
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To enable compiler optimizations of parallel programs, various techniques
have been proposed [11,12,19–23]. Most often they involve a new representation
of parallel constructs to reuse existing analyses and transformations in the pres-
ence of parallelism. While the TRegion interface is certainly similar in thought,
it serves a different purpose. Lowering to TRegion calls simplifies the front-end,
allows easier adoption of new targets, and facilitates the development of new,
explicitly “parallelism-aware” optimizations.

6 Evaluation

We evaluate our approach on four of the Rodinia v3.14 OpenMP benchmarks
that feature target regions. With our prototype we could execute all in SPMD-
mode. LLVM/Clang, our baseline, did so only for BFS, which has a single
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Fig. 7. Evaluation of four Rodinia v3.1 [6] on a NVIDIA K40 ( ) and V100 ( ).

4 We removed omp_set_num_threads calls which were intended for specific hardware.



Compiler Optimizations for OpenMP Target Regions 165

parallel region directly nested in the target region. The other benchmarks
are similar to Fig. 1, with Needle being even “simpler”. Both LUD and Hotspot
feature calls in their target region outside of any parallel region. The call to
lud_diagonal_omp in LUD needed to be guarded (ref. Sect. 4.1) to allow execution
of the target region in SPMD-mode.

All benchmarks were executed 13 times with LLVM/Clang as a baseline. The
plots show the average as well as the standard deviation for various input sizes.
Overall, the performance consistently improved for both our targets, a NVIDIA
K40 ( ) and V100 ( ), if LLVM/Clang defaulted to non-SPMD-mode. BFS, which
is always executed in SPMD-mode, shows no significant performance difference
(Fig. 7).

7 Conclusion

In this work we discussed and removed a major shortcoming of state-of-the-
art OpenMP target offloading implementations. With the TRegion interface
we introduced a new step in the lowering of high-level directives that is well-
suited for compiler analyses and transformations. At the same time it is much
easier to lower to than the existing solution. The design of the TRegion interface
eliminates front-end complexity and also hides target details, thereby simplifying
the adoption of new ones. We have shown that transformations based on the
new interface are not only feasible but required to obtain good performance
if syntactic patterns are violated. We believe the latter to be too restrictive
to begin with and that middle-end compiler techniques will be able to justify
transformations much more reliably. The proposed scheme, if explored further,
will allow flexible use of OpenMP while delivering portable performance through
code transformations towards the native target execution model.
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Abstract. Nested parallelism is a well-known parallelization strategy to
exploit irregular parallelism in HPC applications. This strategy also fits
in critical real-time embedded systems, composed of a set of concurrent
functionalities. In this case, nested parallelism can be used to further
exploit the parallelism of each functionality. However, current run-time
implementations of nested parallelism can produce inefficiencies and load
imbalance. Moreover, in critical real-time embedded systems, it may lead
to incorrect executions due to, for instance, a work non-conserving sched-
uler. In both cases, the reason is that the teams of OpenMP threads are
a black-box for the scheduler, i.e., the scheduler that assigns OpenMP
threads and tasks to the set of available computing resources is agnostic
to the internal execution of each team.

This paper proposes a new run-time scheduler that considers dynamic
information of the OpenMP threads and tasks running within several
concurrent teams, i.e., concurrent parallel regions. This information may
include the existence of OpenMP threads waiting in a barrier and the pri-
ority of tasks ready to execute. By making the concurrent parallel regions
to cooperate, the shared computing resources can be better controlled and
a work conserving and priority driven scheduler can be guaranteed.

Keywords: Resource allocation · Concurrency · Runtime scheduler

1 Introduction

OpenMP, widely used in the High Performance Computing (HPC) domain, is
increasingly gaining attention in others domains [15,22,23,36] due to its effi-
cient parallel execution model in shared memory systems, and also its support
for heterogeneous computing. This is the case of critical real-time embedded sys-
tems, in which new computational intensive functionalities are being developed
(e.g., autonomous driving). Here, OpenMP allows to efficiently exploit the per-
formance capabilities of the newest highly parallel and heterogeneous embedded
architectures, while benefiting from its programmability and portability capa-
bilities. Moreover, OpenMP has been proven to be time predictable [35,36,38],
a key aspect to introduce this model in the critical real-time embedded domain.
c© Springer Nature Switzerland AG 2019
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OpenMP implements a fork-join model in which the parallel execution is
initiated when a parallel construct is encountered. Then, a new team of threads
(and implicit tasks) is created, associated to the corresponding parallel region.
Moreover, OpenMP supports nested parallelism in which new parallel regions
can be created in contexts that are already being executed in parallel.

Nested parallelism has a number of benefits in both HPC and critical real-
time systems: (1) it is a well-known parallelization strategy to support irregular
(imbalanced) applications, and (2) it can be used to boost performance at the
different levels of a complex system or application, where parallelism is exposed.
By using nested parallel regions, applications can benefit from an outer parallel
construct for exploiting coarse-grain parallelism, and multiple inner parallel
constructs for exploiting fine-grain parallelism.

However, this strategy presents two important issues: (1) it may result in
load imbalance and hence, loss of performance [17], and (2) in the case of crit-
ical real-time systems, it may result in an incorrect (or too pessimistic) timing
analysis [33,35,37,38]. The reason is that timing analysis is based on work-
conserving scheduling policies [35], in which computing resources cannot be idle
if there is pending work to do, and priority driven scheduling strategies, where
the preference to execute is given to high priority tasks. These properties are
not guaranteed between different concurrent parallel regions in OpenMP.

In both HPC and critical real-time systems, the reason to obtain worse or
wrong results is that each parallel region operates independently, as a black-box,
over a set of computing resources, either software resources (e.g., pthreads) or
hardware resources (e.g., cores). The scheduler implemented at the OpenMP
runtime level is agnostic of the internal execution of each team of threads. As a
result, a team can have idle OpenMP threads waiting in a barrier, and occupying
computing resources, while there is another team with pending work. The black-
box problem in critical real-time systems was already identified [36], so the use
of a unique team of threads was proposed to parallelize such systems.

In this paper, we propose a new run-time scheduler in which concurrent paral-
lel regions cooperate by sharing internal execution information between different
teams of threads, e.g., the highest priority among the ready tasks and whether
there are idle OpenMP threads waiting in a barrier. This cooperation is used to
(1) share computing resources among different (cooperative) teams by defining a
new OpenMP thread scheduler, and (2) ensure a work-conserving and priority-
driven scheduling, so the timing analysis for critical real-time systems, defined
at analysis time, remains valid at runtime.

It is important to remark that our proposed run-time implementation is
fully compatible with the current OpenMP specification [2]: the number of
OpenMP threads within a parallel region remains fixed, the parallel work defined
within each parallel region is executed exclusively by the corresponding team
of OpenMP threads, and the thread affinity is preserved. Moreover, since the
behavior of this implementation can be essential for some systems, e.g., critical
real-time systems, we propose to provide the programmer with a new OpenMP
feature to enforce parallel regions to cooperate.
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Fig. 1. Example of nested parallelism with OpenMP.

2 Motivation: The Importance of Nested Parallelism

This section presents the use of nested parallelism in the HPC and critical real-
time embedded domains, and motivates the need for a more flexible and con-
trollable scheduler regarding computing resources and OpenMP teams.

2.1 Nested Parallelism in HPC

Before the introduction of the tasking model into OpenMP (specification v.3.0
[1]), nested parallelism was a well-known pattern used to address irregular HPC
applications (e.g., tree traversal, adaptive mesh refinement [6], and dense linear
algebra [25]). This strategy, which consists on creating new parallel regions in
contexts that are already executed in parallel, may help to reduce load-balancing
issues, because threads that get more work may decide to solve their work in
parallel opening a new parallel region. Figure 1a illustrates this behavior, and
Fig. 1b shows a diagram of the parallel execution of that code.

Although in several cases the tasking model has replaced nested parallelism
to exploit irregular applications [3,39], the latter still outperforms the former in
some cases. This is, for example, the case of imbalanced loops, where dynamic
scheduling or tasking may suffer from poor cache behavior and low data reuse due
to the inability to bind tasks to cores [8]. This, and the high overhead typically
introduced by the runtime to manage the tasking model [26], makes nested
parallelism a valid and still valuable mechanism. Particularly, for modern SMP
machines with hierarchical memory systems, where outer teams can be created
at core level, and inner teams can be created at hardware thread context [30].

The use of nested parallelism may however introduce problems by itself: on
one hand, the overhead associated to the creation of parallel regions and the
synchronizations [13]; on the other hand, the difficulty of tuning the number
of threads of each parallel region. Regarding the former, different works try to
mitigate the overhead of OpenMP parallel regions [13,21] by reusing structures
when possible (the most significant techniques are introduced in Sect. 3). Regard-
ing the latter, the problem explodes, because an inappropriate definition of the
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number of threads in nested parallel regions may entail several issues: (1) loss of
programmability, because more responsibilities are pushed to the programmer;
(2) loss of portability, because a particular set of values might be optimal for one
architecture and mediocre in a different one; (3) situations of load imbalance,
because threads are waiting at synchronization points while there might be work
to do; and (4) oversubscription of the system resources.

Interestingly, the problem of load balancing nested parallel regions has been
tackled widely, underscoring the importance of reusing the resources efficiently,
reducing oversubscription and boosting data locality. Some solutions are based
on a dynamic distribution of the resources between the different nested parallel
regions [14], relieving the programmer from the burden of defining the num-
ber of threads of each parallel region, and thus enhancing programmability and
portability. Others are based in work stealing strategies [29], crucial to ensure
work-conserving schedulers that better exploit the possibilities of the system [7].
These works however, consider scheduling solutions in which the internal infor-
mation about the execution status of the teams executed in parallel is not taken
into account. This prevents teams to cooperate among them to, for example,
avoid having idle threads when there is work to do in other teams.

Next paragraphs introduce an HPC application that presents limitations in
the scheduling of different OpenMP parallel regions.

Human Respiratory Simulations: Alya
Coupled runs, consisting in simulations that solve different physics for a single
run, are very common in HPC environments [10]. They can be found in a variety
of examples from earth science, where some processes simulate the earth while
other the ocean, to biological ones. This section describes the couple run applied
to a biological simulation of the human respiratory system [18]. It is composed of
the simulation of the air going through the human airways, and the simulation
of the transport of particles inhaled through the bronchopulmonary tree.

Fig. 2. Coupled run respiratory system.

Concretely, the simulation can be performed in two different instances of
the program, one solving the fluid (air), and the other solving the transport of
particles (particles inhaled). In this approach, shown in Fig. 2a, when the pro-
cesses solving the fluid have computed its velocity, they send it to the processes
computing the transport of particles, so both can be pipelined in parallel.
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This simulation can also be performed by one instance, as shown Fig. 2b,
where the program first solves the velocity of the fluid, and then the transport
of particles. Considering that both phases include OpenMP parallel loops, and
given that the computation is completely independent, each physics (fluid and
particles) can be encapsulated within a high level task so they can run in parallel.
This approach may result in a load imbalance scenario, however, if the workload
is not properly distributed among the threads in the nested parallel.

If the concurrent parallel regions within each high level task are cooperative,
the imbalance present in the fluid phase can be used to compute some of the
particles parallel region, as shown in Fig. 2c.

2.2 Nested Parallelism in Critical Real-Time Systems

OpenMP is increasingly being considered as a convenient parallel programming
model to develop the most advanced critical real-time systems. One of the main
reasons is that the semantics of OpenMP tasks resembles the limited preemptive
scheduling models [33,34,37]. The preemption strategy is an important factor in
real-time scheduling because it determines when real-time functionalities, real-
time tasks, can be stopped and resumed. Limited preemptive scheduling has been
shown to reduce preemption-related overheads compared to fully-preemptive sys-
tems, while limiting the amount of blocking typical of fully-non-preemptive sys-
tems [5]. In this regard, OpenMP defines Task Scheduling Points (TSPs) as
points in the execution of a program at which an OpenMP task can be sus-
pended, allowing the associated computing resource to execute other OpenMP
tasks. TSPs are therefore well-identified preemption points of parallel execution
that can be considered in the timing analysis of real-time systems [33,34].

However, current timing analysis techniques are based on run-time sched-
ulers with two important features: (1) a priority-driven execution, and (2) a
work-conserving nature. Regarding the former, real-time systems typically assign
priorities to real-time tasks and give preference to those tasks with a higher prior-
ity (based on the implemented preemption strategy) so that all tasks meet their
deadlines. On the other hand, timing analysis for work non-conserving schedulers
(i.e., there may be idle threads while there is still work to be done) have been
proven to be very complex, and hence lead to unacceptable pessimistic results
[35]. As a result, timing analysis techniques impose the real-time system to use
a single team of OpenMP threads to execute all real-time tasks [36]. The reason
lies in the black-box nature of concurrent parallel regions: the execution of each
parallel region is governed by the team associated to that region, and each team
has access only to the tasks associated to that team. Subsequently, two problems
arise: (1) threads encountering a TSP can only schedule tasks that belong to its
own team, so highest priority tasks from other teams might be delayed, and (2)
threads waiting in a barrier cannot see there is work to do from other teams, so
a work-conserving policy cannot be guaranteed.
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Fig. 3. Concurrent OpenMP parallel regions

As an example, Fig. 3 shows the OpenMP code implementing two concur-
rent real-time tasks1. Figures 3a and b correspond to the low-priority and high-
priority real-time tasks respectively, set by means of the priority clause. More-
over, both parallel regions consider two OpenMP threads and a one-to-one map-
ping to physical resources (cores). Figure 4a shows the time diagram of the
expected parallel execution of the OpenMP tasks, as considered by the timing
analysis. Low priority OpenMP tasks are created at time instant t1, and high
priority tasks, at t2, and so low priority tasks start the execution first in cores
1 and 2. The timing analysis considers that, when a low priority task finishes, a
high priority task starts the execution, e.g., at time instant t3. As a result, the
system is considered to be schedulable because all deadlines are meet, i.e., the
high-priority real-time task completes before t5 and the low-priority real-time
task before t6.

However, due to the black-box nature of the two concurrent parallel regions,
the run-time behavior may be different to that computed at analysis time.
Figure 4b shows the time diagram of a compliant OpenMP execution of the two
parallel regions, but not consistent with the timing analysis shown in Fig. 4a.
The reason is that when the thread executing the low priority real-time task
reaches the TSP at t3, it is not aware of the pending high priority OpenMP
tasks ready to execute in the other parallel region. As a result, the execution
of the high-priority real-time task is delayed, missing its deadline at t5. In this
same scenario, a work-conserving strategy is not ensured, since at t4, one of the
OpenMP threads belonging to low-priority real-time task becomes idle and stays
busy-waiting in the barrier while there is work to do in the other parallel region,
instead of freeing the core to assign it to the other parallel team.

Next paragraphs present a real-time application where nested parallelism is
useful, although its usage can cause the issues described in this section.

1 The parallel region that encloses the two functionalities is not shown for simplicity.
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Fig. 4. Behavior of two real-time functionalities parallelized with OpenMP.

GPS-aided SINU
Global Positioning System (GPS)-aided Strapdown Inertial Navigation Unit
(SINU) system is a low cost motion measurement device commonly used in
real-time navigation systems. The system, depicted in Fig. 5, is composed of
two functionalities: (1) obtain information from accelerometers, gyroscopes and
magnetometers to generate outputs in terms of position, velocity and orientation,
and (2) combine this information with that obtained from a Global Positioning
System (GPS) to minimize errors by implementing a Kalman filter [20].

The Kalman filter is a common recursive application that estimates the inter-
nal state of a linear dynamic system from a series of noisy measurements. As
depicted in Fig. 6, it is separated into two distinct phases: the prediction phase
and the measurement phase. Both utilize the Cholesky decomposition to capture
the mean and covariance of the system state.

Fig. 5. Block diagram of the GPS-
aided SINU system.

Fig. 6. Block diagram of the Kalman
filtering algorithm.

Overall, the GPA-aided SINU is a real-time application that can exploit two
levels of parallelism: in the outer level, the computation of the two functionalities
(i.e., computing position, velocity and orientation, and estimating errors) can
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be performed in parallel; in the inner level, the computation of the Cholesky
decomposition used in the Kalman Filter [39] can be further parallelized. The
use of nested parallel regions can however prevent the scheduler from fulfilling
priorities or ensuring work-conserving executions.

3 Current Implementations

The OpenMP [2] specification defines an OpenMP thread as an execution entity
with a stack and associated static memory (so called threadprivate memory) that
is managed by the OpenMP implementation. Then, this high-level concept may
be implemented using different libraries, e.g., pthreads [4] and Windows threads
[32]. Hence, when the specification states that a parallel construct causes the
creation of a team of threads, and that the number of threads remains constant
for the duration of that parallel region, it refers to the high-level concept of
thread, and not the actual computing resources.

In that context, runtimes must consider the overhead introduced by multi-
threading libraries [27] when using computing resources. This includes: (1)
thread library startup overhead, that is one-time overhead occurring when the
library starts; (2) thread startup overhead, that is time to create threads; (3)
per-thread overhead, that is work scheduling overhead; and (4) lock management
overhead, that is time spent managing locks. Two of them are particularly inter-
esting when it comes to share resources among teams: the thread startup and
the per-thread overheads. On the other hand, thread library startup overhead is
usually negligible, and several works tackle lock management overhead [9,31].

Current OpenMP runtimes (e.g., LLVM [28], libgomp [19]) try to reduce
the impact of thread startup overhead by using a pool of threads [13], and so
avoid the costly creation and destruction of threads. For example, libgomp safely
reuses idle threads, considering the processor binding and the thread affinity. As
an illustration, for the code shown in Fig. 7, LLVM consistently creates X * Y
threads, while libgomp creates a number equal or (a bit) bigger than X * Y. Both
results prove that LLVM and libgomp use pools of threads.

Fig. 7. OpenMP example with nested parallelism.

Although OS-threads are reused, the overhead associated with these resources
is still quite high in architectures with a large amount of cores (e.g., the Intel R©

Xeon PhiTM Coprocessor [12]), because more threads are potentially created.
In this context, Intel R© introduced the concept of hot teams [30]. This idea,
implemented in the LLVM runtime for OpenMP, exploits the fact that OpenMP
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programs may execute many parallel regions with the same set of parameters
(i.e., number of threads, internal control variables and information associated
with the barrier). So, the runtime maintains one structure per team configu-
ration. Intel also supports nested hot teams, that keep a pool of threads alive
(but idle) during the execution of the non-nested parallel code [21]. This is very
useful in cases such as the code presented in Fig. 7, where the use of hot teams
allows to create the X inner teams once and not destroy them. Without this, the
runtime would create and destroy them a thousand times.

These techniques, and the behavior they model, are not controllable at an
specification level (and sometimes not even at a runtime level). This is because
OpenMP takes the responsibility of scheduling parallel work out of the hands of
the programmer. Just the scheduling of loop iterations can be tuned by means of
the schedule clause, and the run-sched-var and def-sched-var internal control
variables (as determined in Sect. 2.9.2.1 of the specification [2]). The scheduling
of tasks is completely managed by the runtime following the Task Scheduling
Constraints defined in the specification (Sect. 2.10.6).

Some runtime implementations, such as Nanos++ [11], allow a finer control
of the scheduler by means of execution modifiers: throttling policies (i.e., define
whether a new task is created and pushed into the scheduler system, or just a
minimal description of the task is created and it is executed right away in the
current context), barrier algorithms (i.e., how threads waiting at barriers execute
remaining work), traversal order (i.e., how tasks are traversed, e.g., work-first
and breadth-first), and thread managers (i.e., control the amount of resources
needed for a specific amount of workload). Regarding the latter, there are specific
libraries, e.g., Dynamic Load Balancing (DLB) [16], that, attached to the runtime
system, allow dynamically managing threads to exploit work-conserving policies.

Overall, a constant behavior of current runtimes is that they tend to apply
work-conserving scheduling policies because: (1) they are proven to be optimal
for multi-threaded scheduling of Directed Acyclic Graphs [7] (as the ones gener-
ated by OpenMP tasks and their dependencies) because it helps load balance,
and (2) they are used in the timing analysis performed for real-time systems
in order to get not too pessimistic results. This policy defines a work queue for
each thread; then, whenever a thread becomes idle, it may steal work from other
busy threads. Both the Intel and the GNU OpenMP runtimes (i.e., KMP and
libgomp) implement work-stealing for tasks (this aspect can be tuned in Intel by
means of the environment variable KMP TASKING). However, the time spent
in busy-waiting is particular to each implementation.

4 Run-Time Scheduling Based on Cooperative Parallels

As introduced in Sect. 3, there exist two different kinds of threads involved in
the execution of an OpenMP code. On one hand, the OpenMP threads are
high-level abstractions associated to each team that remain fixed until the team
completes. On the other hand, OS-level threads (e.g., pthreads, as used here-
inafter) upon which OpenMP threads execute may exist along the execution
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of the whole application and be reused among different OpenMP teams (using
thread pooling), even when the teams execute concurrently. For instance, the
pthreads can be shared among two concurrent parallel regions, and so two (or
more) OpenMP threads from different teams (or even the same team) could be
mapped to the same pthread. The use of this technique can lead to incorrect
executions, considered in Sect. 4.2.

It is OpenMP-compliant to have several OpenMP threads concurrently
mapped to the same pthread. However, in current implementations, the OpenMP
thread scheduler is not aware about the internal execution status of each of the
parallel regions. As a result, different issues relevant for the HPC and real-time
domains may arise, i.e., load imbalance, work non-conserving executions or the
impossibility of honoring priorities across teams (see Sect. 2 for further details).

To address these issues and force a given implementation to provide the run-
time behavior required by HPC or critical real-time systems, we define the coop-
erative parallels, in which concurrent parallel regions communicate to exchange
information about their execution status. Concretely, the run-time thread sched-
uler will act as follows:

– Whenever there is an idle OpenMP thread waiting in a barrier or a
taskwait, barrier), it will communicate with other concurrent parallel
regions to check if there is pending work to do. If this is the case, the idle
OpenMP thread will be suspended and the pthread will map to the parallel
region with pending work to do. This will allow to provide better load bal-
ancing execution for HPC and real-time systems, as well as guaranteeing a
work-conserving scheduling execution in case of real-time systems.

– Whenever an OpenMP thread arrives to a TSP, it will check the work pending
in its team and will communicate with the other concurrent parallel regions
to check the priority of the pending ready tasks. If the most priority ready
task belongs to other team, the OpenMP thread will be suspended and the
pthread will map to the parallel region in which the highest priority OpenMP
task belongs to. OpenMP thread (and then the most priority task). This will
allow to accomplish OpenMP tasks priorities as required by real-time systems.

Moreover, we propose to extend the requires directive with a new imple-
mentation defined requirement called ext cooperative parallel. This direc-
tive forces the implementation of OpenMP run-time to handle teams in such a
way that the thread scheduler will take into account the work pending in all
teams executing concurrently as described in this section.

Overall, the implementation of the cooperative parallels requires to have a
global overview of the running OpenMP threads and the pending work of each
team, while maintaining the compliance with the OpenMP execution model.
Section 4.2 describes the properties that could be affected when implementing
cooperative parallels, and must remain valid in the OpenMP specification. Before,
Sect. 4.1 describes an example of the desired behavior of the cooperative parallels.
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Fig. 8. Example of two Cooperative parallels.

4.1 Example

Figure 8 shows an example of two concurrent cooperative parallels, each with
two OpenMP threads, that execute OpenMP tasks with a given priority. For
simplicity, there are two priority levels for the OpenMP tasks, high and low,
executed within the parallel region 1 and 2, respectively. There are three pthreads
with IDs 0, 1, and 2. OpenMP threads have IDs 1.0 and 1.1 (parallel region 1),
and 2.0 and 2.1 (parallel region 2).

Runtime Behavior of the Proposed Cooperative Parallels

1. Initially, at time instance t1, we consider that all the OpenMP tasks of both
teams are ready to be executed and the OpenMP threads 1.0, 2.0 and 2.1
are being executed in the available pthreads, with the following mapping: 1.0
mapped to 0, 2.0 mapped to 2 and 2.1 mapped to 1.

2. At time instant t2, the OpenMP thread 2.1 reaches a TSP. Since task T1,2

of parallel region 1 has a priority higher than any other ready tasks of the
parallel region 2, the OpenMP thread 2.1 is suspended and the pthread 1 is
mapped to the OpenMP thread 1.1, and so task T1,2 can start executing.

3. At time instant t3, the OpenMP thread 2.0 reaches a TSP. At this point,
task T1,3 has a priority higher than pending tasks T2,3 and T2,4. However, the
two OpenMP threads of team 1 are already executing, and so the OpenMP
thread 2.0 starts the execution of the task T2,3.

4. At time instant t4, the OpenMP thread 1.1 reaches a TSP but, since all the
tasks in parallel region 2 have lower priority than T1,3, OpenMP thread 1.1
starts the execution of T1,3.

5. Finally, let’s assume that at time instant t5 the OpenMP thread 1.0 reaches
a taskwait), and so it becomes idle. Therefore, since there is still a ready
task pending to be executed in the parallel region 2, OpenMP thread 1.0 is
suspended and the pthread 0 is mapped to the OpenMP thread 2.1 to start
the execution of task T2,4.
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4.2 OpenMP Compliance

Possible implementations of the cooperative parallels concept must take into
account some of the features defined in the OpenMP specification in order to be
OpenMP compliant. This section analyses these features.

Thread Affinity Policy. The thread affinity policy (managed in OpenMP
by the OMP PROC BIND environment variable, the bind-var ICV and the
proc bind clause) establishes how OpenMP threads are assigned to OpenMP
places. If the thread affinity is enabled, the OpenMP implementation should not
move OpenMP threads between OpenMP places once a thread in the team is
assigned to a place. However, an OpenMP place is defined as “an unordered set
of processors on a device”, i.e., physical resources (hardware threads, cores, etc.),
as described in Sect. 6.5 of the OpenMP API v5.0 [2]. Therefore, the OpenMP
thread affinity, although compatible with the cooperative parallels, may break
the desired behavior if a given computing resource is idle to execute work of
an OpenMP thread that it is not assigned to it. In any case, the programmer
is responsible of defining a thread affinity that does not break the properties
brought by the cooperative parallels.

Deadlocks. The use of the same OS-level thread to execute different OpenMP
regions associated with different OpenMP threads may generate deadlocks. We
recognize two cases: one regarding barriers, and the other regarding locking
routines. In the former case, if some OpenMP threads are blocked executing the
implicit barrier of one parallel region, and some others are executing the implicit
barrier of another parallel region, the OS-level threads may end up having in
their call stack the execution of an implicit barrier that they are not going to
be able to execute until they do not finish the execution of the current one.
In order to solve this issue, our proposal should require an implementation that
does not block the different contexts in the call stack of the OS-level, for instance
implementing the OpenMP threads as user-level threads. In the latter case, when
locking routines are used, compiler analysis [24] can be used to determine the
possibility of a deadlock and hence inform the runtime not to safely share threads
among OpenMP teams.

Threadprivate Variables. OpenMP provides Thread Local Storage mech-
anisms by means of the threadprivate directive, which allows to specify a
list of variables that must be replicated for each OpenMP thread. Typically,
current implementations use either mechanisms provided by the base language
(e.g., the C/C++ thread attribute), or mechanisms provided by POSIX (i.e.,
pthread getspecific(), pthread setspecific()), because it is the simpler way to go.
However, this mechanisms are not valid if different OpenMP threads are mapped
to the same OS-level thread, because the latter may end up having incoherent
information coming from the different OpenMP threads. For that reason, when
OS-level threads are to be reused among different cooperative parallel regions,
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the runtime must provide the mechanisms to determine to which parallel region
a OS-level thread is assigned at a given point in time, so the proper threadprivate
data is accessed.

5 Conclusions

Nested parallelism is a well-known strategy used in the HPC and the critical
real-time domains to exploit irregular parallelism in systems exposing paral-
lelism at different levels. However, due to the black-box nature of the parallel
regions, nested parallelism may also result in an inefficient parallel execution
because of load imbalance in the concurrent parallel regions. Moreover, in case
of critical real-time systems, the computation may result incorrect from a timing
perspective because of a work non-conserving execution, and the impossibility
of fulfilling priorities among different parallel regions.

To address these problems, this paper introduces the concept of cooperative
parallels, in which the information about the internal execution status of con-
current teams can be shared among them. Moreover, the possible scheduling
solutions that can take benefit of this information are analyzed. From that dis-
cussion we conclude that a deeper control of the mapping between OpenMP
threads and the underlying OS-level threads (e.g., pthreads) is needed to ful-
fill the work-conserving and priority driven strategies required in both HPC
and critical safety systems to achieve better performance and meet timing con-
straints. An implementation of the cooperative parallel remains as a future work.
Nonetheless, this paper discusses the compliance of the cooperative parallel con-
cept with the current OpenMP specification, and provides tips to inspire future
implementations.
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Abstract. Parallel loops are an important part of OpenMP programs.
Efficient scheduling of parallel loops can improve performance of the pro-
grams. The current OpenMP specification only offers three options for
loop scheduling, which are insufficient in certain instances. Given the
large number of other possible scheduling strategies, standardizing each
of them is infeasible. A more viable approach is to extend the OpenMP
standard to allow a user to define loop scheduling strategies within her
application. The approach will enable standard-compliant application-
specific scheduling. This work analyzes the principal components required
by user-defined scheduling and proposes two competing interfaces as can-
didates for the OpenMP standard. We conceptually compare the two pro-
posed interfaces with respect to the three host languages of OpenMP, i.e.,
C, C++, and Fortran. These interfaces serve the OpenMP community
as a basis for discussion and prototype implementation supporting user-
defined scheduling in an OpenMP library.

Keywords: OpenMP · Multithreaded applications ·
Shared-memory programming · Multicore · Loop scheduling ·
Self-scheduling · User-defined loop scheduling ·
Dynamic load balancing · High performance computing

1 Introduction

OpenMP [9] is the industry and academic standard for parallel programming
on shared memory platforms. Loop-level parallelism is a very important part of
many OpenMP applications that frequently contain computationally-intensive
and large data parallel loops. Such OpenMP applications are typically executed
on high performance computing (HPC) platforms which are increasingly com-
plex, large, heterogeneous, and exhibit massive and diverse parallelism. The per-
formance of applications executing on HPC platforms can be degraded due to
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various overheads, such as synchronization, management of parallelism, commu-
nication, and load imbalance [4]. Indeed, these overheads cannot be ignored by
any effort to improve the performance of applications, such as the loop schedul-
ing schemes [7]. The scheduling of those large and complex OpenMP loops can
be a critical factor for the efficient use of those HPC platforms.

The optimal scheduling of parallel applications on parallel computing plat-
forms is NP-hard [16]. No single loop scheduling technique can address all sources
of load imbalance to effectively optimize the performance of all parallel applica-
tions executing on all types of computing platforms. Indeed, the characteristics of
the loop iterations compounded with the characteristics of the underlying com-
puting systems determine, typically during execution, whether a certain schedul-
ing scheme outperforms another. The performance of parallel applications is
impacted by system-induced variability (e.g., operating system noise, power cap-
ping) and results in additional irregularity that has often been neglected in loop
scheduling research, particularly in the context of OpenMP scheduling [17,30].
Efficient loop scheduling can mitigate those variabilities, if a suitable schedule
is available. However, choices for loop scheduling strategies in OpenMP are lim-
ited today to static, guided, or dynamic. These three scheduling strategies have
been shown in previous work [8,22] not to offer the best performance possible.
Moreover, fault-tolerant and energy-oriented OpenMP loop scheduling strategies
require domain-specific knowledge to maintain correctness and energy-efficiency
at large-scale, respectively [11,32], which is currently not exploited by the three
standard OpenMP scheduling strategies.

More and novel loop scheduling strategies are needed in OpenMP given com-
plexity of emerging applications and of supercomputer architectures. This is evi-
dent by the efforts of compiler developers, open-source and commercial alike, to
support additional scheduling schemes. The efforts can be observed in LLVM [2]
with the trapezoid self-scheduling [31] strategy, or in the Intel compiler with a
static stealing scheme [24]. However, given the great body of work on loop schedul-
ing, in general, standardizing all possible scheduling strategies in OpenMP is
infeasible. Therefore, given the many different compilers supporting OpenMP, a
standardized way of supporting additional scheduling strategies is mandatory for
portability and use in today’s frequently changing HPC landscape.

A more viable approach is to extend the OpenMP standard to allow for user-
defined loop scheduling (UDS). Doing so will enable application-specific schedul-
ing as well as a standard-compliant means to customize current loop schedulers.
To this end, this work analyzes the principal operations of a loop scheduling
scheme using a ‘todo list’ as a representation of the loop iteration space. Based
on this modeling we identify four mandatory operations (init, enqueue, dequeue,
and finalize). To support all currently available scheduling strategies, additional
information may be necessary, which can be obtained through two measurement
operations around the loop body. Using these principal components, we propose
two complementary UDS specification interfaces for OpenMP, following the dis-
tinct styles of C, Fortran, and C++. One proposal supports a more modern
programming style, such as that used in C++14 and later. The other proposal
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takes a classic approach, is suitable for C, Fortran and C++ programs and helps
many types of applications to run on various architectures. The aim is that these
proposals serve the OpenMP community and compiler developers as a basis for
discussion and prototype implementation of UDS.

The core contributions of this work are: (1) an analysis of existing scheduling
strategies and specifications of a minimal function set that is capable of imple-
menting them and (2) an actual language-specific proposal of how to implement
existing and future user-defined scheduling strategies.

The remainder of this paper is structured as follows. First, we provide the
background and state of the art in recent loop scheduling strategies in Sect. 2.
We then introduce our proposal for an interface in OpenMP to facilitate user-
defined scheduling and its design rationale in Sect. 3. We present in Sect. 4.2 the
two alternative proposals for the specification of user-defined loop scheduling for
OpenMP. Finally, we summarize our experience in Sect. 5.

2 Scheduling Background and State of the Art

Scheduling, as broadly understood, refers to the orchestration of units of work
onto units of execution, in space and time. It typically consists of three steps:
partitioning, assignment, and load balancing. A computational application is
partitioned into units of work to expose the software parallelism. This parallelism
is expressed by assigning the units of work (e.g., problem sub-domains) to units
of processing (e.g., processes, threads, tasks). The parallel units of processing
are subsequently assigned to units of execution (e.g., nodes, processors, cores)
to exploit the available hardware parallelism. Load balancing refers to evenly
assigning the units of work to units of processing (software load balancing) or
to evenly assigning the units of processing to units of execution (hardware load
balancing). In load balancing, the transfer policy determines whether a unit of
work should be transferred, while the location policy determines where it should
be transferred. Based on the location policy, load balancing approaches can be
sender-initiated (also called work sharing), receiver-initiated (also referred to as
self-scheduling or work stealing), or symmetrically-initiated [23].

Load imbalance is the major performance degradation overhead in computa-
tionally-intensive applications [12,13]. It can result from the uneven assignment
of units of computation to units of processing (e.g., threads) or the uneven assign-
ment of units of processing to units of execution. At light and moderate load
imbalance, sender-initiated and symmetrically-initiated algorithms outperform
receiver-initiated algorithms. Conversely, at high loads, they perform poorly,
possibly causing system instability and are outperformed by receiver-initiated
algorithms [23]. A load balanced execution refers to the case when all units of
execution complete their assigned work at the same time.

In this work, we concentrate on the scheduling and (software) load balancing
of parallel OpenMP loops. In this context, we consider computational problems
that contain parallel loops expressed using OpenMP worksharing constructs.
The iterations of these loops are scheduled and load balanced, respectively, to
achieve a load balanced execution.
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It is important to note that many scientific, engineering, and industrial appli-
cations that use OpenMP contain worksharing loops. Therefore, scheduling of
worksharing loops in OpenMP is not overshadowed by the recent advances and
developments in OpenMP tasking. Worksharing loops and tasking represent two
complementary parallel programming approaches that intersect when each iter-
ation of a worksharing loop creates an OpenMP task to execute the loop body.

