
Chapter 18
Recurrence and Transience
of Continuous-Time Open Quantum
Walks

Ivan Bardet, Hugo Bringuier, Yan Pautrat, and Clément Pellegrini

Abstract This paper is devoted to the study of continuous-time processes known
as continuous-time open quantum walks (CTOQW). A CTOQW represents the
evolution of a quantum particle constrained to move on a discrete graph, but which
also has internal degrees of freedom modeled by a state (in the quantum mechanical
sense). CTOQW contain as a special case continuous-time Markov chains on graphs.
Recurrence and transience of a vertex are an important notion in the study of
Markov chains, and it is known that all vertices must be of the same nature if
the Markov chain is irreducible. In the present paper we address the corresponding
result in the context of irreducible CTOQW. Because of the “quantum” internal
degrees of freedom, CTOQW exhibit non standard behavior, and the classification of
recurrence and transience properties obeys a “trichotomy” rather than the classical
dichotomy. Essential tools in this paper are the so-called “quantum trajectories”
which are jump stochastic differential equations which can be associated with
CTOQW.

18.1 Introduction

Open quantum walks (OQW) have been developed originally in [1, 2]. They are
natural quantum extensions of classical Markov chains and, in particular, any
classical discrete-time Markov chain on a finite or countable set can be obtained
as a particular case of OQW. Roughly speaking, OQW are random walks on a
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graph where, at each step, the walker jumps to the next position following a law
which depends on an internal degree of freedom, the latter describing a quantum-
mechanical state. From a physical point of view, OQW are simple models offering
different possibilities of applications (see [28, 29]). From a mathematical point of
view, their properties can been studied in analogy with those of classical Markov
chain. In particular, usual notions such as irreducibility, period, ergodicity, have
been investigated in [3, 8–10, 20]. For example, the notions of transience and
recurrence have been studied in [5], proper definitions of these notions have been
developed in this context and the analogues of transient or recurrent points have
been characterized. An interesting feature is that the internal degrees of freedom
introduce a source of memory which gives rise to a specific non-Markovian behavior.
Recall that, in the classical context (see [22]), an exact dichotomy exists for
irreducible Markov chains: a point is either recurrent or transient, and the nature
of a point can be characterized in terms of first return time, or in terms of number
of visits. In contrast, irreducible open quantum walks exhibit three possibilities
regarding the behavior of return time and number of visits. In this article, we study
the recurrence and transience, as well as their characterizations, for continuous-time
versions of OQW.

In the same way that open quantum walks are quantum extensions of discrete-
time Markov chains, there exist natural quantum extensions of continuous-time
Markov processes. One can point to two different types of continuous-time evolu-
tions with a structure akin to open quantum walks. The first (see [6]) is a natural
extension of classical Brownian motion and is called open quantum Brownian
motion; it is obtained by considering OQW in the limit where both time and space
are properly rescaled to continuous variables. The other type of such evolution (see
[25]) is an analogue of continuous-time Markov chains on a graph, is obtained by
rescaling time only, and is called continuous-time open quantum walks (CTOQW).
In this article we shall concentrate on the latter.

Roughly speaking CTOQW represents a continuous-time evolution on a graph
where a “walker” jumps from node to node at random times. The intensity of jumps
depends on the internal degrees of freedom; the latter are modified by the jump, but
also evolve continuously between jumps. In both cases the form of the intensity, as
well as the evolution of the internal degrees of freedom at jump times and between
them, can be justified from a quantum mechanical model.

As is well-known, in order to study a continuous-time Markov chain, it is
sufficient to study the value of the process at the jump times. Indeed, the time before
a jump depends exclusively on the location of the walker, and the destination of the
jump is independent of that time. As a consequence, the process restricted to the
sequence of jump times is a discrete-time Markov chain, and all the properties of
that discrete-time Markov chain such as irreducibility, period, transience, recurrence,
are transferred to the continuous-time process. This is not the case for OQW. In
particular, a CTOQW restricted to its jump times is not a (discrete-time) open
quantum walk. Therefore, the present study of recurrence and transience cannot
be directly derived from the results in [5]. Nevertheless, we can still adopt a similar
approach and, for instance, we study irreducibility of CTOQW in connection to that
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of quantum dynamical systems as in [11]. Note that general notions of recurrence
and transience are developed in [17] for general quantum Markov semigroups with
unbounded generators. The work elaborated in [17] is based on potential theory
and we explicit the connection between the notions of recurrence and transience of
CTOQW and those in [17]. Finally, as in the discrete case, we obtain a trichotomy,
in the sense that irreducible CTOQW can be classified into three different classes,
depending on the properties of the associated return time and number of visits.

The paper is structured as follows: in Sect. 18.2, we recall the definition of
continuous-time open quantum walks and in particular introduce useful classical
processes attached to CTOQW; Sect. 18.3 is devoted to the notion of irreducibility
for CTOQW; in Sect. 18.4, we address the question of recurrence and transience and
give the classification of CTOQW mentioned above.

18.2 Continuous Time Open Quantum Walks and Their
Associated Classical Processes

This section is devoted to the introduction of continuous-time open quantum walks
(CTOQW). In Sect. 18.2.1, we introduce CTOQW as a special instance of quantum
Markov semigroups (QMS) with generators preserving a certain block structure.
Section 18.2.2 is devoted to the exposition of the Dyson expansion associated with
a QMS, which will be a relevant tool in all remaining sections. It also allows us
to introduce the relevant probability space. Finally, in Sect. 18.2.3 we associate to
this stochastic process a Markov process called quantum trajectory which has an
additional physical interpretation, and which will be useful in its analysis.

18.2.1 Definition of Continuous-Time Open Quantum Walks

Let V denotes a set of vertices, which may be finite or countably infinite. CTOQW
are quantum analogues of continuous-time Markov semigroups acting on the set
L∞(V ) of bounded functions on V . They are associated with stochastic processes
evolving in the composite system

H =
⊕

i∈V

hi , (18.1)

where the hi are separable Hilbert spaces. This decomposition has the following
interpretation: the label i in V represents the position of a particle and, when the
particle is located at the vertex i ∈ V , its internal state is encoded in the space
hi (see below). Thus, in some sense, the space hi describes the internal degrees of
freedom of the particle when it is sitting at site i ∈ V . When hi does not depend on
i, that is if hi = h, for all i ∈ V , one has the identification H � h⊗ �2(V ) and then
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it is natural to write hi = h ⊗ |i〉 (we use here Dirac’s notation where the ket |i〉
represents the i-th vector in the canonical basis of �∞(V ), the bra 〈i| represents the
associated linear form, and |i〉〈j | represents the linear map ϕ �→ 〈j |ϕ〉 |i〉). We will
adopt the notation hi ⊗ |i〉 to denote hi in the general case (i.e. when hi depends on
i) to emphasize the position of the particle, using the identification hi ⊗C � hi . We
thus write:

H =
⊕

i∈V

hi ⊗ |i〉 . (18.2)

Last, we denote by I1(K) the two-sided ideal of trace-class operators on a given
Hilbert space K and by SK the space of density matrices on K , defined by:

SK = {ρ ∈ I1(K) | ρ∗ = ρ, ρ ≥ 0, Tr(ρ) = 1}.

A faithful density matrix is an invertible element of SK , which is therefore a trace-
class and positive-definite operator. Following quantum mechanical fashion, we will
use the word “state” interchangeably with “density matrix”.

We recall that a quantum Markov semigroup (QMS) on I1(K) is a semigroup
T := (Tt )t≥0 of completely positive maps on I1(K) that preserve the trace. The
QMS is said to be uniformly continuous if limt→0‖Tt − Id‖ = 0 for the operator
norm on B(K). It is then known (see [21]) that the semigroup (Tt )t≥0 has a
generator L = limt→∞(Tt−Id)/t which is a bounded operator on I1(K), called the
Lindbladian, and Lindblad’s theorem characterizes the structure of such generators.
One consequently has Tt = etL for all t ≥ 0, where the exponential is understood
as the limit of the norm-convergent series.

