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Preface

Jacques Azéma passed away on January 5, 2019. After P.A. Meyer (January 2003)
and M. Yor (January 2014), he is one of the founders of the Séminaire de Strasbourg,
then Séminaire de Probabilités, who is deceased. The following lines do not claim
to be exhaustive, Jacques being very discrete on his personal background. J. Azéma
was born in 1939. After studies at Supaéro, he undertook under the impulse of
D. Dacunha-Castelle a thesis in probability in collaboration with Marie Duflo and
Daniel Revuz, under the direction of J. Neveu. He defended his thesis in 1969.
At that time, he was assistant at the Institut Henri Poincaré. During this year full
of events, to which Jacques participated, this trio is extremely productive (eight
research notes for CRAS and six articles between 1965 and 1969). He was then
assistant professor and full professor at Paris 6 and Paris 5 until his retirement in
2007. He was an eminent member of the Laboratoire de Calcul des Probabilités
which became LPMA and now LPSM.1 In addition to this original scientific
production (see the few themes described in the testimonies), Jacques Azéma was
editor of the Séminaire from Volume XVI to Volume XXXVII. For the volume
dedicated to Marc Yor (Volume XLVII), he gave us a large interview in 2015 in
which he told about the spirit of the Séminaire and his participation as editor. We
had the pleasure to find again his humor and his eloquence. During many years, he
had organized the Journées de Probabilités at the CIRM, Marseille, where young
and less young probabilists had the opportunity for an annual meeting.

The Journées de Probabilités were held in Tours in 2018. This Volume L was already
being prepared with some contributions to this conference when we learned the
death of Jacques Azéma. We dedicate this Volume L to his memory.

Versailles, France Catherine Donati-Martin
Vandoeuvre-lès-Nancy, France Antoine Lejay
Versailles, France Alain Rouault

1Jacques Azéma is remembered on the page 〈http://www.lpsm.paris/laboratoire/jacques-azema/〉.
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Part I
In memoriam Jacques Azéma

Jacques Azéma in Saint-Flour, 1994, by courtesy of Lucien Birgé



Chapter 1
Un témoignage

Michel Émery

Au tout début des années 1970, j’ai fréquenté comme étudiant le Labo de Probas,
où enseignait Azéma. C’étaient les années post-68 ; tout à l’université fonctionnait
n’importe comment, se réinventant constamment, entre grèves et contestation. Il
est arrivé un jour la tête bandée, pour s’être, disait-on, frotté de trop près à une
matraque de CRS. Même dans cet univers surréaliste, il était atypique, apparaissant
comme une sorte d’improbable Gaston Lagaffe totalement décontracté, donnant
en espadrilles des cours qui semblaient complètement improvisés : « Ah, ben oui,
là on pourrait peut-être faire comme ça . . . Euh. . . Attendez. . . Non, finalement ça
marchera pas, mais vous inquiétez pas, on va y arriver quand même. . . » Et l’on se
retrouvait à la fin du cours tout étonné du chemin parcouru en ayant cru seulement
flâner de-ci de-là.

Ayant quitté Paris en 73, je l’ai peu fréquenté. Je ne le voyais plus guère que lors
des « grands séminaires », ancêtres des Journées de Probabilité, qui rassemblaient
deux fois par an à Strasbourg des probabilistes plus ou moins proches de la « théorie
générale des processus ». Je suivais ses travaux, régulièrement exposés par Meyer au
« petit séminaire » hebdomadaire, ainsi que ceux de Nicole et de Marc. Je le revoyais
aussi à Saint-Flour, toujours aussi décontracté. Je me le rappelle demandant « Qui
êtes-vous ? » à un autre participant, qui se trouvait être l’un des conférenciers, ayant
commencé son cours depuis plusieurs jours.

Plus tard, lorsque je suis entré à la Rédaction du Séminaire, je n’ai que peu
travaillé avec lui : les rôles avaient été depuis plusieurs années répartis entre
Marc et lui, Marc s’occupant du volume et lui des Journées de Proba, alors
organisées chaque année au CIRM, officiellement par Marc et lui ; mais c’est à lui
qu’incombaient la préparation, l’organisation et les rapports. Il avait un sens, digne
d’un publiciste, de la formule concise qui fait mouche. Un jour, Marc et moi lui

M. Émery (�)
IRMA, Strasbourg, France
e-mail: emery@unistra.fr

© Springer Nature Switzerland AG 2019
C. Donati-Martin et al. (eds.), Séminaire de Probabilités L, Lecture Notes
in Mathematics 2252, https://doi.org/10.1007/978-3-030-28535-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28535-7_1&domain=pdf
mailto:emery@unistra.fr
https://doi.org/10.1007/978-3-030-28535-7_1


4 M. Émery

soumettons notre laborieuse énième mouture de la dédicace à Meyer et Neveu du
Séminaire XXX. Il nous jette un regard apitoyé, se saisit d’un crayon, et pulvérise en
deux lignes percutantes notre paragraphe qui sentait la sueur.1 Plus récemment, à la
mort de Meyer, lorsque chacun y est allé de son évocation ou de son témoignage, le
sien m’a bouleversé : dans un véritable petit poème en prose,2 loin de la réthorique
et du pathos, il avait touché, par-delà les mots, ce que je ressentais sans avoir su
l’exprimer.

1Séminaire de Probabilités XXX, Lecture Notes in Math. 1626, (1996).
2In Memoriam Paul-André Meyer – Séminaire de Probabilités XXXIX, Lecture Notes in Math.
1874 (2006).



Chapter 2
Un dimanche de juin avec Jacques

Nathanaël Enriquez

J’ai partagé mon bureau à Jussieu avec Jacques pendant 7 ans. Cela va vous étonner
mais c’est lors de notre dernière conversation que nous avons eu l’un de nos
échanges mathématiques les plus intenses, dont nous vous exposerons la teneur
avec Aurélie et Pierre dans ce qui va suivre. Au fond, il n’y a peut-être là rien
de si étonnant : comme pour nombre de choses, c’est dans l’urgence, lorsque nous
savons que le temps est compté que nous nous mettons à les faire. . .

La raison du faible nombre de nos échanges mathématiques lors de la période
qui aurait été censée être propice à ces échanges est en fait double. La première en
est que nous avons partagé en réalité notre bureau à quart-temps : Jacques n’y était
présent que les matins, et de mon côté, je n’étais pas un lève-tôt. Le plus souvent,
quand j’arrivais dans le bureau, je le trouvais déjà à sa table, en train de fumer
(avant que ce ne soit plus possible à Chevaleret) et de maugréer au sujet d’un article
de math qui n’était pas rédigé à son goût. Alors, il me hélait : « Dis-moi, toi qui
es normalien, tu dois comprendre ça tout de suite ! Ça doit être “trivial” ! ». Je me
penchais alors sur l’article, bredouillais quelques phrases et là, il me décochait un
: « Bon. . . en fait tu es nul, c’est à Biane (Philippe Biane, notre co-bureau) qu’il
faut que je demande, lui, il est vraiment fort. » Le coup d’envoi de notre « journée »
était lancé. Il rangeait son article et c’est là que nous en arrivons à la seconde raison
de notre problème à trouver un moment pour parler de math. Il ne nous restait plus
qu’une petite heure avant l’heure du déjeuner. Nous parlions bien sûr des potins du
landerneau probabiliste, mais pas que. . . nous parlions, finance appliquée, je veux
dire par là. . . investissements boursiers ! que j’ai découverts avec lui. Il épluchait
chaque matin, au café en bas de chez lui, Le Monde et Les Échos. Alors, tout y
passait, les entreprises de la « nouvelle économie », les « biotechs », le Nasdaq, les
avis des « gourous » de Wall Street. . . Avec quelques jeunes collègues de l’époque,

N. Enriquez (�)
Laboratoire Mathématiques d’Orsay, Université Paris-Sud, Orsay, France
e-mail: nathanael.enriquez@u-psud.fr
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6 N. Enriquez

dont je tairai le nom, nous formions une sorte de société secrète et Jacques était
notre gourou. . . Lors du déjeuner avec les membres du laboratoire, nous reprenions
des conversations anodines. J’arrivais tout juste à le retenir pour un déca sur la
terrasse de Jussieu, puis il rentrait chez lui, épuisé par les mauvaises nuits qu’il
passait invariablement. Je voyais alors à regret, sa silhouette inimitable s’éloigner.

Le 3 juin dernier, nous avons passé l’après-midi ensemble grâce à ma femme
qui l’a reconnu de loin, rue de Rivoli, toujours sa silhouette. . . J’aimerais vous
faire partager notre dernier échange. Nous avons d’abord évoqué quelques éditions
mémorables de l’École d’été de Saint-Flour, qu’il n’aurait manquée pour rien
au monde. Il y eut évidemment l’année Pitman/Tsirelson/Werner. Jacques encore
fasciné par le cours de Wendelin, mais peut-être plus encore par ses qualités
humaines, sa personnalité et ses multiples talents, me dit : « Pour moi, il restera
toujours le Petit Prince de Saint-Flour ». Cette déclaration fut prononcée avec une
affection et une émotion qui tranchait tellement avec le blagueur impénitent qu’il
était, que j’en suis resté sans voix quelques secondes.

Ces souvenirs nous ont amené à un registre plus grave, celui de son état de
santé. Après m’en avoir fait part, il m’a dit : « J’ai eu la chance dans ma vie de
faire partie d’une aventure collective exaltante, celle de l’éclosion des probabilités
modernes. J’y ai rencontré des gens extraordinaires d’une telle intelligence et d’une
telle génerosité ! » Il m’a dit également à quel point il avait été chanceux de
croiser la route de Meyer et Neveu. En l’écoutant, j’ai dû faire une petite moue qui
n’était certainement pas désobligeante pour ces deux grands noms des probabilités,
mais il me semblait que ces propos ne rendaient pas hommage à sa propre pensée
mathématique. Toujours est-il que sans même que j’ai à parler, il m’évoque un
souvenir, en compagnie de Kai-Lai Chung, le grand probabiliste chinois de Stanford.
Alors qu’ils étaient en train de contempler l’océan, face au Pacifique, Jacques
fait part à Chung de son admiration pour ses 2 aînés, et Chung de lui répondre :
« Pourquoi vous placez-vous en dessous d’eux ? Vous savez. . . vous n’avez pas à
rougir de vos travaux ! » Peut-être que Chung pensait, en lui parlant, au magnifique
travail de Jacques sur le retournement du temps. . .

Alors que nous marchions vers chez lui dans la rue des Francs-Bourgeois, il
m’interroge sur mes recherches du moment. C’est là que je lui parle de notre travail
en cours avec Pierre Calka et notre étudiante Aurélie Chapron. Je lui parle donc
de Processus de Poisson Ponctuel sur une surface. À ma grande surprise, il me
laisse continuer, là où il m’aurait arrêté quelques années plus tôt d’un : « Vous les
normaliens, ça ne vous suffit pas les probabilités, il faut que vous parliez de variétés,
de fibré et de tout le b. . . . » Je commence par lui énoncer le résultat classique sur
le nombre moyen de sommets d’une cellule de la mosaïque Poisson-Voronoi dans
le plan (égal à 6) qu’il connaissait. Je m’enhardis en lui parlant d’un processus
ponctuel de grande intensité sur une surface qui a donc tendance à oublier l’effet de
la courbure de la surface sur laquelle il vit. J’en arrive à lui dire que la correction
à la constante 6 dans la limite des grandes intensités, contient l’information sur
la courbure scalaire de la surface. La formule d’Euler appliquée à la mosaïque de
Poisson-Voronoi permet alors de retrouver le théorème de Gauss-Bonnet. Et lui de
me poser la question : « Très joli, mais ensuite, tu en fais quoi ? Il est déjà démontré
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le théorème de Gauss-Bonnet. » Et moi de me défendre : “Si l’on devait compter
le nombre de théorèmes d’analyse démontrés par les probabilités avec 100 ans de
retard. . . et puis, on a une nouvelle interprétation de la courbure scalaire en toute
dimension”. Sa réponse fut : « Tu as raison, j’aime l’idée que les probas puissent
offrir un autre éclairage sur les notions classiques des maths. » S’adressant à ma
femme : « Il est fort ton mari ! » On est rue de Sévigné, nos routes se séparent. . .



Chapter 3
Mosaïque de Poisson-Voronoi sur une
surface

Pierre Calka, Aurélie Chapron, et Nathanaël Enriquez

L’objet de cette note est d’indiquer la manière dont on peut étendre au cas d’une
surface S, le célèbre résultat, trouvé indépendamment par Meijering en 1953 [4] et
Gilbert en 1962 [3], énonçant que le nombre moyen de sommets d’une cellule ou de
façon équivalente l’espérance du nombre de sommets d’une cellule typique d’une
mosaïque de Poisson-Voronoi dans le plan est égal à 6. On montrera alors comment
le résultat trouvé aboutit à une preuve du théorème de Gauss-Bonnet. Cette note est
l’objet d’un chapitre de la thèse du second auteur dont le contenu est déposé sur
arXiv [1] et traite du cas plus général des variétés de dimension quelconque.

Le premier hic dans une telle entreprise est que le mot « cellule typique » n’a pas
de sens dans le contexte d’un espace qui n’est pas homogène. Pour généraliser le
résultat du plan, nous devons fixer un point x0 de la surface S, lancer un processus
ponctuel de Poisson homogène d’intensité λ, soit Pλ sur la surface, puis considérer
la cellule de x0 que nous noterons C(x0) dans la mosaïque de Voronoi associée à
Pλ ∪ {x0}. Ainsi,

C(x0) := {y ∈ S : ∀x ∈ Pλ, d(y, x0) ≤ d(y, x)},

où d(·, ·) désigne la distance géodésique sur S.

P. Calka (�) · A. Chapron
Université de Rouen Normandie, Laboratoire de Mathématiques Raphaël Salem Avenue de
l’Université, Saint-Étienne du Rouvray, France
e-mail: pierre.calka@univ-rouen.fr; aurelie.chapron@univ-rouen.fr

N. Enriquez
Laboratoire Mathématiques d’Orsay, Université Paris-Sud, Orsay, France
e-mail: nathanael.enriquez@u-psud.fr
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10 P. Calka et al.

L’ensemble des sommets de C(x0), que nous noterons V(x0), est donc défini par

V(x0) := {y ∈ S : ∃x1, x2 ∈ Pλ, d(y, x0) = d(y, x1) = d(y, x2)}.

Nous allons commencer par présenter une preuve du théorème de Meijering et
Gilbert qui pourra ensuite se généraliser au cas d’une surface.

Proposition 3.1 Lorsque S est le plan euclidien, pour toute intensité λ,

E[card{V(x0)}] = 6.

Remarque Ce théorème peut se prouver de façon abstraite et non calculatoire, en
utilisant l’homogénéité de l’espace, et en réinterprétant la quantité E[card{V(x0)}],
comme la limite de la moyenne du nombre de sommets par cellule dans une grande
boîte du plan. On utilise alors le fait que tous les sommets sont de degré 3, la
formule d’Euler pour un graphe, puis le fait que l’aire d’une boîte ne grandit que
polynomialement ce qui permet de négliger les effets de bord (ce qui ne serait pas
le cas dans l’espace hyperbolique par exemple).

Preuve En vertu de l’homogénéité du plan et du processus de Poisson que l’on
considère, la loi de card{V(x0)} ne dépend pas de x0. Nous considèrerons donc
désormais card{V(0)}. De plus, l’image par une homothétie ne changeant pas le
cardinal des sommets d’une cellule, la loi de card{V(0)}ne dépend pas non plus
de l’intensité λ. Nous calculons donc E[card{V(0)}] dans le cas d’un processus de
Poisson d’intensité 1.

Si, pour toute paire de points {x1, x2} du plan, on note par Bcirc(0, x1, x2) la boule
circonscrite à 0, x1 et x2, la définition de V(0) donne

E[card{V(0)}] = E

⎡
⎣ ∑

{x1,x2}∈P
1Bcirc(0,x1,x2)∩P=∅

⎤
⎦ .

Mais cette dernière espérance peut se réécrire grâce à la formule de Mecke-
Slivnyack, qui vient du fait qu’un processus de Poisson conditionné à contenir des
points donnés n’est autre que la réunion du processus de Poisson et des dits points.
On obtient alors

E[card{V(0)}] = 1

2

∫
R

2×R
2
P(Bcirc(0, x1, x2) ∩ P = ∅)dx1dx2.

(stricto sensu, on aurait dû écrire P(Bcirc(x0, x1, x2) ∩ (P ∪ {x1, x2})) = ∅) mais
cette quantité est égale à P(Bcirc(x0, x1, x2) ∩ P = ∅)). Quant au facteur 1

2 ,
il provient du fait que les paires de points {x1, x2} qui contribuent ne sont pas
ordonnées et que l’intégrale les compte deux fois.)
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Fig. 3.1 Changement de
variables dans le plan

R

R
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u1
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u

D’après la définition des processus de Poisson, si l’on désigne Rcirc(0, x1, x2) le
rayon de la boule circonscrite à 0, x1 et x2, on est donc amené à calculer

E[card{V(0)}] = 1

2

∫
R

2×R
2

exp(−πRcirc(0, x1, x2)
2)dx1dx2.

Le calcul de cette intégrale nécessite un changement de variable. Les points x1
et x2 sont repérés grâce au centre du cercle circonscrit à 0x1x2 qui, lui, est repéré
en coordonnées polaires par Rcirc(0, x1, x2) et par un vecteur unité u. On a alors
uniquement besoin de deux vecteurs unités u1 et u2 pour repérer x1 et x2 sur le
cercle circonscrit à 0x1x2. Les 4 coordonnées R, u, u1, u2 repèrent donc les deux
points x1 et x2 (voir Fig. 3.1).

Calculons maintenant le jacobien. Pour écrire la matrice jacobienne, on décide
que les 4 lignes correspondent respectivement aux dérivées partielles suivant
R, u, u1, u2, et que les 4 colonnes correspondent, pour les deux premières, aux
projections de la dérivée partielle de x1 selon u1 et u⊥1 , et pour les deux dernières,
aux projections de la dérivée partielle de x2 selon u2 et u⊥2 , où pour un vecteur x, le
vecteur x⊥ désigne le vecteur obtenu à partir de x par une rotation de π2 .

Avec ces conventions,

dx1dx2

dRdudu1du2
= |

〈u− u1, u1〉 � 〈u− u2, u2〉 �
R〈u⊥, u1〉 � R〈u⊥, u2〉 �

0 R 0 0
0 0 0 R

|

= R3| 〈u− u1, u1〉 〈u− u2, u2〉
〈(u+ u1)

⊥, u1〉 〈(u+ u2)
⊥, u2〉 |

= 2R3 Aire (uu1u2),
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Fig. 3.2 Fonction
Aire(uu1u2) (aire du triangle
grisé)

u2
u1

u

où Aire(uu1u2) désigne l’aire du triangle défini comme l’enveloppe convexe de u,
u1 et u2 (voir Fig. 3.2). Ainsi,

E[card{V(0)}] = 1

2

∫
R+×[0,2π ]3

R3 exp(−πR2)2 Aire(uu1u2)dRdudu1du2

= 1

2

∫
R+
R3 exp(−πR2)dR

∫
[0,2π ]3

2 Aire(uu1u2)dudu1du2

= 1

2π2 2π
∫ 2π

0

∫ 2π−x

0
| sin x + sin y + sin(2π − x − y)|dydx

= 6.

(Le facteur 1
2 disparaît dans la troisième égalité car les points sont ordonnés lorsque

l’intégrale en u, u1, u2 est écrite comme une intégrale sur le domaine 0 < y <

2π − x). �
Passons maintenant au cas d’une surface.

Théorème 3.1 Soit S une surface et un point x0 de S, lorsque l’intensité λ de Pλ
tend vers l’infini,

E[card{V(x0)}] = 6 − K(x0)

3π

1

λ
+ o(1

λ
)

où K(x0) désigne la courbure de Gauss de la surface au point x0.

Preuve On commence par remarquer que toutes les observations liées à
l’homogénéité du processus ponctuel de Poisson, faites au début de la preuve
précédente ne sont plus valides. En conséquence, nous considérons donc la cellule
de x0 et faisons tendre l’intensité λ vers l’infini.
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S

x0

u0

R

R

R

x1

x2

u1

u2

Fig. 3.3 Changement de variables sur S

Reprenant le calcul du dessus, nous pouvons écrire

E[card{V(x0)}] = λ2

2

∫
S×S

exp(−λAirecirc(x0, x1, x2))dx1dx2

où Airecirc(x0, x1, x2) désigne l’aire du disque circonscrit à 0, x1, x2.
Nous sommes confrontés donc à nouveau à un calcul de jacobien, qui cette fois

ne peut être effectué de façon exacte (voir le nouveau changement de variables en
Fig. 3.3). Comme λ tend vers l’infini, la contribution prépondérante concerne les
triplets dont le rayon circonscrit est petit. On va donc effectuer un développement
limité du jacobien dans la limite des R tendant vers 0. Le premier ordre est le
même que dans le plan. Pour connaître le terme suivant, nous réécrivons la matrice
jacobienne. Le changement principal réside dans le fait que les termes en R de la
matrice précédente, témoignant de l’éloignement linéaire des géodésiques dans le
cas plan, sont remplacés par la fonction J (R), qui satisfait J (R) = R − K(x0)

6 R3 +
o(R3).

dx1dx2

dRdudu1du2
= |

〈u− u1, u1〉 � 〈u− u2, u2〉 �

J (R)〈u⊥, u1〉 � J (R)〈u⊥, u2〉 �

0 J (R) 0 0
0 0 0 J (R)

|

= Aire(uu1u2)J (R)
3

= Aire(uu1u2)R
3(1 − K(x0)

2
R2 + o(R2)).
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Rappelons maintenant le résultat classique suivant, sur le développement de l’aire
de petites boules en courbure K(x0), dû à Bertrand-Diquet-Puiseux en 1848, qui dit
que

Airecirc(x0, x1, x2)) = πR2(1 − K(x0)

12
R2)+ o(R3).

On peut donc écrire

E[card{V(x0)}]

= λ2

2

∫
R+×[0,2π]3

R3(1 − K(x0)

2
R2 + o(R2)) exp

(
−λπR2(1 − K(x0)

6
R2)+ o(R3)

)

Aire(uu1u2)dRdudu1du2

= 12π2λ2
∫
R+
R3(1 − K(x0)

2
R2 + o(R2)) exp

(
−λπR2(1 − K(x0)

6
R2)+ o(R3)

)
dR.

Il ne reste plus qu’à effectuer une méthode de Laplace dans l’intégrale pour obtenir
le résultat annoncé. �

Le théorème 3.1 se généralise à la dimension quelconque comme annoncé au
début. Même si nous ne présenterons pas ce travail ici, le déterminant de taille
n2 se simplifie de manière assez spectaculaire, et après application de la méthode
de Laplace dans l’intégrale, la courbure de Gauss se voit remplacée par la simple
courbure scalaire. C’est ce que le troisième auteur a plaidé à Jacques Azéma
lors de sa dernière conversation, pour lui dire que ce travail ne se limitait pas
à une nouvelle preuve du théorème de Gauss-Bonnet mais proposait une vision
probabiliste générale de la courbure scalaire. . .

Venons-en au dernier point de cette note. Comment déduire du Théorème 3.1,
une preuve du théorème de Gauss-Bonnet ? Nous allons d’abord énoncer ce
théorème qui, pour une surface compacte sans bord relie une quantité topologique,
la caractéristique d’Euler de la surface, à une quantité géométrique, l’intégrale de la
courbure de Gauss sur la surface :

Théorème 3.2 (Gauss-Bonnet [2, Section 4.5, Corollaire 2]) Soit S une surface
compacte sans bord, la caractéristique d’Euler χ(S) satisfait

χ(S) = 1

2π

∫
S

K(x)dσ(x)

où dσ désigne la mesure de surface sur S.

Preuve Considérons la mosaïque de Poisson-Voronoi associée à un processus de
Poisson Pλ d’intensité homogène λ par rapport à σ . Notons F , E et V , le nombre
total respectivement de faces, arêtes et sommets de la mosaïque. La relation d’Euler
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appliquée au graphe de Voronoi donne

χ(S) = F − E + V.

Comme tous les sommets sont presque sûrement de degré 3, on peut faire partir de
chaque sommet trois demi-arêtes et obtenir une partition de l’ensemble des arêtes.
Ceci entraîne donc

E = 3

2
V.

De ces deux dernières équations, on déduit

χ(S) = F − 1

2
V.

Cette dernière égalité étant vraie presque sûrement, en passant à l’espérance, on
obtient

χ(S) = E[F ] − 1

2
E[V ]. (3.1)

Il nous reste donc à calculer les deux espérances du membre de droite. Remar-
quons d’abord que le nombre de faces F n’est rien d’autre que le nombre de points
de Pλ dans S, ainsi

E[F ] = E[card(Pλ ∩ S)] = λσ(S). (3.2)

Maintenant, comme chaque sommet appartient à 3 cellules,

E[V ] = 1

3
E

⎡
⎣∑
x∈Pλ

card{V(x)}
⎤
⎦ .

En appliquant la formule de Mecke-Slivnyak, on obtient

E[V ] = λ

3

∫
S

E[card{V(x,Pλ ∪ {x})}]dσ(x) (3.3)

où V(x,Pλ∪{x}) désigne les sommets de la cellule de x dans la mosaïque associée
à Pλ ∪ {x}. Une version uniforme du Théorème 3.1, donne

sup
x∈S
λ

(
E[card{V(x,Pλ ∪ {x})}] − 6 + 3K(x)

πλ

)
→
λ→∞ 0. (3.4)
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En combinant (3.1), (3.2), (3.3) et (3.4), on obtient

χ(S) = lim
λ→∞

1

2π

∫
S

K(x)dσ(x).

puis l’égalité du théorème, car l’intégrale ne dépend pas de λ. �
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Chapter 4
Sur le retournement du temps

Sonia Fourati

Abstract This text is conceived to be an invitation to read or re-read one the major
contribution of Jacques Azéma, who was my PhD advisor. This work, whose title
is “théorie générale des processus et retournement du temps” had appeared in 1973.
This tribute aims also at describing the influence that Jacques Azéma has had on my
own work.

Après le DEA, je ne sais ni comment ni quand, je fus déclarée au « labo »—entendre
le « Laboratoire de Probabilités de l’Université Paris 6-Jussieu »—officiellement,
l’étudiante en thèse de Jacques Azéma. Je ne me souviens pas d’avoir choisi mon
directeur, la réciproque était probablement plus proche des faits. Mais mon sort me
convenait tout à fait. L’humour d’Azéma en première loge et pour quelques années,
c’est un privilège qui s’apprécie!

En ce temps-là, c’est-à-dire à la fin de l’année 1981, Azéma travaillait, travaillait
dur et même douloureusement, sur son papier « Sur les fermés aléatoires » [4]. Pour
sujet de thèse, il m’a demandé de trouver une nouvelle preuve du « Théorème de
Kesten » que voici :

« Pour tout temps t strictement positif et tout fermé aléatoire régénératif F , de
mesure de Lebesgue nulle, la probabilité que t soit un élément de F est nulle ».

Cette nouvelle démonstration devait être une application des propriétés des
noyaux de Lévy associés à un fermé aléatoire quelconque, qu’il avait obtenues et
qu’on peut retrouver dans sa publication [4].

Je n’ai jamais trouvé cette nouvelle preuve. Mais mon lien avec les travaux
d’Azéma ne se sont pas arrêtés là.

J’ai découvert son fameux travail « Théorie générale des processus et retourne-
ment du temps », paru dix ans plus tôt, en 1973 [3], en travaillant sur un nouveau
sujet, que m’avait donné à traiter Erik Lenglart. Azéma était très attaché à ce texte et
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aujourd’hui, afin d’inviter à sa lecture, notamment le « jeune » probabiliste qui n’a
pas connu la grande époque de la Théorie Générale des Processus, je vais tenter de
résumer ici son propos.

Tout d’abord, Azéma reprend les objets, qu’il avait introduit dans [1] et [2], et
qui permettait le retournement des processus et il le fait, à sa manière bien sûr. Il
se donne un processus X qui prend ses valeurs dans un espace Lusinien E, X a
une durée de vie finie mais aléatoire notée ζ , et on attribue à X, après le temps
ζ , une valeur cimetière δ, qui est ajoutée à l’ensemble E. Les trajectoires sont
supposées continues à droite et l’hypothèse supplémentaire de continuité à gauche
sera envisagée aussi dans la suite.

Les opérateurs de translation (θt )t≥0 et de meurtre (kt )t>0 pour le processus X
sont des fonctions définies sur l’espace des possibles Ω et qui vérifient l’identité,
pour tous temps positifs s et t ,

Xs(θt (ω)) = Xs+t (ω), Xs(kt (ω)) = Xs(ω) si s < t,Xs(kt (ω)) = δ sinon .

J.A. définit alors les opérateurs k̂t et θ̂t pour tous temps t , de la manière suivante:

k̂t (ω) := θ(ζ−t)+(ω) θ̂t (ω) := k(ζ−t)+ .

Il établit que les opérateurs (k̂t )t>0 constituent des opérateurs « de meurtre » pour
le processus retourné X̂t = Xζ−t si t∈]0, ζ ] = δ si t > ζ sont des opérateurs de
translation pour X̂. Cela signifie que pour tous temps s et t ,

X̂s(k̂t (ω)) = X̂s si s � t et X̂s(k̂t (ω)) = δ sinon

X̂s(θ̂t (ω)) = X̂s+t (ω) .

J.A. poursuit en introduisant la notion de temps de retour « co-prévisible » qui
est la notion « retournée » des temps d’arrêt prévisibles.

Définition 4.1 On dit qu’une variable τ est un temps de retour co-prévisible si c’est
une variable aléatoire à valeurs dans [0, ζ [∪{−∞} et qu’elle vérifie l’identité, pour
tout réel positif t ,

τ(θt ) = τ − t si τ � t et τ = −∞ sinon.

Du fait de la dualité des opérateurs de translation et de meurtre citée plus haut,
on ne s’étonnera pas que les temps d’arrêt prévisibles soient les temps aléatoires à
valeurs dans ]0, ζ ] ∪ {+∞}, qui vérifient l’identité

T (kt ) = T si T � t et T = +∞ sinon .

(On pourra aussi retrouver les temps d’arrêt prévisibles dans [6].)
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Azéma poursuit son exposé en définissant la tribu co-prévisible, et rappelle celle
de la tribu des « bien mesurables » (rebaptisée peu après « tribu optionnelle » par la
communauté) :

Définition 4.2 La tribu co-prévisible G est la tribu sur [0,+∞[×Ω engendrée par
les processus réels continus à droite, nuls hors de [0, ζ [ vérifiant l’identité:

Zs(θt ) = Zs+t si 0 < s � s + t < ζ .

La tribu des processus bien mesurables, est la tribu sur [0,+∞[×Ω engendrée par
les processus réels càdlàg Z, nuls hors de [0, ζ [, et tels que pour tous temps s et t ,

Zs(kt ) = Zs si 0 � s < t < ζ .

Ensuite vient l’énoncé de la projection sur ces tribus, cette projection est le
pendant de l’espérance conditionnelle pour les variables aléatoires. Pour le premier
énoncé qui suit, celui de la projection sur la tribu des bien mesurables, Azéma cite
pour référence le travail séminal de Claude Dellacherie [6]. Le second énoncé est le
sien.

Théorème 4.1 Pour tout processus mesurable bornéZ, il existe un processus « bien
mesurable » (= « optionnel ») qui vérifie, pour tout temps d’arrêt, T ,

E(ZT 1T ∈[0,ζ [) = E(oZT 1T ∈[0,ζ [) ,

Il existe un processus co-prévisible p̂Z tel que pour tout temps de retour τ ,

E(Zτ1τ∈[0,ζ [) = E(p̂Zτ1τ∈[0,ζ [) .

Si on pose que oZ et p̂Z sont nuls hors de l’intervalle de vie [0, ζ [, Ces deux
processus sont uniquement déterminés (à une indistinguabilté1 près) par ces
propriétés.

J.A. note alors que la propriété de Markov forte de X, qu’il énonce ainsi :
pour toute variable aléatoire bornée, et pour tout temps d’arrêt T ,

E(z ◦ θT ; T ∈ [0, ζ [) = E(PXT (z); T ∈ [0, ζ [) ,

pour un noyau (P x)x∈E sur (Ω, F ).
implique la propriété suivante :

si Z est un processus co-prévisible alors la projection oZ est indistinguable d’un
processus de la forme f (X).

1 Deux processus U et V sont dits indistinguables si l’ensemble {ω; ∃t, Ut (ω) �= Vt (ω)} est de
probabilité nulle.
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Il suffit pour cela de remarquer qu’un processus co-prévisible Z se met sous la
forme Z = z ◦ θ pour une variable aléatoire z.

Ce dernier processus, f (X), est à la fois mesurable par rapport à la tribu
optionnelle et aussi par rapport à la tribu co-prévisible (à une indistinguabilité près).
C’est alors que J.A. montre le théorème suivant :

Théorème 4.2 Quand la propriété de Markov forte est vérifiée, les projections sur
les tribus bien mesurable et co-prévisible commutent et, plus précisemment, pour
tout processus mesurable borné Z , il existe une fonction mesurable f sur E, telle
que les trois processsus p̂(oZ) et o(p̂Z) et f (X) sont indistinguables.

Le corollaire immédiat de cette commutation de projections est que si T est un
temps d’arrêt OU si T est un temps de retour co-prévisible alors les tribus surΩ qui
décrivent l’une le passé (σ(z ◦ kT , T ∈ [0, ζ [)) et l’autre le futur (σ(z ◦ θT ; T ∈
[0, ζ [)) sont indépendantes conditionellement à la tribu du « présent » σ(XT ). Le
processus continu à gauche retourné, X̂, a donc une propriété markovienne. J.A. dit
que X̂ a la propriété de Markov « modérée ». En plus, en reprenant les arguments
développés par Chung et Walsh [5], Azéma construit un noyau (Qx, x ∈ E) tel
que, pour tout variable aléatoire z bornée, et tout temps de retour co-prévisible τ ,
l’identité suivante est vérifiée :

E(z ◦ kτ ; τ ∈ [0, ζ [) = E(QXτ (z); τ ∈ [0, ζ [) .

(On remarquera que si Z est un processus prévisible, il est bien mesurable et il se
met sous la forme Zt = z ◦ kt .)

Voici un exemple simple de processus de Markov modéré. Prenons d’abord le
processus de Lévy, Xt = 2t −Nt où Nt est un processus de Poisson standard, alors
le processus Xt − infs>t Xs n’est pas fortement markovien mais Xt− − infs�t Xs
est bien modérément markovien (voir le commentaire page 29 de [7] pour plus de
détails ).

Comme pour la projection optionnelle, l’intérêt de l’existence de projection sur
les tribus co-prévisibles est que l’on peut alors développer les techniques de la
théorie du potentiel (résolvante, fonction harmonique. . . ) avec « seulement » cette
propriété de Markov modérée plutôt que forte. C’est ce point de vue de Jacques
Azéma qui m’a énormément aidée, nettement plus tard, pour étudier l’existence ou
non des points de croissance pour les trajectoires des processus de Lévy [7].

Mais revenons à la théorie de J.A. pour une dernière analyse.
La propriété de Markov se comprend comme l’indépendance du futur et du passé

d’un processus X conditionnellement à son présent.
Elle devrait être, idéalement, parfaitement stable par retournement du temps.

Comment donc « réparer » le fait qu’un retourné d’un processus de Markov fort
n’est « que » modéré ?

Deux points de vue sont possibles pour cela.

(1) On peut renforcer la propriété de Markov forte afin que son retourné soit
fortement Markovien aussi : c’est l’hypothèse CMF chez Azéma : Il suffit
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de supposer que les trajectoires soient non seulement continues à droite mais
aussi limitées à gauche, et que le couple (X−, X) ait une propriété renforcée
au sens suivant. On définit d’abord la tribu cooptionelle engendrée par les
processus càglàd dont le régularisé à droite Z+ est co-prévisible. La tribu des
cooptionnels contient la tribu co-prévisible. (C’est le même schéma que pour la
tribu optionnelle, qui est engendrée par les càdlàg dont le régularisé à gauche est
prévisible). La propriété CMF de Markov consiste en ce que la projection d’un
processus co-optionnel sur la tribu optionnelle est un processus de la forme
f (X−, X) pour une fonction mesurable bivariée f . Azéma évoque bien que
cette hypothèse est associée à celle de l’existence d’une topologie « cofine » sur
l’espace E, selon les travaux de Walsh et Weil [11]. Il cite moins les travaux
concernant la frontière de Martin, voir [8].

(2) La seconde option consiste à affaiblir la propriété de Markov forte en évitant de
se tirer une balle dans le pied par le choix de la projection sur la tribu optionnelle
(ou « bien mesurable ») :

En effet la propriété de Markov forte habituelle implique l’absence de « germes
à droite » : je veux dire que les processus de la tribu « germe »

∩ε>0σ(t �→ f (Xt+s); s ∈ [0, ε[, f mesurable)

sont indistinguables de processus de la forme f (X) (pour une fonction
mesurable f ).

Les germes à droite devenant des germes à gauche quand on retourne le temps, là
se trouve le problème. La théorie de Lenglart, voir [9], donne des tribus alternatives
à la tribu optionnelle, incluses dans celle-ci, et qui ne contiennent que le passé
« exact » (ou « coupé net ») du processus X. Les germes à droite (qui représentent le
« futur immédiat » de X) ne sont pas inclus dans cette tribu du passé de X.

Erik Lenglart montre que pour ces tribus, il existe aussi une projection et par
voie de conséquence, on peut en déduire une propriété de Markov associée, dans le
même esprit qu’Azéma, on pourra se reporter à [10] pour plus de détails.

Cette fois la propriété de Markov est parfaitement stable par retournement. Et
toute l’artillerie de la théorie du potentiel pour étudier ces processus peut être
étendue. Je le fis dans le cadre des processus de Markov liés aux fluctuations des
processus de Lévy dans [7].

Epilogue
Azéma est parti le 5 Janvier. Je trie ses papiers, livres et autres notes mathématiques
restés dans son bureau. Ses dossiers contiennent, entre autres, des cours manuscrits,
du DEUG au DEA. Ces notes sont extrêmement soignées, d’une belle écriture et
très peu de ratures.

Azéma, pourquoi cachais-tu tant cet aspect si consciencieux, cette peur de mal
faire peut-être même, sous ton inimitable désinvolture et ton humour corrosif,
extrêmement drôle parce qu’irréductiblement « uncorrect », si rare ?

Cet humour, qui risquerait de t’attirer encore plus d’ennuis aujourd’hui.
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Azéma, j’ai mangé ce midi, à « l’Industrie », ton dernier bistrot. J’ai vu ta copine
la barmaid, celle qui te câlinait tant. Elle est redevenue pas sympa et même pas
belle. . . Le monde est décidemment moins intéressant sans toi,

Au revoir, euh, . . .
Jacques.
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Chapter 5
La martingale d’Azéma

Catherine Rainer

J’ai été très émue que les éditeurs de ce volume dédié à Jacques Azéma m’aient
demandé d’y contribuer. Azéma était mon directeur de thèse dans la première moitié
des années 1990. Ayant quitté à la fois le domaine et le milieu de la théorie générale
des processus, je ne me sens pas vraiment habilitée à écrire un témoignage sur
l’être humain que j’ai ainsi perdu de vue depuis longtemps ni d’écrire un article
mathématique autour ou à la suite de ses recherches. Mais, en laissant divaguer mes
souvenirs, il m’est venu rapidement l’envie de parler de la martingale d’Azéma, qui,
avec le recul, me semble emblématique de cette époque et de la personnalité de son
inventeur.

La martingale d’Azéma, telle qu’elle est définie dans l’article « Étude d’une
martingale remarquable » d’Azéma et Yor [5], est la projection optionnelle d’un
mouvement Brownien sur la filtration engendrée par son signe.
Plus précisément, considérons un mouvement Brownien standard en dimension 1,
(Bt ), tel que B0 = 0. Pour tout t � 0, on pose

sign(Bt ) =
{

1, si Bt � 0,
−1 sinon.

Soit (Ft )t�0 la filtration rendue continue à droite et complétée, engendrée par le
processus (sign(Bt ))t�0.

Définition 5.1 On appelle martingale d’Azéma le processus (μt )t�0 tel que, pour
tout t � 0, μt = E[Bt |Ft ].
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Ce processus peut être calculé explicitement :

μt =
√
π

2
sign(Bt )

√
t − gt , (5.1)

où gt = sup{s � t, Bs = 0} est, pour tout t � 0, le dernier instant avant t où le
mouvement brownien touche 0.
Du coup les trajectoires de (μt ) ont l’allure suivante1:
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On peut définir aussi une « deuxième martingale d’Azéma » : νt := |μt |−L0
t , où

(L0
t ) est le temps local en zéro du mouvement brownien, qui représente la projection

optionnelle du processus (|Bt |−L0
t ) sur la filtration (Gt ) engendrée par les zéros du

mouvement brownien, i.e. vérifiant Gt = σ {gs, s � t}. Il est à noter que c’est cette
deuxième martingale qui fut inventée en premier : elle apparait en 1984 à la 67ème
page du gros article « Sur les fermés aléatoires » d’Azéma [4]. En effet, dans le
chapitre 6 — qui s’appelle « Une sous-martingale remarquable » —, étant donné un
fermé aléatoire H quelconque dans R+ et un temps local (Lt ) dont il est le support,
l’auteur définit une sous-martingale (Yt ) définie à partir du noyau de Lévy et des
extrémités gauches de H , telle que (Yt − Lt) est une martingale locale s’annulant
surH . La martingale (νt ) en est le cas particulier lorsqueH est l’ensemble des zéros
du mouvement brownien.

On montre facilement que les deux martingales (μt ) et (νt ) sont purement
discontinues. Un premier intérêt en est donc de livrer des exemples de martingales
purement discontinues qui n’appartiennent pas à la famille des processus de Poisson.
De plus la première a la propriété remarquable de posséder les mêmes zéros et le
même signe qu’un mouvement brownien.

1Merci beaucoup à Nathanael Enriquez, pour le prêt de ses graphiques tirés de [14] !
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L’article d’Azéma-Yor [5] développe un grand nombre de résultats et de propriétés
autour de la martingale (μt ). Parmi celles-ci, c’est principalement la propriété de
représentation chaotique qui a motivé l’intérêt accru qu’on lui a porté.

Définition 5.2 Soit (Xt )t�0 une martingale telle 〈X,X〉t = t , et, pour n ∈ N
∗,

f : �n = {0 < tn < tn−1 < . . . < t1} → R une fonction de carré intégrable. Alors,
l’intégrale itérée

In(f ) =
∫
�n

f (t1, . . . , tn)dXt1 . . . dXtn

est bien définie. L’ensemble χn de ces variables In(f ) est appelé le n-ième chaos
généré par (Xt ), et on dit que (Xt ) a la propriété de représentation chaotique
(PRC) si l’espace engendré par l’union des chaos (où χ0 est l’ensemble des
variables constantes) est dense dans l’espace L2 des variables de carré intégrable,
i.e. si toute variable X ∈ L2 peut s’écrire sous la forme

X =
+∞∑
n=0

In(fn),

avec fn ∈ L2(�n).

La PRC est importante pour les probabilités quantiques, chaque martingale la
possédant fournissant un exemple d’interprétation probabiliste de l’espace de Fock
(voir par exemple Meyer [17]). Il est connu depuis Wiener [20] que le mouvement
Brownien et les processus de Poisson compensés ont la propriété de représentation
chaotique. La question (posée par Meyer dans [16]) est : y en a-t-il d’autres, et si
oui, est-il possible de caractériser les martingales possédant la PRC ?

C’est dans le but d’apporter une réponse à cette question que, dans son article
« On the Azéma martingales », Michel Émery introduit les « équations de structure ».

Définition 5.3 (Émery [11]) Soit (Xt ) une martingale vérifiant 〈X,X〉t = t . On
dit que (Xt ) vérifie une équation de structure s’il existe un processus prévisible
(�t ) tel que

d[X,X]t = dt +�tdXt .

Après une première partie de résultats généraux sur les martingales vérifiant
une telle équation, l’attention est portée sur une famille particulière de martingales,
celles qu’Émery appelle « the Azéma martingales » : on y considère les équations
de structure de la forme

d[X,X]t = dt + (α + βXt−)dXt , (5.2)
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avec α et β constantes. En voici les exemple les plus remarquables :

• Lorsque α = β = 0, la solution de (5.2) est le mouvement brownien,
• pour β = 0 mais α �= 0, (Xt ) est un processus de Poisson compensé.
• Une martingale très jolie est obtenue pour α = 0 et β = −2. Elle vérifie |Xt | =√

t et change de signe en des temps totalement non prévisibles, juste comme il
faut pour être une martingale.2
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• L’autre cas intéressant est celui où α = 0 et β = −1 :

d[X,X]t = dt −Xt−dXt .

En effet la solution de cette équation n’est autre que la martingale d’Azéma (μt ).

Le résultat central de l’article concernant ces martingales est

Théorème 5.1 On considère l’équation de structure

d[X,X]t = dt + βXt−dXt ,X0 = x0. (5.3)

1. Si β � 0, la solution de (5.3) est unique en loi, et c’est un processus de Markov
fort.

2. Pour −2 � β � 0, la solution de (5.3) a la propriété de représentation chaotique.

Corollaire 5.1 La martingale d’Azéma (μt ) a la propriété de représentation
chaotique.

2Même si c’est déjà un peu hors sujet, je ne peux m’empêcher d’évoquer le plaisir d’avoir retrouvé
cette martingale de façon totalement inattendue en étudiant des jeux différentiels à information
imparfaite [6].
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A la recherche d’une caractérisation des martingales possédant la PRC, on peut
voir facilement qu’une condition nécessaire en est la propriété de représentation
prévisible : toute variable Z ∈ L2 s’écrit sous la forme Z = E[Z] + ∫ HtdXt ,
avec (Ht ) processus prévisible. Une question naturelle est alors de savoir si les deux
propriétés sont équivalentes.
C’est ainsi que le sujet de thèse proposé par Azéma peu de temps après la pub-
lication de l’article d’Émery s’intitulait « Propriétés de représentations prévisible
et chaotique ». Naïve et m’ennuyant un peu du calme train-train de mes études de
mathématiques, c’est clairement le mot « chaotique » qui m’avait attirée (l’associant
sûrement aussi à la théorie des catastrophes, très en vogue à cette époque). En
réalité, sachant que la première martingale d’Azéma (μt ) avait la PRC, ce sujet
consistait à étudier si sa deuxième martingale (νt ) l’avait aussi. La question s’est
rapidement avérée beaucoup trop difficile, et la réponse restera sans doute pour
toujours inconnue.

Alors que ma thèse se réorientait du coup vers d’autres extensions et variations
de la théorie azémaéenne, Marc Yor a pris une place croissante dans nos discussions.
J’ai eu alors le privilège d’être le témoin du couple Azéma-Yor. Leur symbiose était
étonnante. En effet tout semblait les séparer : alors que Yor enrobait toute manifesta-
tion de sa virtuosité du message que, dans la vie, on n’était pas là pour rigoler mais
pour travailler dur, Azéma cachait un esprit imperturbablement rigoureux derrière
une nonchalance appuyée. Et pourtant je ne pense pas avoir vu d’autres personnes
qu’Azéma à avoir réussi à faire aussi joyeusement rigoler Yor, et, inversement, Yor
était peut-être la seule personne à rire aussi sincèrement des blagues volontiers
mauvaises et politiquement incorrectes d’Azéma. Plus sérieusement je garde un
beau souvenir de leur complicité mathématique. Par contre ce n’est qu’avec le recul,
en me replongeant dans la vaste littérature, que j’entrevoie la richesse et générosité
de cette époque, peut-être déjà un peu finissante, mais dont ils faisaient pleinement
partie, où, autour de Paul-André Meyer, sur la grande place publique du Séminaire
de Probabilité, des grands hommes dialoguaient par petits articles interposés.

. . . — pendant que je bricolais donc des formules de balayage pour fermés
marqués, la liste des équations de structure s’allongeait et avec, celle des martingales
à représentation chaotique (voir par exemple [3, 13], les thèses de David Kurtz
et Anthony Phan [2]. . . ). Émery a fini par construire un exemple contredisant la
conjecture : la représentation prévisible n’entraine pas la représentation chaotique
[12]. Alors que personne ne semble avoir trouvé de caractérisation des martingales
possédant la PRC, la recherche de conditions suffisantes ou d’exemples ne s’est
jamais arrêtée (voir par exemple récemment Di Tella-Engelbert [9]).

Ici se termine le vécu et fait place aux moteurs de recherche. Sur Mathscinet,
parmi les 156 références pour les mots-clé « martingale » & « Azema » beaucoup se
réfèrent à l’autre importante collaboration Azéma-Yor, le problème de Skorokhod.
Mais on peut y découvrir aussi que, même actuellement encore, des articles portent
— au moins en partie — sur la ou les martingales d’Azéma.

La majeure partie se situe dans le domaine des probabilités quantiques, où les
martingales d’Azéma figurent parmi les modèles probabilistes de base.
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Puis il y a la finance (le jour où, dans un colloque, un monsieur m’a demandé des
références sur la martingale d’Azéma, pour l’appliquer à la finance, je n’ai pas
donné suite, parce que je n’ai pas cru que c’était sérieux. J’en ai toujours un peu
honte). En effet, un premier article de Dritschel et Protter [10] propose simplement
de remplacer dans le modèle d’un marché financier le mouvement Brownien par
des martingales d’Azéma. Ensuite le fait que le dernier zéro τ d’un processus puisse
intervenir dans des modèles de ruine avec information partielle (voir Cetin & al. [8]),
appelle la martingale (μt ) comme outil indispensable. Parallèlement apparait aussi
naturellement dans Gapeev & al. [15] la notion de « supermartingale d’Azéma »
P [τ > t |Ft ], dont la référence la plus récente est de Aksamit et Jeanblanc [1] en
2017.

Finalement il y a toujours, régulièrement des articles qui s’intéressent à la martin-
gale d’Azéma sans avoir besoin de justifier beaucoup le pourquoi [7, 14, 18, 19]. . .
Alors que l’homme s’est éteint aujourd’hui, cela fait longtemps que sa martingale
s’est envolée pour vivre sa propre vie mathématique, et, désormais devenue un
classique de la culture probabiliste, elle est promise à durer.
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Chapter 6
Complementability and Maximality
in Different Contexts: Ergodic Theory,
Brownian and Poly-Adic Filtrations

Christophe Leuridan

Abstract The notions of complementability and maximality were introduced in
1974 by Ornstein and Weiss in the context of the automorphisms of a probability
space, in 2008 by Brossard and Leuridan in the context of the Brownian filtrations,
and in 2017 by Leuridan in the context of the poly-adic filtrations indexed by
the non-positive integers. We present here some striking analogies and also some
differences existing between these three contexts.

Keywords Automorphisms of Lebesgue spaces · Factors · Entropy · Filtrations
indexed by the non-positive integers · Poly-adic filtrations · Brownian filtrations ·
Immersed filtrations · Complementability · Maximality · Exchange property

6.1 Introduction

In the present paper, we will work with three types of objects: automorphisms of
Lebesgue spaces, Brownian filtrations and filtrations indexed by Z or Z−; the reason
for choosing Z or Z− and to rule out Z+ is that for discrete-time filtrations, the
interesting phenomena occur near time −∞.

6.1.1 General Context

Among the invertible measure-preserving maps, Bernoulli shifts form a remarkable
class. Similarly, the product-type filtrations (generated modulo the null sets by
sequences of independent random variables) are considered as a well-understood
class. The Brownian filtrations (generated modulo the null sets by Brownian
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motions) form a natural and widely studied class of continuous-time filtrations,
although less simple.

Measure-preserving maps considered here will be taken on diffuse Lebesgue
spaces. Various equivalent definitions of Lebesgue spaces are available. A simple
definition of a Lebesgue space is a probability space which is isomorphic modulo
the null sets to the union of some sub-interval of [0, 1], endowed with the Lebesgue
σ -field and the Lebesgue measure, and a countable set of atoms. Most of the time,
the Lebsegue space considered is non-atomic, so the sub-interval is [0, 1] itself. The
class of Lebesgue spaces includes the completion of every Polish space. See [11]
to find the main properties of Lebesgue spaces or [8] to get equivalent definitions.
Working on Lebesgue spaces provides non-trivial measurability results, existence
of generators. . . We recall in Sect. 6.7 the definitions and the main properties of
partitions, generators, entropy used in the present paper.

Similarly, the filtrations considered here will be defined on a standard Borel
probability space (�,F ,P), i.e. (�,F ) is the Borel space associated to some Polish
space, to ensure the existence of regular conditional probabilities. Given two sub-
σ -fields A and B, the inclusion A ⊂ B mod P means that for every A ∈ A,
there exists B ∈ B such that P(A�B) = 0. We say that A and B are equal
modulo the null sets (or modulo P) when A ⊂ B mod P and B ⊂ A mod P. We
do not systematically complete the σ -fields to avoid troubles when working with
conditional probabilities.

6.1.2 Reminders on Filtrations Indexed by Z or Z−

We now recall some classical but less known definitions and facts on filtrations.
Given a filtration (Fn)n indexed by Z or Z−, one says that (Fn)n is product-type if
(Fn)n can be generated modulo P by some sequence (In)n of (independent) random
variables.

One says that (Fn)n has independent increments if there exists a sequence (In)n
of random variables such that for every n in Z or Z−,

Fn = Fn−1 ∨ σ(In) mod P and In is independent of Fn−1.

Such a sequence (In)n is called a sequence of innovations and is necessarily a
sequence of independent random variables.

One says that (Fn)n is (an)n-adic when it admits some sequence (In)n of
innovations such that each In is uniformly distributed on some finite set with size
an. One says that (Fn)n is poly-adic when (Fn)n is (an)n-adic for some sequence
(an)n of positive integers, called adicity.

One says that (Fn)n is Kolmogorovian if the tail σ -field F−∞ :=⋂n Fn is trivial
(i.e. contains only events with probability 0 or 1).

By the definition and by Kolmogorov’s zero-one law, any filtration indexed
by Z or Z− must have independent increments and must be Kolmogorovian to
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be product-type. But Vershik showed in [22] that the converse is not true. A
simple counter-example is given by Vershik’s decimation process (example 2 in
[22]). Actually Vershik worked with decreasing sequences of measurable partitions
indexed by Z+ and this frame was translated into filtrations indexed by Z− by Émery
and Schachermayer [10].

6.1.3 K-Automorphisms

The Kolmogorov property for filtrations indexed by Z or Z− has an analogue for
dynamical systems, although the definition is less simple in this frame: one says that
an automorphism T of a probability space (Z,Z, π) is a K-automorphism (or that
T has completely positive entropy) if for every A ∈ Z, one has h(T , {A,Ac}) > 0
whenever 0 < π(A) < 1. This condition is nothing but the triviality of the σ -field

�(T ) := {A ∈ Z : h(T , {A,Ac}) = 0},

called Pinsker’s factor. Actually, the ‘events’ of Pinsker’s factor can be seen as the
‘asymptotic events’. Indeed, if γ is a countable generator of (Z,Z, π, T ), then

�(T ) =
⋂
n≥0

∨
k≥n
T −kγ =

⋂
n≥0

∨
k≥n
T kγ ,

where the upper bar indicates completion with regard to π . To make the analogy
clearer, set γ = {Aλ, λ ∈ �}. For each x ∈ Z, call f (x) ∈ � the only index λ
such that x ∈ Aλ. For every k ∈ Z, the σ -field generated by T −kγ is the σ -field
associated to f ◦T k viewed as a�-valued random variable on (Z,Z, π). Therefore,
�(T ) is the asymptotic σ -field generated by the sequence (f ◦ T k)k≥0.

6.1.4 Content of the Paper

We have just viewed the analogy between the ‘Kolmogorovianity’ of a filtration
indexed by Z− and the K-property of an automorphism of a Lebesgue space.

The next section is devoted to a parallel presentation of analogous notions
and results in the three following contexts: automorphisms of Lebesgue spaces,
filtrations indexed by Z− and Brownian filtrations. We investigate two notions—
complementability and maximality—involving factors or poly-adic immersed fil-
trations or Brownian immersed filtrations according to the context. The results
presented are essentially due to Ornstein and Weiss [17], Ornstein [16], and
Thouvenot [21] for automorphisms of Lebesgue spaces; They come from [14] for
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filtrations indexed by Z−. They are due to Brossard, Émery and Leuridan [3–5] for
Brownian filtrations.

Section 6.3 provides proofs of results on maximality which are not easy yo
find in the literature. With some restrictions on the nature of the complement,
complementability implies maximality. Section 6.4 is devoted to the proof of this
implication. The converse was already known to be false for factors of automor-
phisms of Lebesgue spaces and for poly-adic immersed filtrations. In Sect. 6.5, we
provide a counter-example in the context of Brownian filtrations. The construction
relies on a counter-example for poly-adic immersed filtrations which is inspired
by non-published notes of B. Tsirelson (About Yor’s problem, Unpublished Notes.
https://www.tau.ac.il/~tsirel/download/yor3.pdf).

In spite of the similitude of the notions regardless the context, some differences
exist. In Sect. 6.6, we provide a non-complementable filtration (associated to a
stationary process) yielding a complementable factor. This example is inspired by
Vershik’s decimation process (example 3 in [22]).

In Sect. 6.7, we recall the definitions and the main properties of partitions,
generators, entropy used in the present paper.

6.2 Parallel Notions and Results

We now present the main results illustrating the analogies and also the differences
between three contexts: factors of automorphisms of Lebesgue spaces, poly-adic
immersed filtrations or Brownian immersed filtrations.

6.2.1 Factors and Immersed Filtrations

Given an invertible measure preserving map T of a Lebesgue space (Z,Z, π), we
call factor of T, or more rigorously a factor of the dynamical system (Z,Z, π, T ),
any sub-σ -field B of Z such that T −1B = B = TB mod π . Actually, the factor
is the dynamical system (Z,B, π |B, T ), which will be abbreviated in (T ,B) in the
present paper. This definition of a factor is equivalent to the usual one.1

Given two filtrations (Ut )t∈T and (Zt )t∈T on some probability space (�,A,P),
indexed by a common subset T of R, one says that (Ut )t∈T is immersed in (Zt )t∈T
if every martingale in (Ut )t∈T is still a martingale in (Zt )t∈T. The notion of

1Actually, Rokhlin’s theory ensures that if B is a factor of a Lebesgue space (Z,Z, π, T ), then
there exists a map f from Z to some Polish space E such that B is generated up to the negligible
events by the map � : x �→ (f (T k(x)))k∈Z from Z to the product space EZ. Call ν = �(π) =
π ◦�−1 the image measure of μ by �. Then the completion (EZ,B(EZ), ν) is a Lebesgue space,
the shift operator S : (yk)k∈Z �→ (yk+1)k∈Z is an automorphism of EZ, and S ◦� = � ◦ T .

Conversely, if (Y,Y, ν, S) is a dynamical system and � a measurable map from Z to Y such
that �(π) = ν and S ◦� = � ◦ T , then the σ -field �−1(Y) is a factor of (Z,Z, π, T ).

https://www.tau.ac.il/~tsirel/download/yor3.pdf
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immersion is stronger than the inclusion. Actually, (Ut )t∈T is immersed in (Zt )t∈T
if and only if the two conditions below hold:

1. for every t ∈ T, Ut ⊂ Zt .
2. for every s < t in T, Ut and Zs are independent conditionally on Us .

The additional condition means that the largest filtration does not give information
in advance on the smallest one. We also make the useful following observation.

Lemma 6.1 Assume that (Ut )t∈T is immersed in (Zt )t∈T. Then (Ut )t∈T is com-
pletely determined (up to null sets) by its final σ -field

U∞ :=
∨
t∈T

Ut .

More precisely, Ut = U∞∩Zt mod P for every t ∈ T. In particular, if U∞ = Z∞
mod P, then Ut = Zt mod P for every t ∈ T.2

When one works with Brownian filtrations, the immersion has many equivalent
translations. The next statements are very classical (close statements are proved
in [1]) and they rely on the stochastic calculus and the predictable representation
property of Brownian filtrations.

Proposition 6.2 Let (Bt )t≥0 be a finite-dimensional Brownian motion adapted to
some filtration (Zt )t≥0, and (Bt )t≥0 its natural filtration. The following statements
are equivalent.

1. (Bt )t≥0 is a martingale in (Zt )t≥0.
2. (Bt )t≥0 is immersed in (Zt )t≥0.
3. For every t ≥ 0, the process Bt+· − Bt is independent of Zt .
4. (Bt )t≥0 is a Markov process in (Zt )t≥0.

Definition 6.3 When these statements hold, we say that (Bt )t≥0 is a Brownian
motion in the filtration (Zt )t≥0.

Note the analogy between the following two results.

Theorem 6.4 (Ornstein [15]) Every factor of a Bernoulli shift is equivalent to a
Bernoulli shift.

Theorem 6.5 (Vershik [22]) If (Zn)n≤0 is a product-type filtration whose final
sigma-field Z0 is essentially separable, then every poly-adic filtration immersed
in (Zn)n≤0 is product-type.

One-dimensional Brownian filtrations can be viewed as continuous time versions
of dyadic product-type filtrations. In this analogy, the predictable representation

2The inclusion Ut = U∞ ∩ Zt is immediate. To prove the converse, take A ∈ U∞ ∩ Zt . Since
U∞ and Zt are independent conditionally on Ut , we get P[A|Ut ] = P[A|Zt ] = 1A a.s., so
A ∈ Ut mod P.
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property of the continuous-time filtration corresponds to the dyadicity of the
discrete-time filtration. Yet, the situation is much more involved when one works
with Brownian filtrations, and the following question remains open.

Open Question
If a filtration (Ft )t≥0 is immersed in some (possibly infinite-dimensional)
Brownian filtration and has the predictable representation property with
regard to some one-dimensional Brownian motion β (i.e. each martingale in
(Ft )t≥0 can be obtained as a stochastic integral with regard to β), then is
(Ft )t≥0 necessarily a Brownian filtration?

A partial answer was given by Émery (it follows from corollary 1 in [9]).

Theorem 6.6 (Émery [9]) Let d ∈ N ∪ {+∞}. Assume that the filtration (Ft )t≥0
is d-Brownian after 0, i.e. there exists a d-dimensional Brownian motion (Bt )t≥0 in
(Ft )t≥0 such that for every t ≥ ε > 0, Ft is generated by Fε and the increments
(Bs − Bε)ε≤s≤t . If (Ft )t≥0 is immersed in some (possibly infinite-dimensional)
Brownian filtration, then (Ft )t≥0 is a d-dimensional Brownian filtration.

Here, the role of the stronger hypothesis that (Ft )t≥0 is Brownian after 0 is to
guarantee that the difficulties arise only at time 0+, so the situation gets closer to
the filtrations indexed by Z or Z−, for which the difficulties arise only at time −∞.

6.2.2 Complementability

By complementability, we will mean the existence of some independent comple-
ment, although we will have to specify the nature of the complement.

The following definition is abridged from [17].

Definition 6.7 Let (Z,Z, π, T ) be a Lebesgue dynamical system and B be a factor
of T . One says that B is complementable if B possesses an independent complement
in (Z,Z, π, T ), i.e. a factor C of T which is independent of B (with regard to π )
such that B ∨ C = Z mod π .

If (Z,Z, π, T ) is the direct product of two dynamical systems (Z1,Z1, π1, T1)

and (Z2,Z2, π2, T2), then Z1⊗{∅, Z2} and {∅, Z1}⊗Z2 are factors of (Z,Z, π, T )
and each of them is a complement of the other one. Now, let us look at a
counterexample.

Example 6.1 Let T be the Bernoulli shift on Z = {−1, 1}Z endowed with product
σ -field Z and the uniform law. The map � : Z → Z defined by �((xn)n∈Z) =
(xn−1xn)n∈Z commutes with T , so�−1(Z) is a factor of T . Call p0 : Z → {−1, 1}
the canonical projection defined by p0((xn)n∈Z) = x0. Then the σ -field p−1

0 (Z)
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is an independent complement of �−1(Z), but this complement is not a factor.
Actually, we will come back to this example after Definition 6.14 to show as an
application of Theorem 6.21 that no factor can be an independent complement of
�−1(Z).

We now define the notion of complementability in the world of filtrations.

Definition 6.8 Consider two filtrations (Ut )t∈T and (Zt )t∈T on some probability
space (�,A,P), indexed by a common subset T of R. One says that (Ut )t∈T is
complementable in (Zt )t∈T if there exists a filtration (Vt )t∈T such that for every
t ∈ T, Ut and Vt are independent and Ut ∨Vt = Zt mod P.

Since independent enlargements of a filtration always produce filtrations in which
the initial filtration is immersed, (Ut )t∈T needs to be immersed in (Zt )t∈T to
possess an independent complement.

We will use many times the next result, abridged from [14].

Proposition 6.9 Keep the notations of the last definition. Let U be a random
variable valued in some measurable space (E,E), such that σ(U) = ∨

t∈T Ut ,
and (Pu)u∈E a regular version of the conditional probability P given U . Assume
that (Ut )t∈T is complementable in (Zt )t∈T by a filtration (Vt )t∈T. Then for
U(P)-almost every u ∈ E, the filtered probability space (�,A,Pu, (Zt )t≤T) is
isomorphic to the filtered probability space (�,A,P, (Vt )t≤T).

Let us give applications of the last result, that will be used in the present paper.

Corollary 6.10 (Particular Cases)

• If a filtration (Un)n≤0 is complementable in (Zn)n≤0 by some product-type
filtration, then for U(P)-almost every u ∈ E, (Zn)n≤0 is product-type under
Pu.

• If a filtration (Ut )t≥0 is complementable in (Zt )t≥0 by some Brownian filtration,
then for U(P)-almost every u ∈ E, (Zt )t≥0 is a Brownian filtration under Pu.

Determining whether a 1-dimensional Brownian filtration immersed in a 2-
dimensional Brownian filtration is complementable or not is often difficult. Except
trivial cases, the only known cases are related to skew-product decomposition of the
planar Brownian motion, see [5].

6.2.3 Maximality

The definition of the maximality requires a tool to measure the quantity of
information. When one works with factors of an automorphism of a Lebesgue
space, the quantity of information is the entropy. When one works with poly-adic
filtrations, the quantity of information is the sequence of positive integers giving the
adicity. When one works with Brownian filtrations, the quantity of information is
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the dimension of any generating Brownian motion. The statements below show hove
these quantities vary when one considers a factor, a poly-adic immersed filtration,
or a Brownian immersed filtration.

Remark 6.11 (Quantity of Information in Subsystems)

1. If B is a factor of (Z,Z, π, T ), then h(T ,B) ≤ h(T ).
2. If a (bn)n≤0-adic filtration is immersed in an (rn)n≤0-adic filtration, then bn

divides rn for every n.
3. If am-dimensional Brownian filtration is immersed in a n-dimensional Brownian

filtration, then m ≤ n.

The first statement is very classical. The second one is proved in [14]. The last
one is classical and shows that the dimension of a Brownian filtration makes sense;
a proof is given in the footnote.3

Let us give precise definitions, respectively abridged from [14, 16] and [3] or [4].

Definition 6.12 Let (Z,Z, π, T ) be a Lebesgue dynamical system and B be a
factor of T . One says that B is maximal if (T ,B) has a finite entropy and if for
any factor A, the conditions A ⊃ B and h(T ,A) = h(T ,B) entail A = B modulo
null sets.

Definition 6.13 Let (Bn)n≤0 be a (bn)n≤0-adic filtration immersed in some filtra-
tion (Zn)n≤0. One says that (Bn)n≤0 is maximal in (Zn)n≤0 if every (bn)n≤0-adic
filtration immersed in (Zn)n≤0 and containing (Bn)n≤0 is equal to (Bn)n≤0 modulo
null events.

Definition 6.14 Let (Bt )t≥0 be a d-dimensional Brownian filtration immersed in
some filtration (Zt )t≥0. One says that (Bt )t≥0 is maximal in (Zt )t≥0 if every d-
dimensional Brownian filtration immersed in (Zt )t≥0 and containing (Bt )t≤0 is
equal to (Bt )t≥0 modulo null events.

Let us come back to example of Sect. 6.2.2 in which T is the Bernoulli shift on
Z = {−1, 1}Z endowed with product σ -field Z and the uniform law. Since the map
� : Z → Z defined by�((xn)n∈Z) = (xn−1xn)n∈Z commutes with T and preserves
the uniform law on Z, the factor (T ,�−1(Z)) is a Bernoulli (1/2, 1/2) shift like T
itself. The factor�−1(Z) is strictly contained in Z but has the same (finite) entropy
as T , so it is not maximal. But every factor of T is a K-automorphism since T is.
Hence, Theorem 6.21 will show that the factor �−1(Z) is not complementable.

This example above can be abridged in the context of filtrations indexed by
the relative integers: consider a sequence (ξn)n∈Z of independent uniform random
variables taking values in {−1, 1}. Then the sequence (ηn)n∈Z := �((ξn)n∈Z) has
the same law as (ξn)n∈Z. One checks that the inclusions F ηn ⊂ F ξn are strict modulo

3Let Z be a n-dimensional Brownian motion and B be a m-dimensional Brownian motion in F Z .
Then one can find an F Z-predictable processM taking values in the set of all p × n real matrices
whose rows form an orthonormal family, such that B = ∫ ·0 MsdZs. In particular, the m rows of
each matrixMs are independent and lie in a n-dimensional vector space, so m ≤ n.
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P, although the tail σ -field F ξ−∞ are trivial and although (ηn)n∈Z is an innovation

sequence for (F ξn )n∈Z. Actually, one bit of information is lost when one transforms
(ξn)n∈Z into (ηn)n∈Z: for each n0 ∈ Z, the value ξn0 is independent of (ηn)n∈Z, and
the knowledge of ξn0 and (ηn)n∈Z is sufficient to recover (ξn)n∈Z. The paradox is
that this loss of information is asymptotic at time −∞ but invisible when one looks
at F ξ−∞ and F η−∞.

The situation can be much more complex when one works with Brownian
filtrations. For example, consider a linear Brownian motion W . Since W spends
a null-time at 0, the stochastic integral

W ′ =
∫ ·

0
sgn(Ws)dWs = |W | − L

(where L denotes the local time of W at 0) is still a linear Brownian motion. The
natural filtration FW ′

is immersed and strictly included in FW , therefore it is not
maximal in FW . Actually,W ′ generates the same filtration as |W | up to null events,
so the Lévy transformation—which transforms the sample paths of W into the
sample paths ofW ′—forgets the signs of all excursions ofW , which are independent
of |W |. Here, the loss of information occurs at each beginning of excursion of W ,
and not at time 0+.

6.2.4 Necessary or Sufficient Conditions for Maximality

Given a finite-entropy factor, a poly-adic immersed filtration or a Brownian
immersed filtration, one wishes to enlarge it to get a maximal one having the same
entropy, adicity or dimension. This leads to the following constructions, abridged
from [4, 14, 16]. In the next three propositions, the bars above the σ -fields indicate
completions with regard to π or P.

Definition 6.15 Let (Z,Z, π) be a probability space, T be an invertible measure-
preserving map on (Z,Z, π) and B be a factor with finite entropy. The conditional
Pinsker factor associated to B is defined by

B′ := {A ∈ Z : h(T , {A,Ac}|B) = 0}.

where

h(T , {A,Ac}|B) = lim
n→+∞

1

n
H
( n−1∨
k=0

{T −kA, T −kAc}
∣∣∣B
)
.

Proposition 6.16 The collection B′ thus defined is the largest factor containing B
and having the same entropy as B. In particular, B′ is maximal.
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Proposition 6.17 Furthermore, assume (Z,Z, π, T ) is a Lebesgue dynamical
space, that T is aperiodic4 and has finite entropy. Then for every generator γ of T ,

B′ =
⋂
n≥0

(
B ∨

∨
k≥n
T −kγ

)
.

Proposition 6.18 Let (Bn)n≤0 be a (bn)n≤0-adic filtration immersed in some
filtration (Zn)n≤0. Then (Bn)n≤0 is immersed in the filtration (B′

n)n≤0 defined by

B′
n :=

⋂
s≤0

(Bn ∨Zs).

Moreover (B′
n)n≤0 is the largest (bn)n≤0-adic filtration containing (Bn)n≤0 and

immersed in (Zn)n≤0. In particular, (B′
n)n≤0 is maximal in (Zn)n≤0.

Proposition 6.19 Let (Bt )t≥0 be a d-dimensional Brownian filtration immersed in
some Brownian filtration (Zt )t≥0. Then (Bt )t≥0 is immersed in the filtration (B′

t )t≥0
defined by

B′
t :=

⋂
s>0

(Bt ∨Zs).

Moreover (B′
t )t≥0 is a d-dimensional Brownian filtration immersed in (Zt )t≥0.

Warning
When F is a sub-σ -field and (Gn)n≥0 is a non-increasing sequence of sub-σ -
fields of a probability space (�,T ,P), the trivial inclusion

F ∨
(⋂
n≥0

Gn
)
⊂
⋂
n≥0

(
F ∨ Gn

)

may be strict modulo P. Equality modulo P holds when F and G0 are
independent (see Corollary 6.38). Von Weizsäcker provides involved charac-
terizations in [23] for equality modulo P. Therefore, the σ -fields B′, B′

n and
B′
t considered in Propositions 6.17, 6.18, and 6.19 can be strictly larger than

the σ -fields B ∨�(T ), Bn ∨Z−∞ and Bt ∨Z0+ = Bt respectively.

4Aperiodicity of T means that π{z ∈ Z : ∃n ≥ 1, T n(z) = z} = 0. We make this assumption to
ensure the existence of generator.
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Note the analogy between the formulas in Propositions 6.17, 6.18, and 6.19. In
these three contexts, we must have B′ = B up to null sets for B to be maximal.
Moreover, applying the same procedure to B′ leads to B′′ = B′. Hence the condition
B′ = B up to null sets is also sufficient for B to be maximal in the first two
cases (factors of finite-entropy aperiodic Lebesgue automorphisms and poly-adic
filtrations). But once again, the situation is more complex when one works with
Brownian filtrations, since the filtration B′ may be non-maximal. Here is a counter-
example (the proof will be given in Sect. 6.3).

Example 6.2 Let X be a linear Brownian motion in some filtration Z. Set

B =
∫ ·

0
sgn(Xs)dXs,

and call X and B the natural filtrations of X and B. If X is maximal in Z, then
the filtration B′ defined by Proposition 6.19 coincides with B up to null events.
Therefore, the filtration B′ (included in X) cannot be maximal in Z.

Actually, the maximality of Brownian filtrations is not an asymptotic property
at 0+, unlike the almost sure equality B′ = B. To try to produce a maximal
Brownian filtration containing a given Brownian filtration, one should perform the
infinitesimal enlargement above at every time, but we do not see how to do that.

Yet, Proposition 6.25 in the next subsection shows that equality B = B′
ensures the maximality of B under the (strong) additional hypothesis that B is
complementable after 0.

The next sufficient condition for the maximality of a poly-adic immersed
filtration comes from [14].

Proposition 6.20 Let (Bn)n≤0 be a (bn)n≤0-adic filtration immersed in (Zn)n≤0.
Let U be a random variable valued in some measurable space (E,E), such that
σ(U) = B0 and (Pu)u∈E be a regular version of the conditional probability
P given U . If for U(P)-almost every u ∈ E, the filtered probability space
(�,A,Pu, (Zn)n≤0) is Kolmogorovian, then the filtration (Bn)n≤0 is maximal in
(Zn)n≤0.

The assumption that (Zn)n≤0 is Kolmogorovian under almost every conditional
probability Pu echoes to the terminology of conditional K-automorphisms used by
Thouvenot in [21] instead of the notion of maximality.

6.2.5 Complementability and Maximality

In the three contexts (factors of an automorphism of a Lebsgue space, poly-adic
filtrations immersed in a filtration indexed by Z−, Brownian filtrations immersed in
a Brownian filtration), we get very similar results.
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The first one is stated by Ornstein in [16] as a direct consequence of a lemma
stated in [17].

Proposition 6.21 Assume that T with finite entropy. Let B be a factor of T . If B is
complementable by some K-automorphism, then B is maximal.

The second one comes from [14].

Proposition 6.22 Let (Bn)n≤0 be a (bn)n≤0-adic filtration immersed in (Zn)n≤0. If
(Bn)n≤0 can be complemented by some Kolmogorovian filtration, then (Bn)n≤0 is
maximal in (Zn)n≤0.

A particular case of the third one (in which the dimension of the Brownian
filtrations are 1 and 2) can be found in [3] or [4].

Proposition 6.23 Let (Bt )t≥0 be a Brownian filtration immersed in a Brownian
filtration (Zt )t≥0 with larger dimension. If (Bt )t≥0 can be complemented by some
Brownian filtration, then (Bt )t≥0 is maximal in (Zt )t≥0.

The proofs of these three statements are rather simple, and present some
similarities, although they are different. In the next section, we provide two different
proofs of Proposition 6.21. The first one relies on Ornstein and Weiss’ lemma
(lemma 2 in [17]). The second one is a bit simpler but requires that T has
finite entropy, and relies on Berg’s lemma (lemma 2.3 in [2]). We also provide
a proof of Proposition 6.23. Proposition 6.22 follows from Proposition 6.20 and
Corollary 6.10.

The converses of the three implications above are false, but providing counter-
examples is difficult. Ornstein gived in [16] an example of maximal but non-
complementable factor in [16], but the proof is difficult to read. Two counter-
examples of a maximal but non-complementable poly-adic filtration are given
in [14]. In the present paper, we use a third example to construct a maximal but
non-complementable Brownian filtration.

In the present paper, we will also use a small refinement of Proposition 6.23,
using the notion of complementability after 0.

Definition 6.24 Let (Bt )t≥0 be a Brownian filtration immersed in a Brownian
filtration (Zt )t≥0 with larger dimension. One says that (Bt )t≥0 is complementable
after 0 in (Zt )t≥0 if there exists some Brownian filtration C immersed in Z and
independent of B such that,

∀t ≥ 0,Zt =
⋂
s>0

(Bt ∨ Ct ∨Zs) mod π.

Proposition 6.25 Let (Bt )t≥0 be a d-dimensional Brownian filtration immersed in
a Brownian filtration (Zt )t≥0 with larger dimension. If (Bt )t≤0 is complementable
after 0, then the filtration provided by Proposition 6.19 is the largest d-dimensional
Brownian filtration immersed in (Zt )t≤0 and containing (Bt )t≤0. In particular,
(B′
t )t≤0 is maximal in (Zt )t≤0.
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6.3 Conditions for Maximality: Proofs

In this section, we provide proofs of the statements given in Sect. 6.2.4, except
Proposition 6.18 which is proved in [14].

6.3.1 Proof of Proposition 6.16

By definition, B′ is closed under taking complements. For every A and B in Z, the
partition {A ∪ B, (A ∪ B)c} is less fine that {A,Ac} ∨ {B,Bc}, hence

h(T , {A ∪ B, (A ∪ B)c}|B) ≤ h(T , {A,Ac} ∨ {B,Bc}|B)
≤ h(T , {A,Ac}|B)+ h(T , {B,Bc}|B).

One deduce that B′ is closed under finite union.
But h(T , {A,Ac}|B) depends continuously on A when Z is endowed with the

pseudo-metric defined by δ(A,B) = π(A�B) (see Proposition 6.72), so B′ is a
closed subset. Hence, B′ is a complete σ -field.

The equalities h(T , {A,Ac}|B) = h(T , {T −1A, T −1Ac}|B) = h(T , {TA, T Ac}|
B) for every A ∈ Z show that B′ is a factor.

Moreover, B ⊂ B′ since for every B ∈ B, h(T , {B,Bc}|B) ≤ H({B,Bc}|
B)= 0.

The sub-additivity of entropy shows that h(T , α|B) = 0 for every finite partition
α ⊂ B′. Hence h(T ,B′)− h(T ,B) = h((T ,B′)|B) = 0.

Last, let A be a factor containing B and having the same entropy as B. Then for
every A ∈ A,

h(T , {A,Ac}|B) ≤ h((T ,A)|B) = h(T ,A)− h(T ,B) = 0,

so A ⊂ B′. The proof is complete.

6.3.2 Proof of Proposition 6.17

The proofs given here are inspired by the proofs of the similar results involving
(non-conditional) Pinsker factor given in [7].

For every countable measurable partition α of (Z,Z, π) and for every integers
p ≤ q, we introduce the notations

α
q
p :=

q∨
k=p

T −kα, α∞1 =
∨
k≥1

T −kα, Bα :=
⋂
n≥0

(
B ∨

∨
k≥n
T −kα

)
.



46 C. Leuridan

Let us recall that the inclusion

Bα ⊃ B ∨
⋂
n≥0

(∨
k≥n
T −kα

)

can be strict modulo P. We also note that the larger is n, the smaller is the partition

T −nα∞1 =
∨
k≥n+1

T −kα,

so Bα is also the intersection of the non-increasing sequence (B ∨ T −nα∞1 )n≥0.
We begin with the following lemma.

Lemma 6.26 Let α and γ be countable measurable partitions of (Z,Z, π), with
finite entropy. Then H(α|α∞1 ∨ Bγ ) = H(α|α∞1 ∨ B).

Proof The addition formula for conditional entropy yields for every n ≥ 1,

H(α ∨ · · · ∨ T n−1α|α∞1 ∨ B) =
n−1∑
k=0

H(T kα|T kα∞1 ∨ B) = nH(α|α∞1 ∨ B).

Replacing α with α ∨ γ gives

Un := H(α0
−n+1 ∨ γ 0

−n+1|α∞1 ∨ B ∨ γ∞
1 ) = nH(α ∨ γ |α∞1 ∨ B ∨ γ∞

1 ).

Set

Vn := H(α0
−n+1 ∨ γ 0

−n+1|α∞1 ∨ B) andWn := H(α0
−n+1 ∨ γ 0

−n+1|B).

Since Un ≤ Vn ≤ Wn and

lim
n
Wn/n = h((T , α ∨ γ )|B) = H(α ∨ γ |α∞1 ∨ B ∨ γ∞

1 ),

we get limn Un/n = limn Vn/n. But

Un = H(α0
−n+1|α∞1 ∨ B ∨ γ∞

1 )+H(α0
−n+1 ∨ γ 0

−n+1|T nα∞1 ∨ B ∨ γ∞
1 ),

Vn = H(α0
−n+1|α∞1 ∨ B)+H(α0

−n+1 ∨ γ 0
−n+1|T nα∞1 ∨ B).

In these two expressions, each term in Un is less or equal that the corresponding
term in Vn. Since H(α0

−n+1|α∞1 ∨ B) = nH(α|α∞1 ∨ B) we derive that

lim
n
n−1H(α0

−n+1|α∞1 ∨ B ∨ γ∞
1 ) = H(α|α∞1 ∨ B).
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Furthermore, we note that

α∞1 ∨ Bγ ⊂
⋂
n≥0

(
α∞1 ∨ B ∨ T −nγ∞

1

)
,

so Proposition 6.60, Cesàro’s lemma and addition formula for conditional entropy
yield

H(α|α∞1 ∨ Bγ ) ≥ lim
n
H(α|α∞1 ∨ B ∨ T −nγ∞

1 )

= lim
n
H(T nα|T nα∞1 ∨ B ∨ γ∞

1 )

= lim
n
n−1

n−1∑
k=0

H(T kα|T kα∞1 ∨ B ∨ γ∞
1 )

= lim
n
n−1H(α0

−n+1|α∞1 ∨ B ∨ γ∞
1 )

= H(α|α∞1 ∨ B).

But the reverse inequality follows from the inclusion α∞1 ∨ B ⊂ α∞1 ∨ Bγ . Hence
the equality holds. ��

Lemma 6.26 yields one inclusion in the equality of Proposition 6.17, thanks to
the next corollary.

Corollary 6.27 For every countable measurable partition γ of (Z,Z, π), with
finite entropy, Bγ ⊂ B′.

Proof Since B′ is complete, one only needs to check that Bγ ⊂ B′. Let A ∈ Bγ and
α = {A,Ac}. Lemma 6.26 yields h((T , α)|B) = H(α|α∞1 ∨B) = H(α|α∞1 ∨Bγ ) =
0, so A ∈ B′. The inclusion follows. ��

Lemma 6.26 will also help us to prove the next useful lemma.

Lemma 6.28 Let α and γ be countable measurable partitions of (Z,Z, π), with
finite entropy. Let N ≥ 0 and η be a finite partition less fine that γN−N =∨N
k=−N T −kγ . Then

H(η|(Bα)γ ) = H(η|Bγ ∨ Bα) = H(η|Bγ ).

Proof For every n ≥ 0, (γ n−n)∞1 = T nγ∞
1 , so

H(γ n−n|T nγ∞
1 ∨ Bα) = H(γ n−n|T nγ∞

1 ∨ B)
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by Lemma 6.26. When n ≥ N , γ n−n = η ∨ γ n−n, so

H(γ n−n|T nγ∞
1 ∨ Bα) = H(η|T nγ∞

1 ∨ Bα)+H(γ n−n|T nγ∞
1 ∨ Bα ∨ η),

H(γ n−n|T nγ∞
1 ∨ B) = H(η|T nγ∞

1 ∨ B)+H(γ n−n|T nγ∞
1 ∨ B ∨ η).

Since H(β|A ∨ Bα) ≤ H(β|A ∨ B) for every countable measurable partition β
and every σ -field A ⊂ Z, we get H(η|T nγ∞

1 ∨Bα) = H(η|T nγ∞
1 ∨B). Letting n

go to infinity yields H(η|(Bα)γ ) = H(η|Bγ ). Since Bγ ⊂ Bγ ∨ Bα ⊂ (Bα)γ , the
result follows. ��
Corollary 6.29 Assume that T has finite entropy and admits a generator γ . Then
for every countable measurable partition α , Bα ⊂ Bγ = (Bγ )γ mod π .

Proof The collection of all A ∈ Z such that

H({A,Ac}|Bγ ) = H({A,Ac}|Bγ ∨ Bα) = H({A,Ac}|(Bγ )γ )

is a closed subset for the pseudo-metric defined by δ(A,B) = π(A�B), and
contains the algebra

⋃
N∈N σ(γ

N
−N) by Lemma 6.28 applied once to (α, γ ) and once

to (γ, γ ). Therefore, these collection equals the whole σ -field Z itself. In particular,
H({A,Ac}|Bγ ) = 0 whenever A ∈ Bγ ∨ Bα or A ∈ (Bγ )γ . Hence Bγ ∨ Bα and
(Bγ )γ are contained in Bγ modulo the null sets. The result follows. ��

We now achieve the proof of Proposition 6.17. Assume that T has finite entropy
and that γ is a generator of T . We have to prove that B′ ⊂ Bγ . So let A ∈ B′ and
α = {A,Ac}. For every n ≥ 0, set

Dn := σ (
∨
k≥n
T −kα

)
.

Since, D1 = α∞1 , the equality H(α|α∞1 ∨B) = h(T , α|B) = 0 yields α ⊂ D1 ∨ B
mod π , so D0 = D1 ∨ B mod π . By applying T −n, we get more generally Dn =
Dn+1 ∨ B mod π . By induction, D0 = Dn ∨ B mod π for every n ≥ 0. Hence
D0 = Bα ⊂ Bγ mod π , thanks to the last corollary, so A ∈ Bγ . We are done.

6.3.3 Proof of Proposition 6.19

Fix a d-dimensional Brownian motion B generating the filtration B modulo the null
sets.

Let t > ε > 0. Since B is immersed in Z, the Brownian motion B(ε) :=
Bε+· − Bε is independent of Zε, which is the terminal σ -field of the filtration
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(Bε ∨Zs)s∈[0,ε]. Therefore (see Corollary 6.38)

B′
t =

⋂
s∈]0,ε]

(
σ((B(ε)r )r∈[0,t−ε]) ∨ Bε ∨Zs

)

= σ((B(ε)r )r∈[0,t−ε]) ∨
⋂
s∈]0,ε]

(
Bε ∨Zs

)

= σ((B(ε)r )r∈[0,t−ε]) ∨ B′
ε mod P.

Hence, the filtration B′ has independent increments after ε, provided by the
increments of B after ε, so B′ is Brownian after 0.

Moreover, since B(ε) is independent of Zε, the equality modulo P above shows
that for every t > ε > 0, B′

t and Zε are independent conditionally on B′
ε. This

conditional independence still holds when ε = 0, since Z0 is trivial. Thus B′ is
immersed in Z. By Proposition 6.6 (or corollary 1 in [9]), B′ is a d-dimensional
Brownian filtration.

For every t > 0, Bt ⊂ B′
t ⊂ Bt ∨Zt = Zt mod π . These inclusions modulo P

still hold when t = 0 since B0 and Z0+ =⋂s>0 Zs are trivial. Since B is immersed
in Z, we deduce that B is immersed in B′.

Last, let t ≥ 0. For every n ≥ 1,

B′′
t ⊂ B′

t ∨Z1/n ⊂ (Bt ∨Z1/n) ∨Z1/n = Bt ∨Z1/n.

If A ∈ B′′
t , then for each n ≥ 1, one can find Bn ∈ Bt ∨ Z1/n such that

P(A�Bn) = 0; hence A ∈ B′
t since B := lim supn Bn belongs to

⋂
n≥1(Bt ∨Z1/n)

and P(A�B) = 0. The equality B′′
t = B′

t follows.

6.3.4 Proof of the Statements of Example 6.2

Assume that X is maximal in Z. Since B is immersed B′, we have only to check the
inclusion B′∞ ⊂ B∞ mod P. The maximality of X in Z yields

B′∞ ⊂
⋂
s>0

(X∞ ∨Zs) = X∞ mod P,

so one only needs to check that E[h(X)|B′∞] = E[h(X)|B∞] almost surely for
every real bounded measurable functional h defined on the space C(R+) of all
continuous functions from R+ to R. Since the topology of uniform convergence
on compact subsets on the space C(R+) is metrizable, it is sufficient to check the
equality when h is continuous. In this case, the random variable h(X) is the limit in
L1(P) of the sequence (h(X(n)))n≥1, where Tn denotes the first zero of X after time
1/n, and X(n)t = XTn+t for every t ≥ 0. Since B generates the same filtration as |X|
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up to null sets, B∞ ∨ZTn = σ(|X(n)|) ∨ZTn mod P. But X(n) is independent of
ZTn since X is immersed in Z, so

E[h(X(n))|B∞∨ZTn] = E[h(X(n))|σ(|X(n)|)∨ZTn] = E[h(X(n))|σ(|X(n)|)] a.s..

But σ(|X(n)|) ⊂ B∞ ⊂ B′∞ ⊂ B∞ ∨Z1/n ⊂ B∞ ∨ZTn , so

E[h(X(n))|B′∞] = E[h(X(n))|B∞].

The statements follow.

6.4 Complementability Implies Maximality: Proofs

We now prove Propositions 6.21, 6.23 and 6.25. The first two rely on very similar
key lemmas.

6.4.1 Key Lemma for Factors of a Lebesgue Automorphism

Proposition 6.21 follows from the next lemma, which can derived from lemma
in [17] or from lemma 2.3 in [2].

Lemma 6.30 Let A,B,C be three factors of T . Assume that:

1. A ⊃ B;
2. h(T ,A) = h(T ,B) < +∞;
3. (T ,C) is a K-automorphism and has finite entropy.
4. B and C are independent.

Then A and C are independent.

First, we show how to deduce Proposition 6.21 from Lemma 6.30.

Proof (Proof of Proposition 6.21) Let C be an independent complement of B having
the property K . Let A be a factor of T such that A ⊃ B and h(T ,A) = h(T ,B).
Then Lemma 6.30 yields that A and C are independent. But Z = B∨C ⊂ A∨C ⊂
Z, so A ∨ C = B ∨ C. Hence A = B by the next lemma. ��

We have just used the following general statement, which will also help us in the
context of Brownian filtrations.

Lemma 6.31 Let A,B,C be three sub-σ -fields of any probability space (Z,Z, π)
such that
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• A ⊃ B;
• A and C are independent;
• A ∨ C = B ∨ C.

Then A = B mod π .

Proof Let A ∈ A. Then σ(A) ∨ B ⊂ A, so σ(A) ∨ B is independent of C, and

π [A|B] = π [A|B ∨ C] = π [A|A ∨ C] = 1A π -almost surely.

Hence A ∈ B mod π . ��
We now give two different proofs of Lemma 6.30. The second one relies on

Pinsker’s formula and is a bit simpler.

6.4.2 Proof of Lemma 6.30

The proof below is a reformulation of the proof given in [17].
Assume that the assumptions hold. Let α, β, γ be countable partitions generating

(T ,A), (T ,B), (T ,C), respectively. Since (T ,A), (T ,B), (T ,C) have finite
entropy, α, β, γ have also finite entropy. Given n ≥ 1, set αn−1

0 = α∨· · ·∨T −(n−1)α,
βn−1

0 = β ∨ · · · ∨ T −(n−1)β,

Cn = σ
(∨
q∈Z

T −qnγ
)

and Dn = σ
(∨
k≥n
T −kγ

)
.

Then Cn is a factor of T n, αn−1
0 ∨γ is a generator of (T n,A∨Cn)whereas βn−1

0 ∨γ
is a generator of (T n,B ∨ Cn).

Therefore, on the one hand,

h(T n,A ∨ Cn) = H
(
αn−1

0 ∨ γ
∣∣∣
∨
q≥1

T −qn(αn−1
0 ∨ γ )

)

= H
(
αn−1

0 ∨ γ
∣∣∣
∨
k≥n
T −kα ∨

∨
q≥1

T −qnγ
)

= H
(
αn−1

0

∣∣∣
∨
k≥n
T −kα ∨

∨
q≥1

T −qnγ
)

+H
(
γ

∣∣∣
∨
k≥0

T −kα ∨
∨
q≥1

T −qnγ
)
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≤ H
(
αn−1

0

∣∣∣
∨
k≥n
T −kα

)
+H(γ |α)

= h(T n,A)+H(γ |α) = nh(T ,A)+H(γ |α).

On the other hand, by independence of B and C,

h(T n,B ∨ Cn) = H
(
βn−1

0

∣∣∣
∨
k≥n
T −kβ ∨

∨
q≥1

T −qnγ
)

+H
(
γ

∣∣∣
∨
k≥0

T −kβ ∨
∨
q≥1

T −qnγ
)

= H
(
βn−1

0

∣∣∣
∨
k≥n
T −kβ

)+H
(
γ |
∨
q≥1

T −qnγ
)

≥ h(T n,B)+H(γ |Dn) = nh(T ,B)+H(γ |Dn).

But h(T n,B ∨ Cn) ≤ h(T n,A ∨ Cn) since B ⊂ A. Putting things together and
using the assumption h(T ,A) = h(T ,B) < +∞ yields H(γ |Dn) ≤ H(γ |α). But
(Dn)n≥1 is a decreasing sequence of σ -fields with trivial intersection since (T ,C)
has the property K , so H(γ |Dn)→ H(γ ) as n→ +∞. Hence, H(γ ) ≤ H(γ |α),
so α and γ are independent. This conclusion is preserved if one replaces the
generators α and γ by the supremum of T −kα and T −kγ over all k ∈ [[−n, n]].
Letting n go to infinity yields the independence of A and C.

6.4.3 Alternative Proof of Lemma 6.30

The inclusion A ⊃ B and the independence of B and C yield

h(T ,A)+ h(T ,C) ≥ h(T ,A ∨ C) ≥ h(T ,B ∨ C) = h(T ,B)+ h(T ,C).

But h(T ,A) = h(T ,B), hence h(T ,A ∨ C) = h(T ,A) + h(T ,C). Since (T ,C)
is a K-automorphism with finite entropy, Berg’s lemma below shows that A and C
independent.

Lemma 6.32 (Lemma 2.3 in [2]) Let A and C be two factors of the dynamical
system (Z,Z, π, T ), such that h(T ,A ∨ C) = h(T ,A) + h(T ,C) < +∞ and
(T ,C) is a K-automorphism. Then A and C independent.

Proof Let α and γ be countable generating partitions of (T ,A) and (T ,C),
respectively. Set

α∞1 =
∨
k≥1

T −kα and γ∞
1 =

∨
k≥1

T −kγ
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Then

h(T ,A) = H(α|α∞1 ), h(T ,C) = H(γ |γ∞
1 ), h(T ,A∨C) = H(α∨γ |α∞1 ∨γ∞

1 ).

But Pinsker’s formula (Proposition 6.75 in Sect. 6.7 or theorem 6.3 in [18]) gives

H(α ∨ γ |α∞1 ∨ γ∞
1 ) = H(α|α∞1 )+H(γ |A ∨ γ∞

1 ).

So the assumption h(T ,A ∨ C) = h(T ,A) + h(T ,C) < +∞ yields H(γ |γ∞
1 ) =

H(γ |A ∨ γ∞
1 ).

Thus for any partition δ ⊂ A with finite entropy, H(γ |δ ∨ γ∞
1 ) = H(γ |γ∞

1 ), so

H(δ ∨ γ |γ∞
1 ) = H(δ|γ∞

1 )+H(γ |δ ∨ γ∞
1 ) = H(δ|γ∞

1 )+H(γ |γ∞
1 ).

But we have also

H(δ ∨ γ |γ∞
1 ) = H(γ |γ∞

1 )+H(δ|γ ∨ γ∞
1 ).

Hence H(δ|γ∞
1 ) = H(δ|γ ∨ γ∞

1 ).
Let m ≥ 0 and n be integers. Applying the last equality to δ := ∨|k|≤m T n−kα

yields

H
( ∨

|k|≤m
T n−kα

∣∣∣
∨
k≥1

T −kγ
)
= H

( ∨
|k|≤m

T n−kα
∣∣∣
∨
k≥0

T −kγ
)
.

Since T preserves π , this is equivalent to

H
( ∨

|k|≤m
T −kα

∣∣∣
∨
k≥n+1

T −kγ
)
= H

( ∨
|k|≤m

T −kα
∣∣∣
∨
k≥n
T −kγ

)
.

As a result, the entropy above does not depend on n. Letting n go to −∞ and to
+∞, and using the fact that (T ,C) is a K-automorphism, we get at the limit

H
( ∨

|k|≤m
T −kα

∣∣∣C
)
= H

( ∨
|k|≤m

T −kα
)
,

so the partition
∨

|k|≤m T −kα is independent of C. Letting m go to +∞ yields the
independence of A and C. ��

6.4.4 Proof in the Context of Brownian Filtrations

The proof of Proposition 6.23 below may look suspiciously simple, but actually, it
relies on non-trivial theorems of stochastic integration, namely the predictable repre-
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sentation property and the bracket characterization of multi-dimensional Brownian
motions among local martingales. The immersion of a filtration into another one is
a strong property, as shown for example by the characterizations for a Brownian
filtration recalled in the introduction (Proposition 6.2). The key step is very similar
to Lemma 6.30.

Lemma 6.33 Let A,B,C be three Brownian motions in some filtration Z. Assume
that:

1. σ(A) ⊃ σ(B) mod P;
2. A and B have the same finite dimension;
3. B and C are independent.

Then A and C are independent.

Proof Call p the dimension of A and B and q the (possibly infinite) dimension of
C. Since B is a Brownian motion in Z and its own filtration, it is also a Brownian
motion in the intermediate filtration F A. Hence, one can find an F A-predictable
process H with values in the group of all orthogonal p × p matrices such that

B =
∫ ·

0
HsdAs a.s..

Since H�
s Hs = Ip for every s ≥ 0 (whereH�

s is the transpose ofHs), we have also

A =
∫ ·

0
H�
s dBs a.s..

Looking at the components, we get for every i ∈ [[1, p]],

A(i) =
p∑
j=1

∫ ·

0
Hs(j, i)dB

(j)
s a.s..

For every i ∈ [[1, p]] and k ∈ [[1, q]], we get

〈A(i), C(k)〉 =
p∑
j=1

∫ ·

0
Hs(j, i)d〈B(j), C(k)〉s = 0 a.s.,

since 〈B(j), C(k)〉 = 0 a.s., by independence of B et C. We derive that (A,C) is a
p + q-dimensional Brownian motion in Z, so A and C are independent. ��

Deducing Proposition 6.23 from the last lemma involves almost the same
arguments as deducing Proposition 6.21 from Lemma 6.30.
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Proof Proof of Proposition 6.23. Let Z be a finite Brownian filtration, and A,B,C
be three Brownian filtrations in Z such that At ⊃ Bt for every t ≥ 0, A
and B have the same dimension, and C is an independent complement of B in
Z.

Let A,B,C be Brownian motions generating A,B,C modulo the null events.
Then Lemma 6.33 applies, so A is independent of C. By Lemma 6.31, σ(A) =
σ(B) mod P. But F B is immersed in F A. Since the final σ -fields F A∞ = σ(A) and
F B∞ = σ(B) coincide almost surely, we get F At = F Bt mod P for every t ≥ 0 by
Lemma 6.1.

��
We now prove Proposition 6.25.

Proof Let C be a complement of B after 0, and A be a d-dimensional Brownian
filtration immersed in Z and containing B. Let A, B, C be Brownian motions in
Z generating A, B, C respectively modulo the null events. Since A and B′ are
immersed in Z, it is sufficient to prove the inclusion A∞ ⊂ B′∞. Hence, given
s > 0, we have to check that A∞ ⊂ B∞ ∨Zs mod P.

By Lemma 6.33, we know that A and C are independent Brownian motions in
F Z . Thus Zs , As+· − As and Cs+· − Cs are independent. Let

Ã := A∞ ∨Zs = σ(As+· − As) ∨Zs mod P,

B̃ := B∞ ∨Zs = σ(Bs+· − Bs) ∨Zs mod P,

C̃ := σ(Cs+· − Cs).

Then Ã ⊃ B̃, B̃ and C̃ are independent, and Ã ∨ C̃ = B̃ ∨ C̃ mod P, since

Z∞ ⊃ Ã ∨ C̃ ⊃ B̃ ∨ C̃ = B∞ ∨ C∞ ∨Zs = Z∞ mod P.

Hence Lemma 6.31 applies, so A∞ ⊂ Ã = B̃ = B∞ ∨Zs mod P. ��

6.5 A Maximal But Not-Complementable Brownian
Filtration

To get such an example, our strategy is to construct a maximal but not-complemen-
table filtration in a dyadic product-type filtration and to embed these filtrations in
Brownian filtrations.
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6.5.1 A Maximal But Not-Complementable Filtration
in a Dyadic Product-Type Filtration

This subsection is devoted to the proof of the following lemma.

Lemma 6.34 One can construct:

• a dyadic product-type filtration (Zn)n≤0,
• a poly-adic product-type filtration (Un)n≤0 immersed in (Zn)n≤0,
• a random variable U with values in some Polish space (E,E) and generating

U0,

such that for U(P)-almost every u ∈ E, (Zn)n≤0 is Kolmogorovian but not product-
type under Pu = P[·|U = u]. Therefore, the filtration (Un)n≤0 is maximal but non
complementable in (Zn)n≤0.

Proof We begin with a variant of an example given in [6], which was itself inspired
from an unpublished note of B. Tsirelson (About Yor’s problem, Unpublished Notes.
https://www.tau.ac.il/~tsirel/download/yor3.pdf).

For every n ≤ 0, call Kn the finite field with qn = 22|n| elements. Start with
a sequence of independent random variables (Zn)n≤0 such that for every n ≤ 0,
Z2n = (Xn, Yn) is uniform on K4

n × K4
n and Z2n−1 = Bn is uniform on K4

n . By
construction, the filtration (F Zn )n≤0 is product-type and (rn)n≤0-adic, with r2n−1 =
q4
n and r2n = q8

n for every n ≤ 0.

Since |Kn−1| = 22|n|+1 = |Kn|2, one can fix a bijection between K4
n−1 × K4

n−1
and the set M4(Kn) of all 4 × 4 matrices with entries in Kn. Call An the uniform
random variable on M4(Kn) corresponding to Z2n−2 through this bijection, and set
U2n−1 = 0 and U2n = Yn − AnXn − Bn.

For every n ≤ 0, (Xn, Yn) is independent of F Z2n−1 and uniform on K4
n × K4

n .
Since the random map (x, y) �→ (x, y−Anx−Bn) fromK4

n×K4
n to itself is F Z2n−1-

measurable and bijective, (Xn,U2n) is also independent of F Z2n−1 and uniform on
K4
n × K4

n and is still an innovation at time 2n of the filtration F Z . Therefore, the
filtration (F Un )n≤0 is immersed in (F Zn )n≤0, product-type and (rn/q4

n)n≤0-adic.
For each n ≤ 0, the set K4

n is a 4-dimensional vector space on Kn and
also a 2|n|+2-dimensional vector space on the sub-field K0 = {0, 1}. Fix a basis
(ein)1≤i≤2|n|+2 and for every vector v ∈ K4

n , call (vi)1≤i≤2|n|+2 its components in this
basis. Then each one of the uniform random variables Bn, Xn, Yn and U2n yields
2|n|+2 independent and uniform Bernoulli random variables, namely Bin,X

i
n, Y

i
n and

Ui2n with i ∈ [[1, 2|n|+2]].
Define an increasing map s : Z− �→ Z− by s(0) = 0, s(2n−1) = s(2n)−2|n|+3

and s(2n−2) = s(2n−1)−2|n|+2 for every n ≤ 0, and two filtrations Z = (Zn)n≤0
and U = (Un)n≤0 by the following equalities for every n ≤ 0 and i ∈ [[1, 2|n|+2]]:

Zs(2n−2)+i := F Z2n−2 ∨ σ(B1
n, . . . , B

i
n),

Zs(2n−1)+i := F Z2n−1 ∨ σ(X1
n, . . . , X

i
n),

https://www.tau.ac.il/~tsirel/download/yor3.pdf
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Zs(2n−1)+2|n|+2+i := F Z2n−1 ∨ σ(Xn) ∨ σ(Y 1
n , . . . , Y

i
n),

Us(2n−2)+i := F U2n−2,

Us(2n−1)+i := F U2n−1 = F U2n−2,

Us(2n−1)+2|n|+2+i := F U2n−1 ∨ σ(U1
2n, . . . , U

i
2n).

Taking i = 2|n|+2 in these formulas yields

Zs(2n−1) = F Z2n−1, Zs(2n) = F Z2n, Us(2n−1) = F U2n−1, Us(2n) = F U2n,

so the filtrations Z and U interpolate F Z and F U .
Moreover, the filtrations Z and U are product-type, Z is dyadic, U is poly-adic

and increases only at times s(2n − 1) + 2|n|+2 + i with n ≤ 0 and i ∈ [[1, 2|n|+2]].
At such a time, Y i2n is an innovation of the filtration Z whereas Ui2n is an innovation
of the filtration U, and also of the larger filtration Z since

• Ui2n = Y in − (AnXn)i − Bin,
• Y in is uniform on K0 and independent of Zs(2n−1)+2|n|+2+i−1,
• (AnXn)

i + Bin is Zs(2n−1)+2|n|+2 -measurable hence Zs(2n−1)+2|n|+2+i−1-
measurable.

As a result, the filtration U is immersed in Z.
The random variable U = (Un)n≤0 generates U0 = F U0 . Let us check that

for U(P)-almost every u ∈ E, (Zn) is Kolmogorovian but not product-type
under Pu = P[·|U = u]. By Corollary 6.10 and Proposition 6.20 of the present
paper (propositions 3,4 and corollary 9 of [14]), the last two statements will
follow.

First, we note that for every n ≤ 0, F Z2n = F U2n ∨ F X,Yn , and that F U0
and F X,Y0 are independent. The independence follows from the equalities U2n =
Yn−AnXn−Bn, the F X,Y0 -measurability of the random variables (Yn−AnXn)n≤0

since each An is a function of Z2n−2 = (Xn−1, Yn−1): conditionally on F X,Y0 ,
the random variables (U2n)n≤0 taking values in the additive groups (K4

n)n≤0 are
independent and uniform since the random variables (Bn)n≤0 are independent and
uniform.

To show that (Zn) is not product-type under Pu, it suffices to show that the
extracted filtration (F Zn )n≤0 is not product-type under Pu. To do this, we check that
the random variable Z0 does not satisfy the I-cosiness criterion. Let Z′ = (X′, Y ′)
and Z′′ = (X′′, Y ′′) be two copies of the process Z under Pu, defined on some
probability space (�̄, Ā, P̄u), such that both natural filtrations F Z′

and F Z′′
are

immersed in some filtration G.
For every n ≤ 0, define the copies A′

n, A
′′
n and B ′

n, B
′′
n of the random variables

An and Bn by the obvious way, and set Sn = {x ∈ K4
n : A′

nx + B ′
n = A′′

nx + B ′′
n }.

Then for U(P)-almost every u ∈ E, the equalities Y ′
n = A′

nX
′
n + B ′

n + u2n and
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Y ′′
n = A′′

nX
′′
n + B ′′

n + u2n hold P̄u-almost surely. Therefore,

1[Z′
2n=Z′′

2n] = 1[X′
n=X′′

n∈Sn] ≤ 1[X′
n∈Sn] P̄u-almost surely.

But Sn is G2n−1-measurable whereas X′
n is uniform on K4

n conditionally on G2n−1

since F Z′
is immersed in G. Moreover, |Sn| ≤ q3

n when A′
n �= A′′

n. Hence

P̄u[Z′
2n = Z′′

2n|G2n−1] ≤ |Sn|
q4
n

≤ 1[A′
n=A′′

n] +
1

qn
1[A′

n �=A′′
n] P̄u-almost surely.

Passing to the complements and taking the expectations yields

P̄u[Z′
2n �= Z′′

2n] ≥
(

1 − 1

qn

)
P̄u[A′

n �= A′′
n] =

(
1 − 1

qn

)
P̄u[Z′

2n−2 �= Z′′
2n−2].

By induction, one gets that for every n ≤ 0

P̄u[Z′
0 �= Z′′

0 ] ≥
0∏

k=n+1

(
1 − 1

qk

)
× P̄u[Z′

2n �= Z′′
2n].

If, for some N > −∞, the σ -fields F Z′
N and F Z′′

N are independent, then one has
P̄u[Z′

2n �= Z′′
2n] → 1 as n→ −∞, so

P̄u[Z′
0 �= Z′′

0 ] ≥
∏
k≤0

(
1 − 1

qk

)
> 0.

The proof is complete. ��

6.5.2 Embedding Dyadic Filtrations in Brownian Filtrations

We start with the two filtrations provided by Lemma 6.34. By construction, the
filtration (Zn)n≤0 can be generated by some i.i.d. sequence (ξn)n≤0 of uniform
random variables with values in {−1, 1}.

The filtration (Un)n≤0 is product-type and (an)n≤0-adic for some sequence
(an)n≤0 taking values 1 and 2 only. Call D ⊂ Z− the set of all n ≤ 0 such that
an = 2. The filtration (Un)n≤0 can be generated by some sequence (αn)n≤0 of
independent random variables with αn uniform on {−1, 1} if n ∈ D, αn = 0 if
n /∈ D.

By immersion of (Un)n≤0 in (Zn)n≤0, each αn is Zn-measurable and indepen-
dent of Zn−1. So when n ∈ D, αn can be written αn = Hnξn, where Hn is some
Zn−1-random variable taking values in {−1, 1}.
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Fix an increasing sequence (tn)n≤0 of positive real numbers such that t0 = 1
and tn → 0 as n → −∞ (e.g. tn = 2n for every n ≤ 0). By symmetry and
independence of Brownian increments, one may construct a Brownian motion X
such that for every n ≤ 0, ξn = sign(Xtn − Xtn−1). Let Y be a Brownian motion,
independent of X.

Since Zn−1 ⊂ F X,Ytn−1
for every n ≤ 0, one gets a predictable process (At )0<t≤1

with values in O2(R) and two independent Brownian motions B and C in F X,Y on
the time-interval [0, 1] by setting for every t ∈]tn−1, tn],

At =
(
Hn 0
0 1

)
if n ∈ D, At =

(
0 1
1 0

)
if n /∈ D,

and for every t > 0,

(
dBt

dCt

)
= At

(
dXt

dYt

)
.

Theorem 6.35 The filtration generated by the Brownian motion B thus defined is
complementable after 0, maximal, but not complementable in F X,Y .

Proof Complementability after 0
Let us check that C is a complement after 0 of B, or equivalently that

∀s ∈]0, 1], F B,C1 ∨ F X,Ys = F X,Y1 .

Since t0 = 1 and tm → 0+ as m → −∞, it is sufficient to check the equality
when s = tm with m ≤ 0. Since for every n ≥ m, the process A coincides on each
time-interval ]tn, tn+1] with an F X,Ytn

-measurable random variable, the formula

(
dXt

dYt

)
= A−1

t

(
dBt

dCt

)

enables us to recover (X, Y ) from the knowledge of ((Xs, Ys))0≤s≤tm and (B,C).
The complementability after 0 follows.

Maximality
By Proposition 6.25, the maximality of B will follow from its complementability
after 0 once we will have proved the equality

F B1 =
⋂
s∈]0,1]

(F B1 ∨ F X,Ys ).

The intersection above, over all s ∈]0, 1], can be restricted to the instants (tm)m≤0.
It is now convenient to introduce the notations

�Xn = (Xt −Xtn−1)tn−1≤t≤tn and ξn�Xn = (ξn(Xt −Xtn−1))tn−1≤t≤tn .
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Recall that ξn = sign(Xtn −Xtn−1). Therefore, σ(�Xn) = σ(ξn)∨σ(ξn�Xn), with
σ(ξn) and σ(ξn�Xn) independent by symmetry of Brownian increments. We define
in the same way the random variables �Yn, �Bn, �Cn and αn�Bn. Then

�Bn = Hn�Xn = αnξn�Xn and �Cn = �Yn if n ∈ D,
�Bn = �Yn and �Cn = �Xn if n ∈ Dc.

Moreover, when n ∈ D, αn = sign(Btn−Btn−1) is independent of αn�Bn = ξn�Xn.
Therefore, F B1 = A ∨ B, with

A = σ((αn)n∈D), B = σ((ξn�Xn)n∈D) ∨ σ((�Yn)n∈Dc).

For n ∈ Z−, set Dn = D∩] − ∞, n], Dcn =] −∞, n] \D, and

Cn = F ξn , Dn = σ((ξk�Xk)k∈Dcn) ∨ σ((�Yk)k∈Dn).

Then F ξn ∨ F Ctn = Cn ∨Dn.
The maximality of F α in F ξ yields the equality

A =
⋂
n≤0

(A ∨ Cn) mod P.

By independence of B and C, the σ -fields B and D0 are independent, so Corol-
lary 6.38 applies and the following exchange property holds

B = B ∨D−∞ =
⋂
n≤0

(B ∨Dn) mod P.

The three sequences (ξn)n≤0, (ξn�Xn)n≤0 and (�Yn)n≤0 are independent, so the
σ -fields A ∨ C0 = F ξ0 and B ∨ D0 = F ξ�X,Y0 are independent and Lemma 6.37
yields

F B1 = A ∨ B =
⋂
n≤0

(A ∨ B ∨ Cn ∨Dn) =
⋂
n≤0

(F B1 ∨ F ξn ∨ F Ctn )

=
⋂
n≤0

(F B1 ∨ F X,Ytn
) mod P.

This proves the maximality of B.

Non-complementability
Keep the notations introduced in the proof of the maximality and set ξ := (ξn)n≤0,
α := (αn)n≤0. Remind that ξ , (ξn�Xn)n≤0 and (�Yn)n≤0 are independent families
of independent random variables and that F B1 is the σ -field generated by α,
(ξn�Xn)n∈D and (�Yn)n∈Dc .
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The filtration (F X,Ytn
)n≤0 can be splitted into three independent parts, namely

F X,Ytn
= F ξn ∨ σ((ξk�Xk)k∈Dn ∪ (�Yk)k∈Dcn) ∨ σ((�Yk)k∈Dn ∪ (ξk�Xk)k∈Dcn).

The second part is a function of B whereas the third part is independent of (ξ, B).
By independent enlargement, we get that for B(P)-almost every b ∈ C([0, 1],R),
the filtration (F ξn )n≤0 is immersed in (F X,Ytn

)n≤0 under P[·|B = b].
But α is some measurable function � of B and is also a function of ξ . Since

ξ , (ξn�Xn)n∈D and (�Yn)n∈Dc are independent, the law of ξ under P[·|B = b]
coincides with the law of ξ under P[·|α = �(b)].

Since α generates the same σ -field as the random variable U of Lemma 6.34,
we derive that for B(P)-almost every b ∈ C([0, 1],R), the filtration (F ξn )n≤0 is
(2/an)-adic but not product-type under P[·|B = b]. But this filtration is immersed
in (F X,Ytn

)n≤0 under P[·|B = b], hence by Vershik’s theorem (Theorem 6.5 in the

present paper), (F X,Ytn
)n≤0 cannot be product-type so F X,Y cannot be Brownian

under P[·|B = b]. Thus, the Brownian filtration F B is not complementable in F X,Y .
��

Actually, the construction above also yields the remarkable counter-example
below.

Proposition 6.36 Keep the notation of Theorem 6.35 and set βn = sign(Btn −
Btn−1), ηn = sign(Ytn−Ytn−1) for every n ≤ 0, so βn = αn if n ∈ D whereas βn = ηn
if n /∈ D. Then the dyadic filtration F β is maximal but non-complementable in the
product-type quadriadic filtration F ξ,η.

Proof For n ∈ Z−, set Dn = D∩] − ∞, n] and

A = σ((αn)n∈D), B′ = σ((ηn)n∈Dc), Cn = F ξn , D′
n = σ((ηk)k∈Dn).

The maximality of F α in F ξ yields the equality

A =
⋂
n≤0

(A ∨ Cn) mod P.

By Corollary 6.38, the independence of B′ and D′
0 yields

B′ = B′ ∨D′−∞ =
⋂
n≤0

(B′ ∨D′
n) mod P.

But A ∨ C0 = F ξ0 and B′ ∨D′
0 = F η0 are independent. Hence, Lemma 6.37 yields

F β0 = A ∨ B′ =
⋂
n≤0

(A ∨ B′ ∨ Cn ∨D′
n) =

⋂
n≤0

(F β0 ∨ F ξ,ηn ) mod P.
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Hence at time 0, the filtration F β coincides modulo P with the larger filtration (F β)′
provided by Proposition 6.18 when the filtration Z is F ξ,η. Since F β is immersed
in (F β)′, these two filtrations coincide modulo P at every time. The maximality of
F β follows.

Conditionally on α, the filtration F ξ is not product-type. By independent
enlargements, conditionally on β, the filtration F ξ is not product-type, so F ξ,η is
not product-type since F ξ is immersed in F ξ,η. The non-complementability of F β
follows. ��
Lemma 6.37 Let A, B be two sub-σ -fields and (Cn)n≤0, (Dn)n≤0 be two filtrations
of the probability space (�,T ,P). If

A =
⋂
n≤0

(A ∨ Cn) mod P, B =
⋂
n≤0

(B ∨Dn) mod P,

and if A ∨ C0 and B ∨D0 are independent, then

A ∨ B =
⋂
n≤0

(A ∨ B ∨ Cn ∨Dn) mod P.

Proof Both sides of the equality to be proved are sub-σ -fields of A∨B∨C0 ∨D0,
so it is sufficient to prove that for every Z ∈ L1(A ∨ C0 ∨ B ∨D0),

E[Z|A ∨ B] = E
[
Z

∣∣∣
⋂
n≤0

(A ∨ B ∨ Cn ∨Dn)
]
.

One may assume that Z = XY with X ∈ L1(A ∨ C0) and Y ∈ L1(B ∨ D0) since
such random variables span a dense subspace in L1(A∨C0 ∨B∨D0). Given Z as
above, one has E[Z|A ∨ C0 ∨ B] = XE[Y |B], so

E[Z|A ∨ B] = E[X|A ∨ B]E[Y |B] = E[X|A]E[Y |B],
since σ(X)∨A is independent of B. In the same way, one gets that for every n ≤ 0,

E[Z|A ∨ B ∨ Cn ∨Dn] = E[X|A ∨ Cn]E[Y |B ∨Dn].
Thus, taking the limit as n → −∞ yields the result by the martingale convergence
theorem and the assumption. ��

The particular case where B and the σ -fields Cn are equal to {∅,�} yields the
following classical and useful result.

Corollary 6.38 Let A be a sub-σ -field and (Dn)n≤0 be a filtration of the probabil-
ity space (�,T ,P). If A and D0 are independent, then

A =
⋂
n≤0

(A ∨Dn) mod P.
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6.6 A Complementable Factor Arising
From a Non-complementable Filtration

In this section, we study an example deriving from a variant of Vershik’s example 3
in [22], namely the uniform randomised decimation process.

6.6.1 Definition of a Uniform Randomised Decimation Process

We denote by {a, b}∞ the set of all infinite words on the alphabet {a, b}, namely
the set of all maps from N = {1, 2, . . .} to {a, b}. We endow this set with the
uniform probability measureμ: a random infinite wordX is chosen according toμ if
the successive letters X(1),X(2), . . . form a sequence of independent and uniform
random variables taking values in {a, b}.

We denote by P(N) the power set of N, i.e. the set of all subsets of N. Given
p ∈]0, 1[, we define the probability measure νp on P(N) as follows: the law of a
random subset I of N is νp if 1I (1), 1I (2), . . . form an i.i.d. sequence of Bernoulli
random variables with parameter p. Equivalently, this means that P[F ⊂ I ] = p|F |
for every finite subset F of N. In this case, we note that almost surely, I is infinite
with infinite complement. The law ν := ν1/2 will be called the uniform law on
P(N).

When A is an infinite subset of N, we denote by ψA(1) < ψA(2) < . . .

its elements. This defines an increasing map ψA from N to N whose range is A.
Conversely, for every increasing map f from N to N, there is a unique infinite
subset A of N, namely the range of f , such that f = ψA. These remarks lead
to the following statement.

Lemma 6.39 Let I and J be independent random infinite subsets of N with
respective laws νp and νq , and R = ψI ◦ ψJ (N) = ψI (J ) be the range of ψI ◦ ψJ .
Then ψI ◦ ψJ = ψR and the law of R is νpq .

Proof The equality ψI ◦ ψJ = ψR follows from the remarks above. Let F be a
finite subset of N. By injectivity of ψI ,

[F ⊂ R] = [F ⊂ I ; ψ−1
I (F ) ⊂ J ]

and [F ⊂ I ] = [|ψ−1
I (F )| = |F |], therefore by independence of I and J ,

P[F ⊂ R | σ(I)] = 1[F⊂I ] P[ψ−1
I (F ) ⊂ J | σ(I)] = 1[F⊂I ] q |ψ

−1
I (F )| = 1[F⊂I ] q |F |.

Thus P[F ⊂ R] = P[F ⊂ I ]q |F | = (pq)|F |. ��
Here is another property that we will use to define the uniform randomised

decimation process on {a, b}, and also later, in the proof of Proposition 6.49.
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Lemma 6.40 Let X be a uniform random word on {a, b}∞. Let I be a random
subset of N with law νp, independent of X. Then

• I , X ◦ ψI , X ◦ ψIc are independent
• X ◦ ψI , X ◦ ψIc are uniform random words on {a, b}∞.

Proof Almost surely, I is infinite with infinite complement, so the random maps
ψI and ψIc are well-defined. The integers ψI (1), ψIc (1), ψI (2), ψIc (2) . . . are
distinct, so conditionally on I ,X(ψI (1)),X(ψIc (1)),X(ψI (2)),X(ψIc (2)), . . . are
independent and uniform on {a, b}. The result follows. ��
Definition 6.41 Call P′(N) the set of all infinite subsets of N. A uniform ran-
domised decimation process in the alphabet {a, b} is a stationary Markow chain
(Xn, In)n∈Z with values in {a, b}∞ ×P′(N) defined as follows: for every n ∈ Z,

1. the law of (Xn, In) is μ⊗ ν;
2. In is independent of (Xn−1, In−1) and uniform on P(N);
3. Xn = Xn−1 ◦ ψIn .

Such a process is well-defined and unique in law since the law μ ⊗ ν is
invariant by the transition kernel given by conditions 2 and 3 above, thanks to
Lemma 6.40. Moreover, (In)n∈Z is a sequence of innovations for the filtration F X,I .
Therefore, the filtration F X,I has independent increments or is locally of product-
type, according to Laurent’s terminology [12].

This process is a kind of randomisation of Vershik’s decimation process given
in example 3 of [22]. Indeed, Vershik’s decimation process is equivalent to the
process that we would get by choosing the random sets In uniformly among the
set of all even positive integers and the set of all odd positive integers. Although
Vershik’s decimation process generates a non-standard filtration, we will show that
our randomised process generates a standard one.

Theorem 6.42 The uniform randomised decimation process on the alphabet {a, b}
generates a product-type filtration.

6.6.2 Proof of Theorem 6.42

We have seen that the filtration F X,I admits (In)n∈Z as a sequence of innovations.
Each innovation has diffuse law. Therefore, to prove that the filtration (F X,In )n≤0, or
equivalently, the filtration (F X,In )n∈Z is product-type, it suffices to check Vershik’s
first level criterion (see reminders further and definition 2.6 and theorem 2.25
in [12]). Concretely, we have to check any random variable in L1(F X,I0 ,R) can be

approached in L1(F X,I0 ,R) by measurable functions of finitely many innovations
of (F X,I )n≤0.

The innovations (In)n∈Z are inadequate to do this, since the random variable X0
is independent of the whole sequence (In)n∈Z, so functions of the (In)n∈Z cannot
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approach non-trivial functions of X0. Therefore, we will have to construct new
innovations. The next lemma gives us a general procedure to get some.

Lemma 6.43 Fix n ∈ Z. Let � be some F X,In−1-measurable map from N to N. If �
is almost surely bijective, then the random variable Jn = �(In) is independent of
F X,In−1 and uniform on P(N).

Proof Let F be a finite subset of N. Then, almost surely,

P [F ⊂ Jn|F X,In−1] = P [�−1(F ) ⊂ In|F X,In−1] = (1/2)|�
−1(F )| = (1/2)|F |.

The result follows. ��
Actually, the proof of Theorem 6.42 is similar to the proof of the standardness

of the erased-words filtration by Laurent [13] and uses the same tools, namely
canonical coupling and cascaded permutations.

Definition 6.44 (Canonical Word and Canonical Coupling) The infinite canon-
ical word C on the alphabet {a, b} is abab · · · , namely the map from N to {a, b}
which sends the odd integers on a and the even integers on b.

If x is an infinite word x on the alphabet {a, b}, namely a map from N to {a, b},
we set for every i ∈ N,

φx(i) = 2q − 1 if x(i) is the q-th occurence of the letter a in x,

φx(i) = 2q if x(i) is the q-th occurence of the letter b in x.

Lemma 6.45 By definition, the map φx thus defined from N to N is injective and
satisfies the equality x = C ◦φx . When each possible letter a or b appears infinitely
many times in x, φx is a permutation of N, (called canonical coupling by S. Laurent).

Roughly speaking, if x is a typical word of {a, b}∞ endowed with the uniform
law, the asymptotic proportions of a and b are 1/2 are 1/2, so φx is asymptotically
close to the identity map.

Definition 6.46 (New Innovations and Cascaded Permutations) Let �′ be the
almost sure event on which

• each possible letter a or b appears infinitely many times in the infinite word X0;
• each subset In is infinite.

On �′, we define by recursion a sequence (�n)n≥0 of random permutations of N
and a sequence (Jn)n≥1 of random infinite subsets of N by setting �0 = φX0 and,
for every n ≥ 1,

Jn = �n−1(In) and �n−1 ◦ ψIn = ψJn ◦�n. (6.1)

Let us check that the inductive construction above actually works �′.
On �′, the map �0 = φX0 is bijective by Lemma 6.45.
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Once we know that �n−1 is a random permutations of N, the map �n−1 ◦ ψIn is
a random injective map from N to N with range �n−1(In) = Jn. Therefore, Jn is
infinite and the map �n is well defined by Eq. (6.1): for every k ∈ N, �n(k) is the
rank of the integer �n−1(ψIn(k)) in the set Jn. Moreover, �n is a permutation of N.

Informally, the cascaded permutations (�n)n≥0 are induced by �0 = φX0 and
the successive extractions. More precisely, Eq. 6.1 is represented by a commutative
diagramm which gives the correspondence between the positions of a same letter in
different words.

position in X0

0

position in X1
ψI1

1

position in X2
ψI2

2

position in C position in C ψJ1

ψJ1 position in C ψJ1 ψJ2

ψJ2

Here is a realisation of the first three steps. The boldface numbers form the sub-
sets I1, J1, I2, J2, . . .. Among the arrows representing φX0 , the plain arrows (from
elements in I1 to elements in J1) provide the permutation φX0,I1 by renumbering of
the elements.

X0 b b a b a a a a a b b b

I1 1 2 3 4 5 6 7 8 9 10 11 12

J1 1 2 3 4 5 6 7 8 9 10 11 12

C a b a b a b a b a b a b

0

X1 = X0 ◦ ψI1 b a a a b b

I2 1 2 3 4 5 6

C ψJ1 a b a b b a

J2 1 2 3 4 5 6

1
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X2 = X1 ◦ ψI2

I3

2

J3

C ψJ1 ψJ2

b a a b

1 2 3 4

1 4

a

2 3

b b a

Lemma 6.47 On the almost sure event �′, the following properties hold for every
n ≥ 1,

1. Jn is independent of F X,In−1 and is uniform on P(N).
2. σ(X0, J1, . . . , Jn) = σ(X0, I1, . . . , In).
3. the random map �n is σ(X0, J1, . . . , Jn)-measurable.
4. φX0 ◦ ψI1 ◦ · · · ◦ ψIn = ψJ1 ◦ · · · ◦ ψJn ◦�n.
5. Xn = C ◦ ψJ1 ◦ · · · ◦ ψJn ◦�n.
Proof Since �0 = φX0 , Properties 2, 3, 4, 5 above hold with n replaced by 0.

Let n ≥ 1. Assume that Properties 2, 3, 4, 5 hold with n replaced by n− 1.
Then by Lemma 6.43, Property 1 holds.
By definition and by the induction hypothesis, the random set Jn = �n−1(In) is

σ(X0, I1, . . . , In)-measurable. Conversely, since In = �−1
n−1(Jn), the knowledge of

�n−1 and Jn is sufficient to recover In, so Property 2 holds.
For every k ∈ N, �n(k) is the rank of the integer �n−1(ψIn(k)) in the set

�n−1(In). Thus the random map�n is a measurable for σ(X0, J1, . . . , Jn−1, In) =
σ(X0, J1, . . . , Jn). Therefore, Property 3 holds.

By induction hypothesis and by formula 6.1,

φX0 ◦ ψI1 ◦ · · · ◦ ψIn = (φX0 ◦ ψI1 ◦ · · · ◦ ψIn−1) ◦ ψIn
= (ψJ1 ◦ · · · ◦ ψJn−1 ◦�n−1) ◦ ψIn
= (ψJ1 ◦ · · · ◦ ψJn−1) ◦ (�n−1 ◦ ψIn)
= (ψJ1 ◦ · · · ◦ ψJn−1) ◦ (ψJn ◦�n)
= ψJ1 ◦ · · · ◦ ψJn ◦�n,

so

Xn = X0 ◦ ψI1 ◦ · · · ◦ ψIn
= C ◦ φX0 ◦ ψI1 ◦ · · · ◦ ψIn
= C ◦ ψJ1 ◦ · · · ◦ ψJn ◦�n,
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which yields Properties 4 and 5.
Lemma 6.46 follows by recursion. ��
The next result shows that the innovations (Jn)n≥1 constructed above provide

better and better approximations of Xn as n→ +∞.

Lemma 6.48 Fix L ∈ N. Then P
[
Xn = C ◦ ψJ1 ◦ · · · ◦ ψJn on [[1, L]]] → 1 as

n→ +∞.

Proof By equality 5, it suffices to check that, P(En) → 1 as n → +∞, where En
is the event “�n coincides on [[1, L]] with the identity map”.

By Lemma 6.39, ψI1 ◦ · · · ◦ ψIn = ψAn and ψJ1 ◦ · · · ◦ ψJn = ψBn , where An
and Bn are random subsets of N with law νpn , where pn = 2−n.

Therefore, by Property 4 of Lemma 6.47, φX0 ◦ ψAn = ψBn ◦ �n, so for each
k ∈ N, �n(k) is the rank of the integer φX0(ψAn(k)) in the set φX0(An) = Bn.

Thus, the event En holds if and only if the L first elements of the set φX0(An) in
increasing order are φX0(ψAn(1)), . . . , φX0(ψAn(L)).

Set τn,k = ψAn(k) for every k ∈ N. Since the law of An is νpn , the random
variables τn,1, τn,2 − τn,1, τn,3 − τn,2, . . . are independent and geometric with
parameter pn.

We have noted that

En = [∀k ≥ L+ 1, φX0(τn,1) < . . . < φX0(τn,L) < φX0(τn,k)
]

Roughly speaking, the probability of this event tends to 1 because φX0 is close to
the identity map and the set An gets sparser and sparser as n increases to infinity.
Let us formalize this argument.

Since X0 is uniform on {a, b}∞, the random variables (ηi)i≥1 = (1[X0(i)=b])i≥1
form an i.i.d. sequence of Bernoulli random variables with parameter 1/2. For every
t ∈ N, the random variable St = η1+· · ·+ηt counts the number of b in the subword
X0([[1, t]]), whereas t −St counts the number of a in the subword X0([[1, t]]), so by
definition of φX0 ,

φX0(t) = 2(t − St )− 1 if X0(t) = a,
φX0(t) = 2St if X0(t) = b.

Given t1 < t2 in N, the inequality max(St1 , t1 − St1) < min(St2 , t2 − St2) implies
φX0(t1) < φX0(t) for every integer t ≥ t2. Therefore,

En ⊃ [∀k ∈ [[1, L]],max(Sτn,k , τn,k − Sτn,k ) < min(Sτn,k+1 , τn,k+1 − Sτn,k+1)
]
.

Thus it suffices to prove that for any fixed k ∈ N,

pn,k := P
[

max(Sτn,k , τn,k − Sτn,k ) ≥ min(Sτn,k+1 , τn,k+1 − Sτn,k+1)
]→ 0 as n→ +∞.
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SinceX0 is independent of I1, . . . , In, the sequence (St )t≥1 is independent of the
sequence (τn,k)k≥1. Moreover, (St )t≥1 has the same law as (t −St )t≥1 and Sτn,k+1 −
Sτn,k has the same law as Sτn,1 . Therefore, for every integer x ≥ 1,

pn,k ≤ 2P
[
Sτn,k+1 ≤ max(Sτn,k , τn,k − Sτn,k )

]

= 2P
[
Sτn,k+1 − Sτn,k ≤ max(0, τn,k − 2Sτn,k )

]

≤ 2P
[
Sτn,k+1 − Sτn,k ≤ x − 1

]+ 2P
[
τn,k − 2Sτn,k ≥ x]

= 2P
[
Sτn,1 ≤ x − 1

]+ P
[|2Sτn,k − τn,k| ≥ x

]
.