The term loop scheduling strategy denotes the technique (or policy) for assign-
ing the loop iterations to threads in a team. A loop scheduler refers to the
implementation of a particular loop scheduling strategy, while loop schedule rep-
resents the resulting assignment of loop iterations to threads in a team based
on the particular scheduling strategy and its corresponding scheduler. In this
work, the acronym UDS denotes user-defined loop scheduling. However, unless
otherwise noted, the term UDS is also interchangeably used to denote either
scheduling, scheduler, or schedule.

There exists a great body of work on loop scheduling and a taxonomy of
loop scheduling strategies can be found in recent literature [8]. Loop schedul-
ing strategies can broadly be classified into static and dynamic. The dynamic
strategies can further be classified into non-adaptive and adaptive. The static
scheduling strategies take the partitioning, assignment, and load balancing deci-
sions before the loop executes, while dynamic scheduling strategies take most of
or all these decisions during execution. Moreover, the dynamic adaptive schedul-
ing strategies adapt these decisions as the loop executes based on the application,
execution, and system states, to deliver a highly balanced execution.

The OpenMP specification [9] offers three scheduling options for worksharing
loops: static, dynamic, and guided. Each can be directly selected as arguments
to the OpenMP schedule() clause of a for directive. The first option falls into
the static scheduling category, while the other two options belong to the dynamic
non-adaptive scheduling category with receiver-initiated load balancing location
policy. The loop scheduling strategies can also automatically be selected by the
OpenMP runtime system via the auto argument to schedule() or their selection
can be deferred to execution time via the runtime argument to schedule().

The use of schedule(static,chunk) employs straightforward parallelization
or static block scheduling [25] (STATIC) wherein N loop iterations are divided
into P chunks of size �N/P �; P being the number of units of processing (e.g.,
threads). Each chunk of consecutive iterations is assigned to a thread, in a round-
robin fashion. This is only suitable for uniformly distributed loop iterations and
in the absence of load imbalance. The use of schedule(static,1) implements
static cyclic scheduling [25] wherein single iterations are statically assigned con-
secutively to different threads in a cyclic fashion, i.e., iteration i is assigned
to thread i mod P . For certain non-uniformly distributed parallel loop itera-
tions, cyclic scheduling produces a more balanced schedule than block schedul-
ing. Both versions achieve high locality with virtually no scheduling overhead,
at the expense of poor load balancing if applied to loops with irregular loop
iterations or in systems with high variability.
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The dynamic version of schedule(static,chunk) that employs dynamic
block scheduling is schedule(dynamic,chunk). It differs in that the assign-
ment of chunks to threads is performed during execution. The dynamic coun-
terpart to schedule(static,1) is schedule(dynamic,1) which employs pure
self-scheduling (PSS or simply SS), the easiest and most straightforward dynamic
loop self-scheduling algorithm [29]. Whenever a thread is idle, it retrieves an iter-
ation from a central work queue (receiver-initiated load balancing). SS achieves
good load balancing yet may cause excessive scheduling overhead. The schedul-
ing option schedule(guided) implements guided self-scheduling (GSS) [26], one
of the early self-scheduling-based techniques that trades off load imbalance and
scheduling overhead.

Further noteworthy dynamic non-adaptive loop scheduling techniques are
trapezoid self-scheduling (TSS) [31], factoring2 (FAC2) [15], and weighted fac-
toring2 (WF2) [14]. TSS, FAC2, and WF2 do not require additional information
about loop characteristics and the allocated chunk sizes using these techniques
decrease during the course of the execution from one work request to another.
It is important to note that the FAC2 and WF2 evolved from the probabilistic
analyses that conceived FAC [15] and WF [14], respectively, while TSS is a deter-
ministic self-scheduling method. Moreover, WF2 can employ workload balancing
information specified by the user, such as the capabilities of a heterogeneous
hardware configuration.

TSS, FAC2, WF2, and RAND (random self-scheduling-based method that
employs the uniform distribution between a lower and an upper bound to arrive
at a randomly calculated chunk size between these bounds) [8] have been imple-
mented in the LaPeSD libGOMP [3] based on the GNU OpenMP library. The
LLVM OpenMP runtime [2] also provides an implementation of TSS [31] and
static stealing (also referred to as fixed-size chunking [24]). FAC2 has also been
recently implemented in the LLVM OpenMP runtime to offer further perfor-
mance enhancement possibilities at higher loads [22].

This review of existing related efforts shows that there is a large amount of
ad-hoc development of loop scheduling strategies and schedulers for OpenMP in
various OpenMP runtime libraries (RTLs), yet none of these efforts comply with
the OpenMP specification. While these implementations may remain helpful
to certain users, applications, and systems, their broad practical usability may
be limited, rendering them not useful for supporting the development of novel
advanced loop scheduling strategies in OpenMP.

The main challenge is to decouple the loop scheduling strategy from its
implementation strategy. Such a decoupling opens the door to a broad range
of dynamic adaptive loop scheduling strategies that simply cannot be efficiently
implemented in OpenMP RTLs, such as adaptive weighted factoring [6] and
adaptive factoring [5] that adapt to changes during execution; strategies that
mix static and dynamic scheduling to maintain a balance between data locality
and load balance [10,20]; and fault-tolerant and energy-oriented loop scheduling
strategies that require domain-specific knowledge [11,32].
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Fig. 1. Basic loop scheduler code structure.

3 Support for User-Defined Scheduling Strategies

Let us consider what is needed to specify an arbitrary scheduling strategy for
a parallel loop. The strategy can use a combination of shared data structures,
a collection of low-overhead steal work queues, exclusive queues meant for each
core, or shared queues from which multiple threads can dequeue tasks each rep-
resenting a chunk of loop iterations of a parallel loop. To enable the ability to
learn from recent execution history, e.g., recent outer iterations, or to make deci-
sions about the scheduling strategy based on information from libraries handling
inter-node parallelism, e.g., slack from MPI communication [27], the scheduling
strategy needs the ability to pass a call-site specific history-tracking object [19].

To adapt a loop scheduling strategy’s parameters, e.g., chunk size, we provide
a mechanism for a UDS to store the history of loop timings or other statistics
across loop invocations in an application program, e.g., a simulation time-step of
a numerical simulation. Such a mechanism improves productivity for the applica-
tion programmer. The adjustment of the loop scheduling strategy during execu-
tion reduces the need for manual performance tuning and compiler-guided per-
formance tuning, which for certain applications such as those involving sparse
matrix vector multiplication is difficult, and for other applications such as a
galaxy simulation involving an N -body computation, is nearly impossible.

In order to support UDS in OpenMP, we must first understand the prin-
cipal components of loop scheduling. Figure 1 shows a control flow diagram of
the basic loop scheduling code structure. In principle, an OpenMP loop schedul-
ing problem can be represented as a todo list of loop iterations (or chunks of
loop iterations), that must somehow be mapped to parallel execution units. To
manage such a todo list, and assuming an undefined initial state, three specific
operations are required:

(a) a setup operation to generate a known initial state, i.e., the todo list must
be created and initialized,

(b) an enqueue operation to place the loop iterations on the todo list, and
(c) a dequeue operation to select the next loop iteration to be executed from

the todo list.

As OpenMP requires that the precise iteration space is known before the loop
execution starts, the todo list is conceptually completely filled at the beginning of
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loop execution with all the chunks of loop iterations, and subsequently consumed
by iterative dequeue operations by each OpenMP thread. The dequeue opera-
tion then implements an arbitrary scheduling strategy or pattern. Constraints,
such as sequential ordering or the scheduling pattern are solely an aspect of
the dequeue operation as well as any synchronization mechanisms to maintain
parallel safety of the used data structures. For both the enqueue and dequeue
functions, the master thread can potentially serve a different function than the
remaining threads in a loop scheduler. Also, the behavior of the threads needs
to be specified either via function pointers or declaratively. Such specification
must be done while preserving generality so that novel loop scheduling strategies
have the ability to deal with the loop’s iteration space in a controlled manner.
As an example, we have shown how dynamic scheduling can be optimized by
using a combination of statically scheduled and dynamically scheduled loop iter-
ations [10], where the dynamic iterations still execute in consecutive order on a
thread to the extent possible [18].

Good practice also recommends to clean up after performing work, as the
OpenMP base languages do not offer automatic garbage collection. Hence, a
clean-up, or post scheduling operation is needed.

Analyzing the current state of the art in loop scheduling in Sect. 2, we iden-
tified three categories of strategies:

(1) static loop scheduling : each thread is assigned a fixed workload,
(2) dynamic non-adaptive loop scheduling : each thread requests iterations

according to a fixed pattern, and
(3) dynamic adaptive loop scheduling : each thread requests iterations according

to a variable pattern, while the performance of work chunks is measured and
scheduling pattern is adjusted accordingly.

For loop scheduling strategies of type (1) and type (2), in principle, only the
three operations are required. For strategies of type (3), the execution behavior of
previous iterations of the loop body is used as input to determine the scheduling
strategy parameters, e.g., next chunk size, to use for scheduling chunks of loop
iterations of the current loop iteration and/or invocation. To accommodate such
scheduling strategies, a mechanism needs to be provided to obtain information
during previous loop iterations and/or invocations and a mechanism to store
this information.To obtain the information, measurement facilities for the loop
body may be required, be it explicit operations, such as ‘begin-loop-body’–‘end-
loop-body’ to allow for measurements, or implicit facilities, e.g., as defined by
the OpenMP tools interface.

To store information, i.e., a form of execution history that must be preserved
across dequeue operations to account for past behavior, UDS must provide a
mechanism to store and access the history of loop timings or other statistics
across multiple loop iterations and/or invocations in an application program,
e.g., across simulation time-steps of a numerical simulation.

With these functions and mechanisms, a user of OpenMP can declare in the
code a schedule clause of kind X. In the declaration, the user would specify a
function to initialize the scheduler, a function to enqueue chunks onto a shared
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queue, a function to dequeue chunks of iterations from a queue by a thread,
a function for garbage collection (finalize) after loop scheduling is done, and,
optionally, begin and end functions for a dynamic adaptive loop scheduling.
Then, function X init() allows a user-defined scheduling to allocate and initial-
ize its data structures that are to be used commonly across parallel loops that
use X. The functions X enqueue() and X dequeue() determine a loop’s indices
that a thread should work on based on the parameter values for the scheduling
strategy and the loop. Every thread in the team should call X dequeue() repeat-
edly. For adaptive loop scheduling, one needs to have an X begin() and X end()
function for measurements of the current invocation of a loop used for history
used for adapting the parameters of the scheduling strategy used in subsequent
iterations and/or invocations of the loop. Finally, a user can optionally define a
data structure to store timings of a loop or other data to enable persistence over
invocations of an OpenMP parallel loop.

As long as one is allowed to define the four functions (init, enqueue, dequeue,
and finalize), together with the begin and end functions for gathering per-loop
invocation data and data structure for storing history of the data, one can imple-
ment any user-defined loop scheduling through a loop scheduler. Formally, the
four functions together with begin and end functions and class declaration and
definition for the history object are necessary and sufficient to fully express an
arbitrary user-defined loop scheduling strategy.

4 An Interface for User-Defined Loop Scheduling

As described in Sect. 3, only six operations, i.e., init, enqueue, dequeue, finalize,
begin-loop-body, and end-loop-body must be defined in order to implement all
existing loop scheduling strategies. While not all of those operations must be
implemented by a given loop scheduling strategy, it must be possible to imple-
ment those operations. An interface for a UDS in OpenMP must enable such
definitions from the user program without having to alter the OpenMP run-
time library. However, due to a programmer’s desire for brevity, such an inter-
face should avoid verbosity and enable efficient and quick specification of new
scheduling strategies.

Due to the restriction and requirements of the OpenMP language on loops,
the set of six operations can further be reduced. As the iteration space of loops
with OpenMP parallel for must be fixed prior to loop execution, the enqueue
function must only be executed prior of the actual loop execution. It, therefore,
can be merged with the init operation. The dequeue operation and the begin-
loop-body operations are executed, if defined, always back-to-back. Hence, these
operations can also be implemented in a single merged operation. The concep-
tional code transformation (see Fig. 1) in combination with a loop similarly pro-
vides a way to merge the end-loop-body operation with the dequeue operation.

This results in only three operations that must be defined by a UDS devel-
oper in the context of OpenMP loop scheduling: a start routine implementing
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the setup and enqueue operation, a get-chunk operation implementing the end-
body, dequeue and begin-loop-body operation, and a finish call for the finalize
operation.

The concept of a todo list of loop iterations is rather impractical for OpenMP
loops, as the iteration space may be large and an explicit enumeration of all
iterations is not practical. Thus, the todo list is typically implemented as a set
of shared or thread-private loop counters.

For current implementations of OpenMP parallelized loops in Intel, LLVM
and GNU Runtime Libraries, we observe a common implementation pattern.
Using the three fundamental operations of init, dequeue and finalize, these com-
pilers transform an OpenMP ‘parallel for‘ as follows using the following pattern:
a setup operation, a while loop with a dequeue function and a tailing end oper-
ation, which implements cleanup of residual stack data (see code at the top of
this page). The three OpenMP loop scheduling strategies, i.e. static, guided, and
dynamic, are implemented using similar patterns [22].

#pragma omp parallel for
for (i=0;i<iMax;i++)

{
... LOOP BODY ...

}

→

#pragma omp parallel
{

init(...);
#pragma omp barrier
while(!done){

for (each item in dequeue(...))
... LOOP BODY ...

}
finalize(...);

}

A UDS specification must allow a loop scheduling implementer to access
critical loop parameters and program data: (a) lower bound, (b) upper bound,
(c) stride, (d) custom data, e.g. loop history data or NUMA information, and
(e) chunk size. The ‘chunk size’ here is not the chunksize parameter frequently
referred to in the OpenMP schedule() clause, but an optimization parameter
used to group multiple iterations into a single loop scheduling item.

We currently propose two complementary proposals for an interface for a
UDS, enabling a user specification for those three functions. However, the design
of these interfaces substantially differs at the OpenMP host language level: (1) a
C++-geared interface using a concept similar to lambdas and (2) a more classic
C/Fortran-geared interface similar to user-defined reductions in OpenMP.

4.1 Lambda-Style Specification for UDS

Using a lambda-style syntax, a scheduling implementer can define code to imple-
ment the setup, dequeue, and finalize operations.

#pragma omp parallel for \
schedule(UDS[:chunkSize, [monotonic| non-monotonic]) \
[init(@@INIT_LAMDA@@)] dequeue(@@DEQUEUE_LAMDA@@) \
[finalize(@@FINISH_LAMDA@@)] [uds_data(void*)]

To access the critical loop parameters, we propose compiler-generated getter
and setter functions.
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inline unsigned int OMP_UDS_loop_start();
inline unsigned int OMP_UDS_loop_end();
inline unsigned int OMP_UDS_loop_step();
inline unsigned int OMP_UDS_chunksize();
inline unsigned int OMP_UDS_user_ptr();

void OMP_UDS_loop_chunk_start(int start_iteration);
void OMP_UDS_loop_chunk_end(int end_iteration);
void OMP_UDS_loop_chunk_step(int step_size);
void OMP_UDS_loop_dequeue_done();

To compile a loop scheduled using a UDS, the compiler mixes the lambda
code into the respective regions in the loop transformation pattern. The setter
and getter functions can furthermore be inlined and their values propagated
by constant value propagation, to further reduce and optimize the specific loop
code.

As this interface would require a definition for every use of a specific loop
scheduling approach, a template-like directive defines reusable schedules without
the need to repeat the actual UDS code at every usage.

#pragma omp declare schedule_template (mystatic) \
[init(@@INIT_LAMDA@@)] dequeue(@@DEQUEUE_LAMDA@@) \
[finalize(@@FINISH_LAMDA@@)] [uds_data(void*)]

#pragma omp parallel for schedule(UDS,template(mystatic))
for (int i = 0; i < n; i++) { ... LOOP BODY ... }

The availability of both UDS templates and localized UDS allows for imple-
mentation of libraries supported UDSs, but preserves the ability to either specify
localized single use loop scheduling strategies or to overwrite specific elements of
an existing UDS template for a specific loop. An example of how the user could
implement the above mystatic is provided in Fig. 2 where the left side illus-
trates a naive implementation of the OpenMP static scheduling clause using
lambda-style UDS based on the chunksize specified by the programmer.

4.2 Specifying UDS via declare Directives

The second variant for specifying UDS derives from the existing syntax for a user-
defined reduction, or UDR, in OpenMP. Here, the declare schedule clause
defines a new named scheduling using user-defined functions with positional
arguments:

#pragma omp declare schedule(mystatic) arguments(2) \
init(my_init(omp_lb, omp_ub, omp_inc, omp_arg0, omp_arg1)) \
next(my_next(omp_lb_chunk, omp_ub_chunk, omp_arg0, omp_arg1)) \
fini(my_fini(omp_arg1))

The arguments sub-clause allows to specify the number of additional argu-
ments beyond the required arguments. The reserved keywords omp lb, omp ub,
omp inc, omp lb chunk, and omp ub chunk serve as markers for the compiler
what information about the loop iteration space to pass to the UDS, as the
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user code expects this information as a function argument. The compiler gen-
erates omp arg0 .. omp argN as necessary, based on the count in the arguments
sub-clause. However, the OpenMP-defined arguments must always be the first
arguments, followed by any user-defined arguments. This allows, for exam-
ple, simpler scheduling strategies to omit unused information. The additional
user-provided arguments use the type of the argument at the use-site of the
user-defined scheduling, similar to the auto-type in C++. The function imple-
mentations must then use the appropriate types and provide the implementation
of the scheduling strategy. Please note, that a definition of the next function
must return a non-zero value if unprocessed loop chunks remain, and zero if the
loop has been completed.

void mystatic_init(int lb, int ub, int inc, loop_record_t * lr);
int mystatic_next(int * lower, int * upper, loop_record_t * lr);
void mystatic_fini(loop_record_t * lr);

To generate code from such a UDS specification, the compiler employs the
standard loop transformation pattern it uses today and replaces the calls to its
scheduling function with user-supplied functions of the UDS. The compiler may
then match the types defined by the scheduling implementing function definitions
to generate error messages, if a type mismatch is detected, or apply inlining to
remove the function call.

The following example showcases how a user-defined scheduling strategy
would be used and how parameters are passed to the scheduler:

#pragma omp parallel for schedule(mystatic(&lr))
for (i = 0; i < sz; i++) {

#pragma omp atomic
array[i]++;

}
}

An example of how the user could implement the above schedule mystatic
is provided in Fig. 2, where the right side shows a naive implementation of
the OpenMP static scheduling clause using declare-style UDS based on the
chunksize specified by the programmer.

4.3 Discussion

We consider both proposals sufficient as a UDS specification layer. As OpenMP
targets three separate host languages, we must consider the implications of each
interface to the host language and use in daily programming work1.

The lambda-style interface easily fits into the language canon of C++, where
the concept of lambdas already exists and can easily be reused in the context of
UDS. Also, the use of getter and setter functions does not present a source of

1 We consider the utility of each of the proposals to application programs in an
extended version of this work, accessible at the following link: https://arxiv.org/
abs/1906.08911.

https://arxiv.org/abs/1906.08911
https://arxiv.org/abs/1906.08911
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typedef struct {
int * next_lb;

} loop_record_t;

void mystatic_init() {
int tid = omp_get_thread_num();
#pragma omp single
{
OMP_UDS_user_ptr()->next_lb =
malloc(sizeof(int)*omp_get_num_threads());

}
OMP_UDS_user_ptr()->next_lb[tid] =
lb+tid * chunksz;

}

void mystatic_next() {
int tid = omp_get_thread_num();
if (OMP_UDS_user_ptr()->next_lb[tid] >=
OMP_UDS_loop_end()) return 0;

OMP_UDS_loop_chunk_start(
OMP_UDS_user_ptr()->next_lb[tid]);

if (OMP_UDS_user_ptr()->next_lb[tid] +
OMP_UDS_chunksize() >=
OMP_UDS_loop_end()) {
OMP_UDS_loop_chunk_end(OMP_UDS_loop_end());
}
else {
OMP_UDS_loop_chunk_end(
OMP_UDS_user_ptr()->next_lb[tid] +
OMP_UDS_chunksize());

}
OMP_UDS_user_ptr()->next_lb[tid] =
OMP_UDS_user_ptr()->next_lb[tid] +
omp_get_num_threads()*OMP_UDS_chunksize();

OMP_UDS_loop_chunk_step(
OMP_UDS_loop_step());

return 1;
}

void mystatic_fini(){
free(OMP_UDS_user_ptr()->next_lb);

}

#pragma omp declare \
schedule_template(mystatic)\
init(mystatic_init())\
next(mystatic_next())\
finalize(mystatic_fini())

typedef struct {
int lb;
int ub;
int incr;
int chunksz;
int * next_lb;

} loop_record_t;

void mystatic_init(int lb, int ub, int incr,
int chunksz,loop_record_t * lr) {

int tid = omp_get_thread_num();
#pragma omp single
{
lr->lb = lb;
lr->ub = ub;
lr->incr = incr;
lr->next_lb = malloc(sizeof(int)*

omp_get_num_threads());
lr->chunksz = chunksz;

}
lr->next_lb[tid] = lb + tid * chunksz;

}

int mystatic_next(int * lower, int * upper,
int * incr, loop_record_t * lr) {

int tid = omp_get_thread_num();
if (lr->next_lb[tid] >= lr->ub) return 0;
*lower = lr->next_lb[tid];
if (lr->next_lb[tid] +

lr->chunksz >= lr->ub)
*upper = lr->ub;

else
*upper = lr->next_lb[tid] + lr->chunksz;

lr->next_lb[tid] = lr->next_lb[tid] +
omp_get_num_threads()*lr->chunksz;

*incr = lr->incr;
return 1;

}

int mystatic_fini(loop_record_t * lr) {
free(lr->next_lb);

}

#pragma omp declare schedule(mystatic) \
arguments(1) init(mystatic_init(omp_lb, \
omp_ub,omp_incr,omp_chunksz,omp_arg0) \
next(mystatic_next(omp_lb_chunk, \
omp_ub_chunk,omp_chunk_incr,imp_arg0)) \
fini(mystatic_fini(imp_arg0)

Fig. 2. Naive example for implementing the OpenMP static scheduling clause using
both proposed UDS strategies. Left side presents the implementation following the
lambda-style specification, Sect. 4.1, while the right side follows the declare-directives
style, Sect. 4.2.

overhead, as existing compiler optimizations, such as inlining and constant-value
propagation and folding, will enable removal of all explicit function calls. As some
operations, i.e., setup and finalize, are also not required for all implementations
of a UDS, this avoids the verbose, potentially empty argument list of positional
arguments, required by the second proposal. However, the flexibility and ease of
iteration in C++ conflicts with C and Fortran, where lambda constructs are not
(yet) available. While the concept of lambdas is likely to be added to Fortran in
the future, the specific syntax and semantics are currently not known. At this
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point, we are also not aware of any efforts to add lambdas to C. The UDR-
style specification has, in principle, a precedence-case in the UDR specification
in OpenMP. While this approach relies on a more frumpy fixed position syntax
style, it remains compatible with all three OpenMP host languages.

A potential solution would allow the use of the lambda-style syntax for C++,
and the UDR-style for C and Fortran codes.

Our suggested UDS approach for supporting novel loop scheduling strate-
gies and two alternative interfaces for it have much work related to it, which
we mention here to distinguish our idea and its development from the exist-
ing work. Work on an OpenMP runtime scheduling [30,33] system automatically
chooses the schedule. The problem with this scheme is that it does not work for
all application-architecture pairs: it allows no domain knowledge or architecture
knowledge to be incorporated into it, which only a user would know. Methods
such as setting the schedule of an OpenMP loop to ‘auto’ are insufficient because
the methods do not allow a user to take control of any decision of loop schedul-
ing that the OpenMP RTL makes [21]. The emergence of threaded runtimes
such as Argobots [28] and QuickThreads [1] are frameworks containing novel loop
scheduling strategies, and they actually argue in favor of a flexible specification
of scheduling strategies. In comparison, our work on the UDS specification is the
first proposal that works at the OpenMP standard specification level.

5 Conclusion

OpenMP’s loop scheduling choices do not always offer the best performance,
and standardization of all existing scheduling strategies is infeasible. In this
work, we showed that an OpenMP standard-compliant interface is needed to
implement an arbitrary user-defined loop scheduling strategy. We presented two
competing standard-compliant UDS interface proposals to support this need. We
conceptually compare the two proposed UDS interfaces in terms of feasibility
and capabilities regarding the programming languages C, C++, and Fortran
that host OpenMP.

The immediate next step is the implementation of the UDS interfaces as
a prototype in an open source compiler, such as GNU or LLVM, to explore
the performance-related capabilities and benefits of the proposed approaches.
As the Intel and LLVM OpenMP RTLs offer schedules choices beyond those
in the OpenMP standard, we will work to expose those schedules using either
or both UDS proposals and evaluate their practical use for various application-
architecture pairs. We welcome and value the feedback from the OpenMP com-
munity as we proceed in this direction.
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Abstract. OpenMP 5.0 introduces the metadirective to support selec-
tion from a set of directive variants based on the OpenMP context,
which is composed of traits from active OpenMP constructs, devices,
implementations or user-defined conditions. OpenMP 5.0 restricts the
selection to be determined at compile time, which requires that all traits
must be compile-time constants. Our analysis of real applications indi-
cates that this restriction has its limitation, and we explore extension of
user-defined contexts to support variant selection at runtime. We use the
Smith-Waterman algorithm as an example to show the need for adaptive
selection of parallelism and devices at runtime, and present a prototype
implemented in the ROSE compiler. Given a large range of input sizes,
our experiments demonstrate that one of the adaptive versions of Smith-
Waterman always chooses the parallelism and device that delivers the
best performance, with improvements between 20% and 200% compared
to non-adaptive versions that use the other approaches.

Keywords: OpenMP 5.0 · Metadirective · Dynamic context

1 Introduction

OpenMP 5.0 [5] introduces the concept of OpenMP contexts and defines traits
to describe them by specifying the active construct, execution devices, and func-
tionality of an implementation. OpenMP 5.0 further introduces the metadirective
and declare variant to support directive selection based on the enclosing OpenMP
context as well as user-defined conditions. This feature enables programmers to
use a single directive to support multiple variants tailored for different contexts
derived from the hardware configuration, software configuration or user defined
conditions. With context traits that are available to the compiler when perform-
ing OpenMP transformations, a user can much more easily optimize their appli-
cation for specific architectures, possibly resolving to multiple different directives
in the same compilation in different call chains or different contexts.
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OpenMP 5.0 restricts context traits to be fully resolvable at compile time.
Thus, the ability to optimize OpenMP applications based on their inputs and
runtime behavior is severely constrained, even with user-defined conditions. The
semantics of context selection are naturally applicable to support both compile
time and runtime directive selection. Given a low overhead runtime selection
mechanism, the extension for enabling runtime adaptation would improve per-
formance of an application based on system architecture and input character-
istics. Applications that would benefit from this feature include those that use
traits based on problem size, loop count, and the number of threads. For exam-
ple, most math kernel libraries parallelize and optimize matrix multiplication
based on input matrix sizes.

In this paper, we extend the semantics of user-defined contexts to support
runtime directive selection. We use the Smith-Waterman algorithm as an exam-
ple to demonstrate that the extensions enable runtime adaptive selection of tar-
get devices, depending on the size of the input. We develop a prototype compiler
implementation in the ROSE compiler and evaluate the performance benefits of
this extension. Our experiments demonstrate that one of the adaptive versions
of Smith-Waterman always chooses the parallelism and device that delivers the
best performance for a large range of input sizes, with improvements between
20% and 200% over the non-adaptive versions.

The remainder of this paper is organized as follows. Section 2 presents the
current syntax and semantics of OpenMP context and metadirective in the latest
standard. A motivating example is given in Sect. 3 to demonstrate the need to
support dynamic selection of directives at runtime based on user defined condi-
tions. Section 4 introduces our extension to allow dynamic user-defined context.
We discuss a prototype compiler implementation for the dynamic extension in
Sect. 5. Section 6 evaluates performance of our prototype that automates adap-
tation of the Smith-Waterman algorithm. Finally, we mention related work in
Sect. 7 and conclude our paper in Sect. 8.

2 Variant Directives and Metadirective in OpenMP 5.0

Variant directives is one of the major features introduced in OpenMP 5.0 to
facilitate programmers to improve performance portability by adapting OpenMP
pragmas and user code at compile time. The standard specifies the traits that
describe active OpenMP constructs, execution devices, and functionality pro-
vided by an implementation, context selectors based on the traits and user-
defined conditions, and the metadirective and declare directive directives for users
to program the same code region with variant directives. A metadirective is an
executable directive that conditionally resolves to another directive at compile
time by selecting from multiple directive variants based on traits that define an
OpenMP condition or context. The declare variant directive has similar function-
ality as the metadirective but selects a function variant at the call-site based on
context or user-defined conditions. The mechanism provided by the two direc-
tives for selecting variants is more convenient to use than the C/C++ prepro-
cessing since it directly supports variant selection in OpenMP and allows an
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OpenMP compiler to analyze and determine the final directive from variants
and context.

In this paper, we use metadirective to explore the runtime adaptation feature
since it applies to structured user code region (instead of a function call as in
declare variant), which poses more adaptation needs based on the program inputs.
The metadirective syntax for C and C++ is:

#pragma omp metadirective [clause[[,]clause]...]new-line

The clause in a metadirective can be either
when( context-selector-specification:[directive-variant]) or default (directive-variant).

The expressiveness of a metadirective to enable conditional selection of a
directive variant at compile time is due to the flexibility of its context selector
specification. The context selector defines an OpenMP context, which includes
a set of traits related to active constructs, execution devices, functionality of
an implementation and user defined conditions. Implementations can also define
further traits in the device and implementation sets.

1 context_selector_spec : trait_set_selector

2 | context_selector_spec trait_set_selector;

3 trait_set_selector : trait_set_name ’=’ ’{’ trait_selector_list ’}’;

4 trait_set_name : CONSTRUCT | DEVICE | IMPLEMENTATION | USER;

5 trait_selector_list : trait_selector

6 | trait_selector_list trait_selector;

7 trait_selector : construct_selector

8 | device_selector

9 | implementation_selector

10 | condition_selector;

11 condition_selector : CONDITION ’(’ trait_score const_expression ’)’;

12 device_selector : context_kind | context_isa | context_arch;

13 context_kind : KIND ’(’ trait_score context_kind_name ’)’;

14 context_kind_name : HOST | NOHOST | ANY | CPU | GPU | FPGA;

15 context_isa : ISA ’(’ trait_score const_expression ’);

16 context_arch : ARCH ’(’ trait_score const_expression ’)’;

17 implementation_selector : VENDOR ’(’ trait_score context_vendor_name ’)’

18 | EXTENSION ’(’ trait_score const_expression ’)’

19 | const_expression ’(’ trait_score ’)’;

20 | const_expression;

21 context_vendor_name : AMD | ARM | BSC | CRAY | FUJITSU | GNU | IBM |

22 INTEL | LLVM | PGI | TI | UNKNOWN;

23 construct_selector : parallel_selector;

24 parallel_selector : PARALLEL | PARALLEL ’(’ parallel_parameter ’)’;

25 parallel_parameter : trait_score parallel_clause_optseq;

26 trait_score : | SCORE ’(’ const_expression ’)’ ’:’;

27 const_expression : EXPR_STRING;

Fig. 1. Context selector grammar
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Figure 1 shows the grammar for context selectors in Backus-Naur Form. A
context selector contains one or more trait set selectors. Each trait set selector
may contain one or more trait selectors. Each trait selector may contain one or
more trait properties. All traits must be resolved to constant values at compile
time, as indicated by condition const expression at line 12. The upper case tokens
throughout the grammar are enum names that the lexer returns.

Figure 2(b) shows an example that uses a metadirective to specify a variant
to use for NVIDIA PTX devices, and a variant that is applied in all other
cases by default. Figure 2(a) shows the code using C/C++ macro to achieve
the same goal. In Fig. 2(b), a trait selector named arch from the device trait set
specifies the context selector. If the trait’s property is resolved to be nvptx at
compile-time then the directive variant that has one thread team and the loop
construct is applied. Otherwise, a target parallel loop directive is applied. Using
metadirective has two major benefits. One is that compiler could be aware of
more context information. In Fig. 2(a), the preprocessor will prune one of the
conditional statement before passing the source code to compiler. However, in
Fig. 2(b), compiler has all the information of branches. The other advantage is
that the redundant code is optimized. The two lines of for loop only appear once
while using metadirective.

1 int v1[N], v2[N], v3[N];

2 #if defined(nvptx)

3 #pragma omp target teams distribute

parallel loop map(to:v1,v2)

map(from:v3)

4 for (int i= 0; i< N; i++)

5 v3[i] = v1[i] * v2[i];

6 #else

7 #pragma omp target parallel loop

map(to:v1,v2) map(from:v3)

8 for (int i= 0; i< N; i++)

9 v3[i] = v1[i] * v2[i];

10 #endif

(a) Original code

1 int v1[N], v2[N], v3[N];

2 #pragma omp target map(to:v1,v2)

map(from:v3)

3 #pragma omp metadirective

4 when(device={arch(nvptx)}:

teams distribute

parallel loop)

5 default(target parallel

loop)

6 for (int i= 0; i< N; i++)

7 v3[i] = v1[i] * v2[i];

(b) Using metadirective

Fig. 2. An example using metadirective

3 A Motivating Example

While the metadirective can be used to specify multiple variants in a program,
it requires the corresponding traits to be resolved at compile time, which limits
customization of the user code at runtime. In this section, we use the Smith-
Waterman algorithm to demonstrate the need for customization and dynamic
adaptation.



Extending OpenMP Metadirective Semantics for Runtime Adaptation 205

Fig. 3. Wavefront computation pattern of the Smith-Waterman algorithm

The Smith-Waterman algorithm performs local sequence alignment [8] to find
the optimal occurrence of a sub-sequence within a DNA or RNA sequence. The
algorithm compares segments of all possible lengths and optimizes the similarity
measure. Similarity is represented by a score matrix H. The update of the score
is derived from one-to-one comparisons between all components in two sequences
from which the optimal alignment result is recorded. Figure 3 shows the scoring
step of the algorithm. Arrows in the figure denote data dependency between
points of the computation. The scoring process is a wavefront computation pat-
tern. Figure 4 shows a typical OpenMP implementation of the scoring wavefront
pattern by parallelizing the computation that iterates on a wavefront line. The
implementation of the algorithm has O(M*N) time complexity in which M and
N are the lengths of the two sequences that are being aligned. The space com-
plexity is also O(M*N) since the program must store two string sequences and
two matrices, one for scoring and the other for backtracking.

1 long long int nDiag = M + N - 3;

2 for (i = 1; i <= nDiag; ++i) {

3 long long int nEle, si, sj;

4 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

5 #pramga omp parallel for shared (nEle, si, sj, H, P, maxPos) private(j)

6 for (j = 0; j < nEle; ++j)

7 similarityScore(si-j, sj+j, H, P, &maxPos);

8 }

Fig. 4. An OpenMP implementation of the Smith-Waterman algorithm

One can add OpenMP device constructs to create a version for GPUs, shown
in Fig. 5. In our early evaluation, we compare the performance of three baseline
versions of the algorithm: CPU sequential, OpenMP parallel with 56 threads,
and OpenMP offloading on a NVIDIA V100 GPU. Figure 6 shows that the per-
formance of three versions varies dramatically with regards to the length of one
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1 long long int nDiag = M + N - 3;

2 #pragma omp target enter data map(to:a[0:m],...) map(to:H[0:asz],...)