Continuous-time open quantum walks are particular instances of uniformly con-
tinuous QMS on I1(H), for which the Lindbladian has a specific form. To make this
more precise, we define the following set of block-diagonal density matrices of H :

D = {
μ ∈ S(H) ; μ =

∑

i∈V

ρ(i) ⊗ |i〉〈i|} .

In particular, for μ ∈ D with the above definition, one has ρ(i) ∈ I1(hi ),
ρ(i) ≥ 0 and

∑
i∈V Tr

(
ρ(i)

) = 1. In the sequel, we use the usual notations
[X, Y ] = XY − YX and {X, Y } = XY + YX, which stand respectively for the
commutator and anticommutator of two operators X, Y ∈ B(H).

Definition 18.1 Let H be a Hilbert space that admits a decomposition of the
form (18.1). A continuous-time open quantum walk is a uniformly continuous
quantum Markov semigroup on I1(H) such that its Lindbladian L can be written:

L : I1(H) → I1(H)

μ �→ −i[H,μ] +
∑

i,j∈V

1i =j

(
S

j
i μS

j∗
i − 1

2
{Sj∗

i S
j
i , μ}) , (18.3)
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where H and (S
j
i )i,j are bounded operators on H that take the following form:

• H = ∑
i∈V Hi ⊗ |i〉〈i|, with Hi bounded self-adjoint operators on hi , i in V ;

• for every i = j ∈ V , S
j
i is a bounded operator on H with support included in hi

and range included in hj , and such that the sum
∑

i,j∈V S
j∗
i S

j
i converges in the

strong sense. Consistently with our notation, we can write S
j
i = R

j
i ⊗ |j 〉〈i| for

bounded operators R
j
i ∈ B(hi , hj ).

We will say that the open quantum walk is semifinite if dim hi < ∞ for all i ∈ V .

From now on we will use the convention that Si
i = 0, Ri

i = 0 for any i ∈ V . As
one can immediately check, the Lindbladian L of a CTOQW preserves the set D.
More precisely, for μ = ∑

i∈V ρ(i) ⊗ |i〉〈i| ∈ D, we have Tt (μ) =: ∑
i∈V ρt (i) ⊗

|i〉〈i| for all t ≥ 0, with

d

dt
ρt (i) = −i[Hi, ρt (i)] +

∑

j∈V

(
Ri

jρt (j)Ri∗
j − 1

2
{Rj∗

i R
j
i , ρt (i)}

)
.

18.2.2 Dyson Expansion and Associated Probability Space

In this article, our main focus is on a stochastic process (Xt )t≥0 that informally
represents the position of a particle or walker constrained to move on V . In order
to rigorously define this process and its associated probability space, we need to
introduce the Dyson expansion associated with a CTOQW. In particular, this allows
to define a probability space on the possible trajectories of the walker. We will recall
the result for general QMS as we will use it in the next section. The application to
CTOQW is described shortly afterwards.

Let (Tt )t≥0 be a uniformly continuous QMS with Lindbladian L on I1(K) for
some separable Hilbert space K . By virtue of Lindblad’s Theorem [21], there exists
a bounded self-adjoint operator H ∈ B(K) and bounded operators Li on K (i ∈ I )
such that for all μ ∈ I1(K),

L(μ) = −i[H,μ] +
∑

i∈I

(
LiμL∗

i − 1

2
{LiL

∗
i , μ}) ,

where I is a finite or countable set and where the series is strongly convergent. The
first step is to give an alternative form for the Lindbladian. First introduce

G := −iH − 1

2

∑

i∈I

L∗
i Li ,
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so that for any μ ∈ D,

L(μ) = Gμ + μG∗ +
∑

i∈I

Li μL∗
i . (18.4)

Remark that G + G∗ + ∑
i∈I L∗

i Li = 0 (the form described in (18.4) is actually
the general form of the generator of a QMS given by Lindblad [21]). The operator
−(G+G∗) is positive semidefinite and t �→ etG defines a one-parameter semigroup
of contractions on K by a trivial application of the Lumer–Phillips theorem (see e.g.
Corollary 3.17 in [14]). We are now ready to give the Dyson expansion of the QMS.

Proposition 18.1 Let (Tt )t≥0 be a QMS with Lindbladian L as given above. For
any initial density matrix μ ∈ SK , one has

Tt (μ) =
∞∑

n=0

∑

i1,...,in∈I

∫

0<t1<···<tn<t

ζt (ξ) μ ζt (ξ)
∗ dt1 · · · dtn , (18.5)

where ζt (ξ) = e(t−tn) G Lin · · · Li1 et1 G for ξ = (i1, . . . , in; t1, . . . , tn).

We now turn to applying this to CTOQW. Due to the block decomposition of H

and of the Si
j , one can write G = ∑

i∈V Gi ⊗ |i〉〈i|, where (recall that Ri
i = 0)

Gi = −iHi − 1

2

∑

j

R
j∗
i R

j
i , (18.6)

so that Gi + G∗
i = −∑

j R
j∗
i R

j
i . From Proposition 18.1 we then get the following

expression for the Lindbladian: for all μ = ∑
i∈V ρ(i) ⊗ |i〉〈i| in D,

L(μ) =
∑

i∈V

(
Giρ(i) + ρ(i)G∗

i +
∑

j

Ri
j ρ(j) Ri∗

j

)
⊗ |i〉〈i| . (18.7)

Corollary 18.1 Let (Tt )t≥0 be a CTOQW with Lindbladian L given by (18.7). For
any initial density matrix μ ∈ D, one has

Tt (μ) =
∞∑

n=0

∑

i0,...,in∈V

∫

0<t1<···<tn<t

Tt (ξ) ρ(i0)Tt (ξ)∗dt1 · · · dtn ⊗ |in〉〈in| ,

(18.8)

where, for ξ = (i0, . . . , in; t1, . . . , tn) with i0, . . . , in ∈ V n+1 and 0 < t1 < . . . <

tn,

Tt (ξ) := e(t−tk)Gik R
ik
ik−1

e(tk−tk−1)Gik−1 · · · e(t2−t1)Gi1 R
i1
i0

et1Gi0 . (18.9)
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if k is the largest element such that tk ≤ t .

Note the small discrepancy between ξ in (18.5) and ξ in (18.8): ξ contains an
additional index i0, which is due to the decomposition of μ.

Remark 18.1 Equation (18.5) is also called an unravelling of the QMS. It was first
introduced in [12, 30], with the heuristic interpretation of giving an expression for
Tt (μ) as the average, over all possible trajectories ξ = (i0, . . . , in; t1, . . . , tn), of
the evolution of μ “when it follows the trajectory ξ”. We will discuss connections
with an operational interpretation of Tt (ξ)ρ(i0)Tt (ξ)∗ in Sect. 18.2.4.

The decomposition described in (18.9) will allow us to give a rigorous definition
of the probability space associated with the evolution of the particle on V . The goal
is to introduce the probability measure Pμ that models the law of the position of
the particle, when the initial density matrix is μ ∈ D. The following is inspired by
[4, 7, 19].

First define the set of all possible trajectories up to time t ∈ [0,∞] as �t :=
�

n∈N�
(n)
t , where �

(n)
t is the set of trajectories on V up to time t comprising n jumps:

�
(n)
t := {ξ = (i0, . . . , in; t1, . . . , tn) ∈ V n+1 × R

n, 0 < t1 < · · · < tn < t} .