On the one hand, the random variable Sτn,1 is binomial with parameters τn,1 and
1/2 conditionally on τn,1, so its generating function is given by

E[zSτn,1 ] = E
[
E[zSτn,1 |σ(τn,1)]

]

= E
[(1 + z

2

)τn,1]

= pn(1 + z)/2
1 − (1 − pn)(1 + z)/2

= pn(1 + z)
1 + pn − (1 − pn)z

= pn(1 + z)
1 + pn

+∞∑
m=0

(1 − pn
1 + pn

)m
zm

This yields the law of Sτn,1 , namely

P [Sτn,1 = 0] = pn

1 + pn ,

P [Sτn,1 = s] = pn

1 + pn
((1 − pn

1 + pn
)s−1 +

(1 − pn
1 + pn

)s) = 2pn
(1 − pn)s−1

(1 + pn)s+1 if s ≥ 1.

Therefore, P[Sτn,1 = s] ≤ 2pn for every s ≥ 0, so P
[
Sτn,1 ≤ x − 1

] ≤ 2pnx.
On the other hand, (2St − t)t≥0 is a simple symmetric random walk on Z,

independent of τn,k so

E[2Sτn,k − τn,k|σ(τn,k)] = 0 and Var(2Sτn,k − τn,k|σ(τn,k)) = τn,k.

Therefore,

E[2Sτn,k − τn,k] = 0 and Var(2Sτn,k − τn,k) = Var(0)+ E[τn,k] = k/pn,
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so Bienaymé-Tchebicheff’s inequality yields P
[|2Sτn,k − τn,k| ≥ x

] ≤ (k/pn)x−2.

Hence, for every n and x in N, pn,k ≤ 4pnx+(k/pn)x−2. Choosing x = �p−2/3
n  

yields pn,k ≤ 4(p1/3
n + pn)+ kp1/3

n . The result follows. ��
To finish the proof of Theorem 6.42, we need to remind some standard facts about

Vershik’s first level criterion, namely definition 2.6, proposition 2.7 and proposition
2.17 of [12].

Let F = (Fn)n≤0 be a filtration with independent increments (Laurent writes
that F is locally of product-type). Given a separable metric space (E, d), one
says that a random variable R ∈ L1(F0, E) satisfies Vershik’s first level criterion
(with respect to F ) if for every δ > 0, one can find an integer n0 ≤ 0, some
innovations Vn0+1, . . . , V0 of F at times n0 + 1, . . . , 0 and some random variable
S ∈ L1(σ (Vn0+1, . . . , V0), E) such that E[d(R, S)] < δ.

The subset of random variables in L1(F0, E) satisfying Vershik’s first level
criterion (with respect to F ) is closed in L1(F0, E). If R ∈ L1(F0, E) satisfies
Vershik’s first level criterion, then any measurable real function of R also satisfies
Vershik’s first level criterion.

The first step of the proof is to check that for every m ≤ 0, the random
variable (Xm(1), . . . , Xm(L)), taking values in {a, b}L endowed with the discrete
metric, satisfies Vershik’s first level criterion with respect to (F X,In )n≤0. Indeed, by
stationarity, the construction of Lemma 6.46 can be started at any time n0 instead of
time 0. Starting this construction at time n0 yields innovations Jn0

n0+1, J
n0
n0+2, . . . at

times n0 + 1, n0 + 2, . . .. Fix two integers m ≤ 0 and L ≥ 1. For every n0 ≤ m, the
event

[
Xm = C ◦ ψ

J
n0
n0+1

◦ · · · ◦ ψ
J
n0
m

on [[1, L]]]

has (by stationarity) the same probability as

[
Xm−n0 = C ◦ ψJ1 ◦ · · · ◦ ψJm−n0

on [[1, L]]].

Lemma 6.48 ensures that this probability tends to 1 as n→ +∞.
We derive successively that the following random variables also satisfies Ver-

shik’s first level criterion:

• Xm, valued in {a, b}∞ endowed with the metric given by

d(x, y) = 2− inf{i≥1:x(i) �=y(i)}.

• (Xm, Im+1, . . . , I0), valued in {a, b}∞×P(N)|m| endowed with the product of the
metrics defined as above on each factor {a, b}∞ or P(N) identified with {0, 1}∞;

• any measurable real function of (Xm, Im+1, . . . , I0);
• any real random variable in F X,I0 .

The proof is complete.
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6.6.3 A Non Complementable Filtration Yielding
a Complementable Factor

We still work with the filtration generated by the uniform randomised decimation
process ((Xn, In))n∈Z on the alphabet {a, b}. We call P′′(N) the set of all infinite
subsets of N with infinite complement, and we set E = {a, b}∞ × P′′(N).
Since ν(P′′(N)) = 1, we may assume and we do assume that the Markov chain
((Xn, In))n∈Z takes values in E.

At each time n, we define the random variable Yn = ψIcn (Xn−1) coding the
portion of the infinite word Xn−1 rejected at time n to get the word Xn. Of course,
the knowledge of In, Xn and Yn enables us to recover Xn−1: for every i ∈ N,
Xn−1(i) equals Xn(r) or Yn(r) according that i is the rth element of In or of I cn .
We can say more.

Proposition 6.49 (Properties of the Sequences (Yn)n∈Z and (In)n∈Z)

1. The random variables Yn are independent and uniform on {a, b}∞.
2. The sequence (Yn)n∈Z is independent of the sequence (In)n∈Z .
3. Each Xn is almost surely a measurable function of In+1, Yn+1, In+2, Yn+2, . . ..

Note that Proposition 6.49 provides a constructive method to get a uniform
randomised decimation process on {a, b}.
Proof The first two statements follow from a repeated application of Lemma 6.40.
Since the formulas involving the processes I,X, Y are invariant by time-translations,
one needs only to check the third statement when n = 0. For every i ∈ N, call

Ni = inf{n ≥ 1 : i /∈ ψI1 ◦ · · · ◦ ψIn(N)}.

the first time n at which the letter X0(i) is rejected when forming the word Xn.
For every n ≥ 0, [Ni > n] = [i ∈ ψI1 ◦ · · · ◦ ψIn(N)]; but by Lemma 6.39, the
law of the range of ψI1 ◦ · · · ◦ ψIn is ν2−n , so P[Ni > n] = 2−n. Therefore, Ni is a
measurable function of (In)n≥1 and is almost surely finite. On the event [Ni < +∞],
X0(i) = YNi (Ri), where Ri is the rank of i in the set ψI1 ◦ · · · ◦ ψINi ◦ ψIcNi+1

(N).
The proof is complete. ��

We split each random variable In into two independent random variables, namely
Un = {In, I cn} and Vn = 1[1∈In]. The random variableUn takes values in the set� of
all partitions of N into two infinite blocks. Given such a partition u ∈ �, we denote
by u(1) the block containing 1 and by u(0) its complement. Then In = Un(Vn) and
each one of the random variables Un, Un(0) and Un(1) carries the same information.

Call C the cylindrical σ -field on EZ and π the law of ((Xn, In))n∈Z. By
stationarity, the shift operator T is an automorphism of (EZ,C, π). The formulas
defining Un, Vn, Yn from In and Xn−1 are invariant by time-translations so the
measurable maps � and � yielding (Un)n∈Z and ((Vn, Yn))n∈Z from ((Xn, In))n∈Z
commute with T . Therefore, the σ -fields �−1(C) and �−1(C) are factors of T .
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Theorem 6.50

1. The factor �−1(C) is complementable with complement �−1(C). Therefore, if
the Markov chain ((Yn, In))n∈Z is defined on the canonical space (EZ,C, π),
then F U∞ is a complementable factor of T with complement F V,Y∞ .

2. Yet, the filtration F U is not complementable in the filtration F X,I .

Proof By Proposition 6.49, F U∞ and F V,Y∞ are independent, and F U∞ ∨ F V,Y∞ =
F X,I∞ mod P. Therefore, �−1(C) and �−1(C) are independent in (EZ,C, π) and
�−1(C) ∨ �−1(C) = C mod π : the factor �−1(C) is complementable with
complement �−1(C).

Let U = (Un)n≤0. The random variable U takes values in �Z− . For every u =
(un)n≤0 ∈ �Z− and n ≤ 0, callWu

n the map from {0, 1}|n| to {a, b} defined by

Wu
n (vn+1, . . . , v0) = Xn ◦ ψun+1(vn+1) ◦ · · · ◦ ψu0(v0)(1).

By ordering the elements of {0, 1}|n| in the lexicographic order, one identifies Wu
n

with an element of {a, b}|n|.
Since Xn = Xn−1 ◦ ψIn = Xn−1 ◦ ψun(Vn) Pu-almost surely, we have

Wu
n (vn+1, . . . , v0) = Wu

n−1(Vn, vn+1, . . . , v0) Pu-almost surely,

soWu
n is the left half or the right half ofWu

n−1 according Vn equals 0 or 1. Moreover,

under Pu, the random variable Vn is independent of FW
u,V

n−1 and uniform on {0, 1}.
Hence, under Pu, the process (Wu

n , Vn)n≤0 is a dyadic split-words process with
innovations (Vn)n≤0. The filtration of this process is known to be non-standard
(see [20]). But one checks that (Vn)n≤0 is also a sequence of innovations of the larger
filtration (F X,I )n≤0 seen under Pu = P[·|U = u], so (FW

u,V
n )n≤0 is immersed in

(F X,I )n≤0 and (F X,I )n≤0 is also non-standard under Pu.
If (F Un )n≤0 admitted an independent complement (Gn)n≤0 in (F X,In )n≤0, this

complement would be immersed in the product-type filtration (F X,In )n≤0 thus
standard. Therefore, for U(P)-almost every u ∈ �Z− , the filtration (F X,In )n≤0
would be standard under the probability Pu, by proposition 0.1 of [14]. This leads
to a contradiction.

We are done. ��

6.7 Annex: Reminders on Partitions and Entropy

We recall here classical definitions and results to make the paper self-contained.
Most of them can be found in [19]. See also [18].

In the whole section, we fix a measure-preserving map T from a probability
space (Z,Z, π) to itself, whereas α, β, γ denote measurable countable partitions
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of Z (here, ‘measurable partition’ means ‘partition into measurable blocks’), and
F ,G denote sub-σ -fields of Z.

We will use the non-negative, continuous and strictly concave function ϕ :
[0, 1] → R defined by ϕ(x) = −x log2(x), with the convention ϕ(0) = 0. The
maximum of this function is ϕ(1/e) = 1/(e ln 2).

6.7.1 Partitions

Defining the entropy requires discretizations of the ambient probability space, that
is why we introduce countable measurable partitions. Equivalently, we could use
discrete random variables. We need a few basic definitions.

Definition 6.51 One says that β is finer than α (and note α ≤ β) when each block
of α is the union of some collection of blocks of β, i.e. when σ(α) ⊂ σ(β).
Definition 6.52 The (non-empty) intersections A ∩ B with A ∈ α and B ∈ β form
a partition; this partition is the coarsest refinement of α and β and is denoted by
α ∨ β.

Definition 6.53 More generally, if (αk)k∈K is a countable family of countable
measurable partitions of Z, we denote by

∨
k∈K αk the partition whose blocks are

the (non-empty) intersections
⋂
k∈K Ak where Ak ∈ αk for every k ∈ K; this

partition is the coarsest refinement of the (αk)k∈K ; it is still measurable but it can be
uncountable.

Definition 6.54 The partitions α and β are independent if and only if π(A ∩ B) =
π(A)π(B) for every A ∈ α and B ∈ β.

Definition 6.55 We denote by T −1α the partition defined by

T −1α = {T −1(A) : A ∈ α}.

If T is invertible (i.e. bimeasurable), we denote by T α the partition defined by

T α = {T (A) : A ∈ α}.

6.7.2 Fischer Information and Entropy of a Partition

Given A ∈ Z, we view − log2 π(A) as the quantity of information provided by the
event A when A occurs, with the convention − log2 0 = +∞.5 With this definition,

5Taking logarithms in base 2 is an arbitrary convention which associates one unity of information
to any uniform Bernoulli random variable.
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the occurence of a rare event provide much information; moreover, the information
provided by two independent events A and B occuring at the same time is the sum
of the informations provided by each of them separately. The entropy of a countable
measurable partition is the mean quantity of information provided by its blocks.

Definition 6.56 The Fischer information of the partition α is the random variable

Iα :=
∑
A∈α
(− log2 π(A))1A.

The entropy of the partition α is the quantity

H(α) = Eπ [Iα] =
∑
A∈α

ϕ(π(A)).

Note that null blocks in α do not give any contribution to the entropy of a
partition. Non-trivial partitions have positive entropy. Finite partitions have finite
entropy. Infinite countable partition can have finite or infinite entropy.

The previous definition can be generalized as follows.

Definition 6.57 The conditional Fischer information of the partition α with regard
to F is the random variable

Iα|F =
∑
A∈α
(− log2 π(A|F ))1A.

The conditional entropy of the partition α with regard to F is the quantity

H(α|F ) = Eπ [Iα|F ].

Remark 6.58 By conditional Beppo-Levi theorem,

E[Iα|F |F ] =
∑
A∈α

ϕ(π(A|F )),

so

H(α|F ) =
∑
A∈α

Eπ [ϕ(π(A|F ))].

Given any partition η into measurable blocks, we will use the following
abbreviated notations: H(α|η) := H(α|σ(η)), H(α|η ∨ F ) := H(α|σ(η) ∨ F ).

Note that when F is the trivial σ -field {∅, Z}, Iα|F and H(α|F ) are equal to Iα
and H(α).

The following properties are very useful and are checked by direct computation,
by using the positivity of Fischer information and the strict concavity of ϕ.
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Proposition 6.59 (First Properties)

1. IT −1α|T −1F = Iα|F ◦ T so H(T −1α|T −1F ) = H(α|F ).
2. H(α|F ) ≥ 0, with equality if and only if α ⊂ F mod π .
3. H(α|F ) ≤ H(α). When H(α) < +∞, equality holds if and only if α is

independent of F .
4. If F ⊂ G, then E[Iα|F |F ] ≥ E[Iα|G|F ] so H(α|F ) ≥ H(α|G).
5. If α ≤ β, then Iα|F ≤ Iβ|F so H(α|F ) ≤ H(β|F ).
6. H(α ∨ β|F ) = H(α|F )+H(β|F ∨ α) ≤ H(α|F )+H(β|F ).

The last item above (addition formula above and sub-additivity of entropy) is
used repeatedly in the present paper. We will also use the next result.

Proposition 6.60 (Monotone Sequence of σ -Fields) Assume thatH(α)<+∞.

1. If (Fn)n≥0 is a non-decreasing sequence of σ -fields, then

H(α|Fn)→ H(α|F∞) where F∞ =
∨
n≥0

Fn.

2. If (Dn)n≥0 is a non-increasing sequence of σ -fields, then

H(α|Dn)→ H(α|D∞) where D∞ =
⋂
n≥0

Dn.

Proof GivenA ∈ α, the martingale and backward martingale convergence theorems
and the continuity of ϕ yield ϕ(π(A|Fn)) → ϕ(π(A|F∞)) and ϕ(π(A|Dn)) →
ϕ(π(A|D∞)) as n → +∞. When α is finite, the convergences H(α|Fn) →
H(α|F∞) and H(α|Dn)→ H(α|D∞) follow by Remark 6.58.

The result can be extended to the general case by approximating α with finite
mesurable partitions and using the equicontinuity of the maps α �→ E[α|F ], where
F is any sub-σ -field of Z. See Propositions 6.62 and 6.63 in the next subsection.

��

6.7.3 Continuity Properties

Proposition 6.61 The formula

d(α, β) = H(α|β)+H(β|α) = 2H(α ∨ β)−H(α)−H(β)

defines a pseudo-metric on the set of all partitions of Z with finite entropy. Moreover,
d(α, β) = 0 if and only if σ(α) = σ(β) modulo π (i.e. the non-null blocks of α and
β are the same modulo π ).
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Proof The triangle inequality follows from the inequality

H(α|γ ) ≤ H(α ∨ β|γ ) = H(β|γ )+H(α|β ∨ γ ) ≤ H(β|γ )+H(α|β).

The other statements follow from Proposition 6.59. ��
Proposition 6.62 For the pseudo-metric d thus defined, the set of all finite measur-
able partitions of Z is dense in the set of all (measurable) partitions on Z with finite
entropy.

Proof Let α = {An : n ≥ 1} be an infinite partition of Z with finite entropy. For
every n ≥ 1, set αn = {A1, · · · , An, (A1 ∪ · · · ∪ An)c}. Since α is finer than αn,

H(α) ≥ H(αn) ≥
n∑
k=1

ϕ(π(Ak)),

so d(α, αn) = H(α)−H(αn)→ 0 as n→ +∞. ��
Proposition 6.63 Let F be a sub-σ -field of Z. Then, for the pseudo-metric d, the
map α �→ H(α|F ) is 1-Lipschitz.

Proof Let α and β be two partitions of Z with finite entropy. Then

H(β|F )−H(α|F ) ≤ H(α ∨ β|F )−H(α|F ) = H(β|F ∨ α)
≤ H(β|α) ≤ d(α, β).

The result follows. ��
Proposition 6.64 Let α = {A1, . . . , An} and β = {B1, . . . , Bn} be two finite
measurable partitions of Z with the same finite number of blocks. For every A and
B in Z, set δ(A,B) = π(A�B).Then

d(α, β) ≤
n∑
i=1

2ϕ
(
δ(Ai, Bi)/2)

)+
n∑
i=1

δ(Ai, Bi)/ ln 2.

In particular, the map A �→ {A,Ac} is uniformly continuous for the pseudo-metrics
δ and d.

Proof Fix i ∈ [[1, n]]. Then the concavity of ϕ yields

∑
j �=i
π(Bj )ϕ(π(Ai |Bj )) ≤ π(Bci )ϕ

(∑
j �=i

π(Bj )

π(Bci )
π(Ai |Bj )

)

= π(Bci )ϕ
(∑
j �=i

π(Ai ∩ Bj )
π(Bci )

)
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= π(Bci )ϕ
(π(Ai ∩ Bci )

π(Bci )

)

= π(Ai ∩ Bci )[− log2 π(Ai ∩ Bci )+ log2 π(B
c
i )]

≤ ϕ(π(Ai ∩ Bci )).

But the concavity of ϕ also yields ϕ(x) ≤ (1 − x)/ ln 2 for every x ∈ [0, 1], so

π(Bi)ϕ(π(Ai |Bi)) ≤ π(Bi)π(Aci |Bi)/ ln 2 = π(Aci ∩ Bi)/ ln 2.

Hence, by Remark 6.58,

H(α|β) =
∑
i,j

π(Bj )ϕ(π(Ai |Bj )) ≤
∑
i

ϕ(π(Ai ∩ Bci ))+
∑
i

π(Aci ∩ Bi)/ ln 2.

A similar upper bound holds forH(β|α). Summing these two inequalities and using
once again the concavity of ϕ yields the statement. ��

6.7.4 Entropy of a Measure-Preserving Map

First, we define quantities h(T , α).

Proposition 6.65 (Definition and Formula for h(T , α))

(i) The sequence (Hn(T , α))n≥0 defined by

Hn(T , α) = H(α ∨ T −1α ∨ · · · ∨ T −(n−1)α)

is concave. Since H0(T , α) = 0, the sequence (Hn(T , α)/n)n≥1 is non-
increasing so the limit h(T , α) = limn→+∞Hn(T , α)/n exists in [0,+∞].

(ii) If H(α) < +∞, then h(T , α) = H(α|α∞1 ), where α∞1 =∨k≥1 T
−kα.

Proof The first statement follows from the equality

Hn+1(T , α)−Hn(T , α) = H(α ∨ T −1α ∨ · · · ∨ T −nα)−H(T −1α ∨ · · · ∨ T −nα)

= H(α|T −1α ∨ · · · ∨ T −(n−1)α),

and the fact thatH(α|F ) is non-increasing with regard to F . Using Proposition 6.60
and Cesàro’s lemma yields the second statement. ��
Definition 6.66 The entropy of T is

h(T ) = sup{h(T , α) : α partition of Z with finite entropy}
= sup{h(T , α) : α finite measurable partition of Z}.
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These two quantities coincide thanks to Propositions 6.62 and 6.72.

Proposition 6.67 For every r ≥ 1, h(T r) = rh(T ). If T is also invertible, one has
also h(T −1) = h(T ).
Proof For every n ≥ 1 and every partition α with finite entropy,

Hn(T
r , α) ≤ Hn(T r , α ∨ · · · ∨ T −(r−1)α) = Hrn(T , α).

Dividing by n and letting n go to infinity yields

h(T r , α) ≤ h(T r , α ∨ · · · ∨ T −(r−1)α) = rh(T , α).

The inequalities h(T r) ≤ rh(T ) and rh(T ) ≤ h(T r) follow.
If T is invertible, the equalities α∨· · ·∨T −(n−1)α = T −(n−1)(α∨· · ·∨T n−1α)

follow from Proposition 6.59 item 1 and yield Hn(T , α) = Hn(T
−1, α), so

h(T −1) = h(T ). ��

6.7.5 Generators

Countable generating partitions are useful to compute the entropy of invertible
measure-preserving maps.

Definition 6.68 Assume that T is invertible. A countable measurable partition γ is
generating (with regard to T ) if the partitions (T kγ )k∈Z generate Z modulo the null
sets.

Theorem 6.69 (Kolmogorov-Sinai Theorem) If T is invertible and γ is a count-
able generator (with regard to T ), then h(T ) = h(T , γ ).

In the next subsection, we will prove a conditional version of this classical
theorem, namely Theorem 6.74.

Here is the basic example of generator.

Example 6.3 Let � be a countable set, p0 : (yk)k∈Z �→ y0 the 0-coordinate
projection from�Z to�, S : (yk)k∈Z �→ (yk+1)k∈Z the shift operator on�Z, and μ
any shift-invariant probability measure on�Z. Then the partition

{
p−1

0 {λ} : λ ∈ �}
is generating with regard to S.

The interesting fact is that many situations can be reduced to this particular case.
The proof of next theorem is outlined in [11].

Theorem 6.70 (Rohlin’s Countable Generator Theorem) If (Z,Z, π) is a
Lebesgue space, T is invertible and aperiodic, i.e. if π{z ∈ Z : ∃n ≥ 1 : T n(z) =
z} = 0, then T admits a countable generating partition γ = {Cλ : λ ∈ �}.
Moreover, the γ -name map � from Z to �Z, defined by �(z)k = λ whenever
T k(z) ∈ Cλ, is invertible modulo the null sets, when �Z is endowed with the
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probability measure�(π). The measure�(π) is shift-invariant, so T is isomorphic
modulo the null sets to the shift operator on �Z.

When T is invertible, ergodic and has finite entropy, Krieger’s theorem ensures
the existence of a finite generator with size at most !2h(T )" + 1. We do not use this
refinement in the present paper.

Using the remark given in footnote in Sect. 6.2.1, one checks that if T is invertible
and (Z,Z, π) is a Lebesgue space, then any factor of T admits a countable
generating partition.

6.7.6 Conditional Entropy Given a Factor. Pinsker’s Formula

Assume that T is invertible and that B is a factor of T . One may define the entropy
of T given B as follows.

Proposition 6.71 (Definition and Formula for h(T , α|B))
(i) The sequence (Hn(T , α|B))n≥0 defined by

Hn(T , α|B) = H(α ∨ T −1α ∨ · · · ∨ T −(n−1)α|B)

is concave. Since H0(T , α|B) = 0, the sequence (Hn(T , α|B)/n)n≥1 is
non-increasing so the limit h(T , α|B) = limn→+∞Hn(T , α|B)/n exists in
[0,+∞].

(ii) If H(α) < +∞, then h(T , α|B) = H(α|α∞1 ∨ B), where α∞1 = ∨k≥1 T
−kα

denotes the σ -field generated by the partitions (T −kα)k≥1.

Proof Since T −1B = B, one has Hn(T , α|B) = H(T −1α ∨ · · · ∨ T −nα|B), so

Hn+1(T , α|B)−Hn(T , α|B) = H(α ∨ T −1α ∨ · · · ∨ T −nα|B)
−H(T −1α ∨ · · · ∨ T −nα|B)

= H(α|σ(T −1α ∨ · · · ∨ T −(n−1)α ∨ B).

The statements follow, by Proposition 6.60 and Cesàro’s lemma. ��
Proposition 6.72 Assume that T is invertible and that B is a factor of T . If α and γ
are two partitions ofZ with finite entropy, then h(T , α|B)−h(T , γ |B) ≤ H(α|γ ) ≤
d(α, γ ). Therefore, for the pseudo-metric d, the map α �→ h(T , α|B) is 1-Lipschitz.

Proof Set αn−1
0 = α ∨ T −1α ∨ · · · ∨ T −(n−1)α and γ n−1

0 = γ ∨ T −1γ ∨ · · · ∨
T −(n−1)γ for every n ≥ 1. Then

H(αn−1
0 |B)−H(γ n−1

0 |B) ≤ H(αn−1
0 ∨ γ n−1

0 |B)−H(γ n−1
0 |B)

= H(αn−1
0 |B ∨ γ n−1

0 )
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≤
n−1∑
k=0

H(T −kα|B ∨ γ n−1
0 )

≤
n−1∑
k=0

H(T −kα|T −kγ )

= nH(α|γ ).

Dividing by n and letting n go to infinity yields h(T , α|B)−h(T , γ |B) ≤ H(α|γ ) ≤
d(α, γ ). The result follows. ��
Definition 6.73 The conditional entropy of T given B is the quantity

h(T |B) = sup{h(T , α|B) : α partition of Z with finite entropy}
= sup{h(T , α|B) : α finite measurable partition of Z}.

These two quantities coincide thanks to Propositions 6.62 and 6.72.

Kolmogorov-Sinai theorem admits the following generalization.

Theorem 6.74 If γ is a countable generator of T , then h(T |B) = h(T , γ |B).
Proof For every integers p ≤ q, set

γ
q
p =

q∨
k=p

T −kγ.

Fix r ≥ 0. Then for every integer n ≥ 1,

1

n
Hn(T , γ

r−r |B) =
1

n
H(T , γ r−r−n+1|B) =

n+ 2r

n
× 1

n+ 2r
H(T , γ r−r−n+1|B).

Letting n go to infinity yields h(T , γ r−r |B) = h(T , γ |B). Thus, applying Proposi-
tion 6.72 any partition α of Z with finite entropy and yo γ r−r yields

h(T , α|B)− h(T , γ |B) ≤ H(α|γ r−r ).

But H(α|γ r−r )→ H(α|Z) = 0 as r → +∞ since γ is a countable generator of T .
Hence h(T , α|B) ≤ h(T , γ |B). The conclusion follows. ��
Proposition 6.75 (Pinsker’s Formula) Assume that α and β have finite entropy.
Let A and B be two factors generated by α and β. Set α∞1 = ∨k≥1 T

−kα and
β∞

1 =∨k≥1 T
−kβ. Then

h((T ,A)|B) = h(T ,A ∨ B)− h(T ,B),
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or equivalently,

H(α|α∞1 ∨ B) = H(α ∨ β|α∞1 ∨ β∞
1 )−H(β|β∞

1 ).

Proof For every integers p ≤ q, define the partitions αqp and βqp like in the proof
above. Then for every non-negative integer n,

Hn+1(T , α ∨ β)−Hn+1(T , β) =H(α0−n ∨ β0−n)−H(β0−n)

=
n∑
k=0

H(T kα|α0
−(k−1) ∨ β0−n)

=
n∑
k=0

H(α|αk1 ∨ βkk−n).

By Proposition 6.60, H(α|αk1 ∨ βk−�)→H(α|α∞1 ∨ B) as k→+∞ and �→+∞.
Since the quantities H(α|αk1 ∨ βkk−n) belong to the finite interval [0,H(α)], we get

h(T , α∨β)−h(T , β) = lim
n→+∞

1

n+ 1

(
Hn+1(T , α∨β)−Hn+1(T , β)

) = H(α|α∞1 ∨B).

Hence, the statement follows from Proposition 6.65, Theorem 6.69, Proposition 6.71
and Theorem 6.74. ��
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Chapter 7
Uniform Entropy Scalings of Filtrations

Stéphane Laurent

Abstract We study Vershik and Gorbulsky’s notion of entropy scalings for filtra-
tions in the particular case when the scaling is not ε-dependent, and is then termed
as uniform scaling. Among our main results, we prove that the scaled entropy of
the filtration generated by the Vershik progressive predictions of a random variable
is equal to the scaled entropy of this random variable. Standardness of a filtration
is the case when the scaled entropy with a constant scaling is zero, thus our results
generalize some known results about standardness. As a case-study we consider a
family of next-jump time filtrations. We also provide some results about the entropy
of poly-adic filtrations, rephrasing or generalizing some old results.

Keywords Standardness · Entropy

7.1 Introduction

This is the first paper about Vershik and Gorbulsky’s theory of the entropy of
filtrations written in the probabilistic language. It deals with the scaled entropy
introduced in [21]. Our results focus on the case of uniform entropy scalings, and,
because standardness is equivalent to zero entropy with a constant entropy scaling,
they generalize the main properties about standardness.

In Sect. 7.2 we recall the definition of Vershik’s standardness criterion. We use
this criterion in Sect. 7.3 to give a new proof of the standardness criterion for the
family of next-jump time filtrations studied in [12] (where I-cosiness was used to
derive this criterion). In Sect. 7.4 we introduce the scaled entropy with uniform
scalings. In Sect. 7.5 we pursue the work of Sect. 7.3 by studying uniform entropy
scalings for the next-jump time filtrations; in fact, we just use our results to show
that this problem comes down to the scaled entropy of a discrete measure which
is studied in [14]. Section 7.6 deals with the exponential entropy for poly-adic
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filtrations. In this section, we mainly rephrase some old theorems by Vershik and,
with a slight generalization, a theorem by Gorbulsky about the coincidence between
the scaled entropy and the exponential entropy.

The relevance of the results provided by this paper is twofold. First, the general
properties about standardness become particular cases of the general properties
about the uniformly scaled entropy. Among these properties, Theorem 7.4.11 is one
of the main results. It states that the scaled entropy of the filtration generated by
the Vershik progressive predictions of a random variable equals the scaled entropy
of this random variable, thereby considerably reducing the task of calculating the
entropy of a filtration. The power of this theorem is well illustrated on the calculation
of the scaled entropy for the next-jump time filtrations. Second, our results provide
new knowledge about the known examples of non-standard filtrations. The results
of Sect. 7.6 providing the scaled entropy of some non-standard split-word filtrations
with the exponential scaling, are not new. When this scaled entropy has not the
same value for two such filtrations, one can conclude that these two filtrations are
not isomorphic. But thanks to our results of Sect. 7.4.3, we learn something more,
namely that it is not possible to embed the filtration having the smallest entropy in,
for example, an independent enlargement of the other one with a standard filtration.

7.2 Vershik’s Standardness Criterion

In the probabilistic literature, standardness of a filtration F = (Fn)n�0 in discrete
negative time is usually defined as the possibility to embed F in the filtration
generated by a sequence of independent random variables (see [4, 9–11]). As long as
the final σ -field F0 is essentially separable, standardness is known to be equivalent
to Vershik’s standardness criterion. In the present paper, we say that a filtration is
Vershikian if it satisfies Vershik’s standardness criterion, and we say that a filtration
is standard if it is Vershikian and its final σ - field is essentially separable.

In this section we recall the statement of Vershik’s standardness criterion and we
state its main properties which are proved in [11]. In Sect. 7.4 we will see that these
properties are particular cases of our results about the scaled entropy.

7.2.1 Vershik’s Standardness Criterion

The Kantorovich distance plays a major role in the statement of Vershik’s standard-
ness criterion, as well as in the definition of the entropy. Given a separable metric
space (E, ρ), the Kantorovich distance ρ′(μ, ν) between two probability measures
μ and ν on E is defined by

ρ′(μ, ν) = inf
�∈J(μ,ν)

∫∫
ρ(x, y)d�(x, y),
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where J(μ, ν) is the set of joinings of μ and ν, that is, the set of probabilities on
E×E whose first and second marginal measures areμ and ν respectively. In general,
ρ′(μ, ν) is possibly infinite, but ρ′ defines a metric on the space E′ of integrable
probability measures on (E, ρ), when saying that a probability measure μ on (E, ρ)
is integrable if the random variables X ∼ μ satisfy E

[
ρ(X, x)

]
< ∞ for some

( ⇐⇒ for every) point x ∈ E, and such a random variable X is also said to be
integrable. When E is bounded then every E-valued random variable is integrable.
In general, the topology induced by ρ′ on E′ is finer than the topology of weak
convergence. They coincide when (E, ρ) is compact, and (E′, ρ′) is itself compact
in this case. We mainly use the fact that the metric space (E′, ρ′) is complete and
separable whenever (E, ρ) is (see e.g. [2]).

In order to state Vershik’s standardness criterion, one has to introduce the
Vershik progressive predictions πnX of a random variable X (corresponding to
the so-called universal projectors, or tower of measures, in [17] and [20]) and the
iterated Kantorovich distance ρ(n) on the state space E(n) of πnX. Let (E, ρ) be
a Polish metric space. For a σ -field B on a given probability space, we denote
by L1(B;E) the space of integrable E-valued B-measurable random variables.
Let F = (Fn)n�0 be a filtration, and X ∈ L1(F0;E). The Vershik progressive
predictions πnX of X with respect to F are recursively defined as follows: we put
π0X = X, and πn−1X = L(πnX |Fn−1) (the conditional law of πnX given Fn−1).
Since X is integrable, for any x ∈ E the conditional expectation E

[
ρ(X, x) |F−1

]
is finite almost surely. That shows that the conditional law L(X |F−1) almost
surely takes its values in E′, the space of integrable probability measures on
E. Moreover ρ′

(
L(X |F−1), δx

) = E
[
ρ(X, x) |F−1

]
is an integrable real-valued

random variable, and thus L(X |F−1) = π−1X is an integrable E′-valued random
variable. Thus, by a recursive reasoning, the n-th progressive prediction πnX is an
integrable random variable taking its values in the Polish space E(n) recursively
defined by E(0) = E and E(n−1) = (E(n))

′
, denoting as before by E′ the space

of integrable probability measures on any separable metric space E. Note that
(πnX)n�0 is a Markov process. We will denote by FX the filtration it generates. The
state space E(n) of πnX is Polish when endowed with the distance ρ(n) obtained by
iterating |n| times the construction of the Kantorovich distance starting with ρ: we
recursively define ρ(n) by putting ρ(0) = ρ and by defining ρ(n−1) = (ρ(n))′ as the
Kantorovich distance issued from ρ(n).

Finally, in order to state Vershik’s standardness criterion, one introduces the
dispersion dispX of (the law of) an integrable random variable X in a Polish metric
space (E, ρ). It is defined as the expectation of ρ(X′, X′′) where X′ and X′′ are two
independent copies of X, that is, two independent random variables defined on the
same probability space and having the same law as X. Now, Vershik’s standardness
criterion is defined as follows. Let F be a filtration, letE be a Polish metric space and
X ∈ L1 (F0;E). We say that the random variable X satisfies the Vershik property,
or, for short, that X is Vershikian (with respect to F) if dispπnX −→ 0 as n goes to
−∞. Then we extend this definition to σ - fields E0 ⊂ F0 and to the whole filtration
as follows: we say that a σ - field E0 ⊂ F0 is Vershikian if each random variable
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X ∈ L1 (E0; [0, 1]) is Vershikian, and we say that the filtration F is Vershikian, or
that F satisfies Vershik’s standardness criterion, if the final σ - field F0 is Vershikian.

It is important to note that when F is immersed1 in a bigger filtration G and
X ∈ L1 (F0;E) ⊂ L1 (G0;E), the Vershik progressive prediction πnX is the same
considering either F or G as the underlying filtration. We refer to [4] or [10] for
details about the immersion property. Consequently, in such a situation, there is
no ambiguity in considering the Vershik property without specifying the underlying
filtration. The filtration FX generated by the Markov process (πnX)n�0 is immersed
in F (that means that this process is Markovian with respect to F).

Later, we will use the two following lemmas about the Vershik progressive
predictions. The proof of the first one is straightforward from the definitions and
we leave it to the reader.

Lemma 7.2.1 For any Polish space (E, ρ) and random variables X, Y ∈
L1(F0;E), the stochastic process

(
ρ(n)(πnX, πnY )

)
n�0 is a submartingale. In

particular the expectation E
[
ρ(n)(πnX, πnY )

]
is increasing with n.

Lemma 7.2.2 Let F be a filtration. Let (E, ρ) and (Ẽ, ρ̃) be two Polish metric
spaces, and f : E → Ẽ a measurable function. If X is a F0-measurable random
variable taking its values in E, then πn

(
f (X)

) = f n(πnX) for some measurable

function f n : E(n) → Ẽ(n), and the two following properties hold:

• f n is K-Lipschitz if f is K-Lipschitz;
• f n is an isometry if f is an isometry.

Proof The function f n is inductively defined by f 0 = f and f n−1(μ) = f n � μ

(image measure). It is elementary to check the three claims asserted in the lemma.
��

7.2.2 Properties to be Generalized Later

Throughout this article, we denote by V (X) the Vershik property for an integrable
random variable X taking its values in a Polish space, when an underlying ambient
filtration F is understood. We also denote by V (E0) the Vershik property for a
σ - field E0 ⊂ F0. We will see in Sect. 7.4 that V (X) can be equivalently stated
as hc(X) = 0 where hc is the scaled entropy of X with a constant scaling c. Then
our results in Sect. 7.4 about the uniformly scaled entropy generalize the following
propositions and theorem which are provided in [11].

Proposition 7.2.3 Let F be a filtration, n0 � 0 be an integer, and denote by Fn0] =
(Fn0+n)n�0 the filtration F truncated at n0. Then Fn0] is Vershikian if and only if F
is Vershikian.

1A filtration F is said to be immersed in a filtration G when every F-martingale is a G-martingale.
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Proposition 7.2.4

(a) If (Bk)k�1 is an increasing sequence of sub-σ -fields of F0 then

[∀k � 1, V (Bk)] &⇒ V
(∨
k�1

Bk

)
.

(b) For any Polish metric space (E, ρ) and X ∈ L1(F0;E),

V (X) ⇐⇒ V
(
σ(X)

)
.

Theorem 7.2.5 For anyX ∈ L1(F0;E), the filtration FX generated by the Markov
process (πnX)n�0 is standard if and only if the random variable X satisfies the
Vershik property.

Proposition 7.2.3 is a consequence of Corollary 7.4.18. Proposition 7.2.4 is a
consequence of Propositions 7.4.15 and 7.4.16. Theorem 7.2.5 is a consequence of
Theorem 7.4.11.

We will use the two propositions and the theorem above in Sect. 7.3, before
proving their generalization, and this is why we state them here. We will also
provide generalizations of two other results: Theorem 7.4.19 generalizes the fact that
a parametric extension of a Vershikian filtration is still a Vershikian filtration, and
Theorem 7.4.22 generalizes the fact that the independent product of two Vershikian
filtrations is a Vershikian filtration.

7.2.3 Vershik’s Standardness Criterion in Practice

Vershik’s standardness criterion may appear puzzling and complicated at first glance:
calculating the progressive predictions πnX and the iterated Kantorovich distance
ρ(n) on the strange state space of πnX does not appear easily practicable.

First note that V (X) does not depend on the choice of the metric on the
Polish space E in which X takes its values: this stems from the second claim of
Proposition 7.2.4. Also note the importance of Theorem 7.2.5: property V (X) is
equivalent to standardness of the filtration FX generated by the Markov process
(πnX)n�0. Thus, if we intend to show that standardness of F holds true, our task is
reduced to only show V (X) if we find X such that FX = F.

Observe that any filtration F having an essentially separable final σ -field F0 can
always be generated by a real-valued Markov process (Xn)n�0: just take for Xn any
real-valued random variable generating the σ -field Fn for every n � 0. Vershik’s
standardness criterion can be rephrased to a more practical criterion by considering
a generating Markov process (Xn)n�0, as we explain below and summarize in
Lemma 7.2.6; but the practicality of the rephrased criterion depends on the choice
of the generating Markov process. Firstly, thanks to this lemma, the strange state
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spaces of Vershik’s progressive predictions πnX can be avoided when X is one of
the random variable Xk of the Markov process (Xn)n�0. Let us explain this claim
for X = X0, which is enough to understand. We assume that Xn is distributed on
a Polish space An for every n � 0. This guarantees the existence of a family of
conditional laws L(Xn+1 |Xn = xn), xn ∈ An for every n < 0. Denote by ρ0
the metric on A0, and assume that X0 is integrable. Then we recursively define a
pseudometric ρn on An by setting

ρn(xn, x
′
n) = (ρn+1)

′(L(Xn+1 |Xn = xn),L(Xn+1 |Xn = x′n)
)

where (ρn+1)
′ is the Kantorovich pseudometric derived from ρn+1. The ρn are

more friendly than the ρ(n) appearing in Vershik’s standardness criterion, and
Lemma 7.2.6 states that there are some maps ψn : An → A

(n)
0 such that πnX0 =

ψn(Xn) and

ρ(n)
(
ψn(xn), ψn(x

′
n)
) = ρn(xn, x′n)

for every xn, x′n ∈ An. Thus, in order for the Vershik property V (X0) to hold true, it
suffices that ρn(X′

n,X
′′
n)→ 0 inL1 whereX′

n andX′′
n are two independent copies of

Xn. Moreover, Lemma 7.2.6 states that FX0 = F under the identifiability condition

∀n � 0, ∀xn, x′n ∈ An,
[ xn �= x′n ] &⇒ [

L(Xn+1 |Xn = xn) �= L(Xn+1 |Xn = x′n)
] (�)

and then, by Theorem 7.2.5, standardness of F is equivalent to V (X0) under this
condition.

Lemma 7.2.6 Let F be the filtration generated by a Markov process (Xn)n�0,
with Xn taking its values in a Polish space An, and assume that X0 is integrable.
Consider the pseudometrics ρn introduced above and the iterated Kantorovich
metrics ρ(n) appearing in Vershik’s standardness criterion.

(1) There are some maps ψn : An → A
(n)
0 such that πnX0 = ψn(Xn) and

ρ(n)
(
ψn(xn), ψn(x

′
n)
) = ρn(xn, x′n)

for every xn, x′n ∈ An and every n � 0.
(2) The Vershik property V (X0) is equivalent to E

[
ρn(X

′
n,X

′′
n)
] → 0 where X′

n

and X′′
n are two independent copies of Xn.

(3) Under the identifiability condition (�), the ρn are metrics and the ψn are some
isometries. Consequently F is generated by the process (πnX0)n�0.

(4) Under the identifiability condition (�), the Vershik property V (X0) is equivalent
to standardness of F.
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Proof Obviously π0X0 is a σ(X0)-measurable random variable, and πnX0 =
L
(
πn+1X0 |Fn) for n < 0 is a σ(Xn)-measurable random variable by the

Markov property. Therefore, for each n � 0, the Doob-Dynkin lemma provides
a measurable function ψn for which πnX0 = ψn(Xn), and ψ0 is nothing but
the identity map. The equality in 1), relating ρ(n) and ρn, is obviously true for
n = 0. Assuming ρ(n+1)

(
ψn+1(xn+1), ψn+1(x

′
n+1)
) = ρn+1(xn+1, x

′
n+1), then the

Kantorovich distance ρn(xn, x′n) is given by

ρn(xn, x
′
n) = inf

�xn,x′n

∫
ρ(n+1)(ψn+1(xn+1), ψn+1(x

′
n+1)
)
d�xn,x′n(xn+1, x

′
n+1),

where the infimum is taken over all joinings �xn,x′n of L(Xn+1 |Xn = xn) and
L(Xn+1 |Xn = x′n), and then ρn(xn, x′n) is also given by

ρn(xn, x
′
n) = inf

 xn,x′n

∫
ρ(n+1)(yn+1, y

′
n+1)d xn,x′n(yn+1, y

′
n+1),

where the infimum is taken over all joinings  xn,x′n of L(πn+1X0 |Xn =
xn) = ψn(xn) and L(πn+1X0 |Xn = x′n) = ψn(x

′
n), thereby showing

ρ(n)
(
ψn(xn), ψn(x

′
n)
) = ρn(xn, x′n). That shows 1), and 2) obviously follows.

The claim about the ρn in 3) is recursively shown too. It suffices to show that
every ψn is injective. Assuming that ψn+1 is injective and assuming L(Xn+1 |Xn =
xn) �= L(Xn+1 |Xn = x′n), then, obviously,

L
(
ψn+1(Xn+1) |Xn = xn

) �= L
(
ψn+1(Xn+1) |Xn = x′n

)
,

that is, ψn(xn) �= ψ(x′n), thereby showing 3). Finally, claim 4) stems from
Theorem 7.2.5. ��

Obviously we can similarly state Lemma 7.2.6 for Xk instead of X0, for any k �
0. When the identifiability condition (�) does not hold, one can apply proposition 6.2
of [11], which claims that, in order to prove standardness of F, it is sufficient to
check that V (Xk) holds true for every k � 0.

7.3 The Next-Jump Time Filtrations

In Sect. 7.5 we will study the scaled entropy of the next-jump time filtrations
which are introduced in this section. Standardness of these filtrations has been
characterized in [12] with the help of the I-cosiness criterion. In this section we
provide a new proof of this characterization with the help of Vershik’s standardness
criterion (Sect. 7.2.1). More precisely, we will be in the context of Lemma 7.2.6 and
the identifiability condition (�) will be fulfilled, and thus our main task will be to
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Fig. 7.1 Next-jump time
process as a random walk. (a)
Random walk from n = 0 to
n = −∞. (b) Random walk
from n = −∞ to n = 0

derive the metrics ρn of this lemma. This will be achieved in Sect. 7.3.2, after we
introduce the next-jump filtrations in Sect. 7.3.1 as the filtrations generated by some
random walks on the vertices of a Bratteli graph (shown on Fig. 7.1).

7.3.1 Next-Jump Time Process as a Random Walk on a Bratteli
Graph

Our presentation of the next-jump time filtrations differs from the one given in
[12]. Here we define these filtrations as those generated by a Markov process on
the vertices of a Bratteli graph.
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Let B be the (−N)-graded Bratteli graph shown on Fig. 7.1. At each level n,
there are |n| + 1 vertices labeled by k ∈ {0, . . . , |n|}, and the vertex labeled by k is
connected to the two vertices at level n− 1 labeled by k and |n| + 1. A path on B is
a sequence (γn)n�0 consisting of edges γn such that γn connects a vertex at level n
to a vertex at level n− 1 for every n � 0. The set of paths is denoted by !B . When
a path is taken at random in !B we denote by Vn the label of the selected vertex
at level n (thus V0 = 0) and we are interested in the filtration F generated by the
process (Vn)n�0. Since this causes no possible confusion, we identify a vertex to its
label. We study the case when the process (V0, V−1, . . .) is the Markov chain whose
transition distributions are defined from a given [0, 1]-valued sequence (pn)n�0
satisfying p0 = 1, by

L(Vn |Vn+1 = k) = (1 − pn)δk + pnδ|n|,

that is to say, given Vn+1, the vertex Vn is one of the two vertices connected to Vn+1
and equals the extreme vertex |n| with probability pn.

In other words, if we consider that the set of paths !B is {0, 1}−N by labelling
the edges connecting a vertex vn at level n to the vertex vn−1 at level n − 1 by 0
if vn−1 and vn have the same label and by 1 if vn−1 is labeled by |n| + 1, then
we are interested in the case when the paths are taken at random according to the
independent product measure

⊗
n�−1(1 − pn, pn) by denoting by (1 − p, p) the

Bernoulli probability measure with probability of success p.
The time-directed process (Vn)n�0 is Markovian too. The next-jump time

process (Zn)n�0 defined in [12] is obtained from Vn by putting Z0 = 0 and
Zn = −Vn+1 for n � −1. Hence the filtration F generated by the Markov process
(Vn)n�0 = (−Zn−1)n�0 shares the same standardness status as the one studied in
[12] because standardness is an asymptotic property (Proposition 7.2.3).

It is easy to see that Pr(Vn = |n|) = pn. We will say that the pn are the jumping
probabilities because one also has pn = Pr(Vn+1 �= Vn) for every n < 0. It is shown
in [12] that

Pr(Vn = |k|) = (1 − pn) · · · (1 − pk−1)pk if 0 � |k| < |n|,

and the transitions kernels Pn(v, ·) from n− 1 to n are given by

Pn(v, ·) := L(Vn |Vn−1 = v) =
{
δv if 0 � v < |n| + 1

L(Vn) if v = |n| + 1
. (7.1)

Obviously the identifiability condition (�) defined in Sect. 7.2.3 cannot hold for
(Vn)n�0 because V0 = 0 is degenerate. But we will see in Lemma 7.3.3 that this
condition holds for the process truncated at −1 when p−1 ∈]0, 1[ and pn < 1 for
every n � −2.

An important particular case is the one when pn = (|n| + 1)−1. In this case, Vn
has the uniform distribution on {0, . . . , |n|} for every n � 0 and the filtration F
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generated by (Vn)n�0 is Kolmogorovian and not standard in this case. This results
from the standardness criterion provided by Theorem 7.3.7, which was proved in
[12] with the help of the I-cosiness criterion, and which is proved in the present
paper with the help of Vershik’s criterion.

When pn < 1, the law of Vn+1 is the law of Vn conditioned on {0, . . . , |n| − 1}.
Thus, when pn < 1 for every n � −1, the law of Vn can be represented as the
truncation of a measure μ on N. For example, μ is the counting measure in the
uniform case pn = (|n| + 1)−1. When the pn are given, this measure is given by

μ(−n) = pn∏−1
k=n(1 − pk)

= Pr(Vn = n)
Pr(Vn = 0)

for every n � 0, and

μ
({0, . . . ,−n}) = 1∏−1

k=n(1 − pk)
= 1

Pr(Vn = 0)
,

thus μ is normalizable if and only if
∑
pn <∞. In this case the law of Vn goes to

the normalized version of μ and F is not Kolmogorovian, and in the other case Vn
goes to ∞ and F is Kolmogorovian. This is due to the following proposition about
the tail σ -field F−∞, which is a rewriting of proposition 3.1 in [12], to which we
refer for a detailed proof.

Proposition 7.3.1 The sequence (Vn)n�0 goes to a random variable V−∞ when
n goes to −∞, and the tail σ - field F−∞ is generated by V−∞. There are three
possible situations:

(1) if
∑
pn = ∞ then V−∞ = +∞ almost surely, therefore F is Kolmogorovian;

(2) if
∑
pk <∞ then

a. either V−∞ is not degenerate, therefore F is not Kolmogorovian,
b. or we are in the following case

pn0 = 1 and pn = 0 for every n < n0 for some n0 � 0 (∗)

and then V−∞ = |n0| almost surely, therefore F is Kolmogorovian and even
standard.

Thus F is Kolmogorovian if and only if
∑
pn = ∞ or in case (∗). Standardness

of F in case (∗) elementarily holds true because Fm = {∅,�} for every m � n0 in
this case.

7.3.2 Standardness of F Using Vershik’s Criterion

Throughout this section, we denote by (Vn)n�0 the next-jump time process with
jumping probabilities (pn)n�0 and we denote by F the filtration it generates.
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Discarding the elementary case (∗), it is shown in [12] with the help of the I-cosiness
criterion that F is standard (Vershikian) if and only if

∑
p2
n = ∞. In this section

we derive again this result by using Vershik’s standardness criterion. More precisely
we will use the version of Vershik’s standardness criterion given by Lemma 7.2.6.
We firstly treat a particular case in lemma below.

Lemma 7.3.2 If pn = 1 for infinitely many n, then F is standard.

Proof For every integer k � 0, define the random vector Xk = (Vk, . . . , V0) and
denote by Bk = σ(Vk, . . . , V0) the σ - field it generates. By the Markov property,
the n-th progressive prediction πnXk of Xk is measurable with respect to σ(Vn)
for every n � k, and Vn = |n| almost surely when pn = 1, therefore πnXk is a
degenerate random variable too, and disp(πnXk) = 0. Consequently, F is Vershikian
by Proposition 7.2.4(a). ��

We also know by Proposition 7.3.1 that F is standard in the case when pn = 0
for every n < 0. Then the following lemma will allow us to restrict our standardness
study to the case when the identifiability condition (�) of Sect. 7.2.3 holds.

Lemma 7.3.3

(1) Let (Xn)n�0 = (Vn−1)n�0. The identifiability condition (�) holds when

p−1 ∈]0, 1[ and pn < 1 for all n < 0. (7.2)

In this case, F is generated by the process (πnV−1)n�0, and even more precisely,
σ(πnV−1) = σ(Vn) for every n < 0.

(2) If pn0 = 1 for some n0 < 0, then the process
(
Vn0+n − |n0|

)
n�0 is the next-

jump time process with jumping probabilities (pn0+n)n�0.
(3) If p−1 = 0, then the process (Wn−1)n�0 defined by

Wn =
{

0 if Vn−1 = 0

Vn−1 − 1 if Vn−1 > 0
for n � −1.

has the same distribution as (Vn−1)n�0 where (Vn)n�0 is the next-jump time
process with jumping probabilities (p′

n)n�0 given by p′
n = pn−1 for every n <

0.

Proof For v �= v′ in the state space of Vn−1, the conditional distributions
L(Vn |Vn−1 = v) and L(Vn |Vn−1 = v′) have different supports under (7.2), hence
the first point follows. The equality σ(πnV−1) = σ(Vn) under condition (�) is
provided by Lemma 7.2.6. Checking the second and third points do not pose any
difficulty. ��

Thus, since standardness is an asymptotic property at n = −∞ (Proposi-
tion 7.2.3), we will focus on the case when (7.2) holds, and this will allow us to
use Lemma 7.2.6. In Lemma 7.3.4 we summarize the way we are going. Hereafter
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we denote by Vn = {0, . . . , |n|} the state space of Vn and consider on Vn the
n-th iterated Kantorovich metric ρn starting with the discrete 0−1 metric ρ−1 on
A−1 = {0, 1}. That is,

ρn(vn, v
′
n) = inf

�vn,v′n

∫
ρn+1d�vn,v′n

for every n � −2, where �vn,v′n is a joining of the conditional laws L(Vn+1 |Vn =
vn) = Pn+1(vn, ·) and L(Vn+1 |Vn = v′n) = Pn+1(v

′
n, ·). Hereafter we denote by dn

the dispersion of Vn under ρn, defined by dn = E[ρn(V ′
n, V

′′
n )] for two independent

copies V ′
n and V ′′

n of Vn.

Lemma 7.3.4 Under the identifiability condition (7.2), the filtration F is standard
if and only if the Vershik property V (X) holds forX = V−1. Moreover, this property
is equivalent to dn → 0.

Proof Consequence of Lemma 7.2.6 and Lemma 7.3.3. ��
In lemma below we provide a list of relations about the kernels Pn of the next-

jump time Markov chain and the iterated Kantorovich distances ρn. We denote by
Pn(v, f ) the expectation of a function f under the probability measure Pn(v, ·).
Recall that Pn+1

(|n|, ·) which occurs several times in the lemma is equal to the law
of Vn+1. We use Pn+1

(|n|, ·) and not L(Vn+1) in the lemma to emphasize that the
derivation of the ρn only depends on the kernels Pn by nature.

Lemma 7.3.5 Let x � 0 and x′ � 0 be integer numbers.

(1) If n � −1 and x, x′ � |n| − 1, then ρn(x, x′) = ρn+1(x, x
′).

(2) If n � −2 and x′ � |n| − 1, then ρn(|n|, x′) = Pn+1
(|n|, ρn+1(·, x′)

)
.

(3) If n � −3 and x′ � |n| − 2, then ρn(|n|, x′) = ρn+1(|n+ 1|, x′).
(4) If n � −1, then ρn−1(|n− 1|, |n|) = (1 − pn)Pn+1

(|n|, ρn(|n|, ·)
)
.

(5) If n � −2, then Pn
(|n− 1|, ρn−1(|n− 1|, ·)) = (1 − p2

n)Pn+1
(|n|, ρn(|n|, ·)

)
.

(6) For every n � −1, Pn
(|n− 1|, ρn−1(|n− 1|, ·)) = 2p−1(1 − p−1)

∏−2
m=n(1 −

p2
m).

Proof (1) and (2) are easily get from the expression of L(Vn+1 |Vn = v) given in
Sect. 7.3.1. One obtains (3) as a consequence of (1) and (2) by using the relation

Pr(Vn = k |Vn−1 = |n− 1|) = (1 − pn)Pr(Vn+1 = k |Vn = |n|) (7.3)

valid for 0 � k < |n| and n � −2. One gets (4) by using (2) and (7.3). Finally, (5) is
derived from (3), (4) and (7.3), and one obtains (6) by calculating the right member
of (5) for n = −2 and then by applying (5) recursively. ��
Lemma 7.3.6 The dispersion of Vn under ρn is given by dn = 2p−1(1 −
p−1)

∏−2
m=n(1 − p2

m) for every n � −1.

Proof Because of L(Vn+1) = L(Vn+1 |Vn = |n|) we get

dn+1 = E
[
ρn(|n|, Vn+1) |Vn = |n|]
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for every n � −2 by equality (2) of Lemma 7.3.5, and then the assertion of the
lemma is nothing but equality (6) of Lemma 7.3.5. ��
Theorem 7.3.7 The filtration F is standard if and only if

∑
p2
n = ∞ or in case (∗).

Proof Case (∗) is treated in Proposition 7.3.1. Under the identifiability condi-
tion (7.2), we know that F is standard if and only if

∏−2
n=−∞(1 − p2

n) = 0 by
Lemma 7.3.4 and by Lemma 7.3.6. If the identifiability condition (7.2) does not
hold, there are two cases to be treated: either pn = 1 for infinitely many n or pn = 1
for finitely many values of n. In the first case, use Lemma 7.3.2. In the second
case, the problem can be reduced to the case of the identifiability condition by using
assertion (2) of Lemma 7.3.3 and the fact that standardness is an asymptotic property
(Proposition 7.2.3). ��

7.3.3 Iterated Kantorovich Distances

Denote by Vn = {0, . . . , |n|} the set of vertices at level n. The pseudometric spaces
(Vn, ρn) are easily derived from relations (1), (3), (4) and (6) given in Lemma 7.3.5.
Note that (1) means that the canonical embedding (Vn, ρn) → (Vn−1, ρn−1) is
an isometry, and this is a very particular situation (we mean this is not a general
fact about the intrinsic pseudometrics on Bratteli graphs). The pseudometrics ρn are
shown on Table 7.1.

This table is easily filled by successively and iteratively using the following
equalities for n � −2:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρn(0, x) =
{

1 if x = 1

p−1 otherwise

ρn(x, x
′) = ρn+1(x, x

′) for x, x′ < |n|
ρn(|n|, x) =

{
ρn+1(|n+ 1|, x) if x < |n+ 1|
(1 − pn+1)dn+2 if x = |n+ 1|

Table 7.1 Intrinsic metrics ρn(k, k′) for n = −1,−2,−3,−4,−5

k′

k 0 1 2 3 4 5

0 0 1 p−1 p−1 p−1 p−1

1 1 0 1 − p−1 1 − p−1 1 − p−1 1 − p−1

2 p−1 1 − p−1 0 (1 − p−2)d−1 (1 − p−2)d−1 (1 − p−2)d−1

3 p−1 1 − p−1 (1 − p−2)d−1 0 (1 − p−3)d−2 (1 − p−3)d−2

4 p−1 1 − p−1 (1 − p−2)d−1 (1 − p−3)d−2 0 (1 − p−4)d−3

5 p−1 1 − p−1 (1 − p−2)d−1 (1 − p−3)d−2 (1 − p−4)d−3 0
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Fig. 7.2 The space (Vn, ρn)

v, v′

ρ
n
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,v
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where the expression of dn is given in Lemma 7.3.6 for every n � −1 and we set in
addition d0 = 1. It follows that the distance ρn(vn, v′n) between two vertices vn and
v′n at some level n � −2 is explicitely given when vn < v′n by

ρn(vn, v
′
n) =

⎧⎪⎪⎨
⎪⎪⎩

1 if vn = 0 and v′n = 1

p−1 if vn = 0 and v′n > 1

(1 − p−vn)d−vn+1 if vn > 0

.

The ρn are metrics under the identifiability condition (7.2). The space (Vn, ρn) is
an ultrametric space represented by the dendrogram shown in Fig. 7.2 (numerically,
this figure shows the case pn ≡ 1

2 for n < 0).

7.4 The Uniformly Scaled Entropy

In this section we introduce the scaled entropy of filtrations by following Vershik
and Gorbulsky [21], except that we use the probabilistic language and we restrict
our attention to entropy scalings which are not ε-dependent (this is why we term
them as uniform scalings). Theorem 7.4.11, our most significant result, generalizes
Theorem 7.2.5.

A uniform entropy scaling, or, for short, a uniform scaling, or an entropy scaling
or a scaling, is a bounded below function c : (−N) → (0,∞). Vershik and
Gorbulsky more generally consider ε-dependent scalings c �→ c(ε, n).
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The definition of the Vershik property V (X) stated (in Sect. 7.2) by dispπnX→
0 can be equivalently stated by:

∀ε > 0, ∃n � 0, ∃μ ∈ E(n), E
[
ρ(n)(πnX,μ)

]
< ε. (7.4)

In other words, the Vershik progressive prediction πnX can be approximated by a
single value with probability as high as desired when n→ −∞. When this property
fails, it is natural to wonder about an optimal asymptotic approximation of πnX.
Roughly speaking, the scaled entropy compares the growth of the minimal entropy
approximation of πnX with the given scaling. Its evident interest is its ability to
distinguish locally isomorphic non-standard filtrations.

The definition of the scaled entropy of a filtration relies on a choice of a measure
of entropy H(μ) for discrete probability distributions μ. Common choices include
the well-known Shannon entropy

H(μ) = −
∑
μi logμi,

and the max-entropy (or Rényi entropy of order 0)

H(μ) = log #{μi | μi �= 0}.

We will state the definition of the scaled entropy for a measure of entropy as defined
below. The three conditions of this definition are fulfilled for the Shannon entropy
and for the Rényi entropy of any order.

Definition 7.4.1 An application H associating a quantity H(θ) ∈ [0,+∞] to a
discrete probability measure θ is said to be a measure of entropy if it satisfies the
following conditions.

1. H is decisive: H(θ) = 0 if θ is concentrated on one point.
2. H is relative to the maximum probability: H(θ) � C(1 − θmax) for a certain

constant C > 0, where θmax is the highest probability mass of θ .
3. H is increasing: H(θ ′) � H(θ) when θ ′ is the image of θ under some map.

We simply say thatH(θ) is the entropy of θ , and we denote byH(X) the entropy
of the law of a discrete random variable X.

7.4.1 Definitions

The definition of the scaled entropy of a filtration F has something similar to the
definition of Vershik’s standardness criterion: one begins by defining the scaled
entropy for a F0-measurable random variable, then for a σ - field B ⊂ F0, and finally
for the filtration F. It mainly involves the ε-entropy, defined below, of the Vershik
progressive predictions πnX (introduced in Sect. 7.2). We say that a random variable
is simple when it takes only finitely many values.
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Definition 7.4.2 Let Y be an integrable random variable taking its values in a Polish
metric space (E, ρ). The ε-entropy of Y is

Hε(Y ) = inf
{
H(S) | E[ρ(Y, S)] < ε}

where the infimum is taken over all simple σ(Y )-measurable random variables S
taking values in E.

We define two scaled entropies in this definition, namely the lower scaled entropy
and the upper scaled entropy. The scaled entropy defined by Vershik and Gorbulsky,
in the case when the scaling does not depend on ε, is the upper scaled entropy. We
think that the lower scaled entropy deserves to be defined in addition to the upper
scaled entropy because each property we will give about the scaled entropy holds
for both of them, and is proved in the same way.

Definition 7.4.3 Let F be a filtration. In (1) and (2) below we consider an integrable
F0-measurable random variable X taking its values in a Polish metric space (E, ρ).
In (2), (3) and (4) we consider an entropy scaling c.

(1) The ε-entropy of X (with respect to F) at time n is Hεn (X;F) = Hε(πnX),
shorter denoted by Hεn (X) when F is understood, where the n-th Vershik
prediction πnX is considered as a random variable taking its values in the Polish
space E(n) metrized by the n-th iterated Kantorovich metric ρ(n) (Sect. 7.2.1).

(2) The limits in [0,∞]

h−c (X;F) = lim
ε→0

lim inf
n→−∞

Hεn (X)

c(n)
and h+c (X;F) = lim

ε→0
lim sup
n→−∞

Hεn (X)

c(n)

are respectively called the lower c-scaled entropy of X and the upper c-scaled
entropy of X, or, for short, the (lower/upper) scaled entropy of X when the
scaling c is understood. Note that these limits exist becauseHεn (X) increases as
ε decreases. We shorter denote h−c (X;F) by h−c (X) and h+c (X;F) by h+c (X)
when F is understood without ambiguity.

(3) For a σ - field B ⊂ F0, the lower and upper c-scaled entropies of B with respect
to F are defined as

h−c (B;F) = sup
X

h−c (X;F) and h+c (B;F) = sup
X

h+c (X;F)

where the supremum is taken over all B-measurable random variables X taking
their values in the interval [0, 1] equipped with its usual metric. We shorter
denote h−c (B;F) by h−c (B) and h+c (B;F) by h+c (B) when F is understood
without ambiguity.

(4) The lower and upper c-scaled entropies of the filtration F are defined as

h−c (F) = h−c (F0;F) and h+c (F) = h+c (F0;F).
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In the sequel, we will use the notation hc as a substitute for either h−c or h+c . That
is, when we write a statement about hc, that means this statement holds for both h−c
and h+c .

As a first remark, note that, obviously, the scaled entropy hc(F) only depends on
F up to isomorphism. Also note that hc(X) = hc′(X) when the two scalings c and
c′ are equivalent at −∞.

When the Vershik property holds for the random variable X, it is clear that
h−c (X) = h+c (X) = 0 for the scaling c(n) ≡ 1 and consequently for any scaling c, in
view of the statement (7.4) of the Vershik property and because of the decisiveness
property of H (Definition 7.4.1). Therefore h−c (F) = h+c (F) = 0 for any scaling c
when F is a Vershikian filtration. The converse is true, by virtue of the proposition
below.

Proposition 7.4.4 Let X be a F0-measurable random variable taking its values in
a bounded Polish metric space (E, ρ) and such that h−c (X) = 0 for the scaling
c(n) ≡ 1. Then X satisfies the Vershik standardness property (hence h+c (X) = 0 as
well).

Proof By the assumption h−c (X) = 0, one has lim infn→−∞Hε(πnX) = 0 for
every ε > 0. Let δ > 0. Take n � 0 such that Hδ(πnX) < δ. There exists a simple
E(n)-valued random variable S such that E

[
ρn(πnX, S)

]
< δ and H(S) < δ. Let p

be the highest probability mass of S and s ∈ E(n) such that p = Pr(S = s). Then
p > 1 − δ/C, where C is the constant of condition 2 in Definition 7.4.1. Therefore
E
[
ρn(S, s)

]
< diam(E(n))δ/C � diam(E)δ/C. Finally,

E
[
ρn(πnX, s)

]
� E
[
ρn(πnX, S)

]+ E
[
ρn(S, s)

]
�
(

1 + diam(E)

C

)
δ.

Thus we get the statement (7.4) of the Vershik property for X. ��
While the previous proposition is stated for a bounded metric space E, it is also

true for an integrable random variable when E is unbounded. This stems from the
fact mentioned in the following remark.

Remark 7.4.5 The notations Hεn (X) and hc(X) do not show the dependence on
the metric ρ on the state space of X. But this is not important in view of
Proposition 7.4.16 we will see later, which shows that hc(X) = hc

(
σ(X)

)
. Thus,

we can replace ρ with ρ ∧ 1 in the definition of the scaled entropy hc(X), without
altering its value. This allows to define hc(X) when X is non-integrable.

Remark 7.4.6 Using the previous remark, it is not difficult to see that we do not
alter the value of hc(X) if we replace the definition of the ε-entropy Hε(Y ) with

inf
{
H(S) | P(ρ(Y, S) > ε) < ε

}
,

and this ε-entropy allows to define hc(X) when X is non-integrable.
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Remark 7.4.7 Using, as allowed by Remark 7.4.5, the bounded distance ρ ∧ 1
instead of ρ, it is easy to prove that we do not alter the value of hc(X) if we modify
the definition of the ε-entropyHε(Y ) by taking the infimum over all discrete random
variables S instead of all simple random variables.

Remark 7.4.8 As already mentioned in the definition, the ε-entropy Hεn (X) is
relative to the underlying filtration F. It is important to note that it actually only
depends on the filtration FX generated by the Markov process (πnX)n�0 of the
Vershik progressive predictions of X. Indeed, it is easy to see that the value of
Hεn (X) is the same whether we consider F as the underlying filtration or any
filtration E immersed in F such thatX is measurable with respect to the final σ - field
E0 of E, and the filtration FX is the smallest such filtration (see [4]).

From the previous remark, it is easy to see that hc(F) � hc(G) when the filtration
F is immersed in the filtration G.

The above definition of Hε(πnX) is appropriate for deriving the general prop-
erties we will give. But for the calculation of hc(X) on a case-study, especially
when we seek a lower bound of hc(X), it is generally better to use the alternative
definition of Hε(πnX) given in the following lemma for the case when H is the
Shannon entropy, and in the next lemma for the case when H is the max-entropy.

Lemma 7.4.9 Assume H is the Shannon entropy. In the definition of hc(X;F), one
can replace the ε-entropy Hε(πnX) with inf−∑μn(Pj ) logμn(Pj ) where μn is
the law of πnX and the infimum runs over all finite partitions {Pj } of the state space
of πnX having form {Ai, C} where μn(C) < ε and eachAi is contained in an ε-ball
of (E(n), ρ(n)).

Proof Denote by Hε0 (πnX) this value. We compare it to the ε-entropy Hε(πnX)
as given in Remark 7.4.6. Let {Pj } = {Ai, C} be a partition such as the ones
described in the lemma. Define the function f by f (x) = argmin!i ρ

(n)(x, !i).
Then ρ(n)

(
x, f (x)

)
< ε on ∪Ai , and that shows the inequality Hε0 (πnX) �

Hε(πnX). Conversely, take a function f taking only finitely many values and such
that the μn-measure of the set F := {x ∈ E | ρ(n)(x, f (x)) < ε} is greater than
1 − ε. Let {!i} be an enumeration of f (F ). Set Ai = f−1(!i) ∩ F . Then {Ai} is a
partition of F and Ai ⊂ B(!i, ε) (ε-ball centered at !i). Moreover, since the law of
f (πnX) equals the weighted average μn(F )f

(
μn(· |F)

) + μn(F c)f
(
μn(· |Fc)

)
,

the concavity of the Shannon entropy yields

H
(
f (πnX)

)
�μn(F )H

(
f
(
μn(· |F)

))

= −
∑
μn(Ai) logμn(Ai)+ μn(F ) logμn(F )

= −
∑
μn(Pj ) logμn(Pj )− h(μn(F ))

where {Pj } = {Ai, F c} and h is the binary entropy function defined by h(ε) =
h(1 − ε) = ε log 1

ε
+ (1 − ε) log 1

1−ε . The function ε �→ h(ε) is increasing for
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ε < 1/2. Hence, for ε small enough, one has h(μn(F )) � h(ε) and the above
inequality shows that Hε(πnX) � Hε0 (πnX)− h(ε). Finally,

Hε0 (πnX)− h(ε) � Hε(πnX) � Hε0 (πnX)

and the lemma follows because of h(0+) = 0. ��
Lemma 7.4.10 Assume H is the max-entropy. Let X a random variable taking its
values in a Polish space (E, ρ). Then the ε-entropyHε(X) as given in Remark 7.4.6
equals the minimal log-number of ε-balls inE such thatX falls in the union of these
balls with probability higher than 1 − ε:

Hε(X) = min
{
log #{xi} | xi ∈ E,Pr

(
X ∈ ∪B(xi, ε)

)
> 1 − ε} .

Proof Denote by Hε0 (X) this value. For given balls B(xi, ε), define the function f
by f (x) = argminxi ρ(x, xi). Then ρ

(
X, f (X)

)
< ε if and only if X ∈ ∪B(xi, ε),

and that shows that Hε0 (X) � Hε(X). Conversely, take a function g : E → E

taking only finitely many values and such that Pr
(
ρ
(
X, g(X)

)
> ε
)
< ε. Let {xi}

be an enumeration of the image of g and define f (x) = argminxi ρ(x, xi). Then

ρ
(
X, f (X)

)
� ρ
(
X, g(X)

)
, hence Pr

(
ρ
(
X, f (X)

)
< ε
)
� Pr

(
ρ
(
X, g(X)

)
< ε
)

.

That shows the inequality Hε0 (X) � Hε(X). ��

7.4.2 Main Properties and Main Theorem

This section is devoted to prove the main theorem of this paper: Theorem 7.4.11,
stated below, which generalizes Theorem 7.2.5. It will be applied in Sect. 7.5 to the
study of the scaled entropy of the next-jump time filtrations. In this theorem and all
other results of this section, a measure of entropy H as defined in Definition 7.4.1
is understood. We also provide two important properties of the scaled property: the
heredity to the generated σ -field, that is to say, the equality hc(X) = hc

(
σ(X)

)
(Proposition 7.4.16), and the left-continuity of B �→ hc(B) (Proposition 7.4.15).
These two properties generalize the two claims of Proposition 7.2.4.

Theorem 7.4.11 Let F be a filtration,X ∈ L1(F0;E) where E is a Polish space,
and c : (−N) → (0,∞) a uniform entropy scaling. Then hc(X;F) = hc(F

X),
where FX is the filtration generated by the Markov process (πnX)n�0.

Note that hc(F
X) is the entropy of the filtration FX as well as the entropy of

the σ -field σ(πnX; n � 0) when we consider F as the underlying filtration (see
Remark 7.4.8). Theorem 7.4.11 has a straightforward useful consequence when the
πnX are discrete random variables with finite entropy: it gives the upper bound
hc(F

X) � 1 for any scaling c(n) ∼ H(πnX), because of the increasing property
of H .
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This theorem will be derived from the two following lemmas and the two main
propositions of this section (heredity to the generated σ -field and left-continuity).

Lemma 7.4.12 Let F be a filtration. Let (E, ρ) and (Ẽ, ρ̃) be two Polish metric
spaces, and f : E → Ẽ an isometry. Then hc(X) = hc

(
f (X)

)
for any random

variable X ∈ L1(F0;E).
Proof This is a straightforward consequence of Lemma 7.2.2. ��

The key lemma is the following one.

Lemma 7.4.13 Let F be a filtration, X ∈ L1(F0;E) where E is a Polish space
metrized by a distance ρ, and set Wn = (πnX, . . . , π−1X,X) for some n � 0.
Consider the metric ρ̄n = 1

|n|+1

∑k=0
k=n ρ(k) on the state space ofWn. Then πnWn =

φ(πnX) where φ is an isometry.

Proof For the proof we consider the distance ρ̃n = ∑k=0
k=n ρ(k) instead of ρ̄n

on the state space of Wn. For each n � 0 and k ∈ {n, . . . , 0}, one has
πkWn = gnk (πnX, . . . , πkX) for some functions gnk related by the fact that
gnk−1(μn, . . . , μk−1) is the distribution of gnk (μn, . . . , μk−1,Mk) where Mk ∼
μk−1. Therefore

ρ̃(k−1)
n

(
gnk−1(μn, . . . , μk−1), g

n
k−1(μ

′
n, . . . , μ

′
k−1)
)

= inf
(Mk,M

′
k)
E

[
ρ̃(k)n
(
gnk (μn, . . . , μk−1,Mk), g

n
k (μ

′
n, . . . , μ

′
k−1,M

′
k)
)] (#)

where the infimum is take over all joinings (Mk,M ′
k) of μk−1 and μ′

k−1. Using this
relation, the equality

ρ̃(k)n
(
gnk (μn, . . . , μk), g

n
k (μ

′
n, . . . , μ

′
k)
)

= ρ(n)(μn, μ′
n)+ ρ̃(k)n+1

(
gn+1
k (μn+1, . . . , μk), g

n+1
k (μ′

n+1, . . . , μ
′
k)
)

is easy to derive. Indeed, denoting by H(n, k) this equality, then H(n, 0) is nothing
but the equality ρ̃n = ρ(n) + ρ̃n+1 and the implication from H(n, k) to H(n, k − 1)
is easy to derive from relation (#).

Now, by (#),

ρ̃(n)n
(
gnn(μn), g

n
n(μ

′
n)
)

= inf
(Mn+1,M

′
n+1)

E

[
ρ̃(n+1)
n

(
gnn+1(μn,Mn+1), g

n
n+1(μ

′
n,M

′
n+1)
)]
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where the infimum is taken over all joinings (Mn+1,M
′
n+1) of μn and μ′

n. Hence,
by relation H(n, n+ 1),

ρ̃(n)n
(
gnn(μn), g

n
n(μ

′
n)
)

= ρ(n)(μn, μ′
n)+ inf

(Mn+1,M
′
n+1)

E

[
ρ̃
(n+1)
n+1

(
gn+1
n+1(Mn+1), g

n+1
n+1(M

′
n+1)
)]
,

and using this equality we can prove by recursion (starting at n = 0) the equality

ρ̃(n)n
(
gnn(μn), g

n
n(μ

′
n)
) = (|n| + 1

)
ρ(n)(μn, μ

′
n)

which is obviously equivalent to the statement of the lemma. ��
It is interesting to note that Theorem 7.2.5 is an easy corollary of the previous

lemma, Lemma 7.2.2, and Proposition 7.2.4. Indeed, this provides a new proof of
this theorem, cleaner than the one given in [11].

The following lemma is a continuity-like property of X �→ hc(X;F). A cleaner
continuity property of the scaled entropy, relying on this lemma, is the content of
Proposition 7.4.15.

Lemma 7.4.14 Let F be a filtration, and E a Polish space. Let (Xk)k�1 be a
sequence in L1(F0;E) such that Xk → X in L1 for some random variable
X ∈ L1(F0;E), and such that σ(Xk) ⊂ σ(X) for every k � 1. If, for a given
scaling c : (−N)→ (0,∞), there exists � � 0 such that hc(Xk,F) � � for every k
sufficiently large, then hc(X;F) � �.
Proof We denote by k(ε) an integer such that E

[
ρ(Xk,X)

]
� ε for every k �

k(ε). Hence, for k � k(ε), the inequality Hεn (Xk) � H 2ε
n (X) holds for every n by

definition of Hεn (·) and Lemma 7.2.1.
We write the proof for the upper scaled entropy. The proof for the lower scaled

entropy is similar. Set a = hc(X;F). We firstly check that a < ∞. Assuming

a = ∞, there exists ε0 > 0 such that lim supn→−∞
H

2ε0
n (X)
c(n)

> � + 1. Therefore
one can take k0 � k(ε0) sufficiently large in order that hc(Xk0 ,F) � � and such

that lim supn→−∞
H
ε0
n (Xk0 )

c(n)
> �+ 1. But ε �→ Hεn (Xk0) is decreasing, therefore the

inequality lim supn→−∞
Hεn (Xk0 )

c(n)
> �+ 1 holds for every ε � ε0, a contradiction of

the assumption of the lemma.
Knowing now that a < ∞, we check that � � a. Given δ > 0, there exists

ε0 > 0 such that lim supn→−∞
H

2ε0
n (X)
c(n)

> a − δ. Taking k � k(ε0), one gets

lim supn→−∞
Hεn (Xk)

c(n)
> a− δ for every ε � ε0 because ε �→ Hεn (Xk) is decreasing.

Taking k sufficiently large in order that hc(Xk,F) � �, one finally gets � � a. ��
The property given in the following proposition will be called the left-continuity

of the scaled entropy.
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Proposition 7.4.15 (Left-Continuity) Let F be a filtration, B ⊂ F0 a σ -field, and
(Bk)k�1 an increasing sequence of σ -fields such that Bk ↗ B. Then hc(B) =
limhc(Bk) for any scaling c.

Proof The inequality hc(B) � hc(Bk) is an obvious consequence of the inclusion
Bk ⊂ B. Passing to the limit, we get hc(B) � limhc(Bk). To show the converse
inequality, consider an integrable B-measurable random variableX taking its values
in [0, 1]. ThenX = limXk in L1 whereXk is a Bk-measurable random variable. By
Lemma 7.4.14, hc(X) � suphc(Xk), therefore hc(X) � suphc(Bk). But hc(Bk)
is increasing in k, hence suphc(Bk) = limhc(Bk). That shows that hc(B) �
limhc(Bk). ��
Proposition 7.4.16 (Heredity to the Generated σ - Field) Let F be a filtration and
X ∈ L1(F0;E) where E is a Polish space. Then hc(σ (X)) = hc(X) for any scaling
c : (−N)→ (0,∞).
Proof If Y = f (X) for some Lipschitz function f , then it is easy to check that
hc(Y ) � hc(X) with the help of Lemma 7.2.2. The set of random variables f (X),
f : E → R

m Lipschitzian, is dense in L1
(
σ(X);Rm). Indeed, this is the content

of lemma 2.15 in [10] when m = 1, and the case m � 2 obviously follows from
the case m = 1. Therefore, by Lemma 7.4.14, we know that hc(Y ) � hc(X) for
every random variable Y ∈ L1

(
σ(X);Rm). The case m = 1 yields the inequality

hc(σ (X)) � hc(X). It remains to show the converse inequality.
Firstly, consider a random variable U taking its values in [0, 1] and such that

σ(X) = σ(U). From what we have seen above, we know that hc(Y ) � hc(U),
hence hc(Y ) � hc

(
σ(X)

)
, for every random variable Y ∈ L1

(
σ(X);Rm).

Now, consider a sequence (Xk)k�1 in L1
(
σ(X);E) such that Xk → X in L1

and each Xk takes only finitely many values. We know that hc(X) � suphc(Xk) by
Lemma 7.4.14. For a given k � 1, denote by F the finite subset of E in which Xk
takes its values. Note that hc(Xk) is the same either we look at Xk as a E-valued
random variable or a F -valued random variable. Considering the sup-norm on R

m,
where m = #F , it is well-known that there exists a distance-preserving function
f : F → R

m. By Lemma 7.4.12, hc(Xk) = hc
(
f (Xk)

)
. But we have seen that

hc
(
f (Xk)

)
� hc

(
σ(X)

)
, therefore we finally get the inequality hc(X) � hc

(
σ(X)

)
.
��

Now we can quickly prove Theorem 7.4.11.

Proof (Proof of Theorem 7.4.11) Let Bn = σ(πnX, . . . , π−1X,X). Firstly, we get
the equality hc(Bn;FX) = hc(πnX;FX) by Proposition 7.4.16 (heredity to the
generated σ -field), Lemma 7.4.13 and Lemma 7.4.12. Secondly, it is not difficult to
see that hc(πnX;FX) = hc(X;FX). Thus, hc(Bn;FX) = hc(X;FX) = hc(X;F).
But hc(Bn;FX)→ hc(F

X) by Proposition 7.4.15, and then the theorem follows.
��

We provide the following corollary as an easy consequence of Proposition 7.4.15
and Proposition 7.4.16.
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Corollary 7.4.17 When the final σ - field F0 of a filtration F is essentially separable,
then hc(F) = supX hc(X) for any scaling c where the supremum is taken over all
simple F0-measurable random variables X.

Proof This supremum is obviously lower than hc(F). To show the converse
inequality, take an increasing sequence (Bk)k�1 of finitely generated sub-σ -fields
of F0 such that Bk ↗ F0, and take a simple random variable Xk generating Bk for
each k � 1. By Proposition 7.4.15 and Proposition 7.4.16,

hc(F) = lim
k→∞hc(Bk) = lim

k→∞hc(Xk),

thereby showing the desired converse inequality. ��
The next corollary is a consequence of Lemma 7.4.13 and Proposition 7.4.16. It

generalizes Proposition 7.2.3 (standardness is an asymptotic property).

Corollary 7.4.18 (Entropy is an Asymptotic Quantity) Let F be a filtration,
n0 � 0 be an integer, and denote by Fn0] = (Fn0+n)n�0 the filtration F truncated at

n0. Let c : (−N)→ (0,∞) be a scaling and denote cn0] = (cn0+n)n�0 its truncation

at n0. Then hcn0](F
n0]) = hc(F).

Proof It is not difficult to derive the equality

Hεn (Xn0,F
n0]) = Hεn0+n(Xn0;F) (7.5)

for every integrable Fn0 -measurable random variable Xn0 , every n � 0 and every
ε > 0. This provides the inequality hcn0](F

n0]) � hc(F).
Conversely, ifWn0 = (πn0X0, . . . , X0)whereX0 is an integrable F0-measurable

random variable, then hc(X0;F) � hc(Wn0;F) by Proposition 7.4.16 and because
H is increasing (Definition 7.4.1). But Lemma 7.4.13 provides the equality

Hεn0+n(W
n0;F) = Hεn0+n(πn0X0;F)

for every n � 0. Hence equality (7.5) gives

Hεn0+n(W
n0;F) = Hεn (πn0X0;Fn0]),

therefore hc(Wn0;F) = hcn0](πn0X0;Fn0]) and finally we get the inequality
hc(X0;F) � hcn0](πn0X0;Fn0]). This provides the inequality hc(F) � hcn0](F

n0]).
��

7.4.3 Extensions that do Not Increase Entropy

Say that a filtration G is an extension of a filtration F if the filtration F is immersible
in G (see [4] or [10] if needed). An independent enlargement of a filtration F is
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an extension of F. A parametric extension is another important kind of extension,
defined as follows. A superinnovation of a filtration F is a sequence (Vn)n�0 of
random variables such that each Vn is independent of Fn−1 and satisfies Fn ⊂
Fn−1 ∨ σ(Vn). It is also called a parameterization or a governing process in some
published papers. Once that is given, the filtration F is immersed in the filtration G

defined by Gn = Fn ∨ σ(Vm;m � n) (this follows from lemma 1.6 in [10]), and G

is called a parametric extension of F.
When G is a parametric extension or an independent enlargement of F with

a Vershikian filtration, it is known that G is Vershikian if F is Vershikian. We
generalize these two results by showing that in such cases, G has the same scaled
entropy as F. We will apply these two theorems on some examples in Sect. 7.6.

The next theorem is a generalization of proposition 6.1 in [11], which says that a
parametric extension of a Vershikian filtration is a Vershikian filtration.

Theorem 7.4.19 (Parametric Extensions Do Not Increase Entropy) Let F be
a filtration and (Vn)n�0 be a superinnovation of F. Denote by G the parametric
extension of F defined by Gn = Fn ∨ σ(Vm;m � n). Then hc(G) = hc(F) for any
scaling c.

Proof By the left-continuity of the scaled entropy (Proposition 7.4.15), we know
that hc(G) = limhc(Bm) where Bm = F0 ∨ σ(Vm+1, . . . , V0). Thanks to the equal-
ity Bm = Fm ∨ σ(Vm+1, . . . , V0), we get the inequality hc(Bm;G) � hc(Fm;G).
Using the same equality, it is not difficult to check that πmX is measurable
with respect to Fm for any Bm-measurable integrable random variable X. Since
hc(X) = hc(πmX), one gets hc(Bm;G) � hc(Fm;G) and finally hc(Bm;G) =
hc(Fm;G). Now, F is immersed in G, therefore hc(Fm;G) = hc(Fm;F). But
hc(Fm;F) = hc(F0;F) because of the equality hc(X) = hc(πmX) holding for
every F0-measurable integrable random variable X. ��

The corollary below is an application of the previous theorem. It generalizes
corollary 6.1 of [11]. In the proof, we use the fact that for every Markov process
(Xn)n�0, there exists a superinnovation (Vn)n�0 of the filtration generated by
(Xn)n�0 satisfying the additional property σ(Xn−1, Vn) ⊃ σ(Xn). This stems from
lemma 3.41 in [10]. Note that the filtration E in the corollary is immersed in the
filtration Fφ(·); that means that the process (Xφ(n))n�0 is Markovian with respect to
Fφ(·).

Corollary 7.4.20 Let (Xn)n�0 be a Markov process and let F be the filtration it
generates. Let φ : (−N) → (−N) be a strictly increasing map, denote by Fφ(·) the
filtration (Fφ(n))n�0, and denote by E the filtration generated by the Markov process
(Xφ(n))n�0. Then, for any scaling c,

hc(Xφ(n);F) −−−−→
n→−∞ hc(F),

hc(Xφ(n);E) −−−−→
n→−∞ hc(E)

and hc(Fφ(·)) = hc(E).
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Proof Take a superinnovation (Vn)n�0 of F such that σ(Xn−1, Vn) ⊃ σ(Xn)

for every n � 0, and let G be the parametric extension of F with (Vn)n�0.
By Theorem 7.4.19, we know that hc(F) = hc(G). By Proposition 7.4.15 (left-
continuity of the scaled entropy), we know that hc(G) = limhc(Bn) where Bn =
σ(Xφ(n), Vφ(n)+1, . . . , V0). Now, by noting that the Vershik prediction πφ(n)X
is σ(Xφ(n))-measurable for every Bn-measurable random variable X, one gets
hc(Bn) = hc(Xφ(n)). More precisely, we should write hc(Bn;G) = hc(Xφ(n);G),
but hc(Xφ(n);G) = hc(Xφ(n);F) because F is immersed in G. Thus we have shown
hc(F) = limhc(Xφ(n)). This result applied to the Markov process (Xφ(n))n�0 and
with the identity map instead of φ shows that hc(E) = limhc(Xφ(n);E), and note
that hc(Xφ(n);E) = hc(Xφ(n);Fφ(·)) because E is immersed in Fφ(·). To finish, the
equality hc(E) = hc(Fφ(·)) follows from an application of Theorem 7.4.19 to the
filtration E and its superinnovation

(
(Vφ(n−1)+1, . . . , Vφ(n))

)
n�0. ��

The next theorem is a generalization of lemma 19 in [4], which says that the
supremum of two independent Vershikian filtrations is a Vershikian filtration (saying
that two filtrations are independent when they are defined on the same probability
space and their final σ -fields are independent). To prove it, we use the following
lemma, whose proof is given in the proof of lemma 19 of [4]. Note that πn(R1, R2)

in this lemma is defined with respect to the filtration G = F1∨F2. On the other hand,
each of the filtrations F1 and F2 is immersed in G, therefore there is no possible
ambiguity about the underlying filtration with respect to which πnR1 and πnR2 are
defined.

Lemma 7.4.21 Let F1 and F2 be two independent filtrations. Let (E1, ρ1) and
(E2, ρ2) be two Polish metric spaces. We take the metric ρ

(
(x1, x2), (x

′
1, x

′
2)
) =

ρ1(x1, x
′
1) + ρ2(x2, x

′
2) on the product Polish space E = E1 × E2. Then there are

some Borelian maps in : E(n)1 × E(n)2 → E(n) such that

ρ(n)(inu, inv) � ρ(n)1 (u1, v1)+ ρ(n)2 (u2, v2)

for every u = (u1, u2) and v = (v1, v2) in E(n)1 × E(n)2 , and they are such that

πn(R1, R2) = in(πnR1, πnR2)

for every F1
0-measurable random variable R1 taking its values in (E1, ρ1) and every

F2
0-measurable random variable R2 taking its values in (E2, ρ2).

Theorem 7.4.22 Let F1 and F2 be two independent filtrations. If F2 is Vershikian,
then the equality hc(F

1 ∨ F2) = hc(F1) holds for any scaling c.

Proof We know that hc(F
1 ∨ F2) � hc(F

1) because F1 is immersed in F1 ∨ F2.
It remains to show hc(F

1 ∨ F2) � hc(F
1). Let R = (R1, R2) where R1 and

R2 are random variables as in the previous lemma. Take ε > 0. Thanks to the



108 S. Laurent

Vershik property of F2, for every small enough n there exists s2 ∈ E
(n)
2 such

that E
[
ρ
(n)
2 (πnR2, s2)

]
< ε. Take this n small enough in order to get a simple

σ(πnR1)-measurable random variable S1 such that E
[
ρ
(n)
1 (πnR1, S1)

]
< ε. The

simple random variable S = (S1, s2) has the same entropy as S1, and by the previous
lemma,

ρ(n)(πnR, inS) � ρ(n)1 (πnR1, S1)+ ρ(n)2 (πnR2, s2),

therefore E
[
ρ(n)(πnR, inS)

]
< 2ε. Since H(inS) � H(S), that shows that

H 2ε(πnR) � Hε(πnR1). Therefore hc(R;F1 ∨ F2) � hc(R1;F1). Consequently,
the inequality hc(F

1 ∨ F2) � hc(F1) holds, and the proof is over. ��

7.5 Entropy of Next-Jump Time Filtrations

In this section, we consider, for a given sequence (pn)n�0 of jumping probabilities,
the next-jump time process (Vn)n�0 introduced in Sect. 7.3. Its filtration is denoted,
as before, by F. Using the Shannon entropy as the measure of entropy, we study
the scaled entropy of F in the Kolmogorovian non-standard case, that is, in view of
Proposition 7.3.1 and Theorem 7.3.7, the case when

∑
pn = ∞ and

∑
p2
n < ∞.

It is understood that we consider this situation throughout this section. Two non-
standard next-jump time filtrations defined by two distinct jumping probabilities
sequences are not locally isomorphic, therefore there is no real interest to compare
them with the scaled entropy. But this case-study is a nice example because it
illustrates Theorem 7.4.11 and because of its simplicity.

We assume without loss of generality that pn < 1 for every n < 0. Indeed, as
seen in Sect. 7.3, pn = 1 only for finitely many values (Lemma 7.3.2). Therefore,
we can make this assumption by applying point (2) of Lemma 7.3.3 with the
largest integer n0 such that pn0 = 1, and by knowing that the scaled entropy is
an asymptotic quantity (Corollary 7.4.18).

Thus, by point (1) of Lemma 7.3.3, the identifiability condition (�) holds for
the next-jump time process when one takes X0 = V−1, and by point (3) of
Lemma 7.2.6, we know that the filtration (Fn)n�−1 is generated by the process
of Vershik progressive predictions (πnV−1)n�−1. Therefore the calculation of the
scaled entropy hc(F) is greatly simplified by Theorem 7.4.11 because hc(F) =
hc(V−1) by virtue of this theorem. Moreover, by point (3) of Lemma 7.2.6, one
can replace the ε-entropy Hε(πnV−1) with the ε-entropy Hε(Vn), considering that
Vn takes its values in the set

{
0, . . . , |n|} equipped with the iterated Kantorovich

metric ρn.
But one can even replace the ρn with the discrete 0−1 metric. Indeed, as seen

in Sect. 7.3.3, the iterated Kantorovich metrics ρn satisfy ρn(x, x′) � ε0 for every
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n � 0 and every x �= x′, where ε0 > 0 does not depend on n, x and x′. Therefore,
one can replace E

[
ρn(Vn, S)

]
with Pr(Vn �= S) in the definition of Hε(Vn), because

hc(V−1) pertains on Hε(Vn) only for small ε.
To sum up, the lower and upper scaled entropies of F are

h−c (F) = lim
ε→0

lim inf
n→−∞

Hε(Vn)

c(n)
and h+c (F) = lim

ε→0
lim sup
n→−∞

Hε(Vn)

c(n)
,

where Vn is viewed as a random variable taking its values in the set
{
0, . . . , |n|}

equipped with the discrete 0−1 metric. Thus, the calculation of hc(F) comes down
to a quite elementary problem. That does not mean its calculation is an easy task.
This problem is investigated in [14], where the right member is denoted by hc(μ),
where μ is the measure on N we introduced before Proposition 7.3.1. We noted that
this measure characterizes the sequence of jumping probabilities (pn)n�0, which
corresponds to the reversed hazard rate of μ in [14]. The next-jump time process
(Vn)n�0 is the process (X−n)n�0 with the notations of [14].

It is clear that the inequality hc(F) � 1 always holds for the scaling c(n) =
H(Vn) because Hε(Vn) � H(Vn). In [14], it is shown that H(Vn) → ∞ in
the Kolmogorovian non-standard situation. With this scaling, using the examples
studied in [14], one has some examples such that hc(F) = r for any r ∈ [0, 1].
For instance, hc(F) = 1 in the uniform case pn = (|n| + 1)−1. The jumping
probabilities of the examples in [14] yielding hc(F) < 1 are shown on Fig. 7.3.
For the examples giving hc(F) = 0 for the scaling c(n) = H(Vn), a scaling c′ such
that hc′(F) = 1 is derived in [14].
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Fig. 7.3 Jumping probabilities yielding hc(F) < 1
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7.6 Entropy of Poly-Adic Filtrations

The pioneering works of Vershik focused on poly-adic filtrations, that is to say,
filtrations F such that for every n � 0, there exists a random variable ηn uniformly
distributed on a finite set, independent of Fn−1, and such that Fn = Fn−1 ∨ σ(ηn).
Such a random variable ηn is called an innovation of F (at time n), and denoting by
rn the size of the set on which it is uniformly distributed, F is said to be (rn)n�0-
adic (this makes sense because any other innovation of F at time n is uniformly
distributed on rn values). For such filtrations, Vershik defined the exponential
entropy, originally in [18]. We will give this definition below.

In spite of the equality Fn = Fm∨σ(ηm+1, . . . , ηn) holding for everym < n � 0,
the Kolmogorov property F−∞ = {∅,�} does not ensure that Fn = σ(ηm;m � n).
In other words, it does not ensure that F is generated by the process of innovations
(ηn)n�0 In fact, standardness of a such a filtration is known to be equivalent to the
existence of a process of innovations (η′n)n�0 generating this filtration. This is one
of the main results of Vershik’s theory of filtrations. The difficult point to prove in
this result is the existence of (η′n)n�0 assuming standardness, whereas the converse
is easy to prove with the help of Proposition 7.2.4.

Throughout this section, when a (rn)n�0-adic filtration is under consideration,
we denote by (�n)n�0 the integer sequence associated to (rn)n�0 by setting �n =∏0
i=n+1 ri (agreeing with �0 = 1).
In Sect. 7.6.1, with the help of Lemma 7.6.3, we will see that the definition below

makes sense. In particular, we will notice that the πnX take only finitely many
values.

Definition 7.6.1 Let F be a (rn)n�0-adic filtration and X a F0-measurable random
variable taking only finitely many values.

1. The exponential entropy of X with respect to F is the number

h(X;F) = lim
n→−∞

H(πnX)

�n
= inf
n�0

H(πnX)

�n
∈ [0,∞)

where �n = ∏0
i=n+1 rn and H , unless something else is said, is the Shannon

entropy (in a given logarithmic base).
2. The exponential entropy, of F is h(F) = sup h(X;F) ∈ [0,∞] where the

supremum is taken over all F0-measurable random variables X taking only
finitely many values.

Note the obvious inequality hc(F) � h(F) when c is the scaling c(n) = �n.
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It is shown in [20] that h(F) = 0 when F is a standard poly-adic filtration.2 We
will not use this result in the present paper. But in the case of the slowness condition
(�) about the poly-adicity sequence (rn)n�0, it follows from Theorem 7.6.4, and
in the case of the opposite condition (¬�), it follows from Theorem 7.6.14 (see
below).

The main results of this section are listed below, where the two conditions
(�) and (∇) about the speed of the poly-adicity sequence (rn)n�0, respectively a
slowness condition and a fastness condition, are

(�) :
0∑

n=−∞

rn log rn
�n−1

<∞ and (∇) : log rn
�n

→ ∞.

1. Theorem 7.6.4, whose credit is given to Gorbulsky ([6]), is about the equality
hc(F) = h(F) between the exponential entropy and the scaled entropy with
scaling c(n) = �n under the slowness condition (�).

2. Theorem 7.6.10, due to Vershik ([18, 20]), states that poly-adic filtrations have a
zero exponential entropy under the fastness condition (∇), which is stronger than
the negation (¬�) of the slowness condition (�).

3. Theorem 7.6.14 includes Theorem 7.6.10 when the Kolmogorovian assumption
holds. It states that Kolmogorovian poly-adic filtrations have a zero exponential
entropy when the slowness condition (�) is not fulfilled. Its proof relies on
a highly non-trivial theorem by Heicklen [7], which belongs to ergodic theory
rather than probability theory.

4. Theorem 7.6.15, due to Vershik [18, 20], gives the value of the exponential
entropy for the split-word filtrations under the slowness condition (�).

Gorbulsky showed Theorem 7.6.4 in the dyadic case rn ≡ 2 only. Our proof
of the generalization to condition (�) essentially uses the same mathematics. In
addition to the points listed above, we will investigate the entropy of some filtrations
called filtrations of unordered pairs in [22], which are more or less the filtrations FX0

generated by the process (πnX0)n�0 of the Vershik progressive predictions of the
final letter X0 of a split-word process (Xn)n�0.

7.6.1 The πnX in Poly-Adic Filtrations and the Exponential
Entropy

For poly-adic filtrations, the Vershik progressive predictions πnX and the iterated
Kantorovich distances ρ(n) as defined in Sect. 7.2 have a convenient representation,

2It is clear that h(X;F) = 0 whenX is measurable with respect to σ(ηn, . . . , η0) for any process of
innovations (ηn)n�0. Thus, knowing that standardness of a poly-adic filtration means the existence
of a generating process of innovations, h(F) = 0 follows from a result similar to the left-continuity
property of the scaled entropy (Proposition 7.4.15).
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the one given in the following lemma which is a consequence of lemma 4.6 and
lemma 4.7 in [13]. For our purposes, we only state this result for a countable state
space A equipped with the 0−1 metric. In this lemma and hereafter, it is understood
that Gn is the group of automorphisms of the (rn+1, . . . , r0)-ary tree. If needed, the
reader is referred to [13] for details about the group Gn of tree automorphisms and
its action on the set of �n-words A�n .

Lemma 7.6.2 Let F be a (rn)n�0-adic filtration and X a F0-measurable random
variable taking its values in a countable set A. Then πnX can be identified to the
Gn-orbit of a random word Xn on A having length �n. Using this identification and
starting with the 0−1 metric ρ on A, the n-th iterated Kantorovich metric ρ(n) on
A(n) is transported to the metric ρ̄n on the quotient set A�n/Gn, given by

ρ̄n(!, !
′) = min

w∈!,w′∈!′ δn(w,w
′)

for every pair of orbits ! and !′, where δn(w,w′) is the Hamming distance between
the �n-words w and w′ (the proportion of positions at which the letters of w and w′
differ).

We will use this lemma throughout this section. Though we do not provide its
proof, it is easy to derive it from the first part of the following lemma.

Lemma 7.6.3 Let B−1 be a σ -field and ε0 a random variable independent of B−1
uniformly taking its values in a set with finite size r0 � 2, which we assume to be
{1, . . . , r0} without loss of generality. Define the σ -field B0 = B−1 ∨ σ(ε0).

Let X0 be a B0-measurable random variable taking its values in a Polish
space A.

1. There exist r0 random variables X−1(1), . . ., X−1(r0), taking their values in A
and measurable with respect to B−1, and such that X0 = X−1(ε0).

2. For such random variables and when A is countable, one has H(X−1) �
r0H(X0), where X−1 = (X−1(1), . . . , X−1(r0)

)
and H is the Shannon entropy.

Proof For the first point, writeX0 = f (B−1, ε0) for some B−1-measurable random
variable B−1 and some measurable function f , and set X−1(i) = f (B−1, i). For
the second point, check that the law of X0 is the average law of the X−1(i), hence
H(X−1) � H

(
X−1(1)

) + · · · + H
(
X−1(r0)

)
� r0H(X0) by concavity of the

Shannon entropy. ��
This lemma justifies that the exponential entropy is well defined (Defini-

tion 7.6.1). Indeed, apply it with B−1 = Fn, ε0 = ηn+1, X−1 = πnX and
X0 = πn+1X. Then the first part shows that πnX takes only finitely many values,
and the second part implies H(πnX) � rn+1H(πn+1X) and then, by recursively
applying this inequality one gets that the quantity H(πnX)

�n
is increasing, thereby

justifying the equality limn→−∞ H(πnX)
�n

= infn�0
H(πnX)
�n

.
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7.6.2 Gorbulsky’s Theorem

In [6], Gorbulsky proved Theorem 7.6.4 below in the case when rn ≡ 2. We show
that this result more generally holds for poly-adicity sequences (rn)n�0 satisfying
the slowness condition

(�) :
0∑

n=−∞

log rn!
�n−1

<∞, equivalent to
0∑

n=−∞

rn log rn
�n−1

<∞.

For example, all bounded sequences (rn)n�0 satisfy condition (�), and it is also
fulfilled in the case when rn = |n| + 1.

Theorem 7.6.4 Let F be a (rn)n�0-adic filtration. Assume that condition (�) is
fulfilled by the poly-adicity sequence (rn)n�0 and consider the scaling c(n) = �n.
Then the scaled entropy of X equals its exponential entropy:

hc(X;F) = lim
n→−∞

H(πnX)

�n

for every F0-measurable random variable X taking only finitely many values.
Consequently the scaled entropy hc(F) of F equals its exponential entropy h(F).

In this theorem, it is understood that we use the Shannon entropy as the measure
of entropy in the scaled entropy. The last claim of the theorem is derived from
Corollary 7.4.17.

This section is devoted to the proof of this theorem. Only Lemma 7.6.8 below
will be involved in the proof. It is a consequence of Lemma 7.6.6 and Lemma 7.6.7,
and the result of elementary analysis stated in the following lemma will be used in
Lemma 7.6.6.

Lemma 7.6.5 Let (un)n�0 and (vn)n�0 be two sequences of positive numbers.

Assume that vn ↘ 0 and
∑
unvn < ∞. Then ε

∑n(ε)
i=0 ui → 0 when ε → 0+,

where n(ε) = min{n | vn+1 < ε}.
Proof Let δ > 0. Take M1 such that

∑n
i=m+1 uivi < δ whenever n > m � M1.

Now takeM2 such that vm
∑M1
i=0 ui < δ wheneverm � M2. SetN = max{M1,M2}.

If ε � vN+1, then n(ε) > N and

ε

n(ε)∑
i=0

ui � vn(ε)
n(ε)∑
i=0

ui � vn(ε)
M1∑
i=0

ui +
n(ε)∑

i=M1+1

uivi < 2δ,

thereby showing the desired result. ��
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Fig. 7.4 The tree structure of
the word abcdefgh
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In the next lemmas, we denote by |B| the number of words contained in a subset
B ⊂ A�n . Recall that ρ̄n in the following lemma is the quotient distance introduced
in Lemma 7.6.2.

Lemma 7.6.6 Assume that condition (�) is fulfilled by the poly-adicity sequence
(rn)n�0. For any pair of orbits !,!′ ∈ A�n/Gn,

∣∣ log |!| − log |!′|∣∣
�n

� d
(
ρ̄n(!, !

′)
)
,

where d is a function satisfying limε→0 d(ε) = 0.

Proof Consider a word w of length �n with its tree structure as shown by Fig. 7.4.
We denote by !(w) its Gn-orbit.

The word w at level n is the concatenation of the rn+1 words wi of length
�n+1 at level n + 1. If the Gn+1-orbits !(wi) of the subwords wi are pairwise
distinct, then |!(w)| = rn!|!(w1)| . . . |!(wrn)|. If they are all equal, then |!(w)| =
|!(w1)| . . . |!(wrn)|. Generally, |!(w)| = Mn,1|!(w1)| . . . |!(wrn)| where Mn,1 is
a multinomial coefficient lying between 1 and rn+1!. Continuing so on, we find

log |!(w)| =
−1∑
j=n

�n/�j∑
i=1

logMj,i

whereMj,i is a multinomial coefficient lying between 1 and rj+1!. Writing another
word w′ of length �n in the same way, we get

∣∣ log |!(w)| − log |!(w′)|∣∣ �
−1∑
j=n

�n/�j∑
i=1

| logMj,i − logM ′
j,i |.

Each deviation | logMj,i − logM ′
j,i | is bounded by log rj+1!. If the letters of w

and w′ differ at ε�n positions, then at each level j there are at most min
(
�n
�j
, ε�n

)
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non-zero deviations | logMj,i − logM ′
j,i |. Therefore,

∣∣ log |!(w)| − log |!(w′)|∣∣
�n

�
k(ε)−1∑
j=n

log rj+1!
�j

+ ε
−1∑

j=k(ε)
log rj+1!

�
k(ε)−1∑
j=n

rj+1 log rj+1

�j
+ ε

−1∑
j=k(ε)

rj+1 log rj+1

where k(ε) = max{k | �−1
k−1 < ε}.

Under the (�) condition, the first sum in the right member goes to∑k(ε)−1
j=−∞

rj+1 log rj+1
�j

when n → −∞, and this goes to 0 when ε → 0 because
k(ε) goes to −∞. The second sum goes to 0 too because of Lemma 7.6.5. ��
Lemma 7.6.7 For any subset B ⊂ A�n , the log-number of words in an ε-
neighbourhood of B does not exceed

log |B| + h(ε)�n + ε�n log(#A− 1)

where h(ε) = ε log 1
ε
+ (1 − ε) log 1

1−ε .

Proof The words in an ε-ball around a �n-word w are obtained by taking k =
0, . . . , !ε�n" positions in w and changing the letters at these positions. Then the
number of such words is bounded above by

(#A− 1)!ε�n" ×
!ε�n"∑
k=0

(
�n

k

)
.

The lemma follows from the inequality

log
!ε�n"∑
k=0

(
�n

k

)
� h(ε)�n,

which is derived from the classical large deviations inequality for independent
symmetric Bernoulli variables (corollary 2.20 in [16]). ��
Lemma 7.6.8 Under condition (�), for any orbit ! ∈ A�n/Gn, the log-number of
orbits in an ε-neighborhood of ! (for the ρ̄n distance) does not exceed a value Lεn
satisfying

lim
ε→0

lim sup
n→−∞

Lεn

�n
= 0.
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Proof The number of orbits in an ε-neighbourhood Vε(!) of ! is less than the
number of words in Vε(!) divided by the minimal length of an orbit !′ in Vε(!).
Let Lεn be this ratio. Applying the two previous lemmas yields the desired result:

Lεn �
[

log |!| + h(ε)�n + ε log(#A− 1)�n
]− [ log |!| − d(ε)�n

]

= �n
(
h(ε)+ ε log(#A− 1)+ d(ε)).

��
Proof (Proof of Theorem 7.6.4) In the proof we use the notation

H(E) = −
∑
x∈E

μ(x) logμ(x)

where μ is the law of πnX and E is any set of Gn-orbits. Note that

H(E) � μ(E) log #E − μ(E) logμ(E)

because H(E) = μ(E)H(μ′)− μ(E) logμ(E) where μ′ = μ(· | E).
We use the ε-entropy as defined in Lemma 7.4.9. Let {Ai, B} be a partition

achieving Hεn (X), with Ai ⊂ B(!i, ε) and μ(B) � ε. One has

Hεn (X) = −
∑
i

μ(Ai) logμ(Ai)− μ(B) log(B)

and

H(πnX) =
∑
i

H(Ai)+H(B).

Firstly, H(B) � (log #A)ε�n − ε log ε. On the other hand,

H(Ai) � μ(Ai)Lεn − μ(Ai) logμ(Ai),

hence

∑
i

H(Ai) � Hεn (X)+ Lεn.

Thus,

Hεn (X)

�n
� H(πnX)

�n
� Hεn (X)

�n
+ Lεn − ε log ε

�n
+ (log #A)ε,

thereby yielding the theorem by applying Lemma 7.6.8. ��
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The following corollary just emphasizes that the equality hc(X) = h(X) of
Theorem 7.6.4 can be stated not only for poly-adic filtrations, but also for filtrations
immersed in a poly-adic filtration.

Corollary 7.6.9 Let F be a filtration immersed in a (rn)n�0-adic filtration. Con-
sider the scaling c(n) = �n. If (rn)n�0 fulfills the (�) condition, then

hc(X) = lim
n→−∞

H(πnX)

�n

for every simple F0-measurable random variable X.

Proof This is a direct consequence of Theorem 7.6.4 and the immersion property
(Remark 7.4.8). ��

7.6.3 (∇)-Adic Filtrations Have Zero Exponential Entropy

The (∇) condition is stronger than the negation of the (�) condition, because this
condition is the divergence of a certain sequence whereas the (�) condition is the
convergence of the series made up of the same sequence:

(∇) : log rn
�n

→ ∞.

Vershik’s following theorem is proved in [20]. Note that the hypotheses do not
require F to be Kolmogorovian.

Theorem 7.6.10 Let F be a (∇)-adic filtrations. Then it has zero exponential
entropy when we use the max-entropy as the underlying measure of entropy H (see
above Definition 7.4.1). Consequently it also has zero exponential entropy when we
use the Shannon entropy as the underlying measure of entropy, and the same result
holds for the scaled entropy with the scaling c(n) = �n.

The proof is based on the following combinatorial lemma.

Lemma 7.6.11 For an alphabet A having size #A = p, the number of orbits χpn of
the action of Gn on A�n is given by χp0 = p and the recurrence formula

χ
p

n−1 =
(
rn + χpn − 1

rn

)
,

and one has logχpn = o(�n) when condition (∇) holds.

Proof The recurrence formula obviously stems from the fact that an orbit for the
action of Gn−1 is obtained by choosing a list of rn orbits for the action of Gn, with
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possible repetitions. Then

logχpn−1 = log
[
(rn + χpn − 1) · · · (rn + 1)

]− log
[
(χ
p
n − 1)!] � 2χpn log rn

by the inequality log(rn + 1) � 2 log rn. Set tn = logχpn
�n

. Note that rn = exp(βn�n)
where βn is the quantity going to ∞ under the (∇) condition. Thus

tn−1 � 2χpn log rn
�n−1

= 2 exp(tn�n)βn�n
�n exp(βn�n)

= 2βn exp
(
(tn − βn)�n

)
.

The number of orbits cannot exceed the number of words, and this yields the
inequality tn � logp. Therefore the right member of the last inequality goes to
0 under the (∇) condition. ��
Proof (Proof of Theorem 7.6.10) Given any F0-measurable random variable X
taking its values in a finite set A, one has H0(πnX) � logχ#A

n with the notations
of the previous lemma, where H0 is the max-entropy. Then the result for the max-
entropy follows from this lemma, and the result for the Shannon entropy H follows
because of H � H0. The result for the scaled entropy follows from the obvious
inequality hc(F) � h(F). ��

7.6.4 (¬�)-Adic Filtrations Have Zero Exponential Entropy

Theorem 7.6.14 given in this section implies Theorem 7.6.10 in the case of a
Kolmogorovian filtration, but its proof relies on Heicklen’s theorem, rephrased
below in Theorem 7.6.13, whose proof is far to be trivial and belongs to ergodic
theory rather than probability theory.

Heicklen’s theorem derived in [7] deals with the ergodic free actions of the group
! =⊕0

n=−∞ Z/rnZ on a Lebesgue space, where (rn)n�0 is a sequence of integers

as before. One can write ! = ∪−∞
n=0!n where !n = ∑0

k=n+1 Z/rkZ. Then, when a
!-action on a Lebesgue space is given, one can associate to it a filtration (Fn)n�0 on
the Lebesgue space by defining Fn as the σ - field of !n-invariant sets. This filtration
is Kolmogorovian when the !-action is ergodic, and it is (rn)n�0-adic when the !-
action is free. Conversely, any Kolmogorovian (rn)n�0-adic filtration on a Lebesgue
space can be derived in this way from a free ergodic !-action. We refer the reader
to [7] or [5] for these claims.

In the present paper we never assume that the filtrations F are defined on a
Lebesgue space. But when the final σ - field F0 is essentially separable, then F

is isomorphic to a Lebesgue space (see [1]). Thus, when restricting oneself to
filtrations F whose final σ - field F0 is essentially separable, one can say that every
Kolmogorovian (rn)n�0-adic filtration comes from a free ergodic !-action in the
above way.
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The exponential entropy h(F) of the filtration F corresponding to a !-action T
and the entropy h(T ) of T are related, as shown by the next lemma. We refer to [5]
for the definition of h(T ).

Lemma 7.6.12 Let T be a free ergodic !-action on a Lebesgue space, and F be its
corresponding (rn)n�0-adic filtration. Then h(F) � h(T ).
Proof LetX0 be a simple F0-measurable taking its values in a finite setA. Let P0 be
a finite partition of the Lebesgue space generating the same σ - field asX0. Define the
partition Pn = ∨g∈!n T gP0. The σ -field generated by the partition Pn is the same
as the σ -field generated by a Fn-measurable random word Xn having �n letters on
the alphabet A, and which is one of the rn subwords of Xn−1, uniformly taken at
random, when one splits Xn−1 into rn subwords each having �n letters. Therefore,
the n-th Vershik progressive prediction πnX0 of X0 is the orbit of Xn under the
action of the group Gn of tree automorphims. We refer to [13] for this claim, as we
referred for Lemma 7.6.2. Hence, the exponential entropy h(X0;F) of X0,

h(X0;F) := lim
n→−∞

H(πnX0)

�n
,

satisfies

h(X0;F) � lim
n→−∞

H(Xn)

�n
=: h(T , P0) � h(T ) := sup

P finite partition
h(T , P ).

Therefore h(F) � h(T ). ��
Heicklen proved the following theorem.

Theorem 7.6.13 (Heicklen [7]) Let T be a free ergodic !-action on a Lebesgue
space, and F be its corresponding filtration. When the (�) condition about the
sequence (rn)n�0 does not hold, there exists an action S with zero entropy and
whose corresponding filtration is isomorphic to F.

From this theorem and the previous lemma, one easily gets the following
theorem.

Theorem 7.6.14 Let F be a Kolmogorovian (¬�)-adic filtration, whose final
σ - field F0 is essentially separable. Then it has a zero exponential entropy, and
consequently it also has a zero scaled entropy hc(F) with the scaling c(n) = �n.
Proof Up to isomorphism, F is a filtration on a Lebesgue space, and it is the filtra-
tion corresponding by the way explained above to a free ergodic !-action on this
Lebesgue space. The result follows from Heicklen’s theorem and Lemma 7.6.12.

��
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7.6.5 (�)-Adic Split-Word Filtrations

The poly-adic filtrations of the split-word processes with i.i.d. letters were studied
in [3, 4, 10, 15]. In the more general case of stationary letters, standardness of
these filtrations is closely connected, as shown in [13], to the notion of scale of
an automorphism introduced by Vershik in [19]. Theorem 7.6.15 below, which
is a rephrasing of theorem 4.1 in [20], provides the exponential entropy of these
filtrations under condition (�). The hypotheses of the theorem do not require F to
be Kolmogorovian.

Given a sequence of integers (rn)n�0, setting as before �n = rn+1 . . . r0, and
given an alphabet A, a (rn)n�0-adic split-word process on A is a Markov process
(Xn, ηn)n�0 satisfying conditions below for each n � 0, where we denote by F the
filtration it generates:

• Xn is a random word on A of length �n;
• ηn is a random variable uniformly distributed on {1, 2, . . . , rn} and is independent

of Fn−1, and the word Xn is the ηn-th letter of of Xn−1 treated as a rn-word on
A�n .

Obviously the filtration F generated by (Xn, ηn)n�0 is a (rn)n�0-adic filtration for
which (ηn)n�0 is a process of innovations.

For example, one can define such a process by taking a stationary probability
measure on AZ and then taking for the law of Xn the projection of this measure on
�n consecutive coordinates. In this case and when A is finite, by standard ergodic
theory, the Kolmogorov entropy of this stationary probability measure can be written

θ = lim
n→−∞

H(Xn)

�n
∈ [0,+∞) (7.6)

when we use the Shannon entropy H (with a given logarithmic base). More
generally, it follows from Lemma 7.6.3 that this limit θ exists for any split-word
process on a finite alphabet A and

θ = inf
n�0

H(Xn)

�n
.

With the terminology of [8], F is an adic filtration on the Bratteli graph shown on
Fig. 7.5, called the graph of the ordered pairs by Vershik (in contrast with the graph
of unordered pairs that we will see in Sect. 7.6.6).

The proof of the theorem involves the cardinal of the group of tree automor-
phisms Gn given by

log #Gn = �n
0∑

m=n+1

log rm!
�m−1

.
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Fig. 7.5 The Bratteli graph of the ordered pairs

Theorem 7.6.15 Assume A is finite. For the scaling c(n) = �n and under condition
(�), the scaled entropy of F is hc(F) = θ when we use the Shannon entropy as the
underlying measure of entropy. It is also the exponential entropy of F because of
Theorem 7.6.4.

Proof By Theorem 7.4.19, the c-scaled entropy hc(F) is equal to the c-scaled
entropy of the filtration E generated by the Markov process (Xn)n�0. By Corol-
lary 7.4.20 applied with φ(n) = n, we know that hc(E) = limm→−∞ hc(Xm;E).
Furthermore, hc(Xm;E) = hc(Xm;F) because E is immersed in F by lemma 1.6 of
[10].

Thus we know that hc(F) = limm→−∞ hc(Xm;F). And we know that
hc(Xm;F) = limn→−∞ H(πnXm)

�n
by Theorem 7.6.4.

We firstly compare H(πnX0)/�n with H(Xn)/�n. The n-th Vershik progressive
prediction πnX0 ofX0 is identified with the orbit ofXn under the action of the group
of tree automorphisms Gn. Below we denote the group of tree automorphisms by
Gn
({ri}0

i=n+1

)
to show its dependence on the rn. Therefore H(πnX0) = H(Xn) −

H(Xn | πnX0), and the conditional entropy H(Xn | πnX0) is less than the
logarithm of the length of the orbit πnX0, and a fortiori it is less than the logarithm
of the number of tree automorphisms. Thus,

H(Xn) � H(πnX0) � H(Xn)− log #Gn
({ri}0

i=n+1

)
.

In the same way, for n < m,

H(Xn) � H(πnXm) � H(Xn)− log #Gn−m
({ri}mi=n+1

)
,
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therefore

H(Xn)

�n
� H(πnXm)

�n
� H(Xn)

�n
− log #Gn−m

({ri}mi=n+1

)

�n

= H(Xn)

�n
− 1

�n

�n

�m

m∑
k=n

log rk+1!
�k/�m

= H(Xn)

�n
−

m∑
k=n

log rk+1!
�k

,

hence

θ � lim
n→−∞

H(πnXm)

�n
� θ −

m∑
k=−∞

log rk+1!
�k

.

The (�) condition being limm→−∞
∑m
k=−∞

log rk+1!
�k

= 0, the proof is over. ��
To illustrate Theorem 7.4.19 and Theorem 7.4.22, consider the filtration G of the

split-word process (Xn, ηn)n�0, with uniform letters on an alphabetA = {a, b, c, d}
having four letters. We know that hc(G) = log 4 by the previous theorem. Now take
the function f : {a, b, c, d} → {0, 1} sending a and b to 0, and sending c and d to
1. Then the process

(
f (Xn), ηn

)
n�0, where f (Xn) denotes the word obtained by

applying f to the letters of Xn, is the split-word process with uniform letters on the
alphabet {0, 1}. The scaled entropy of its filtration F is hc(F) = log 2. The filtration
F is immersed in G. However, Theorem 7.4.19 shows that G is not immersible in a
parametric extension of F and Theorem 7.4.22 shows that G is not immersible in an
independent enlargement of F with a standard filtration.

As a side note, let us mention that, for some reasons beyond the scope of
this paper, every Kolmogorovian (rn)n�0-adic filtration whose final σ - field is
essentially separable is generated by a split-word process on a countable alphabet
as long as its final σ -field is essentially separable. This follows from the ergodic
theoretic fact that such a filtration can always be derived from a free ergodic !-
action on a Lebesgue space, as said in Sect. 7.6.4, and from the existence of a
countable generator for such an action.

7.6.6 Dyadic Filtrations of Unordered Pairs

Let (Xn, εn)n�0 be a dyadic split-word process and F the filtration it generates.
Consider the scaling c(n) = �n = 2|n|. We know the scaling entropy of F by
Theorem 7.6.15. It is interesting to wonder about the scaled entropy hc(X0) of the
final letter X0, that is to say, in view of Theorem 7.4.11, the scaled entropy hc(F

X0)
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Fig. 7.6 The Bratteli graph of the unordered pairs [22]

of the filtration FX0 generated by the Markov process (πnX0)n�0. Here we provide
a result for the case of an alphabet A = {a, b} having only two letters.

The Markov process (πnX0)n�0 can be seen as a random walk on the vertices of
the graph of the unordered pairs shown on Fig. 7.6, and which can be found in [22].

The filtration FX0 generated by (πnX0)n�0 is not dyadic, because πn+1X0 is
deterministic given Fn for certain values of πnX0. This is shown on Fig. 7.6 by the
double edges. Nevertheless, one has hc(X0) = h(X0) by Corollary 7.6.9. Indeed,
there is a dyadic superinnovation of FX0 , that is to say a sequence (ε′n)n�0 of
independent symmetric Bernoulli random variables which is a superinnovation (see
Theorem 7.4.19) of FX0 and which is a process of innovations of the enlarged
filtration GX0 defined by GX0

n = FX0
n ∨ σ(ε′m;m � n). To construct such a dyadic



124 S. Laurent

superinnovation, consider for every n � 0 an arbitrary but fixed order on the set of
Gn-orbits, and set

ε′n =

⎧⎪⎪⎨
⎪⎪⎩

εn if πn−1X0 is symmetric;

1 if πn−1X0 = {!1, !2} with !1 < !2 and πnX0 = !1;
2 if πn−1X0 = {!1, !2} with !1 < !2 and πnX0 = !2.

As we previously recalled, hc(X0) = hc(F
X0) because of Theorem 7.4.11.

Moreover we know that hc(F
X0) = hc(G

X0) by Theorem 7.4.19. In fact it can
be shown, with the help of Theorem 7.4.19 and lemma 5.3 in [8], that one can
always “drop” the multiple edges when we are interested in the scaling entropy of
the filtration associated (in the way explained in [8]) to a Bratteli graph endowed
with a central probability measure.

The bounds for hc(X0) we give in Proposition 7.6.18 are derived from the two
following lemmas. The first one, giving the maximal length of a Gn-orbit, is a copy
of lemma 3.6 in [20], to which we refer for the proof. The second one gives an
asymptotic equivalent of the number of Gn-orbits (the number of vertices at level n
of the graph of the unordered pairs). In [20], it is stated in lemma 3.7 but the given
value of γ is not correct.

Lemma 7.6.16 For an alphabet with two letters, the maximal length of a Gn-orbit

is 2
3
4 2|n|−1 for every n � −2.

Lemma 7.6.17 For an alphabet with two letters, the base 2 logarithm of the number
χn of Gn-orbits is equivalent to γ 2|n| where 0.428 < γ < 0.429.

Proof It is easy to see that the number of orbits χn is given by χ0 = 2 and χn−1 =
χn(χn+1)

2 (this is a particular case of Lemma 7.6.11). By the equality

log2 χn−1

2|n−1| = log2 χn

2|n| +
log2

(
1 + 1

χn

)
− 1

2|n−1| ,

the sequence log2 χn
2|n| is decreasing, and for every n < n0 < 0,

log2 χn0

2|n0| − 1

2|n0| �
log2 χn

2|n| � log2 χn0

2|n0| .

Taking n0 = −11 gives the bounds on the limit γ . ��
Proposition 7.6.18 For an alphabet with two letters,

θ − 3

4
� h(X0) � min(θ, γ )
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where γ is given in Lemma 7.6.17 and θ is defined in Eq. (7.6). Here we use the
Shannon entropy with logarithmic base 2 as the underlying measure of entropy and
h(X0) is the exponential entropy of X0 (Definition 7.6.1), but by Theorem 7.6.4 it is
the same as the scaled entropy hc(X0) with the scaling c(n) = �n = 2|n|.

Proof We start, as in the proof of Theorem 7.6.15, with the equality H(πnX0) =
H(Xn)−H(Xn | πnX0). But this time we bound from above the conditional entropy
H(Xn | πnX0) by the logarithm of the maximal length of a Gn-orbit. In addition
we bound from above H(πnX0) by the logarithm of the number ofGn-orbits. Then,
using Lemma 7.6.16 and Lemma 7.6.17, we get

H(Xn)

2|n| − 3

4
� H(πnX0)

2|n| � min

{
H(Xn)

2|n| ,
log2 χn

2|n|

}
,

and then the result follows by taking the limit. ��
For example, this result shows that the filtration FX0 in the uniform case θ = 1

is not isomorphic to the filtration FX0 in a case when θ < 1
4 .

As an application of Theorem 7.4.19 and Theorem 7.4.22, consider the uniform
case θ = 1. Then we know that hc(F) = θ by Theorem 7.6.15, whereas hc(F

X0) �
γ < θ by Proposition 7.6.18. Thus by Theorem 7.4.19 we know that F is not
immersible in a parametric extension of FX0 and by Theorem 7.4.22, we know that
F is not immersible in an independent enlargement of FX0 with a standard filtration.
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Chapter 8
Solving Rough Differential Equations
with the Theory of Regularity Structures

Antoine Brault

Abstract The purpose of this article is to solve rough differential equations with the
theory of regularity structures. These new tools recently developed by Martin Hairer
for solving semi-linear partial differential stochastic equations were inspired by the
rough path theory. We take a pedagogical approach to facilitate the understanding
of this new theory. We recover results of the rough path theory with the regularity
structure framework. Hence, we show how to formulate a fixed point problem in
the abstract space of modelled distributions to solve the rough differential equations.
We also give a proof of the existence of a rough path lift with the theory of regularity
structure.

8.1 Introduction

Let T > 0 be a finite time horizon. Suppose that we want to solve the following
ordinary differential equation

∀t ∈ [0, T ], dyt = F(yt )dWt, y0 = ξ, (8.1)

where W : [0, T ] → R
n and F : R

d → L(Rn,Rd) are regular functions.
Equation (8.1) can be reformulated as

∀t ∈ [0, T ], yt = ξ +
∫ t

0
F(yu)dWu. (8.2)
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WhenW is smooth, Eq. (8.1) is well-defined as

yt = ξ +
∫ t

0
F(yu)Ẇudu,

where Ẇ represents the derivative of W . Therefore, it becomes an ordinary
differential equation that can be solved by a fixed-point argument.

Unfortunately, there are many natural situations in which we would like to
consider the equation of type (8.2) for an irregular path W . This is notably the case
when dealing with stochastic processes. For example the paths of the Brownian
motion are almost surely nowhere differentiable [11]. It is then impossible to
interpret (8.1) in a classical sense. Indeed, even if Ẇ is understood as a distribution,
it is not possible in general to define a natural product between distributions, as y is
itself to be thought as a distribution.

On the one hand, to overcome this issue, Itô’s theory [11] was built to define
properly an integral against a martingale M (for example the Brownian motion):∫ t

0 ZudMu, where Z must have some good properties. The definition is not pathwise
as it involves a limit in probability. Moreover, this theory is successful to develop
a stochastic calculus with martingales but fails when this property vanishes. This is
the case for the fractional Brownian motion, a natural process in modelling. Another
bad property is that the mapW �→ y is not continuous in general with the associated
uniform topology [13].

On the other hand, Young proved in [19] that we can define the integral of f
against g if f is α-Hölder, g is β-Hölder with α + β > 1 as

∫ t
0
f dg = lim|P |→0

∑
u,v successive points in P

f (u)(g(v)− g(u)),

where P is a subdivision of [0, t] and |P | denotes its mesh. This result is sharp, so
that it is not possible to extend it to the case α+β ≤ 1 [19]. IfW is α-Hölder it seems
natural to think that y is α-Hölder, too. So assuming α < 1/2 then 2α < 1, and
Young’s integral fails to give a meaning to (8.1). The fractional Brownian motion
which depends on a parameter H giving its Hölder regularity cannot be dealt with
Young’s integral as soon as H ≤ 1/2.

Lyons introduced in [15] the rough path theory which overcomes Young’s
limitation. The main idea is to construct for 0 ≤ s ≤ t ≤ T an object Ws,t which
“looks like”

∫ t
s
(Wu −Ws)dWu and then define an integral against (W,W). This is

done with the sewing lemma (Theorem 8.27). This theory enabled to solve (8.1) in
most of the cases and to define a topology such that the Itô’s map (W,W) �→ y

is continuous. Here, the rough path (W,W) “encodes” the path W with algebraic
operations. It is an extension of the Chen series developed in [3] and [14] to
solve controlled differential equations. Since the original article of T. Lyons, other
approaches of the rough paths theory were developed in [5, 8] and [1]. The article



8 Solving Rough Differential Equations with the Theory of Regularity Structures 129

[4] deals with the linear rough equations with a bounded operators. For monographs
about the rough path theory, the reader can refer to [16] or [7].

Recently, Hairer developed in [10] the theory of regularity structures which can
be viewed as a generalisation of the rough path theory. It allows to give a good
meaning and to solve singular stochastic partial differential equations (SPDE). One
of the main ideas is to build solutions from approximations at different scales. This
is done with the reconstruction theorem (Theorem 8.46). Another fruitful theory was
introduced to solve SPDE in [9] and also studied in [2].

The main goal of this article is to make this new theory understandable to people
who are familiar with rough differential equations or ordinary differential equations.

Thus, we propose to solve (8.1) with the theory of regularity structures, when
the Hölder regularity ofW is in (1/3, 1/2]. In particular, we build the rough integral
(Theorem 8.27) and the tensor of order 2: W (Theorem 8.18) with the reconstruction
theorem.

Our approach is very related to [6, Chapter 13] where is established the
link between rough differential equations and the theory of regularity structures.
However, we give here the detailed proofs of Theorems 8.18 and 8.27 with the
reconstruction theorem. It seems important to make the link between the two
theories but is skipped in [6].

This article can be read without knowing about rough path or regularity structure
theories.

After introducing notation in Sect. 8.2, we introduce in Sect. 8.3 the Hölder
spaces which allow us to “measure” the regularity of a function. Then, we present
the rough path theory in Sect. 8.4. In Sects. 8.5 and 8.6 we give the framework of the
theory of regularity structures and the modelled distributions for solving (8.1). We
prove in Sects. 8.7 and 8.8 the existence of the controlled rough path integral and
the existence of a rough path lift. Finally, after having defined the composition of
a function with a modelled distribution in Sect. 8.9, we solve the rough differential
equation (8.1) in Sect. 8.10.

8.2 Notations

We denote by L(A,B), the set of linear continuous maps between two vector spaces
A and B. Throughout the article, C denotes a positive constant whose value may
change. For two functions f and g, we write f � g if there is a constant C such
that f ≤ Cg. The symbol := means that the right hand side of the equality defines
the left hand side. For a function Z from [0, T ] to a vector space, its increment
is denoted by Zs,t := Zt − Zs . If X1, . . . , Xk are k vectors of a linear space, we
denote by Vect〈X1, . . . , Xk〉 the subspace generated by the linear combinations of
these vectors. Let T be a non-negative real, we denote by [0, T ] a compact interval
of R. For a continuous function f : [0, T ] → E, where (E, ‖·‖) is a Banach space,
we denote by ‖f ‖∞,T the supremum of ‖f (t)‖ for t ∈ [0, T ]. The tensor product
is denoted by ⊗. We denote !·" the floor function.
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8.3 Hölder Spaces

8.3.1 Classical Hölder Spaces with a Positive Exponent

We introduce Hölder spaces which allow us to characterize the regularity of a non-
differentiable function.