3 for (i = 1; i <= nDiag; ++i) {

4 long long int nEle, si, sj;

5 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

6 #pragma omp target teams distribute parallel for map (...)

7 for (j = 0; j < nEle; ++j)

8 similarityScore(si-j, sj+j, H, P, &maxPos);

9 }

10 #pragma omp target exit data map(from:H[0:asz],...)

Fig. 5. An OpenMP implementation using offloading on GPUs

sequence (N), indicated by the cross points of the three plotted lines. Thus an
algorithm that adapts between the three versions based on the lengths of the
input sequences would perform best overall.

Fig. 6. Smith-Waterman execution times (Fixed M, Varying N)

We consider two adaptive versions. First, we optimize the program such that
it automatically selects one of the three versions, i.e. CPU sequential, or CPU
parallel or GPU based on the lengths of the sequences, which can be represented
by the outer loop count nDiag. A typical use case of this approach could be
that a user wants to align a large number of sequences of varying lengths (N)
with a sequence of fixed length (M). From Fig. 6, the best choice among the three
versions clearly depends on the evaluation of the length of N against a threshold.
Since all the three versions exhibit good weak scaling, the two thresholds are the
value of N at which the performance crossover occurs. These two thresholds
separate the three versions according to the problem size.
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Fig. 7. The relationship between the outerloop index and inner loop count

For the second version, we observe that when computing the scoring matrix,
the inner loop count varies between outer loop iterations. One can optimize the
inner loop such that it uses one of the three versions based on the inner loop
count. Figure 7 shows the relationship between the outer loop index, the inner
loop count and the two hypothetical thresholds for inner loop count (INNER-
MEDIUM and INNERLARGE) for determining which parallelism approach to
use for the inner loop.

In either approach, the dynamic nature of the outer loop count (nDiag),
inner loop count (nEle) and their impact on performance would benefit from
metadirective’s support of runtime selection of different code variants.

4 Extension of the Metadirective Semantics and Its
Application to Smith-Waterman

We present an initial exploration of extending metadirective by relaxing its
restriction of compile-time only selection. We allow runtime evaluation of user-
defined conditions. Our future work includes exploration of semantic extensions
of other selectors to allow for combined compile-time and the runtime selec-
tion of variants. We anticipate that those extensions may require new clauses to
facilitate low overhead selection.

4.1 Adaptation Based on the Outer Loop Count

Figure 8 shows the first version which uses the metadirective to adapt the algo-
rithm based on the outer loop count (nDiag) to control the switch between the
three versions. OpenMP 5.0 provides a scoring mechanism for the directive vari-
ants to guide the compiler’s selection among them. In our prototype, the variants
and their conditions are evaluated in the order that they appear in the metadi-
rective construct. The first variant for which its condition is true is chosen and
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1 long long int nDiag = M + N - 3;

2 //Copy the data if GPU will be used

3 #pragma omp metadirective \

4 when(user={condition(nDiag >= OUTERLARGE)}: \

5 target enter data map(to:a[0:m],...) map(to:H[0:asz],...))

6 for (i = 1; i <= nDiag; ++i) {

7 long long int nEle, si, sj;

8 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

9

10 #pragma omp metadirective \

11 when (user={condition(nDiag < OUTERMEDIUM)}: ) /*serial*/ \

12 when (user={condition(nDiag < OUTERLARGE)} : \

13 parallel for private(j) shared (nEle, ...)) /*CPU parallel*/ \

14 /*nDiag>=OUTERLARGE, GPU offloading*/ \

15 default (target teams distribute parallel for ...)

16 for (j = 0; j < nEle; ++j)

17 similarityScore(si-j, sj+j, H, P, &maxPos);

18 }

19 //Copy data back to CPU if GPU is used

20 #pragma omp metadirective \

21 when (user={condition(nDiag >= OUTERLARGE)}: \

22 target exit data map(from:H[0:asz],...)

Fig. 8. Selection via metadirective based on the outer loop count (nDiag)

the following variants are ignored by the runtime. These semantics are familiar
to programmers since standard programming languages use them to evaluate
the conditions of if-else and switch-case statements.

To identify the two thresholds (OUTERMEDIUM and OUTERLARGE) in this
version, we can profile each of the three versions, using a small data set. Since
they all have good weak scaling, as demonstrated in Fig. 6, we can easily extrap-
olate the performance to find the crossover points of the three versions, which
represent the two thresholds.

4.2 Adaptation Based on the Inner Loop Count

Figure 9 shows the version of using metadirective and INNERMEDIUM and
INNERLARGE thresholds shown in Fig. 7 to control switching the execution
between CPU and GPU. Since the inner loop is offloaded across consecutive
outer loop iterations, we optimize data movement with target enter data and tar-
get exit data directives such that it is copied only once when the INNERLARGE
threshold is met.

For both of the adaptive versions, an OpenMP compiler must generate three
versions of the inner loop for the three base versions. The runtime uses the
condition checks in the when clause of the directive to determine which version
to invoke.
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1 bool GPUDataCopied = false;

2 for (i = 1; i <= nDiag; ++i) {

3 long long int nEle, si, sj;

4 nEle = nElement(i); calcFirstDiagElement(i, &si, &sj);

5

6 //Copy the data for the first time GPU will be used

7 if (nEle >= INNERLARGE && !GPUDataCopied) {

8 #pragma omp target enter data map(to:a[0:m],...) map(to:H[0:asz],...)

9 GPUDataCopied = true;

10 }

11 //Copy data back to CPU after the last time GPU is used

12 if (GPUDataCopied && nEle < INNERLARGE ) {

13 GPUDataCopied = false;

14 #pragma omp target exit data map(from:H[0:asz],...)

15 }

16 #pragma omp metadirective \

17 when (user={condition(nEle < INNERMEDIUM)}: ) /*serial*/ \

18 when (user={condition(nEle < INNERLARGE)} : \

19 parallel for private(j) shared (nEle, ...)) /*CPU parallel*/ \

20 default (target teams distribute parallel for \

21 map (to:a[0:m], b[0:n], ...) map(tofrom: H[0:asz], ...) \

22 shared (nEle, ...)) //GPU offloading

23 for (j = 0; j < nEle; ++j)

24 similarityScore(si-j, sj+j, H, P, &maxPos);

25 }

Fig. 9. Selection via metadirective based on the inner loop count (nEle)

5 Prototype Implementation

We use ROSE to prototype our metadirective implementation and extension.
Developed at LLNL, ROSE [7] is an open source compiler infrastructure to
build source-to-source program transformation and analysis tools for Fortran
and C/C++ applications. ROSE supports OpenMP 3.0 [1] and part of 4.0 [2].
It parses OpenMP directives and generates an Abstract Syntax Tree (AST)
representation of OpenMP constructs. The OpenMP AST is then lowered and
unparsed into multithreaded CPU or CUDA code. A backend compiler, such as
GCC or NVCC, compiles the CPU or CUDA code and links the generated object
files with a runtime to generate the final executable. Our prototype implemen-
tation includes the following components:

– A new OpenMP parser for metadirective, which is treated as nested directives;
– An extension of the internal ROSE AST to represent metadirective;
– A new phase of OpenMP lowering as the first step to translate the AST

of metadirective into the OpenMP 4.0 AST using if-else statement as Fig. 10
shows for the input code in Fig. 9;

– Existing OpenMP lowering phase that generates CUDA code and connections
to a thin layer of the XOMP runtime [1]; and

– Generated CUDA code compilation with NVCC and linking with XOMP.
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1 ...

2

3 if (nEle < INNERMEDUIM) { //serial

4 for (j = 0; j < nEle; ++j) similarityScore(si-j, sj+j, H, P, &maxPos);

5 } else if (nEle < INNERLARGE) { //CPU parallel

6 #pragma omp parallel for private(j) shared (nEle, ...) )

7 for (j = 0; j < nEle; ++j)

8 similarityScore(si-j, sj+j, H, P, &maxPos);

9 } else { //GPU offloading

10 #pragma omp target teams distribute parallel for \

11 map (to:a[0:m], b[0:n], ... ) \

12 map(tofrom: H[0:asz], ...) shared (nEle, ... ))

13 for (j = 0; j < nEle; ++j)

14 similarityScore(si-j, sj+j, H, P, &maxPos);

15 }

16 ...

17 }

Fig. 10. Lowering metadirective with dynamic conditions to an if statement

6 Experimental Results

Our experimental platform has 2 CPUs, each with 28 cores, and one NVIDIA
Telsa V100 GPU with 16 GB of HBM. The system has 192 GB of main memory
and runs Ubuntu 18.04 LTS, GCC 8.2.0 and NVIDIA CUDA SDK 10.1.105.

6.1 Evaluation of Adaptation Based on Outer Loop Count

To evaluate performance of the version that Fig. 8 shows, we performed the fol-
lowing experiment. First, we measured individual performance of CPU sequen-
tial, CPU parallel and GPU versions. As in Fig. 6, we identified the crossover
points for the OUTERMEDIUM and OUTERLARGE thresholds as 3200 and
22000. Figure 11 shows the performance results. The adaptive version always
chooses the parallelism and device that delivers the best performance for a large
range of input sizes, with improvements between 20% and 200% over the non-
adaptive versions.

6.2 Evaluation of Adaptation Based on Inner Loop Count

As Fig. 7 shows, this version tries to adaptively divide the inner loop iterations
among CPU sequential, CPU parallel and GPU such that it could perform better
than any individual version alone. In the experiments, we decide to use just the
INNERLARGER to switch the computation between CPU parallel and GPU since
the impact of CPU sequential is minimal. We evaluated the performance using
five different M-N configurations: 45,000-45,000, 2,000-200,000, 200,000-2,000,
20,000-40,000, 40,000-20,000. In each configuration, we experiment with different
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Fig. 11. Adaptive Smith-Waterman performance using outer loop count

INNERLARGE threshold values to control the switch between CPU parallel and
GPU.

Our experiment shows that the benefits of using the adaptive version of the
Smith-Waterman (SW) algorithm can be observed for M = 20,000 and N =
200,000, shown in Fig. 12. However, the performance advantage (when the inner
loop count threshold is at 200, 1300, 1600, etc) is very small compared to the
best non-adaptive GPU version.

For all other configurations, the adaptive version is not able to improve the
overall performance over the best non-adaptive baseline version. Figure 13 shows
one example for M = 45,000 and N = 45,000.

To understand our results, we profiled the execution to break down the GPU
time into GPU kernel time and GPU data transfer time (shown in both Figs. 12
and 13). For M = N = 45,000, the profiling results show that the GPU data
transfer overhead dominates the GPU offloading time, about 80%. Instead of
only transferring the wavefront that needed for calculation, it always transfers
all the data unnecessarily. Also, as we increase the inner loop count’s threshold
value, the compute time for the adaptive version also slightly increase, making
it difficult to outperform its non-adaptive baseline version. Further investigation
is still needed to make this adaptive version more effective.

6.3 Overhead Discussion

Since the transformation of metadirective simply uses the if-else statement and
the overhead is expected to be negligible. However, the multi-version fat-binary
code generated by the compiler may have a large code footprint in both disk and
instruction memory when being executed.

From Fig. 11, we observe that the execution time of adaptive version is
not significantly different from the individual version. With configurations that
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Fig. 12. Adaptive SW’s performance using inner loop count (M != N)

Fig. 13. Adaptive SW’s performance using inner loop count (M == N)

M = 2,000 and N = 20,000–200,000, the execution overheads are measured.
By average among all those configurations, the adaptive version is slower than
individual GPU version by 0.28%, which is unnoticeable.

We also measured code size of different versions, as shown in Table 1. The
object file of adaptive version is 18.37% to 34.9% larger than the individual non-
adaptive versions. For the final executable files, the GPU executable files are
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significantly larger since they incorporate more supportive object files for both
CPU and GPU execution. As a result, our transformation has much less impact
on the code size.

Table 1. Code size overhead of adaptive Smith Waterman

Smith Waterman version Object file size/KB Executable file size/KB

Non-adaptive Serial 43 14

CPU Parallel 49 18

GPU 44 751

Adaptive 58 751

7 Related Work

In [6], the authors explored the benefits of using two OpenMP 5.0 features,
including metadirective and declare variant, for the miniMD benchmark from
the Mantevo suite. The authors concluded that these features enabled their
code to be expressed in a more compact form while maintaining competitive
performance portability across several architectures. However, their work only
explored compile-time constant variables to express conditions.

Many researchers have studied using GPUs to speedup Smith-Waterman
algorithm, beginning as far back as Liu et al. in 2006 [3]. Our implementation
resembles some of these early attempts in terms of data motion and synchro-
nization behavior, mainly as a simple case study. Later work uses a variety of
techniques to reduce the data movement and memory requirement by doing back-
tracking on the GPU [9] and even exploring repeating work to accomplish the
backtrace in linear space [4]. These techniques would likely make the inner-loop
optimization we discussed more attractive by removing the high cost of moving
the complete cost matrix to and from the device, and may be worth exploring
in the future.

8 Conclusion

Metadirectives in OpenMP 5.0 allow programmers to easily apply multiple direc-
tive variants to the same code region in order to meet the need of different soft-
ware and hardware contexts. However, the context must be resolved at compile
time. In this paper, we have used the Smith-Waterman algorithm to demon-
strate the need for runtime adaptation. We propose to relax the compile-time
restriction to allow dynamic adaptation of user-defined contexts. Our experi-
mental results with a prototype compiler implementation show that dynamic
evaluation of user-defined conditions can provide programmers more freedom
to express a range of adaptive algorithms that improve overall performance. In
the future, we would like to explore more complex user-defined conditions and
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extend other context selectors to support dynamic adaptation of metadirective
at runtime, including dynamic work partitioning between CPUs and GPUs.
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1 Arm Research, Austin, TX, USA
{alejandro.rico,jose.joao,joshua.randall}@arm.com
2 Barcelona Supercomputing Center, Barcelona, Spain
{isaac.sanchez,marc.casas,miquel.moreto}@bsc.es
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Abstract. Tasking promises a model to program parallel applications
that provides intuitive semantics. In the case of tasks with dependences,
it also promises better load balancing by removing global synchroniza-
tions (barriers), and potential for improved locality. Still, the adoption of
tasking in production HPC codes has been slow. Despite OpenMP sup-
porting tasks, most codes rely on worksharing-loop constructs alongside
MPI primitives. This paper provides insights on the benefits of tasking
over the worksharing-loop model by reporting on the experience of task-
ifying an adaptive mesh refinement proxy application: miniAMR. The
performance evaluation shows the taskified implementation being 15–
30% faster than the loop-parallel one for certain thread counts across
four systems, three architectures and four compilers thanks to better
load balancing and system utilization. Dynamic scheduling of loops nar-
rows the gap but still falls short of tasking due to serial sections between
loops. Locality improvements are incidental due to the lack of locality-
aware scheduling. Overall, the introduction of asynchrony with tasking
lives up to its promises, provided that programmers parallelize beyond
individual loops and across application phases.

Keywords: Tasking · OpenMP · Parallelism · Scaling

1 Introduction

Tasking is an important feature of multiple parallel programming models tar-
geting both shared and distributed memory, such as Thread Building Blocks
(TBB), Chapel, OmpSs, OpenACC, Kokkos, among others. OpenMP, main-
stream programming model in the high performance computing (HPC) space,
includes tasking since version 3.0 (2008) [2,5] and tasking with dependences
since version 4.0 (2013) through task constructs [6,17,18]. OpenMP also sup-
ports tasking for distributed memory with target constructs. Tasking is widely
used to offload computation to accelerators in heterogeneous systems. CUDA,
OpenCL and OpenACC kernels, and OpenMP target concepts are examples
of this. However, the adoption of tasking for shared memory (threading) has
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been slow. Many HPC codes include threading with OpenMP alongside MPI,
mostly through the use of worksharing-loop constructs with fork-join semantics.
For more developers to taskify their codes, the effort required and the resulting
benefits need to be considered.

This paper is an assessment of the benefits promised by tasking. These ben-
efits include an intuitive parallel work unit—a task—which can be defined as a
piece of computation on a piece of data that could be run in parallel. They also
include the ability to define data-flow semantics between tasks using dependences
and remove expensive global synchronizations and their potential load imbal-
ance. We contribute to the discussion on tasking adoption in the community
with our experience taskifying an adaptive mesh refinement (AMR) proxy-app:
miniAMR [12,16]. This proxy-app is part of the Mantevo [10] project and the
Exascale Computing Project Proxy Apps Suite [7] and models the refinement and
communication phases of AMR codes. It is programmed in MPI and OpenMP,
the OpenMP parallelization using worksharing-loop constructs only. Our taskifi-
cation focuses on removing global synchronization between communication and
computation phases to reduce the inherent load imbalance of working on blocks
at different refinement levels. A previous paper [14] improves miniAMR load
imbalance at the MPI level by changing its algorithmic implementation. In this
work, we focus on maintaining the algorithmic properties of the reference mini-
AMR implementation and replacing loop-level parallel regions by task regions.
The goal is to quantify the resulting performance benefits and report on our
experience to give guidance on how to taskify such type of parallel work and
give a sense of the effort required.

We report better performance using tasks on multiple systems including Mar-
vell ThunderX2, IBM POWER9, Intel Skylake-SP and AMD EPYC. Overall, the
taskification experience shows that developers need to think on parallel work
across application phases, which involves larger code sections than only focusing
on individual loops. The results show that tasking provides 15–30% better per-
formance for certain thread counts and across the evaluated platforms. These
improvements are mainly due to removal of load imbalance and avoidance of
serial sections leading to a higher thread utilization.

2 The miniAMR Proxy Application

Adaptive mesh refinement (AMR) was developed as a way to model the phys-
ical domain with different levels of precision in numerical problems [3,4], with
the goal of achieving higher precision in regions where it is needed (such as
boundaries, points of discontinuity or steep gradients [4]). The physical domain
is a rectangle (a rectangular prism in 3D space) that is represented as nested
rectangular grids that share boundaries, with denser (finer) grids where higher
precision is required.

The numerical algorithm is applied to each of the rectangles of the grid, with
the corresponding communication on the boundaries between grid elements. The
grid is updated when the conditions of the domain change: an error formula is
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Fig. 1. Visualization of a unit cube with a domain defined by two empty spheres, using
the vertices (left) and boundaries (right) of the grids. Colors have no special meaning.

defined to force the use of a finer grid when a threshold value is reached. The
refinement is carried out by splitting the elements of the grid into two equal parts
in all dimensions. This means that, in 2D, each rectangle is split into 4 other
rectangles (quadrants) and, in 3D, each prism is split into 8 prisms (octants).

MiniAMR is a proxy application released as part of version 3.0 of the Mantevo
suite [10,11] that is used to model the refinement/coarsening and communica-
tion routines of parallel AMR applications using MPI. The physical domain is
modelled as a unit cube in 3D space divided in blocks in all three dimensions,
which define the coarsest level of the grid.

To simulate the changes in the domain, miniAMR provides up to 16 different
types of objects (both solid and surfaces), which include spheroids, cylinders,
rectangles and planes. These objects can interact with the domain in different
ways: moving at a constant speed, bouncing on the boundaries of the outside
prism and growing on the X, Y or Z directions. Their positions determine the
regions of the domain that need more precision and, therefore, a finer grid.

To simplify the communications, miniAMR forces neighboring blocks to be
at distance 1 in the refinement level. This means that every face of a 3D block is
a neighbor of a whole face (at the same refinement level), four other faces (which
are finer) or a quarter of another face (which is coarser). A sample domain at a
given time step can be seen in Fig. 1. All these blocks occupy the same bytes in
memory; when refinement happens for a block, the resolution is doubled in each
dimension by replacing that block by 8 new blocks.

The sample computations are modeled using different stencil algorithms,
applying them to the different variables that are defined. For simplicity, we will
focus on the 7-point stencil, where each discrete point is the average of itself and
its six neighbor points in 3D space (up, down, north, south, east, west).

2.1 Baseline Parallelization of the miniAMR Code

To understand the changes to the code for taskification in Sect. 3, we first intro-
duce how the application works originally according to the source code available
in the Mantevo repository [12].
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Algorithm 1. miniAMR main loop
foreach time step or simulation time finished do

foreach stage in time step do
foreach communication group do

communicate;
foreach variable in communication group do

stencil;
if time for checksum then

checksum;
validate checksum;

end

end

end

end
if time for refinement then

refine;
end

end

The initial, coarsest grid is given by the number of MPI ranks in each dimen-
sion and the number of initial blocks (grid cells) per MPI rank per dimension.
The application does an initial allocation for all the blocks that can be used
(limited by a user-specified parameter). In the original code, this is implemented
as an array of structs, where each block struct contains a quadruple pointer
to double (i.e., double****) with the first indirection for the total amount of
variables, one indirection per dimension, and memory contiguity only in the Z
axis. Each dimension has two extra elements to allow for an extra face on each
side of the block to account for ghost values (as the values in the boundaries of
neighbor blocks are called in the miniAMR code). Blocks that are not in use are
marked as such so that they can be used in future refinements.

Algorithm 1 shows the pseudo-code of the main loop that is executed after
initialization. The main loop runs for a total number of time steps or a given sim-
ulation time. This loop is divided in stages that start with the communications
between neighboring cells followed by the stencil updates, sometimes followed by
a checksum calculation. These pairs of communication and stencil are grouped
by a certain number of variables (communication group). For example, the total
number of variables is 40, while communications and stencil updates are done in
groups of 10 variables. Every few stages, the objects in the domain are moved
according to the parameters, the domain is refined/coarsened following the set-
tings, and the main loop starts again.

The communications are done for both local (intraprocess) and external
(interprocess) neighboring blocks, MPI non-blocking calls being used for the
second case. When the blocks are of the same size, the ghost values are simply
copied. If a face has four neighbors, because the neighbor grid is finer, the values
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Table 1. MiniAMR versions developed in this work

Label Description

Orig Original code from Mantevo repository with stencil parallel loop fixed

Orig-dyn Orig with dynamically scheduled comm

Loop Transformation of main data structure into contiguous array

Loop-dyn Loop with dynamically scheduled comm

Task-1 Data-flow parallelization of comm and stencil. Taskloop for checksum

Task-2 Data-flow parallelization of comm, stencil and checksum

are replicated four times and the variables are divided by 4 to keep the total
value constant. Similarly, all ghost values received by the coarser face are added
up in groups of four to a single discrete point.

When splitting a block in the refinement process, each original point is repli-
cated 8 times and its variables are divided by 8 in order to preserve the total
value, as when communicating. The coarsening process is equivalent: 8 blocks
are joined to form a coarser block, so the points are added up in groups of 8 to
form a coarser point.

3 Taskification of MiniAMR

Table 1 lists the versions developed in this work towards the taskification of mini-
AMR using OpenMP. The parallelization of miniAMR in the reference code of
the Mantevo project is based on MPI and OpenMP. Message passing between
processes occurs mainly in the communication phase when the faces of blocks
(ghost values) are transferred in a process commonly known as halo exchange.
An MPI_AllReduce primitive coordinates all processes to calculate the overall
checksum. MPI is also used in other parts of the code outside of the main phases
that are outside of the scope of this analysis, such as a plotting phase to visualize
the simulated grid like the one shown in Fig. 1. OpenMP is used in the communi-
cation phase to exchange halos between threads, the computation phase (stencil)
and checksum calculation. The refinement phase is serial.

The first transformation of the code (labeled as Orig) is to correct the original
stencil OpenMP parallelization, which gives incorrect results as of February 14th,
2019 (the latest commit in the master branch at the time of writing). This
issue was communicated to miniAMR developers. Listing 1 shows the resulting
OpenMP annotation on the 7-point stencil code.

The taskification strategy is that a task communicates (comm) or computes
(stencil) the variables of one block. It is beneficial for the data belonging to
the variables of a block to be contiguous in memory so task dependencies can
be expressed as array sections. To prepare the code towards taskification, the
second transformation is to change the main data structure from a quadruple
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pointer (double****) with disaggregated arrays for each block, variable, and X,
Y and Z dimensions, into a contiguous array (double*). This version (labeled
as Loop) is our reference loop-parallel version using worksharing-loop constructs
only. Having a contiguous array improves performance over the original code
thanks to better prefetching coverage and accuracy due to improved locality. To
isolate this improvement from that provided by taskification, the performance
results in Sect. 5 are normalized to Loop.

The third version (labeled Task-1) is the taskification of the communica-
tion, stencil and checksum phases on top of Loop. In the original code, the loop
in the communication phase traverses all blocks and each iteration performs
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ghost value exchanges between a block face and a neighbor face at the same
or different refinement level. This loop is distributed across threads with an
omp parallel for construct. In this taskification, this worksharing-loop con-
struct is removed and a task is defined for each exchange inside the loop. Listing
2 shows the task code for a face exchange at same refinement level. Tasks read
and write to a part of the block and the dependence is set for the whole block.
This could be improved by arranging halos with ghost values in separate arrays
and having dependences only on halos instead, or by adding a separate depen-
dence for each halo and variable. However, both of these solutions add complexity
either to the data structure or to the directive readability, so this is not included
in the version evaluated here. We expect support for multidependences [8,17]
in OpenMP 5.0 to help with the directive readability issue (we must restrict
this effort to OpenMP 4.5 features due to current compiler support). Stencil
computations are taskified with an inout dependence on the block they operate
on, and therefore depend on the previous communication tasks that write to
that block. With this data-flow dependence strategy, a pair of parallel and
single directives surround the loop iterating over the stages in the main loop,
therefore removing the implicit barrier between the communication and stencil
phases that worksharing-loop constructs in the original code imply.

At this point there is data flow between communication and stencil com-
putation. Due to being inside a parallel-single pair, the worksharing-loop
construct around checksum executes serially on one thread. Given that check-
sum does not execute on every iteration, this taskification uses a taskloop con-
struct [15], which executes the iterations of checksum over the blocks in tasks,
and therefore has the same implicit barrier after the checksum loop as the previ-
ous worksharing-loop construct. Listing 3 shows the corresponding task code. To
make sure prior tasks complete before checksum, a taskwait primitive is placed
before the checksum task loop. The refinement phase is outside of the task region
and therefore remains serial as in the original code. Taskifying the refinement
phase to overlap iterations across timesteps is a potential improvement left for
future work.
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The fourth version (labeled as Task-2) builds on top of Task-1 and replaces
the taskloop-based taskification of checksum by data-flow using dependencies.
Listing 4 shows the task code. The loop iterating over the variables in the block
is brought inside the task and the partial checksum variable becomes an array
with an entry for each variable. This removes the taskwait before the checksum
phase and allows hoisting the checksum for a given block as soon as its stencil
is complete. The taskwait moves down after the creation of checksum tasks so
checksum validation happens once all checksum tasks are complete.

Given the intrinsic load imbalance of the communication phase due to dif-
ferent block communications happening at different refinement levels, Table 1
includes two more versions of the code. Orig-dyn and Loop-dyn use dynamic
scheduling by adding the clause schedule(dynamic) to the parallel loop in the
communication phase to mitigate this imbalance and have another point of com-
parison between statically-scheduled loops and tasking.

This effort covers the shared memory portion of the application by replac-
ing loop-level parallelization of communication, stencil and checksum with task-
level parallelization to compare both models. The taskification of the MPI part
promises further improvements given that it already uses asynchronous message
passing. The evaluation of MPI communication tasking is left as future work.

4 Experimental Methodology

The experiments focus on comparing the worksharing-loop parallel and task-
based implementations of miniAMR described in Sect. 3. As in prior work [1],
they are run on multiple systems with different architectural and microarchi-
tectural features and using different OpenMP C/C++ compiler and runtime
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Table 2. Systems used for evaluation

System

Name Marvell ThunderX2 IBM POWER9 Intel Skylake-SP AMD EPYC

Part no CN9975 8335-GTH Xeon Platinum 8160 7401P

Processors 2 2 2 1

Memory 16xDDR4-2666 16xDDR4-2666 12xDDR4-2666 8xDDR4-2666

Processor

Cores 28 20 24 24

L1D cache 32KB/core 32KB/core 32KB/core 32KB/core

L2 cache 256KB/core 512KB/2 cores 1MB/core 512KB/core

L3 cache 32MB 120MB 33MB 64MB

NoC Ring - Mesh 4-die MCM

Software

Compilers GNU-8.2 GNU-8.1 GNU-8.1 GNU-8.2

Arm 19.1 IBM XL 16.1 Intel 19.0

systems to quantify the sensitivity to the underlying system features and run-
time implementation. Table 2 shows the testbed systems and compilers used in
this work.

We run miniAMR with multiple variations of input parameters that affect
different parts of the application. We test multiple block sizes and number of
variables, which directly affect parallel work duration - often a performance lim-
iting factor [9,13]. The default block size in miniAMR is 10×10×10 and previous
papers used 64 × 64 × 64 [14]. We use 16 × 16 × 16 as a reasonable input and
8×8×8 as a deliberately small block size to stress tasking overheads. The default
number of variables is 40. We use 40 and 160 as a deliberately large input to
isolate tasking overheads. We test checksum frequencies of one every five, and
one every ten stages, which affects tasking look ahead as checksum validation
implies a barrier. We test 10 and 40 stages per time step which affects refinement
frequency—more stages per time step means less relative time spent in the refine-
ment phase. The number of overall refinements is 4, maximum blocks is 3000
and simulation starts with 1 block. The simulated object, position, direction and
speed is defined with parameters: --num objects 1 --object 2 0 -1.1 -1.1
-1.1 0.060 0.060 0.060 1.1 1.1 1.1 0.0 0.0 0.0. The memory footprint
of these runs is between 900 MB and 20 GB.

Experiments compare the execution time of the multiple variants (lower is
better) varying the number of OpenMP threads in one MPI rank. The execu-
tion time of each phase is measurable only for the worksharing-loop versions,
and therefore not relevant in this study because when global synchronizations
are removed the execution of multiple phases overlap. The executions are done
multiple times to mitigate variation across runs. Most systems show a small vari-
ation between runs, so one of them is shown here except for EPYC. This system
showed the largest variation, so experiments were run 10 times and the results
shown are the average after removing outliers (±2 × standard deviation).
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Fig. 2. Execution time of multiple miniAMR implementations on testbed systems;
normalized to Loop

5 Performance Evaluation

Figure 2 shows the normalized execution time (lower is better) of the multiple
implementations of miniAMR, each subplot corresponding to a different plat-
form, and each cluster of bars being for a different number of threads. All results
are using the GNU compiler and normalized to the Loop implementation. The
parameters for this execution are: checksum frequency is every 5 stages, number
of refinements is 4, blocks are 16× 16× 16, with 40 variables and 40 stages per
timestep. We focus on this configuration as it is a representative input after dis-
cussion with application developers. A discussion of the performance variations
of sweeping parameters is included later in this section.

In all cases, Loop is faster than the original version of the code (Orig) because
of improved locality while accessing the main data structure, which is a con-
tiguous array instead of being segregated per dimension. The two task imple-
mentations are generally better than the Loop version due to load imbalance
mitigation in the communication phase and, for the larger core counts, also the
stencil phase. Loop-dyn also improves over Loop due to better load balancing
and outperforms tasking in some cases. However, in most cases, tasking is supe-
rior to dynamically-scheduled loops due to the serial portion in between parallel
loops becoming increasingly important with increasing thread counts (Amdahl’s
Law).

When crossing socket or die boundaries (e.g., 56 cores in ThunderX2 are in
two sockets, see Table 2), the dynamically-scheduled configurations (Orig-dyn,
Loop-dyn, Task-1 and Task-2) show worse performance than statically-scheduled
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Fig. 3. Execution timelines of Loop (left) and Task-2 (right). White color is idle time

ones (Orig and Loop) in most cases. This is due to a large drop in perfor-
mance of execution of both stencil and communications due to NUMA/NUCA
effects. Static scheduling suffers heavily from load imbalance at the large core
counts tested across sockets but has better caching behavior due to the same
blocks being processed in the same threads across stages. With dynamic schedul-
ing, each block is processed in potentially different threads across stages. The
result is that the drop in instructions per cycle (IPC) on each thread for static
scheduling is smaller than for dynamic scheduling when going from one socket
to two sockets. In the case of EPYC, this is noticeable already at 12 threads
because only 6 threads are co-located within the same die so over 6 threads is
already a cross-chiplet execution paying larger NUMA latencies. Given the lack
of performance counters that measure accesses to remote NUMA domains in the
evaluated platforms, we plan to further analyze the impact of cross-socket/cross-
chiplet accesses using simulated platforms in future work.

Figure 3 shows a timeline of the Loop (left) and Task-2 (right) versions show-
ing execution of parallel loops and tasks, respectively, on the 28 threads of one
ThunderX2 socket. Both timelines show the same duration. In the Loop time-
line, light green is communication and turquoise is stencil compute. In the Task-
2 timeline, the colors are the same and dark purple refers to checksum tasks.
The Loop timeline shows a clear imbalance across threads in the communica-
tion phase, with certain threads consistently doing less work than others due to
working on blocks at different refinement levels. The Task-2 timeline shows com-
munication, stencil and checksum tasks concurrently executing as they become
ready, leading to incidental locality improvement and little idle time. This inci-
dental locality improvement happens more often with lower thread counts (4–8).
Some consumer tasks execute faster due to executing back-to-back with their
producer, e.g., communications of a block happening right after its stencil com-
putation, or vice versa. In the absence of a locality-aware scheduler, this is less
likely on larger thread counts and we observe a larger drop in task performance.

Looking across systems, the Task-2 version results in over 90% useful time
on threads, i.e., communication/stencil/checksum, with a few threads achieving
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Fig. 4. Execution time with proprietary compilers: Arm Compiler on ThunderX2 (left),
IBM XL on POWER9 (middle) and Intel Compiler on Skylake-SP (right)

just over 80% utilization due to task creation time not being accounted as useful.
The Loop version gets a lower utilization of between 40% and 80%. The threads
that spend more than half of the time idle are those that repeatedly operate on
blocks at the lower refinement levels.

Figure 4 shows the normalized execution time on ThunderX2 using Arm Com-
piler, on POWER9 using IBM XL, and on Skylake-SP using Intel compiler. The
tasking versions achieve similar gains on ThunderX2 with the exception of dual
socket which performs better. On POWER9, tasking gets smaller gains and
Loop-dyn performs the same in certain thread counts. On Skylake-SP, the task-
ing advantage over the loop-parallel versions is even larger than with GNU.

Testing other application parameters to verify the sensitivity of this analysis
showed some variations in the results, but they do not change the conclusions
above. Going to arbitrarily small 8× 8× 8 blocks to stress task creation overhead,
indeed shows smaller benefit of the task versions and they scale worse overall,
especially across sockets where they perform significantly worse, but still work
better than Loop within single socket cases. Going to 160 variables to isolate
task creation overhead, and a checksum frequency of 10 for larger task-scheduling
look-ahead, shows a bit better results for tasking but not significantly better than
the ones using 40 variables or a checksum frequency of 5. Going to a checksum
frequency of 10 instead of 5 also shows a bit better results for tasking and the
benefit of Task-2 over Task-1 is also larger.

6 Conclusion

The benefits of tasking come mainly from a higher level view of parallelization by
the programmer. Introducing asynchrony by parallelizing across program phases
enables a higher utilization of threads thanks to removing global synchroniza-
tions, not having serial code between loops and, compared to static scheduling,
avoiding load imbalance. Due to the lack of locality-aware scheduling in the
tested runtimes (to the best of our knowledge), locality improvements by con-
sumer tasks executing after producer tasks was incidental. Also, tasking suffers
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from worse NUCA/NUMA behavior because tasks operating on the same blocks
may execute on different threads across sockets and chiplets. Our experiments
suggest that locality/affinity semantic extensions for tasking in OpenMP have
potential for significant performance improvement and scaling across NUMA
domains if paired with balanced data allocation.