For t ∈ R+, the set �
(n)
t is equipped with the σ -algebra 	

(t)
t and with the measure

ν
(n)
t , which is induced by the map

In : (
V n+1 × [0, t)n,P(V n+1) × B([0, t)n), δn+1 × 1

n!λn

) → (
�

(n)
t , 	

(n)
t , ν

(n)
t

)
,

(i0, . . . , in; s1, . . . , sn) �→ (i0, . . . , in; smin, . . . , smax)

where δ is the counting measure on V , B([0, t)n) is the Borel σ -algebra on [0, t)n

and λn is the Lebesgue measure on B([0, t)n) for all n ≥ 0. These measures are σ -
finite and this allows us to apply Carathéodory’s extension Theorem. We first define
the σ -algebra 	t := σ(	

(t)
t , n ∈ N) and the measure νt on �t such that νt = ν

(n)
t on

�
(n)
t . For a given μ = ∑

i∈V ρ(i) ⊗ |i〉〈i| in D, one can then define the probability
measure P

t
μ on (�t ,	t ) such that, for all E ∈ 	t ,

P
t
μ(E) :=

∫

E

Tr
(
Tt (ξ) μ Tt (ξ)∗

)
dνt (ξ)

=
∞∑

n=0

∑

i0,...,in∈V

∫

0<t1<···<tn<t

1ξ∈E Tr
(
Tt (ξ)ρ(i0)Tt (ξ)∗

)
dt1 · · · dtn ,

where ξ = (i0, . . . , in; t1, . . . , tn) and where Tt (ξ) is defined by Eq. (18.9). The
measure Pt

μ is a probability measure as one can check that Pt
μ(�t ) = Tr

(
etL(μ)

) =
1. The family of probability measures

(
P

t
μ

)
t≥0 is consistent, as (18.9) and (18.2.2)
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show that if E ∈ 	t ,

P
t+s
μ (E) =

∞∑

n=0

∑

i0,...,in∈V

∫

0<t1<···<tn<t

1ξ∈E Tr
(
esL(

Tt (ξ) ρ(i0) Tt (ξ)∗
))

dt1 · · · dtn

= P
t
μ(E)

for all t, s ≥ 0. Hence, Kolmogorov’s consistency Theorem allows us to extend
(Pt

μ)t≥0 to a probability measure Pμ on (�∞, 	∞) where 	∞ = σ(	t , t ∈ R+).

In most of our discussions below we will specialize to the case where μ is of the
form μ = ρ ⊗ |i〉〈i| Q<2αii. In such a case, we denote by Pi,ρ the probability Pμ.

18.2.3 Quantum Trajectories Associated with CTOQW

Quantum trajectories are another convenient way to describe the distribution of
the process (Xt , ρt )t≥0 associated with the CTOQW. Actually, the combination
of quantum trajectories and of the Dyson expansion will be essential tools for
the main result of this article. Formally speaking, quantum trajectories model the
evolution of the state when a continuous measurement of the position of the particle
is performed. The state at time t can be described by a pair (Xt , ρt ) with Xt ∈ V

the position of the particle at time t (as recorded by the measuring device) and
ρt ∈ SH the density matrix describing the internal degrees of freedom, given by
the wave function collapse postulate and thus constrained to have support on hi

alone. The stochastic process (Xt , ρt )t≥0 is then a Markov process, and this will
allow us to use the standard machinery for such processes. However, their rigorous
description is less straightforward than the one for discrete-time OQW. It makes
use of stochastic differential equations driven by jump processes. We refer to [25]
for the justification of the below description and for the link between discrete and
continuous-time models. Remark that we denote by the same symbol the stochastic
process (Xt )t≥0 appearing in this and the previous section. This will be justified in
Remark 18.2.4 below.

In order to present the stochastic differential equation satisfied by the pair
(Xt , ρt )t≥0 we need a usual filtered probability space

(
�,F , (Ft )t≥0,P

)
, where we

consider independent Poisson point processes Ni,j , i, j ∈ V, i = j on R
2 (again

we take Ni,i = 0 by convention). These Poisson point processes will govern the
jump from site i to site j on the graph V .

Definition 18.2 Let (Tt )t≥0 be a CTOQW with Lindbladian L of the form (18.3)
and let μ = ∑

i∈V ρ(i) ⊗ |i〉〈i| be an initial density matrix in D. The quantum
trajectory describing the indirect measurement of the position of the CTOQW is the
Markov process (μt )t≥0 taking values in the set D such that

μ0 = ρ0 ⊗ |X0〉〈X0| ,
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where X0 and ρ0 are random with distribution

P

(
(X0, ρ0) = (

i,
ρ(i)

Tr(ρ(i))

)) = Tr
(
ρ(i)

)
for all i ∈ V

and such that μt =: ρt ⊗ |Xt 〉〈Xt | satisfies for all t ≥ 0 the following stochastic
differential equation:

μt = μ0 +
∫ t

0
M(μs−) ds

+
∑

i,j

∫ t

0

∫

R

(
S

j
i μs− S

j∗
i

Tr(Sj
i μs−S

j∗
i )

− μs−

)
1

0<y<Tr(Sj
i μs−S

j∗
i )

Ni,j (dy, ds)

(18.10)

where

M(μ) = L(μ) −
∑

i,j

(
S

j
i μ S

j∗
i − μ Tr(Sj

i μ S
j∗
i )

)

so that for μ = ∑
i ρ(i) ⊗ |i〉〈i| ∈ D,

M(μ) =
∑

i

(
Giρ(i) + ρ(i)G∗

i − ρ(i) Tr
(
Giρ(i) + ρ(i)G∗

i

)) ⊗ |i〉〈i| .

Remark 18.2 An interesting fact has been pointed out in [25]: continuous-time
classical Markov chains can be realized within this setup by considering hi = C

for all i ∈ V .

Let us briefly describe the evolution of the solution (μt )t≥0 of (18.10), and in
particular explain why μt is of the form ρt ⊗ |Xt 〉〈Xt |. Assume that X0 = i0 for
some i0 ∈ V and consider ρ0 a state on hi0 . Remark that for any state ρ on hi0 ,
M(ρ ⊗ |i0〉〈i0|) is of the form ρ′ ⊗ |i0〉〈i0|. We then consider the solution, for all
t ≥ 0, of

ηt = ρ0 +
∫ t

0

(
Gi0ηs + ηsG

∗
i0

− ηsTr(Gi0ηs + ηsG
∗
i0
)
)

ds .

We stress the fact that the solution of this equation takes its values in the set on
states of hi0 (this nontrivial fact is well-known in the theory of quantum trajectories,
see [24] for further details). Now let us define the first jump time. To this end we
introduce for j = i0

T
j

1 = inf
{
t ≥ 0 ; Ni0,j

({
u, y | 0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rj

i0
ηuR

j
i0

∗
)
}) ≥ 1

}
.
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The random variables T
j

1 are nonatomic, and mutually independent. Therefore, if

we let T1 = infj =i0{T j

1 } then there exists a unique j ∈ V such that T
j

1 = T1. In
addition,

P
(
T1 ≤ ε

) ≤
∑

j =i0

P
(
T

j

1 ≤ ε
)

=
∑

j =i0

(1 − e
− ∫ ε

0 Tr(Rj
i0

ηuR
j∗
i0

) du
)

≤
∑

j =i0

∫ ε

0
Tr(Rj

i0
ηuR

j∗
i0

) du

≤ ε
∑

j =i0

‖Rj∗
i0

R
j
i0
‖ (18.11)

where the sums are over all j in V with j = i0. Now remark that our assumption
that

∑
i,j S

j∗
i S

j
i converges strongly implies that the sum

∑
j =i ‖Rj∗

i R
j
i ‖ is finite

for all i in V , so that Eq. (18.11) implies P(T1 > 0) = 1. On [0, T1] we then define
the solution (Xt , ρt )t≥0 as

(Xt , ρt ) = (i0, ηt ) for t ∈ [0, T1) and

(XT1 , ρT1) = (
j,

R
j
i ηT1−R

j
i

∗

Tr(Rj
i ηT1−R

j
i

∗
)

)
if T1 = T

j

1 .