Definition 8.1 For 0 ≤ α < 1 and T > 0, the function f : [0, T ] → E is α-
Hölder if

sup
s �=t∈[0,T ]

‖f (t)− f (s)‖
|t − s|α < +∞.

We denote by Cα(E) the space of α-Hölder functions equipped with the semi-norm

‖f ‖α,T := sup
s �=t∈[0,T ]

‖f (t)− f (s)‖
|t − s|α .

If α ≥ 1 such that α = q + β where q ∈ N and β ∈ [0, 1), we set f ∈ Cα(E) if
f has q derivatives and f (q) is β-Hölder, where f (q) denotes the derivative of order
k (f (0) := f ).

We denote by Cα = Cα(Rn). For q ∈ N, we denote by Cqb the set of all functions
f ∈ Cq such that

‖f ‖Cqb :=
q∑
k=0

∥∥∥f (k)
∥∥∥∞ < +∞. (8.3)

Finally, for q ∈ N, we define Cq0 the set of functions in Cqb with a compact
support.

Remark 8.2 The linear space of α-Hölder functions Cα(E) is a non separable
Banach space endowed with one of the two equivalent norms ‖f (0)‖ + ‖f ‖α,T
or ‖f ‖∞,T + ‖f ‖α,T .

Remark 8.3 If f is α-Hölder on [0, T ], then f is β-Hölder for β < α, i.e. Cα(E) ⊂
Cβ(E).

8.3.2 Localised Test Functions and Hölder Spaces
with a Negative Exponent

In Eq. (8.1), typicallyW is inCα with α ∈ (0, 1). We need to deal with the derivative
of W is the sense of distribution which should be of negative Hölder regularity
α − 1 < 0. We give in this section the definition of the space Cα with α < 0. We
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show in Lemma 8.10 that an Hölder function is α-Hölder if and only if the derivative
in the sense of distribution is α − 1-Hölder with α ∈ (0, 1).

For r > 0, we denote by Br the space of all functions in η ∈ Crb compactly
supported on [−1, 1], such that ‖η‖Crb ≤ 1.

Definition 8.4 For λ > 0, s ∈ R and a test function η ∈ Br, we define the test
function localised at s by

ηλs (t) :=
1

λ
η

(
t − s
λ

)
,

for all t ∈ R.

Remark 8.5 The lower is λ, the more ηλs is localised at s, as can be seen in Fig. 8.1.

Remark 8.6 We work here with t, s ∈ R, because we want to solve stochastic
ordinary differential equations. But in the case of stochastic partial differential
equations, the parameters t and s belong to R

e where e is an integer, see [10].

Definition 8.7 For α < 0, we define the Hölder space Cα as elements in the dual
of Cr0 where r is an integer strictly greater than −α and such that for any ξ ∈ Cα
the following estimate holds

|ξ(ηλs )| ≤ C(T )λα, (8.4)

2
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0
0 0.5 1.51 2

Fig. 8.1 Representation of ηλs for s = 1, λ ∈ {0.5, 0.2, 0.1, 0.05} and with η(s) = exp(−1/(1 −
s2))1(−1,1)(s)
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where C(T ) ≥ 0 is a constant uniform over all s ∈ [0, T ], λ ∈ (0, 1] and η ∈ Br .
We define the semi-norm on Cα as the lowest constant C(T ) for a fixed compact

[0, T ], i.e

ξα,T := sup
s∈[0,T ]

sup
η∈Br

sup
λ∈(0,1]

∣∣∣∣
ξ(ηλs )

λα

∣∣∣∣ .

Remark 8.8 The space Cα does not depend on the choice of r , see for example [6]
Exercise 13.31, p. 209.

Remark 8.9 With Definition 8.1, we can give a meaning of an α-Hölder function
for α ∈ R. Moreover it is possible to show that if f is a function in Cα with α =
q + β > 0 where q is an integer and β ∈ (0, 1), then for every x ∈ [0, T ] and
localised functions ηλx ,

|(f − Px)(ηλx)| ≤ Cλβ,

where C is uniform over x ∈ [0, T ], λ ∈ (0, 1] and η ∈ Br (r a positive integer), Px
is the Taylor expansion of f of the order q in x, and f −Px is view as the canonical
function associated.

Now, when we say that f ∈ Cα we should distinguish two cases:

• if α ≥ 0, f is an α-Hölder function in the sense of Definition 8.1
• if α < 0, f is an α-Hölder distribution in the sense of Definition 8.7.

We give here a characterization of the space Cα for α ∈ (−1, 0) which is useful
to make a link between the rough path and the regularity structures theories.

Lemma 8.10 For any β ∈ (0, 1), the distribution ξ ∈ Cβ−1 if and only if there
exist a function z ∈ Cβ such that z(0) = 0 and

∀η ∈ C1
0 , ξ(η) = −〈z, η′〉. (8.5)

Which means that z′ = ξ in the sense of distribution. Moreover, for all t ∈ [0, 1],

z(t) =
∑
k∈Il

〈ξ, φlk〉
∫ t

0
φlk +

∑
j≥l

∑
k∈Ij

〈ξ, ψjk 〉
∫ t

0
ψ
j
k ,

where φ,ψ are defined in Theorem 8.11 with a compact support in [−c, c] (c ≥ 0),
l is an integer such that 2−lc ≤ 1 and Ij := [−!c", 2j + !c"]⋂Z.

The proof of Lemma 8.10 requires to introduce elements of the wavelet theory. The
proof of the following theorem can be found in [18].

Theorem 8.11 There exist φ,ψ ∈ C1
0(R) such that for all n ∈ N

{φik := 2i/2φ(2i · −k), k ∈ Z} ∪ {ψjk := 2j/2ψ(2j · −k), k ∈ Z, j ≥ i} (8.6)
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is an orthonormal basis of L2(R). This means that for all f ∈ L2(R), i ∈ N we can
write

f (t) =
+∞∑
j≥i

∑
k∈Z

〈f,ψjk 〉ψjk (t)+
∑
k∈Z

〈f, φik〉φik(t), (8.7)

where the convergence is in L2(R). Moreover, we have the very useful property,

∫
ψ(t)tkdt = 0, (8.8)

for k ∈ {0, 1}.
Remark 8.12 The notation in Definition 8.4 for ηλs and in Theorem 8.11 for φik , ψ

j
k

are similar but the meaning are slightly different.

We now proceed to the proof of Lemma 8.10.

Proof (Lemma 8.10) The first implication is trivial and does not require the wavelet
analysis. If there exists z ∈ Cα such that for any η ∈ C1

0 , ξ(η) = −〈z, η̇〉, then for
λ ∈ (0, 1) and s ∈ R,

ξ(ηλs ) = − 1

λ2

∫
R

z(u)η̇

(
u− s
λ

)
du

= − 1

λ2

∫
R

(z(u)− z(−λ+ s))η̇
(
u− s
λ

)
du,

where the last equality holds because η is compactly supported.
With the condition η ∈ B1, u �→ η̇((u − s)/λ) is supported on [−λ + s, λ + s],

which yields to the bound

|ξ(ηλs )| ≤ 2 ‖η‖C1 ‖z‖α λα−1, (8.9)

and proves that ξ ∈ Cα−1.
Now, we prove the converse. Let φ,ψ ∈ C1

0 be defined in Theorem 8.11. Let
c ≥ 0 be a constant such that supports of φ and ψ are in [−c, c]. We denote l an
integer such that 2−lc ≤ 1. Thus, the support of φl0 is in [−1, 1] and the support of

ψ
j
k is smaller than 2 for j ≥ l.
For ξ ∈ Cα−1 for α ∈ (0, 1) we define for t ∈ [0, 1],

z(t) :=
∑
k∈Z

〈ξ, φlk〉
∫ t

0
φlk +

∑
j≥l

∑
k∈Z

〈ξ, ψjk 〉
∫ t

0
ψ
j
k . (8.10)
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Noting that for j ≥ l and k ∈ Z, φlk and ψlk are compactly supported in [2−j (k −
c), 2−j (k + c)], the terms

∫ 1
0 φ

j
k and

∫ 1
0 ψ

j
k vanish when 2−j (k + c) ≤ 0 and 1 ≤

2−j (k − c). Thus, we can rewrite (8.10) as

z(t) =
∑
k∈Il

〈ξ, φlk〉
∫ t

0
φlk +

∑
j≥l

∑
k∈Ij

〈ξ, ψjk 〉
∫ t

0
ψ
j
k , (8.11)

where Ij := [−!c", 2j + !c"]⋂Z. The series on the right hand side of (8.10)
converges in the sense of distributions. We need to justify that the limit z is in Cα .

We denote for any integer N ∈ N,

SzN :=
N∑
j=l
Sj , (8.12)

where Sj (t) :=∑k∈Il 〈ξ, ψ
j
k 〉
∫ t

0 ψ
j
k . According to (8.4), for all j ≥ l and k ∈ Ij

|〈ξ, ψjk 〉| ≤ C2j/2−jα.

For |t − s| ≤ 1, let j0 ≤ N be an integer such that 2−j0 ≤ |t − s| < 2−j0+1. This is
always possible for N large enough. On the one hand, if l ≤ j0, for l ≤ j ≤ j0,

|Sj (t)− Sj (s)| ≤
∥∥∥S′j
∥∥∥∞ |t − s|

≤ |t − s| sup
u∈[0,1]

∑
Ij

|〈ξ, ψjk 〉| · |ψjk (u)|

≤ C2j (1−α)|t − s|, (8.13)

where we use the fact that
∑
k∈Ij |ψ(2j t − k)| ≤ C for a constant C ≥ 0, because

ψ is compactly supported. On the other hand, for j > max (j0, l),

|Sj (t)− Sj (s)| ≤ 2
∥∥Sj
∥∥∞ (8.14)

≤ 2 sup
u∈[0,1]

2j−1∑
k=0

|〈ξ, ψjk 〉| · |2−j ψ̂jk (u)|, (8.15)

≤ 2C2−jα sup
u∈[0,1]

2j−1∑
k=0

|ψ̂(2j u− k)|, (8.16)
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where ψ̂ := ∫ t0 ψ . Because
∫
R
ψ = 0, there is a constant C′ ≥ 0 independent of j

such that
∑2j−1
k=0 |ψ̂(2j u− k)− ψ̂(−k)| < C′. So finally, for j > max (j0, l),

|Sj (t)− Sj (s)| ≤ C2−jα. (8.17)

Thus, combining (8.13) and (8.17), for N ≥ l,
N∑
j=l

|Sj (t)− Sj (s)| ≤ C|t − s|
j0∑
j=l

2j (1−α) + C
∞∑

j=j0+1

2−jα

≤ C′|t − s|α,

where C′ is a new constant (
∑j0
j=l 2j (1−α) = 0 if j0 < l). It follows that

∥∥SzN
∥∥
α,1 is

uniformly bounded in N and thus that z ∈ Cα .
Now, we want to check that ξ = ż in the distribution framework. For any η ∈ C2

0 ,

〈z, η̇〉 =
∑
k∈Z

〈ξ, φlk〉
〈 ∫ t

0
φlk, η̇

〉
+
∑
j≥l

∑
k∈Z

〈ξ, ψjk 〉
〈 ∫ t

0
ψ
j
k , η̇
〉

= −
∑
k∈Z

〈ξ, φlk〉〈φlk, η〉 −
∑
j≥l

∑
k∈Z

〈ξ, ψjk 〉〈ψjk , η〉

= −〈ξ,
∑
k∈Z
φlk〈φlk, η〉 +

∑
j≥l

∑
k∈Z
ψ
j
k 〈ψjk , η〉〉

= −〈ξ, η〉,

where the commuting of the serie and ξ is justified by the continuity of ξ in C1
0 and

the convergence of the following serie in C1
0 ,

S
η
N :=

N∑
j=l

∑
k∈Z
ψ
j
k 〈ψjk , η〉. (8.18)

Indeed, we have

|〈ψjk , η〉| ≤ 2−j/2
∣∣∣∣
∫
ψ(x)η(2−j (x + k))dx

∣∣∣∣

≤ 2−j/2
∫

|ψ(x)||η(2−j (x + k))− η(2−j k)− η′(2−j k)(2j x)|dx

≤ ‖ψ‖∞
∥∥η′∥∥∞ 2−j/22−2j ,
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where we use the fact that
∫
ψ(t)tk = 0 for an integer k ≤ 1. This implies that

N∑
j=l

∥∥∥∥∥
∑
k∈Z
ψ
j
k 〈ψjk , η〉

∥∥∥∥∥
C1

≤
N∑
j=l

∥∥∥∥∥
∑
k∈Z
ψ
j
k 〈ψjk , η〉

∥∥∥∥∥
∞

+
N∑
j=l

∥∥∥∥∥
∑
k∈Z

2jψ ′j
k 〈ψjk , η〉

∥∥∥∥∥
∞

≤
⎛
⎝
N∑
j=0

2−2j +
N∑
j=0

2−j
⎞
⎠ ‖ψ‖∞

∥∥η′∥∥∞ ,

which proves that SηN is absolutely convergent in C1
0 .

Now by density of C2
0 in C1

0 and the continuity of ξ on C1
0 we conclude that

〈z, η̇〉 = −〈ξ, η〉 holds for η ∈ C1
0 . ��

8.4 Elements of Rough Path Theory

We introduce here the elements of the rough path theory for solving Eq. (8.2). The
notions discussed are reformulated in the regularity structure framework in the
following sections. For an extensive introduction the reader can refer to [6], and
for complete monographs to [7, 16].

8.4.1 The Space of Rough Paths

LetW be a continuous function from [0, T ] to R
n.

We set α ∈ (1/3, 1/2]. Then, (8.2) has not meaning, because the integral term is
not defined. The main idea of the rough path theory is to define an object Ws,t which
has the same algebraic and analytical properties as

∫ t
s
Ws,u ⊗ dWu, the integral of

the increment of the path against itself.
The importance of the iterated integrals can be understood with the classical

linear differential equations where the solutions are provided with the exponential
function. Indeed, ifW : [0, T ] → R is smooth, the solutions of

dyt = ytdWt (8.19)

are

ys,t = exp(Ws,t ) = 1 +
∫ t
s

dWt1,s +
∫ t
s

∫ t1
s

dWt2,sdWt1,s + · · · . (8.20)
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Definition 8.13 An α-Hölder rough path with α ∈ (1/3, 1/2] is an ordered pair
W := (W,W) of functions, where W : [0, T ] → R

n and W : [0, T ]2 → R
n ⊗ R

n

such that

1. For s, u, t ∈ [0, T ], Ws,t − Ws,u − Wu,t = Ws,u ⊗Wu,t (Chen’s relation), i.e.,
for every 1 ≤ i, j ≤ n, Wi,j

s,t −W
i,j
s,u −W

i,j
u,t = Wi

s,uW
j
u,t .

2. The functionW is α-Hölder and W is 2α-Hölder in the sense

‖W‖2α,T := sup
s �=t∈[0,T ]

∥∥Ws,t

∥∥
|t − s|2α < +∞.

One calls W the second order process. We denote by C α the space of α-Hölder
rough paths endowed with the semi-norm

‖W‖α,T = ‖W‖α,T + ‖W‖2α,T .

Remark 8.14 The second order process Ws,t can be thought of as
∫ t
s
Ws,u ⊗ dWu.

Remark 8.15 The first condition which is called Chen’s relation represents the
algebraic property of

∫ t
s
Ws,u ⊗ dWu. Indeed, ifW is smooth,

∫ t
s

W i
s,vẆ

j
v dv −

∫ u
s

Wi
s,vẆ

j
v dv −

∫ t
u

W i
u,vẆ

j
v dv = Wi

s,uW
j
u,t

for all 1 ≤ i, j ≤ n and 0 ≤ s ≤ u ≤ t .
Remark 8.16 The second condition is also an extension of the analytic property of
the smooth case.

Remark 8.17 If W is a second order process of W , for any 2α-Hölder function F
taking values in R

n ⊗ R
n, (s, t) �→ Ws,t + Ft − Fs satisfies also the two properties

of Definition 8.13. So if W exists, it is not unique at all.

Building W fromW is non-trivial as soon as n ≥ 2.

Theorem 8.18 For any W ∈ Cα with α ∈ (1/3, 1/2] there exists a rough path lift
W, i.e. W = (W,W) ∈ C α in a way that the map W �→ W is continuous for the
topology defined in Definition 8.13.

Proof This result was proved in [17]. We prove of this result in the case α ∈
(1/3, 1/2] in Sect. 8.8 as an application of the reconstruction theorem (Theo-
rem 8.46). ��

8.4.2 Controlled Rough Paths

The aim of this section is to define an integrand against W, called a controlled
rough path by W . This approach was developed by Gubinelli in [8]. We introduce



138 A. Brault

a function with the same regularity as W which is not differentiable with respect to
time but with respect toW itself. This is the concept of the Gubinelli’s derivative.

Definition 8.19 Let W be in Cα , we call a controlled rough path by W the pair
(y, y′) ∈ Cα(Rd)× Cα(Rd×n) such that

ys,t = y′sWs,t + Rys,t , (8.21)

with ‖Ry‖2α,T < +∞. The function y′ is the Gubinelli’s derivative of y with
respect toW .

We denote D2α
W the space of the controlled rough paths (y, y′) driven by W

endowed with the semi-norm

∥∥(y, y′)∥∥W2α,T := ∥∥y′∥∥
α,T

+ ∥∥Ry∥∥2α,T . (8.22)

Remark 8.20 The identity (8.21) looks like a Taylor expansion of first order

ft = fs + f ′
s (t − s)+O(|t − s|2),

but (Wt − Ws) substitutes the usual polynomial expression (t − s), y′s the normal
derivative and the remainder term is of order 2α whereas order 2. The theory of
regularity structures is a deep generalization of this analogy.

Remark 8.21 The Gubinelli’s derivative y′ is matrix-valued which depends on y
andW .

Remark 8.22 Unlike the rough path space C α (see Definition 8.13) which is not a
linear space, D2α

W is a Banach space with the norm ‖y0‖ + ∥∥y′0
∥∥+ ∥∥(y, y′)∥∥W2α,T or

the norm ‖y‖∞,T + ∥∥y′∥∥∞,T + ∥∥(y, y′)∥∥W2α,T . These two norms are equivalent.

Remark 8.23 The uniqueness of y′ depends on the regularity of W . If W is too
smooth, for example in C2α , then y is in C2α , and every continuous function y′
matches with the definition of the Gubinelli’s derivative, particularly y′ = 0. But
we can prove that y′ is uniquely determined by y when W is irregular enough. The
reader can refer to the Chapter 4 of [6] for detailed explanations.

8.4.3 Integration Against Rough Paths

If F is a linear operator A, the differential equation (8.1) can be restated on an
integral form as

yt = ξ + A
∫ t

0
yudWu. (8.23)
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To give a meaning to (8.23) we must define an integral term
∫ t

0 yudWu.
When W ∈ Cα , y ∈ Cβ with α + β > 1, we are able to define (8.23) with

Young’s integral. Unfortunately, the solution y of (8.23) inherits of the regularity of
W . Hence, Young’s theory allows us to solve (8.23) only when α > 1/2.

When α ∈ (1/3, 1/2], we need to “improve” the path W in taking into account
of W in the definition of the integral.

8.4.4 Young’s Integration

Young’s integral was developed by Young in [19] and then used by Lyons in [14] to
deal with differential equations driven by a stochastic process.

The integral is defined with a Riemann sum. Let P be a subdivision of [s, t], we
denote by |P| the mesh of P. We want to define the integral as follows:

∫ t
s

yudWu = lim|P|→0

∑
u,v∈P

yuWu,v,

where u, v ∈ P denotes successive points of the subdivision.

Theorem 8.24 IfW ∈ Cα and y ∈ Cβ with α + β > 1,
∑
u,v∈P yuWu,v converges

when |P| → 0. The limit is independent of the choice of P, and it is denoted as∫ t
s
yudWu. Moreover the bilinear map (W, y)→ ∫ t

s
yudWu is continuous fromCα×

Cβ to Cα .

Proof For the original proof cf. [19]. ��
Some important properties of the classical Riemann integration holds.

Proposition 8.25

1. Chasles’ relation holds.
2. When t → s we have the following approximation

∫ t
s

yudWu = ysWs,t +O(|t − s|α+β). (8.24)

3. The map t �→ ∫ t
s
yudWu is α-Hölder continuous.

4. If F is C1, F(y) is Cβ -Hölder and the Young integral
∫ t
s
F (yu)dWu is well-

defined as above.

Remark 8.26 Unfortunately with Young’s construction, when α ≤ 1/2, we can find
two sequences of smooth functionsW 1,n andW 2,n converging toW in Cα but such
that
∫ t
s
F (W 1,n)dW 1,n and

∫ t
s
F (W 2,n)ndW 2,n converge to two different limits for

a smooth function F . See for an example the Lejay’s area bubbles in [12].
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8.4.5 Controlled Rough Path Integration

The rough integral relies on the controlled rough paths introduced previously.
Remark 8.26 shows that if y,W ∈ Cα , we cannot define a continuous integral such
as
∫ t
s
yudWu looks like ysWs,t when t → s. We must use the structure of controlled

rough paths to define a “good” integral of y against W . Then, given a rough path
W ∈ C α and considering a controlled rough path (y, y′) ∈ D2α

W we would like
to build an integral

∫ t
s
yudWu as a good approximation of ysWs,t + y′sWs,t when

t → s.

Theorem 8.27 For α ∈ (1/3, 1/2], let W = (W,W) ∈ C α be an α-Hölder rough
path. Given a controlled rough path driven by W : (y, y′) ∈ D2α

W we consider the
sum

∑
u,v∈P yuWu,v + y′uWu,v where P is a subdivision of [s, t] (s ≤ t ∈ [0, T ]).

This sum converges when the mesh of P goes to 0. We define the integral of y against
W as

∫ t
s

yudWu := lim|P|→0

∑
u,v∈P

yuWu,v + y′uWu,v.

The limit exists and does not depend on the choice of the subdivision. Moreover,
the map (y, y′)→ (t ∈ [0, T ] �→ ∫ t

0 yudWu, y) from D2α
W into itself is continuous.

Proof The classical proof uses the sewing lemma [6, Lemma 4.2]. We give a proof
with the reconstruction theorem (Theorem 8.46) in Sect. 8.7. ��

To solve (8.1), we need to show that if F is a smooth function, then F(yt ) remains
a controlled rough path. The following proposition shows that (F (y), (F (y))′)
defined by:

F(y)t = F(yt ), F (y)′t = F ′(yt )yt , (8.25)

is a controlled rough path.

Proposition 8.28 Let F : R
d → L(Rn,Rd) be a function twice continuously

differentiable such that F and its derivative are bounded. Given (y, y′) ∈ D2α
W

let (F (y), F (y)′) ∈ D2α
W defined as above (8.25). Then, there is a constant Cα,T

depending only on α and T such as

∥∥F(y), F (y)′∥∥W2α,T ≤ Cα,T ‖F‖C2
b
(1 + ‖W‖α)2(

∥∥y′0
∥∥+ ∥∥y, y′∥∥W2α,T )2,

where ‖F‖C2
b
= ‖F‖∞ + ∥∥F ′∥∥∞ + ∥∥F ′′∥∥∞ .

Proof We can find the proof in [6]. This proposition is equivalent to Theorem 8.58,
which is formulated in the regularity structure framework. ��
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8.5 Regularity Structures

8.5.1 Definition of a Regularity Structure

The theory of regularity structures was introduced by Hairer in [10]. The tools
developed in this theory allow us to solve a very wide range of semi-linear partial
differential equations driven by an irregular noise.

This theory can be viewed as a generalisation of the Taylor expansion theory
to irregular functions. The main idea is to describe the regularity of a function at
small scales and then to reconstruct this function with the reconstruction operator of
Theorem 8.46.

First we give the definition of a regularity structure.

Definition 8.29 A regularity structure is a 3-tuple T = (A,T ,G) where

• The index set A ⊂ R is bounded from below, locally finite and such that 0 ∈ A.
• The model space T is a graded linear space indexed by A : T = ⊕α∈A Tα ,

where each Tα is a non empty Banach space. The elements of Tα are said of
homogeneity α. For τ ∈ T , we denote

∥∥τ∥∥
α

the norm of the component of τ in
Tα . Furthermore, T0 = Vect〈1〉 is isomorphic to R.

• The set G is a set of continuous linear operators acting on T such as for ! ∈ G,
!(1) = 1 and τ ∈ Tα , !τ − τ ∈⊕β<α Tβ. The set G is called structure group.

Remark 8.30 We underline the elements of the model space for the sake of clarity.

Remark 8.31 We set m := minA, !τ = τ for every τ ∈ Tm.

Let us explain the motivations of this definition. The classic polynomial Taylor
expansion of order m ∈ N is given, between 0 and t ∈ R, where t converges to 0 by

f (t) = P(t)+ o(tm), where P(t) =
m∑
k=0

f (k)(0)

k! tk.

In this case the approximation P of f is indexed by integers and the space T is the
polynomial space. For all h ∈ R, the operator !h associates a Taylor expansion at
point t with a Taylor expansion at a point t + h. The polynomial !h(P (t)) − P(t)
is of order less than m− 1:

!h(P (t))− P(t) := P(t + h)− P(t) =
m∑
k=0

f (k)(0)

k! ((t + h)k − tk).
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Moreover we have the structure of group on (!h, h ∈ R):

!h′ ◦ !hP (t) = !h′
(
d−1∑
k=0

f k(0)

k! (t + h)k
)

=
d−1∑
k=0

f k(0)

k! !h′((t + h)k)

=
d−1∑
k=0

f k(0)

k! (t + h+ h′)k

= !h+h′P(t).

Hence, we can define the polynomial regularity structure as following.

Definition 8.32 We define T 1 = (A1,T 1,G1) the canonical polynomial regular-
ity structure as

• A1 = N is the index set.
• For k ∈ A1 we define T 1

k = Vect〈Xk〉. The subspace T 1
k contains the monomial

of order k. The polynomial model space is T 1 =⊕k∈A T 1
k .

• For h ∈ R, !1
h ∈ G1 is given by

!1
h(X

k) = (X + h1)k.

For Pk ∈ T 1
k , there is ak ∈ R such that Pk = akX

k . We define the norm on
T 1
k by ‖Pk‖k = |ak|.

With the same arguments we define the polynomial regularity structure and its
model associated in R

n.

Definition 8.33 We define T p = (Ap,T p,Gp) the canonical polynomial regular-
ity structure on R

n as

• Ap = N is the index set.
• For δ ∈ Ap, and k a multi-index of Nn such that |k| := k1 + · · · + kn = δ, we

define T pδ = Vect〈Xk := ∏ni=1X
ki
i , |k| = δ〉. This space T pk is a linear space of

homogeneous polynomial with n variables and of order δ. For Pδ ∈ T pδ , there
are real coefficients (ak)|k|=δ such that Pδ = ∑|k|=δ akXk. We chose the norm

on T pδ such that ‖Pδ‖δ :=
∑

|k|=δ |ak|.
We define T p =⊕δ∈A T

p
δ as the polynomial model space.

• For h ∈ R
n, !ph ∈ Gp is given by

!
p
h (X

k) =
n∏
i=1

(Xi + hi1)ki .
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Remark 8.34 The polynomial regularity structure is a trivial example of regularity
structure which we introduce for a better understanding. But the strength of this
theory is to deal with negative degree of homogeneity.

8.5.2 Definition of a Model

Definition 8.35 Given a regularity structure T = (A,T ,G), a modelM = (�,!)
is two sets of functions such that for any s, t, u ∈ R

• The operator �s is continuous and linear from T to D′(R,Rn).
• !t,s belongs to G, so it is a linear operator acting on T .
• The following algebraic relations hold: �s!s,t = �t and !s,t!t,u = !s,u.
• The following analytic relations hold: for every γ > 0, β < α ≤ γ with α, β ∈

A and τ ∈ Tα , there is a constant C(T , γ ) uniform over s, t ∈ [0, T ], λ ∈ (0, 1],
φ ∈ Br such that

|�s(τ)(φλs )| ≤ C(T , γ )λα
∥∥τ∥∥

α

and
∥∥!s,t (τ )

∥∥
β
≤ C(T , γ )|t − s|α−β ∥∥τ∥∥

α
. (8.26)

We denote respectively by ‖�‖γ,T and ‖!‖γ,T the smallest constants such
that the bounds (8.26) hold. Namely,

‖�‖γ,T := sup
s∈[0,T ]

sup
φ∈Br

sup
λ∈(0,1]

sup
α<γ

sup
τ∈Tα

|�s(τ)(φλs )|α
λα
∥∥τ∥∥

α

and ‖!‖γ,T := sup
s �=t∈[0,T ]

sup
β<α<γ

sup
τ∈Tα

∥∥!s,t (τ )
∥∥
β

|t − s|α−β ∥∥τ∥∥
α

.

The two operators ‖·‖γ,T define semi-norms.

The easiest regularity structure which we can describe is the polynomial one (see
Definition 8.33). We can now define the model associated to this regularity structure.

Definition 8.36 Given that T p = (Ap,T p,Gp) the canonical polynomial regu-
larity structure on R

n defined in the Definition 8.33, we define the model of the
polynomial regularity structureMp = (�p, !p) such that for all x, y ∈ R

n and k a
multi-index of order n,

�
p
x (X

k)(y) := ((y1 − x1)
k1 , . . . , (yn − xn)kn),

!
p
x,y(X

k) := !x−y(Xk).
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Proof It is straightforward to check that this definition is in accordance with the one
of a model (Definition 8.42 below). ��
Remark 8.37 The operator �s which associates to an element of the abstract space
a distribution which approximates this element in s. Typically for polynomial
regularity structure on R,

�
p
s (X

k) = (t → (t − s)k).

Remark 8.38 In the model space, the operator !s,t gives an expansion in a point s,
given an expansion in a point t . For example

!
p
s,t (X

k) = !ps−t (Xk) = (X + (s − t)1)k. (8.27)

Remark 8.39 The first algebraic relation means that if a distribution looks like τ
near t , the same distribution looks like !s,t (τ ) near s. In practice, we use this relation
to find the suitable operator !t,s . The second algebraic relation is natural. It says that
moving an expansion from u to s is the same as moving an expansion from u to t
and then from t to s.

Remark 8.40 The first analytic relation has to be understood as �s approximating
τ ∈ Tα in s with the precision λα . The relation (8.27) shows that the second analytic
relation is natural. Indeed,

(X + (t − s)1)k =
k∑
i=0

(
k

i

)
(t − s)k−iXi,

so for � ≤ k,
∥∥!ps,t (Xk)

∥∥
�
= (k

i

)|t − s|k−�, where
(
k
i

) = k!
i!(k−i)! are the binomial

coefficients.

8.5.3 The Rough Path Regularity Structure

We now reformulate the results of Sects. 8.4.1 and 8.4.2 to build up a regularity
structure.

In order to find the regularity structure of rough paths, we make some computa-
tions for n = 1. Then, we give the proof in the general case after Definition 8.41.

We fix α ∈ (1/3, 1/2] and a rough path W = (W,W) ∈ C α . We show how to
build the regularity structure of rough paths.

Let (y, y′) ∈ D2α
W be a controlled rough path. According to Definition 8.19,

yt = ys + y′sWs,t +O(|t − s|2α). To describe the expansion of y with the regularity
structure framework, we set the symbol 1 constant of homogeneity 0 and the symbol
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W of homogeneity α. This leads us to define the elements of the regularity structure
of the controlled rough path (y, y′) evaluated at time t by

Y (t) = yt1 + y′tW .

Moreover, we would like to build the rough path integral
∫
ydW in the regularity

structure context. So we introduce abstract elements Ẇ and Ẇ which “represent”
dW = d(W,W). The function W is α-Hölder, so we define the homogeneity of Ẇ
as α − 1. The second order process W is 2α-Hölder, which leads us to define the
homogeneity of Ẇ as 2α − 1.

Finally, with the notation of Definition 8.29, A = {α − 1, 2α − 1, 0, α}, T =
Vect〈Ẇ , Ẇ, 1,W 〉. Besides, we order the elements in Vect〈·〉 by homogeneity.

It remains to define G and an associated model. We start by building the model
(�,!). For s ∈ [0, T ], �s should transform the elements of T to distributions (or
functions when it is possible) which approximate this elements at the point s. On
the one hand we define

�s(Ẇ )(φ) :=
∫
φ(t)dWt, �s(Ẇ)(φ) :=

∫
φ(t)dWs,t ,

where φ is a test function. Both integrals are well-defined because φ is smooth. The
homogeneities of Ẇ and Ẇ are negative, so they are mapped with distributions. On
the other hand, 1 and W have positive homogeneities, so we can approximate them
in s with functions as

�s(1)(t) := 1, �s(W)(t) := Ws,t .

Now, we define !s,t (τ ) for every β ∈ A and s, t ∈ [0, T ] and τ ∈ Tβ . According
to Definition 8.35:�s!s,t (τ )(φ) = �t(τ)(φ). Moreover, following Definition 8.29,
!s,t should be a linear combination of elements of homogeneity lower than τ and
with the coefficient 1 in front of τ . First, it seems obvious to set !s,t (1) = 1, because
1 represents a constant. Then we look for !s,t (W) = W + as,t1 as a function where
as,t has to be determined. If it is not enough, we would look for !s,t (W) with more
elements of our structure T . By linearity

�s(W + as,t1)(u) = Ws,u + as,t ,

so we want thatWs,u+ as,t = �t(W)(u) = Wt,u. Finally, we have to choose as,t =
Wt,s . Given that Ẇ has the lowest homogeneity of our structure, we set !s,t (Ẇ ) =
Ẇ in order to respect the last item of Definition 8.29. With the same reason as forW
and using the Chen’s relation of Defintion 8.13, we find that !s,t (Ẇ) = Ẇ+Wt,sẆ
(see the proof of Definition 8.41).

All we did here is in one dimension. With the same arguments we can find the
regularity structure of a rough path in R

n.
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Definition 8.41 For α ∈ (1/3, 1/2], given a rough path W = (W,W) ∈ C α which
take value in R

n
⊕
(Rn ⊗ R

n). We define the regularity structure of rough paths
T r = (Ar ,T r ,Gr ) and the model associatedMr = (�r, !r) as

(i) Index set Ar := {α − 1, 2α − 1, 0, α}.
(ii) Model space T r := T rα−1

⊕
T r2α−1

⊕
T r0
⊕

T rα , with

T rα−1 := Vect〈Ẇ i
, i = 1, · · · , n〉, T r2α−1 := Vect〈Ẇi,j , i, j = 1, · · · , n〉,

T r0 := Vect〈1〉, T rα := Vect〈Wi, i = 1, · · · , n〉.

(iii) For i, j integers between 1 and n, h ∈ R
n and !rh in the structure group Gr , the

following relations hold

!rh(Ẇ
i) := Ẇ i, !rh(Ẇ

i,j
) := Ẇ

i,j + hiẆ j ,

!rh(1) := 1, and !rh(W
i) := Wi + hi1.

(iv) For i, j two integers between 1 and n, for s, t ∈ [0, T ],

�rs(Ẇ
i)(φ) :=

∫
φ(t)dWi

t , �rs(Ẇ
i,j
)(φ) :=

∫
φ(t)dWi,j

s,t ,

�rs (1)(t) := 1, �rs(W
i)(t) := Wi

s,t ,

where φ is a test function.
(v) For s, t ∈ R, !rs,t := !r|h=Wt,s .

Proof Checking that this definition respects the definitions of a regularity structure
(Definition 8.29) and of a model (Definition 8.35) is straightforward.

Here we only show where Chen’s relation of Definition 8.13 is fundamental to
show that the algebraic condition of Definition 8.35: �rs!

r
s,tẆ = �rt Ẇ holds.

According to the definition above !rs,tẆ
i,j = Ẇ

i,j + hiẆ j . So we have

�rs(!
r
s,tẆ

i,j )(φ) =
∫
φ(u)dWi,j

s,u +Wi
t,s

∫
φ(u)dWj

s,u. (8.28)

In differentiating Chen’s relation W
i,j
s,u = W

i,j
s,t +W

i,j
t,u+Wi

s,tW
j
t,u with respect to u

we get dWi,j
s,u = dWi,j

t,u +Wi
s,tdW

j
t,u. It follows that

�rs(!
r
s,tẆ

i,j )(φ) =
∫
φ(u)dWi,j

t,u +Wi
s,t

∫
φ(u)dWj

s,u +Wi
t,s

∫
φ(u)dWj

s,u.

(8.29)



8 Solving Rough Differential Equations with the Theory of Regularity Structures 147

Finally �rs(!
r
s,tẆ

i,j )(φ) = ∫ φ(u)dWi,j
t,u = �rt Ẇ, which is the algebraic condition

required. ��

8.6 Modelled Distributions

8.6.1 Definition and the Reconstruction Operator

We have defined a regularity structure. We now introduce the space of functions
from [0, T ] to T , the model space of a regularity structure. These abstract functions
should represent at each point of [0, T ], a “Taylor expansion” of a real function.

We showed in Sect. 8.5.3 how to build an abstract function Y (t) = yt1 + y′tW
which represents the expansion of a real controlled rough path (y, y′) at a point
t . The most important result of the theory of regularity structures is to show how
to build a real function or distribution from an abstract function. Namely, given an
approximation of a function at each time, how to reconstruct “continuously” the
function. This is given by the reconstruction map theorem.

Definition 8.42 Given a regularity structure (A,T ,G) and a model M = (�,!),
for γ ∈ R we define the space DγM of modelled distributions as functions f :
[0, T ] → T<γ :=⊕β<γ Tβ such that for all s, t ∈ [0, T ] and for all β < γ,

∥∥∥f (s)− !s,t (f (t))
∥∥∥
β
≤ C(T )|t − s|γ−β,

where C(T ) is a constant which depends only on T .
Recalling that ‖·‖β is the norm of the component in Tβ , we define by

∥∥∥f
∥∥∥
γ,T

:= sup
s �=t∈[0,T ]

sup
β<γ

∥∥∥f (t)− !t,s(f (s))
∥∥∥
β

|t − s|γ−β

a semi-norm on the space DγM . It is also possible to consider the norm

∥∥∥f
∥∥∥∗
γ,T

:= sup
t∈[0,T ]

sup
β<γ

∥∥∥f (t)
∥∥∥
β
+
∥∥∥f
∥∥∥
γ,T
.

Moreover ‖·‖∗γ,T is equivalent to

sup
β<γ

∥∥∥f (0)
∥∥∥
β
+
∥∥∥f
∥∥∥
γ,T
,

so from now we use these two norms without distinction.



148 A. Brault

Remark 8.43 For a fixed model M , the modelled distributions space DγM is a
Banach space with the norm ‖ ‖∗γ,T .

Remark 8.44 We choose the same notation for the semi-norm on DγM as on D
γ

W

(the space of modelled distributions and on Cα (the space of Hölder functions or
distributions).

So when f ∈ DγM , we have to understand
∥∥∥f
∥∥∥
γ,T

with Definition 8.42 but when

f ∈ Cα , ‖f ‖α,T is the Hölder norm of Definition 8.1 (for functions α > 0) or 8.7
(for distributions α < 0).

Remark 8.45 The modelled distribution space DγM can be thought of as abstract γ -
Hölder functions. Indeed, for an integer p and δ ∈ [0, 1) such that γ = p + δ, if f
is a smooth function

∣∣∣∣∣f (x)−
p∑
k=0

f (k)(y)

k! (y − x)k
∣∣∣∣∣ ≤ C|t − s|

δ,

according to the Taylor’s inequality. Hence, Definition 8.42 of modelled distribu-
tions has to be seen as an extension of the Taylor inequality in a no classical way.

Now we are able to outline the main theorem of the theory of regularity
structures which given a modelled distribution allows us to build a “real” distribution
approximated at each point by the modelled distribution.

Theorem 8.46 (Reconstruction Map) Given a regularity structure T =
(A,T ,G) and a model M = (�,!), for a real γ > α∗ = minA and an
integer r > |α∗| there is a linear continuous map R : DγM → Cα∗ such that for all
f ∈ DγM ,

|
[
R(f )−�s(f (s))

]
(φλs )| ≤ C ‖�‖γ,T

∥∥∥f
∥∥∥∗
γ,T
λγ , (8.30)

where C depends uniformly over φ ∈ Br , λ ∈ (0, 1], s ∈ [0, T ].
Moreover if γ > 0, the bound (8.30) defined R(f ) uniquely.

If (�̃, ) is an other model for T and R̃ the reconstruction map associated to the
model, we have the bound

|R(f )− R̃(f̃ )−�s(f (s))+ �̃s(f̃ (s))](ηλs )|

≤ C
(∥∥∥�̃

∥∥∥
γ,T

∥∥∥f − f̃
∥∥∥∗
γ,T

+
∥∥∥�− �̃

∥∥∥
γ,T

∥∥∥f
∥∥∥∗
γ,T

)
λγ , (8.31)

where C depends uniformly over φ ∈ Br , λ ∈ (0, 1], s ∈ [0, T ], as above.

Proof The proof uses the wavelet analysis in decomposing the function f in a
smooth wavelet basis. The proof requires many computation. A complete one can
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be found in [10] and a less exhaustive one is in [6]. The construction of R(f ) is the

following. We define a sequence (Rj (f ))j∈N such that

Rj (f ) :=
∑
k∈Z
�k/2j (f (k/2

j ))(φ
j
k )φ

j
k , (8.32)

where φjk is defined in Definition 8.11 with a regularity at almost r . Then, we show
that Rj (f ) converges weakly to a distribution R(f ) which means that Rj (f )(η)
converges to R(f )(η) for all η ∈ Cr0. And we show that the bound (8.30) holds. ��
Remark 8.47 It can be proved that if for all s ∈ [0, T ] and τ ∈ T , �sτ is a
continuous function then R(f ) is also a continuous function such that

R(f )(s) = �s(f (s))(s). (8.33)

Corollary 8.48 With the same notation as in Theorem 8.46, for every γ > 0, there
is a constant C such as

∥∥∥R(f )
∥∥∥
α,T

≤ C ‖�‖γ,T
∥∥∥f
∥∥∥∗
γ,T
.

Proof According to Theorem 8.46, for φ ∈ Br ,
|R(f )(φλs )|

λα
≤ |�s(f (s))(φλs )|

λα
+ C ‖�‖γ,T

∥∥∥f
∥∥∥∗
γ,T
λγ−α,

and according to the Definition 8.35,

|�s(f (s))(φλx )|
λα

≤ ‖�‖γ,T
∥∥∥f
∥∥∥
γ,T
.

So finally
∥∥∥R(f )

∥∥∥
α,T

≤ ‖�‖γ,T
∥∥∥f
∥∥∥
γ,T

+ C ‖�‖γ,T
∥∥∥f
∥∥∥∗
γ,T
λγ−α

≤ C ‖�‖γ,T
∥∥∥f
∥∥∥∗
γ,T
,

which, by letting λ going to 0 proves the inequality. ��

8.6.2 Modelled Distribution of Controlled Rough Paths

We reformulate the definition of a controlled rough path in the regularity structures
framework.
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Definition 8.49 Given (W,W) ∈ C α , (y, y′) ∈ D2α
W , the rough path regularity

structure (Ar ,T r ,Gr ) and Mr = (�r, !r) the model associated (cf. Defini-
tion 8.41), we define a modelled distribution Y ∈ D2α

Mr such that

Y (t) = yt1 + y′tW, ∀t ∈ [0, T ].

The space D2α
Mr is the space of the modelled distributions of the controlled rough

paths.

Remark 8.50 This definition is a particular case of modelled distributions of
Definition 8.42.

Proof Let check that Y is in D2α
Mr . For every s, t ∈ [0, T ],

Y(t)− !rt,s(Y (s)) = Y (t)− !rt,s(ys1 + y′sW)
= Y (t)− (ys1 + y′sW + y′sWs,t1),

using the Definition 8.41. Then, we have

∥∥Y (t)− !rt,s(Y (s))
∥∥

0 = ∥∥y(t)− y(s)− y′(s)Ws,t
∥∥ ≤ C|t − s|2α,

according to the definition 8.19 of controlled rough paths. Besides,

∥∥Y (t)− !rt,s(Y (s))
∥∥
α
= ∥∥y′(t)− y′(s)∥∥ ≤ C|t − s|α,

which proves that Y ∈ D2α
Mr . ��

Proposition 8.51 With the notations of Definition 8.49, the application (y, y′) ∈
D2α
W �→ Y ∈ D2α

Mr is an isomorphism and the norms ‖y‖∞,T + ∥∥y′∥∥∞,T +∥∥(y, y′)∥∥W2α,T and
∥∥Y∥∥∗2α,T are equivalent.

Proof We prove the only equivalence between the two norms.
With the notation of Definition 8.19, we recall that

ys,t = y′sWs,t + Rys,t , (8.34)

and that
∥∥(y, y′)∥∥W2α,T = ∥∥y′∥∥

α,T
+‖Ry‖2α,T . Then according to the previous proof

and Definition 8.42,

∥∥Y∥∥2α,T = sup
{∥∥y′∥∥

α,T
,
∥∥Ry∥∥2α,T

}
. (8.35)

So we have
∥∥Y∥∥2α,T ≤ ∥∥(y, y′)∥∥W2α,T and

∥∥(y, y′)∥∥W2α,T ≤ 2
∥∥Y∥∥2α,T . In adding the

terms ‖y‖∞,T + ∥∥y′∥∥∞,T to each semi-norms, we obtain the result. ��



8 Solving Rough Differential Equations with the Theory of Regularity Structures 151

8.7 Rough Path Integral with the Reconstruction Map

The power of the theory of regularity structures is to give a sense in some cases of
a product of distributions. Indeed, it is not possible in general to extend the natural
product between functions to the space of distributions.

To build the controlled rough path integral of Theorem 8.27, with the theory of
regularity structures we need to give a meaning to the product between y and Ẇ ,
where Ẇ is a distribution. We start by giving a meaning to the abstract product
between Y and Ẇ . When the product has good properties, we use the reconstruction
map (Theorem 8.46) to define a “real” multiplication.

Definition 8.52 (Multiplication in the Model Space) Given a regularity structure
(A,T ,G), we say that the continuous bilinear map � : T 2 → T defines a
multiplication (product) on the model space T if

• For all τ ∈ T , on has 1 � τ = 1,
• For every τ ∈ Tα and σ ∈ Tβ, on has τ � σ ∈ Tα+β , if α+ β ∈ A and τ � σ = 0

if α + β /∈ A.
• For every τ ∈ Tα , σ ∈ Tβ and ! ∈ G, !(τ � σ) = !(τ) � !(σ).
We denote by |τ | the homogeneity α of the symbol τ . The last item of the definition
can be rephrased as |τ � σ | = |τ | + |σ |.
Remark 8.53 For example in the following Theorem 8.54, we define within the
regularity structure of rough paths the multiplication described in the table below:

� Ẇ Ẇ 1 W

Ẇ W Ẇ

Ẇ Ẇ

1 Ẇ Ẇ 1 W

W Ẇ W

We are now able to build the rough integral with the reconstruction theorem
(Theorem 8.46). The operator I corresponding to the integral of a controlled rough
path against a rough path.

Theorem 8.54 We set α ∈ (1/3, 1/2]. There is a linear map I : D2α
Mr → Cα such

that for all Y ∈ D2α
Mr , I (Y )(0) = 0 and such that the map L defined by

∀t ∈ [0, T ], L(Y )(t) := I (Y )(t)1 + 〈Y (t), 1〉W

is linear and continuous from D2α
Mr into itself. The symbol 〈·, 1〉 denotes the

coordinate along 1.
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Remark 8.55 Recalling that if Y ∈ D2α
Mr , according to the Definition 8.49 there is

(y, y′) ∈ D2α
W such that

Y (t) = yt1 + y′tW, (8.36)

we show in the proof of the Theorem 8.54 that

I (Y )(t) =
∫ t

0
ysdWs , (8.37)

where
∫ t

0 ysdWs is defined in Theorem 8.27. ThusL is the equivalent in the modeled
distribution space of the map

(y, y′) ∈ D2α
W �→

(∫ ·

0
ysdWs , y·

)
∈ D2α

W . (8.38)

Remark 8.56 The proof of the existence of I is the same as in Theorem 8.27
(classical sewing lemma). But we show how Theorem 8.46 (reconstruction map)
can be adapted to recover the result.

Proof For Y in D2α
Mr , we define the point-wise product between Y and Ẇ as in

Remark 8.53, i.e Y (t) � Ẇ := yt Ẇ + y′tWẆ , where WẆ := W � Ẇ := Ẇ. We
denote this product YẆ(t), to simplify the notation. Using the fact that |W |+|Ẇ | =
2α − 1 = |Ẇ| it is straightforward to check that the product is consistent with the
Definition 8.52.

We check now that YẆ is in D3α−1
Mr . According to Definition 8.41 item (v), we

compute

!rt,s
(
YẆ(s)

) = (ys + y′sWs,t )Ẇ + y′sẆ,

since Y ∈ D2α
Mr with Definition 8.49,

∥∥YẆ(t)− !rt,s
(
YẆ(s)

)∥∥
α−1 = ∥∥ys,t − y′sWs,t

∥∥ � |t − s|2α, (8.39)
∥∥YẆ(t)− !rt,s

(
YẆ(s)

)∥∥
2α−1 = ∥∥y′s,t

∥∥ � |t − s|α. (8.40)

Thus, by Definition 8.42, we get that YẆ ∈ D3α−1
Mr .

Thus, given that 3α − 1 > 0, we can apply the reconstruction theorem in the
positive case.

So there is a unique distribution R(Y Ẇ ) in Cα−1 such that for every s ∈ [0, T ],
λ > 0 and every localized test function ηλs of Definition 8.4,

∣∣∣∣R(Y Ẇ )(ηλs )− ys
∫
ηλs (u)dWu − y′s

∫
ηλs (u)dWs,u

∣∣∣∣ ≤ C ‖η‖C1 λ
3α−1,

(8.41)
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where we use relations of the item (iv) of Definition 8.41.
We define with Lemma 8.10 the operator I : D2α

Mr → Cα such that I (Y ) ∈
Cα is associated to R(Y Ẇ ). It means that I

(
Y
)
(0) := 0 and 〈I (Y ) , η′〉 :=

−〈R(Y Ẇ ), η〉. More precisely, we have for |t − s| ≤ 1,

I (Y )s,t =
∑
k∈Il

〈R(Y Ẇ ), φlk〉
∫ t
s

φlk +
∑
j≥l

∑
k∈Il

〈R(Y Ẇ ), ψjk 〉
∫ t
s

ψ
j
k . (8.42)

Moreover, according to Theorem 8.11, we can choose the integer l such that
2−l ≤ |t − s| < 2−l+1.

We have

I (Y )s,t − ysWs,t − y′sWs,t =
∑
k∈Il

〈R(Y Ẇ )−�s(YẆ(s)), φlk〉
∫ t
s

φlk (8.43)

+
∑
j≥l

∑
k∈Ij

〈R(Y Ẇ )−�s(YẆ(s)), ψjk 〉
∫ t
s

ψ
j
k .

(8.44)

We have

〈R(Y Ẇ )−�s(YẆ(s)), ψjk 〉 = 〈R(Y Ẇ )−�k/2j (Y Ẇ (k/2j )), ψjk 〉
+ 〈�k/2j (Y Ẇ (k/2j ))−�s(YẆ(s)), ψjk 〉.

(8.45)

The first term of the right side of (8.45) is bounded by (8.30),

|〈R(Y Ẇ )−�k/2j (Y Ẇ (k/2j )), ψjk 〉| ≤ C2−j/22j (1−3α). (8.46)

For bounding the second term of the right side of (8.45) we use the algebraic
relations between � and ! as well as the relations (8.26),

〈�k/2j (Y Ẇ (k/2j ))−�s(YẆ(s)), ψjk 〉
= 〈�k/2j

(
YẆ(k/2j )− !k/2j ,sY Ẇ (s)

)
, ψ

j
k 〉.

Yet YẆ ∈ D3α−1
Mr , so with (8.39) and (8.40), we have

∥∥∥YẆ(k/2j )− !k/2j ,sY Ẇ (s)
∥∥∥
β
≤ C|k/2j − s|3α−1−β,
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for β ∈ {2α − 1, α − 1}. Finally, we obtain with the bounds (8.26),

∣∣∣〈�k/2j (Y Ẇ (k/2j ))−�s(YẆ(s)), ψjk 〉
∣∣∣ (8.47)

≤
∑

β∈{2α−1,α−1}
2−jβ−j/2

∣∣∣∣
k

2j
− s
∣∣∣∣
3α−1−β

. (8.48)

Moreover, we have k/2j ∈ [−c/2j − s, c/2j + t] for all terms that are non-
vanishing in (8.43) and (8.44). Since j ≥ l in the sums and that we assume 2−j ≤
2−l ≤ |t − s| < 2−l+1, we have

∣∣∣∣
k

2j
− s
∣∣∣∣ ≤ C|t − s|, (8.49)

for all non-vanishing terms in the sums (8.43) and (8.44).
Firstly we bound (8.43). On the one hand, using (8.46), (8.48), and (8.49) and

the fact that |t − s| < 2−l+1, we obtain

∣∣∣〈R(Y Ẇ )−�s(YẆ(s)), ψjk 〉
∣∣∣ ≤ C2−l/22−l(3α−1). (8.50)

On another hand, we have

∣∣∣∣
∫ t
s

φlk

∣∣∣∣ ≤ 2l/2|t − s| sup
t∈R

‖φ(t)‖

≤ C2−l/2. (8.51)

Thus, because there is only a finite number of terms independent on l that contribute
to the sum (8.43), we obtain with (8.50) and (8.51) the following bound on (8.43):

∣∣∣∣∣∣
∑
k∈Il

〈R(Y Ẇ )−�s(YẆ(s)), φlk〉
∫ t
s

φlk

∣∣∣∣∣∣
≤ C2−l3α ≤ C|t − s|3α, (8.52)

where C does not depends on l.
Now, we bound (8.44). On the one hand, using (8.46), (8.48), and (8.49), we have

for j ≥ l,

|〈R(Y Ẇ )−�s(YẆ(s)), ψjk 〉|
≤ C2−j/2 [2j (1−3α) + |t − s|2α2−j (α−1) + |t − s|α2−j (2α−1)

]
. (8.53)
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On an other hand, we observe that

∣∣∣∣∣∣
∑
k∈Ij

∫ t
s

ψ
j
k

∣∣∣∣∣∣
≤ C2−j/2, (8.54)

because a primitive of ψ has a compact support and the fact that
∫
ψ = 0. Then,

combining (8.53) and (8.54) we obtain,

∣∣∣∣∣∣
∑
j≥l

∑
k∈Ij

〈R(Y Ẇ )−�s(YẆ(s)), ψjk 〉
∫ t
s

ψ
j
k

∣∣∣∣∣∣

≤
∑
j≥l

2−3jα + |t − s|2α2−jα + |t − s|α2−j2α

≤ C2−3lα + |t − s|2α2−lα + |t − s|α2−l2α

≤ C|t − s|3α. (8.55)

With (8.52) and (8.55) we obtain the bound of the left hand side of (8.43),

|I (Y )s,t − ysWs,t − y′sWs,t | ≤ C|t − s|3α. (8.56)

To show that L(Y ) is in D2α
Mr , we compute !rt,s

(
L(Y )(s)

) = (I (Y )(s) +
ysWs,t )1 + ysW and we use the estimation (8.56). Thus, we have

∥∥L(Y )(t)− !rt,s
(
L(Y )(s)

)∥∥
0 = ∥∥I (Y )(t)− I (Y )(s)− ysWs,t

∥∥

≤ ∥∥y′∥∥∞,T ‖W‖2α,T |t − s|2α + C|t − s|3α,
(8.57)

and
∥∥L(Y )(t)− !t,s

(
L(Y )(s)

)∥∥
α
= ∥∥ys,t

∥∥ ≤ ‖y‖α |t − s|α, (8.58)

which proves that L(Y ) is in D2α
Mr .

It remains to prove the continuity of L. According to (8.30), the constant C
in (8.56) is proportional to

∥∥Y∥∥∗
γ,T

. So we have,

|I (Y )s,t − ysWs,t | ≤
∥∥y′∥∥∞ ‖W‖2α,T |t − s|2α + C ‖Y‖∗2α,T |t − s|3α,

which allows with the previous computation (8.57) and (8.58) to bound

∥∥L(Y )∥∥∗2α,T ≤ C ∥∥Y∥∥∗2α,T . (8.59)

This concludes the proof. ��
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8.8 Existence of a Rough Path Lift

As an application of the reconstruction operator in the case γ ≤ 0, we prove
Theorem 8.18 which states that for any W ∈ Cα (α ∈ (1/3, 1/2]) with values
in R

n, it exists a rough path lift W and that the mapW �→ W is continuous from Cα

to C α .

Proof (Theorem 8.18) We consider the regularity structure (Ae,T e,Ge) such that

Ae = {α − 1, 0}, T e = Vect〈Ẇ i
, i = 1, . . . , n〉⊕Vect〈1〉 and for !eh ∈ G,

!eh(Ẇ ) = Ẇ , !eh(1) = 1. We associate the model Me = (�e, !e) such that for
every s, t ∈ [0, T ], η ∈ B1

�es(Ẇ )(η) :=
∫
η(t)dWt, �es(1)(t) := 1,

and !es,t := !eWt,s .
For 0 ≤ s ≤ t ≤ 1, and integers 0 ≤ i, j ≤ n, the modelled distribution

Ẇ given by Ẇ
i,j
(s) := Wi

s Ẇ
j

is in D2α−1
M . Indeed Ẇ

i,j
(t) − !et,s

(
Ẇ
i,j
(s)
)

=
Wi
t Ẇ

j −Wi
s Ẇ

j = Wi
s,t Ẇ

j
, then

∥∥∥Ẇi,j
(t)− !et,s

(
Ẇ
i,j
(s)
)∥∥∥
α−1

≤ |t − s|α.

So, γ − (α − 1) = α, we have γ = 2α − 1. We conclude using the Definition 8.42.
Given that α ∈ (1/3, 1/2], we have 2α − 1 ≤ 0. Thus, the uniqueness of the

reconstruction map does not hold. But, according to Theorem 8.46, there exists
R(Ẇ) ∈ Cα−1 such that

|[R(Ẇ)−�es(Ẇ)](ηλs )| ≤ Cλ2α−1, (8.60)

where η ∈ B1. With Lemma 8.10, we define z ∈ Cα as the primitive of R(Ẇ) such
that z(0) = 0. Moreover, we have for all s, t ∈ [0, 1],

zs,t =
∑
k∈Il

〈R(Ẇ), φlk〉
∫ t
s

φlk +
∑
j≥l

∑
k∈Ij

〈R(Ẇ), ψjk 〉
∫ t
s

ψ
j
k , (8.61)

and

Ws,t =
∑
k∈Il

〈�es(Ẇ ), φlk〉
∫ t
s

φlk +
∑
j≥l

∑
k∈Ij

〈�es(Ẇ ), ψjk 〉
∫ t
s

ψ
j
k , (8.62)
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which yields to

Ws ⊗Ws,t =
∑
k∈Il

〈�es(Ẇ(s)), φlk〉
∫ t
s

φlk +
∑
j≥l

∑
k∈Ij

〈�es(Ẇ(s)), ψjk 〉
∫ t
s

ψ
j
k .

(8.63)

If there is a constant C ≥ 0 such that,

|zs,t −Ws ⊗Ws,t | ≤ C|t − s|2α, (8.64)

then setting Ws,t := zs,t −Ws ⊗Ws,t , the pair (W,W) belongs to C α according to
the Definition 8.13. Let us prove (8.64). We have

zs,t −Ws ⊗Ws,t =
∑
k∈Il

〈R(Ẇ)−�es(Ẇ(s)), φlk〉
∫ t
s

φlk

+
∑
j≥l

∑
k∈Ij

〈R(Ẇ)−�es(Ẇ(s)), ψjk 〉
∫ t
s

ψ
j
k . (8.65)

From (8.30), we have the bounds

|〈R(Ẇ)−�es(Ẇ(s)), φjk 〉| ≤ C2−j/2−j (2α−1), (8.66)

and

|〈R(Ẇ)−�es(Ẇ(s)), ψjk 〉| ≤ C2−j/2−j (2α−1). (8.67)

Then, combining (8.65), (8.66), and (8.67), we proceed as in the proof of
Lemma 8.10 to show (8.64).

It remains to show the continuity. If there is another path W̃ ∈ Cα , we define as

forW , a model (�̃, !̃), a modelled distribution ˜̇
W, a reconstruction map R̃ and then

W̃. By denoting

��s,k/2j := [�(Ẇ(k/2j ))−�(Ẇ(s))−�̃( ˜̇W(k/2j ))+�̃( ˜̇W(s))](ψjk ), (8.68)

we have

|��s,k/2j |

≤
∥∥∥W − W̃

∥∥∥
α,T

(
‖W‖α,T +

∥∥∥W̃
∥∥∥
α,T

)
|s − k/2j |2j/2(1−α)2−j/2. (8.69)
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According to the bounds (8.31) and (8.69) and in writing

[R(Ẇ)−�s(Ẇ(s))− R̃( ˜̇W)+�s( ˜̇W(s))](ψjk )
= R(Ẇ)−�k/2j (Ẇ(k/2j ))− R̃( ˜̇W)+ �̃k/2j ( ˜̇W(k/2j ))+��s,k/2j ,

we get

|Ws,t − W̃s,t | ≤ C
[ ∥∥∥�̃

∥∥∥
2α−1,T

∥∥∥Ẇ− ˜̇
W

∥∥∥∗
2α−1,T

+
∥∥∥�− �̃

∥∥∥
2α−1,T

∥∥Ẇ∥∥∗2α−1,T

+
∥∥∥W − W̃

∥∥∥
α,T

(
‖W‖α,T +

∥∥∥W̃
∥∥∥
α,T

)]
|t − s|2α.

Yet we have,
∥∥∥Ẇ− ˜̇

W

∥∥∥∗
2α−1,T

=
∥∥∥W − W̃

∥∥∥∞,T +
∥∥∥W − W̃

∥∥∥
α,T
, and

∥∥∥�− �̃
∥∥∥

2α−1,T
≤ C

∥∥∥W − W̃
∥∥∥
α,T
. (8.70)

So finally,

∥∥∥W − W̃
∥∥∥
α,T

≤ C
∥∥∥W − W̃

∥∥∥
α,T
, (8.71)

which proves the continuity. ��
Remark 8.57 Given that 2α − 1 is negative, the uniqueness of W does not hold,
which is in accordance with Remark 8.17.

8.9 Composition with a Smooth Function

Before solving the general rough differential equation (8.1) with the theory of
regularity structures, we should give a sense of the composition of a modelled
distribution with a function. Then we will be able to consider (8.1) in the space
of the modelled distributions.

The composition of a modelled distribution f ∈ DγM with a smooth function F is
developed in [10]. The author gives a general theorem which allows the composition
with an arbitrary smooth function F when f takes its values in a model space T such
that the smallest index of homogeneity is equal to 0, i.e. ∀t ∈ R, f (t) ∈ Vect〈1, . . .〉.
Thus, it is possible to define the composition as a Taylor expansion

F̂ ◦ f (t) =
∑
k

F (k)(f̄ (t))

k! (f (t)− f̄ (t)1)k, (8.72)
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where f̄ is the coordinate of f onto 1. The definition above makes no sense if
the product between elements of the regularity structure is not defined. We can
also find the general definition in [10]. This is not useful here. The idea of the
decomposition (8.72) is to compute a Taylor expansion of F in f̄ the part of f
which is the first approximation of Rf .

Here we just prove (what is needed for solving (8.1)) that F̂ ◦f lives in the same

space as f and that F̂ is Lipschitz in the particular case of modelled distribution of
controlled rough paths.

Theorem 8.58 Let F ∈ C2
b(R

d ,L(Rn,Rd)). For α ∈ (1/3, 1/2], given a rough
path W = (W,W) ∈ C α , the controlled rough path (y, y′) ∈ D2α

W , for all Y ∈ D2α
Mr

defined by Y (t) = yt1 + y′tW , the map F̂ such that

F̂ ◦ Y (t) := F(yt )1 + F ′(yt )y′tW, (8.73)

is in D2α
Mr . Moreover if F ∈ C3

b the function associated F̂ is Lipschitz, i.e. for all
Y , Ỹ ∈ D2α

Mr

∥∥∥F̂ (Y )− F̂ (Ỹ )
∥∥∥∗

2α,T
≤ C ∥∥Y − Ỹ∥∥∗2α,T , (8.74)

where C is a constant.

Remark 8.59 This theorem shows that the space D2α
Mr is stable by a non linear

composition F̂ , provided that F̂ is regular enough. So with Theorem 8.54, we can
build the integral

I (F̂ (Y )) =
∫ ·

0
F(ys)dWs .

Proof Firstly, let us show that F̂ is a map from D2α
Mr to D2α

Mr . A straightforward
computation leads us to the two following expressions

∥∥∥F̂ (Y )(t)− !rt,s
(
F̂ (Y )(s)

)∥∥∥
0
= ∥∥F ′(yt )y′t − F ′(ys)y′s

∥∥ ,
∥∥∥F̂ (Y )(t)− !rt,s

(
F̂ (Y )(s)

)∥∥∥
α
= ∥∥F(yt )− F(ys)− F ′(ys)y′sWs,t

∥∥ .

Let us denote the left-hand of the first equality �0
s,t and of the second one �αs,t . We

obtain

�0
s,t ≤

∥∥F ′(yt )
∥∥ ∥∥y′t − y′s

∥∥+ ∥∥y′s
∥∥ ∥∥F ′(yt )− F ′(ys)

∥∥
≤ ∥∥F ′∥∥∞,T

∥∥y′∥∥
α
|t − s|α + ∥∥y′∥∥∞,T

∥∥F ′′∥∥∞,T ‖Y‖α,T |t − s|α
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and

�αs,t =
∥∥F(yt )− F(ys)− F ′(ys)(ys,t − Rys,t )

∥∥
≤ ∥∥F(yt )− F(ys)− F ′(ys)ys,t

∥∥+ ∥∥F ′(ys)Rys,t
∥∥

≤ 1

2

∥∥F ′′∥∥∞,T
∥∥ys,t

∥∥2 + ∥∥F ′∥∥∞,T
∥∥Ry∥∥2α,T |t − s|2α

≤ 1

2

∥∥F ′′∥∥∞,T ‖y‖2
α,T |t − s|2α + ∥∥F ′∥∥∞,T

∥∥Ry∥∥2α,T |t − s|2α.

This proves that F̂ (Y ) ∈ D2α
Mr .

We now prove the inequality (8.74). A more general proof can be found in [10].
We define Z̃ = Y − Ỹ , which is in D2α

Mr by linearity. We denote by Q<2α the
projection onto T<2α . Using the integration by parts formula, one can check that

F̂ (Y (s))− F̂ (Ỹ (s)) =
1∑
k=0

∫ 1

0
F (k)(ỹs + uzs)Q<2α

[[
(ỹ′s + uz′s)W

]k
Z̃(s)

]
du.

Then, we compute the expansion between s and t of �(s) := F̂ (Y (s)) − F̂ (Ỹ (s)).
We denote Au(s) := Ỹ (s)+ uZ̃(s). When u is fixed, Au is in D2α

Mr . We have

!t,s�(s) =
1∑
k=0

∫ 1

0
F (k)(Au(s))!t,sQ<2α

(
[A′
u(s)W ]kZ̃(s)

)
du

=
1∑
k=0

∫ 1

0
F (k)(Au(s))[!t,s(A′

u(s)W)]k!t,sZ̃(s)du+ R(s, t),

where R is a remainder such that
∥∥R(s, t)∥∥

β
� |t − s|2α−β for β ∈ {0, α}. From

now, we denote by R all the remainder terms which satisfy this property.
We now shift the last expression from s to t . On the one hand

!rt,s(A
′
u(s)W) = !rt,sAu(s)− Au(s)1 = Au(t)− Au(s)1 + R(s, t).

On the other hand

!rt,sZ̃(s) = Z̃(t)+ R(s, t).

This yields

!rt,s�(s) =
1∑
k=0

∫ 1

0
F (k)(Au(s))[A′

u(t)W + (Au(t)− Au(s))1]kZ̃(s)du+ R(s, t).
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It remains to shift F (k) from s to t . With the classical Taylor expansion formula,

F (k)(Au(s)) =
∑

0≤l+k≤1

F (k+l)(Au(t))(Au(s)− Au(t))l +O(|t − s|2α−kα),

because ‖Au(t)− Au(s)‖ ≤ |t − s|α. The bound

∥∥∥[A′
u(t)W + (Au(t)− Au(s))1]k

∥∥∥
β
� |t − s|kα−β

holds. Finally, with the two previous expressions,

!rt,s�(s) =
∑

0≤l+k≤1

F (k+l)(Au(t))(Au(s)− Au(t))l

× [A′
u(t)W + (Au(t)− Au(s))1)]kZ̃(t)+

∥∥Z̃∥∥∗2α,T O(|t − s|2α−β)
=
∑

0≤k≤1

F (k)(Au(t))[A′
u(t)W ]kZ̃(t)+ ∥∥Z̃∥∥∗2α,T O(|t − s|2α−β)

= �(t)+ ∥∥Z̃∥∥∗2α,T O|t − s|2α−β,

which proves the inequality. ��

8.10 Solving the Rough Differential Equations

Theorem 8.54 combined with Theorem 8.58 allow us to solve the rough differential
equations in the modelled distribution space D2α

Mr .

Theorem 8.60 Given ξ ∈ R
d , F ∈ C3

b(R
d ,L(Rn,Rd)), a rough path W =

(W,W) ∈ C β with β ∈ (1/3, 1/2), there is a unique modelled distribution
Y ∈ D2β

Mr such that for all t ∈ [0, T ],

Y (t) = ξ1 + L(F̂ (Y ))(t), (8.75)

where L is defined in Theorem 8.54.

Proof We prove that the operator N(Y) := ξ1 + L(F̂ (Y )) where L is defined in
Theorem 8.54, has a unique fixed point. For this we show that the unit ball of D2α

Mr

is invariant under the action of N , and then that N is a strict contraction.
These two properties can be obtained by choosing a wise time interval [0, T ].

We take a rough path W = (W,W) ∈ C β ⊂ C α with 1/3 < α < β < 1/2 and
Y ∈ D2α

Mr . This trick allows us to have a T β−α in our estimates. Thus, with a T small
enough we prove the fixed point property. We start by choosing T ≤ 1.
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According to Theorem 8.58 F̂ (Y ) ∈ D2α
Mr , thus Theorem 8.54 shows thatN(Y) ∈

D2α
Mr . If Y is a fixed point of N then Y ∈ D2β

Mr , thanks to the fact that W ∈ C β .
Indeed,

∥∥Y (t)− !t,sY (s)
∥∥
β
= ∥∥ys,t

∥∥ ≤ ∥∥y′∥∥∞,T ‖W‖2β,T |t − s|2β + ∥∥Ry∥∥2α,T |t − s|2α,

and

∥∥Y (t)− !t,sY (s)
∥∥

0 = ∥∥ys,t − y′sWs,t
∥∥ ≤ ∥∥y′∥∥∞,T

∥∥Ws,t

∥∥+O(|t − s|3α).

As a result of the fixed point property y′ = F(y). This proves that Y ∈ D2β
Mr .

We recall that
∥∥Y∥∥∗2α,T = supε∈{0,α}

∥∥Y (0)∥∥
ε
+ ∥∥Y∥∥2α,T , where

∥∥Y∥∥2α,T = sup
t,s∈[0,T ],ε∈{0,α}

∥∥Y (t)− !t,sY (s)
∥∥
ε

|t − s|ε .

It is more convenient to work with the semi-norm ‖·‖2α,T , so we define the affine
ball unit on [0, T ]

BT = {Y ∈ D2α
Mr , Y (0) = ξ1 + f (ξ)W, ∥∥Y∥∥2α,T ≤ 1}.

Invariance
For Y ∈ BT , on has

∥∥∥F̂ (Y )
∥∥∥

2α,T
≤ ∥∥Y∥∥2α,T and

N(Y ) =
∥∥∥L(F̂ (Y ))

∥∥∥
2α,T

.

On the on hand, according to the reconstruction map,

∥∥∥(I F̂ (Y ))s,t − F(ys)Ws,t
∥∥∥

≤ ∥∥F ′(y)y′
∥∥∞,T ‖W‖2α,T |t − s|2α + C

∥∥∥F̂ (Y )
∥∥∥∗

2α,T
|t − s|3α

≤
∥∥∥F̂ (Y )

∥∥∥∗
2α,T

‖W‖2α |t − s|2α + C
∥∥∥F̂ (Y )

∥∥∥∗
2α,T

|t − s|3α

≤ ∥∥F ′∥∥∞
[∥∥(Y )∥∥∗2α,T ‖W‖2β,T T

β−α|t − s|2α + C ∥∥Y∥∥∗2α,T |t − s|2αT α
]
,

because ‖·‖β ≤ ‖·‖α T β−α . Using the fact that T α ≤ T β−α and that Y ∈ BT we
obtain

∥∥N(Y )∥∥0 ≤ CT β−α,
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where C is independent of Y . On the other hand,

∥∥ys,t
∥∥ ≤ ∥∥y′∥∥∞,T ‖W‖α,T |t − s|α + ∥∥Ry∥∥2α,T |t − s|2α

≤ ∥∥Y∥∥∗2α,T ‖W‖β,T T β−α|t − s|α + ∥∥Ry∥∥2α,T T
α|t − s|α

≤ ∥∥Y∥∥∗2α,T ‖W‖β,T T β−α|t − s|α + ∥∥Y∥∥∗2α,T T α|t − s|α.

Using the last inequality

‖F(y)‖α,T ≤ ∥∥F ′∥∥∞ ‖y‖α,T
≤ ∥∥Y∥∥∗2α,T ‖W‖β,T T β−α|t − s|α + ∥∥Y∥∥∗2α,T T α|t − s|α,

which leads to
∥∥N(Y)∥∥

α
≤ CT β−α . Finally, we obtain the following estimate∥∥N(Y )∥∥2α,T ≤ CT β−α , where C does not depend on Y . By choosing T = T0

small enough, we show that N(BT0) ⊂ BT0 .

Contraction
For Y , Ỹ ∈ D2α

Mr ,

∥∥N(Y)−N(Ỹ )∥∥2α,T ≤ ∥∥N(Y )−N(Ỹ )∥∥0 + ∥∥N(Y)−N(Ỹ )∥∥
α

≤ C
∥∥∥F̂ (Y )− F̂ (Ỹ )

∥∥∥∗
2α,T

T β−α + ‖F(y)− F(ỹ)‖α
≤ C ∥∥Y − Ỹ∥∥∗2α,T T β−α + ∥∥F ′∥∥∞ ‖y − ỹ‖α ,

according to (8.74). Then it is easy to show that

‖y − ỹ‖α ≤ CT β−α ∥∥Y − Ỹ∥∥2α,T .

Finally,
∥∥N(Y )−N(Ỹ )∥∥2α,T ≤ CT β−α ∥∥Y − Ỹ∥∥2α,T where C does not depend on

neither Y nor Ỹ . So with T small enough,N(BT ) ⊂ BT andN is a strict contraction.
So, there is a unique solution Y ∈ D2α

Mr to (8.75) on [0, T ]. As mentioned at the

beginning of the proof, Y is inD2β
Mr . ��

Corollary 8.61 Given ξ ∈ R
d , F ∈ C3

b(R
d ,L(Rn,Rd)), a rough path W =

(W,W) ∈ C β with β ∈ (1/3, 1/2), there is a unique controlled rough path
(y, y′) ∈ D

2β
W such that for all t ∈ [0, T ]

y(t) = ξ +
∫ t

0
F(yu)dWu, (8.76)
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where the integral has to be understood as the controlled rough path integral
(Theorem 8.27).

Remark 8.62 Actually, we can extend this result to T = +∞, because T is chosen
uniformly with respect to parameters of the problem.

Proof It suffices to project Eq. (8.75) onto 1 and ontoW . ��
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Chapter 9
On the Euler–Maruyama Scheme
for Degenerate Stochastic Differential
Equations with Non-sticky Condition

Dai Taguchi and Akihiro Tanaka

Abstract The aim of this paper is to study weak and strong convergence of the
Euler–Maruyama scheme for a solution of one-dimensional degenerate stochastic
differential equation dXt = σ(Xt )dWt with non-sticky condition. For proving this,
we first prove that the Euler–Maruyama scheme also satisfies non-sticky condition.
As an example, we consider stochastic differential equation dXt = |Xt |αdWt , α ∈
(0, 1/2) with non-sticky boundary condition and we give some remarks on CEV
models in mathematical finance.

Keywords Stochastic differential equations · Non-sticky condition ·
Euler–Maruyama scheme · Hölder continuous diffusion coefficient ·
Mathematical finance · CEV models

9.1 Introduction

Let X = (Xt )t∈[0,T ] be a solution of one-dimensional stochastic differential
equations (SDEs)

dXt = σ(Xt )dWt, t ∈ [0, T ], X0 = x0 ∈ R, (9.1)

where W = (Wt )t∈[0,T ] is a one-dimensional standard Brownian motion on a
probability space (�,F ,P) with a filtration (Ft )t≥0 satisfying the usual conditions.
It is well-known that if the coefficient σ is Lipschitz continuous then a solution of
Eq. (9.1) can be constructed by a limit of Picard’s successive approximation, and the
solution satisfies the pathwise uniqueness.
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In the one-dimensional setting, Engelbert and Schmidt [11] provided an equiv-
alent condition on σ for the existence of a weak solution and uniqueness in law
for SDE (9.1), by using time change of a Brownian motion (see also [10]). More
precisely, they proved that Eq. (9.1) has a non-exploding weak solution for every
initial condition X0 = x0 ∈ R if and only if I (σ ) ⊂ Z(σ), and the solution is
unique in the sense of probability law if and only if I (σ ) = Z(σ). Here the sets
I (σ ) and Z(σ) are defined by I (σ ) := {x ∈ R; ∫ ε−ε σ (x+y)−2dy = +∞, ∀ε > 0}
and Z(σ) := {x ∈ R ; σ(x) = 0}. However, there exists a function σ such that
I (σ ) � Z(σ), so in this setting, the uniqueness in law does not hold. For example,
if σ(x) := |x|α for α ∈ (0, 1/2) then I (σ ) = ∅, Z(σ) = {0}, and if x0 = 0
then Xt = 0 and the time change a Brownian motion are solutions of the SDE,
and moreover, if x0 �= 0, there is a solution which spends at zero. Therefore, as a
concept of a solution of SDE, Engelbert and Schmidt [12] introduced a fundamental
solution of Eq. (9.1), which is a solution of SDE (9.1) with the following non-sticky
condition:

E

[∫ T
0

1Z(σ)(Xs)ds
]
= 0, (9.2)

that is, in other words, σ 2(Xs(ω)) > 0, Leb ⊗ P-a.e., and proved that there exists a
weak solution for a fundamental solution of SDE (9.1) and uniqueness in law holds
(see, Theorem 5.4 in [12]).

On the other hand, the pathwise uniqueness for a solution of SDE is an important
concept of a uniqueness for a solution of SDE. Yamada and Watanabe [32] proved
that the pathwise uniqueness implies uniqueness in the sense of probability law, and
weak existence and pathwise uniqueness imply the solution is a strong solution.
Moreover, they also showed that under one-dimensional setting, if the diffusion
coefficient σ is α-Hölder continuous with exponent α ∈ [1/2, 1], then the pathwise
uniqueness holds (see also [23] and [26] for discontinuous setting of σ ). Besides,
Girsanov [13] and Barlow [3] provided some examples of α-Hölder continuous
function σ with α ∈ (0, 1/2) such that the pathwise uniqueness fails for SDE (9.1),
and thus the Hölder exponent α = 1/2 is sharp.

Under such a background on the pathwise uniqueness, Manabe and Shiga [24]
studied a solution of SDEs with non-sticky boundary condition E[∫ T0 1{0}(Xs)ds] =
0 (see also page 221 of [16]). They proved that if the diffusion coefficient
σ is bounded, continuous and odd function and continuously differentiable on
R \ {0} such that (i)

∫ δ
0 σ(y)

−2dy < ∞ for some δ > 0 and (ii) the limit
limx↘0 xa

′(x)a(x)−1 exists and is not 1/2, then two solutions X1 and X2 of

SDE (9.1) with non-sticky boundary condition E[∫ T0 1{0}(Xs)ds] = 0 and the same
initial value and driven by the same Brownian motion, satisfy P(|X1

t | = |X2
t |, ∀t ≥

0) = 1. However, sign of solutions does not know from the information of driving
Brownian motion. Moreover, additionally if σ(0) = 0 then the pathwise uniqueness
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holds for the following reflected SDE with non-sticky boundary condition

Xt = x0 +
∫ t

0
σ(Xs)dWs+L0

t (X)≥ 0, E

[∫ t
0

1{0}(Xs)ds
]
= 0, t ∈ [0, T ], x0 ≥ 0,

(9.3)

where L0(X) is a local time ofX at the origin. Recently, these results were extended
by Bass and Chen [4] and Bass et al. [5]. It was shown in [5] (resp. [4]) that if
σ(x) = |x|α with α ∈ (0, 1/2) then a strong solution of SDE (9.1) with non-sticky
boundary condition E[∫ T0 1{0}(Xs)ds] = 0 (resp. reflected SDE (9.3)) exists and the
pathwise uniqueness holds by using excursion theory and pseudo-strong Markov
property (resp. approximation argument). Note that in the case of α = 0, that is,
σ(x) = 1(x �= 0), Pascu and Pascu [27] studies sticky and non-sticky solutions.

Under the viewpoint of numerical analysis, we often use the Euler–Maruyama
scheme X(n) = (X

(n)
t )t∈[0,T ] which is a discrete approximation for a solution of

SDE (9.1) defined by dX(n)t = σ(X
(n)
ηn(t)

)dWt, X
(n)
0 = x0, t ∈ [0, T ], where

ηn(s) := t
(n)
k = kT /n, if s ∈ [t (n)k , t (n)k+1). It is well-known that if the coefficient

σ is Lipschitz continuous, then X(n) has strong (Lp-sup) rate of convergence
1/2, that is, E[sup0≤t≤T |Xt − X

(n)
t |p]1/p ≤ Cn−1/2 for any p ≥ 1, (see, e.g.

[21]). On the other hand, the Euler–Maruyama scheme can be applied to many
directions not only numerical analysis. Indeed, Maruyama [25] used the scheme
for proving Girsanov’s theorem for one-dimensional SDE dXt = b(Xt )dt + dWt .
Moreover, Skorokhod constructed a (weak) solution of SDE with continuous and
linear growth coefficients as a limit of the Euler–Maruyama scheme (see, chapter 3,
section 3 in [29]). Skorokhod’s arguments can be also applied to a construction
of a solution, which is based on the approximation argument of the coefficients,
(see, e.g. chapter 3 in [30]). On the other hand, Yamada [33] proved that if the
diffusion coefficient σ is α-Hölder continuous with α ∈ [1/2, 1], then the Euler–
Maruyama scheme X(n) converges to the unique strong solution of SDE in L2-sup
sense. Recently, in the same setting, the rate of convergence was provided (see, [15]
and [34]), by using Yamada and Watanabe approximation arguments or Itô–Tanaka
formula. The result of Yamada [33] also extended by Kaneko and Nakao [19]. They
showed that by using the similar arguments of Skorokhod [29], if the pathwise
uniqueness holds for SDE with continuous and linear growth coefficients, then
the Euler–Maruyama scheme and a solution of SDE with smooth approximation
of the coefficients converge to the solution of corresponding SDE in L2-sup sense.
For results on weak convergence, when the uniqueness in law holds for SDE with
discontinuous coefficients, then Yan [34] provided some equivalent conditions for
the weak convergence of the Euler–Maruyama scheme, by using a limit theorem of
stochastic integrals. Moreover, recently, Ankirchner et al. [1] proved that the weak
convergence of the Euler–Maruyama scheme with continuous diffusion coefficient
σ such that I (σ ) = Z(σ) = ∅.
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Inspired by the above previous works, in this paper, we study weak and strong
convergence of the Euler–Maruyama scheme for a solution of SDE (9.1) with non-
sticky condition (9.2). We first prove that the Euler–Maruyama schemeX(n) defined
below (see, (9.4)) also satisfies the non-sticky condition (9.2). As an application
of this fact, we prove that the Euler–Maruyama scheme converges weakly to a
unique non-sticky weak solution of SDE, and if the pathwise uniqueness holds
then it converges to a unique non-sticky strong solution of SDE in Lp-sup sense
for any p ≥ 1. The idea of proof is also based on arguments of Yan [34] and
Skorokhod [29], and prove that by using occupation time formula if the limit of
sub-sequence of the Euler–Maruyama scheme exists, then the limit satisfies the non-
sticky condition (see, Lemma 9.5 below). As an example, the unique strong solution
of SDE dXt = |Xt |αdWt with non-sticky boundary condition E[∫ T0 1{0}(Xs)ds] = 0
for α ∈ (0, 1/2) can be approximated by the Euler–Maruyama scheme.

This paper is structured as follows. In Sect. 9.2, we prove the weak (resp. strong)
convergence for the Euler–Maruyama scheme to a solution of SDE with non-sticky
condition by using the uniqueness in law (resp. pathwise uniqueness). In Sect. 9.2.1,
we provide the definition of the Euler–Maruyama scheme and prove that it satisfies
the non-sticky condition. In Sect. 9.2.2, we state the main theorems of this present
paper. We prove some auxiliary estimates in Sect. 9.2.4 and provide the proof of
main theorems in Sect. 9.2.5.

Notations
We give some basic notations and definitions used throughout this paper. For a
Lipschitz continuous function f : R → R, we define ‖f ‖Lip := supx �=y

|f (x)−f (y)|
|x−y| .

For a given T > 0, we denote by C[0, T ] the space of continuous functions
w : [0, T ] → R with metric ρ defined by ρ(w,w′) = sup0≤t≤T |wt − w′

t |,
and by Cb(C[0, T ]k;R), k ∈ N, a continuous function f : C[0, T ]k → R

such that supw∈C[0,T ]k |f (w)| is finite. We denote the sign function by sgn(x) :=
−1(−∞,0](x) + 1(0,∞)(x) for x ∈ R. For a measurable function σ : R → R, we
define I (σ ) := {x ∈ R; ∫ ε−ε σ (x + y)−2dy = +∞, ∀ε > 0} and Z(σ) := {x ∈
R ; σ(x) = 0}, and we denote by D(σ) the set of all discontinuous points of σ . For
a continuous semi-martingale Y = (Yt )t≥0, we denote Lx(Y ) = (Lxt (Y ))t≥0 the
symmetric local time of Y at the level x ∈ R. We may write a solution of SDE (9.1)
by expressing (X,W).

9.2 Weak and Strong Convergence for the Euler–Maruyama
Scheme

Throughout this paper, we suppose the following assumptions for the diffusion
coefficient σ .
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Assumption 9.1 σ : R → R is a measurable function and Z(σ) is not the empty
set and is a countable set, that is, σ is degenerate.

9.2.1 Euler–Maruyama Scheme

We define the Euler–Maruyama scheme X(n) = (X(n)t )t∈[0,T ] for SDE (9.1) by

X
(n)
t = xn +

∫ t
0
σ(X

(n)
ηn(s)

)dWs, (9.4)

where the sequence {xn}n∈N ⊂ R\Z(σ) satisfies limn→∞ xn = x0 ∈ R and ηn(s) :=
t
(n)
k = kT /n, if s ∈ [t (n)k , t (n)k+1). Note that since Z(σ) is a countable set, there exists

such a sequence {xn}n∈N. From here, we fix the sequence {xn}n∈N.

Remark 9.1 Usually the initial value of the Euler–Maruyama scheme X(n)0 is

defined by x0. However, if Z(σ) �= ∅ and X(n)0 = x0 ∈ Z(σ), then X(n)t = x0
for all t ∈ [0, T ]. Therefore, in order to approximate a solution of SDE (9.1) with
non-sticky condition (9.2), we need to take an approximate sequence {xn}n∈N from
R \ Z(σ).

Now we prove that the Euler–Maruyama scheme (9.4) satisfies the non-sticky
condition.

Lemma 9.1 For any n ∈ N, X(n) satisfies the non-sticky condition

E

[∫ T
0

1Z(σ)(X(n)s )ds
]
= 0.

Proof We first prove by induction that for each k = 0, . . . , n− 1, it holds that

P(X(n)s /∈ Z(σ)) = 1, for any s ∈ (t(n)k , t (n)k+1].

Since X(n)s = xn + σ(xn)Ws for any s ∈ (0, t (n)1 ] and σ(xn) �= 0, we have P(X
(n)
s ∈

Z(σ)) = 0, that is, P(X(n)s /∈ Z(σ)) = 1. Thus the statement holds for k = 0.
Now we assume that the statement holds for � = 1, . . . , k−1. Then sinceX(n)s =

X
(n)

t
(n)
k

+ σ(X(n)
t
(n)
k

)(Ws −Wt(n)k ) for any s ∈ (t(n)k , t (n)k+1], by the assumption P(X
(n)

t
(n)
k

/∈
Z(σ)) = 1, we have

P(X(n)s ∈ Z(σ))

= E

[
P

(
X
(n)

t
(n)
k

+ σ(X(n)
t
(n)
k

)(Ws −Wt(n)k ) ∈ Z(σ)
∣∣∣ X(n)

t
(n)
k

)
1(X(n)

t
(n)
k

/∈ Z(σ))
]
.
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Note that random variables X(n)
t
(n)
k

andWs −Wt(n)k are independent, thus we have

P(X(n)s ∈ Z(σ))

= E

⎡
⎣P
(
x + σ(x)(Ws −Wt(n)k ) ∈ Z(σ)

) ∣∣∣
x=X(n)

t
(n)
k

1(X(n)
t
(n)
k

/∈ Z(σ))
⎤
⎦ = 0.

This concludes the case for k. Hence we have for each k = 0, . . . , n − 1, it holds
that P(X(n)s /∈ Z(σ)) = 1 for any s ∈ (t(n)k , t (n)k+1].

Using this fact, we have

E

[∫ T
0

1Z(σ)(X(n)s )ds
]
=
n−1∑
k=0

∫ t (n)k+1

t
(n)
k

P(X(n)s ∈ Z(σ))ds = 0,

which concludes the statement. ��

9.2.2 Main Results

In this subsection, we provide a weak and strong convergence for the Euler–
Maruyama scheme.

We need the following assumptions on the diffusion coefficient σ .

Assumption 9.2

(i) For any z ∈ Z(σ),

lim
ε↘0

∫ ε
−ε

1

σ(z+ y)2 dy = 0.

(ii) The diffusion coefficient σ is of linear growth, (i.e., there exists K > 0 such
that for any x ∈ R, |σ(x)| ≤ K(1 + |x|)), continuous almost everywhere
with respect to Lebesgue measure and σ1(y)

2 > 0 for any y ∈ D(σ), where
σ1(y)

2 := lim infx→y σ (x)2 for y ∈ R.

Remark 9.2

(i) Assumption 9.2 (i) implies that for any z ∈ Z(σ), there exists ε(z) > 0 such that∫ ε(z)
−ε(z)

1
σ(z+y)2 dy < ∞, thus I (σ ) = ∅ �= Z(σ). Therefore from the result of

Engelbert and Schmidt (see, e.g. Theorem 5.5.7 in [20]), the uniqueness in law
does not hold for SDE (9.1). However, it follows from Theorem 5.4 in [12] that
a solution of SDE (9.1) with non-sticky condition (9.2) exists and uniqueness
in law holds by using time change of a Brownian motion.
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(ii) It follows from Assumption 9.2 (i) that if the Euler–Maruyama scheme
converges to some stochastic process, almost surely, then the limit satisfies the
non-sticky condition, (see, Lemma 9.5 (iv)).

We obtain the following result on the weak convergence of the Euler–Maruyama
scheme.

Theorem 9.1 Suppose that Assumption 9.2 holds. LetX = (Xt )0≤t≤T be a solution
of SDE (9.1) with non-sticky condition (9.2) and {X(n)}n∈N be the Euler–Maruyama
scheme for X defined by (9.4). Then for any f ∈ Cb(C[0, T ];R),

lim
n→∞E[f (X(n))] = E[f (X)].

If σ is continuous and the pathwise uniqueness holds for X, then we have the
strong convergence for the Euler–Maruyama scheme.

Theorem 9.2 Suppose that Assumption 9.2 holds and σ is continuous. Let X =
(Xt )t∈[0,T ] be a solution of SDE (9.1) with non-sticky condition (9.2) and {X(n)}n∈N
be the Euler–Maruyama scheme for X defined by (9.4).

(i) If the pathwise uniqueness holds for X, then for any p ∈ [1,∞),

lim
n→∞E

[
sup

0≤t≤T

∣∣∣Xt −X(n)t
∣∣∣p
]

= 0.

(ii) Suppose that P(|Xt | = |X′
t |, ∀t ≥ 0) = 1, for any the other solution X′ of

SDE (9.1) driven by the same Brownian motion, with non-sticky condition (9.2).
Then for any p ∈ [1,∞),

lim
n→∞E

[
sup

0≤t≤T

∣∣∣|Xt | − |X(n)t |
∣∣∣p
]

= 0.

9.2.3 Examples and Applications

As examples of Theorem 9.2, we have two corollaries.
The first example is an application of a result in [5].

Corollary 9.1 Let σ(x) = |x|α , α ∈ (0, 1/2) and X = (Xt )0≤t≤T be a solution
of SDE (9.1) with non-sticky boundary condition E[∫ T0 1{0}(Xs)ds] = 0, and
{X(n)}n∈N be the Euler–Maruyama scheme for X defined by (9.4). Then for any
p ∈ [1,∞),

lim
n→∞E

[
sup

0≤t≤T

∣∣∣Xt −X(n)t
∣∣∣p
]

= 0.
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Proof From Theorem 1.2 in [5], the pathwise uniqueness holds for SDE dXt =
|Xt |αdWt , X0 = x0 ∈ R with non-sticky boundary condition. On the other hand,
since Z(σ) = {0} and α ∈ (0, 1/2), it holds that

lim
ε↘0

∫ ε
−ε

1

|y|2α dy = lim
ε↘0

2ε1−2α

1 − 2α
= 0.

Hence σ(x) = |x|α satisfies Assumption 9.2. From Theorem 9.2, we conclude the
statement. ��

We give a financial application of SDE considered in Corollary 9.1. In mathemat-
ical finance, constant elasticity of variance (CEV) models introduced by Cox [7]

dXt = (Xt )αdWt, X0 = x0 > 0, α ∈ (0, 1],

have been studied by many authors (see, e.g. [2, 8, 14, 17] and [18]). If α ∈ [1/2, 1],
then as mentioned in the introduction, pathwise uniqueness holds (see, Theorem 1 in
[32] or Proposition 5.2.13 in [20]). Moreover, the boundary point zero is absorbing,
that is, the process remains at zero after it reaches zero (see, e.g. Proposition 6.1.3.1
in [18]).

On the other hand, if α ∈ (0, 1/2), then the pathwise uniqueness does not hold for
CEV models, and the boundary zero is regular, that is, the solution can get in to the
boundary zero and can get out from the boundary zero, (see, e.g. [6] or Example 5.4
in [9]). Therefore one may consider CEV models with absorbing boundary (see, [8]),

or reflecting boundary by setting Xt := (1−α) 1
1−α (ρt )

1
2(1−α) , where ρ = (ρt )t≥0 be

a (1 − 2α)/(1 − α)-dimensional squared Bessel process (see, the explicit form of
the density function given in [18], page 367, case β(= α − 1) < 0).

Recently, there are some studies on CEV models dXt = |Xt |αdWt with “free
boundary condition” (see, e.g. subsection 2.2 in [2]) to extend them as R-valued
processes. However, as mentioned in the introduction, the uniqueness in law and
pathwise uniqueness do not hold (in particular, there is no density function) without
some boundary conditions. Therefore, if one would like to extend CEV models as
R-valued processes, then as one approach, the non-sticky boundary is useful.

Finally, we give a relation between CEV model with non-sticky boundary
condition and squared Bessel process. Let X = (Xt )t∈[0,T ] be a solution of SDE
dXt = |Xt |αdWt , X0 = x0 ∈ R, for α ∈ (0, 1/2). We first do not assume any
boundary condition for X. Let g(x) := |x|2(1−α)/(1 − α)2. Then it is easy to see
that

g′(x) = 2sgn(x)

1 − α |x|1−2α, ∀x ∈ R and g′′(x) = 2(1 − 2α)

1 − α
1

|x|2α , ∀x ∈ R\{0}.
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So we cannot apply Itô’s formula for g, but since g is convex and X is a continuous
martingale, we can apply Itô–Tanaka formula (see, e.g. Theorem 1.5 in chapter VI
of [28]) to obtain

Yt := g(Xt ) = g(x0)+
∫ t

0
g′(Xs)dXs + 1

2

∫
R

Lxt (X)g
′′(dx),

where g′′(dx) is the second derivative measure of g, and is given by

g′′(dx) = 2(1 − 2α)

1 − α
1R\{0}(x)
|x|2α dx.

Therefore, using the occupation time formula (see, e.g. Corollary 1.6 in chapter VI
of [28]), we have

Yt = g(x0)+ 2
∫ t

0

√
Yssgn(Xs)dWs + 1 − 2α

1 − α
∫ t

0

1R\{0}(Xs)
|Xs |2α d〈X〉s

= g(x0)+ 2
∫ t

0

√
Yssgn(Xs)dWs + 1 − 2α

1 − α
∫ t

0
1R\{0}(Xs)ds.

We now assume non-sticky boundary condition for X, then 1R\{0}(Xs) = 1 for all
s ∈ [0, T ], almost surely and thus

Yt = g(x0)+ 2
∫ t

0

√
YsdW̃s + 1 − 2α

1 − α t,

where W̃ = (W̃t )t∈[0,T ] is a Brownian motion defined by dW̃t := sgn(Xt )dWt .
Therefore, the law of Y is a (1 − 2α)/(1 − α)-dimensional squared Bessel process.

Remark 9.3 Note that one may use Itô’s formula for Yt = |Xt |2(1−α)/(1 − α)2 for
“some” t ≥ 0, in order to prove Y satisfies the equation dYt = 2

√
YtdWt + 1−2α

1−α dt ,
(see, e.g. [17] and [14]). The above computation shows that this is true for t <
inf{s > 0;Xs = 0}.

The second example is an application of a result in [24].

Corollary 9.2 Let Z(σ) = {0}, X = (Xt )t∈[0,T ] be a solution of SDE (9.1) with

non-sticky boundary condition E[∫ T0 1{0}(Xs)ds] = 0, and {X(n)}n∈N be the Euler–
Maruyama scheme for X defined by (9.1). Suppose that σ : R → R satisfies
Assumption 9.2, and is a bounded, continuous and odd function and continuously
differentiable on R \ {0} such that the limit limx↘0 xa

′(x)a(x)−1 exists and is not
1/2. Then for any p ∈ [1,∞),

lim
n→∞E

[
sup

0≤t≤T

∣∣∣|Xt | − |X(n)t |
∣∣∣p
]

= 0.
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Proof From Assumption 9.2 (ii), there exists δ > 0 such that
∫ δ

0 σ(y)
−2dy < ∞.

Hence it follows from Theorem 1 in [24] that the assumptions on Theorem 9.2 hold.
Thus we conclude the proof. ��

9.2.4 Auxiliary Estimates

In this subsection, we introduce some useful estimates for proving Theorems 9.1
and 9.2.

We first prove the following standard inequalities on a solution of SDE (9.1), the
Euler–Maruyama scheme defined by (9.4) and their local times.

Lemma 9.2 Let X be a solution of SDE (9.1) and {X(n)}n∈N be the Euler–
Maruyama scheme for X defined by (9.4). Suppose that σ is of linear growth. Then
for any p ≥ 1, there exists a positive constant Cp > 0 such that

E

[
sup

0≤t≤T
|Xt |p

]
+ sup
n∈N

E

[
sup

0≤t≤T
|X(n)t |p

]
≤ Cp, (9.5)

E[|Xt −Xs |p]1/p + sup
n∈N

E[|X(n)t −X(n)s |p]1/p ≤ Cp|t − s|1/2, (9.6)

for any t, s ∈ [0, T ]. Moreover, there exists C0 > 0 such that

sup
y∈R

E[LyT (X)] + sup
y∈R, n∈N

E[LyT (X(n))] ≤ C0. (9.7)

Proof Since {xn}n∈N is bounded and σ is of linear growth, the estimates (9.5)
and (9.6) can be shown by applying Gronwall’s inequality and Burkholder–Davis–
Gundy’s inequality, thus it will be omitted.

We prove (9.7). By Itô–Tanaka formula, we have for any y ∈ R,

L
y
T (X) = |XT − y| − |x0 − y| −

∫ T
0

sgn(Xs − y)dXs

≤ |x0| + |XT | +
∣∣∣∣
∫ T

0
sgn(Xs − y)σ (Xs)dWs

∣∣∣∣

and by the same way

L
y
T (X

(n)) ≤ |xn| + |X(n)T | +
∣∣∣∣
∫ T

0
sgn(X(n)s − y)σ (X(n)ηn(s))dWs

∣∣∣∣ .

Hence by using Burkholder–Davis–Gundy’s inequality and (9.5) with p = 1, 2, we
conclude (9.7). ��
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The following lemma is a key estimate for the non-sticky condition.

Lemma 9.3 Suppose that Assumption 9.2 hold. Let X be a solution of SDE (9.1)
with non-sticky condition (9.2) and {X(n)}n∈N be the Euler–Maruyama scheme for
X defined by (9.4). Let z ∈ Z(σ) and fz : R → [0, 1] be a Lipschitz continuous
function with suppfz ⊂ [z − ε, z + ε] for some ε > 0. Then there exists C > 0
which does not depend on n, z and ε such that

E

[∫ T
0
fz(Xs)ds

]
≤ C

∫ ε
−ε

1

σ(z+ y)2 dy (9.8)

and

E

[∫ T
0
fz(X

(n)
s )ds

]
≤ C

{∫ ε
−ε

1

σ(z+ y)2 dy + ‖fz‖Lip

n1/2

}
. (9.9)

Proof We first prove (9.8). SinceX satisfies the non-sticky condition (9.2), we have
σ(Xs(ω))

2 > 0, Leb⊗P-a.e. Thus by using Fatou’s lemma and the occupation time
formula (see, e.g. Corollary 1.6 in chapter VI of [28]) and Lemma 9.2, we have

E

[∫ T
0
fz(Xs)ds

]
= E

[∫ T
0

fz(Xs)1{σ(Xs)2>0}
σ(Xs)2

d〈X〉s
]

≤ lim inf
N→∞ E

[∫
R

fz(y)1{σ(y)2>1/N}
σ(y)2

L
y
T (X)dy

]

≤ sup
y∈R

E
[
L
y
T (X)

] ∫ z+ε
z−ε

1

σ(y)2
dy

≤ C0

∫ ε
−ε

1

σ(z+ y)2 dy,

which implies (9.8).
Now we prove (9.9). Since, from Lemma 9.1, we have σ(X(n)s (ω))2 > 0, Leb ⊗

P-a.e. Hence by using Lipschitz continuity of fz, Fatou’s lemma, the occupation
time formula and Lemma 9.2, we have

E

[∫ T
0
fz(X

(n)
s )ds

]
≤ E

[∫ T
0
fz(X

(n)
ηn(s)

)ds

]
+
∫ T

0
E

[∣∣∣fz(X(n)s )− fz(X(n)ηn(s))
∣∣∣
]

ds

≤ E

⎡
⎢⎣
∫ T

0

fz(X
(n)
ηn(s)

)1{σ(X(n)
ηn(s)

)2>0}
σ(X

(n)
ηn(s)

)2
d〈X(n)〉s

⎤
⎥⎦

+ ‖fz‖Lip

∫ T
0

E

[∣∣∣X(n)s −X(n)ηn(s)
∣∣∣
]

ds
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≤ lim inf
N→∞ E

[∫
R

fz(y)1{σ(y)2>1/N}
σ(y)2

L
y
T (X

(n))dy

]
+ C1T

3/2‖fz‖Lip

n1/2

≤ sup
n,∈N, y∈R

E

[
L
y
T (X

(n))
] ∫ z+ε
z−ε

1

σ(y)2
dy + C1T

3/2‖fz‖Lip

n1/2

≤ max{C0, C1T
3/2}
{∫ ε

−ε
1

σ(z+ y)2 dy + ‖fz‖Lip

n1/2

}
,

which implies (9.9). ��
Now we introduce the following key lemma which is proved by Skorokhod (see,

e.g. Theorem in [29], Chapter 3, section 3, page 32), and which shows convergence
in probability for a sequence of stochastic integrals.

Lemma 9.4 (Skorokhod [29]) Let (W,FW) and (Wn,FWn), n ∈ N be Brownian
motions and fn = (fn(t))t∈[0,T ] be a FWn -adapted stochastic processes such that∫ t

0 fn(s)dW
n
s is well-defined, for all n ∈ N. Suppose that for any t ∈ [0, T ],Wn

t and
fn(t) converges to Wt and a FW -adapted process f (t) in probability, respectively,
and the stochastic integral

∫ t
0 f (s)dWs is well-defined. Suppose further that the

following conditions are satisfied for {fn}n∈N:

(a) For any ε > 0, there exists K > 0 such that for any n ∈ N,

P

(
sup

0≤t≤T
|fn(t)| > K

)
≤ ε.

(b) For any ε > 0,

lim
h↘0

lim
n→∞ sup

|t1−t2|≤h
P (|fn(t2)− fn(t1)| > ε) = 0.

Then it holds that for any t ∈ [0, T ]

lim
n→∞

∫ t
0
fn(s)dW

n
s =

∫ t
0
f (s)dWs,

in probability.

Finally, we prove the following key lemma in order to show main theorems and
in particular to deal with non-sticky condition.

Lemma 9.5 Suppose that Assumption 9.2 holds. Let (X,W) be a solution of
SDE (9.1) with non-sticky condition (9.2) and {X(k)}k∈N be a sub-sequence of the
Euler–Maruyama scheme defined by (9.4). Then there exists a probability space
(�̂, F̂ , P̂), a sub-sub-sequence {k�}�∈N and three-dimensional continuous processes
Ŷ k� = (X̂k� , X̂(k�), Ŵ k�) and Ŷ = (X̂, X̂(∗), Ŵ ) defined on the probability space
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(�̂, F̂ , P̂) such that the following properties are satisfied:

(i) The law of stochastic processes (X,X(k�),W) and (X̂k� , X̂(k�), Ŵ k�) coincide
for each � ∈ N. In particular, (X̂k� , X̂(k�), Ŵ k�) can be chosen as follows: there
exist measurable maps φk� : �̂→ �, � ∈ N such that

(X̂k� , X̂(k�), Ŵ k�) = (X ◦ φk�,X(k�) ◦ φk�,W ◦ φk�).

(ii) P̂(lim�→∞ sup0≤t≤T |Ŷ k�t − Ŷt | = 0) = 1.
(iii) Ŵ is a Brownian motion and X̂, X̂(∗) are continuous martingales on (�̂, F̂ , P̂).
(iv) X̂ and X̂(∗) satisfy non-sticky condition

Ê

[∫ T
0

1Z(σ)(X̂s)ds
]
= Ê

[∫ T
0

1Z(σ)(X̂(∗)s )ds
]
= 0. (9.10)

(v) There exist an extension (�̃, F̃ , P̃) of (�̂, F̂ , P̂) and Brownian motions B̃ =
(B̃t )t∈[0,T ], B̃(∗) = (B̃

(∗)
t )t∈[0,T ] such that (X̂, B̃) and (X̂(∗), B̃(∗)) are

solutions of SDE (9.1) with non-sticky condition (9.10).
(vi) If σ is continuous then (X̂, Ŵ ) and (X̂(∗), Ŵ ) are solutions of SDE (9.1) with

non-sticky condition (9.10).

Proof Proof of (i) and (ii). We first note that since the diffusion coefficient σ is of
linear growth, the estimates in Lemma 9.2 hold. Hence it follows from Theorem 4.3
and the proof of Theorem 4.2 in [16] that the family of three-dimensional stochastic
process {(X,X(k),W)}k∈N is tight in C[0, T ]3, and thus is relatively compact in
C[0, T ]3 by Prohorov’s Theorem (see, e.g. Theorem 2.4.7 in [20]). Hence there
exist a sub-sequence {k�}�∈N and X(∗) such that lim�→∞ E[f (X,X(k�),W)] =
E[f (X,X(∗),W)], for any f ∈ Cb(C[0, T ]3;R). Therefore, by using Skorohod’s
representation theorem (see, e.g. Theorem 1.2.7 in [16] or Theorem 1.10.4 in [31])
and Addendum 1.10.5 in [31], there exists a probability space (�̂, F̂ , P̂), three-
dimensional continuous processes Ŷ k� = (X̂k� , X̂(k�), Ŵ k�) and Ŷ = (X̂, X̂(∗), Ŵ )
defined on the probability space (�̂, F̂ , P̂) and measurable maps φk� : �̂ → �,
� ∈ N such that the properties (i) and (ii) are satisfied.

Proof of (iii). We first prove Ŵ is a Brownian motion on (�̂, F̂ , P̂). From
the property (i), Ŵ k� is a Brownian motion, so Ŵ k� and (|Ŵ k�

t |2 − t)t∈[0,T ] are
martingales. Therefore it follows from Lemma A.1 in [34] and the above property
(ii) that Ŵ and (|Ŵ |2t − t)t∈[0,T ] are martingales, thus the quadratic variation of Ŵt
is t for all t ∈ [0, T ]. Lévy’s Theorem (e.g. Theorem 3.3.16 in [20]) implies that Ŵ
is a Brownian motion.

Next, we prove X̂ and X̂(∗) are continuous martingales. By using the above
property (i), it holds that (X̂k� , Ŵ k�) satisfies the following equations

X̂
k�
t = x0 +

∫ t
0
σ(X̂k�s )dŴ

k�
s and Ê

[∫ T
0

1Z(σ)(X̂k�s )ds
]
= 0 (9.11)
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and by using Lemma 9.1, (X̂(k�), Ŵ k�) satisfies the following equations

X̂
(k�)
t = xk� +

∫ t
0
σ(X̂

(k�)
ηk� (s)

)dŴ k�
s and Ê

[∫ T
0

1Z(σ)(X̂(k�)s )ds

]
= 0.

(9.12)

Thus from Lemma 9.2, sequences of stochastic process {X̂k�}�∈N and {X̂(k�)}�∈N
are uniformly integrable martingales, which uniformly converge to X̂ and X̂(∗),
respectively. Hence from Lemma A.1 in [34], we conclude X̂ and X̂(∗) are
continuous martingales.

Proof of (iv). For ε > 0 and z ∈ Z(σ), we define a continuous function fε,z :
R → [0, 1] by

fε,z(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−x − z
ε

+ 1 if 0 ≤ x − z < ε,
x − z
ε

+ 1 if − ε < x − z < 0,

0 if |x − z| ≥ ε.

Then it is easy to see that limε↘0 fε,z(x) = 1{z}(x) for each x ∈ R, and fε,z is
Lipschitz continuous with ‖fε,z‖Lip = 2/ε. Recall that X̂k� and X̂(k�) satisfy the
equations (9.11) and (9.12), respectively. Hence from the dominated convergence
theorem, Lemma 9.3 and Assumption 9.2 (i), we have

Ê

[∫ T
0

1Z(σ)(X̂s)ds
]
+ Ê

[∫ T
0

1Z(σ)(X̂(∗)s )ds
]

=
∑
z∈Z(σ)

{
Ê

[∫ T
0

1{z}(X̂s)ds
]
+ Ê

[∫ T
0

1{z}(X̂(∗)s )ds
]}

=
∑
z∈Z(σ)

lim
ε↘0

{
Ê

[∫ T
0
fε,z(X̂s)ds

]
+ Ê

[∫ T
0
fε,z(X̂

(∗)
s )ds

]}

=
∑
z∈Z(σ)

lim
ε↘0

lim
�→∞

{
Ê

[∫ T
0
fε,z(X̂

k�
s )ds

]
+ Ê

[∫ T
0
fε,z(X̂

(k�)
s )ds

]}

≤ 2C
∑
z∈Z(σ)

lim
ε↘0

lim
�→∞

{∫ ε
−ε

1

σ(z+ y)2 dy + 1

εk
1/2
�

}

= 2C
∑
z∈Z(σ)

lim
ε↘0

∫ ε
−ε

1

σ(z+ y)2 dy = 0,

which concludes (iv).
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Proof of (v). The proof is almost the same as Lemma 2.3 and Theorem 2.1 in
[34]. We first prove that for each t ∈ [0, T ],

lim
�→∞〈X̂k�〉t = 〈X̂〉t and lim

�→∞〈X̂(k�)〉t = 〈X̂(∗)〉t (9.13)

in L1(�̂, F̂ , P̂) and

lim
�→∞

∫ t
0
σ(X̂k�s )

21(X̂s /∈ D(σ))ds =
∫ t

0
σ(X̂s)

21(X̂s /∈ D(σ))ds, (9.14)

lim
�→∞

∫ t
0
σ(X̂

(k�)
ηk� (s)

)21(X̂(∗)s /∈ D(σ))ds =
∫ t

0
σ(X̂(∗)s )21(X̂(∗)s /∈ D(σ))ds,

(9.15)

in L1(�̂, F̂ , P̂). From the property (ii), continuous martingales X̂k� and X̂(k�)

converge to X̂ and X̂(∗) almost surely in C[0, T ], respectively. Hence it follows
from Theorem 2.2 in [22] that

∫ ·
0 X̂

k�
s dX̂k�s and

∫ ·
0 X̂

(k�)
s dX̂(k�)s converge to

∫ ·
0 X̂sdX̂s

and
∫ ·

0 X̂
(∗)
s dX̂(∗)s in probability as � → ∞, respectively. Since for any squared

integrable continuous martingaleM , 〈M〉t = M2
t −M2

0 − 2
∫ t

0 MsdMs , we have

lim
�→∞〈X̂k�〉t = 〈X̂〉t and lim

�→∞〈X̂(k�)〉t = 〈X̂(∗)〉t ,

in probability. On the other hand, since σ is of linear growth, from Lemma 9.2, the
classes

{
〈X̂k�〉t , 〈X̂(k�)〉t ; t ∈ [0, T ], � ∈ N

}
and

{
σ(X̂

k�
t )

2, σ (X̂
(k�)
ηk� (t)

)2 ; t ∈ [0, T ], � ∈ N

}

are uniformly integrable, thus we conclude (9.13), (9.14), and (9.15).
Recall that σ1(y)

2 := lim infx→y σ (x)2 for y ∈ R. Using Fatou’s lemma
and (9.13), we have for any 0 ≤ r < t ≤ T ,

Ê

[∫ t
r

σ1(X̂s)
2ds

]
= Ê

[∫ t
r

lim inf
�→∞ σ(X̂k�s )

2ds

]
≤ lim inf

�→∞ Ê

[∫ t
r

σ (X̂k�s )
2ds

]

= Ê
[〈X̂〉t − 〈X̂〉r

]

and by the same way,

Ê

[∫ t
r

σ1(X̂
(∗)
s )

2ds

]
≤ Ê

[
〈X̂(∗)〉t − 〈X̂(∗)〉r

]
.
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Therefore, using the occupation time formula and Lemma 9.2, we have

Ê

[∫ T
0

1D(σ)(X̂s)σ1(X̂s)
2ds

]
≤ Ê

[∫ T
0

1D(σ)(X̂s)d〈X̂〉s
]
= Ê

[∫
D(σ)

L
y
T (X̂)dy

]

≤ Leb(D(σ)) sup
y∈R

Ê[LyT (X̂)] = 0

and by the same way

Ê

[∫ T
0

1D(σ)(X̂(∗)s )σ1(X̂
(∗)
s )

2ds

]
= 0.

Recall that from the assumption, σ1(y)
2 = lim infx→y σ (x)2 > 0 for y ∈ D(σ), so

we obtain

∫ T
0

1D(σ)(X̂s)ds =
∫ T

0
1D(σ)(X̂(∗)s )ds = 0, (9.16)

P̂-almost surely. Therefore, it hold from (9.14), (9.16), and (9.15) that for any t ∈
[0, T ],

lim
�→∞ Ê

[∣∣∣∣〈X̂k�〉t −
∫ t

0
σ(X̂s)

2ds

∣∣∣∣
]

= lim
�→∞ Ê

[∣∣∣∣
∫ t

0

{
σ(X̂k�s )

2 − σ(X̂s)2
}

1(X̂s /∈ D(σ))ds
∣∣∣∣
]
= 0 (9.17)

and

lim
�→∞ Ê

[∣∣∣∣〈X̂(k�)〉t −
∫ t

0
σ(X̂(∗)s )2ds

∣∣∣∣
]
= 0. (9.18)

Therefore, from (9.13), (9.17), and (9.18), we obtain 〈X̂〉t = ∫ t
0 σ(X̂s)

2ds and

〈X̂(∗)〉t =
∫ t

0 σ(X̂
(∗)
s )

2ds, P̂-almost surely. Since X̂ and X̂(∗) are square integrable
continuous martingales, by using martingale representation theorem (see, e.g.
chapter 2, Theorem 7.1’ in [16]), there exist an extension (�̃, F̃ , P̃) of (�̂, F̂ , P̂)
and Brownian motions B̃ = (B̃t )t∈[0,T ], B̃(∗) = (B̃(∗)t )t∈[0,T ] such that

X̂t = x0 +
∫ t

0
σ(X̂s)dB̃s and X̂

(∗)
t = x0 +

∫ t
0
σ(X̂(∗)s )dB̃(∗)s ,

P̃-almost surely, thus from the property (iv), we conclude the statement of (v).
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Proof of (vi). We first prove that {X̂k�}�∈N and {X̂(k�)}�∈N satisfy the following
two properties:

(a) For any ε > 0 and a measurable, polynomial growth function f : R → R, there
exists K ≡ K(ε, f ) > 0 such that

sup
�∈N

max

{
P̂

(
sup

0≤s≤T
|f (X̂k�s )| ≥ K

)
, P̂

(
sup

0≤s≤T
|f (X̂(k�)s )| ≥ K

)}
< ε.

(b) For any ε̃ > 0 and a continuous function g : R → R,

lim
h→0

lim
�→∞ sup

|t1−t2|≤h
max

{̂
P

(∣∣∣g(X̂k�t1 )− g(X̂k�t2 )
∣∣∣ > ε̃

)
,

P̂

(∣∣∣g(X̂(k�)t1
)− g(X̂(k�)t2

)

∣∣∣ > ε̃
)}

= 0

Indeed, the property (a) follows from Markov’s inequality and Lemma 9.2. In order
to prove the property (b), we use the property (a) with f (x) = x. Then since g is
uniformly continuous on the interval [−K,K], there exists δ ≡ δ(̃ε,K) > 0 such
that for any x, y ∈ [−K,K], if |x − y| < δ then |g(x) − g(y)| < ε̃. Therefore, it
follows from Markov’s inequality and Lemma 9.2 that

sup
�∈N

P̂

(∣∣∣g(X̂k�t1 )− g(X̂k�t2 )
∣∣∣ ≥ ε̃

)

≤ sup
�∈N

P̂

(∣∣∣g(X̂k�t1 )−g(X̂k�t2 )
∣∣∣≥ ε̃, sup

s∈[0,T ]
|X̂k�s | ≤K

)
+ sup
�∈N

P̂

(
sup
s∈[0,T ]

|X̂k�s | ≥K
)

≤ sup
�∈N

P̂

(∣∣∣X̂k�t1 − X̂k�t2
∣∣∣ ≥ δ

)
+ ε ≤ C1|t1 − t2|1/2

δ
+ ε

and by the same way,

sup
�∈N

P̂

(∣∣∣g(X̂(k�)t1
)− g(X̂(k�)t2

)

∣∣∣ ≥ ε̃
)
≤ C1|t1 − t2|1/2

δ
+ ε.

By taking h→ 0, since ε is arbitrary, the property (b) follows.
Recall that σ is continuous, limn→∞ xn = x0 and Ŵ is a Brownian motion. It

follows from Lemma 9.4 and the above properties (a), (b) with f = g = σ that, by
letting �→ ∞, the limits X̂ and X̂(∗) are satisfies the equation

X̂t = x0 +
∫ t

0
σ(X̂s)dŴs and X̂

(∗)
t = x0 +

∫ t
0
σ(X̂(∗)s )dŴs

and thus from the property (iv), we conclude the statement of (vi). ��
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9.2.5 Proof of Main Theorems

Before proving Theorem 9.1, we recall the following elementally fact on calculus.
Let {an}n∈N be a sequence on R and a ∈ R. If for any sub-sequence {ank }k∈N of
{an}n∈N, there exists a sub-sub-sequence {ank� }�∈N such that lim�→∞ ank� = a,
then the sequence {an}n∈N converges to a. By using the this fact and Lemma 9.5,
we prove Theorem 9.1.

Proof of Theorem 9.1
It is enough to prove that for any sub-sequence {X(k)}k∈N of the Euler–Maruyama
scheme {X(n)}n∈N defined by (9.4), there is a sub-sub-sequence {X(k�)}�∈N such that
for any f ∈ Cb(C[0, T ];R),

lim
�→∞E[f (X(k�))] = E[f (X)].

Let {X(k)}k∈N be a sub-sequence of the Euler–Maruyama scheme {X(n)}n∈N.
From Lemma 9.5, there exists a probability space (�̂, F̂ , P̂), a sub-sequence
{k�}�∈N and 3-dimensional continuous processes Ŷ k� = (X̂k� , X̂(k�), Ŵ k�) and Ŷ =
(X̂, X̂(∗), Ŵ ) defined on the probability space (�̂, F̂ , P̂) such that the properties
(i)–(v) are satisfied.

For the proof of this theorem, we only use X̂(k�) and X̂(∗), do not use (X̂k� , Ŵ k�)

and (X̂, Ŵ ). From the property (i), (ii) in Lemma 9.5 and using the dominated
convergence theorem, we have

lim
�→∞E[f (X(k�))] = lim

�→∞ Ê[f (X̂(k�))] = Ê[f (X̂(∗))], (9.19)

for any f ∈ Cb(C[0, T ];R).
On the other hand, the property (iv) and (v) imply that there exist an extension

(�̃, F̃ , P̃) of (�̂, F̂ , P̂) and Brownian motion B̃(∗) = (B̃
(∗)
t )t∈[0,T ] such that

(X̂(∗), B̃(∗)) is a solution of SDE (9.1) with non-sticky condition (9.10). Hence
from the uniqueness in law for SDE (9.1) with non-sticky condition (9.10) (see,
Remark 9.2 (i)) and (9.19), we have

lim
�→∞E[f (X(k�))] = Ê[f (X̂(∗))] = Ẽ[f (X̂(∗))] = E[f (X)]

for any f ∈ Cb(C[0, T ];R). This concludes the statement.
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Proof of Theorem 9.2
The proof for the statement (ii) is similar to (i), thus we only prove the statement (i).

The proof is based on [19], that is, we prove the statement by contradiction. We
suppose that the statement (i) is not true, that is, there exist ε0 > 0 and a sub-
sequence {nk}k∈N such that

E

[
sup

0≤t≤T

∣∣∣Xt −X(nk)t

∣∣∣p
]

≥ ε0, for any k ∈ N. (9.20)

We now denote X(k) by X(nk) to simplify. Then from Lemma 9.5, there exist a
probability space (�̂, F̂ , P̂), a sub-sequence {k�}�∈N and 3-dimensional continuous
processes Ŷ k� = (X̂k� , X̂(k�), Ŵ k�) and Ŷ = (X̂, X̂(∗), Ŵ ) defined on the
probability space (�̂, F̂ , P̂) such that the properties (i)–(vi) are satisfied.

Note that from Lemma 9.2, the family of random variables {sup0≤t≤T |X̂k�t −
X̂
(k�)
t |p}�∈N is uniformly integrable. Therefore, from the assumption (9.20) and the

property (i), (ii) in Lemma 9.5, we have

ε0 ≤ lim inf
�→∞ E

[
sup

0≤t≤T

∣∣∣Xt −X(k�)t

∣∣∣p
]

= lim inf
�→∞ Ê

[
sup

0≤t≤T

∣∣∣X̂k�t − X̂(k�)t

∣∣∣p
]

= Ê

[
sup

0≤t≤T

∣∣∣X̂t − X̂(∗)t
∣∣∣p
]
. (9.21)

On the other hand, the property (iv) and (vi) imply that X̂ and X̂(∗) are solutions of
SDE (9.1) driven by the same Brownian motion Ŵ , with non-sticky condition (9.10)
on the probability space (�̂, F̂ , P̂). Hence from the assumption on the pathwise
uniqueness, (9.20) and (9.21), we conclude 0 < ε0 ≤ 0. This is the contradiction.
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Chapter 10
On a Construction of Strong Solutions
for Stochastic Differential Equations
with Non-Lipschitz Coefficients: A Priori
Estimates Approach

Toshiki Okumura

Abstract Given a stochastic differential equation of which coefficients satisfy
Yamada–Watanabe condition or Nakao-Le Gall condition. We prove that its strong
solution can be constructed on any probability space using a priori estimates and
also using Ito theory based on Picard’s approximation scheme.

10.1 Introduction

The present paper proposes concrete and direct constructions of strong solutions
for stochastic differential equations (SDEs) with non-Lipschitz coefficients. It is
well known that in Ito classical theory on SDEs (see Ito [3]) under the global
Lipschitz condition for coefficients, the existence and the uniqueness hold for their
strong solutions. The theory is based on the Picard’s iteration method and then the
existence and the uniqueness follow naturally by Picard’s successive approximation
procedure of strong solutions. Although Ito theory is beautifully established, the
global Lipschitz condition imposed on coefficients is too strict and too restricted
for the purpose of discussing various SDEs raised both in the theory of stochastic
calculus and in its applications. Consider for examples, the SDE associated to
square Bessel processes, to Wright–Fischer model in population genetics, to Cox–
Ingersoll–Ross (CIR) model in mathematical finance, and also to skewed symmetric
Brownian motions. The classical Ito theory covers none of these examples.

As is well known that the frame of the weak existence theory [10, 11] is
wide enough to cover the all examples cited in the above. We know also that
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the pathwise uniqueness holds for solutions of SDEs in the above by Yamada–
Watanabe condition [13], or by that of Nakao-Le Gall [6, 7]. Then the existence of
strong solutions for them follows immediately by Yamada–Watanabe Theorem [13].
However, we would like to point out that the proof of the existence by Yamada–
Watanabe involves no construction procedure of strong solutions.

In this situation, the investigation on concrete construction of strong solutions
under non Lipschitz conditions appears to be interesting. Our paper is motivated by
a construction of strong solutions given by Stefan Ebenfeld [1]. His method covers
CIR model in mathematical finance. The method is based on a priori estimates and
also on Ito classical theory. The benefit of this approach is that the argument only
requires some fundamental knowledge about stochastic and functional analysis.

The first part of the paper (Sects. 10.2–10.5) is devoted to the improvement of the
result by Stefan Ebenfeld [1]. We show a concrete construction procedure of strong
solutions under Yamada–Watanabe condition. Although our construction method
based on a priori estimates is new, the Euler Maruyama approximation method gives
an another construction of strong solutions under the same condition (see Yamada
[12], Kaneko and Nakao [5]).

In the final part of the paper, we discuss the existence of strong solutions under
Nakao-Le Gall condition. Since coefficients are allowed to be discontinuous, the
Euler–Maruyama method based on the continuity of coefficients does not cover this
case. Discontinuous points of coefficient raise various difficulties to be discussed
carefully in the proof. The stochastic calculus based on local times and their
occupation formulas plays important roles to overcome these difficulties.

10.2 The Main Result Under Yamada–Watanabe Condition

10.2.1 Assumptions

We discuss under the following assumptions.

(1) Let (�,F , {Ft },P) be a filtered probability space where the filtration satisfies
the usual conditions.

(2) LetW be a Brownian motion with respect to (�,F , {Ft },P).
(3) Let T > 0, and let X0 ∈ R.
(4) Let b ∈ C([0, T ] × R,R), and let σ ∈ C([0, T ] × R,R).
(5) Let b and σ satisfy the following linear growth condition

∃C > 0 ∀t ∈ [0, T ] ∀x ∈ R,

|b(t, x)| + |σ(t, x)| ≤ C(1 + |x|).



10 On a Construction of Strong Solutions for SDE with Non-Lipschitz Coefficients 189

(6) Let b satisfy the following Lipschitz continuity condition

∃C > 0 ∀t ∈ [0, T ] ∀x, y ∈ R,

|b(t, x)− b(t, y)| ≤ C|x − y|.

(7) Let σ satisfy the following continuity condition

∀ε > 0 ∀t ∈ [0, T ] ∀x, y ∈ R,

|σ(t, x)− σ(t, y)| ≤ h(|x − y|),

where h is a strictly increasing continuous function defined on [0,∞) with
h(0) = 0 such that

(a)

h(x) ≤ C(1 + x); ∃C > 0 ∀x ∈ [0,∞),

(b)

∫
(0,ε)

h−2(u)du = ∞; ∀ε > 0.

We consider the following SDE

Xt = X0 +
∫ t

0
b(s,Xs)ds +

∫ t
0
σ(s,Xs)dWs. (10.1)

The following result shows that the assumptions are sufficient to guarantee pathwise
uniqueness of solutions.

Proposition 10.1 (Yamada and Watanabe [13]) Under the assumptions (1)–(7),
pathwise uniqueness holds for SDE (10.1).

A detailed proof of Proposition 10.1 can be found for example in the book of
Karatzas and Shreve [4], Proposition 5.3.20.

10.2.2 Main Theorem

Here, we present the main theorem. The proof of the main theorem is discussed
along the lines of Stefan Ebenfeld [1].

Theorem 10.1 (Strong Existence) Under the assumptions (1–7), the SDE (10.1)
has a strong solution.
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The proof of the theorem is based on a particular approximation of the SDE (10.1).
Let χε(x) be a function in C∞(R), such that

χε(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 ; x ≤ −ε,
positive ;−ε < x < ε,
0 ; x ≥ ε,

and
∫ ∞

−∞
χε(x)dx = 1.

Moreover, we define that

σε(t, x) :=
∫ ∞

−∞
σ(t, x − y)χε(y)dy = (σ ∗ χε)(x),

where the symbol ∗ stands for the convolution operator. Consider the following
approximated SDE

X
(ε)
t = X0 +

∫ t
0
b(s,X(ε)s )ds +

∫ t
0
σε(s,X

(ε)
s )dWs. (10.2)

First, we mention that σε belongs to C∞(R) and satisfies following properties.

Lemma 10.1 Under the assumption (7) for σ ,

(i) for any 0 < δ < 1, there exists a constant ε(δ) > 0 such that

|σε(t, x)− σ(t, x)| ≤ δ holds; ∀ε ∈ (0, ε(δ)] ∀t ∈ [0, T ] ∀x ∈ R,

(ii) for any ε > 0,

|σε(t, x)− σ(t, x)| ≤ h(ε) holds; ∀t ∈ [0, T ] ∀x ∈ R,

(iii) for σε ,

|σε(t, x)− σε(t, y)| ≤ h(|x − y|) holds; ∀t ∈ [0, T ] ∀x, y ∈ R.

Proof (Proof of (i)) Since h(t) is continuous and h(0) = 0, there exists ε(δ) > 0
such that

h(|u|) ≤ δ; 0 ≤ |u| ≤ ε(δ).
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Therefore, we have for 0 ≤ ε ≤ ε(δ),

|σε(t, x)− σ(t, x)| = |
∫ ∞

−∞
σ(t, x − y)χε(y)dy −

∫ ∞

−∞
σ(t, x)χε(y)dy|

≤
∫ ∞

−∞
h(|y|)χε(y)dy

=
∫ ε
−ε
h(|y|)χε(y)dy

≤ δ
∫ ε
−ε
χε(y)dy

= δ.
��

Proof (Proof of (ii)) (ii) can be proved in the same way as (i). ��
Proof (Proof of (iii)) From the assumption (7) and the definition of χε , we have

|σε(t, x)− σε(t, y)| = |
∫ ∞

−∞
σ(t, x − u)χε(u)du−

∫ ∞

−∞
σ(t, y − u)χε(u)du|

= |
∫ ∞

−∞
χε(u)[σ(t, x − u)− σ(t, y − u)]du|

≤
∫ ∞

−∞
χε(u)|σ(t, x − u)− σ(t, y − u)|du

≤
∫ ∞

−∞
χε(u)h(|(x − u)− (y − u)|)du

=
∫ ∞

−∞
χε(u)h(|x − y|)du

= h(|x − y|)
∫ ∞

−∞
χε(u)du

= h(|x − y|).
��

Remark 10.1 From Lemma 10.1, there exists C > 0 such that

|b(t, x)| + |σε(t, x)| ≤ C(1 + |x|)
holds for any t ∈ [0, T ], x ∈ R, ε > 0.

Since σε belongs to C∞(R) and satisfies obviously local Lipschitz condition, it
is shown that the approximated SDE (10.2) has a unique strong solution. See, for
example, Theorem 5.12.1 in the book of Rogers and Williams [9].
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10.3 A Priori Estimates

10.3.1 The High Norm

We will mention the well known result on the boundedness of solutions for
approximated SDE (10.2) in the sense of the high norm.

Lemma 10.2 (A Priori Estimate in the High Norm) Solutions of the approxi-
mated SDE (10.2) satisfy the following estimate

∃C > 0 ∀ε ≤ 1,

sup
t∈[0,T ]

E[|X(ε)t |4] ≤ C. (10.3)

A detailed proof of the lemma can be found, for example, in the book of Karatzas
and Shreve [4], Problem 5.3.15.

10.3.2 The Low Norm

The next lemma on a priori estimate in the low norm for the approximated
SDE (10.2) will play essential roles in the proof of our main theorem. The lemma
requires a smooth approximation of the function |x|. Therefore, we introduce a
sequence (an)n∈N of positive numbers by

a0 := 1;
∫ an−1

an

1

nh2(x)
dx = 1.

Next, we choose a sequence (ρn)n∈N of smooth mollifiers with the following
properties

supp(ρn) ⊂ [an, an−1]; 0 ≤ ρn(x) ≤ 2

nh2(x)
;
∫ an−1

an

ρn(x)dx = 1.

Finally, we define a sequence (ϕn)n∈N of smooth functions by

ϕn(x) :=
∫ |x|

0

∫ y
0
ρn(z)dzdy + an−1.

Then, (ϕn)n∈N has the following properties

ϕn(x) ≥ |x|; |ϕ′n(x)| ≤ 1; ϕ′′n(x) = ρn(|x|).
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In other words, ϕn is a smooth approximation of the function |x| from above with
a bounded first-order derivative and a second-order derivative having support in the
interval [an, an−1].
Lemma 10.3 (A Priori Estimate in the Low Norm) Solutions of the approxi-
mated SDE (10.2) satisfy the following a priori estimate

∀α > 0 ∃0 < β ≤ 1 ∀0 < ε1, ε2 ≤ β,
sup
t∈[0,T ]

E[|X(ε1)t −X(ε2)t |] ≤ α. (10.4)

Proof Put

�
(ε1,ε2)
t := X(ε1)t −X(ε2)t

=
∫ t

0
[b(s,X(ε1)s )−b(s,X(ε2)s )]ds+

∫ t
0
[σε1(s,X(ε1)s )−σε2(s,X(ε2)s )]dWs.