Parallelizing across program phases requires a mindset change if the pro-
grammer tends to parallelize loops or small sections after having parallelized
at the MPI level. This strategy of focusing on small code portions when par-
allelizing with OpenMP limits scaling because sections between parallel regions
remain serial. Tasking helps think in terms of larger code sections thanks to task
dependences—a task can execute anytime during the task region as soon as its
dependencies are satisfied.

A potentially-beneficial extension to the OpenMP standard for this taskifica-
tion effort would have been the ability to specify dependences in taskloops. This
way the Task-2 implementation could have been written in a easier and clearer
way building on top of Task-1 code. This is an extension that is on-going work
by the OpenMP committee and this paper shows a potential use case for it.

Lastly, we encountered several compiler issues with tasks that were reported
to developers. Some compilers failed to compile certain constructs or generated
incorrect results. These issues did not happen with worksharing-loop constructs,
which shows the different maturity of both models.
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Abstract. The advent of the multicore era led to the duplication of
functional units through an increasing number of cores. To exploit those
processors, a shared-memory parallel programming model is one pos-
sible direction. Thus, OpenMP is a good candidate to enable different
paradigms: data parallelism (including loop-based directives) and con-
trol parallelism, through the notion of tasks with dependencies. But this
is the programmer responsibility to ensure that data dependencies are
complete such as no data races may happen. It might be complex to
guarantee that no issue will occur and that all dependencies have been
correctly expressed in the context of nested tasks. This paper proposes
an algorithm to detect the data dependencies that might be missing on
the OpenMP task clauses between tasks that have been generated by
different parents. This approach is implemented inside a tool relying on
the OMPT interface.

Keywords: OpenMP task · Nested task · OMPT · Data dependency ·
Data-race

1 Introduction

The advent of multi-core processors occurred more than a decade ago, bringing
processors scaling from a few cores to several hundreds. To exploit those func-
tional units, the OpenMP programming model [1] became the defacto standard
leveraging the programmability and the performance of such systems. Based on
compiler directives and the fork-join model, it spawns threads and implies a
synchronization rendez-vous at the end of parallel regions. Mainly oriented to
structured and regular parallelism first, it has been extended with a task pro-
gramming model to enable efficient use of irregular and nested parallelism. Even
if this tasking model has proven to provide good performance, global synchro-
nizations are expensive and may prevent scheduling of upcoming tasks. There-
fore, the notion of data dependency has been introduced, to provide a lighter
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local synchronization between successive dependent tasks. These dependencies
can be expressed only between sibling tasks (i.e., created by the same parent
task). The execution order of these tasks is given by the creation sequence (task
directives order in the code) and the depend clauses. We call the sets of tasks
spawned from the same parent a dependency domain.

Combining nested tasks with data dependencies may lead to some issues
because of the parallel execution of tasks between dependency domains. Indeed,
dependencies only apply between sibling tasks. However, these dependencies are
not passed on the next generation of tasks. Hence, two dependency domains
issued from sibling tasks with dependencies will not inherit their parent order.
In this case, race conditions may occur even if the programmer thinks the depen-
dencies are correctly expressed in the depend clauses. Correctly specifying a large
number of dependencies across multiple dependency domains implies a non neg-
ligible burden to the developer and remains error prone.

In this paper, we aim at detecting such dependency declaration errors. The
contribution of this paper is threefold: (1) we develop an algorithm to detect pos-
sible data races based on declared task dependencies, (2) we propose new exten-
sions to the OMPT interface for keeping track of the memory scope of depen-
dency variables and, (3) we implement the OMPT extensions in an OpenMP
implementation and the algorithm in a tool to effectively detect data races.

The remaining of the paper is organized as follows: Sect. 2 presents some
motivating examples. Related work regarding nested tasks with data depen-
dencies and their correctness is presented in Sect. 3. Then, Sect. 4 explains the
main contribution through the dynamic detection of race conditions among data
dependencies in non-sibling tasks. Section 5 describes the implementation of our
approach while Sect. 6 illustrates our tool output and its overhead on some appli-
cations, before concluding in Sect. 7.

2 Motivating Examples

When considering nested tasks, each task in a dependency domain generates
its own children tasks, hence its own dependency domain. By representing each
task with a vertex, and linking each task to its children with an edge, it results
a tree structure. We call such tree a spawn-tree. Since dependencies can only
induce scheduling constraints inside a dependency domain (i.e., between sibling
tasks), there is no ordering between tasks from different domains. Thus, these
tasks can run concurrently in any order, even if they are at different levels in the
spawn-tree. Indeed, specifying a dependency clause at a given level in the task
nest does not propagate it to deeper levels (i.e., to children tasks). This might
become tricky as, from the user point of view, dataflow information has been
expressed. However, the resulting behavior and scheduling may not be the one
expected. We present very simple test cases to illustrate such possible data races
with misleading depend clauses.
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1 main (void )
2 va r i ab l e a , b ;
3 #pragma omp p a r a l l e l {
4 #pragma omp s i n g l e {
5 #pragma omp task depend ( in : a ) {
6 #pragma omp task depend ( inout : a ) {}
7 #pragma omp task depend ( inout : a ) {}
8 }
9 #pragma omp task depend ( out : a ) {

10 #pragma omp task depend ( inout : a ) {}
11 #pragma omp task depend ( inout : a ) {}
12 }
13 }
14 }

Listing (1.1) Nested tasks with dependencies
(a) Single spawn-subtree

Fig. 1. An OpenMP code with nested tasks with dependencies and its corresponding
spawn-subtree. Dotted ellipses in the tree are for dependency domains.

Wrongly Expressed Dependencies. Listing 1.1 presents a test case based on
nested tasks with data dependencies. The first task (single directive - task 0 in
the spawn-tree represented in Fig. 1a) spawns two children tasks with dependen-
cies (task constructs lines 5 and 9 with depend(in) and depend(out) clauses
- tasks 1 and 2 in the spawn-tree). These tasks belong to the same dependency
domain (dotted ellipse around task 1 and 2 in the spawn-tree). Each of these
tasks spawns two other children tasks with dependencies (task constructs with
depend(inout) clauses - tasks 3, 4, 5 and 6 in the spawn-tree).

The parents tasks 1 and 2 have serialized dependencies over a, ensuring
an order. However, their children don’t inherit this dependency. Without any
taskwait directive at the end of task 1 to ensure that all its children tasks have
finished before task 1 ends, all the tasks at the last level of the tree can run
concurrently. Moreover, the children of task 1 can run concurrently with task 2.
If the variable a is effectively written as suggested in the depend clauses, a race
condition on a may happen.
1 main (void )
2 va r i ab l e a , b ;
3 #pragma omp p a r a l l e l {
4 #pragma omp s i n g l e {
5 #pragma omp task depend ( in : a ) {
6 #pragma omp task depend ( inout : a ) {}
7 #pragma omp taskwai t
8 }
9 #pragma omp task depend ( in : a ) {

10 #pragma omp task depend ( inout : a ) {}
11 #pragma omp taskwai t
12 }
13 }
14 }

Listing 1.2. Unexpressed/Hidden dependencies

Unexpressed/Hidden Dependencies. Listing 1.2 presents a similar test
case, except that parent tasks don’t express a data dependency over a. In this
case, adding a taskwait directive is not enough to order all tasks. Since there is
no inferred writing of a between the parent tasks, they can be executed in any
order, and even concurrently. Hence, ensuring that all children tasks are finished
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does not enforce an order between other tasks at the same tree level, as the tasks
from the two lower dependency domains can run concurrently, also causing data
races. One possibility to solve this issue is to apply children dependency clauses
to the parent tasks. Thus, these dependencies are said to be unexpressed (or
hidden).

Listing 1.3 presents the same behavior: two tasks are spawned inside
parallel construct. Even without nested tasks, the same problem occurs due to
implicit tasks. Indeed, the parallel construct first spawns implicit tasks (one
per OpenMP thread). Due to these implicit tasks, the explicit task creations
(task constructs) represents the second level in the spawn-tree. For example, if
one considers 2 OpenMP threads, thus two implicit tasks, this listing produces
the same spawn-tree as depicted in Fig. 1a. The implicit task level cannot accept
depend clauses. Hence, the dependencies expressed on the explicit tasks are hid-
den to the implicit ones, causing the ordering issue as before. The same applies
when creating explicit tasks with dependencies in a worksharing-Loop construct.
1 va r i ab l e a ;
2 main (void )
3 #pragma omp p a r a l l e l {
4 #pragma omp task depend ( in : a ) {}
5 #pragma omp task depend ( inout : a ) {}
6 }

Listing 1.3. Tasks with dependencies in implicit task

3 Related Work

The OpenMP support for tasks with dependencies has shown a growing inter-
est from the community of developers and researchers, in various topics such
as scheduling [4], data locality [3] and more generally performance optimiza-
tion [6,7]. Thus, Perez et al. propose an extension of the OpenMP task directive
to apply dependencies between different family lineage of domain dependen-
cies [2]. The new clauses weakwait, weakin, weakout, weakinout and release
refine the dependency relationship in a two-step process starting by applying
inner-task dependencies directly to the outer-task successors at a weakwait syn-
chronization point. Early processing is possible as the release clause indicates
that no more dependencies will be expressed on the listed variables. Then, outer
tasks with a weak dependency clause pass down predecessors dependencies to
inner subtasks. The results obtained with these new extensions are coherent with
the theoretical study conducted by Dinh et al. [8]. In the nested dataflow model
(ND), they showed that modified scheduling algorithms achieve better locality
reuse and higher performance on large number of processors. ND is the exten-
sion of the nested parallel model (NP) with dependencies, where the fire con-
struct completes the parallel and sequential constructs representing partial
dependencies between two dependency domains. They introduced a methodol-
ogy called DAG rewriting system (DRS) to translate from NP to ND and use
it to revisit existing linear algebra algorithms, providing material for the modi-
fied scheduling proof. But these approaches do not enable debugging of current
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OpenMP task-based applications. For this purpose, data-race detection methods
exist, based on either static, dynamic, or post-mortem approaches. Nonetheless,
the majority only provides support for tasking model without data dependen-
cies. Some tools support tasks with dependencies. Protze et al. [9] proposed an
efficient and scalable OpenMP data-race detection tool called Archer based on a
static-dynamic method for large HPC applications: relying on a LLVM compila-
tion pass for static analysis and on ThreadSanitizer for dynamic analysis via code
instrumentation and Happens-before relation. They annotated the OpenMP run-
time to reduce false positives arising from synchronizations points and locking.
They defined three detection states resulting from static analysis, race free, cer-
tainly racy and potentially racy regions. On top of that information, they extend
ThreadSanitizer to take as input a blacklisted set of race-free regions, notably
reducing amount of instrumentation at dynamic analysis. In [10], they detailed
how they reported OpenMP runtime annotations into OMPT events callbacks,
providing a portable data race detection tool with support for tasks with depen-
dencies. Matar et al. [11] conducted a similar study mainly oriented to tasking
programming model, relying on ThreadSanitizer and the Happens-before relation
for dynamic analysis. They proved that their tool, Tasksanitizer, is more efficient
at task level to detect determinacy races. However, when combining nested tasks
with dependencies, their respective solutions might be related to task scheduling,
missing some possible race conditions. Our approach does not instrument every
memory access, but it tracks dependency clauses and deals with the hierarchy
of tasks, whatever the scheduling of those tasks. It is therefore complementary
to methods like Archer and Tasksanitizer.

4 Detecting Dependencies Between Non-sibling Tasks

Section 2 showed how unexpressed dependencies or the absence of taskwait
directive in descendant tasks may lead to data races, despite the expression
of dependencies on some tasks. In this Section, we present our approach to
detect such wrong behavior. First, we will describe our approach with our main
algorithm to detect potential data races based on the expressed dependencies.
Then, since dependencies in OpenMP are passed through variables (i.e., logical
memory addresses), we present in a second part how we detect that the depend
clauses on the same address indeed concern the same variable.

4.1 Main Approach

Our main approach to detect potential data races in nested tasks is based on
spawn-tree subgraph and their isolation. Each task t in a dependency domain
will generate its own subtree in the spawn-tree. This subtree regroups all the
tasks having the task t as an ancestor. All the tasks from the subtree of t should
be compared with the subtree spawned from the siblings of t. However, these
subtrees may not be compared in one case: if the t subtree is isolated.
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A subtree is isolated if all the tasks in the subtree are enforced to be finished
before any subtree from a subsequent sibling is started. Thus, the t subtree is
isolated from another t′ subtree if, and only if, there is an ordering between t
and t′, and all tasks in t subtree are done before starting task t′ and its own
subtree. This isolation can be achieved with several methods. The first method
consists in putting a taskwait directive after the last task of each level in the
t spawn-tree. The second method encapsulates task t in a taskgroup construct
ending before task t′. A third method inserts a if(0) clause on each task of the
subtree.

If the subtree is isolated, no tasks from the t subtree may run concurrently
with t subsequent sibling tasks. On the other hand, if the t subtree is not isolated
from the subtrees of t subsequent siblings, tasks of multiple subtrees may run
concurrently. In such case, it is necessary to test each task in all subtrees in a
pairwise manner to detect depend clauses on same addresses. If this occurs, and
the address in the multiple depend clauses refers to the same variable, then a
data race may occur.

Algorithm 1. Resolve Non Sibling Dependencies
1 ResolveNonSiblingDependencies

inputs: vertex root of the spawn-tree
2 if root.children �= ∅ then
3 for v ∈ root.children do
4 DoDectectionConflicts = true
5 for v′ ∈ root.children � {v} do
6 if DependencyPath(v, v′) = true then
7 Synched = CheckSynch(v)
8 if Synched = true then
9 DoDectectionConflicts = false

10 if DoDectectionConflicts = true then
11 for w ∈ subtree(v)∪v do
12 for w′ ∈ subtree(v′)∪v′ do
13 DetectConflicts(w,w′)

14 ResolveNonSiblingDependencies(v)

Algorithm 1 presents these different steps. We will describe it on a small
example. Listing 1.4 presents a task-based Fibonacci kernel extracted from the
BOTS benchmarks [14] and modified to express dependencies. In this new pro-
gram, each invocation of the fib function creates three tasks: one for each
new invocation of the fib function, and a third task to realize the sum of the
two sub-results. The two fib invocations are independent (depend(out:x) and
depend(out:y) clauses respectively), but the last task depends from the two
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1 f i b (n)
2 int x , y , s ;
3 i f ( n < 2 ) return n ;
4 #pragma omp task shared (x ) depend ( out : x ) {
5 x = f i b ( n − 1 ) ;
6 }
7 #pragma omp task shared (y ) depend ( out : y ) {
8 y = f i b ( n − 2 ) ;
9 }

10 #pragma omp task shared ( s , x , y ) depend ( in : x , y ) {
11 s = x + y ;
12 }
13 #pragma omp taskwai t
14 return s ;

Listing 1.4. Task-Based Fibonacci with dependencies

previous tasks (depend(in:x,y) clause). The computation of fib(4) with this
new algorithm produces the spawn-tree displayed in Fig. 2a.

In our algorithm, we study each pair of tasks in each dependency domain,
starting with the set of tasks generated by the root of the spawn-tree (l.3 and
l.5 in the algorithm). Applied to the fib(4) example, we start by studying the
tasks fib(3) and fib(2) at the first level. For each pair, we check if there
is an isolation between their subtrees, hence if these tasks are ordered and all
descendant tasks of the first task are enforced to be finished before starting the
other task. We start by looking if the two tasks are ordered. To do so, for each
dependency domain, we build a Directed Acyclic Graph (e.g., DAG) representing
the complete ordering of tasks, thanks to depend and if clauses, taskwait and
taskgroup directives. Then detecting if two tasks are ordered in a dependency
graph is equivalent to find a path between the two tasks in the DAG (l.6). If
there is a path, then the two tasks are ordered.

Figure 2b depicts the DAG generated for the dependency domain formed by
the leaf tasks in subtree B. Since the two fib invocations are independent, there
is no link between them. However, two links come from these tasks towards
the third (sum) task, due to the depend(in) expressed dependencies. Hence, an
order exists between fib(0) and (sum), and an order also exists between fib(1)
and (sum).

We then check if the first subtree is isolated. If so, it is useless to detect
potential conflicts between these subtrees (l.7–9). In the example, if the subtrees
from fib(3) and fib(2) are isolated, no data race can happen between (sum)
and the subtrees. However, it will not prevent data races between the subtrees,
as they can be executed in any order, and even concurrently.

If no isolation is detected, we need to compare every pair of tasks in the tested
subtrees (l.11–12). We check each depend clause from the two tasks to detect
potential conflicting memory access (l.13). Once all the current sibling tasks are
tested, we do the same procedure with the next level in the spawn-tree.



238 R. Bispo Vieira et al.

4.2 Tracking Memory Scope

The OpenMP runtime only uses the address of memory storage to express the
dependencies. When detecting conflict with addresses, two cases arise. First, the
address always identifies the same variable throughout the program execution.
It is the case for global variables. On the other hand, some addresses can be
reused throughout the program to store different variables. It is the case for heap
and stack addresses, through function calls and return statements or memory
allocation/deallocation. To ensure that the detected conflict on addresses passed
to depend clauses can actually lead to a data race, we have to ensure that the
same address relates to the same variable.

The fibonacci example can illustrate such behavior. With the dataflow based
fibonacci algorithm, we can see that the same pattern of tasks may be replicated
in the spawn-tree. It is the case for the subtrees B and C in Fig. 2a.

When the program is running, the following behavior can happen. First, a
thread runs the task which is the root node of subtree B. This task declares
dependencies on stack addresses for variables x, y and s for the children task.
Upon completion of the task, stack memory is recycled for the next instructions.
If the root node of subtree C is then scheduled on this same thread, as it is
the same task as the root of subtree B, it will map the same variables to the
same stack addresses. The executing task will also declares dependencies for
variables x, y and s, which happen to have the exact same stack addresses than
the dependencies declared for the previous task. However, they are not related,
and the reuse of addresses only relates to this specific scheduling. It is necessary
to check if the use of the same addresses in multiple depend clauses are indeed
related to the same variables.

Data scoping is a key element in OpenMP, and more generally in shared
memory programming models. It describes if a specific data is shared among
threads or is local to a thread. By default, scope attribute is set to shared
for threads and implicit tasks, and to firstprivate for explicit tasks. OpenMP
provides clauses to modify the scope attribute of data: shared exhibits data’s
memory address to all threads, and private, firstprivate or lastprivate
create a thread’s local data copy (different memory address). The firstprivate
clause is a special case, the value of the variable is passed on to the local copy.
By this way, if the variable value is an address, it violates the private attribute
since all threads having the local data copy can simultaneously access the same
memory storage. If the variable is used later in a depend clause, it may lead to
a concurrent access.

To ensure that the same address in multiple depend clauses relates to the
same variable, we record the data scoping attributes at task creation. We then
study the data scoping path, i.e. the variable’s scope attribute at each level
between a task and a child task of its lineage. A color c is associated with each
tested pair of tasks and each tested address. For the two tested tasks, we go up
in the spawn-tree and check at each level if the address is a shared data, or if it
was a value passed in a firstprivate clause. In both cases, the link to the checked
level is colored with the color c. Once a common ancestor for the two tasks is
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found in the spawn tree, we obtain a direct path between the two tasks. If all
the links in the path have the same color c, it means that the tested address
was passed by the common ancestor down to the two tested tasks, and that
the address relates to the same variable. Hence, the tested depend clauses may
actually cause a data race, and the DetectConflicts phase in our algorithm raises
an issue.

(a) Spawn-tree instance of fibonacci(4)

(b) DAG generated from the de-
pendency domain formed by the
leaf tasks in subtree B.

Fig. 2. Data structures related to the task-based Fibonacci example

To illustrate this coloring search, we focus on x variables from fib(1) invo-
cations. To both tasks fib(1) from subtrees B and C for variable x, we use the
color c0. Since the variable is in a shared clause for both tasks, the links between
these tasks and their parents (respectively roots of subtrees B and C) are colored
with c0. However, the variable passed in the shared clause is a newly created
variable and does not come from a previous shared clause (or firstprivate
clause). Hence, the upward links are colored with a new color c1 (from root node
of subtree B to fib(3) task, and from root node of subtree C to fib(4) task).
For the same reason, the last link from fib(3) to fib(4) will have a new color
c2. Once this link is colored, we obtain a colored path between the two tested
tasks. However the path has multiple colors, hence the two addresses don’t relate
to the same variable. No potential data race will be raised, even if the depend
clauses use the same memory address.

4.3 Method Limitations

Our method uses the same information as the OpenMP dependencies mecha-
nism, i.e, the memory address. We do not aim to detect nor instrument actual
memory access, but only to check if the dependencies declared in the OpenMP
task constructs are coherent. As we are based on the addresses passed in the
dependency clauses, our method may miss some data races or report false
positive.
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The false positive arises when the task constructs declares dependencies on
variables which are not used in the task, or in its descendant tasks. In these
cases, our method returns a potential data race. However, since the variables are
not used in the tasks, it is not a data race. These variables might just have been
used to infer ordering between tasks with no actual read or write.

In the same way, if variables are used in a task but do not appear in a depend
clause, our method will not consider the variable. The same also happens if a
variable a variable is used in the task spawning a dependency domain, with tasks
declaring dependencies on the same variable. In these cases, out method will not
detect the potential data race.
1 #pragma omp task depend ( in : a )
2 #pragma omp task depend ( out : a ) {
3 a = some value ; }
4 l o c a l = a ;

Listing 1.5. Nested tasks with potential race conditions

The test case in Listing 1.5 presents such scenario. Based only on the depen-
dency declarations, there is no way to detect when the actual memory access is
performed in the parent task, i.e, before or after the child task.

5 Tool Implementation

Our detection method is based on the task spawn-tree and the DAG built
from dependency clauses information. Building and maintaining such structures
requires accessing information from the OpenMP directives and internals in addi-
tion to those provided by its API: e.g., when a parallel region starts and ends,
when synchronizations occur at multiple levels, be informed of tasks creation
and retrieve their dependencies set if any. These information are tightly linked
to the OpenMP API and runtime implementation.

The OMPT [12] interface aimed at developing portable performance and
analysis tools for OpenMP. Recently released as part of the OpenMP specifi-
cation, it provides an instrumentation-like portable interface for tool callbacks.
A callback is a function that is registered during the tool initialization to be
triggered at corresponding events. In addition, OMPT specifies a collection of
inquiry functions to probe the OpenMP runtime for internal information.

Our tool can either be used at runtime or post-mortem through the gener-
ation of a trace. Both versions use the same information that can be gathered
through the set of OMPT callbacks listed below. Implementation has been done
inside the MPC framework [15], a hybrid MPI/OpenMP runtime which sup-
port the OMPT interface. During the initialization phase, we create the internal
structures and the root task of the spawn tree. Then, to instrument all OpenMP
tasks in the application, the tool registers the following OMPT callbacks to the
OpenMP runtime:

- ompt callback parallel {begin/end} t: callbacks to register the entry
and exit points of parallel regions. We use the begin event to retrieve the number
of threads inside the parallel team. During the end event, we deallocate all nodes
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of the spawn tree, if any, and its related dependencies. Only the root task remains
as the code returns to the initial task.

- ompt callback implicit task t: callback triggered during the creation
of implicit tasks. We use it to add nodes representing the implicit tasks of the
parallel region into the spawn tree.

- ompt callback sync region t: callback to register region synchroniza-
tion. Its parameters contain the synchronization type (i.e. a barrier, a taskgroup
or a taskwait) and the endpoint scope (i.e. the beginning or the end of the syn-
chronization). We use it for partitioning the dependency domain at the explicit
task level. In the runtime version, the main Algorithm 1 for data race detec-
tion is triggered. This allows to reduce memory consumption by only keeping
and applying resolution on one instance of the spawn-tree at the time. In post-
mortem version, trace generation is performed by dumping local buffers to output
files.

- ompt callback task create t: callback to register the creation of an
explicit task. We use this callback to add a task node to our internal spawn
tree representation at the creation of an explicit task. Such informations are
stored in local buffers in the post-mortem version.

- ompt callback dependences t: callback to register all dependencies
specified on a new task. We retrieve the dependencies of the newly created task,
and update the dependency DAG of the parent task node. Such informations
are stored in local buffers in the post-mortem version.

OMPT Extensions. Section 4 highlights that it is necessary to know the data
sharing attribute of a dependence to detect data races in the context of nested
tasks with dependencies. The current OMPT interface exposes the scope of a par-
allel region, the spawning sequence of tasks and the dependencies between these
tasks. But it lacks a way to provide information about data-sharing attributes at
constructs, needed in our method to detect false positives. To do so, we propose
the following extensions to the OMPT interfaces.
1 typedef void (∗ ompt c a l l b a ck t a s k c r e a t e t ) (
2 ompt data t ∗ encounte r ing task data ,
3 const ompt frame t ∗ encounte r ing task f rame ,
4 ompt data t ∗ new task data ,
5 int f l a g s ,
6 int has dependences ,
7 s i z e t a r r a y d a t a a t t r i b u t e s s i z e ,
8 void ∗ a r r a y da t a a t t r i b u t e s
9 const void ∗ codeptr ra ,

10 ) ;

Listing 1.6. Extension to ompt callback task create t

The data sharing attributes of each variable are retrieved at task creation.
We extend the callback to also store an array with the data collection inherited
from outer scope to the new task (see Listing 1.6). This array contains values for
each variable: if a variable is shared, the array contains its address. If a variable
is firstprivate, the array contains the variable value.



242 R. Bispo Vieira et al.

1 typedef struct ompt dependence s
2 ompt data t va r i ab l e ;
3 ompt dependence type t dependence type ;
4 int add r e s s l o c a t i o n ;
5 ) ompt dependence t ;

Listing 1.7. Extension to ompt task dependence t

The location of the address variable used in the depend clause is required
to eliminate false positive in our data race detection method. We extended the
structure exposed in Listing 1.7 to include an int value to store this location.

6 Experimental Results

An enumeration of available applications using nested tasks with dependencies
lead to a small set of candidates. Upon ad hoc test cases based on those presented
throughout the whole paper and the modified Fibonacci, the Kastors benchmarks
suite [13] provided a suitable candidate. The Strassen benchmark is a well-
known algorithm for matrix multiplication that achieves lower execution bound
than the regular method O(n3). It recursively splits the matrices and applies
the Strassen method in a divide and conquer manner, until a specified cutoff is
reached where the regular method turns back to be more efficient. We present
the output format of our tool and its associated overhead on these benchmarks.

Output Description. The generated output goes along with the approach
described as follows: the nodes of the spawn tree are numbered in a breadth-first
search manner, therefore, the root has the number 0, each implicit task has the
number between [1, ..., N] where N is the number of threads participating to the
parallel region, and the explicit tasks have a number between [N, ..., M] where M
is the total number of nodes in the spawn tree. Two conflicting nodes n and n′

respectively belonging to the subtree where nodes rn and rn′ are the roots and
with dependencies d and d′ on a variable address addr generate the following
output: ∗ addr<rn, n, d><rn′, n′, d′>

> OMP_TOOL_LIBRARIES=Ompt_tool.so OMP_NUM_THREADS=2 mpcrun ./testCase3
* 0x2b7730422e70 < 1, 3, in >< 2, 6, out >
* 0x2b7730422e70 < 1, 4, out >< 2, 5, in >
* 0x2b7730422e70 < 1, 4, out >< 2, 6, out >

The small example above is the output of our tool for Listing 1.3. The cor-
responding spawn-tree is depicted in Fig. 1a. Our tool returns three potential
data races: task 3 with task 6, task 4 with task 5 and task 4 with task 6. Theses
pairs of tasks have dependencies on the same variable, with at least one being
a write, so the analysis is true. A data race is possible as implicit tasks may
run concurrently. Task 3 and task 5 have both read dependencies on the same
variable, hence no order is required. Hence no issue is raised for this pair.

We also applied the Archer and the Tasksanitizer tools on this example.
Tasksanitizer correctly unveils a data race, whereas for Archer, the analysis being
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Fig. 3. Overhead for multiple fibonacci values and number of threads.

applied on the current execution scheduling, the data race is not detected on
every run. Both tools, upon detection of a race condition, only retrieve a subset
of possible cases/scheduling leading to the race condition. In our ad-hoc cases,
Tasksanitizer did find many false positives, mainly arising from poorly support
of taskwait and dependencies in nested tasks with dependencies context.

Study of Overhead. We evaluated our tool overhead on the Fibonacci and
the Strassen benchmarks. The tests were conducted on an Intel XEON node
with 28 physical cores and 186 GB of memory ram. In our results, we illustrate
the slowdown factor (i.e. execution time with a tool divided by the time of the
standard version of the code) for different tools: Archer, our tool with both
online and post-mortem analysis. Tasksanitizer exhibited very high overhead
for Fibonnacci (from one hundred to several thousands) and was segfaulting on
Strassen, hence its results are not displayed.

Archer is more complete and performs more analyses than our tool. We use
this time as an upper bound overhead to not overcome.

The evaluation of the modified Fibonacci was conduct on the Fibonacci values
fib(x),where x ∈ {4, 13, 23, 30}, representing respectively the creation of 12,
1128, 139101 and 4038804 tasks at runtime (see Fig. 3). For a small number of
tasks, the online version is efficient, whereas the trace-based version is slower
than Archer. This is due to our tracing mechanism which is very basic (no I/O
delegation or asynchronism), and the cost of waiting to write the trace is too high
regarding the benchmark execution time. For a large number of tasks the online
version spends to much time checking each pair of tasks, and has prohibitive
overhead. On the other hand, tracing becomes very competitive. The evaluation
of the Strassen benchmark was conducted on square matrices with power of two
sizes from 512 to 8192. Two cutoffs were set for the switching value to regular
method and for the max depth, controlling the task nesting up to four levels. On
Strassen (Fig. 4), overheads of both online and trace-based methods are lower
than Archer. The slowdown is up to 7.7 for online resolution and a maximum
of 4.6 for trace generation. With online resolution, only size 4096 provides high
overheads. Further investigation is needed to understand these results.
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Fig. 4. Overhead for multiple Strassen matrix sizes and number of threads.

7 Conclusion

Since version 4.0, the OpenMP standard includes the notion of data dependencies
between tasks created by the same parent (either another task or a thread). But
combining nested tasks with data dependencies may lead to race conditions, some
uncovering unexpressed/hidden dependencies. This paper proposed an algorithm
to detect such problems based on the depend clauses exposed by the programmer.
We implemented this method in a tool providing both dynamic and post mortem
approaches, based on the recently released OMPT interface and our extensions
for data sharing attributes. We demonstrated that this method can effectively
detect race conditions with a reasonable slowdown compared to existing tools.
The proposed OMPT extension for data sharing attributes can be useful for any
tools relying on addresses passed in clauses. For future work, we plan to study
a restricted use of code instrumentation to detect data accesses inside OpenMP
tasks, and then be able to detect any data races between depend clauses and
actual variable accesses.
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Abstract. Parallelization constructs in OpenMP, such as parallel for

or taskloop, are typically restricted to loops that have no loop-carried
dependencies (DOALL) or that contain well-known structured depen-
dence patterns (e.g. reduction). These restrictions prevent the paralleliza-
tion of many computational intensive may DOACROSS loops. In such
loops, the compiler cannot prove that the loop is free of loop-carried
dependencies, although they may not exist at runtime. This paper pro-
poses a new clause for taskloop that enables speculative paralleliza-
tion of may DOACROSS loops: the tls clause. We also present an ini-
tial evaluation that reveals that: (a) for certain loops, slowdowns using
DOACROSS techniques can be transformed in speed-ups of up to 2.14×
by applying speculative parallelization of tasks; and (b) the scheduling
of tasks implemented in the Intel OpenMP runtime exacerbates the ratio
of order inversion aborts after applying the taskloop-tls parallelization
to a loop.

Keywords: taskloop · DOACROSS · Thread-Level Speculation

1 Introduction

Code parallelization is a research problem for which there are partial solutions.
Loops account for most of the execution time of programs and thus much research
has been dedicated to parallelizing the iterations of loops, including DOALL [9],
DOACROSS [3], and DSWP [15] algorithms. Often these efforts are hindered by
false dependencies that cannot be resolved by a compiler.

Although modern compilers implement many loop parallelization techniques,
their application is typically restricted to loops that have no loop-carried depen-
dencies (DOALL) or that contain well-known dependence patterns (e.g. reduc-
tion). These restrictions prevent the parallelization of many computational inten-
sive non-DOALL loops. In such loops, the compiler can either: (a) find at
least one loop-carried dependence (DOACROSS loop); or (b) cannot prove, at
compile-time, that the loop is free of loop-carried dependencies, even though they
might never show up at runtime. Theses dependencies are called may dependen-
cies and the loop a may DOACROSS loop. In any case, most compilers assume
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that an actual loop-carried dependence occurs and give up parallelizing these
loops, thus eliminating any possibility of extracting speed-ups from them.

Speculative techniques based on Thread-Level Speculation (TLS) of loop iter-
ations have recently [19,20] demonstrated speed-ups that have not been achieved
before for loops that have unpredictable loop-carried dependencies. Unfortu-
nately, implementing such algorithms is a very complex and cumbersome task
that demands an extensive re-writing of the loop. For this reason, most pro-
grammers and compilers typically do not use these algorithms, opting for not
parallelizing (may) DOACROSS loops.

In addition to loops, there are other hot-code regions that the programmer
or the compiler tries to parallelize. Task-based programming model simplifies it
by providing annotations of dependencies between function calls (tasks). Thus,
a runtime system manages these dependencies and schedules tasks to execute
on cores. Differently from thread parallelism, task parallelism does not focus on
mapping parallelism to threads, but it is oblivious of the physical layout and
focuses on exposing more parallelism. Task parallelism was implemented to be
more versatile than thread-level parallelism [2] and was added to OpenMP in
version 3.0.

OpenMP 4.5 specification [13] added a new construct called taskloop that
allows programmers to use the task-based programming model to parallelize
loops in a similar fashion to the old parallel for construct. However, like
parallel for, the use of the taskloop construct is restricted to loops that have
no loop-carried dependencies (DOALL loops) or that contain well-known reduc-
tion patterns through the reduction clause (recently added in the OpenMP
5.0 specification [14]). These restrictions specifically preclude the acceleration of
may DOACROSS loops with no dependencies at runtime.

This paper proposes a clause called tls that extends the OpenMP taskloop
construct, enabling programmers to mark the loop as speculative when he/she
or the compiler cannot prove that the loop is DOALL. The clause allows the
parallelization of (may) DOACROSS loops using the Hardware-Transactional-
Memory-based Thread-Level Speculation (TLS) algorithm described in [19], but
reusing the mechanism of taskloop to create OpenMP explicit tasks and to
divide the iterations between them. The TLS mechanism uses explicit tasks
instead of threads as units of speculative parallelization.

For instance, the listing of Fig. 1 shows the code of a loop from susan corners
benchmark where, depending on the value of variable x, it updates a position of
an array of corners indexed by n and increases by one the value of the variable
n (initialized to 0). The loop is may DOACROSS because depending on the
benchmark’s input a loop-carried dependence on n can be generated, however it
could also be free of dependencies at runtime.