We then solve

ηt = ρT1 +
∫ t

0

(
Gjηs + ηsG

∗
j − ηsTr(Gjηs + ηsG

∗
j )

)
ds ,

and define a new jumping time T2 as above. By this procedure we define an
increasing sequence (Tn)n of jumping times. We show that T := limn Tn = +∞
almost surely: we introduce

Nt =
∑

i,j

( ∫ t∧T

0

∫

R

1
0<y<Tr(Sj

i μs−S
j∗
i )

Ni,j (dy, ds)
)

(the sum is over all i, j with i = j ) which counts the number of jumps before t . In
particular NTp = p for all p ∈ N. Now from the properties of the Poisson processes
we have for all p ∈ N and all m ∈ N,

E(NTp∧m) ≤ E
(
Nm

) =
∑

i,j

E
( ∫ m∧T

0
Tr(Sj

i μs−S
j∗
i ) ds

) ≤ m
∑

i,j

‖Sj∗
i S

j
i ‖ .
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Denoting C = ∑
i,j ‖Sj∗

i S
j
i ‖ (which is finite) the inequality p P(Tp ≤ m) ≤

E(NTp∧m) implies

P(Tp ≤ m) ≤ m

p
C .

This implies that P(limp Tp ≤ m) = 0 for all m ∈ N so that limp Tp = +∞ almost
surely. Therefore, the above considerations define (Xt , ρt ) for all t ∈ R+.

18.2.4 Connection Between Dyson Expansion and Quantum
Trajectories

The connection between the process (Xt , ρt )t≥0 defined in this section and the
Dyson expansion has been deeply studied in the literature. We do not give all the
details of this construction and instead refer to [4, 7] for a complete and rigorous
justification. The main point is that the process (Xt , ρt )t≥0 defined in Sect. 18.2.3
can be constructed explicitly on the space (�∞, 	∞,P), as we now detail.

Recall the interpretation of ξ = (i0, . . . , in; t1, . . . , tn) as the trajectory of a
particle, initially at i0 and jumping to ik at time tk . First, on (�∞, 	∞,P) define
the random variable Ñ

i,j
t by

Ñ
i,j
t (ξ) = card

{
k = 0, . . . , n − 1 | tk+1 ≤ t and (ik, ik+1) = (i, j)

}

for ξ = (i0, . . . , in; t1, . . . , tn) as above. Now, let

X̃t (ξ) =
{

ik if tk ≤ t < tk+1

in if tn ≤ t.

ρ̃t (ξ) = Tt (ξ)ρ(i0) Tt (ξ)∗

Tr(Tt (ξ)ρ(i0)Tt (ξ)∗)

(18.12)

(recall that Tt (ξ) is defined in (18.9)) and

μ̃t = ρ̃t ⊗ |X̃t 〉〈X̃t | .

Differentiating (18.12), one can show that the process (μ̃t )t≥0 satisfies

dμ̃t =M(μ̃t−) dt +
∑

i,j

( S
j
i μ̃s−S

j∗
i

Tr(Sj
i μ̃t−S

j∗
i )

− μ̃t−
)

dÑ i,j (t) . (18.13)
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It is proved in [4] that the processes

(Ñ
i,j
t )t≥0 and

( ∫ t

0

∫

R

1
0<y<Tr(Sj

i μs−S
j∗
i )

Ni,j (dy, ds)
)
t≥0

(for (μt )t≥0 and Ni,j defined in the previous section) have the same distribution.
Therefore, (μ̃t )t≥0 and (μt )t≥0 have the same distribution. For this reason, we
will denote the random variables η̃t , X̃t , ρ̃t by ηt , Xt , ρt , i.e. we identify the
random variables obtained by the construction in Sect. 18.2.3 and those defined
by (18.12). In addition, from expression (18.8) for Tt and (18.12) for ρt , Xt we
recover immediately that μt = ρt ⊗ |Xt 〉〈Xt | satisfies

Eμ0(μt ) = Tt (μ0)

where Eμ0 is the expectation with respect to the probability Pμ0 defined in
Sect. 18.2.2. This identity shows that the quantum Markov semigroup (Tt )t≥0
plays for the process (Xt , ρt )t≥0 the same role as the Markov semigroup in
the classical case. Because a notion of irreducibility is naturally associated
with such a semigroup (see [11] for the original definition and [16] for
general considerations on the irreducibility of Lindbladians), this will allow
us to associate a notion of irreducibility to a continuous-time open quantum
walk.

Now note that expressions (18.12) give an interpretation of Xt and ρt

in terms of quantum measurement. Indeed, one can see the operator Tt (ξ)

for ξ = (i0, . . . , in; t1, . . . , tn) (or, rather, the map ρ �→ Tt (ξ)ρTt (ξ)∗) as
describing the effect of the trajectory where jumps (up to time t) occur at
times t1,. . . ,tn and i0,. . . ,in is the sequence of updated positions: as long as
the particle sits at ik ∈ V , the evolution of its internal degrees of freedom
is given by the semigroup of contraction (et Gik )t≥0 and, as the particle jumps

to ik+1, it undergoes an instantaneous transformation governed by R
ik+1
ik

(this
Tt (ξ) is then the analogue for continuous-time OQW of the operator Lπ of
[9]). Therefore, the expression for ρt (ξ) in (18.12) encodes the effect of the
reduction postulate, or postulate of the collapse of the wave function, on the
state of a particle initially at i0 and with internal state ρ0. This rigorous connection
of the unravelling (18.9) to (indirect) measurement was first described in [4]
(see also [23, 24], as well as [13] for a connection to two-time measurement
statistics).

To summarize this section and the preceding one, we have defined a Markov
process (μt )t as μt = ρt ⊗ |Xt 〉〈Xt |, where Xt ∈ V and ρt ∈ ShXt

, of which the
law can be computed in two ways: either by the Dyson expansion of the CTOQW
as in (18.2.2) or by use of the stochastic differential equation (18.10).



18 Recurrence and Transience of Continuous-Time Open Quantum Walks 505

18.3 Irreducibility of Quantum Markov Semigroups

In this section, we state the equivalence between different notions of irreducibility
for general quantum Markov semigroup. Our main motivation is the fact that we
could not find a complete proof in the case of an infinite-dimensional Hilbert space,
as is required e.g. for CTOQW with infinite V . We then discuss irreducibility for
CTOQW.

Theorem 18.1 Let T := (Tt )t≥0 be a quantum Markov semigroup with Lindbla-
dian

L(μ) = Gμ + μG∗ +
∑

i∈I

Li μL∗
i . (18.14)

The following assertions are equivalent:

1. T is positivity improving: for all A ∈ I1(K) with A ≥ 0 and A = 0, there exists
t > 0 such that etL(A) > 0.

2. For any ϕ ∈ K\{0}, the set C[L] ϕ is dense in K where C[L] is the set of
polynomials in etG for t > 0 and in Li for i ∈ I .

3. For any ϕ ∈ K\{0}, the set C[G,L] ϕ is dense in K where C[G,L] is the set of
polynomials in G and in Li for i ∈ I .

4. T is irreducible, i.e. there exists t > 0 such that Tt admits no non-trivial
projection P ∈ B(K) with Tt

(
PI1(K)P

) ⊂ PI1(K)P .

From now on, any quantum Markov semigroup which satisfies any one of the
equivalent statements of Theorem 18.1 is simply called irreducible.

Remark 18.3 Positivity improving maps are also called primitive. We therefore call
primitivity the property of being positivity improving. Remark also that one can
replace “there exists t > 0” by “for all t > 0” in assertions 1. and 4. above to get
another equivalent formulation of irreducibility and primitivity. This follows from
the observation that assertion 3. does not depend on t .