Applying Ito formula to the approximated SDE (10.2), we obtain the following
representation

ϕn(�
(ε1,ε2)
t ) = ϕn(0)+

∫ t
0
ϕ′n(�(ε1,ε2)s )[b(s,X(ε1)s )− b(s,X(ε2)s )]ds

+ 1

2

∫ t
0
ϕ′′n(�(ε1,ε2)s )[σε1(s,X(ε1)s )− σε2(s,X(ε2)s )]2ds

+
∫ t

0
ϕ′n(�(ε1,ε2)s )[σε1(s,X(ε1)s )− σε2(s,X(ε2)s )]dWs.

We note that due to the uniform boundedness of ϕ′n and the linear growth condition
(see Remark 10.1), the Ito integral in the above is a martingale with mean 0. Let
0 < β ≤ 1, 0 < ε1, ε2 ≤ β. By Ito formula, we have

E[|�(ε1,ε2)t |] ≤ E[ϕn(�(ε1,ε2)t )]

= E[ϕn(0)] + E[
∫ t

0
ϕ′n(�(ε1,ε2)s )[b(s,X(ε1)s )− b(s,X(ε2)s )]ds]

+ 1

2
E[
∫ t

0
ϕ′′n(�(ε1,ε2)s )[σε1(s,X(ε1)s )− σε2(s,X(ε2)s )]2ds]

+ E[
∫ t

0
ϕ′n(�(ε1,ε2)s )[σε1(s,X(ε1)s )− σε2(s,X(ε2)s )]dWs]

= an−1 + E[
∫ t

0
ϕ′n(�(ε1,ε2)s )[b(s,X(ε1)s )− b(s,X(ε2)s )]ds]

+ 1

2
E[
∫ t

0
ϕ′′n(�(ε1,ε2)s )[σε1(s,X(ε1)s )− σε2(s,X(ε2)s )]2ds],
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using ϕ′′n(x) = ρn(|x|);

≤ an−1 + E[
∫ t

0
|ϕ′n(�(ε1,ε2)s )[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)[σε1(s,X(ε1)s )− σε2(s,X(ε2)s )]2ds],

using |ϕ′n(x)| ≤ 1;

≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)|σε1(s,X(ε1)s )− σε2(s,X(ε2)s )|2ds]

= an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)|σε1(s,X(ε1)s )− σε2(s,X(ε2)s )

− σ(s,X(ε1)s )+ σ(s,X(ε1)s )+ σ(s,X(ε2)s )− σ(s,X(ε2)s )|2ds]

≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)(3|σ(s,X(ε1)s )− σ(s,X(ε2)s )|2

+ 3|σε1(s,X(ε1)s )− σ(s,X(ε1)s )|2 + 3|σ(s,X(ε2)s )− σε2(s,X(ε2)s )|2)ds].

Here, we give 0 < δ < 1. Then, by the assumption (7) and Lemma 10.1, we have
for any 0 < ε1, ε2 ≤ β ≤ ε(δ),

E[|�(ε1,ε2)t |] ≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)(3[h(|�(ε1,ε2)s |)]2 + 3δ2 + 3δ2)ds]

≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)(3[h(|�(ε1,ε2)s |)]2 + 3δ + 3δ)ds],
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using 0 ≤ ρn(x) ≤ 2
nh2(x)

;

≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
E[
∫ t

0

2I[an,an−1](|�(ε1,ε2)s |)
nh2(|�(ε1,ε2)s |)

(3[h(|�(ε1,ε2)s |)]2 + 6δ)ds]

≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ 1

2
T

2 · 6δ

nh2(an)
+ 1

2
E[
∫ t

0

2

nh2(|�(ε1,ε2)s |)
· 3|h(|�(ε1,ε2)s |)|2ds]

= an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ T 6δ

nh2(an)
+ 3

n
E[
∫ t

0
1ds],

with t ∈ [0, T ];

≤ an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ T 6δ

nh2(an)
+ 3

n
E[
∫ T

0
1ds]

= an−1 + E[
∫ t

0
|[b(s,X(ε1)s )− b(s,X(ε2)s )]|ds]

+ T 6δ

nh2(an)
+ 3

n
T ,

by the assumption (6);

≤ an−1 + E[
∫ t

0
C|�(ε1,ε2)s |ds] + T 6δ

nh2(an)
+ 3

n
T

= an−1 + T

n
(

6δ

h2(an)
+ 3)+ C

∫ t
0
E[|�(ε1,ε2)s |]ds.

Combining all the estimates stated earlier we obtain our final estimate

E[|�(ε1,ε2)t |] ≤ γ (n, δ)+ C
∫ t

0
E[|�(ε1,ε2)s |]ds, (10.5)

γ (n, δ) := an−1 + T

n
(

6δ

h2(an)
+ 3).
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Choosing n sufficiently large first and then choosing δ sufficiently small, we can
take γ (n, δ) arbitrarily small. By Gronwall’s inequality, Eq. (10.5) implies

E[|�(ε1,ε2)t |] ≤ γ (n, δ)eCt ≤ γ (n, δ)eCT . (10.6)

Thus, for any α > 0, choosing n and δ such that γ (n, δ)eCT < α, we have for any
0 < ε1, ε2 ≤ β ≤ ε(δ),

E[|�(ε1,ε2)t |] ≤ α. (10.7)

��

10.4 Uniform Integrability

Consider the following Banach spaces (1 ≤ p <∞)

Hp := C([0, T ], Lp(�,F ,P)),
||X||p := sup

t∈[0,T ]
(E[|Xt |p])

1
p .

Moreover, we consider the following subsets (1 ≤ p <∞)

Np := {X ∈ Hp|X is adapted with respect to the filtration{Ft }}.

Since Np is a closed subspace of Hp, it is also a Banach space with respect to the
norm || · ||p. We define εn := 1

n
and write X(n) instead of X(εn). By Lemma 10.2,

the sequence (X(n))n∈N is bounded in N4. Moreover, according to Lemma 10.3, the
sequence (X(n))n∈N is a Cauchy sequence in N1. We will show that the sequence
(X(n))n∈N is also a Cauchy sequence in N2.

Lemma 10.4 (X(n))n∈N is a Cauchy sequence in N2.

Proof Lemma 10.2 implies immediately

sup
n∈N

||X(n)||2 <∞. (10.8)

If (X(n)) is not a Cauchy sequence inN2, there exist a positive constant C and some
subsequences (pn)n∈N and (qn)n∈N such that

lim
n→∞ sup

0≤s≤T
E[|X(pn)s −X(qn)s |2] = C > 0. (10.9)
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Note that

E[
∫ T

0
|X(pn)s −X(qn)s |ds] =

∫ T
0

E[|X(pn)s −X(qn)s |]ds

≤
∫ T

0
( sup
0≤s≤T

E[|X(pn)s −X(qn)s |])ds

= T ||X(pn) −X(qn)||1.

Since (X(n)) is a Cauchy sequence in N1,

lim
n→∞E[

∫ T
0

|X(pn)s −X(qn)s |ds] ≤ lim
n→∞ T ||X

(pn) −X(qn)||1 = 0. (10.10)

We can choose subsequences (p′
n) and (q ′n) such that

lim
n→∞ |X(p′

n)
s −X(q ′n)s | = 0 (10.11)

almost everywhere on [0, T ]×�w.r.t. dt×dP. Assume that for some subsequences
(pn)n∈N and (qn)n∈N,

lim
n→∞ sup

0≤s≤T
E[|X(pn)s −X(qn)s |2] = C > 0. (10.12)

Since

lim
n→∞ ||X(pn) −X(qn)||1 = 0,

we can choose subsequences (p′
n)n∈N, (q ′n)n∈N such that

lim
n→∞ |X(p′

n)
s −X(q ′n)s | = 0 (10.13)

almost surely on [0, T ] ×� w.r.t. dt × dP. Let ε′n = 1
p′
n

and ε′′n = 1
q ′n

. We have

||X(p′
n) −X(q ′n)||22 = sup

0≤s≤T
E[|X(p′

n)
s −X(q ′n)s |2]

≤ 2E[
∫ T

0
(σε′n(s,X

(p′
n)

s )− σε′′n (s,X
(q ′n)
s ))2ds]

+ 2E[
∫ T

0
(b(s,X

(p′
n)

s )− b(s,X(q ′n)s ))2ds]
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Now, we define as follows;

L
(n)
1 (T ) := E[

∫ T
0
(σε′n(s,X

(p′
n)

s )− σε′′n (s,X
(q ′n)
s ))2ds], (10.14)

L
(n)
2 (T ) := E[

∫ T
0
(b(s,X

(p′
n)

s )− b(s,X(q ′n)s ))2ds]. (10.15)

For L(n)1 (T ), we observe that

L
(n)
1 (T ) ≤ 3E[

∫ T
0
(σε′n(s,X

(p′
n)

s )− σ(s,X(p′
n)

s ))2ds]

+ 3E[
∫ T

0
(σ (s,X

(p′
n)

s )− σ(s,X(q ′n)s ))2ds]

+ 3E[
∫ T

0
(σε′′n (s,X

(q ′n)
s )− σ(s,X(q ′n)s ))2ds].

Using Lemma 10.1 (ii) and the assumption (7), we have

L
(n)
1 (T ) ≤ 3T (h2(ε′n)+ h2(ε′′n))

+ 3E[
∫ T

0
h2(|X(p′

n)
s −X(q ′n)s |)ds].

Note that

h2(|X(p′
n)

s −X(q ′n)s |) ≤ 2C2 + 2C2|X(p′
n)

s −X(q ′n)s |2.

Since

sup
n

||X(p′
n) −X(q ′n)||4 <∞

holds, the family of processes

h2(|X(p′
n)

s −X(q ′n)s |)

is uniformly integrable on [0, T ]×� w.r.t. dt × dP. Since h(ε) tends to 0 (ε ↓ 0),
we have by Eq. (10.13),

lim
n→∞L

(n)
1 (T ) = 0.
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For L(n)2 (T ), we have by the assumption (6) that

L
(n)
2 (T ) ≤ E[

∫ T
0
C2|X(p′

n)
s −X(q ′n)s |2ds].

Since the family of processes |X(p′
n)

s − X(q ′n)s |2 is uniformly integrable, Eq. (10.13)
implies

lim
n→∞L

(n)
2 (T ) = 0.

Thus we observe

lim
n→∞ ||X(p′

n)
s −X(q ′n)s ||22 = 0.

This fact contradicts Eq. (10.12). ��
Therefore, the sequence (X(n))n∈N converges to some X̃ ∈ N2. Since the conver-
gence in N2 implies in N1, we have

lim
n→∞(||X

(n) − X̃||1 + ||X(n) − X̃||2) = 0. (10.16)

10.5 Proof of The Main Result

Now, we are in a position to prove our main theorem.

Proof (Proof of Theorem) We use the following notation for the right-hand sides of
the SDEs under consideration

RHS
(n)
t := X0 +

∫ t
0
b(s,X(n)s )ds +

∫ t
0
σεn(s,X

(n)
s )dWs,

R̃HSt := X0 +
∫ t

0
b(s, X̃s)ds +

∫ t
0
σ(s, X̃s)dWs.

Fix N > 0. Since σε is C∞-function, it satisfies Lipschitz condition on (t, x) ∈
[0, T ] × [−N,N ]. Let

τN := inf{s : X(n)s /∈ [−N,N ]}. (10.17)

Note that

|σε(t, x)| + |b(t, x)| ≤ C(1 + |x|), (10.18)
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it is well known that

lim
N→∞ T ∧ τN = T (a.s.), (10.19)

see, for example, Theorem 5.12.1 in Rogers and Williams [9]. We know also by [9]
that for the strong solutionsX(n) satisfy their respective SDEs in the following sense

E[ sup
0≤t≤T∧τN

|X(n)t − RHS(n)t |2] ≤ 4E[|X(n)T∧τN − RHS(n)T∧τN |2] = 0. (10.20)

By Lemma 10.2, we know that the family of variables

|X(n)t − RHS(n)t |2, t ∈ [0, T ]

is uniformly integrable. Thus, letting N → ∞, we have

E[ sup
0≤t≤T

|X(n)t − RHS(n)t |2] = 0. (10.21)

This implies the following weaker condition

||X(n) − RHS(n)||2 = 0. (10.22)

In the following,C1, C2 > 0 denotes some generic constants independent of n. With
the help of the linear growth condition (see (5) in 2.1 Assumptions), we obtain the
following estimate

E[
∫ T

0
(|b(s, X̃s)|2 + |σ(s, X̃s)|2)ds] ≤ C2T (1 + ||X̃||22) <∞.

This implies that R̃HS has continuous paths P-a.s. and satisfies the following
regularity condition

E[ sup
t∈[0,T ]

|R̃HSt |2] <∞.
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With the help of the Lipschitz continuity condition for b and the modulus of
continuity condition for σ and σε (see Lemma 10.1), we obtain the following
statement of convergence

lim
n→∞ ||RHS(n) − R̃HS||22

≤ 2 lim
n→∞( sup

[0,T ]
E[|
∫ t

0
(b(s,X(n)s )− b(s, X̃s))ds|2]

+ sup
[0,T ]

E[|
∫ t

0
(σεn(s,X

(n)
s )− σ(s, X̃s))dWs |2])

≤ C1( lim
n→∞E[

∫ T
0

|b(s,X(n)s )− b(s, X̃s)|2ds]

+ lim
n→∞E[

∫ T
0

|σεn(s,X(n)s )− σ(s, X̃s)|2ds])

= C1( lim
n→∞E[

∫ T
0

|b(s,X(n)s )− b(s, X̃s)|2ds]

+ lim
n→∞E[

∫ T
0

|σεn(s,X(n)s )− σ(s,X(n)s )+ σ(s,X(n)s )− σ(s, X̃s)|2ds])

≤ C1( lim
n→∞E[

∫ T
0

|b(s,X(n)s )− b(s, X̃s)|2ds]

+ lim
n→∞E[

∫ T
0

|σεn(s,X(n)s )− σ(s,X(n)s )|2 + |σ(s,X(n)s )− σ(s, X̃s)|2ds]),

using Lemma 10.1;

≤ C2( lim
n→∞E[

∫ T
0
(|X(n)s − X̃s |)2ds]

+ lim
n→∞E[

∫ T
0

|δ|2 + |h2(|X(n)s − X̃s |)|ds]),

using Lemma 10.4 and noticing that δ > 0 is arbitrary;

= 0.

Combining the estimates stated earlier, we see that X̃ satisfies the SDE (10.1) in the
following sense

||X̃ − R̃HS||2 = 0. (10.23)
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Although R̃HS is a modification of X̃ having continuous path P-a.s., the same
is generally not true for X̃. Therefore, we consider R̃HS instead of X̃ using the
following notation

X := R̃HS,

RHSt := X0 +
∫ t

0
b(s,Xs)ds +

∫ t
0
σ(s,Xs)dWs.

Since X and X̃ coincide as elements of N2, the linear growth condition (see (5) in
2.1 Assumptions) yields the following estimate

E[
∫ T

0
(|b(s,Xs)|2 + |σ(s, |Xs |)|2)ds] ≤ C2(1 + ||X||22) <∞. (10.24)

This implies that RHS has continuous paths P-a.s. and satisfies the following
regularity condition

E[ sup
t∈[0,T ]

|RHSt |2] <∞. (10.25)

Finally, with the help of the Lipschitz continuity condition for b (see (6) in 2.1
Assumptions), the modulus of continuity condition for σ (see (7) in 2.1 Assump-
tions), and Doob’s maximal inequality, we see that X satisfies the SDE (10.1) in the
sense of Ito theory

E[ sup
t∈[0,T ]

|Xt − RHSt |2] = E[ sup
t∈[0,T ]

|R̃HSt − RHSt |2]

≤ 2(E[ sup
t∈[0,T ]

|
∫ t

0
(b(s, X̃s)− b(s,Xs))ds|2]

+ E[ sup
t∈[0,T ]

|
∫ t

0
(σ (s, X̃s)− σ(s,Xs))dWs |2])

≤ C1(E[
∫ T

0
|b(s, X̃s)− b(s,Xs)|2ds]

+ E[
∫ T

0
|σ(s, X̃s)− σ(s,Xs)|2ds])

≤ C1(||X̃ −X||2 +
∫ T

0
E[h2(|X̃s −Xs |)]ds)

= 0.

Thus, X is the desired strong solution. This concludes the proof. ��
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10.6 The Main Result under Nakao-Le Gall Condition

In the present section, we construct concretely a strong solution of SDE under
Nakao-Le Gall condition. We consider the following SDE

Xt = X0 +
∫ t

0
σ(Xs)dWs. (10.26)

We assume that σ satisfies Nakao-Le Gall condition.

Definition 10.1 (Nakao-Le Gall Condition) σ be R → R, Borel measurable.
There exist two positive constants 0 < k < K <∞ such that

0 < k ≤ σ(x) ≤ K <∞ ∀x ∈ R.

And, there exists bounded increasing function f such that

|σ(x)− σ(y)|2 ≤ |f (x)− f (y)| ∀x, y ∈ R, (10.27)

where f is not necessarily continuous.

The main result in this section is the following theorem. Although the result of the
theorem is known, our proof of the theorem proposes a concrete construction of
strong solution.

Theorem 10.2 Under Nakao-Le Gall condition, the SDE (10.26) has a strong
solution.

To prove the theorem, we prepare some approximation techniques. Here, let f (−∞)
and f (∞) be

f (−∞) := lim
x→−∞ f (x), (10.28)

f (∞) := lim
x→∞ f (x), (10.29)

then we obtain −∞ < f (−∞) < f (∞) <∞. Let v(f ) be

v(f ) := f (∞)− f (−∞), (10.30)

v(f ) is called the total variation of f .

Remark 10.2 LetD be a set of the discontinuous points of f . Since f is a bounded
increasing function, it is well known that D is a countable set. Let (fl)l∈N be a
sequence of C∞-functions such that

fl ≤ f, (10.31)

lim
l→∞ fl(x) = f (x) f or x /∈ D, (10.32)
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and

v(fl) ≤ v(f ). (10.33)

We will construct an example of such sequence (fl). Let (gl)l∈N be a sequence of
C∞-functions such that

gl(u) =

⎧⎪⎪⎨
⎪⎪⎩

0 ; u ≤ 0,

g(u) > 0 ; 0 < u < 1
l
,

0 ; u ≥ 1
l
,

and
∫ ∞

−∞
gl(u)du = 1.

Put

fl(x) :=
∫ ∞

−∞
f (x − u)gl(u)du. (10.34)

Note that

fl(x) =
∫ ∞

−∞
f (x − u)gl(u)du

≤
∫ ∞

−∞
f (x)gl(u)du

= f (x).

This implies (10.31). Let x /∈ D. For any ε > 0, there exists l such that

f (x)− ε ≤ f (x − u) ≤ f (x) (10.35)

holds for 0 ≤ u ≤ 1
l
. We have

f (x)− ε =
∫ ∞

−∞
(f (x)− ε)gl(u)du

≤
∫ ∞

−∞
f (x − u)gl(u)du

= fl(x)
≤ f (x).
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Thus,

lim
l→∞ fl(x) = f (x) (10.36)

holds for x /∈ D. By the definition of fl(x), we observe that

f (x − 1

l
) ≤ fl(x) ≤ f (x). (10.37)

This implies fl(−∞) = f (−∞), and also fl(∞) ≤ f (∞). Therefore, we have

v(fl) = fl(∞)− fl(−∞) ≤ v(f ). (10.38)

Let σε(x) be

σε(x) :=
∫ ∞

−∞
σ(x − y)χε(y)dy = (σ ∗ χε)(x), (10.39)

where the function χε(x) is given in Sect. 10.2.2. Then, σε(x) is C∞(R) function.
Consider the following approximated SDE

X
(ε)
t = X0 +

∫ t
0
σε(X

(ε)
s )dWs. (10.40)

Lemma 10.5

(i) σε is a function in C∞ and 0 < k ≤ σε(x) ≤ K <∞,
(ii) let x be continuous point of σ , then limε↓0 σε(x) = σ ,

(iii) |σε(x)− σε(y)|2 ≤ |f (x ∨ y+ ε)− f (x ∧ y− ε)|, where x ∨ y := max(x, y)
and x ∧ y := min(x, y).

Proof (Proof of (i))

σε(x) =
∫ ∞

−∞
σ(x − y)χε(y)dy ≥

∫ ∞

−∞
kχε(y)dy = k, (10.41)

and

σε(x) =
∫ ∞

−∞
σ(x − y)χε(y)dy ≤

∫ ∞

−∞
Kχε(y)dy = K. (10.42)

��
Proof (Proof of (ii)) Let x be a continuous point of σ . ∀η > 0, ∃δ > 0 such that

σ(x)− η ≤ σ(y) ≤ σ(x)+ η, (10.43)
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for any y such that |x − y| < δ. For 0 < ε < δ,

|σ(x)− σε(x)| = |
∫ ∞

−∞
[σ(x)− σ(x − y)]χε(y)dy|

≤
∫ ∞

−∞
|[σ(x)− σ(x − y)]|χε(y)dy

≤ η.
��

Proof (Proof of (iii)) Assume that x > y. By Schwarz inequality, we have

|σε(x)− σε(y)|2 = |
∫ ∞

−∞
σ(x − u)χε(u)du−

∫ ∞

−∞
σ(y − u)χε(u)du|2

≤
∫ ∞

−∞
|σ(x − u)− σ(y − u)|2χε(u)du

≤
∫ ∞

−∞
f (x − u)χε(u)du−

∫ ∞

−∞
f (y − u)χε(u)du

≤ f (x + ε)− f (y − ε).

By similar arguments for y ≥ x, we have (iii). ��
Here we introduce some local times which play important roles in the proof of
Lemma 10.5. Let Lat (X

(ε)• ) be the local time at a of the process X(ε)• such that

Lat (X
(ε)• ) := |X(ε)t − a| − |X(ε)0 − a| −

∫ t
0

sgn(X(ε)s − a)dX(ε)s , (10.44)

(see Revuz and Yor [8] Chapter 6).
Let Z(ε1,ε2,θ)t be

Z
(ε1,ε2,θ)
t := X(ε1)t + θ(X(ε2)t −X(ε1)t ), 0 < ε1, ε2 ≤ 1, 0 ≤ θ ≤ 1. (10.45)

Let Lat (Z
(ε1,ε2,θ)• ) be the local time at a of the process Z(ε1,ε2,θ)• such that

Lat (Z
(ε1,ε2,θ)• ) := |Z(ε1,ε2,θ)t − a| − |Z(ε1,ε2,θ)0 − a|

−
∫ t

0
sgn(Z(ε1,ε2,θ)s − a)dZ(ε1,ε2,θ)s . (10.46)

We have the next lemma.
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Lemma 10.6

(i) Let CL be the constant such that

CL := sup
ε∈(0,1]

sup
a∈R

E[LaT (X(ε)• )]. (10.47)

Then, CL <∞ holds and it is independent of ε.
(ii) Let C̃L be the constant such that

C̃L := sup
(ε1,ε2,θ)∈(0,1]×(0,1]×[0,1]

sup
a∈R

E[LaT (Z(ε1,ε2,θ)• )]. (10.48)

Then, C̃L <∞ holds and it is independent of (ε1, ε2, θ).

Proof (Proof of (ii)) By the definition of Lat (Z
(ε1,ε2,θ)• ), we have

0 ≤ Lat (Z(ε1,ε2,θ)• )

≤ LaT (Z(ε1,ε2,θ)• )

≤ |Z(ε1,ε2,θ)T − Z(ε1,ε2,θ)0 | −
∫ T

0
sgn(Z(ε1,ε2,θ)s )dZ(ε1,ε2,θ)s .

Then,

(LaT (Z
(ε1,ε2,θ)• ))2 ≤ 2(

∫ T
0
(σε1(X

(ε1)
s )+ θ(σε2(X(ε2)s )− σε1(X(ε1)s ))dWs)

2

+ 2(
∫ T

0
sgn(Z(ε1,ε2,θ)s − a)(σε1(X(ε1)s ) (10.49)

+ θ(σε2(X(ε2)s )− σε1(X(ε1)s ))dWs)
2.

Therefore, we have

E[(LaT (Z(ε1,ε2,θ)• ))2] ≤ 2E[
∫ T

0
(σε1(X

(ε1)
s )+ θ(σε2(X(ε2)s )− σε1(X(ε1)s )))2ds]

+ 2E[
∫ T

0
(sgn(Z(ε1,ε2,θ)s ))2(σε1(X

(ε1)
s ) (10.50)

+ θ(σε2(X(ε2)s )− σε1(X(ε1)s )))2ds].

Using the assumption on σ , we have

E[(LaT (Z(ε1,ε2,θ)• ))2] ≤ 36K2T <∞, (10.51)
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where K is independent of (a, ε1, ε2, θ). This implies immediately (ii). ��
Now, the proof of (i) is similar. It is well known that we have following occupation
formulas. Let g be a non-negative Borel function. We have

∫ t
0
g(X(ε)s )d < X

(ε)• >s=
∫ ∞

−∞
g(a)Lat (X

(ε)• )da, (10.52)

and also

∫ t
0
g(Z(ε1,ε2,θ)s )d < Z(ε1,ε2,θ)• >s=

∫ ∞

−∞
g(a)Lat (Z

(ε1,ε2,θ)• )da, (10.53)

where < X(ε)• > is the quadratic variation of the process X(ε)• such that

< X(ε)• >t :=
∫ t

0
(σε(X

(ε)
s ))

2ds. (10.54)

And also, < Z(ε1,ε2,θ)• >t is the quadratic variation of the process Z(ε1,ε2,θ)• such
that

< Z(ε1,ε2,θ)• >t :=
∫ t

0
(σε1(X

(ε1)
s )+ θ(σε2(X(ε2)s )− σε1(X(ε1)s )))2ds, (10.55)

(see Revuz and Yor [8] Chapter 6).
Here, we state a lemma which is very useful in the rest of the paper. Let B ⊂

[0, T ] be a Borel set. Leb.B means the Lebesgue measure of the set B.

Lemma 10.7 We have

(i) Leb. {s ; 0 ≤ s ≤ T , X(ε)s ∈ D} = 0 (a.s.),
(ii) Leb. {s ; 0 ≤ s ≤ T , Z(ε1,ε2,θ)s ∈ D} = 0 (a.s.).

Proof (Proof of (i)) Note that by Lemma 10.5,

< X(ε)• >t=
∫ t

0
σε1(X

(ε1)
s )2ds ≥ k2t, k > 0. (10.56)

Since D is a countable set and a → LaT is non-negative continuous,

k2
∫ T

0
ID(X

(ε)
s )ds ≤

∫ T
0
ID(X

(ε)
s )d < X

(ε) >s

=
∫ ∞

−∞
ID(a)L

a
T (X

(ε)• )da

= 0 (a.s.).
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This implies (i). ��
Proof (Proof of (ii)) Note that for k > 0,

< Z(ε1,ε2,θ)• >t=
∫ t

0
((1 − θ)σε1(X(ε1)s )+ θσε2(X(ε2)s ))2ds ≥ k2t. (10.57)

The similar argument as in the proof of (i) implies (ii), see, for example, Exer-
cise 1.32 p. 237 in Revuz and Yor [8]. Closely related technique to Lemma 10.7
is employed in Hashimoto and Tsuchiya [2]. ��
The next lemma is crucial in the proof of Theorem 10.2.

Lemma 10.8 (A Priori Estimates) For any α, there exits 0 < β ≤ 1 such that
∀0 < ε1, ε2 ≤ β,

sup
t∈[0,T ]

E[|X(ε1)t −X(ε2)t |] ≤ α. (10.58)

Proof Put

�
(ε1,ε2)
t := X(ε1)t −X(ε2)t .

Let a0 = 1 > a1 > · · · > an−1 > an · · · , such that

∫ an−1

an

dx

x
= n.

We choose a sequence (ρn)n∈N of smooth functions such that

supp(ρn) ⊂ [an, an−1]; 0 ≤ ρn(x) ≤ 2

nx
;
∫ an−1

an

ρn(x)dx = 1.

We define a sequence (ψn)n∈N of smooth functions by

ψn(x) :=
∫ |x|

0

∫ y
0
ρn(u)dudy + an−1.

Then, (ψn)n∈N has the following properties

ψn(x) ≥ |x|; |ψ ′
n(x)| ≤ 1; ψ ′′

n (x) = ρn(|x|).



210 T. Okumura

Moreover, we have

|�(ε1,ε2)t | ≤ ψn(�(ε1,ε2)t )

= an−1 +
∫ t

0
ψ ′
n(�

(ε1,ε2)
s )[σε1(X(ε1)s )− σε2(X(ε2)s )]dWs

+ 1

2

∫ t
0
ψ ′′
n (�

(ε1,ε2)
s )[σε1(X(ε1)s )− σε2(X(ε2)s )]2ds.

Since |ψ ′
n(x)| ≤ 1, σε1 and σε2 are bounded, then

∫ t
0
ψ ′
n(�

(ε1,ε2)
s )[σε1(X(ε1)s )− σε2(X(ε2)s )]dWs (10.59)

is a martingale with mean 0. Therefore, we have

E[|�(ε1,ε2)t |] ≤ an−1 + 1

2
E[ψ ′′

n (�
(ε1,ε2)
s )[σε1(X(ε1)s )− σε2(X(ε2)s )]2ds]

≤ an−1 + 3

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)][σε1(X(ε1)s )− σ(X(ε1)s )]2ds]

+ 3

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)[σε2(X(ε2)s )− σ(X(ε2)s )]2ds]

+ 3

2
E[
∫ t

0
ρn(|�(ε1,ε2)s |)[σ(X(ε1)s )− σ(X(ε2)s )]2ds].

Here, we define

J
(ε1,ε2)
t (1) := E[

∫ t
0
ρn(|�(ε1,ε2)s |)][σε1(X(ε1)s )− σ(X(ε1)s )]2ds], (10.60)

J
(ε1,ε2)
t (2) := E[

∫ t
0
ρn(|�(ε1,ε2)s |)[σε2(X(ε2)s )− σ(X(ε2)s )]2ds], (10.61)

and

J
(ε1,ε2)
t (3) := E[

∫ t
0
ρn(|�(ε1,ε2)s |)[σ(X(ε1)s )− σ(X(ε2)s )]2ds]. (10.62)

Now, we remember that

ρn(|x|) ≤ I[an,an−1](|x|)
2

n|x| ,
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and
∫ an−1

an

ρn(u)du = 1.

Consider J (ε1,ε2)t (1) and J (ε1,ε2)t (2), we have

J
(ε1,ε2)
t (1) ≤ 2

nan
E[
∫ t

0
[σε1(X(ε1)s )− σ(X(ε1)s )]2ds], (10.63)

and also

J
(ε1,ε2)
t (2) ≤ 2

nan
E[
∫ t

0
[σε2(X(ε2)s )− σ(X(ε2)s )]2ds]. (10.64)

Now, we consider the term J (ε1,ε2)• (3). By Eq. (10.27), we note that

J
(ε1,ε2)
t (3) ≤ E[

∫ t
0
ρn(|�(ε1,ε2)s |)|f (X(ε1)s )− f (X(ε2)s )|ds]. (10.65)

Let J̃ lt = J (ε1,ε2,l)t (3) be

J̃ lt = J (ε1,ε2,l)t (3) := E[
∫ t

0
ρn(|�(ε1,ε2)s |)|fl(X(ε1)s )− fl(X(ε2)s )|ds].

By Hadamard formula;

fl(x)− fl(y) = (x − y)
∫ 1

0
f ′
l (x + θ(y − x))dθ, (10.66)

we have

J̃ lt = E[
∫ t

0
ρn(|�(ε1,ε2)s |)|fl(X(ε1)s )− fl(X(ε2)s )|ds]

≤ 2E[
∫ t

0
I[an,an−1](|�(ε1,ε2)s |) |fl(X

(ε1)
s )− fl(X(ε2)s )|
n|�(ε1,ε2)s |

ds]

= 2

n
E[
∫ t

0

∫ 1

0
f ′
l (X

(ε1)
s + θ(X(ε2)s −X(ε1)s ))dθds].

Let g be a non-negative Borel function. We have the occupation formula

∫ t
0
g(Z(ε1,ε2,θ)s )d < Z(ε1,ε2,θ)• >s=

∫ ∞

−∞
g(a)Lat (Z

(ε1,ε2,θ)• )da. (10.67)
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Since we know that

< Z(ε1,ε2,θ)• >t≥ k2t,

we obtain

J̃ lt ≤ 2

n
E[
∫ 1

0
dθ

∫ t
0
f ′
l (Z

(ε1,ε2,θ)
s )ds]

≤ 2

nk2E[
∫ 1

0
dθ

∫ ∞

−∞
Lat (Z

(ε1,ε2,θ)• )f ′
l (a)da].

For θ ∈ [0, 1], 0 < ε1, ε2 ≤ 1, we have

J̃ lt ≤ 2

n
· C̃L
k2

∫ ∞

−∞
f ′
l (a)da

≤ 2

n
· C̃L
k2
v(fl)

≤ 2

n
· C̃L
k2 v(f ).

(10.68)

Since

lim
l→∞ fl = f (x), x /∈ D (10.69)

and

Leb.{s ; 0 ≤ s ≤ T , X(ε1)s ∈ D or X(ε2)s ∈ D} = 0 (a.s.), (10.70)

we have

lim
l→∞ |fl(X(ε1)s )− fl(X(ε2)s )| = |f (X(ε1)s )− f (X(ε2)s )| (10.71)

almost surely on [0, T ]×�, w.r.t. dt×dP. Note that f and fl are uniformly bounded.
We have

lim
l→∞ J̃

(ε1,ε2,l) = E[
∫ t

0
ρn(|�(ε1,ε2)s |)|f (X(ε1)s )− f (X(ε2)s )|ds]. (10.72)

By the inequalities (10.68), we obtain

J
(ε1,ε2)
t (3) ≤ 2

n
· C̃L
k2 v(f ). (10.73)
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Finally, we will come back to estimate E[|�(ε1,ε2)t |]. We know that

E[|�(ε1,ε2)t |] ≤ an−1 + 3

2
J
(ε1,ε2)
t (1)+ 3

2
J
(ε1,ε2)
t (2)+ 3

2
J
(ε1,ε2)
t (3).

By (10.63) and also by (10.64) we obtain that

3

2
J
(ε1,ε2)
t (1)+ 3

2
J
(ε1,ε2)
t (2) ≤ 3

nan
E[
∫ t

0
[σε1(X(ε1)s )− σ(X(ε1)s )]2ds]

+ 3

nan
E[
∫ t

0
[σε2(X(ε2)s )− σ(X(ε2)s )]2ds].

(10.74)
Let α > 0 be given, choose n such that

an−1 <
α

3
,

and also

3

2
J
(ε1,ε2)
t (3) ≤ 3

n
· C̃L
k2
v(f ) <

α

3
. (10.75)

For this n, we have

3

2
J
(ε1,ε2)
t (1)+ 3

2
J
(ε1,ε2)
t (2) ≤ 3

nan
(E[
∫ t

0
(σε1(X

(ε1)
s )− σ(X(ε1)s ))2ds]

+ E[
∫ t

0
(σε2(X

(ε2)
s )− σ(X(ε2)s ))2ds])

≤ 3

nank2
(E[
∫ ∞

−∞
(σε1(a)− σ(a))2Lat (X(ε1)· )da]

+ E[
∫ ∞

−∞
(σε2(a)− σ(a))2Lat (X(ε2)· )da]).

As is well known, the local time Lat (X
(ε1)· ) can be written as Lat (X

(ε1)· ) =
La
<X(ε1)>t

(B·), where B is called the Dambis–Dubins–Schwarz Brownian motion.

See, Chapter 5 and Chapter 6 in Revuz and Yor [8]. Note that

< X(ε1) >t≤ k2t

and

0 ≤ La
<X(ε1)>t

(B·) ≤ Lak2t
(B·),
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hold. Then we obtain

E[
∫ ∞

−∞
(σε1(a)− σ(a))2Lat (X(ε1)· )da] ≤ E[

∫ ∞

−∞
(σε1(a)− σ(a))2Lak2t

(B·)da]

≤ 4k2 · k2t.

Since a �→ La
k2t

is a continuous function with a compact support a.s.,

lim
ε1→0

∫ ∞

−∞
(σε1(a)− σ(a))2Lak2t

(B·)da = 0, (10.76)

holds a.s.. By Lebesgue convergence theorem, we obtain

lim
ε1→0

E[
∫ ∞

−∞
(σε1(a)− σ(a))2Lat (X(ε1)· )da]

≤ lim
ε1→0

E[
∫ ∞

−∞
(σε1(a)− σ(a))2Lak2t

(B·)da]

= 0.

Thus we have proved Lemma 10.8. ��
Proof (Proof of Theorem 10.2) In this part, we use the Notation and some basic
arguments on functional analysis employed in the Sect. 10.4. We define εn := 1/n
and write X(n) instead of X(εn). Since 0 < k ≤ σεn ≤ K < ∞, there exists C > 0
such that for n ∈ N

sup
t∈[0,T ]

E[|X(n)t |4] ≤ C. (10.77)

This result is called a priori estimate in the High Norm.

Lemma 10.9 (X(n))n∈N is a Cauchy sequence in N2.
��

Proof Let for some subsequences (pn)n∈N, (qn)n∈N,

lim
n→∞ sup

0≤t≤T
E[|X(pn)t −X(qn)t |2] = C > 0 (10.78)

holds. Since

lim
n→∞ ||X(pn) −X(qn)||1 = 0,
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we can choose subsequences (p′
n)n∈N, (q ′n)n∈N such that

lim
n→∞ |X(p′

n)

T −X(q ′n)T | = 0 (a.s.).

Using

sup
n

E[|X(p′
n)

T −X(q ′n)T |4] <∞,

the family of variables |X(p′
n)

T − X(q ′n)T |2 is uniformly integrable. Note that X
(p′
n)

t −
X
(q ′n)
t (0 ≤ t ≤ T ) is a martingale, we have by Doob’s maximal inequality

||X(p′
n) −X(q ′n)||22 ≤ E[ sup

0≤t≤T
|X(p′

n)
t −X(q ′n)t |2]

≤ 4E[|X(p′
n)

T −X(q ′n)T |2].
(10.79)

Thus, we observe that

lim
n→∞ ||X(p′

n) −X(q ′n)||2 = 0. (10.80)

This fact contradicts Eq. (10.78). ��
Therefore, the sequence (X(n))n∈N converges to some X̃ ∈ N2. Moreover, we

observe that

lim
n→∞(‖ X

(n) − X̃ ‖1 + ‖ X(n) − X̃ ‖2) = 0. (10.81)

Let

RHS
(n)
t := X0 +

∫ t
0
σεn(X

(n)
s )dWs. (10.82)

From Ito theory, we know that the strong solutionsX(n) satisfy their respective SDEs
in the following sense

E[ sup
0≤t≤T

|X(n)t − RHS(n)t |2] = 0. (10.83)

This implies

‖ X(n)t − RHS(n) ‖2
2= 0. (10.84)
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Since X(n) ∈ N2 (n = 1, 2, · · · ) is a sequence of martingales, there exists a
martingale version of the process X̃. Let X be a martingale version of X̃. Here,
let

RHSt := X0 +
∫ t

0
σ(Xs)dWs. (10.85)

Lemma 10.10

Leb.{s ; 0 ≤ s ≤ T , Xs ∈ D} = 0 (a.s.) (10.86)

holds.
��

Proof Since the sequence of < X(n) >t

k2t ≤< X(n) >t , n = 1, 2, · · · , (a.s.)

converges to

< X >t, 0 ≤ t ≤ T , (a.s.),

we have

k2t ≤< X >t, 0 ≤ t ≤ T , (a.s.). (10.87)

Let Lat (X) be the local time at a of X. We have

k2
∫ T

0
ID(Xs)ds ≤

∫ T
0
ID(Xs)d < X >s

=
∫ ∞

−∞
LaT (X)ID(a)da.

(10.88)

Let

ĈL := sup
a∈R

E[LaT (X)]. (10.89)

By the argument employed in the proof of Lemma 10.6, we can prove that ĈL <∞
holds. Thus, we have

E[
∫ T

0
ID(Xs)ds] ≤ 1

k2E[
∫ ∞

−∞
LaT (X)ID(a)da]

≤ ĈL

k2

∫ ∞

−∞
ID(a)da

= 0.
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This implies

Leb.{s ; 0 ≤ s ≤ T , Xs ∈ D} = 0 (a.s.). (10.90)

Now, we will show that RHS(n) converges RHS in N2. Observe using
Lemma 10.5 (iii) that

lim
n→∞ ‖ RHS(n) − RHS ‖2

2

= lim
n→∞ sup

t∈[0,T ]
E[|
∫ t

0
σεn(X

(n)
s )− σ(Xs)dWs |2]

= lim
n→∞E[

∫ T
0

{
σεn(X

(n)
s )− σ(Xs)

}2
ds]

= lim
n→∞E[

∫ T
0

{
σεn(X

(n)
s )− σεn(Xs)+ σεn(Xs)− σ(Xs)

}2
ds]

≤ 2 lim
n→∞E[

∫ T
0

|σεn(X(n)s )− σεn(Xs)|2ds]

+ 2 lim
n→∞E[

∫ T
0

|σεn(Xs)− σ(Xs)|2ds]

≤ 2 lim
n→∞E[

∫ T
0

|f (X(n)s ∨Xs + εn)− f (X(n)s ∧Xs − εn)|ds]

+ 2 lim
n→∞E[

∫ T
0
(σεn(Xs)− σ(Xs))2ds].

Let

S
(n)
1 (T ) := E[

∫ T
0

|f (X(n)s ∨Xs + εn)− f (X(n)s ∧Xs − εn)|ds], (10.91)

and also

S
(n)
2 (T ) := E[

∫ T
0
(σεn(Xs)− σ(Xs))2ds]. (10.92)

By Doob’s maximal inequality, we have

E[ sup
0≤s≤T

|X(n)s −Xs |2] ≤ E[|X(n)T −XT |2]

≤ 4||X(n) −X||22.
(10.93)
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This implies

lim
n→∞ sup

0≤s≤T
|X(n)s −Xs | = 0 (a.s.). (10.94)

By Lemma 10.10, we have

Leb.{s ; 0 ≤ s ≤ T , Xs ∈ D} = 0 (a.s.). (10.95)

Note that X(n)s ∨Xs + εn and X(n)s ∧Xs − εn converge to Xs . We observe that

Leb.{s ; 0 ≤ s ≤ T , lim
n→∞ |f (X(n)s ∨Xs + εn)− f (X(n)s ∧Xs − εn)|

does not converge to 0} = 0 (a.s.).

Since f is a bounded function, we have

lim
n→∞ S

(n)
1 (T ) = 0. (10.96)

For S(n)2 (T ), we have

S
(n)
2 (T ) = E[

∫ T
0
(σεn(Xs)− σ(Xs))2ds]

≤ 1

k2E[
∫ T

0
(σεn(Xs)− σ(Xs))2d < X >s]

≤ 1

k2E[
∫ ∞

−∞
(σεn(a)− σ(a))2LaT (X·)da].

Since (σεn(a) − σ(a))2 is uniformly bounded by 4k2, and a �→ LaT (X·) is a
continuous function with a compact support a.s., we have

lim
n→∞

∫ ∞

−∞
(σεn(a)− σ(a))2LaT (X·)da = 0 (a.s.).

By Lebesgue convergence theorem, we can conclude

lim
n→∞ S

(n)
2 (T ) = 0. (10.97)

Therefore, we have

lim
n→∞ ||RHS(n) − RHS||22 = 0. (10.98)
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SinceX(n) = RHS(n) converges to X̃ inN2,X(n) = RHS(n) converges toX inN2.
We have

||X − RHS||22 = 0. (10.99)

Note that X is a martingale having continuous paths,

E[ sup
0≤s≤T

|Xt − RHSt |2] ≤ 4E[|XT − RHST |2]

≤ 4||X − RHS||22
= 0.

(10.100)

Thus, X is the desired strong solution. This concludes the proof of Theorem 10.2.
��
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Chapter 11
Heat Kernel Coupled with Geometric
Flow and Ricci Flow

Koléhè A. Coulibaly-Pasquier

Abstract We prove on-diagonal upper bound for the minimal fundamental solution
of the heat equation evolving under geometric flow. In the case of Ricci flow, with
non-negative Ricci curvature and a condition on the growth of volume of ball for the
initial manifold, we derive Gaussian bounds for the minimal fundamental solution
of the heat equation, and then for the conjugate heat equation.

11.1 Introduction

Let (M, g(t)) be a complete Riemannian manifold, either non compact or com-
pact without boundary, g(t) be a family of metrics on M , ∇g(t) and Δg(t) the
corresponding gradient and Laplace-Beltrami operator, Ricg(t) the corresponding
Ricci curvature, μg(t) the corresponding Riemannian volume, dg(t)(x, y) be the
distance function, and Bg(t)(x, r) the geodesic ball of radius r for the distance dg(t).
Sometimes to reduce the notation, when there are no risk of confusion concerning
the family of metric we simply write ∇ t , Δt , μt , . . .

Let αi,j (t) be a family of symmetric 2-tensors onM . We consider the following
heat equation coupled with a geometric flow.

⎧⎨
⎩
∂tgi,j (t) = αi,j (t),
∂tf (t, x) = 1

2Δtf (t, x),

f (0, x) = f0(x).

(11.1)

We are interested in estimating the minimal fundamental solution of (11.1). For
the existence of minimal fundamental solution in non compact case we refer to
Chapter 24 of [9]. An estimate of this fundamental solution, already give an estimate
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of the conjugate heat equation, which is the density of the g(t)-Brownian motion
introduced in [1, 10] see also [11]. Moreover estimate of the fundamental solution
of the heat equation have many geometric applications, both in constant metric case
and geometric flows for instance in [5, 8, 21, 23].

Such a flow have been investigated in the literature. We mention the following
situations.

• The most famous case is when αi,j (t) := 0. This is the case of constant metric
and Eq. (11.1) is the usual heat equation inM .

• The Ricci flow corresponds to α(t) := −Ricg(t).
• We can also consider αi,j (t) := −2hHi,j (g(t)), where Hi,j (g(t)) is the second

fundamental form according to the metric g(t), and h is the mean curvature, when
the family of metric derives from the mean curvature flow.

The existence of the Ricci flow ∂tg(t) = −Ricg(t) for compact manifold was proved
in [18]. Under additional assumptions, the existence of the Ricci flow for a complete
manifold was proved in [24]. For the last example, the existence result of the mean
curvature flow for a compact manifold could be found in [12].

Using stochastic calculus we prove on-diagonal upper bound for the minimal
fundamental solution of the heat equation (11.1), for general geometric flow. As far
as we know this result is new. We derive a Gaussian upper bound for the minimal
heat kernel coupled with the Ricci flow, in the case of positive Ricci curvature and
condition on the growth of volume of ball for the initial manifold (i.e Hypothesis
H1 in Theorem 11.3).

Related Results Previous stochastic proof of Harnack inequality with power
appear in [3] for the constant metric case. Note that our coupling is different from
the coupling in [3], and simplify the argument since we do not need to take care of
different cutlocus. The Harnack inequality with power we obtain also appears in [7],
and is obtain by different way.

For the Ricci flow, Gaussian upper bounds could be found as example in [23]
where the author use Harnack inequality and doubling volume property. An over
one by Zhang and Cao [5] uses Sobolev type inequality that is conserved along
Ricci flow.

Outline The paper is organized as follows. In Sect. 11.2 we define a horizontal
coupling. We use this coupling and Girsanov’s Theorem in order to generalize
Harnack inequality with power—for inhomogeneous heat equation—introduced by
Wang [25] see also [3, 14]. We also use this coupling to give some isoperimetric-
type Harnack inequality in Lemma 11.1 and ultracontractivity of the heat kernel in
Corollary 11.3.

In Sect. 11.3, since the heat kernel of (11.1) is in general non symmetric, the
Gaussian bound is not a direct consequence of Harnack inequality with power as
in [14]. To overcome this difficulty we use the dual process and derive on-diagonal
upper estimate of the heat kernel of (11.1) in Theorem 11.2.
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Section 11.4 is devoted to the case of Ricci flow. We use modification of
Grigor’yan trick to derive Gaussian Heat kernel bounds from the on-diagonal upper
bound. The principal result of this section is Theorem 11.3 and Corollary 11.8.

11.2 Coupling and Harnack Inequality with Power

11.2.1 Coupling

In the first part of this section, we focus on the operator of type Lt := 1
2Δg(t),

whereΔg(t) is the Laplace operator associated to a time dependent family of metrics
g(t)t∈[0,Tc[. We suppose that (M, g(t)) is complete for all t ∈ [0, Tc[. Let x ∈ M and
t �→ Xt(x) be the g(t)-Brownian motion started at x. The notion of g(t)-Brownian
motion, i.e. a Lt diffusion, parallel transport, and damped parallel transport has
been given in [1, 10]. We also suppose in this section that all g(t)-Brownian motion
is non-explosive (i.e. stochastically complete).

Since we use different family of metrics all construction depends on the family
of metrics.

Let //g(t),X.(x)t be the g(t) parallel transport above t �→ Xt(x), which is a linear
isometry

//
g(t),X.(x)
t : (TxM, g(0)) −→ (TXt (x)M, g(t))

//
g(t),X.(x)

0 = IdTxM

Let Wg(t),X.(x)
t be the damped parallel transport that satisfies the following

Stratonovich covariant equation:

∗ d(//g(t),X.(x)t )−1(Wg(t),X.(x)
t )

= −1

2
(//
g(t),X.(x)
t )−1

(
Ricg(t)−∂tg(t)

)#g(t)
(Wg(t),X.(x)

0,t ) dt.

It is a linear operator between:

Wg(t),X.(x)
t : TxM −→ TXt (x)M

Wg(t),X.(x)

0 = IdTxM .

In [2] we give a construction of a process with value in a space of curves. Since
we sometimes change the underlying family of metrics, we incorporate this family
of metrics in the notation.

Let x, y ∈ M , u �→ γ (u) be a g(0) geodesic curve such that γ (0) = x and
γ (1) = y and t �→ (Xt (u)u∈[0,1]) be the horizontal Lt -diffusion in C1 path space
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C1([0, 1],M) over Xt(x) that starts at γ , where Xt(x) is a g(t)-Brownian motion
that starts at x. By assumption it is defined for all t ∈ [0, T ] with T < Tc.

We will recall the usual properties satisfied by the horizontal Lt -diffusion in C1

path space Theorem 3.1 [2]:
The family

u �→ (Xt (u))t∈[0,T ]

is a family of Lt -diffusions. It is a.s. continuous in (t, u) and C1 in u, satisfies

Xt(0) = Xt(x) and X0(u) = γ (u),

and solves the equation

∂uXt (u) = Wg(t),X(u)
t (γ̇ (u)). (11.2)

Furthermore, X.(u) satisfies the following Itô stochastic differential equation

d∇t Xt (u) = Pg(t),Xt (.)0,u d∇t Xt (0), (11.3)

where

P
g(t),Xt (.)

0,u : TXt (0)M → TXt (u)M

denotes usual parallel transport along the C1-curve

[0, u] → M, v �→ Xt(v),

with respect to the metric g(t).
We often use the notation //t for //g(t),X.(x)t when there no risk of confusion of

the underling process and the family of metrics.

Proposition 11.1 Suppose that the g(t)-Brownian motion starting at x is non-
explosive. The diagonal process t �→ Xt(

t
T
) satisfies the following stochastic

differential equation:

d∇t (X.(
.

T
))t = Pg(t),Xt (.)0, t

T

d∇t Xt (0)+ 1

T
W
g(t),X.(

t
T
)

t γ̇ (
t

T
) dt

Proof We pass to the Stratonovich differential to obtain the following chain rule
formula at time t0:

∗d(X.( .
T
))t0 = ∗d(X.( t0

T
))t0 + dXt0(

t
T
)

dt
|t=t0dt0.



11 Heat Kernel Coupled with Geometric Flow and Ricci Flow 225

We use (11.2) to identify the last term of the right hand side:

dXt0(
t
T
)

dt
|t=t0 = 1

T
W
g(t),X.(

t0
T
)

t0
(γ̇ (
t0

T
)).

Now we come back to the Itô differential equation using the following relation:

d∇t Yt = //Y.t
(
d

∫ t
0
(//Y.s )

−1 ∗ dYs
)
,

and we obtain

d∇t0 (X.(
.

T
))t0

= //t0
(
d

∫ t0
0
//−1
s ∗ d

(
X.

(
t0

T

))

s

+ 1

T
//−1
s W

g(s),X.(
s
T
)

s

(
γ̇
( s
T

))
ds

)

= d∇t0
(
X.

(
t0

T

))

t0

+ 1

T
W
g(t0),X.(

t0
T
)

t0
γ̇

(
t0

T

)
.

We then use (11.3) to identify

d∇t0 (X.(
t0

T
))t0 = Pg(t0),Xt0 (.)

0,
t0
T

d∇t0Xt0(0).

Thus concludes the proof. ��
Let

Nt := − 1

T

∫ t
0
〈Pg(s),Xs(.)0, s

T
d∇sXs(0),W

g(s),X.(
s
T
)

s γ̇ (
s

T
)〉g(s),

Rt := exp
(
Nt − 1

2
〈N〉t

)
.

In many situations Novikov’s criterion is satisfied. Therefore we could expect Rt to
be a martingale. Define the new probability measure Q as:

Q := RT P.

Proposition 11.2 Suppose that the g(t)-Brownian motion starting at x is non-
explosive and suppose that Novikov’s criterion is satisfied for Nt . Then under Q,
the process Xt(

t
T
) is a Lt -diffusion that starts at x, and finishes at XT (1) = XT (y),

i.e. under Q, XT (1) have the same distribution as the g(t)-Brownian motion at time
T that start at y.
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Proof One could directly apply Girsanov’s theorem. We prefer here to give a direct
proof. Let f ∈ C2

b(M,R), sinceNt satisfy Novikov’s conditionRt is a P-martingale.
We use Itô formula to compute:

df (Xt (
t

T
)) = 〈∇ t f (Xt ( t

T
)), d∇t (X.(

.

T
))t 〉g(t)

+ 1

2
Hesst f (Xt (

t

T
))(d∇t (X.(

.

T
))t , d

∇t (X.(
.

T
))t ).

Since Pg(t),Xt (.)
0, t
T

is an isometry for the metric g(t)

df (Xt (
t

T
)) = 〈∇ t f (Xt ( t

T
)), P

g(t),Xt (.)

0, t
T

d∇t Xt (0)〉g(t)

+ 1

T
〈∇ t f (Xt ( t

T
)),W

g(t),X.(
t
T
)

t γ̇ (
t

T
)〉g(t) dt + 1

2
Δtf (Xt (

t

T
))dt.

Moreover

dRtd(f (Xt (
t

T
))) = − 1

T
Rt 〈∇ t f (Xt ( t

T
)),W

g(t),X.(
t
T
)

t γ̇ (
t

T
)〉g(t) dt.

This implies

d(Rtf (Xt (
t

T
))) = 1

2
RtΔtf (Xt (

t

T
))dt + dMP

t ,

where MP
t is a martingale for P. On the other hand, since Rt is a P-martingale, we

have

Rt

∫ t
0
Δsf (Xs(

s

T
))ds =

∫ t
0
RsΔsf (Xs(

s

T
))ds + M̃P,

where M̃P
s is a P-martingale.

Thus

Rt

(
f (Xt (

t

T
))− 1

2

∫ t
0
Δsf (Xs(

s

T
))ds
)

is a martingale.
Since Ut is a Q-martingale if and only if RtUt is a P-martingale, f (Xt ( tT )) −

1
2

∫ t
0 Δsf (Xs(

s
T
))ds is then a Q martingale i.e. Xt( tT ) is a Lt diffusion under the

probability Q. It is clear that it finishes at XT (y). Thus Xt( tT ) can be seen as a
coupling between two Lt diffusions that starts at different points up to changing
probability. ��
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11.2.2 Harnack Inequality with Power and Some Semigroup
Property

Let Tc be the maximal life time of geometric flow g(t)t∈[0,Tc[. For all T < Tc, let

XTt be a g(T − t)-Brownian motion and //T0,t := //
g(T−t),XT.
0,t be the associated

parallel transport. In this case, for a solution f (t, .) of (11.1), f (T − t, XTt (x)) is
a local martingale for any x ∈ M . Hence the following representation holds for the
solution:

P0,T f0(x) := f (T , x) = Ex[f0(X
T
T )].

The subscript T refers to the fact that a time reversal step is involved.

Let WT
0,t := W

g(T−t),XT.
0,t be the damped parallel transport along the g(T − t)-

Brownian motion. We recall the covariant differential equation satisfied by this
damped parallel transport (11.2.1):

∗d((//T0,t )−1(WT
0,t )) = −1

2
(//T0,t )

−1(Ricg(T−t)−∂t (g(T − t)))#g(T−t)(WT
0,t ) dt

with

WT
0,t : TxM −→ TXTt (x)

M,WT
0,0 = IdTxM .

By the over subscript T we mean that the family of metrics is g(T − t).
Proposition 11.3 Suppose that there exist α, α ≥ 0 , K ≥ 0 such that for all
t ∈ [0, T ]:

−αg(t) ≤ α(t) ≤ αg(t),

−(d − 1)K2g(t) ≤ Ric(t)

then the g(t)-Brownian motion, and the g(T −t)-Brownian motion does not explode
before the time T .

Proof This is a sufficient condition but it is far from being necessary one, for the
process to do not explode. Let x, y ∈ M and let dt (x, y) be the Riemannian distance
from x to y computed with the metric g(t). Let Cutt (x) be the set of cutlocus of x
for the metric g(t). Consider a fixed point x0 ∈ M , and Xt a g(t)-Brownian motion
starting at X0. Using the Itô-Tanaka formula for dt (x0, Xt ) that have been proved
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for constant metric by Kendall, and generalized to g(t)-Brownian motion in [20]
Theorem 2, we have:

dt (x0, Xt ) = d0(x0, X0)+
∫ t

0 1Xs /∈Cuts (x0)(
1
2Δg(s)ds(x0, .)+ ∂ds(x0,.)

∂s
)(Xs) ds

+ ∫ t0 1Xs /∈Cuts (x0)〈∇sds(x0, Xs), d
∇sXs〉g(s) − Lt ,

(11.4)

whereLt is the local time atCutt (x0). The local time is non-decreasing non negative
process that increase only when Xt touches Cutt (x0). Moreover the distance
dt (x0, x) is smooth if x /∈ Cutt (x0)∪x0. Let x /∈ Cutt (x0) and γ : [0, dt (x0, x)] →
M be the g(t)-geodesic from x0 to x. We have:

∂ds(x0, x)

∂s
= 1

2

∫ ds(x0,x)

0
α(s)(γ̇ (u), γ̇ (u)) du ≤ α

2
ds(x0, x).

Recall the Laplacian comparison Theorem:

Δg(s)ds(x0, x) ≤ (d − 1)K coth(Kds(x0, x)).

We then get the following control of the drift term (using x coth(x) ≤ 1 + x for
x ≥ 0), and F(x) := (d − 1)( αx

(d−1) + 1
x
+K):

(
1

2
Δg(s)ds(x0, .)+ ∂ds(x0, .)

∂s
)(x)

≤ 1

2

(
(d − 1)K coth(Kds(x0, x)+ αds(x0, x))

)

≤ F(ds(x0, x)).

Since ‖∇g(t)dt (X0, .)‖g(t) = 1 and Cutt (x0) have 0 as g(t) volume, the martingale
part of dt (x0, Xt ) is a real Brownian motion. We finish the proof using the
comparison theorem of stochastic differential equation, and the usual criterion of
non-explosion of a one dimensional diffusion. For the g(T − t)-Brownian motion,
we simply to change α by α in the above formula. ��
Remark 11.1 For the backward Ricci flow, it is shown in [20] without any assump-
tion as in the above proposition that the g(t)-Brownian motion does not explode.
But the sufficient condition for the existence of the forward Ricci flow in complete
Riemannian manifolds as given by Shi in [24, Theorem 1.1], that is the boundedness
of the initial Riemannian tensor (for the metric g(0)) also gives a bound of the Ric
tensor along the flow (for bounded time). Hence the conditions for non explosion
of the g(t)-Brownian motion given in the above proposition is satisfied, at least for
small time, if the initial metric satisfies Shi’s condition for the complete manifolds.
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In the following proposition RTt is defined as Rt but according to the family of
metrics g(T − t) instead of g(t).

Proposition 11.4 Suppose that the g(t)-Brownian motion started at x is non-
explosive for the first point, and the g(T − t)-Brownian motion started at x is
non-explosive for the second point.

1. If there exists C ∈ R such that Ricg(t)−α(t) ≥ Cg(t), then Rt is a martingale,
and for β ≥ 1

E[Rβt ] ≤ e
1
2β(β−1)

d2
0 (x,y)

T 2
1−e−Ct
C .

2. If there exists C̃ ∈ R such that Ricg(t)+α(t) ≥ C̃g(t) then RTt is a martingale
and for β ≥ 1

E[(RTt )β ] ≤ e
1
2β(β−1)

d2
T
(x,y)

T 2
1−e−C̃t
C̃ . (11.5)

If C = 0 then we take for convention that for all t , 1−e−Ct
C

= t .
Proof Without loss of generality, we just make the proof for Rt , the computation is
the same as for RTt . Let Xt(x) be a g(t)-Brownian motion and let v ∈ TxM . We use
short notation for the g(t) parallel transport and the damped parallel transport along
Xt(x), //t := //

g(t),X.(x)
t and W(X.(x))t := Wg(t),X.(x)

t . Then we use the isometry
property of the parallel transport, i.e., //s : (TxM, g(0)) �→ (TXs(x)M, g(s)), to
deduce

∗ d〈W(X.(x))sv,W(X.(x))sv〉g(s)
= ∗d〈//−1

s W(X.(x))sv, //−1
s W(X.(x))sv〉g(0)

= 2〈∗d//−1
s W(X.(x))sv, //−1

s W(X.(x))sv〉g(0)
= 2〈//s ∗ d//−1

s W(X.(x))sv,W(X.(x))sv〉g(s)
= −〈(Ricg(s)−∂s(g(s)))#g(s)(W(X.(x))sv),W(X.(x))sv〉g(s) ds
≤ −C ‖ W(X.(x))sv ‖2 ds.

By Gronwall’s lemma we get

‖ W(X.(x))sv ‖g(s)≤ e− 1
2Cs ‖ v ‖g(0) .
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Recall that Nt := − 1
T

∫ t
0 〈Pg(s),Xs(.)0, s

T
d∇sXs(0),W(X.( sT ))s γ̇ (

s
T
)〉g(s), and

P
g(s),Xs(.)

0, s
T

is a g(s) isometry and d∇sXs(0) = //seidwi where w is a R
n-Brownian

motion, and (ei)i=1..n is an orthonormal basis of TxM . Then

〈N〉t = 1

T 2

∫ t
0

‖ W(X.(
s

T
))s γ̇ (

s

T
) ‖2
g(s) ds

≤ 1

T 2

∫ t
0
e−Cs ‖ γ̇ ( s

T
) ‖2
g(0) ds

≤ 1

T 2
d2

0 (x, y)

∫ t
0
e−Cs ds.

So by Nokinov’s criterion, Rt is a martingale. Let β ≥ 1,

E[Rβt ] = E[eβNt− β
2 〈N〉t ]

= E[eβNt− β2

2 〈N〉t e
β(β−1)

2 〈N〉t ]

≤ e 1
2β(β−1)

d2
0 (x,y)

T 2
1−e−Ct
C .

By the same computation we have

〈NT 〉t = 1

T 2

∫ t
0

‖ WT (X.(
s

T
))s γ̇ (

s

T
) ‖2
g(T−s) ds

≤ 1

T 2

∫ t
0
e−C̃s ‖ γ̇ ( s

T
) ‖2
g(T ) ds

≤ 1

T 2 d
2
T (x, y)

∫ t
0
e−C̃s ds.

Thus RTt is a martingale. Given β ≥ 1 we have similarly (11.5). ��
Remark 11.2 In the case of Ricci flow, ∂tg(t) = −Ricg(t), then ∂tg(T − t) =
Ricg(T−t) so the process XTt (x) does not explode (we do not need proposition 11.3,
but [20]) and the condition of the above proposition is satisfied with C̃ = 0 and

E[(RTT )β ] ≤ e
1
2β(β−1)

d2
T
(x,y)

T .

Using the horizontal Lt -diffusion, we could give a alternative proof of Theo-
rem 3.2 in [4] (isoperimetric-type Harnack inequality) for the constant metric case,
and also a generalisation for inhomogeneous diffusions.
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Lemma 11.1 If there exists C̃ ∈ R such that Ricg(t)+α(t) ≥ C̃g(t) and if the
g(T − t)-Brownian motion does not explode then for every measurable set A,

P0,T (1A)(x) ≤ P0,T (1A
ρT
0
)(y).

Where ρT := e− C̃T
2 dT (x, y) and Aε0 := {z ∈ M s.t. d0(z, A) ≤ ε}

Proof We could give a proof with the usual Kendall coupling, but we have to
manage the different cutlocus. We prefer here give a proof using the horizontal Lt
diffusion in C1 path space. Since the g(T − t)- Brownian motion does not explode,
it is the same for the LT−t -horizontal diffusion. Let γ be a g(T ) geodesic such that
γ (0) = x and γ (1) = y. By 11.2,

∂uXt (u) = WT (XT. (γ (u)))t (γ̇ (u))

and

‖ WT (XT. (x))sv ‖g(T−s)≤ e− 1
2 C̃s ‖ v ‖g(T ) .

We then get

d0(X
T
T (x),X

T
T (y)) ≤

∫ 1

0
‖∂uXt (u)‖g(0) du ≤ e− 1

2 C̃T dT (x, y) = ρT .

Hence {XTT (x) ∈ A} ⊂ {XTT (y) ∈ AρT0 } and

P0,T (1A)(x) = E[1A(XTT (x))] ≤ E[1
A
ρT
0
(XTT (y))] = P0,T (1A

ρT
0
)(y).

Thus concludes the proof. ��
Corollary 11.1

1. If ġ = 0 and Ricg ≥ K then we can take ρT = e−KT
2 d(x, y). This as actually

Theorem 3.2 in [4] for the Riemannian case.
2. If g(t) satisfies the Ricci flow, ∂tg(t) = −Ricg(t), so XTt (x) does not explode

([20]) and since the damped parallel transport is an isometry we could take ρT =
dT (x, y)

We are now ready to give the Harnack inequality with power. Let f be a solution
of (11.1) and let P0,T be the inhomogeneous heat kernel associated to (11.1), i.e.

P0,T f0(x) := f (T , x) = Ex[f0(X
T
T )].
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Theorem 11.1 Suppose that the g(T − t)-Brownian motion XTt does not explode,
and that the process RTt is a martingale. Then for all α > 1 and f0 ∈ Cb(M) we
have:

| P0,T f0 |α (x) ≤ E[(RTT )
α
α−1 ]α−1P0,T | f0 |α (y).

Moreover if there exists C̃ ∈ R such that

Ricg(t)+α(t) ≥ C̃g(t)

then we have:

| P0,T f0 |α (x) ≤ e α
2(α−1)

d2
T
(x,y)

T 2
1−e−C̃T

C̃ P0,T | f0 |α (y).

Proof We write X̃Tt := XTt (
t
T
) the diagonal process associated to the family of

metrics g(T − t), and use Proposition 11.2, and Hölder inequality:

| P0,T f0 |α (x) =| EQ[f0(X̃
T
T )] |α

=| EP[RTT f0(X̃
T
T )] |α

≤ E
P[(RTT )

α
α−1 ]α−1

E
P[| f0 |α (X̃TT )]

= E
P[(RTT )

α
α−1 ]α−1

E
P

y [| f0 |α (XTT (y))]
= E

P[(RTT )
α
α−1 ]α−1P0,T | f0 |α (y).

The last part in the theorem is an application of Proposition 11.4. ��
We will denote by μt the volume measure associated to the metric g(t), and for A
a measurable set, μt(A) := ∫

A
1 dμt , and Bt(x, r) the ball for the metric g(t) of

center x and radius r .

Corollary 11.2 Suppose that the g(T − t)-Brownian motion XTt does not explode,
and there exists C̃ ∈ R such that Ricg(t)+α(t) ≥ C̃g(t). Moreover suppose that
there exists a function τ : [0, T ] �→ R such that:

1

2
traceg(t)(α(t))(y) ≤ τ(t), ∀(t, y) ∈ [0, T ] ×M

then for f0 ∈ Lα(μ0)

| P0,T f0 | (x) ≤ e

∫ T
0 τ (s) ds+1

α

(
μT (BT (x,

√
2(α−1)T 2

α( 1−e−C̃T
C̃

)

))
) 1
α

‖ f0 ‖Lα(μ0) .
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Proof By Proposition 11.4 RTt is a martingale. If f0 ∈ Cb(M) ∩ Lα(μ0) we apply
Theorem 11.1 and get:

| P0,T f0 |α (x) ≤ e α
2(α−1)

d2
T
(x,y)

T 2
1−e−C̃T

C̃ P0,T | f0 |α (y).

We integrate both sides along the ball BT
(
x,

√
2(α−1)T 2

α( 1−e−C̃T
C̃

)

)
, with respect to the

measure μT , in y and obtain:

μT (BT
(
x,

√√√√2(α − 1)T 2

α( 1−e−C̃T
C̃

)

)
) | P0,T f0 |α (x)

≤ e
∫
BT

(
x,

√√√√ 2(α−1)T 2

α( 1−e−C̃T
C̃

)

) P0,T | f0 |α (y) dμT (y)

≤ e
∫
M

P0,T | f0 |α (y) dμT (y).

We have that d
dt
μt (y) = 1

2 traceg(t)(α(t))(y)dμt (y), and by the Stokes theorem we
have:

d

dt

∫
M

P0,t | f0 |α (y) dμt (y) =
∫
M

P0,t | f0 |α (y) d
dt
dμt (y)

≤ τ(t)
∫
M

P0,t | f0 |α (y) dμt (y).

We deduce that:
∫
M

P0,t | f0 |α (y) dμt (y) ≤ e
∫ t

0 τ(s) ds ‖ f0 ‖αLα(μ0)
.

Hence for f0 ∈ Cb(M) ∩ Lα(μ0)

| P0,T f0 | (x) ≤ e

∫ T
0 τ (s) ds+1

α

(
μT (BT (x,

√
2(α−1)T 2

α( 1−e−C̃T
C̃

)

))
) 1
α

‖ f0 ‖Lα(μ0) .

We conclude by a classical density argument that the same inequality is true for
f0 ∈ Lα(μ0). ��
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Corollary 11.3 If the family of metric comes from the Ricci flow and if

(τ (t)) = −1

2
inf
y∈M R(t, y) <∞,∀t ∈ [0, T ]

where R(t, y) is the scalar curvature at y for the metric g(t) then we have

| P0,T f0 | (x) ≤ e

∫ T
0 τ (s) ds+1

α

(
μT (BT (x,

√
2(α−1)T

α
))
) 1
α

‖ f0 ‖Lα(μ0) .

If infx∈M
(
μT (BT (x,

√
2(α−1)T

α
))
) =: CT > 0 then as a linear operator:

‖P0,T ‖Lα(μ0) �→L∞(μ0) ≤
e

∫ T
0 τ (s) ds+1

α

C
1
α

T

.

Proof If g(t) comes from Ricci flow then g(T − t) satisfies a backward Ricci flow.
Then the process XTt (x) does not explode before T [20]. Moreover we have C̃ = 0
in Proposition 11.4, then the process RTt is a martingale and we could apply the
above corollary. ��

11.3 Non Symmetry of the Inhomogeneous Heat Kernel,
and Heat Kernel Estimate

Unfortunately the non homogeneous heat kernel is non symmetric in general. The
goal of this section is to by-pass this difficulty. This will be achieved by the study of
the dual process and time reverse.

Let ∂
∂t
g(t) := α(t) where α is a time-dependent symmetric 2-tensor. We suppose

that there exist functions τ(t) and τ(t) such that:

{ 1
2 supy∈M traceg(t)(α(t))(y) ≤ τ(t)
1
2 infy∈M traceg(t)(α(t))(y) ≥ τ(t). (11.6)

Consider the following heat operator where the subscript mean the variable in which
we differentiate: Lt,x := − ∂

∂t
+ 1

2Δg(t). Let x, y ∈ M and 0 < τ < σ ≤ t . Denote
by P(x, t, y, τ ) the fundamental solution of

{
Lt,xP (x, t, y, τ ) = 0
limt↘τ P (., t, y, τ ) = δy(.) (11.7)



11 Heat Kernel Coupled with Geometric Flow and Ricci Flow 235

Using Itô’s formula we obtain as in [10]:

Xt−.t−τ (x)
L= P(x, t, y, τ ) dμτ (y)

Let v, u ∈ C1,2(R,M), the space of functions that are differentiable in time, and
differentiable twice in space. Consider the adjoint operator L∗ of L with respect to
〈Lu, v〉 := ∫ T0

∫
M
(Lu)vdμt dt . As in Guenther [17], it satisfies

L∗
t,x = 1

2
Δt + ∂

∂t
+ 1

2
traceg(t)(α(t)).

The fundamental solution P ∗(y, τ, x, t) of L∗, satisfies:

{
L∗
τ,yP

∗(y, τ, x, t) = 0
limτ↗t P ∗(., τ, x, t) = δx(.). (11.8)

Using Duhamel’s principle the adjoint property yields:

P(x, t, y, τ ) = P ∗(y, τ, x, t).

After a time reversal, P ∗(y, t − s, x, t) satisfies the following heat equation:

{
∂sP

∗(y, t − s, x, t) = 1
2Δg(t−s),yP

∗ + 1
2 traceg(t−s)(α(t − s))(y)P ∗

lims↘0 P
∗(y, t − s, x, t) = δy. (11.9)

Using the Feynman-Kac formula, we conclude that:

P ∗(y, t − s, x, t) ≤ e 1
2

∫ s
0 τ(t−u)duP (y, s, x, t),

where P(y, s, x, t) be the fundamental solution of

{
∂sf (s, x) = 1

2Δg(t−s)f (s, x)
f (0, x) = f0(x); (11.10)

i.e., P(y, s, x, t) satisfies:

{
∂sP (y, s, x, t) = 1

2Δg(t−s),yP (y, s, x, t)
lims↘0 P(., s, x, t) = δx(.). (11.11)
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Theorem 11.2 Suppose that (11.6) is satisfied and that:

• the g(s)-Brownian motion does not explode before the time t
2 and there exists

C ∈ R such that ∀s ∈ [0, t2 ]:

Ricg(s)−α(s) ≥ Cg(s);

• the g(t − s)-Brownian motion does not explode before the time t
2 and there exist

C̃ ∈ R such that ∀s ∈ [0, t2 ]:

Ricg(t−s)+α(t − s) ≥ C̃g(t − s).

Then the fundamental solution of (11.1) that we note P(x, t, y, 0) satisfies for all
0 < t < Tc:

P(x, t, y, 0) ≤ e e
1
2

∫ t
0 τ(s) ds

(
μt(Bt (x,

√
( t2 )

2

( 1−e−C̃
t
2

C̃
)

))
) 1

2

e− 1
2

∫ t2
0 τ(s) ds

(
μ0(B0(y,

√
( t2 )

2

( 1−e−C
t
2

C
)

))
) 1

2

.

Proof By the Chapman-Kolmogorov formula we have:

P(x, t, y, 0) =
∫
M

P(x, t, z,
t

2
)P (z,

t

2
, y, 0) dμ t

2
(z)

=
∫
M

P(x, t, z,
t

2
)P ∗(y, 0, z, t

2
) dμ t

2
(z)

≤ (
∫
M

(P (x, t, z,
t

2
))2dμ t

2
(z)
) 1

2
( ∫
M

(P ∗(y, 0, z, t
2
))2dμ t

2
(z)
) 1

2 .

Recall that P(x, t2 + s, z, t2 ) is the fundamental solution, which starts at δx at time
s = 0, of:

{
∂sf (s, x) = 1

2Δg( t2+s)f (s, x)
f (0, x) = f0(x)

(11.12)

Then we have:

P0, t2
f0(x) := f ( t

2
, x) = E[f0(X

t−.
t
2
(x))].
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According to the proof of Corollary 11.2, for f0 ∈ Cb(M) ∩ L2(μ t
2
) :

| P0, t2
f0 | (x) ≤ e

∫ t2
0 τ ( t2 +s) ds+1

2

(
μt(Bt (x,

√
( t2 )

2

( 1−e−C̃(
t
2 )

C̃
)

))
) 1

2

‖ f0 ‖L2(μ t
2
) .

Given x0 ∈ M and n ∈ N, we apply the above inequality to f0(y) :=
P(x, t, y, t2 ) ∧ (n1B(x0,n)(y)) to obtain:

∫
M

(
P (x, t, z,

t

2
) ∧ (n1B(x0,n)(z))

)2
dμ t

2
(z)

≤
∫
M

P(x, t, z,
t

2
)
(
P (x, t, z,

t

2
) ∧ n1B(x0,n)(z)

)
dμ t

2
(z)

≤ e

∫ t2
0 τ( t2 +s) ds+1

2

(
μt(Bt (x,

√
( t2 )

2

( 1−e−C̃(
t
2 )

C̃
)

))
) 1

2

( ∫
M

(
P (x, t, z,

t

2
) ∧ (n1B(x0,n)(z))

)2
dμ t

2
(z)
) 1

2
.

Letting n goes to infinity, we obtain that z → P(x, t, z, t2 ) is in L2(μ t
2
) for t > 0,

and that:

( ∫
M

(
P(x, t, z,

t

2
)
)2
dμ t

2
(z)
) 1

2 ≤ e

∫ t2
0 τ ( t2 +s) ds+1

2

(
μt(Bt (x,

√
( t2 )

2

( 1−e−C̃(
t
2 )

C̃
)

))
) 1

2

.

Recall that:

P ∗
(
y, 0, x,

t

2

)
≤ e 1

2

∫ t2
0 τ(u)duP

(
y,
t

2
, x,

t

2

)
,

where P(y, t2 , x,
t
2 ) is the heat kernel at time t

2 , which starts at time 0 at δy , of the
following equation:

{
∂sf (s, x) = 1

2Δg( t2−s)f (s, x)
f (0, x) = f0(x).

(11.13)

We also have:

P 0, t2
f0(x) := f ( t

2
, x) = E[f0(X

g(.)
t
2
(x))]



238 K. A. Coulibaly-Pasquier

To make a direct link with 11.2, we could think that the family of metrics is
s �→ g( t2 − s), so many changes of signs are involved. However, the proof of the
following is the same as the one of Corollary 11.2. We get for f0 ∈ Bb(M)∩L2(μ t

2
):

| P 0, t2
f0 | (y) ≤ e

− ∫
t
2

0 τ (s) ds+1
2

(
μ0(B0(y,

√
( t2 )

2

( 1−e−C(
t
2 )

C
)

))
) 1

2

‖ f0 ‖L2(μ t
2
) .

Similarly z→ P(y, t2 , z,
t
2 ) is in L2(μ t

2
) and

( ∫
M

(
P(y,

t

2
, z,

t

2
)
)2
dμ t

2
(z)
) 1

2 ≤ e
− ∫

t
2

0 τ(s) ds+1
2

(
μ0(B0(y,

√
( t2 )

2

( 1−e−C(
t
2 )

C
)

))
) 1

2

.

We obtain:

( ∫
M

(P ∗(y, 0, z, t
2
))2dμ t

2
(z)
) 1

2 ≤ e 1
2

∫ t2
0 τ(u)du

( ∫
M

P
2
(y,

t

2
, z,

t

2
) dμ t

2
(z)
) 1

2

≤ e 1
2

∫ t2
0 τ(u)du e

− ∫
t
2

0 τ (s) ds+1
2

(
μ0(B0(y,

√
( t2 )

2

( 1−e−C(
t
2 )

C
)

))
) 1

2

.

��
Remark 11.3 Having a heat kernel estimate for the heat equation we have simulta-
neously a kernel estimate of conjugate equation.

Remark 11.4 The hypothesis Ricg(t−s)+α(t − s) ≥ C̃g(t − s), for s ∈ [0, t2 ] is
a kind of quantitative super Ricci flow as defined in [22] (if C̃ = 0 this is exactly
the definition of super Ricci flow). This quantitative version of super Ricci flow
allow us to control the rate of expansion of the damped parallel transport along the
g(t − .)-Brownian motion.
The hypothesis Ricg(s)−α(s) ≥ Cg(s) for s ∈ [0, t2 ] allow us to control the rate
of expansion of the damped parallel transport along the dual process, namely the
process associated to P i.e. g(.)-Brownian motion.
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Remark 11.5 If g(t) = g(0) is constant, and Ricg(0) ≥ 0 we have τ(t) = τ(t) = 0,
C = C̃ = 0 and we deduce a Li-Yau on-diagonal estimate of the usual heat equation
on complete manifolds as in [21] (up to some constant):

Pt (x, y) ≤ e 1
(
μ0(B0(x,

√
t
2 ))
) 1

2

1
(
μ0(B0(y,

√
t
2 ))
) 1

2

.

Using the symmetry of the heat kernel in the constant metric case we do not need to
consider the dual as in the above theorem.

11.4 Grigor’yan Tricks, On-diagonal Estimate to Gaussian
Estimate, the Ricci Flow Case

In this section we use the on-diagonal estimate of the previous section to derive
a Gaussian type estimate of the minimal heat kernel coupled with Ricci flow (for
complete manifold with non negative Ricci curvature). The proof involves several
steps. In particular, we use a modification of Grigor’yan tricks [15, 16] to control
integrability of the square of the heat kernel outside some ball, combined to an
adapted version of Hamilton entropy estimate to control the difference of the heat
kernel at two points. This type of strategy, is a modification of different arguments
which appears in the literature on the Ricci flow (e.g. Cao-Zhang [5]).

Proposition 11.5 Let g(t)t∈[0,Tc[ be a family of metrics that satisfy the Ricci flow
i.e. ġ(t) = −Ricg(t). Suppose that for all t ∈ [0, Tc[, Ricg(t) ≥ 0 then we have
the following on-diagonal estimate for the heat kernel and so for the conjugate heat
kernel:

P(x, t, y, 0) ≤ e e
− 1

4

∫ t
t
2

infM R(s,.) ds

(
μt(Bt (x,

√
t
2 ))
) 1

2

e
1
4

∫ t2
0

(
supM R(s,.)−infM R(s,.)

)
ds

(
μ0(B0(y,

√
t
2 ))
) 1

2

.

Proof We could use Proposition 11.3 with K = 0 and α = 0 to get the non-
explosion of the g(t)-Brownian motion, and as in [20] the g(T−t)-Brownian motion
does not explode. We then use Theorem 11.2 with C = 0 and C̃ = 0 to get the
following on-diagonal estimate, for all t ∈]0, Tc[:

P(x, t, y, 0) ≤ e e
1
2

∫ t
0 τ(s) ds

(
μt(Bt (x,

√
t
2 ))
) 1

2

e− 1
2

∫ t2
0 τ(s) ds

(
μ0(B0(y,

√
t
2 ))
) 1

2

.

Recall that in the case of Ricci flow: τ(s) = − 1
2 infM R(s, .) ≤ 0. ��
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Remark 11.6 Note that in the proof of Theorem 11.2 the time t
2 is arbitrary and so

in Proposition 11.5. Thus if we have only a control of supM R for small time, we
also have a on-diagonal estimate.

We start this section by the following Hamilton estimate.

Lemma 11.2 Let f be a positive solution of (11.1), where αi,j (t) = −(Ricg(t))i,j ,
t ∈]0, Tc[ andMt

2
:= supx∈M f ( t2 , x) then for all x, y ∈ M,

f (t, x) ≤ √f (t, y)
√
Mt

2
e
d2
t (x,y)

t .

Proof By the homogeneity of the desired inequality under multiplication by a
constant, and the linearity of the heat equation, we can suppose that f > 1, by
taking for ε > 0, fε = f+2ε

infM f+ε and take the limit in ε.
Since no confusion could arise, we will simply write without subscript ∇, ‖.‖,
and ‖.‖HS , for ∇g(t), ‖.‖g(t), . . . Recall the Hilbert-Schmidt norm is defined as
‖α‖2

HS = gilgjmαijαlm, for a 2-tensor α := αij dxi ⊗ dxj .
Using an orthonormal frame and Weitzenbock’s formula, we obtain the following
equation

(−∂t + 1

2
Δg(t))

(‖ �f ‖2

f

)
(t, x)

= 1

f

(
‖ Hess f − �f ⊗ �f

f
‖2
HS +(Ricg(t)+ġ)(�f,�f )

)
(t, x).

Thus, in the case of Ricci flow

(−∂t + 1

2
Δg(t))

(‖ �f ‖2

f

)
≥ 0.

By a direct computation

(−∂t + 1

2
Δg(t))(f log f )(t, x) = 1

2

‖ �f ‖2

f
(t, x).

Let

Ns := h(s)‖ �f ‖2

f
(t − s,Xts(x))+ (f log f )(t − s,Xts(x)),

where Xts(x) is a g(t − s)-Brownian motion started at x. If h(s) := t/2−s
2 then by

Itô formula, it is easy to see that Ns is a super-martingale. So we have:

E[N0] ≤ E[N t
2
],
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that is:

t

4

‖ �f ‖2

f
(t, x)+ (f log f )(t, x) ≤ E[(f log f )(

t

2
, Xtt

2
(x))]

≤ E[f ( t
2
, Xtt

2
(x))] log(M t

2
)

= f (t, x) log(M t
2
),

where we use f > 1 and that f (t−s,Xts(x)) is a martingale. The above computation
yields

‖ �f ‖
f

(t, x) ≤ 2√
t

√
log(

M t
2

f (t, x)
),

and consequently

∥∥∥∥∥∥
∇
√

log(
M t

2

f (x, t)
)

∥∥∥∥∥∥
≤ 1√

t
.

After integrating this inequality along a g(t)-geodesic between x and y, we get

√√√√log

(
Mt

2

f (y, t)

)
≤
√√√√log

(
Mt

2

f (x, t)

)
+ dt (x, y)√

t
,

that yields to

f (t, x) ≤ √f (t, y)
√
Mt

2
e
d2
t (x,y)

t .

Now, we adapt the argument of Grigor’yan to the situation of Ricci flow (with
non negative Ricci curvature). ��
Lemma 11.3 Suppose that (11.6) is satisfied, the family of metrics g(t) comes from
the Ricci flow, and let B be a measurable set, then:

e− 1
2

∫ t
0 τ(s) ds

μ0(B)
1
2

≤ 1

μt(B)
1
2

≤ e− 1
2

∫ t
0 τ(s) ds

μ0(B)
1
2

.

Moreover if Ricg(t) ≥ 0 for all t ∈ [0, Tc[ then for all x ∈ M and r > 0 we have:

1

μ0(Bt (x, r))
1
2

≤ 1

μ0(B0(x, r))
1
2

.
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Proof Recall that:

d

dt
μt = 1

2
traceg(t)(ġ(t))μt .

In the case of a Ricci flow this becomes d
dt
μt (dx) = − 1

2R(x, t)μt (dx). Thus, the
first inequality of the lemma follows from an integration. For the second point, it is
clear that Ric ≥ 0 yields that dt (x, y) is non increasing in time. Then B0(x, r) ⊂
Bt(x, r), which clearly gives 1

μ0(Bt (x,r))
1
2
≤ 1

μ0(B0(x,r))
1
2

. ��

The above lemma immediately yields the following remark.

Remark 11.7 Suppose ġ(t) = −Ricg(t) and Ricg(.) ≥ 0. Using the estimate in
Lemma 11.5 and Lemma 11.3 we have the following estimate:

P(x, t, y, 0) ≤ e e
1
4

∫ t
0

(
supM R(s,.)−infM R(s,.)

)
ds

(
μ0(B0(x,

√
t
2 ))
) 1

2

e
1
4

∫ t2
0 supM R(s,.) ds

(
μ0(B0(y,

√
t
2 ))
) 1

2

.

Proposition 11.6 Let g(t) be a solution of Ricci flow such that Ricg(t) ≥ 0, and let
r > 0 , t0 > t ≥ 0, and define:

ξ(y, t) =
{−(r−dt (x,y))2

(t0−t) if dt (x, y) ≤ r
0 if dt (x, y) ≥ r

and Λ(t) = 1
2

∫ t
0 infx∈M(R(s, x))ds. If f is a solution of (11.1) then for t2 < t1 <

t0:

∫
M

f 2(t1, y)e
ξ(y,t1)μt1(dy) ≤ e−(Λ(t1)−Λ(t2))

∫
M

f 2(t2, y)e
ξ(y,t2)μt2(dy).

Proof Let γ (s) be the g(t)-geodesic between x and y. Using Remark 6 in [22] and
the fact that Ricg(t) ≥ 0 we get

d

dt
d2
t (x, y) =

d

dt

∫ 1

0
‖ γ̇ (s) ‖2

g(t) ds

= −
∫ 1

0
Ricg(t)(γ̇ (s), γ̇ (s)) ds ≤ 0.

So for y ∈ Bt(x, r) we have

d

dt
ξ(y, t) ≤ −(r − dt (x, y))2

(t0 − t)2 .
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We also have

‖ ∇ t ξ(y, t) ‖2
g(t)=

4(r − dt (x, y))2
(t0 − t)2 .

Then

d

dt
ξ(y, t) ≤ −‖ ∇ t ξ(y, t) ‖2

g(t)

4
,

and the above inequality is clear if y /∈ Bt(x, r). Let f (t, x) a solution of (11.1)
then we have:

d

dt

∫
M

f 2(t, y)eξ(y,t)μt (dy)

=
∫
M

(
f (t, y)Δtf (t, y)+ f 2(t, y)

d

dt
ξ(y, t)− R(y, t)

2
f 2(t, y)

)
eξ(y,t) μt (dy)

=
∫
M

−〈∇ t f,∇ t (f eξ )〉g(t) + f 2 d

dt
ξeξ − R

2
f 2eξ μt (dy)

=
∫
M

(
− 〈∇ t f,∇ t f 〉g(t) − 〈∇ t f, f∇ t ξ 〉g(t) + f 2 d

dt
ξ
)
eξ − R

2
f 2eξ μt (dy)

≤ −
∫
M

(
〈∇ t f,∇ t f 〉 + 2〈∇ t f, f∇ t ξ

2
〉 + f 2 ‖ ∇ t ξ ‖2

4

)
eξ − R

2
f 2eξ μt (dy)

= −
∫
M

(
〈∇ t f,∇ t f 〉 + 2〈∇ t f, f∇ t ξ

2
〉 + f 2 ‖ ∇ t ξ ‖2

4

)
eξ − R

2
f 2eξ μt (dy)

= −
∫
M

‖ ∇ t f + f∇ t ξ
2

‖2
g(t) μt (dy)−

∫
M

R

2
f 2eξ μt (dy)

≤ −
∫
M

R

2
f 2eξ μt (dy).

The result follows. ��
We define

Ir (t) :=
∫
M\Bt (x,r)

f 2(t, y)μt (dy).

Proposition 11.7 Under the same assumptions as in Proposition 11.6. Let ρ < r
and f be a solution of (11.1). We have:

Ir (t1) ≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2)+ e

−(r−ρ)2
(t1−t2)

∫
M

f 2(t2, y)μt2(dy)

)

for t2 < t1.
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Proof For t2 < t1,

Ir (t1) =
∫
M\Bt1 (x,r)

f 2(t1, y)μt1(dy) ≤
∫
M

f 2(t1, y)e
ξ(y,t1)μt1(dy)

≤ e−(Λ(t1)−Λ(t2))
∫
M

f 2(t2, y)e
ξ(y,t2)μt2(dy)

≤ e−(Λ(t1)−Λ(t2))
( ∫

Bt2 (x,ρ)

f 2(t2, y)e
ξ(y,t2)μt2(dy)

+
∫
M\Bt2 (x,ρ)

f 2(t2, y)e
ξ(y,t2)μt2(dy)

)

≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2)+

∫
Bt2 (x,ρ)

f 2(t2, y)e
ξ(y,t2)μt2(dy)

)

≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2)+ e

−(r−ρ)2
A(t0−t2)

∫
M

f 2(t2, y)μt2(dy)

.

Then remark that the definition of Ir (t) is independent of t0 and of the
corresponding ξ , so we can pass to the limit when t0 ↘ t1 to obtain the desired
result. ��

We apply the above proposition to the heat kernel P(x, t, y, 0) of the Eq. (11.7)
which also satisfies (11.1).

Theorem 11.3 If ġ(t) = −Ricg(t) for all t ∈ [0, Tc[ and the following assumptions
are satisfied:

• H1 : ifM is not compact, we suppose that there exists a uniform constant cn > 0
such that for all x ∈ M we have μ0(Bg(0)(x, r)) ≥ cnrn (that is a non collapsing
condition).

• H2 : Ricg(t) ≥ 0 for all t ∈ [0, Tc[.
Then for all a > 1 there exist two positive explicit constants qa , ma depending

only on a, cn and the dimension, such that we have the following heat kernel estimate
for all t ∈]0, Tc[ and x0, y0 ∈ M:

P(y0, t, x0, 0) ≤ qa e
∫ t

0
1
2 supM R(u,.)− 1

4 infM R(u,.)du

(
μ0(B0(x0,

√
t))
) 1

2μ0(B0(y0,
√
t))

1
2

e−
madt (x0,y0)

2

16t .

The values of qa and ma are given by (11.16) in the proof. Moreover we could
optimize ma , in terms of a > 1, to get a better control for points which are far.

Proof We could suppose that
∫ t

0 supM R(s, .) ds < ∞ for all t ∈ [0, Tc[, else the
conclusion is satisfied. Let f (t, x) := P(x, t, y, 0) be the heat kernel of (11.1) that
is the solution of Eq. (11.7). Note that H2 gives also a condition for non-explosion
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of the g(t)-Brownian motion by Proposition 11.3. Then we have by the proof of
Theorem 11.2:

∫
M

f 2(t, x)μt (dx) =
∫
M

P 2(x, t, y, 0)μt (dx)

=
∫
M

P ∗2(y, 0, x, t)μt (dx)

≤ e e
∫ t

0 τ(u)−τ(u) du(
μ0(B0(y,

√
t))
)

= e e
1
2

∫ t
0 supM R(u,.)−infM R(u,.)du

(
μ0(B0(y,

√
t))
) .

.

Let 0 < ρ < r , and t2 < t1 < t0 then apply Proposition 11.7 to f (t, x) :=
P(x, t, y, 0) to get:

Ir (t1) ≤ e−(Λ(t1)−Λ(t2))
(
Iρ(t2)+ e

−(r−ρ)2
(t1−t2)

∫
M

f 2(t2, y)μt2(dy)
)

≤ e−(Λ(t1)−Λ(t2))(Iρ(t2)+ e · e
−(r−ρ)2
(t1−t2)

e
1
2

∫ t2
0 supM R(u,.)−infM R(u,.)du
(
μ0(B0(y,

√
t2))
) )

.

Let a > 1 be a constant. Let us define rk := ( 1
2 + 1

k+2 )r and tk := t
ak

.
Thus Proposition 11.7 can be applied to rk+1 < rk and tk+1 < tk , yielding to the

same estimate as before:

Irk (tk)

≤ e−(Λ(tk)−Λ(tk+1))
(
Irk+1(tk+1)+ e · e

−(rk−rk+1)
2

(tk−tk+1)
e

1
2

∫ tk+1
0 supM R(u,.)−infM R(u,.)du
(
μ0(B0(y,

√
tk+1))

) )

≤ e−(Λ(tk)−Λ(tk+1))
(
Irk+1(tk+1)+ e · e

−(rk−rk+1)
2

(tk−tk+1)
e

1
2

∫ t0
0 supM R(u,.)−infM R(u,.)du
(
μ0(B0(y,

√
tk+1))

) )
.

Applying recursively this inequality, and use H2 to see thatΛ is non decreasing, we
have for all k:

Ir0(t0) ≤ e−(Λ(t0)−Λ(tk+1))Irk+1(tk+1)+ e
k∑
i=0

e−Λ(t0)e
−(ri−ri+1)

2

(ti−ti+1)
e

1
2

∫ t0
0 supM R(u,.)du(

μ0(B0(y,
√
ti+1))

)

(11.14)

We also have limk−→∞ Irk (tk) = 0 (see Lemma 11.4 in Appendix).
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So we can pass to the limit when k goes to infinity in Eq. (11.14) to get:

Ir0(t0) ≤ e · e−Λ(t0)e
1
2

∫ t0
0 supM R(u,.)du

∞∑
i=0

e
−(ri−ri+1)

2

(ti−ti+1)
1(

μ0(B0(y,
√
ti+1))

) .

Recall that ri − ri+1 = r
(i+3)(i+2) and ti − ti+1 = t

ai
(1 − 1

a
). Moreover, by

Bishop-Gromov theorem, Theorem 4.19 [13] in the case Ric ≥ 0 we have

μ0(B0(y,
√
ti ))

μ0(B0(y,
√
ti+1))

≤ a n2 := ca.

Iterating the above inequality we get:

μ0(B0(y,
√
t0))

μ0(B0(y,
√
ti+1))

≤ (ca)i+1.

So we have:

Ir0(t0) ≤ e
e−Λ(t0)e 1

2

∫ t0
0 supM R(u,.)du

μ0(B0(y,
√
t0))

∞∑
i=0

e
−(ri−ri+1)

2

(ti−ti+1) (ca)
i+1

≤ e e
−Λ(t0)e 1

2

∫ t0
0 supM R(u,.)du

μ0(B0(y,
√
t0))

∞∑
i=0

e

−( r
(i+3)(i+2) )

2

( t

ai
(1− 1

a ))
+(i+1) log(ca)

≤ e e
−Λ(t0)e 1

2

∫ t0
0 supM R(u,.)du

μ0(B0(y,
√
t0))

∞∑
i=0

e
−ai+1r2

t0(a−1)(i+3)4
+(i+1) log(ca).

There exists a constant ma such that ai+1

(a−1)(i+3)4
≥ ma(i + 2), and thus we get:

Ir0(t0) ≤ e
e−Λ(t0)e 1

2

∫ t0
0 supM R(u,.)du

μ0(B0(y,
√
t0))

∞∑
i=0

e
−mar2
t0

(i+2)+(i+1) log(ca)

≤ e e
−Λ(t0)e 1

2

∫ t0
0 supM R(u,.)du

μ0(B0(y,
√
t0))

e
−mar2
t0

∞∑
i=0

e
−(i+1)( mar

2
t0

−log(ca))
.

If mar
2

t0
− log(ca) ≥ log(2) then

Ir0(t0) ≤ e
e−Λ(t0)e 1

2

∫ t0
0 supM R(u,.)du

μ0(B0(y,
√
t0))

e
−mar2
t0 ,
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If mar
2

t0
− log(ca) < log(2) then

Ir0(t0) ≤
∫
M

P 2(x, t0, y, 0)μt0(dx)

=
∫
M

P ∗2(y, 0, x, t0)μt0(dx)

≤ e e
1
2

∫ t0
0 supM R(u,.)−infM R(u,.)du
(
μ0(B0(y,

√
t0))
)

≤ e e
1
2

∫ t0
0 supM R(u,.)−infM R(u,.)du
(
μ0(B0(y,

√
t0))
) e

log(2)+log(ca)−mar
2

t0 .

We have that for all a > 1 there exists a constant qa := 2ea
n
2 and (e ln a)5

a2(a−1)55 ≤ ma ,
so we could take in the following ma = (e ln a)5

a2(a−1)55 such that:

Ir (t) ≤ qa e
1
2

∫ t
0 supM R(u,.)−infM R(u,.)du

(
μ0(B0(y,

√
t))
) e−

mar
2

t . (11.15)

Case 1 points which are far.
Let x0, y0 ∈ M such that dt (x0, y0) ≥ √

t , let r := dt (x0,y0)
2 , then by (11.15)

(with Ir (t) defined with f (t, x) = P(x, t, x0, 0), there exists z0 ∈ Bt(y0,

√
t
4 ) ⊂

M\Bt(x0, r) such that:

μt(Bt (y0,

√
t

4
)P 2(z0, t, x0, 0) ≤ Ir (t)

≤ qa e
1
2

∫ t
0 supM R(u,.)−infM R(u,.)du

(
μ0(B0(x0,

√
t))
) e−

madt (x0,y0)
2

4t .

Then there exists z0 ∈ Bt(y0,

√
t
4 ) such that:

P 2(z0, t, x0, 0) ≤ qa e
1
2

∫ t
0 supM R(u,.)−infM R(u,.)du

(
μ0(B0(x0,

√
t))μt (Bt (y0,

√
t
4 )
)e−

madt (x0,y0)
2

4t
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By Lemma 11.3 (comparison of volume)

P(z0, t, x0, 0) ≤ (qa) 1
2 (ψ(t))

1
2

e
1
4

∫ t
0 supM R(u,.)−infM R(u,.)du

√(
μ0(B0(x0,

√
t))μ0(B0(y0,

√
t
4 ))
)e

−madt (x0,y0)
2

8t ,

where ψ(t) = e 1
2

∫ t
0 supM R(u,.)du.

We conclude the proof by using Lemma 11.2 (for f (t, x) := P(x, t, x0, 0)) to
compare the solution of the heat equation at different points. We have:

P(y0, t, x0, 0) ≤
√
P(z0, t, x0, 0)

√
sup
M

P(.,
t

2
, x0, 0)e

dt (z0,y0)
2

t

≤ √P(z0, t, x0, 0)

√
sup
M

P(.,
t

2
, x0, 0)e

1
4

Note that using Remark 11.7 and H1 we have, where cn is the constant coming from
H1:

sup
M

P(.,
t

2
, x0, 0) ≤ eψ( t4 )

1
2 e

1
4

∫ t2
0

(
supM R(s,.)−infM R(s,.)

)
ds

(
μ0(B0(x0,

√
t
4 ))
) 1

2 c
1
2
n

(√
t
4

) n
2

≤ c̃
1
2
n eψ(

t
4 )

1
2 e

1
4

∫ t2
0

(
supM R(s,.)−infM R(s,.)

)
ds

(
μ0(B0(x0,

√
t
4 ))
) 1

2 c
1
2
n

(
μ0(B0(y0,

√
t
4 ))
) 1

2

≤ qn ψ(t)
1
2 e

1
4

∫ t
0

(
supM R(s,.)−infM R(s,.)

)
ds

(
μ0(B0(x0,

√
t))
) 1

2
(
μ0(B0(y0,

√
t))
) 1

2

,

where in second and last inequality we use Bishop-Gromov theorem to compare
volume of ball in positive Ricci curvature case to the corresponding Euclidean
volume, i.e. (r �→ μ(B(x,r))

c̃nrn
is non increasing and smaller than 1) and c̃n is the

volume of the Euclidean unit ball in dimension n, we have qn = c̃
1
2
n e2n

c
1
2
n

. Hence we

have for q̃n = (qn2
n
2 )

1
2 :

P(y0, t, x0, 0) ≤ q̃n(qa) 1
4
ψ(t)

1
2 e

1
4

∫ t
0

(
supM R(s,.)−infM R(s,.)

)
ds

(
μ0(B0(x0,

√
t))
) 1

2
(
μ0(B0(y0,

√
t))
) 1

2

e−
madt (x0,y0)

2

16t .

Case 2 points are close.
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For points x0, y0 which are closed that is dt (x0, y0) ≤ √
t the above inequality is

a consequence of 11.7 since in this case e
−ma

16 ≤ e−mad2
t (x0,y0)
16t .

Then after changing the function ψ we get:

P(y0, t, x0, 0) ≤ q̃a e
∫ t

0
1
2 supM R(u,.)− 1

4 infM R(u,.)du

(
μ0(B0(x0,

√
t))
) 1

2μ0(B0(y0,
√
t))

1
2

e−
madt (x0,y0)

2

16t

where

q̃a = (q̃n(2ea n2 ) 1
4 ) ∨ (e2 n2 e ma16 ),ma = (e ln a)5

a2(a − 1)55 . (11.16)

��
Proposition 11.8 With the same Hypothesis as in the Theorem 11.3, there exist
c, λ > 0 that depend on n, cn,ma such that we get the following lower bound
estimate:

c
e
∫ t

0 −λ supM R(u,.)+ 1
4 infM R(u,.) du

μ0(B0(z0,
√
t)

1
2μ0(B0(y,

√
t)

1
2

e
−4dt (z0,y)

2

t ≤ P(z0, t, y, 0).

Proof We will get the lower bound from the upper bound. Since

d

dt

∫
M

P(x, t, y, 0)μt (dx) = −1

2

∫
M

P(x, t, y, 0)R(t, x)μt (dx)

≥ −1

2
sup
M

R(t, .)

∫
M

P(x, t, y, 0)μt (dx)

we have
∫
M

P(x, t, y, 0)μt (dx) ≥ e−
∫ t

0
1
2 supM R(t,.).

Let β > 0 large enough, we use Schwarz’s inequality:

∫
Bt (y,

√
βt)

P 2(x, t, y, 0)μt (dx)

≥ 1

μt(Bt (y,
√
βt))

(∫
Bt (y,

√
βt)

P (x, t, y, 0)μt (dx)

)2

= 1

μt(Bt (y,
√
βt))

×
(∫
M

P(x, t, y, 0)μt (dx)−
∫
M\Bt (y,√βt)

P (x, t, y, 0)μt (dx)

)2

.
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We will use the upper bound in Theorem 11.3 and H1 to get an estimate of the last

term in the above equation. Let I (t) := e
∫ t

0
1
2 supM R(u,.)− 1

4 infM R(u,.)du

∫
M\Bt (y,√βt)

P (x, t, y, 0)μt (dx) ≤ qaI (t)

cnt
n
2

∫
M\Bt (y,√βt)

e−
madt (x,y)

2

16t μt (dx)

≤ qaI (t)

cnt
n
2

∫
M\Bt (y,√βt)

e−
madt (x,y)

2

32t μt (dx)e
−maβ

32

≤ qaI (t)e
−maβ

32

cnt
n
2

∞∑
k=1

∫
Bt (y,2k

√
βt)\Bt (y,2k−1

√
βt)

e−
madt (x,y)

2

32t μt (dx)

≤ qaI (t)e
−maβ

32

cnt
n
2

∞∑
k=1

e−
ma22(k−1)β

32 μt(Bt (y, 2
k
√
βt))

≤ qaI (t)e
−maβ

32

cn

∞∑
k=1

e−
ma22(k−1)β

32 c̃n(2
k
√
β)n,

where use H2 and the volume comparison theorem in the last inequality. Let β =
2( 1

2

∫ t
0 supM R(u, .) du + C)/(ma/32), since for all k ≥ 0, 22(k) ≥ k + 1 and

R(u, .) ≥ 0:

I (t)

∞∑
k=1

e−
ma22(k−1)β

32 (2k
√
β)n ≤ I (t)2nβ n2

∞∑
k=0

e−
ma(k+1)β

32 2nk

≤ I (t)β n2 e−maβ
32

2n

1 − 2n(e−
maβ

32 )

≤ e− 1
2

∫ t
0 supM R(u,.) du−Cβ

n
2

2n

1 − 2n(e−
maβ

32 )
.

The last term goes to 0 as C tends to infinity. Hence for a constant C large enough
(that only depends on n, cn, qa and ma) and independent on t , we have:

∫
M\Bt (y,√βt)

P (x, t, y, 0)μt (dx) ≤ 1

2
e−

maβ
32 ≤ 1

2
e−

1
2

∫ t
0 supM R(u,.) du.

Thus
∫
Bt (y,

√
βt)

P 2(x, t, y, 0)μt (dx) ≥ 1

4μt(Bt (y,
√
βt))

(e−
1
2

∫ t
0 supM R(u,.) du)2.
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Hence there exist x1 ∈ Bt(y,√βt) such that:

P(x1, t, y, 0) ≥ 1

2μt(Bt (y,
√
βt))

(e−
1
2

∫ t
0 supM R(u,.) du)

Using the volume comparison theorem, Hypotheses H2 and H1, we have:

μt(Bt (y,
√
βt)) ≤ c̃nβ n2 t n2 ≤ c̃n

cn
β
n
2μ0(B0(y,

√
t)),

so there exists a constant cst that depends on the dimension and the constant cn
of H1

P(x1, t, y, 0) ≥ cst 1

μ0(B0(y,
√
t))

e− 1
2

∫ t
0 supM R(u,.) du

(
∫ t

0 supM R(u, .) du+ 2C)/(ma/32))
n
2
.

Since for all x ≥ 0 we have

e− x
2

(x + 2C)
n
2
≥ e−( 1

2+ n
4C )x

(2C)
n
2

we get for a cst (n, cn,ma) that can change from a line to line and using H2:

P(x1, t, y, 0) ≥ cst e
−( 1

2+ n
4C )
∫ t

0 supM R(u,.) du

μ0(B0(y,
√
t))

≥ cst e
−( 1

2+ n
4C )
∫ t

0 supM R(u,.) du

t
n
2

.

We conclude the proof by using lemma 11.2 (for f (t, x) := P(x, t, y, 0)) to
compare the solution of the heat equation at different points. We have for all z0:

P(x1, t, y, 0) ≤
√
P(z0, t, y, 0)

√
sup
M

P(.,
t

2
, y, 0)e

dt (z0,x1)
2

t

With the triangle inequality

dt (z0, x1)
2 ≤ 2dt (z0, y)

2 + 2βt

and so

P(x1, t, y, 0) ≤
√
P(z0, t, y, 0)

√
sup
M

P(.,
t

2
, y, 0)e

2dt (z0,y)
2

t e2β.
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As in the proof of Theorem 11.3 and using H1 we get:

sup
M

P(.,
t

2
, y, 0) ≤ cst e

∫ t
0

(
1
2 supM R(s,.)− 1

4 infM R(s,.)
)
ds

(
μ0(B0(z0,

√
t))
) 1

2
(
μ0(B0(y,

√
t))
) 1

2

≤ cst e
∫ t

0

(
1
2 supM R(s,.)− 1

4 infM R(s,.)
)
ds

t
n
2

.

Hence:

cst
e−( 1

2+ n
4C )
∫ t

0 supM R(u,.) du

t
n
2

≤ P(x1, t, y, 0) (11.17)

≤ √P(z0, t, y, 0)

√
sup
M

P(.,
t

2
, y, 0)e

2dt (z0,y)
2

t e2β.

Thus

cst
e−( 1

2+ n
4C )
∫ t

0 supM R(u,.) du

t
n
2

≤ √P(z0, t, y, 0)
e
∫ t

0

(
1
4 supM R(s,.)− 1

8 infM R(s,.)
)
ds

t
n
4

e
2dt (z0,y)

2

t e2β

We recall the definition of β there exist some constants c, λ > 0 that depend on
n, cn,ma such that:

c
e
∫ t

0 −λ supM R(u,.)+ 1
8 infM R(u,.) du

t
n
4

e
−2dt (z0,y)

2

t ≤ √P(z0, t, y, 0).

After using H1 again for a constant that could change from line to line, we have:

c
e
∫ t

0 −λ supM R(u,.)+ 1
4 infM R(u,.) du

μ0(B0(z0,
√
t)

1
2μ0(B0(y,

√
t)

1
2

e
−4dt (z0,y)

2

t ≤ P(z0, t, y, 0),

which is the desired lower bound. ��
Remark 11.8 The constants 1

2 and 1
4 are far from being optimal in Theorem 11.3.

Hypothesis H1 and H2 are used many time to compare the volume of some ball and
the Euclidean one’s.

Note that for manifold of dimension three, H2 reduce to Ricg(0) ≥ 0 e.g. in
Corollary 9.2 [18] and page 193 in [8].

The existence of Ricci flow for a complete non-compact manifold at least for
short time have been proved in [24] Theorem 2.1, under boundedness conditions
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for the Riemannian tensor of (M, g(0)). There also have some uniqueness results in
this direction in [6] Theorem 1.1.

Appendix

Lemma 11.4 With the same hypothesis as in Theorem 11.3 and suppose∫ t
0 supM R(s, .) ds < ∞ for all t ∈ [0, Tc[. Let a > 1 be a constant,
rk := ( 1

2 + 1
k+2 )r and tk := t

ak
. We have

lim
k−→∞ Irk (tk) = 0.

Proof We use H1 and
∫ t

0 supM R(s, .) ds <∞ to get a global polynomial bound of

the heat kernel i.e. Remark 11.7. We obtain that for all t ≤ Tc
2 :

P(x, t, y, 0) ≤ Cst
(
μ0(B0(x,

√
t
2 ))
) 1

2μ0(B0(y,

√
t
2 ))
) 1

2

≤ cst

t
n
2
.

Then for a constant which could change from line to line:

Ir (t) =
∫
(M\Bt (y,r))

P 2(x, t, y, 0)μt (dx) ≤ cst

t
n
2

∫
(M\Bt (y,r))

P (x, t, y, 0)μt (dx)

≤ cst

t
n
2

∫
(M\Bt (y,r))

P ∗(y, 0, x, t)μt (dx)

≤ cst

t
n
2

∫
(M\Bt (y,r))

P (y, t, x, t)μt (dx)

≤ cst Py(τr < t)
t
n
2

where in τr := inf{t > 0, dt (Xt (y), y) = r}, and Xt(y) is a g(t)-Brownian motion
started at y, note that Xt(y) does not explode using H2 and Proposition 11.3.

Let ρt := dt (Xt (y), y), use (11.4) and Itô’s formula we get for the real Brownian
motion bt :=

∫ t
0 1Xs /∈Cuts (y)〈∇sds(y,Xs), d∇sXs〉g(s)

dρ2
t = 2ρtdρt + dt ≤ 2ρt

(
1Xt /∈Cutt (x0)(

1

2
Δg(t)dt (y, .)

+ ∂dt (y, .)

∂t
)(Xt )

)
dt + dt + 2ρtdbt .
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By the Laplacian comparison theorem (Theorem 3.4.2 in [19]) we also have, since
by H2, Ricg(t) ≥ 0 for all t ∈ [0, Tc[, within the cutlocus:

Δg(t)dt (y, .) ≤ n− 1

dt (y, .)
and

∂dt (y, .)

∂t
≤ 0.

Hence

dρ2
t ≤ ndt + 2ρtdbt ,

at time t = τr ,

r2 ≤ nτr +
∫ τr

0
2ρtdbt .

On the event {τr ≤ t},

r2 − nt
2

≤
∫ τr

0
ρtdbt .

Note that
∫ τr

0 ρtdbt = WT , where W is a Brownian motion and T = ∫ τr0 ρ2
s ds. On

the event {τr ≤ t} we also have T ≤ r2t . Then the event {τr ≤ t} implies

r2 − nt
2

≤ WT ≤ sup
s∈[0,r2t]

Ws ∼ r
√
t |W1|,

hence for r2 − nt > 0,

Py(τr < t) ≤ P0(
r2 − nt
2r

√
t

≤ |W1|)

≤ 2√
2π( r

2−nt
2r

√
t
)
e
−( r2−nt

2r
√
t
)2

.

Since a > 1 be a constant rk := ( 1
2 + 1

k+2 )r and tk := t
ak

, we have

Py(τrk < tk)

t
n
2
k

−−−→
k→∞ 0

and then

lim
k−→∞ Irk (tk) = 0.

��
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Chapter 12
Scaled Penalization of Brownian Motion
with Drift and the Brownian Ascent

Hugo Panzo

Abstract We study a scaled version of a two-parameter Brownian penalization
model introduced by Roynette-Vallois-Yor (Period Math Hungar 50:247–280, 2005).
The original model penalizes Brownian motion with drift h ∈ R by the weight
process

(
exp(νSt ) : t ≥ 0

)
where ν ∈ R and

(
St : t ≥ 0

)
is the running

maximum of the Brownian motion. It was shown there that the resulting penalized
process exhibits three distinct phases corresponding to different regions of the
(ν, h)-plane. In this paper, we investigate the effect of penalizing the Brownian
motion concurrently with scaling and identify the limit process. This extends an
existing result for the ν < 0, h = 0 case to the whole parameter plane and reveals
two additional “critical” phases occurring at the boundaries between the parameter
regions. One of these novel phases is Brownian motion conditioned to end at its
maximum, a process we call the Brownian ascent. We then relate the Brownian
ascent to some well-known Brownian path fragments and to a random scaling
transformation of Brownian motion that has attracted recent interest.

12.1 Introduction

Brownian penalization was introduced by Roynette, Vallois, and Yor in a series
of papers where they considered limit laws of the Wiener measure perturbed by
various weight processes, see the monographs [15, 28] for a complete list of the
early works. One motivation for studying Brownian penalizations is that they can
be seen as a way to condition Wiener measure by an event of probability 0. Another
reason penalizations are interesting is that they often exhibit phase transitions typical
of statistical mechanics models. Let C

(
R+;R) denote the space of continuous

functions from [0,∞) to R and let X = (Xt : t ≥ 0) denote the canonical
process on this space. For each t ≥ 0, let Ft denote the σ -algebra generated by
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(Xs : s ≤ t), and let F∞ denote the σ -algebra generated by ∪t≥0Ft . We write F
for the filtration (Ft : t ≥ 0). Let P0 denote the Wiener measure on F∞, that is the
unique measure under which X is standard Brownian motion. As usual, we write
E0 for the corresponding expectation. Our starting point is the following definition
of Brownian penalization adapted from [21].

Definition 12.1 Suppose the F -adapted weight process ! = (!t : t ≥ 0) takes
non-negative values and that 0 < E0[!t ] < ∞ for t ≥ 0. For each t ≥ 0, consider
the Gibbs probability measure on F∞ defined by

Q!t (�) :=
E0[1�!t ]
E0[!t ] , � ∈ F∞. (12.1)

We say that the weight process ! satisfies the penalization principle for Brownian
motion if there exists a probability measureQ! on F∞ such that:

∀s ≥ 0, ∀�s ∈ Fs , lim
t→∞Q

!
t (�s) = Q!(�s). (12.2)

In this caseQ! is called Wiener measure penalized by ! or simply penalized Wiener
measure when there is no ambiguity. Similarly, (Xt : t ≥ 0) under Q! is called
Brownian motion penalized by ! or penalized Brownian motion.

Remark 12.1 Let Px denote the distribution of Brownian motion starting at x ∈
R and Ex its corresponding expectation. By replacing E0 with Ex in (12.1), it is
straightforward to modify the above definition ofQ!t andQ! to yield the analogous
measures Q!x,t and Q!x which account for a general starting point. Since the main
focus of our work is on computing scaling limits, and any fixed starting point would
be scaled to 0, we restrict our attention to penalizing P0 for the sake of clarity.

In many cases of interest, a one-parameter family of weight processes (!ν : ν ∈
R) is considered. The parameter ν allows us to adjust or “tune” the strength of
penalization and plays a role similar to that of the inverse temperature in statistical
mechanics models. In this case we writeQνt andQν for the corresponding Gibbs and
penalized measures, respectively. This notational practice is modified accordingly
when dealing with a two-parameter weight process.

A natural choice for ! are non-negative functions of the running maximum
St = sups≤t Xs and these supremum penalizations were considered by the
aforementioned authors in [30]. Their results include as a special case the one-
parameter weight process !t = exp(νSt ) with ν < 0 which we briefly describe
here.

Theorem 12.1 (Roynette-Vallois-Yor [30] Theorem 3.6) Let !t = exp(νSt ) with
ν < 0. Then ! satisfies the penalization principle for Brownian motion and the
penalized Wiener measureQν has the representation

Qν(�t) = E0
[
1�tM

ν
t

]
, ∀t ≥ 0, ∀�t ∈ Ft
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whereMν = (Mν
t : t ≥ 0) is a positive (F , P0)-martingale starting at 1 which has

the form

Mν
t = exp(νSt )− ν exp(νSt )(St −Xt).

Remark 12.2 Mν is an example of an Azéma-Yor martingale. More generally,

F(St )− f (St )(St −Xt), t ≥ 0

is an (F , P0)-local martingale whenever f is locally integrable and F(y) =∫ y
0 f (x)dx, see Theorem 3 of [16].

Let S∞ = limt→∞ St which exists in the extended sense due to monotonicity.
Then the measure Qν can be further described in terms of a path decomposition at
S∞.

Theorem 12.2 (Roynette-Vallois-Yor [30] Theorem 4.6) Let ν < 0 andQν be as
in Theorem 12.1.

1. UnderQν , the random variable S∞ is exponential with parameter −ν.
2. Let g = sup{t ≥ 0 : Xt = S∞}. Then Qν(0 < g < ∞) = 1, and under Qν the

following hold:

(a) the processes (Xt : t ≤ g) and (Xg −Xg+t : t ≥ 0) are independent,
(b) (Xg −Xg+t : t ≥ 0) is distributed as a Bessel(3) process starting at 0,
(c) conditionally on S∞ = y > 0, the process (Xt : t ≤ g) is distributed as a

Brownian motion started at 0 and stopped when it first hits the level y.

More recently, penalization has been studied for processes other than Brownian
motion. In this case, the measure of the underlying processes is referred to as
the reference measure. Similar supremum penalization results have been attained
for simple random walk [6, 7], stable processes [33, 34], and integrated Brownian
motion [21]. This paper builds upon the work of Roynette-Vallois-Yor that appeared
in [29] where they penalized Brownian motion using the two-parameter weight
process !t = exp(νSt + hXt) with ν, h ∈ R. An easy application of Girsanov’s
theorem shows that this is equivalent to using the weight process !t = exp(νSt )
with ν ∈ R and replacing the reference measure P0 by the distribution of Brownian
motion with drift h, henceforth referred to as Ph0 . Now their two-parameter
penalization can also be seen as supremum penalization of Brownian motion with
drift. In this model, the two parameters ν (for penalization) and h (for drift) can
have competing effects, leading to interesting phase transitions. That is to say the
penalized Wiener measure is qualitatively different depending on where (ν, h) lies in
the parameter plane. To describe the resulting phases, we first partition the parameter
plane into six disjoint regions (the origin is excluded to avoid trivialities).

Theorem 12.3 (Roynette-Vallois-Yor [29] Theorem 1.7) Let !t = exp(νSt +
hXt) with ν, h ∈ R. For ν < 0, let Qν be as in Theorem 12.1. Then ! satisfies
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Fig. 12.1
L1 = {(ν, h) : ν < 0, h = 0}
R1 = {(ν, h) : h < −ν, h > 0}
L2 = {(ν, h) : h = −ν, ν < 0}
R2 = {(ν, h) : h > −ν, h > − 1

2 ν}
L3 = {(ν, h) : h = − 1

2ν, ν > 0}
R3 = {(ν, h) : h < 0, h < − 1

2ν}
ν

h

R1

R3

R2

L3

L2

L1

the penalization principle for Brownian motion and the penalized Wiener measure
Qν,h has three phases which are given by

dQν,h =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dQν+h : (ν, h) ∈ L1 ∪ R1

dP ν+h0 : (ν, h) ∈ L2 ∪ R2 ∪ L3

ν+2h
2h exp(νS∞)dP h0 : (ν, h) ∈ R3.

Remark 12.3 While Theorem 12.3 had only three phases hence needing only three
regions in the parameter plane, the rationale behind our choice of six regions in
the phase diagram depicted in Fig. 12.1 will become clear when we state our main
results.

One topic that has attracted interest is the following: to what extent can sets
� ∈ F∞ replace the sets �s ∈ Fs in the limit (12.2) which defines penalization?
This can’t be done in complete generality, e.g. the case of supremum penalization
from Theorem 12.2. Here we saw that S∞ is exponentially distributed under Qν ,
yet it is easy to see that for each t ≥ 0, S∞ = ∞ almost surely under Qνt . The
last chapter of [28] is devoted to studying this question. Intuitively speaking, the
effect of penalizing by !t on the probability of an event �s ∈ Fs should be more
pronounced the closer s is to t . Hence letting s keep pace with t as t → ∞ instead
of having s remain fixed might result in a different outcome. This leads to the notion
of scaled Brownian penalizations. Roughly speaking, scaled penalization amounts
to penalizing and scaling simultaneously. To be more specific, we first introduce the
family of scaled processesXα,t = (Xα,ts : 0 ≤ s ≤ 1) indexed by t > 0 with scaling
exponent α ≥ 0 where Xα,ts := Xst/tα . Now with a weight process ! that satisfies
the penalization principle for Brownian motion and the right choice of α, we then
compare the weak limits of Xα,t under Q!|Ft (penalizing then scaling) and under
Q!t |Ft (scaling and penalizing simultaneously) as t → ∞. Next we give an example
of such a result for supremum penalization.
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Theorem 12.4 (Roynette-Yor [28] Theorem 4.18) Let (Rs : 0 ≤ s ≤ 1) and
(ms : 0 ≤ s ≤ 1) denote a Bessel(3) process and Brownian meander, respectively.
Let !t = exp(νSt ) with ν < 0 and Qν be the penalized Wiener measure. Then the

distribution ofX
1
2 ,t underQν |Ft andQνt |Ft converges weakly to (−Rs : 0 ≤ s ≤ 1)

and (−ms : 0 ≤ s ≤ 1), respectively, as t → ∞.

Notice how the scaling limits are similar (their path measures are mutually
absolutely continuous by the Imhof relation (12.48)) yet at the same time quite
different (the Bessel(3) process is a time-homogenous Markov process while the
Brownian meander is a time-inhomogeneous Markov process). Since Qν is just a
special case of Qν,h, a natural question is whether results similar to Theorem 12.4
can be proven for the two-parameter model from Theorem 12.3. This is the primary
goal of this paper.

12.1.1 Main Results

Our main results lie in computing the weak limits of Xα,t under Qν,h|Ft and
Q
ν,h
t |Ft as t → ∞ for all (ν, h) ∈ R

2 with appropriate α. This extends the
scaled penalization result of Theorem 12.4 to the whole parameter plane of the two-
parameter model from Theorem 12.3. In doing so, we reveal two additional “critical”
phases. These new phases correspond to the parameter rays L2 and L3 which occur
at the interfaces of the other regions, see Fig. 12.1. We call the two novel processes
corresponding to these critical phases the Brownian ascent and the up-down process.

• Loosely speaking, the Brownian ascent (as : 0 ≤ s ≤ 1) is a Brownian path
of duration 1 conditioned to end at its maximum, i.e. conditioned on the event
{X1 = S1}. It can be represented as a path transformation of the Brownian
meander, see Sect. 12.6. While the sobriquet ascent is introduced in the present
paper, this transformed meander process first appeared in [2] in the context of
Brownian first passage bridge. More recently, the same transformed meander has
appeared in [26], although no connection is made in that paper to [2] or Brownian
motion conditioned to end at its maximum.

• The up-down process is a random mixture of deterministic up-down paths that
we now describe. For 0 ≤  ≤ 1, let u = (u s : 0 ≤ s ≤ 1) be the continuous
path defined by

u s =  − |s − |, 0 ≤ s ≤ 1.

It is easy to see that u linearly interpolates between the points (0, 0), ( , ),
and (1, 2 − 1) when 0 <  < 1, while u0 or u1 is simply the path of
constant slope −1 or 1, respectively. To simplify notation, we write u instead
of u1. The up-down process with slope h is defined as the process huU where
U is a Uniform[0, 1] random variable. Roughly speaking, the up-down process
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of slope h starts at 0 and moves with slope h until a random Uniform[0, 1] time
U then it moves with slope −h for the remaining time 1 − U . In our results the
initial slope is always positive, hence the name up-down.

Theorem 12.5 LetW = (Ws : 0 ≤ s ≤ 1) and R = (Rs : 0 ≤ s ≤ 1) be Brownian
motion and Bessel(3) processes, each starting at 0. Let a be a Brownian ascent, m
be a Brownian meander, and e be a normalized Brownian excursion. Let uU be the
up-down process with U a Uniform[0, 1] random variable. Then the weak limits of
Xα,t as t → ∞ are as follows:

Region α Limit underQν,h|Ft Limit underQν,ht |Ft Proof

L1 1/2 −R −m Theorem 12.4

R1 −e Section 12.3.4

L2 W a Section 12.3.1

R2 1 (ν + h)u Section 12.3.2

L3 −huU Section 12.3.3

R3 hu Section 12.3.2

Remark 12.4 The L1 row is a restatement of Theorem 12.4. All remaining rows are
new.

Remark 12.5 Note the abrupt change in behavior when going from L3 to R3 in the
Qν,h|Ft column, namely going from slope ν + h = −h to slope h. However, in
the Qν,ht |Ft column, i.e. the scaled penalization, the change from R2 to L3 to R3 is
in some sense less abrupt because the up-down process switches from R2 behavior
(slope ν + h = −h) to R3 behavior (slope h) at a random Uniform[0, 1] time.

With the exception of the up-down process, the limits in the α = 1 regions
(ballistic scaling) are all deterministic. This suggests that we try subtracting the
deterministic drift from the canonical process and then scale this centered process.
This leads to a functional central limit theorem which is proved in Sect. 12.4.

Theorem 12.6 Let W = (Ws : 0 ≤ s ≤ 1) be Brownian motion starting at 0.
Then the weak limits of the centered and scaled canonical process as t → ∞ are as
follows:

Region Process Limit underQν,h|Ft Limit underQν,ht |Ft
R2

X•t−(ν+h)tu•√
t

W

L3 see Theorem 12.7

R3
X•t−htu•√

t

Here the • stands for a time parameter that ranges between 0 and 1. For example,
this notation allows us to write X•t − htu• rather than the unwieldy (Xst − htus :
0 ≤ s ≤ 1). The center-right entry in the above table is exceptional because in that
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case we don’t have a deterministic drift that can be subtracted in order to center
the process. In light of the L3 row of Theorem 12.5, we need to subtract a random
drift that switches from −h to h at an appropriate time. More specifically, define
 t = inf{s : Xs = St }. Then for each t > 0, we want to subtract from X•t a
continuous process starting at 0 that has drift −ht until time  t/t and has drift ht
thereafter. A candidate for this random centering process is 2S•t+htu• which is seen
to have the desired up-down drift. Indeed, this allows us to fill in the remaining entry
of the table with a functional central limit theorem which is proved in Sect. 12.5.

Theorem 12.7 Let W = (Ws : 0 ≤ s ≤ 1) be Brownian motion starting at 0. If
(ν, h) ∈ L3 then

X•t − (2S•t + htu•)√
t

underQν,ht |Ft converges weakly toW as t → ∞.

12.1.2 Notation

For the remainder of this paper, the non-negative real numbers are denoted by R+
and we useX for the C

(
R+;R) canonical process under Px or Phx . Abusing notation,

we also use X for the C
([0, 1];R) canonical process under the analogous measures

Px or Phx . We use a subscript when restricting to paths starting at a particular point,
say C0

([0, 1];R) for paths starting at 0. As explained below Theorem 12.6, we
often use the bullet point • to stand for a time parameter that ranges between
0 and 1. Expectation under Px and Phx is denoted by Ex and Ehx , respectively.
Expectation under Qν and Qνt is denoted by Qν[·] and Qνt [·], respectively. We
always have St and It denoting the running extrema of the canonical process, namely
St = sups≤t Xs and It = infs≤t Xs . When dealing with the canonical process,
we use  t and θt to refer to the first time at which the maximum and minimum,
respectively, is attained over the time interval [0, t]. Also, τx and γx refer to the first
and last hitting times of x, respectively. More specifically,  t = inf{s : Xs = St },
θt = inf{s : Xs = It }, τx = inf{t : Xt = x}, and γx = sup{t : Xt = x}. For the
Bessel(3) process we use R. A Brownian path of duration 1 starting at 0 is written as
W . We use Fraktur letters for the various time-inhomogeneous processes that appear
in this paper: Brownian ascent a, standard Brownian bridge b, pseudo-Brownian
bridge b̃, normalized Brownian excursion e, Brownian meander m and co-meander
m̃, up-down process uU , and also for the deterministic path with slope 1 which
we write as u. The path transformations φ and �δ are described in Definition 12.2
and Definition 12.3, respectively. We use ‖F‖ to denote the supremum norm of a
bounded path functional F : C([0, 1];R)→ R.
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12.1.3 Organization of Paper

In Sect. 12.2, we introduce a duality relation between regions of the parameter plane
and use it to compute the partition function asymptotics. Section 12.3 is devoted
to the proof of Theorem 12.5. In Sect. 12.4, we describe a modification of path
functionals that allows us to decouple them from an otherwise dependent factor.
This is used to prove Theorem 12.6 in the remainder of that section. Section 12.5
contains the proof of Theorem 12.7. In Sect. 12.6, we provide several constructions
of the Brownian ascent and give a connection to some recent literature. In Sect. 12.7,
we comment on work in preparation and suggest some directions for future research.
We gather various known results used throughout the paper and include them along
with references in the Appendices.

12.2 Duality and Partition Function Asymptotics

The normalization constant E0[!t ] appearing in the Gibbs measure (12.1) is known
as the partition function. The first step in proving a scaled penalization result is
to obtain an asymptotic for the partition function as t → ∞. Indeed, differing
asymptotics may indicate different phases and the asymptotic often suggests the
right scaling exponent, e.g. diffusive scaling for power law behavior and ballistic
scaling for exponential behavior. In this section we compute partition function
asymptotics for our two-parameter model in each of the parameter phases. While
some of these asymptotics appeared in [29], we derive them all for the sake of
completeness. Most of the cases boil down to an application of Watson’s lemma or
Laplace’s method. Refer to Appendix 5 for precise statements of these tools from
asymptotic analysis.

To reduce the number of computations required, we make use of a duality
relation between the regions R2 and R3 and critical lines L1 and L2. Recall that
P0 is invariant under the path transformation X• �→ X1−• −X1, for example, see
Lemma 2.9.4 in [13]. So the joint distribution of X1 and S1 under P0 coincides with
that of −X1 and sups≤1(X1−s −X1) = S1 −X1 under P0. Consequently,

E0
[
exp (νSt + hXt)

] = E0

[
exp
(√
t(νS1 + hX1)

)]

= E0

[
exp
(√
t
(
νS1 − (ν + h)X1

))]

= E0
[
exp (νSt − (ν + h)Xt )

]

follows from Brownian scaling. An easy calculation while referring to Fig. 12.1
shows that if (ν, h) ∈ L1, then

(
ν,−(ν + h)) ∈ L2 and vice versa. The same

holds for R2 and R3. In fact, the map (ν, h) �→ (
ν,−(ν + h)) is an involution from

R2 onto R3 and from L1 onto L2. Hence the partition function asymptotics for L2
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and R2 can be obtained from those of L1 and R3 by substituting
(
ν,−(ν + h)) for

(ν, h).
We can push this idea further by applying it to functionals of the entire path. First

we need some new definitions.

Definition 12.2 For X• ∈ C
([0, 1];R), define φ : C([0, 1];R)→ C

([0, 1];R) by

φXs = X1−s − (X1 −X0), 0 ≤ s ≤ 1.

For F : C([0, 1];R)→ R, let Fφ denote F ◦ φ.