According to the OpenMP API 5.0 [14], this loop is non-conforming for
taskloop because it relies on the execution order of the iterations and must
be serialized. Thus a compiler or programmer gives up parallelizing this
loop, or parallelizes this using DOACROSS (for example, OpenMP ordered
clause) yielding slowdowns respect to the serial execution. Figure 3 shows the
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1 n=0;
2 #pragma omp parallel for ordered(1)...
3 for(i=5;i<y_size-5;i++){//loopV
4 #pragma omp ordered depend (sink:i-1)
5 for(j=5;j<x_size-5;j++){
6 x = r[i][j];
7 if (x>0 &&(/*compare x*/)){
8 corner_list[n].info=0;
9 corner_list[n].x=j;

10 ...
11 n++;
12 }
13 }
14 #pragma omp ordered depend (source)
15 }

Fig. 1. Fragment of susan corners’s
loop (loopV) using ordered depend

1 n=0;
2 #pragma omp parallel num_threads(N_CORES)
3 #pragma omp single
4 #pragma omp taskloop tls(STRIP_SIZE)...
5 for(i=5;i<y_size-5;i++){//loopV
6 for(j=5;j<x_size-5;j++){
7 x = r[i][j];
8 if (x>0 &&(/*compare x*/)){
9 corner_list[n].info=0;

10 corner_list[n].x=j;
11 ...
12 n++;
13 }
14 }
15 }

Fig. 2. The same loop using tls clause
and taskloop

Fig. 3. Performance of loopV using ordered depend and taskloop-tls

speed-ups (with respect to sequential execution) of loopV (compiled with Clang
and linked against the Intel OpenMP runtime) for the following cases: (a) when
using ordered clause (left); and (b) when using taskloop and the proposed
tls clause (right). Speed-ups measurements were performed in a quad-core Intel
Skylake machine with TSX-NI support (Fig. 2).

As shown, the ordered serializes the execution of the iterations resulting in
performance degradation due to the synchronization overhead. In the case of
taskloop tls, TLS is used to parallelize the loop dividing the iterations to be
executed speculatively in tasks, producing an improvement of 12%.

In this paper we make the following contributions:

– We propose a novel OpenMP clause (Sect. 3) that extends the taskloop con-
struct and enables the programmer to parallelize (may) DOACROSS loops
using TLS.

– We evaluate the taskloop tls clause. The initial experimental results
(Sect. 5) shows the effectiveness of our proposed clause. We further compare
against parallel for tls implemented in [19].
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This paper is divided as follows. Section 2 describes the background to intro-
duce our proposal. Section 3 details the design and implementation of the new
clause tls. Benchmarks, methodology and settings are described in Sect. 4.
Section 5 evaluates the performance of the clause. Section 6 discusses work related
to this paper. Finally, Sect. 7 concludes the work.

2 Background

This section presents related works and the main concepts used in this paper:
Task-based Parallelism, Transactional Memory, and Thread-Level Speculation.

2.1 Task-Based Parallelism

In this model the execution can be modeled as a directed acyclic graph, where
nodes are tasks and edges define data dependencies between tasks. A runtime
system schedules tasks whose dependencies are resolved over available worker
threads.

To explore task-based programming models, OpenMP and Intel TBB are
increasing their popularity thus confirming that the task abstraction is an intu-
itive construct. StarSs programming model family introduces the ability to
extract task parallelism in the presence of data dependencies. These models use
programmer annotations of input and output operands to tasks (kernel func-
tions) to construct an inter-task data dependence graph dynamically. Calls to
tasks are checked at runtime for dependencies by analyzing the addresses of their
parameters and by using programmer annotations [4].

At runtime, task creation code packs the kernel code pointer and the task
operands and puts them in the task pipeline; in this way, the generating thread
can continue creating additional tasks. The pipeline decodes task dependencies,
generates the dependence graph, and schedules tasks when they are ready [16].

OpenMP Tasks. Tasks in OpenMP are blocks of code that the compiler
envelops and provides to be executed in parallel. Tasks were introduced to
OpenMP in version 3.0 [2]. In OpenMP 4.0 [13] were introduced the depend
clause and the taskgroup construct, and OpenMP 4.5 introduced the taskloop
construct [13]. Like work-sharing constructs, tasks must be created inside of a
parallel region. To spawn each task once, the single construct is used. The
ordering of tasks is not defined, but there are ways to specify ordering: (a) with
directives such as taskgroup and taskwait; and (b) with task dependencies
(depend clause). The depend clause takes a type (in, out, or inout) followed by
a variable or a list of variables. These types establish an order between sibling
tasks. A taskwait clause waits for the child tasks of the current task. taskgroup
is similar to taskwait but it waits for all descendant tasks created in the block.

The taskloop construct was proposed in [24] and allows parallelizing a loop
by dividing its iterations into a number of created tasks, with each task being
assigned to one or more iterations of the loop. The grainsize clause specifies
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how many iterations are assigned for each task and the number of tasks can
be calculated automatically. OpenMP brings another clause called priority to
specify the level of priority of each task used by the runtime scheduler [13].
taskloop is compliant with the parallel for construct, the main difference is
the lack of schedule clause in the taskloop [17].

2.2 Transactional Memory

Transactional memory (TM) was proposed as architectural support to make
lock-free synchronization as efficient as conventional parallelization approaches
based on mutual exclusion [6]. TM simplifies parallel programming by enabling
a mechanism to ensure the consistency of shared data. Transactional memory
systems must provide transaction atomicity and isolation, which require the
implementation of the following mechanisms: data versioning management, con-
flict detection, and conflict resolution [11]. In Transactional Memory, version
management decides where new (speculative) and old data are stored. Conflict
detection determines whether two operations executed in separate transactions
cause a conflict, i.e. if they access a common memory location and at least one
of the operations is a write. Conflict detection can be eager (detection is done
immediately when the conflict occurs) or lazy (detection is done when transac-
tions attempt to commit) [11]. A conflict causes at least one of the transactions
involved in the conflict to abort and it may re-execute. Other actions could
also be carried out to support a conflict-resolution policy. Resolution can hap-
pen eagerly when the conflict occurs or lazily when the transaction attempts to
commit.

Intel TSX-NI. Intel TSX-NI provides developers an instruction-set interface
to specify transactional execution [8] with two software interfaces: Hardware
Lock Elision (HLE) and Restricted Transactional Memory (RTM). The RTM
is an instruction-set extension that includes the instructions xbegin, xend, and
xabort. When a transaction aborts, the state of the program immediately before
the xbegin instruction is recovered, all speculatively written data are dismissed,
and the values stored in registers are rolled back to their values prior to the
transaction. The execution restarts at a program point specified by the address
given as argument to the xbegin instruction. Data written transactionally are
not visible to other transactions until the transaction commits by executing the
xend instruction.

Intel TSX-NI does not guarantee that a conflict-free transaction will commit.
Aborts may be caused by excess transactional reads or writes, conflicts due to
false sharing, and instructions that cause aborts (e.g. system calls). All data
conflicts are detected at the granularity of the 64-byte cache line because the
implementation of TSX uses the L1 data cache to track transactional states
using physical addresses and the cache coherence protocol.
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2.3 Thread-Level Speculation

Torrellas defines Thread-Level Speculation (TLS) as an environment where exe-
cution threads operate speculatively, performing potentially unsafe operations,
and temporarily buffering the state that they generate in a buffer [25]. Then,
the operations of a thread are declared to be correct or incorrect. If they are
correct, the thread commits; if they are incorrect, the thread is rolled back and
typically restarted from its beginning. The term TLS is most often associated to
a scenario where the goal is to parallelize a sequential application. However, in
general, TLS can be applied to any environment where speculative threads are
executed and can be squashed and restarted [25].

When a compiler cannot prove that a loop can be executed in parallel but it
can estimate with high probability that the loop iterations will be independent
at runtime, it can schedule the parallel execution of the loop speculatively. A
mechanism is then necessary to detect when a dependence does occur at runtime
and to re-execute the loop iterations that were compromised. This technique
is known as Thread-Level Speculation. TLS has been widely studied [21–23].
For performance, TLS requires hardware mechanisms that support four primary
features: conflict detection, speculative storage, in-order commit of transactions,
and transaction roll-back. However, to this day there is no off-the-shelf processor
that provides direct support for TLS. Speculative execution is supported, how-
ever, in the form of Hardware Transactional Memory (HTM) available in proces-
sors such as the Intel Core and the IBM POWER. HTM implements three out
of the four key features required by TLS: conflict detection, speculative storage,
and transaction roll-back. And thus these architectures have the potential to be
used to implement TLS.

3 Our Proposal

This section presents the proposed extension to OpenMP that enables program-
mers to easily annotate loops that should speculatively execute explicit tasks
generated by taskloop. This extension allows programmers to parallelize may
DOACROSS loops and to tune parameters such as strip size to improve perfor-
mance.

3.1 Use of the Clause

The use of the tls clause for tasklooop is syntactically similar to the grainsize
clause, thus they are mutually exclusive and should not appear on the same
taskloop directive. The syntax is the same of taskloop:

#pragma omp taskloop tls(strip size) [clause[[, ] clause] ... ]
for-loops
where:

– clause can be any clause allowed for taskloop except grainsize and
num tasks.
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– strip size is the number of iterations assigned to each speculative task gener-
ated by taskloop. In compiler parlance, it is said that the loop is partitioned
into strips, and thus this size is often called the strip size of the loop.

1 #pragma omp parallel num_thread(N_CORES)
2 #pragma omp single
3 #pragma omp taskloop tls(STRIP_SIZE) shared(glob,A) firstprivate(n)
4 for (i = INI; i < n; i++) {
5 if (cond)
6 glob++;
7 else
8 glob=i;
9 A[i]= glob*i;

10 }

Fig. 4. Code using OpenMP taskloop and tls clause

1 int next_strip_to_commit=INI;
2

3 #pragma omp parallel num_thread(N_CORES)
4 #pragma omp single
5 #pragma omp taskloop grainsize(1) shared(glob,A) firstprivate(n)
6 for (i = INI; i < n; i+=STRIP_SIZE) {
7 int speculative = BEGIN(&next_strip_to_commit,i)
8 // if speculative is 1, the explicit task starts a transaction T which runs STRIP_SIZE

speculative iterations
9

10 for (int ii=i; ii < n && ii - i < STRIP_SIZE; ii++) {
11 // previous loop body replacing i with ii
12 }
13

14 END(speculative, &next_strip_to_commit, i);
15 next_strip_to_commit+=STRIP_SIZE;
16 }

Fig. 5. Resulting code converted to standard OpenMP

3.2 Implementation of the Clause

Clang 4.0 was adapted to generate the AST(Abstract Syntax Tree) to support
the new clause. For the following discussion consider Fig. 5, which shows the
OpenMP translated code from Fig. 4. The translation mechanism consists of the
following steps:

(a) Create a new int variable called next strip to commit which is shared for
the construct and controls the order of transaction commits. This variable
is initialized to the value of the first iteration, INI in this case (Line 1);

(b) Set grainsize to 1 (Line 5). Now it is the tls clause that controls the chunk
of iterations that each explicit task will execute;

(c) Create variable ii (private for the construct) and apply strip mining trans-
formation to the loop using ii and a size of strips equal to STRIP SIZE (Lines
6 and 10). The resulting loop body of the inner loop, i is replaced by ii;
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(d) Insert a call to the BEGIN function at the entry of the loop body (Line
7). At runtime, each explicit task created by taskloop will execute the
BEGIN function, thus the task will create a transaction T that encapsu-
lates STRIP SIZE speculative iterations. The size of the strip is specified as
parameter of the clause;

(e) Insert a call to END function at the end of the loop body (Line 14). Thus,
the task will try to commit the transaction T if all task with previous strips
have already committed and no conflict is detected, otherwise the task will
abort and re-start T ;

(f) Insert a statement to increment next strip to commit by STRIP SIZE and
thus enable other tasks to commit (Line 15).

3.3 How the Clause Works

The parallel construct creates a team of OpenMP threads that execute the
explicit tasks created by taskloop. The number of threads in the example is
equal to the number of physical cores because, as explained in previous work [18],
to achieve performance in TLS it is necessary to bound each software thread
to one hardware thread since it avoids aborts due to the interference between
threads when executing on the same core. With the single construct, the
taskloop construct is executed by only one of the threads in the team. This
thread encounters the taskloop which partitions the iterations of the loop into
explicit tasks which are scheduled at runtime to be executed by the team of
threads.

The data environment of each generated task follows the data-sharing
attribute clauses defined in the taskloop construct. For the example, variables
glob and A are declared as shared and variable n as firstprivate. Other vari-
ables are shared by default. The grainsize clause is set to 1 because if a value
greater than 1 is defined the performance degrades since more transactions are
created and therefore aborted by the task. As explained in previous work [20],
the overhead of starting, finishing and aborting transactions is high.

Figure 6 shows some possible executions of the taskloop tls for the loop of
Fig. 4, more details about how coarse-grained TLS is implemented on HTM can
be found in previous work [18].

The order of creation of tasks is not specified in OpenMP. The taskloop con-
struct does not include a schedule clause, although it was proposed by Teruel
et al. [24]. Therefore, the scheduling of tasks completely depends on the run-
time. When using threads, TLS takes advantage of a schedule similar to static
because it has to be ensure the in-order commits of transactions (Fig. 6a–b).
When static is defined in the schedule clause, for parallel for for exam-
ple, the iterations are divided into chunks of a specified size, and these chunks
are assigned to threads in a round-robin (in the order of thread numbers) and
monotonic fashion (in the increasing iteration order). Similarly, depending on
the loop and the load balancing of iterations, dynamic could work well in TLS
but just in a monotonic way.
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(a) static scheduling running on Intel
Core (TSX-NI)

(b) static scheduling running on IBM
POWER

(c) Actual task scheduling running on Intel Core (TSX-NI)

Fig. 6. Possible execution flows of Fig. 4 with STRIP SIZE=1 and N CORES=4

However, no kind of schedule is implemented for taskloop in OpenMP. This
fact could cause a loss of performance in TLS for taskloop since the scheduling
could be non-monotonic (Fig. 6c), meaning that explicit tasks executing higher
iterations could be scheduled before than lower ones. Hence, transactions exe-
cuted by explicit tasks of higher iterations will abort by ordered inversion—a kind
of abort where a transaction that completes execution out of order is rolled-back
using an explicit abort instruction (xabort) [20].

For instance, Fig. 6a shows how taskloop tls could work if the tasks were
scheduled in a static fashion like used in the thread-level model in OpenMP.
Thus, it is similar to parallel for tls proposed in [19]. Nevertheless, as men-
tioned before the task-level model relies on the runtime scheduler to distribute
tasks onto cores and thus enabling load balancing and work stealing. In this way,
no scheduling policy has been integrated and a more realistic execution flow is
shown in Fig. 6c.
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Table 1. Loops extracted from cBench applications.

Loop ID Benchmark Location Function/Method %Cov Invocations

A automotive bitcount bitcnts.c,65 main1 100% 560

E automotive susan s susan.c,725 susan smoothing 100% 22050

H automotive susan e susan.c,1117 susan edges 18% 374

I automotive susan e susan.c,1056 susan edges 56% 374

V automotive susan c susan.c,1614 susan corners 7% 782

Aborts by order inversion are a problem when using TLS on TSX-NI due
to the lack of suspended transactions as previous works showed [20]. How-
ever, the problem is exacerbated in task-parallelism model by a possible non-
monotonic scheduling as shown in Fig. 6c. A solution for this problem would be
to implement a schedule clause for taskloop (as proposed in [24]) that supports
monotonic:dynamic modifier.

The problem of aborts caused by order inversion is mitigated in IBM POWER
since this architecture implements instructions to suspend and to resume a trans-
action which can be used to implement ordered transactions (Fig. 6b). This fact
can be exploited by the task scheduler because OpenMP tasks can then be
suspended. The idea would be to force a task scheduling point inside the non-
transactional fragment that implements ordered transactions in a task T1 gener-
ated by taskloop tls, thus the thread executing T1 may switch to another task
T2. T1 would be suspended but the transaction executing the assigned iterations
would not be aborted. Thus, parallelism could be increased because other tasks
would be executed instead of only waiting. In the example of Fig. 6b, iterations
9 or 10 could be executed in the range of time that Thread 2 is waiting.

4 Benchmarks, Methodology and Experimental Setup

The performance assessment in this work reports speed-ups and abort/commit
ratios (transaction outcome) for the taskloop-tls and for-tls [19] paralleliza-
tions of may DOACROSS loops1 from the Collective Benchmark (cBench) bench-
mark suite [5] running on Intel Core. For all experiments the default input is used
for the cBench benchmarks. The baseline for speed-up comparisons is the serial
execution of the same benchmark program compiled at the same optimization
level. Loop times are compared to calculate speed-ups. Each software thread is
bounded to one hardware thread (core). Each benchmark was run twenty times
and the average time is used. Runtime variations were negligible and are not
presented.

Loops were annotated with the proposed clause taskloop tls, following
the syntax described in Sect. 3. They were then executed using an Intel Core

1 Small %lc. ordered results in performance degradation respect to serial execution
for these loops [10].
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Table 2. Characterization and TLS execution of loops.

Loop noitucexEnoitaziretcarahCpooL
ID N %lc Average Iteration Speculative taskloop-tls parallelfor-tls

Size Privatization ss Speed-up ss Speed-up
A 1125000 0% 12 B Reduction 502 1.71 502 1.77
E 600 0% 14 B Array 25 1.03 15 1.70
H 442 0% 3 KB Array 1 2.14 1 3.06
I 444 0% 4 KB Array 1 1.08 2 1.55
V 440 34% 1 KB Scalar 4 1.12 1 1.14

i7-6700HQ machine, and their speed-ups measured with respect to sequential
execution. Table 1 lists the loops used in the study. The table shows (1) the ID
of the loop in this study; (2) the benchmark of the loop; (3) the file/line of the
target loop in the source code; (4) the function where the loop is located; (5)
%Cov, the fraction of the total execution time spent in the loop; and (6) the
number of invocations of the loop in the whole program.

This study uses an Intel Core i7-6700HQ processor with 4 cores with 2-way
SMT, running at 2.6 GHz, with 16 GB of memory on Ubuntu 16.04.6 LTS
(GNU/Linux 4.4.0-146-generic x86 64). The cache-line prefetcher is enabled by
default. Each core has a 32 KB L1 data cache and a 256 KB L2 unified cache. The
four cores share an 6144KB L3 cache. The benchmarks are compiled with cus-
tomized Clang 4.02 at optimization level -O3 and with the set of flags specified in
each benchmark program. Code compiled by clang -fopenmp was linked against
the Intel OpenMP Runtime Library. To guarantee that each software thread is
bound to one hardware thread (core), the environment variable KMP AFFINITY
is set to granularity=fine,scatter.

5 Experimental Results

The features used to characterize the loops are shown in the first part of Table 2:
(1) N , the average number of loop iterations; (2) %lc, the percentage of iterations
that have actual RAW loop-carried dependencies (excluding dependencies due
to reduction operations) for the default input; and (3) the average size in bytes
read/written by an iteration. The parameters in the right side of Table 2 describe:
(1) the type of privatization within each transaction used in TLS implementa-
tion [19]3; (2) ss, the strip size used for the experimental evaluation of taskloop
tls; (3) the average speed-ups with four threads for taskloop tls; (5) the ss
for for tls; and (6) the speed-ups for for tls.

For loop A and V, the parallelization with taskloop tls achieves almost the
same for-tls speed-ups when a team with 4 threads is used. When a team with
less than 4 threads is created, the taskloop-tls performance degrades, specially
with 2 threads. The cause of this effect, which we call the lost thread effect, is

2 Clang 4.0 was adapted to generate AST to support the new clause as explained in
Sect. 3.

3 Speculative privatizations described in [19] were implemented manually.
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Fig. 7. Speed-ups and Abort ratios for taskloop-tls and parallel-for-tls execution
on Intel Core (TSX-NI)

4 threads 3 threads
========= =========
Core | Event0 | Event1 | Event2 | Event3 Core | Event0 | Event1 | Event2 | Event3

0 8 K 1029 K 5768 1022 K 0 5 K 1405 K 5792 1394 K
1 391 K 123 K 6649 116 K 1 552 K 12 K 4277 4 K
2 404 K 126 K 6529 119 K 2 594 K 13 K 4595 4 K
3 403 K 126 K 6435 118 K

2 threads
========= Event0: Commits
Core | Event0 | Event1 | Event2 | Event3 Event1: Aborts

0 5 K 2957 K 6232 2939 K Event2: Conflict aborts
1 122 7 7 0 Event3: Order-inversion aborts

Fig. 8. Number of aborts for each thread (core) after executing loop A using taskloop

tls (measured by PCM-TSX [8])

due to the Intel OpenMP Runtime, which schedules one thread (probably the
generator that encounters single) to execute tasks that only manipulates higher
iterations (for example, N−1), thus it aborts due to order inversion all the time as
described in the example shown in Fig. 6c of Sect. 3. To confirm this hypothesis,
we measured the aborts varying the number of threads. The results for loop V
are shown as abort ratios in Fig. 7, and for loop A as number of transactions
aborted for each core in Fig. 8.

In both cases, order-inversion aborts significantly increase as the number of
threads is reduced, specifically the thread bounded to core 0 (the lost thread)
as shown in Fig. 8. It makes sense since when a thread is executing tasks with
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higher iterations, it is necessary that the other threads (executing tasks with
lower iterations) progress quickly to start the commit; however, if there are less
threads in the team, they will progress more slowly and the lost thread will stay
more time aborting due to order inversion. For loop V, Fig. 7 also shows the abort
ratios when parallel-for-tls (static and monotonic schedule) parallelization
is carried out; and, as expected, the abort ratios by any reason decreases as the
number of threads is reduced. For taskloop tls, the abort ratios also decreases
except for order-inversion aborts. In this way, we can see that Intel runtime uses
a non-monotonic scheduling of tasks and the lost-thread effect is analogue in the
other loops, and thus is the main cause to not achieving a better performance
with taskloop tls.

The performance degrades with taskloop tls with a team of only one thread
for the loops E and I—even though no transactions is started—because specula-
tive privatizations of arrays are used. As explained in [19], temporal arrays are
created to avoid false sharing; however, it just generates overhead when only one
thread is executing. Notice also that loop V has actual loop-carried dependen-
cies as shown in Table 2, making the choice of ss a critical decision. taskloop
tls parallelization of this loop uses an ss greater than that of for tls to be
more performant, but a coarser strip increases the probability of loop-carried
dependencies as more iterations could conflict, thus causing the increase of the
conflict-abort ratio.

In general, the implementation of a dynamic and monotonic scheduling
for taskloop could achieve results closer to for tls, or even better, because
taskloop tls can take advantage of the ability of the scheduler to suspend
tasks which could be used in ordered transactions implemented with the sus-
pend/resume instructions (POWER PC) to increase task parallelism. We intend
to investigate this hypothesis in future works.

Furthermore, as explained in previous works, coarse-grained TLS algorithm
results in a poor performance for actual DOACROSS loops (%lc= 100%) due
to the large conflict-abort ratios [10,12,19]. Thus, DOACROSS techniques (e.g.
ordered) perform better than TLS for this kind of loops [10].

6 Related Work

Salamanca et al. use TLS to speculate a (strip-mined) iteration and perform
conflict detection and resolution at the end of the iteration to detect RAW
dependence violations [18,20]. They describe how speculation support designed
for HTM can also be used to implement TLS [18]. They focused their work on
the impact of false sharing and the importance of judicious strip mining and
privatization to achieve performance. They also provide a detailed description of
the additional software support that is necessary for both the Intel Core and the
IBM POWER8 architectures to enable TLS. Moreover, in [19], they also pro-
pose a implementation of fine-grained TLS and explain how to implement it on
HTMs. Furthermore, they introduce an OpenMP extension to enable the imple-
mentation of coarse-grained TLS in [19]. This paper extends [19] by providing
programmers a new clause to parallelize loops using taskloop tls.
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Teruel et al. propose a worksharing-like construct called taskloop that dis-
tributes iterations of a loop in explicit tasks thus increasing opportunities for
exploiting parallelism. They present an initial evaluation that demonstrates that
the construct improves performance for some, but not all, applications [24]. This
paper extends taskloop by enabling the speculative parallelization of tasks gen-
erated by the construct.

Podobas et al. study performance differences between parallel for and
taskloop constructs. They introduce an efficient implementation for load bal-
ancing of task-loop iterations. They show that their taskloop implementation
achieved an improvement of 3.2% when compared to parallel for.

XL C/C++ compiler for BG/Q supports a speculative for directive to
speculatively parallelize for loops [7]. Aldea et al. propose to augment OpenMP
capabilites by adding Sofware-based Thread-Level Speculation (STLS) support
through a new STLS runtime library and a new clause called speculative to
ensure the order of loop-carried dependencies [1]. This paper also proposes an
extension to OpenMP—the clause tls for taskloop—that supports the specifi-
cation of a loop strip size.

7 Conclusions

This paper introduces a novel clause to OpenMP, taskloop tls, that enables
programmers to parallelize may DOACROSS loops using speculative task exe-
cution without imposing any significant burden. The parameter to specify strip
size in the clause allows for selecting suitable strip mining strategies for TLS.
Moreover, a preliminary evaluation of the performance of the clause was carried
out, comparing it against for tls and providing interest insights on the issues
in the task scheduler of Intel runtime that limit performance.

Acknowledgments. The authors would like to thank the anonymous reviewers for
the insightful comments. This work is supported by FAPESP (grants 18/07446-8 and
18/15519-5).
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Abstract. The demand for calculating many small computation kernels
is getting significantly important in the HPC area not only for the tradi-
tional numerical applications but also recent machine learning applica-
tions. While many-core accelerators such as GPUs are power-efficient
compute platforms, a large amount of code modification is required.
Batched kernel APIs such as batched BLAS can schedule numerical ker-
nels efficiently on the target hardware while it still needs manual code
modification. In this paper, we propose a code translation technique to
generate batched kernel APIs in a high-level programming model. We
use OpenMP task parallelism to specify dependency among numerical
kernels. The user adds the task directives to specify tasks so that the
compiler can recognize numerical kernels. The compiler detects conven-
tional numerical kernels in the code and creates a unique batch ID for
each kernel. When the task runtime detects tasks with the same batch
ID, they are merged into a batch. The current implementation supports
NVIDIA GPUs and batched BLAS in cuBLAS. DGEMM kernels can be
detected and translated into batched DGEMM. A trivial DGEMM loop
and blocked Cholesky decomposition code are used for performance eval-
uation. The evaluation result shows that batched DGEMM improves the
performance when the matrix size is small and the number of DGEMM
kernels is large. The time for DGEMMs in blocked Cholesky decompo-
sition is 4 times faster than sequential execution when using batched
DGEMM (4096× 4096 matrix, tile size 128), however the overall perfor-
mance is improved 36% because of task/batch management overhead.

Keywords: OpenMP · Task parallelism · Accelerator · Batched BLAS

1 Introduction

Numerical applications such as calculating large linear algebra problems can be
decomposed into smaller kernels. For example, a large matrix-matrix multiplica-
tion can be solved by calculating multiplication of their submatrices. With the
growth of machine learning, researchers find that some Artificial Intelligent (AI)
c© Springer Nature Switzerland AG 2019
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applications generate hundreds of independent computation kernels of small data
size, as a result, the demand for calculating a large number of small computation
kernels is getting significantly important in the High Performance Computing
(HPC) area. Many researches have been conducted to handle this situation effi-
ciently with many architectures including current many-core accelerators.

Accelerators with many-core architecture such as GPUs are widely used in
HPC since increasing the number of cores is an efficient way to build an energy
efficient hardware. High-performance numerical libraries such as Basic Linear
Algebra Subprograms (BLAS) are widely used to program those accelerators.
Since these libraries are carefully designed to achieve high performance on the
target architecture, it is often the best choice to use them if it can program
the target application. Since each routine is designed to use the entire hard-
ware resources, it cannot exploit the parallel architecture of current many-core
accelerators with small data sizes.

The batched kernel Application Programming Interface (API) such as
batched BLAS provide a programming interface to gather multiple compute
kernels and calculate them in a single task, called a batch. The implementa-
tion of batched APIs for many-core architectures are designed to exploit the
target parallel architecture by scheduling compute kernels on multiple cores. It
requires code modification such as translation from the conventional kernel API
(e.g. BLAS DGEMM, matrix-matrix multiplication in double precision) into the
batched kernel API (e.g. batched DGEMM). How to rewrite the code depends
on the target architecture because there is no standard specification or high-level
programming model for batched kernel APIs.

The aim of our research is to invent a code translation technique from con-
ventional numerical kernel APIs into the batched versions. We use OpenMP
task parallelism to provide a high-level programming model for this purpose.
OpenMP has been the de facto standard for thread-level parallel programming.
In the early version of the OpenMP specification, data parallelism is the only
way to exploit the performance of the target parallel architecture. OpenMP
directives such as parallel for describe work sharing of loops with the global
synchronization after the parallel execution. Along with the trend of many-core
architecture, synchronization overhead gets bigger and load imbalance among
cores causes significant performance degradation. Dynamic task parallelism has
been introduced in OpenMP 3.0 to deal with imbalanced workload. In OpenMP
4.0, dependency among tasks can be specified using the depend clause.

The rest of the paper is organized as follows: Sect. 2 shows related work. In
Sect. 3, we give a brief overview of batched BLAS and its interoperability with
OpenMP. In Sect. 4, we propose a code translation technique for batched kernel
APIs by using OpenMP task parallelism. After that, we show how our imple-
mentation translates OpenMP task directives into batched kernel API function
calls. In Sect. 5, two benchmark codes are evaluated using batched BLAS in
NVIDIA cuBLAS. Finally, we discuss the future work and conclude the paper
and in Sect. 6 (Fig. 1).
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Fig. 1. Calculating multiple DGEMM kernels in a loop

2 Related Work

Task parallelism can exploit potential parallelism in irregular applications and
reduce synchronization overhead by fine-grain synchronization among dependent
tasks [6,7,9]. Watanabe et al. [12] has investigated the trade-off between the
matrix size and the number of DGEMM kernels, which has inspired us to use
batched kernel APIs with OpenMP tasks.

Batched BLAS is the only batched kernel API currently available at the time.
Intel Math Kernel Library (MKL) [5] implements batched BLAS for Intel CPU
architectures. The NVIDIA CUDA programming environment provides its own
BLAS implementation, named cuBLAS [8] for their GPU architectures. cuBLAS
has batched BLAS kernel APIs including batched DGEMM. One of the difficul-
ties in using batched BLAS is that there is no standard specification. Relton et al.
[11] have compared several batched kernel APIs to establish a standard API for
batched BLAS. Dongarra et al. [2–4] have proposed a batched BLAS interface
for solving linear algebra kernels which can be decomposed into smaller sub-
matrices. The effort is extended to cover whole BLAS APIs supporting various
architectures including general-purpose CPUs and many-core accelerators. These
researches have been conducted to provide a standard for batched kernel APIs,
which still requires manual code modification. There is no programming model
to generate batched kernel code from high-level description such as OpenMP
directives.

3 Batched APIs on Accelerators

This section gives a brief overview of batched kernel APIs. We have chosen
batched BLAS as the target API, however the code translation technique itself
is general and can be adapted to other APIs.

Listing 1 shows an example code that uses cuBLAS with NVIDIA GPUs.
The code calculates multiple DGEMM kernels in a loop. If we can assume that
each kernel is independent to the others, we can make them calculated in parallel
by using existing parallel programming models (Fig. 3).

Figure 2 shows parallel execution on a GPU using various programming mod-
els. Assume that there is a workload that can be divided equally into multiple
smaller chunks. When the user writes a sequential code, each workload will be
processed sequentially on the GPU (1 in Fig. 2).
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Fig. 2. Parallel execution on a GPU

Fig. 3. Calculating multiple DGEMM kernels with batched BLAS API

To write a parallel code, the first choice would be OpenMP. The user can
add the parallel for directive to the loop statement so that the workload will
be distributed onto CPU cores (2 in Fig. 2). However, the performance will not
be improved by this approach. It is because that the execution of DGEMM
kernels are serialized in the same GPU stream even if each kernel is invoked by
a different host thread1. If you are using CPUs and BLAS routines such as Intel
MKL, OpenMP can make DGEMM kernels executed in parallel on the target
CPU and the performance will be improved.

Batched APIs can solve this problem. Listing 3 shows an example code of
batched DGEMM in cuBLAS. The main difference between cublasDgemm() and
cublasDgemmBatched() is that the batched version takes the lists of array point-
ers as arguments. batched DGEMM in cuBLAS exploits GPU architecture by
using parallelism in a batch. Each independent DGEMM kernel in a batch is
scheduled on separate GPU cores (3 in Fig. 2) so that the computation time will
be reduced2.

1 The target directive cannot deal with this situation because cuBLAS routines should
be called from the CPU side and it offloads the calculation onto the GPU internally.

2 Another choice is using multiple streams on GPUs by modifying code with CUDA
APIs. Since there is no standard high-level programming interface, the code modifi-
cation requires deep understanding of target GPU architecture and significant coding
time.
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Fig. 4. Blocked Cholesky decomposition code in OpenMP task

Batched BLAS in CUDA has some drawbacks: first, it cannot describe par-
allelism among different kinds of numerical kernels, second, it still requires code
modification from conventional cuBLAS routines to the batched version. The
aim of the research is to provide a high-level programming model to generate
batched kernel APIs for offloading accelerators (Fig. 4).

4 Design of Task-Based Batched Code Generation

In this section, we explain how the compiler generates batched kernel APIs from
OpenMP task directives. We suppose that the user describes the application with
numerical library routines in the C language and OpenMP directives. The target
architecture is general offloading accelerators such as GPUs, where thread-level
parallelism on the host side does not improve the performance.

4.1 Overview of the Programming Model

Listing 4 shows an example code which implements blocked Cholesky decom-
position. The code uses OpenMP task parallelism with cuBLAS routines which
calculate linear algebra kernels of submatrices. As you can see in the Listing 1,
some applications have obvious parallelism so that the use can easily make it
executed in parallel by using traditional data parallelism. In that case, the user
can use batched kernel APIs manually as shown in Listing 3.

On the other hand, there are some applications which the traditional app-
roach cannot be easily applied to Cholesky decomposition in Listing 4 consists
of tasks with irregular dependency. Dependency among tasks is described by
depend clauses, which can be shown as Fig. 5. In Fig. 5, kernels in the same row
are independent to the others. Even they can be calculated in parallel, it is not
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Fig. 5. Task dependency graph in blocked Cholesky decomposition

that obvious for the user to find and gather them into a batch by using batched
BLAS manually.

Our approach is that the OpenMP compiler detects pre-registered numerical
kernels in tasks and makes a batch instead of the user. The later part of the
section consists of two parts: code translation that the compiler detects pre-
registered kernels and the runtime implementation that makes batches from the
detected tasks.

4.2 Code Translation

We have implemented the task directive using the Omni compiler infrastruc-
ture [10], which provides source-to-source code translation. A sequential code
written in the C language with OpenMP directives is translated into a C code
with OpenMP runtime function calls. Listing 6 shows the generated code trans-
lated from Listing 43. The compiler translates the task directive into its runtime
function, task create(). The target code region of the task is translated into a
function and its pointer and arguments are given to the runtime function. When
it has a depend clause, the values in the clause are also given to the runtime
function.

If the target code region only contains a numerical kernel, it will be a candi-
date for batch creation. The compiler has API information about batched BLAS.
At the time the compiler can detect cuBLAS DGEMM routines in a task. If the
compiler finds a DGEMM routine, it creates a unique batch ID for each batched
BLAS routine. The first argument of task create() indicates a batch ID. If it
is 0, the function call will not be merged into a batch. When it has a value
3 The code is simplified to make it easy to understand.
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Fig. 6. Transleted OpenMP Cholesky decomposition code

more than 0, the function call will be merged into a batch with the same num-
ber. The IDs should be unique when DGEMM routines use different values as
arguments, which requires compiler analysis. For simplicity’s sake, the current
implementation creates the same ID 1 for every DGEMM (Fig. 6).