Proof We first prove the equivalence of 1. and 2. Note that 1. holds if and only if
for every ϕ0 = 0, there exists t0 > 0 such that 〈ϕ, etL(|ϕ0〉〈ϕ0|)ϕ〉 > 0 for all ϕ = 0.
Now remark that from Eq. (18.8),

〈ϕ, etL(|ϕ0〉〈ϕ0|)ϕ〉 =
∞∑

n=0

∑

i0,...,in∈I

∫

0<t1<···<tn<t

|〈ϕ, ζt (ξ)ϕ0〉|2 dt1 · · · dtn

(18.15)

where ξ = (i1, . . . , in; t1, . . . , tn). Assume 1. and fix ϕ0 = 0. If for some
t ≥ 0, the left-hand side of (18.15) is positive for any ϕ = 0, then for any
such ϕ = 0 there exists ξ with 〈ϕ, ζt (ξ)ϕ0〉 = 0. Since ζt (ξ)ϕ0 ∈ C[L]ϕ0 and
the latter is a vector space, this implies that C[L]ϕ0 is dense in K . Now assume
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2. and fix ϕ0 = 0. Since C[L]ϕ0 is dense in K , for any ϕ = 0 there exists
an element ψ = esn G Lin · · · Li1 es1 Gϕ0 such that 〈ϕ,ψ〉 = 0. However, for
t ≥ s1 + . . . + sn, ψ is of the form ζt (ξ)ϕ0 for some ξ = (i1, . . . , in; t1, . . . , tn).
By continuity of ζ in t1, . . . , tn, the right-hand side of (18.15) is positive and this
proves 1.

To prove the equivalence of 2. and 3., we use the fact that G = limt→0(etG −
Id)/t , which implies that for any ϕ ∈ K\{0},

C[G,L]ϕ ⊂ C[L]ϕ ⊂ C[L]ϕ .

Since etG = limn→∞
∑n

k=0 tkGk/k!, for any ϕ ∈ K\{0} we also have

C[L]ϕ ⊂ C[G,L]ϕ ⊂ C[G,L]ϕ .

Therefore, for any ϕ ∈ K\{0},

C[L]ϕ is dense in K ⇔ C[G,L]ϕ is dense in K . (18.16)

That 1. implies 4. is obvious. It remains to prove that 4. implies 2. To
this end, suppose that T is irreducible. Let ϕ ∈ K\{0} and denote by P the
orthogonal projection on C[L]ϕ. The goal is to prove that P = Id. For all
ψ ∈ K\{0},

etL(P |ψ〉〈ψ |P) =
∞∑

n=0

∑

i0,...,in∈I

∫

0<t1<···<tn<t

ζt (ξ)P |ψ〉〈ψ |Pζt (ξ)
∗dt1 · · · dtn

=
∞∑

n=0

∑

i0,...,in∈I

∫

0<t1<···<tn<t

|ζt (ξ)Pψ〉〈ζt (ξ)Pψ | dt1 · · · dtn ,

Since ζt (ξ) ∈ C[L] and Pψ ∈ C[L]ϕ, we have ζt (ξ)Pψ ∈ C[L]ϕ and
thus

Tt (P |ψ〉〈ψ |P) = P Tt (P |ψ〉〈ψ |P)P .

Since Tt is irreducible by assumption, P must be trivial. As it is non-zero, P = Id.
Since P is the orthogonal projection on C[L]ϕ, this shows that C[L]ϕ is dense
in K . ��
Remark 18.4 An immediate corollary of Theorem 18.1 is that a quantum Markov
semigroup T = (Tt )t is irreducible if and only if its adjoint T ∗ = (T ∗

t )t is
irreducible.

We now introduce the notion of irreducibility of a CTOQW, focusing on the
trajectorial formulation. Let T := (Tt )t≥0 be a CTOQW on a set V . For i, j in V
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and n ∈ N, we denote by Pn(i, j) the set of continuous-time trajectories going from
i to j in n jumps:

Pn(i, j) = {ξ = (i0, . . . , in; t1, . . . , tn) ∈ �(n)∞ | i0 = i, in = j}

and we set P(i, j) = ∪n∈NPn(i, j). For any ξ = (i, . . . , j ; t1, . . . , tn) in P(i, j),
we recall that the operator Tt (ξ) from hi to hj is defined by

Tt (ξ) = e(t−tn)Gin R
j
in−1

e(tn−tn−1)Gin−1 · · · e(t2−t1)Gi1 R
i1
i et1Gi .

The following proposition is a direct application of Theorem 18.1, and will
constitute our definition of irreducibility for continuous-time open quantum walks.
The criterion here is equivalent to any other formulation proposed in Theorem 18.1.

Proposition 18.2 A CTOQW with Lindbladian (18.3) is irreducible if and only if,
for every i and j in V , and for any ϕ in hi\{0}, the set

{
Tt (ξ) ϕ, t ≥ 0, ξ ∈ P(i, j)

}

is total in hj .

Remark 18.5 From Theorem 18.1, an equivalent condition of irreducibility
is that for every i and j in V and for any ϕ in hi\{0}, the set of all
G

kn

in
R

j
in−1

G
kn−1
in−1

· · · G
k1
i1

R
i1
i G

k0
i ϕ for any i0, i1, . . . , in with i0 = i and in = j ,

and any k0, . . . , kn in N0, is total in hj . This immediately implies that a CTOQW is
irreducible if, for every i and j in V and ϕ in hi\{0}, the set

{
R

in
in−1

. . . R
i1
i0

ϕ, i0, i1, . . . , in ∈ V, i0 = i, in = j, n ∈ N0
}

(18.17)

is total in hj . This is equivalent to saying that the completely positive map induced
by the off-diagonal terms of L (i.e. the map μ �→ ∑

i,j (R
i
j ⊗|i〉〈j |)μ(Ri

j ⊗|i〉〈j |)∗)
is irreducible as a (discrete-time) completely positive map (see [11, 15]). This of
course is true for continuous-time Markov chains, which are irreducible if the
discrete-time map induced by the off-diagonal terms is irreducible. In the case of
CTOQW, however, this is not true, as the next example shows.

Example 18.1 Consider the OQW with V = {1, 2} and h1 = h2 = C
2, and

Lindbladian defined by (18.7) with:

G1 = G2 = 1

2

(−1 2
−2 −1

)
, R2

1 = R1
2 =

(
0 1
1 0

)
.

One can easily check that
{
Tt (ξ) ϕ, t ≥ 0, ξ ∈ P(i, j)

} = hj for all i, j ∈ {1, 2}
and ϕ ∈ hi \ {0}, so that the CTOQW is irreducible, but the criterion in (18.17) in
terms of R2

1 and R1
2 is not satisfied.
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18.4 Transience and Recurrence of Irreducible CTOQW

In the classical theory of Markov chains on a finite or countable graph, an irreducible
Markov chain can be either transient or recurrent. Transience and recurrence issues
are central to the study of Markov chains and help describe the Markov chain’s
overall structure. In the case of CTOQW, transience and recurrence notions are made
more complicated by the fact that the process (Xt )t≥0 alone is not a Markov chain.

In the present section, we define the notion of recurrence and transience of a
vertex in our setup and prove a dichotomy similar to the classical case, based on the
average occupation time at a vertex. However, compared to the classical case, the
relationship between the occupation time and the first passage time at the vertex is
less straightforward. Recall that the first passage time at a given vertex i ∈ V is
defined as

τi = inf{t ≥ T1|Xt = i}

where T1 is defined in Sect. 18.2.3. Similarly the occupation time is given by

ni =
∫ ∞

0
1Xt=i dt .

In the discrete-time and irreducible case (Theorem 3.1. of [5]), the authors prove
that there exists a trichotomy rather than the classical dichotomy. We state a similar
result for continuous-time semifinite open quantum walks (we recall that an OQW
is semifinite if dim hi < ∞ for all i ∈ V ).

Theorem 18.2 Consider a semifinite irreducible continuous-time open quantum
walk. Then we are in one (and only one) of the following situations:

1. For any i, j in V and ρ in Shi
, one has Ei,ρ(nj ) = ∞ and Pi,ρ(τj < ∞) = 1.

2. For any i, j in V and ρ in Shi
, one has Ei,ρ(nj ) < ∞ and Pi,ρ(τi < ∞) < 1.

3. For any i, j in V and ρ in Shi
, one has Ei,ρ(nj ) < ∞, but there exist i in V

and ρ, ρ′ in Shi
(ρ necessarily non-faithful) such that Pi,ρ(τi < ∞) = 1 and

Pi,ρ′(τi < ∞) < 1.