This path transformation reverses time and shifts the resulting path so that it
starts at the same place. It is clear that φ is a linear transformation from C

([0, 1];R)
onto C

([0, 1];R) that is continuous and an involution. Additionally, Fφ is bounded
continuous whenever F is and ‖Fφ‖ = ‖F‖. As mentioned above, P0 is invariant
under φ so we have E0[Fφ(X•)] = E0[F(X•)]. This duality will be exploited again
in Sects. 12.3.1, 12.3.2, and 12.4.

Proposition 12.1 The partition function has the following asymptotics as t → ∞:

E0[exp(νSt+hXt )] ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
ν

√
2
πt

: L1 = {(ν, h) : ν < 0, h = 0}

− ν
h2(ν+h)2

√
2
πt3

: R1 = {(ν, h) : h < −ν, h > 0}

− 1
ν

√
2
πt

: L2 = {(ν, h) : h = −ν, ν < 0}

2 ν+h
ν+2h exp

(
1
2 (ν + h)2t

)
: R2 = {(ν, h) : h > −ν, h > − 1

2ν}

2h2t exp
(

1
2h

2t
)

: L3 = {(ν, h) : h = − 1
2ν, ν > 0}

2h
ν+2h exp

(
1
2h

2t
)

: R3 = {(ν, h) : h < 0, h < − 1
2ν}.

Proof We divide the proof into four cases.

L1 and L2 case
The L1 asymptotic follows from Watson’s lemma being applied to

E0

[
exp
(
ν
√
tS1

)]
=
∫ ∞

0
exp
(
ν
√
ty
) 2√

2π
exp

(
−y

2

2

)
dy

where ν < 0. For (ν, h) ∈ L2, we appeal to duality and substitute
(
ν,−(ν + h)) =

(ν, 0) for (ν, h) in the L1 asymptotic.
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R2 and R3 case
Let (ν, h) ∈ R3. Using a Girsanov change of measure, we can write

E0
[
exp (νSt + hXt)

] = Eh0
[
exp (νSt )

]
exp

(
1

2
h2t

)
.

In R3 we have h < 0 so S∞ is almost surely finite under Ph0 . In fact, S∞ has the
Exponential(−2h) distribution under Ph0 . Since ν < −2h, dominated convergence
implies

lim
t→∞E

h
0

[
exp (νSt )

] = Eh0
[
exp (νS∞)

] = 2h

ν + 2h
.

This gives the R3 asymptotic. Once again, we can use duality to get the R2
asymptotic by substituting

(
ν,−(ν + h)) for (ν, h) in the R3 asymptotic.

L3 case
In L3 we have (ν, h) = (−2h, h), hence Pitman’s 2S −X theorem implies

E0

[
exp
(√
t(νS1 + hX1)

)]
= E0

[
exp
(√
t(−2hS1 + hX1)

)]

= E0

[
exp
(
−h√tR1

)]

where (Rt : t ≥ 0) is a Bessel(3) process. So using the Bessel(3) transition
density (12.51), we can write the L3 partition function as

∫ ∞

0
exp
(
−h√ty

)√ 2

π
y2 exp

(
−y

2

2

)
dy. (12.3)

After the change of variables y �→ y
√
t , we arrive at

√
2

π
t

3
2

∫ ∞

0
y2 exp

(
−
(
hy + y2

2

)
t

)
dy

whose asymptotic can be ascertained by a direct application of Laplace’s method.

R1 case
Let (Rt : t ≥ 0) denote a Bessel(3) process starting at 0 and U an independent
Uniform[0, 1] random variable. For t fixed, the identity in law

(St , St −Xt) L= (URt , (1 − U)Rt)
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follows from Pitman’s 2S − X theorem, see Item C in Chapter 1 of [28]. When
ν + 2h �= 0, this identity leads to

E0
[
exp (νSt + hXt)

] = E0
[
exp
(
(ν + 2h)RtU − hRt

)]

= E0

[
exp
(
−h√tR1

) ∫ 1

0
exp
(
(ν + 2h)

√
tR1u

)
du

]

= 1

(ν + 2h)
√
t

(
E0

[
exp
(
(ν + h)√tR1

)

R1

]

−E0

[
exp
(−h√tR1

)
R1

])
= 1

(ν + 2h)

√
2

πt

∫ ∞

0
exp
(
(ν + h)√ty

)
y exp

(
−y

2

2

)
dy

− 1

(ν + 2h)

√
2

πt

∫ ∞

0
exp
(
−h√ty

)
y exp

(
−y

2

2

)
dy.

Since h > 0 and ν + h < 0, Watson’s lemma can be applied to both integrals and
their asymptotics combined. If ν + 2h = 0 instead, we can use the reasoning from
the L3 case to show that the partition function is equal to (12.3). However, unlike
that case, now we have h > 0 so Watson’s lemma can be applied to yield the desired
asymptotic.

��

12.3 Proof of Theorem 12.5

We divide the proof into four cases.

12.3.1 L2 Case

In this section we prove the L2 row in the table from Theorem 12.5. That the limit
underQν,h|Ft isW follows trivially from Brownian scaling and Theorem 12.3 since
Qν,h = P ν+h0 = P0 when (ν, h) ∈ L2. To prove the limit under Qν,ht |Ft is a, we
show that

lim
t→∞Q

ν,h
t

[
F

(
X•t√
t

)]
= E [F(m1 −m1−•)] (12.4)
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for any bounded continuous F : C
([0, 1];R) → R and (ν, h) ∈ L2. Then the

desired result follows from Proposition 12.2.

Proof (Proof of (12.4)) The idea behind the proof is to use duality to transfer the
result of Theorem 12.4 from the L1 phase to the L2 phase. Recall that in L2 we have
ν < 0 and ν + h = 0. Then the invariance property of φ and Theorem 12.4 imply
that

lim
t→∞Q

ν,h
t

[
F

(
X•t√
t

)]
= lim
t→∞

E0

[
Fφ

(
X•t√
t

)
exp (νSt − (ν + h)Xt )

]

E0
[
exp (νSt − (ν + h)Xt )

]

= lim
t→∞

E0

[
Fφ

(
X•t√
t

)
exp (νSt )

]

E0
[
exp (νSt )

]

= E [Fφ(−m•)
]

= E [F(m1 −m1−•)] .

��

12.3.2 R2 and R3 Case

In this section we prove the R2 and R3 rows in the table from Theorem 12.5. This is
done by showing that the limits

lim
t→∞Q

ν,h

[
F

(
X•t
t

)]
=
⎧⎨
⎩
F
(
(ν + h)u•

) : (ν, h) ∈ R2

F
(
hu•
) : (ν, h) ∈ R3

(12.5)

and

lim
t→∞Q

ν,h
t

[
F

(
X•t
t

)]
=
⎧⎨
⎩
F
(
(ν + h)u•

) : (ν, h) ∈ R2

F
(
hu•
) : (ν, h) ∈ R3

(12.6)

hold for any bounded continuous F : C([0, 1];R) → R. First we need a lemma
which asserts that ballistic scaling of Brownian motion with drift h results in a
deterministic path of slope h.

Lemma 12.1 Let h ∈ R. Then X•t /t converges to hu• in probability under Ph0 as
t → ∞.
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Proof For any ε > 0 we have

lim
t→∞P

h
0

(∥∥∥∥
X•t
t

− hu•
∥∥∥∥ > ε

)
= lim
t→∞P0

(∥∥∥∥
X•t + htu•

t
− hu•

∥∥∥∥ > ε
)

= lim
t→∞P0

(
‖X•‖ > ε

√
t
)

= 0

since ‖X•‖ is almost surely finite under P0. ��
Proof (Proof of (12.5)) When (ν, h) ∈ R2, we can use Theorem 12.3, Lemma 12.1,
and bounded convergence to get

lim
t→∞Q

ν,h

[
F

(
X•t
t

)]
= lim
t→∞E

ν+h
0

[
F

(
X•t
t

)]

= F ((ν + h)u•) .

When (ν, h) ∈ R3, we can use Theorem 12.3, Lemma 12.1, and dominated
convergence to get

lim
t→∞Q

ν,h

[
F

(
X•t
t

)]
= ν + 2h

2h
lim
t→∞E

h
0

[
F

(
X•t
t

)
exp(νS∞)

]

= ν + 2h

2h
F (hu•) Eh0

[
exp(νS∞)

]

= F (hu•) .

Here we used the fact that S∞ has the Exponential(−2h) distribution under Ph0 . ��
Proof (Proof of (12.6)) We first show that the limit holds in the R3 case and then
use duality to transfer this result to the R2 case. Accordingly, suppose (ν, h) ∈ R3.
By a Girsanov change of measure, we can write

E0

[
F

(
X•t
t

)
exp (νSt + hXt)

]
= exp

(
1

2
h2t

)
Eh0

[
F

(
X•t
t

)
exp (νSt )

]
.

Dividing this by the partition function asymptotic from Proposition 12.1 and using
Lemma 12.1 with dominated convergence gives us

lim
t→∞Q

ν,h
t

[
F

(
X•t
t

)]
= ν + 2h

2h
lim
t→∞E

h
0

[
F

(
X•t
t

)
exp (νSt )

]

= ν + 2h

2h
F
(
hu•
)
Eh0
[
exp(νS∞)

]

= F (hu•
)
.
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Now suppose (ν, h) ∈ R2. Then
(
ν,−(ν + h)) ∈ R3. Hence the invariance

property of φ and the above result imply

lim
t→∞Q

ν,h
t

[
F

(
X•t
t

)]
= lim
t→∞Q

ν,−(ν+h)
t

[
Fφ

(
X•t
t

)]

= Fφ
(− (ν + h)u•

)

= F ((ν + h)u•
)
.

��

12.3.3 L3 Case

In this section we prove the L3 row in the table from Theorem 12.5. The proof that
the limit underQν,h|Ft is (ν + h)u is identical to that of the R2 case of (12.5) since
Qν,h = P ν+h0 when (ν, h) ∈ L3 by Theorem 12.3. To prove the limit underQν,ht |Ft
is −huU , we show that

lim
t→∞Q

ν,h
t

[
F

(
X•t
t

)]
= E

[
F
(
−huU•

)]
(12.7)

for any bounded Lipschitz continuous F : C([0, 1];R)→ R and (ν, h) ∈ L3.
First we need some preliminary results on Bessel(3) bridges and related path

decompositions. Let u > 0 and ρ, r ≥ 0 with ρ = 0 or r = 0. Then the Bessel(3)
bridge of length u from ρ to r can be represented by

√(
ρ + (r − ρ) s

u
+ b

(1)
s

)2 +
(
b
(2)
s

)2 +
(
b
(3)
s

)2
, 0 ≤ s ≤ u (12.8)

where b(i), i = 1, 2, 3 are independent Brownian bridges of length u from 0 to 0,
see [18]. Note that this representation does not hold when both ρ > 0 and r > 0 as
discussed in [36].

If x, y > 0 and 0 < u < 1, then the path (Xs : 0 ≤ s ≤ 1) under Px conditionally
given {(I1, X1, θ1) = (0, y, u)} can be decomposed into a concatenation of two
Bessel(3) bridges, both of which have 0 as either a starting or ending point. More
precisely, the path fragments

(Xs : 0 ≤ s ≤ u) and (Xs : u ≤ s ≤ 1)

are independent and distributed respectively like

(Rs : 0 ≤ s ≤ u) given {(R0, Ru) = (x, 0)}
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and

(Rs−u : u ≤ s ≤ 1) given {(R0, R1−u) = (0, y)}.

This follows from Theorem 2.1.(ii) in [19] and the discussion in the Introduction of
[2].

Lemma 12.2 Let x, y > 0 and 0 < u < 1. Consider the path ωux,y in C0
([0, 1];R)

that linearly interpolates between the points (0, 0), (u, x) and (1, x−y). Specifically,
ωux,y is given by

ωux,y(s) =
⎧⎨
⎩
x s
u

: 0 ≤ s ≤ u

x − y s−u1−u : u < s ≤ 1.

Suppose f (t) > 0 for t > 0 and lim
t→∞ f (t) = ∞. If F : C

([0, 1];R) → R is

bounded Lipschitz continuous, then

lim
t→∞E0

[
F

(
X•
f (t)

)∣∣∣∣S1 = xf (t), S1 −X1 = yf (t), 1 = u
]
= F

(
ωux,y(•)

)

and the convergence is uniform on {(x, y, u) ∈ R
3 : x > 0, y > 0, 0 < u < 1}.

Proof Using the translation and reflection symmetries of Wiener measure, we can
write

E0

[
F

(
X•
f (t)

)∣∣∣∣S1 = xf (t), S1 −X1 = yf (t), 1 = u
]

= Exf (t)
[
F

(
x − X•

f (t)

)∣∣∣∣I1 = 0, X1 = yf (t), θ1 = u
]
.

Together with (12.8) and the path decomposition noted above, this implies

E0

[
F

(
X•
f (t)

)∣∣∣∣S1 = xf (t), S1 −X1 = yf (t), 1 = u
]
= E

[
F

(
x − Y (t)•

f (t)

)]

(12.9)

where Y (t) is defined by

Y (t)s :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√(
xf (t) u−s

u
+ b

(1)
s

)2 +
(
b
(2)
s

)2 +
(
b
(3)
s

)2 : 0 ≤ s ≤ u
√(
yf (t) s−u1−u + b

(4)
s−u
)2 +

(
b
(5)
s−u
)2 +

(
b
(6)
s−u
)2 : u < s ≤ 1.
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Here b(i), 1 ≤ i ≤ 6 are independent Brownian bridges from 0 to 0 of length u or
1 − u as applicable. Let ‖ · ‖2 denote the Euclidean norm on R

3. Then we have

∣∣∣∣∣ω
u
x,y(s)−

(
x − Y

(t)
s

f (t)

)∣∣∣∣∣

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∣∣∣∣ 1
f (t)

∥∥∥
(
xf (t) u−s

u
+ b

(1)
s , b

(2)
s , b

(3)
s

)∥∥∥
2
−
∥∥∥
(
x u−s
u
, 0, 0

)∥∥∥
2

∣∣∣∣ : 0 ≤ s ≤ u

∣∣∣∣ 1
f (t)

∥∥∥
(
yf (t) s−u1−u + b

(4)
s−u, b

(5)
s−u, b

(6)
s−u
)∥∥∥

2
−
∥∥∥
(
y s−u1−u , 0, 0

)∥∥∥
2

∣∣∣∣ : u < s ≤ 1.

Now notice that the reverse triangle inequality implies

∣∣∣∣∣ω
u
x,y(s)−

(
x − Y

(t)
s

f (t)

)∣∣∣∣∣ ≤

⎧⎪⎪⎨
⎪⎪⎩

1
f (t)

∥∥∥
(
b
(1)
s , b

(2)
s , b

(3)
s

)∥∥∥
2

: 0 ≤ s ≤ u

1
f (t)

∥∥∥
(
b
(4)
s−u, b

(5)
s−u, b

(6)
s−u
)∥∥∥

2
: u < s ≤ 1.

(12.10)

Suppose F has Lipschitz constantK . Then it follows from (12.10) and subadditivity
of the square root function that

∣∣∣∣F
(
ωux,y(•)

)
− E

[
F

(
x − Y (t)•

f (t)

)] ∣∣∣∣ ≤
K

f (t)

6∑
i=1

E

[ ∥∥∥b(i)•
∥∥∥
]
. (12.11)

This bound is uniform in x and y but has an implicit dependence on u. We can easily
remedy this situation by noting that Brownian scaling implies that the expected
value of the uniform norm of a Brownian bridge from 0 to 0 of length u is an
increasing function of u. Noting that u ≤ 1, we can write

6∑
i=1

E

[ ∥∥∥b(i)•
∥∥∥
]
≤ 6E

[
‖b•‖

]

where b is a standard Brownian bridge from 0 to 0 of length 1. This leads to a version
of (12.11) which is uniform on {(x, y, u) ∈ R

3 : x > 0, y > 0, 0 < u < 1}, namely

∣∣∣∣F
(
ωux,y(•)

)
− E

[
F

(
x − Y (t)•

f (t)

)] ∣∣∣∣ ≤
6K

f (t)
E
[
‖b•‖

]
.

Together with (12.9) this proves the lemma since f (t)→ ∞ as t → ∞. ��
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Proof (Proof of (12.7)) Recalling that ν = −2h on L3, Brownian scaling implies

E0

[
F

(
X•t
t

)
exp (νSt + hXt)

]
= E0

[
F

(
X•√
t

)
exp
(
−h√t(2S1 −X1)

)]
.

(12.12)

For 0 < u < 1, define

ft (x, y, u) :=

⎧⎪⎨
⎪⎩
E0

[
F
(
X•√
t

)∣∣∣S1 = x√t, S1 −X1 = y√t, 1 = u
]
: x, y > 0

0 : otherwise.

Using the tri-variate density (12.55), the right-hand side of (12.12) can be written as

∫ 1

0

∫ ∞

0

∫ ∞

0

xy ft

(
x√
t
,
y√
t
, u
)

π
√
u3(1 − u)3 exp

(
−h√t(x + y)− x2

2u
− y2

2(1 − u)
)
dxdydu.

Changing variables x �→ x
√
u− uh√t and y �→ y

√
1 − u− (1 − u)h√t gives

h2t

π
e

1
2h

2t

∫ 1

0

∫ ∞

h
√
(1−u)t

∫ ∞

h
√
ut

f̃t (x, y, u) gt (x, y, u) exp

(
−x

2 + y2

2

)
dxdydu

(12.13)

where we defined

f̃t (x, y, u) := ft
(
x
√
u√
t

− uh, y
√

1 − u√
t

− (1 − u)h, u
)

and

gt (x, y, u) :=
(
x − h√ut) (y − h√(1 − u)t)

h2t
√
u(1 − u) .

Now we divide (12.13) by the L3 partition function asymptotic from Proposi-
tion 12.1 which gives

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
f̃t (x, y, u) gt (x, y, u) 1At (x, y)

1

2π
exp

(
−x

2 + y2

2

)
dxdydu

(12.14)

where we defined

At :=
{
(x, y) : x > h√ut, y > h√(1 − u)t

}
.
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At this stage we want to find the limit of (12.14) as t → ∞ by appealing to
Lemma 12.5 with μ being the probability measure on R×R×[0, 1] having density

1
2π exp

(
− x2+y2

2

)
. In this direction, note that f̃t is bounded and the fact that the

convergence in Lemma 12.2 is uniform and (x, y, u) �→ F
(
ωux,y(•)

)
is continuous

on {(x, y, u) ∈ R
3 : x > 0, y > 0, 0 < u < 1} implies that

lim
t→∞ f̃t (x, y, u) = F

(
ωu−hu,−h(1−u)(•)

)

= F (−huu•
)

μ-almost surely. Additionally, gt1At is non-negative and converges μ-almost surely
to 1 as t → ∞. Lastly, by reversing the steps that led from (12.12) to (12.14), we
see that

lim
t→∞

∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
gt (x, y, u) 1At (x, y)

1

2π
exp

(
−x

2 + y2

2

)
dxdydu

= lim
t→∞

E0
[
exp (νSt + hXt)

]

2h2t exp
(

1
2h

2t
)

= 1.

Hence by Lemma 12.5 we can conclude that

lim
t→∞Q

ν,h
t

[
F

(
X•t
t

)]
=
∫ 1

0

∫ ∞

−∞

∫ ∞

−∞
F
(−huu•

) 1

2π
exp

(
−x

2 + y2

2

)
dxdydu

=
∫ 1

0
F
(−huu•

)
du

= E
[
F
(
−huU•

)]

as desired. ��

12.3.4 R1 Case

In this section we prove the R1 row in the table from Theorem 12.5. That the limit
under Qν,h|Ft is −R follows from Theorem 12.3 and Theorem 12.4 since Qν,h =
Qν+h with ν + h < 0 when (ν, h) ∈ R1. To prove the limit underQν,ht |Ft is −e, we
show that

lim
t→∞Q

ν,h
t

[
F

(
X•t√
t

)]
= E [F(−e•)] (12.15)
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for any bounded continuous F : C([0, 1];R)→ R and (ν, h) ∈ R1.

Proof (Proof of (12.15)) From Brownian scaling, we have

E0

[
F

(
X•t√
t

)
exp (νSt + hXt)

]
= E0

[
F (X•) exp

(
ν
√
tS1 + h√tX1

)]
.

(12.16)

Since ν < 0, we can write

exp
(
ν
√
tS1

)
= −ν√t

∫ ∞

0
eν

√
tx1S1<xdx.

Hence the right-hand side of (12.16) can be written as

−ν√t
∫ ∞

0
eν

√
txE0

[
F (X•) exp

(
h
√
tX1

)
; S1 < x

]
dx

= −ν√t
∫ ∞

0
eν

√
txE0

[
F (−X•) exp

(
−h√tX1

)
; I1 > −x

]
dx

= −ν√t
∫ ∞

0
e(ν+h)

√
txEx

[
F (x −X•) exp

(
−h√tX1

)
; I1 > 0

]
dx

(12.17)

where the two equalities follow from the reflection and translation symmetries of
Wiener measure. The h-transform representation of the Bessel(3) path measure from
Proposition 12.8 can be used to rewrite the expectation appearing in (12.17) in terms
of a Bessel(3) process (Rs : 0 ≤ s ≤ 1). This leads to

−ν√t
∫ ∞

0
e(ν+h)

√
txEx

[
F (x − R•) exp

(
−h√tR1

) x
R1

]
dx.

Next we disintegrate the Bessel(3) path measure into a mixture of Bessel(3) bridge
measures by conditioning on the endpoint of the path. Refer to Proposition 1 in [11]
for a precise statement of a more general result. See also Theorem 1 in [5] where
weak continuity of the bridge measures with respect to their starting and ending
points is established. This results in

−ν√t
∫ ∞

0

∫ ∞

0
e(ν+h)

√
tx−h√ty x

y
Ex [F (x − R•)|R1 = y]Px(R1 ∈ dy)dx.

(12.18)

Using the Bessel(3) transition density formula (12.52), we can now write (12.18) as

−ν
√

2t

π

∫ ∞

0

∫ ∞

0
e(ν+h)

√
tx−h√tyf (x, y) sinh(xy)e−

x2+y2

2 dydx
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where we defined

f (x, y) := Ex [F (x − R•)|R1 = y] .

Applying the change of variables x �→ x/
√
t and y �→ y/

√
t gives

− ν

h2(ν + h)2
√

2

πt

∫ ∞

0

∫ ∞

0
g(x, y)f

(
x√
t
,
y√
t

)
1

xy
sinh
(xy
t

)
e−

x2+y2

2t dydx

(12.19)

where we defined

g(x, y) := h2(ν + h)2xy exp
(
(ν + h)x − hy).

After dividing (12.19) by theR1 partition function asymptotic from Proposition 12.1,
we see that showing

lim
t→∞

∫ ∞

0

∫ ∞

0
g(x, y)f

(
x√
t
,
y√
t

)
t

xy
sinh
(xy
t

)
e−

x2+y2

2t dydx = E [F(−e•)]

(12.20)

will prove (12.15). Notice that for all x, y > 0, the limit

lim
t→∞ f

(
x√
t
,
y√
t

)
t

xy
sinh
(xy
t

)
e−

x2+y2

2t = E [F(−e•)]

follows from the weak continuity of the bridge measures with respect to their
starting and ending points which was noted above and the fact that a normalized
Brownian excursion is simply a Bessel(3) bridge from 0 to 0 of unit length.
Additionally, the convexity of sinh on [0, 1] along with the inequality 2xy ≤ x2+y2

leads to the bound
∣∣∣∣f
(
x√
t
,
y√
t

)
t

xy
sinh
(xy
t

)
e−

x2+y2

2t

∣∣∣∣ ≤ ‖F‖ sinh(1)

which holds for all x, y, t > 0. Noting that g is a probability density, (12.20) now
follows from bounded convergence. ��
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12.4 Proof of Theorem 12.6

In this section we prove Theorem 12.6 by showing that the following limits hold for
any bounded continuous F : C([0, 1];R)→ R:

if (ν, h) ∈ R2 ∪ L3, then lim
t→∞Q

ν,h

[
F

(
X•t − (ν + h)tu•√

t

)]
= E0 [F(X•)] ,

(12.21)

if (ν, h) ∈ R3, then lim
t→∞Q

ν,h

[
F

(
X•t − htu•√

t

)]
= E0 [F(X•)] , (12.22)

if (ν, h) ∈ R2, then lim
t→∞Q

ν,h
t

[
F

(
X•t − (ν + h)tu•√

t

)]

if (ν, h) ∈ R3, then lim
t→∞Q

ν,h
t

[
F

(
X•t − htu•√

t

)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= E0 [F(X•)] .

(12.23)

Proof (Proof of (12.21)) If (ν, h) ∈ R2 ∪ L3, we can use Theorem 12.3, a path
transformation that adds drift ν + h, and Brownian scaling to write for all t > 0

Qν,h
[
F

(
X•t − (ν + h)tu•√

t

)]
= Eν+h0

[
F

(
X•t − (ν + h)tu•√

t

)]

= E0

[
F

(
X•t√
t

)]

= E0 [F (X•)]

from which (12.21) follows. ��
An idea that will be helpful for the proof of (12.22) and also in the next section is

to modify the path functional F in such a way so that it “ignores” the beginning of
the path. After proving a limit theorem for the modified path functional, we lift this
result to the original functional by controlling the error arising from the modification.
Here we state some definitions and notation that make this procedure precise.

Definition 12.3 For 0 < δ ≤ 1 and X• ∈ C
([0, 1];R), define �δ : C

([0, 1];R)→
C0
([0, 1];R) by

�δXs =
⎧⎨
⎩

Xδ
δ
s : 0 ≤ s < δ

Xs : δ ≤ s ≤ 1.
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For F : C([0, 1];R)→ R, let Fδ denote F ◦�δ and define�Fδ : C([0, 1];R)→ R+
by

�Fδ (X•) = |Fδ(X•)− F(X•)|.

So�δ replaces the initial [0, δ] segment of the pathX• with a straight line which
interpolates between the points (0, 0) and (δ,Xδ)while�Fδ is the absolute error that
results from using Fδ instead of F . The Markov property implies that under P0, the
random variable Fδ(X•) is independent of the initial [0, δ] part of the path X• after
conditioning on Xδ . Note that if F is bounded continuous then so are Fδ and �Fδ
with ‖Fδ‖ ≤ ‖F‖ and ‖�Fδ ‖ ≤ 2‖F‖. Also notice that lim

δ↘0
�Fδ (X•) = 0 for any

X• ∈ C0
([0, 1];R) whenever F is continuous.

Proof (Proof of (12.22)) We divide the proof into two stages, the first for Fδ and
the second for F .

Stage 1: convergence for Fδ

Suppose (ν, h) ∈ R3 and fix 0 < δ ≤ 1. In this case Theorem 12.3 implies

Qν,h
[
Fδ

(
X•t − htu•√

t

)]
= ν + 2h

2h
Eh0

[
Fδ

(
X•t − htu•√

t

)
eνS∞

]
. (12.24)

We can rewrite the expectation appearing on the right-hand side of (12.24) as

Eh0

[
Fδ

(
X•t − htu•√

t

)
eνSδt ; ∞ ≤ δt

]

︸ ︷︷ ︸
At

+Eh0
[
Fδ

(
X•t − htu•√

t

)
eνS∞; ∞ > δt

]

︸ ︷︷ ︸
Bt

.

Since (ν, h) ∈ R3, we know that exp(νS∞) is integrable and  ∞ <∞ almost
surely under Ph0 . Hence by dominated convergence we have Bt = o(1) as t → ∞
and consequently

At = Eh0
[
Fδ

(
X•t − htu•√

t

)
eνS∞

]
+ o(1) as t → ∞.

Similarly, we can show that

At = Eh0
[
Fδ

(
X•t − htu•√

t

)
eνSδt
]
+ o(1) as t → ∞.

Together, these imply

Eh0

[
Fδ

(
X•t − htu•√

t

)
eνS∞

]
= Eh0

[
Fδ

(
X•t − htu•√

t

)
eνSδt
]
+ o(1) as t → ∞.

(12.25)



12 Scaled Penalization of Brownian Motion with Drift and the Brownian Ascent 279

Applying a path transformation that adds drift h on the right-hand side of (12.25)
and using Brownian scaling results in

Eh0

[
Fδ

(
X•t − htu•√

t

)
exp(νS∞)

]

= E0

[
Fδ (X•) exp

(
ν
√
t sup

0≤s≤δ

{
Xs + h

√
ts
})]

+ o(1) as t → ∞.

Combining this with (12.24), we have established that

Qν,h
[
Fδ

(
X•t − htu•√

t

)]

= ν + 2h

2h
E0

[
Fδ (X•) exp

(
ν
√
t sup

0≤s≤δ

{
Xs + h

√
ts
})]

+ o(1) as t → ∞.
(12.26)

Now notice that Fδ (X•) and sup
0≤s≤δ

{
Xs + h

√
ts
}

are independent after conditioning

on Xδ . So with pδ(·, ·) denoting the transition density of Brownian motion at time
δ, we see that the expectation appearing on the right-hand side of (12.26) is equal to

∫ ∞

−∞
E0 [Fδ(X•)|Xδ = x]E0

[
exp

(
ν
√
t sup

0≤s≤δ

{
Xs + h

√
ts
})∣∣∣∣∣Xδ = x

]
pδ(0, x)dx.

(12.27)

From the particular pathwise construction of Brownian bridge given in (5.6.29) of
[13], it follows that the distribution of Brownian bridge plus a constant drift is the
same as Brownian bridge with an appropriately shifted endpoint. Hence the second
expectation appearing inside the integral in (12.27) is seen to equal

E0

[
exp

(
ν
√
t sup

0≤s≤δ
Xs

)∣∣∣∣∣Xδ = x + h√tδ
]
.

By using the distribution of the maximum of a Brownian bridge from (12.56), this
expectation has the integral representation

∫ ∞

0

4y − 2x − 2h
√
tδ

δ
exp

(
ν
√
ty − 2y(y − x − h√tδ)

δ

)
dy
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when t is large enough such that x + h√tδ ≤ 0. After some manipulations and
recalling that ν + 2h < 0, we can use Watson’s lemma to compute the limit of this
integral which holds for all x ∈ R:

lim
t→∞

∫ ∞

0

(
4y − 2x

δ
− 2h

√
t

)
exp

(
2yx − 2y2

δ

)
e(ν+2h)

√
tydy = 2h

ν + 2h
.

Now we want to invoke Lemma 12.5 to find the limit of (12.27) hence we need to
verify that

lim
t→∞

∫ ∞

−∞
E0

[
exp

(
ν
√
t sup

0≤s≤δ

{
Xs + h

√
ts
})∣∣∣∣∣Xδ = x

]
pδ(0, x)dx = 2h

ν + 2h
.

(12.28)

By working backwards starting from the left-hand side of (12.28) and reversing the
conditioning, scaling, and path transformation, this can be reduced to checking

lim
t→∞E

h
0

[
exp (νSδt )

] = 2h

ν + 2h

which follows from dominated convergence since (ν, h) ∈ R3 and S∞ has
the Exponential(−2h) distribution under Ph0 . Now we can evaluate the limit
of (12.27) as

lim
t→∞

∫ ∞

−∞
E0 [Fδ(X•)|Xδ = x]E0

[
exp

(
ν
√
t sup

0≤s≤δ

{
Xs + h

√
ts
})∣∣∣∣∣Xδ = x

]

pδ(0, x)dx = 2h

ν + 2h

∫ ∞

−∞
E0 [Fδ(X•)|Xδ = x]pδ(0, x)dx = 2h

ν + 2h
E0 [Fδ(X•)] .

Combining this with (12.26) leads to

lim
t→∞Q

ν,h

[
Fδ

(
X•t − htu•√

t

)]
= E0 [Fδ(X•)]

as desired.

Stage 2: convergence for F

Recall the notation �Fδ from Definition 12.3. From Stage 1, we know that

lim
t→∞

∣∣∣∣Qν,h
[
Fδ

(
X•t − htu•√

t

)]
− E0 [Fδ(X•)]

∣∣∣∣ = 0.
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Hence the triangle inequality implies that

lim sup
t→∞

∣∣∣∣Qν,h
[
F

(
X•t − htu•√

t

)]
− E0 [F(X•)]

∣∣∣∣

≤ lim sup
t→∞

Qν,h
[
�Fδ

(
X•t − htu•√

t

)]
+ E0

[
�Fδ (X•)

]
.

Since F is bounded continuous, we know that the last term on the right-hand side
of this inequality vanishes as δ ↘ 0 by bounded convergence. This leads to

lim sup
t→∞

∣∣∣∣Qν,h
[
F

(
X•t − htu•√

t

)]
− E0 [F(X•)]

∣∣∣∣

≤ lim
δ↘0

lim sup
t→∞

Qν,h
[
�Fδ

(
X•t − htu•√

t

)]
.

(12.29)

Using Theorem 12.3, we can express the right-hand side of (12.29) as

ν + 2h

2h
lim
δ↘0

lim sup
t→∞

Eh0

[
�Fδ

(
X•t − htu•√

t

)
exp(νS∞)

]
. (12.30)

Since h < − 1
2ν when (ν, h) ∈ R3, we can find p > 1 such that −2h > pν. Let q be

the Hölder conjugate of p. Using Hölder’s inequality, we can upper bound (12.30)
by

ν + 2h

2h
lim
δ↘0

lim sup
t→∞

Eh0

[(
�Fδ

(
X•t − htu•√

t

))q] 1
q

Eh0 [exp(pνS∞)]
1
p

= ν + 2h

2h
lim
δ↘0

E0

[(
�Fδ (X•)

)q] 1
q

(
2h

pv + 2h

) 1
p

= 0.

Here we used a path transformation that adds drift h along with Brownian scaling
to eliminate t from the first expectation and used the fact that S∞ has the
Exponential(−2h) distribution under Ph0 to compute the second expectation. Now
it follows that

lim sup
t→∞

∣∣∣∣Qν,h
[
F

(
X•t − htu•√

t

)]
− E0 [F(X•)]

∣∣∣∣ = 0

which proves (12.22).
��
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Proof (Proof of (12.23)) We first show that the limit holds in the R3 case and then
use duality to transfer this result to the R2 case. Accordingly, suppose (ν, h) ∈ R3.
Using a Girsanov change of measure, we can write

E0

[
F

(
X•t − htu•√

t

)
eνSt+hXt

]
= e 1

2h
2tEh0

[
F

(
X•t − htu•√

t

)
eνSt
]
. (12.31)

By repeating the same argument that led to (12.25) while using F instead of Fδ , we
can establish that

Eh0

[
F

(
X•t − htu•√

t

)
eνSt
]
= Eh0

[
F

(
X•t − htu•√

t

)
eνS∞

]
+ o(1) as t → ∞.

Combining this with (12.31) and using the partition function asymptotic from
Proposition 12.1 results in

lim
t→∞Q

ν,h
t

[
F

(
X•t − htu•√

t

)]
= lim
t→∞

ν + 2h

2h
Eh0

[
F

(
X•t − htu•√

t

)
eνS∞

]

= lim
t→∞Q

ν,h

[
F

(
X•t − htu•√

t

)]

= E0[F(X•)]

where the last two equalities follow from Theorem 12.3 and (12.22), respectively.
Now suppose (ν, h) ∈ R2. Then

(
ν,−(ν + h)) ∈ R3. Hence the invariance

property of φ and the above result imply

lim
t→∞Q

ν,h
t

[
F

(
X•t − htu•√

t

)]
= lim
t→∞Q

ν,−(ν+h)
t

[
Fφ

(
X•t − htu•√

t

)]

= E0[Fφ(X•)]
= E0[F(X•)].

��

12.5 Proof of Theorem 12.7

In this section we prove Theorem 12.7 by showing that

lim
t→∞Q

ν,h
t

[
F

(
X•t − (2S•t + htu•)√

t

)]
= E0 [F(X•)] (12.32)

for any bounded Lipschitz continuous F : C([0, 1];R)→ R and (ν, h) ∈ L3.



12 Scaled Penalization of Brownian Motion with Drift and the Brownian Ascent 283

Proof (Proof of (12.32)) We divide the proof into two stages, the first for Fδ and
the second for F .

Stage 1: convergence for Fδ

Suppose (ν, h) ∈ L3 and fix 0 < δ ≤ 1. Recalling that ν = −2h, we can use
Brownian scaling and Pitman’s 2S −X theorem to write

E0

[
Fδ

(
X•t − (2S•t + htu•)√

t

)
exp (νSt + hXt)

]

= E0

[
Fδ

(
−R• − h√tu•

)
exp
(
−h√tR1

)]
.

(12.33)

Fix x > 0. Then the absolute continuity relation from Lemma 12.3 implies that the
right-hand side of (12.33) is equal to

Ex

⎡
⎣Fδ

(
−R• − h√tu•

)
exp
(
−h√tR1

) xRδ exp
(
x2

2δ

)

δ sinh
(
xRδ
δ

)
⎤
⎦ .

Now we can use Proposition 12.8 to switch from the Bessel(3) process to Brownian
motion. Hence the above expectation is equal to

Ex

⎡
⎣Fδ

(
−X• − h√tu•

)
exp
(
−h√tX1

) XδX1 exp
(
x2

2δ

)

δ sinh
(
xXδ
δ

) ; I1 > 0

⎤
⎦ .

Next we use a Girsanov change of measure to add drift −h√t . This results in

E−h√t
x

⎡
⎣Fδ

(
−X• − h√tu•

)
exp

(
−h√tx + 1

2
h2t

) XδX1 exp
(
x2

2δ

)

δ sinh
(
xXδ
δ

) ; I1 > 0

⎤
⎦ .

Applying a path transformation that adds drift −h√t while changing the measure
back to that of Brownian motion without drift yields

Ex

⎡
⎣Fδ (−X•)

(Xδ − h√tδ)(X1 − h√t)e x2
2δ −h

√
tx+ 1

2h
2t

δ sinh
(
x
δ
(Xδ − h√tδ)

) ; inf
0≤s≤1

{Xs − h
√
ts} > 0

⎤
⎦ .

Now we divide this by the L3 partition function asymptotic from Proposition 12.1
which gives

Ex

⎡
⎣Fδ (−X•)

(Xδ − h√tδ)(X1 − h√t)e x2
2δ −h

√
tx

2h2tδ sinh
(
x
δ
(Xδ − h√tδ)

) 1At

⎤
⎦ (12.34)
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where we defined

At :=
{

inf
0≤s≤1

{Xs − h
√
ts} > 0

}
.

At this point we want to use Lemma 12.5 to find the limit of (12.34) as t → ∞.
Toward this end, note that

(Xδ − h√tδ)(X1 − h√t)e x2
2δ −h

√
tx

2h2tδ sinh
(
x
δ
(Xδ − h√tδ)

) 1At

is non-negative for all t > 0. Recalling that x > 0 and h < 0, we see that almost
surely under Px

lim
t→∞

(Xδ − h√tδ)(X1 − h√t)e x2
2δ −h

√
tx

2h2tδ sinh
(
x
δ
(Xδ − h√tδ)

) 1At = exp

(
x2 − 2xXδ

2δ

)
.

Additionally, by reversing the steps that led from (12.33) to (12.34), we see that

lim
t→∞Ex

⎡
⎣ (Xδ − h

√
tδ)(X1 − h√t)e x2

2δ −h
√
tx

2h2tδ sinh
(
x
δ
(Xδ − h√tδ)

) 1At

⎤
⎦ = lim

t→∞
E0
[
exp (νSt + hXt)

]

2h2t exp
(

1
2h

2t
)

= 1.

This agrees with

Ex

[
exp

(
x2 − 2xXδ

2δ

)]
= 1

which follows from a routine calculation. Hence we can conclude from Lemma 12.5,
reflection symmetry of Wiener measure, and Lemma 12.3 that

lim
t→∞Ex

⎡
⎣Fδ (−X•)

(Xδ − h√tδ)(X1 − h√t)e x2
2δ −h

√
tx

2h2tδ sinh
(
x
δ
(Xδ − h√tδ)

) ; inf
0≤s≤1

{Xs − h
√
ts} > 0

⎤
⎦

= Ex
[
Fδ (−X•) exp

(
x2 − 2xXδ

2δ

)]

= E−x
[
Fδ (X•) exp

(
x2 + 2xXδ

2δ

)]

= E0 [Fδ (X•)] .
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This shows that for any 0 < δ ≤ 1 we have

lim
t→∞Q

ν,h
t

[
Fδ

(
X•t − (2S•t + htu•)√

t

)]
= E0 [Fδ(X•)] .

Stage 2: convergence for F

We proceed as in the beginning of Stage 2 in the proof of (12.22). Similarly
to (12.29) we have

lim sup
t→∞

∣∣∣∣Qν,ht
[
F

(
X•t − (2S•t + htu•)√

t

)]
− E0[F(X•)]

∣∣∣∣

≤ lim
δ↘0

lim sup
t→∞

Q
ν,h
t

[
�Fδ

(
X•t − (2S•t + htu•)√

t

)]
. (12.35)

Unlike (12.30) however, we can’t use Hölder’s inequality to get a useful bound
for (12.35) since (ν, h) is on the critical line L3. Instead, we make use of the
Lipschitz continuity of F . Suppose F has Lipschitz constant K . Then for any
X• ∈ C

([0, 1];R) we have

�Fδ (X•) = |F(�δX•)− F(X•)| ≤ K‖�δX• −X•‖
≤ 2K sup

0≤s≤δ
|Xs |.

Along with (12.33), this implies that (12.35) is bounded above by

2K lim
δ↘0

lim sup
t→∞

E0

[
sup

0≤s≤δ

∣∣∣Rs + h
√
ts

∣∣∣ exp
(
−h√tR1

)]

E0
[
exp
(−h√tR1

)] . (12.36)

With p1(·, ·) denoting the Bessel(3) transition density at time 1, we can write the
expectation appearing in the numerator of (12.36) as a mixture of Bessel(3) bridges
by conditioning on the endpoint

∫ ∞

0
E0

[
sup

0≤s≤δ

∣∣∣Rs + h
√
ts

∣∣∣
∣∣∣∣∣R1 = y

]
e−h

√
typ1(0, y)dy. (12.37)

Let ‖ · ‖2 denote the Euclidean norm on R
3. Using (12.8) and recalling that h < 0,

we can write the expectation appearing in (12.37) as

E

[
sup

0≤s≤δ

∣∣∣∣
∥∥∥
(
b(1)s + ys, b(2)s , b(3)s

)∥∥∥
2
−
∥∥∥
(
|h|√ts, 0, 0

)∥∥∥
2

∣∣∣∣
]
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where b(i), i = 1, 2, 3 are independent Brownian bridges of length 1 from 0 to 0.
Now notice that the reverse triangle inequality implies this is bounded above by

E

[
sup

0≤s≤δ

∥∥∥
(
b(1)s + (y + h√t)s, b(2)s , b(3)s

)∥∥∥
2

]
.

Using subadditivity of the square root function and the triangle inequality, this is
bounded above by

3E

[
sup

0≤s≤δ
|bs |
]
+
∣∣∣y + h√t

∣∣∣ δ. (12.38)

By substituting (12.38) for the expectation appearing in (12.37), we see that the
latter expression is bounded above by

3E

[
sup

0≤s≤δ
|bs |
]
E0

[
exp
(
−h√tR1

)]
+ δ
∫ ∞

0

∣∣∣y + h√t
∣∣∣ e−h

√
typ1(0, y)dy.

(12.39)

Now substituting (12.39) for the expectation appearing in the numerator of (12.36)
leads to the upper bound

2K lim
δ↘0

(
3E

[
sup

0≤s≤δ
|bs |
]
+ δ lim sup

t→∞

∫∞
0

∣∣y + h√t∣∣ e−h
√
typ1(0, y)dy

E0
[
exp
(−h√tR1

)]
)
.

(12.40)

We can evaluate the lim sup term appearing in (12.40) explicitly by using the L3
partition function asymptotic from Proposition 12.1 and the Bessel(3) transition
density formula (12.51) to write

lim
t→∞

∫∞
0

∣∣y + h√t∣∣ e−h
√
typ1(0, y)dy

E0
[
exp
(−h√tR1

)]

= lim
t→∞

∫ ∞

0

√
2

π

∣∣y + h√t∣∣ y2

2h2t
e−h

√
ty− y2

2 − 1
2h

2t dy.

Applying the change of variables y �→ y − h√t and using dominated convergence
results in

lim
t→∞

∫ ∞

h
√
t

√
2

π

|y| (y − h√t)2
2h2t

e−
y2

2 dy =
∫ ∞

−∞
1√
2π

|y|e− y2

2 dy =
√

2

π
.



12 Scaled Penalization of Brownian Motion with Drift and the Brownian Ascent 287

Hence (12.40) equals

2K lim
δ↘0

(
3E

[
sup

0≤s≤δ
|bs |
]
+ δ
√

2

π

)
= 0.

Here we used dominated convergence and the fact that sup
0≤s≤1

|bs | is integrable and

b is continuous with b0 = 0. Now it follows that

lim sup
t→∞

∣∣∣∣Qν,ht
[
F

(
X•t − (2S•t + htu•)√

t

)]
− E0[F(X•)]

∣∣∣∣ = 0

which proves (12.32).
��

12.6 Brownian Ascent

We informally defined the Brownian ascent as a Brownian path of duration 1
conditioned on the event {X1 = S1}. Since this is a null event, some care is
needed to make the conditioning precise. Accordingly, we condition on the event
{S1 −X1 < ε} and let ε ↘ 0. This leads to an equality in law between the Brownian
ascent and a path transformation of the Brownian meander. While this result along
with the other Propositions in this section are likely obvious to those familiar with
Brownian path fragments, we include proofs for the convenience of non-experts.
The reader can refer to Appendix 1 for some basic information on the Brownian
meander.

Proposition 12.2

(as : 0 ≤ s ≤ 1)
L= (m1 −m1−s : 0 ≤ s ≤ 1)

Proof The idea behind the proof is to use the invariance property of φ from
Definition 12.2 together with a known limit theorem for the meander, similarly to
proving (12.4). Let F : C([0, 1];R) → R be bounded and continuous. Then we
have

E[F(a•)] = lim
ε↘0

E0[F(X•)|S1 −X1 < ε] = lim
ε↘0

E0[F(−X•)|X1 − I1 < ε]

= lim
ε↘0

E0[Fφ(−X•)|I1 > −ε] = E[Fφ(−m•)]

= E[F(m1 −m1−•)]

where weak convergence to Brownian meander in the last limit follows from
Theorem 2.1 in [9]. ��
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Recall Lévy’s equivalence

((
St −Xt, St

) : t ≥ 0
)

L=
((|Xt |, L0

t (X)
) : t ≥ 0

)
(12.41)

where L0
t (X) denotes the local time of X at the level 0 up to time t . This equality in

law holds under P0, see Item B in Chapter 1 of [28]. Since conditioning (Xs : 0 ≤
s ≤ 1) on the event {|X1| < ε} and letting ε ↘ 0 results in a standard Brownian
bridge, we can apply the same argument of Proposition 12.2 to both sides of (12.41)
and get the following result which can also be seen to follow from a combination of
Proposition 12.2 and Théorème 8 of [3].

Proposition 12.3 Let
(
L0
s (b) : 0 ≤ s ≤ 1

)
denote the local time process at the level

0 of a Brownian bridge of length 1 from 0 to 0. Then we have the equality in law

(
sup

0≤u≤s
au : 0 ≤ s ≤ 1

)
L=
(
L0
s (b) : 0 ≤ s ≤ 1

)
.

We can also construct the Brownian ascent from a Brownian path by scaling the
pre-maximum part of the path so that it has duration 1.

Proposition 12.4 Let denote the almost surely unique time at which the standard
Brownian motionW attains its maximum over the time interval [0, 1]. Then we have
the equality in law

(as : 0 ≤ s ≤ 1)
L=
(
Ws √
 

: 0 ≤ s ≤ 1

)
.

Proof From Denisov’s path decomposition Theorem 12.9 we have

(ms : 0 ≤ s ≤ 1)
L=
(
W −W −s √

 
: 0 ≤ s ≤ 1

)
.

Reflecting both processes about 0 gives

(−ms : 0 ≤ s ≤ 1)
L=
(
W −s −W √

 
: 0 ≤ s ≤ 1

)
.

Applying φ to both processes results in

(m1 −m1−s : 0 ≤ s ≤ 1)
L=
(
Ws √
 

: 0 ≤ s ≤ 1

)
.

Now the desired result follows from Proposition 12.2. ��
There is an absolute continuity relation between the path measures of the

Brownian ascent and Brownian motion run up to the first hitting time of 1 and
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then rescaled to have duration 1. This random scaling construction is reminiscent
of Pitman and Yor’s agreement formula for Bessel bridges, see [19].

Proposition 12.5 Let τ1 be the first hitting time of 1 by X. For any measurable
F : C([0, 1];R)→ R+ we have

E[F(a•)] =
√
π

2
E0

[
F

(
X•τ1√
τ1

)
1√
τ1

]
.

Proof Proposition 12.2 and the Imhof relation (12.48) imply that

E[F(a•)] =
√
π

2
E0

[
F (R1 − R1−•)

1

R1

]
(12.42)

where R is a Bessel(3) process. Let γ1 denote the last hitting time of 1 by R. Since
R• �→ F(R1 − R1−•)R1 is also a non-negative measurable path functional, we can
use Theorem 12.8 to rewrite the right-hand side of (12.42) as

√
π

2
E0

[
F (R1 − R1−•) R1

1

R2
1

]
=
√
π

2
E0

[
F

(
Rγ1 − R(1−•)γ1√

γ1

)
Rγ1√
γ1

]

=
√
π

2
E0

[
F

(
1 − R(1−•)γ1√

γ1

)
1√
γ1

]
.

(12.43)

Now Williams’ time reversal Theorem 12.11 can be used to conclude that (12.43) is
equal to

√
π

2
E0

[
F

(
X•τ1√
τ1

)
1√
τ1

]

which completes the proof. ��
The process

(
Xsτ1√
τ1

: 0 ≤ s ≤ 1

)
(12.44)

under P0 which appears in Proposition 12.5 has recently been studied by Elie,
Rosenbaum, and Yor in [10, 25–27]. Among other results, they derive the density of
the random variable α defined by

α = XUτ1√
τ1
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where U is a Uniform[0, 1] random variable independent of X. The non-obvious
fact that E0[α] = 0 leads to an interesting corollary of Proposition 12.5.

Corollary 12.1 Let U be a Uniform[0, 1] random variable independent of a. Then

E

[∫ 1

0

as

a1
ds

]
= E

[
aU

a1

]
= 0.

12.6.1 Brownian Co-ascent

In this section we show how the process (12.44) is related to the Brownian co-
meander. The reader unfamiliar with the co-meander can refer to Appendix 1 for
some basic information. The following proposition suggests that a suitable name
for the process (12.44) is the Brownian co-ascent since it is constructed from the
co-meander in the same manner that the ascent is constructed from the meander, viz
Proposition 12.2.

Proposition 12.6 If X has distribution P0 then

(
Xsτ1√
τ1

: 0 ≤ s ≤ 1

)
L= (m̃1 − m̃1−s : 0 ≤ s ≤ 1).

Proof Let F : C([0, 1];R)→ R be bounded and continuous. Then by Theorem 2.1.
in [26] we have

E0

[
F

(
X•τ1√
τ1

)]
= E0

[
F(R1 − R1−•)

1

R2
1

]

and by (12.49) we have

E0

[
F(R1 − R1−•)

1

R2
1

]
= E[F (m̃1 − m̃1−•

)].

The proposition follows from combining these two identities. ��
From now on we refer to the process (12.44) as the Brownian co-ascent and

denote it by
(
ãs : 0 ≤ s ≤ 1

)
. This allows us to state as an immediate corollary of

Proposition 12.5 the following absolute continuity relation between the ascent and
co-ascent which can also be seen as a counterpart of (12.50).

Corollary 12.2 For any measurable F : C([0, 1];R)→ R+ we have

E[F(a•)] =
√
π

2
E
[
F(ã•)ã1

]
.
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Next we give an analogue of Proposition 12.3 for the Brownian co-ascent. Let
(�t : t ≥ 0) denote the inverse local time of X at the level 0, that is, �t =
inf{s : L0

s (X) > t}. The pseudo-Brownian bridge b̃ was introduced in [4] and
has representation

(
b̃s : 0 ≤ s ≤ 1

)
L=
(
Xs�1√
�1

: 0 ≤ s ≤ 1

)

where the right-hand side is under P0, see also [25].

Proposition 12.7 Let
(
L0
s

(
b̃
) : 0 ≤ s ≤ 1

)
denote the local time process at the

level 0 of a pseudo-Brownian bridge. Then we have the equality in law

(
sup

0≤u≤s
ãu : 0 ≤ s ≤ 1

)
L=
(
L0
s

(
b̃
) : 0 ≤ s ≤ 1

)
.

Proof Define T1 = inf{t : St = 1}. Notice that T1 = τ1 almost surely under P0.
Hence

(
sup

0≤u≤s
Xuτ1√
τ1

: 0 ≤ s ≤ 1

)
L=
(

1√
T1
SsT1 : 0 ≤ s ≤ 1

)
(12.45)

under P0. Additionally, by Lévy’s equivalence (12.41) we have

(
1√
T1
SsT1 : 0 ≤ s ≤ 1

)
L=
(

1√
�1
L0
s�1
(X) : 0 ≤ s ≤ 1

)
(12.46)

under P0. Moreover, the representation of b̃ along with the scaling relation between
Brownian motion and its local time implies

(
1√
�1
L0
s�1
(X) : 0 ≤ s ≤ 1

)
L=
(
L0
s

(
b̃
) : 0 ≤ s ≤ 1

)
. (12.47)

The proposition follows from combining (12.45), (12.46) and (12.47) along with the
representation (12.44) of ã. ��

12.7 Concluding Remarks

Two natural directions for generalizing the main results of this paper are to change
the weight process or the reference measure. Scaled penalization of Brownian
motion with drift h ∈ R by the weight process !t = exp

(− ν(St − It )
)

is one
such possibility. This range penalization with ν > 0 has been investigated in [31]
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for h = 0, in [20] for 0 < |h| < ν, and recently in [14] for |h| = ν. While the first
two papers identify the corresponding scaling limit, only partial results are known
in the critical case |h| = ν. A related model replaces the Brownian motion with drift
by reflecting Brownian motion with drift and penalizes by the supremum instead of
the range. The asymmetry imposed by the reflecting barrier at 0 now makes the sign
of h relevant. Work in preparation by the current author describes the scaling limit
in the critical case for both of these models.

Another interesting question is to what extent can the absolute continuity
relation Proposition 12.5 and the path constructions Propositions 12.2 and 12.4 be
generalized to processes other than Brownian motion? While all three of these can
be nominally applied to many processes, it’s not obvious if they yield a genuine
ascent, that is, the process conditioned to end at its maximum. Scale invariance is
an underlying theme in all of these results so it makes sense to first consider self-
similar processes such as strictly stable Lévy processes and Bessel processes. In this
direction, existing work on stable meanders and the stable analogue of Denisov’s
decomposition found in Chapter VIII of [1] would be a good starting point.

Acknowledgements The author would like to thank Iddo Ben-Ari for his helpful suggestions and
encouragement and also Jim Pitman and Ju-Yi Yen for their tips on the history of the Brownian
meander and co-meander as well as pointers to the literature.

Appendix 1: Normalized Brownian Excursion, Meander and
Co-meander

The normalized Brownian excursion, meander and co-meander can be constructed
from the excursion of Brownian motion which straddles time 1. In fact, this is
usually how these processes are defined, see Chapter 7 in [35]. Define g1 = sup{t <
1 : Xt = 0} as the last zero before time 1 and d1 = inf{t > 1 : Xt = 0} as the first
zero after time 1. Then the normalized excursion, meander and co-meander have
representation

(es : 0 ≤ s ≤ 1)
L=
( |Xg1+s(d1−g1)|√

d1 − g1
: 0 ≤ s ≤ 1

)
,

(ms : 0 ≤ s ≤ 1)
L=
( |Xg1+s(1−g1)|√

1 − g1
: 0 ≤ s ≤ 1

)

and

(
m̃s : 0 ≤ s ≤ 1

) L=
( |Xd1+s(1−d1)|√

d1 − 1
: 0 ≤ s ≤ 1

)
,

respectively, where the right-hand sides are under P0.
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The laws of the meander and co-meander are absolutely continuous with respect
to each other and to the law of the Bessel(3) process starting at 0. More specifically,
for any measurable F : C([0, 1];R)→ R+ we have

E[F(m•)] =
√
π

2
E0

[
F(R•)

1

R1

]
(12.48)

E[F(m̃•)] = E0

[
F(R•)

1

R2
1

]
(12.49)

E[F(m•)] =
√
π

2
E
[
F(m̃•)m̃1

]
. (12.50)

The first of these relations (12.48) is known as Imhof’s relation [12, 28],
while (12.49) appears as Theorem 7.4.1. in [35] and (12.50) follows from a
combination of the previous two.

Appendix 2: Absolute Continuity Relations

Here we collect some useful absolute continuity relations between the laws of vari-
ous processes. While the statements involve bounded measurable path functionals F ,
they are also valid for non-negative measurable F . The results given without proof
can be found in the literature as indicated. The first two relations give us absolute
continuity for Brownian motion and Bessel(3) processes starting at different points,
as long as we are willing to ignore the initial [0, δ] segment of the path. See
Definition 12.3 for notation that makes this precise.

Lemma 12.3 Let x ∈ R, y > 0, and 0 < δ ≤ 1. Then for any bounded measurable
F : C([0, 1];R)→ R we have

E0 [Fδ(X•)] = Ex
[
Fδ(X•) exp

(
x2 − 2xXδ

2δ

)]

and

E0 [Fδ(R•)] = Ey
⎡
⎣Fδ(R•)

yRδ exp
(
y2

2δ

)

δ sinh
(
yRδ
δ

)
⎤
⎦ .

Proof We only prove the first statement as the same argument applies to the second;
see (12.51) and (12.52) for the Bessel(3) transition densities. First note that by the
definition of Fδ and the Markov property we have for any z ∈ R

E0 [Fδ(X•)|Xδ = z] = Ex [Fδ(X•)|Xδ = z] .
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Now by conditioning onXδ with pδ(·, ·) denoting the transition density of Brownian
motion at time δ, we can write

E0 [Fδ(X•)] =
∫ ∞

−∞
E0 [Fδ(X•)|Xδ = z]pδ(0, z)dz

=
∫ ∞

−∞
Ex [Fδ(X•)|Xδ = z] pδ(0, z)

pδ(x, z)
pδ(x, z)dz

=
∫ ∞

−∞
Ex

[
Fδ(X•)

pδ(0, Xδ)

pδ(x,Xδ)

∣∣∣∣Xδ = z
]
pδ(x, z)dz

= Ex

⎡
⎢⎢⎣Fδ(X•)

exp

(
−X2

δ

2δ

)

exp
(
− (Xδ−x)2

2δ

)

⎤
⎥⎥⎦

= Ex
[
Fδ(X•) exp

(
x2 − 2xXδ

2δ

)]
.

��
The next relation results from an h-transform of Brownian motion by the

harmonic function h(x) = x. See Section 1.6 of [35].

Proposition 12.8 Let x > 0. Then for any bounded measurable F : C([0, 1];R)→
R we have

Ex[F(R•)] = Ex
[
F(X•)

X1

x
; I1 > 0

]
.

The law of a Bessel(3) process run up to the last hitting time of x > 0 is, after
rescaling, absolutely continuous with respect to the law of a Bessel(3) process run
up to a fixed time. This is a special case of Théorème 3 in [4]; see also Theorem 8.1.1.
in [35].

Theorem 12.8 Let γx be the last hitting time of x > 0 by the Bessel(3) process R.
Then for any bounded measurable F : C([0, 1];R)→ R we have

E0

[
F

(
R•γx√
γx

)]
= E0

[
F(R•)

1

R2
1

]
.
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Appendix 3: Path Decompositions

Denisov’s path decomposition [8] asserts that the pre and post-maximum parts of a
Brownian path are rescaled independent Brownian meanders. See Corollary 17 in
Chapter VIII of [1] for an extension to strictly stable Lévy processes.

Theorem 12.9 (Denisov) Let  denote the almost surely unique time at which the
Brownian motion W attains its maximum over the time interval [0, 1]. Then the
transformed pre-maximum path

(
W −W −s √

 
: 0 ≤ s ≤ 1

)

and the transformed post-maximum path

(
W −W +s(1− )√

1 − : 0 ≤ s ≤ 1

)

are independent Brownian meanders which are independent of  .

Williams’ path decomposition for Brownian motion with drift h < 0 splits the
path at the time of the global maximum  ∞ by first picking an Exponential(−2h)
distributed S∞ and then running a Brownian motion with drift −h until it hits the
level S∞ for the pre-maximum path and then running Brownian motion with drift
h conditioned remain below S∞ for the post-maximum path. See Theorem 55.9 in
Chapter VI of [24] for the following more precise statement.

Theorem 12.10 (Williams) Suppose h < 0 and consider the following indepen-
dent random elements:

1. (Xt : t ≥ 0), a Brownian motion with drift −h starting at 0;
2. (Rt : t ≥ 0), a Brownian motion with drift h starting at 0 conditioned to be

non-positive for all time;
3. and l, an Exponential(−2h) random variable.

Let τl = inf{t : Xt = l} be the first hitting time of the level l by X. Then the process

X̃t =
⎧⎨
⎩
Xt : 0 ≤ t ≤ τl

l + Rt−τl : τl < t.

is Brownian motion with drift h starting at 0.

Williams’ time reversal connects the laws of Brownian motion run until a first
hitting time and a Bessel(3) process run until a last hitting time, see Theorem 49.1
in Chapter III of [23].
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Theorem 12.11 (Williams) Let τ1 = inf{t : Xt = 0} be the first hitting time of 1
by the Brownian motion X started at 0. Let γ1 = sup{t : Rt = 1} be the last hitting
time of 1 by the Bessel(3) process R started at 0. Then the following equality in law
holds:

(1 −Xτ1−t : 0 ≤ t ≤ τ1) L= (Rt : 0 ≤ t ≤ γ1).

Appendix 4: Density and Distribution Formulas

The Bessel(3) transition density formulas

pt (0, y) =
√

2

πt3
y2 exp

(
−y

2

2t

)
dy (12.51)

and

pt (x, y) =
√

2

πt

y

x
sinh
(xy
t

)
exp

(
−x

2 + y2

2t

)
dy, (12.52)

valid for y ≥ 0 and x, t > 0, can be found in Chapter XI of [22]. The density
formula for the endpoint of a Brownian meander

P(m1 ∈ dy) = y exp

(
−y

2

2

)
dy, y ≥ 0 (12.53)

follows from (12.51) together with the Imhof relation (12.48). The well-known
arcsine law for the time of the maximum of Brownian motion states that

P0( 1 ∈ du) = 1

π
√
u(1 − u)du, 0 < u < 1. (12.54)

Using Denisov’s path decomposition Theorem 12.9, the densities (12.53)
and (12.54) can be combined to yield the joint density

P0 (S1 ∈ dx, S1 −X1 ∈ dy, 1 ∈ du)

= xy

π
√
u3(1 − u)3 exp

(
− x

2

2u
− y2

2(1 − u)
)
dxdydu

(12.55)

which holds for x, y ≥ 0 and 0 < u < 1.
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The maximum of a Brownian bridge from 0 to a of length T > 0 has distribution

P0

(
sup

0≤s≤T
Xs ≥ b

∣∣∣∣∣XT = a
)

= exp

(
−2b(b − a)

T

)
(12.56)

where b ≥ max{0, a}, see (4.3.40) in [13].

Appendix 5: Asymptotic Analysis Tools

The following versions of these standard results in asymptotic analysis can be found
in [17] and [32], respectively.

Lemma 12.4 (Watson’s Lemma) Let q(x) be a function of the positive real
variable x, such that

q(x) ∼
∞∑
n=0

anx
n+λ−μ
μ as x → 0,

where λ and μ are positive constants. Then

∫ ∞

0
q(x)e−txdx ∼

∞∑
n=0

!

(
n+ λ
μ

)
an

t
n+λ
μ

as t → ∞.

Theorem 12.12 (Laplace’s Method) Define

I (t) =
∫ b
a

f (x)e−th(x)dx

where −∞ ≤ a < b ≤ ∞ and t > 0. Assume that:

1. h(x) has a unique minimum on [a, b] at point x = x0 ∈ (a, b),
2. h(x) and f (x) are continuously differentiable in a neighborhood of x0 with
f (x0) �= 0 and

h(x) = h(x0)+ 1

2
h′′(x0)(x − x0)

2 +O((x − x0)
3) as x → x0,

3. the integral I (t) exists for sufficiently large t .

Then

I (t) = f (x0)

√
2π

th′′(x0)
e−th(x0)

(
1 +O

(
1√
t

))
as t → ∞.



298 H. Panzo

Appendix 6: Convergence Lemma

Here we give a Fatou-type lemma that helps streamline the proofs of the main
theorems.

Lemma 12.5 Suppose {Ft }t≥0, F , {Xt }t≥0, and X are all integrable functions
defined on the same measure space (�,%,μ) such that {|Ft |}t≥0 are bounded by
M > 0, {Xt }t≥0 are non-negative,

∫
Xtdμ → ∫

Xdμ, and both Ft → F and
Xt → X μ-almost surely. Then we have

lim
t→∞

∫
FtXtdμ =

∫
FXdμ.

Proof Notice that (M + Ft)Xt is non-negative for all t ≥ 0. So by Fatou’s lemma
we have

M

∫
Xdμ+ lim inf

t→∞

∫
FtXtdμ = lim inf

t→∞

∫
(M + Ft)Xtdμ ≥

∫
(M + F)Xdμ

which implies

lim inf
t→∞

∫
FtXtdμ ≥

∫
FXdμ.

Similarly, (M − Ft)Xt is non-negative for all t ≥ 0, hence

M

∫
Xdμ− lim sup

t→∞

∫
FtXtdμ = lim inf

t→∞

∫
(M − Ft)Xtdμ ≥

∫
(M − F)Xdμ

which implies

lim sup
t→∞

∫
FtXtdμ ≤

∫
FXdμ.

Together these inequalities imply that

lim
t→∞

∫
FtXtdμ =

∫
FXdμ.

��
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Chapter 13
Interlacing Diffusions

Theodoros Assiotis, Neil O’Connell, and Jon Warren

Abstract We study in some generality intertwinings between h-transforms of
Karlin–McGregor semigroups associated with one dimensional diffusion processes
and those of their Siegmund duals. We obtain couplings so that the corresponding
processes are interlaced and furthermore give formulae in terms of block deter-
minants for the transition densities of these coupled processes. This allows us
to build diffusion processes in the space of Gelfand–Tsetlin patterns so that the
evolution of each level is Markovian. We show how known examples naturally
fit into this framework and construct new processes related to minors of matrix
valued diffusions. We also provide explicit formulae for the transition densities of
the particle systems with one-sided collisions at either edge of such patterns.

13.1 Introduction

In this work we study in some generality intertwinings and couplings between
Karlin–McGregor semigroups (see [45], also [44]) associated with one dimensional
diffusion processes and their duals. Let X(t) be a diffusion process with state space
an interval I ⊂ R with end points l < r and transition density pt(x, y). We
define the Karlin–McGregor semigroup associated with X, with n particles, by its
transition densities (with respect to Lebesgue measure) given by,

det(pt (xi, yj ))
n
i,j=1,
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for x, y ∈ Wn(I ◦) where Wn(I ◦) = (x = (x1, · · · , xn) : l < x1 ≤ · · · ≤ xn < r).
This sub-Markov semigroup is exactly the semigroup of n independent copies of
the diffusion process X which are killed when they intersect. For such a diffusion
process X(t) we consider the conjugate (see [65]) or Siegmund dual (see [21] or
the original paper [60]) diffusion process X̂(t) via a description of its generator
and boundary behaviour in the next subsection. The key relation dual/conjugate
diffusion processes satisfy is the following (see Lemma 13.1), with z, z′ ∈ I ◦,

Pz(X(t) ≤ z′) = Pz′(X̂(t) ≥ z).

We will obtain couplings of h-transforms of Karlin–McGregor semigroups asso-
ciated with a diffusion process and its dual so that the corresponding processes
interlace. We say that y ∈ Wn(I ◦) and x ∈ Wn+1(I ◦) interlace and denote this
by y ≺ x if x1 ≤ y1 ≤ x2 ≤ · · · ≤ xn+1. Note that this defines a space denoted by
Wn,n+1(I ◦) = ((x, y) : l < x1 ≤ y1 ≤ x2 ≤ · · · ≤ xn+1 < r),

x1• y1• x2• y1• x3• · · · xn• yn• xn+1• ,

with the following two-level representation,

y1• y1• · · · · · · yn•
x1• x2• x3• · · · xn• xn+1• .

Similarly, we say that x, y ∈ Wn(I ◦) interlace if l < y1 ≤ x1 ≤ y2 ≤ · · · ≤ xn < r
(we still denote this by y ≺ x). Again, this defines the space Wn,n(I ◦) = ((x, y) :
l < y1 ≤ x1 ≤ y2 ≤ · · · ≤ xn < r),

y1• x1• y2• x2• · · · xn−1• yn• xn• ,
with the two-level representation,

y1• y2• · · · yn•
x1• x2• · · · xn−1• xn• .

Our starting point in this paper are explicit transition kernels, actually arising
from the consideration of stochastic coalescing flows. These kernels defined on
Wn,n+1(I ◦) (or Wn,n(I ◦)) are given in terms of block determinants and give rise
to a Markov process Z = (X, Y ) with (sub-)Markov transition semigroup Qt with
joint dynamics described as follows. Let L and L̂ be the generators of a pair of
one dimensional diffusions in Siegmund duality. Then, after an appropriate Doob’s
h-transformation Y evolves autonomously as n L̂-diffusions conditioned not to
intersect. The X components then evolve as n + 1 (or n) independent L-diffusions
reflected off the random Y barriers, a notion made precise in the next subsection. Our
main result, Theorem 13.1 in the text, states (modulo technical assumptions) that
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under a special initial condition for Z = (X, Y ), the non-autonomous X component
is distributed as a Markov process in its own right. Its evolution governed by an
explicit Doob’s h-transform of the Karlin–McGregor semigroup associated with
n+ 1 (or n) L-diffusions.

At the heart of this result lie certain intertwining relations, obtained immediately
from the special structure ofQt , of the form,

Pt� = �Qt , (13.1)

�P̂t = Qt� , (13.2)

where� is an explicit positive kernel (not yet normalized),� is the operator induced
by the projection on the Y level, Pt is the Karlin–McGregor semigroup associated
with the one dimensional diffusion process with transition density pt(x, y) and P̂t
the corresponding semigroup associated with its dual/conjugate (some conditions
and more care is needed regarding boundary behaviour for which the reader is
referred to the next section).

Now we move towards building a multilevel process. First, note that by con-
catenating W 1,2(I ◦),W 2,3(I ◦), · · · ,WN−1,N (I ◦) we obtain the space of Gelfand–
Tsetlin patterns of depth N denoted by GT(N),

GT(N) = {(X(1), · · · , X(N)) : X(n) ∈ Wn(I ◦), X(n) ≺ X(n+1)} .

A point (X(1), · · · , X(N)) ∈ GT(N) is typically depicted as an array as shown in
the following diagram:

X
(1)
1•

X
(2)
1• X

(2)
2•

X
(3)
1• X

(3)
2• X

(3)
3•

. .
. ...

. . .

X
(N)
1• X

(N)
2• X

(N)
3• · · · · · · X

(N)
N−1• X

(N)
N•

Similarly, by concatenating W 1,1(I ◦),W 1,2(I ◦),W 2,2(I ◦), · · · ,WN,N(I ◦) we
obtain the space of symplectic Gelfand–Tsetlin patterns of depth N denoted by
GTs(N),

GTs(N) = {(X(1), X̂(1) · · · , X(N), X̂(N))
: X(n), X̂(n) ∈ Wn(I ◦), X(n) ≺ X̂(n) ≺ X(n+1)} ,
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X
(1)
1•

X̂
(1)
1◦

X
(2)
1• X

(2)
2•

X̂
(2)
1◦ X̂

(2)
2◦

X
(3)
1• X

(3)
2• X

(3)
3•

...
...

. . .

X
(N)
1• X

(N)
2• · · · X

(N)
N•

X̂
(N)
1◦ X̂

(N)
2◦ · · · X̂

(N)
N−1◦ X̂

(N)
N◦

Theorem 13.1 allows us to concatenate a sequence of Wn,n+1-valued processes
(or two-level processes), by a procedure described at the beginning of Sect. 13.3,
in order to build diffusion processes in the space of Gelfand Tsetlin patterns so
that each level is Markovian with explicit transition densities. Such examples of
dynamics on discrete Gelfand–Tsetlin patterns have been extensively studied over
the past decade as models for random surface growth, see in particular [9, 10, 68]
and the more recent paper [18] and the references therein. They have also been
considered in relation to building infinite dimensional Markov processes, preserving
some distinguished measures of representation theoretic origin, on the boundary
of these Gelfand–Tsetlin graphs via the method of intertwiners; see Borodin and
Olshanski [11] for the type A case and more recently Cuenca [22] for the type BC.
In the paper [4] we pursued these directions in some detail.

Returning to the continuum discussion both the process considered by Warren
in [66] which originally provided motivation for this work and a process recently
constructed by Cerenzia in [17] that involves a hard wall fit in the framework
introduced here. The techniques developed in this paper also allow us to study at
the process level (and not just at fixed times) the process constructed by Ferrari and
Frings in [31]. The main new examples considered in this paper are:

• Interlacing diffusion processes built from non-intersecting squared Bessel pro-
cesses, that are related to the LUE matrix diffusion process minors studied by
König and O’Connell in [47] and a dynamical version of a model considered
by Dieker and Warren in [27]. More generally, we study all diffusion processes
associated with the classical orthogonal polynomials in a uniform way. This
includes non-intersecting Jacobi diffusions and is related to the JUE matrix
diffusion, see [28].

• Interlacing Brownian motions in an interval, related to the eigenvalue processes
of Brownian motions on some classical compact groups.
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• A general study of interlacing diffusion processes with discrete spectrum and
connections to the classical theory of total positivity and Chebyshev systems, see
for example the monograph of Karlin [44].

We now mention a couple of recent works in the literature that are related to
ours. Firstly a different approach based on generators for obtaining couplings of
intertwined multidimensional diffusion processes via hard reflection is investigated
in Theorem 3 of [55]. This has subsequently been extended by Sun [63] to isotropic
diffusion coefficients, who making use of this has independently obtained similar
results to us for the specific LUE and JUE processes. Moreover, a general β
extension of the intertwining relations for the random matrix related aforementioned
processes was also established in the note [3] by one of us. Finally, some results
from this paper have been used recently in [2] to construct an infinite dimensional
Feller process on the so called graph of spectra, that is the continuum analogue
of the Gelfand–Tsetlin graph, which leaves the celebrated Hua-Pickrell measures
invariant.

We also study the interacting particle systems with one-sided collisions at either
edge of such Gelfand–Tsetlin pattern valued processes and give explicit Schutz-type
determinantal transition densities for them in terms of derivatives and integrals of
the one dimensional kernels. This also leads to formulas for the largest and smallest
eigenvalues of the LUE and JUE ensembles in analogy to the ones obtained in
[66] for the GUE.

Finally, we briefly explain how this work is connected to superpositions/ decima-
tions of random matrix ensembles (see e.g.[34]) and in a different direction to the
study of strong stationary duals. This notion was considered by Fill and Lyzinski in
[32] motivated in turn by the study of strong stationary times for diffusion processes
(first introduced by Diaconis and Fill in [25] in the Markov chain setting).

The rest of this paper is organised as follows:

1. In Sect. 13.2 we introduce the basic setup of dual/conjugate diffusion processes,
give the transition kernels on interlacing spaces and our main results on
intertwinings and Markov functions.

2. In Sect. 13.3 we apply the theory developed in this paper to show how known
examples easily fit into this framework and construct new ones, among others
the ones alluded to above.

3. In Sect. 13.4 we study the interacting particle systems at the edges of the Gelfand–
Tsetlin patterns.

4. In Sect. 13.5 we prove well-posedness of the simple systems of SDEs with
reflection described informally in the first paragraphs of the introduction and
under assumptions that their transition kernels are given by those in Sect. 13.2.

5. In the Appendix we elaborate on and give proofs of some of the facts stated about
dual diffusion processes in Sect. 13.2 and also discuss entrance laws.
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13.2 Two-Level Construction

13.2.1 Set Up of Conjugate Diffusions

Since our basic building blocks will be one dimensional diffusion processes and
their conjugates we introduce them here and collect a number of facts about them
(for justifications and proofs see the Appendix). The majority of the facts below can
be found in the seminal book of Ito and McKean [39], and also more specifically
regarding the transition densities of general one dimensional diffusion processes, in
the classical paper of McKean [52] and also section 4.11 of [39] which we partly
follow at various places.

We consider (Xt )t≥0 a time homogeneous one dimensional diffusion process
with state space an interval I with endpoints l < r which can be open or closed,
finite or infinite (interior denoted by I ◦) with infinitesimal generator given by,

L = a(x) d
2

dx2 + b(x) d
dx
,

with domain to be specified later in this section. In order to be more concise, we will
frequently refer to such a diffusion process with generator L as an L-diffusion. We
make the following regularity assumption throughout the paper.

Definition 13.1 (Assumption (R)) We assume that a(·) ∈ C1(I ◦) with a(x) > 0
for x ∈ I ◦ and b(·) ∈ C(I ◦).

We start by giving the very convenient description of the generator L in terms
of its speed measure and scale function. Define its scale function s(x) by s′(x) =
exp
(−∫ x

c
b(y)
a(y)
dy
)

(the scale function is defined up to affine transformations) where

c is an arbitrary point in I ◦, its speed measure with density m(x) = 1
s′(x)a(x) in I ◦

with respect to the Lebesgue measure (note that it is a Radon measure in I ◦ and
also strictly positive in I ◦) and speed function M(x) = ∫ x

c
m(y)dy. With these

definitions the formal infinitesimal generator L can be written as,

L = DmDs ,

where Dm = 1
m(x)

d
dx

= d
dM

and Ds = 1
s′(x)

d
dx

= d
ds

.
We now define the conjugate diffusion (see [65]) or Siegmund dual (see [60])

(X̂t )t≥0 of X to be a diffusion process with generator,

L̂ = a(x) d
2

dx2 + (a′(x)− b(x)) d
dx
,

and domain to be given shortly.
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The following relations are easy to verify and are key to us.

ŝ′(x) = m(x) and m̂(x) = s′(x).

So the conjugation operation swaps the scale functions and speed measures. In
particular

L̂ = Dm̂Dŝ = DsDm .

Using Feller’s classification of boundary points (see Appendix) we obtain
the following table for the boundary behaviour of the diffusion processes with
generators L and L̂ at l or r ,

Bound. class. of L Bound. class. of L̂

Natural Natural

Entrance Exit

Exit Entrance

Regular Regular

We briefly explain what these boundary behaviours mean. A process can neither
be started at, nor reach in finite time a natural boundary point. It can be started
from an entrance point but such a boundary point cannot be reached from the
interior I ◦. Such points are called inaccessible and can be removed from the state
space. A diffusion can reach an exit boundary point from I ◦ and once it does it is
absorbed there. Finally, at a regular (also called entrance and exit) boundary point a
variety of behaviours is possible and we need to specify one such. We will only be
concerned with the two extreme possibilities namely instantaneous reflection and
absorption (sticky behaviour interpolates between the two and is not considered
here). Furthermore, note that if l is instantaneously reflecting then (see for example
Chapter 2 paragraph 7 in [12]) Leb{t : Xt = l} = 0 a.s. and analogously for the
upper boundary point r .

Now in order to describe the domain, Dom(L), of the diffusion process with
formal generator L we first define the following function spaces (with the obvious
abbreviations),

C(Ī ) = {f ∈ C(I ◦) : lim
x↓l f (x), limx↑r f (x) exist and are finite} ,

D = {f ∈ C(Ī ) ∩ C2(I ◦) : Lf ∈ C(Ī )} ,
Dnat = D ,

Dentr = Dref l = {f ∈ D : (Dsf )(l+) = 0} ,
Dexit = Dabs = {f ∈ D : (Lf )(l+) = 0}.
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Similarly, define Dnat ,Dentr ,Dref l,Dexit ,Dabs by replacing l with r in the
definitions above. Then the domain of the generator of the (Xt )t≥0 diffusion
process (with generator L) with boundary behaviour i at l and j at r where
i, j ∈ {nat, entr, ref l, exit, abs} is given by,

Dom(L) = Di ∩Dj .

For justifications see for example Chapter 8 in [29] and for an entrance boundary
point also Theorem 12.2 of [46] or page 122 of [52].

Coming back to conjugate diffusions note that the boundary behaviour ofXt , the
L-diffusion, determines the boundary behaviour of X̂t , the L̂-diffusion, except at a
regular point. At such a point we define the boundary behaviour of the L̂-diffusion
to be dual to that of the L-diffusion. Namely, if l is regular reflecting for L then we
define it to be regular absorbing for L̂. Similarly, if l is regular absorbing for L we
define it to be regular reflecting for L̂. The analogous definition being enforced at the
upper boundary point r . Furthermore, we denote the semigroups associated with Xt
and X̂t by Pt and P̂t respectively and note that Pt1 = P̂t1 = 1. We remark that at an
exit or regular absorbing boundary point the transition kernel pt (x, dy) associated
with Pt has an atom there with mass (depending on t and x) the probability that the
diffusion has reached that point by time t started from x.

We finally arrive at the following duality relation, going back in some form
to Siegmund. This is proven via an approximation by birth and death chains in
Sect. 13.4 of [21]. We also give a proof in the Appendix following [67] (where the
proof is given in a special case). The reader should note the restriction to the interior
I ◦.

Lemma 13.1 Pt1[l,y](x) = P̂t1[x,r](y) for x, y ∈ I ◦.

Now, it is well known that, the transition density pt (x, y) : (0,∞)× I ◦ × I ◦ →
(0,∞) of any one dimensional diffusion process with a speed measure which has
a continuous density with respect to the Lebesgue measure in I ◦ (as is the case in
our setting) is continuous in (t, x, y). Moreover, under our assumptions ∂xpt (x, y)
exists for x ∈ I ◦ and as a function of (t, y) is continuous in (0,∞) × I ◦ (see
Theorem 4.3 of [52]).

This fact along with Lemma 13.1 gives the following relationships between the
transition densities for x, y ∈ I ◦,

pt (x, y) = ∂yP̂t1[x,r](y) = ∂y
∫ r
x

p̂t (y, dz) , (13.3)

p̂t (x, y) = −∂yPt1[l,x](y) = −∂y
∫ x
l

pt (y, dz). (13.4)

Before closing this section, we note that the speed measure is the symmetrizing
measure of the diffusion process and this shall be useful in what follows. In
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particular, for x, y ∈ I ◦ we have,

m(y)

m(x)
pt (y, x) = pt (x, y). (13.5)

13.2.2 Transition Kernels for Two-Level Processes

First, we recall the definitions of the interlacing spaces our processes will take values
in,

Wn(I ◦) = ((x) : l < x1 ≤ · · · ≤ xn < r) ,
Wn,n+1(I ◦) = ((x, y) : l < x1 ≤ y1 ≤ x2 ≤ · · · ≤ xn+1 < r) ,

Wn,n(I ◦) = ((x, y) : l < y1 ≤ x1 ≤ y2 ≤ · · · ≤ xn < r) ,
Wn+1,n(I ◦) = ((x, y) : l < y1 ≤ x1 ≤ y2 ≤ · · · ≤ yn+1 < r).

Note that, for (x, y) ∈ Wn,n+1(I ◦) we have x ∈ Wn+1(I ◦) and y ∈ Wn(I ◦), this is
a minor difference in notation to the one used in [66]; in the notations of that paper
Wn+1,n is ourWn,n+1 (R). Also define for x ∈ Wn(I ◦),

W •,n(x) = {y ∈ W •(I ◦) : (x, y) ∈ W •,n(I ◦)}.

We now make the following standing assumption, enforced throughout the
paper, on the boundary behaviour of the one dimensional diffusion process with
generator L, depending on which interlacing space our two-level process defined
next takes values in. Its significance will be explained later on. Note that any
possible combination is allowed between the behaviour at l and r .

Definition 13.2 (Assumption (BC)) Assume the L-diffusion has the following
boundary behaviour: When considering Wn,n+1(I ◦):

l is either Natural or Entrance or Regular Ref lecting , (13.6)

r is either Natural or Entrance or Regular Ref lecting. (13.7)

When considering Wn,n(I ◦):

l is either Natural or Exit or Regular Absorbing , (13.8)

r is either Natural or Entrance or Regular Ref lecting. (13.9)
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When considering Wn+1,n(I ◦):

l is either Natural or Exit or Regular Absorbing , (13.10)

r is either Natural or Exit or Regular Absorbing. (13.11)

We will need to enforce a further regularity and non-degeneracy assumption at
regular boundary points for some of our results. This is a technical condition and
presumably can be removed.

Definition 13.3 (Assumption (BC+)) Assume condition (BC) above. Moreover, if
a boundary point b ∈ {l, r} is regular we assume that lim

x→b
a(x) > 0 and the limits

lim
x→b

b(x), lim
x→b

(
a′(x)− b(x)) exist and are finite.

We shall begin by considering the following stochastic process which we will
denote by

(
�0,t (x1), · · · ,�0,t (xn); t ≥ 0

)
. It consists of a system of n independent

L-diffusions started from x1 ≤ · · · ≤ xn which coalesce and move together once
they meet. This is a process inWn(I) which once it reaches any of the hyperplanes
{xi = xi+1} continues there forever. We have the following proposition for the finite
dimensional distributions of the coalescing process:

Proposition 13.1 For z, z′ ∈ Wn(I ◦),

P
(
�0,t (zi) ≤ z′i for 1 ≤ i ≤ n) = det

(
Pt1[l,z′j ](zi)− 1(i < j)

)n
i,j=1 .

Proof This is done for Brownian motions in Proposition 9 of [66] using a generic
argument based on continuous non-intersecting paths. The only variation here is that
there might be an atom at l which however does not alter the proof.

We now define the kernel qn,n+1
t ((x, y), (x′, y′))dx′dy′ on Wn,n+1(I ◦) as

follows:

Definition 13.4 For (x, y), (x′, y′) ∈ Wn,n+1(I ◦) define qn,n+1
t ((x, y), (x′, y′))

by,

q
n,n+1
t ((x, y), (x′, y′))

=
∏n
i=1 m̂(y

′
i )∏n

i=1 m̂(yi)
(−1)n

∂n

∂y1 · · · ∂yn
∂n+1

∂x′1 · · · ∂x′n+1

× P
(
�0,t (xi) ≤ x′i ,�0,t (yj ) ≤ y′j for all i, j

)
.

This density exists by virtue of the regularity of the one dimensional transition den-
sities. It is then an elementary computation using Proposition 13.1 and Lemma 13.1,
along with relation (13.4), that qn,n+1

t can be written out explicitly as shown
below. Note that each yi and x′j variable appears only in a certain row or column
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respectively.

q
n,n+1
t ((x, y), (x′, y′)) = det

(
At(x, x

′) Bt (x, y′)
Ct (y, x

′) Dt (y, y′)

)
(13.12)

where,

At(x, x
′)ij = ∂x′jPt1[l,x′j ](xi) = pt (xi, x′j ) ,

Bt (x, y
′)ij = m̂(y′j )(Pt1[l,y′j ](xi)− 1(j ≥ i)) ,

Ct (y, x
′)ij = −m̂−1(yi)∂yi ∂x′jPt1[l,x′j ](yi) = −Dyis pt (yi, x′j ) ,

Dt (y, y
′)ij = − m̂(y

′
j )

m̂(yi)
∂yiPt1[l,y′j ](yi) = p̂t (yi, y′j ).

We now define for t > 0 the operators Qn,n+1
t acting on the bounded Borel

functions onWn,n+1(I ◦) by,

(Q
n,n+1
t f )(x, y) =

∫
Wn,n+1(I ◦)

q
n,n+1
t ((x, y), (x′, y′))f (x′, y′)dx′dy′. (13.13)

Then the following facts hold:

Lemma 13.2 Assume (R) and (BC) hold for the L-diffusion. Then,

Q
n,n+1
t 1 ≤ 1,

Q
n,n+1
t f ≥ 0 for f ≥ 0.

Proof The first property will follow from performing the dx′ integration first
in Eq. (13.13) with f ≡ 1. This is easily done by the very structure of the
entries of qn,n+1

t : noting that each x′i variable appears in a single column, then
using multilinearity to bring the integrals inside the determinant and the rela-
tions:

∫ y′j
y′j−1

At(x, x
′)ij dx′j = Pt1[l,y′j ](xi)− Pt1[l,y′j−1](xi),

∫ y′j
y′j−1

Ct(y, x
′)ij dx′j = − 1

m̂(yi)
∂yiPt1[l,y′j ](yi)+

1

m̂(yi)
∂yiPt1[l,y′j−1](yi),
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and observing that by (BC) the boundary terms are:

∫ r
y′N
At (x, x

′)iN+1dx
′
N+1 = 1 − Pt1[l,y′N ](xi),

∫ r
y′N
Ct (y, x

′)iN+1dx
′
N+1 = 1

m̂(yi)
∂yiPt1[l,y′N ](yi),

∫ y′1
l

At (x, x
′)i1dx′1 = Pt1[l,y′1](xi),

∫ y′1
l

Ct (y, x
′)i1dx′1 = − 1

m̂(yi)
∂yiPt1[l,y′1](yi),

we are left with the integral:

Q
n,n+1
t 1 =

∫
Wn(I ◦)

det(p̂t (yi, y
′
j ))
n
i,j=1dy

′ ≤ 1.

This is just a restatement of the fact that a Karlin–McGregor semigroup, to be
defined shortly in this subsection, is sub-Markov.

The positivity preserving property also follows immediately from the original
definition, since P

(
�0,t (xi) ≤ x′i ,�0,t (yj ) ≤ y′j for all i, j

)
is increasing in the

x′i and decreasing in the yj respectively: Obviously for any k with x′k ≤ x̃′k and
ỹk ≤ yk each of the events:

{
�0,t (xi) ≤ x′i , i �= k,�0,t (xk) ≤ x̃′k,�0,t (yj ) ≤ y′j , for all j

}
,

{
�0,t (xi) ≤ x′i , for all i,�0,t (yj ) ≤ y′j , j �= k,�0,t (ỹk) ≤ y′k

}
,

contain the event:

{
�0,t (xi) ≤ x′i ,�0,t (yj ) ≤ y′j for all i, j

}
.

Thus, the partial derivatives ∂x′i and −∂yj of P
(
�0,t (xi) ≤ x′i ,�0,t (yj ) ≤

y′j for all i, j
)

are positive.

In fact, Qn,n+1
t defined above, forms a sub-Markov semigroup, associated with

a Markov process Z = (X, Y ), with possibly finite lifetime, described informally
as follows: the X components follow independent L-diffusions reflected off the Y
components. More precisely assume that the L-diffusion is given as the pathwise
unique solution X to the SDE,

dX(t) = √2a(X(t))dβ(t)+ b(X(t))dt + dKl(t)− dKr(t)
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where β is a standard Brownian motion and Kl and Kr are (possibly zero) positive
finite variation processes that only increase when X = l or X = r , so that X ∈ I
and Leb{t : X(t) = l or r} = 0 a.s. We write sL for the corresponding measurable
solution map on path space, namely so that X = sL (β).

Consider the following system of SDEs with reflection in Wn,n+1 which can
be described in words as follows. The Y components evolve as n autonomous L̂-
diffusions stopped when they collide or when (if) they hit l or r , and we denote this
time by T n,n+1. The X components evolve as n+ 1 L-diffusions reflected off the Y
particles.

dX1(t) =
√

2a(X1(t))dβ1(t)+ b(X1(t))dt + dKl(t)− dK+
1 (t),

dY1(t) =
√

2a(Y1(t))dγ1(t)+ (a′(Y1(t))− b(Y1(t)))dt,

dX2(t) =
√

2a(X2(t))dβ2(t)+ b(X2(t))dt + dK−
2 (t)− dK+

2 (t),

... (13.14)

dYn(t) =
√

2a(Yn(t))dγn(t)+ (a′(Yn(t))− b(Yn(t)))dt,
dXn+1(t) =

√
2a(Xn+1(t))dβn+1(t)+ b(Xn+1(t))dt + dK−

n+1(t)− dKr(t).

Here β1, · · · , βn+1, γ1, · · · , γn are independent standard Brownian motions and the
positive finite variation processes Kl,Kr,K+

i , K
−
i are such that Kl (possibly zero)

increases only when X1 = l, Kr (possibly zero) increases only when Xn+1 = r ,
K+
i (t) increases only when Yi = Xi and K−

i (t) only when Yi−1 = Xi , so that
(X1(t) ≤ Y1(t) ≤ · · · ≤ Xn+1(t); t ≥ 0) ∈ Wn,n+1(I ) up to time T n,n+1. Note
that, X either reflects at l or r or does not visit them at all by our boundary
conditions (13.6) and (13.7). The problematic possibility of an X component being
trapped between a Y particle and a boundary point and pushed in opposite directions
does not arise, since the whole process is then instantly stopped.

The fact that these SDEs are well-posed, so that in particular (X, Y ) is
Markovian, is proven in Proposition 13.34 under a Yamada–Watanabe condition
(incorporating a linear growth assumption), that we now define precisely and
abbreviate throughout by (YW). Note that, the functions a(·) and b(·) initially
defined in I ◦ can in certain circumstances be continuously extended to the boundary
points l and r and this is implicit in assumption (YW).

Definition 13.5 (Assumption (YW)) Let I be an interval with endpoints l < r and
suppose ρ is a non-decreasing function from (0,∞) to itself such that

∫
0+

dx
ρ(x)

= ∞.
Consider the following condition on functions a : I → R+ and b : I → R,

|√a(x)−√a(y)|2 ≤ ρ(|x − y|),
|b(x)− b(y)| ≤ C|x − y|.
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Moreover, we assume that the functions
√
a(·) and b(·) are of at most linear growth

(for b(·) this is immediate by Lipschitz continuity above).
We will say that the L-diffusion satisfies (YW) if its diffusion and drift

coefficients a and b satisfy (YW).

Moreover, by virtue of the following result these SDEs provide a precise
description of the dynamics of the two-level process Z = (X, Y ) associated
with Qn,n+1

t . Proposition 13.2 below will be proven in Sect. 13.5.2 as either
Proposition 13.35 or Proposition 13.37, depending on the boundary conditions.

Proposition 13.2 Assume (R) and (BC+) hold for the L-diffusion and (YW)
holds for both the L and L̂ diffusions. Then, Qn,n+1

t is the sub-Markov semigroup
associated with the (Markovian) system of SDEs (13.14) in the sense that if Qn,n+1

x,y

governs the processes (X, Y ) satisfying the SDEs (13.14) and with initial condition
(x, y) then for any f continuous with compact support and fixed T > 0,

∫
Wn,n+1(I ◦)

q
n,n+1
T ((x, y), (x′, y′))f (x′, y′)dx′dy′

= Qn,n+1
x,y

[
f (X(T ), Y (T ))1(T < T n,n+1)

]
.

For further motivation regarding the definition of Qn,n+1
t and moreover, a

completely different argument for its semigroup property, that however does not
describe explicitly the dynamics of X and Y , we refer the reader to the next
Sect. 13.2.3.

We now briefly study some properties of Qn,n+1
t , that are immediate from its

algebraic structure (with no reference to the SDEs above required). In order to
proceed and fix notations for the rest of this section, start by defining the Karlin–
McGregor semigroup Pnt associated with n L-diffusions in I ◦ given by the transition
density, with x, y ∈ Wn(I ◦),

pnt (x, y)dy = det(pt (xi, yj ))
n
i,j=1dy. (13.15)

Note that, in the case an exit or regular absorbing boundary point exists, P 1
t is the

semigroup of the L-diffusion killed and not absorbed at that point. In particular it
is not the same as Pt which is a Markov semigroup. Similarly, define the Karlin–
McGregor semigroup P̂ nt associated with n L̂-diffusions by,

p̂nt (x, y)dy = det(p̂t (xi, yj ))
n
i,j=1dy, (13.16)

with x, y ∈ Wn(I ◦). The same comment regarding absorbing and exit boundary
points applies here as well.
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Now, define the operators �n,n+1, induced by the projections on the Y level as
follows with f a bounded Borel function onWn(I ◦),

(�n,n+1f )(x, y) = f (y).

The following proposition immediately follows by performing the dx′ integration in
the explicit formula for the block determinant (as already implied in the proof that
Q
n,n+1
t 1 ≤ 1).

Proposition 13.3 Assume (R) and (BC) hold for the L-diffusion. For t > 0 and f
a bounded Borel function onWn(I ◦) we have,

�n,n+1P̂
n
t f = Qn,n+1

t �n,n+1f. (13.17)

The fact that Y is distributed as n independent L̂-diffusions killed when they collide
or when they hit l or r is already implicit in the statement of Proposition 13.2.
However, it is also the probabilistic consequence of the proposition above. Namely,
the intertwining relation (13.17), being an instance of Dynkin’s criterion (see for
example Exercise 1.17 Chapter 3 of [57]), implies that the evolution of Y is
Markovian with respect to the joint filtration ofX and Y i.e. of the process Z and we
take this as the definition of Y being autonomous. Moreover, Y is evolving according
to P̂ nt . Thus, the Y components form an autonomous diffusion process. Finally, by
taking f ≡ 1 above we get that the finite lifetime of Z exactly corresponds to the
killing time of Y , which we denote by T n,n+1.

Similarly, we define the kernel qn,nt ((x, y), (x′, y′))dx′dy′ on Wn,n(I ◦) as
follows:

Definition 13.6 For (x, y), (x′, y′) ∈ Wn,n(I ◦) define qn,nt ((x, y), (x′, y′)) by,

q
n,n
t ((x, y), (x′, y′))

=
∏n
i=1 m̂(y

′
i )∏n

i=1 m̂(yi)
(−1)n

∂n

∂y1 · · · ∂yn
∂n

∂x′1 · · · ∂x′n
× P
(
�0,t (xi) ≤ x′i ,�0,t (yj ) ≤ y′j for all i, j

)
.

We note that as before qn,nt can in fact be written out explicitly,

q
n,n
t ((x, y), (x′, y′)) = det

(
At(x, x

′) Bt (x, y′)
Ct (y, x

′) Dt (y, y′)

)
(13.18)

where,

At(x, x
′)ij = ∂x′jPt1[l,x′j ](xi) = pt(xi, x′j ),

Bt (x, y
′)ij = m̂(y′j )(Pt1[l,y′j ](xi)− 1(j > i)),
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Ct(y, x
′)ij = −m̂−1(yi)∂yi ∂x′jPt1[l,x′j ](yi) = −Dyis pt (yi, x′j ),

Dt (y, y
′)ij = − m̂(y

′
j )

m̂(yi)
∂yiPt1[l,y′j ](yi) = p̂t (yi, y′j ).

Remark 13.1 Comparing with the qn,n+1
t formulae everything is the same except

for the indicator function being 1(j > i) instead of 1(j ≥ i).
Define the operator Qn,nt for t > 0 acting on bounded Borel functions on

Wn,n(I ◦) by,

(Q
n,n
t f )(x, y) =

∫
Wn,n(I ◦)

q
n,n
t ((x, y), (x′, y′))f (x′, y′)dx′dy′. (13.19)

Then with the analogous considerations as forQn,n+1
t (see Sect. 13.2.3 as well), we

can see that Qn,nt should form a sub-Markov semigroup, to which we can associate
a Markov process Z, with possibly finite lifetime, taking values in Wn,n(I ◦), the
evolution of which we now make precise.

To proceed as before, we assume that the L-diffusion is given by an SDE and
we consider the following system of SDEs with reflection in Wn,n which can be
described as follows. The Y components evolve as n autonomous L̂-diffusions killed
when they collide or when (if) they hit the boundary point r , a time which we
denote by T n,n. The X components evolve as n L-diffusions being kept apart by
hard reflection on the Y particles.

dY1(t) =
√

2a(Y1(t))dγ1(t)+ (a′(Y1(t))− b(Y1(t)))dt + dKl(t),
dX1(t) =

√
2a(X1(t))dβ1(t)+ b(X1(t))dt + dK+

1 (t)− dK−
1 (t),

... (13.20)

dYn(t) =
√

2a(Yn(t))dγn(t)+ (a′(Yn(t))− b(Yn(t)))dt,
dXn(t) =

√
2a(Xn(t))dβn(t)+ b(Xn(t))dt + dK+

n (t)− dKr(t).

Here β1, · · · , βn, γ1, · · · , γn are independent standard Brownian motions and the
positive finite variation processes Kl,Kr,K+

i , K
−
i are such that K̄l (possibly zero)

increases only when Y1 = l, Kr (possibly zero) increases only when Xn = r ,
K+
i (t) increases only when Yi = Xi and K−

i (t) only when Yi−1 = Xi , so that
(Y1(t) ≤ X1(t) ≤ · · · ≤ Xn(t); t ≥ 0) ∈ Wn,n(I ) up to T n,n. Note that, Y reflects
at the boundary point l or does not visit it all and similarly X reflects at r or does
not reach it all by our boundary assumptions (13.8) and (13.9). The intuitively
problematic issue of Yn pushing Xn upwards at r does not arise since the whole
process is stopped at such instance.
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That these SDEs are well-posed, so that in particular (X, Y ) is Markovian, again
follows from the arguments of Proposition 13.34. As before, we have the following
precise description of the dynamics of the two-level process Z = (X, Y ) associated
withQn,nt .

Proposition 13.4 Assume (R) and (BC+) hold for theL-diffusion and (YW) holds
for both the L and L̂ diffusions. Then,Qn,nt is the sub-Markov semigroup associated
with the (Markovian) system of SDEs (13.20) in the sense that if Qn,nx,y governs the
processes (X, Y ) satisfying the SDEs (13.20) with initial condition (x, y) then for
any f continuous with compact support and fixed T > 0,

∫
Wn,n(I ◦)

q
n,n
T ((x, y), (x′, y′))f (x′, y′)dx′dy′

= Qn,nx,y
[
f (X(T ), Y (T ))1(T < T n,n)

]
.

We also define, analogously to before, an operator �n,n, induced by the
projection on the Y level by,

(�n,nf )(x, y) = f (y).
We have the following proposition which immediately follows by performing the
dx′ integration in Eq. (13.19).

Proposition 13.5 Assume (R) and (BC) hold for the L-diffusion. For t > 0 and f
a bounded Borel function onWn(I ◦) we have,

�n,nP̂
n
t f = Qn,nt �n,nf. (13.21)

This, again implies that the evolution of Y is Markovian with respect to the joint
filtration of X and Y . Furthermore, Y is distributed as n L̂-diffusions killed when
they collide or when (if) they hit the boundary point r (note the difference here to
Wn,n+1 is because of the asymmetry between X and Y and our standing assump-
tion (13.8) and (13.9)). Hence, the Y components form a diffusion process and they
are autonomous. The finite lifetime of Z analogously to before (by taking f ≡ 1 in
the proposition above), exactly corresponds to the killing time of Y which we denote
by T n,n. As before, this is already implicit in the statement of Proposition 13.4.

Finally, we can define the kernel qn+1,n
t ((x, y), (x′, y′))dx′dy′ on Wn+1,n(I ◦)

in an analogous way and also the operator Qn+1,n
t for t > 0 acting on bounded

Borel functions on Wn+1,n(I ◦) as well. The description of the associated process
Z in Wn+1,n(I ◦) in words is as follows. The Y components evolve as n +
1 autonomous L̂-diffusions killed when they collide (by our boundary condi-
tions (13.10) and (13.11) if the Y particles do visit l or r they are reflecting there)
and the X components evolve as n L-diffusions reflected on the Y particles. These
dynamics can be described in terms of SDEs with reflection under completely
analogous assumptions. The details are omitted.
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13.2.3 Stochastic Coalescing Flow Interpretation

The definition of qn,n+1
t , and similarly of qn,nt , might look rather mysterious and

surprising. It is originally motivated from considering stochastic coalescing flows.
Briefly, the finite system

(
�0,t (x1), · · · ,�0,t (xn); t ≥ 0

)
can be extended to an

infinite system of coalescing L-diffusions starting from each space time point and
denoted by (�s,t (·), s ≤ t). This is well documented in Theorem 4.1 of [48] for
example. The random family of maps (�s,t , s ≤ t) from I to I enjoys among others
the following natural looking and intuitive properties: the cocycle or flow property
�t1,t3 = �t2,t3 ◦ �t1,t2 , independence of its increments �t1,t2 ⊥ �t3,t4 for t2 ≤ t3

and stationarity �t1,t2
law= �0,t2−t1 . Finally, we can consider its generalized inverse

by �−1
s,t (x) = sup{w : �s,t (w) ≤ x} which is well defined since �s,t is non-

decreasing.
With these notations in place qn,n+1

t can also be written as,

q
n,n+1
t ((x, y), (x′, y′))dx′dy

=
∏n
i=1 m̂(y

′
i )∏n

i=1 m̂(yi)
P
(
�0,t (xi) ∈ dx′i ,�−1

0,t (y
′
j ) ∈ dyj for all i, j

)
. (13.22)

We now sketch an argument that gives the semigroup property Qn,n+1
t+s =

Q
n,n+1
t Q

n,n+1
s . We do not try to give all the details that would render it completely

rigorous, mainly because it cannot be used to precisely describe the dynamics of
Q
n,n+1
t , but nevertheless all the main steps are spelled out.
All equalities below should be understood after being integrated with respect

to dx′′ and dy over arbitrary Borel sets. The first equality is by definition. The
second equality follows from the cocycle property and conditioning on the values of
�0,s(xi) and �−1

s,s+t (y′′j ). Most importantly, this is where the boundary behaviour
assumptions (13.6) and (13.7) we made at the beginning of this subsection are used.
These ensure that no possible contributions from atoms on ∂I are missed; namely
the random variable �0,s(xi) is supported (its distribution gives full mass) in I ◦.
Moreover, it is not too hard to see from the coalescing property of the flow that, we
can restrict the integration over (x′, y′) ∈ Wn,n+1(I ◦) for otherwise the integrand
vanishes. Finally, the third equality follows from independence of the increments
and the fourth one by stationarity of the flow.

q
n,n+1
s+t ((x, y), (x′′, y′′))dx′′dy

=
∏n
i=1 m̂(y

′′
i )∏n

i=1 m̂(yi)

× P
(
�0,s+t (xi) ∈ dx′′i ,�−1

0,s+t (y
′′
j ) ∈ dyj for all i, j

)
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=
∏n
i=1 m̂(y

′′
i )∏n

i=1 m̂(yi)

∫
(x′,y′)∈Wn,n+1(I ◦)

× P
(
�0,s(xi) ∈ dx′i ,�s,s+t (x′i ) ∈ dx′′i ,�−1

0,s(y
′
j ) ∈ dyj ,�−1

s,s+t (y′′j ) ∈ dy′j
)

=
∫
(x′,y′)∈Wn,n+1(I ◦)

∏n
i=1 m̂(y

′
i )∏n

i=1 m̂(yi)
P
(
�0,s(xi) ∈ dx′i ,�−1

0,s(y
′
j ) ∈ dyj

)

×
∏n
i=1 m̂(y

′′
i )∏n

i=1 m̂(y
′
i )
P
(
�s,s+t (x′i ) ∈ dx′′i ,�−1

s,s+t (y′′j ) ∈ dy′j
)

=
∫
(x′,y′)∈Wn,n+1(I ◦)

qn,n+1
s

× ((x, y), (x′, y′))qn,n+1
t ((x′, y′), (x′′, y′′))dx′dy′dx′′dy.

13.2.4 Intertwining and Markov Functions

In this subsection (n1, n2) denotes one of {(n, n−1), (n, n), (n, n+1)}. First, recall
the definitions of Pnt and P̂ nt given in (13.15) and (13.16) respectively. Similarly,
we record here again, the following proposition and recall that it can in principle
completely describe the evolution of the Y particles and characterizes the finite
lifetime of the process Z as the killing time of Y .

Proposition 13.6 Assume (R) and (BC) hold for the L-diffusion. For t > 0 and f
a bounded Borel function onWn1(I ◦) we have,

�n1,n2 P̂
n1
t f = Qn1,n2

t �n1,n2f. (13.23)

Now, we define the following integral operator �n1,n2 acting on Borel functions
onWn1,n2(I ◦), whenever f is integrable as,

(�n1,n2f )(x) =
∫
Wn1,n2 (x)

n1∏
i=1

m̂(yi)f (x, y)dy, (13.24)

where we remind the reader that m̂(·) is the density with respect to Lebesgue
measure of the speed measure of the diffusion with generator L̂.

The following intertwining relation is the fundamental ingredient needed for
applying the theory of Markov functions, originating with the seminal paper of
Rogers and Pitman [58]. This proposition directly follows by performing the dy
integration in the explicit formula of the block determinant (or alternatively by
invoking the coalescing property of the stochastic flow

(
�s,t (·); s ≤ t

)
and the

original definitions).
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Proposition 13.7 Assume (R) and (BC) hold for the L-diffusion. For t > 0 we
have the following equality of positive kernels,

P
n2
t �n1,n2 = �n1,n2Q

n1,n2
t . (13.25)

Combining the two propositions above gives the following relation for the
Karlin–McGregor semigroups,

P
n2
t �n1,n2�n1,n2 = �n1,n2�n1,n2 P̂

n1
t . (13.26)

Namely, the two semigroups are themselves intertwined with kernel,

(
�n1,n2�n1,n2f

)
(x) =

∫
Wn1,n2 (x)

n1∏
i=1

m̂(y1)f (y)dy.

This implies the following. Suppose ĥn1 is a strictly positive (in W̊n1 ) eigenfunction
for P̂ n1

t namely, P̂ n1
t ĥn1 = eλn1 t ĥn1 , then (with both sides possibly being infinite),

(P
n2
t �n1,n2�n1,n2 ĥn1)(x) = eλn1 t (�n1,n2�n1,n2 ĥn1)(x).

We are interested in strictly positive eigenfunctions because they allow us to
define Markov processes, however non positive eigenfunctions can be built this way
as well.

We now finally arrive at our main results. We need to make precise one more
notion, already referenced several times in the introduction. For a possibly sub-
Markov semigroup (Pt ; t ≥ 0) or more generally, for fixed t , a sub-Markov kernel
with eigenfunction h with eigenvalue ect we define the Doob’s h-transform by
e−cth−1 ◦Pt ◦h. Observe that, this is now an honest Markov semigroup (or Markov
kernel).

If ĥn1 is a strictly positive in W̊n1 eigenfunction for P̂ n1
t then so is the function

ĥn1,n2(x, y) = ĥn1(y) for Qn1,n2
t from Proposition 13.6. We can thus define the

proper Markov kernel Q
n1,n2,ĥn1
t which is the h-transform of Qn1,n2

t by ĥn1 . Define
hn2(x), strictly positive in W̊n2 , as follows, assuming that the integrals are finite in
the case ofWn,n(I ◦) andWn+1,n(I ◦),

hn2(x) = (�n1,n2�n1,n2 ĥn1)(x),

and the Markov Kernel �
ĥn1
n1,n2(x, ·) with x ∈ W̊n2 by,

(�
ĥn1
n1,n2f )(x) =

1

hn2(x)

∫
Wn1,n2 (x)

n1∏
i=1

m̂(yi)ĥn1(y)f (x, y)dy.
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Finally, defining P
n2,hn2
t to be the Karlin–McGregor semigroup Pn2

t h-transformed
by hn2 we obtain:

Proposition 13.8 Assume (R) and (BC) hold for theL-diffusion. LetQn1,n2
t denote

one of the operators induced by the sub-Markov kernels onWn1,n2(I ◦) defined in the
previous subsection. Let ĥn1 be a strictly positive eigenfunction for P̂ n1

t and assume
that hn2(x) = (�n1,n2�n1,n2 ĥn1)(x) is finite in Wn2(I ◦), so that in particular

�
ĥn1
n1,n2 is a Markov kernel. Then, with the notations of the preceding paragraph

we have the following relation for t > 0,

P
n2,hn2
t �

ĥn1
n1,n2f = �ĥn1

n1,n2Q
n1,n2,ĥn2
t f, (13.27)

with f a bounded Borel function inWn1,n2(I ◦).

This intertwining relation and the theory of Markov functions (see Section 2 of [58]
for example) immediately imply the following corollary:

Corollary 13.1 Assume Z = (X, Y ) is a Markov process with semigroup

Q
n1,n2,ĥn2
t , then theX component is distributed as a Markov process with semigroup

P
n2,hn2
t started from x if (X, Y ) is started from �

ĥn1
n1,n2(x, ·). Moreover, the

conditional distribution of Y (t) given (X(s); s ≤ t) is �
ĥn1
n1,n2(X(t), ·).

We give a final definition in the case ofWn,n+1 only, that has a natural analogue
forWn,n andWn+1,n (we shall elaborate on the notion introduced below in Section
5.1 on well-posedness of SDEs with reflection). Take Y = (Y1, · · · , Yn) to be
an n-dimensional system of non-intersecting paths in W̊n(I ◦), so that in particular
Y1 < Y2 < · · · < Yn. Then, byX is a system of n+1 L-diffusions reflected off Y we
mean processes (X1(t), · · · , Xn+1(t); t ≥ 0), satisfying X1(t) ≤ Y1(t) ≤ X2(t) ≤
· · · ≤ Xn+1(t) for all t ≥ 0, and so that the following SDEs hold,

dX1(t) =
√

2a(X1(t))dβ1(t)+ b(X1(t))dt + dKl(t)− dK+
1 (t),

...

dXj (t) =
√

2a(Xj (t))dβj (t)+ b(Xj (t))dt + dK−
j (t)− dK+

j (t), (13.28)

...

dXn+1(t) =
√

2a(Xn+1(t))dβn+1(t)+ b(Xn+1(t))dt + dK−
n+1(t)− dKr(t),

where the positive finite variation processes Kl,Kr,K+
i , K

−
i are such that Kl

increases only when X1 = l, Kr increases only when Xn+1 = r , K+
i (t) increases

only when Yi = Xi and K−
i (t) only when Yi−1 = Xi , so that (X1(t) ≤ Y1(t) ≤
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· · · ≤ Xn+1(t)) ∈ Wn,n+1(I ) forever. Here β1, · · · , βn+1 are independent standard
Brownian motions which are moreover independent of Y . The reader should observe
that the dynamics between (X, Y ) are exactly the ones prescribed in the system of
SDEs (13.14) with the difference being that now the process has infinite lifetime.
This can be achieved from (13.14) by h-transforming the Y process as explained
in this section to have infinite lifetime. By pathwise uniqueness of solutions to
reflecting SDEs, with coefficients satisfying (YW), in continuous time-dependent
domains proven in Proposition 13.34, under any absolutely continuous change of
measure for the (X, Y )-process that depends only on Y (a Doob h-transform in
particular), the Eq. (13.28) still hold with the βi independent Brownian motions
which moreover remain independent of the Y process. We thus arrive at our main
theorem:

Theorem 13.1 Assume (R) and (BC+) hold for the L-diffusion and (YW) holds
for both the L and L̂ diffusions. Moreover, assume ĥn is a strictly positive
eigenfunction for P̂ nt . Suppose Y consists of n non-intersecting L̂-diffusions h-

transformed by ĥn, with transition semigroup P̂ n,ĥnt , and X is a system of n + 1

L-diffusions reflected off Y started according to the distribution �ĥnn,n+1(x, ·) for

some x ∈ W̊n+1(I ). Then X is distributed as a diffusion process with semigroup
P
n+1,hn+1
t started from x, where hn+1 = �n,n+1�n,n+1ĥn.

Proof By Proposition 13.2 and the discussion above, the process (X,Y) evolves

according to the Markov semigroup Q
n1,n2,ĥn2
t . Then, an application of the Rogers-

Pitman Markov functions criterion in [58] with the function φ(x, y) = x and

the intertwining (13.27) gives that, under the initial law �
ĥn
n,n+1(x, ·) for (X, Y ),

(X(t); t ≥ 0) is a Markov process with semigroup Pn+1,hn+1
t started from x, in

particular a diffusion.

The statement and proof of the result for Wn,n and Wn+1,n is completely
analogous.

Finally, the intertwining relation (13.27) also allows us to start the two-level
process (X, Y ) from a degenerate point, in particular the system of reflecting SDEs
when some of the Y coordinates coincide, as long as starting the process with

semigroup P
n2,hn2
t from such a degenerate point is valid. Suppose

(
μ
n2,hn2
t

)
t>0 is

an entrance law for P
n2,hn2
t , namely for t, s > 0,

μ
n2,hn2
s P

n2,hn2
t = μn2,hn2

t+s ,

then we have the following corollary, which is obtained immediately by applying

μ
n2,hn2
t to both sides of (13.27):
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Corollary 13.2 Under the assumptions above, if
(
μ
n2,hn2
s

)
s>0

is an entrance law

for the process with semigroup P
n2,hn2
t then

(
μ
n2,hn2
s �

ĥn1
n1,n2

)

s>0
forms an entrance

law for process (X, Y ) with semigroupQ
n1,n2,ĥn1
t .

Hence, the statement of Theorem 13.1 generalizes, so that if X is a system of
L-diffusions reflected off Y started according to an entrance law, then X is again
itself distributed as a Markov process.

The entrance laws that we will be concerned with in this paper will correspond to

starting the process with semigroup P
n2,hn2
t from a single point (x, · · · , x) for some

x ∈ I . These will be given by so called time dependent biorthogonal ensembles,
namely measures of the form,

det
(
fi(t, xj )

)n2
i,j=1 det

(
gi(t, xj )

)n2
i,j=1 . (13.29)

Under some further assumptions on the Taylor expansion of the one dimensional
transition density pt (x, y) they will be given by so called polynomial ensembles,
where one of the determinant factors is the Vandermonde determinant,

det
(
φi(t, xj )

)n2
i,j=1 det

(
xi−1
j

)n2

i,j=1
. (13.30)

A detailed discussion is given in the Appendix.

13.3 Applications and Examples

Applying the theory developed in the previous section we will now show
how some of the known examples of diffusions in Gelfand–Tsetlin patterns
fit into this framework and construct new processes of this kind. In particular
we will treat all the diffusions associated with Random Matrix eigenvalues,
a model related to Plancherel growth that involves a wall, examples coming
from Sturm-Liouville semigroups and finally point out the connection to
strong stationary times and superpositions and decimations of Random Matrix
ensembles.

First, recall that the space of Gelfand–Tsetlin patterns of depth N denoted by
GT(N) is defined to be,

{(
x(1), · · · , x(N)

)
: x(n) ∈ Wn, x(n) ≺ x(n+1)

}
,
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and also the space of symplectic Gelfand–Tsetlin patterns of depth N denoted by
GTs(N) is given by,

{(
x(1), x̂(1) · · · , x(N), x̂(N)

)
: x(n), x̂(n) ∈ Wn, x(n) ≺ x̂(n) ≺ x(n+1)

}
.

Please note the minor discrepancy in the definition of GT(N) with the notation
used for Wn,n+1: here for two consecutive levels x(n) ∈ Wn, x(n+1) ∈ Wn+1 in
the Gelfand–Tsetlin pattern the pair (x(n+1), x(n)) ∈ Wn,n+1 and not the other way
round.

13.3.1 Concatenating Two-Level Processes

We will describe the construction for GT, with the extension to GTs being
analogous. Let us fix an interval I with endpoints l < r and let Ln for n = 1, · · · , N
be a sequence of diffusion process generators in I (satisfying (13.6) and (13.7))
given by,

Ln = an(x) d
2

dx2
+ bn(x) d

dx
. (13.31)

We will moreover denote their transition densities with respect to Lebesgue measure
by pnt (·, ·).

We want to consider a process (X(t); t ≥ 0) =
((

X
(1)(t), · · · ,X(N)(t)

)
; t ≥ 0

)

taking values in GT(N) so that, for each 2 ≤ n ≤ N, X(n) consists of n independent
Ln diffusions reflected off the paths of X

(n−1). More precisely we consider the
following system of reflecting SDEs, with 1 ≤ i ≤ n ≤ N , initialized in GT(N)

and stopped at the stopping time τGT(N) to be defined below,

dX
(n)
i (t) =

√
2an
(
X
(n)
i (t)

)
dβ
(n)
i (t)+ bn

(
X
(n)
i (t)

)
dt + dK(n),−i − dK(n),+i ,

(13.32)

driven by an array
(
β
(n)
i (t); t ≥ 0, 1 ≤ i ≤ n ≤ N

)
of N(N+1)

2 independent stan-

dard Brownian motions. The positive finite variation processes K(n),−i and K(n),+i

are such that K(n),−i increases only when X
(n)
i = X

(n−1)
i−1 , K(n),+i increases only

when X
(n)
i = X

(n−1)
i withK(N),−1 increasing when X

(N)
1 = l andK(N),+N increasing

when X
(N)
N = r , so that X =

(
X
(1), · · · ,X(N)

)
stays in GT(N) forever. The
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stopping τGT(N) is given by,

τGT(N) = inf
{
t ≥ 0 : ∃ (n, i, j) 2 ≤ n ≤ N − 1, 1

≤ i < j ≤ n s.t. X(n)i (t) = X
(n)
j (t)

}
.

Stopping at τGT(N) takes care of the problematic possibility of two of the time
dependent barriers coming together. It will turn out that τGT(N) = ∞ almost surely
under certain initial conditions of interest to us given in Proposition 13.9 below;
this will be the case since then each level X(n) will evolve according to a Doob’s h-
transform and thus consisting of non-intersecting paths. That the system of reflecting
SDEs (13.32) above is well-posed, under a Yamada–Watanabe condition on the
coefficients

(√
an, bn

)
for 1 ≤ n ≤ N , follows (inductively) from Proposition 13.34.

We would like Theorem 13.1 to be applicable to each pair (X(n−1),X(n)), with
X = X

(n) and Y = X
(n−1). To this end, for n = 2, · · · , N , suppose that X(n−1) is

distributed according to the following h-transformed Karlin–McGregor semigroup
by the strictly positive in W̊n−1 eigenfunction gn−1 with eigenvalue ecn−1t ,

e−cn−1t
gn−1(y1, · · · , yn−1)

gn−1(x1, · · · , xn−1)
det
(
p̂nt (xi, yj )

)n−1
i,j=1 ,

where p̂nt (·, ·) denotes the transition density associated with the dual L̂n (killed at an
exit of regular absorbing boundary point) of Ln. We furthermore, denote by m̂n(·)
the density with respect to Lebesgue measure of the speed measure of L̂n. Then,
Theorem 13.1 gives that under a special initial condition (stated therein) for the
joint dynamics of (X(n−1),X(n)), with X = X

(n) and Y = X
(n−1), the projection

on X
(n) is distributed as the Gn−1 h-transform of n independent Ln diffusions, thus

consisting of non-intersecting paths, where Gn−1 is given by,

Gn−1(x1, · · · , xn) =
∫
Wn−1,n(x)

n−1∏
i=1

m̂n(yi)gn−1(y1, · · · , yn−1)dy1 · · · dyn−1.

(13.33)

Consistency then demands, by comparing (X(n−1),X(n)) and (X(n),X(n+1)), the
following condition between the transition kernels (which is also sufficient as we
see below for the construction of a consistent process (X(1), · · · ,X(N))), for t >
0, x, y ∈ W̊n,

e−cn−1t
Gn−1(y1, · · · , yn)
Gn−1(x1, · · · , xn) det

(
pnt (xi, yj )

)n
i,j=1

= e−cnt gn(y1, · · · , yn)
gn(x1, · · · , xn) det

(
p̂n+1
t (xi, yj )

)n
i,j=1

. (13.34)
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Denote the semigroup associated with these densities by
(
P(n)(t); t > 0

)
and also

define the Markov kernels Lnn−1(x, dy) for x ∈ W̊n by,

Lnn−1(x, dy) =
∏n−1
i=1 m̂

n(yi)gn−1(y1, · · · , yn−1)

Gn−1(x1, · · · , xn) 1

×
(
y ∈ Wn−1,n(x)

)
dy1 · · · dyn−1.

Then, by inductively applying Theorem 13.1, we easily see the following
Proposition holds:

Proposition 13.9 Assume (R) and (BC+) hold for the Ln-diffusion and (YW)
holds for the pairs of (Ln, L̂n)-diffusions for 2 ≤ n ≤ N . Moreover, suppose
that there exist functions gn and Gn so that the consistency relations (13.33)
and (13.34) hold. Let νN(dx) be a measure supported in W̊N . Consider the

process (X(t); t ≥ 0) =
((

X
(1)(t), · · · ,X(N)(t)

)
; t ≥ 0

)
in GT(N) satisfying the

SDEs (13.32) and initialized according to,

νN(dx
(N))LNN−1(x

(N), dx(N−1)) · · ·L2
1(x

(2), dx(1)). (13.35)

Then τGT(N) = ∞ almost surely,
(
X
(n)(t); t ≥ 0

)
for 1 ≤ n ≤ N evolves according

to P(n)(t) and for fixed T > 0 the law of
(
X
(1)(T ), · · · ,X(N)(T )

)
is given by,

(
νNP

(N)
T

)
(dx(N))LNN−1(x

(N), dx(N−1)) · · ·L2
1(x

(2), dx(1)). (13.36)

Proof For n = 2 this is the statement of Theorem 13.1. Assume that the proposition
is proven for n = N − 1. Observe that, an initial condition of the form (13.35) in
GT(N) gives rise to an initial condition of the same form in GT(N − 1):

ν̃N−1(dx
(N−1))LN−1

N−2(x
(N−1), dx(N−2)) · · ·L2

1(x
(2), dx(1)),

ν̃N−1(dx
(N−1)) =

∫
W̊N
νN(dx

(N))LNN−1(x
(N), dx(N−1)).

Then, by the inductive hypothesis
(
X
(N−1)(t); t ≥ 0

)
evolves according to

P(N−1)(t), with the joint evolution of (X(N−1),X(N)), by (13.33) and (13.34) with
n = N − 1, as in Theorem 13.1, with X = X

(N) and Y = X
(N−1) and with initial

condition νN(dx(N))LNN−1(x
(N), dx(N−1)). We thus obtain that

(
X
(N)(t); t ≥ 0

)

evolves according to P(N)(t) and for fixed T the conditional distribution of

X
(N−1)(T ) given X

(N)(T ) is LNN−1

(
X
(N)(T ), dx(N−1)

)
. This, along with the

inductive hypothesis on the law of GT(N − 1) at time T yields (13.36). The fact
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that τGT(N) = ∞ is also clear since each
(
X
(n)(t); t ≥ 0

)
is governed by a Doob

transformed Karlin–McGregor semigroup.

Similarly, the result above holds by replacing νN(dx(N)) by an entrance law(
ν
(N)
t (dx(N))

)
t≥0

for P(N)(t), in which case
(
νNP

(N)
T

)
(dx(N)) gets replaced by

ν
(N)
T (dx(N)).

The consistency relations (13.33) and (13.34) and the implications for which
choices of L1, · · · , LN to make will not be studied here. These questions are worth
further investigation and will be addressed in future work.

13.3.2 Brownian Motions in Full Space

The process considered here was first constructed by Warren in [66]. Suppose in our
setup of the previous section we take as the L-diffusion a standard Brownian motion

with generator 1
2
d2

dx2 , speed measure with density m(x) = 2 and scale function

s(x) = x. Then, its conjugate diffusion with generator L̂ from the results of the
previous section is again a standard Brownian motion, so that in particular Pnt = P̂ nt .
Recall that the Vandermonde determinant hn(x) =∏1≤i<j≤n(xj − xi) is a positive
harmonic function for Pnt (see for example [66] or by iteration from the results here).
Moreover, the h-transformed semigroup Pn,hnt is exactly the semigroup of n particle
Dyson Brownian motion.

Proposition 13.10 Let x ∈ W̊n+1(R) and consider a process (X, Y ) ∈ Wn,n+1(R)

started from the distribution
(
δx,

n!hn(y)
hn+1(x)

1(y ≺ x)dy
)

with the Y particles evolving

as n particle Dyson Brownian motion and the X particles as n + 1 standard
Brownian motions reflected off the Y particles. Then, the X particles are distributed
as n+ 1 Dyson Brownian motion started from x.

Proof We apply Theorem (13.1) with the L-diffusion being a standard Brownian
motion. Observe that, (R), (BC+) and (YW) are easily seen to be satisfied. Finally,
as recalled above the Vandermonde determinant hn(x) = ∏1≤i<j≤n(xj − xi) is
a positive harmonic function for n independent Brownian motions killed when
they intersect and the semigroup Pn,hnt is the one associated to n particle Dyson
Brownian motion.

In fact, we can start the process from the boundary ofWn,n+1(R) via an entrance
law as described in the previous section. To be more concrete, an entrance law for
P
n+1,hn+1
t describing the process starting from the origin, which can be obtained via

a limiting procedure detailed in the Appendix is the following:

μ
n+1,hn+1
t (dx) = Cn+1t

−(n+1)2/2 exp
(− 1

2t

n+1∑
i=1

x2
i

)
h2
n+1(x)dx.
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Thus, from the previous section’s results

ν
n,n+1,hn+1
t (dx, dy) = μn+1,hn+1

t (dx)
n!hn(y)
hn+1(x)

1(y ≺ x)dy,

forms an entrance law for the semigroup associated to the two-level process in
Proposition 13.10. Hence, we obtain the following:

Proposition 13.11 Consider a Markovian process (X, Y ) ∈ Wn,n+1(R) initialized
according to the entrance law νn,n+1,hn+1

t (dx, dy) with the Y particles evolving as
n particle Dyson Brownian motion and the X particles as n+ 1 standard Brownian
motions reflected off the Y particles. Then, the X particles are distributed as n + 1
Dyson Brownian motion started from the origin.

It can be seen that we are in the setting of Proposition 13.9 with the
Lk ≡ L-diffusion a standard Brownian motion and the functions gk,Gk
being up to a multiplicative constant equal to the Vandermonde determinant∏

1≤i<j≤k(xj − xi). Thus, we can concatenate these two-level processes to build a

process
(
X
n(t); t ≥ 0

) = (X(k)i (t); t ≥ 0, 1 ≤ i ≤ k ≤ n) taking values in GT(n)

recovering Proposition 6 of [66]. Being more concrete, the dynamics of Xn(t) are
as follows: level k of this process consists of k independent standard Brownian
motions reflected off the paths of level k − 1. Then, from Proposition 13.9 we
get:

Proposition 13.12 If Xn is started from the origin then the kth level process X(k)

is distributed as k particle Dyson Brownian motion started from the origin.

Connection to Hermitian Brownian Motion We now point out the well
known connection to the minor process of a Hermitian valued Brownian
motion.It is a well known fact that the eigenvalues of minors of Hermitian
matrices interlace. In particular, for any n × n Hermitian valued diffusion the
eigenvalues of the k × k minor

(
λ(k)(t); t ≥ 0

)
and of the (k − 1) × (k − 1)

minor
(
λ(k−1)(t); t ≥ 0

)
interlace:

(
λ
(k)
1 (t) ≤ λ(k−1)

2 (t) ≤ · · · ≤ λ(k)k (t); t ≥ 0
)

.

Now, let (H(t); t ≥ 0) be an n × n Hermitian valued Brownian motion.
Then

(
λ(k)(t); t ≥ 0

)
evolves as k particle Dyson Brownian motion. Also

for any fixed time T the vector (λ(1)(T ), · · · , λ(n)(T )) has the same dis-
tribution as X(T ), namely it is uniform on the space of GT(n) with
bottom level λ(n)(T ). However the evolution of these processes is dif-
ferent, in fact the interaction between two levels of the minor process(
λ(k−1)(t), λ(k)(t); t ≥ 0

)
is quite complicated involving long range interactions

and not the local reflection as in our case as shown in [1]. In fact, the evolution of(
λ(k−1)(t), λ(k)(t), λ(k+1)(t); t ≥ 0

)
is not even Markovian at least for some initial

conditions (again see [1]).
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13.3.3 Brownian Motions in Half Line and BES(3)

The process we will consider here, taking values in a symplectic Gelfand–Tsetlin
pattern, was first constructed by Cerenzia in [17] as the diffusive scaling limit of the
symplectic Plancherel growth model. It is built from reflecting and killed Brownian
motions in the half line. We begin in the simplest possible setting:

Proposition 13.13 Consider a process (X, Y ) ∈ W 1,1([0,∞)) started according
to the distribution (δx, 1[0,x]dy) for x > 0 with the Y particle evolving as a
reflecting Brownian motion in [0,∞) and the X particle as a Brownian motion
in (0,∞) reflected upwards off the Y particle. Then, the X particle is distributed as
a BES(3) process (Bessel process of dimension 3) started from x.

Proof Take as theL-diffusion a Brownian motion absorbed when it reaches 0 and let
P 1
t be the semigroup of Brownian motion killed (not absorbed) at 0. Then, its dual

diffusion L̂ is a reflecting Brownian motion in the positive half line and let P̂ 1
t be the

semigroup it gives rise to. Observe that, (R), (BC+) and (YW) are easily seen to be
satisfied. Letting, ĥ1,1(x) = 1 which is clearly a positive harmonic function for L̂,

we get that h1,1(x) =
∫ x

0 1dx = x. Now, note that P
1,h1,1
t is exactly the semigroup

of a BES(3) process. As is well known, a Bessel process of dimension 3 is a
Brownian motion conditioned to stay in (0,∞) by an h-transform with the function
x. Then, from the analogue of Theorem 13.1 inWn,n we obtain the statement.

Now we move to the next stage of 2 particles evolving as reflecting Brownian
motions being reflected off a BES(3) process.

Proposition 13.14 Consider a process (X, Y ) ∈ W 1,2([0,∞)) started according

to the following distribution

(
δ(x1,x2),

2y
x2

2−x2
1

1[x1,x2]dy
)

for x1 < x2 with the Y

particle evolving as a BES(3) process and the X particles as reflecting Brownian
motions in [0,∞) reflected off the Y particles. Then, the X particles are distributed
as two non-intersecting reflecting Brownian motions started from (x1, x2).

Proof We apply Theorem 13.1. We take as the L-diffusion a reflecting Brownian
motion. Write P 2

t for the Karlin–McGregor semigroup associated to 2 reflecting
Brownian motions killed when they intersect. Note that, (R), (BC+) and (YW)
are clearly satisfied. Observe that with ĥ1,2(x) = x, which is a positive harmonic
function for a Brownian motion killed at 0, we have:

h1,2(x1, x2) =
∫ x2

x1

xdx = 1

2
(x2

2 − x2
1).

Finally note that, P
2,h1,2
t is exactly the semigroup of 2 non-intersecting reflecting

Brownian motions in [0,∞).
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These relations can be iterated to n and n and also n and n+ 1 particles. Define
the functions:

ĥn,n(x) =
∏

1≤i<j≤n
(x2
j − x2

i ),

ĥn,n+1(x) =
∏

1≤i<j≤n
(x2
j − x2

i )

n∏
i=1

xi .

Also, consider the positive kernels �n1,n2 , defined in (13.24), with m̂ ≡ 2. Then,
an easy calculation (after writing these functions as determinants) gives that up to
a constant hn,n = �n,nĥn,n is equal to ĥn,n+1 and hn,n+1 = �n,n+1ĥn,n+1 is equal

to ĥn+1,n+1. Finally, let �
ĥn,n
n,n and �

ĥn,n+1
n,n+1 denote the corresponding normalized

Markov kernels.