4.3 Runtime Implementation

Merging detected DGEMMs into a batch is done at runtime. Figure 7 shows
that how the OpenMP task runtime is modified for batched kernel APIs. The
OpenMP task runtime has a task queue where tasks are scheduled after resolving
dependency and ready for execution. How to select a next task from the task

Fig. 7. Modified task runtime for batched kernel APIs
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queue depends on the scheduling algorithm of the runtime implementation. We
added a new queue in the task runtime, named batch queue as shown in Fig. 7.

Before resolving dependency, the runtime works as usual regardless of its kind
(DGEMM or non-DGEMM task). The task runtime selects a queue to put a task
when its dependency has been resolved and ready for execution. If the task does
not include a pre-registered numerical kernel (DGEMM), it is scheduled to the
task queue as usual.

When the task has only a registered numerical kernel and is given a batch
ID by the compiler, it is scheduled to the batch queue. The task is merged into
a existing batch when there is a batch which has the same batch ID. Runtime
has information about batched DGEMM and knows how to translate the argu-
ments of conventional DGEMM routines for batched DGEMM. For example, the
pointer of array A, B and C are merged into the pointer arrays for the batched
DGEMM. If there is no existing batch, a new batch is created and scheduled
into the batch queue.

Batch has the same structure with the OpenMP task so that it can be sched-
uled and executed by the task runtime. Batch task in the batch queue is not
scheduled if there is a ready task in the normal task queue. When the task
queue is empty, the task runtime takes a batch task from the batch queue. This
is for delaying batch execution until there is enough tasks in a batch. By using
this scheme, all independent DGEMMs in the same row in Fig. 5 can be merged
into a single batch.

We used Argobots [1] which has been being developed by Argonne National
Laboratory to implement our task runtime. Argobots provides programming
interface to create user-level lightweight threads implemented upon OS thread
library. The current runtime implementation creates a single thread when cre-
ating batches from OpenMP tasks. This is because we assumed that multiple
CPU threads does not improve the single stream GPU performance4. Another
reason is that it is easier to estimate the performance breakdown.

5 Performance Evaluation

In this section, we evaluate our OpenMP implementation by using two bench-
mark codes. The first benchmark is DGEMM loop that calculates multiple
DGEMMs in a loop statement. The second benchmark is blocked Cholesky
decomposition already shown in Listing 4. Table 1 shows the evaluation envi-
ronment. We used a NVIDIA Tesla K20 GPU as an offloading accelerator and
cuBLAS in CUDA 9.1 (Fig. 8).

5.1 DGEMM Loop

Listing 8 shows a synthetic benchmark code which calculates independent
DGEMM kernels. Each DGEMM kernel is implemented by cuBLAS DGEMM.

4 Actually it improves the performance as shown in Sect. 5.
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Fig. 8. DGEMM kernels in OpenMP task

Fig. 9. Performance of DGEMM loop

Although it is a simple benchmark, it is useful to show the ideal case that most
of the kernels in the application are merged into a single batch.

Figure 9 shows the performance of DGEMM loop. ser shows the perfor-
mance of sequential execution. thread is the performance of CPU-threaded
OpenMP task execution (2 in Fig. 2) using the normal OpenMP runtime. 16
threads are created for the evaluation. batch is the performance of the modified
OpenMP runtime creating batched DGEMM. In this case, a single thread man-
ages tasks/batches and executes all of them. The performance basically shows
the performance of batched DGEMM since all DGEMM kernels are merged into
a single batch at runtime. When the matrix size is small (16×16 and 32×32), the
performance has been improved by batched DGEMM with a large number of ker-
nels. When increasing the matrix size, the performance gap between sequential

Table 1. Evalustion environment

Item Name/Value

CPU Intel (R) Xeon (R) CPU E5-2680, 2 sockets

8 cores with HT, 2.70 GHz

Memory DDR4 64 GB

GPU NVIDIA Tesla K20

Back-end Compiler Intel Compiler 18.0.3

CUDA Library CUDA 9.1 with cuBLAS
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Fig. 10. Performance of blocked Cholesky decomposition

execution and batched DGEMM becomes smaller. This is because each DGEMM
kernel can exploit entire GPU architecture so that batched DGEMM does not
have performance advantage. Note that the performance with normal OpenMP
runtime (thread in Fig. 9) shows the better performance than sequential exe-
cution. This is because some internal processes in the DGEMM kernel can be
overlapped by multi-threading and reduce the synchronization time between
CPU and GPU.

5.2 Blocked Cholesky Decomposition

Unlike the DGEMM loop, blocked Cholesky decomposition has less parallelism
and irregular dependency. It can show more practical usage of the runtime imple-
mentation. We used the blocked Cholesky decomposition code shown in Listing 4
for the evaluation. It decomposes the entire matrix into smaller square matrices
(tiles). tile size in Listing 4 indicates the size of the tiles. Each DGEMM kernel
calculates the matrix-matrix multiplication of two tiles.

Figure 10 shows the performance of the blocked Cholesky decomposition
code. ser, thread, batch has the same meaning with the labels in Fig. 9. We have
increased the matrix size while fixing the tile size, which increases the number of
tiles (increases the number of DGEMM kernels eventually). When the tile size
is small, batched DGEMM shows better performance in some cases but lower
than sequential execution with the large matrix size. When we increase the tile
size, which makes the DGEMM calculation bigger, batched DGEMM shows the
best performance in most cases.

Figure 11 shows the performance breakdown of some cases in Fig. 105. dgemm
and dgemm batch shows the performance ratio of conventional/batched DGEMM
kernels. math shows the ratio of non-DGEMM BLAS kernels and the LAPACK
potrf kernel. system shows the ratio of the remaining execution time, which is
mainly the runtime overhead including task scheduling and batch generation.

5 thread is not given in this Figure. Since it is hard to estimate because of overlapped
calculation among CPU threads and is not the main topic of the research.
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Fig. 11. Performance breakdown: blocked Cholesky decomposition

4096-32 shows the case of matrix size 4096 and tile size 32. It is the case
that has the most numerous DGEMM kernels in Fig. 10. The execution time of
DGEMM kernels is reduced from 11.8s to 0.27s as batched DGEMM can exploit
the GPU hardware using the large number of small DGEMMs. The reason of per-
formance degradation when using batched runtime comes from the task/batch
management overhead. The system overhead dominates the total execution time
in batch runtime because the DGEMM calculation time is relatively small com-
pared to task/batch management.

In the case of 4096-64 and 4096-128, we have increased the tile size while
fixing the matrix size. It decreases the total number of DGEMM kernels and
makes each DGEMM kernel calculation bigger than the case of 4096-32. As a
result, we can see that the ratio of system overhead becomes smaller. Although
the effect of using batched DGEMM becomes lower than the small matrices, the
case of 4096-128 shows the most improved performance because of low system
overhead.

From the evaluation result, we can see that the DGEMM performance has
been improved by the modified task runtime. However, the runtime achieves
poor performance when there is many small computations because of the sys-
tem overhead increases in proportion to the number of tasks. Currently, we are
implementing multi-threaded runtime to create/manage tasks and batches in
parallel to reduce the overhead.

6 Conclusion

In this research, we have proposed the task generation techniques for batched
kernel APIs on accelerators. The performance evaluation using a NVIDIA GPU
shows that modified OpenMP runtime can improve the performance when there
is moderate number of mergeable tasks. While the current implementation is
focused on GPUs and the BLAS DGEMM routine, the task generation tech-
niques can be adapted any kind of offloading accelerators and batched kernel
APIs.
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We are currently investigating the following features to improve our compiler:

– batching frequently used level-3 BLAS routines
– multi-threaded runtime to reduce task/batch management overhead
– multi stream implementation for task parallelism on GPUs
– batch scheduling among multiple GPUs
– cooperate task scheduling on both CPU and GPU.
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Abstract. Task-based programming models are excellent tools to par-
allelize and seamlessly load balance an application workload. However,
the integration of I/O intensive applications and task-based program-
ming models is lacking. Typically, I/O operations stall the requesting
thread until the data is serviced by the backing device. Because the
core where the thread was running becomes idle, it should be possible
to overlap the data query operation with either computation workloads
or even more I/O operations. Nonetheless, overlapping I/O tasks with
other tasks entails an extra degree of complexity currently not managed
by programming models’ runtimes. In this work, we focus on integrat-
ing storage I/O into the tasking model by introducing the Task-Aware
Storage I/O (TASIO) library. We test TASIO extensively with a custom
benchmark for a number of configurations and conclude that it is able to
achieve speedups up to 2x depending on the workload, although it might
lead to slowdowns if not used with the right settings.

Keywords: Task-based programming models · I/O · OmpSs-2 ·
OpenMP · HPC

1 Introduction

In the road to exascale, it is essential to ensure the most efficient use of hardware
resources. The increasing number of cores and hardware threads in modern com-
puters requires an extra effort for application programmers to properly distribute
work among cores. In particular, the penalization for not properly balancing an
application workload is aggravated given that a single core in the application’s
critical path is able to keep all the other cores idle until its work finishes.

Programming models have proven to be a powerful tool to ease the processes
of parallelizing applications regardless of their use case. Notably, task-based pro-
gramming models are especially suitable to perform transparent load balancing
by simply adjusting the size and/or number of tasks. However, because of its gen-
erality, programming models refrain from specifying use cases for I/O intensive
applications.
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I/O intensive applications have a huge impact on the system’s resource usage.
Typically, I/O operations require of operating system assistance to interface with
a particular hardware device. Such devices are slower than the main processing
units which force the thread issuing the I/O request to either continuously poll
for the completion or to block inside the operating system. In the first case,
power and time is wasted in not truly productive work. In the second case, the
core becomes idle allowing other system threads to run on it. However, because
I/O operations are usually more expensive than the system’s threads computing
requirements, most of the time the core will be idling anyways. Typically, this
problem is solved by using asynchronous functions to avoid the thread block-
ing on the operation. However, the application’s design complexity increases
substantially when trying to combine asynchronous calls with task-based pro-
gramming models effectively.

OmpSs-2 is a task-based programming model (see Sect. 2.1) whose runtime is
“asynchronous-aware”, which means that provides an interface to register tasks
performing asynchronous operations. In order to make use of such interface, in
this paper we present a new library named TASIO which replaces synchronous
I/O system calls by their asynchronous counterparts and notifies the runtime to
schedule other tasks on the core while the operation is being serviced.

Hence, in this article we present the following contributions: (1) We propose
the TASIO library to enable the conversion of synchronous to asynchronous
operations and integrate it with “asynchronous-aware” runtimes (2) We present
a task-based synthetic benchmark which simulates interleaved computation and
I/O workloads and (3) We explore the results space of the synthetic benchmark
for a number of configurations and detail the conclusions learned.

2 Background

2.1 The OmpSs-2 Programming Model

OmpSs-2 [6,9] is a task-based programming model developed at the Barcelona
Supercomputing Center (BSC) with the objective of early-testing novel features
for the tasking model that might influence the development of the OpenMP
programming model [2,7]. The main focus of OmpSs-2 is in both asynchronous
parallelism and device heterogeneity (distribute work among different devices
such as systems’ cores, GPUs, and FPGAs). The source to source Mercurium
compiler and the Nanos6 runtime are the BSC’s implementation of the OmpSs-
2 model. Mercurium translates source code pragmas into Nanos6 library calls
while Nanos6 manages the application’s execution flow at runtime.

In a task-based programming model, all units of parallelism are expressed as
tasks. A task is an enclosed sequence of instructions specified by the developer
that must be executed sequentially. Multiple tasks can be executed in parallel
as long as all their dependencies have been fulfilled. Dependencies express which
data is required by tasks to perform its computation and which data it produces.
Dependencies are expressed simply by specifying which variables a task uses as
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input, output or both. The actual execution sequence of tasks is determined by
the runtime.

2.2 Linux Kernel Asynchronous I/O Interfaces

Synchronous I/O requests typically block1 while the request is being processed.
Instead, asynchronous I/O requests are intended to avoid blocking by separating
the operation into two parts: submission of the request and check for completion.
There are two standard implementations for asynchronous I/O in modern Linux
machines: The Linux Kernel native AIO and the POSIX AIO.

The Linux Kernel native asynchronous I/O interface [3] consists in a set of
system calls to submit and monitor I/O requests independently from the set
of typical synchronous system calls. AIO requests are submitted in a context 2

created beforehand. When the submission operation returns, it is possible to
check for the request status and to explicitly block until any of the requests
in the context have finished. The POSIX AIO, instead, simulates Kernel AIO
support by simply delegating synchronous I/O operations to a pool of threads.

Similarly to the synchronous approach, it is likely that the submission of
an asynchronous request is completed just after it is submitted because of the
effects of the page cache. For this reason, Linux AIO is only useful when the page
cache is bypassed (non-buffered I/O). However, there are other system specific
factors that might prevent the AIO requests to actually be asynchronous such as
filesystem limitations. For instance, the ext4 filesystem mandates that the AIO
operation should not modify the file metadata [4] such as when enlarging a file
due to a write operation.

3 Related Work

Scientific application codes have historically used custom thread implementa-
tions to manage parallelism. Because these applications are usually complex and
moving from the classic thread paradigm to a task-based solution is not usually
simple, most of them refrain from changing their parallel scheme. Also, storage
I/O has been traditionally implemented in sequential bursts due to constraints
associated with legacy hard disks. Moreover, asynchronous I/O usually imposes
strict constraints that are not always easy to meet. In consequence, there is not
much literature focusing on the interaction of task-based programming models
and asynchronous parallel I/O at the node level.

However, the Message Passing Interface (MPI) library is widely adopted and
previous research exists on overlapping MPI communications with computation
in task-based programming models. The Task-Aware MPI library (TAMPI) [10]

1 The operation might return immediately, i.e. not block, if the system page cache
already holds the requested data in the case of reads or if the page cache has enough
free space as to defer the operation for a later time in the case of writes.

2 A context is basically a queue of requests.
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tackles the problem of overlapping network communications with other work-
loads. It uses the OmpSs-2 pause/resume, external events and polling services
APIs (see Sect. 4) to minimize the time cores are idling while communicating
over network. The TASIO library presented in this paper is highly inspired by
TAMPI.

4 Computation and I/O Overlapping with OpenMP and
OmpSs-2

I/O operations usually rely on blocking system calls that stall the execution of
work in cores. On task-based programming models, this entails a performance
degradation because runtimes are not aware of when cores became idle and hence,
are not able to run other tasks on them while I/O is being serviced. A common
technique to overlap I/O and computation is to run asynchronous I/O opera-
tions instead of blocking ones. Yet the integration of asynchronous calls with
task-based programming models is usually tedious. Task-based programming
models work on the abstraction of data dependencies and execution flow. Data
consumed or generated asynchronously needs to be tracked by the dependency
system which means that a task must generate or consume the data. Nonethe-
less, asynchronous operations need to be checked for completion by either polling
or callback, but neither of them are trivial to wrap within a task.

This section explores the proposals of both the OpenMP and OmpSs-2 pro-
gramming models and it introduces the TASIO library based on the OmpSs-2
APIs.

4.1 OpenMP

The OpenMP 5.0 specification [8] introduces the detach clause to the task con-
struct with the purpose of delaying the completion of a task (possibly) long
after its body has been executed. To complete a task with a detach clause it is
necessary to, on the one hand, run it and, on the other hand, mark its event
object (provided within the detach clause) as completed using an OpenMP API
call. A task submitting an asynchronous operation will define the consumed or
generated data in its dependencies and those will only be released when the task
finishes. However, the task will not be completed until the code responsible to
check for the asynchronous completion operation marks the associated detach
event as satisfied.

The OpenMP specification gives complete freedom to the developer to decide
how and when the completion checking code should be run. When working with
frameworks providing callback support such as CUDA, running the OpenMP
detach completion function is simple. However, when polling or blocking is
needed the user needs to create its own thread and care must be taken to pre-
vent this thread from overlapping with the computation of the other OpenMP
threads.
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4.2 OmpSs-2

OmpSs-2 features two APIs3 to deal with blocking operations:
The pause/resume API allows to pause the execution of the current task and

to resume it later on. Pausing deschedules the current task and returns control
back to the runtime which is able to run other tasks in the core where the first
task was running. Once a task is paused, the next task could be run either on
the same thread as the previous task or on a new thread. In the first case, the
stack of the paused stack becomes buried below the stack of the next task and,
hence it cannot be resumed until the second task finishes. This could lead to a
deadlock for tasks that use two-sided messages APIs such as MPI, therefore, the
Nanos6 runtime implements the second approach because of its genericity.

The external events API does not stop the execution of a task, but it simply
delays the release of its dependencies until all registered events have been fulfilled
(similarly to the OpenMP detach clause). In other words, during the execution
of a task, a number of events can be registered within Nanos6. Even if the task
code finishes, it will not unblock the tasks that depend on this task until all
events are satisfied. In consequence, asynchronously requested data cannot be
used inside the same task that requests it, because its fulfillment is likely to
occur after the task body is finished.

Both APIs rely on the OmpSs-2 polling services API to periodically run a
user-registered function within Nanos6. This function is run at strategic points
to avoid disturbing other tasks. A possible use case for this functions is to poll
for completion of registered asynchronous events. The exact method to check
for completion depends on the kind of submitted asynchronous operation and
is the (library developer) user responsibility to code. Once a completion event
is detected, the polling function must either resume a task (in case using the
pause/resume API) or decrement the event counter (for the external events
API).

4.3 The Task-Aware Storage I/O (TASIO) Library

The TASIO library is similar to the TAMPI library; it provides both blocking
and non-blocking APIs through OmpSs-2. The basic functionality is shown in
Fig. 1.

The TASIO blocking API (which uses the OmpSs-2 pause/resume API)
defines wrappers for the pread(), pwrite(), preadv() and pwritev() syscalls
(all Linux Kernel native AIO supported syscalls) which transparently call the
asynchronous version of the intercepted syscall instead of the original one when
applications are linked against it. After TASIO submits an AIO request it checks
whether it has immediately completed or not and, if it is the case, the wrapper
returns immediately as well. Otherwise, it sets the current task to the list of
blocked tasks and transfers control to the runtime. The runtime is then able to
execute other tasks in the current core while the I/O operation is being resolved.

3 The low level details of such APIs can be consulted in [10].
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In this work, we focus on studying the pause/resume OmpSs-2 implementa-
tion that relies on creating extra threads on task pause because as explained in
Sect. 4.2 it is the most generic one. However, it is worth noting that the storage
I/O does not suffer from the network I/O constraints and, therefore, would also
work on the extra-thread-free version.

The TASIO non-blocking API (which uses the OmpSs-2 external events API)
defines its own ta pread(), ta pwrite(), ta preadv() and ta pwritev() that
behave as the pause/resume variant but instead of blocking the current thread
it increments a task event counter and return immediately after submitting the
AIO request.

At startup, TASIO registers a polling function within the Nanos6 runtime
through the polling services API. Once a previously submitted asynchronous
I/O request is completed, the polling function will retrieve it and either unlock
the associated task if submitted through the pause/resume API or decrement
its event counter for the external events API. The maximum amount of AIO
petitions that TASIO can withstand at the same time is configured at 1000
by default. If at some point the maximum number of requests is reached, the
offending request sleeps for 1ms and tries again4.

Fig. 1. TASIO runtime execution flow example on a single core system.

It is worth noting that because TASIO uses the Linux Kernel AIO inter-
face, all submitted I/O operations must be non-buffered and comply with the
O DIRECT constraints as explained in Sect. 2.2.

4 Smarter techniques could be used, but because this is a corner case we have simplified
it for now.
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Finally, we would like to point out that both TASIO and TAMPI can be
combined in the same application and, in fact, this approach could be extended
to other blocking mechanisms as long as asynchronous submission and non-
blocking polling for completion mechanisms are supplied.

4.4 OpenMP and TASIO/TAMPI Support

OpenMP support could be added to both the TASIO and TAMPI libraries (TAL
hereinafter) non-blocking API by relying on the detach clause but it would not be
possible to implement the TAL blocking API without a compatible pause/resume
API. Nonetheless, there are three implementation limitations that would affect
the non-blocking API performance and/or slightly increase its complexity.

First and foremost, an additional thread would have to be created and man-
aged by TAL to poll for AIO completions. The user would need to configure the
thread’s polling rate or at least be aware of the default one. However, as explained
in Sect. 4.2, a runtime-aware completion thread would be more efficient.

Second, the OpenMP detach object has boolean semantics. Therefore, keep-
ing track of multiple AIO submissions within a task requires an external counter.
Also, a mechanism would be needed to associate detach objects and counters,
such as a private TAL hash table. Even though, it would be particularly complex
to combine multiple I/O functions of different task-aware non-blocking libraries
within the same task because counters would be private per library. Keeping
track of the number of requests within the detach OpenMP object and release
its dependencies when zero is reached would simplify this detail.

And third (a minor detail), the user would need to feed the task context
(detach object) to TAL functions when needed. OpenMP does not currently
provide any means to obtain such context through an API call and therefore,
it is not possible to retrieve it within TAL. However, adding such an API call
within OpenMP should not be complex and would simplify the interface.

5 Experimentation

The TASIO exploitable benefits are highly dependent on the test environment.
More precisely, it depends on the storage device, the number of cores and the
application’s I/O pattern. To cover as many cases as possible, we decided to
implement a synthetic benchmark which we used to perform a deep scan on a
number of configurations.

5.1 The Task I/O Meter Benchmark (TIOM)

The Task I/O Meter Benchmark (TIOM) is a simple OmpSs-2 application that
interleaves computation and I/O operations wrapped in tasks. The number of
tasks, I/O block size per task, computation time per task and I/O pattern is
configurable. I/O operations are performed on a user file and computation work is
simulated by busy waiting in a loop. There are four main modes of operation that



Introducing the Task-Aware Storage I/O (TASIO) Library 281

simulate different application’s I/O patterns. Each mode creates a configurable
amount of “task series” that can be completely run in parallel to other series. A
task series is a chain of tasks that are bound by their dependencies.

In the mix mode, each task performs both computation and I/O, in this order.
The 1to1 mode is similar, but computation and I/O are separated in different
tasks bound with dependencies. In the fjio (fork-join I/O) and fjc (fork-join
computation) modes, computation and I/O are also performed in separated tasks
but, in fjio, each computation task depends on four I/O tasks and each I/O
task depends on a single computation task. The fjc mode is similar to fjio but
interchanging I/O per computation tasks.

The mix and 1to1 modes define an interleaved sequence of computation and
I/O operations. However, only mix actually enforces this sequence. Instead, the
more fine-grained 1to1 might allow sustaining more I/O operations in flight if a
core happens to run multiple I/O tasks of different series instead of consistently
alternating I/O and computation of the same series (as long as there are more
task series than cores).

The modes fjio and fjc consider the case of unbalanced amounts of I/O
and computation tasks. fjio mode is particularly interesting as it allows to
sustain more I/O requests per core when TASIO is in use. As long as the disk
bandwidth is not saturated, running an I/O task with TASIO appears to be free
because immediately after submitting the AIO requests, the runtime is able to
run another task. The more I/O tasks that can be run sequentially in the same
core, the more I/O petitions in flight the system will have a chance to optimize
and process. When a computation task is encountered, the core is “stalled” and
no more I/O requests can be issued from there until the task finishes. When the
storage device is saturated, the TASIO effect is to only queue more I/O tasks and
to run computation tasks earlier. However, when no more tasks are available,
cores will idle until I/O petitions complete.

5.2 Test Environment

All tests have been run in a single node of Intel’s Scalable System Framework
(SSF) “Cobi” machine which features two Xeon E5-2690 v4 sockets with a total
of 28 cores (56 hardware threads), 32 KiB L1i and L1d caches, 256 KiB L2 cache,
35840 KiB L3 cache, 128 GiB at 2400 MHz of main memory, a 960 GB SSD Intel
Optane 905P [5] used for the tests I/O operations and a SATA SSD which holds
the system installation. The Linux kernel version is 4.10 and core frequency
scaling is disabled system-wide.

SSD Optane 905P Profiling. We have profiled the Intel’s 905P Optane SSD
maximum random read and write speeds using the Flexible I/O tester (fio) [1].
The used fio configuration runs 56 threads (one per hardware thread) which
issue up to four AIO requests of 4 KiB and 1 MiB. The results obtained in the
1 MiB configuration closely resembles the official device specifications for sequen-
tial Read 2600 MB/s (2579.5 MiB/s) and sequential write (up to) 2200 MB/s
(2098 MiB/s) as shown in Table 1.
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Table 1. Intel 905P Optane SSD throughput in MiB/s for block sizes of 4KiB (left)
and 1MiB (right) and up to four (1, 2, 3, 4) AIO petitions in flight

Block size 4KiB 1MiB

AIO depth 1 2 3 4 1 2 3 4

Rand write 2255 2277 2285 2285 2278 2282 2283 2285

Rand read 2265 2264 2264 2264 2548 2548 2547 2547

5.3 Results

We have run the TIOM benchmark for all combinations of computation time
ranging from 1 ms to 128 ms with block sizes ranging from 4 KiB to 8 MiB in
power of two steps. We have repeated this sequence for sequential read, sequen-
tial write, random read (rr), and random write (rw). Also, we have run the
experiments using two configurations for the maximum number of tasks that
can be run in parallel at the same time (this directly affect the number of task
series as described in 5.1). The configurations correspond to 128 and 256 which
roughly corresponds to twice and four times the number of hardware threads
respectively. Each configuration is repeated for the four TIOM operation modes
mix, 1to1, fjio, fjc, except for sequential read and write tests which were run
only for the mix mode. Three versions of TIOM are benchmarked: a standalone
version, a version preloaded with TASIO in blocking mode (bq) and a version
linked with TASIO in non-blocking mode (nb). Each test finishes when a 20 GiB
file has been processed entirely (hence, the number of both I/O and computation
tasks depends on the specified block size) and four repetitions are executed per
configuration. However, we limited the execution time to 60 s for each repetition.

Figures 3 and 4 show speedup for a selected subset of relevant mix and fjio
configurations respectively. We are not showing the results for fjc and 1to1
because they did not prove to be relevant enough. In fjc, simulated computation
is throttling too much I/O for TASIO to be effective, and in 1to1, the results are
quite similar to mix. Figure 2 shows bandwidth readings for both of the presented
modes. The z-axis of all graphs either shows bandwidth (bw) readings in MiB/s
for the standalone version or speedup (sp) readings in percentage achieved when
comparing the standalone version with either the blocking (bq) or non-blocking
(nb) versions. The left axis shows computation time in milliseconds and the right
axis shows block size in KiB. White areas are close to 0% speedup, green areas
to positive speedup and red areas to slowdown. Bandwidth graphs have their
own coloring scheme.

The bandwidth graphs of Fig. 2 show that read operations are mostly able to
saturate the disk consistently once the ratio block size

comput time ≥ 64 is achieved. Write
operations also reach the maximum speed rated by the manufacturer, but fail
to keep it up as the block size increases.

As can be seen in both speedup Figs. 3 and 4, small blocks followed by long
computation time lead to an underused storage device which is shown as a white
triangle with its right angle pointing to the reader. As expected by the Amdahl’s
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law, when computation far extends the I/O needs of an application, there is no
point in using TASIO as the improvement is minimal.

Because read operations easily saturate the disk, we can only see the effect of
using TASIO in the narrow and leaning diagonal region that drives the disk from
underusage to saturation. Hence, TASIO non-blocking version is generally help-
ing to saturate the disk in these cases. However, the blocking version sometimes
leads to slowdown, quite likely because of the overhead introduced by creating
and managing extra threads.

The difficulties presented to achieve sustained saturation throughput in write
operations give TASIO the slack needed to actually improve the application
performance. All write graphs show three common peculiarities: the first is,
similarly to read operations, a diagonal of improvement that coincides with the
device saturation ramp. The second is a moderate wavefront present after the
diagonal for the biggest blocks which overlaps the throughput decrease seen in
the bandwidth graphs. The third and last is a prominent peak standing at the
smallest computation time values and between approximately 32 and 128 KiB
that usually ranges between 40% and 80% but that it eventually reaches up to
100% of speedup in cases such as Fig. 3c.

Sequential I/O operations are slightly faster than random I/O operations.
This leads to more room for TASIO to bring the device to saturation in the
random case. In consequence, TASIO is, in general, able to achieve more per-
formance (around 5% increase) on the random I/O case. However, we are not
showing the sequential I/O graphs because of their similarity with the random
case. It is worth noting that a few sequential read tests reported slowdown around
15%.

Although both TASIO modes achieve considerable speedups, the non-
blocking mode is generally more efficient than the blocking mode. For instance,
compare Fig. 3a with c or b with d. This is particularly true when a high degree
of parallelism is present (256 parallel I/O tasks) and enough outstanding I/O
requests are available as seen when comparing the fjio tests Fig. 4e with f. This
makes sense as the higher the number of parallel tasks, the bigger the number of
threads that are needed to processes more I/O operations in-flight, which leads
to more overhead to manage them. Instead, no extra threads are required in non-
blocking mode because tasks are not paused inside a thread context (blocking
the entire thread), but tasks are detached of threads and remain in a “zombie”
state until its associated pending events finishes.

Because write operations are more interesting than read operations (in this
particular environment) from the TASIO point of view, Figs. 3 and 4 only show
random write tests when using 256 parallel tasks series. Read tests generally
reported either minor speedup or slowdown when increasing parallelism. More
parallelism means more overhead and because read improvements are limited,
overhead exceeds the margin for improvement.
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As mentioned before, the results obtained in both 1to1 and mix modes are
quite similar. In practice, 1to1 tasks might be executed in a similar sequence
as to how they would have been in mix mode, so there is not much difference
appreciated. The fjio results shown in Fig. 4 achieve the highest speedups for
specific write cases as seen in Fig. 4f, but also show consistent slowdown regions.
In general, this mode performs poorly on read operations such as in Fig. 4b,
hitting slowdown mostly in blocking mode but also in the non-blocking one.

Fig. 2. TIOM storage I/O bandwidth tests for the standalone version. The upper axis
shows bandwidth in MiB/s, the left axis shows simulated computational time in ms
and the right axis shows block size in KiB.
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Fig. 3. TIOM tests for mix mode. The upper axis shows speedup, the left axis shows
simulated computational time in ms and the right axis shows block size in KiB.
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Fig. 4. TIOM tests for fjio mode. The upper axis shows speedup, the left axis shows
simulated computational time in ms and the right axis shows block size in KiB.
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6 Conclusions and Future Work

In this work, we have explored the state of the art of techniques to integrate
storage I/O with the tasking model. We have presented the TASIO library to
exploit such techniques in the context of read and write system calls and we
have done exhaustive testing using a custom benchmark.

Both the blocking and non-blocking TASIO APIs have proved to improve
the performance of the benchmark in most cases, although the blocking version’s
performance suffers due to the extra thread management overhead. Hence, the
use of the library is encouraged but a previous analysis is needed to determine
whether the application characteristics meet both TASIO and the system’s AIO
requirements which, in summary, are: (1) the application uses the disk intensively
but (2) it is not already saturating it and (3) it does not benefit from the system’s
page cache and (4) I/O operation’s meet the alignment and length requirements
imposed by direct I/O and, finally, (5) there is enough computation work to be
overlapped with I/O operations.

The exact parameters that fully exploit the library benefits are highly depen-
dent on the system, with a primary focus on the number of cores, the storage
device throughput and its capacity to sustain multiple parallel I/O requests. But
for the particular set case tested in this work, we have found out that TASIO is
able to achieve performance improvements between 40% and 80% (with peaks of
up to 100%) for write operations of around 32 KiB to 128 KiB interleaved with
computation blocks of 1ms, but also speedups between 10% to 40% for block
sizes greater than 1 MiB run along computation tasks of any of the tested dura-
tions. The benefits of read operations are more discrete and its scope is limited
to the narrow transition that leads to disk saturation, but still, a 20% speedup
is easily achievable when moving in this ranges. However, the question remains
of which points that have been explored are really relevant to real applications.

Regarding our future work, we intend to test TASIO with real applications
and to study the combined effect with the TAMPI library. We also plan to test
an extra-thread-free TASIO blocking version.
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Abstract. The Density Matrix Renormalization Group (DMRG++) is
a condensed matter physics application used to study superconductiv-
ity properties of materials. It’s main computations consist of calculat-
ing hamiltonian matrix which requires sparse matrix-vector multiplica-
tions. This paper presents task-based parallelization and optimization
strategies of the Hamiltonian algorithm. The algorithm is implemented
as a mini-application in C++ and parallelized with OpenMP. The opti-
mization leverages tasking features, such as dependencies or priorities
included in the OpenMP standard 4.5. The code refactoring targets per-
formance as much as programmability. The optimized version achieves a
speedup of 8.0× with 8 threads and 20.5× with 40 threads on a Power9
computing node while reducing the memory consumption to 90MB with
respect to the original code, by adding less than ten OpenMP directives.
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1 Introduction and Related Work

Nowadays the High Performance Computing (HPC) community is focusing on
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actors, i.e., more powerful and efficient systems from architects, more flexible
and scalable programming models and system software and, last but not least,
applications that can exploit all the parallelism and computing power.

From the system architecture point of view, and looking at the current top
systems in the top500 list, they are pushing into two clear directions: hetero-
geneous accelerator-based (e.g., GPUs) and many-core systems. Also, from the
programming models and system software point of view, the efforts go to more
flexible approaches [9,12], e.g., the tasking model in OpenMP.

Looking into scientific applications, their development pushes towards two
directions: their scientific field and their performance [7]. For this reason, pro-
grammability is crucial, since applications cannot be written from scratch each
time the architecture where they run changes. To avoid this, they must rely on
programming models and runtime systems [10].

In this paper, we will focus on optimizing a critical computational kernel, a
Hamiltonian sparse matrix-vector multiplication, of the Density Matrix Renor-
malization Group (DMRG++) application parallelized with OpenMP, which is
currently a directive-based de-facto standard to program a shared memory pro-
gramming model. We present an alternative parallelization with OpenMP using
the tasking model to improve its performance and memory consumption, and at
the same time maintain its programmability.

The optimization has been an iterative process of performance analysis, code
optimization, and evaluation. This process ensures that we target the main
source of inefficiency and we improve the performance with each change. We
prove the benefits of our approach evaluating it on a POWER9 cluster hosted
at Barcelona Supercomputing Center (BSC) since the objective of this research
is to improve the performance of DRMG++ on the Summit supercomputer at
the Oak Ridge Leadership Facility (OLCF)1, that has the same architecture.

The main contribution of this paper is not only the optimization of the
DMRG++ mini-application using the OpenMP tasking model, but also, the
demonstration that the tasking model has huge benefits with very irregular
applications concerning their load imbalance, offering a flexible, powerful and
performant yet easy approach to parallelize code. The work presented in this
paper can be considered a best practice or guide for programmers when dealing
with similar problems.

The remaining of this document is organized as follows: Sect. 2 introduces the
DMRG++ application and its scientific background, how the mini-application
has been extracted, the original code and its main performance issues. In Sect. 3
we describe the environment in which the experiments have been conducted
both in hardware and software terms and explain step by step the optimizations
performed in the code and their impact. Finally, in Sect. 5 we will summarize
the conclusions we extract from this work.

1
World’s fastest and smartest supercomputer with a theoretical performance of 200 petaflops at
Oak Ridge National Laboratory as of Novemeber 2018.
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2 Application Context and Background

The Density Matrix Renormalization Group (DMRG) algorithm, used in this
work, is the preferred method to study quasi-one-dimensional systems. Strongly
correlated materials are at the heart of current scientific and technological inter-
est. These are a wide class of materials that show unusual, often technologically
useful, electronic and magnetic properties, such as metal- insulator transitions
or half-metalicity.

DMRG++ is a fully developed application that has been written entirely at
Oak Ridge National Laboratory [4–6], and uses a sparse-matrix algebra compu-
tational motif for the simulation of Hubbard-like models and spin systems. By
bringing DMRG++ to Exascale, condensed matter theorists will be able to solve
problems such as correlated electron models of ladder geometries as opposed
to just chain geometries, and multi-orbital models instead of just one-orbital
models.