Note that in the sequel we only focus on the semifinite case. Recall that when
hi is one-dimensional for all i ∈ V , we recover classical continuous-time Markov
chains. In this case, the Markov chain falls in one of the first two categories of this
theorem; that is, the third category is a specifically quantum situation.

The rest of this section is dedicated to the proof of Theorem 18.2. More
precisely, in Sect. 18.4.1 we prove the dichotomy between infinite and finite average
occupation time. This allows us to define transience and recurrence of CTOQW. We
also give examples of CTOQW that fall in each of the three classes of Theorem 18.2.
In Sect. 18.4.2 we state technical results that give closed expressions for the
occupation time and the first passage time. Finally, the proof of Theorem 18.2 is
given in Sect. 18.4.3.
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18.4.1 Definition of Recurrence and Transience

We begin by proving that for an irreducible CTOQW, the average occupation time
Ei,ρ(nj ) of site j starting from site i is either finite for all i, j or infinite for all i, j .

Proposition 18.3 Consider a semifinite irreducible continuous-time open quantum
walk. Suppose furthermore that there exist i0, j0 ∈ V and ρ0 ∈ Shi0

such that
Ei0,ρ0(nj0) = ∞. Then, for all i, j ∈ V and ρ ∈ Shi

one has Ei,ρ(nj ) = ∞.

Proof Fix i, j ∈ V and ρ ∈ Shi
. Then one has

Ei,ρ(nj ) =
∫ ∞

0
Pi,ρ(Xt = j) dt =

∫ ∞

0
Tr

(
etL(ρ ⊗ |i〉〈i|)(Id ⊗ |j 〉〈j |)) dt .

By hypothesis, (Tt )t≥0 is irreducible and thus positivity improving by Theo-
rem 18.1; by Remark 18.4 the same is true of (T ∗

t )t≥0. Therefore, since for any
i ∈ V , hi is finite-dimensional, for any s > 0 there exist scalars α, β > 0 such that

esL(ρ ⊗ |i〉〈i|) ≥ α ρ0 ⊗ |i0〉〈i0| and esL∗
(Id ⊗ |j 〉〈j |) ≥ β Id ⊗ |j0〉〈j0| .

We then have, fixing s > 0,

Ei,ρ(nj ) ≥
∫ ∞

2s

Tr
(
e(t−2s)L(

esL(ρ ⊗ |i〉〈i|)) esL∗
(Id ⊗ |j 〉〈j |)) dt

≥ αβ

∫ ∞

0
Tr

(
euL(ρ0 ⊗ |i0〉〈i0|)(Id ⊗ |j0〉〈j0|)

)
du

≥ αβ Ei0,ρ0(nj0) .

This concludes the proof. ��
This proposition leads to a natural definition of recurrent and transient vertices

of V :

Definition 18.3 For any continuous-time open quantum walk, we say that a vertex
i in V is:

• recurrent if for any ρ ∈ Shi
, Ei,ρ(ni) = ∞;

• transient if there exists ρ ∈ Shi
such that Ei,ρ(ni) < ∞.

Thus, by Proposition 18.3, for an irreducible CTOQW, either all vertices are
recurrent, in which case we say that the CTOQW is recurrent; or all vertices are
transient, in which case we say that it is transient. Furthermore, in the transient case,
Ei,ρ(ni) < ∞ for all ρ in Shi

.

As already mentioned in the introduction, a general notion of recurrence and
transience of quantum dynamical semigroups has been defined by Fagnola and
Rebolledo in [17] (see also [18]). It is natural to wonder if this general notion
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reduces to ours in the case of CTOQW. When applied to the semigroup (Tt )t≥0,
the definition of recurrence in [17] (denoted FR-recurrence in [5]) is that for any
positive semidefinite operator A of B(H), the set

D(U(A)) = {
ϕ =

∑

i∈V

ϕi ⊗ |i〉 s.t.
∫ ∞

0
〈ϕ,T ∗

s (A) ϕ〉 ds < ∞}
.

equals {0}. As we have

Ei,ρ(ni) =
∫ ∞

0
Tr

(
ρ T ∗

s (Idhi
⊗ |i〉〈i|)) ds ,

we see that our definition of recurrence for CTOQW is equivalent to the fact
that for any i ∈ V , D(U(Idhi

⊗ |i〉〈i|)) = {0}. Consequently, it is clear that
if the CTOQW is FR-recurrent, then it is recurrent in our sense. Conversely, if
the CTOQW is recurrent in our sense, then for any definite-positive A and any
ϕ = ∑

i∈V ϕi ⊗ |i〉, there exists i such that ϕi = 0, and if the CTOQW is semifinite,
then A ≥ λiIdhi

⊗ |i〉〈i| for some λi > 0. We then have

∫ ∞

0
〈ϕ,T ∗

s (A) ϕ〉 ds ≥ λi Ei,|ϕi 〉〈ϕi |(ni) = +∞ .

By Theorem 2 of [17], the quantum dynamical semigroup (Tt )t≥0 is not transient,
and by Proposition 5 of the same reference, it must be recurrent if (Tt )t≥0 is
irreducible. Therefore, for irreducible semifinite CTOQW our notion of recurrence
and FR-recurrence are equivalent. We refer to [5] for a more complete discussion
of the different notions of recurrence that appear in the literature for OQW. Note
that the notion of FR-recurrence is more general since it encompasses the case of
unbounded generators (the approach of [17] derives from potential theory); here we
are essentially interested in semifinite CTOQW in order to have a clear trichotomy,
so that our S

j
i are automatically bounded.

We conclude this section by illustrating Theorem 18.2 with simple examples. The
n-th example below corresponds to the n-th situation in Theorem 18.2.

Example 18.2

1. For V = {0, 1} and h0 = h1 = C, consider the CTOQW characterized by the
following operators:

G0 = G1 = −1

2
, R1

0 = R0
1 = 1 .

Then the process (Xt )t≥0 is a classical continuous Markov chain on {0, 1},
where the walker jumps from one site to the other after an exponential time of
parameter 1.



18 Recurrence and Transience of Continuous-Time Open Quantum Walks 511

2. For V = Z and hi = C for all i ∈ Z, consider the CTOQW described by the
transition operators:

Gi = −1

2
, Ri+1

i =
√

3

2
, Ri−1

i = 1

2
for all i ∈ Z .

The process (Xt )t≥0 is a classical continuous Markov chain on Z where after an
exponential time of parameter 1, the walker jumps to the right with probability 3

4
or to the left with probability 1

4 .
3. Consider the CTOQW defined by V = N with h1 = C

2 and h0 = hi = C for
i ≥ 2, and

G0 = −1

2
, G1 = −1

2
I2 ,

R1
0 = 1√

5

(
2
1

)
, R0

1 = (
0 1

)
, R2

1 = (
1 0

)
, R1

2 = 1

2
√

2

(
1
1

)
,

Gi = −1

2
, Ri+1

i =
√

3

2
, Ri

i+1 = 1

2
for i ≥ 2 .

This is an example of positivity improving CTOQW where, for ρ =
(

0 0
0 1

)
, one

has P1,ρ(τ1 < ∞) = 1 but Pi,ρ′(τi < ∞) < 1 for any ρ′ =
(

0 0
0 1

)
. This example

therefore exhibits “specifically quantum” behavior. It is inspired from [5].

18.4.2 Technical Results

Proposition 18.4 below is essential, as it expresses the probability of reaching a site
in finite time as the trace of the initial state, evolved by a certain operator.

Proposition 18.4 For any continuous-time open quantum walk, there exists a
completely positive linear operator Pi,j from I(hi ) to I(hj ) such that for every
i, j ∈ V and ρ ∈ Shi

,

Pi,ρ(τj < ∞) = Tr
(
Pi,j (ρ)

)
.