Proposition 13.15 Consider a process (X, Y ) ∈ Wn,n([0,∞)) started according

to the distribution (δx,�
ĥn,n
n,n (x, ·)) for x ∈ W̊n([0,∞)) with the Y particles

evolving as n reflecting Brownian motions conditioned not to intersect in [0,∞)
and the X particles as n Brownian motion in (0,∞) reflected off the Y particles.
Then, the X particles are distributed as n BES(3) processes conditioned never to
intersect started from x.

Proof We take as the L-diffusion a Brownian motion absorbed at 0. Then, the L̂-
diffusion is a reflecting Brownian motion. As before, (R), (BC+) and (YW) are
clearly satisfied. Note that, ĥn,n is a harmonic function for n reflecting Brownian

motions killed when they intersect. Moreover, note that P
n,hn,n
t is exactly the

semigroup of n non-intersecting BES(3) processes (note that the n particle Karlin–
McGregor semigroup Pnt is that of n killed at zero Brownian motions). The
statement follows from the analogue of Theorem 13.1 inWn,n.

Proposition 13.16 Consider a process (X, Y ) ∈ Wn,n+1([0,∞)) started accord-

ing to the following distribution

(
δx,�

ĥn,n+1
n,n+1(x, ·)

)
for x ∈ W̊n+1([0,∞)) with the

Y particles evolving as n BES(3) processes conditioned not to intersect and the X
particles as n+1 reflecting Brownian motions in [0,∞) reflected off the Y particles.
Then, the X particles are distributed as n+ 1 non-intersecting reflecting Brownian
motions started from x.

Proof We take as the L-diffusion a reflecting Brownian motion. Then, the L̂-
diffusion is a Brownian motion absorbed at 0. As before, the assumptions (R),
(BC+) and (YW) are clearly satisfied. Note that, ĥn,n+1 is harmonic for the cor-
responding Karlin–McGregor semigroup P̂ nt , associated with n Brownian motions

killed at zero and when they intersect. Moreover, note that the semigroup P̂
n,ĥn,n+1
t ,

namely the semigroup P̂ nt h-transformed by ĥn,n+1, gives the semigroup of the

process Y . Finally, observe that P
n+1,hn,n+1
t is exactly the semigroup of n + 1
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non-intersecting reflecting Brownian motions. The statement follows from Theo-
rem 13.1.

Remark 13.2 The semigroups considered above are also the semigroups of n
Brownian motions conditioned to stay in a Weyl Chamber of type B and type D
(after we disregard the sign of the last coordinate) respectively (see for example
[42] where such a study was undertaken).

We can in fact start these processes from the origin, by using the following
explicit entrance law (see for example [17] or the Appendix for the general recipe)

for P
n,hn,n
t and P

n,hn−1,n
t issued from zero,

μ
n,hn,n
t (dx) = C′

n,nt
−n(n+ 1

2 ) exp

(
− 1

2t

n∑
i=1

x2
i

)
h2
n,n(x)dx,

μ
n,hn−1,n
t (dx) = C′

n−1,nt
−n(n− 1

2 ) exp

(
− 1

2t

n∑
i=1

x2
i

)
h2
n−1,n(x)dx.

Concatenating these two-level processes, we construct a process
(
X
(n)
s (t); t ≥ 0

)

= (X(1)(t) ≺ X̂(1)(t) ≺ · · · ≺ X(n)(t) ≺ X̂(n)(t); t ≥ 0) in GTs(n) with dynamics
as follows: Firstly,X(1)1 is a Brownian motion reflecting at the origin. Then, for each
k, the k particles corresponding to X̂(k) perform independent Brownian motions
reflecting off the X(k) particles to maintain interlacing. Finally, for k ≥ 2 the
k particles corresponding to X(k) reflect off X̂(k−1) and also in the case of X(k)1
reflecting at the origin.

Then, the symplectic analogue of Proposition 13.9 (which is again proven in
the same way by consistently patching together two-level processes) implies the
following, recovering the results of Section 2.3 of [17]:

Proposition 13.17 If Xns is started from the origin then the projections onto X(k)

and X̂(k) are distributed as k non-intersecting reflecting Brownian motions and k
non-intersecting BES(3) processes respectively started from the origin.

13.3.4 Brownian Motions in an Interval

Let I = [0, π ] for concreteness and let the L-diffusion be a reflecting Brownian
motion in I . Then its dual, the L̂-diffusion is a Brownian motion absorbed at 0 or π .
It will be shown in Corollary 13.3, that the minimal positive eigenfunction, is given
up to a (signed) constant factor by,

ĥn(x) = det(sin(kxj ))
n
k,j=1. (13.37)
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This is the eigenfunction that corresponds to conditioning these Brownian motions
to stay in the interval (0, π) and not intersect forever. Also, observe that up to a
constant factor ĥn is given by (see the notes [20, 53] and Remark 13.4 below for the
connection to classical compact groups),

n∏
i=1

sin(xi)
∏

1≤i<j≤n

(
cos(xi)− cos(xj )

)
.

Now, via the iterative procedure of producing eigenfunctions, namely by taking
�n,n+1ĥn, where �n,n+1 is defined in (13.24), we obtain that up to a (signed)
constant factor,

hn+1(x) = det(cos((k − 1)xj ))
n+1
k,j=1, (13.38)

is a strictly positive eigenfunction for Pn+1
t . In fact, it is the minimal positive

eigenfunction (again this follows from Corollary 13.3) of Pn+1
t and it corresponds to

conditioning these reflected Brownian motions in the interval to not intersect. This
is also (see [20, 53] and Remark 13.4) given up to a constant factor by,

∏
1≤i<j≤n+1

(
cos(xi)− cos(xj )

)
.

Define the Markov kernel:

(�
ĥn
n,n+1f )(x) =

n!
hn+1(x)

∫
Wn,n+1(x)

ĥn(y)f (x, y)dy.

Then we have the following result:

Proposition 13.18 Let x ∈ W̊n+1([0, π ]). Consider a process (X, Y ) ∈
Wn,n+1([0, π ]) started at

(
δx,�

ĥn
n,n+1(x, ·)

)
with the Y particles evolving as n

Brownian motions conditioned to stay in (0, π) and conditioned to not intersect and
the X particles as n + 1 reflecting Brownian motions in [0, π ] reflected off the Y
particles. Then the X particles are distributed as n + 1 non-intersecting Brownian
motions reflected at the boundaries of [0, π ] started from x.

Proof Take as the L-diffusion a reflecting Brownian motion in [0, π ]. The L̂-
diffusion is a Brownian motion absorbed at 0 or π . Observe that, the assumptions
(R), (BC+) and (YW) are satisfied. Moreover, as noted above ĥn is the ground
state for n Brownian motions killed when they hit 0 or π or when they intersect.
The statement of the proposition then follows from Theorem 13.1.

Remark 13.3 The dual relation, in the following sense is also true: If we reflect n
Brownian motions between n+1 reflecting Brownian motions in [0, π ] conditioned
not to intersect then we obtain n Brownian motions conditioned to stay in (0, π) and
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conditioned not to intersect. This is obtained by noting that up to a constant factor
ĥn defined in (13.37) is given by �n+1,nhn+1, with hn+1 as in (13.38).

Remark 13.4 The processes studied above are related to the eigenvalue evolutions
of Brownian motions on SO(2(n+ 1)) (reflecting Brownian motions in [0, π ]) and
USp(2n) (conditioned Brownian motions in [0, π ]) respectively (see e.g. [56] for
skew product decompositions of Brownian motions on manifolds of matrices).

Remark 13.5 It is also possible to build the following interlacing processes with
equal number of particles. Consider as the Y process n Brownian motions in [0, π)
reflecting at 0 and conditioned to stay away from π and not to intersect. In our

framework L̂ = 1
2
d2

dx2 with Neumann boundary condition at 0 and Dirichlet at π .
Then the minimal eigenfunction corresponding to this conditioning is given up to a
sign by,

det

(
cos

((
k − 1

2

)
yj

))n
k,j=1

.

Now let X be n Brownian motions in (0, π ] reflecting at π and reflected off the Y
particles. Then the projection onto theX process (assuming the two levels (X, Y ) are
started appropriately) evolves as n Brownian motions in (0, π ] reflecting at π and
conditioned to stay away from 0 and not to intersect. These processes are related to
the eigenvalues of Brownian motions on SO(2n+1) and SO−(2n+1) respectively.

13.3.5 Brownian Motions with Drifts

The processes considered here were first introduced by Ferrari and Frings in [31]
(there only the fixed time picture was studied, namely no statement was made
about the distribution of the projections on single levels as processes). They form a
generalization of the process studied in the first subsection.

13.3.5.1 Hermitian Brownian with Drifts

We begin by a brief study of the matrix valued process first. Let (Yt ; t ≥ 0) =
(Bt ; t ≥ 0) be an n × n Hermitian Brownian motion. We seek to add a matrix of
drifts and study the resulting eigenvalue process. For simplicity letM be a diagonal
n × n Hermitian matrix with distinct ordered eigenvalues μ1 < · · · < μn and
consider the Hermitian valued process

(
YMt ; t ≥ 0

) = (Bt + tM; t ≥ 0).
Then a computation that starts by applying Girsanov’s theorem, using uni-

tary invariance of Hermitian Brownian motion, integrating over U(n), the group
of n × n unitary matrices, and then computing that integral using the classi-
cal Harish Chandra-Itzykson-Zuber (HCIZ) formula gives that the eigenvalues
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(λM1 (t), · · · , λMn (t); t ≥ 0) of
(
YMt ; t ≥ 0

)
form a diffusion process with explicit

transition density given by,

s
n,M
t (λ, λ′) = exp

(− 1

2

n∑
i=1

μ2
i t
)det

(
exp(μjλ′i ))

)n
i,j=1

det
(

exp(μjλi))
)n
i,j=1

det
(
φt (λi, λ

′
j )
)n
i,j=1,

where φt is the standard heat kernel. For a proof of this fact, which uses the theory
of Markov functions, see for example [49].

Observe that, sn,Mt is exactly the transition density of n Brownian motions with
driftsμ1 < · · · < μn conditioned to never intersect as studied in [6]. More generally,
if we look at the k × k minor of

(
YMt ; t ≥ 0

)
then its eigenvalues evolve as k

Brownian motions with drifts μ1 < · · · < μk conditioned to never intersect.

Remark 13.6 These processes also appear in the recent work of Ipsen and Schome-
rus [38] as the finite time Lyapunov exponents of “Isotropic Brownian motions”.

Now, write μ(k) for (μ1, · · · , μk) and Pn,μ
(n)

t for the semigroup that arises from

s
n,M
t . Then, un,μ

(n)

t (dλ) defined by,

u
n,μ(n)

t (dλ) = constn,t det(e−(λi−tμj )2/2t )ni,j=1

∏
1≤i<j≤n(λj − λi)∏

1≤i<j≤n(μ
(n)
j − μ(n)i )

dλ,

forms an entrance law for Pn,μ
(n)

t starting from the origin (see for example [31] or
the Appendix).

13.3.5.2 Interlacing Construction with Drifting Brownian Motions
with Reflection

Now moving on to Warren’s process with drifts (as referred to in [31]). We seek
to build n + 1 Brownian motions with drifts μ1 < · · · < μn+1 conditioned to
never intersect by reflecting off n Brownian motions with drifts μ1 < · · · < μn
conditioned to never intersect n+ 1 independent Brownian motions each with drift
μn+1. We prove the following:

Proposition 13.19 Consider a Markov process (X, Y ) ∈ Wn,n+1(R) started from
the origin with the Y particles evolving as n Brownian motions with drifts μ1 <

· · · < μn conditioned to never intersect and the X particles as n + 1 Brownian
motions all with drift μn+1 reflected off the Y particles. Then, the X particles are
distributed as n+ 1 Brownian motions with drifts μ1 < · · · < μn+1 conditioned to
never intersect started from the origin.

Proof Let the L-diffusion be a Brownian motion with drift μn+1, namely with

generator L = 1
2
d2

dx2 + μn+1
d
dx

. Then, its dual diffusion L̂ = 1
2
d2

dx2 − μn+1
d
dx
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has speed measure m̂(x) = 2e−2μn+1x . Note that, the assumptions (R), (BC+)
and (YW) are easily seen to be satisfied. Let Pn+1,μn+1

t and P̂ n,μn+1
t denote the

corresponding Karlin–McGregor semigroups. Consider the (not yet normalized)
positive kernel �μn+1

n,n+1 given by,

(�
μn+1
n,n+1f )(x) =

∫
Wn,n+1(x)

f (x, y)

n∏
i=1

2e−2μn+1yi dyi .

and define the function

ĥ
μn+1,μ

(n)

n (y) =
n∏
i=1

eμn+1yi det(eμiyj )ni,j=1.

Note that, ĥμn+1,μ
(n)

n is a strictly positive eigenfunction for P̂ n,μn+1
t . Moreover, the h-

transform of P̂ n,μn+1
t with ĥμn+1,μ

(n)

n is exactly the semigroup Pn,μ
(n)

t of n Brownian
motions with drifts (μ1, · · · , μn) conditioned to never intersect. By integrating the
determinant we get,

(�
μn+1
n,n+1ĥ

μn+1,μ
(n)

n )(x) = 2n∏n
i=1(μn+1 − μi) det(e(μi−μn+1)xj )n+1

i,j=1,

and note that the h-transform of Pn+1,μn+1
t by �μn+1

n,n+1ĥ
μn+1,μ

(n)

n is Pn+1,μ(n+1)

t .
Finally, defining the entrance law for the two-level process started from the origin by

ν
n,n+1,μn+1,μ

(n)

t = un+1,μ(n+1)

t �
μn+1,μ

(n)

n,n+1 , we obtain the statement of the proposition
from Theorem 13.1 (see also discussion after Corollary 13.2).

Remark 13.7 A ‘positive temperature’ version of the proposition above appears as
Proposition 9.1 in [54].

We can then iteratively apply the result above to concatenate two-level processes
and build a process:

(
X(μ1,··· ,μn)(t); t ≥ 0

) =
(
X(1)μ1

(t) ≺ X(2)μ2
(t) ≺ · · · ≺ X(n)μn (t); t ≥ 0

)
,

in GT(n) as in Proposition 13.9 whose joint dynamics are given as follows (this
was also described in [31]): Level k consists of k copies of independent Brownian
motions all with drifts μk reflected off the paths of level k − 1. Then, from
Proposition 13.9 one obtains:

Proposition 13.20 Assume μ1 < μ2 < · · · < μn. Consider the process(
X(μ1,··· ,μn)(t); t ≥ 0

)
defined above started from the origin. Then, the projection

onX(k)μk is distributed as k Brownian motions with drifts μ1 < · · · < μk conditioned
to never intersect, issueing from the origin.
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Remark 13.8 Note that, the multilevel process whose construction is described
above via the hard reflection dynamics and the minors of the Hermitian valued
process

(
YMt ; t ≥ 0

)
coincide on each fixed level k (as single level processes, this is

what we have proven here) and also at fixed times (this is already part of the results
of [31]). However, they do not have the same law as processes. Finally, for the fixed
time correlation kernel of this Gelfand–Tsetlin valued process see Theorem 1 of
[31].

13.3.6 Geometric Brownian Motions and Quantum
Calogero-Sutherland

A geometric Brownian motion of unit diffusivity and drift parameter α is given by
the SDE,

ds(t) = s(t)dW(t)+ αs(t)dt,

which can be solved explicitly to give that,

s(t) = s(0) exp

(
W(t)+

(
α − 1

2

)
t

)
.

We will assume that s(0) > 0, so that the process lives in (0,∞). Its generator is
given by,

Lα = 1

2
x2 d

2

dx2
+ αx d

dx
,

with both 0 and ∞ being natural boundaries. With hn(x) = ∏1≤i<j≤n(xj − xi)
denoting the Vandermonde determinant it can be easily verified (although it also
follows by recursively applying the results below) that hn is a positive eigenfunction
of n independent geometric Brownian motions, namely that with,

Lαn =
n∑
i=1

1

2
x2
i ∂

2
xi

+ α
n∑
i=1

xi∂xi ,

we have,

Lαnhn = n(n− 1)

2

(
n− 2

3
+ α
)
hn = cn,αhn.
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The quantum Calogero-Sutherland Hamiltonian Hθ
CS (see [15, 64]) is given by,

Hθ
CS = 1

2

n∑
i=1

(
xi∂xi

)2 + θ
n∑
i=1

∑
j �=i

x2
i

xi − xj ∂xi .

Its relation to geometric Brownian motions lies in the following simple observation.
For θ = 1 this quantum Hamiltonian coincides with the infinitesimal generator of n
independent geometric Brownian motions with drift parameter 1

2 h-transformed by
the Vandermonde determinant namely,

H1
CS = h−1

n ◦ L
1
2
n ◦ hn − cn, 1

2
.

We now show how one can construct a GT(n) valued process so that the kth

level consists of k geometric Brownian motions with drift parameter n − k + 1
2 h-

transformed by the Vandermonde determinant. The key ingredient is the following:

Proposition 13.21 Consider a process (X, Y ) ∈ Wn,n+1((0,∞)) started accord-
ing to the following distribution (δx,

n!hn(y)
hn+1(x)

1(y ≺ x)dy) for x ∈ W̊n+1((0,∞))
with the Y particles evolving as n non-intersecting geometric Brownian motions
with drift parameter α+1 conditioned to not intersect via an h-transform by hn and
the X particles evolving as n+ 1 geometric Brownian motions with drift parameter
α being reflected off the Y particles. Then, the X particles are distributed as n + 1
non-intersecting geometric Brownian motions with drift parameter α conditioned to
not intersect via an h-transform by hn+1, started form x ∈ W̊n+1((0,∞)).
Proof Taking as the L-diffusion Lα , and note that its speed measure is given
by mα(x) = 2x2α−2, the conjugate diffusion is L̂α = L1−α . Observe that, the
assumptions (R), (BC+) and (YW) are clearly satisfied.

First, note that an easy calculation gives that the h-transform of L̂α by m̂α−1

is an Lα+1-diffusion, namely a geometric Brownian motion with drift param-
eter α + 1. Hence, an h-transform of n L̂α-diffusions by the eigenfunction∏n
i=1 m̂

α−1
(yi)hn(y) gives n non-intersecting geometric Brownian motions with

drift parameter α + 1 conditioned to not intersect via an h-transform by hn. The
statement of the proposition is then obtained from an application of Theorem 13.1.

Remark 13.9 Observe that, under an application of the exponential map the results
of Sect. 13.3.5, give a generalization of Proposition 13.21 above.

Using the proposition above it is straightforward, and we will not elaborate on,
how to iterate to build the GT(n) valued process with the correct drift parameters
on each level.

Remark 13.10 The following geometric Brownian motion,

ds(t) = √
2s(t)dW(t)− (u+ u′ + v + v′)s(t)dt,
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also arises as a continuum scaling limit after we scale space by 1/N and send N to
infinity of the bilateral birth and death chain with birth rates (x − u)(x − u′) and
death rates (x + v)(x + v′) considered by Borodin and Olshanski in [11].

13.3.7 Squared Bessel Processes and LUE Matrix Diffusions

In this subsection we will first construct a process taking values in GT being the
analogue of the Brownian motion model for squared Bessel processes and having
close connections to the LUE matrix valued diffusion. We also build a process in
GTs generalizing the construction of Cerenzia (after a “squaring” transformation of
the state space) for all dimensions d ≥ 2. We begin with a definition:

Definition 13.7 The squared Bessel process of dimension d, abbreviated from now
on as BESQ(d) process, is the one dimensional diffusion with generator in (0,∞),

L(d) = 2x
d2

dx2
+ d d

dx
.

The origin is an entrance boundary for d ≥ 2, a regular boundary point for 0 < d <
2 and an exit one for d ≤ 0. Define the index ν(d) = d

2 −1. The density of the speed
measure of L(d) is mν(y) = cνyν and its scale function sν(x) = c̄νx−ν , ν �= 0 and
s0(x) = logx. Then from the results of the previous section its conjugate, the L̂(d)

diffusion, is a BESQ(2 − d) process with the dual boundary condition. Moreover,
the following relation will be key, see [35]: A Doob h-transform of a BESQ(2−d)
process by its scale function xν+1 gives a BESQ(d + 2) process.

Note that, condition (BC+) only holds for dimensions d ∈ (−∞, 0] ∪ [2,∞);
this is because for 0 < d < 2, the origin is a regular boundary point and the diffusion
coefficient degenerates (these values of the parameters will not be considered here).
We use the following notation throughout, for d ∈ (−∞, 0] ∪ [2,∞): we write
P
n,(d)
t for the Karlin–McGregor semigroup of n BESQ(d) processes killed when

they intersect or when they hit the origin, in case d ≤ 0.
We start in the simplest setting of W 1,1 and consider the situation of a single

BESQ(2 − d) process being reflected upwards off a BESQ(d) process:

Proposition 13.22 Let d ≥ 2. Consider a process (X, Y ) ∈ W 1,1([0,∞)) started
according to the distribution (δx,

(ν+1)yν

xν+1 1[0,x]dy) for x > 0 with the Y particle
evolving as a BESQ(d) process and the X particle as a BESQ(2 − d) process
in (0,∞) reflected off the Y particle. Then, the X particle is distributed as a
BESQ(d + 2) process started from x.

Proof We take as the L-diffusion a BESQ(2 − d) process. Then, the L̂-diffusion
is a BESQ(d) process. Note that, the assumptions (R), (BC+) and (YW) are
satisfied. Since ĥ(d)1,1(x) = 1 is invariant for BESQ(d), the following is invariant
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for BESQ(2 − d),

h
(d)
1,1(x) =

∫ x
0
cνy

νdy = cν

ν + 1
xν+1.

Then, as already remarked above, see [35], the h-transformed process with semi-

group P
1,(2−d),h(d)1,1
t is exactly a BESQ(d + 2) process. The analogue of Theo-

rem 13.1 inWn,n gives the statement of the proposition.

We expect that the restriction to d ≥ 2 is not necessary for the result to hold
(it should be true for d > 0). In fact, Corollary 13.13, corresponds to d = 1, after
we perform the transformation x �→ √

x, which in particular maps BESQ(1) and
BESQ(3) to reflecting Brownian motion and BES(3) respectively.

We now move on to an arbitrary number of particles. Define the functions,

ĥ(d)n,n(x) =
∏

1≤i<j≤n
(xj − xi) = det

(
x
j−1
i

)n
i,j=1

,

ĥ
(d)
n,n+1(x) =

∏
1≤i<j≤n

(xj − xi)
n∏
i=1

xν+1
i = det

(
x
j+ν
i

)n
i,j=1

.

Moreover, let �n−1,n and �n,n be the following positive kernels, defined as
in (13.24), where we recall that mν(d)(·) is the speed measure density with respect
to Lebesgue measure of a BESQ(d) process:

(�n−1,nf )(x) =
∫
Wn−1,n(x)

n−1∏
i=1

mν(2−d)(yi)f (x, y)dy,

(�n,nf )(x) =
∫
Wn,n(x)

n1∏
i=1

mν(d)(yi)f (x, y)dy.

An easy calculation gives that h(d)n−1,n(x) = cn−1,n(ν)(�n−1,n�n−1,nĥ
(d)
n−1,n)(x) is

equal to ĥ(d)n,n(x) and h(d)n,n(x) = cn,n(ν)(�n,n�n,nĥ(d)n,n)(x) is equal ĥ(d)n,n+1(x), where
cn−1,n(ν), cn,n(ν) are explicit constants whose exact values are not important in
what follows. Then we have:

Proposition 13.23 Let d ≥ 2. Consider a process (X, Y ) ∈ Wn,n+1([0,∞))
started according to the following distribution (δx,

n!∏1≤i<j≤n(yj−yi )∏
1≤i<j≤n+1(xj−xi )1(y ≺ x)dy)

for x ∈ W̊n+1([0,∞)) with the Y particles evolving as n non-intersecting
BESQ(d+2) processes and theX particles evolving as n+1 BESQ(d) processes
being reflected off the Y particles. Then, the X particles are distributed as n + 1
non-intersecting BESQ(d) processes started form x ∈ W̊n+1([0,∞)).
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Proof Take as the L-diffusion a BESQ(d) process. Then, the L̂-diffusion is a
BESQ(2 − d) process. Note that, the assumptions (R), (BC+) and (YW) are sat-
isfied. We use the positive harmonic function ĥ(d)n,n+1(x) for the semigroup Pn,(2−d)t

of n independent BESQ(2 − d) processes killed when they hit 0 or when they
intersect, which transforms them into n non-intersecting BESQ(d + 2) processes.

Finally observe that, P
n+1,(d),h(d)n,n+1
t is exactly the semigroup of n + 1 BESQ(d)

processes conditioned to never intersect (see e.g. [47]). Then, Theorem 13.1 gives
the statement of the proposition.

Proposition 13.24 Let d ≥ 2. Consider a process (X, Y ) ∈ Wn,n([0,∞)) started

according to the following distribution
(
δx,

cn,n(ν)ĥ
(d)
n,n(y)

∏n
i=1mν(d)(yi )

h
(d)
n,n(x)

1(y ≺ x)dy
)

for x ∈ W̊n([0,∞)) with the Y particles evolving as n non-intersecting BESQ(d)
processes and theX particles evolving as n BESQ(2−d) processes being reflected
off the Y particles. Then, the X particles are distributed as n non-intersecting
BESQ(d + 2) processes started form x ∈ W̊n([0,∞)).
Proof Take as the L-diffusion a BESQ(2 − d) process. Then, the L̂-diffusion is a
BESQ(d) process. Note that, the assumptions (R), (BC+) and (YW) are satisfied.
We use the positive harmonic function ĥ(d)n,n(x) for the semigroup Pn,(d)t of n
independent BESQ(d) processes killed when they intersect. Furthermore note that,

P
n,(2−d),h(d)n,n
t is the semigroup of n BESQ(d + 2) processes conditioned to never

intersect (the transformation by h(d)n,n corresponds to transforming the BESQ(2−d)
processes to BESQ(d + 2) and then conditioning these to never intersect). Then,
the analogue of Theorem 13.1 inWn,n gives the statement.

It is possible to start both of these processes from the origin via the following
explicit entrance law for n non-intersecting BESQ(d) processes (see for example
[47]),

μ
n,(d)
t (dx) = Cn,d t−n(n+ν)

∏
1≤i<j≤n

(xj − xi)2
n∏
i=1

xνi e
− 1

2t xi dx.

Defining the two entrance laws,

ν
n,n,ĥ

(d)
n,n

t (dx, dy) = μn,(d+2)
t (dx)

cn,n(ν)ĥ
(d)
n,n(y)

∏n
i=1mν(d)(yi)

h
(d)
n,n(x)

1(y ≺ x)dy,

ν
n,n+1,ĥ(d)n,n+1
t (dx, dy) = μn+1,(d)

t (dx)
n!∏1≤i<j≤n(yj − yi)∏

1≤i<j≤n+1(xj − xi)
1(y ≺ x)dy,

for the processes with semigroups corresponding to the pair (X, Y ) described in
Propositions 13.24 and 13.23 respectively, we immediately arrive at the following
proposition in analogy to the case of Dyson’s Brownian motion:
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Proposition 13.25

(a) Let d ≥ 2. Consider a process (X, Y ) ∈ Wn,n+1([0,∞)) started according to

the entrance law ν
n,n+1,ĥ(d)n,n+1
t (dx, dy) with the Y particles evolving as n non-

intersecting BESQ(d + 2) processes and the X particles evolving as n + 1
BESQ(d) processes being reflected off the Y particles. Then, the X particles
are distributed as n+1 non-intersecting BESQ(d) processes issueing from the
origin.

(b) Let d ≥ 2. Consider a process (X, Y ) ∈ Wn,n([0,∞)) started according

to the entrance law ν
n,n,ĥ

(d)
n,n

t (dx, dy) with the Y particles which evolve as
n non-intersecting BESQ(d) processes and the X particles evolving as n
BESQ(2 − d) processes being reflected off the Y particles. Then, the X
particles are distributed as n non-intersecting BESQ(d+2) processes issueing
from the origin.

Making use of the proposition above we build two processes in Gelfand–Tsetlin
patterns. First, the process in GT(n). To do this, we make repeated use of part (a)
of Proposition 13.25 to consistently concatenate two-level processes. Note the fact
that the dimension d, of the BESQ(d) processes, decreases by 2 at each stage that
we increase the number of particles. So we fix n the depth of the Gelfand–Tsetlin
pattern and d∗ the dimension of the BESQ processes at the bottom of the pattern.
Then, we build a consistent process,

(
X
n,(d∗)(t); t ≥ 0

)
= (X(k)i (t); t ≥ 0, 1 ≤ i ≤ k ≤ n),

taking values in GT(n) with the joint dynamics described as follows: X(1)1 evolves
as a BESQ(d∗ + 2(n− 1)) process. Moreover, for k ≥ 2 particles at level k evolve
as k independent BESQ(d∗+2(n−k)) processes reflecting off the (k−1) particles
at the (k − 1)th level to maintain the interlacing. Hence, from Proposition 13.9 (see
discussion following it regarding the entrance laws) we obtain:

Proposition 13.26 Let d ≥ 2. If Xn,(d
∗) is started from the origin according to the

entrance law then the projection onto the kth level process X(k) is distributed as k
BESQ(d∗ + 2(n− k)) processes conditioned to never intersect.

By making alternating use of parts (a) and (b) of Proposition 13.25 we construct
a consistent process

(
X
n,(d)(t); t ≥ 0

)
= (X(1)(t) ≺ X̂(1)(t) ≺ · · · ≺ X(n)(t) ≺ X̂(n)(t); t ≥ 0)

in GTs(n), for which Proposition 13.17 can be viewed as the d = 1 case, and
whose joint dynamics are given as follows: X(1)1 evolves as a BESQ(d) process.
Then, for any k, the k particles corresponding to X̂(k) evolve as k independent
BESQ(2 − d) processes reflecting off the particles corresponding to X(k) in
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order for the interlacing to be maintained. Moreover, for k ≥ 2 the k particles
corresponding to X(k) evolve as k independent BESQ(d) processes reflecting off
the particles corresponding to X̂(k−1) in order to maintain the interlacing.

Then, it is a consequence of the symplectic analogue of Proposition 13.9
(involving an entrance law, see the discussion following Proposition 13.9) that:

Proposition 13.27 Let d ≥ 2. If X
n,(d) is started from the origin then the

projections onto X(k) and X̂(k) are distributed as k non-intersecting BESQ(d) and
k non-intersecting BESQ(d + 2) processes respectively started from the origin.

Connection to Wishart Processes We now spell out the connection between
the processes constructed above and matrix valued diffusion processes by first
considering the connection to X

n,(d∗), for d∗ even. Let d∗ = 2 for simplicity.

Take (A(t); t ≥ 0) to be an n × n complex Brownian matrix and consider
(H(t); t ≥ 0) = (A(t)A(t)∗; t ≥ 0). This is called the Wishart process and was
first studied in the real symmetric case by Marie-France Bru in [13], see also [24]
for a detailed study in the Hermitian setting and some of its properties. Then, it is
well known (first proven in [47]), we have that

(
λ(k)(t); t ≥ 0

)
, the eigenvalues of

the k × k minor of (H(t); t ≥ 0), evolve as k non-colliding BESQ(2(n − k + 1))
processes. These eigenvalues then interlace with

(
λ(k−1)(t); t ≥ 0

)
which evolve

as k − 1 non-colliding BESQ(2(n − k + 1) + 1) processes with the fixed
time T conditional density of λ(k−1)(T ) given λ(k)(T ) on Wk−1,k(λ(k)(T )) being

�
ĥ
(d)
k−1,k
k−1,k

(
λ(k)(T ), ·) (see Section 3 of [31], Section 3.3 of [33]). Inductively (since

for fixed T , λ(n−k)(T ) is a Markov chain in k see Section 4 of [31]) this gives that
the distribution at fixed times T of the vector (λ(1)(T ), · · · , λ(n)(T )) is uniform over
the space of GT(n) with bottom level λ(n)(T ). Moreover, by making use of this
coincidence along space-like paths one can write down the dynamical correlation
kernel (along space-like paths) of the process we constructed from Theorem 1.3 of
[30].

Remark 13.11 Although X
n,(2) and the minor process described in the preceding

paragraph on single levels or at fixed times coincide, the interaction between con-
secutive levels of the minor process should be different from local hard reflection,
although the dynamics of consecutive levels of the LUE process have not been
studied yet (as far as we know).

We now describe the random matrix model that parallels X
n,(d)
s for d even.

Start with a row vector
(
A(d)(t); t ≥ 0

)
of d/2 independent standard complex

Brownian motions, then
(
X(d)(t); t ≥ 0

) = (
A(d)(t)A(d)(t)∗; t ≥ 0

)
evolves as

a one dimensional BESQ(d) diffusion (this is really just the definition of a
BESQ(d) process). Now, add another independent complex Brownian motion to
make

(
A(d)(t); t ≥ 0

)
a row vector of length d/2 + 1. Then,

(
X(d)(t); t ≥ 0

) =(
A(d)(t)A(d)(t)∗; t ≥ 0

)
evolves as a BESQ(d + 2) process interlacing with the

aforementioned BESQ(d). At fixed times, the fact that the conditional distribution
of the BESQ(d) process given the position x of the BESQ(d + 2) process is
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proportional to y
d
2 −11[0,x] follows from the conditional laws in [27] (see also

[23]) and will be spelled out in a few sentences. Now, make
(
A(d)(t); t ≥ 0

)
a

2 × ( d2 + 1
)

matrix by adding a row of d/2 + 1 independent complex Brownian
motions, the eigenvalues of

(
X(d)(t); t ≥ 0

) = (A(d)(t)A(d)(t)∗; t ≥ 0
)

evolve as 2
BESQ(d) processes which interlace with the BESQ(d + 2). We can continue this
construction indefinitely by adding columns and rows successively of independent
complex Brownian motions. As before, this eigenvalue process will coincide with
X
n,(d)
s on single levels as stochastic processes but also at fixed times as distributions

of whole interlacing arrays. We elaborate a bit on this fixed time coincidence. For
simplicity, let T = 1. Let A be an n × k matrix of independent standard complex
normal random variables. Let A′ be the n × (k + 1) matrix obtained from A by
adding to it a column of independent standard complex normal random variables.
Let λ be the n eigenvalues of AA∗ and λ′ be the n eigenvalues of A′(A′)∗. We want
the conditional density ρλ|λ′(λ), of λ given λ′, with respect to Lebesgue measure.
From [27] (see also [23]) the conditional density ρλ′|λ(λ) is given by,

ρλ′|λ(λ) =
∏

1≤i<j≤n(λ′j − λ′i )∏
1≤i<j≤n(λj − λi)

e−
∑n
i=1(λ

′
i−λi)1(λ ≺ λ′) .

Hence, by Bayes’ rule, and recalling the law of the LUE ensemble, we have,

ρλ|λ′(λ) =
[
ρλ

ρλ′
ρλ′|λ
]
(λ) =

∏
1≤i<j≤n(λj − λi)

∏n
i=1 λ

d
2 −1
i

∏
1≤i<j≤n(λ′j − λ′i )

∏n
i=1 λ

′ d2
i

1(λ ≺ λ′) .

Similarly to the case of GT, by induction this gives fixed time coincidence of the
two GTs valued processes.

13.3.8 Diffusions Associated with Orthogonal Polynomials

Here, we consider three diffusions in Gelfand–Tsetlin patterns associated with the
classical orthogonal polynomials, Hermite, Laguerre and Jacobi. Although the one
dimensional diffusion processes these are built from, the Ornstein–Uhlenbeck, the
Laguerre and Jacobi are special cases of Sturm-Liouville diffusions with discrete
spectrum, which we will consider in the next subsection, they are arguably the most
interesting examples, with close connections to random matrices and so we consider
them separately (for the classification of one dimensional diffusion operators with
polynomial eigenfunctions see [51] and for a nice exposition Section 2.7 of [5]). One
of the common features of the Karlin–McGregor semigroups associated with them
is that they all have the Vandermonde determinant as their ground state (this follows
from Corollary 13.3). At the end of this subsection we describe the connection to
eigenvalue processes of minors of matrix diffusions.
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Definition 13.8 The Ornstein–Uhlenbeck (OU) diffusion process in I = R has
generator and SDE description,

LOU = 1

2

d2

dx2 − x d
dx
,

dX(t) = dB(t)−X(t)dt,

with mOU(x) = e−x2
and −∞ and ∞ both natural boundaries. Its conjugate

diffusion process L̂OU has generator and SDE description,

L̂OU = 1

2

d2

dx2
+ x d

dx
,

dX̂(t) = dB(t)+ X̂(t)dt,

and again −∞ and ∞ are both natural boundaries and note the drift away from the
origin.

Definition 13.9 The Laguerre Lag(α) diffusion process in I = [0,∞) has
generator and SDE description,

LLag(α) = 2x
d2

dx2 + (α − 2x)
d

dx
,

dX(t) = 2
√
X(t)dB(t)+ (α − 2X(t))dt,

with mLag(α)(x) = xα/2e−x and ∞ being natural and for α ≥ 2 the point 0 is an
entrance boundary. We will only be concerned with such values of α here.

Definition 13.10 The Jacobi diffusion process Jac(β, γ ) in I = [0, 1] has
generator and SDE description,

LJac(β,γ ) = 2x(1 − x) d
2

dx2
+ 2(β − (β + γ )x) d

dx
,

dX(t) = 2
√
X(t)(1 −X(t))dB(t)+ 2(β − (β + γ )X(t))dt,

with mJac(β,γ )(x) = xβ−1(1 − x)γ−1 and 0 and 1 being entrance for β, γ ≥ 1. We
will only be concerned with such values of β and γ in this section.

The restriction of parameters α, β, γ for Lag(α) and Jac(β, γ ) is so that (BC+)
is satisfied (for a certain range of the parameters the points 0 and/or 1 are regular
boundaries in which case (BC+) is no longer satisfied due to the fact that the
diffusion coefficients degenerate at the boundary points).

We are interested in the construction of a process in GT(N), so that in particular
at each stage the number of particles increases by one. We start in the simplest
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setting of W 1,2 and in particular the Ornstein–Uhlenbeck case to explain some
subtleties. We will then treat all cases uniformly.

Consider a two-level process (X, Y ) with the X particles evolving as two OU
processes being reflected off the Y particle which evolves as an L̂OU diffusion.
Then, since this is an honest Markov process, Theorem 13.1 (whose conditions are
easily seen to be satisfied) gives that if started appropriately, the projection on the

X particles is Markovian with semigroup P 2,OU,h̄2
t . Here, P 2,OU,h̄2

t is the Doob h-
transformed semigroup of two independentOU processes killed when they intersect
by the harmonic function h̄2:

h̄2(x1, x2) =
∫ x2

x1

m̂OU(y)dy = sOU(x2)− sOU(x1),

where sOU(x) = ex
2
F(x) is the scale function of the OU process and F(x) =

e−x2 ∫ x
0 e

y2
dy is the Dawson function. We note that, although this process is built

from twoOU processes being kept apart (more precisely this diffusion lives in W̊ 2),
it is not two independent OU processes conditioned to never intersect.

However, we can initially h-transform the L̂OU process to make it anOU process
with the h-transform given by ĥ1(x) = m̂−1

OU(x)with eigenvalue −1. Now, note that:

h2(x1, x2) =
∫ x2

x1

m̂OU(y)m̂
−1
OU(y)dy = (x2 − x1).

This, as we see later in Corollary 13.3 is the ground state of the semigroup associated
to two independentOU processes killed when they intersect. Thus, if we consider a
two-level process (X, Y ) with the X particles evolving as 2 OU processes reflected
off a single OU process, we get from Theorem 13.1 that the projection on the
X particles is distributed as two independent OU processes conditioned to never
intersect via a Doob h-transform by h2.

Similarly, an easy calculation gives that we can h-transform the L̂Lag(α)-diffusion
to make it a Lag(α + 2) with the h-transform being m̂−1

Lag(α)(x) with eigenvalue

−2 and h-transform with m̂−1
Jac(β,γ )(x) with eigenvalue −2(β + γ ) the L̂Jac(β,γ )-

diffusion to make it a Jac(β+1, γ +1) to obtain the analogous result. Furthermore,
this generalizes to arbitrary n. First, let

hn+1(x) = 1

n!
∏

1≤i<j≤n+1

(xj − xi)

denote the Vandermonde determinant. By Corollary 13.3, hn+1 is the ground state
of the semigroup associated to n + 1 independent copies of an OU or Lag(α) or
Jac(β, γ ) diffusion killed when they intersect.
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Proposition 13.28 Assume the constants α, β, γ satisfy α ≥ 2, β ≥ 1, γ ≥ 1.
Let (X, Y ) be a two-level diffusion process in Wn,n+1(I ◦) started according to the

distribution (δx,
n!∏1≤i<j≤n(yj−yi )∏

1≤i<j≤n+1(xj−xi )1(y ≺ x)dy), where x ∈ W̊n+1(I ), and X and Y

evolving as follows:

OU: X as n + 1 independent OU processes reflected off Y which evolves as n
OU processes conditioned to never intersect via a Doob h-transform by hn,

Lag: X as n + 1 independent Lag(α) processes reflected off Y which evolves as
n Lag(α + 2) processes conditioned to never intersect via a Doob h-transform
by hn,

Jac: X as n + 1 independent Jac(β, γ ) processes reflected off Y which evolves
as n Jac(β + 1, γ + 1) processes conditioned to never intersect via a Doob
h-transform by hn.

Then, the X particles are distributed as,

OU: n+ 1 OU processes conditioned to never intersect via a Doob h-transform
by hn+1,

Lag: n + 1 Lag(α) processes conditioned to never intersect via a Doob h-
transform by hn+1,

Jac: n + 1 Jac(β, γ ) processes conditioned to never intersect via a Doob h-
transform by hn+1, started from x.

Proof We take as the L-diffusion an OU or Lag(α) or Jac(β, γ ) diffusion
respectively. Note that, the assumptions (R), (BC+) and (YW) are satisfied for
Lag(α) for α ≥ 2 and for Jac(β, γ ) for β ≥ 1, γ ≥ 1 (also these assumptions are
clearly satisfied for an OU process). Furthermore, observe that with,

ĥn(x) =
n∏
i=1

m̂−1(x)
∏

1≤i<j≤n
(xj − xi),

we have:

hn+1(x) = (�n,n+1�n,n+1ĥn)(x) = 1

n!
∏

1≤i<j≤n+1

(xj − xi).

Moreover, note that the semigroup of n independent copies of an L̂-diffusion
(namely either an L̂OU or L̂Lag(α) or L̂Jac(β,γ ) diffusion) killed when they intersect
h-transformed by ĥn is exactly the semigroup corresponding to Y in the statement
of the proposition. Finally, making use of Theorem 13.1 we obtain the required
statement.

It is rather easy to see how to iterate this construction to obtain a consistent
process in a Gelfand–Tsetlin pattern. To be precise, let us fix N the depth of the
pattern and constants α ≥ 2, β ≥ 1 and γ ≥ 1 that will be the parameters of the
processes at the bottom row. Then, in the Ornstein–Uhlenbeck case level k evolves
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as k independentOU processes reflected off the paths at level k−1. In the Laguerre
case level k evolves as k independent Lag(α+2(N−k)) processes reflected off the
particles at level k − 1. Finally, in the Jacobi case level k evolves as k independent
Jac(β + (N − k), γ + (N − k)) processes reflected off the particles at level (k− 1).
The result giving the distribution of the projection on each level (under certain initial
conditions) is completely analogous to previous sections and we omit the statement.

Remark 13.12 In the Laguerre case we can build in a completely analogous way a
process in GTs in analogy to the BESQ(d) case of Proposition 13.27. In the Jacobi
case (with β, γ ≥ 1) we can build a process (X, Y ) ∈ Wn,n((0, 1)) started from
the origin (according to the entrance law) with the Y particles evolving as n non-
intersecting Jac(β, γ +1) and theX particles as n Jac(1−β, γ ) in (0, 1) reflected
off the Y particles. Then, the X particles are distributed as n non-intersecting
Jac(β + 1, γ ) processes started from the origin.

Connection to Random Matrices We now make the connection to the eigenvalues
of matrix valued diffusion processes associated with orthogonal polynomials. The
relation for the Ornstein–Uhlenbeck process and Lag(d) processes we constructed
is the same as for Brownian motions and BESQ(d) processes. The only difference
being, that we replace the complex Brownian motions by complex Ornstein–
Uhlenbeck processes in the matrix valued diffusions (the only difference being, that
this introduces a restoring −x drift in both the matrix valued diffusion processes
and the SDEs for the eigenvalues).

We now turn to the Jacobi minor process. First, following Doumerc’s PhD thesis
[28] (see in particular Section 9.4.3 therein) we construct the matrix Jacobi diffusion
as follows. Let (U(t), t ≥ 0) be a Brownian motion on U(N), the manifold ofN×N
unitary matrices and let p + q = N . Let n be such that n ≤ p, q and consider
(H(t), t ≥ 0) the projection onto the first n rows and p columns of (U(t), t ≥ 0).
Then (J p,q(t), t ≥ 0) = (H(t)H(t)∗, t ≥ 0) is defined to be the n × n matrix
Jacobi diffusion (with parameters p, q). Its eigenvalues evolve as n non-colliding
Jac(p− (n− 1), q − (n− 1)) diffusions. Its k× k minor is built by projecting onto
the first k rows of (U(t), t ≥ 0) and it has eigenvalues

(
λ(k)(t), t ≥ 0

)
that evolve

as k non-colliding Jac(p − (n − 1) + n − k, q − (n − 1) + n − k). For fixed
times T , if (U(t), t ≥ 0) is started according to Haar measure, the distribution of

λ(k−1)(T ) given λ(k)(T ) onWk−1,k(λ(k)(T )) being�ĥk−1
k−1,k

(
λ(k)(T ), ·) see e.g. [33].

For the connection to the process in Wn,n described in the remark, we could have
projected on the first n rows and p + 1 columns of (U(t), t ≥ 0) and denoting
that by

(
H(t)′, t ≥ 0

)
, then

(
Jp+1,q−1(t), t ≥ 0

) = (
H(t)′(H(t)′)∗, t ≥ 0

)
has

eigenvalues evolving as n non-colliding Jac(p − (n − 1) + 1, q − (n − 1) − 1)
and those interlace with the eigenvalues of (J p,q(t), t ≥ 0).

Remark 13.13 Non-colliding Jacobi diffusions have also appeared in the work of
Gorin [36] as the scaling limits of some natural Markov chains on the Gelfand–
Tsetlin graph in relation to the harmonic analysis of the infinite unitary group
U(∞).
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13.3.9 Diffusions with Discrete Spectrum

13.3.9.1 Spectral Expansion and Ground State of the Karlin–McGregor
Semigroup

In this subsection, we show how the diffusions associated with the classical
orthogonal polynomials and the Brownian motions in an interval are special cases
of a wider class of one dimensional diffusion processes with explicitly known
minimal eigenfunctions for the Karlin–McGregor semigroups associated with them.
We start by considering the diffusion process generator L with discrete spectrum
0 ≥ −λ1 > −λ2 > · · · (the absence of natural boundaries is sufficient for this,
see for example Theorem 3.1 of [52]) with speed measure m and transition density
given by pt (x, dy) = qt (x, y)m(dy) where,

Lφk(x) = −λkφk(x),

qt (x, y) =
∞∑
k=1

e−λktφk(x)φk(y).

The eigenfunctions {φk}k≥1 form an orthonormal basis of L2(I,m(dx)) and the
expansion

∑∞
k=1 e

−λktφk(x)φk(y) converges uniformly on compact squares in I ◦ ×
I ◦. Furthermore, the Karlin–McGregor semigroup transition density with respect to∏n
i=1m(dyi) is given by,

det(qt (xi, yj ))
n
i,j=1.

We now obtain an analogous spectral expansion for this. We start by expanding the
determinant to get,

det(qt (xi, yj ))
n
i,j=1 =

∑
σ∈Sn

sign(σ )

n∏
i=1

qt (xi, yσ(i))

=
∑

k1,··· ,kn

n∏
i=1

φki (xi)e
−λki t

∑
σ∈Sn

sign(σ )

n∏
i=1

φki (yσ(i))

=
∑

k1,··· ,kn

n∏
i=1

φki (xi)e
−λki t det(φki (yj ))

n
i,j=1.

Write φk(y) for det(φki (yj ))
n
i,j=1 for an n-tuple k = (k1, · · · , kn) and also λk for

(λk1 , · · · , λkn) and note that we can restrict to k1, · · · , kn distinct otherwise the
determinant vanishes. In fact we can restrict to k1, · · · , kn ordered by replacing
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k1, · · · , kn by kτ(1), · · · , kτ(n) and summing over τ ∈ Sn to obtain, with |λk| =∑n
i=1 λki :

det(qt (xi, yj ))
n
i,j=1 =

∑
1≤k1<···<kn

e−|λk|t φk(x)φk(y). (13.39)

The expansion is converging uniformly on compacts inWn(I ◦)×Wn(I ◦) for t > 0.
Now, denoting by T the lifetime of the process we obtain, for x = (x1, · · · , xn) ∈
W̊n(I ), the following spectral expansion that converges uniformly on compacts in
x ∈ Wn(I ◦),

Px(T > t) =
[
Pnt 1
]
(x) =

∑
1≤k1<···<kn

e−|λk|t φk(x)〈φk, 1〉Wn(m) (13.40)

where we used the notation:

〈f, g〉Wn(m) =
∫
Wn(I ◦)

f (x1, · · · , xn)g(x1, · · · , xn)
n∏
i=1

m(xi)dxi .

So, as t → ∞ by the fact that the eigenvalues are distinct and ordered the leading
exponential term is forced to be ki = i and thus:

Px(T > t) = 〈φ(1,··· ,n), 1〉Wn(m) × e−
∑n
i=1 λi t det(φi(xj ))

n
i,j=1

+ o
(
e−
∑n
i=1 λi t

)
, as t → ∞.

Hence, we can state the following corollary.

Corollary 13.3 The function,

hn(x) = det(φi(xj ))
n
i,j=1 (13.41)

is the ground state of Pnt .

The above argument proves that hn(x) ≥ 0 but in fact the positivity is strict,
hn(x) > 0 for all x ∈ Wn(I ◦) which can be seen as follows. We have the
eigenfunction relation, by the Andreif (or generalized Cauchy–Binet) identity:

∫
Wn(I ◦)

det(qt (xi, yj ))
n
i,j=1 det(φi(yj ))

n
i,j=1

n∏
i=1

m(yi)dyi

= e−
∑n
i=1 λi t det(φi(xj ))

n
i,j=1.
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Assume that det(φi(xj ))ni,j=1 = 0 for some x ∈ Wn(I ◦). Then, by the strict

positivity of det(qt (xi, yj ))ni,j
∏n
i=1m(yi) > 0 and continuity of hn(x) (see

Theorem 4 of [45], also Problem 6 and its solution on pages 158–159 of [39]), the
determinant det(φi(yj ))ni,j=1 must necessarily vanish everywhere inWn(I ◦). Hence,

we can write for all x ∈ I ◦ φn(x) =∑n−1
i=1 aiφi(x) for some constants ai . However,

this contradicts the orthonormality of the eigenfunctions and so hn(x) > 0 for all
x ∈ Wn(I ◦).

A different way to see that hn(x) is strictly positive (up to a constant) in W̊n(I )

is the well known fact (see paragraph immediately after Theorem 6.2 of Chapter 1
on page 36 of [44]) that the eigenfunctions coming from Sturm-Liouville operators
form a Complete T -system (CT -system) or Chebyshev system namely ∀n ≥ 1,

hn(x) = det(φi(xj ))
n
i,j=1 > 0, x ∈ W̊n(I ).

Remark 13.14 In fact a CT -system requires that the determinant does not vanish in
Wn(I) so w.l.o.g multiplying by −1 if needed we can assume it is positive.

For the orthogonal polynomial diffusions and Brownian motions in an interval
taking the φj ’s to be the Hermite, Laguerre, Jacobi polynomials (which via row and
column operations give the Vandermonde determinant) and trigonometric functions
(of increasing frequencies) we obtain the minimal eigenfunction.

Following this discussion, we can thus define the conditioned semigroup with
transition kernel pn,hnt with respect to Lebesgue measure inWn(I ◦) as follows,

p
n,hn
t (x, y) = e

∑n
i=1 λi t

det(φi(yj ))ni,j=1

det(φi(xj ))ni,j=1
det(pt (xi, yj ))

n
i,j=1.

13.3.9.2 Conditioning Diffusions for Non-intersection Through Local
Interactions

Now, a natural question arising is the following. When is it possible to obtain n
conservative (by that we mean in case l or r can be reached then they are forced to be
regular reflecting) L-diffusions conditioned via the minimal positive eigenfunction
to never intersect through the hard reflection interactions we have been studying in
this work? We are able to provide an answer in Proposition 13.29 below under a
certain assumption that we now explain.

First, note that L being conservative implies φ1 = 1. Furthermore, assuming that
the φk ∈ Cn−1(I ◦) for 1 ≤ k ≤ n and denoting by φ(j)k their j th derivative we
define the WronskianW(φ1, · · · , φn)(x) of φ1, · · · , φn by,

W(φ1, · · · , φn)(x) = det
(
φ
(j−1)
i (x)

)n
i,j=1.
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Then, we say that {φj }nj=1 form a (positive) Extended Complete T -system or
ECT -system if for all 1 ≤ k ≤ n,

W(φ1, · · · , φk)(x) > 0, ∀x ∈ I ◦.

This is a stronger property, in particular implying that {φj }nj=1 form a CT -
system (see Theorem 2.3 of Chapter 2 of [44]). Assuming that the eigenfunctions in
question {φj }nj=1 form a (positive) ECT -system then since φ1 = 1,

W(φ
(1)
2 , · · · , φ(1)n )(x) > 0, ∀x ∈ I ◦,

and hence,

ĥn−1(x) := det(Dm̂φi+1(xj ))
n−1
i,j=1 > 0, x ∈ W̊n−1(I ). (13.42)

We then have the following positive answer for the question we stated previously:

Proposition 13.29 Under the conditions of Theorem 13.1, furthermore assume that
the generator L has discrete spectrum and its first n eigenfunctions {φj }nj=1 form an
ECT-system. Now assume that the X particles consist of n independent L-diffusions
reflected off the Y particles which evolve as an n − 1 dimensional diffusion with

semigroup Pn−1,ĥn−1
t , where ĥn−1 is defined in (13.42). Then, the X particles (if

the two-level process is started appropriately) are distributed as n independent L-
diffusions conditioned to never intersect with semigroup Pn,hnt , where hn is defined
by (13.41).

Proof Making use of the relations Dm̂ = Ds and Dŝ = Dm between the diffusion
process generator L and its dual we obtain,

L̂Dm̂φi = Dm̂DŝDm̂φi = Dm̂DmDsφi = −λiDm̂φi .

Thus,
(
eλi tDm̂φi(X̂(t)); t ≥ 0

)
for each 1 ≤ i ≤ n is a local martingale. By

virtue of boundedness (since we assume that the L-diffusion is conservative we
have lim

x→l,rDm̂φi(x) = lim
x→l,rDsφi(x) = 0) it is in fact a true martingale and so for

1 ≤ i ≤ n,

P̂ 1
t Dm̂φi = e−λi tDm̂φi . (13.43)

Then, by the well-known Andreif (or generalized Cauchy–Binet) identity we obtain,

P̂ n−1
t ĥn−1 = e−

∑n−1
i=1 λi+1t ĥn−1
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and thus ĥn−1 is a strictly positive eigenfunction for P̂ n−1
t . Finally, by performing a

simple integration we see that,

(�n−1,n�n−1,nĥn−1)(x) = constnhn(x), x ∈ Wn(I).

Using Theorem 13.1 we obtain the statement of the proposition.

Obviously the diffusions associated with orthogonal polynomials and Brownian
motions in an interval fall under this framework.

13.3.10 Eigenfunctions via Intertwining

In this short subsection we point out that all eigenfunctions for n copies of a
diffusion process with generator L in Wn (not necessarily diffusions with discrete
spectrum e.g. Brownian motions or BESQ(d) processes) that are obtained by
iteration of the intertwining kernels considered in this work, or equivalently from
building a process in a Gelfand–Tsetlin pattern, are of the form,

Hn(x1, · · · , xn) = det
(
h
(n)
i (xj )

)n
i,j=1

, (13.44)

for functions
(
h
(n)
1 , · · · , h(n)n

)
(not necessarily the eigenfunctions of a one dimen-

sional diffusion operator) given by,

h
(n)
i (x) = w(n)1 (x)

∫ x
c

w
(n)
2 (ξ1)

∫ ξ1
c

w
(n)
3 (ξ2) · · ·

∫ ξi−2

c

w
(n)
i (ξi−1)dξi−1 · · · dξ1,

(13.45)

for some weights w(n)i (x) > 0 and c ∈ I ◦. An easy consequence of the
representation above (see e.g. Theorem 1.1 of Chapter 6 of [44]) and assuming
w
(n)
i ∈ Cn−i (l, r) (n − i times continuously differentiable) is that the Wronskian

W
(
h
(n)
1 , · · · , h(n)n

)
is given by for x ∈ I ◦,

W
(
h
(n)
1 , · · · , h(n)n

)
(x) =

[
w
(n)
1 (x)

]n [
w
(n)
2 (x)

]n−1 · · ·
[
w(n)n (x)

]
, (13.46)

so that in particularW
(
h
(n)
1 , · · · , h(n)n

)
(x) > 0.

We shall restrict to the case of GT(n) (where the number of particles on
each level increases by 1) for simplicity and prove claims (13.44) and (13.45) by
induction. For n = 1 there is nothing to prove. We conclude by stating and proving
the inductive step as a precise proposition:
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Proposition 13.30 Assume that the input, strictly positive, eigenfunction Hn−1 for
n−1 copies of a one dimensional diffusion process is of the form (13.44) and (13.45).
Then, the eigenfunction Hn built from the intertwining relation of Karlin–McGregor
semigroups (13.26) for n copies of its dual diffusion has the same form (13.44)
and (13.45), with the weights {w(n)i }ni=1 satisfying an explicit recursion in terms of

the {w(n−1)
i }n−1

i=1 .

Proof In order to obtain a strictly positive eigenfunction for n copies of an
L-diffusion, we can in fact start more generally with n copies of an L-diffusion h-
transformed by a one dimensional strictly positive eigenfunction h (denoting by Lh

such a diffusion process where we assume that Lh satisfies the boundary conditions
of Sect. 13.2 in order for the intertwining (13.26) to hold). It is then clear that:

Hn(x1, · · · , xn) =
n∏
i=1

h(xi)(�n−1,nHn−1)(x1, · · · , xn), (13.47)

where now Hn−1(x1, · · · , xn−1) is a strictly positive eigenfunction of n − 1 copies
of an L̂h diffusion and which by our hypothesis is given by,

Hn−1(x1, · · · , xn−1) = det
(
h
(n−1)
i (xj )

)n−1

i,j=1
, (13.48)

for some functions
(
h
(n−1)
1 , · · · , h(n−1)

n−1

)
with a representation as in (13.45) for

some weights {w(n−1)
i }i≤n−1. A simple integration now gives,

h
(n)
1 (x) = h(x),

h
(n)
i (x) = h(x)

∫ x
c

m̂h(y)h
(n−1)
i−1 (y)dy, for i ≥ 2,

where m̂h(x) = h−2(x)s′(x) is the density of the speed measure of a L̂h diffusion.
We thus obtain the following recursive representation for the weights {w(n)i }i≤n,

w
(n)
1 (x) = h(x), (13.49)

w
(n)
2 (x) = h−2(x)s′(x)w(n−1)

1 (x), (13.50)

w
(n)
i (x) = w(n−1)

i−1 (x), for i ≥ 3. (13.51)

13.3.11 Connection to Superpositions and Decimations

For particular entrance laws, the joint law of X and Y at a fixed time can be
interpreted in terms of superpositions/decimations of random matrix ensembles
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(see e.g. [34]). For example, in the context of Proposition 13.11, the joint law
of X and Y at time 1 agrees with the joint law of the odd (respectively even)
eigenvalues in a superposition of two independent samples from the GOEn+1
and GOEn ensembles, consistent with the fact that in such a superposition, the
odd (respectively even) eigenvalues are distributed according to the GUEn+1
(respectively GUEn) ensembles, see Theorem 5.2 in [34]. In the BESQ/Laguerre
case, our Proposition 13.25 is similarly related to recent work on GOE singular
values by Bornemann and La Croix [8] and Bornemann and Forrester [7].

13.3.12 Connection to Strong Stationary Duals

Strong stationary duality (SSD) first introduced by Diaconis and Fill [25] in the
discrete state space setting is a fundamental notion in the study of strong stationary
times which are a key tool in understanding mixing times of Markov Chains.
More recently, Fill and Lyzinski [32] developed an analogous theory for diffusion
processes in compact intervals. Given a conservative diffusion G one associates to
it a SSD G∗ such that the two semigroups are intertwined (see Definition 3.1 there).
In Theorem 3.4 therein the form of the dual generator is derived and as already
indicated in Remark 5.4 in the same paper this is exactly the dual diffusion Ĝ h-
transformed by its scale function.

In our framework, considering a two-level process in W 1,1 with L = Ĝ and
so L̂ = G and using the positive harmonic function ĥ1 ≡ 1, the distribution of
the projection on the X particle (under certain initial conditions) coincides with the
SSD G∗ diffusion. Hence this provides a coupling of a diffusion G and its strong
stationary dual G∗ respecting the intertwining between G and G∗.

13.4 Edge Particle Systems

In this section we will study the autonomous particle systems at either edge of the
Gelfand–Tsetlin pattern valued processes we have constructed. In the figure below,
the particles we will be concerned with are denoted in •.

X
(1)
1•

X
(2)
1• X

(2)
2•

X
(3)
1• X

(3)
2◦ X

(3)
3•

. .
. ...

. . .

X
(N)
1• X

(N)
2◦ X

(N)
3◦ · · · · · · X

(N)
N−2◦ X

(N)
N−1◦ X

(N)
N•
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Our goal is to derive determinantal expressions for their transition densities. Such
expressions were derived by Schutz for TASEP in [59] and later Warren [66] for
Brownian motions. See also Johansson’s work in [40], for an analogous formula
for a Markov chain related to the Meixner ensemble and finally Dieker and
Warren’s investigation in [26], for formulae in the discrete setting based on the RSK
correspondence. These so called Schutz-type formulae were the starting points for
the recent complete solution of TASEP in [50] which led to the KPZ fixed point and
also for the recent progress [41] in the study of the two time joint distribution in
Brownian directed percolation. For a detailed investigation of the Brownian motion
model the reader is referred to the book [69].

We will mainly restrict ourselves to the consideration of Brownian motions,
BESQ(d) processes and the diffusions associated with orthogonal polynomials.
In a little bit more generality we will assume that the interacting diffusions have
generators of the form,

L = a(x) d
2

dx2 + b(x) d
dx
,

with,

a(x) = a0 + a1x + a2x
2 b(x) = b0 + b1x.

We will also make the following standing assumption in this section. We restrict to
the case of the boundaries of the state space I being either natural or entrance thus
the state space is an open interval (l, r). Under these assumptions the transition
densities will be smooth in (l, r) in both the backwards and forwards variables
(possibly blowing up as we approach l or r see e.g [62] and for a detailed study
of the transition densities of the Wright–Fisher diffusion see [19]). This covers
all the processes we built that relate to minor processes of matrix diffusions. This
interacting particle system can also be seen as the solution to the following system
of SDE’s with one-sided collisions with (x1

1 ≤ · · · ≤ xnn),

X
(1)
1 (t) = x1

1 +
∫ t

0

√
2a(X(1)1 (s))dγ

1
1 (s)+

∫ t
0
b(1)(X

(1)
1 (s))ds,

...

X(m)m (t) = xmm +
∫ t

0

√
2a(X(m)m (s))dγmm (s)+

∫ t
0
b(m)(X(m)m (s))ds +Km,−m (t),

(13.52)

...

X(n)n (t) = xnn +
∫ t

0

√
2a(X(n)n (s))dγ

n
n (s)+

∫ t
0
b(n)(X(n)n (s))ds +Kn,−n (t).
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where γ ii are independent standard Brownian motions and Ki,−i are positive finite

variation processes with the measure dKi,−i supported on
{
t : X(i)i (t) = X(i−1)

i−1 (t)
}

and

b(k)(x) = b(x)+ (n− k)a′(x) = b0 + (n− k)a1 + (b1 + 2(n− k)a2)x.

That these SDE’s are well-posed, so that in particular the solution is Markov,
follows from the same arguments as in Sect. 13.5.1. Note that, a quadratic diffusion
coefficient a(·) and linear drift b(·) satisfy (YW). See the following figure for a
description of the interaction. The arrows indicate the direction of the ‘pushing
force’ (with magnitude the finite variation processK) applied when collisions occur
between the particles so that the ordering is maintained.

X
(1)
1• −→ X

(2)
2• −→ X

(3)
3• · · · X

(n−1)
n−1• −→ X

(n)
n• .

Note that our assumption that the boundary points are either entrance or natural
does not always allow for an infinite such particle system,in particular think of the
BESQ(d) case where d drops down by 2 each time we add a particle. Denote by
p
(k)
t (x, y) the transition kernel associated with the L(k)-diffusion with generator,

L(k) = a(x) d
2

dx2 + b(k)(x) d
dx
.

Defining,

S(k),jt (x, x′) =
{∫ x′
l
(x′−z)j−1

(j−1)! p
(k)
t (x, z)dz j ≥ 1

∂
−j
x′ p

(k)
t (x, x

′) j ≤ 0
,

and with x = (x1, · · · , xn), x′ = (x′1, · · · , x′n),

st (x, x
′) = det

(
S(i),i−jt (xi, x

′
j )
)n
i,j=1

, (13.53)

we arrive at the following proposition.

Proposition 13.31 Assume that the diffusion and drift coefficients of the generators
L(k) are of the form a(x) = a0 + a1x + a2x

2 and b(k)(x) = b0 + (n −
k)a1 + (b1 + 2(n − k)a2)x and moreover assume that the boundaries of the
state space are either natural or entrance for the L(k)-diffusion; in particular this
implies certain constraints on the constants a0, a1, a2, b0, b1. Then, the process
(X
(1)
1 (t), · · · , X(n)n (t)) satisfying the SDEs (13.52), in which X(k)k is an L(k)-

diffusion reflected off X(k−1)
k−1 , has transition densities st (x, x′).
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Proof First, we make the following crucial observation. Define the constant ck,n =
2(n−k−1)a2+b1 and note that theL(k)-diffusion is the h-transform of the conjugate
̂L(k+1) with ̂m(k+1)

−1
(x) with eigenvalue ck,n, so that L(k) =

(
̂L(k+1)

)∗ − ck,n
which is again a bona fide diffusion process generator (with L∗ denoting the
formal adjoint of L with respect to Lebesgue measure). Thus, making use of (13.4)
and (13.5) we obtain the following relation between the transition densities,

p
(k)
t (x, z) = −eck,nt

∫ z
l

∂xp
(k+1)
t (x, w)dw, (13.54)

∂
j
z p
(k)
t (x, z) = −eck,nt ∂j−1

z ∂xp
(k+1)
t (x, z).

Now, let f : Wn(I ◦) �→ R be continuous with compact support. Then, we have
the following t = 0 boundary condition,

lim
t→0

∫
Wn(I ◦)

st (x, x
′)f (x′)dx′ = f (x), (13.55)

which formally can easily be seen to hold since the transition densities along the
main diagonal approximate delta functions and all other contributions vanish. We
spell this out now. Let ε > 0 and suppose f is zero in a 2ε neighbourhood of
∂Wn(I ◦). We consider a contribution to the Leibniz expansion of the determinant
coming from a permutation ρ that is not the identity. Hence there exist i < j so

that ρ(i) > i and ρ(j) ≤ i and note that the factors S(i),i−ρ(i)t

(
xi, x

′
ρ(i)

)
and

S(j),j−ρ(j)t

(
xj , x

′
ρ(j)

)
are contained in the contribution corresponding to ρ. Since

j − ρ(j) > 0 and i − ρ(i) < 0 observe that on the set
{
x′ρ(i) − xi > ε

}
∪{

x′ρ(j) − xj < −ε
}

at least one of these factors and so the whole contribution as

t ↓ 0 vanishes uniformly. On the other hand on the complement of this set we have
x′ρ(i) ≤ xi + ε ≤ xj + ε ≤ x′ρ(j) + 2ε. Since ρ(j) < ρ(i) so that x′ρ(j) ≤ x′ρ(i) we

thus obtain that if x′ is in the complement of
{
x′ρ(i) − xi > ε

}
∪
{
x′ρ(j) − xj < −ε

}

it also belongs to some 2ε neighbourhood of ∂Wn(I ◦) and hence outside the support
of f . (13.55) then follows.

Now by multilinearity of the determinant the equation in (0,∞) × W̊n(I ) ×
W̊n(I ),

∂t st (x, x
′) =

n∑
i=1

L(k)xi st (x, x
′),

is satisfied since we have ∂tS(k),jt (x, x′) = L(k)x S(k),jt (x, x′) for all k. Here, L(k)xi is
simply a copy of the differential operator L(k) acting in the xi variable.
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Moreover, for the Neumann/reflecting boundary conditions we need to check the
following conditions ∂xi st (x, x

′)|xi=xi−1 = 0 for i = 2, · · · , n.
This follows from,

∂xiS
(i),i−j
t (xi, x

′
j )|xi=xi−1 = −e−ci−1,ntS(i−1),i−1−j

t (xi−1, x
′
j ).

This is true because of the following observations. For j ≤ −1

∂
−j
z p

(i−1)
t (x, z) = −eci−1,nt ∂

−j−1
z ∂xp

(i)
t (x, z).

For j ≥ 1

∫ x′
l

(x′ − z)j−1

(j − 1)! p
(i−1)
t (x, z)dz

= −eci−1,nt ∂x

∫ x′
l

(x′ − z)j−1

(j − 1)!
∫ z
l

p
(i)
t (x, w)dwdz

= −eci−1,nt ∂x

[[
− (x′ − z)j

j !
∫ z
l

p
(k)
t (x, w)dw

]x′

l

−
∫ x′
l

− (x
′ − z)j
j ! p

(i)
t (x, z)dz

]

= −eci−1,nt ∂x

∫ x′
l

(x′ − z)j
j ! p

(i)
t (x, z)dz.

Hence S(i−1),j
t (x, x′) = −eci−1,nt ∂xS(i),j+1

t (x, x′) and thus

∂xi st (x, x
′)|xi=xi−1 = 0,

for i = 2, · · · , n.
Define for f as in the first paragraph,

F(t, x) =
∫
Wn(I ◦)

st (x, x
′)f (x′)dx′.

Let Sx denote the law of (X(1)1 , · · · , X(n)n ) started from x = (x1, · · · , xn) ∈ Wn.
Fixing T , ε and applying Ito’s formula to the process (F (T + ε − t, x), t ≤ T )

we obtain that it is a local martingale and by virtue of boundedness indeed a true
martingale. Hence,

F(T + ε, x) = Sx
[
F
(
ε,
(
X
(1)
1 (T ), · · · , X(n)n (T )

))]
.
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Now letting ε ↓ 0 we obtain,

F(T , x) = Sx
[
f
(
X
(1)
1 (T ), · · · , X(n)n (T )

)]
.

The result follows since the process spends zero Lebesgue time on the boundary so
that in particular such f determine its distribution.

In the standard Brownian motion case with p(k)t the heat kernel this recovers
Proposition 8 from [66].

Now, we consider the interacting particle system at the other edge of the pattern
with the ith particle getting reflected downwards from the i − 1th, namely with
(x1

1 ≥ · · · ≥ xn1 ) this is given by the following system of SDEs with reflection,

X
(1)
1 (t) = x1

1 +
∫ t

0

√
2a(X(1)1 (s))dγ

1
1 (s)+

∫ t
0
b(1)(X

(1)
1 (s))ds,

...

X
(m)
1 (t) = xm1 +

∫ t
0

√
2a(X(m)1 (s))dγ m1 (s)+

∫ t
0
b(m)(X

(m)
1 (s))ds −Km,+1 (t),

(13.56)

...

X
(n)
1 (t) = xn1 +

∫ t
0

√
2a(X(n)1 (s))dγ n1 (s)+

∫ t
0
b(n)(X

(n)
1 (s))ds −Kn,+1 (t),

where γ i1 are independent standard Brownian motions and Ki,+1 are positive finite

variation processes with the measure dKi,+1 supported on
{
t : X(i)i (t) = X(i−1)

i−1 (t)
}

.

Again see the figure below,

X
(n)
1• ←− X

(n−1)
1• ←− X

(n−2)
1• · · · X

(2)
1• ←− X

(1)
1• .

Define,

S̄(k),jt (x, x′) =
{
− ∫ r

x′
(x′−z)j−1

(j−1)! p
(k)
t (x, z)dz j ≥ 1

∂
−j
x′ p

(k)
t (x, x

′) j ≤ 0
,

Then letting, with x = (x1, · · · , xn), x′ = (x′1, · · · , x′n),

s̄t (x, x
′) = det(S̄(i),i−jt (xi, x

′
j ))
n
i,j=1, (13.57)

we arrive at the following proposition.
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Proposition 13.32 Assume that the diffusion and drift coefficients of the generators
L(k) are of the form a(x) = a0 + a1x + a2x

2 and b(k)(x) = b0 + (n− k)a1 + (b1 +
2(n− k)a2)x and moreover assume that the boundaries of the state space are either
natural or entrance for the L(k)-diffusion. Then, the process (X(1)1 (t), · · · , X(n)1 (t))

satisfying the SDEs (13.56), in which X(k)1 is an L(k)-diffusion reflected off X(k−1)
1 ,

has transition densities s̄t (x, x′).

Proof The key observation in this setting is the following relation between the
transition kernels:

p
(k)
t (x, z) = eck,nt

∫ r
z

∂xp
(k+1)
t (x, w)dw.

This is immediate from (13.54) since each diffusion process in this section is an
honest Markov process.

Then, checking the parabolic equation with the correct spatial boundary condi-
tions is as before. Now the t = 0 boundary condition, again follows from the fact
that all contributions from off diagonal terms in the determinant have at least one
term vanishing uniformly in this new domain (x1 ≥ · · · ≥ xn).
Via a simple integration, we obtain the following formulae for the distributions of
the leftmost and rightmost particles in the Gelfand–Tsetlin pattern,

Corollary 13.4

Px(0) (X
(n)
n (t) ≤ z) = det

(
S(i),i−j+1
t (x

(0)
i , z)

)n
i,j=1,

Px̄(0) (X
(n)
1 (t) ≥ z) = det

(− S̄(i),i−j+1
t (x̄

(0)
i , z)

)n
i,j=1,

where x(0) = (x(0)1 ≤ · · · ≤ x(0)n ) and x̄(0) = (x̄(0)1 ≥ · · · ≥ x̄(0)n ).
For p(k)t the heat kernel and x(0) = (0, · · · , 0) this recovers a formula from [66]. In
the BESQ(d) case and t = 1 the above give expressions for the largest and smallest
eigenvalues for the LUE ensemble. We obtain the analogous expressions in the
Jacobi case as t → ∞ since the JUE is the invariant measure of non-intersecting
Jacobi processes.

13.5 Well-Posedness and Transition Densities for SDEs
with Reflection

13.5.1 Well-Posedness of Reflecting SDEs

We will prove well-posedness (existence and uniqueness) for the systems of
reflecting SDEs (13.14), (13.20), (13.32), (13.52), and (13.56) considered in this
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work. It will be more convenient, although essentially equivalent for our purposes, to
consider reflecting SDEs forX in the time dependent domains (or between barriers)
given by Y i.e. in the form of (13.28). More precisely we will consider SDEs with
reflection for a single particle X in the time dependent domain [Y−,Y+] where Y−
is the lower time dependent boundary and Y+ is the upper time dependent boundary.
This covers all the cases of interest to us by taking Y− = Yi−1 and Y+ = Yi with
the possibility Y− ≡ l and/or Y+ ≡ r .

We will first obtain weak existence, for coefficients σ(x) = √
2a(x), b(x)

continuous and of at most linear growth, the precise statement to found in Propo-
sition 13.33 below. We begin by recalling the definition and some properties of the
Skorokhod problem in a time dependent domain. We will use the following notation,
R+ = [0,∞). Suppose we are given continuous functions z,Y−,Y+ ∈ C (R+;R)
such that ∀T ≥ 0,

inf
t≤T
(
Y+(t)− Y−(t)

)
> 0,

a condition to be removed shortly by a stopping argument. We then say that the
pair (x, k) ∈ C (R+;R) × C (R+;R) is a solution to the Skorokhod problem for(
z,Y−,Y+) if for every t ≥ 0 we have x(t) = z(t) + k(t) ∈ [Y−(t),Y+(t)] and
k(t) = k−(t) − k+(t) where k+ and k− are non decreasing, in particular bounded
variation functions, such that ∀t ≥ 0 ,

∫ t
0

1
(
z(s) > Y−(s)

)
dk−(s) = 0 and

∫ t
0

1
(
z(s) < Y+(s)

)
dk+(s) = 0.

Observe that the constraining terms k+ and k− only increase on the boundaries of
the time dependent domain, namely at Y+ and Y− respectively. Now, consider the
solution map denoted by S,

S : C (R+;R)× C (R+;R)× C (R+;R)→ C (R+;R)× C (R+;R)

given by,

S : (z,Y−,Y+) �→ (x, k) .

Then the key fact is that the map S is Lipschitz continuous in the supremum norm
and there exists a unique solution to the Skorokhod problem, see for example
Proposition 2.3 and Corollary 2.4 of [61] (also Theorem 2.6 of [14]). Below we will
sometimes abuse notation and write x = S

(
z,Y−,Y+) just for the x-component of

the solution (x, k).
Now suppose σ : R → R and b : R → R are Lipschitz continuous functions.

Then by a classical argument based on Picard iteration, see for example Theorem
3.3 of [61], we obtain that there exists a unique strong solution to the SDER (SDE
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with reflection) for Y−(0) ≤ X(0) ≤ Y+(0),

X(t) = X(0)+
∫ t

0
σ (X(s)) dβ(s)+

∫ t
0
b (X(s)) ds +K−(t)−K+(t),

where β is a standard Brownian motion and
(
K+(t); t ≥ 0

)
and
(
K−(t); t ≥ 0

)
are

non decreasing processes that increase only when X(t) = Y+(t) and X(t) = Y−(t)
respectively so that for all t ≥ 0 we have X(t) ∈ [Y−(t),Y+(t)]. Here, by strong
solution we mean that on the filtered probability space (�,F , {Ft },P) on which
(X,K, β) is defined, the process (X,K) is adapted with respect to the filtration F βt
generated by the Brownian motion β. Equivalently (X,K) where K = K+ − K−
solves the Skorokhod problem for (z,Y−,Y+) where,

z (·) def= X(0)+
∫ ·

0
σ (X(s)) dβ(s)+

∫ ·

0
b (X(s)) ds.

We write sRL for the corresponding measurable solution map on path space, namely
so that X = sRL

(
β;Y−,Y+).

Now, suppose σ : R → R and b : R → R are merely continuous and of at most
linear growth, namely:

|σ(x)|, |b(x)| ≤ C (1 + |x|) ,

for some constant C. We will abbreviate this assumption by (CLG). Then, we can
still obtain weak existence using the following rather standard argument. Take σ (n) :
R → R and b(n) : R → R to be Lipschitz, converging uniformly to σ and b and
satisfying a uniform linear growth condition. More precisely:

σ (n)
unif−→ σ, b(n)

unif−→ b,

|σ (n)(x)|, |b(n)(x)| ≤ C̃ (1 + |x|) , (13.58)

for some constant C̃ that is independent of n. For example, we could take the
mollification σ (n) = φn ∗ σ , with φn(x) = nφ(nx) where φ is a smooth bump
function: φ ∈ C∞, φ ≥ 0,

∫
φ = 1 and supp(φ) ⊂ [−1, 1]. Then, if |σ(x)| ≤

C (1 + |x|) we easily get |(φn ∗σ)(x)| ≤ (2 + |x|) uniformly in n. Let
(
X(n),K(n)

)
be the corresponding strong solution to the SDER above with coefficients σ (n) and
b(n). Then the laws of,

X(0)+
∫ ·

0
σ (n)
(
X(n)(s)

)
dβ(s)+

∫ ·

0
b(n)
(
X(n)(s)

)
ds,

are easily seen to be tight by applying Aldous’ tightness criterion (see for example
Chapter 16 of [43] or Chapter 3 of [29]) using the uniformity in n of the linear
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growth condition (13.58). Hence, from the Lipschitz continuity of S we obtain that
the laws of

(
X(n),K(n)

)
are tight as well.

Thus, we can choose a subsequence (ni; i ≥ 1) such that the laws
of
(
X(ni), K(ni)

)
converge weakly to some (X,K). Using the Skorokhod

representation theorem we can upgrade this to joint almost sure convergence on

a new probability space
(
�̃, F̃ , {F̃t }, P̃

)
. More precisely, we can define processes(

X̃(i), K̃(i)
)
i≥1
,
(
X̃, K̃

)
on
(
�̃, F̃ , {F̃t }, P̃

)
so that:

(
X̃(i), K̃(i)

)
d=
(
X(ni), K(ni)

)
,
(
X̃, K̃

)
d= (X,K) ,

(
X̃(i), K̃(i)

)
a.s.−→ (X̃, K̃).

Now, the stochastic processes:

Mn(t) = X̃(n)(t)− X̃(n)(0)−
∫ t

0
b(n)
(
X̃(n)(s)

)
ds −

(
K̃(n)

)−
(t)+

(
K̃(n)

)+
(t)

are martingales with quadratic variation:

〈Mn,Mn〉(t) =
∫ t

0

(
σ (n)
(
X̃(n)(s)

))2
ds.

By the following convergences:

σ (n)
unif−→ σ, b(n)

unif−→ b,
(
X̃(i), K̃(i)

)
a.s.−→ (X̃, K̃)

we obtain thatMn
a.s.−→ M where,

M(t) = X̃(t)− X̃(0)−
∫ t

0
b
(
X̃(s)

)
ds − K̃−(t)+ K̃+(t)

is a martingale with quadratic variation given by:

〈M,M〉(t) =
∫ t

0
σ 2
(
X̃(s)

)
ds.

Then, by the martingale representation theorem there exists a standard Brownian
motion β̃, that is defined on a possibly enlarged probability space, so that M(t) =∫ t

0 σ
(
X̃(s)

)
dβ̃(s) and thus:

X̃(t) = X̃(0)+
∫ t

0
σ
(
X̃(s)

)
dβ̃(s)+

∫ t
0
b
(
X̃(s)

)
ds + K̃−(t)− K̃+(t),
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where again the non decreasing processes
(
K̃+(t); t ≥ 0

)
and

(
K̃−(t); t ≥ 0

)

increase only when X̃(t) = Y+(t) and X̃(t) = Y−(t) respectively so that X̃(t) ∈
[Y−(t),Y+(t)] ∀t ≥ 0. Hence, we have obtained the existence of a weak solution
to the SDER for σ and b continuous and of at most linear growth.

We now remove the condition that Y−,Y+ never collide by stopping the process
at the first time τ = inf{t ≥ 0 : Y−(t) = Y+(t)} that they do. First we note that,
there exists an extension to the Skorokhod problem and to SDER, allowing for
reflecting barriers Y−,Y+ that come together, see [14, 61] for the detailed definition.
Both results used in the previous argument, namely the Lipschitz continuity of the
solution map, which we still denote by S, and existence and uniqueness of strong
solutions to SDER extend to this setting, see e.g. Theorem 2.6, also Corollary 2.4
and Theorem 3.3 in [61]. The difference of the extended problem to the classical
one described at the beginning, being that k = k− − k+ is allowed to have infinite
variation. However, as proven in Proposition 2.3 and Corollary 2.4 in [14] (see
also Remark 2.2 in [61]) the unique solution to the extended Skorokhod problem
coincides with the one of the classical one in [0, T ] while inf

t≤T
(
Y+(t)− Y−(t)

)
> 0.

Thus, by the previous considerations, for any T < τ , we still have a weak solution
to the SDER above, with bounded variation local termsK; the final statement more
precisely given as:

Proposition 13.33 Assume Y−,Y+ are continuous functions such that Y−(t) ≤
Y+(t),∀t ≥ 0 and let τ = inf{t ≥ 0 : Y−(t) = Y+(t)}. Assume (CLG), namely
that σ(·), b(·) are continuous functions satisfying an at most linear growth condition,
for some positive constant C:

|σ(x)|, |b(x)| ≤ C (1 + |x|) .

Then, there exists a filtered probability space (�,F , {Ft },P) on which firstly an
adapted Brownian motion β is defined (not necessarily generating the filtration).
Moreover, for Y−(0) ≤ X(0) ≤ Y+(0) the adapted process (X,K) satisfies:

X(t ∧ τ) = X(0)+
∫ t∧τ

0
σ (X(s)) dβ(s)

+
∫ t∧τ

0
b (X(s)) ds +K−(t ∧ τ)−K+(t ∧ τ), (13.59)

such that for all t ≥ 0 we have X(t ∧ τ) ∈ [Y−(t ∧ τ),Y+(t ∧ τ)] and for any
T < τ the non decreasing processes

(
K+(t); t ≤ T ) and

(
K−(t); t ≤ T ) increase

only when X(t) = Y+(t) and X(t) = Y−(t) respectively.

We will now be concerned with pathwise uniqueness. Due to the intrinsic one-
dimensionality of the problem we can fortunately apply a simple Yamada–Watanabe
type argument. For the convenience of the reader we now recall assumption (YW),
defined in Sect. 13.2: Let I be an interval with endpoints l < r and suppose ρ is
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a non-decreasing function from (0,∞) to itself such that
∫

0+
dx
ρ(x)

= ∞. Consider,
the following condition on functions a : I → R+ and b : I → R, where we
implicitly assume that a and b initially defined in I ◦ can be extended continuously
to the boundary points l and r (in case these are finite),

|√a(x)−√a(y)|2 ≤ ρ(|x − y|),
|b(x)− b(y)| ≤ C|x − y|.

Moreover, we assume that
√
a(·) is of at most linear growth. Note that, for b(·) this

is immediate by Lipschitz continuity.
Also, observe that since ρ is continuous at 0 with ρ(0) = 0 (the assumption on

ρ implies this) we get that
√
a(·) is continuous. Thus, (YW) implies (CLG) and in

particular the existence result above applies under (YW). We are now ready to state
and prove our well-posedness result.

Proposition 13.34 Under the (YW) assumption the SDER (13.59) with (σ, b) =
(
√

2a, b) has a pathwise unique solution.

Proof Suppose that X and X̃ are two solutions of (13.59) with respect to the same
noise. Then the argument given at Chapter IX Corollary 3.4 of [57] shows that
L0(Xi − X̃i) = 0 where for a semimartingale Z, La(Z) denotes its semimartingale
local time at a (see for example Sect. 13.1 Chapter VI of [57]). Hence by Tanaka’s
formula we get,

|X(t ∧ τ)− X̃(t ∧ τ)| =
∫ t∧τ

0
sgn(X(s)− X̃(s))d(X(s)− X̃(s))

=
∫ t∧τ

0
sgn(X(s)− X̃(s))

×
(√

2a(X(s))−
√

2a(X̃(s))

)
dβ(s)

+
∫ t∧τ

0
sgn(X(s)− X̃(s))(b(X(s))− b(X̃(s)))ds

−
∫ t∧τ

0
sgn(X(s)− X̃(s))d(K+(s)− K̃+(s))

+
∫ t∧τ

0
sgn(X(s)− X̃(s))d(K−(s)− K̃−(s)).

Note that Y− ≤ X, X̃ ≤ Y+, dK+ is supported on {t : X(t) = Y+(t)}
and dK̃+ is supported on {t : X̃(t) = Y+(t)}. So if X̃ < X ≤ Y+ then
dK+ − dK̃+ ≥ 0 and if X < X̃ ≤ Y+ then dK+ − dK̃+ ≤ 0. Hence∫ t∧τ

0 sgn(X(s) − X̃(s))d(K+(s) − K̃+(s)) ≥ 0. With similar considerations
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∫ t∧τ
0 sgn(X(s)− X̃(s))d(K−(s)− K̃−(s)) ≤ 0. Taking expectations we obtain,

E[|X(t ∧ τ)− X̃(t ∧ τ)|]

≤ E

[∫ t∧τ
0

sgn(X(s)− X̃(s))(b(X(s))− b(X̃(s)))ds
]

≤ C
∫ t∧τ

0
E[|X(s)− X̃(s)|]ds.

The statement of the proposition then follows from Gronwall’s lemma.

Under the pathwise uniqueness obtained in Proposition 13.34 above, if
the evolution

(
Y−(t ∧ τ),Y+(t ∧ τ); t ≥ 0

)
is Markovian, then standard

arguments (see for example Sect. 13.1 of Chapter IX of [57]) imply that(
Y−(t ∧ τ),Y+(t ∧ τ),X(t ∧ τ); t ≥ 0

)
is Markov as well. Moreover, under this

(YW) condition we still have the solution map X = sRL
(
β;Y−,Y+).

The reader should note that Proposition 13.34 covers in particular all the cases
of Brownian motions, Ornstein–Uhlenbeck, BESQ(d) , Lag(α) and Jac(β, γ )
diffusions considered in the Applications and Examples section.

13.5.2 Transition Densities for SDER

The aim of this section is to prove under some conditions that qn,n+1
t and qn,nt form

the transition kernels for the two-level systems of SDEs (13.14) and (13.20) in
Wn,n+1 and Wn,n respectively. For the sake of exposition we shall mainly restrict
our attention to (13.14). In the sequel, τ will denote the stopping time T n,n+1 (or
T n,n respectively).

Throughout this section we assume (R) and (BC+) hold for the L-diffusion and
(YW) holds for both the L and L̂ diffusions. In particular, there exists a Markov
semimartingale (X, Y ) satisfying Eq. (13.14) (or respectively (13.20)).

To begin with we make a few simple but important observations. First, note that if
theL-diffusion does not hit l (i.e. l is natural or entrance), thenX1 doesn’t hit l either
before being driven to l by Y1 (in case l is exit for L̂). Similarly, it is rather obvious,
since the particles are ordered, that in case l is regular reflecting for the L-diffusion
the time spent at l up to time τ by the SDEs (13.14) is equal to the time spent by
X1 at l. This is in turn equal to the time spent at l by the excursions of X1 between
collisions with Y1 (and before τ ) during which the evolution ofX1 coincides with the
unconstrained L-diffusion which spends zero Lebesgue time at l (e.g. see Chapter
2 paragraph 7 in [12]). Hence the system of reflecting SDEs (13.14) spends zero
Lebesgue time at either l or r up to time τ . Since in addition to this, the noise driving
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the SDEs is uncorrelated and the diffusion coefficients do not vanish in I ◦ we get
that,

∫ τ
0

1∂Wn,n+1(I ) (X(t), Y (t)) dt = 0 a.s. . (13.60)

We can now in fact relate the constraining finite variation terms K to the
semimartingale local times of the gaps between particles (although this will not
be essential in what follows). Using the observation (13.60) above and Exercise
1.16 (3◦) of Chapter VI of [57], which states that for a positive semimartingale
Z = M + V ≥ 0 (where M is the martingale part) its local time at 0 is equal
to 2
∫ ·

0 1 (Zs = 0) dV s, we get that for the SDEs (13.14) the semimartingale local
time of Yi −Xi at 0 up to time τ is,

2
∫ t∧τ

0
1(Yi(s) = Xi(s))dK+

i (s) = 2K+
i (t ∧ τ),

and similarly the semimartingale local time of Xi+1 − Yi at 0 up to τ is,

2
∫ t∧τ

0
1(Xi+1(s) = Yi(s))dK−

i+1(s) = 2K−
i+1(t ∧ τ).

Now, we state a lemma corresponding to the time 0 boundary condition.

Lemma 13.3 For any f : Wn,n+1(I ◦) → R continuous with compact support we
have,

lim
t→0

∫
Wn,n+1(I ◦)

q
n,n+1
t ((x, y), (x′, y′))f (x′, y′)dx′dy′ = f (x, y).

Proof This follows as in the proof of Lemma 1 of [66]. See also the beginning of
the proof of Proposition 13.31.

We are now ready to prove the following result on the transition densities.

Proposition 13.35 Assume (R) and (BC+) hold for the L-diffusion and (YW)
holds for both the L and L̂ diffusions. Moreover, assume that l and r are either
natural or entrance for the L-diffusion. Then qn,n+1

t form the transition densities
for the system of SDEs (13.14).

Proof Let Qn,n+1
x,y denote the law of the process (X1, Y1, · · · , Yn,Xn+1) satisfying

the system of SDEs (13.14) and starting from (x, y). Define for f continuous with
compact support,

Fn,n+1(t, (x, y)) =
∫
Wn,n+1(I ◦)

q
n,n+1
t ((x, y), (x′, y′))f (x′, y′)dx′dy′.
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Our goal is to prove that for fixed T > 0,

Fn,n+1(T , (x, y)) = Qn,n+1
x,y

[
f (X(T ), Y (T ))1(T < τ)

]
. (13.61)

The result then follows since from observation (13.60) the only part of the
distribution of (X(T ), Y (T )) that charges the boundary corresponds to the event
{T ≥ τ }.

In what follows we shall slightly abuse notation and use the same notation for
both the scalar entries and the matrices that come into the definition of qn,n+1

t . First,
note the following with x, y ∈ I ◦,

∂tAt (x, x
′) = DxmDxs At (x, x′) , ∂tBt (x, y

′) = DxmDxs Bt (x, y′),

∂tCt (y, x
′) = Dy

m̂
Dy
ŝ
Ct (y, x

′) , ∂tDt (y, y′) = Dy
m̂
Dy
ŝ
Dt (y, y

′).

To see the equation for Ct(y, x′) note that since Dm̂ = Ds and Dŝ = Dm we have,

∂tCt (y, x
′) = −Dys ∂tpt (y, x′) = −DysDymDys pt (y, x′)

= −Dy
m̂
Dy
ŝ
Dys pt (y, x′) = Dy

m̂
Dy
ŝ
Ct (y, x

′).

Hence, for fixed (x′, y′) ∈ W̊n,n+1(I ◦) we have,

∂tq
n,n+1
t ((x, y), (x′, y′)) =

( n+1∑
i=1

DximDxis +
n∑
i=i

Dyi
m̂
Dyi
ŝ

)
q
n,n+1
t ((x, y), (x′, y′)),

in (0,∞)× W̊n,n+1(I ◦).

Now, by definition of the entries At, Bt , Ct ,Dt we have for x, y ∈ I ◦,

∂xAt (x, x
′)|x=y = −m̂(y)Ct (y, x′),

∂xBt (x, y
′)|x=y = −m̂(y)Dt (y, y′).

Hence for fixed (x′, y′) ∈ Wn,n+1(I ◦) by differentiating the determinant and since
two rows are equal up to multiplication by a constant we obtain,

∂xi q
n,n+1
t ((x, y), (x′, y′))|xi=yi = 0 , ∂xi q

n,n+1
t ((x, y), (x′, y′))|xi=yi−1 = 0.

The Dirichlet boundary conditions for yi = yi+1 are immediate since again
two rows of the determinant are equal. Furthermore, in case l or r are entrance
boundaries for the L-diffusion the Dirichlet boundary conditions for y1 = l and
yn = r follow from the fact that (in the limit as y → l, r),

Dt(y, y
′)|y=l,r = 0, Ct (y, x

′)|y=l,r = Dxs At (x, x′)|x=l,r = 0.
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Fix T , ε > 0. Applying Ito’s formula we obtain that for each (x′, y′) the process,

(
Qt (x

′, y′) : t ∈ [0, T ]) =
(
q
n,n+1
T+ε−t

(
(X(t), Y (t)), (x′, y′)

) : t ∈ [0, T ]
)
,

is a local martingale. Now consider a sequence of compact intervals Jk exhausting
I as k → ∞ and write τk for inf{t : (X(t), Y (t)) /∈ Jk}. Note that 1(T < τ ∧ τk)→
1(T < τ) as k → ∞ by our boundary assumptions, more precisely by making use of
the observation that X does not hit l or r before Y does. Using the optional stopping
theorem (since the stopped process

(
Qτkt (x

′, y′) : t ∈ [0, T ]) is bounded and hence
a true martingale) and then the monotone convergence theorem we obtain,

q
n,n+1
T+ε ((x, y), (x

′, y′)) = Qn,n+1
x,y

[
qn,n+1
ε ((X(T ), Y (T )), (x′, y′))1(T < τ)

]
.

Now multiplying by f continuous with compact support, integrating with respect to
(x′, y′) and using Fubini’s theorem to exchange expectation and integral we obtain,

Fn,n+1(T + ε, (x, y)) = Qn,n+1
x,y

[
Fn,n+1(ε, (X(T ), Y (T ))1(T < τ)

]
.

By Lemma 13.3, we can let ε ↓ 0 to conclude,

Fn,n+1(T , (x, y)) = Qn,n+1
x,y

[
f (X(T ), Y (T ))1(T < τ)

]
.

The proposition is proven.

Completely analogous arguments prove the following:

Proposition 13.36 Assume (R) and (BC+) hold for the L-diffusion and (YW)
holds for both the L and L̂ diffusions. Moreover, assume that l is either natural
or exit and r is either natural or entrance for the L-diffusion. Then qn,nt form the
transition densities for the system of SDEs (13.20).

We note here that Propositions 13.35 and 13.36 apply in particular to the cases of
Brownian motions with drifts, Ornstein–Uhlenbeck, BESQ(d) for d ≥ 2, Lag(α)
for α ≥ 2 and Jac(β, γ ) for β, γ ≥ 1 considered in the Applications and Examples
section.

In the case l and/or r are regular reflecting boundary points we have the following
proposition. This is where the non-degeneracy and regularity at the boundary in
assumption (BC+) is used. This is technical but quite convenient since it allows for
a rather streamlined rigorous argument. It presumably can be removed.

Proposition 13.37 Assume (R) and (BC+) hold for the L-diffusion and (YW)
holds for both the L and L̂ diffusions. Moreover, assume that l and/or r are regular
reflecting for the L-diffusion. Then qn,n+1

t form the transition densities for the
system of SDEs (13.14).

Proof The strategy is the same as in Proposition 13.35 above. We give the proof in
the case that both l and r are regular reflecting for the L-diffusion (the other cases
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are analogous). First, recall that (BC+) in this case requires that lim
x→l,ra(x) > 0 and

that the limits lim
x→l,rb(x), lim

x→l,r
(
a′(x)− b(x)) exist and are finite.

Now, note that by the non-degeneracy condition lim
x→l,ra(x) > 0 and since

lim
x→l,rb(x) is finite we thus obtain lim

x→l,rs
′(x) > 0.

So for x′ ∈ I ◦ the relations,

lim
x→l,rD

x
s At (x, x

′) = 0 and lim
x→l,rD

x
s Bt (x, x

′) = 0,

actually imply that for x′ ∈ I ◦,

lim
x→l,r∂xAt (x, x

′) = 0 and lim
x→l,r∂xBt (x, x

′) = 0. (13.62)

Moreover, by rearranging the backwards equations we have for fixed y ∈ I ◦ that the
functions,

(t, x) �→ ∂2
xpt (x, y) =

∂tpt (x, y)− b(x)∂xpt (x, y)
a(x)

,

(t, x) �→ ∂2
xDxs pt (x, y) =

∂tDxs pt (x, y)−
(
a′(x)− b(x)) ∂xDxs pt (x, y)
a(x)

,

= ∂tDxs pt (x, y)−
(
a′(x)− b(x))m(x)∂tpt (x, y)
a(x)

,

and more generally for n ≥ 0 and fixed y ∈ I ◦,

(t, x) �→ ∂nt ∂
2
xDxs pt (x, y) =

∂n+1
t Dxs pt (x, y)−

(
a′(x)− b(x))m(x)∂n+1

t pt (x, y)

a(x)
,

can be extended continuously to (0,∞) × [l, r] (note the closed interval [l, r]).
This is because every function on the right hand side can be extended by the
assumptions of proposition and the fact that for y ∈ I ◦, ∂nt pt (·, y) ∈ Dom(L)

(see Theorem 4.3 of [52] for example). Thus by Whitney’s extension theorem,
essentially a clever reflection argument in this case (see Section 3 of [37] for
example), qn,n+1

t ((x, y), (x′, y′)) can be extended as a C1,2 function in (t, (x, y))
to the whole space. We can hence apply Ito’s formula, and it is important to observe
that the finite variation terms dKl and dKr at l and r respectively (corresponding
to X1 and Xn+1) vanish by the Neumann boundary conditions (13.62), from which
we deduce as before that for fixed T > 0,

q
n,n+1
T+ε ((x, y), (x

′, y′)) = Qn,n+1
x,y

[
qn,n+1
ε ((X(T ), Y (T )), (x′, y′))1(T < τ)

]
.

The conclusion then follows as in Proposition 13.35.
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Completely analogous arguments give the following:

Proposition 13.38 Assume (R) and (BC+) hold for the L-diffusion and (YW)
holds for both the L and L̂ diffusions. Moreover, assume that l is regular absorbing
and/or r is regular reflecting for the L-diffusion. Then qn,nt form the transition
densities for the system of SDEs (13.20).

These propositions cover in particular the cases of Brownian motions in the half
line and in an interval considered in Sects. 13.3.2 and 13.3.3 respectively.
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Appendix

We collect here the proofs of some of the facts regarding conjugate diffusions that
were stated and used in previous sections.

We first give the derivation of the table on the boundary behaviour of a diffusion
and its conjugate. Keeping with the notation of Sect. 13.2 consider the following
quantities with x ∈ I ◦ arbitrary,

N(l) =
∫
(l+,x]

(s(x)− s(y))M(dy) =
∫
(l+,x]

(s(x)− s(y))m(y)dy,

%(l) =
∫
(l+,x]

(M(x)−M(y))s(dy) =
∫
(l+,x]

(M(x)−M(y))s′(y)dy.

We then have the following classification of the boundary behaviour at l (see e.g.
[29]):

• l is an entrance boundary iff N(l) <∞, %(l) = ∞.
• l is a exit boundary iff N(l) = ∞, %(l) <∞.
• l is a natural boundary iff N(l) = ∞, %(l) = ∞.
• l is a regular boundary iff N(l) <∞, %(l) <∞.

From the relations ŝ′(x) = m(x) and m̂(x) = s′(x) we obtain the following,

N̂(l) =
∫
(l+,x]

(ŝ(x)− ŝ(y))m̂(y)dy = %(l),

%̂(l) =
∫
(l+,x]

(M̂(x)− M̂(y))ŝ′(y)dy = N(l).
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These relations immediately give us the table on boundary behaviour, namely: If
l is an entrance boundary forX, then it is exit for X̂ and vice versa. If l is natural for
X, then so it is for its conjugate. If l is regular for X, then so it is for its conjugate.
In this instance as already stated in Sect. 13.2 we define the conjugate diffusion X̂
to have boundary behaviour dual to that of X, namely if l is reflecting for X then it
is absorbing for X̂ and vice versa.

Proof (Proof of Lemma 2.1) There is a total number of 52 boundary behaviours
(5 at l and 5 at r) for the L-diffusion (the boundary behaviour of L̂ is completely
determined from L as explained above) however since the boundary conditions for
an entrance and regular reflecting (Dsv = 0) and similarly for an exit and regular
absorbing boundary (DmDsv = 0) are the same we can pair them to reduce to 32

cases (b.c.(l),b.c.(r)) abbreviated as follows:

(nat, nat), (ref, ref ), (abs, abs), (nat, abs), (ref, abs),

(abs, ref ), (abs, nat), (nat, ref ), (ref, nat).

We now make some further reductions. Note that for x, y ∈ I ◦,

Pt1[l,y](x) = P̂t1[x,r](y) ⇐⇒ Pt1[y,r](x) = P̂t1[l,x](y).

After swapping x ↔ y this is equivalent to,

P̂t1[l,y](x) = Pt1[x,r](y).

So we have a bijection that swaps boundary conditions with their duals
(b.c.(l),b.c.(r)) ↔ (b̂.c.(l), b̂.c.(r)). Moreover, if h : (l, r) → (l, r) is any
homeomorphism such that h(l) = r, h(r) = l and writing Ht for the semigroup
associated with the h(X)(t)-diffusion and similarly Ĥt for the semigroup associated
with the h(X̂)(t)-diffusion we see that,

Pt1[l,y](x) = P̂t1[x,r](y) ∀x, y ∈ I ◦ ⇐⇒ Ht1[l,y](x) = Ĥt1[x,r](y) ∀x, y ∈ I ◦.

And we furthermore observe that, the boundary behaviour of the h(X)(t)-diffusion
at l is the boundary behaviour of the L-diffusion at r and its boundary behaviour
at r is that of the L-diffusion at l and similarly for h(X̂)(t). We thus obtain an
equivalent problem where now (b.c.(l),b.c.(r)) ↔ (b.c.(r),b.c.(l)). Putting it all
together, we reduce to the following 4 cases since all others can be obtained from
the transformations above,

(nat, nat), (ref, nat), (ref, ref ), (ref, abs).
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The first case is easy since there are no boundary conditions to keep track of and is
omitted. The second case is the one originally considered by Siegmund and studied
extensively in the literature (see e.g. [21] for a proof). We give the proof for the last
two cases.

First, assume l and r are regular reflecting for X and so absorbing for X̂. Let
Rλ and R̂λ be the resolvent operators associated with Pt and P̂t then with f being
a continuous function with compact support in I ◦ the function u = Rλf solves
Poisson’s equation DmDsu − λu = −f with Dsu(l+) = 0,Dsu(r−) = 0. Apply
D−1
m defined by D−1

m f (y) =
∫ y
l
m(z)f (z)dz for y ∈ I ◦ to obtain Dsu− λD−1

m u =
−D−1

m f which can be written as,

Dm̂DŝD−1
m u− λD−1

m u = −D−1
m f.

So v = D−1
m u solves Poisson’s equation with g = D−1

m f ,

Dm̂Dŝ v − λv = −g,

with the boundary conditions Dm̂Dŝ v(l+) = DsDmD−1
m u(l

+) = Dsu(l+) = 0 and
Dm̂Dŝ v(r−) = 0. Now in the second case when l is reflecting and r absorbing we
would like to check the reflecting boundary condition for v = D−1

m u at r . Namely,
that (Dŝ )v(r−) = 0 and note that this is equivalent to (Dm)v(r−) = u(r−) = 0.
This then follows from the fact that (since r is now absorbing for the L-diffusion)
(DmDs)u(r−) = 0 and that f is of compact support. The proof proceeds in
the same way for both cases, by uniqueness of solutions to Poisson’s equation
(see e.g. Section 3.7 of [39]) this implies v = R̂λg and thus we may rewrite the
relationship as,

D−1
m Rλf = R̂λD−1

m f.

Let now f approximate δx with x ∈ I ◦ to obtain with rλ(x, z) the resolvent density
of Rλ with respect to the speed measure in I ◦ × I ◦,

∫ y
l

rλ(z, x)m(z)dz = m(x)R̂λ1[x,r](y).

Since rλ(z, x)m(z) = m(x)rλ(x, z) we obtain,

Rλ1[l,y](x) = R̂λ1[x,r](y),

and the result follows by uniqueness of Laplace transforms.

It is certainly clear to the reader that the proof only works for x, y in the interior
I ◦. In fact the lemma is not always true if we allow x, y to take the values l, r . To
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wit, first assume x = l so that we would like,

Pt1[l,y](l)
?= P̂t1[l,r](y) = 1 ∀y.

This is true if and only if l is either absorbing, exit or natural for the L-
diffusion (where in the case of a natural boundary we understand Pt1[l,y](l) as
limx→l Pt1[l,y](x)). Analogous considerations give the following: The statement of
Lemma 13.1 remains true with x = r if r is either a natural, reflecting or entrance
boundary point for the L-diffusion. Enforcing the exact same boundary conditions
gives that the statement remains true with y taking values on the boundary of I .

Remark 13.15 For the reader who is familiar with the close relationship between
duality and intertwining first note that with the L-diffusion satisfying the boundary
conditions in the paragraph above and denoting as in Sect. 13.2 by Pt the semigroup
associated with an L-diffusion killed (not absorbed) at l our duality relation
becomes,

Pt1[x,r](y) = P̂t1[l,y](x).

It is then a simple exercise, see Proposition 5.1 of [16] for the general recipe of how
to do this, that this is equivalent to the intertwining relation,

Pt� = �P̂t ,

where � is the unnormalized kernel given by (�f )(x) = ∫ x
l
m̂(z)f (z)dz. This is

exactly the intertwining relation obtained in (13.26) with n1 = n2 = 1.

Entrance Laws For x ∈ I and hn a positive eigenfunction of Pnt we would like
to compute the following limit that defines our entrance law μxt (y) (with respect

to Lebesgue measure) and corresponds to starting the Markov process Pn,hnt from
(x, · · · , x),

μxt (y) := lim
(x1,··· ,xn)→x1

e−λt hn(y1, · · · , yn)
hn(x1, · · · , xn) det

(
pt(xi, yj )

)n
i,j=1 .

Note that, since as proven in Sect. 13.3.10 all eigenfunctions built from the
intertwining kernels are of the form det

(
hi(xj )

)n
i,j=1 we will restrict to computing,

μxt (y) := e−λt det
(
hi(yj )

)n
i,j=1 lim

(x1,··· ,xn)→x1

det
(
pt (xi, yj )

)n
i,j=1

det
(
hi(xj )

)n
i,j=1

.
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If we now assume that pt (·, y) ∈ Cn−1∀t > 0, y ∈ I ◦ and similarly hi(·) ∈ Cn−1

(in fact we only need to require this in a neighbourhood of x) we have,

lim
(x1,··· ,xn)→x1

det
(
pt (xi, yj )

)n
i,j=1

det
(
hi(xj )

)n
i,j=1

= lim
(x1,··· ,xn)→x1

det
(
xi−1
j

)n
i,j=1

det
(
hi(xj )

)n
i,j=1

×
det
(
pt (xi, yj )

)n
i,j=1

det
(
xi−1
j

)n
i,j=1

= 1

det
(
∂i−1
x hj (x)

)n
i,j=1

× det
(
∂i−1
x pt (x, yj )

)n
i,j=1

.

For the fact that the Wronskian, det
(
∂i−1
x hj (x)

)n
i,j=1 > 0 and in particular does not

vanish see Sect. 13.3.10. Thus,

μxt (y) = constx,t × det
(
hi(yj )

)n
i,j=1 det

(
∂i−1
x pt (x, yj )

)n
i,j=1

,

is given by a biorthogonal ensemble as in (13.29). The following lemma, which is
an adaptation of Lemma 3.2 of [47] to our general setting, gives some more explicit
information.

Lemma 13.4 Assume that for x′ in a neighbourhood of x there is a convergent
Taylor expansion ∀t > 0, y ∈ I ◦,

pt (x
′, y)

pt (x, y)
= f (t, x′)

∞∑
i=0

(
x′ − x)i φi(t, y),

for some functions f, {φi}i≥0 that in particular satisfy f (t, x)φ0(t, y) ≡ 1. Then
μxt (y) is given by the biorthogonal ensemble,

constx,t × det
(
hi(yj )

)n
i,j=1 det

(
φi−1(t, yj )

)n
i,j=1

n∏
i=1

pt (x, yi).

If moreover we assume that we have a factorization φi(t, y) = yigi(t) then μxt (y)
is given by the polynomial ensemble,

const ′x,t × det
(
hi(yj )

)n
i,j=1 det

(
yi−1
j

)n
i,j=1

n∏
i=1

pt(x, yi).
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Proof By expanding the Karlin–McGregor determinant and plugging in the Taylor
expansion above we obtain,

det
(
pt (xi, yj )

)n
i,j=1∏n

i=1 pt (x, yi)
=

n∏
i=1

f (t, xi)
∑

k1,··· ,kn≥0

n∏
i=1

(xi − x)ki

×
∑
σ∈Sn

sign(σ )

n∏
i=1

φki (t, yσ(i))

=
n∏
i=1

f (t, xi)
∑

k1,··· ,kn≥0

n∏
i=1

(xi − x)ki det
(
φki (t, yj )

)n
i,j=1 .

First, note that we can restrict to k1, · · · kn distinct otherwise the determinant
vanishes. Moreover, we can in fact restrict the sum over k1, · · · , kn ≥ 0 to
k1, · · · , kn ordered by replacing k1, · · · , kn by kτ(1), · · · , kτ(n) and summing over
τ ∈ Sn to arrive at the following expansion,

det
(
pt (xi, yj )

)n
i,j=1∏n

i=1 pt (x, yi)
=

n∏
i=1

f (t, xi)

∑
0≤k1<k2<···<kn

det
((
xj − x

)ki)n
i,j=1

det
(
φki (t, yj )

)n
i,j=1 .

Now, write with k = (0 ≤ k1 < · · · < kn) ,

χk(z1, · · · , zn) =
det
(
z
ki
j

)n
i,j=1

det
(
zi−1
j

)n
i,j=1

,

for the Schur function and note that lim(z1,··· ,zn)→0 χk(z1, · · · , zn) = 0 unless k =
(0, · · · , n− 1) in which case we have χk ≡ 1. We can now finally compute,

lim
(x1,··· ,xn)→x1

det
(
pt (xi, yj )

)n
i,j=1

det
(
xi−1
j

)n
i,j=1

= lim
(x1,··· ,xn)→x1

det
(
pt (xi, yj )

)n
i,j=1

det
(
(xj − x)i−1

)n
i,j=1

=
n∏
i=1

pt (x, yi)

× lim
(x1,··· ,xn)→x1

n∏
i=1

f (t, xi)
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×
∑

0≤k1<k2<···<kn
χk(x1 − x, · · · , xn − x) det

(
φki (t, yj )

)n
i,j=1

= f n(t, x)×
n∏
i=1

pt (x, yi) det
(
φi−1(t, yj )

)n
i,j=1 .

The first statement of the lemma now follows with,

constx,t = e−λtf n(t, x) 1

det
(
∂i−1
x hj (x)

)n
i,j=1

.

The fact that when φi(t, y) = yigi(t) we obtain a polynomial ensemble is then
immediate.
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Chapter 14
Brownian Sheet Indexed by R

N : Local
Time and Bubbles

Marguerite Zani and Wei Zhou

Abstract In this paper, we show a law of large numbers relating the bubbles of 1-
dimensional, N -parameter Brownian Sheet on a bounded domain and the local time
on that domain. This result generalizes the work of Mountford (Brownian sheet,
local time and bubbles. In: Séminaire de Probabilités, XXXVII. Lecture Notes in
Mathematics, vol 1832. Springer, Berlin, 2003, pp. 19–215).

Keywords Brownian Sheet · Bubbles · Local time

14.1 Introduction

The 1-dimensional,N -parameter Brownian sheet (or 1-dimensional Brownian sheet
indexed by R

N+ ) is a Gaussian process with mean 0 and covariance function

Σ(s, t) =
N∏
l=1

(sl ∧ tl) , s, t ∈ R
N+ .

We will use B.S. to refer to this process.

Definition 14.1 The white noise on R
N—denoted by WN—is a zero mean Gaus-

sian process of covariance function

Σ(A,B) = |A ∩ B|
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where A,B are measurable sets on R
N and | · | is the Lebesgue measure.

We generalise the notation of an interval as follows

Definition 14.2 Let u, v be two vectors in R
N , the N -th dimensional hypercube

[u, v] is defined by

[u, v] :=
N∏
i=1

[min(ui, vi),max(ui, vi)] .

By the Čentsov’s representation, we can relate the B.S. to the white noise:

Theorem 14.1 (Čentsov) Let WN be the white noise on R
N . Therefore, ifW is the

1- dimensional brownian sheet indexed by R
N+ ,

W(t) = WN([0, t]) , t ∈ R
N+ .

In this paper we consider x bubbles for 1-dimensional and general N -parameter
B.S. We generalize the work of Mountford [9] relating the number of bubbles to the
local time of the brownian sheet. For previous works relating local time to Brownian
excursions, see Revuz and Yor [11] or Rogers and Williams [12]. The asymptotics
come from a first result similar to the master formula for the local time of a B.S.
(see [11] and [13]), and from a convergence result on the most “frequent” bubbles.
The strategy of Mountford relies on two different moves: firstly try to neglect the
bubbles having asymptotically—when the size of the bubble tends to 0—a small
contribution, and secondly compare the B.S. to a sum of Brownian Motions. As a
matter of fact, the B.S. can be compared locally, i.e. considering an x-bubble for
small x, to differences of independent Brownian Motions with different speeds. The
time inhomogeneity in the result comes from this fact.

Studies of bubbles from differences of Brownian Motions has been precisely
described in the work of Dalang and Walsh [2, 3]. For previous results on bubbles
or level sets of N -dimensional B.S. see also Dalang and Mountford [1], Kendall [6]
or Khoshnevisan [7].

This paper is organized as follows: in Sect. 14.2 we provide some definitions and
give the main result for a general N -parameter, 1-dimensional B.S. Section 14.3
details the steps of the proof for N = 3. Section 14.4 presents the proof for the
general N > 3 case. Finally the Appendix is devoted to technical results.

14.2 Main Result

We first give some basic definitions about bubbles and local time for the B.S. Let us
call by “zero set” of W the set W−1(0) = {t ∈ R

N+ ,W(t) = 0}. We know from [8]
that the zero set of a N -parameter, d-dimensional B.S. is non trivial if and only if
d < 2N (trivial meansW−1(0) = ∂RN+ ).
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Definition 14.3 A bubble is a restriction of {W > 0} to a single connected
component.

We refer to an x-bubble (x > 0) a bubble which reaches its maximum in [x, 2x].
In this setting (here d = 1 and N ≥ 1), we have therefore the existence of bubbles.
We define the local time at 0, see [8] Chapter 12 or [4] for the existence.

Definition 14.4 For any Borel set A of RN+ we define the local time L ofW at 0 by
the following limit

L(A) := lim
ε→0+

Lε(A) ,

and Lε is the approximate local time

Lε(A) = 1

2ε

∫
A

1[−ε,ε](W(s))ds .

The main result of this paper is the following

Theorem 14.2 Let Nx be the number of x-bubbles in [0, 1]N of a 1-dimensional
Brownian sheet indexed by R

N+ . Let L be its local time at 0 on [0, 1]N . Then there
exists a real positive constant k such that

x2N−1Nx
P−→ k

∫
[0,1]N

(

N∏
i=1

ti )
N−1dL(t) , as x → 0+, (14.1)

where P stands for the convergence in probability.

To prove this theorem we follow the scheme of Mountford. We first start to show
that we can neglect too small or too big bubbles, as well as bubbles close to the axes.
Then we deal with average size bubbles comparing locally these bubbles to the ones
obtained by summing independant standard Brownian Motions.

14.3 Proof in Dimension N = 3

In this paragraph we fix N = 3 and for simplicity we will denote by W the 3-
parameter and 1 dimensional B.S. and by W the 3-dimensional white noise.

14.3.1 Number of “Rare” Bubbles

In this section, we look at the bubbles having small contribution in Theorem 14.2:
we show that the expected number of bubbles with relatively small size or big size
is small.
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We start by looking at the bubbles of “small” size in the cube [0, 1]3. More
precisely we consider the x-bubbles which do not contain a cube of side length
x2ε, for ε small enough.

Proposition 14.1 For any α > 0, there exists ε > 0 such that the expected number
of x-bubbles in [0, 1]3 that do not contain a cube of side length x2ε is less than
α/x5.

The idea here is that for an x-bubble with side length of order smaller than εx2

we can find a cube in the bubble with either:

• an edge which has a white noise contribution of order x
• a face which has a white noise contribution of order x
• a large white noise contribution for a certain cube inside the cube

Let us first show some technical results about bubbles of smaller dimensions. We
define the following set

Definition 14.5 A 2-dimensional x-bubble W is in An(x) if

sup{|W2(R)| , R ⊂ W , R rectangle of side length ≤ 2−nx2} > x

18
,

where W2 is the 2-dimensional white noise.

Let us now define the number of bubbles that belong to An(x) on the B.S :

Definition 14.6 For any w ∈ [0, 1], let Z(w, n) be the number of x-bubbles on
the 2-parameter B.S.W(r, s, w) which belong to An(x). We denote by X(u, n) and
Y (v, n) the analogous quantities when the first and second parameters are fixed in
the B.S.W .

Lemma 14.1 For w ∈ [0, 1] we have

E

⎛
⎝ ∑

w∈x22−nZ∩[0,1]
Z(w, n)

⎞
⎠ ≤ Ke−c2n

x5 . (14.2)

We have analogous bounds for E
(∑

u∈x22−nZ∩[0,1]X(u, n)
)

and
E
(∑

v∈x22−nZ∩[0,1] Y (v, n)
)
.

Definition 14.7 For any (v,w) ∈ [0, 1]2, we consider the Brownian motion
obtained fixing two parameters in the B.S.W :

BX,v,w(r) = W(r, v,w) , r ∈ [0, 1] .
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We denote byXv,w(x, n) the number of excursions of BX,v,w with maximum values
in [ x2 , 2x] and such that

sup
{
|W([r, r ′] × R)|, r < r ′ ∈ e; r ′ − r < 2−nx2;R rectangle in [0, 1]2

with bottom left vertex (v,w) and of side length ≤ 2−nx2
}
>
x

18
.

(14.3)

Let Yu,w(x, n) and Zu,v(x, n) be the analogous quantities in directions Y and Z.

Lemma 14.2 For v,w ∈ [0, 1] fixed (respectively u,w and u, v)

E(Xv,w(x, n)) ≤ γ e−c2n ,

for γ and c constants independent of x ≤ 1.

The proofs of Lemmas 14.1 and 14.2 are postponed to the Appendix.

Proof (Proof of Proposition 14.1) We set ε = 2−N for someN ∈ N. We consider an
x-bubble W which does not contain a cube of side length x22−N . Let t = (t1, t2, t3)
be in W and such thatW(t) = x. We define:

• v1 = inf{t > 0 , ∃R rectangle ⊂ [t1, t1 + t] × [t2, t2 + t] × {t3} ; |W(R)| > x
9

or ∃s ∈ [0, t] , |W(t)−W(t + (s, 0, 0))| > x
9
}

• v2 = inf{t > 0 , ∃R rectangle ⊂ [t1, t1 + t] × {t2} × [t3, t3 + t] ; |W(R)| > x
9

or ∃s ∈ [0, t] , |W(t)−W(t + (0, s, 0))| > x
9
}

• v3 = inf{t > 0 , ∃R rectangle ⊂ {t1} × [t2, t2 + t] × [t3, t3 + t] ; |W(R)| > x
9

or ∃s ∈ [0, t] , |W(t)−W(t + (0, 0, s))| > x
9
}.

And let v = min{v1, v2, v3}. We distinguish two cases:

(i) v ≤ x22−N
(ii) v > x22−N and therefore there exists a u ∈ [t1, t1+2−Nx2]×[t2, t2+2−Nx2]×

[t3, t3 + 2−Nx2] such thatW(u) = 0.

Case (i) without loss of generality we can assume v = v1. If v is determined by the
Brownian motion W(t + (·, 0, 0)) we can use the argument of Mountford [9] for 2
dimensional bubbles to obtain a bound δ/x5. Otherwise, we have for any s ∈ [0, v]

|W(t)−W(t + (s, 0, 0))| ≤ x

9
and W([t, t + (v, v, 0)]) = x

9
.
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We split the interval into smaller ones and suppose

v ∈ (x22−n−1, x22−n] for n ≥ N .

Let s be a point of the grid x22n+1
N

3 contained in [t, t + (v, v, v)]. We notice that
for any t′ ∈ ([t1, t1 + v] × {t2} × {s3}) ∪ ({t1} × [t2, t2 + v] × {s3}),

|W(t′)− x| ≤ 3
x

9
= x

3
.

If there exists a rectangle R in [(t1, t2, s3), (t1 + v, t2 + v, s3)] such that
|W(R)| > x/18, then there is a 2-dimensional bubble in the plane R

2 × {s3}
containing ([t1, t1 + v] × {t2} × {s3}) ∪ ({t1} × [t2, t2 + v] × {s3}) in An(x).

If conversely all rectangles in [(t1, t2, s3), (t1+v, t2+v, s3)] containing (t1, t2, s3)
are of white noise |W(R)| ≤ x/18, then

|W([t1, t1 + v] × [t2, t2 + v] × [t3, s3])| ≥ x

9
− x

18
.

Notice that if there is a w ∈ [t3, s3] such thatW(s1, s2, w) = 0 then

|W([t1, s1] × [t2, s2] × [t3, w])| ≥ x − 3
x

9
= 2x

3
,

and by taking the smallest w, we have an excursion with a contribution to
Zs1,s2(x, n). In the other case, for any w ∈ [t3, s3],W(s1, s2, w) > 0 then [t3, s3] is
within an excursion contributing to Zs1,s2(x, n).

In any case above, we can apply Lemma 14.1 or Lemma 14.2 to get the following
bound for the expectation:

22n

x4 γ e
−c2n + Ke−c′2n

x5 .

Hence for n ≥ N and N large, we have the bound α/x5.

Case (ii) as above, we assume v = v1, and for v1 > x22−N we have for any
y ∈ [0, x22−N ], |W(t) − W(t + (y, 0, 0))| < x/9 and for any R rectangle in
[t1, t1 + x22−N ] × [t2, t2 + x22−N ] × {t3}, |W(R)| < x/9. Let s be the “smallest”
point of the grid x22−N

Z
3 in [t, t + x22−N(1, 1, 1)]. Assume that for any y in

[0, x22−N ], W(s1, s2, t3 + y) ∈ [11x/18, 25x/18] (if not, we have an excursion
contributing to Zs1,s2(x, n)).

Let u be a point in [t, t + x22−N(1, 1, 1)] such thatW(u) = 0, therefore

W([t1, u1] × [t2, u2] × [t3, u3]) ≤ 0 − 6
x

9
= −2x

3
.
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It makes a contribution to Zs1,s2(x, n). In conclusion we have the bound 22N

x4 γ e
−c2N

and for N large, we get α
x5 . This ends the proof of Proposition 14.1. ��

This Proposition implies the two following Corollaries which deal with bubbles
close to the axes and “big” bubbles repectively.

Corollary 14.1 For any δ > 0, there exists ε > 0 such that the expected number of
x-bubbles that reach x in [0, ε] × [0, 1]2 is less than δ/x5.

Proof Let ε > 0 be such that the expected number of x-bubbles which do not
contain a cube of side length εx2 is less than δ

x5 . We therefore bound following the
dichotomy

E[number of x-bubbles] ≤ δ

x5 + E[#{x-bubbles containing a cube of side length εx2}]

≤ δ

x5 + E[|{t ∈ [0, 1]3, |W(t)| < 2x}|]
ε3x6 .

To study the second term in the RHS above, we split the cube [0, 1]3 into smallest
ones of side length εx. We denote by Ki,j,k this cubes, where (i, j, k)xε is the
smallest vertex. Therefore we can bound

E[|{t ∈ [0, 1]3, |W(t)| < 2x}|] =
∑

1≤i,j,k≤1/(xε)

E[|{t ∈ Ki,j,k; |W(t)| < 2x}|]

= 2
∑

1≤i,j,k≤1/(xε)

∫
Ki,j,k

P(W(u, v,w) ∈ [0, 2x])dudvdw

≤ 2
∑

1≤i,j,k≤1/(xε)

ε3x3
P(W(ixε, jxε, kxε) ∈ [0, 2x])

= 2
∑

1≤i,j,k≤1/(xε)

ε3x3

√
π

∫ √
2/
√
ijkxε3

0
e−t2dt

≤ 2
ε3x3

√
2π

∑
1≤i,j,k≤1/(xε)

2√
ijkxε

= 4x5/2ε5/2

√
2π

(
∑

1≤x≤1/(xε)

1√
i
)3

≤ 4x5/2ε5/2

√
2π

(
2√
xε
)3 = κx

for a constant κ . Therefore

E[number of x-bubbles] ≤ δ + κ
x5 .
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Now, let us choose ε′ > 0, from the scaling property we know that 1√
ε′W(ε

′u, v,w)
is equal in law toW . Hence the expectation of bubbles attaining x in [0, ε′]×[0, 1]2
is equal to the expectation of bubbles attaining x/

√
ε′ in [0, 1]3. From the inequality

above, this last quantity is bounded by Kε′5/2/x5. We choose ε′ small and obtain
the desired bound. ��
Corollary 14.2 For any δ > 0, there exists M > 0 such that the expected number
of x-bubbles of diameter bigger thanMx2 is less that δ/x5.

For a fixed δ let us choose ε > 0 such that both the expected number of x-bubbles
that do not contain a cube of side length εx2 and the expected number of x-bubbles
which attain x in [0, ε] × [0, 1]2 (or [0, 1] × [0, ε] × [0, 1] or [0, 1]2 × [0, ε]) are
bounded by δ/x5. Consider now a x-bubble W which is not one of the mentioned
above. Hence W contains a cube of side εx2 and attains x in [ε, 1]3. Let us consider
such a bubble with diameter bigger thanMx2.

Let us define the set A of points t which satisfies the three following conditions:

(A1) 0 < W(t) < 2x
(A2) there is a cube containing t of side length εx2 entirely positive

(A3) all contours of type {t + hs;h ∈ [0, Mx2

2 ],max(|si |) = 1} are not entirely
negative.

Note that the number of bubbles we want to estimate is less than |A|/(ε3x6). Now
we can write

E[|A|] = E[
∫
[0,1]3

1A(s)ds] ≤ E(
∫
[εx2,1]3

1A(s)ds + 3εx2).

Exchanging integral and expectation we have

E[|A|] ≤
∫
[εx2,1]3

E(1A(s))ds + 3εx2.

We can write conditionally to the value ofW(s):

E[1A(s)] = E[1[0,2x](W(s))1A2,A3(s)] = E[E[1A2,A3(s)|W(s) ∈ [0, 2x]]].

In order to bound the RHS above, we consider two cases:

• The 2 and 3-dimensional contributions are large:

sup
R=[s,s′],|s−s′|≤Mx2/2 , s and s′ have at least two different coordinates

{|W(R)|} ≥ x

18
.

From previous arguments, we know that this probability is bounded by e−c/x2
.
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• The white noise contribution is small. We consider the event:

A1 = { inf
y∈[0,Mx2/2]

W(s + (y, 0, 0)) ∈ [−5x

6
, 2x]} .

We have

P(A1) = P(N (0,
1

2
) ∈ [− 5

6
√
M
,

2√
M

]) = f (M) .

Performing identically in the two other directions, we get P(Ā3) ≥ (1 − f (M))12

since ∩i ¯Ai means we can find a box within Mx2/2 of s whose surface is entirely
negative. Summarizing, we get

E[1A2,A3(s)|W(s) ∈ [0, 2x]] ≤ 1 − (1 − f (M))6 + e−c/x2
,

and

E[|A|] ≤ 3εx2 + (1 − (1 − f (M))6 + e−c/x2
)

∫
[ε,1]3

P(W(s) ∈ [0, 2x])ds .

From Khoshnevisan ([8], Proposition 3.4.1) we can bound P(W(s) ∈ [0, 2x]) by
Kx for some constant K independent of x. Hence forM large and small x we have
E[|A|] ≤ δε3x and the Corollary 14.2 is proven. �

14.3.2 Estimates of Most Frequent Bubbles

We now consider a convergence result for most frequent bubbles, i.e. bubbles not
too big or too small and not too close to the axes.

The main idea of this section is to approximate the B.S. locally by the sum of
three independent Brownian Motions. It is important to remark that this is a local
approximation.

We start with some general convergence result

Proposition 14.2 If Xn is a process on the cube [0, 1]3 such that

Xn(u, v,w) = Bn1 (u)+ Bn2 (v)+ Bn3 (w)+ V n(u, v,w)+Xn(0, 0, 0)

where

• Bn1 , Bn2 , Bn3 are independent and converge weakly to independent Brownian
motions B1, B2 and B3 respectively, in the space (C , ‖ · ‖∞).

• Xn(0, 0, 0) = cn → c as n→ +∞
• supu,v,w |V n(u, v,w)| → 0 a.s.
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then the distribution of the number of 1-bubbles of Xn on [0,m]3 which have size at
least γ and are contained in [0,m]3 converge to the corresponding number for the
process sum of the Brownian motions: X(u, v,w) = B1(u)+ B2(v)+ B3(w)+ c.
Proof From Skorohod’s theorem [5], we can consider that Xn and X are defined on
some space Ω̃ and that Xn tends to X uniformly on compact sets almost surely. Let
An be the number of 1-bubbles contained in [0,m]3 with size at least γ , and A the
corresponding number for X. We use the following Lemma:

Lemma 14.3 Let X(ω) be a sample path of X and G1 , · · · ,GR th x-bubbles of
X(ω) of area at least γ x6. Suppose Xn(ω)→ X(ω) in uniform norm. Then for all
i, |Gi | �= γ x6 and for n large enough, we have: Xn(ω) has R bubbles Gn1, · · · ,GnR
of area at least γ x6 such that:

(i) For all i, Gi ∈ (0,m)3 ⇔ Gni ∈ (0,m)3
(ii) For all i, Gi = lim infn→∞Gni = lim supn→∞Gni

(iii) For all i, |Gni |→n→∞|Gi |. ��
Proof (Proof of Lemma 14.3) It is easy to see that no bubble has area exactly γ x6.
Let us show that the number of x-bubbles is fixed for n large enough. Let the (a.s.
finite) x-bubbles of X(ω) beG1, · · · ,Gr , r ≥ R. Suppose that m = 1. We now use
the following two lemmas which proofs are postponed to the Appendix.

Consider G a component of X defined above. If the maximum of G occurs at
(t1, t2, t3) then in a neighbourhood of t1, B1 must assume a local maximum at t1. We
define (s1

l , s
1
u) as the largest interval where the process s → X(s, t2, t3) is greater

than zero. Necessarily we have B1(s
1
l ) = B1(s

1
u) = −B2(t2)−B3(t3) and (s1

l , s
1
u) is

an excursion ofB1 above −B2(t2)−B3(t3). Similarly, we define (s2
l , s

2
u) and (s3

l , s
3
u).

We denote by C = {t1}×{t2}×[s3
l , s

3
u]∪ {t1}×[s2

l , s
3
u]×{t3}∪ [s1

l , s
1
u]×{t2}×{t3}

and K = [s1
l , s

1
u] × [s2

l , s
2
u] × [s3

l , s
3
u] the cube generated by C. ��

Lemma 14.4 A.s. every positive bubble G is such that a.s. for all β > 0 there is
a cube containing the cube K generated by G which is within β of K and on the
surface of which X < 0. ��
Lemma 14.5 ForX restricted to a cubeK , any disctinct two x-bubbles are a.s. non
touching. ��

From Lemma 14.4 above, we know that Gi is contained in a cube inside each
a.s. we can find a ti ∈ Gi such that X(ω)(ti ) > x. Therefore for n large enough we
have Xn(ω)(ti ) > x and we can define Gni as the x-bubble containing ti .