As an on-ramp to porting the DMRG++ application to OpenPOWER, a
mini-application capturing the core algorithmic and computational structure of
the application (Kronecker Product) was developed as the foundation for the
exascale-ready implementation of DMRG++. In [8], the authors use OpenMP
for on-node parallelization to manage the node complexity, by exploiting various
“programming styles” in OpenMP 4.5 [13] (such as, SPMD style, multi-level
tasks, accelerator programming and nested parallelism).

One goal of DMRG++ is to compute the lowest eigenvalue λ (which is related
to the “ground-state” energy of the system) and the eigenvector Ψ of the full
Hamiltonian (Hfull) with N sites

HfullΨ = λΨ, or λ = minimizev �=0
v′Hfullv

v′v
(1)

where the unit norm vector attaining the minimum value of Rayleigh quotient λ
is eigenvector Ψ . The full Hamiltonian can then be written as Kronecker product
of operators on left and right

Hfull = HL ⊗ IR + IL ⊗ HR +
K∑

k=0

Ck
L ⊗ Ck

R (2)

where HL(HR), IL(IR), CL(CR) are the Hamiltonian, identity, and interaction
operators on the left (right).

The critical computational kernel in DMRG++ for computing the lowest
eigenvector is the evaluation of matrix-vector products of the Hamiltonian matrix
(Hfull) in an iterative method such as the Lanczos algorithm.

2.1 Mini-application Code Structure and Initial Analysis

The DMRG++ mini-application (Kronecker Product) consists of 12k lines of
C++ code parallelized with OpenMP. The mini-application comes with three
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input sets, each one representing a typical problem size (small, medium and
large) of the real application (solving real science). The original parallelization
of the mini-application is shown in Listing 1.1, which consisted of three OpenMP
nested loops.

Fig. 1. Data layout in the Ham-
iltonian Matrix and computa-
tion for DMRG++

Figure 1 shows the data layout and main
computations performed in the Kronecker Prod-
uct. The Hamiltonian matrix is a 2-D matrix
with each cell consisting of two, 1-D vector of
vectors (A’s and B’s). The length of each of
the vectors in a cell will be same, but will dif-
fer across the cells. The length of each element
in vector’s A and B, determines the sparsity
or the density of the cell in the Hamiltonian
Matrix. By property of the Hamiltonian Matrix
in DMRG++, the data is primarily associated
in the principal axis of the matrix and the den-
sity of the cells increase as we move closer to the center of the matrix, and the
sparsity of the cells increase as we move away from the primary diagonal. This
data layout gives rise to a significant load imbalance across the entirety of the
matrix.

In Fig. 2, we can see a trace obtained from an execution of the mini-
application with the second parallel pragma active (corresponding to jpatch).
The x axis represents the time, and the y axis OpenMP threads, 40 in this case.
The color indicates the duration of useful computation bursts; dark blue rep-
resents high values, whereas light green shows low computation, and the white
areas represent idle time due to lack of parallelism or load imbalance. The bot-
tom plot outlines the total number of actives threads as a function line, with
values ranging between 1 and 40 in this figure and all the following ones.

1 #pragma omp paral le l for schedu le ( dynamic , 1 )
2 for ( int ipatch=0; ipatch<npatches ; ipatch++){
3 std : : vector<double> YI( v s i z e [ ipatch ] , 0 . 0 ) ;
4 #pragma omp paral le l for schedu le ( dynamic , 1 ) reduct ion ( vec add : YI )
5 for ( int jpatch=0; jpatch<npatches ; jpatch++){
6 std : : vector<double> YIJ ( v s i z e [ ipatch ] , 0 . 0 ) ;
7 #pragma omp paral le l for schedu le ( dynamic , 1 ) reduct ion ( vec add : YI )
8 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ){
9 std : : vector<double> Y tmp( v s i z e [ ipatch ] , 0 . 0 ) ;

10 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
11 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
12 int has work = (A−>nnz ( ) && B−>nnz ( ) ) ;
13 i f ( ! has work ) continue ;
14 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y tmp [ 0 ] ) ;
15 for ( int i =0; i<v s i z e [ ipatch ] ; i++) YIJ [ i ] += Y tmp [ i ] ;
16 }
17 for ( int i =0; i<v s i z e [ ipatch ] ; i++) YI [ i ] += YIJ [ i ] ;
18 }
19 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] = YI [ i−i 1 ] ;
20 }

Listing 1.1. Original code

In this trace, one must note that the workload in different parallel loops
(arranged in columns) is not uniform across the execution. We also observe
that the main bottleneck is the load imbalance (marked as the white space on
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Fig. 2. Original code time line showing useful duration (Color figure online)

each column of threads) since the variability of the workload happens within the
parallel loop, too. The important load imbalance within each loop results in very
poor overall efficiency, while in reality, we know there is potential concurrency
between many of these loops. The core of the problem lies at the too synchronous
structure of the parallel do OpenMP construct. We will explore code refactoring
based on medium or coarse grain tasks to expose the potential concurrency.

3 Code Optimization and Evaluation

In this section, we are going to explain the different steps we have taken to
improve the performance of the Kronecker Product mini-app. For each stage, we
include the proposed source code, explain the modifications together with their
motivation, and show the performance evaluation and memory consumption of
that version. The optimization process has been iterative and incremental, and
for this reason, all the new versions are based on modifications from the previous
one and their performance is also compared with it.

3.1 Environment and Methodology

All the experiments have been performed on the CTE-Power cluster [3,15] hosted
at BSC. The cluster consists of 2 login and 52 compute nodes, each of them with
2 IBM Power9 8335-GTH 2.4 GHz processors (20 cores per processor, 4 SMT
per core adding 160 SMTs per node), 512 GB of main memory at 2666 MHz
distributed in 16 dimms and 4 NVIDIA V100 GPUs with 16 GB HBM2 memory.
In all our experiments we have not used the GPUs nor the SMT, therefore we
will use maximum 40 threads per core.

We have used GCC 8.1.0 as C and C++ compiler and its OpenMP run-
time implementation and linked with IBM ESSL 5.4 library. Traces have been
obtained using Extrae 3.5.4 [1,11] and visualized with Paraver [2,14].

All numbers reported (both for time and memory) are the average of 5 inde-
pendent runs of 10 consecutive iterations, to be able to compare all versions
to each other. In all cases, the relative error is below 5%, therefore, we do not
show error bars on the charts for the sake of clarity. All experiments have been
performed in one compute node of CTE-Power.
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3.2 First Taskification

As we have seen from Fig. 2, the main performance issue is load imbalance. The
current parallelization using nested parallelism worsens this problem due to the
implicit barrier necessary at the end of each parallel loop. For this reason, the
first modification of the code consists of removing the nested parallelism and
using a task approach instead. In previous work, Chatterjee et al. [8] already
explored a task version of this Kernel, but there is minimal overlap with this
new version, illustrated in Listing 1.2.
1 #pragma omp paral le l
2 #pragma omp single
3 for ( int ipatch=0; ipatch<npatches ; ipatch++){
4 for ( int jpatch=0; jpatch<npatches ; jpatch++){
5 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
6 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
7 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
8 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
9 int has work = (A−>nnz ( ) && B−>nnz ( ) ) ;

10 i f ( has work ){
11 //Tasks in charge o f dgemms . Red .
12 #pragma omp task depend( inout : Y tmp [ 0 : v s i z e [ ipatch ] ] ) f i rstpr ivate (A,B)
13 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y tmp [ 0 ] ) ;
14 //Reduction ta sks . Green .
15 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) depend( in : Y tmp [ 0 : v s i z e [ ipatch ] ] )
16 {
17 int i l o c a l =0;
18 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
19 delete [ ] Y tmp ;
20 } } } } }

Listing 1.2. First Taskification

We keep only one parallel region (line 1) and add a single region (line 2)
where the tasks will be created. We define two kinds of tasks: a computation
task, that perform dgemm operations, and a reduction task, that accumulates
partial results from the first one into the return array. To pass intermediate
results from a dgemm task to its corresponding reduction task, we use temporal
arrays which are allocated sequentially by the same thread that creates the tasks.
To guarantee the correctness of the program the first task has an out dependence
on the temporary array and the second one has an in dependence. Additionally,
we define an inout dependence on a fraction of the return array to avoid several
tasks reducing on the same portion of Y simultaneously.

Fig. 3. First Taskification: Task Execution Timeline (Color figure online)

Figure 3 shows a trace of this version. In this case, the color represents which
task is being executed by each thread: the computing task is labeled as red
and the reduction task as green. This version allows exploiting more parallelism,
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with many pink tasks running concurrently and avoiding periodic barriers. Nev-
ertheless, we can still see other problems: (a) the duration of computation tasks
has a considerable variability, with some tasks taking 18µs while the average is
150µs, and (b) a single thread must allocate all the buffers before creating the
corresponding task, which adds significant overhead. The second situation can be
better appreciated with the pulsations of the bottom function plot in the figure,
that shows the total number of pending tasks generated. When it starts execut-
ing regions with fine grain tasks, the number of ready tasks decrease quickly,
and there are not enough tasks to fill every thread.

Fig. 4. Original vs first taskification

In Fig. 4, we can observe the
speedup of the Original version with
the nested work sharing and the task-
ified code. On the x axis we plot
the number of OpenMP threads used,
and the y axis shows the speedup
with respect to the First Taskifi-
cation version executed sequentially
(i.e., with no OpenMP pragmas).
Comparing one version to the other,
we can see a speedup of 41.65× with

one thread when using the taskified version, which reveals the huge impact on
the performance introduced by the nested worksharings. We can see the biggest
difference at 20 OpenMP threads, with a value of 457.82×. Comparing the per-
formance of the First Taskification version with respecto to ideal, it goes up to
10.55× using 20 OpenMP threads, which indicates that there is still margin to
improve the performance in subsequent versions. On the other hand, the speedup
of the original code is around 0.045× for 4 threads and above.

Fig. 5. Total memory usage in GB for each version
and different number of threads

In Fig. 5, we observe the
total memory used in GB
by each version depending
on the number of OpenMP
threads used. As we can
see, the memory consump-
tion is not a critical fac-
tor in our situation, but we
want to demonstrate that
this techniques don’t increase
the memory usage. In addi-
tion, memory usage is indeed

a critical factor to scientifics using DMRG++, so porting this changes to the
original application will allow them to use bigger inputs. In the First Taskifi-
cation version since all the buffers are allocated at the beginning, the memory
usage is higher than in the original one, and when using 20 threads the memory
increases from 1.47 GB to 1.64 GB. The rest of versions will be presented in the
following sub-sections.
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3.3 Tasks Distinction Based on Grain Size

In the First Taskification version, we see an issue with the very fine-grained tasks,
which introduce a relevant overhead. To address this, in Tasks’ Size Distinction
version we define 3 kinds of tasks: Fine grain tasks with a low computational
load, will do both the computation and the reduction (line 11); Coarse grain
compute task (line 16); and the corresponding reduction task (line 19). The
decision if a task has a high or a low load is taken based on a threshold that
can be set by the user. The code corresponding to this version can be seen in
Listing 1.3.
1 #pragma omp paral le l
2 #pragma omp single
3 for ( int ipatch=0; ipatch<npatches ; ipatch++){
4 for ( int jpatch=0; jpatch<npatches ; jpatch++){
5 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
6 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
7 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
8 i f (A−>nnz ( ) && B−>nnz ( ) ){
9 i f ( v s i z e [ ipatch ] <= Threshold ){

10 //Create s i n g l e task f o r smal l p i e c e s o f work
11 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) f i rstpr ivate (A, B)
12 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y[ i 1 ] ) ;
13 } else{
14 //Create compute task and reduct ion task f o r l a r g e r p i e c e s
15 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
16 #pragma omp task depend( inout : Y tmp [ 0 : v s i z e [ ipatch ] ] ) f i rstpr ivate (A, B)
17 A−>kron mult ( ‘ n ’ , ‘ n ’ , ∗A, ∗B, &X[ j1 ] , &Y tmp [ 0 ] ) ;
18 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) depend( in : Y tmp [ 0 : v s i z e [ ipatch ] ] )
19 {
20 int i l o c a l =0;
21 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
22 delete [ ] Y tmp ;
23 } } } } } }

Listing 1.3. Tasks’ Size Distinction

Fig. 6. Tasks’ Size Distinction: Task Execution Timeline (Color figure online)

In Fig. 6, we plot a trace showing the behavior of this version. In this case, fine
grain tasks are represented in red, compute tasks in green and reduction tasks
in grey. Using this strategy, the application can exploit more parallelism, and
there is less overhead of task creation, since the average task size has increased
and the total number of tasks has decreased. The function at the bottom shows
how this version can make better usage of the threads, reducing the number of
pulsations from Fig. 3 of First Taskification.

In Fig. 7 (left), we plot the speedup obtained by the Tasks’ Size Distinction
version, which is computed with respect the First Taskification version when exe-
cuted sequentially. As it can be seen, the previous version has a better performance
when using a single thread, due to the if-else structure introduced in Tasks’ Size
Distinction version. Nevertheless, this fact allows for a better scaling, reaching a
speedup of 1.19× and 1.6× when using 20 and 40 OpenMP threads, respectively.
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Fig. 7. First Taskification vs Tasks’ Size Distinction (Left). Tasks’ Size Distinction vs
Priorities (Right)

3.4 Priorities and Buffer Reuse

In this version, we are going to address two problems from the Tasks’ Size
Distinction version: (a) the scheduling of the tasks to improve the performance,
and (b) reusing buffer to improve the memory consumption. The new code is
shown in Listing 1.4. To decrease memory consumption, instead of allocating one
Y tmp array for each task, we allocate a buffer of N arrays (line 1) that are reused
by the different tasks. Each buffer establishes the dependence between compute
and reduction tasks (previously Y tmp), and also creates an anti-dependence
between two compute tasks that use the same buffer.

1 double∗ bu f f e r s [NBUFF] ; // Set o f bu f f e r s to l im i t memory usage
2 #pragma omp paral le l
3 #pragma omp single
4 for ( int ipatch=0; ipatch<npatches ; ipatch++){
5 for ( int jpatch=0; jpatch<npatches ; jpatch++){
6 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
7 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
8 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
9 i f (A−>nnz ( ) && B−>nnz ( ) ){

10 i f ( v s i z e [ ipatch ] <= Threshold ){
11 #pragma omp task depend( inout : Y[ i 1 : i 2 ] ) f i rstpr ivate (A, B) priority (0 )
12 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , &Y[ i 1 ] ) ; //New kron mult c a l l
13 } else{
14 mybuff = next = ( next+1)%NBUFF;
15 int pr i o = v s i z e [ ipatch ] > PrioThreeshold ; //Dynamic p r i o r i t y
16 #pragma omp task depend( inout : b u f f e r s [ mybuff ] ) \
17 f i rstpr ivate (mybuff , ipatch ,A,B) priority ( p r i o )
18 {
19 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
20 bu f f e r s [ mybuff ] = Y tmp ;
21 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , Y tmp) ;
22 }
23 #pragma omp task depend( inout :Y[ i 1 : i 2 ] , b u f f e r s [ mybuff ] ) \
24 f i rstpr ivate (mybuff ) priority (10)
25 {
26 double∗ Y tmp=bu f f e r s [ mybuff ] ;
27 int i l o c a l =0;
28 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
29 delete [ ] Y tmp ;
30 } } } } } }

Listing 1.4. Priorities and Buffer Reuse

Task priorities have also been added to help on improving the schedule of
the tasks (i.e., schedule the bigger tasks first, followed by the smaller ones).
Reduction tasks (line 23) have been assigned with the highest priority, to free
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buffer positions as soon as possible. The coarse grain compute tasks are assigned
a variable priority depending on their workload (line 16).

Fig. 8. Priorities and Buffer Reuse: Task Execution and Task Order Timelines (Color
figure online)

Figure 8 shows a task execution timeline of this version (top), where the task
coloring corresponds to the one in Fig. 6, and the task execution order (middle),
where green stands for older tasks (instantiated early) and blue for younger ones.
We can see the execution of tasks instantiated “late” (dark blue) are intermixed
with the execution of tasks instantiated “early” (light green). Coalescing the
priorities of the tasks as explained earlier, the execution timeline is now more
compact, thereby leveraging more parallelism and almost removing pulsations
of tasks (bottom function plot).

In Fig. 7(right), we plot the speedup obtained of the Priorities and Buffer
Reuse version compared with the Tasks’ Size Distinction. The speedup has been
computed in both cases with respect to the First Taskification version executed
sequentially. One should note that this new version performs better than the
previous one, in particular for a high number of thread count. With 16 OpenMP
threads, the execution is 1.28× faster than the Tasks’ Size Distinction version.
We can also see that the performance improves for 20 and 40 threads, although
it is still far from the ideal one. Despite this fact, this is the first version which
performance improves when using 40 OpenMP threads. Regarding the memory
usage, it has been reduced achieving values equal to the Original version, as
shown in Fig. 5.

3.5 Overlap Iterations

One of the issues detected in the Priorities and Reuse Buffer version is the imbal-
ance at the end of the iteration, produced by the lack of parallelism and coarse
grained tasks that need to be executed at that moment. Taking into account that
the real application performs several iterations of this kernel, overlapping differ-
ent iterations can reduce the impact of the imbalance. To achieve this, we move
the parallel region up to include several iterations, as can be seen in Listing 1.5.
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1 #pragma omp paral le l
2 #pragma omp single
3 for ( int i t s =0; i t s<NITS ; i t s++){
4 //same code from L i s t i n g 1 .4
5 }

Listing 1.5. Overlap iterations

Fig. 9. Overlap Iterations: Task Execution Timeline (Color figure online)

In Fig. 9 we can see a trace of this version including 5 iterations. The color
represents the task being executed: red for fine grain tasks including compu-
tation and reduction, green for coarse grain compute tasks, and grey for
reduction tasks. Although we can visually detect the five iterations, we can
see that the tasks belonging to different iterations are executed concurrently,
thereby increasing the parallelism and reducing the imbalance.

Fig. 10. Priorities vs Overlap It. (Left). Overlap It. vs Nested Tasks (Right)

Figure 10 (left) shows the speedup for the Overlap Iterations version. We can
see that its performance is slightly better than the Priorities version, except in
the case of 40 threads, where it obtains an improved gain of 1.24×. Because the
unbalance increase as we add more threads, we will have a better benefit from
overlapping iterations.

3.6 Nested Tasks

Upon further analysis of the Overlap Iterations version, we observe that grey
tasks, with an average duration of few microseconds, are limiting the scalabil-
ity. To address this issue, we implement a new task decomposition, with two
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levels of tasks. This strategy takes into account that the load only depends on
ipatch.

1 char∗ s e n t i n e l = new char [ npatches ] ( ) ; //Dependence token
2 #pragma omp paral le l
3 #pragma omp single
4 for ( int i t s =0; i t s<NITS ; i t s++){
5 for ( int ipatch=0; ipatch<npatches ; ipatch++){
6 int f i n e g r a i n = v s i z e [ ipatch ] <= Threshold ;
7 //New ex t e rna l task . I t w i l l generate more ta sks based on s i z e o f ipatch
8 #pragma omp task depend( inout : s e n t i n e l [ ipatch ] ) priority (10)
9 for ( int jpatch=0; jpatch<npatches ; jpatch++){

10 for ( int k=0; k<CIJ . c i j [ ipatch ] [ jpatch ] . s i z e ( ) ; k++){
11 Matrix A = CIJ . c i j [ ipatch ] [ jpatch]−>A[ k ] ;
12 Matrix B = CIJ . c i j [ ipatch ] [ jpatch]−>B[ k ] ;
13 i f (A−>nnz ( ) && B−>nnz ( ) ){
14 // F ine g ra in branch . Each task w i l l always take the same path
15 i f ( f i n e g r a i n ){
16 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , &Y[ i 1 ] ) ;
17 } else{
18 double∗∗ bu f f e r = new double ∗ ;
19 #pragma omp task depend( out : bu f f e r ) f i rstpr ivate (A,B, bu f f e r , ipatch ) priority

(0 )
20 {
21 double∗ Y tmp = new double [ v s i z e [ ipatch ] ] ( ) ;
22 bu f f e r [ mybuff ] = Y tmp ;
23 kron mult ( ’n ’ , ’n ’ , A, B, &X[ j1 ] , Y tmp) ;
24 }
25 #pragma omp task depend( inout :Y[ i 1 : i 2 ] )depend( in : bu f f e r ) f i rstpr ivate ( bu f f e r )

priority (5 )
26 {
27 double∗ Y tmp=bu f f e r [ mybuff ] ;
28 int i l o c a l =0;
29 for ( int i=i 1 ; i<i 2 ; i++) Y[ i ] += Y tmp [ i l o c a l ++];
30 delete [ ] Y tmp ;
31 delete [ ] b u f f e r ;
32 } } } }
33 #pragma omp taskwait
34 } } }

Listing 1.6. Nested Tasks

For each ipatch, a single task is created, and inside this task, there are two
paths depending on the threshold of the ipatch size set by the user. If the ipatch
is considered fine grain, then the computation and reduction are computed (line
16). On the other hand, if the ipatch is deemed to be coarse grain, then two
tasks are created: the compute task (line 19) and the reduction task (line 25).
To guarantee that ipatches from different iterations are executed in the correct
order (i.e., they do not overtake each other) a sentinel is used to generate a
dependence (line 8).

Fig. 11. Nested Tasks: Task Execution Timeline (Color figure online)
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In Fig. 11, we can see a task execution timeline of this version with five
iterations overlapped. Here, the external task is red, while grey and green are
the reduction and compute tasks respectively, like in the previous versions.
This version has reduced the number of tasks created and parallelized the tasks’
creation, which reduces the overhead from Overlap Iterations version. However,
it presents a severe imbalance at the end, caused by the creation of tasks near
the end, which limits its performance and will be addressed in future work.

Figure 10 (right), shows the speedup obtained with the Nested Tasks version
over the Overlap Iterations. We can see a slight gain of performance of 1.06× and
1.05× using 8 and 16 OpenMP threads respectively; with 40 OpenMP threads
the gain is even smaller, reaching 1.03×, caused by the big unbalance at the
end of the execution shown in Fig. 11. Besides, this version reduces the memory
usage for all the number of threads, with the higher difference from Original
version at 90 MB when using 40 OpenMP threads, being the best one both in
terms of execution time and memory usage, as illustrated in Fig. 5.

4 Summary and Best Practices

In this section, we summarize all the results obtained by the different optimiza-
tions and we present the lessons learned with this work as some best practices
and guidelines for developers facing similar challenges.

In Fig. 12 we can see the speedup of the different versions presented with
respect to the sequential execution of the First Taskification code. The perfor-
mance of the Original code is not shown because its performance is too far from
the optimized versions to be displayed on the same scale; nevertheless, it can be
found in Fig. 4.

Fig. 12. Performance summary of the different versions

The most important improvement was obtained when adding the tasking
model instead of the nested loop parallelism (585× with 40 threads). The fol-
lowing optimizations provided incremental gain, less spectacular but significant
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in global and especially when scaling to a high number of threads. Comparing
the First Taskification and Nested Tasks versions we observe a speedup of 1,24×
with 8 threads and 3,32× with 40 threads. We conclude that these fine grain
optimizations are necessary when scaling applications to a high number of cores.

The limiting factor of the last version (Nested Tasks) seems to be the NUMA
effect when using two sockets and the late instantiation of some “big” tasks,
leaving a significant load imbalance at the end. As future work, we can try to
mitigate this effect by using higher priorities for tasks that will create more tasks.

The main lesson learned with this work is the potential of the tasking model
to address irregular problems, even for codes with a regular structure with loops,
where a parallel loop construct can be used straight forward. Also, we have
seen the high impact on the performance of synchronizations imposed by the par-
allel construct. We highlight how using clauses like priorities or dependences
to fine tune the parallelization are crucial to achieving good scalability to a high
number of threads while keeping the flexibility of the runtime to schedule them.

5 Conclusions

In this study, we have presented the modifications done to the Kronecker Product
mini-application with the OpenMP tasking model. We have demonstrated the
benefits of using this model, both in terms of performance and programmability
for algorithms with such irregular computation. Besides, this work can be con-
sidered as a best practice for other researchers dealing with similar algorithms,
including uneven workloads, huge imbalances or granularity problems.

Applying the described changes to the mini-application, we report a speedup
of 8.0× with 8 OpenMP threads of the Nested Tasks version with respect to the
serial code and 20.5× with 40 threads. Also, the memory usage decreases 90 MB,
from Original version. The optimization has been done keeping the number of
changes to the source code to a minimum. Moreover, the number of pragmas has
been reduced increasing the programmability and maintainability of the code.

We consider this kind of work, not only an optimization and best practice
programming guidelines, but also useful for co-design effort to the OpenMP
community. For example, the if-else structure to generate a different kind of
tasks depending on its load is not as elegant as one would want. The compiler
could generate the code for the two branches given the corresponding syntax.

As future work, imbalances from Nested Tasks version will be addressed. Also,
some features from OpenMP 5.0 may be used, like the mutexinoutset dependence
type. Finally, a hybrid approach with MPI may help to reduce the NUMA effect
detected when scaling from 20 to 40 cores.
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Abstract. Scientific computing codes rely on efficient parallelization
to achieve performance. This parallel efficiency is reduced by factors
such as communication, serialization, and data sharing. In this work, we
examine interactions between OpenMP threads in the context of a Chip-
multiprocessor (CMP). We first analyze cache line sharing to observe
how often multiple threads are accessing the same data. We then look
at producer-consumer and write-invalidation interactions between these
threads. These interactions are implemented with cache coherence oper-
ations and demonstrate interference between threads. We find that none
of the codes studied show prohibitive amounts of communication and
many interactions between threads follow simple patterns. Our work dis-
covers opportunities to increase parallel efficiency in the analyzed codes
and provides motivating data for research into CMP design.

Keywords: Cache-communication · Coherence · Multi-core ·
Performance analysis · Scalability

1 Introduction

Multi-core processors with an increasing number of cores have potential to signif-
icantly boost performance of parallel applications, including high-performance
computing (HPC) codes, by running multiple MPI processes and OpenMP
threads in parallel. However, that potential may be thwarted by inter-thread
communication, which can reduce single thread performance by disrupting cache
locality. We identify two examples of inter-thread communication.

First, producer-consumer communication happens when one thread (pro-
ducer) writes data that another thread (consumer) reads through a cache-to-
cache transfer from the producer private cache to the consumer private cache.
Second, write invalidation communication is when one thread running on core
A writes to a cache line that is held in one or more remote private caches. These
remote caches must be invalidated before the cache line can be brought in exclu-
sive state and written to in core A’s cache. Write invalidations can occur due
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to writes to truly shared data or due to writes to thread-private data that is on
different words within the same cache line, which is called false sharing.

Application developers may improve parallel performance by reducing inter-
thread communication. False sharing can be eliminated by allocating shared data
and private data for different threads on different cache lines through alignment
and padding. However, producer-consumer communication and write invalida-
tions of truly shared data is intrinsic to the algorithm and can only be avoided
with algorithmic changes.

In this paper, we study OpenMP inter-thread communication of HPC Proxy-
Apps with a characterization of the following interactions:

– Cache line sharing among OpenMP threads to understand how inter-thread
code and data sharing occurs on the cache hierarchy.

– Producer-consumer communication that results in direct cache-to-cache
transfers.

– Write invalidation communication that occurs when shared data is mod-
ified.

Frequency of communication interactions indicate their likelihood of impact-
ing performance and scalability of the applications, while interaction patterns
visualize data movement between cores and provide insight into possible data
movement optimizations.

2 Experimental Setup

2.1 ECP Proxy Apps

This Exascale Computing Project (ECP) [5] provides a collection of proxy appli-
cations that demonstrate a variety of multi-threading characteristics from HPC
codes.

These proxy applications model characteristics of large scale HPC codes with-
out the large code bases and problem sizes that are inherent to production HPC
codes. These miniaturized codes enable detailed analysis of how these HPC codes
run on single nodes or clusters. For our analysis, we examined behavior of these
proxy apps from the perspective of a single CMP. Specifically, we evaluated
the coherence behavior that these proxy apps demonstrate as the number of
OpenMP threads increases.

Two of the proxy applications we evaluate, CoMD and miniFE, are no longer
part of the latest release of the proxy application suite, but are still interesting to
software developers. LULESH [7] is not part of the ECP proxy application suite,
but has been a widely studied proxy app in multiple DOE exascale initiatives.

Inputs and Scaling. Table 1 shows the scaling strategy and base input sets
used in this paper. Weak scaling, i.e., scaling problem sizes proportionally with
the number of threads, was used when possible, in order to keep the amount
of data per thread constant. For AMG, CoMD, ExaMiniMD, and LULESH,
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we maintained a cubic input size and doubled the volume as thread counts
doubled. Therefore, doubling threads scaled each dimension by a factor of the
cube root of 2. For miniFE, we maintained a constant z dimension and alternated
doubling the y and x dimensions as thread counts doubled. For the other proxy
applications, we applied strong scaling, where we problem size remains the same
when increasing the number of threads.

Table 1. Inputs and scaling for proxy applications

Proxy App Scaling Used Parameters (2 threads)

ExaMiniMD Weak 50 50 50

AMG Weak -n 94 94 94 -P 1 1 1

miniFE Weak -nx 32 -ny 16 -nz 128

LULESH Weak -s 25 -i 10

CoMD Weak -e -x 20 -y 20 -z 20 -T 4000 -N 2 -n 1

miniAMR Strong --nx 16 --ny 16 --nz 16 --num vars 40

SWFFT Strong 2 512

XSBench Strong -t 2 -l 5000000 -s large

miniVite Strong -n 150000

2.2 DynamoRIO

We measured data accesses and data sharing of the proxy apps using
DynamoRIO [4]. DynamoRIO is a dynamic binary instrumentation tool that
includes a cache simulator. This tool does not include a detailed core model, so
it does not simulate cycles and timing, but it can produce an accurate estimation
of cache behavior. While multithreaded simulation is supported in DynamoRIO,
we had to implement coherence support on top of the latest open source version
to properly track cache line sharing. Our results were collected during the par-
allel phase of execution for each proxy application. We statically mapped one
logical thread per core in our simulations.

2.3 Compiler and Runtime System

All proxy applications were compiled using GCC version 7.1.0 and memory
traces were gathered for AARCH64 code running the libgomp OpenMP runtime
included with GCC. All of the proxy applications use OpenMP with the excep-
tion of ExaMiniMD, which is parallelized using Kokkos. We measured cache line
communication during the entire parallel execution phase of each proxy apps.
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2.4 Evaluation of Cache Line Sharing

We simulated three levels of cache in DynamoRIO. A shared LLC with 2 MB
per core backs up coherent 512 KB private L2 caches, which are inclusive with
64 KB L1I and L1D caches. Our simulated cache hierarchy uses a directory-based
write-back cache policy to keep the L2 caches coherent. Each L2 and its child
L1 caches perform accesses for a single thread. We measured the sharing state of
unique cache lines between all L2 caches over time, as well as how widely each of
these cache lines was shared between L2 caches. We also measured the frequency
with which each private cache shares data with each other private cache.

2.5 Evaluation of Inter-thread Communication

Producer-consumer communication may be analyzed by tracking reads and
writes at a word granularity. This analysis would be hardware agnostic and
may not reflect the communication that actually occurs between cores during
execution. We choose to analyze communication coherently to qualify communi-
cation that manifests in inter-cache transactions. In this context, communicating
reads are remote accesses to dirty cache lines, or lines that have been written
to and not evicted from the writing core’s private cache. This analysis will show
actual movement of data from communicating accesses between private caches
during execution, and will include the effects of false communication caused by
false sharing. False communication refers to unnecessary communication between
caches that are accessing different words in the same cache line. Our results show
the frequency of coherent communication during execution and reveal patterns
in this communication.

Write invalidations occur when a core writes to a cache line of which another
copy exists in another core’s cache. The writing thread must complete an invali-
dation of cache line copies in any other cache before the write may be completed.
Writing to data that is widely shared will add latency for the write operation
and increase traffic in the Network-on-Chip (NoC). We counted write invali-
dations during execution of the proxy applications to compute their frequency.
We also observe any patterns between frequently writing threads and frequently
invalidated threads.

3 Results and Discussion

3.1 Cache Line Sharing Analysis

Cache line sharing occurs when multiple threads read from a cache line within
the same period of time, causing the copies of that cache line to exist in multiple
private caches simultaneously. This analysis offers insight into how well data is
isolated between threads and how often different threads are operating on the
same or adjacent data.

Figure 1 shows the number of shared caches lines as a percentage of total
L2 capacity. We sampled caches at equal intervals during the parallel phase of
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Fig. 1. Percent of L2 cache lines at various degrees of sharing

execution and averaged the shared cache line counts of these samples. These
shared cache line state counts are grouped based on how many private caches
hold cache lines at a time. OpenMP thread counts for each proxy application
sweep from 2 to 32 threads in powers of two. We separated the proxy apps by
scaling strategy and ordered them by average number of shared cache lines. For
most proxy applications, very few cache lines have more than one copy in L2
caches. Only miniVite, CoMD, and XSBench show a significant number of cache
lines in shared state. These cache line sharing rates demonstrate how well data
is isolated between threads for these proxy applications. In order to correlate
this cache line sharing to specific data and sections of code, we examined the
program counters of load instructions that resulted in cache lines transitioning
to shared state.

MiniVite shows the highest number of shared cache lines for various thread
counts, and also shows the highest number of cache lines with high degrees of
sharing. MiniVite is a graph analysis proxy app that examines connectivity of
nodes in a graph to categorize these nodes into communities. Highly shared
cache lines contain nodes in a graph that are connected to nodes in multiple
communities. For this proxy application, the number of shared cache lines is
high even for low thread counts, and some of the shared cache lines are widely
distributed amongst L2 caches. Writes to highly distributed shared cache lines
require multiple messages to invalidate copies, increasing the latency of the write
operation and increasing traffic in the on-chip network.

We weak scaled the proxy apps for which we had a clear weak scaling option,
keeping the amount of data per thread consistent. The proportion of shared
cache lines remains similar as threads scaled up for all these weak scaled proxy
apps except CoMD. CoMD shows significantly more cache line sharing when it
is run with higher thread counts. This trend is an effect of the way we scaled the
problem for CoMD. We kept the problem cubic and scaled each dimension by
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the cube root of 2 as thread counts doubled. Increasing the X and Y dimensions
of this problem increases the surface area between thread data, which explains
the increase in cache line sharing between 2 and 8 threads. At 16 threads and
beyond, each thread processes less than two layers in the Z dimension. This
causes atoms in some boxes to be read by both the previous and the following
threads. Because of this, the proportion of shared cache lines greatly increases
when the Z dimension is less than twice the number of threads. Maintaining the
X and Y dimensions while increasing the Z dimension would control for these
effects and eliminate cache line sharing. We confirmed that cache line sharing
stayed consistent when we scaled CoMD in only the Z dimension.

XSBench also shows a higher number of shared cache lines as the number of
threads increases. This cache line sharing primarily occurs during binary searches
of nuclide lookup tables. When multiple threads perform binary look ups of
energies from the same nuclide table, they share the first access to the halfway
point in the table. These threads share more table accesses depending on how
similar their search energies are. Increasing thread count increases the probability
of other threads accessing the same parts of the nuclide tables. These nuclide
tables are read-only during execution, so we don’t expect this cache line sharing
to translate to significant inter-cache communication.