Furthermore, the map Pi,j can be expressed by:

Pi,j (ρ) =
∞∑

n=0

∑

i1,...,in−1∈V \{j}
i0=i,in=j

∫

0<t1<...<tn<∞
R(ξ) ρ R(ξ)∗dt1 . . . dtn ,
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where ξ=(i0, . . . , in; t1, . . . , tn) and R(ξ)=R
in
in−1

e(tn−tn−1)Gin−1 R
in−1
in−2

. . . R
i1
i0

et1Gi0 .

Note that we do not require the hi to be finite-dimensional here.

Proof We have the trivial identity:

Pi,ρ(τj < t) =
∞∑

n=0

∑

i1,...,in−1∈V \{j}
i0=i,in=j

×
∫

0<t1<...<tn<t

Tr
(
e(t−tn)L(

R(ξ) ρ R(ξ)∗ ⊗ |j 〉〈j |)) dt1 . . . dtn.

(18.18)

Then, since e(t−tn)L is trace preserving,

Pi,ρ(τj < t) =
∞∑

n=0

∑

i1,...,in−1∈V \{j}
i0=i,in=j

∫

0<t1<...<tn<t

Tr
(
R(ξ) ρ R(ξ)∗

)
dt1 . . . dtn ,

and since both sides of the identity are nondecreasing in t , taking the limit t → +∞
yields

Pi,ρ(τj < ∞) =
∞∑

n=0

∑

i1,...,in−1∈V \{j}
i0=i,in=j

∫

0<t1<...<tn<∞
Tr

(
R(ξ) ρ R(ξ)∗

)
dt1 . . . dtn .

It remains to show that Pi,j is well defined. Let us denote by (Vn)n∈N an increasing
sequence of subsets of V such that |Vn| = min(n, |V |) and

⋃
n∈N Vn = V . For any

X ∈ I(hi )\{0} write the canonical decomposition X = X1 − X2 + iX3 − iX4 of X

as a linear combination of four nonnegative operators. We get

Tr
∣∣∣

N∑

n=0

∑

i1,...,in−1∈VN\{j}
i0=i,in=j

∫

0<t1<...<tn<N

R(ξ)X R(ξ)∗ dt1 . . . dtn

∣∣∣

≤
4∑

m=1

Tr
∣∣∣

N∑

n=0

∑

i1,...,in−1∈VN\{j}
i0=i,in=j

∫

0<t1<...<tn<N

R(ξ)Xm R(ξ)∗ dt1 . . . dtn

∣∣∣

≤
4∑

m=1

Tr Xm ×
N∑

n=0

∑

i1,...,in−1∈VN\{j}
i0=i,in=j

∫

0<t1<...<tn<N

Tr
(
R(ξ)

Xm

Tr(Xm)
R(ξ)∗

)

× dt1 . . . dtn
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≤
4∑

m=1

Tr Xm × P
i,

Xm
Tr(Xm)

(τj < N)

≤
4∑

m=1

Tr Xm

≤ 2Tr |X|

(alternatively apply Theorem 5.17 in [31] to X1 − X2 and X3 − X4). Then

sup
N

Tr
∣∣∣

N∑

n=0

∑

i1,...,in−1∈VN\{j}
i0=i,in=j

∫

0<t1<...<tn<N

R(ξ)X R(ξ)∗ dt1 . . . dtn

∣∣∣ < ∞ .

Consequently, by the Banach–Steinhaus Theorem, the operator on I(hi ) to I(hj )

defined by

Pi,j (X) =
∞∑

n=0

∑

i1,...,in−1∈V \{j}
i0=i,in=j

∫

0<t1<···<tn<∞
R(ξ)X R(ξ)∗ dt1 · · · dtn

is everywhere defined and bounded. ��
As a corollary, using the definition of the operator Pi,j for i, j ∈ V , we obtain a

useful expression for Ei,ρ(nj ):

Corollary 18.2 For every i, j ∈ V and ρ ∈ Shi
, we have

Ei,ρ(nj ) =
∞∑

k=0

Tr
(
Pk

j,j ◦ Pi,j (ρ)
)

. (18.19)

Proof Let i, j ∈ V and ρ ∈ Shi
. Then

Ei,ρ(nj ) =
∫ ∞

0
Pi,ρ(Xt = j) dt =

∫ ∞

0
Tr

(
etL(ρ ⊗ |i〉〈i|)(Id ⊗ |j 〉〈j |)) dt

= Tr
( ∞∑

n=0

n∑

k=0

∑

m1,...,mk∈N
m1<···<mk=n

∑

i1,...,im1−1,im1+1,...,imk−1 =j

i0=i, im1=im2=···=imk
=j

×
∫

0<t1<···<tn<t

ϒρϒ∗ dt1 · · · dtn dt
)
,
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where ϒ=R
in
in−1

e(tn−tn−1)Gin−1 R
in−1
in−2

· · ·Rim1+1

im1
e(tm1+1−tm1 )Gim1 R

im1
im1−1

· · · R
i1
i0

et1Gi0 .

The above expression corresponds to a decomposition of any path from i to j as a
concatenation of a path from i to j , and k paths from j to j which do not go through
j except at their start- and endpoints. This yields Eq. (18.19). ��

The next corollary allows us to link the quantity Pi,ρ(τj < ∞) to the adjoint of
the operator Pi,j . In particular, as we shall see, it is a first step towards linking the
properties of Pi,ρ(τj < ∞) and Ei,ρ(nj ).

Corollary 18.3 Let i and j be in V . One has

Pi,ρ(τj < ∞) = 1 ⇔ P∗
i,j (Id) =

(
Id 0
0 ∗

)

in the decomposition hi = Ran ρ ⊕ (Ran ρ)⊥.

In particular, if there exists a faithful ρ in Shi
such that Pi,ρ(τj < ∞) = 1, then

one has Pi,ρ′(τj < ∞) = 1 for any ρ′ in Shi
.

Proof By Proposition 18.4, one has Pi,ρ(τj < ∞) = Tr
(
ρ P∗

i,j (Id)
)
. Therefore,

if Pi,ρ(τj < ∞) = 1, then P∗
i,j (Id) has the following form in the decomposition

hi = Ran ρ ⊕ (Ran ρ)⊥:

P∗
i,j (Id) =

(
Id A

A B

)
.

Besides, the fact that Id ≥ P∗
i,j (Id) forces A to be null. In particular, if ρ is faithful,

then P∗
i,j (Id) = Id and therefore Pi,ρ′(τj < ∞) = 1 for any ρ′ in Shi

. ��

18.4.3 Proof of Theorem 18.2

Let i and j be in V . As we can see in Corollary 18.3, if we suppose that Pi,ρ(τj <

∞) = 1 for a faithful density matrix ρ, we necessarily have P∗
i,j (Id) = Id. This will

be used in the following proposition, which in turn explains the statement regarding
non-faithfulness in the third category of Theorem 18.2.

Proposition 18.5 Let i be in V . If there exists a faithful ρ in Shi
such that Pi,ρ(τi <

∞) = 1, then one has Ei,ρ′(ni) = ∞ for any ρ′ in Shi
.