Suppose now that there exists a distinct further x-bubble Gnr+1. Taking a subse-
quence if required, we can assume that there exists tnr+1 for each n such that tnr+1 /∈∪ri=1G

n
i andXn(tnr+1) ≥ x. Let tr+1 be a limit point of tnr+1, thereforeX(ω)(tr+1) ≥

x and tr+1 belongs to a certainGi . Hence there exists a continuous path γi from ti to
tr+1 on which X(ω) > 0. By uniform convergence, for n large enough, Xn(ω) > 0
on γi and in a neighbourhood of tr+1. Hence for an infinity of n, tnr+1 ∈ Gni . This
contradiction implies that there are only r disctinct bubbles for Xn(ω).
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From the construction of Gni , we have (i).
To show (ii) let us first note that by uniform convergence, Gi ⊂ lim infGni . Let

y ∈ lim supGni , and taking a subsequence, we can suppose ∀n, y ∈ Gni . Suppose
that y /∈ Gi . Then for any continuous path γ : [0, 1] → R

3 there is a sγ such
that γ (sγ ) ∈ ∂Gi . From Lemma 14.5 any two (X(ω)(y)/2∧x)-bubbles are a.s. non
touching and there exists α > 0 such thatX(ω)(s) < 0 for any s ∈ [sγ +α, sγ +2α].
By uniform convergence, for n large enough, Xn(ω) ◦ γ < 0 on this interval, which
is contradictory. Hence y ∈ Gi and lim supGni ⊂ Gi . (ii) is proved.

We have therefore lim sup |Gni | ≥ lim inf |Gni | ≥ |Gi | by Fatou’s lemma. Since
lim infGni = lim supGni = Gi we have [0, 1]3 \Gi = lim inf([0, 1]3 \Gni ) so that
1 − |Gi | ≤ 1 − lim sup |Gni |, hence lim sup |Gni | = lim inf |Gni | = |Gi | and (iii) is
proved. ��

Hence from Lemma 14.3 above, since Xn(ω) converges uniformly to X(ω),
we have An(ω) → A(ω), and An tends to A in law since their laws are entirely
determined by the law of Xn and X. This ends the proof of Proposition 14.2. ��

Let us denote by gγ (c,m) the number of bubbles described in Proposition 14.2
on [0,m1] × [0,m2] × [0,m3]. We have the following results on g:

Lemma 14.6

(i) gγ (c,m) is continuous a.s. in m for c, γ fixed.
(ii) For c such that (|c| − 2)2 > m1 +m2 +m3,

E[gγ (c,m)] ≤ m1m2m3√
2πγ

exp

( −(|c| − 2)2

2(m1 +m2 +m3)

)
(14.4)

Lemma 14.7 For ε > 0 fixed, let tn → t ∈ [0, 1]3, xn → 0, (mn1,m
n
2,m

n
3) →

m, cn → c then for a Brownian sheet W the conditional number of xn-bubbles
contained in

[tn, tn + x2
n(
mn1

tn2 t
n
3
,
mn2

tn1 t
n
3
,
mn3

tn1 t
n
2
)]

of size at least γ x6
n/(t

n
1 t
n
2 t
n
3 )

2 conditionally on W(tn) = cnxn converges to
gγ (c,m).

From Lemma 14.6 we have the following

Corollary 14.3 For any t ∈ [ε, 1]3,M, γ fixed and K fixed big enough, we can
bound the expected number of x-bubbles in [t, t + ( M

t2t3
, M
t1t3
, M
t1t2
)] of size at least

γ x6/(t1t2t3)
2 conditionally onW(t) = Kx by

cM3

γ
exp

(−(K − 2)2

M

)

for c a constant independent of K,M .
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14.3.3 Bubbles and Local Time

We fix δ > 0 arbitrary small and choose ε to bound the expected number of x-
bubbles reaching x in [0, ε] × [0, 1]2 by δ/x5. Let M > 0 be large enough such
that the expected number of x-bubbles of diameter bigger than Mx2 is less than
δ/x5, and fix N0 large enough such that the number of bubbles that do not contain
a cube of side length 2−N0x2 is less than δ/x5. For the remaining of this part, if
not mentionned, the bubbles are of diameter less thanMx2 and volume greater than
2−3N0x6. We fix γ,m > 0 constants of Lemma 14.6 that will be chosen later on.
We divide [ε, 1]3 into small cubes Ci = [ri1, ri2] × [si1, si2] × [t i1, t i2] such that

max(
ri2

ri1

,
si2

si1

,
t i2

t i1

) ≤ γ + 1 .

We wish to show that the number of bubbles entirely contained in any Ci is of order∫
Ci
u2v2w2dL(u, v,w) in probability. We divide each cube C into smallest ones of

size u× v × w with

u := inf{y > mx
2

s1t1
; r2 − r1

y
∈ Z}

v := inf{y > mx
2

r1t1
; s2 − s1

y
∈ Z}

w := inf{y > mx
2

r1s1
; t2 − t1

y
∈ Z}.

We also denote by ui, vj , wk the intersection points of the grid and σi,j,k the cube
of the grid with (ui, vj , wk) the smallest vertex. Let σ ′

i,j,k be a cube in σi,j,kwith

(ui, vj , wk) the smallest vertex and of size u s1t1
vjwk

× v r1t1
uiwk

× w r1s1
uivj

. Let Ni,j,k be

the number of x-bubbles in σ ′
i,j,k of size at least γ x6/(uivjwk)

2. Conditionally on
W(ui, vj , wk) = cx, we have the convergence described in Lemma 14.7. Let us
define:

NKi,j,k = Ni,j,k1[−Kx,Kx](W(ui, vj , wk))

where K is a constant detailed further on. We now show that for a certain K most
of the bubbles make a contribution to NKi,j,k .

Lemma 14.8 For any γ,m of Lemma 14.6 there is a K depending on m, γ, ε such
that

E[
∑
i,j,k

(Ni,j,k −NKi,j,k] ≤
δ

x5 |C|2.
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We consider the bubbles in C that do not contribute to Ni,j,k and denote by N
their number.

Lemma 14.9 For ε > 0, and M,N0 chosen as before, we can choose γ small and
m big enough so that we have

E[N ] ≤ δ

x5 |C|.

We consider the bubbles which intersect the frontier of C and denote by Z the
number of such bubbles. We can bound:

Lemma 14.10

E[Z] ≤ 2δ

x5 |C| .

We now estimate the sum
∑
i,j,k N

K
i,j,k which contains most of the contributing

bubbles of Theorem 14.2

Proposition 14.3 For all C we have

x10E[(
∑
i,j,k

NNi,j,k − gγ (W(ui, vj , wk)/x,m)1|W(ui ,vj ,wk)|≤Kx)2] →
x→0

0, (14.5)

where m = [(0, 0, 0), (m,m,m)]. Thus the convergence is in probability.

Proof (Proof of Proposition 14.3) Let us denote by

Δijk = NNijk − gγ (W(ui, vj , wk)/x,m)1|W(ui ,vj ,wk)|≤Kx .

We develop the RHS of (14.5):

x10
∑
i,j,k

E(Δ2
i,j,k)

+ x10

⎡
⎣ ∑
i,j,k �=k′

E(Δi,j,kΔi,j,k′)+
∑

i,j �=j ′,k
E(Δi,j,kΔi,j ′,k)

+
∑
i �=i′,j,k

E(Δi,j,kΔi′,j,k)

⎤
⎦

+ x10

⎡
⎣ ∑
i,j �=j ′,k �=k′

E(Δi,j,kΔi,j ′,k′)+
∑

i �=i′,j �=j ′,k
E(Δi,j,kΔi′,j ′,k)
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+
∑

i �=i′,j,k �=k′
E(Δi,j,kΔi′,j,k′)

⎤
⎦

+ x10
∑

i �=i′,j �=j ′,k �=k′
E(Δi,j,kΔi′,j ′,k′) . (14.6)

Since NKijk and gγ (W(ui, vj , wk)/x,m) are bounded the first two lines of (14.6)

above have bound x10( C
x6 + C′

x8 ) = O(x2). For the third line in (14.6), we use the
total probability formula and get the bound

3C′′ sup
i,j �=j ′,k �=k′

{
P(|W(ui, vj , wk)| ≤ Kx, |W(ui, vj ′ , wk′)| ≤ Kx)

} = O(x) .

It remains to show that the fourth line of (14.6) tends to 0.
We first remark that for i<i′, j<j ′, k<k′, conditionally on W(ui′ , vj ′ , wk′), the

r.v. NK
i′,j ′,k′ is independant of NKi,j,k . By symmetry of the indexes, we only need to

consider the case i < i′, j > j ′, k > k′. We now consider NK
i′,j ′,k′ conditionned on

A = {(W(r, s, t)),ui≤r≤ui+1,vj≤s≤vj+1,wk≤t≤wk+1 ,W(ui′ , vj ′ , wk′)
}
. (14.7)

For r ∈ [ui′ , ui′+1], s ∈ [vj ′, vj ′+1] and t ∈ [wk′, wk′+1] we decompose

W(r, s, t) = B1(r)+B2(s)+B3(t)+D1(r, s)+D2(r, t)+D3(s, t)+C(r, s, t)+W(ui′ , vj ′ , wk′ ) ,

where the Brownian motion B1 is defined B1(r) = W(r, vj ′ , wk′)−W(ui′ , vj ′ , wk′).
We define similarly B2 and B3. Let D1 be the 2-parameter B.S.

D1(r, s) = W(r, s, wk′)−W(r, vj ′ , wk′)−W(ui′ , s, wk′)+W(ui′ , vj ′ , wk′) ,
and define similarly D2, D3. Finally, C is the white noise in the cube
[(ui′ , vj ′ , wk′), (r, s, t)]. We see that B1,D1,D2 and C are independant of A stated
in (14.7). Let A be the intersection of the region where the white noise influences
NKi,j,k and NK

i′,j ′,k′ conditioned on W(ui, vj , wk) and W(ui′ , vj ′ , wk′). We wee

that W(A ) has variance of order O(x4). As x tends to 0, |W(A )| converges in
probability to a Dirac at 0, and B2 + B3 + D3 − W(A ) converges in probability
to B + B ′ + D, where B, B ′ are Brownian motions and D a 2-parameter B.S.
(B,B ′,D,A are independent). From Proposition (14.2),

sup
{
E[Δi,j,kΔi′,j ′,k′ |W(ui, vj , wk) ≤ Kx,W(ui′ , vj ′ , wk′) ≤ Kx]

}→ 0 .

Bounding the whole expectation we have

E[Δi,j,kΔi′,j ′,k′ ] ≤ sup
{
E[Δi,j,kΔi′,j ′,k′ |W(ui, vj , wk) ≤ kx,W(ui′ , vj ′ , wk′ ) ≤ Kx]

}

× P(W(ui, vj , wk) ≤ Kx,W(ui′ , vj ′ , wk′ ) ≤ Kx)
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Since (W(ui, vj , wk),W(ui′ , vj ′ , wk′))is a Gaussian vector, when x tends to 0,

P(W(ui, vj , wk) ≤ Kx,W(ui′ , vj ′ , wk′) ≤ Kx) = O(x2) .

Hence we have shown that the fourth term in (14.6) tends to 0 ��

14.3.4 Proof of Theorem 14.2 when N = 3

As defined previously, the local time at 0 of a 3-parameter B.S. is

L([x1, x2] × [y1, y2] × [z1, z2]) = lim
ε→0

1

2ε

∫ x2

x1

∫ y2

y1

∫ z2

z1

1[−ε,ε](W(u, v,w))dudvdw .

We show the following convergence of Riemann sum type.

Proposition 14.4 Let f : R → R be a bounded measurable function of compact
support and K a cube in ]0,+∞[3 with K0 the bottom-left corner. We divide K
into smallest cubes of size c1x

2 × c2x
2 × c3x

2 and denote by gi,j,k the point of
coordinates K0 + (ic1x

2, jc2x
2, jc3x

2). Hence

x5
∑
i,j,k

f (
W(gi,j,k)

x
)
P−→ 1

c1c2c3

∫
R

f (t)dtL(K) as x → 0+ . (14.8)

Proof (Proof of Proposition 14.4) Let [−A,A] be the support of f and let H be
the set of bounded measurable functions having support [−A,A] and satisfying
convergence (14.8). By linearity, we see that H is a vector space. Actually, we
only need to prove the result for functions of type 1[a,b] for −A ≤ a ≤ b ≤ A.
Without loss of generality we assume 0 ≤ a ≤ b and compute the expectation of
the difference: denoting byWi,j,k = W(gi,j,k) we have

E

⎡
⎣ 1

c1c2c3
(b − a)L(K)− x5

∑
i,j,k

1[ax,bx](Wi,j,k)

⎤
⎦

= E
⎡
⎣ 1

c1c2c3
bL(K)− x5

2

∑
i,j,k

1[−bx,bx](Wi,j,k)

⎤
⎦

− E
⎡
⎣ 1

c1c2c3
aL(K)− x5

2

∑
i,j,k

1[−bx,bx](Wi,j,k)

⎤
⎦ .
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We only need to show that one of the above terms tends to zero while x tends to
0. For example, using the definition of local time with ε = bx we have

lim
x→0

E

⎡
⎣ 1

c1c2c3
bL(K)− x5

2

∑
i,j,k

1[−bx,bx](Wi,j,k)

⎤
⎦

= lim
x→0

1

2c1c2c3x
E
[ ∫ x2

x1

∫ y2

y1

∫ z2
z1

1[−bx,bx](W(u, v,w))dudvdw

− c1x
2c2x

2c3x
2
∑
i,j,k

1[−bx,bx](Wi,j,k)
]

= lim
x→0

1

2c1c2c3x

∑
i,j,k

∫
Ki,j,k

P (W(u, v,w) ∈ [−bx, bx])

− P(Wi,j,k ∈ [−bx, bx])dudvdw.

Now we notice that P(W(u, v,w) ∈ [−bx, bx])−P(Wi,j,k ∈ [−bx, bx]) = O(x3)

and by variation of density, the difference is O(x2) and when x tends to 0 the
difference tends to 0. Since 1[a,b] is positive, we have the convergence in L1. The
functions are bounded so we use the Lebesgue convergence theorem to conclude.

��
Proof (Proof of Theorem 14.2) From Propositions 14.3 and 14.4, on a cube C we
have

x5
∑
i,j,k

NKi,j,k
P→ (r1s1t1)

2

m3

∫ K
−K
gγ (x,m)dxL(C) = k

∫
C

u2v2w2dL(u, v,w) .

Notice that max(r2/r1, s2/s1, t2/t1) ≤ 1 + γ . Summing over all the cubes Cl we
get

x5
∑
l

∑
i,j,k

(NKi,j,k)l
P→ k

∫
[ε,1]3

u2v2w2dL(u, v,w) .

Since we can choose ε arbitrary close to 0, we can replace [ε, 1]3 by [0, 1]3 in
the integral above. The remaining of the x-bubbles are in one of the following
categories:

• x-bubbles of diameter greater than Mx2, by Corollary 14.2 their expected
number is less than δ/x5;

• x-bubbles which do not contain a cube of size 2−3Nx6; by Proposition 14.1 their
expected number is bounded by δ/x5;

• x-bubbles which reach x in [0, ε]×[0, 1]2∪[0, 1]×[0, ε]×[0, 1]∪[0, 1]2×[0, ε];
by Corollary 14.1, their expected number is bounded by δ/x5;
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• x-bubbles contained in a cube Cl but not in σ ′, by Lemma 14.9 their expected
number is bounded by δ/x5;

• x-bubbles which touch a frontier of a cube Cl , from Lemma 14.10 their expected
number is bounded by δ/x5.

By arbitrariness of δ, we have the wanted result. ��

14.4 The General Case, N ∈ N, N > 3

For the general case, we proceed as for N = 3. The analogue of Sect. 14.3.1
is proved by recurrence on N : we can show a result similar to Lemma 14.2 in
dimension N and use it in dimension N − 1 to prove Lemma 14.1. Then analogue
of Proposition 14.1 is shown with bound α/x2N−1. Concerning the analogue on the
main contribution, we can show Lemma 14.7 for a general N replacing

[tn, tn + x2
n(
mn1

tn2 t
n
3
,
mn2

tn1 t
n
3
,
mn3

tn1 t
n
2
)] by [tn, tn + x2

n(
mn1

tn2 t
n
3 · · · tnN

,
mn2

tn1 t
n
3 · · · tnN

, · · · , mnN

tn1 t
n
2 · · · tnN−1

)]

and the size is at least γ x2N
n /(t

n
1 t
n
2 · · · tnN )N−1.

For the local time approximation, Proposition 14.4 is written as follows.

Proposition 14.5 Let f be a measurable bounded function of compact support
and K an hypercube in ]0,+∞)N . We divide K into smallest hypercubes of size∏N
i=1 cix

2, and we get

x2N−1
∑

i1,··· ,iN
f (W(i1c1x

2, · · · , iNcNx2)/x)−→
x→0

1

c1 · · · cN
∫
R

f (t)dtL(K).

(14.9)

Appendix: Proofs of Lemmas

Proof of Lemmas 14.1 and 14.2

We need an additional technical Lemma.

Lemma 14.11 Fix an arbitrary x > 0. For w ≤ 1, the probability that there exists
an x-bubble on the sheet (r, s) → W(r, s, w) in An(x) is bounded by e−k2n with k
independent of w.

Remark We remark that by rescaling properties, the probability for w ≤ 1 that a
rectangle has a large white noise contribution is smaller than this same probability
for w = 1. This explains the uniformity of the constant k with respect to w.
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Proof of Lemma 14.11 We fix w = 1 and consider a grid of steps 2−nx2.
Without loss of generality, we can extend the domain of (r, s) from [0, 1]2 to
[0, x22−n(!2n/x2" + 1)]2. Let Rij be the square [i2−nx2, (i + 2)2−nx2] ×
[j2−nx2, (j + 2)2−nx2]. Remark that since Rij is of side length 2−n+1x2, any
rectangle of side length less than 2−nx2 is contained in a least one Rij . We have the
following bounds: for a rectangle R on the sheetW(r, s, w),

P( sup
R rectangle of side length ≤2−nx2

|W(R)| ≥ x

18
)

≤
∑
i,j

P ( sup
R⊂Rij , R rectangle of side length ≤2−nx2

|W(R)| ≥ x

18
)

≤
∑
i,j

P ( sup
R⊂Ri,j

|W(R)| ≥ x

18
).

From Lemma 1.2 of [10]

P( sup
R⊂Ri,j

|W(R)| ≥ x

18
) ≤ 16P(|W(Ri,j )| ≥ x

18
) = 16P(N (0, 2−2nx4) ≥ x

18
) ,

where N (m, σ 2) denotes a Gaussian random variable of mean m and variance σ 2.
Let W be an x-bubble on the sheetW(r, s, w). Hence we have

P(W ⊂ An(x)) ≤ 16
22n

x4 P(N (0, 2−2nx4) ≥ x

18
),

and we obtain the desired result by an elementary inequality on the error function.
��

We have a direct corollary of this result:

Corollary 14.4 Fix an arbitrary x > 0. Almost surely, there exists a N ≥ 0 such
that for any rectangle of side length less than 2−Nx2 onW(r, s, w), |W(R)| < x

18 .

Proof (Proof of Corollary 14.4) Applying Borel-Cantelli Lemma, and since∑
n e

−k2n <∞, we can conclude. ��
Proof (Proof of Lemma 14.1) We consider the 2-parameter B.S. W(r, s, w) and a
grid of space 2−(n+1)x2. Without loss of generality, we extend the domain of (r, s)
from [0, 1]2 to [0, x22−n(!2n/x2"+1)]2. We now consider a rectangle of side length
less than 2−(n+1)x2. It belongs at least to one of the two categories:

(1) It intersects the grid
(2) It is of side length less than 2−(n+1)x2.

We consider a rectangle R in the bubble W of side length less than 2−nx2 and
such that |W(R)| > x

18 . We consider the case (1). We denote by [r1, r2] × {r0} the
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intersection and es0,w the excursion of the Brownian motion Bs0,w(·) containing
[r1, r2]. From Lemma 3 of [9], we can bound the expected number of these

excursions by K 2n

x2 e
−c 2n

x2 . If R is in case (2), W is in An+1(x). We repeat the
previous scheme and we note by Corollary 14.4 that this procedure ends almost
surely and the bound for such bubbles W is

∑
k≥n
K

22k

x4
e
−c 22k

x2 .

For small x the bound for E(Z(w, n)) is K
x3 e

−c2n . By rescaling properties, forw ≤ 1
this result holds with the same constant. Actually, a bubble on a sheet of height less
than 1 has a less important variation so the probability that it is in An(x) is less than
the same probability for a bubble of height 1. We sum on w and obtain the result.

��
Proof (Proof of Lemma 14.2) We define the stopping times (Ti)i≥0 by

• T0 = 0
• Ti+1 = inf{r > Ti ; ∃Ti < r ′ < r , r − r ′ < 2−nx2,

R rectangle of side length ≤ 2−nx2 , |W([r ′, r] × R)| > x

18
}.

We can therefore bound Xv,w(x, n) ≤ sup{i, Ti < 1} . As previously done,
we extend the domain of r from [0, 1] to [0, x22−n(!2n/x2" + 1)] and split to⋃
i[i2−nx2, (i + 1)2−nx2] × [0, 1]2. We note that any interval of length less than

2−nx2 is included in an interval Ii = [[i2−nx2, (i + 2)2−nx2] for a certain i.
Therefore we bound

P(T1 ≤ u)

≤ P( sup
i2−nx2≤u;r,r ′∈Ii ;0<r−r ′<2−nx2,R rectangle of side length ≤2−nx2

|W([r ′, r] × R)| > x

18
)

≤
∑

i2−nx2≤u
P ( sup
K⊂Ii×[0,1]2 cube of side length ≤2−nx2

W(K) >
x

18
).

Applying again the inequality of [10], we get

P( sup
K⊂Ii×[0,1]2 cube of side length ≤2−nx2

W(K) >
x

18
)

≤ 43P(|N (0, 2−3nx6))| > x

18
) ≤ k exp(−α 23n

x6 ) .
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Summing over i in the above inequality we get

P(T1 ≤ u) ≤ k u
2n

x2 exp(−α 23n

x6 ) .

Since the random variables Ti−Ti−1 are i.i.d. we compare them to a Poisson process
and we can conclude. ��

Proofs of Lemmas 14.4 and 14.5

Proof (Proof of Lemma 14.4) Let us assume that X reaches its maximum on
(t1, t2, t3) onG and defineC andK as previously. Almost surely, for all β > 0, there
exist g1

l ∈ (s1
l −β, s1

l ) and g1
u ∈ (s1

u, s
1
u+β) such that B1(g

1
l )+B2(t2)+B3(t3) < 0

andB1(g
1
u)+B2(t2)+B3(t3) < 0. Since ti is the maximum ofBi on (sil , s

i
u),B2(t2)+

B3(t3) is a maximum ofB2+B3 on [s2
l , s

2
u]×[s3

l , s
3
u]. From the continuity ofB2+B3,

for β small, B2(t2)+B3(t3) is also a maximum on [s2
l −β, s2

u+β]×[s3
l −β, s3

u+β].
We have therefore X striclty negative on {g1

l } × [s2
l − β, s2

u + β] × [s3
l − β, s3

u + β]
and {g1

u} × [s2
l − β, s2

u + β] × [s3
l − β, s3

u + β].
Similarly we have g2

l , g
2
u for B2 and g3

l , g
3
u for B3 and X is stricly negative on

[s1
l −β, s1

u+β]×{g2
l }×[s3

l −β, s3
u+β] and [s1

l −β, s1
u+β]×{g2

u}×[s3
l −β, s3

u+β]
[s1
l −β, s1

u+β]×[s2
l −β, s2

u+β]×{g3
l } and [s1

l −β, s1
u+β]×[s2

l −β, s2
u+β]×{g3

u}.
So we can take the cube defined by the six faces

{g1
l } × [g2

l , g
2
u] × [g3

l , g
3
u] ∪ {g1

u} × [g2
l , g

2
u] × [g3

l , g
3
u]∪

[g1
l , g

1
u] × {g2

l } × [g3
l , g

3
u] ∪ [g1

l , g
1
u] × {g2

u} × [g3
l , g

3
u]∪

[g1
l , g

1
u] × [g2

l , g
2
u] × {g3

l } ∪ [g1
l , g

1
u] × [g2

l , g
2
u] × {g3

l }.

��
Proof (Proof of Lemma 14.5) The result of Lemma 14.5 is a consequence of
Lemma 14.4. ��

Proofs of Lemmas 14.6 and 14.7

Proof (Proof of Lemma 14.6) For part (i), since |{(u, v,w) ; X(u, v,w) = 0}| = 0,
gγ (c,m) is continuous almost surely.
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Part (ii): the expectation of gγ (c,m) is less than

E|(u, v,w) ∈ [0,m] ; W(u, v,w) ∈ [0, 2]|/γ.

From a simple inequality on the error function, we get the result. ��
Proof (Proof of Lemma 14.7) Let

Xn(u, v,w) = 1

xn
W(tn1 + x2

n

u

tn2 t
n
3
, tn2 + x2

n

v

tn1 t
n
3
, tn3 + x2

n

w

tn1 t
n
2
)

and by elementary formulas we have

Xn(u, v,w) = Bn1 (u)+ Bn2 (v)+ Bn3 (w)+
1

xn
(En1 (x

2
n

v

tn3
, x2
n

w

tn2
)

+En2 (x2
n

u

tn3
, x2
n

w

tn1
)+ En3 (x2

n

u

tn2
, x2
n

v

tn1
))

+ 1

xn
W ′(x2

n

u

tn2 t
n
3
, x2
n

v

tn1 t
n
3
, x2
n

w

tn1 t
n
2
)+Xn(0, 0, 0).

where Bni is the standard Brownian motion, Eni is a standard 2-parameter B.S.,
and W ′ is a 3-parameter B.S. They are mutually independent. We also note that
on [0,mn1] × [0,mn2] × [0,mn3], from the scaling properties,

1

xn
(En1 (x

2
n

v

tn3
, x2
n

w

tn2
)+ En2 (x2

n

u

tn3
, x2
n

w

tn1
)+ En3 (x2

n

u

tn2
, x2
n

v

tn1
))

+ 1

xn
W ′(x2

n

u

tn2 t
n
3
, x2
n

v

tn1 t
n
3
, x2
n

w

tn1 t
n
2
)

= xn(En1 (
v

tn3
,
w

tn2
)+ En2 (

u

tn3
,
w

tn1
)+ En3 (

u

tn2
, x2
n

v

tn1
))+ x2

nW
′( u
tn2 t
n
3
,
v

tn1 t
n
3
,
w

tn1 t
n
2
).

(14.10)

Let us denote by V n(u, v,w) the RHS of (14.10) above. We have sup |V n| → 0
almost surely, hence we can apply Proposition 14.2 ��

Proofs of Lemmas 14.8, 14.9 and 14.10

Proof (Proof of Lemma 14.8) We compute the expectation E[∑i,j,k Ni,j,k
1[2pKx,2p+1Kx)(|W(ui, vj , wk)|)] and sum over p. The inequality below from
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line 2 to 3 is a consequence of Corollary 14.3.

E[
∑
i,j,k

Ni,j,k1[2pKx,2p+1Kx)(|W(ui, vj , wk)|)]

=
∑
i,j,k

E[Ni,j,k1[2pKx,2p+1Kx)(|W(ui, vj , wk)|)]

=
∑
i,j,k

E
[
E
[
Ni,j,k

/|W(ui, vj , wk)| ∈ [2pKx, 2p+1Kx)
]

×1[2pKx,2p+1Kx)(|W(ui, vj , wk)|)
]

≤
∑
i,j,k

cm3

γ
exp

(
− (K2p − 2)2

m

)
P(|W(ui, vj , wk))| ∈ [2pKx, 2p+1Kx))

≤
∑
i,j,k

cm32pKx

γ
√

2πuivjwk
exp

(
− (K2p − 2)2

m

)

≤
∑
i,j,k

cm32pKx

γ
√

2πε3
exp

(
− (K2p − 2)2

m

)
.

We sum over i, j, k and from the construction of u, v,w we get

≤ c2pK|C|2
γ x5

√
2πε3

exp

(
− (K2p − 2)2

m

)
.

If we sum over p ≥ 0, for K big enough we have the final result since c is
independent of K . ��
Proof (Proof of Lemma 14.9) Let D := C \ (∪i,j,kσ ′

i,j,k). Since the bubbles are

of diameter less than Mx2, a bubble not contained in σ ′
i,j,k is entirely contained in

D̃ := {x ∈ [0, 1]3, d(x,D) ≤ Mx2}. We compute the Lebesgue measure of D̃

|D̃| ≤
∑
i,j,k

3(1 − 1

(1 + γ )2 )uvw + 2Mx2uv + 2Mx2vw + 2Mx2uw

≤ 3(1 − 1

(1 + γ )2 )|C| + 6
M

m
|C| .

Moreover, an easy bound on the density ofW(t) gives

E|{t ∈ D̃ ; W(t) ∈ [0, 2x]}| ≤ x

ε3/2 |D̃|.
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Finally we have

E(N) ≤ (3(1 − 1

(1 + γ )2 )+ 6
M

m
)

23N0

ε3/2x5 |C| .

We then choose γ and m to have the result. ��
Proof (Proof of Lemma 14.10) Proceeding as in the proof above, the bubbles
intersecting the frontier of C are contained in ∂̃C := {t ; d(t, ∂C) ≤ Mx2}. We
estimate the measure of ∂̃C:

|∂̃C| ≤ 4Mx2[(r2−r1)(s2−s1)+(s2−s1)(t2− t1)+(r2−r1)(t2− t1)] ≤ 12
M

m
|C| .

From the choice of m in Lemma 14.9, we get the result. ��
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Chapter 15
Mod-φ Convergence, II: Estimates
on the Speed of Convergence

Valentin Féray, Pierre-Loïc Méliot, and Ashkan Nikeghbali

Abstract In this paper, we give estimates for the speed of convergence towards
a limiting stable law in the recently introduced setting of mod-φ convergence.
Namely, we define a notion of zone of control, closely related to mod-φ convergence,
and we prove estimates of Berry–Esseen type under this hypothesis. Applications
include:

• the winding number of a planar Brownian motion;
• classical approximations of stable laws by compound Poisson laws;
• examples stemming from determinantal point processes (characteristic polyno-

mials of random matrices and zeroes of random analytic functions);
• sums of variables with an underlying dependency graph (for which we recover a

result of Rinott, obtained by Stein’s method);
• the magnetization in the d-dimensional Ising model;
• and functionals of Markov chains.

15.1 Introduction

15.1.1 Mod-φ Convergence

Let (Xn)n∈N be a sequence of real-valued random variables. In many situations,
there exists a scale sn and a limiting law φ which is infinitely divisible, such
that (Xn/sn)n∈N converges in law towards φ. For instance, in the classical central
limit theorem, if Xn = ∑n

i=1Ai is a sum of centered i.i.d. random variables with
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E[(A1)
2] <∞, then

sn =
√
nE[(A1)2]

and the limit is the standard Gaussian distribution NR(0, 1). In [27] and the
subsequent papers [14, 21], the notion of mod-φ convergence was developed in
order to get quantitative estimates on the convergence Xn

sn
⇀ φ (throughout the

paper,⇀ denotes convergence in distribution).

Definition 15.1 Let φ be an infinitely divisible probability measure, andD ⊂ C be
a subset of the complex plane, which we assume to contain 0. We assume that the
Laplace transform of φ is well defined over D, with Lévy exponent η:

∀z ∈ D,
∫
R

ezx φ(dx) = eη(z).

We then say that (Xn)n∈N converges mod-φ over D, with parameters (tn)n∈N and
limiting function ψ : D → C, if tn → +∞ and if, locally uniformly on D,

lim
n→∞E[ezXn ] e−tnη(z) = ψ(z).

If D = iR, we shall just speak of mod-φ convergence; it is then convenient to
use the notation

θn(ξ) = E[eiξXn ] e−tnη(iξ);
θ(ξ) = ψ(iξ),

so that mod-φ convergence corresponds to limn→∞ θn(ξ) = θ(ξ) (uniformly for
ξ in compact subsets of R). When nothing is specified, in this paper, we implicitly
consider thatD = iR. WhenD = C we shall speak of complex mod-φ convergence.
In some situations, it is also appropriate to study mod-φ convergence on a band
R× i[−b, b], or [−c, c] × iR (see [21, 44]).

Intuitively, a sequence of random variables (Xn)n∈N converges mod-φ if it can be
seen as a large renormalization of the infinitely divisible law φ, plus some residue
which is asymptotically encoded in the Fourier or Laplace sense by the limiting
function ψ . Then, φ will typically be:

1. in the case of lattice-valued distributions, a Poisson law or a compound Poisson
law (cf. [5, 12, 21, 35]);

2. or, a stable distribution, for instance a Gaussian law.

In this paper, we shall only be interested in the second case. Background on
stable distributions is given at the end of this introduction (Sect. 15.1.3). In particular
we will see that, if φ is a stable distribution, then the mod-φ convergence of Xn
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implies the convergence in distribution of a renormalized version Yn of Xn to φ
(Proposition 15.3).

We believe that mod-φ is a kind of universality class behind the central limit
theorem (or its stable version) in the following sense. For many sequences (Xn)n∈N
of random variables that are proven to be asymptotically normal (or converging
to a stable distribution), it is possible to prove mod-φ convergence; we refer to
our monograph [21] or Sects. 15.3–15.5 below for such examples. These estimates
on the Laplace transform/characteristic function can then be used to derive in an
automatic way some companion theorems, refining the central limit theorem. In
[21], we discuss in details the question of moderate/large deviation estimates and of
finding the normality zone.

In the present paper, we shall be interested in the speed of convergence
towards the Gaussian (or more generally the stable) distribution of the appropriate
renormalization Yn of Xn. To obtain sharp bounds on this speed of convergence, we
do not work with mod-φ convergence, but we introduce the notion of zone of control
for the renormalized characteristic function θn(ξ). In many examples, such a zone
of control can be obtained by essentially the same arguments used to prove mod-φ
convergence, and in most examples, mod-φ convergence actually holds.

15.1.2 Results and Outline of the Paper

We take as reference law a stable distribution φ of index α ∈ (0, 2]. Let (Xn)n∈N
be a sequence of variables that admits a zone of control (this notion will be defined
in Definition 15.5; this is closely related to the mod-φ convergence of (Xn)n∈N).
As we will see in Proposition 15.6, this implies that some renormalization Yn
of Xn converges in distribution towards φ and we are interested in the speed of
convergence for this convergence. More precisely, we are interested in upper bounds
for the Kolmogorov distance

dKol(Yn, φ) = sup
a∈R

∣∣∣∣P[Yn ≤ a] −
∫ a
−∞
φ(dx)

∣∣∣∣ .

The main theorem of Sect. 15.2 (Theorem 15.19) shows that this distance is
O(t−γ−1/α

n ), where γ is a parameter describing how large our zone of control is.
We also obtain as intermediate result estimates for

∣∣∣∣E[f (Yn)] −
∫
R

f (x) φ(dx)

∣∣∣∣ ,

where f lies in some specific set of tests functions (Proposition 15.15). A detailed
discussion on the method of proof of these bounds can be found at the beginning of
Sect. 15.2.
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Section 15.3 gives some examples of application of the theoretical results of
Sect. 15.2. The first one is a toy example, while the other ones are new to the best of
our knowledge.

• We first consider sums of i.i.d. random variables with finite third moment. In this
case, the classical Berry–Esseen estimate ensures that

dKol(Yn,NR(0, 1)) ≤ 3E[|A1|3]
σ 3

√
n
,

see [6] or [19, §XVI.5, Theorem 1]. Our general statement for variables with a
zone of convergence gives essentially the same result, only the constant factor is
not as good.

• We can extend the Berry–Esseen estimates to the case of independent but non
identically distributed random variables. As an example, we look at the number
of zeroes Zr of a random analytic series that fall in a disc of radius r; it has the
same law as a series of independent Bernoulli variables of parameters r2k, k ≥ 1.
When the radius r of the disc goes to 1, one has a central limit theorem for Zr ,
and the theory of zones of control yields an estimate O((1 − r)−1/2) on the
Kolmogorov distance.

• We then look at the winding number ϕt of a planar Brownian motion starting
at 1 (see Sect. 15.3.2 for a precise definition). This quantity has been proven
to converge in the mod-Cauchy sense in [14], based on the computation of the
characteristic function done by Spitzer [53]. The same kind of argument easily
yields the existence of a zone of control and our general result applies: when
t goes to infinity, after renormalization, ϕt converges in distribution towards a
Cauchy law and the Kolmogorov distance in this convergence is O((log t)−1).

• In the third example, we consider compound Poisson laws (see [50, Chapter
1, §4]). These laws appear in the proof of the Lévy–Khintchine formula for
infinitely divisible laws (loc. cit., Chapter 2, §8, pp. 44–45), and we shall
be interested in those that approximate the stable distributions φc,α,β . Again,
establishing the existence of a zone of control is straight-forward and our general
result shows that the speed of convergence is O(n−1/min(α,1)) (Proposition 15.22),
with an additional log factor if α = 1 and β �= 0 (thus exhibiting an interesting
phase transition phenomenon).

• Ratios of Fourier transforms of probability measures appear naturally in the
theory of self-decomposable laws and of the corresponding Ornstein–Uhlenbeck
processes. Thus, any self-decomposable law φ is the limiting distribution of a
Markov process (Ut )t≥0, and when φ is a stable law, one has mod-φ convergence
of an adequate renormalisation of Ut , with a constant residue. This leads to
an estimate of the speed of convergence which depends on α, on the speed of
(Ut )t≥0 and on its starting point (Proposition 15.24).

• Finally, logarithms of characteristic polynomials of random matrices in a clas-
sical compact Lie group are mod-Gaussian convergent (see for instance [21,
Section 7.5]), and one can compute a zone of control for this convergence,
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which yields an estimate of the speed of convergenceO((log n)−3/2). For unitary
groups, one recovers [10, Proposition 5.2]. This example shows how one can
force the index v of a zone of control of mod-Gaussian convergence to be equal
to 3, see Remark 15.25.

The last two sections concentrate on the case where the reference law is Gaussian
(α = 2). In this case, we show that a sufficient condition for having a zone of control
is to have uniform bounds on cumulants (see Definition 15.27 and Lemma 15.28).
This is not surprising since such bounds are known to imply (with small additional
hypotheses) mod-Gaussian convergence [21, Section 5.1]. Combined with our main
result, this gives bounds for the Kolmogorov distance for variables having uniform
bounds on cumulants—see Corollary 15.29. Note nevertheless that similar results
have been given previously by Statulevičius [54] (see also Saulis and Statulevičius
[52]). Our Corollary 15.29 coincides up to a constant factor to one of their result. Our
contribution here therefore consists in giving a large variety of non-trivial examples
where such bounds on cumulants hold:

• The first family of examples relies on a previous result by the authors [21,
Chapter 9] (see Theorem 15.33 here), where bounds on cumulants for sums of
variables with an underlying dependency graph are given. Let us comment a bit.
Though introduced originally in the framework of the probabilistic method [1,
Chapter 5], dependency graphs have been used to prove central limit theorems
on various objects: random graphs [28], random permutations [9], probabilistic
geometry [46], random character values of the symmetric group [21, Chapter 11].
In the context of Stein’s method, we can also obtain bounds for the Kolmogorov
distance in these central limit theorems [3, 47].

The results of this paper give another approach to obtain bounds for this
Kolmogorov distance for sums of bounded variables (see Sect. 15.4.2). The
bounds obtained are, up to a constant, the same as in [47, Theorem 2.2]. Note
that our approach is fundamentally different, since it relies on classical Fourier
analysis, while Stein’s method is based on a functional equation for the Gaussian
distribution. We make these bounds explicit in the case of subgraph counts in
Erdös–Rényi random graphs and discuss an extension to sum of unbounded
variables.

• The next example is the finite volume magnetization in the Ising model on Z
d .

The Ising model is one of the most classical models of statistical mechanics,
we refer to [23] and references therein for an introduction to this vast topic.
The magnetization M� (that is the sum of the spins in �) is known to have
asymptotically normal fluctuations [45]. Based on a result of Duneau et al. [17],
we prove that, if the magnetic field is non-zero or if the temperature is sufficiently
large, M� has uniform bounds on cumulants. This implies a bound on the
Kolmogorov distance (Proposition 15.45):

dKol

(
M� − E[M�]√

Var(M�)
, NR(0, 1)

)
≤ K√|�| .
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It seems that this result improves on what is known so far. In [11], Bulinskii
gave a general bound on the Kolmogorov distance for sums of associated
random variables, which applied to M�, yields a bound with an additional
(log |�|)d factor comparing to ours. In a slightly different direction, Goldstein
and Wiroonsri [24] have recently given a bound of order O(|�|1/(2d+2)) for the
L1-distance (the L1-distance is another distance on distribution functions, which
is a priori incomparable with the Kolmogorov distance; note also that their bound
is only proved in the special case where � = {−m,−m+ 1, . . . , m}d ).

• The last example considers statistics of the form Sn = ∑n
t=0 ft (Xt ), where

(Xt )t≥0 is an ergodic discrete time Markov chain on a finite space state. Again
we can prove uniform bounds on cumulants and deduce from it bounds for the
Kolmogorov distance (Theorem 15.51). The speed of convergence in the central
limit theorem for Markov chains has already been studied by Bolthausen [8]
(see also later contributions of Lezaud [40] and Mann [43]). These authors study
more generally Markov chains on infinite space state, but focus on the case of
a statistics ft independent of the time. Except for these differences, the bounds
obtained are of the same order; however our approach and proofs are again quite
different.

It is interesting to note that the proofs of the bounds on cumulants in the last two
examples are highly non trivial and share some common structure. Each of these
statistics decomposes naturally as a sum. In each case, we give an upper bound
for joint cumulants of the summands, which writes as a weighted enumeration of
spanning trees. Summing terms to get a bound on the cumulant of the sum is then
easy.

To formalize this idea, we introduce in Sect. 15.5 the notion of uniform weighted
dependency graphs. Both proofs for the bounds on cumulants (for magnetization of
the Ising model and functional of Markov chains) are presented in this framework.
We hope that this will find further applications in the future.

15.1.3 Stable Distributions and Mod-Stable Convergence

Let us recall briefly the classification of stable distributions (see [50, Chapter 3]). Fix
c > 0 (the scale parameter), α ∈ (0, 2] (the stability parameter), and β ∈ [−1, 1]
(the skewness parameter).

Definition 15.2 The stable distribution of parameters (c, α, β) is the infinitely
divisible law φ = φc,α,β whose Fourier transform

φ̂(ξ) =
∫
R

eixξ φ(dx) = eη(iξ)
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has for Lévy exponent η(iξ) = ηc,α,β(iξ) = −|cξ |α (1 − iβ h(α, ξ) sgn(ξ)) , where

h(α, ξ) =
{

tan
(
πα
2

)
if α �= 1,

− 2
π

log |ξ | if α = 1

and sgn(ξ) = ±1 is the sign of ξ .

The most usual stable distributions are (see Fig. 15.1):

• the standard Gaussian distribution 1√
2π

e−x2/2 dx for c = 1√
2
, α = 2 and β = 0;

• the standard Cauchy distribution 1
π(1+x2)

dx for c = 1, α = 1 and β = 0;

• the standard Lévy distribution 1√
2π

e−1/2x

x3/2 1x≥0 dx for c = 1, α = 1
2 and β = 1.

We recall that mod-φ convergence on an open subset D of C containing 0 can
only occur when the characteristic function of φ is analytic around 0. Among
stable distributions, only Gaussian laws (which correspond to α = 2) satisfy this
property. Mod-φ convergence on D = iR can however be considered for any stable
distribution φ.

Since |eη(iξ)| = e−|cξ |α is integrable, any stable law φc,α,β has a density
mc,α,β(x) dx with respect to the Lebesgue measure. Moreover, the corresponding
Lévy exponents have the following scaling property: for any t > 0,

t ηc,α,β

(
iξ

t1/α

)
=
⎧⎨
⎩
ηc,α,β(iξ) if α �= 1,

ηc,α,β(iξ)−
(

2cβ
π

log t
)

iξ if α = 1.

Fig. 15.1 Densities of the
standard Gaussian, Cauchy
and Lévy distribution

Gaussian

Cauchy

Lévy
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This will be used in the following proposition:

Proposition 15.3 If (Xn)n∈N converges in the mod-φc,α,β sense, then

Yn =
{

Xn
(tn)1/α

if α �= 1,
Xn
tn

− 2cβ
π

log tn if α = 1

converges in law towards φc,α,β .

Proof In both situations,

E[eiξYn ] = eη(iξ) θn

(
ξ

(tn)1/α

)
= eη(iξ) θ(0) (1 + o(1)) = eη(iξ) (1 + o(1))

thanks to the uniform convergence of θn towards θ , and to the scaling property of
the Lévy exponent η. ��

15.2 Speed of Convergence Estimates

The goal of this section is to introduce the notion of zone of control (Sect. 15.2.1)
and to estimate the speed of convergence in the resulting central limit theorem.
More precisely, we take as reference law a stable distribution φc,α,β and a sequence
(Xn)n∈N that admits a zone of control (with respect to φc,α,β ). As for mod-φc,α,β
convergent sequences, it is easy to prove that in this framework, an appropriate renor-
malization Yn of Xn converges in distribution towards φc,α,β (see Proposition 15.6
below).

If Y has distribution φc,α,β , we then want to estimate

dKol(Yn, Y ) = sup
s∈R

|P[Yn ≤ s] − P[Y ≤ s]|. (15.1)

To do this, we follow a strategy proposed by Tao (see [56, Section 2.2]) in the case
of sums of i.i.d. random variables with finite third moment. The right-hand side
of (15.1) can be rewritten as

sup
f∈F

|E[f (Yn)] − E[f (Y )]|,

where F is the class of measurable functions y �→ 1y≤s . Therefore, it is natural
to approach the problem of speed of convergence by looking at general estimates
on test functions. The basic idea is then to use the Parseval formula to compute the
difference E[f (Yn)] − E[f (Y )], since we have estimates on the Fourier transforms
of Yn and Y . A difficulty comes from the fact that the functions y �→ 1y≤s are not
smooth, and in particular, their Fourier transforms are only defined in the sense of
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distributions. This caveat is dealt with by standard techniques of harmonic analysis
(Sects. 15.2.2–15.2.4): namely, we shall work in a space of distributions instead of
functions, and use an adequate smoothing kernel in order to be able to work with
compactly supported Fourier transforms. Section 15.2.5 gathers all these tools to
give an upper bound for (15.1). This is the main result of this section and can be
found in Theorem 15.19.

Remark 15.4 An alternative way to get an upper bound for (15.1) from estimates on
characteristic functions is to use the following inequality due to Berry (see [6] or [19,
Lemma XVI.3.2]). Let X and Y be random variables with characteristic functions
f ∗(ζ ) and g∗(ζ ). Then, provided that Y has a density bounded by m, we have, for
any s ∈ R,

|P[X ≤ s] − P[Y ≤ s]| ≤ 1

π

∫ T
−T

∣∣∣∣
f ∗(ζ )− g∗(ζ )

ζ

∣∣∣∣ dζ + 24m

πT
.

Using this inequality in our context should lead to similar estimates as the ones we
obtain, possibly with different constants. The proof we use here however has the
advantage of being more self-contained, and to provide estimates for test functions
as intermediate results.

15.2.1 The Notion of Zone of Control

Definition 15.5 Let (Xn)n∈N be a sequence of real random variables, φc,α,β a
reference stable law, and (tn)n∈N a sequence growing to infinity. Consider the
following assertions:

(Z1) Fix v > 0, w > 0 and γ ∈ R. There exists a zone [−K(tn)γ ,K(tn)γ ] such
that, for all ξ in this zone, if θn(ξ) = E[eiξXn ] e−tnηc,α,β (iξ), then

|θn(ξ)− 1| ≤ K1|ξ |v exp(K2|ξ |w)

for some positive constants K1 and K2 that are independent of n.
(Z2) One has

α ≤ w ; − 1

α
≤ γ ≤ 1

w − α ; 0 < K ≤
(
cα

2K2

) 1
w−α

.

Notice that (Z2) can always be forced by increasing w, and then decreasing K
and γ in the bounds of Condition (Z1). If Conditions (Z1) and (Z2) are satisfied,
then we say that we have a zone of control [−K(tn)γ ,K(tn)γ ] with index (v,w).
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Note that although the definition of zone of control depends on the reference
law φc,α,β , the latter does not appear in the terminology (throughout the paper, it is
considered fixed).

Proposition 15.6 Let (Xn)n∈N be a sequence of random variables, φc,α,β a refer-
ence stable law, Y with distribution φc,α,β and Yn as in Proposition 15.3. Assume
that (Xn)n∈N has a zone of control [−K(tn)γ ,K(tn)γ ] with index (v,w). If γ > − 1

α
,

then one has the convergence in law Yn ⇀ Y .

Proof Condition (Z1) implies that, if Yn is the renormalization of Xn and Y ∼
φc,α,β , then for fixed ξ ,

∣∣∣∣
E[eiξYn]
E[eiξY ] − 1

∣∣∣∣ =
∣∣∣∣θn
(

ξ

(tn)1/α

)
− 1

∣∣∣∣ ≤
K1|ξ |v
(tn)v/α

exp

(
K2|ξ |w
(tn)w/α

)

for tn large enough, and the right-hand side goes to 0. This proves the convergence
in law Yn ⇀ Y . ��

The goal of the next few sections will be to get some speed of convergence
estimates for this convergence in distribution.

Remark 15.7 In the definition of zone of control, we do not assume the mod-
φc,α,β convergence of the sequence (Xn)n∈N with parameters (tn)n∈N and limit
limn→∞ θn(ξ) = θ(ξ). However, in almost all the examples considered, we
shall indeed have (complex) mod-φ convergence (convergence of the residues
θn), with the same parameters tn as for the notion of zone of control. We shall
then speak of mod-φ convergence with a zone of convergence [−K(tn)γ ,K(tn)γ ]
and with index of control (v,w). Mod-φ convergence implies other probabilis-
tic results than estimates of Berry–Esseen type: central limit theorem with a
large range of normality, moderate deviations (cf. [21]), local limit theorem [14],
etc.

Remark 15.8 If one has mod-φc,α,β convergence of (Xn)n∈N, then there is at least
a zone of convergence [−K,K] of index (v,w) = (0, 0), with γ = 0; indeed, the
residues θn(ξ) stay locally bounded under this hypothesis. Thus, Definition 15.5 is
an extension of this statement. However, we allow in the definition the exponent γ to
be negative (but not smaller than − 1

α
). Indeed, in the computation of Berry–Esseen

type bounds, we shall sometimes need to work with smaller zones than the one given
by mod-φ convergence, see the hypotheses of Theorem 15.19, and Sects. 15.3.3
and 15.3.4 for examples.

Remark 15.9 In our definition of zone of control, we ask for a bound on |θn(ξ)−1|
that holds for any n ∈ N. Of course, if the bound is only valid for n ≥ n0 large
enough, then the corresponding bound on the Kolmogorov distance (Theorem 15.19)
will only hold for n ≥ n0.
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15.2.2 Spaces of Test Functions

Until the end of Sect. 15.2, all the spaces of functions considered will be spaces
of complex valued functions on the real line. If f ∈ L1(R), we denote its Fourier
transform

f̂ (ξ) =
∫
R

eixξ f (x) dx.

Recall that the Schwartz space S (R) is by definition the space of infinitely
differentiable functions whose derivatives tend to 0 at infinity faster than any power
of x. Restricted to S (R), the Fourier transform is an automorphism, and it satisfies
the Parseval formula

∀f, g ∈ S (R),

∫
R

f (x) g(x) dx = 1

2π

∫
R

f̂ (ξ) ĝ(ξ) dξ.

We refer to [38, Chapter VIII] and [48, Part II] for a proof of this formula, and for
the theory of Fourier transforms. The Parseval formula allows to extend by duality
and/or density the Fourier transform to other spaces of functions or distributions.
In particular, if f ∈ L2(R), then its Fourier transform f̂ is well defined in L2(R),
although in general the integral

∫
R

eixξ f (x) dx does not converge; and we have
again the Parseval formula

∀f, g ∈ L2(R),

∫
R

f (x) g(x) dx = 1

2π

∫
R

f̂ (ξ) ĝ(ξ) dξ,

which amounts to the fact that f �→ 1√
2π
f̂ is an isometry of L2(R) (see [48, §7.9]).

We denote M 1(R) the set of probability measures on Borel subsets of R. In
the sequel, we will need to apply a variant of Parseval’s formula, where g(x) dx is
replaced by μ(dx), with μ in M 1(R). This is given in the following lemma (see [55,
Lemma 2.3.3], or [41, p. 134]).

Lemma 15.10 For any function f ∈ L1(R) with f̂ ∈ L1(R), and any Borel
probability measure μ ∈ M 1(R), the pairing 〈μ | f 〉 = ∫

R
f (x)μ(dx) is well

defined, and the Parseval formula holds:

∫
R

f (x)μ(dx) = 1

2π

∫
R

f̂ (ξ) μ̂(−ξ) dξ,

where μ̂(ξ) = ∫
R

eiξx μ(dx). The formula also holds for finite signed measures.

Let us now introduce two adequate spaces of test functions, for which we shall be
able to prove speed of convergence estimates. We first consider functions f ∈ L1(R)

with compactly supported Fourier transforms:



416 V. Féray et al.

Definition 15.11 We call smooth test function of order 0, or simply smooth test
function an element f ∈ L1(R) whose Fourier transform is compactly supported.
We denote T0(R) the subspace of L1(R) that consists in smooth test functions; it is
an ideal for the convolution product.

Example 15.1 If

sinc(x) := sin x

x
= 1

2

∫ 1

−1
eixξ dξ,

then by Fourier inversion ŝinc(ξ) = π 1|ξ |≤1 is compactly supported on [−1, 1].
Therefore, f (x) = (sinc(x))2 is an element of L1(R) whose Fourier transform is
compactly supported on [−1, 1] + [−1, 1] = [−2, 2], and f ∈ T0(R).

Let us comment a bit Definition 15.11. If f is in T0(R), then its Fourier transform
f̂ is bounded by ‖f ‖L1 and vanishes outside an interval [−C,C], so f̂ ∈ L1(R).
Since f and f̂ are integrable, we can apply Lemma 15.10 with f . Moreover, f is
then known to satisfy the Fourier inversion formula (see [48, §7.7]):

f (x) = 1

2π

∫
R

f̂ (ξ) e−iξx dξ.

As the integral above is in fact on a compact interval [−C,C], the standard
convergence theorems ensure that f is infinitely differentiable in x, hence the
term “smooth”. Also, by applying the Riemann–Lebesgue lemma to the continuous
compactly supported functions ξ �→ (−iξ)k f̂ (ξ), one sees that f (x) and all its
derivatives f (k)(x) go to 0 as x goes to infinity. To conclude, T0(R) is included in
the space C∞

0 (R) of smooth functions whose derivatives all vanish at infinity.
Actually, we will need to work with more general test functions, defined by using

the theory of tempered distributions. We endow the Schwartz space S (R) of smooth
rapidly decreasing functions with its usual topology of metrizable locally convex
topological vector space, defined by the family of semi-norms

‖f ‖k,l =
∑
a≤k

∑
b≤l

sup
x∈R

|xa (∂bf )(x)|.

We recall that a tempered distributionψ is a continuous linear formψ : S (R)→ C.
The value of a tempered distributionψ on a smooth function f will be denotedψ(f )
or 〈ψ | f 〉. The space of all tempered distributions is classically denoted S ′(R),
and it is endowed with the ∗-weak topology. The spaces of integrable functions, of
square integrable functions and of probability measures can all be embedded in the
space S ′(R) as follows: if f is a function in L1(R) ∪ L2(R), or if μ is in M 1(R),
then we associate to them the distributions

〈f | g〉 =
∫
R

f (x)g(x) dx ; 〈μ | g〉 =
∫
R

g(x)μ(dx).
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We then say that these distributions are represented by the function f and by the
measure μ.

The Fourier transform of a tempered distribution ψ is defined by duality: it is the
unique tempered distribution ψ̂ such that

〈
ψ̂
∣∣ f 〉 = 〈ψ ∣∣ f̂ 〉

for any f ∈ S (R). This definition agrees with the previous definitions of Fourier
transforms for integrable functions, square integrable functions, or probability
measures (all these elements can be paired with Schwartz functions). Similarly, if
ψ is a tempered distribution, then one can also define by duality its derivative: thus,
∂ψ is the unique tempered distribution such that

〈∂ψ | f 〉 = − 〈ψ | ∂f 〉

for any f ∈ S (R). The definition agrees with the usual one when ψ comes from a
derivable function, by the integration by parts formula. On the other hand, Fourier
transform and derivation define linear endomorphisms of S ′(R); also note that the
Fourier transform is bijective.

Definition 15.12 A smooth test function of order 1, or smooth test distribution is a
distribution f ∈ S ′(R), such that ∂f is in T0(R), that is to say that the distribution
∂f can be represented by an integrable function with compactly supported Fourier
transform. We denote T1(R) the space of smooth test distributions (Fig. 15.2).

We now discuss Parseval’s formula for functions in T1(R).

Proposition 15.13 Any smooth test distribution f ∈ T1(R) can be represented
by a bounded function in C∞(R). Moreover, for any smooth test distribution in
T1(R):

(TD1) If μ is a Borel probability measure, then the pairing 〈μ | f 〉 =∫
R
f (x)μ(dx) is well defined.

(TD2) The tempered distribution f̂ can be paired with the Fourier transform μ̂

of a probability measure with finite first moment, in a way that extends the
pairing between S ′(R) and S (R) when μ (and therefore μ̂) is given by a
Schwartz density.

Fig. 15.2 The two spaces of
test functions T0(R) and
T1(R)
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(TD3) The Parseval formula holds: if f ∈ T1(R) and μ has finite expectation, then

〈μ | f 〉 = 1

2π

〈
f̂
∣∣ μ̂〉 .

Proof We start by giving a better description of the tempered distributions f and f̂ .
Denote φ = ∂f ; by assumption, this tempered distribution can be represented by a
function φ ∈ T0(R), which in particular is of class C∞ and integrable. Set

f̃ (x) =
∫ x
y=0

φ(y) dy.

This is a function of class C∞, whose derivative is φ, and which is bounded since φ
is integrable. Therefore, it is a tempered distribution, and for any g ∈ S (R),

〈∂f | g〉 = 〈φ | g〉 = 〈∂f̃ | g〉 .

We conclude that ∂(f − f̃ ) is the zero distribution. It is then a standard result that,
given a tempered distribution ψ , one has ∂ψ = 0 if and only if ψ can be represented
a constant. So,

f (x) =
∫ x
y=0

φ(y) dy + f (0).

This shows in particular that f is a smooth bounded function.
A similar description can be provided for f̂ . Recall that the principal value

distribution, denoted pv( 1
x
), is the tempered distribution defined for any g ∈ S (R)

by

〈
pv

(
1

x

)
| g
〉
= lim
ε→0

(∫
|x|≥ε

g(x)

x
dx

)
.

The existence of the limit is easily proved by making a Taylor expansion of g around
0. Denote

S [1] = {g ∈ S (R) | g(x) = x h(x) with h ∈ S (R)};
S[1] = {g ∈ S (R) | g = ∂h with h ∈ S (R)};

the Fourier transform establishes an homeomorphism between S [1] and S[1], and
the restriction of pv( 1

x
) to S [1] is

〈
pv

(
1

x

)
| g
〉
=
∫
R

g(x)

x
dx.
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Let ĝ(ξ) be an element of S [1], which we write as ĝ(ξ) = (−iξ) ĥ(ξ) for some
h ∈ S (R). This is equivalent to g(x) = (∂h)(x). Let us denote g−(x) = g(−x),
h−(x) = h(−x), and pv( i φ̂(ξ)

ξ
) the tempered distribution defined by

pv

(
i φ̂(ξ)

ξ

)
= i pv

(
1

ξ

)
◦mφ̂,

with mφ̂ : S (R)→ S (R) equal to the multiplication by φ̂. Then we can make the
following computation:

〈
f̂ | ĝ〉 = 〈f | ̂̂g〉 = 2π 〈f | g−〉 = −2π 〈f | ∂h−〉 = 2π 〈φ | h−〉 =

〈
φ | ̂̂h

〉

= 〈φ̂ | ĥ〉 =
〈
φ̂ | îg(ξ)

ξ

〉
=
〈
pv

(
i φ̂(ξ)

ξ

)
| ĝ
〉
.

Thus, the tempered distributions f̂ and pv( i φ̂(ξ)
ξ
) agree on the codimension 1

subspace S [1] of S (R). However, S [1] is also the space of functions in S (R)
that vanish at 0, so, if g0 is any function in S (R) such that g0(0) = 1, then for
g ∈ S (R),

〈
f̂ | g〉 = 〈f̂ | g − g(0)g0

〉+ g(0) 〈f̂ | g0
〉

=
〈
pv

(
i φ̂(ξ)

ξ

)
| g − g(0)g0

〉
+ 〈f̂ | g0

〉 〈δ0 | g〉

=
〈
pv

(
i φ̂(ξ)

ξ

)
| g
〉
+
(〈
f̂ − pv

(
i φ̂(ξ)

ξ

)
| g0

〉)
〈δ0 | g〉

=
〈
pv

(
i φ̂(ξ)

ξ

)
+ Lδ0 | g

〉

where L is some constant. Thus,

f̂ (ξ) = pv

(
i φ̂(ξ)

ξ

)
+ Lδ0

and a computation against test functions shows that

L = 2πf (0)− i

〈
pv

(
1

ξ

)
| φ̂
〉
.

The three parts of the proposition are now easily proven. For (TD1), since f (x) is
smooth and bounded, we can indeed consider the convergent integral

∫
R
f (x)μ(dx).

For (TD2), assuming that μ has a finite first moment, μ̂ is a function of class C 1
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and with bounded derivative. The same holds for φ̂μ̂, and therefore, one can define

∫
R

f̂ (ξ)μ̂(−ξ) dξ = i

〈
pv

(
1

ξ

)
| φ̂ μ̂

〉
+ L

=
(

lim
ε→∞

∫
|x|≥ε

i φ̂(ξ) μ̂(−ξ)
ξ

dξ

)
+ L.

Indeed, if f ∈ C 1(R), then limε→∞
∫

1≥|x|≥ε
f (x)
x
dx always exists, as can be seen

by replacing f by its Taylor approximation at 0. Finally, let us prove the Parseval
formula (TD3). The previous calculations show that

1

2π

∫
R

f̂ (ξ) μ̂(−ξ) dξ = i

2π

〈
pv

(
1

ξ

)
| φ̂ μ̂− φ̂

〉
+ f (0)

= lim
ε→0

(
i

2π

∫
|ξ |≥ε

φ̂(ξ)

(
μ̂(−ξ)− 1

ξ

)
dξ

)
+ f (0)

= 1

2π

∫
R

φ̂(ξ)

(
μ̂(−ξ)− 1

−iξ

)
dξ + f (0).

Indeed, the function ξ �→ μ̂(−ξ)−1
−iξ is continuous on R and bounded, with value

μ̂′(0)
i = ∫

R
x μ(dx) at ξ = 0; it can therefore be integrated against the function φ̂

which is integrable (and even with compact support). On the other hand,

∫
R

f (x)μ(dx) =
∫
x∈R

∫ x
y=0

φ(y) dy μ(dx)+ f (0)

=
∫
(x,y)∈R2

(1x>y>0 − 1x<y<0) φ(y) dy μ(dx)+ f (0)

=
∫
y∈R

φ(y) F (y) dy + f (0), with F(y) = μ((y,∞))− 1y≤0.

One has
∫
R
|F(y)| dy = ∫∞

y=0 μ((y,∞)) +
∫ 0
y=−∞ μ((−∞, y)) = ∫

R
|x|μ(dx),

which is finite. In the integral above, we can therefore consider F(y) dy as a finite
signed measure, and the Parseval formula applies by Lemma 15.10. One computes
readily

F̂ (ξ) = μ̂(ξ)− 1

iξ
,

which ends the proof. ��
Remark 15.14 The Parseval formula of Proposition 15.13 extends readily to finite
signed measures μ such that

∫
R
|x| |μ|(dx) < +∞. Actually, it is sufficient to have
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a finite signed measure μ such that

μ̂(ξ)− μ̂(0)
ξv

is bounded in a vicinity of 0, for some v > 0. Then, (μ̂(ξ) − μ̂(0))/ξ is integrable
in a neighborhood of 0. This ensures that the distribution f (x) (respectively, the
distribution f̂ (ξ)) can be evaluated against the measure μ(x) (respectively, against
μ̂(ξ)), and then, the proof of Parseval’s formula is analogous to the previous
arguments.

15.2.3 Estimates for Test Functions

We now give an estimate of E[fn(Yn)] − E[fn(Y )], where (fn)n∈N is a sequence of
test functions in T0(R) or T1(R), and (Yn)n∈N is a sequence of random variables
associated to a sequence (Xn)n∈N which has a zone of control.

Proposition 15.15 Let (Xn)n∈N be a sequence of random variables, φc,α,β a
reference stable law, Y with law φc,α,β and Yn as in Proposition 15.3. We assume
that:

(1) (Xn)n∈N has a zone of control [−K(tn)γ ,K(tn)γ ] with index (v,w);
(2) (fn)n∈N is a sequence of smooth test functions in T0(R), such that the support

of f̂n is included into [−K(tn)γ+1/α,K(tn)
γ+1/α].

Then,

|E[fn(Yn)] − E[fn(Y )]| ≤ C0(c, α, v)K1
‖fn‖L1

(tn)v/α
,

where C0(c, α, v) = 2
v+1
α !((v+1)/α)
πα cv+1 .

If instead of (2) we assume:

(2’) (fn)n∈N is a sequence of smooth test distributions in T1(R) such that if φn =
∂fn is the derivative of the distribution fn, then the support of φ̂n is included
into [−K(tn)γ+1/α,K(tn)

γ+1/α].
Then

|E[fn(Yn)] − E[fn(Y )]| ≤ C1(c, α, v)K1
‖φn‖L1

(tn)v/α
,

where C1(c, α, v) = 2v/α !(v/α)
πα cv

.
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Proof Consider first a sequence (fn)n∈N of test functions in T0(R), which satisfies
(2). Using Parseval formula and the zone of control assumption, we have

E[fn(Yn)] − E[fn(Y )] = 1

2π

∫ K(tn)γ+ 1
α

−K(tn)γ+ 1
α

f̂n(ξ) eη(−iξ)
(
θn

(
−ξ/(tn) 1

α

)
− 1
)
dξ ;

|E[fn(Yn)] − E[fn(Y )]| ≤ K1‖f̂n‖∞
2π(tn)v/α

∫ K(tn)γ+ 1
α

−K(tn)γ+ 1
α

|ξ |v e
−|cξ |α+K2

( |ξ |
(tn)

1/α

)w
dξ.

For ξ in [−K(tn)γ+1/α,K(tn)
γ+1/α], since (tn)γ−1/(w−α) ≤ 1, the second term in

the exponent can be bounded as follows:

K2

( |ξ |
(tn)1/α

)w
= K2|ξ |α

(
|ξ |

(tn)
1
α
+ 1
w−α

)w−α
≤ K2|ξ |α

(
K(tn)

γ− 1
w−α
)w−α

≤ |cξ |α
2
.

This is compensated by the term −|cξ |α and, therefore,

|E[fn(Yn)] − E[fn(Y )]| ≤ K1‖f̂n‖∞
2π(tn)v/α

∫
R

|ξ |ve− |cξ |α
2 dξ

≤ 2
v+1
α K1

πα cv+1(tn)v/α
!

(
v + 1

α

)
‖fn‖L1 .

This ends the proof of the first case. For test distributions fn ∈ T1(R)which satisfies
the condition (2′), let us introduce the signed measure μ = PYn − PY . One has
μ̂(0) = 0, and by hypothesis,

∣∣∣∣
μ̂(ξ)

ξ

∣∣∣∣ ≤
K1 |ξ |v−1

(tn)v/α
e
−|cξ |α+K2

( |ξ |
(tn)

1/α

)w
.

Remark 15.14 applies, and thus,

|E[fn(Yn)]−E[fn(Y )]| = |〈μ | fn〉| = 1

2π

∣∣〈f̂n | μ̂〉∣∣ = 1

2π

∣∣∣∣
∫
R

φ̂n(ξ)
μ̂(−ξ)
ξ

dξ

∣∣∣∣ .

From there, the computations are exactly the same as before, with an index v − 1
instead of v. ��
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15.2.4 Smoothing Techniques

We now explain how to relate the estimates on test functions or distributions to
estimates on the Kolmogorov distance. The main tool with respect to this problem
is the following:

Lemma 15.16 There exists a function ρ (called kernel) on R with the following
properties.

1. The kernel ρ is non-negative, with
∫
R
ρ(x) dx = 1.

2. The support of ρ̂ is [−1, 1] (hence, ρ is a test function in T0(R)).
3. The functions ρ and ρ̂ are even, and

ρ(K) ≤ min

(
3

8π
,

96

π K4

)
.

Proof Set

ρ(x) = 3

8π

(
sinc
(x

4

))4
.

It has its Fourier transform supported on [− 1
4 ,

1
4 ]+ [− 1

4 ,
1
4 ]+ [− 1

4 ,
1
4 ]+ [− 1

4 ,
1
4 ] =[−1, 1]. On the other hand, an easy computation gives

∫
R
ρ(x) dx = 1: use for

example the Plancherel formula

∫
R

|f (x)|2 dx = 1

2π

∫
R

|f̂ (ξ)|2 dξ

with f (x) = sinc(x)2 and thus f̂ (ξ) = 1
2π ŝinc ∗ ŝinc(ξ) = π

2 (2 − |ξ |)+. Finally,
sinc(x) ≤ min(1, 1

|x| ), which leads to the inequality stated for ρ(K). ��
In the following, for ε > 0, we set ρε(x) = 1

ε
ρ( x
ε
), which has its Fourier

transform compactly supported on [− 1
ε
, 1
ε
]; see Fig. 15.3. We also denote fa,ε(x) =

fε(x − a), where fε is the function 1(−∞,0] ∗ ρε; cf. Fig. 15.4.
For all a, ε, fa,ε is an approximation of the Heaviside function 1(−∞,a], and one

has the following properties:

Proposition 15.17 The function fa,ε is a smooth test distribution in T1(R) whose
derivative ∂fa,ε has its Fourier transform compactly supported on [− 1

ε
, 1
ε
], and

satisfies ‖∂fa,ε‖L1 = 1. Moreover:

1. The function fa,ε has a non-positive derivative, and decreases from 1 to 0.
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Fig. 15.3 The smoothing kernel ρ 1
4
, and its Fourier transform which is supported on [−4, 4]

Fig. 15.4 The approximation f1, 1
4

of the Heaviside function 1(−∞,1]

2. One has f1(x) = 1 − f1(−x), and for all K ≥ 0,

f1(K) =
∫ ∞

0
ρ(K + y) dy ≤ 32

π K3 ;
∫ ∞

0
f1(u−K) du ≤ K +

∫ ∞

w=0
min

(
1,

32

π w3

)
dw = K + 3 3

√
3

π
.

Proof The derivative of fa,ε is

∂(fa,ε)(x) = ∂(1(−∞,a] ∗ ρε)(x) =
(
∂(1(−∞,a]) ∗ ρε

)
(x)

= (−δa ∗ ρε) (x) = −ρε(x − a),
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so it is indeed in T0(R), and non-positive. Its Fourier transform is supported by
[− 1

ε
, 1
ε
], and ‖∂fa,ε‖L1 = ∫

R
ρε(x) dx = 1. Then,

lim
x→+∞ fa,ε(x) = lim

x→+∞ f1

(
x − a
ε

)
= lim
y→+∞ f1(y),

so limx→+∞ fa,ε(x) = 0. Since by definition f1(y) =
∫∞
y
ρ(u) du, the symmetry

relation f1(x) = 1−f1(−x) follows from ρ even; it implies the other limit statement
limx→−∞ fa,ε(x) = 1. The inequalities in part ii) are immediate consequences of
those of Lemma 15.16. ��

Let us now state a result which converts estimates on smooth test distributions
into estimates of Kolmogorov distances. It already appeared in [44, Lemma 16], and
is inspired by [56, p. 87] and [19, Chapter XVI, §3, Lemma 1]:

Theorem 15.18 LetX and Y be two random variables with cumulative distribution
functions FX(a) = P[X ≤ a] and FY (a) = P[Y ≤ a]. Assume that for some ε > 0
and B > 0,

sup
a∈R

|E[fa,ε(X)] − E[fa,ε(Y )]| ≤ Bε.

We also suppose that Y has a density w.r.t. Lebesgue measure that is bounded by m.
Then, for every λ > 0,

dKol(X, Y ) = sup
a∈R

|FX(a)− FY (a)|

≤ (1 + λ)
(
B + m

3
√
π

(
4 3

√
1 + 1

λ
+ 3 3

√
3

))
ε.

The choice of the parameter λ allows one to optimize constants according to the
reference law of Y and to the value of B. A general bound is obtained by choosing
λ = 1

2 ; this gives after some simplifications

dKol(X, Y ) ≤ 3

2
(B + 7m) ε,

which is easy to remember and manipulate.

Proof For the convenience of the reader, we reproduce here the proof given in [44].
Fix a positive constantK , and denote� = supa∈R |FX(a)−FY (a)| the Kolmogorov
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distance between X and Y . One has

FX(a) = E[1X≤a] ≤ E[fa+Kε,ε(X)] + E[(1 − fa+Kε,ε(X)) 1X≤a]
≤ E[fa+Kε,ε(Y )] + E[(1 − fa+Kε,ε(X)) 1X≤a] + Bε.

(15.2)

The second expectation writes as

E[(1 − fa+Kε,ε(X)) 1X≤a] =
∫
R

(1 − fa+Kε,ε(x)) 1(−∞,a](x)PX(dx)

= −
∫
R

((1 − fa+Kε,ε(x)) 1(−∞,a](x))′ FX(x) dx

= A1 + A2,

where A1 = (1 − fa+Kε,ε(a)) FX(a), A2 = ∫
R
f ′
a+Kε,ε(x) 1(−∞,a](x) FX(x) dx.

Indeed, in the space of tempered distributions, ((1 − fa+Kε,ε(x)) 1(−∞,a](x))′ =
−(1 − fa+Kε,ε(x)) δa(x) − f ′

a+Kε,ε(x) 1(−∞,a](x). We evaluate the two terms A1
and A2 as follows:

• Since FX(a) ≤ FY (a)+�,

A1 ≤ (1 − fa+Kε,ε(a)) FY (a)+ (1 − fa+Kε,ε(a))�

≤
∫
R

(1 − fa+Kε,ε(x)) δa(x) FY (x) dx + (1 − f1(−K))�.

• For A2, since FX(x) ≥ FY (x) −� and the derivative of fa+Kε,ε is negative, an
upper bound is obtained as follows:

A2 ≤
∫
R

f ′
a+Kε,ε(x) 1(−∞,a](x) FY (x) dx −�

∫
R

f ′
a+Kε,ε(x) 1(−∞,a](x) dx

=
∫
R

f ′
a+Kε,ε(x) 1(−∞,a](x) FY (x) dx + (1 − fa+Kε,ε(a))�

=
∫
R

f ′
a+Kε,ε(x) 1(−∞,a](x) FY (x) dx + (1 − f1(−K))�.

Therefore, by gathering the bounds on A1 and A2, we get

E[(1 − fa+Kε,ε(X)) 1X≤a] ≤ E[(1 − fa+Kε,ε(Y )) 1Y≤a] + 2(1 − f1(−K))�.
(15.3)
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On the other hand, if m is a bound on the density fY of Y , then

E[fa+Kε,ε(Y ) 1Y≥a] =
∫ ∞

a

fa+Kε,ε(y) fY (y) dy

≤ m
∫ ∞

a

fε(y − a −Kε) dy = m
∫ ∞

0
fε(y −Kε) dy

≤ mε
∫ ∞

0
f1(u−K) du ≤ mε

(
K + 3 3

√
3

π

)
;

and

E[fa+Kε,ε(Y )] ≤ E[fa+Kε,ε(Y ) 1Y≤a] +m
(
K + 3 3

√
3

π

)
ε. (15.4)

Putting together Eqs. (15.2), (15.3) and (15.4), we get

FX(a) ≤ FY (a)+
(
B +m

(
K + 3 3

√
3

π

))
ε + 64

π K3 �.

Similarly, FX(a) ≥ FY (a)−
(
B +m(K + 3 3

√
3
π
)

)
ε − 64

π K3 �, so in the end

� = sup
a∈R

|FX(a)− FY (a)| ≤
(
B +m

(
K + 3 3

√
3

π

))
ε + 64

π K3 �.

As this is true for every K , setting K = 4 3
√

1+λ
πλ

with λ > 0, one obtains

� ≤ (1 + λ)
(
B + m

3
√
π

(
4 3

√
1 + 1

λ
+ 3 3

√
3

))
ε.

In the next Sect. 15.2.5, we shall combine Theorem 15.18 and the estimates on
smooth test distributions given by Proposition 15.15 to get a Berry–Esseen type
bound on the Kolmogorov distances in the setting of mod-φ convergence.

15.2.5 Bounds on the Kolmogorov Distance

We are now ready to get an estimate for the Komogorov distance under a zone of
control hypothesis.
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Theorem 15.19 Fix a reference stable distribution φc,α,β and consider a sequence
(Xn)n∈N of random variables with a zone of control [−K(tn)γ ,K(tn)γ ] of index
(v,w). Assume in addition that γ ≤ v−1

α
. As before, we denote Y a random variable

with law φc,α,β , and Yn the renormalization ofXn as in Proposition 15.3. Then, there
exists a constant C(α, c, v,K,K1) such that

dKol(Yn, Y ) ≤ C(α, c, v,K,K1)
1

(tn)1/α+γ
.

The constant C(α, c, v,K,K1) is explicitly given by

min
λ>0

(
1 + λ
απ c

(
2
v
α !( v

α
)K1

cv−1
+ !( 1

α
)

3
√
π K

(
4 3

√
1 + 1

λ
+ 3 3

√
3

)))
.

Note that the additional hypothesis γ ≤ v−1
α

can always be ensured by decreasing
γ (but this makes the resulting bound weaker).

Proof We apply Proposition 15.15 with the smooth test distributions fn = fa,εn ,
with the value εn := 1

K (tn)1/α+γ
; we know that ‖∂fn‖L1 = 1 and that the Fourier

transform f̂n is supported by the zone [−K(tn)1/α+γ ,K(tn)1/α+γ ], so that

∣∣E[fa,εn(Yn)] − E[fa,εn(Y )]
∣∣ ≤ C2(c, α, v)

K1

(tn)v/α
≤ 2

v
α !( v

α
)K1K

απ cv
εn.

This allows to apply Theorem 15.18 with a constant

B = 2
v
α !( v

α
)K1K

απ cv
,

and with ε = εn = 1
K (tn)1/α+γ

. Indeed, note that the density of the law of Y is
bounded by

m = 1

2π
‖eη(iξ)‖L1 = 1

απ c
!

(
1

α

)
.

Remark 15.20 Suppose α = 2, c = 1√
2

(mod-Gaussian convergence), and v =
w = 3. The maximal value allowed for the exponent γ in the size of the zone of
control is then γ = 1, and later we shall encounter many examples of this situation.
Then, we obtain

dKol(Yn, Y ) ≤ 1 + λ√
2π

(
2

3
2 K1 + 1

3
√
π K

(
4 3

√
1 + 1

λ
+ 3 3

√
3

))
1

(tn)3/2
. (15.5)

In Sect. 15.4, we shall give conditions on cumulants of random variables that lead
to mod-Gaussian convergence with a zone of control of size O(tn) and with index



15 Mod-φ Convergence, II: Estimates on the Speed of Convergence 429

(3, 3), so that (15.5) holds. We shall then choose K , K1 and λ to make the constant
in the right-hand side as small as possible.

Remark 15.21 In the general case, taking λ = 1
2 in Theorem 15.19 leads to the

inequality

dKol(Yn, Y ) ≤ C3(α, c, v,K1,K)
1

(tn)1/α+γ
,

where C3(α, c, v,K1,K) = 3
2π α c

(
2
v
α !( v

α
)K1

cv−1 + 7!( 1
α
)

K

)
.

15.3 Examples with an Explicit Fourier Transform

15.3.1 Sums of Independent Random Variables

As a direct application of Theorem 15.19, one recovers the classical Berry–Esseen
estimates. Let (An)n∈N be a sequence of centered i.i.d. random variables with a
third moment. We denote E[(Ai)2] = σ 2 and E[|Ai |3] = ρ. Set Sn = ∑n

i=1Ai ,
Xn = Sn/(σn1/3),

tn = n1/3 ; K = σ 3

ρ
; v = w = 3 ; γ = 1.

Notice that K ≤ 1 as a classical application of Hölder inequality. On the zone
ξ ∈ [−Kn1/3,Kn1/3], we have:

|θn(ξ)− 1| =
∣∣∣∣∣
(
E

[
e

iξ
A1
σn1/3

]
e

ξ2

2n2/3

)n
− 1

∣∣∣∣∣

≤ n
∣∣∣∣E
[

e
iξ

A1
σn1/3

]
e

ξ2

2n2/3 − 1

∣∣∣∣
(

max

(∣∣∣∣E
[

e
iξ

A1
σn1/3

]
e

ξ2

2n2/3

∣∣∣∣ , 1
))n−1

.

For any t , |eit − 1 − it + t2

2 | ≤ |t3|
6 , so

∣∣∣∣E
[

e
iξ

A1
σn1/3

]
e

ξ2

2n2/3 − 1

∣∣∣∣

≤
∣∣∣∣E
[

e
iξ

A1
σn1/3

]
− 1 + ξ2

2n2/3

∣∣∣∣ e
ξ2

2n2/3 +
∣∣∣∣e

− ξ2

2n2/3 − 1 + ξ2

2n2/3

∣∣∣∣ e
ξ2

2n2/3

≤
( |ξ |3

6Kn
+ ξ4

8n4/3

)
e

ξ2

2n2/3 ≤ 7e1/2

24

|ξ |3
Kn
.
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For the same reasons,

∣∣∣∣E
[

e
iξ

A1
σn1/3

]
e

ξ2

2n2/3

∣∣∣∣ ≤
|ξ |3
6Kn

e
ξ2

2n2/3 +
(

1 − ξ2

2n2/3

)
e

ξ2

2n2/3

≤ |ξ |3
6Kn

e1/2 + 1 ≤ e
e1/2

6
|ξ |3
Kn

We conclude that

|θn(ξ)− 1| ≤ 7e1/2

24

|ξ |3
K

e
e1/2

6
|ξ |3
K

on the zone of control [−Kn1/3,Kn1/3]. If we want Condition (Z2) to be satisfied,
we need to change K and set

K = 3

2e1/2

σ 3

ρ
,

which is a little bit smaller than before. We then have a zone of control with
constants K1 = 7e1/2ρ

24 σ 3 and K2 = e1/2ρ

6 σ 3 , and the inequality K ≤ ( c
α

2K2
)

1
w−α is an

equality. By Theorem 15.19,

dKol(Yn,NR) ≤ 1 + λ√
2π

(
7

24
23/2e1/2 + 2e1/2

3 3
√
π

(
4 3

√
1 + 1

λ
+ 3 3

√
3

))
ρ

σ 3
√
n

with Yn = 1
σ
√
n

∑n
i=1Ai . Taking λ = 0.183, we obtain a bound with a constant

C ≤ 4.815, so we recover

dKol(Yn,NR(0, 1)) ≤ 4.815
ρ

σ 3
√
n
,

which is almost as good as the statement in the introduction, where a constant C = 3
was given (the best constant known today is, as far as we know, C = 0.4748, see
[34]). Of course, the advantage of our method is its large range of applications, as
we shall see in the next sections.

Our notion of zone of control allows one to deal with sums of random variables
that are independent but not identically distributed. As an example, consider for
r < 1 a random series

Zr =
∞∑
k=1

B(r2k),

with Bernoulli variables of parameters r2k that are independent. The random
variable Zr has the same law as the number of zeroes with module smaller than
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r of a random analytic series S(z) = ∑∞
n=0 an z

n, where the an’s are independent

standard complex Gaussian variables (see [21, Section 7.1]). If h = 4πr2

1−r2 is
the hyperbolic area of the disc of radius r and center 0, then we showed in
loc. cit. that as h goes to infinity and r goes to 1, denoting Zr = Zh, the
sequence

Xh = 1

h1/3

(
Zh − h

4π

)

is mod-Gaussian convergent with parameters th = h1/3

8π and limit θ(ξ) = exp( (iξ)
3

144π ).
Let us compute a zone of control for this mod-Gaussian convergence. We change a
bit the parameters of the mod-Gaussian convergence and take

t̃h = Var(Xh) = 1

h2/3

∞∑
k=1

r2k(1 − r2k) = h1/3(h+ 4π)

4π(2h+ 4π)
.

The precise reason for this small modification will be given in Remark 15.25. Then,

θh(ξ) = E[eiξXh ] e
t̃hξ

2

2 =
∞∏
k=1

(
1 + r2k(e

iξ
h1/3 − 1)

)
e
− r2k iξ
h1/3 + r2k(1−r2k)ξ2

2h2/3 .

Denote θh,k(ξ) the terms of the product on the right-hand side. For |ξ | ≤ h1/3

4 , we are
going to compute bounds on |θh,k(ξ)| and |θh,k(ξ)− 1|. The holomorphic function

fα(z) = log(1 + α(ez − 1))− αz− α(1 − α) z2

2

has its two first derivatives at 0 that vanish, and its third complex derivative is

f ′′′
α (z) = α(1 − α) ez

(1 − α(1 + ez))

(1 + α(ez − 1))3
.

If |ξ | ≤ h1/3

4 , then |e
iξ
h1/3 | ≤ e1/4 and |e

iξ
h1/3 − 1| ≤ 1

4 e1/4 ≤ 1
2 , so

| log θh,k(ξ)| ≤ |ξ |3
6h
r2k(1 − r2k) e1/4 1 + r2k

2

(1 − 1
4 e1/4 r2k)3

≤ |ξ |3
4h

e1/4 r2k

(1 − 1
4 e1/4)2

≤ |ξ |3r2k

h
.
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Therefore, |θh,k(ξ)| ≤ exp( |ξ
3|r2k

h
) and |θh,k(ξ)− 1| ≤ |ξ3|r2k

h
exp( |ξ

3|r2k

h
). We then

obtain on the zone |ξ | ≤ h1/3

4

|θh(ξ)− 1| ≤
∞∑
k=1

|θh,k(ξ)− 1|
∏
j �=k

|θh,j (ξ)| ≤ S exp S

with S = ∑∞
k=1

|ξ3|r2k

h
= |ξ3|

4π . The inequalities of Condition (Z2) forces us to look
at a slightly smaller zone ξ ∈ [−πt̃h, π t̃h]; then, this zone of control has index
(3, 3) and constants K1 = K2 = 1

4π . We can then apply Theorem 15.19, and we
obtain for h large enough

dKol

(
Zh − h

4π√
Var(Zh)

, NR(0, 1)

)
≤ C√

h

with a constant C ≤ 166.

15.3.2 Winding Number of a Planar Brownian Motion

In this section, we consider a standard planar Brownian motion (Zt )t∈R+ starting
from z = 1. It is well known that, a.s., Zt never touches the origin. One can thus
write Zt = Rt eiϕt , for continuous functions t �→ Rt and t �→ ϕt , where ϕ0 = 0, see
Fig. 15.5.

Fig. 15.5 Planar Brownian motion and its winding number; we will see that the latter is
asymptotically mod-Cauchy
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The Fourier transform of the winding number ϕt was computed by Spitzer in [53]:

E[eiξϕt ] =
√
π

8t
e−

1
4t

(
I |ξ |−1

2

(
1

4t

)
+ I |ξ |+1

2

(
1

4t

))
,

where Iν(z) = ∑∞
k=0

1
k!!(ν+k+1)

(
z
2

)ν+2k is the modified Bessel function of the
first kind. As a consequence, and as was noticed in [14, §3.2], (ϕt )t∈R+ converges

mod-Cauchy with parameters log 8t
2 and limiting function θ(ξ)=√

π !
( |ξ |+1

2

)−1.
Indeed,

E[eiξϕt ] exp

(
|ξ | log 8t

2

)

= √
π e−

1
4t

( ∞∑
k=0

1

k!
(

1

8t

)2k
(

1

!(k + |ξ |+1
2 )

+ 1

8t !(k + |ξ |+3
2 )

))
,

and the limit of the power series as t goes to infinity is its constant term 1
!(

|ξ |+1
2 )

.

Here, |θ(ξ)− 1| is of order O(|ξ |) around 0, since the first derivative of ! is not
zero at 1

2 . Therefore, if the mod-convergence can be given a zone of control, then
the index of this control will be v = 1, which forces for Berry–Esseen estimates
γ ≤ 0 since γ ≤ min( v−1

α
, 1
w−α ). Conversely, for any ξ , notice that the function

x �→ 1
!(x+ 1

2 )
has derivative bounded on R+ by

− !′( 1
2 )(

!( 1
2 )
)2 = 1.11− <

2√
π
,

and therefore that

|θt (ξ)− 1| ≤ 2 e−
1
4t

∞∑
k=0

1

k!
(

1

8t

)2k (
1 + 1

8t

) |ξ |
2

≤ e

(
1
8t

)2− 1
4t

(
1 + 1

8t

)
|ξ | ≤ |ξ |

for t large enough. So, in particular, one has mod-Cauchy convergence with index
of control (1, 1), zone of control [−K,K] with K as large as wanted, and constants
K1 = 1 andK2 = 0. It follows then from Theorem 15.19 that if C follows a standard
Cauchy law, then

dKol

(
2ϕt

log 8t
, C
)

≤ 4

log 8t

for t large enough. As far as we know, this estimate is new.
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15.3.3 Approximation of a Stable Law by Compound Poisson
Laws

Let φc,α,β be a stable law; the Lévy–Khintchine formula for its exponent allows one
to write

eηc,α,β (iξ) =
{

e−|cξ |2 if α = 2,

exp
(
imξ + ∫

R
(eiξx − 1 − 1|x|<1iξx) πc,α,β(dx)

)
if α ∈ (0, 2),

where πc,α,β(dx) is the Lévy measure defined for α ∈ (0, 2) by

πc,α,β(dx) = c+ 1x>0

x1+α + c− 1x<0

|x|1+α ,

with m ∈ R and c+, c− ∈ R+ related to (c, α, β) by β = c+−c−
c++c− and

m =
⎧⎨
⎩
c+−c−

1−α if α �= 1,(∫ 1
0

sin t−t
t2

dt + ∫∞1 sin t
t2
dt
)
(c+ − c−) if α = 1;

c+ + c− =
⎧⎨
⎩

α cα

!(1−α) sin
(
π(1−α)

2

) if α �= 1,

2c
π

if α = 1.

The proof of the Lévy–Khintchine formula in the general case of an infinitely
divisible law involves the following elementary fact (cf. [50, Chapter 2]): if μ is
infinitely divisible and μ = (ρn)

∗n for n ≥ 1, then the compound Poisson law μn
of intensity n ρn, which has Fourier transform

μ̂n(ξ) = exp

(∫
R

(eixξ − 1) nρn(dx)

)
,

converges in law towards μ; thus, any infinitely divisible law is a limit of compound
Poisson laws. In the case of stable laws, this approximation result can be precised
in terms of Kolmogorov distances:

Proposition 15.22 Let Y be a random variable with stable law φc,α,β , and Yn be a
random variable with the following compound Poisson distribution: if μn is the law
of Yn, then its Fourier transform is

μ̂n(ξ) = exp

(∫
R

(eixξ − 1) n φ c

n1/α ,α,β
(dx)

)
.
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The Kolmogorov distance between Yn and Y is

dKol(Yn, Y ) ≤

⎧⎪⎪⎨
⎪⎪⎩

C(α) n−1/α if α ∈ (1, 2],
C(α) n−1 if α ∈ (0, 1) or α = 1, β = 0,

C′ (log n)2 n−1 if α = 1, β �= 0,

with constants C(α) or C′ that depend only on the exponent α.

We thus get a phase transition between the cases α > 1 and α < 1, with the case
α = 1 that exhibits distinct transition behaviors according to the value of β.

Proof Let us distinguish the following cases:

• Suppose first α /∈ {1, 2}. The definition of Yn implies that

E[eiξYn] = μ̂n(ξ) = exp

(
n

(
e
ηc,α,β (iξ)

n − 1

))
.

Set Xn = n1/(2α)Yn, tn = √
n and θn(ξ) = E[eiξXn ] e−tn ηc,α,ξ (iξ). We have

θn(ξ) = exp

(
n

(
e
ηc,α,β (iξ)

n1/2 − 1 − ηc,α,β(iξ)

n1/2

))
.

On the zone [−K(tn)1/α,K(tn)1/α] with K = | cos( πα2 )|
2
α

c
, we can use a Taylor

formula with an integral form remainder:

n

(
e
ηc,α,β (iξ)

n1/2 − 1 − ηc,α,β(iξ)

n1/2

)
= (ηc,α,β(iξ))2

(∫ 1

0
(1 − u) e

uηc,α,β (iξ)

n1/2 du

)

∣∣∣∣n
(

e
ηc,α,β (iξ)

n1/2 − 1 − ηc,α,β(iξ)

n1/2

)∣∣∣∣ ≤
1

2
|ηc,α,β(iξ)|2 ≤ 1

2

(
cα

cos
(
πα
2

)
)2

|ξ |2α.

We thus obtain a zone of control for (Xn)n∈N with v = w = 2α, γ = 1
α

,

K1 = K2 = 1

2

(
cα

cos
(
πα
2

)
)2

,

and one checks that

(
cα

2K2

) 1
w−α = | cos(πα2 )|

2
α

c
= K.
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Since we need γ ≤ min
(

1
w−α ,

v−1
α

)
to obtain a bound on the Kolmogorov

distance (see the hypotheses of Theorem 15.19), this leads to a reduction of γ
when α < 1:

γ + 1

α
=
{

2
α

if α > 1,

2 if α < 1.

With Theorem 15.19, we obtain the following upper bound for dKol(Yn, Y ):

1 + λ
απ

(
2(

cos(πα2 )
)2 + !( 1

α
)

3
√
π
∣∣cos(πα2 )

∣∣2/α
(

4 3

√
1 + 1

λ
+ 3 3

√
3

))
1

n
γ
2 + 1

2α

,

Then, any choice of λ > 0 gives a constant C(α) that depends only on α.
• When α = 2, the result follows from the usual Berry–Esseen estimates, since√

n Yn has the law of a sum of n independent random variables with same law
and finite variance and third moment.

• If α = 1 and β = 0, then the same computations as above can be performed with
a constant K = 1

c
, v = w = 2, γ = 1,

K1 = K2 = c2

2
,

and this leads to

dKol(Yn, Y ) ≤ 1 + λ
π

(
2 + 1

3
√
π

(
4 3

√
1 + 1

λ
+ 3 3

√
3

))
1

n
,

and a constant C = 3.04 when λ = 0.2.
• Let us finally treat the case α = 1, β �= 0. Recall that we then have ηc,α,β(iξ) =

−|cξ | (1 + 2iβ
π

sgn(ξ) log |ξ |). We choose tn such that tn log tn = √
n, and set

Xn = tn Yn + 2cβ

π

√
n.

We then have

θn(ξ) = E[eiξXn ] e−tn ηc,α,β (iξ)

= exp

(
2cβiξ

π
tn log tn + n

(
e
ηc,α,β (itnξ)

n − 1

)
− tn ηc,α,β(iξ)

)

= exp

(
n

(
e
ηc,α,β (itnξ)

n − 1 − ηc,α,β(itnξ)

n

))
,
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and the Taylor formula with integral remainder yields:

∣∣∣∣n
(

e
ηc,α,β (itnξ)

n − 1 − ηc,α,β(itnξ)

n

)∣∣∣∣ ≤
1

2n
|ηc,α,β(itnξ)|2

≤ c2|ξ |2
2

(
1 + 4

π2 (log |tnξ |)2
(log tn)2

)
.

On the zone [− tn
2c ,

tn
2c ], we thus have

∣∣∣∣n
(

e
ηc,α,β (itnξ)

n − 1 − ηc,α,β(itnξ)

n

)∣∣∣∣

≤ c2|ξ |2
2

(
1 + 4

π2 (2 log tn − log 2c)2

(log tn)2

)

≤ c2|ξ |2 for tn large enough.

So, there is a zone of control with constants K1 = K2 = c2, v = w = 2 and
γ = 1, and K = 1

2c . We thus get as before an estimate of dKol(Yn, Y ) of order
O((tn)−2), and since (tn log tn)2 = n, (tn)2 is asymptotically equivalent to 4n

log2 n
.
��

15.3.4 Convergence of Ornstein–Uhlenbeck Processes to
Stable Laws

Another way to approximate a stable law φc,α,β is by using the marginals of
a random process of Ornstein–Uhlenbeck type. Consider more generally a self-
decomposable law φ on R, that is an infinitely divisible distribution such that for
any b ∈ (0, 1), there exists a probability measure pb on R such that

φ̂(ξ) = φ̂(bξ) p̂b(ξ); (15.6)

see [50, Chapter 3, Definition 15.1]. In Eq. (15.6), the laws pb are the marginal laws
of certain Markov processes. Fix a Lévy–Khintchine triplet (l ∈ R, ν2 ∈ R+, ρ)
with ρ probability measure on R \ {0} that integrates min(1, |x|2), and consider the
Lévy process (Zt )t∈R+ associated to this triplet:

E[eiξZt ] = exp(tψ(iξ))

= exp

(
t

(
ilξ − ν2ξ2

2
+
∫
R

(eiξx − 1 − 1|x|<1iξx) ρ(dx)

))
.
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The Ornstein–Uhlenbeck process with triplet (l, ν2, ρ), speed v and starting point x
is the solution (Ut )t≥0 of the stochastic differential equation

Ut = e−vtx +
∫ t

0
e−v(t−s) dZs.

The Ornstein–Uhlenbeck process (Ut )t≥0 can be shown to be a Markov process
whose transition kernel (Pt (x, dy))t≥0 satisfies:

P̂t (x, ·)(ξ) =
∫
R

eiξy Pt (x, dy) = exp

(
iξe−vtx +

∫ t
0
ψ(iξe−vs) ds

)

see [50, Lemma 17.1]. The connection with self-decomposable laws is provided by:

Theorem 15.23 (Sato and Yamazato [51]) For any self-decomposable law φ and
any fixed speed v, there exists a unique Lévy–Khintchine triplet (l, ν2, ρ) with∫
|x|≥1 log |x| ρ(dx) < +∞, such that the associated Ornstein–Uhlenbeck process
(Ut )t≥0 with speed v satisfies:

∀x ∈ R, Pt (x, ·) ⇀ φ.

If ψ(iξ) is the exponent associated to (l, ν2, ρ), then

φ̂(ξ) = exp

(∫ ∞

s=0
ψ(iξe−vs) ds

)
.

We refer to [51] and [50, Theorem 17.5]. In the setting of Theorem 15.23, one
has the relation

φ̂(ξ) = φ̂(e−vt ξ )
(
P̂t (x, ·)(ξ) δ̂−e−vt x(ξ)

)
,

so if b ∈ (0, 1), setting b = e−vt , one recovers pb as the law of Ut − e−vtx, where
(Ut )t∈R+ is the Ornstein–Uhlenbeck process that converges in distribution to φ and
that has speed v and starting point x.

Suppose that φ = φc,α,β is a stable law. Then, the previous computations can be
reinterpreted in the framework of mod-φ convergence. We set

θ(ξ) = δ̂x(ξ)

φ̂(ξ)
= exp(iξx − η(iξ)),

and

Xt =
⎧⎨
⎩

evtUt if α �= 1,

evt
(
Ut − 2cβvt

π

)
if α = 1.
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Then,

E[eiξXt ] =
{
μ̂(evt ξ ) θ(ξ) if α �= 1,

μ̂(evt ξ ) e−iξevt 2cβvt
π θ(ξ) if α = 1,

= eeαvt η(iξ) θ(ξ),

so (Xt )t≥0 converges mod-φ with parameters eαvt , and with limit equal to the
residue θ(ξ). Note that θt = θ for any t ≥ 0, so we are in a special situation
where the residues are constant (time-independent). Assuming that x �= 0, one has
for any ξ ∈ R

|θ(ξ)− 1| ≤

⎧⎪⎪⎨
⎪⎪⎩

K1 |ξ | exp(K2 |ξ |α) if α ∈ (1, 2],
K1 |ξ |α exp(K2 |ξ |α) if α ∈ (0, 1) or α = 1, β = 0,

K1 |ξ | log |ξ | exp(K2 |ξ |) if α = 1, β �= 0.

For the two first cases, the condition γ ≤ min( 1
w−α ,

v−1
α
) in Theorem 15.19 imposes

the following choices of γ when computing Berry–Esseen estimates: γ = α−1
α

when α ≤ 1, and γ = 0 when α ≥ 1. In these cases, one obtains:

dKol(Ut , φc,α,β) =
{
O(e−vt ) if α ∈ (1, 2],
O(e−αvt ) if α ∈ (0, 1) or α = 1, β = 0.

Because of the term log |ξ |, the last case does not exactly fit the framework of zones
of control, but it is easy to adapt the proofs and one gets an estimateO(vt e−vt ). On
the other hand, when x = 0, the only difference with the previous discussion is the
case α ∈ (1, 2], where we obtain

|θ(ξ)− 1| ≤ K1 |ξ |α exp(K2 |ξ |α)

and by Theorem 15.19, dKol(Ut , φc,α,β) = O(e−αvt ), choosing γ = α−1
α

. So, to
summarise:

Proposition 15.24 Let Y be a random variable with stable law φc,α,β , and (Ut )t≥0
be the corresponding Ornstein–Uhlenbeck process with starting point x and speed
v. We have:

dKol(Ut , Y ) =

⎧⎪⎪⎨
⎪⎪⎩

O(e−vt ) if α ∈ (1, 2], x �= 0,

O(e−αvt ) if α ∈ (0, 1) or α = 1, β = 0 or α ∈ (1, 2], x = 0,

O(vt e−vt ) if α = 1, β �= 0,

with constants in the O(·) depending only on x and α.
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15.3.5 Logarithms of Characteristic Polynomials of Random
Matrices

In [36, Sections 3 and 4] and [21, Section 7.5], the mod-Gaussian convergence of
the random variables shown in Table 15.1 was proven.

Here, G is Barnes’ function, which is the unique entire solution of the equations
G(1) = 1 and G(z + 1) = G(z) !(z). Moreover, the mod-Gaussian convergence
holds in fact on an half-plane H = {z ∈ C |Re(z) > −α}. In the sequel, we denote
XA
n , XC

n and XD
n the mod-Gaussian convergent random variables, according to the

type of the classical group (A for unitary groups, C for compact symplectic groups
and D for even orthogonal groups). Before computing zones of control for these
variables, let us make the following essential remark:

Remark 15.25 Let (Xn)n∈N be a sequence of random variables that is mod-
Gaussian convergent on a domain D ⊂ C which contains a neighborhood of 0
(this ensures that θn and all its derivatives converge towards those of θ ). We denote
(tn)n∈N the parameters of mod-Gaussian convergence of (Xn)n∈N. Then, without
generality, one can assume θ ′n(0) = θ ′′n (0) = 0 and θ ′(0) = θ ′′(0) = 0. Indeed, set

X̃n = Xn + iθ ′n(0) ; t̃n = tn − θ ′′n (0).
We then have

θ̃n(ξ) := E[eiξX̃n ] ẽtn
ξ2

2 = θn(ξ) e−θ ′n(0)ξ−θ ′′n (0)
ξ2

2

and this new residue satisfies θ̃ ′n(0) = θ̃ ′′n (0) = 0. For the construction of zones of
control, it allows us to force v = 3, up to a translation of Xn and of the parameter tn.

In the following, we only treat the case of unitary groups, the two other
cases being totally similar (one could also look at the imaginary part of the log-
characteristic polynomial). There is an exact formula for the Fourier transform of
XA
n [31, Formula (71)]:

E[eiξXA
n ] =

n∏
k=1

!(k)!(k + iξ)(
!(k + iξ

2 )
)2
.

Table 15.1 Mod-Gaussian convergence of the characteristic polynomials of Haar-distributed
random matrices in compact Lie groups

Random matrixMn Random variable Xn Parameters tn Residue θ(ξ)

Haar(U(n)) Re(log det(In −Mn)) log n
2

(G(1+ iξ
2 ))

2

G(1+iξ)

Haar(USp(n)) log det(I2n −Mn)− 1
2 log πn2 log n2

G( 3
2 )

G( 3
2 +iξ)

Haar(SO(2n)) log det(I2n −Mn)− 1
2 log 8π

n
log n2

G( 1
2 )

G( 1
2 +iξ)
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We have E[XA
n ] = 0, and

t̃n = E[(XA
n )

2] = 1

2

n∑
k=1

!′′(k)
!(k)

−
(
!′(k)
!(k)

)2

= 1

2

n∑
k=1

ψ1(k),

where ψ1(z) is the trigamma function d2

dz2 (log!(z)), and is given on integers by the
remainder of the series ζ(2):

ψ1(k) =
∞∑
m=k

1

m2 .

Therefore, t̃n = 1
2

∑∞
m=1

min(n,m)
m2 = 1

2 (log n + γ + 1 + O(n−1)). So, (XA
n )n∈N is

mod-Gaussian convergent with parameters (̃tn)n∈N and limit

θ̃ (ξ ) =
(
G(1 + iξ

2 )
)2

G(1 + iξ)
e
(γ+1)ξ2

4 ,

which satisfies θ̃ ′(0) = θ̃ ′′(0) = 0. With these conventions, we can write the
residues θ̃n(ξ) as

θ̃n(ξ) =
⎛
⎜⎝

n∏
k=1

!(k)!(k + iξ)(
!(k + iξ

2 )
)2

⎞
⎟⎠ e

t̃nξ
2

2 =
n∏
k=1

⎛
⎜⎝!(k)!(k + iξ)(

!(k + iξ
2 )
)2

e
ψ1(k)ξ

2

4

⎞
⎟⎠ .

Denote ϑk(ξ) the terms of the product on the right-hand side; we use a similar
strategy as in Sect. 15.3.1 for computing a zone of control. The function ϕk(ξ) =
logϑk(ξ) vanishes at 0, has its two first derivatives that also vanish at 0, and
therefore writes as

ϕk(ξ) =
(∫ 1

0
ϕ′′′k (tξ) (1 − t)2 dt

)
ξ3

2
.

The third derivative of ϕk(ξ) is given by

ϕ′′′k (ξ) = −iψ2(k + iξ)+ i

2
ψ2

(
k + iξ

2

)
,

with ψ2(z) = −2
∑∞
j=0

1
(j+z)3 . As a consequence, ϕ′′′k (ξ) is uniformly bounded on

R by

3
∞∑
j=0

1

(j + k)3 ≤ 3 ζ(3)

k2
.
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Therefore,

|ϕk(ξ)| ≤ ζ(3) |ξ |3
2k2 ;

|ϑk(ξ)| ≤ e
ζ(3) |ξ |3

2k2 ;

|ϑk(ξ)− 1| ≤ ζ(3) |ξ |3
2k2

e
ζ(3) |ξ |3

2k2 .

It follows that for any n and any ξ ∈ R, |θ̃n(ξ) − 1| ≤ S exp S with S =∑∞
k=1

ζ(3) |ξ |3
2k2 = 3 ζ(3) |ξ |3

π2 . Set K1 = K2 = 3 ζ(3)
π2 , and K = 1

4K2
= π2

12 ζ(3) . We
have a zone of control [−Ktn,Ktn] of index (3, 3), with constants K1 and K2. We
conclude with Theorem 15.19:

Proposition 15.26 LetMn be a random unitary matrix taken according to the Haar
measure. For n large enough,

dKol

(
Re(log det(In −Mn))√

Var(Re(log det(In −Mn)))
, NR(0, 1)

)
≤ C

(log n)3/2

with a constant C ≤ 18. Up to a change of the constant, the same result holds if one
replaces Re(log det(In −Mn)) by Im(log det(In −Mn)), or by

log det(I2n − Pn)− E[det(I2n − Pn)],

with Pn Haar distributed in the unitary compact symplectic group USp(n) or in the
even special orthogonal group SO(2n).

15.4 Cumulants and Dependency Graphs

15.4.1 Cumulants, Zone of Control and Kolmogorov Bound

In this section, we will see that appropriate bounds on the cumulants of a sequence
of random variables (Sn)n∈N imply the existence of a large zone of control for a
renormalized version of Sn. In this whole section and in the next one, the reference
stable law is the standard Gaussian law. We also assume that the random variables
Sn are centered.

Let us first recall the definition of cumulants. If X is a real-valued random
variable with exponential generating function

E[ezX] =
∞∑
r=0

E[Xr ]
r! zr
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convergent in a neighborhood of 0, then its cumulants κ(1)(X), κ(2)(X), . . . are the
coefficients of the series

logE[ezX] =
∞∑
r=1

κ(r)(X)

r! zr ,

which is also well defined for z in a neighborhood of 0 (see for instance [39]). For
example, κ(1)(X) = E[X], κ(2)(X) = E[X2] − E[X]2 = Var(X), and

κ(3)(X) = E[X3] − 3E[X2]E[X] + 2E[X]3.

We are interested in the case where cumulants can be bounded in an appropriate
way.

Definition 15.27 Let (Sn)n∈N be a sequence of (centered) real-valued random
variables. We say that (Sn)n∈N admits uniform bounds on cumulants with parameters
(Dn,Nn,A) if, for any r ≥ 2, we have

|κ(r)(Sn)| ≤ Nn rr−2 (2Dn)
r−1Ar.

In the following, it will be convenient to set (̃σn)2 = Var(Sn)
NnDn

. The inequality of

Definition 15.27 with r = 2 gives (̃σn)2 ≤ 2A2.

Lemma 15.28 Let (Sn)n∈N be a sequence with uniform bounds on cumulants with
parameters (Dn,Nn,A). Set

Xn = Sn

(Nn)1/3 (Dn)2/3
and tn = (̃σn)2(NnDn )1/3 = Var(Xn).

Then, we have for (Xn)n∈N a zone of control [−K tn , K tn] of index (3, 3), with the
following constants:

K = 1

(8 + 4e) A3 , K1 = K2 = (2 + e) A3.

Proof From the definition of cumulants, since Xn is centered and has variance tn,
we can write

θn(ξ) = E[eiξXn ] exp

(
tn ξ

2

2

)

= exp

( ∞∑
r=3

κ(r)(Sn)

r!
(iξ)r

(Nn(Dn)2)r/3

)
= exp(z),
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with

|z| ≤ 1

2

Nn

Dn

∞∑
r=3

rr−2

er r!

((
Dn

Nn

)1/3

2eA |ξ |
)r
.

We set y = (Dn
Nn
)1/3 2eA |ξ | and suppose that y ≤ 1, that is to say that ξ is in the

zone [−L (Nn
Dn
)1/3 , L (Nn

Dn
)1/3] with L = 1

2eA .

By Stirling’s bound, the series S(y) = ∑∞
r=3

rr−2

r! er y
r is convergent for any y ∈

[0, 1], and we have the inequality S(y) ≤ y3

2e3 (1−y) , which implies

|z| ≤ 2
(A |ξ |)3

1 −
(
Dn
Nn

)1/3
2eA |ξ |

.

We now consider the zone of control [−Ktn,Ktn] withK = 1
(4e+8)A3 . If ξ is in this

zone, then we have indeed

|ξ | ≤ (̃σn)
2

4eA3

(
Nn

Dn

)1/3

≤ 1

2eA

(
Nn

Dn

)1/3

= L
(
Nn

Dn

)1/3

by using the remark just before the lemma. Then,

|z| ≤ 2A3

1 − 2eA (̃σn)2

(4e+8)A3

|ξ |3 ≤ 2A3

1 − e
e+2

|ξ |3 = (2 + e)A3 |ξ |3.

Thus, on the zone of control, |θn(ξ) − 1| = |ez − 1| ≤ |z| e|z|, whence a control of
index (3, 3) and with constants

K1 = K2 = (2 + e)A3.

We have chosen K so that K = 1
4K2

, hence, the inequalities of Condition (Z2) are
satisfied. ��

Using the results of Sect. 15.2, we obtain:

Corollary 15.29 Let Sn be a sequence with a uniform bounds on cumulants with
parameters (Dn,Nn,A) and let Yn = Sn√

Var(Sn)
. Then we have

dKol(Yn , NR(0, 1)) ≤ 76.36A3

(̃σn)3

√
Dn

Nn
.
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Proof We can apply Theorem 15.19, choosing γ = 1, and λ = 0.193. It yields a
constant smaller than 77.911. It is however possible to get the better constant given
above by redoing some of the computations in this specific setting. With ρ > 4, set
K = 1

(4e+ρ)A3 , and εn = 1
K (tn)3/2

. On the zone ξ ∈ [− 1
εn
, 1
εn
], we have a bound

|θn(ξ)− 1| ≤ M|ξ |3 exp(M|ξ |3), this time withM = (2 + 8e
ρ
)A3. Hence,

|E[fa,εn(Yn)] − E[fa,εn(Y )]| ≤
M

2π (tn)3/2

∫ 1
εn

− 1
εn

|ξ |2 e
− ξ2

2 +M |ξ |3
(tn)

3/2 dξ

≤ M

2π (tn)3/2

∫ 1
εn

1
εn

|ξ |2 e
−ξ2
(

1
2− 2

ρ

)
dξ

≤ M√
2π (tn)3/2 (1 − 4

ρ
)3/2

= 1√
2π

2

ρ(1 − 4
ρ
)3/2

εn.

By Theorem 15.18, we get for any λ > 0:

dKol

(
Sn√

Var(Sn)
, NR(0, 1)

)

≤ (1 + λ)√
2π

(
2

ρ(1 − 4
ρ
)3/2

+ 1
3
√
π

(
4 3

√
1 + 1

λ
+ 3 3

√
3

))
εn.

The best constant is then obtained with ρ = 6.79 and λ = 0.185. ��
Remark 15.30 There is a trade-off in the bound of Corollary 15.29 between the
a priori upper bound on (̃σn)2, and the constant C that one obtains such that the
Kolmogorov distance is smaller than

CA3

(̃σn)3

√
Dn

Nn
.

This bound gets worse when (̃σn)2 is small, but on the other hand, the knowledge of
a better a priori upper bound (that is precisely when (̃σn)2 is small) yields a better
constant C. So, for instance, if one knows that (̃σn)2 ≤ A2 (instead of 2A2), then
one gets a constant C = 52.52. A general bound that one can state and that takes
into account this trade-off is:

dKol(Yn , NR(0, 1)) ≤ 27.55

((
A

σ̃n

)3

+ A

σ̃n

) √
Dn

Nn
.

We are indebted to Martina Dal Borgo for having pointed out this phenomenon. In
the sequel, we shall freely use this small improvement of Corollary 15.29.
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The above corollary ensures asymptotic normality with a bound on the speed of
convergence when

(
1

(̃σn)3

√
Dn
Nn

→ 0

)
⇐⇒

(
(̃σn)

2
(
Nn

Dn

)1/3

→ +∞
)
.

Using a theorem of Janson, the asymptotic normality can be obtained under a less
restrictive hypothesis, but without bound on the speed of convergence. Even if the
main topic of the paper is to find bounds on the speed of convergence, we will recall
the result here for the sake of completeness.

Proposition 15.31 As above, let Sn be a sequence with a uniform bounds on
cumulants with parameters (Dn,Nn,A) and assume that

lim
n→∞

Var(Sn)

Nn Dn

(
Nn

Dn

)ε
= lim
n→∞(̃σn)

2
(
Nn

Dn

)ε
= +∞

for some parameter ε ∈ (0, 1). Then,

Sn√
Var(Sn)

⇀ NR(0, 1).

Proof Note that the bounds on cumulants can be rewritten as

|κ(r)(Yn)| ≤ Cr
(

Var(Sn)

Nn Dn

(
Nn

Dn

)1− 2
r

)− r
2

for some constant Cr . Choosing r large enough so that 1 − 2
r
≥ ε, we conclude that

κ(r)(Yn)→ 0 for r large enough. This is a sufficient condition for the convergence
in law towards a Gaussian distribution, see [28, Theorem 1] and [25]. ��
Remark 15.32 Up to a change of parameters, it would be equivalent to consider
bounds of the kind

|κ(r)(Sn)| ≤ (Cr)rαn(βn)r , or
∣∣∣κ(r)
(

Sn√
Var(Sn)

)∣∣∣ ≤ r!
�r−2
n

,

as done by Saulis and Statulevičius in [52] or by the authors of this paper in [21]. In
particular, it was proved in [21, Chapter 5], that under slight additional assumptions
on the second and third cumulants, we have the following: the sequence (Xn)n∈N
defined in Lemma 15.28 converges in the mod-Gaussian sense with parameters
(tn)n∈N.
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15.4.2 Dependency Graphs

In this paragraph, we will see that the uniform bounds on cumulants are satisfied
for sums Sn =∑n

i=1Ai,n of dependent random variables with specific dependency
structure.

More precisely, if (Av)v∈V is a family of real valued random variables, we
call dependency graph for this family a graph G = (V ,E) with the following
property: if V1 and V2 are two disjoint subsets of V with no edge e ∈ E joining
a vertex v1 ∈ V1 to a vertex v2 ∈ V2, then (Av)v∈V1 and (Av)v∈V2 are independent
random vectors. For instance, let (A1, . . . , A7) be a family of random variables with
dependency graph drawn on Fig. 15.6. Then the vectors (A1, A2, A3, A4, A5) and
(A6, A7) corresponding to different connected components must be independent.
Moreover, note that (A1, A2) and (A4, A5) must be independent as well: although
they are in the same connected component of the graph G, they are not directly
connected by an edge e ∈ E.

Theorem 15.33 (Féray–Méliot–Nikeghbali, See [21]) Let (Av)v∈V be a family of
random variables, with |Av| ≤ A a.s., for all v ∈ V . We suppose that G = (V ,E)
is a dependency graph for the family and denote

• N =
∑
v∈V E|Av |
A

≤ cardV ;
• D the maximum degree of a vertex in G plus one.

If S =∑v∈V Av , then for all r ≥ 1,

|κ(r)(S)| ≤ N rr−2 (2D)r−1Ar.

Consider a sequence (Sn)n∈N, where each Sn writes as
∑
v∈Vn Av,n, with theAv,n

uniformly bounded by A (in a lot of examples, the Av,n are indicator variables, so
that we can take A = 1). Set

Nn =
∑
v∈Vn E|Av,n|

A

and assume that, for each n, (Av,n)v∈Vn has a dependency graph of maximal degree
Dn − 1. Then the sequence (Sn)n∈N admits uniform bounds on cumulants with

1

2

3

4

5

6

7

Fig. 15.6 A dependency graph for seven real-valued random variables
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parameters (Dn,Nn,A) and the result of the previous section applies. Note that in
this setting we have the bound σ̃n ≤ A, so the bound of Corollary 15.29 holds with
the better constant 52.52.

Remark 15.34 The parameter D is equal to the maximal number of neighbors of
a vertex v ∈ V , plus 1. In the following, we shall simply call D the maximal
degree, being understood that one always has to add 1. Another way to deal with
this convention is to think of dependency graphs as having one loop at each vertex.

Example 15.2 The following example, though quite artificial, shows that one can
construct families of random variables with arbitrary parameters N and D for their
dependency graphs. Let (Uk)k∈Z/NZ be a family of independent Bernoulli random
variables with P[Uk = 1] = 1 − P[Uk = 0] = q; and for i ∈ Z/NZ,

Ai = 2

(
i+D∏
k=i+1

Uk

)
− 1.

Each Ai is a Bernoulli random variable with P[Ai = 1] = 1 − P[Ai = −1] = qD ,
which we denote p (p is considered independent of N ). We are interested in the
fluctuations of S = ∑N

i=1Ai . Note that the partial sums
∑k≤N
i=1 Ai correspond to

random walks with correlated steps: as D increases, the consecutive steps of the
random walk have a higher probability to be in the same direction, and therefore,
the variance of the sum S = ∑N

i=1Ai grows. We refer to Fig. 15.7, where three
such random walks are drawn, with parameters p = 1

2 , N = 1000 and D ∈
{5, 15, 30}.

If d(i, j) ≥ D in Z/NZ, then Ai and Aj do not involve any common
variable Uk , and they are independent. It follows that if G is the graph with vertex
set Z/NZ and with an edge e between i and j if d(i, j) ≤ D, then G is a
dependency graph for the Ai’s. This graph has N vertices, and maximal degree
2D − 1. Moreover, one can compute exactly the expectation and the variance of

D = 30

D = 15

D = 5

Fig. 15.7 Random walks with 1000 steps and correlation lengths D = 5, D = 15 and D = 30
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S =∑N
i=1Ai :

E[S] = N(2p − 1);

Var(S) = 4
N∑

i,j=1

cov(Ui+1 · · ·Ui+D,Uj+1 · · ·Uj+N)

= 4
N∑

i,j=1

(
qD+min(D,d(i,j)) − p2) = 4Np

D−1∑
j=−(D−1)

(q |j | − p)

= 4Np

(
1 + p 1

D − 2p

1 − p 1
D

− (2D − 1)p

)
.

If N and D go to infinity with D = o(N), then q = p
1
D = 1 + logp

D
+ O( 1

D2 ),
and

E[S] = N(2p − 1);

Var(S) = 8N(D +O(1)) p
(

1 − p
− logp

− p
)
.

So, one can apply Corollary 15.29 to the sum S, and one obtains:

dKol

(
S − E[S]√

Var(S)
, NR(0, 1)

)
≤ 6(

p
(

1−p
− logp − p

))3/2

√
D

N
.

Example 15.3 Fix p ∈ (0, 1), and consider a random Erdös–Rényi graph G =
Gn = G(n, p), which means that one keeps at random each edge of the complete
graph Kn with probability p, independently from every other edge. Note that we
only consider the case of fixed p here; for p→ 0, we would get rather weak bounds,
see [21, Section 10.3.3] for a discussion on bounds on cumulants in this framework.

Let H = (VH ,EH ) and G = (VG,EG) be two graphs. The number of copies
of H in G is the number of injections i : VH → VG such that, if (h1, h2) ∈ EH ,
then (i(h1), i(h2)) ∈ EG. In random graph theory, this is called the subgraph count
statistics; we denote it by I (H,G). We refer to Fig. 15.8 for an example, where
H = K3 is the triangle andG is a random Erdös–Rényi graph of parameters n = 30
and p = 1

10 .
One can always write I (H,G) as a sum of dependent random variables. Identify

VH with [[1, k]] and VG with [[1, n]], and denote A(n, k) the set of arrangements
(a1, . . . , ak) of size k in [[1, n]]. Given such an arrangement, the induced subgraph
G[a1, . . . , ak] is the graph with vertex set [[1, k]], and with an edge between i and j
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Fig. 15.8 Count of triangles
in a random Erdös–Rényi
graph of parameters n = 30
and p = 0.1. Here, there are
4 × 3! = 24 ways to embed a
triangle in the graph

if (ai, aj ) ∈ EG. Then,

I (H,G) =
∑

A∈A(n,k)
IA(H,G),

where IA(H,G) = 1 if H ⊂ G[A], and 0 otherwise.
A dependency graph for the random variables IA(H,Gn) has vertex set A(n, k)

of cardinality Nn = n↓k = n(n − 1)(n − 2) · · · (n − k + 1), and an edge between
two arrangements (a1, . . . , ak) and (b1, . . . , bk) if they share at least two points
(otherwise, the random variables IA(H,Gn) and IB(H,Gn) involve disjoint sets of
edges and are therefore independent). As a consequence, the maximal degree of the
graph is smaller than

Dn =
((
k

2

)2

2(n− 2)(n− 3) · · · (n− k + 1)

)
,

and of order nk−2. Therefore, Dn
Nn

≤ 2(k2)
2

n(n−1) = O( 1
n2 ), and on the other hand, if h is

the number of edges of H , one can compute the asymptotics of the expectation and
of the variance of I (H,Gn):

E[I (H,Gn)] = n↓kph;
Var(I (H,Gn)) = 2h2p2h−1(1 − p) n2k−2 +O(n2k−3),
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see [21, Section 10] for the details of these computations. In particular,

lim
n→∞

Var(Sn)

Nn Dn
= p2h−1(1 − p)

(
h(
k
2

)
)2

= σ̃ 2 > 0.

Thus, using Corollary 15.29, we get

dKol

(
I (H,Gn)− E[I (H,Gn)]√

Var(I (H,Gn))
, NR(0, 1)

)
≤ 4.65 (k(k − 1))4

p3h ( 1
p
− 1)3/2 h3

1

n

for n large enough. For instance, if Tn = I (K3,Gn) is the number of triangles in
Gn, then

E[Tn] = n↓3 p3

Var[Tn] = 18 n↓4 p5(1 − p)+ 6 n↓3 p3(1 − p3)

and

dKol

(
Tn − n↓3p3

√
18 n↓4 p5(1 − p)+ 6 n↓3 p3(1 − p3)

, NR(0, 1)

)

≤ 234

p9( 1
p
− 1)

3
2

1

n
(1 +O( 1

n
)).

This result is not new, except maybe the explicit constant. We refer to [4] for an
approach of speed of convergence for subgraph counts using Stein’s method. More
recently, Krokowski et al. [37] applied Malliavin calculus to the same problem.
Our result corresponds to the case where p is constant of their Theorem 1. Similar
bounds could be obtained by Stein’s method, see [47].

To conclude our presentation of the convergence of sums of bounded random
variables with sparse dependency graphs, let us analyse precisely the case of
uncorrelated random variables.

Corollary 15.35 Let Sn = ∑Nn
i=1Ai,n be a sum of centered and bounded random

variables, that are uncorrelated and with E[(Ai,n)2] = 1 for all i. We suppose
that the random variables have a dependency graph of parameters Nn → +∞
and sDn.

1. If Dn = O((Nn)1/2−ε) for ε > 0, then Yn = Sn√
Nn

converges in law towards the

Gaussian distribution.
2. If Dn = o((Nn)

1/4), then the Kolmogorov distance between Yn and NR(0, 1) is
a O((Dn)2/(Nn)1/2).
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Proof It is an immediate consequence of Corollary 15.29 and Proposition 15.31,
since Sn admits uniform control on cumulants (see Theorem 15.33) and

Var(Sn) =
Nn∑
i=1

E[(Ai,n)2] = Nn.

��

15.4.3 Unbounded Random Variables and Truncation Methods

A possible generalization regards sums of unbounded random variables. In the
following, we develop a truncation method that yields a criterion of asymptotic nor-
mality similar to Lyapunov’s condition (see [7, Chapter 27]). A small modification
of this method would similarly yield a Lindeberg type criterion. Let Sn =∑Nn

i=1Ai,n
be a sum of centered random variables, with

(
E[|Ai,n|2+δ]

) 1
2+δ ≤ A

for some constant A independent of i and n, and some δ > 0. We suppose as before
that the family of random variables (Ai,n)i∈[[1,Nn]] has a (true) dependency graphGn
of parameters Nn and Dn. Note that in this case,

Var(Sn) =
Nn∑
i,j=1

cov(Ai,n, Aj,n) ≤
Nn∑
i=1

∑
j∼i

‖Ai,n‖2 ‖Aj,n‖2

≤
Nn∑
i=1

∑
j∼i

‖Ai,n‖2+δ ‖Aj,n‖2+δ ≤ A2NnDn.

We set

A−
i,n = Ai,n 1|Ai,n|≤Ln ; A+

i,n = Ai,n 1|Ai,n|>Ln ;

S−n =
Nn∑
i=1

A−
i,n ; S+n =

Nn∑
i=1

A+
i,n ;

whereLn is a truncation level, to be chosen later. Notice thatGn is still a dependency
graph for the family of truncated random variables (A−

i,n)i∈[[1,Nn]]. Therefore, we can
apply the previously developed machinery (Theorem 15.33 and Corollary 15.29) to
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the scaled sum S−n /Ln. On the other hand, by Markov’s inequality,

dKol(Sn, S
−
n ) = sup

s∈R
|P[Sn ≥ s] − P[S−n ≥ s]| ≤ P[S+n = 0]

≤
Nn∑
i=1

P[|Ai,n| ≥ Ln] ≤ Nn
(
A

Ln

)2+δ
.

Combining the two arguments leads to the following result (this replaces the
previous assumption of boundedness |Ai,n| ≤ A).

Theorem 15.36 Let (Sn =∑Nn
i=1Ai,n)n∈N be a sum of centered random variables,

with dependency graphs of parameters Nn → +∞ and Dn, and with

‖Ai,n‖2+δ = (E[|Ai,n|2+δ])1/(2+δ) ≤ A

for all i, n and for some δ > 0. We set Yn = Sn/
√

Var(Sn). Recall that (̃σn)2 =
Var(Sn)
NnDn

.

(U1) Set

Vn = (̃σn)2
(
Nn

Dn

)1/3 1

(Nn)2/(2+δ)

and suppose that limn→∞ Vn = +∞ (which is only possible for δ > 4). Then,
for n large enough,

dKol(Yn, NR(0, 1)) ≤ 78

(
A2

Vn

)3(δ+2)
2(δ+5)

= o
(

1

Vn

)
.

(U2) More generally, for ε ∈ ( 2
2+δ , 1), set

Wn = (̃σn)2
(
Nn

Dn

)ε 1

(Nn)2/(2+δ)

and suppose that limn→∞Wn = +∞. Then, Yn ⇀ NR(0, 1).

Remark 15.37 It should be noticed that if δ → +∞, then one essentially recovers
the content of Corollary 15.29 (which can be applied because of Theorem 15.33). On
the other hand, the inequality δ > 4 amounts to the existence of bounded moments
of order strictly higher than 6 for the random variables Ai,n. In practice, one can for
instance ask for bounded moments of order 7 (i.e. δ = 5), in which case the first
condition (U1) reads

lim
n→∞

Var(Sn)

Dn Nn

(Nn)
1/9

(Dn)1/3
= +∞.
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Moreover, we will see in the proof of Theorem 15.36 that in this setting (δ = 5), the
constant 78 can be improved to 39, so that, for n large enough:

dKol(Yn, NR(0, 1)) ≤ 39

(
A2

Vn

) 21
20

.

Proof We write as usual Yn = Sn√
Var(Sn)

, and Y−
n = S−n√

Var(S−n )
. In all cases, we have

dKol(Yn, NR(0, 1)) ≤ dKol(Sn, S
−
n )+ dKol

(
Y−
n ,

√
Var(Sn)

Var(S−n )
NR(0, 1)

)

≤ Nn
(
A

Ln

)2+δ
+ dKol(Y

−
n ,NR(0, 1))+ dKol

(
NR(0, 1), NR

(
0,

Var(Sn)

Var(S−n )

))

by using the invariance of the Kolmogorov distance with respect to multiplication
of random variables by a positive constant. In the sequel, we denote a, b and c the
three terms on the second line of the inequality. The Kolmogorov distance between
two Gaussian distributions is

dKol(NR(0, 1), NR(0, λ
2)) = 1√

2π
sup
s∈R+

(∫ λs
s

e−
u2
2 du

)

≤ λ− 1√
2π

sup
s∈R+

(
s e−

s2
2

)
=
√

1

2πe
|λ− 1|

if λ ≥ 1. One gets the same result if λ ≤ 1, hence,

dKol

(
NR(0, 1), NR

(
0,

Var(Sn)

Var(S−n )

))
= dKol

(
NR(0, 1), NR

(
0,

Var(S−n )
Var(Sn)

))

≤
√

1

2πe

∣∣∣∣∣∣

√
Var(S−n )
Var(Sn)

− 1

∣∣∣∣∣∣

≤
√

1

2πe

|Var(S−n )− Var(Sn)|
Var(Sn)

.

To evaluate the difference between the variances, notice that

Var(S−n ) = Var

(
Sn −

Nn∑
i=1

A+
i,n

)

= Var(Sn)− 2
Nn∑
i,j=1

Cov(A+
i,n, Aj,n)+

Nn∑
i,j=1

Cov(A+
i,n, A

+
j,n)
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If j is not connected to i in Gn, or equal to i, then Ai,n and Aj,n are independent,
hence, Cov(A+

i,n, Aj,n) = 0. Otherwise, using Hölder and Bienaymé-Chebyshev
inequalities,

|Cov(A+
i,n, Aj,n)| ≤

√
E[(Ai,n)2 1|Ai,n|≥Ln ]E[(Aj,n)2 1|Ai,n|≥Ln ]

≤
√
E[(Ai,n)2+δ] 2

2+δ P[|Ai,n| ≥ Ln] 2δ
2+δ E[(Aj,n)2+δ] 2

2+δ

≤ A2
(
A

Ln

)δ
.

Similarly,

|Cov(A+
i,n, A

+
j,n)| ≤ E[|A+

i,nA
+
j,n|] + E[|A+

i,n|]E[|A+
j,n|]

≤ A2

((
A

Ln

)δ
+
(
A

Ln

)2+2δ
)
,

hence, assuming that the level of truncation Ln is larger than A,

|Var(Sn)− − Var(Sn)|
Var(Sn)

≤ Nn Dn

Var(Sn)
3A2

(
A

Ln

)δ
.

Let us now place ourselves in the setting of Hypothesis (U1); we set

Vn = Var(Sn)

Nn Dn

(
Nn

Dn

)1/3 1

(Nn)2/(2+δ)
.

Suppose that Ln = Kn (Nn)
1

2+δ , with Kn going to infinity. We then have a ≤
A2+δ
(Kn)2+δ

, and on the other hand,

∣∣∣∣
Var(S−n )
Var(Sn)

− 1

∣∣∣∣ ≤ 3A2+δ
(
Nn Dn

Var(Sn)

1

(Nn)δ/(2+δ)
1

(Kn)δ

)

≤ 3A2+δ
(

1

Vn (Dn)1/3 (Nn)2/3 (Kn)δ

)
→ 0

since by hypothesis, limn→∞ 1
Vn

= 0. So,

c ≤ 3A2+δ
√

2πe

1

Vn (Dn)1/3 (Nn)2/3 (Kn)δ
≤ 3A2+δ

√
2πe

1

Vn (Kn)δ
.
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Now, the sequence (S−n /Ln)n∈N is a sequence of sums of centered random variables
all bounded by 1, and to apply Corollary 15.29 to this sequence, we need

lim
n→∞

Var(S−n )
Nn Dn

(
Nn

Dn

)1/3 1

(Ln)2
= +∞.