Fig. 2. Cache line sharing pairs with 32 cores
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Figure 2 shows the frequency of each pair of cores holding the same cache line
in their L2 caches. We collected this data for 32-core simulations. Darker regions
of the maps indicate higher cache line sharing. These sharing heat maps offer
a visualization of which cores share cache lines and show correlations in data
accesses between thread IDs. Shading is normalized to the maximum value for
each proxy app in order to show the behavior of these proxy apps, rather than to
compare rates of cache line sharing between them. For most of these proxy appli-
cations, cache lines are typically shared between consecutive threads. Codes that
demonstrate this pattern may benefit from a scheduler that maps consecutive
threads to adjacent cores. In the cases of ExaMiniMD, AMG, miniFE, LULESH,
and CoMD, each core shares more data with adjacent cores than any other cores.
This suggests that mapping logically neighboring threads to adjacent cores will
improve data locality and reduce communication delay between common sharers
on a chip. This tendency to share with neighboring threads also shows that clus-
tering adjacent cores may be beneficial for these proxy apps. Proxy apps with
uniformly shaded maps, such as miniAMR, SWFFT, XSBench, and miniVite,
display all-to-all sharing patterns.

While this cache line sharing analysis provides insight into how much data is
being accessed by multiple threads, it does not demonstrate how often updates
to shared data cause inter-cache communication. An application with a high
amount of shared data may never update that shared data, while another
application may frequently update relatively few cache lines. We analyze which
proxy applications demonstrate frequent cache-to-cache interactions by measur-
ing communication events caused by data updates.

3.2 Producer-Consumer Analysis

In this section, we observe producer-consumer interactions between caches dur-
ing execution of the proxy applications. These interactions are essentially read-
after-write operations. We analyze inter-thread communication from a coherence
perspective, showing how often data is still in the producing core’s cache when it
is consumed. Coherence producer-consumer relationships occur when a consum-
ing thread loads a cache line that exists in a dirty state in another private cache.
This coherence communication analysis takes into account temporal access dis-
tance and false sharing, showing inter-thread communication that may affect
performance. Accesses to remote dirty cache lines cannot be fulfilled by the
LLC and require writeback by the private cache of the producing thread. This
increases the latency of the consuming request. First, we measure the rate of
producer-consumer transactions between caches for each of the proxy apps. We
then analyze patterns in these accesses to understand how data moves between
threads.

Figure 3 shows the frequency of producer-consumer communication between
caches. We display this communication frequency per 1,000 instructions to com-
pare rates between proxy apps and establish an estimate for the frequency of
these transactions. Counting events per thousand instructions allows an estima-
tion of the frequency of these occurrences while being agnostic towards the core



Cache Line Sharing and Communication in ECP Proxy Applications 313

Fig. 3. Consumption rates of modified cache lines

design. Different core designs may execute instructions at different rates and
different out-of-order execution capabilities to hide memory latency. Therefore,
a simulated core model would be needed to determine the overhead of these
communication operations. The normalization per 1,000 instructions is consid-
ering instructions executed by all threads, so the rates should be seen as rates
per thread as long as the communication happens during parallel sections. If the
number of communications grows sub-linear with the number of threads in the
weak scaling cases, we would observe a decrease in the number of communica-
tion per 1,000 with a linear increase in total instructions. CoMD and LULESH
are examples of this behavior, and they exhibit producer-consumer communica-
tion more than once per 10,000 instructions for some thread counts. For these
two proxy apps, the consuming accesses rate does not increase linearly with
thread count past four threads, while instruction counts increase proportionally
to thread count due to weak scaling.

MiniAMR, miniFE, and miniVite show consistently increases in communica-
tion with higher thread counts. MiniAMR and miniVite are strong scaling cases
and therefore see an increase on the total number of communications while the
same work spreads across more threads. This trend is unexpected for miniFE,
because this proxy app was weak scaled for these experiments. In this case,
the number of producer-consumer interactions increases superlinearly with the
number of threads.

Figure 4 shows the frequency of each pair of cores exhibiting producer-
consumer cache transactions for a 32-core configuration. XSBench has negligible
occurrences of producer-consumer relationships between cores with almost no
writes to shared data, so its data has been omitted from this figure. To under-
stand the code causing each of these communication patterns and what data is
being communicated, we examined the program counters that caused communi-
cation between core pairs.
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Fig. 4. Producer-Consumer coherence communication patterns with 32 cores

Multiple proxy applications show producer-consumer relationships between
neighboring threads. This communication occurs in a single direction for AMG,
LULESH, miniAMR, and miniFE, with threads producing data that is consumed
primarily by threads with a higher ID. This one-sided communication could
occur at the beginning of each iteration after neighboring threads updated their
data. The final data updated by one thread would be the first data read by
the following thread during a compute interval. Although both the previous and
next thread would eventually read the updated data, the data would have been
evicted by the producing thread’s cache before the previous thread consumes
that data at the end of its work iteration. A hardware agnostic evaluation of
communication would observe this behavior as symmetric communication, but
our coherent analysis reveals this communication may occur between caches
asymmetrically and may be predictable, which would enable data to be pushed
from producer to consumer in hardware or software.

ExaMiniMD shows symmetrical producer-consumer relationships, where
threads produce data that is read by previous or following threads. This may be
because ExaMiniMD uses dynamic scheduling, which makes thread interactions
less predictable.

The four boxes of all-to-all communication for AMG occur during the
BuildIJLaplacian27pt routine, when all threads are accumulating into the same
array. While each thread accesses a different index of this array for their accu-
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mulations, false sharing causes 8 words of this array to map to the same cache
line. Therefore, groups of 8 threads perform modifications to the same cache line,
causing the cache line to migrate between that group of threads. The smaller
boxes of communication between threads 0–3 and threads 28–31 suggest that
the beginning of the shared array is offset within a cache line. This false com-
munication could be avoided if the accumulation array is padded such that each
thread index in the array maps to a different cache line. The compiler might
also be able to avoid this situation by recognizing that threads accumulate to
consecutive indices of the array and allocating one cache line for each index. It
might also be beneficial if the code was written to utilize OpenMP’s reduction
capability instead of implementing its own reduction.

Significant communication to or from core 0, such as in the cases of LULESH,
CoMD, SWFFT, and miniVite, are caused by serial sections of code. Serial
sections may be problematic for scalability, and communication within these
serial sections is on the critical path for the entire process, so this might introduce
more overhead than communication within parallel sections.

The communication pattern of LULESH shows a one-to-all communication
pattern, with significant consumption of data from thread 0 by all other threads.
This communication occurs in the libgomp library when thread 0 broadcasts
function pointers. LULESH has many consecutive short parallel regions, so this
work distribution communication is frequent. This fine-grained parallel loop pat-
tern is detrimental due to the work distribution (fork) and barrier (join) costs,
and the serial sections in between loops limiting scaling. A coarser-grained par-
allelization strategy would mitigate these issues and reduce the amount of one-
to-many communications like the ones exhibited by LULESH.

CoMD, SWFFT, and miniVite each show an all-to-one communication pat-
tern, with thread 0 consuming a significant amount of data from all other threads.
These consumption patterns occur due to code serialization, where there is a non-
parallelized loop with thread 0 iterating over data produced by other threads. For
CoMD, serialized reads occur when the atoms in boxes are being updated. This
function is serialized per process, which limits scaling with OpenMP threads.
For SWFFT, this behavior is the only occurrence of producer-consumer relation-
ships. We observe this behavior when thread 0 distributes data between FFT
steps. These serial phases substantially limit OpenMP scalability for SWFFT.
For miniVite, serialization happens when thread 0 updates the ownership of
graph elements for its process. The serialized loops reduce the parallel efficiency
of OpenMP threads due to Amdahl’s law. Avoiding serialization or finding a way
to parallelize the loops would help scalability.

Preemptively moving data to caches of consuming threads might mitigate
some of the overhead of these communications. This could be done in software
by cache stashing, or in hardware via data movement prediction or prefetching.

3.3 Write Invalidation Analysis

Write operations to cache lines in shared state experience additional latency,
because the write operation must wait for other copies of the cache line to
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Fig. 5. Write invalidation rates

be invalidated. Write operations to cache lines with more sharers require more
invalidation messages, which increases latency and network traffic. The latency
might be covered up by an out-of-order core, but the additional network traffic
might delay other memory operations. Invalidating cache lines from other caches
can also induce future cache misses, which would be unnecessary in the case
of false communication. We measured the frequency of write invalidations to
understand how this communication occurs in the proxy apps.

Figure 5 shows write invalidations per 1,000 instructions. CoMD and
LULESH experience on average at least one write-invalidation every 10k instruc-
tions even for low thread counts. MiniFE, miniVite, and SWFFT each show
increases in write invalidation rates as thread counts increase.

Figure 6 shows how frequently the core on the x-axis invalidates cache lines
from the core on the y-axis. XSBench has negligible occurrences of cache-to-
cache write invalidations, so it has been omitted from this analysis. Similar to
our previous analysis, we tracked program counters causing these invalidations
to find out how this communication corresponds to the code.

For AMG, the invalidations to adjacent threads primarily occur during the
relaxation routine. The invalidations between groups of neighbors, which appear
as square boxes on the graph, are due to the same false sharing that we observed
when analyzing AMG’s producer-consumer communication patterns. Padding
this array so that threads access disparate cache lines would reduce invalidation
traffic as well as producer-consumer coherence traffic.

In CoMD, the invalidated cores are not always adjacent. The writes causing
these invalidations occur primarily when threads are sorting atoms in each box
after atoms are exchanged. The strange slope of the interactions occurs because
the sorting loop is parallelized over the total boxes of the process including halo
boxes, while force calculations are parallelized over only the local boxes. Cores
28-31 process halo boxes during this phase, while private caches at this time are
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Fig. 6. Coherence invalidation patterns with 32 cores

filled with local box data. This communication may be reduced by splitting the
loops that include halo boxes to iterate over local boxes before iterating over
the halo boxes. Although this would decrease the write-invalidation traffic, this
would introduce additional overhead from adding a separate parallel loop. Cores
30 and 31 invalidate data in core 0’s cache because of the serialized updates
preceding this operation.

For higher thread counts, miniVite shows a significant increase in write inval-
idations. Some of these write invalidations occur at the end of the Louvain itera-
tion, when threads are overwriting the communities that nodes belong to. Write
invalidations are also observed when information is updated for these communi-
ties after the Louvain iteration, overwriting data cached by threads during the
iteration. The irregularity of graph accesses results in no discernible relationship
between writing cores and invalidated cores.

Write invalidations caused by thread 0 of LULESH primarily occur in lib-
gomp and are caused by the frequent serialization issue that we observed in the
producer-consumer analysis.

In SWFFT, write invalidations increase with more threads. All invalidating
writes come from core 0, exposing the same issue described in our analysis of
producer-consumer patterns. These invalidations occur during the distribution
phases, which are not parallelized with OpenMP.
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Write invalidations are necessary when caches continue to hold data when it
is written to by threads in a different core. This communication could be reduced
by flushing cache lines in software when the data is expected to be updated, or
the update could be predicted in hardware and flushed from private caches.

4 Related Work

Several publications include characterizations of inter-thread communication for
specific multi-threaded workloads.

Barrow-Williams et al. [2] studied communication among threads for the
SPLASH-2 [9] and PARSEC [3] benchmarks. Their work observed communica-
tion on a word granularity, showing producers and consumers in the application
regardless of cache characteristics.

Hillenbrand et al. [6] quantified inter-thread communication for the PARSEC
benchmark suite as the number of threads scaled up and measured this commu-
nication on a word granularity. Their approach abstracts out the hardware archi-
tecture, while our evaluation considers direct cache-to-cache communication.

In contrast to these two works, we examine data consumption and invali-
dation that occurs between caches at runtime. We include the effects of false
sharing and disregard communication operations that do not result in cache-to-
cache transactions, i.e., produced data that is evicted before being consumed
by another cache. We believe our hardware-focused communication analysis is a
better indicator of the impact communication has on performance.

Bienia et al. [3] introduced the PARSEC benchmark suite and characterized
scalability as well as cache behavior. The authors measured and reported cache
line sharing as the fraction of cache entries in shared state. We account for cache
line sharing differently, by counting each unique shared state cache line once.
Our approach to measuring cache line sharing shows how much data is shared
between caches, without counting copies of the data. Bienia et al. also measured
traffic from accesses to shared cache lines, but they did not differentiate by
whether these accesses were communicating modified data.

Abadal et al. [1] measured the frequency of multicast operations in a Network-
on-Chip during execution of SPLASH-2 and PARSEC benchmarks. They mea-
sured these multicasts for broadcast-based coherence as well as a directory-based
coherence. The authors state that multicasts in a directory-based design are pri-
marily due to write invalidations, which we measure in this paper.

Richards et al. [8] analyzed the performance of the ECP Proxy Apps with a
focus on profiling, instruction mix, cache misses and memory bandwidth. The
inter-thread cache-to-cache communication analysis in this paper complements
their report with cache line sharing, producer-consumer interactions, and write
invalidations in the context of OpenMP thread scaling.

5 Conclusion

In this work, we studied cache line sharing and cache-to-cache communica-
tion among OpenMP threads in HPC proxy applications. We identified CoMD,
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XSbench, and miniVite as proxy apps that showed high cache line sharing. We
then examined how often producer-consumer and write invalidation transactions
occur. LULESH, CoMD, and miniVite showed the highest rates of communica-
tion among the proxy apps we studied.

Analysis of patterns in coherence traffic between cores running OpenMP
threads provided insights into data movement between threads in these proxy
applications. This analysis demonstrates to application developers how often
communication in their code manifests as cache-to-cache communication at run
time. In some cases, the patterns we observe reveal code serialization and false
communication between threads. Application developers can use our method-
ology and results of our analysis to find where to parallelize serial sections of
their code that cause considerable data movement, and where they can isolate
data used by different threads to prevent false communication. When commu-
nication between threads is unavoidable, locality-aware thread placement and
improvements in CMP architecture may reduce the overhead of this communi-
cation. Our characterization is useful for hardware designers considering data
movement optimizations between caches or changes in the coherence protocol.
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Abstract. For at least the last 20 years, many have tried to create a
general resource management system to support interoperability across
various concurrent libraries. The previous strategies all suffered from
additional toolchain requirements, and/or a usage of a shared programing
model that assumed it owned/controlled access to all resources available
to the program. None of these techniques have achieved wide spread
adoption. The ubiquity of OpenMP coupled with C++ developing a
standard way to describe many different concurrent paradigms (C++23
executors) would allow OpenMP to assume the role of a general resource
manager without requiring user code written directly in OpenMP. With
a few added features such as the ability to use otherwise idle threads to
execute tasks and to specify a task “width”, many interesting concurrent
frameworks could be developed in native OpenMP and achieve high per-
formance. Further, one could create concrete C++ OpenMP executors
that enable support for general C++ executor based codes, which would
allow Fortran, C, and C++ codes to use the same underlying concurrent
framework when expressed as native OpenMP or using language specific
features. Effectively, OpenMP would become the de facto solution for a
problem that has long plagued the HPC community.

Keywords: C++ executors · OpenMP tasks

1 Introduction

As high performance simulations reach extreme scales, the software engineering
and resource management challenges have become increasingly important. In
particular, managing machine-level parallelism, large numbers of threads, and
memory access patterns can be essential as individual machine nodes become
more capable and as the costs of data movement become prohibitive.

To manage the complexity of these systems, performance portability layers
(e.g. RAJA [13], Kokkos [7]) that support platform independent code written
in a higher-level abstraction are gaining wide adoption. In the broader com-
puter science community, a similar approach of using higher-level work-runner
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abstractions has taken hold to allow algorithms to be expressed independently of
the underlying execution system. These various efforts have spawned the current
effort to define a fundamental executor concept and interface for C++, currently
targeting C++23. This concept would support the use of user or vendor-defined
executors with standard library algorithms to execute those algorithms in arbi-
trary contexts. Executors would generalize many aspects of RAJA and Kokkos,
and would provide a common interface in which the next generation of platform-
independent libraries could be written.

While these execution interfaces can make a component portable across dif-
ferent programming models or architectures, only code written using those inter-
faces gains those benefits. Simulations often consist of multiple components,
libraries, and even languages. Composability between components in these com-
plex systems can complicate their correct and effective use. The problem is often
most severe when different components use different runtime systems, with each
runtime system competing for resources. Attempts to solve the composability
problem would provide application-level resource management [10] or a com-
mon substrates for resource management [8,15]. An especially promising app-
roach uses OpenMP as a common thread pool and resource layer beneath other
abstractions. Integrating a code written with OpenMP with a code using the
RAJA or Kokkos OpenMP backend is no harder than integrating OpenMP codes,
allowing modern C++ to interface (relatively) seamlessly with the occasional 30-
year-old Fortran library that nobody admits to needing in their code but always
seems to be there.

In a C++ executors world, this approach requires an implementation of the
executor concept on top of OpenMP. This requirement is not, in itself, a problem.
A parallel loop or a runner is straightforward to implement in OpenMP but
executors and Kokkos and, to some extent, RAJA use a model that does not
ideally match OpenMP. Some patterns cannot be expressed in OpenMP while
adhering to their interfaces. Performance will suffer if these patterns are not
enabled.

Our position paper proposes that two new developments, the executors pro-
posal for the 2023 C++ standard and the increasing use of OpenMP as a resource
manager, enable unique and synergistic solutions to these problems. The common
timeframe for these standards provides a unique opportunity to codesign them.
C++ is already the lingua franca for performance portability layers in HPC,
and OpenMP is becoming the de facto runtime composition layer included in
every major compiler implementation. Marrying the two in a way that provides
best-in-class performance and composability for and between both models will
open new possibilities for more performant, more maintainable, and more easily
composed components and scientific applications.

This paper makes the following contributions:

– An analysis of the state of OpenMP tasking and offload from the perspective
of abstraction layers and C++ executors;
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– A proposal of two extensions to OpenMP to improve the composability of
tasks, target regions, and parallel loops, as well as making asynchronous tasks
more amenable to abstractions; and

– A discussion of the feasibility of implementing the extensions in both a
research runtime and the OpenMP standard.

2 Background

For nearly a decade, the C++ standards committee (ISO/IEC JTC1/
SC22/WG21) has iterated on numerous designs of generic abstractions for execu-
tion, known as executors. Representing one of the most ambitious generic library
design efforts of its kind, the current proposal [11] aims to address the needs of
vastly different application domains, from embedded computing to high perfor-
mance computing and everything in between. At least a subset of the features
proposed therein are likely to be merged into the C++ standard working draft
early in the C++23 cycle [18], with other portions expected to follow shortly
thereafter.

While the exact syntactic details of executors remain undecided, the vari-
ous designs have fairly consistently focused several important axes in the design
space. The most prominent of these is the expression of cardinality of work, dis-
tinguished by the elaboration of separate interfaces for single and bulk execution,
somewhat akin to providing both a parallel for and task interface. Different
prominent stakeholders have tended to see either of these extremes as funda-
mental: GPGPU stakeholders, for instance, tend to consider bulk execution to
be fundamental. Networking stakeholders, on the other hand, tend to see single
execution as the fundamental operation. Designs that can incorporate both of
these world views have led to new paradigms in generic programming [12].

Another fundamental design axis that has appeared consistently across the
history of executors is the distinction between one-way execution (“fire-and-
forget” work) and two-way execution—that is, work that requires some means of
signaling completion, failure, and/or cancellation. Programming models based on
promises and futures, dating back to at least the late 1970s [4], are a traditional
example of the latter. Recently, the design of two-way executors has begun to
converge on push-style programming models [17] due to their ability to unify the
observer pattern [9] with future/promise semantics.

Across all of these dimensions, the basic interfaces of all proposals has had
one thing in common: Much like OpenMP’s tasks, when in a parallel region,
they abstract over asynchrony. Work is allowed to be queued for later execution,
or run immediately, possibly singly or in bulk, and possibly with or without
a propagated value, but the basic expression of algorithms using any of these
interfaces is based upon the ability to asynchronously generate work. At present,
OpenMP can model single or bulk execution with or without signaling comple-
tion. Enabling asynchronous scheduling of these units of work however requires
that all the associated code can be wrapped in a parallel region, which is not
possible due to the interface itself as well as interference with the rest of the
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program. There is also currently no way to model an asynchronous check for
completion of a task. Though it can be modeled with atomics or similar, we
leave exploration of this aspect for future work.

3 Requirements and Proposed Features

Since its introduction in version 3.0 of the specification, OpenMP support for
task parallelism has evolved into an increasingly powerful tool to expose paral-
lelism in application to be exploited by the OpenMP runtime system. Expres-
siveness has been expanded by allowing more sophisticated dependences and
synchronizations between tasks, and the scope of task parallelism in OpenMP
has expanded to encompass asynchronous offload to accelerators. However, the
awkward relationship of task parallelism to thread parallelism has changed little
from OpenMP 3.0 to 5.0. Otherwise promising use cases for task parallelism,
of which C++ executors implementation is but one, are rendered difficult or
impossible by the limitations of this relationship. We outline some of the issues
below, along with a high-level view of some potential future changes to the spec-
ification to address them. The changes are comparatively light on new syntax,
and the first is only semantic.

3.1 “Free-Agent” Threads

The first issue, and the one encountered even by programmers writing the sim-
plest OpenMP program using tasks, is the requirement to create a team of
threads even for a program comprised entirely of explicit tasks. In the absence
of such a team of threads, the tasks would be executed only sequentially. This
leads to the frequent idiom combining parallel and single or master to start
a team of threads and then begin task creation on only one thread of the team,
as shown in Fig. 1.

Fig. 1. Asynchronous tasking without free-agent threads

Related shared memory tasking frameworks like OmpSs [6], Cilk [14], Argob-
ots [16], and Qthreads [19] simply make threads available for executing tasks
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immediately at program startup. While many OpenMP implementations already
create threads upon initialization of the run time library, the current semantics
of OpenMP forbid using those threads to execute tasks until one or more teams
have been created. The constraint is more than an inconvenience, because the
creation of teams segregates the available threads. Since neither threads nor
tasks can be exchanged between two different teams of threads, the effect is to
limit composability and load balancing.

The solution proposed for future OpenMP versions is to allow a pool of “free
agent” threads maintained by the implementation to exist outside of a team and
available to execute tasks. This new semantic would allow a program to execute
tasks asynchronously on an implementation’s thread pool without creating a
parallel region, as shown in Fig. 2.

Fig. 2. Asynchronous tasking with free-agent threads

The effect of the code, assuming that the implementation has a pool of
threads ready to execute the tasks, is equivalent to Fig. 1. While the difference
is just a few lines, it not only simplifies reasoning about how to use of tasks, a
boon especially for new users, but also places fewer constraints on interleaving
tasks with parallel regions or parallel loops.

3.2 Task Width

Another important issue is that OpenMP currently provides no way for the
programmer to indicate when creating a task that the task includes further
parallelism inside the task or to what degree. The implementation becomes aware
of the nested parallelism only at the time the nested constructs within the task
are encountered. If, however, the implementation had knowledge of the nested
parallelism at task creation, it could plan to execute the task where and when
adequate threads are available for the nested parallelism. The solution proposed
for future OpenMP versions is to admit a clause on task-generating constructs
to specify the degree of nested parallelism present in the task.

We propose to add a width clause to the task directive. The argument to the
new clause would indicate the amount of nested parallelism created within the
task, as shown in Fig. 3. A more restrictive way to accomplish the same effect
would be to allow a nowait clause on the parallel construct, transforming its
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region into a task. The example in Fig. 4 shows the equivalent code using this
alternate approach.

Fig. 3. Parallelism inside a task with a specified width

Fig. 4. Asynchronous parallel regions

A point in favor admitting the nowait clause on the parallel construct
would be symmetry with the target construct, which already admits the clause.
It would also be a convenient way to express asynchronous bulk parallelism.
However, it does not support some use cases that are supported by task width
for interoperability of OpenMP users’ programs with libraries that use OpenMP
internally. Consider the example shown in Fig. 5, in which the function call is
made to a math library routine. Because the nested parallelism is hidden inside
the library routine, the more restricted parallel nowait idiom does not support
this use case.

An open question regarding semantics is whether the number of threads in
the clause indicates maximum or minimum nested parallelism within the task.
Additionally, should it reflect only first nesting level of parallelism, or all levels,
if more than one level of parallelism is present within the task? This information
may not be readily available even to the programmer if the nested parallelism is
inside library calls. Even the basic indication that there exists nested parallelism
with in the task, regardless of size gives the runtime system more information
than it currently has for scheduling.
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Fig. 5. Task with a width calling library code

3.3 Broader Applicability

Progress on these issues is important not only for the success of OpenMP as
an implementation platform for C++ executors, but also for other important
use case scenarios. Among these use cases are real-time systems and GUI-based
programs, in which an event loop runs continuously and spawns new work peri-
odically or based on user input and sensors. Ever-increasing levels of hardware
parallelism also motivate more flexible mechanisms to expose application paral-
lelism and provide more information to inform run time task scheduling.

Increasingly, single-source programming models for portable utilization of
heterogeneous compute resources, in which applications provide a single imple-
mentation that is generic over execution model and resources, are a popular
approach to heterogeneous library design. Kokkos [7] is one such library that has
had a significant impact on major portions of the ISO-C++ executor design pro-
cess. Kokkos provides the concept of an ExecutionSpace that closely resembles
an executor. Users write code that is generic over the specific ExecutionSpace
type in order to express, with a single source, an algorithm that can run with
multiple execution models.

The obvious concern in the design of the ExecutionSpace concept is
restricting the programming model enough to provide low-overhead perfor-
mance (relative to an execution-model-specific implementation) on all supported
ExecutionSpace types. Specifically, Kokkos provides ExecutionSpace imple-
mentations for OpenMP, CUDA, thread-pool-based execution, and serial execu-
tion, among others. The restrictions on the ExecutionSpace design thus include
abstractions that can map to a notional “intersection” of execution model restric-
tions for all of the supported backends. (ISO-C++ executor design is very similar
in this respect.)

The extensions to the OpenMP programming model presented herein do not
represent an expansion of that intersection, since (for instance) serial execution
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will always be a supported execution model. However, expanding the “intersec-
tion” of a subset of the supported execution models often enables an increase
in the precision of the user’s mental performance model for some generic code
because programming model abstractions can be mapped to a smaller “outer
product” of performance characteristics.

In this context the nowait clause on the parallel construct has a semantic
much more similar to that of a CUDA kernel launch than the traditional use of
the parallel construct. The restricted programming model that encompasses
both the synchronous parallel construct’s semantics and the asynchronous
semantics of a CUDA kernel launch requires the user to assume that the earliest
an algorithm’s execution can begin is immediately upon invocation, and the
latest the algorithm can finish execution is upon return from the next call to an
explicit Kokkos::fence() on the ExecutionSpace used by the algorithm. They
cannot rely on the encountering thread to block, or not to block. Presentation of
a consistently asynchronous model, or at least a potentially asynchronous one,
can help reduce the variability in behavior of the code across platforms.

4 Feature Interactions and Feasibility

The main challenge with this set of extensions is deciding how arrangements of
asynchronous execution, tasks, parallel regions, and widths that were not previ-
ously possible can interact without harming backward compatibility or perfor-
mance unduly. This section will discuss the various trade-offs and considerations
necessary to integrate free-agent threads and task widths into OpenMP.

4.1 Task Joining

As discussed previously, OpenMP tasks either execute immediately in the
encountering thread, in a serial context, or are joined at the end of their enclos-
ing parallel region. As a result, there is currently no way for tasks to logically
“run off” the end of a program. If however we allow tasks to run asynchronously
at the top level of the program, we need to define what happens if tasks are still
executing when main ends. For example, take the code in Fig. 2, if there were no
taskwait at the end of main there would be no guarantee that either func1 or
func2 would be done at the end of the program.

Given the way OpenMP is currently defined, there is logically a parallel region
around the entire program comprising only the initial thread. If we extend this
to make free agent threads accessible, we would assume that these tasks should
join on return, and that may be what users would expect. This may result in
deadlocks or unexpected issues however when a user calls ‘exit()’ or similar while
tasks are outstanding. Given the considerations of implementations however, and
the fact we want OpenMP to be usable when main is compiled without it, our
recommendation is that tasks are allowed to be cancelled by the end of the
program. Users always have the option to use either taskwait or taskgroup to
join tasks if they want them joined, while it is harder to envision a way for them
to opt in to cancellation.
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4.2 Threads Available for parallel

Since threads may now be executing task work alongside the initial thread, it
is possible to encounter a synchronous parallel region while some threads are
busy. There are a number of options available to handle this situation:

1. Run the parallel region immediately with fewer threads.
2. Make parallel wait for the concurrent tasks to pause or finish before starting

with all threads it would otherwise have been allotted.
3. Begin the parallel region with available threads and join others in as the tasks

either finish or reach scheduling points.

Given the potential performance implications, the user will almost certainly
want control over the choice of the options above. However the choice of default
has implications both for performance and for backwards compatibility. When an
OpenMP parallel region starts, it is provided with some number of threads.
The actual number is always implementation-defined, and can be affected by
a variety of environment variables through OpenMP’s Internal Control Vari-
ables (ICVs). That said, when the dyn-var ICV1 is set to false, the number of
threads in each parallel region is fixed, and codes are allowed to rely on this
property to access thread-local state and for various other reasons.

Given the requirements imposed by dyn-var, we propose that either option
two or three is used when dyn-var is true, and allow only option one when it is
false. The user can then control the general behavior they prefer with an existing
ICV, get a more specific thread count with a task with a width or asynchronous
parallel region, or use a taskwait to ensure tasks have joined before the parallel
region starts.

4.3 Interactions Between Width and Num-Threads

The concept of the width clause for a task is simple on the surface–it tells the
runtime that the task being created should be provided with a given level of
parallelism, and that something in the dynamic scope of that task will make
use of it. Unlike with parallel nowait there is no guarantee precisely when
that parallelism will be used, so that many threads don’t necessarily need to be
immediately available. Given the way OpenMP is specified today, the simplest
way to think about translating a task with a width of six would be to set the
nthreads-var ICV to six inside a task as in Fig. 6.

This approach provides the desired behavior of controlling the number of
threads used in a dynamic scope, and allows different values of width for tasks
nested within one another while re-using a well established mechanism. It gets
surprisingly close to the overall goal, even to providing the appropriate level
of parallelism when calling into a library, although it does not provide the
runtime or compiler with appropriate scheduling information. The downside
is that if the number of threads is set this way it overrides the value from
1 The value set by the OMP DYNAMIC environment variable.
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Fig. 6. A naive de-sugaring of a task with a width

omp_get_max_threads(), and it can be overridden relatively easily. It may be
more appropriate to employ a mechanism like the thread limit on teams to resist
called code expanding past the resources allotted, and to provide a method to
interrogate the total number of threads available. While a parallel run in the
tasks context could only have the number specified by the limit, an asynchronous
task there could request more.

4.4 Feasibility

In order to explore the design space, we created an initial prototype runtime
implementing the new semantics we describe for tasks outside of a parallel con-
text. We considered implementation in the LLVM OpenMP runtime, GOMP, and
BOLT [1] which is a user-level threaded version of the LLVM runtime imple-
mented on top of argobots [16]. The LLVM and GOMP runtimes could both
implement the pattern we have discussed, but currently rely on the scoping of
parallel regions for memory management of their tasking runtimes. For example,
while the task-running threads and per-thread contexts persist across parallel
regions the task queues and attendant metadata do not. However, BOLT does
not, instead relying on the argobots system to manage some of these details. As
a result, a naive prototype is as simple as removing the checks for whether tasks
should be allowed to be run asynchronously outside of a parallel context2.

Given the structure of other runtimes we expect implementation of this fea-
ture to require a rework in the lifetime management of data structures, but
relatively little change in implementation logic other than to take advantage
of newly available information. We do not provide performance comparisons in
this paper as none of the proposed features have a direct impact on performance
in our implementation due to the underlying structure of BOLT. As such the
prototype performs identically to a stock BOLT library, simply allowing expres-
sion of tasks in an alternative manner. We may explore performance impact on
applications composed of multiple components and higher-level runtimes in the
future.

Overall, free-agent threads, tasks with a width, and asynchronous parallel
regions appear feasible from both a runtime and specification perspective. After
further experimentation and performance testing with codes in the wild, some
defaults and further mechanisms may become desirable. That said the base mech-
anisms show strong promise for being implementable and providing substantial

2 In fact, the original naive prototype only required changing eight lines of code.
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benefit to composability of OpenMP with itself as well as making it more practi-
cal as a substrate for libraries and systems with asynchronous or thread-pool-like
interfaces such as C++ executors.

5 Related Work

The emergence of manycore and heterogeneous systems and increasing use of
hybrid MPI-X programming models has led to a proliferation of frameworks
to support performance portability, composition, interoperability, and resource
management. Kokkos [7], and RAJA [13] provide performance portability frame-
works, however they do so at the middleware level. By specifying memory and
concurrency at the language standards level, performance portability policy sup-
port becomes a compiler rather than a middleware capability. This approach
ensures support across platforms and provides vendor independent ways of imple-
menting cross platform high performance simulation software.

OmpSs [5] is a task-based OpenMP-like programming model that has inspired
many of the current features and behaviors of task parallelism in OpenMP.
BOLT [1] provides an alternative implementation of the LLVM OpenMP runtime
ABI on top of Argobots [16], which offers user-level threading to support over-
decomposition and deeper nesting than is feasible with OS-level thread models.
For hybrid MPI+X programming, OmpSs provides direct integration with MPI
and BOLT provides integration with the MPICH implementation of MPI [2]
using the Argobots [16] runtime framework. StarPU [3] provides integration of
heterogeneous computing and software resources in a uniform manner via the
runtime. It includes OpenMP 4 with a focus on task parallelism and extensions
to support run time scheduling optimizations.

Lithe [15] provides a common runtime substrate to enable coscheduling of
runtimes similar to CPU inheritance scheduling [8] while adding a hardware
thread abstraction to ensure that multiple runtimes do not oversubscribe sys-
tem resources. Modified versions of the runtimes (e.g., OpenMP and Threading
Building Blocks) are required. The QUO [10] library provides an alternative
approach to composing MPI and threading runtimes, managing heterogeneous
thread and memory resources at the application level and manually quiescing
and running thread groups via the pthreads system interface, thus manually
avoid oversubscription of system resources in multiple interacting runtimes.

Our approach is based on the view that the upcoming incorporation of execu-
tors into the C++ language standard will make their use commonplace, and that
leveraging the many high quality OpenMP implementations in open source and
vendor compiler suites is a promising way both to support executors and to
integrate C++ programs using them with native OpenMP code. Like other
solutions to address the problems of composition and thread resource man-
agement, we seek to avoid unintended oversubscription of hardware execution
resources. However, using OpenMP as the integration point provides the ben-
efits of greater portability and high-level abstraction compared to ad-hoc and
system-level frameworks.
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6 Conclusions

Composing multiple frameworks and performance portability layers is an increas-
ingly necessary for high performance computing at scale. However, standardizing
on the portability layer has been difficult, leading to multiple implementations
with no clear standard interface. In this paper we have argued that the ubiquity
of OpenMP and the coming executors concept in the C++ standard provide a
unique opportunity to ensure that both standards grow to a point where they
can compose with one another to efficiently and effectively integrate components
built with state-of-the-art techniques in C++ with the extensive performance-
oriented ecosystem of OpenMP applications and libraries.

We analyzed the requirements for the extensions to tasking as well as the
necessary extensions to the OpenMP standard to provide the necessary function-
ality. Specifically, we propose incorporating the concept of “free-agent” threads
into OpenMP, allowing asynchronous execution of tasks and parallelism with-
out a scoping restriction, and extending tasks with a width, allowing a task
to represent a quantity of resources allocated to the code executed inside it.
Finally we discussed an implementation of “free agent” threads in an OpenMP
runtime along with some of the major design considerations for implementing
these changes in the specification. While exploring this approach we found a
few more potential future extension points, including a non-blocking mechanism
for checking if tasks are complete and a mechanism for executing tasks in other
teams, but we leave these for future work.
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