Proof We set τ i
1 = τi and, for all n > 1, we define τ

(n)
i as the time at which (Xt )t≥0

reaches i for the n-th time:

τ
(n)
i = inf{t > τ i

n−1| Xt = i and Xt− = i} .
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From Corollary 18.3, one has Pi,ρ′(τi < ∞) = 1 for all ρ′ in Shi
. This implies that

for all n > 0, τ
(n)
i is Pi,ρ′ -almost finite for any ρ′ ∈ Shi

. For n ≥ 0, let T i
n be the

occupation time in i between τ
(n)
i and τ

(n+1)
i :

T i
n = inf{u > 0 | X

τ
(n)
i +u

= i}

with the convention that τ
(0)
i = 0. Since we have

Ei,ρ′(ni) ≥ Ei,ρ′
( ∑

n≥1

T i
n

) ≥
∑

n≥1

inf
ρ̂∈Shi

Ei,ρ̂ (T i
n) ,

it will be enough to obtain a lower bound for Ei,ρ̂ (T i
n) which is uniform in n and in

ρ̂. To this end, we use the quantum trajectories defined in (18.10). We first compute
Pi,ρ̂ (T i

n > t) for all t ≥ 0. To treat the case of n = 1 we consider the solution of

η
ρ̂
t = ρ̂ +

∫ t

0

(
Gi ηρ̂

s + ηρ̂
s G∗

i − ηρ̂
s Tr(Gi ηρ̂

s + ηρ̂
s G∗

i )
)

ds . (18.20)

Using the independence of the Poisson processes Ni,j involved in (18.10) we get

Pi,ρ̂ (T i
1 > t) = Pi,ρ̂

(
no jump has occurred before time t

)

= Pi,ρ̂

(
Ni,j

({
u, y | 0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rj

i ηρ̂
uR

j
i

∗
)
}) = 0 ∀j = i

)

=
∏

j =i

Pi,ρ̂

(
Ni,j

({
u, y | 0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rj

i ηρ̂
uR

j
i

∗
)
}) = 0

)

=
∏

j =i

exp
( −

∫ t

0
Tr(Rj

i ηρ̂
s R

j∗
i ) ds

)

= exp
( ∫ t

0
Tr

(
(Gi + G∗

i ) ηρ̂
s

)
ds

)
(18.21)

where we used relation (18.6). Similarly, using the strong Markov property,

Pi,ρ̂ (T i
n > t) = Ei,ρ̂ (1T i

n>t )

= Ei,ρ̂

(
E

i,ρ
(n)
i

(1T i
1 >t )

)
where ρ

(n)
i := ρ

τ
(n)
i

= Ei,ρ̂

(
exp

( ∫ t

0
Tr

(
(Gi + G∗

i ) η
ρ

(n)
i

s

)
ds

))

≥ e−t‖Gi+G∗
i ‖∞ .
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Now, using the fact that Ei,ρ̂ (T i
n) = ∫ ∞

0 Pi,ρ̂ (T i
n > t) dt , this gives us the expected

lower bound:

Ei,ρ̂ (T i
n) ≥ 1

‖Gi + G∗
i ‖∞

.

This concludes the proof. ��
The next proposition is connected to the first point of Theorem 18.2.

Proposition 18.6 Consider a semifinite irreducible continuous-time open quantum
walk. If there exist i, j in V and ρ ∈ Shi

such that Ei,ρ(nj ) = ∞, then one has
Pj,ρ′(τj < ∞) = 1 for any ρ′ in Shj

.

Proof By Proposition 18.2, there is no nontrivial invariant subspace of hj left
invariant by R(ξ) for all ξ ∈ P(j, j). Since any such ξ is a concatenation of paths
from j to j that remain in V \ {j} except for their start- and endpoints, there is
also no nontrivial projection Pj of hj such that Pj,j (PjI1(hj )Pj ) ⊂ PjI1(hj )Pj

(where Pj,j is the operator of Proposition 18.4). The latter is therefore a completely
positive irreducible map acting on the set of trace-class operators on hj . By the
Russo–Dye Theorem (see [26]), one has ‖Pj,j‖ = ‖P∗

j,j (Id)‖ ≤ 1, so that the
spectral radius λ of Pj,j satisfies λ ≤ 1. By the Perron–Frobenius Theorem of
Evans and Hoegh-Krøhn (see [15] or alternatively Theorem 3.1 in [27]), there exists
a faithful density matrix ρ′ on hj such that Pj,j (ρ

′) = λρ′. If λ < 1, then by
Corollary 18.2 one has Ej,ρ′(nj ) < ∞, but then Proposition 18.3 contradicts our
running assumption that Ei,ρ(nj ) = ∞. Therefore λ = 1 and ρ′ is a faithful density
matrix such that Pj,ρ′(τj < ∞) = Tr

(
Pj,j (ρ

′)
) = Tr(ρ′) = 1. We then conclude

by Corollary 18.3. ��
Proposition 18.7 Consider a semifinite irreducible continuous-time open quantum
walk; if there exists i ∈ V such that for all ρ′ ∈ Shi

one has Pi,ρ′(τi < ∞) = 1,
then Pi,ρ(τj < ∞) = 1 for any j ∈ V and ρ ∈ Shi

.

Proof Fix i and j in V . Observe first that, by irreducibility, for any ρ in Shi
, there

exists

ξ = (i = i0, i1, . . . , in−1, in = j ; t1, . . . , tn)

such that Tr
(
R(ξ)ρR(ξ)∗

)
> 0. We denote by t (ξ) the element tn of ξ . Using the

continuity of Tr
(
R(ξ)ρR(ξ)∗

)
in ρ and the compactness of Shi

, we obtain a finite
family ξ1, . . . , ξp, of paths, again going from i to j , such that

inf
ρ∈Shi

max
k=1,...,p

Tr
(
R(ξk)ρR(ξk)

∗) > 0 .
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Let δ > maxk=1,...,p t (ξk). By continuity of each Tr
(
R(ξi)ρR(ξi)

∗) in the underly-
ing jump times t1, . . . , tn and using expression (18.18), we have

α := inf
ρ∈Shi

Pi,ρ(τj ≤ δ) > 0 .

Now, if Pi,ρ(τi < ∞) = 1 for all ρ in Shi
, then the discussion in Sect. 18.2.3 implies

that almost-surely one can find an increasing sequence (τi,n)n of times with τi,n →
∞ and xτi,n

= i. Choose a subsequence (τi,ϕ(n))n such that τi,ϕ(n) − τi,ϕ(n−1) > δ

for all n. Since never reaching j means in particular not reaching j between τi,ϕ(n)

and τi,ϕ(n+1) for n = 1, . . . , k, the Markov property of (Xt , ρt )t≥0 and the lower
bound τi,ϕ(n) − τi,ϕ(n−1) > δ imply that for all ρ ∈ Shi

,

Pi,ρ(τj = ∞) ≤ Pi,ρ

(∀n ∈ {0, . . . , k}, ∀t ∈ [τi,ϕ(n), τi,ϕ(n+1)] , Xt = j
)

≤ (
sup
ρ∈hi

Pi,ρ(τj > δ)
)k

≤ (1 − α)k .

Since the above is true for all k, we have Pi,ρ(τj < ∞) = 1. ��
Now we combine all the results of Sect. 18.4.2 to prove Theorem 18.2.

Proof (Proof of Theorem 18.2) Proposition 18.3 shows that either Ei,ρ(nj ) = ∞
for all i, j and ρ, or Ei,ρ(nj ) < ∞ for all i, j and ρ. Proposition 18.6 combined
with Proposition 18.7 shows that in the former case, Pi,ρ(τj < ∞) = 1 for all i, j

and ρ as well. Proposition 18.5 shows that, in the latter case, Pi,ρ(τj < ∞) = 1
may only occur for non-faithful ρ, and this concludes the proof. ��
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13. J. Dereziński, W. De Roeck, C. Maes, Fluctuations of quantum currents and unravelings of

master equations. J. Stat. Phys. 131(2), 341–356 (2008)
14. K.-J. Engel, R. Nagel, One-parameter Semigroups for Linear Evolution Equations. Graduate

Texts in Mathematics, vol. 194 (Springer, New York, 2000). With contributions by S. Brendle,
M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli
and R. Schnaubelt

15. D.E. Evans, R. Høegh-Krohn, Spectral properties of positive maps on C∗-algebras. J. Lond.
Math. Soc. (2) 17(2), 345–355 (1978)

16. F. Fagnola, R. Rebolledo, Subharmonic projections for a quantum Markov semigroup. J. Math.
Phys. 43(2), 1074–1082 (2002)

17. F. Fagnola, R. Rebolledo, Transience and recurrence of quantum Markov semigroups. Probab.
Theory Relat. Fields 126(2), 289–306 (2003)

18. F. Fagnola, R. Rebolledo, Notes on the qualitative behaviour of quantum Markov semigroups,
in Open Quantum Systems. III. Lecture Notes in Mathematics, vol. 1882 (Springer, Berlin,
2006), pp. 161–205
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