However, the previous computation shows that one can replace Var(Sn) by Var(S−n )
in this expression without changing the asymptotic behavior, so

lim
n→∞

Var(S−n )
Nn Dn

(
Nn

Dn

)1/3 1

(Ln)2
= lim
n→∞

Vn

(Kn)2
,

which is +∞ if (Kn)2 is not growing too fast to +∞ (in comparison to the sequence
Vn). Then, by Corollary 15.29,

b = dKol(Y
−
n , NR(0, 1)) ≤ 77

(Kn)
3

(Vn)3/2

for n large enough. Set Kn = B(Vn)
3

2(5+δ) . Then,

dKol(Yn, NR(0, 1)) ≤ a + b + c ≤
(
A2+δ

B2+δ + 77B3 + o(1)
)(

1

Vn

) 3(2+δ)
2(5+δ)

≤
((

231

2 + δ
) 2+δ

5+δ + 77

(
2 + δ
231

) 3
5+δ
)(

A2

Vn

) 3(2+δ)
2(5+δ)

for n large enough, and by choosing B in an optimal way. The term in parenthesis
is maximal when δ = 229, and is then equal to 78. This ends the proof of (U1), and
one gets a better constant smaller than 39 when δ = 5.

Under the Hypothesis (U2), we set

Wn = Var(Sn)

Nn Dn

(
Nn

Dn

)ε 1

(Nn)2/(2+δ)
.

In order to prove the convergence in law Yn ⇀ NR(0, 1), it suffices to have:

• Sn − S−n = S+n that converges in probability to 0. This happens as soon as the
level Ln is Kn (Nn)1/(2+δ) with Kn → +∞.

• |Var(Sn)−Var(S−n )|
Var(Sn)

→ 0. With Ln = Kn (Nn)
1/(2+δ), the previous computations

show that this quantity is a

O

(
1

Wn (Nn)1−ε (Dn)ε (Kn)δ

)
,

which goes to 0.
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• and by Theorem 15.31,

Var(Sn)

Nn Dn

(
Nn

Dn

)ε 1

(Ln)2
→ +∞.

This follows from the Hypothesis (U2) if Kn is chosen to grow sufficiently slow.

Thus, the second part of Theorem 15.36 is proven. ��
Example 15.4 Let (Xi)i∈[[1,N ]] be a centered Gaussian vector with E[(Xi)2] = 1
for any i, and with the covariance matrix (Cov(Xi,Xj ))1≤i,j≤N that is sparse in
the following sense: for any i, the set of indices j such that Cov(Xi,Xj ) �= 0 has
cardinality smaller than D. We set Ai = exp(Xi); the random variables Ai follow
the log-normal distribution of density

1√
2π

1

u1+ log u
2

1u>0 du,

see Fig. 15.9. They have moments of all order: E[(Ai)k] = E[ekXi ] = e
k2
2 .

The variables Ai have the same dependency graph as the variables Xi . Moreover,
if ρij = Cov(Xi,Xj ), then the covariance of two variables Ai and Aj is e(eρij − 1).
Using moments of order 2 + δ, we see that if

YN =
∑N
i=1(Ai − e

1
2 )√

e
∑

1≤i,j≤N(eρij − 1)

VN,δ =
e
∑

1≤i,j≤N(eρij − 1)

ND

N
1
3− 2

2+δ

D
1
3

→ +∞,

then dKol(YN, NR(0, 1)) ≤ 78
(

eδ+2

VN,δ

) 3(δ+2)
2(δ+5)

for N large enough.

To make this result more explicit, let us consider the following dependency
structure for the Gaussian vector X = (Xi)i∈[[1,N ]]:

Cov(X) =

⎛
⎜⎜⎜⎜⎝

1 ∗ · · · ∗
∗ 1

. . .
...

...
. . .
. . . ∗

∗ · · · ∗ 1

⎞
⎟⎟⎟⎟⎠
,

Fig. 15.9 The density of the
log-normal distribution
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where the non-diagonal terms ∗ are all smaller than ρ
D

in absolute value, and with
less than D non-zero terms on each row or column. When ρ ∈ [0, 1), the matrix
is diagonally dominant, hence positive-definite, so there exists indeed a Gaussian
vector X with these covariances. We then have

VN,δ ≥ e (1 −D(e ρD − 1))
N

1
3− 2

2+δ

D
4
3

,

so if 1 7 D 7 N
1
4−ε, then one can apply Theorem 15.36 to get

dKol(YN, NR(0, 1)) ≤ 78

(
e

3
2ε−1

1 − ρ

)3
2 (

D

N
1
4−ε

) 2
2ε+1

for N large enough. Moreover, as soon as 1 7 D 7 N
1
2−ε, YN ⇀ NR(0, 1).

15.5 Ising Model and Markov Chains

In this section, we present examples of random variables that admit uniform bounds
on cumulants, which do not come from dependency graphs. Their structure is
nevertheless not so different since the variables that we consider write as sums of
random variables that are weakly dependent. The technique to prove uniform bounds
on cumulants relies then on the notion of uniform weighted dependency graph,
which generalizes the notion of standard dependency graph (see Proposition 15.40).

15.5.1 Weighted Graphs and Spanning Trees

An edge-weighted graphG, or weighted graph for short, is a graphG in which each
edge e is assigned a weight wG(e). Here we restrict ourselves to weights wG(e)
with wG(e) ∈ R+. Edges not in the graph can be thought of as edges of weight 0,
all our definitions being consistent with this convention.

If B is a multiset of vertices of G, we can consider the graph G[B] induced by
G on B and defined as follows: the vertices of G[B] correspond to elements of B
(if B contains an element with multiplicity m, then m vertices correspond to this
element), and there is an edge between two vertices if the corresponding vertices of
G are equal or connected by an edge in G. This new graph has a natural weighted
graph structure: put on each edge of G[B] the weight of the corresponding edge in
G (if the edge connects two copies of the same vertex of G, we put weight 1).
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w12
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w23

w13 3 w34
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w45
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w12
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w23

w13 3

4

4

w34

w34

1

T
1

2

3

4

4

Fig. 15.10 A weighted dependency graphG for 7 random variables; the induced graphG[B] with
B = {1, 2, 3, 4, 4}; and a spanning tree T of G[B], with w(T ) = w12w23w34

Definition 15.38 A spanning tree of a graph G = (V ,E) is a subset E′ of E such
that (V ,E′) is a tree. In other words, it is a subgraph of G that is a tree and covers
all vertices.

The set of spanning trees of T is denoted ST(G). If G is a weighted graph, we
say that the weight w(T ) of a spanning tree of G is defined as the product of the
weights of the edges in T (Fig. 15.10).

15.5.2 Uniform Weighted Dependency Graphs

If A1, . . . , Ar are real-valued random variables, there is a notion of joint cumulants
that generalize the cumulants of Sect. 15.4:

κ(A1, A2, . . . , Ar) = [z1z2 · · · zr ]
(

logE[ez1A1+z2A2+···+zrAr ]
)
.

The joint cumulants are multilinear and symmetric functionals of A1, . . . , Ar . On
the other hand,

κ(r)(X) = κ(X,X, . . . , X)
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with r occurrences of X in the right-hand side. In particular, if S = ∑v∈V Av is a
sum of random variables, then

κ(r)(S) =
∑

v1,...,vr∈V
κ(Av1, Av2 , . . . , Avr ).

Definition 15.39 Let (Av)v∈V be a family of random variables defined on the same
probability space. A weighted graph G = (V ,E,wG) is a C-uniform weighted
dependency graph for (Av)v∈V if, for any multiset B = {v1, . . . , vr } of elements of
V , one has

∣∣κ(Av, v ∈ B)∣∣ ≤ C|B| ∑
T ∈ST(G[B])

w(T ).

Proposition 15.40 Let (Av)v∈V be a finite family of random variables with a C-
uniform weighted dependency graph G. Assume that G has N = |V | vertices, and
maximal weighted degree D − 1, that is:

∀v ∈ V,
∑
v′: v′ �=v

{v,v′}∈EG

wG({v, v′}) ≤ D − 1.

Then, for r ≥ 1,

∣∣∣∣∣κ
(r)

(∑
v∈V

Av

)∣∣∣∣∣ ≤ N r
r−2Dr−1 Cr.

Consider a sequence (Sn)n∈N, where each Sn writes as
∑
v∈Vn Av,n. Set Nn =

|Vn| and assume that, for each n, (Av)v∈Vn has C-uniform weighted dependency
graph of maximal degreeDn−1 (by assumption, C does not depend on n). Then the
sequence (Sn) admits uniform bounds on cumulants with parameters (Dn2 , Nn, C)
and the results of Sect. 15.4, in particular Corollary 15.29, apply.

Proof By multilinearity and definition of a uniform weighted dependency graph, we
have

∣∣∣∣∣κr
(∑
v∈V

Av

)∣∣∣∣∣ ≤ C
r
∑
v1,...,vr

∑
T ∈ST(G[v1,...,vr ])

w(T ). (15.7)

By possibly adding edges of weight 0, we may assume thatG[v1, . . . , vr ] is always
the complete graph Kr so that ST(G[v1, . . . , vr ]) 8 ST(Kr) as sets. The weight of
a tree T however depends on v1, · · · , vr , namely

w(T ) =
∏

{i,j}∈T
wG({vi, vj }),
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where wG({vi, vj }) is the weight of the edge {vi, vj } in G (or 1 if vi = vj ).
With this viewpoint, we can exchange the order of summation in (15.7). We claim

that the contribution of a fixed tree T ∈ ST(Kr) can then be bounded as follows:

∑
v1,...,vr

w(T ) =
∑
v1,...,vr

∏
{i,j}∈T

wG({vi, vj }) ≤ NDr−1. (15.8)

Let us prove this claim by induction on r . The case r = 1 is trivial. Up to renaming
the vertices of T , we may assume that r is a leaf of T so that T is obtained from a
spanning tree T̃ of Kr−1 by adding an edge {i0, r} for some i0 < r . Then

∑
v1,...,vr

∏
{i,j}∈T

wG({vi, vj })

=
∑

v1,...,vr−1

⎛
⎝ ∏

{i,j}∈T̃
wG({vi, vj })

⎞
⎠
⎡
⎣∑
vr∈V

wG({vi0, vr })
⎤
⎦ .

The expression in square brackets is by definition smaller thanD for all vi0 (the sum
for vr �= vi0 is smaller than D − 1 and the term for vr = vi0 is 1). By induction
hypothesis, the sum of the parenthesis is smaller than NDr−2. This concludes the
proof of (15.8) by induction. The lemma now follows immediately, since the number
of spanning trees of Kr is well known to be rr−2. ��
Remark 15.41 A classical dependency graph with a uniform bound A on all
variables Av can be seen as a C-uniform weighted dependency graph for C = 2A
(all edges have weight 1); see [21, Section 9.4]. In this case, Proposition 15.40
reduces to Theorem 15.33. The proof of Proposition 15.40 given here is a simple
adaptation of the second part of the proof of Theorem 15.33 (see [21, Chapter 9])
to the weighted context. The first, and probably the hardest part of the proof of
Theorem 15.33 consisted in showing that a classical dependency graph is indeed a
C-uniform weighted dependency graph.

Remark 15.42 In the case where the set V is a subset of Z
d and the weight

function only depends on the distance, the notion of uniform weighted depen-
dency graph coincides with the notion of strong cluster properties, proposed
by Duneau, Iagolnitzer and Souillard in [16]. These authors also observed that
this implies uniform bounds on cumulants when D is bounded, see [16, Eq.
(10)].

Remark 15.43 A weaker notion of weighted dependency graph, where the bound on
cumulant is not uniform on r , was recently introduced in [20]. This weaker notion
only enables to prove central limit theorem, without normality zone or speed of
convergence results. However, it seems to have a larger range of applications.
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15.5.3 Magnetization of the Ising Model

We consider here the nearest-neighbour Ising model on a finite subset � of Zd with
a quadratic potential, i.e. for a spin configuration σ in {−1,+1}�, its energy is given
by

H�
β,h(w) = −β

∑
i,j∈�

{i,j}∈E
Zd

σiσj − h
∑
i∈�
σi,

where EZd is the set of edges of the lattice Z
d and h and β are two real parameters

with β > 0. The probability μβ,h,�[σ ] of taking a configuration σ is then
proportional to exp(−H�

β,h(σ )).

We now want to make � grow to the whole lattice Z
d . It is well known that for

h �= 0 or β smaller than a critical value βc(d) (thus, at high temperature), there
is a unique limiting probability measure μβ,h on spin configurations on Z

d , see
e.g. [23, Theorem 3.41]. In the following, we take parameters (β, h) in this domain
of uniqueness and consider a random spin configuration σ , whose law is μβ,h.

In [17], Duneau et al. proved what they call the strong cluster properties for spins
in the Ising model for h �= 0 or sufficiently small β. Their result is actually more
general (it holds for other models than the Ising model) but for simplicity, we stick
to the Ising model here. Reformulated with the terminology of the present article,
we have:

Theorem 15.44 (Duneau et al. [17]) Fix the dimension d ≥ 1 and h �= 0, β > 0.

1. There exist C = C(d, β, h) and ε = ε(d, β, h) < 1 such that under the
probability measure μβ,h, the family {σi, i ∈ Z

d} has a C-uniform weighted
dependency graph G, where the weight of the edge {i, j} in G is ε‖i−j‖1 .

2. The same holds for h = 0 and β is sufficiently small (i.e. β < β1(d), for some
β1(d) depending on the dimension; this is sometimes referred to as the very high
temperature regime).

Note that the maximal weighted degree of this graph is a constant C′ <∞.
We now consider the magnetization in a finite box � defined asM� =∑i∈� σi .

We see M� as a sequence of random variables (indexed by the countably many
finite subsets of Zd ). Restricting the uniform weighted dependency graph above to
{σi, i ∈ �}, each M� is the sum of random variables with a C-uniform weighted
dependency graph and maximal weighted degree at most C′. Therefore, using
Proposition 15.40, we know that M|�| admits uniform bounds on cumulants with
parameters (C

′
2 , |�|, C). Moreover, since all spins are positively correlated by the

FKG inequality (see [23, Section 3.6]), we have, using translation invariance

Var(M�) ≥
∑
i∈�

Var(σi) = Var(σ0)|�|.
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Note that Var(σ0) is independent of �. With the notation of Sect. 15.4, this inequal-
ity ensures that σ̃� is bounded from below by a constant. Applying Corollary 15.29,
we get:

Proposition 15.45 Fix the dimension d ≥ 1 and parameters h �= 0, β > 0. The
exists a constant K = K(d, β, h) such that, for all subsets � of Zd , we have under
μβ,h

dKol

(
M� − E[M�]√

Var(M�)
, NR(0, 1)

)
≤ K√|�| .

The same holds for h = 0 and β sufficiently small (very high temperature).

Remark 15.46 In this remark, we discuss mod-Gaussian convergence in this setting.
Consider a sequence �n of subsets of Z

d , tending to Z
d in the Van Hove sense

(i.e. the sequence is increasing with union Z
d , and the size of the boundary of �n

is asymptotic negligible, compared to the size of �n itself). Then it is known from
[18, Lemma 5.7.1] that

lim
n→∞

1
|�| Var(M�) =

∑

k∈Zd
Cov(σ0, σk),

and the right-hand side has a finite value σ̃ 2(β, h) for parameters (β, h) for which
Theorem 15.44 applies. Similarly, we have

lim
n→∞

1
|�| κ

(3)(M�) =
∑

k,l∈Zd
κ(σ0, σk, σl) <∞.

We call ρ(β, h) this quantity, and denote L = ρ(β,h)

σ̃ 3(β,h)
. Let us then consider the

rescaled variables

Xn = M�n − E[M�n ]
(Var(M�n))1/3

.

From [21, Section 5] (with αn = Var(M�) and βn = 1), we know thatXn converges
in the complex mod-Gaussian sense with parameters tn = (Var(M�n))

1/3 and

limiting function ψ(z) = exp(Lz
3

6 ). This mod-Gaussian convergence takes place
on the whole complex plane. Using the results of [21], this implies a normality zone
for (M� − E[M�])/√Var(M�) of size o(|�|1/6), see Proposition 4.4.1 in loc. cit.;
and moderate deviation estimates at the edge of this normality zone, see Proposition
5.2.1.

Remark 15.47 For h = 0 and β > βc(d) (low temperature regime), there is no
weighted dependency graph as above. Indeed, this would imply the analyticity of
the partition function in terms of the magnetic field h, and the latter is known not to
be analytic at h = 0 for β > βc(d); see [42, Chapter 6, §5] for details.
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15.5.4 Functionals of Markov Chains

In this section, we consider a discrete time Markov chain (Mt)t≥0 on a finite state
space X, which is ergodic (irreducible and aperiodic) with invariant measure π . Its
transition matrix is denoted P . To simplify the discussion, we shall also assume that
the Markov chain is stationary, that is to say that the initial measure (i.e. the law of
M0) is π ; most results have easy corollaries for any initial measure, using the fast
mixing of such Markov chains.

Let us consider a sequence (ft )t≥0 of functions on X that is uniformly bounded
by a constant K . We set Yt = ft (Mt). We will show that {Yt }t∈N admits a uniform
weighted dependency graph. The proof roughly follows the one of [20, Section 10],
where it was proved that it has a (non-uniform) weighted dependency graph, taking
extra care of the dependence in the order r of the cumulant in the bounds. Instead
of working directly with classical (joint) cumulants, we start by giving a bound for
the so-called Boolean cumulants. Classical cumulants are then expressed in terms
of Boolean cumulants thanks to a formula of Saulis and Statulevičius [52, Lemma
1.1]; see also a recent article of Arizmendi et al. [2] (we warn the reader that, in [52],
Boolean cumulants are called centered moments).

Let Z1, . . . , Zr be random variables with finite moments defined on the same
probability space. By definition, their Boolean (joint) cumulant is

B(r)(Z1, . . . , Zr)

=
r−1∑
l=0

(−1)l
∑

1≤d1<···<dl≤r−1

E[Z1 · · ·Zd1 ]E[Zd1+1 · · ·Zd2 ] · · · E[Zdl+1 · · ·Zr ].

While not at first sight, this definition is quite similar to the definition of classical
(joint) cumulants, replacing the lattice of all set partitions by the lattice of interval
set partitions; see [2, Section 2] for details. Note however that, unlike classical
cumulants, Boolean cumulants are not symmetric functionals.

Proposition 15.48 Let r ≥ 1. With the above notation, there exists a constant θP
depending on P with the following property. For any integers t1 ≤ t2 ≤ · · · ≤ tr ,
we have

∣∣∣B(r)(Yt1, . . . , Ytr )
∣∣∣ ≤ M r−1

2 Kr (θP )
tr−t1 ,

whereM = |X|.
The proof of this bound relies on arguments due to Diaconis, Stroock and Fill,

see [15, 22]. We also refer to [52, Section 4.1] for an alternate approach. Given an
ergodic transition matrix P on X with invariant measure π , we denote P̃ the time
reversal of P , which is the stochastic matrix defined by the equation

P̃ (x, y) = π(y) P (y, x)

π(x)
.
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This new transition matrix is again ergodic, with stationary measure π . The
multiplicative reversiblization of P is the matrix M(P) = P P̃ . It is a stochastic
matrix, which is ergodic with stationary measure π , and with all its eigenvalues that
are real and belong to [0, 1]. Indeed, if D is the diagonal matrix D = diag(π), then
P̃ = D−1P tD, and

Spec(M(P )) = Spec
(
D1/2P P̃D−1/2

)

= Spec
(
(D1/2PD−1/2)(D−1/2P tD1/2)

)

= Spec
(
(D1/2PD−1/2)(D1/2PD−1/2)t

)
.

Thus, M(P) has the spectrum of a symmetric positive matrix, so it belongs to R+,
and in fact to [0, 1] sinceM(P) is also stochastic. We denote

(θP )
2 = max{|z| | z eigenvalue ofM(P), z �= 1}. (15.9)

Notice that if P is reversible, then P̃ = P andM(P) = P 2, so in this case

θP = max{|z| | z eigenvalue of P, z �= 1}.

In general, one can think of θP as the analogue of the second largest eigenvalue
for non-reversible transition matrices. The following result estimates the rate of
convergence of the Markov chain associated to P in terms of θ :

Theorem 15.49 (Fill [22]) For any x ∈ X,

∑
y∈X

|P t(x, y)− π(y)| ≤ (θP )
t

√
π(x)

;

∑
y∈X

|P t(x, y)− π(y)|√
π(y)

≤ √
M

(θP )
t

√
π(x)

whereM = |X|.
Proof For completeness, we reproduce here the discussion of [22, Section 2], which
relies on the following identity due to Mihail. If f is a function on X, we denote
Var(f ) its variance under the stationary probability measure π . We also introduce
the Dirichlet form

E (f, g) = 1

2

∑
x,y∈X

(f (x)− f (y))(g(x)− g(y)) π(x)M(P )(x, y).
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Then, for any function f ,

Var(f ) = Var(P̃ f )+ E (f, f ).

Indeed, one can assume w.l.o.g. that π(f ) = ∑x∈X π(x)f (x) = 0. If 〈f | g〉π =∑
x∈X π(x) f (x) g(x), then

E (f, f ) = 〈f | (id −M(P))f 〉π = 〈f | f 〉π − 〈f ∣∣ P P̃f 〉
π

= 〈f | f 〉π − 〈P̃ f ∣∣ P̃ f 〉
π
= Var(f )− Var(P̃ f )

since P̃ is the adjoint of P for the action on the left of functions and with respect to
the scalar product 〈· | ·〉π . Consider now a Markov chain (Xt )t∈N on X with arbitrary
initial distribution π0, and denote πt = π0P

t the distribution at time t . We introduce
the quantity

(χt )
2 =
∑
y∈X

(πt (y)− π(y))2
π(y)

.

This is the variance of ft = πt
π

with respect to the probability measure π . By
Mihail’s identity,

(χt+1)
2 = Var(ft+1) = Var(P̃ ft ) = Var(ft )− E (ft , ft ) = (χt )2 − E (ft , ft ).

By the minimax characterization of eigenvalues of symmetric positive matrices,

(θP )
2 = 1 − inf

{
E (f, f )

Var(f )
, f non-constant

}
.

Therefore, (χt+1)
2 ≤ (θP )2 (χt )2, and (χt )2 ≤ (θP )2t (χ0)

2 by induction on t . On
the other hand, the Cauchy-Schwarz inequality yields

∑
y∈X

|πt (y)− π(y)| ≤
√∑
y∈X

π(y)

√√√√∑
y∈X

(πt (y)− π(y))2
π(y)

= χt .

If we choose π0 = δx , we finally obtain:

∑
y∈X

|P t(x, y)− π(y)| ≤ (θP )t χ0 = (θP )t
√

1

π(x)
− 1 ≤ (θP )

t

√
π(x)

.
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Similarly,

∑
y∈X

|P t(x, y)− π(y)|√
π(y)

≤ √
M χt ≤

√
M (θP )

t χ0 ≤ √
M
(θP )

t

√
π(x)

.

Proof (Proposition 15.48) If f : X → R, denote Df = diag(f (x), x ∈ X). Then,
the Boolean cumulant has the following matrix expression:

B(r)(Yt1, . . . , Ytr ) = π Dft1 (P t2−t1 − 1π) · · · Dftr−1
(P tr−tr−1 − 1π)Dftr 1,

where 1 is the column vector with all its entries equal to 1; see [20, Lemma 10.1]. If
we expand this expression as a sum, and denote Qt = P t − 1π and δi = ti+1 − ti ,
then

B(r)(Yt1 , . . . , Ytr )

=
∑
x1,...,xr

π(x1) ft1(x1)Qt2−t1(x1, x2) ft2(x2) · · · Qtr−tr−1(xr−1, xr ) ftr (xr )

and we obtain

|B(r)(Yt1, . . . , Ytr )| ≤ Kr
∑
x1,...,xr

π(x1) |Qδ1(x1, x2)| · · · |Qδr−1(xr−1, xr )|

≤ Kr (θP )δr−1
∑

x1,...,xr−1

π(x1) |Qδ1(x1, x2)| · · · |Qδr−2(xr−2, xr−1)|√
π(xr−1)

...

≤ Kr M r−2
2 (θP )

tr−t1∑
x1

√
π(x1) ≤ KrM r−1

2 (θP )
tr−t1 .

Proposition 15.50 The family of random variables {Yt }t∈N admits a K
√
M-

uniform weighted dependency graph, where, for integers s < t , the weight between
Yt and Ys is 2(θP )t−s .

Proof A lemma of Saulis and Statulevičius [52, Lemma 1.1] expresses usual
cumulants in terms of Boolean cumulants:

κ(r)(Yt1, . . . , Ytr ) =
∑

π∈P([r])
(−1)|π |−1N(π)

∏
C∈π

B(|C|)(Ytj , j ∈ C). (15.10)

Here, the sum runs over set-partitions π of [r] := {1, . . . , r}; |π | is the number of
blocks of a set-partition π , the product runs over blocks C in π and B(|C|)(Ytj , j ∈
C) is the Boolean cumulant of the subfamily (Ytj ) indexed by integers j in the
block C, with the times ordered in increasing order (recall that the Boolean are not
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symmetric functionals). FinallyN(π) is a combinatorial factor that can be computed
as follows. For each block C of π , denote mC and MC its smallest and biggest
elements; then call nC the number of blocks C′ �= C such that mC is in the interval
[mC′ ;MC′ ]. We finally define N(π) = ∏C∈π;1/∈C nC . In other terms, N(π) counts
the functions g mapping each block C of π (except the one containing 1) to a block
g(C) �= C such that mC ∈ [mg(C);Mg(C)].

Let us make an observation. If π is a partition and k an integer such that each
block of π either contains only numbers smaller than or equal to k or only numbers
bigger than k (π is then said to be disconnected), then no function g as above exists
(there is no possible image for the block C containing k+ 1) and N(π) = 0. On the
other hand, for connected partitions π , we always have N(π) > 0, so that the sum
in (15.10) is in effect a sum over connected partitions.

Equation (15.10) and Proposition 15.48 imply the bound

∣∣∣κ(r)(Yt1, . . . , Ytr )
∣∣∣ ≤
(
K
√
M
)r ∑
π∈P([r])

N(π)
∏
C∈π
(θP )

tMC−tmC .

We would like to prove

∣∣∣κ(r)(Yt1, . . . , Ytr )
∣∣∣ ≤ 2r−1

(
K
√
M
)r ∑
T ∈ST(Kr )

w(T ),

where w(T ) = ∏{j,j ′}∈ET , j<j ′(θP )
tj ′−tj . Therefore it is sufficient for us to find an

injective mapping η from pairs (π, g) as above to edge-bicolored spanning trees T̃
such that

w
(
η(π, g)

) =
∏
C∈π
(θP )

tMC−tmC ; (15.11)

here, by convention, the weight w(T̃ ) of a colored tree is the weight w(T ) of its
uncolored version. In the following, we describe such a mapping, concluding the
proof of the proposition.

Let (π, g) be a pair of objects as above: π is a set-partition of [r] and g is function
mapping each block C of π (except the one containing 1) to a block g(C) �= C such
that mC ∈ [mg(C);Mg(C)]. For each block C of π , we consider the set

S(C) = C ∪ {mC′ , C′ ∈ g−1(C)}.

Let us call PC the path with vertex-set S(C), where the vertices are in increasing
order along the path. We also color in blue (resp. in red) edges of this path whose
extremity with smaller label is in C (resp. in {mC′ , C′ ∈ g−1(C)}).

As an example, take π = {C1, · · · , C6} with C1 = {1, 5, 10}, C2 = {2, 11},
C3 = {3, 9}, C4 = {4, 6, 13}, C5 = {7, 12}, C6 = {8}. As function g, we take
g(C2) = C1, g(C3) = C1, g(C4) = C2, g(C5) = C1 and g(C6) = C4. In this case,
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Fig. 15.11 Illustration of the construction η in the proof of Proposition 15.50: the path PCi and
their gluing η(π, g). For readers of a black-and-white printed version, red edges are thicker

we get S(C1) = {1, 2, 3, 5, 7, 10}, S(C2) = {2, 4, 11}, S(C4) = {4, 6, 8, 13} and
S(Ci) = Ci for i ∈ {3, 5, 6}. The associated bicolored paths are drawn in Fig. 15.11.

As in Fig. 15.11, we then take the union of the paths PCi , identifying vertices
with the same label (the minimum mC �= 1 of a block C appears in the path S(C)
and in the path S(g(C))). Doing that, we get an edge-bicolored graph that we call
η(π, g). Let us first check that η(π, g) is a tree. To this purpose, we order the blocks
C1, . . . , C|π | of π in increasing order of their minima (as done in the example).
Observe that this implies that g(Ci) = Cj for some j < i. We will prove by
induction that, for each i ≤ |π |, PC1 ∪ · · · ∪ PCi is a tree. The case i = 1 is trivial.
For i > 1, the graph PC1 ∪ · · · ∪PCi is obtained by gluing the path PCi on the graph
PC1 ∪ · · ·∪PCi−1 , identifyingmCi which appears in both. Since PC1 ∪ · · ·∪PCi−1 is
a tree by induction hypothesis, the resulting graph PC1 ∪ · · · ∪ PCi is a tree as well,
concluding the induction. Thus η(π, g) = PC1 ∪ · · · ∪ PC|π | is a tree.

The equality (15.11) is easy: since the edge set of η(π, g) is the union of the edge
sets of the PCi , we have

w
(
η(π, g)

) =
|π |∏
i=1

w(PCi ) =
|π |∏
i=1

(θP )
tMCi

−tmCi .

We finally need to prove that η is injective, i.e. that we can recover (π, g) from
η(π, g). We start by the following easy observation: in η(π, g), vertices with a red
incident edge going to a vertex with bigger label are exactly the vertices with a label
which is the minimum mC �= 1 of a block C of π . By construction, such vertices
have at most three incident edges, which are as follow:

(E1) as said above, a first one is red and goes to a vertex to bigger label;
(E2) a second one is either blue or red and goes to a vertex of lower label.
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(E3) possibly, a last one is blue and goes to a vertex to bigger label (there is such
an edge when mC is not alone in its block);

Indeed, in the construction, edges (E1) and (E2) comes from Sg(C) while
edge (E3) comes from SC . We split the vertex mC into two, keeping edges (E1)
and (E2) in the same component. Doing that for the |π | − 1 vertices mC �= 1, we
inverse the gluing step of the construction of η(π, g). It is then straightforward to
recover (π, g). ��
Theorem 15.51 Let (Xt )t∈N be an ergodic Markov chain on a finite state space X
of size M , and θP < 1 the constant associated by (15.9) with the transition matrix
P . We consider a sum Sn =∑n

t=1 ft (Xt ) with ‖ft‖∞ ≤ K . Then, for any r ≥ 1,

∣∣∣κ(r)(Sn)
∣∣∣ ≤ n rr−2

(
2

1 + θP
1 − θP

)r−1 (
K
√
M
)r
. (15.12)

As a consequence:

1. When Var(Sn)
n2/3 → +∞, we have

dKol

(
Sn − E[Sn]√

Var(Sn)
, NR(0, 1)

)
≤ 76.36

⎛
⎝ K

√
M√

Var(Sn)
n

⎞
⎠

3 (
1 + θP
1 − θP

)2 1√
n
,

and in particular, Sn−E[Sn]√
Var(Sn)

converges in law to a standard Gaussian.

2. This convergence in law happens as soon as Var(Sn)
nε

→ ∞ for some ε > 0.

Proof Combining Propositions 15.50 and 15.40, the sum Sn admits uniform bounds
on cumulants with parameters

Dn =
(

1 + 2
∞∑
t=1

(θP )
t

)
= 1 + θP

1 − θP ,

Nn = n and A = K
√
M . Observe that Dn is here independent of n. We can

apply Corollary 15.29 to get the first part of the theorem. The second follows from
Theorem 15.31. ��
Remark 15.52 A bound similar to Eq. (15.12) is given in [52, Theorem 4.19]. We
believe however that the proof given there is not correct. Indeed, the proof associates
with each partition π such thatN(π) �= 0 a sequence of number qj ; the authors then
claim that “obviously qj ≤ qj+1” (p. 93, after Eq. (4.53)). This is unfortunately not
the case as can be seen on the example of partitions given p. 81 in loc. cit.: for
this partition q3 = 3, while q4 = 2. As a consequence of this mistake, the authors
forget many partitions π when expressing classical cumulants in terms of Boolean
cumulants (since they encode partitions with only non-decreasing sequences qi),
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which make the resulting bound on classical cumulants too sharp. We have not found
a simpler way around this error than the use of uniform weighted dependency graphs
presented here. Note nevertheless that our proof still uses several ingredients from
[52]: the use of Boolean cumulants and the relation between Boolean and classical
cumulants.

Remark 15.53 If the functions ft are indicators ft (x) = 1x=st , then one can remove
the size (

√
M)3 in the bound on the Kolmogorov distance. Indeed, in this case, we

have

B(r)(Yt1, . . . , Ytr ) = π(s1)Qt2−t1(s1, s2)Qt3−t2(s2, s3) · · ·Qtr−tr−1(sr−1, sr ).

On the other hand, the individual terms of the matrixQt(x, y) can be bounded by

|Qt(x, y)| ≤
√
π(y)

π(x)
(θP )

t ,

by adapting the proof of Theorem 15.49. Therefore,

∣∣∣B(r)(Yt1, . . . , Ytr )
∣∣∣ ≤ (θP )tr−t1 π(s1)

√
π(s2)

π(s1)
· · ·
√
π(sr)

π(sr−1)

≤ (θP )tr−t1
√
π(s1)π(sr ) ≤ (θP )tr−t1 .

Thus, in this case, one has the bound of Theorem 15.51 without the factor (
√
M)3.

15.5.5 The Case of Linear Functionals of the Empirical
Measure

As a particular case of Theorem 15.51, one recovers the central limit theorem for
linear functionals of empirical measures of Markov chains, that are random variables

Yn = Sn − E[Sn]√
n

= 1√
n

n∑
t=1

(f (Xt )− π(f ))

with f : X → R fixed function (independent of the time t). Thus, assuming for
instance limn→∞ Var(Yn) = %2(f ) > 0, we have

dKol

(
Sn − E[Sn]√

Var(Sn)
, NR(0, 1)

)
≤ 77

(
‖f ‖∞

√
M

%(f )

)3 (
1 + θP
1 − θP

)2 1√
n

(15.13)
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for n large enough. We refer to [13, 26, 29, 33] and the references therein for the
general background of this Markovian CLT, and to [8, 40, 43] for estimates of
the Kolmogorov distance. It seems that we recover some results of [43] (see [49,
§2.1.3]), but we were not able to find and read this paper. In this last paragraph, we
discuss the problem of the variance Var(Yn), giving sufficient conditions, which are
simple to check on examples and ensure %2(f ) > 0. We also remark that, provided
that %2(f ) > 0, we can also prove complex mod-Gaussian convergence, which
implies a zone of normality result and moderate deviation estimates by [21].

Denote g = f − π(f ), which has expectation 0 under the stationary measure π .
By eventually replacing f with g, we can assume that f is centered. The variance
of Yn tends to

%2(f ) = E[(f (X0))
2] + 2

∞∑
t=1

E[f (X0) f (Xt )] < +∞,

see [13, Lemma 3.3]. If %2(f ) > 0, then Var(Sn)
n2/3 = n1/3 Var(Yn) → +∞ and

Theorem 15.51 applies. Unfortunately, one can easily construct non-trivial examples
with %2(f ) = 0. Thus, consider the Markov chain with three states and transition
matrix

P =
⎛
⎝

0 1 0
1/2 0 1/2
1 0 0

⎞
⎠ ;

it admits for invariant measure π(1) = π(2) = 2
5 and π(3) = 1

5 . Set f (1) = 1,
f (2) = −1 and f (3) = 0; one has π(f ) = 0, and one computes

E[f (X0)f (Xk)] = 1

5

(
2 + i

(−1 − i)k
+ 2 − i

(−1 + i)k

)
.

It follows that %2(f ) = 0, although f is non zero.
In the general case of an ergodic Markov chain, fix an element a of the state

space X, and denote τa ≥ 1 the first hitting time of a by the Markov chain, which
is almost surely finite and with expectation 1/π(a) when starting from a. Then, the
asymptotic variance %2(f ) can be rewritten as

%2(f ) = π(a) Ea
⎡
⎣
(
τa∑
k=1

g(Xk)

)2
⎤
⎦ ,

see [32, Chapter 4]. Therefore, a general condition in order to obtain the bound of
Eq. (15.13) is:
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Proposition 15.54 We have %2(f ) > 0 if and only if there exists a cycle
(x1, . . . , xn) in the graph of transitions of the Markov chain such that the sum∑n
i=1 g(xi) of the values of g = f − π(f ) along this cycle is non-zero. In this

case, the bound (15.13) holds.

The proposition explains readily why the irreducible aperiodic Markov chain

1 2

3

1

1/2

1/21

previously studied gives asymptotic variance 0 to the function f (1) = 1, f (2) = −1
and f (3) = 0: the minimal cycles of the chains are (1, 2) and (1, 2, 3), and the sum
of the values of f along these cycles is always 0.

Another simple criterion to apply Theorem 15.51 to linear functionals of the
empirical measure is:

Proposition 15.55 Suppose that the ergodic Markov chain is reversible:

π(x) P (x, y) = π(y) P (y, x)

for any x, y. Then, if f is a non-constant function,%2(f ) > 0 and the bound (15.13)
holds.

Proof To say that P is reversible is equivalent to the fact that P is a symmetric
operator of the Hilbert space L2( 1

π
). In particular, P has only real eigenvalues.

Besides, the restriction of the operator I + 2
∑∞
k=1 P

k to the space of functions
f with π(f ) = 0 is well defined, and it is an auto-adjoint operator on this space
with eigenvalues

1 + λ2

1 − λ2
, . . . ,

1 + λM
1 − λM ,

where λ2 ≥ λ3 ≥ · · · ≥ λM are the real eigenvalues of P different from 1. The
quantities above are all positive, and larger than 1−θP

1+θP (this value being obtained if
λM = −θP ). Therefore,

%2(f ) =
〈
f

∣∣∣∣∣

(
I + 2

∞∑
k=1

P k

)
f

〉

L2(π)

≥ 1 − θP
1 + θP π(f

2) > 0.
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We then obtain

dKol

(
Sn − E[Sn]√

Var(Sn)
, NR(0, 1)

)
≤ 77

(
‖g‖∞

√
M√

π(g2)

)3 (
1 + θP
1 − θP

)7
2 1√

n

for n large enough. ��
Remark 15.56 In this remark, we discuss mod-Gaussian convergence for linear
statistics of Markov chains. We use the above notation and assume that %2(f ) > 0.
Consider the third cumulant of Sn. One can easily prove that

ρ = 1

n
lim
n→∞ κ3(Sn) =

∑
j,k∈Z

κ(f (X0, Xj ,Xk)),

where (Xt )t∈Z is a bi-infinite stationary Markov chain with transition matrix P . (The
sum on the right-hand side is finite, as consequence of Proposition 15.50). Let us
call ρ this limit. We then consider the rescaled random variables

Xn =
(
Sn − E[Sn]
(Var(Sn))1/3

)

n∈N
.

As for the magnetization in the Ising model, from [21, Section 5] (with αn =
Var(Sn) and βn = 1), we know that Xn converges in the mod-Gaussian sense with

parameters tn = (Var(Sn))1/3 and limit ψ(z) = exp(Lz
3

6 ), with L = ρ

%3(f )
. Again,

this mod-Gaussian convergence takes place on the whole complex plane and implies
a normality zone for Sn/

√
Var(Sn) of size o(n1/6), see Proposition 4.4.1 in loc. cit.;

we also have moderate deviation estimates at the edge of this normality zone, see
Proposition 5.2.1. This mod-Gaussian convergence could also have been proved by
using an argument of the perturbation theory of linear operators, for which we refer
to [30]. Indeed, the Laplace transform of Xn writes explicitly as

E[ezXn ] = π (Pz,f )n 1,

where 1 is the column vector with all its entries equal to 1, π is the stationary
measure of the process, and Pz,f is the infinitesimal modification of the transition
matrix defined by

Pz,f (i, j) = P(i, j) e
z(f (j)−π(f ))
(Var(Sn))1/3 .

For z in a zone of control of size O(n1/3), one can give a series expansion of
the eigenvalues and eigenvectors of Pz,f , which allows one to recover the mod-
Gaussian convergence. The theory of cumulants and weighted dependency graphs
allows one to bypass these difficult analytic arguments.
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Chapter 16
Random Flows Defined by Markov Loops

Yves Le Jan

Abstract We review some properties of the random networks defined by Markov
loop ensembles and compute the distribution of random flows associated to them.

Keywords Free field · Markov loops · Networks · Flows

16.1 Introduction

We first present briefly the framework of our study, described in [2]. Consider a
graph G , i.e. a set of vertices X together with a set of non oriented edges E. We
assume it is connected, and that there is no loop-edges nor multiple edges. The set
of oriented edges, denoted Eo, is viewed as a subset of X2. An oriented edge (x, y)
is defined by the choice of an ordering in an edge {x, y}.

Given a graph G = (X,E), a set of non negative conductances Cx,y = Cy,x
indexed by the set of edges E and a non negative killing measure κ on the set of
vertices X, we can associate to them an energy (or Dirichlet form) E , which we will
assume to be positive definite, a transience assumption. For any function f on X,
we have:

E (f, f ) = 1

2

∑
x,y

Cx,y(f (x)− f (y))2 +
∑
x

κxf (x)
2.

There is a duality measure λ defined by λx = ∑y Cx,y + κx . Let Gx,y denote the
symmetric Green’s function associated with E . Its inverse equalsMλ − C withMλ
denoting the diagonal matrix defined by λ.
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The associated symmetric continuous time Markov process can be obtained from
the Markov chain defined by the transition matrix Pxy = Cx,y

λy
by adding independent

exponential holding times of mean 1 before each jump. If P is submarkovian, the
chain is absorbed at a cemetery point Δ. If X is finite, the transition matrix is
necessarily submarkovian.

We denote byμ the loop measure associated with this symmetric Markov process.
(see [2]).

The Poissonian loop ensemble Lα is the Poisson process of loops of intensity
αμ, constructed in such a way that the set of loops Lα increases with α. We denote
by L̂α the occupation field associated with Lα i.e. the total time spent in x by the
loops of Lα , normalized by λx .

The complex (respectively real) free field is the complex (real) Gaussian field on
X whose covariance function is 2G (G). We will denote it by ϕ (respectively ϕR).

It has been shown in [6] (see also [2]) that the fields L̂1 and 1
2ϕ

2 have the same

distribution. The same property holds for L̂ 1
2

and 1
2 (ϕ

R)2.

Given any oriented edge (x, y) of the graph, we denote by N(α)x,y the total number
of jumps made from x to y by the loops of Lα and for the non oriented edges, we set
N
(α)
{x,y} = N(αx,y+N(αy,x . Recall (see sections 2–3 and 2–4 in [2]) thatE(L̂α) = αGx,x

and E(N(α)x,y ) = αCx,yGx,y .

Recall finally the relation between ϕ and the pair of fields (L̂1, (N
(1)) given in

Remark 12 of [2], Chapter 6, and the relation between ϕR and the pair of fields

(L̂1, (N
( 1

2 ){} ) given in Remark 11:
For any complex matrix sx,y with finitely many non zero entries, all of modulus

less or equal to 1, and any finitely supported positive measure χ ,

E(
∏
x,y

s
N
(1)
x,y

x,y

∏
x

e−
∑
x χxL̂

x
1 ) = E(e 1

2

∑
x,y Cx,y (sx,y−1)ϕx ϕ̄y− 1

2

∑
χxφx φ̄x ). (16.1)

For any real symmetric matrix sx,y with finitely many non zero entries, all in
[0, 1), and any finitely supported positive measure χ ,

E(
∏
x,y

s
N
( 1

2 )
x,y

x,y

∏
x

e
−∑x χxL̂

x
1
2 ) = E(e 1

2

∑
x,y Cx,y (sx,y−1)ϕRx ϕ

R
y − 1

2

∑
χx(ϕ

R
x )

2
). (16.2)

Remarks

– A consequence of (16.1) is that for any set (xi, yi) of distinct oriented edges, and
any set zl of distinct vertices,

E(
∏
i

N
(1)
(xi ,yi )

∏
l

(N(1)zl + 1)) = E(
∏
i

1

2
C(xi ,yi )ϕxi ϕ̄yi

∏
l

1

2
λzlϕzl ϕ̄zl ).

(16.3)
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– In particular, if X is assumed to be finite, if [DN(1)](x,y) = 0 for x �= y and

[DN(1)](x,x) = 1 + N(1)x , for all χ � λ, then (cf. [3], with a minor correction
here), denoting by Per(G) the permanent of G:

E(det(MχDN(1) −N(1))) = 2−|X|E(det(Mϕ(Mχ − C)Mϕ̄))
= det(Mχ − C)E(

∏
x1,x2

ϕx1 ϕ̄x2)

= det(Mχ − C)Per(G).

– A consequence of (16.2) is that for any set {xi, yi} of distinct edges, and any set
zl of distinct vertices,

E(
∏
i

N
( 1

2 ){xi ,yi }
∏
l

(N
( 1

2 )
zl + 1)) = E(

∏
i

C(xi ,yi )ϕ
R

xi
ϕRyi

∏
l

1

2
λzl (ϕ

R

zl
)2). (16.4)

– In particular, if X is assumed to be finite, if [D
N
( 1

2 )
](x,y) = 0 for x �= y and

[D
N
( 1

2 )
](x,x) = 1 +N(

1
2 )
x , for all χ � λ, then

E(det(2MχD
N
( 1

2 )
−N(

1
2 ){} )) = E(det(MϕR(Mχ−C)MϕR)) = det(Mχ−C)Per(G).

Similar expressions can be given for the minors.
– Using (for example) Eqs. (16.3) and (16.4), we can study correlation decays. For

example, if (x, y) and (u, v) are non adjacent edges,

Cov(N(1)x,y, N
(1)
u,v) = E(: ϕxϕ̄y : : ϕuϕ̄v :) = Gx,vGy,u

– Note that a natural coupling of the free field with the loop ensemble of intensity
1
2μ has been given by Lupu [7], using the vertex occupation field and the partition
of X defined by the zeros of the edge occupation field.

– Most results are proved for finite graphs with non zero killing measure. Their
extension to infinite transient graphs can be done by considering the restriction
of the energy to functions vanishing outside a finite set D, i.e. the Markov chain
killed at the exit of D and letting D increase to X, so that the Green function of
the restriction, denoted GD , increases to G.
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16.2 Networks

We define a network to be a N-valued function defined on oriented edges of the
graph. It is given by a matrix k with N-valued coefficients which vanish on the
diagonal and on entries (x, y) such that {x, y} is not an edge of the graph. We say
that k is Eulerian if

∑
y

kx,y =
∑
y

ky,x .

For any Eulerian network k, we define kx to be
∑
y kx,y = ∑y ky,x . It is obvious

that the field N(α) defines a random network which verifies the Eulerian property.
Note that

∑
y N

(α)
{x,y} is always even. We call even networks the sets of numbers

attached to non oriented edges such that kx = 1

2

∑
y k{x,y} is an integer.

The cases α = 1 and α = 1

2
are of special interest. We need to recall the results

of [3] and [4] which can be deduced from Eqs. (16.1) and (16.2) (with a minor
correction here in (ii)):

Theorem 16.1

(i) For any Eulerian network k,

P(N(1) = k) = det(I − P)
∏
x kx !∏

x,y kx,y !
∏
x,y

P
kx,y
x,y .

(ii) For any Eulerian network k, and any nonnegative function ρ on X

P(N(1) = k , L̂1 ∈ (ρ, ρ + dρ))

= det(I − P)
∏
x,y

(
√
ρxCx,y

√
ρy)

kx,y

kx,y !
∏
x

λxe
−λxρx dρx

= 1

det (G)

∏
x,y

(
√
ρxCx,y

√
ρy)

kx,y

kx,y !
∏
x

e−λxρx dρx.

(iii) For any even network k,

P(N
( 1

2 ){} = k) = √det(I − P)
∏
x 2kx !∏

x 2kx kx !∏{x,y} k{x,y}!
∏
x,y

P
kx,y
x,y .
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(iv) For any even network k, and any nonnegative function ρ on X

P(N
( 1

2 ){} = k , L̂ 1
2
∈ (ρ, ρ + dρ))

= √det(I − P)
∏
{x,y}

(
√
ρxCx,y

√
ρy)

k{x,y}

k{x,y}!
∏
x

√
λx√

2πρx
e−λxρx dρx

= 1√
det(G)

∏
{x,y}

(
√
ρxCx,y

√
ρy)

k{x,y}

k{x,y}!
∏
x

1√
2πρx

e−λxρx dρx.

Let us give the proof of (iv) which was not detailed in [4].
Denote by V the set of even networks. Note that on one hand, for any symmetric

matrix S

E(
∏
{x,y}

S
N
( 1

2 ){x,y}
x,y e

−∑x χxL̂
x
1
2 ) =

∑
k∈V

E(e
−∑x χxL̂

x
1
2 1
N
( 1

2 ){} =k
)
∏
{x,y}

S
k{x,y}
x,y .

On the other hand, from the previous lemma:

E(
∏
{x,y}

S

N
( 1

2 ){x,y}−
∑
x χxL̂

x
1
2

x,y ) = E(e
∑
x �=y( 1

2Cx,y(Sx,y−1)ϕRx ϕ
R
y )e−

1
2 (
∑
x(λx+χx)(ϕRx ))2)

= 1√
det(G)

∫
R|X|

e
− 1

2 (
∑
x(λx+χx)ux2−∑x �=y Cx,ySx,yuxuy)

×
∏
x

dux√
2π
.

Expanding the exponential of the double sum, and noting that only monomials with
even degree in each ux contribute to the integral, we get that this expression equals

1√
det(G)

∫
R|X|

e−
1
2

∑
x(λx+χx)u2

x

∑
n∈V

∏
{x,y}

1

n{x,y}!Cx,y(Sx,yuxuy)
n{x,y}

∏
x

dux√
2π.

It follows that for any functional F on R
|X|, E(

∏
x �=y S

N
(1)
x,y

x,y F (L̂1)) equals

1

det(G)

∫
R|X|

e−
1
2

∑
x(λx)u

2
x

∑
n∈V

∏
{x,y}

1

n{x,y}! (Cx,ySx,yuxuy)
n{x,y}F(

1

2
u2)
∏
x

dux√
2π
.
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We conclude the proof of the proposition by performing a change of variable
ρ = 1

2 r
2, letting F be an infinitesimal indicator function and by identifying the

coefficients of
∏

{x,y} S
n{x,y}
x,y . Then, (iii) follows by integration.

Remarks

– It follows from (iv) that the symmetrized N(
1
2 ) field conditioned by the vertex

occupation field is, as it was observed by Werner in [8], a random current model.
– These results can be extended to infinite transient graphs as follows: For (i)

given any finitely supported Eulerian network k and any bounded function F
on Eulerian networks:

E(F(N(1) + k))

= E(1{N(1)�k}F(N(1))
∏
x

(N
(1)
x − kx)!
N
(1)
x !

∏
x,y

N
(1)
x,y !

(N
(1)
x,y − kx,y)!

∏
x,y

P
−kx,y
x,y .

– This quasi invariance property can be used to prove the closability and express the
generator of some Dirichlet forms defined naturally on the space E of Eulerian
networks: If ν is a bounded measure and G a bounded function on E, the energy
of G can be defined as

∫
E((G(N(1) + k) − G(N(1)))2)ν(dk). They define

stationary processes on E, with invariant distribution given by the distribution
of N(1).

Similar quasi invariance properties and stationary processes can be derived
from (ii), (iii) and (iv).

Markov Property
From theorem 16.1 follows a Markov property which generalizes the reflection
positivity property proved in chapter 9 of [2]:

Theorem 16.2 Let X be the disjoint union of Xi, i = 1, 2 and Gi be the restriction
of G to Xi .

(i) Given the values of N(1)x,y and N(1)y,x for x ∈ X1 and y ∈ X2, the restrictions of
the fields (N(1), L̂1) to G1 and G2 are independent.

(ii) Given the values of N
( 1

2 ){x,y} for x ∈ X1 and y ∈ X2, the restrictions of the fields

(N
( 1

2 ){} , L̂ 1
2
) to G1 and G2 are independent.

In both cases, we can check on the expressions given in 16.1 (ii) and (iv) that
after fixing the values of the conditioning, the joint density function factorizes. See
[8] and also [1] in the context of non backtracking loops.

In the case α = 1, the Markov property of these fields is preserved if we modify
P by a factor of the form

∏
x e

−βΦx and a normalization constant, with Φx a non-

negative function of L̂ x
1 and of {N(1)x,y, N(1)y,x, y �= x}
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In the case α = 1
2 , the Markov property of these fields is preserved if we modify

P by a factor of the form
∏
x e

−βΦx and a normalization constant, with β > 0 and

Φx a non-negative function of L̂ x
1
2

and of {N(
1
2 ){x,y}, y �= x}

Remark An example of interest (considering the remark at the end of the next
section), in the case α = 1, is Φx = Rx := (N(1)x )2 −∑y(N

(1)
x,y)

2.

16.3 Random Flows

We say that a Eulerian network j is a flow if it defines an orientation on edges on
which it does not vanish, i.e., more precisely, iff jx,y jy,x = 0 for all edges {x, y}.
It is easy to check that the measure jx = ∑y jx,y is preserved by the Markovian

matrix q defined as follows: qxy = jx,y
jx

if jx > 0, qxy = δxy if jx = 0.

We can define the stochasticity of the flow at x to be Sx = j2
x −∑y j

2
x,y . If it

vanishes everywhere, the Markovian transition matrix is a permutation of X.
We can define the flow J (k) associated to a Eulerian network k by

J (k)x,y = 1{kx,y−ky,x>0}[kx,y − ky,x].

We now show that a simple expression of the joint distribution of the flow
J (N(1)) and the vertex occupation field L̂1 can be derived from Theorem 16.1.

Let C be the set of N-valued sets of conductances on G . For any flow h on G :

{J (N(1)) = h} =
⋃
c∈C

{
⋂

{x,y}∈E
{N(1)x,y = c{x,y} + hx,y, N(1)y,x = c{x,y} + hy,x}}.

From 16.1 (ii), it follows that:

P(J (N(1)) = h, L̂1 ∈ (ρ, ρ + dρ))

=
∑
k∈K

det(I − P)
∏
x,y

(
√
ρxCx,y

√
ρy)

kx,y+hx,y
(kx,y + hx,y)!

∏
x

λxe
−λxρx dρx .

Recall the definition of the modified Bessel function:

Iν(x) =
∞∑
m=0

1

m!Γ (ν +m+ 1)

(x
2

)2m+ν
.
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From this follows:

Theorem 16.3 For any flow h, setting h{x,y} = max(hx,y, hy,x)

P (J (N(1)) = h, L̂1 ∈ (ρ, ρ + dρ))
= det(I − P)

∏
{x,y}

Ih{x,y}(2
√
ρxCx,y

√
ρy)
∏
x

λxe
−λxρx dρx .

Remark Recall that we defined Rx := (N
(1)
x )

2 −∑y(N
(1)
x,y)

2. Note that R = 0

implies that the flow defined by N(1) has zero stochasticity (but the converse is
not true). Hence, as β increases to infinity, the probability modified by

∏
x e

−βRx
concentrates on the set of flows of null stochasticity (as it has positive P -probability).
These results, among others, were presented by the author in [5].
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Chapter 17
Brownian Winding Fields

Yves Le Jan

Abstract The purpose of the present note is to review and improve the convergence
of the renormalized winding fields introduced in Camia et al. (Nucl Phys B 902:483–
507, 2016) and van de Brug et al. (Electron J Probab 23(81):17, 2018).

Keywords Brownian loops · Windings

In the seminal work of Symanzik [10], Poisson ensembles of Brownian loops were
implicitly used. Since the work of Lawler and Werner [4] on “loop soups”, these
ensembles have also been the object of many investigations.

Windings of two dimensional random paths have been widely studied. Let
us mention the seminal work of Spitzer [9] for Brownian paths, and Schramm
[8] for SLE. The purpose of the present note is to review and improve the
convergence of the renormalized winding fields introduced in [1] and [11], using a
martingale convergence argument.The result is somewhat reminiscent of Gaussian
multiplicative chaos ([3]). In the context of Brownian loop ensembles, a different
type of renormalization was used to define the occupation field and its powers (see
chapter 10 in [5]). The method here is related to zeta renormalization used in [6, 7]
to study the homology of Brownian loops defined on manifolds.

We consider a bounded open subset of the plane, denoted D. We denote by DR
the disc of radius R centered at 0. For any point x in D, let jx be a uniformizing
map mapping D onto D1 and x to 0 and for δ < 1, by B(x, δ) the pullback of Dδ
in D.
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The σ -finite measure μ on the set of Brownian loops and the Poisson pro-
cess of Brownian loops are defined in the same way as Lawler and Werner
“loop soup” (cf [4]). More precisely, denoting by dA the area measure, μ =∫
x∈X
∫∞

0
1
t
M
x,x
t dt dA(x) where M

x,y
t denotes the distribution of the Brownian

bridge in D between x and y, multiplied by the heat kernel density pt(x, y).
For any positive α, the Poisson process of loops of intensity αμ is denoted Lα .

If U is an open subset of D, we denote by L U
α the set of loops in Lα contained

in U .
Almost surely, for a given x, the loops of Lα do not visit x. We denote by nx(l)

the winding number around 0 of the pullback of a loop l in Lα . As the Brownian
loops, as Brownian paths, have vanishing Lebesgue measure, nx(l) is defined almost
everywhere in x, almost surely.

Let β denote any [0, 2π)-valued function defined on D. Let h be any bounded
function with compact support in D. For any δ < 1, define

Wβx,δ,α
x =

∏

l∈Lα\L B(x,δ)
α

eiβxnx(l)

The winding fieldWβ,α(h) is defined as follows:

Theorem 17.1 For δn decreasing to zero,
∫
D
h(x)δ

−α a(βx)
n W

βx,δn,α
x dA(x) is a

martingale, with a(βx) = βx(2π−βx)
4π2 � 1

4 . For α < 4, it converges a.s. and in

Lp for all p � 1 towards a limit denotedWβ,α(h).

Remarks In contrast with Gaussian multiplicative chaos, moments of all order
are defined for any α < 4. The question of determining the behaviour of these
martingales for α � 4 seems open. As mentioned in [1], one may also investigate
the possibility of finding a characterization of the distribution of the winding field,
in terms of conformal field theory.

Proof For 0 < R � ∞, let MR,x,y
t denote the distribution of the Brownian bridge in

DR multiplied by the heat kernel density, μR the associated loop measure and L R
α

the corresponding loop ensemble. Up to time change (under which winding indices
are invariant), L 1

α is the image of Lα under any uniformizing map.

Lemma 17.1
∫
C
dA(z)P

∞,z,z
1 (n0 = k) = 1

2π2k2
��

This result was established in [2], with reference to [13]. Let us outline briefly its
proof, for the convenience of the reader:

In polar coordinates, a well known consequence of the skew-product decomposi-
tion of the Brownian bridge measure is that

∫
eiu n0(l)M

∞,z,z
1 (dl) =

∫
eiu
∫
l dθM

∞,z,z
1 (dl) = E(e− u2

2

∫ 1
0 ρ

2
s ds))q1(z, z)
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in which ρs denotes a Bessel(0) bridge from |z| to |z| and qt the Bessel(0) transition
kernels semigroup. It follows from Feynman-Kac formula and Bessel differential
equation that this expression equals e−|z|2I|u|(|z|)

As the Dirac measure at 2πn is the Fourier transform of e−i2πnu, we get that for
any r > 0

M
∞,r,r
1 (n0 = n) = 2e−r2

∫ ∞

0
I|u|(r) cos(2πnu)du

From this, as observed by Yor in [13], using the expression of the modified Bessel
function I|u| as a contour integral, we obtain that:

M
∞,r,r
1 (n0 = n)

= e−r2
∫ ∞

0
e−r2 cosh(t)

[
2n− 1

r2 + (2n− 1)2π2
− 2n+ 1

r2 + (2n+ 1)2π2

]
dt

Hence, integrating with respect to 2πrdr ,

∫
C

dA(z)M
∞,z,z
1 (n0 = n)

= π
∫ ∞

0

dt

1 + cosh(t)

[
2n− 1

r2 + (2n− 1)2π2 − 2n+ 1

r2 + (2n+ 1)2π2

]
dt.

As observed in [2], the final result follows from a residue calculation yielding
telescopic series.

Lemma 17.2 μR(l � Dδ, n0(l) = k) = 1
2π2k2 log(R

δ
).

To prove this lemma, we use the zeta regularisation method, which, in this
context, allows to introduce a T (l)s factor under μR , and let s decrease to zero.
(T (l) denoting the loop time length).
μR(l � Dδ, n0(l) = k) is the limit as s ↓ 0 of

∫
T (l)s1l�Dδ1n0(l)=k

μR(dl)

=
∫ ∞

0

∫
DR

M
R,z,z
t (n0 = k)dA(z)ts−1dt −

∫ ∞

0

∫
Dδ

M
δ,z,z
t (n0 = k)dA(z)ts−1dt

=
∫ ∞

0

∫
DR

M
R,z,z
t (n0 = k)dA(z)ts−1dt −

∫ ∞

0

∫
DR

M
R,z,z

t (R/δ)2
(n0 = k)dA(z)ts−1dt

= 1 − (δ/R)2s
s

∫ ∞

0

∫
DR

M
R,z,z
t (n0 = k)dA(z)sts−1dt

From Lemma 17.1, for η arbitrarily small, we can choose ε > 0 such that for u < ε,

| ∫
DR/u

M
R/u,z,z

1 (n0 = k)dA(z)− 1

2π2k2
| < η.
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Then 1−(δ/R)2s
s

∫ ε
0

∫
DR

M
R,z,z
t (n0 = k)dA(z)sts−1dt = 1−(δ/R)2s

s

∫ ε
0

∫
DR/t

M
R/t,z,z
t (n0 = k)dA(z)sts−1dt is arbitrarily close from

1

2π2k2
log(R

δ
) for ε and

s small enough.

To prove that 1−(δ/R)2s
s

∫∞
ε

∫
DR

M
R,z,z
t (n0 = k)dA(z)sts−1dt converges to zero

with s, note that
∫
DR

M
R
t (z, z)(n0 = k)dA(z) �

∫
DR
PRt (z, z)dA(z), denoting by

PRt (x, y) the heat kernel on the disc of radius R. It follows from Weyl asymptotics
that this trace can be bounded by Ce−λ0t t , λ0 denoting the ground state eigenvalue
on DR and C a positive constant. The result follows as the resulting gamma density
converges to zero on [ε,∞) and this concludes the proof of the second lemma. ��
Lemma 17.3 E(W

βx,δ,α
x ) = δα a(βx).

This result follows by bounded convergence from Lemma 17.2 and from the Fourier
series identity

∑∞
1

1
π2k2 (1 − cos(kβ)) = β(2π−β)

4π2 as

E(Wβx,δ,α
x ) = lim

N→∞E(
N∏

k=−N
eikβx |{l∈Lα l�B(x,δ),nx(l)=k}|)

= lim
N→∞E(

N∏
k=−N

eikβx |{l∈L 1
α l�Dδ,n0(l)=k}|)

= lim
N→∞ exp(α log(δ)

N∑
1

1

π2k2
(1 − cos(kβx)))

To complete the proof of the theorem, remark first that it follows from the
independence property of a Poisson point process that for δn decreasing to 0,

and for any x, W
βx,δn,α
x

E(W
βx ,δn,α
x )

= δ
−α a(βx)
n W

β,δn,α
x is a martingale with independent

multiplicative increments. We denote it by Zβx,αn,x . Hence, the martingale property
of the integral

∫
D
h(x)Zn,xdA(x) is obvious. To show the convergence, we need a

uniform bound on its L2p norm, for any integer p � 1.
Given 2p distinct points xl in a compact K ⊂ D supporting h, for δl,n <

δl,0 = sup({ε, B(xl, ε) ∩ B(xk, ε) = Ø for any k �= l}) decreasing to zero, all

B(xl, δl,0) are disjoint and the product
∏
l�2p δ

−α a(βxl )
l,n W

βxl ,δl,n,α
xl is a martingale.

Its expectation is bounded by
∏
l�2p δ

−α a(βxl )
l,0 .

For some multiplicative constant, c > 0 depending on the compact support K of
h, δl,0 � cmin{d(xl, xl′), l′ �= l} for all l � 2p. It follows in particular that

E(|
∫
D

h(x)Zβx,αn,x dA(x)|2) = E(
∫
D2
h(x)Zβx,αn,x h(y)Z

−βy,α
n,y dA(x)dA(y) � c2‖h‖2∞I
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with I = ∫ ∫
D2 d(x1, x2)

−α/2dA(x1)dA(x2), which proves the L2 and a.s. conver-
gence.

More generally, for any integer p > 1, the 2p-th moment E(| ∫
D
h(x)Zn,xdA

(x)|2p) is bounded by (c‖h‖∞)2p
∫ ∫

D2p

∏
l�2p minl′ �=l d(xl′ , xl)−α/4dA(x1) . . .

dA(x2p). To see this expression is finite for α < 4, we will consider only the case
p = 2 as the general proof is similar. The term with highest singularity comes
from the case where, up to a permutation, the smallest distances are d(x1, x2) and
d(x3, x4). Then the integral on that sector ofD4 can be bounded by (I )2. In the other
cases, i.e. when, up to a permutation, the smallest distances are d(x1, x2), d(x3, x1)

and d(x4, x1), or d(x1, x2), d(x3, x1) and d(x4, x2), the integral on the correspond-
ing sector can be bounded by C2 I , with C = supx∈K

∫
D
d(x, y)−α/4dA(y). ��

Remarks

(1) It can be shown that the martingales Zβx,αn,x do not converge, consequently,
Wβ,α(h) is a generalized field. The class of test functions h can actually be
extended to integrals of delta functions along a smooth curve segment if α < 4.

(2) It follows from theorem 7 in chapter 9 of [5] (see also the Markov property in
[12]) that the discrete analogue of Wβ,α verifies reflection positivity for α = 1,
2, or 3 in caseD is invariant under some reflection. This property should extend
to the Brownian case.

Acknowledgements I thank Federico Camia and Marci Lis for interesting discussions and the
referee for helpful remarks.
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Chapter 18
Recurrence and Transience
of Continuous-Time Open Quantum
Walks

Ivan Bardet, Hugo Bringuier, Yan Pautrat, and Clément Pellegrini

Abstract This paper is devoted to the study of continuous-time processes known
as continuous-time open quantum walks (CTOQW). A CTOQW represents the
evolution of a quantum particle constrained to move on a discrete graph, but which
also has internal degrees of freedom modeled by a state (in the quantum mechanical
sense). CTOQW contain as a special case continuous-time Markov chains on graphs.
Recurrence and transience of a vertex are an important notion in the study of
Markov chains, and it is known that all vertices must be of the same nature if
the Markov chain is irreducible. In the present paper we address the corresponding
result in the context of irreducible CTOQW. Because of the “quantum” internal
degrees of freedom, CTOQW exhibit non standard behavior, and the classification of
recurrence and transience properties obeys a “trichotomy” rather than the classical
dichotomy. Essential tools in this paper are the so-called “quantum trajectories”
which are jump stochastic differential equations which can be associated with
CTOQW.

18.1 Introduction

Open quantum walks (OQW) have been developed originally in [1, 2]. They are
natural quantum extensions of classical Markov chains and, in particular, any
classical discrete-time Markov chain on a finite or countable set can be obtained
as a particular case of OQW. Roughly speaking, OQW are random walks on a
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graph where, at each step, the walker jumps to the next position following a law
which depends on an internal degree of freedom, the latter describing a quantum-
mechanical state. From a physical point of view, OQW are simple models offering
different possibilities of applications (see [28, 29]). From a mathematical point of
view, their properties can been studied in analogy with those of classical Markov
chain. In particular, usual notions such as irreducibility, period, ergodicity, have
been investigated in [3, 8–10, 20]. For example, the notions of transience and
recurrence have been studied in [5], proper definitions of these notions have been
developed in this context and the analogues of transient or recurrent points have
been characterized. An interesting feature is that the internal degrees of freedom
introduce a source of memory which gives rise to a specific non-Markovian behavior.
Recall that, in the classical context (see [22]), an exact dichotomy exists for
irreducible Markov chains: a point is either recurrent or transient, and the nature
of a point can be characterized in terms of first return time, or in terms of number
of visits. In contrast, irreducible open quantum walks exhibit three possibilities
regarding the behavior of return time and number of visits. In this article, we study
the recurrence and transience, as well as their characterizations, for continuous-time
versions of OQW.

In the same way that open quantum walks are quantum extensions of discrete-
time Markov chains, there exist natural quantum extensions of continuous-time
Markov processes. One can point to two different types of continuous-time evolu-
tions with a structure akin to open quantum walks. The first (see [6]) is a natural
extension of classical Brownian motion and is called open quantum Brownian
motion; it is obtained by considering OQW in the limit where both time and space
are properly rescaled to continuous variables. The other type of such evolution (see
[25]) is an analogue of continuous-time Markov chains on a graph, is obtained by
rescaling time only, and is called continuous-time open quantum walks (CTOQW).
In this article we shall concentrate on the latter.

Roughly speaking CTOQW represents a continuous-time evolution on a graph
where a “walker” jumps from node to node at random times. The intensity of jumps
depends on the internal degrees of freedom; the latter are modified by the jump, but
also evolve continuously between jumps. In both cases the form of the intensity, as
well as the evolution of the internal degrees of freedom at jump times and between
them, can be justified from a quantum mechanical model.

As is well-known, in order to study a continuous-time Markov chain, it is
sufficient to study the value of the process at the jump times. Indeed, the time before
a jump depends exclusively on the location of the walker, and the destination of the
jump is independent of that time. As a consequence, the process restricted to the
sequence of jump times is a discrete-time Markov chain, and all the properties of
that discrete-time Markov chain such as irreducibility, period, transience, recurrence,
are transferred to the continuous-time process. This is not the case for OQW. In
particular, a CTOQW restricted to its jump times is not a (discrete-time) open
quantum walk. Therefore, the present study of recurrence and transience cannot
be directly derived from the results in [5]. Nevertheless, we can still adopt a similar
approach and, for instance, we study irreducibility of CTOQW in connection to that
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of quantum dynamical systems as in [11]. Note that general notions of recurrence
and transience are developed in [17] for general quantum Markov semigroups with
unbounded generators. The work elaborated in [17] is based on potential theory
and we explicit the connection between the notions of recurrence and transience of
CTOQW and those in [17]. Finally, as in the discrete case, we obtain a trichotomy,
in the sense that irreducible CTOQW can be classified into three different classes,
depending on the properties of the associated return time and number of visits.

The paper is structured as follows: in Sect. 18.2, we recall the definition of
continuous-time open quantum walks and in particular introduce useful classical
processes attached to CTOQW; Sect. 18.3 is devoted to the notion of irreducibility
for CTOQW; in Sect. 18.4, we address the question of recurrence and transience and
give the classification of CTOQW mentioned above.

18.2 Continuous Time Open Quantum Walks and Their
Associated Classical Processes

This section is devoted to the introduction of continuous-time open quantum walks
(CTOQW). In Sect. 18.2.1, we introduce CTOQW as a special instance of quantum
Markov semigroups (QMS) with generators preserving a certain block structure.
Section 18.2.2 is devoted to the exposition of the Dyson expansion associated with
a QMS, which will be a relevant tool in all remaining sections. It also allows us
to introduce the relevant probability space. Finally, in Sect. 18.2.3 we associate to
this stochastic process a Markov process called quantum trajectory which has an
additional physical interpretation, and which will be useful in its analysis.

18.2.1 Definition of Continuous-Time Open Quantum Walks

Let V denotes a set of vertices, which may be finite or countably infinite. CTOQW
are quantum analogues of continuous-time Markov semigroups acting on the set
L∞(V ) of bounded functions on V . They are associated with stochastic processes
evolving in the composite system

H =
⊕
i∈V

hi , (18.1)

where the hi are separable Hilbert spaces. This decomposition has the following
interpretation: the label i in V represents the position of a particle and, when the
particle is located at the vertex i ∈ V , its internal state is encoded in the space
hi (see below). Thus, in some sense, the space hi describes the internal degrees of
freedom of the particle when it is sitting at site i ∈ V . When hi does not depend on
i, that is if hi = h, for all i ∈ V , one has the identification H 8 h⊗ �2(V ) and then
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it is natural to write hi = h ⊗ |i〉 (we use here Dirac’s notation where the ket |i〉
represents the i-th vector in the canonical basis of �∞(V ), the bra 〈i| represents the
associated linear form, and |i〉〈j | represents the linear map ϕ �→ 〈j |ϕ〉 |i〉). We will
adopt the notation hi ⊗ |i〉 to denote hi in the general case (i.e. when hi depends on
i) to emphasize the position of the particle, using the identification hi ⊗C 8 hi . We
thus write:

H =
⊕
i∈V

hi ⊗ |i〉 . (18.2)

Last, we denote by I1(K) the two-sided ideal of trace-class operators on a given
Hilbert space K and by SK the space of density matrices on K , defined by:

SK = {ρ ∈ I1(K) | ρ∗ = ρ, ρ ≥ 0,Tr(ρ) = 1}.

A faithful density matrix is an invertible element of SK , which is therefore a trace-
class and positive-definite operator. Following quantum mechanical fashion, we will
use the word “state” interchangeably with “density matrix”.

We recall that a quantum Markov semigroup (QMS) on I1(K) is a semigroup
T := (Tt )t≥0 of completely positive maps on I1(K) that preserve the trace. The
QMS is said to be uniformly continuous if limt→0‖Tt − Id‖ = 0 for the operator
norm on B(K). It is then known (see [21]) that the semigroup (Tt )t≥0 has a
generator L = limt→∞(Tt−Id)/t which is a bounded operator on I1(K), called the
Lindbladian, and Lindblad’s theorem characterizes the structure of such generators.
One consequently has Tt = etL for all t ≥ 0, where the exponential is understood
as the limit of the norm-convergent series.

Continuous-time open quantum walks are particular instances of uniformly con-
tinuous QMS on I1(H), for which the Lindbladian has a specific form. To make this
more precise, we define the following set of block-diagonal density matrices of H :

D = {μ ∈ S(H) ; μ =
∑
i∈V
ρ(i)⊗ |i〉〈i|} .

In particular, for μ ∈ D with the above definition, one has ρ(i) ∈ I1(hi ),
ρ(i) ≥ 0 and

∑
i∈V Tr

(
ρ(i)
) = 1. In the sequel, we use the usual notations

[X, Y ] = XY − YX and {X, Y } = XY + YX, which stand respectively for the
commutator and anticommutator of two operators X, Y ∈ B(H).

Definition 18.1 Let H be a Hilbert space that admits a decomposition of the
form (18.1). A continuous-time open quantum walk is a uniformly continuous
quantum Markov semigroup on I1(H) such that its Lindbladian L can be written:

L : I1(H)→ I1(H)

μ �→ −i[H,μ] +
∑
i,j∈V

1i �=j
(
S
j
i μS

j∗
i − 1

2
{Sj∗i Sji , μ}

)
, (18.3)
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where H and (Sji )i,j are bounded operators on H that take the following form:

• H =∑i∈V Hi ⊗ |i〉〈i|, with Hi bounded self-adjoint operators on hi , i in V ;

• for every i �= j ∈ V , Sji is a bounded operator on H with support included in hi

and range included in hj , and such that the sum
∑
i,j∈V S

j∗
i S

j
i converges in the

strong sense. Consistently with our notation, we can write Sji = Rji ⊗ |j 〉〈i| for

bounded operators Rji ∈ B(hi , hj ).

We will say that the open quantum walk is semifinite if dim hi <∞ for all i ∈ V .

From now on we will use the convention that Sii = 0, Rii = 0 for any i ∈ V . As
one can immediately check, the Lindbladian L of a CTOQW preserves the set D.
More precisely, for μ =∑i∈V ρ(i)⊗ |i〉〈i| ∈ D, we have Tt (μ) =:∑i∈V ρt (i)⊗|i〉〈i| for all t ≥ 0, with

d

dt
ρt (i) = −i[Hi, ρt (i)] +

∑
j∈V

(
Rijρt (j)R

i∗
j − 1

2
{Rj∗i Rji , ρt (i)}

)
.

18.2.2 Dyson Expansion and Associated Probability Space

In this article, our main focus is on a stochastic process (Xt )t≥0 that informally
represents the position of a particle or walker constrained to move on V . In order
to rigorously define this process and its associated probability space, we need to
introduce the Dyson expansion associated with a CTOQW. In particular, this allows
to define a probability space on the possible trajectories of the walker. We will recall
the result for general QMS as we will use it in the next section. The application to
CTOQW is described shortly afterwards.

Let (Tt )t≥0 be a uniformly continuous QMS with Lindbladian L on I1(K) for
some separable Hilbert space K . By virtue of Lindblad’s Theorem [21], there exists
a bounded self-adjoint operator H ∈ B(K) and bounded operators Li on K (i ∈ I )
such that for all μ ∈ I1(K),

L(μ) = −i[H,μ] +
∑
i∈I

(
LiμL

∗
i −

1

2
{LiL∗

i , μ}
)
,

where I is a finite or countable set and where the series is strongly convergent. The
first step is to give an alternative form for the Lindbladian. First introduce

G := −iH − 1

2

∑
i∈I
L∗
i Li ,
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so that for any μ ∈ D,

L(μ) = Gμ+ μG∗ +
∑
i∈I
Li μL

∗
i . (18.4)

Remark that G + G∗ +∑i∈I L∗
i Li = 0 (the form described in (18.4) is actually

the general form of the generator of a QMS given by Lindblad [21]). The operator
−(G+G∗) is positive semidefinite and t �→ etG defines a one-parameter semigroup
of contractions on K by a trivial application of the Lumer–Phillips theorem (see e.g.
Corollary 3.17 in [14]). We are now ready to give the Dyson expansion of the QMS.

Proposition 18.1 Let (Tt )t≥0 be a QMS with Lindbladian L as given above. For
any initial density matrix μ ∈ SK , one has

Tt (μ) =
∞∑
n=0

∑
i1,...,in∈I

∫
0<t1<···<tn<t

ζt (ξ) μ ζt (ξ)
∗ dt1 · · · dtn , (18.5)

where ζt (ξ) = e(t−tn)G Lin · · · Li1 et1G for ξ = (i1, . . . , in; t1, . . . , tn).
We now turn to applying this to CTOQW. Due to the block decomposition of H

and of the Sij , one can write G =∑i∈V Gi ⊗ |i〉〈i|, where (recall that Rii = 0)

Gi = −iHi − 1

2

∑
j

R
j∗
i R

j
i , (18.6)

so that Gi +G∗
i = −∑j R

j∗
i R

j
i . From Proposition 18.1 we then get the following

expression for the Lindbladian: for all μ =∑i∈V ρ(i)⊗ |i〉〈i| in D,

L(μ) =
∑
i∈V

(
Giρ(i)+ ρ(i)G∗

i +
∑
j

Rij ρ(j) R
i∗
j

)
⊗ |i〉〈i| . (18.7)

Corollary 18.1 Let (Tt )t≥0 be a CTOQW with Lindbladian L given by (18.7). For
any initial density matrix μ ∈ D, one has

Tt (μ) =
∞∑
n=0

∑
i0,...,in∈V

∫
0<t1<···<tn<t

Tt (ξ) ρ(i0)Tt (ξ)
∗dt1 · · · dtn ⊗ |in〉〈in| ,

(18.8)

where, for ξ = (i0, . . . , in; t1, . . . , tn) with i0, . . . , in ∈ V n+1 and 0 < t1 < . . . <
tn,

Tt (ξ) := e(t−tk)Gik Rikik−1
e(tk−tk−1)Gik−1 · · · e(t2−t1)Gi1 Ri1i0 et1Gi0 . (18.9)
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if k is the largest element such that tk ≤ t .
Note the small discrepancy between ξ in (18.5) and ξ in (18.8): ξ contains an

additional index i0, which is due to the decomposition of μ.

Remark 18.1 Equation (18.5) is also called an unravelling of the QMS. It was first
introduced in [12, 30], with the heuristic interpretation of giving an expression for
Tt (μ) as the average, over all possible trajectories ξ = (i0, . . . , in; t1, . . . , tn), of
the evolution of μ “when it follows the trajectory ξ”. We will discuss connections
with an operational interpretation of Tt (ξ)ρ(i0)Tt (ξ)∗ in Sect. 18.2.4.

The decomposition described in (18.9) will allow us to give a rigorous definition
of the probability space associated with the evolution of the particle on V . The goal
is to introduce the probability measure Pμ that models the law of the position of
the particle, when the initial density matrix is μ ∈ D. The following is inspired by
[4, 7, 19].

First define the set of all possible trajectories up to time t ∈ [0,∞] as 1t :=
�
n∈N1

(n)
t , where 1(n)t is the set of trajectories on V up to time t comprising n jumps:

1
(n)
t := {ξ = (i0, . . . , in; t1, . . . , tn) ∈ V n+1 × R

n, 0 < t1 < · · · < tn < t} .

For t ∈ R+, the set 1(n)t is equipped with the σ -algebra %(t)t and with the measure
ν
(n)
t , which is induced by the map

In : (V n+1 × [0, t)n,P(V n+1)× B([0, t)n), δn+1 × 1
n!λn
) → (

1
(n)
t , %

(n)
t , ν

(n)
t

)
,

(i0, . . . , in; s1, . . . , sn) �→ (i0, . . . , in; smin, . . . , smax)

where δ is the counting measure on V , B([0, t)n) is the Borel σ -algebra on [0, t)n
and λn is the Lebesgue measure on B([0, t)n) for all n ≥ 0. These measures are σ -
finite and this allows us to apply Carathéodory’s extension Theorem. We first define
the σ -algebra%t := σ(%(t)t , n ∈ N) and the measure νt on1t such that νt = ν(n)t on
1
(n)
t . For a given μ =∑i∈V ρ(i)⊗ |i〉〈i| in D, one can then define the probability

measure P
t
μ on (1t ,%t ) such that, for all E ∈ %t ,

P
t
μ(E) :=

∫
E

Tr
(
Tt (ξ) μ Tt (ξ)

∗) dνt (ξ)

=
∞∑
n=0

∑
i0,...,in∈V

∫
0<t1<···<tn<t

1ξ∈E Tr
(
Tt (ξ)ρ(i0)Tt (ξ)

∗) dt1 · · · dtn ,

where ξ = (i0, . . . , in; t1, . . . , tn) and where Tt (ξ) is defined by Eq. (18.9). The
measure Ptμ is a probability measure as one can check that Ptμ(1t ) = Tr

(
etL(μ)

) =
1. The family of probability measures

(
P
t
μ

)
t≥0 is consistent, as (18.9) and (18.2.2)
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show that if E ∈ %t ,

P
t+s
μ (E) =

∞∑
n=0

∑
i0,...,in∈V

∫
0<t1<···<tn<t

1ξ∈E Tr
(
esL
(
Tt (ξ) ρ(i0) Tt (ξ)

∗)) dt1 · · · dtn

= P
t
μ(E)

for all t, s ≥ 0. Hence, Kolmogorov’s consistency Theorem allows us to extend
(Ptμ)t≥0 to a probability measure Pμ on (1∞, %∞) where %∞ = σ(%t , t ∈ R+).

In most of our discussions below we will specialize to the case where μ is of the
form μ = ρ ⊗ |i〉〈i|Q<2αii. In such a case, we denote by Pi,ρ the probability Pμ.

18.2.3 Quantum Trajectories Associated with CTOQW

Quantum trajectories are another convenient way to describe the distribution of
the process (Xt , ρt )t≥0 associated with the CTOQW. Actually, the combination
of quantum trajectories and of the Dyson expansion will be essential tools for
the main result of this article. Formally speaking, quantum trajectories model the
evolution of the state when a continuous measurement of the position of the particle
is performed. The state at time t can be described by a pair (Xt , ρt ) with Xt ∈ V
the position of the particle at time t (as recorded by the measuring device) and
ρt ∈ SH the density matrix describing the internal degrees of freedom, given by
the wave function collapse postulate and thus constrained to have support on hi
alone. The stochastic process (Xt , ρt )t≥0 is then a Markov process, and this will
allow us to use the standard machinery for such processes. However, their rigorous
description is less straightforward than the one for discrete-time OQW. It makes
use of stochastic differential equations driven by jump processes. We refer to [25]
for the justification of the below description and for the link between discrete and
continuous-time models. Remark that we denote by the same symbol the stochastic
process (Xt )t≥0 appearing in this and the previous section. This will be justified in
Remark 18.2.4 below.

In order to present the stochastic differential equation satisfied by the pair
(Xt , ρt )t≥0 we need a usual filtered probability space

(
�,F , (Ft )t≥0,P

)
, where we

consider independent Poisson point processes Ni,j , i, j ∈ V, i �= j on R
2 (again

we take Ni,i = 0 by convention). These Poisson point processes will govern the
jump from site i to site j on the graph V .

Definition 18.2 Let (Tt )t≥0 be a CTOQW with Lindbladian L of the form (18.3)
and let μ = ∑i∈V ρ(i) ⊗ |i〉〈i| be an initial density matrix in D. The quantum
trajectory describing the indirect measurement of the position of the CTOQW is the
Markov process (μt )t≥0 taking values in the set D such that

μ0 = ρ0 ⊗ |X0〉〈X0| ,
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where X0 and ρ0 are random with distribution

P

(
(X0, ρ0) =

(
i,

ρ(i)

Tr(ρ(i))

)) = Tr
(
ρ(i)
)

for all i ∈ V

and such that μt =: ρt ⊗ |Xt 〉〈Xt | satisfies for all t ≥ 0 the following stochastic
differential equation:

μt = μ0 +
∫ t

0
M(μs−) ds

+
∑
i,j

∫ t
0

∫
R

(
S
j
i μs− S

j∗
i

Tr(Sji μs−S
j∗
i )

− μs−
)
1

0<y<Tr(Sji μs−S
j∗
i )
Ni,j (dy, ds)

(18.10)

where

M(μ) = L(μ)−
∑
i,j

(
S
j
i μ S

j∗
i − μTr(Sji μ S

j∗
i )
)

so that for μ =∑i ρ(i)⊗ |i〉〈i| ∈ D,

M(μ) =
∑
i

(
Giρ(i)+ ρ(i)G∗

i − ρ(i)Tr
(
Giρ(i)+ ρ(i)G∗

i

))⊗ |i〉〈i| .

Remark 18.2 An interesting fact has been pointed out in [25]: continuous-time
classical Markov chains can be realized within this setup by considering hi = C

for all i ∈ V .

Let us briefly describe the evolution of the solution (μt )t≥0 of (18.10), and in
particular explain why μt is of the form ρt ⊗ |Xt 〉〈Xt |. Assume that X0 = i0 for
some i0 ∈ V and consider ρ0 a state on hi0 . Remark that for any state ρ on hi0 ,
M(ρ ⊗ |i0〉〈i0|) is of the form ρ′ ⊗ |i0〉〈i0|. We then consider the solution, for all
t ≥ 0, of

ηt = ρ0 +
∫ t

0

(
Gi0ηs + ηsG∗

i0
− ηsTr(Gi0ηs + ηsG∗

i0
)
)

ds .

We stress the fact that the solution of this equation takes its values in the set on
states of hi0 (this nontrivial fact is well-known in the theory of quantum trajectories,
see [24] for further details). Now let us define the first jump time. To this end we
introduce for j �= i0

T
j

1 = inf
{
t ≥ 0 ; Ni0,j ({u, y | 0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rji0ηuR

j
i0

∗
)
}) ≥ 1

}
.
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The random variables T j1 are nonatomic, and mutually independent. Therefore, if

we let T1 = infj �=i0{T j1 } then there exists a unique j ∈ V such that T j1 = T1. In
addition,

P
(
T1 ≤ ε) ≤

∑
j �=i0

P
(
T
j

1 ≤ ε)

=
∑
j �=i0
(1 − e

− ∫ ε0 Tr(Rji0
ηuR

j∗
i0
) du
)

≤
∑
j �=i0

∫ ε
0

Tr(Rji0ηuR
j∗
i0
) du

≤ ε
∑
j �=i0

‖Rj∗i0 R
j
i0
‖ (18.11)

where the sums are over all j in V with j �= i0. Now remark that our assumption
that
∑
i,j S

j∗
i S

j
i converges strongly implies that the sum

∑
j �=i ‖Rj∗i Rji ‖ is finite

for all i in V , so that Eq. (18.11) implies P(T1 > 0) = 1. On [0, T1] we then define
the solution (Xt , ρt )t≥0 as

(Xt , ρt ) = (i0, ηt ) for t ∈ [0, T1) and

(XT1 , ρT1) =
(
j,

R
j
i ηT1−R

j
i

∗

Tr(Rji ηT1−R
j
i

∗
)

)
if T1 = T j1 .

We then solve

ηt = ρT1 +
∫ t

0

(
Gjηs + ηsG∗

j − ηsTr(Gjηs + ηsG∗
j )
)

ds ,

and define a new jumping time T2 as above. By this procedure we define an
increasing sequence (Tn)n of jumping times. We show that T := limn Tn = +∞
almost surely: we introduce

Nt =
∑
i,j

( ∫ t∧T
0

∫
R

1
0<y<Tr(Sji μs−S

j∗
i )
Ni,j (dy, ds)

)

(the sum is over all i, j with i �= j ) which counts the number of jumps before t . In
particular NTp = p for all p ∈ N. Now from the properties of the Poisson processes
we have for all p ∈ N and all m ∈ N,

E(NTp∧m) ≤ E
(
Nm
) =
∑
i,j

E
( ∫ m∧T

0
Tr(Sji μs−S

j∗
i ) ds

) ≤ m
∑
i,j

‖Sj∗i Sji ‖ .
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Denoting C = ∑
i,j ‖Sj∗i Sji ‖ (which is finite) the inequality p P(Tp ≤ m) ≤

E(NTp∧m) implies

P(Tp ≤ m) ≤ m

p
C .

This implies that P(limp Tp ≤ m) = 0 for all m ∈ N so that limp Tp = +∞ almost
surely. Therefore, the above considerations define (Xt , ρt ) for all t ∈ R+.

18.2.4 Connection Between Dyson Expansion and Quantum
Trajectories

The connection between the process (Xt , ρt )t≥0 defined in this section and the
Dyson expansion has been deeply studied in the literature. We do not give all the
details of this construction and instead refer to [4, 7] for a complete and rigorous
justification. The main point is that the process (Xt , ρt )t≥0 defined in Sect. 18.2.3
can be constructed explicitly on the space (1∞, %∞,P), as we now detail.

Recall the interpretation of ξ = (i0, . . . , in; t1, . . . , tn) as the trajectory of a
particle, initially at i0 and jumping to ik at time tk . First, on (1∞, %∞,P) define
the random variable Ñ i,jt by

Ñ
i,j
t (ξ) = card

{
k = 0, . . . , n− 1 | tk+1 ≤ t and (ik, ik+1) = (i, j)

}

for ξ = (i0, . . . , in; t1, . . . , tn) as above. Now, let

X̃t (ξ) =
{
ik if tk ≤ t < tk+1

in if tn ≤ t.

ρ̃t (ξ) = Tt (ξ)ρ(i0) Tt (ξ)
∗

Tr(Tt (ξ)ρ(i0)Tt (ξ)∗)

(18.12)

(recall that Tt (ξ) is defined in (18.9)) and

μ̃t = ρ̃t ⊗ |X̃t 〉〈X̃t | .

Differentiating (18.12), one can show that the process (μ̃t )t≥0 satisfies

dμ̃t =M(μ̃t−) dt +
∑
i,j

( S
j
i μ̃s−S

j∗
i

Tr(Sji μ̃t−S
j∗
i )

− μ̃t−
)

dÑ i,j (t) . (18.13)
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It is proved in [4] that the processes

(Ñ
i,j
t )t≥0 and

( ∫ t
0

∫
R

1
0<y<Tr(Sji μs−S

j∗
i )
Ni,j (dy, ds)

)
t≥0

(for (μt )t≥0 and Ni,j defined in the previous section) have the same distribution.
Therefore, (μ̃t )t≥0 and (μt )t≥0 have the same distribution. For this reason, we
will denote the random variables η̃t , X̃t , ρ̃t by ηt , Xt , ρt , i.e. we identify the
random variables obtained by the construction in Sect. 18.2.3 and those defined
by (18.12). In addition, from expression (18.8) for Tt and (18.12) for ρt , Xt we
recover immediately that μt = ρt ⊗ |Xt 〉〈Xt | satisfies

Eμ0(μt ) = Tt (μ0)

where Eμ0 is the expectation with respect to the probability Pμ0 defined in
Sect. 18.2.2. This identity shows that the quantum Markov semigroup (Tt )t≥0
plays for the process (Xt , ρt )t≥0 the same role as the Markov semigroup in
the classical case. Because a notion of irreducibility is naturally associated
with such a semigroup (see [11] for the original definition and [16] for
general considerations on the irreducibility of Lindbladians), this will allow
us to associate a notion of irreducibility to a continuous-time open quantum
walk.

Now note that expressions (18.12) give an interpretation of Xt and ρt
in terms of quantum measurement. Indeed, one can see the operator Tt (ξ)
for ξ = (i0, . . . , in; t1, . . . , tn) (or, rather, the map ρ �→ Tt (ξ)ρTt (ξ)

∗) as
describing the effect of the trajectory where jumps (up to time t) occur at
times t1,. . . ,tn and i0,. . . ,in is the sequence of updated positions: as long as
the particle sits at ik ∈ V , the evolution of its internal degrees of freedom
is given by the semigroup of contraction (et Gik )t≥0 and, as the particle jumps

to ik+1, it undergoes an instantaneous transformation governed by Rik+1
ik

(this
Tt (ξ) is then the analogue for continuous-time OQW of the operator Lπ of
[9]). Therefore, the expression for ρt (ξ) in (18.12) encodes the effect of the
reduction postulate, or postulate of the collapse of the wave function, on the
state of a particle initially at i0 and with internal state ρ0. This rigorous connection
of the unravelling (18.9) to (indirect) measurement was first described in [4]
(see also [23, 24], as well as [13] for a connection to two-time measurement
statistics).

To summarize this section and the preceding one, we have defined a Markov
process (μt )t as μt = ρt ⊗ |Xt 〉〈Xt |, where Xt ∈ V and ρt ∈ ShXt

, of which the
law can be computed in two ways: either by the Dyson expansion of the CTOQW
as in (18.2.2) or by use of the stochastic differential equation (18.10).
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18.3 Irreducibility of Quantum Markov Semigroups

In this section, we state the equivalence between different notions of irreducibility
for general quantum Markov semigroup. Our main motivation is the fact that we
could not find a complete proof in the case of an infinite-dimensional Hilbert space,
as is required e.g. for CTOQW with infinite V . We then discuss irreducibility for
CTOQW.

Theorem 18.1 Let T := (Tt )t≥0 be a quantum Markov semigroup with Lindbla-
dian

L(μ) = Gμ+ μG∗ +
∑
i∈I
Li μL

∗
i . (18.14)

The following assertions are equivalent:

1. T is positivity improving: for all A ∈ I1(K) with A ≥ 0 and A �= 0, there exists
t > 0 such that etL(A) > 0.

2. For any ϕ ∈ K\{0}, the set C[L]ϕ is dense in K where C[L] is the set of
polynomials in etG for t > 0 and in Li for i ∈ I .

3. For any ϕ ∈ K\{0}, the set C[G,L]ϕ is dense in K where C[G,L] is the set of
polynomials in G and in Li for i ∈ I .

4. T is irreducible, i.e. there exists t > 0 such that Tt admits no non-trivial
projection P ∈ B(K) with Tt

(
PI1(K)P

) ⊂ PI1(K)P .

From now on, any quantum Markov semigroup which satisfies any one of the
equivalent statements of Theorem 18.1 is simply called irreducible.

Remark 18.3 Positivity improving maps are also called primitive. We therefore call
primitivity the property of being positivity improving. Remark also that one can
replace “there exists t > 0” by “for all t > 0” in assertions 1. and 4. above to get
another equivalent formulation of irreducibility and primitivity. This follows from
the observation that assertion 3. does not depend on t .

Proof We first prove the equivalence of 1. and 2. Note that 1. holds if and only if
for every ϕ0 �= 0, there exists t0 > 0 such that 〈ϕ, etL(|ϕ0〉〈ϕ0|)ϕ〉 > 0 for all ϕ �= 0.
Now remark that from Eq. (18.8),

〈ϕ, etL(|ϕ0〉〈ϕ0|)ϕ〉 =
∞∑
n=0

∑
i0,...,in∈I

∫
0<t1<···<tn<t

|〈ϕ, ζt (ξ)ϕ0〉|2 dt1 · · · dtn

(18.15)

where ξ = (i1, . . . , in; t1, . . . , tn). Assume 1. and fix ϕ0 �= 0. If for some
t ≥ 0, the left-hand side of (18.15) is positive for any ϕ �= 0, then for any
such ϕ �= 0 there exists ξ with 〈ϕ, ζt (ξ)ϕ0〉 �= 0. Since ζt (ξ)ϕ0 ∈ C[L]ϕ0 and
the latter is a vector space, this implies that C[L]ϕ0 is dense in K . Now assume
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2. and fix ϕ0 �= 0. Since C[L]ϕ0 is dense in K , for any ϕ �= 0 there exists
an element ψ = esn G Lin · · · Li1 es1Gϕ0 such that 〈ϕ,ψ〉 �= 0. However, for
t ≥ s1 + . . . + sn, ψ is of the form ζt (ξ)ϕ0 for some ξ = (i1, . . . , in; t1, . . . , tn).
By continuity of ζ in t1, . . . , tn, the right-hand side of (18.15) is positive and this
proves 1.

To prove the equivalence of 2. and 3., we use the fact that G = limt→0(etG −
Id)/t , which implies that for any ϕ ∈ K\{0},

C[G,L]ϕ ⊂ C[L]ϕ ⊂ C[L]ϕ .

Since etG = limn→∞
∑n
k=0 t

kGk/k!, for any ϕ ∈ K\{0} we also have

C[L]ϕ ⊂ C[G,L]ϕ ⊂ C[G,L]ϕ .

Therefore, for any ϕ ∈ K\{0},

C[L]ϕ is dense in K ⇔ C[G,L]ϕ is dense in K . (18.16)

That 1. implies 4. is obvious. It remains to prove that 4. implies 2. To
this end, suppose that T is irreducible. Let ϕ ∈ K\{0} and denote by P the
orthogonal projection on C[L]ϕ. The goal is to prove that P = Id. For all
ψ ∈ K\{0},

etL(P |ψ〉〈ψ |P) =
∞∑
n=0

∑
i0,...,in∈I

∫
0<t1<···<tn<t

ζt (ξ)P |ψ〉〈ψ |Pζt (ξ)∗dt1 · · · dtn

=
∞∑
n=0

∑
i0,...,in∈I

∫
0<t1<···<tn<t

|ζt (ξ)Pψ〉〈ζt (ξ)Pψ | dt1 · · · dtn ,

Since ζt (ξ) ∈ C[L] and Pψ ∈ C[L]ϕ, we have ζt (ξ)Pψ ∈ C[L]ϕ and
thus

Tt (P |ψ〉〈ψ |P) = P Tt (P |ψ〉〈ψ |P)P .

Since Tt is irreducible by assumption, P must be trivial. As it is non-zero, P = Id.
Since P is the orthogonal projection on C[L]ϕ, this shows that C[L]ϕ is dense
in K . ��
Remark 18.4 An immediate corollary of Theorem 18.1 is that a quantum Markov
semigroup T = (Tt )t is irreducible if and only if its adjoint T ∗ = (T ∗

t )t is
irreducible.

We now introduce the notion of irreducibility of a CTOQW, focusing on the
trajectorial formulation. Let T := (Tt )t≥0 be a CTOQW on a set V . For i, j in V
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and n ∈ N, we denote by Pn(i, j) the set of continuous-time trajectories going from
i to j in n jumps:

Pn(i, j) = {ξ = (i0, . . . , in; t1, . . . , tn) ∈ 1(n)∞ | i0 = i, in = j}

and we set P(i, j) = ∪n∈NPn(i, j). For any ξ = (i, . . . , j ; t1, . . . , tn) in P(i, j),
we recall that the operator Tt (ξ) from hi to hj is defined by

Tt (ξ) = e(t−tn)GinRjin−1
e(tn−tn−1)Gin−1 · · · e(t2−t1)Gi1Ri1i et1Gi .

The following proposition is a direct application of Theorem 18.1, and will
constitute our definition of irreducibility for continuous-time open quantum walks.
The criterion here is equivalent to any other formulation proposed in Theorem 18.1.

Proposition 18.2 A CTOQW with Lindbladian (18.3) is irreducible if and only if,
for every i and j in V , and for any ϕ in hi\{0}, the set

{
Tt (ξ) ϕ, t ≥ 0, ξ ∈ P(i, j)

}

is total in hj .

Remark 18.5 From Theorem 18.1, an equivalent condition of irreducibility
is that for every i and j in V and for any ϕ in hi\{0}, the set of all
G
kn
in
R
j
in−1
G
kn−1
in−1

· · · Gk1
i1
R
i1
i G

k0
i ϕ for any i0, i1, . . . , in with i0 = i and in = j ,

and any k0, . . . , kn in N0, is total in hj . This immediately implies that a CTOQW is
irreducible if, for every i and j in V and ϕ in hi\{0}, the set

{
R
in
in−1
. . . R

i1
i0
ϕ, i0, i1, . . . , in ∈ V, i0 = i, in = j, n ∈ N0

}
(18.17)

is total in hj . This is equivalent to saying that the completely positive map induced
by the off-diagonal terms of L (i.e. the map μ �→∑

i,j (R
i
j ⊗|i〉〈j |)μ(Rij ⊗|i〉〈j |)∗)

is irreducible as a (discrete-time) completely positive map (see [11, 15]). This of
course is true for continuous-time Markov chains, which are irreducible if the
discrete-time map induced by the off-diagonal terms is irreducible. In the case of
CTOQW, however, this is not true, as the next example shows.

Example 18.1 Consider the OQW with V = {1, 2} and h1 = h2 = C
2, and

Lindbladian defined by (18.7) with:

G1 = G2 = 1

2

(−1 2
−2 −1

)
, R2

1 = R1
2 =
(

0 1
1 0

)
.

One can easily check that
{
Tt (ξ) ϕ, t ≥ 0, ξ ∈ P(i, j)

} = hj for all i, j ∈ {1, 2}
and ϕ ∈ hi \ {0}, so that the CTOQW is irreducible, but the criterion in (18.17) in
terms of R2

1 and R1
2 is not satisfied.
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18.4 Transience and Recurrence of Irreducible CTOQW

In the classical theory of Markov chains on a finite or countable graph, an irreducible
Markov chain can be either transient or recurrent. Transience and recurrence issues
are central to the study of Markov chains and help describe the Markov chain’s
overall structure. In the case of CTOQW, transience and recurrence notions are made
more complicated by the fact that the process (Xt )t≥0 alone is not a Markov chain.

In the present section, we define the notion of recurrence and transience of a
vertex in our setup and prove a dichotomy similar to the classical case, based on the
average occupation time at a vertex. However, compared to the classical case, the
relationship between the occupation time and the first passage time at the vertex is
less straightforward. Recall that the first passage time at a given vertex i ∈ V is
defined as

τi = inf{t ≥ T1|Xt = i}

where T1 is defined in Sect. 18.2.3. Similarly the occupation time is given by

ni =
∫ ∞

0
1Xt=i dt .

In the discrete-time and irreducible case (Theorem 3.1. of [5]), the authors prove
that there exists a trichotomy rather than the classical dichotomy. We state a similar
result for continuous-time semifinite open quantum walks (we recall that an OQW
is semifinite if dim hi <∞ for all i ∈ V ).

Theorem 18.2 Consider a semifinite irreducible continuous-time open quantum
walk. Then we are in one (and only one) of the following situations:

1. For any i, j in V and ρ in Shi , one has Ei,ρ(nj ) = ∞ and Pi,ρ(τj <∞) = 1.
2. For any i, j in V and ρ in Shi , one has Ei,ρ(nj ) <∞ and Pi,ρ(τi <∞) < 1.
3. For any i, j in V and ρ in Shi , one has Ei,ρ(nj ) < ∞, but there exist i in V

and ρ, ρ′ in Shi (ρ necessarily non-faithful) such that Pi,ρ(τi < ∞) = 1 and
Pi,ρ′(τi <∞) < 1.

Note that in the sequel we only focus on the semifinite case. Recall that when
hi is one-dimensional for all i ∈ V , we recover classical continuous-time Markov
chains. In this case, the Markov chain falls in one of the first two categories of this
theorem; that is, the third category is a specifically quantum situation.

The rest of this section is dedicated to the proof of Theorem 18.2. More
precisely, in Sect. 18.4.1 we prove the dichotomy between infinite and finite average
occupation time. This allows us to define transience and recurrence of CTOQW. We
also give examples of CTOQW that fall in each of the three classes of Theorem 18.2.
In Sect. 18.4.2 we state technical results that give closed expressions for the
occupation time and the first passage time. Finally, the proof of Theorem 18.2 is
given in Sect. 18.4.3.
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18.4.1 Definition of Recurrence and Transience

We begin by proving that for an irreducible CTOQW, the average occupation time
Ei,ρ(nj ) of site j starting from site i is either finite for all i, j or infinite for all i, j .

Proposition 18.3 Consider a semifinite irreducible continuous-time open quantum
walk. Suppose furthermore that there exist i0, j0 ∈ V and ρ0 ∈ Shi0

such that
Ei0,ρ0(nj0) = ∞. Then, for all i, j ∈ V and ρ ∈ Shi one has Ei,ρ(nj ) = ∞.

Proof Fix i, j ∈ V and ρ ∈ Shi . Then one has

Ei,ρ(nj ) =
∫ ∞

0
Pi,ρ(Xt = j) dt =

∫ ∞

0
Tr
(
etL(ρ ⊗ |i〉〈i|)(Id ⊗ |j 〉〈j |)) dt .

By hypothesis, (Tt )t≥0 is irreducible and thus positivity improving by Theo-
rem 18.1; by Remark 18.4 the same is true of (T ∗

t )t≥0. Therefore, since for any
i ∈ V , hi is finite-dimensional, for any s > 0 there exist scalars α, β > 0 such that

esL(ρ ⊗ |i〉〈i|) ≥ α ρ0 ⊗ |i0〉〈i0| and esL
∗
(Id ⊗ |j 〉〈j |) ≥ β Id ⊗ |j0〉〈j0| .

We then have, fixing s > 0,

Ei,ρ(nj ) ≥
∫ ∞

2s
Tr
(
e(t−2s)L(esL(ρ ⊗ |i〉〈i|)) esL

∗
(Id ⊗ |j 〉〈j |)) dt

≥ αβ
∫ ∞

0
Tr
(
euL(ρ0 ⊗ |i0〉〈i0|)(Id ⊗ |j0〉〈j0|)

)
du

≥ αβ Ei0,ρ0(nj0) .

This concludes the proof. ��
This proposition leads to a natural definition of recurrent and transient vertices

of V :

Definition 18.3 For any continuous-time open quantum walk, we say that a vertex
i in V is:

• recurrent if for any ρ ∈ Shi , Ei,ρ(ni) = ∞;
• transient if there exists ρ ∈ Shi such that Ei,ρ(ni) <∞.

Thus, by Proposition 18.3, for an irreducible CTOQW, either all vertices are
recurrent, in which case we say that the CTOQW is recurrent; or all vertices are
transient, in which case we say that it is transient. Furthermore, in the transient case,
Ei,ρ(ni) <∞ for all ρ in Shi .

As already mentioned in the introduction, a general notion of recurrence and
transience of quantum dynamical semigroups has been defined by Fagnola and
Rebolledo in [17] (see also [18]). It is natural to wonder if this general notion
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reduces to ours in the case of CTOQW. When applied to the semigroup (Tt )t≥0,
the definition of recurrence in [17] (denoted FR-recurrence in [5]) is that for any
positive semidefinite operator A of B(H), the set

D(U(A)) = {ϕ =
∑
i∈V
ϕi ⊗ |i〉 s.t.

∫ ∞

0
〈ϕ,T ∗

s (A) ϕ〉 ds <∞} .

equals {0}. As we have

Ei,ρ(ni) =
∫ ∞

0
Tr
(
ρ T ∗

s (Idhi ⊗ |i〉〈i|)) ds ,

we see that our definition of recurrence for CTOQW is equivalent to the fact
that for any i ∈ V , D(U(Idhi ⊗ |i〉〈i|)) = {0}. Consequently, it is clear that
if the CTOQW is FR-recurrent, then it is recurrent in our sense. Conversely, if
the CTOQW is recurrent in our sense, then for any definite-positive A and any
ϕ =∑i∈V ϕi ⊗ |i〉, there exists i such that ϕi �= 0, and if the CTOQW is semifinite,
then A ≥ λiIdhi ⊗ |i〉〈i| for some λi > 0. We then have

∫ ∞

0
〈ϕ,T ∗

s (A) ϕ〉 ds ≥ λi Ei,|ϕi 〉〈ϕi |(ni) = +∞ .

By Theorem 2 of [17], the quantum dynamical semigroup (Tt )t≥0 is not transient,
and by Proposition 5 of the same reference, it must be recurrent if (Tt )t≥0 is
irreducible. Therefore, for irreducible semifinite CTOQW our notion of recurrence
and FR-recurrence are equivalent. We refer to [5] for a more complete discussion
of the different notions of recurrence that appear in the literature for OQW. Note
that the notion of FR-recurrence is more general since it encompasses the case of
unbounded generators (the approach of [17] derives from potential theory); here we
are essentially interested in semifinite CTOQW in order to have a clear trichotomy,
so that our Sji are automatically bounded.

We conclude this section by illustrating Theorem 18.2 with simple examples. The
n-th example below corresponds to the n-th situation in Theorem 18.2.

Example 18.2

1. For V = {0, 1} and h0 = h1 = C, consider the CTOQW characterized by the
following operators:

G0 = G1 = −1

2
, R1

0 = R0
1 = 1 .

Then the process (Xt )t≥0 is a classical continuous Markov chain on {0, 1},
where the walker jumps from one site to the other after an exponential time of
parameter 1.
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2. For V = Z and hi = C for all i ∈ Z, consider the CTOQW described by the
transition operators:

Gi = −1

2
, Ri+1

i =
√

3

2
, Ri−1

i = 1

2
for all i ∈ Z .

The process (Xt )t≥0 is a classical continuous Markov chain on Z where after an
exponential time of parameter 1, the walker jumps to the right with probability 3

4
or to the left with probability 1

4 .
3. Consider the CTOQW defined by V = N with h1 = C

2 and h0 = hi = C for
i ≥ 2, and

G0 = −1

2
, G1 = −1

2
I2 ,

R1
0 = 1√

5

(
2
1

)
, R0

1 = (0 1
)
, R2

1 = (1 0
)
, R1

2 = 1

2
√

2

(
1
1

)
,

Gi = −1

2
, Ri+1

i =
√

3

2
, Rii+1 = 1

2
for i ≥ 2 .

This is an example of positivity improving CTOQW where, for ρ =
(

0 0
0 1

)
, one

has P1,ρ(τ1 <∞) = 1 but Pi,ρ′(τi <∞) < 1 for any ρ′ �=
(

0 0
0 1

)
. This example

therefore exhibits “specifically quantum” behavior. It is inspired from [5].

18.4.2 Technical Results

Proposition 18.4 below is essential, as it expresses the probability of reaching a site
in finite time as the trace of the initial state, evolved by a certain operator.

Proposition 18.4 For any continuous-time open quantum walk, there exists a
completely positive linear operator Pi,j from I(hi ) to I(hj ) such that for every
i, j ∈ V and ρ ∈ Shi ,

Pi,ρ(τj <∞) = Tr
(
Pi,j (ρ)

)
.

Furthermore, the map Pi,j can be expressed by:

Pi,j (ρ) =
∞∑
n=0

∑
i1,...,in−1∈V \{j}
i0=i,in=j

∫
0<t1<...<tn<∞

R(ξ) ρ R(ξ)∗dt1 . . . dtn ,
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where ξ=(i0, . . . , in; t1, . . . , tn) and R(ξ)=Rinin−1
e(tn−tn−1)Gin−1R

in−1
in−2

. . . R
i1
i0

et1Gi0 .

Note that we do not require the hi to be finite-dimensional here.

Proof We have the trivial identity:

Pi,ρ(τj < t) =
∞∑
n=0

∑
i1,...,in−1∈V \{j}
i0=i,in=j

×
∫

0<t1<...<tn<t
Tr
(
e(t−tn)L

(
R(ξ) ρ R(ξ)∗ ⊗ |j 〉〈j |)) dt1 . . . dtn.

(18.18)

Then, since e(t−tn)L is trace preserving,

Pi,ρ(τj < t) =
∞∑
n=0

∑
i1,...,in−1∈V \{j}
i0=i,in=j

∫
0<t1<...<tn<t

Tr
(
R(ξ) ρ R(ξ)∗

)
dt1 . . . dtn ,

and since both sides of the identity are nondecreasing in t , taking the limit t → +∞
yields

Pi,ρ(τj <∞) =
∞∑
n=0

∑
i1,...,in−1∈V \{j}
i0=i,in=j

∫
0<t1<...<tn<∞

Tr
(
R(ξ) ρ R(ξ)∗

)
dt1 . . . dtn .

It remains to show that Pi,j is well defined. Let us denote by (Vn)n∈N an increasing
sequence of subsets of V such that |Vn| = min(n, |V |) and

⋃
n∈N Vn = V . For any

X ∈ I(hi )\{0} write the canonical decomposition X = X1 −X2 + iX3 − iX4 of X
as a linear combination of four nonnegative operators. We get

Tr
∣∣∣
N∑
n=0

∑
i1,...,in−1∈VN\{j}

i0=i,in=j

∫
0<t1<...<tn<N

R(ξ)X R(ξ)∗ dt1 . . . dtn
∣∣∣

≤
4∑
m=1

Tr
∣∣∣
N∑
n=0

∑
i1,...,in−1∈VN\{j}

i0=i,in=j

∫
0<t1<...<tn<N

R(ξ)Xm R(ξ)
∗ dt1 . . . dtn

∣∣∣

≤
4∑
m=1

TrXm ×
N∑
n=0

∑
i1,...,in−1∈VN\{j}

i0=i,in=j

∫
0<t1<...<tn<N

Tr
(
R(ξ)

Xm

Tr(Xm)
R(ξ)∗

)

× dt1 . . . dtn
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≤
4∑
m=1

TrXm × P
i,

Xm
Tr(Xm)

(τj < N)

≤
4∑
m=1

TrXm

≤ 2Tr |X|

(alternatively apply Theorem 5.17 in [31] to X1 −X2 and X3 −X4). Then

sup
N

Tr
∣∣∣
N∑
n=0

∑
i1,...,in−1∈VN\{j}

i0=i,in=j

∫
0<t1<...<tn<N

R(ξ)X R(ξ)∗ dt1 . . . dtn
∣∣∣ <∞ .

Consequently, by the Banach–Steinhaus Theorem, the operator on I(hi ) to I(hj )
defined by

Pi,j (X) =
∞∑
n=0

∑
i1,...,in−1∈V \{j}
i0=i,in=j

∫
0<t1<···<tn<∞

R(ξ)X R(ξ)∗ dt1 · · · dtn

is everywhere defined and bounded. ��
As a corollary, using the definition of the operator Pi,j for i, j ∈ V , we obtain a

useful expression for Ei,ρ(nj ):

Corollary 18.2 For every i, j ∈ V and ρ ∈ Shi , we have

Ei,ρ(nj ) =
∞∑
k=0

Tr
(
Pkj,j ◦Pi,j (ρ)

)
. (18.19)

Proof Let i, j ∈ V and ρ ∈ Shi . Then

Ei,ρ(nj ) =
∫ ∞

0
Pi,ρ(Xt = j) dt =

∫ ∞

0
Tr
(
etL(ρ ⊗ |i〉〈i|)(Id ⊗ |j 〉〈j |)) dt

= Tr
( ∞∑
n=0

n∑
k=0

∑
m1,...,mk∈N
m1<···<mk=n

∑
i1,...,im1−1,im1+1,...,imk−1 �=j
i0=i, im1=im2=···=imk=j

×
∫

0<t1<···<tn<t
ϒρϒ∗ dt1 · · · dtn dt

)
,
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where ϒ=Rinin−1
e(tn−tn−1)Gin−1R

in−1
in−2

· · ·Rim1+1

im1
e(tm1+1−tm1 )Gim1R

im1
im1−1

· · · Ri1i0 et1Gi0 .

The above expression corresponds to a decomposition of any path from i to j as a
concatenation of a path from i to j , and k paths from j to j which do not go through
j except at their start- and endpoints. This yields Eq. (18.19). ��

The next corollary allows us to link the quantity Pi,ρ(τj < ∞) to the adjoint of
the operator Pi,j . In particular, as we shall see, it is a first step towards linking the
properties of Pi,ρ(τj <∞) and Ei,ρ(nj ).

Corollary 18.3 Let i and j be in V . One has

Pi,ρ(τj <∞) = 1 ⇔ P∗
i,j (Id) =

(
Id 0
0 ∗
)

in the decomposition hi = Ran ρ ⊕ (Ran ρ)⊥.

In particular, if there exists a faithful ρ in Shi such that Pi,ρ(τj < ∞) = 1, then
one has Pi,ρ′(τj <∞) = 1 for any ρ′ in Shi .

Proof By Proposition 18.4, one has Pi,ρ(τj < ∞) = Tr
(
ρP∗

i,j (Id)
)
. Therefore,

if Pi,ρ(τj < ∞) = 1, then P∗
i,j (Id) has the following form in the decomposition

hi = Ran ρ ⊕ (Ran ρ)⊥:

P∗
i,j (Id) =

(
Id A
A B

)
.

Besides, the fact that Id ≥ P∗
i,j (Id) forces A to be null. In particular, if ρ is faithful,

then P∗
i,j (Id) = Id and therefore Pi,ρ′(τj <∞) = 1 for any ρ′ in Shi . ��

18.4.3 Proof of Theorem 18.2

Let i and j be in V . As we can see in Corollary 18.3, if we suppose that Pi,ρ(τj <
∞) = 1 for a faithful density matrix ρ, we necessarily have P∗

i,j (Id) = Id. This will
be used in the following proposition, which in turn explains the statement regarding
non-faithfulness in the third category of Theorem 18.2.

Proposition 18.5 Let i be in V . If there exists a faithful ρ in Shi such that Pi,ρ(τi <
∞) = 1, then one has Ei,ρ′(ni) = ∞ for any ρ′ in Shi .

Proof We set τ i1 = τi and, for all n > 1, we define τ (n)i as the time at which (Xt )t≥0
reaches i for the n-th time:

τ
(n)
i = inf{t > τ in−1|Xt = i and Xt− �= i} .
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From Corollary 18.3, one has Pi,ρ′(τi <∞) = 1 for all ρ′ in Shi . This implies that

for all n > 0, τ (n)i is Pi,ρ′ -almost finite for any ρ′ ∈ Shi . For n ≥ 0, let T in be the

occupation time in i between τ (n)i and τ (n+1)
i :

T in = inf{u > 0 |X
τ
(n)
i +u �= i}

with the convention that τ (0)i = 0. Since we have

Ei,ρ′(ni) ≥ Ei,ρ′
(∑
n≥1

T in
) ≥
∑
n≥1

inf
ρ̂∈Shi

Ei,ρ̂ (T
i
n) ,

it will be enough to obtain a lower bound for Ei,ρ̂ (T
i
n) which is uniform in n and in

ρ̂. To this end, we use the quantum trajectories defined in (18.10). We first compute
Pi,ρ̂ (T

i
n > t) for all t ≥ 0. To treat the case of n = 1 we consider the solution of

η
ρ̂
t = ρ̂ +

∫ t
0

(
Gi η

ρ̂
s + ηρ̂s G∗

i − ηρ̂s Tr(Gi η
ρ̂
s + ηρ̂s G∗

i )
)

ds . (18.20)

Using the independence of the Poisson processes Ni,j involved in (18.10) we get

Pi,ρ̂ (T
i
1 > t) = Pi,ρ̂

(
no jump has occurred before time t

)

= Pi,ρ̂

(
Ni,j
({
u, y | 0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rji η

ρ̂
uR

j
i

∗
)
}) = 0 ∀j �= i

)

=
∏
j �=i

Pi,ρ̂

(
Ni,j
({
u, y | 0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rji η

ρ̂
uR

j
i

∗
)
}) = 0

)

=
∏
j �=i

exp
(−
∫ t

0
Tr(Rji η

ρ̂
s R

j∗
i ) ds

)

= exp
( ∫ t

0
Tr
(
(Gi +G∗

i ) η
ρ̂
s

)
ds
)

(18.21)

where we used relation (18.6). Similarly, using the strong Markov property,

Pi,ρ̂ (T
i
n > t) = Ei,ρ̂ (1T in>t )

= Ei,ρ̂

(
E
i,ρ
(n)
i

(1T i1>t
)
)

where ρ(n)i := ρ
τ
(n)
i

= Ei,ρ̂

(
exp
( ∫ t

0
Tr
(
(Gi +G∗

i ) η
ρ
(n)
i
s

)
ds
))

≥ e−t‖Gi+G∗
i ‖∞ .
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Now, using the fact that Ei,ρ̂ (T
i
n) =

∫∞
0 Pi,ρ̂ (T

i
n > t) dt , this gives us the expected

lower bound:

Ei,ρ̂ (T
i
n) ≥

1

‖Gi +G∗
i ‖∞

.

This concludes the proof. ��
The next proposition is connected to the first point of Theorem 18.2.

Proposition 18.6 Consider a semifinite irreducible continuous-time open quantum
walk. If there exist i, j in V and ρ ∈ Shi such that Ei,ρ(nj ) = ∞, then one has
Pj,ρ′(τj <∞) = 1 for any ρ′ in Shj .

Proof By Proposition 18.2, there is no nontrivial invariant subspace of hj left
invariant by R(ξ) for all ξ ∈ P(j, j). Since any such ξ is a concatenation of paths
from j to j that remain in V \ {j} except for their start- and endpoints, there is
also no nontrivial projection Pj of hj such that Pj,j (PjI1(hj )Pj ) ⊂ PjI1(hj )Pj
(where Pj,j is the operator of Proposition 18.4). The latter is therefore a completely
positive irreducible map acting on the set of trace-class operators on hj . By the
Russo–Dye Theorem (see [26]), one has ‖Pj,j‖ = ‖P∗

j,j (Id)‖ ≤ 1, so that the
spectral radius λ of Pj,j satisfies λ ≤ 1. By the Perron–Frobenius Theorem of
Evans and Hoegh-Krøhn (see [15] or alternatively Theorem 3.1 in [27]), there exists
a faithful density matrix ρ′ on hj such that Pj,j (ρ′) = λρ′. If λ < 1, then by
Corollary 18.2 one has Ej,ρ′(nj ) < ∞, but then Proposition 18.3 contradicts our
running assumption that Ei,ρ(nj ) = ∞. Therefore λ = 1 and ρ′ is a faithful density
matrix such that Pj,ρ′(τj < ∞) = Tr

(
Pj,j (ρ

′)
) = Tr(ρ′) = 1. We then conclude

by Corollary 18.3. ��
Proposition 18.7 Consider a semifinite irreducible continuous-time open quantum
walk; if there exists i ∈ V such that for all ρ′ ∈ Shi one has Pi,ρ′(τi < ∞) = 1,
then Pi,ρ(τj <∞) = 1 for any j ∈ V and ρ ∈ Shi .

Proof Fix i and j in V . Observe first that, by irreducibility, for any ρ in Shi , there
exists

ξ = (i = i0, i1, . . . , in−1, in = j ; t1, . . . , tn)

such that Tr
(
R(ξ)ρR(ξ)∗

)
> 0. We denote by t (ξ) the element tn of ξ . Using the

continuity of Tr
(
R(ξ)ρR(ξ)∗

)
in ρ and the compactness of Shi , we obtain a finite

family ξ1, . . . , ξp, of paths, again going from i to j , such that

inf
ρ∈Shi

max
k=1,...,p

Tr
(
R(ξk)ρR(ξk)

∗) > 0 .
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Let δ > maxk=1,...,p t (ξk). By continuity of each Tr
(
R(ξi)ρR(ξi)

∗) in the underly-
ing jump times t1, . . . , tn and using expression (18.18), we have

α := inf
ρ∈Shi

Pi,ρ(τj ≤ δ) > 0 .

Now, if Pi,ρ(τi <∞) = 1 for all ρ in Shi , then the discussion in Sect. 18.2.3 implies
that almost-surely one can find an increasing sequence (τi,n)n of times with τi,n →
∞ and xτi,n = i. Choose a subsequence (τi,ϕ(n))n such that τi,ϕ(n) − τi,ϕ(n−1) > δ

for all n. Since never reaching j means in particular not reaching j between τi,ϕ(n)
and τi,ϕ(n+1) for n = 1, . . . , k, the Markov property of (Xt , ρt )t≥0 and the lower
bound τi,ϕ(n) − τi,ϕ(n−1) > δ imply that for all ρ ∈ Shi ,

Pi,ρ(τj = ∞) ≤ Pi,ρ

(∀n ∈ {0, . . . , k}, ∀t ∈ [τi,ϕ(n), τi,ϕ(n+1)] , Xt �= j
)

≤ ( sup
ρ∈hi

Pi,ρ(τj > δ)
)k

≤ (1 − α)k .

Since the above is true for all k, we have Pi,ρ(τj <∞) = 1. ��
Now we combine all the results of Sect. 18.4.2 to prove Theorem 18.2.

Proof (Proof of Theorem 18.2) Proposition 18.3 shows that either Ei,ρ(nj ) = ∞
for all i, j and ρ, or Ei,ρ(nj ) < ∞ for all i, j and ρ. Proposition 18.6 combined
with Proposition 18.7 shows that in the former case, Pi,ρ(τj < ∞) = 1 for all i, j
and ρ as well. Proposition 18.5 shows that, in the latter case, Pi,ρ(τj < ∞) = 1
may only occur for non-faithful ρ, and this concludes the proof. ��
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13. J. Dereziński, W. De Roeck, C. Maes, Fluctuations of quantum currents and unravelings of

master equations. J. Stat. Phys. 131(2), 341–356 (2008)
14. K.-J. Engel, R. Nagel, One-parameter Semigroups for Linear Evolution Equations. Graduate

Texts in Mathematics, vol. 194 (Springer, New York, 2000). With contributions by S. Brendle,
M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli
and R. Schnaubelt

15. D.E. Evans, R. Høegh-Krohn, Spectral properties of positive maps on C∗-algebras. J. Lond.
Math. Soc. (2) 17(2), 345–355 (1978)

16. F. Fagnola, R. Rebolledo, Subharmonic projections for a quantum Markov semigroup. J. Math.
Phys. 43(2), 1074–1082 (2002)

17. F. Fagnola, R. Rebolledo, Transience and recurrence of quantum Markov semigroups. Probab.
Theory Relat. Fields 126(2), 289–306 (2003)

18. F. Fagnola, R. Rebolledo, Notes on the qualitative behaviour of quantum Markov semigroups,
in Open Quantum Systems. III. Lecture Notes in Mathematics, vol. 1882 (Springer, Berlin,
2006), pp. 161–205
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Chapter 19
Explicit Speed of Convergence
of the Stochastic Billiard in a Convex Set

Ninon Fétique

Abstract In this paper, we are interested in the speed of convergence of the
stochastic billiard evolving in a convex set K . This process can be described as
follows: a particle moves at unit speed inside the set K until it hits the boundary,
and is randomly reflected, independently of its position and previous velocity. We
focus on convex sets in R

2 with a curvature bounded from above and below. We
give an explicit coupling for both the continuous-time process and the embedded
Markov chain of hitting points on the boundary, which leads to an explicit speed of
convergence to equilibrium.

19.1 Introduction

In this paper, our goal is to give explicit bounds on the speed of convergence of
a process, called “stochastic billiard”, towards its invariant measure, under some
assumptions that we will detail further. This process can be informally described as
follows: a particle moves at unit speed inside a domain until it hits the boundary.
At this time, the particle is reflected inside the domain according to a random
distribution on the unit sphere, independently on its position and previous velocity.

The stochastic billiard is a generalisation of shake-and-bake algorithm (see [1]),
in which the reflection law is the cosine law. In that case, it has been proved that the
Markov chain of hitting points on the boundary has a uniform stationary distribution.
In [1], the shake-and-bake algorithm is introduced for generating uniform points on
the boundary of bounded polyhedra. More generally, stochastic billiards can be used
for sampling from a bounded set or the boundary of such a set, through the Markov
Chain Monte Carlo algorithms. In that sense, it is therefore important to have an
idea of the speed of convergence of the process towards its invariant distribution.
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Stochastic billiards have been studied a lot, under different assumptions on the
domain in which it lives and on the reflection law. Let us mention some of these
works. In [5], Evans considers the stochastic billiard with uniform reflection law in
a bounded d-dimensional region with C1 boundary, and also in polygonal regions
in the plane. He proves first the exponentially fast total variation convergence of
the Markov chain, and moreover the uniform total variation Césaro convergence for
the continuous-time process. In [3], the authors only consider the stochastic billiard
Markov chain, in a bounded convex set with curvature bounded from above and
with a cosine distribution for the reflection law. They give a bound for the speed of
convergence of this chain towards its invariant measure, that is the uniform distri-
bution on the boundary of the set, in order to get a bound for the number of steps
of the Markov chain required to sample approximatively the uniform distribution.
Finally, let us mention the work of Comets, Popov, Schütz and Vachkovskaia [2], in
which some ideas have been picked and used in the present paper. They study the
convergence of the stochastic billiard and its associated Markov chain in a bounded
domain in R

d with a boundary locally Lipschitz and almost everywhere C1. They
consider the case of a reflection law which is absolutely continuous with respect
to the Haar measure on the unit sphere of R

d , and supported on the whole half-
sphere that points into the domain. They show the exponential ergodicity of the
Markov chain and the continuous-time process and also their Gaussian fluctuations.
The particular case of the cosine reflection law is discussed. Even if they do not
give speeds of convergence, their proofs could lead to explicit speeds if we write
them in particular cases (as for the stochastic billiard in a disc of R2 for instance).
However, as we will mention in Sect. 19.2.3, the speed of convergence obtained in
particular cases will not be relevant, since their proof is adapted to their very general
framework, and not for more particular and simple domains.

The goal of this paper is to give explicit bounds on the speed of convergence
of the stochastic billiard and its embedded Markov chain towards their invariant
measures. For that purpose, we are going to give an explicit coupling of which we
can estimate the coupling time.

In a first part, we study the particular case of the billiard in a disc. In that case,
everything is quite simple since all the quantities can be explicitly expressed.

Then, in a second part, we extend the results for the case of the stochastic billiard
in a compact convex set of R2 with curvature bounded from above and below. In that
case, we can no more do explicit computations on the quantities describing the pro-
cess, since we do not know exactly the geometry of the convex set. However, thanks
to the assumptions on the curvature, we are able to estimate the needed quantities.

In both cases, the disc and the convex set, we suppose that the reflection law has
a density function which is bounded from below by a strictly positive constant on a
part of the sphere. The speed of convergence will obviously depend on it. However,
for the convergence of the stochastic billiard process in a convex set, we will need
to suppose that the reflection law is supported on the whole half sphere that points
inside the domain.

At the end of this paper, we briefly discuss the extension of the results to higher
dimensions.
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19.1.1 Notations

We introduce some notations used in the paper:

• for A ⊂ R, 1A denotes the indicator function of the set A, that is 1A(x) is equal
to 1 if x ∈ A and 0 otherwise;

• for x ∈ R, !x" denotes the floor of the real x;
• for x, y ∈ R

2, we note by ‖x‖ the euclidean norm of x and we write 〈x, y〉 for
the scalar product of x and y;

• for A ⊂ R
2, ∂A denotes the boundary of the set A;

• Br denotes the closed ball of R
2 centred at the origin with radius r , i.e.

Br = {
x ∈ R

2 : ‖x‖≤ r}, and S
1 denotes the unit sphere of R

2, i.e. S1 ={
x ∈ R

2 : ‖x‖= 1
}
;

• for I ⊂ R, |I| denotes the Lebesgue measure of the set I;
• for K ⊂ R

2 a compact convex set, we consider the 1-dimensional Hausdorff
measure in R

2 restricted to ∂K . Therefore, ifA ⊂ ∂K , |A| denotes this Hausdorff
measure of A;

• forA ⊂ R
2, if x ∈ ∂A, we write nx the unitary normal vector of ∂A at x pointing

to the interior of A and we define Sx the set of vectors that point to the interior of
A: Sx = {v ∈ S

1 : 〈v, nx〉 ≥ 0
}
;

• if two random variables X and Y are equal in law we write X
L= Y , and we

write X ∼ μ to say that the random variable X has μ for law, or simply L(X) to
nominate the law of X;

• we denote by G(p) the geometric law with parameter p.

19.2 Coupling for the Stochastic Billiard

19.2.1 Generalities on Coupling

In order to describe the way we will prove the exponential convergences and obtain
bounds on the speeds of convergence, we first need to introduce some notions.

Let ν and
∼
ν be two probability measures on a measurable space E. We say that a

probability measure on E × E is a coupling of ν and
∼
ν if its marginals are ν and

∼
ν .

Denoting by !(ν,
∼
ν) the set of all the couplings of ν and

∼
ν , we say that two random

variables Y and
∼
Y satisfy (Y,

∼
Y) ∈ !(ν,∼ν) if ν and

∼
ν are the respective laws of Y

and
∼
Y . The total variation distance between these two probability measures is then

defined by

‖ν − ∼
ν‖T V= inf

(Y,
∼
Y)∈!(ν,∼ν)

P(Y �= ∼
Y ).
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For other equivalent definitions of the total variation distance and its properties, see
for instance [6].

Let (Yt )t≥0 and (Ỹt )t≥0 be two Markov processes. A coupling ((Yt , Ỹt ))t≥0 is
called a coalescent coupling if there exists an almost surely finite random time T ,

such that YT+s = ỸT+s for all s ≥ 0. In that case, Tc = inf
{
t ≥ 0 : Yt = Ỹt

}
is

called the coupling time of Y and Ỹ , and from the definition of the total variation
distance, it immediately follows that

‖L(Yt )−L(Ỹt )‖T V≤ P (Tc > t) .

Therefore, let T ∗ be a random variable stochastically bigger than Tc, Tc ≤st T ∗,
which means that P (Tc ≤ t) ≥ P (T ∗ ≤ t) for all t ≥ 0. If T ∗ has a finite
exponential moment, Markov’s inequality gives then, for any λ such that the Laplace
transform of T ∗ is well defined:

‖L(Yt )−L(Ỹt )‖T V≤ P
(
T ∗ > t

) ≤ e−λtE
[
eλT

∗]
.

Thus, if we manage to stochastically bound the coupling time of two stochastic
billiards by a random time whose Laplace transform can be estimated, we get an
exponential bound for the speed of convergence of the stochastic billiard towards its
invariant measure.

Let us now speak about maximal coupling, a result that we will use a lot in the
proofs of our main results. Let us consider μ and ν two probability distributions on
R
d with respective density functions f and g with respect to the Lebesgue measure.

Let us suppose that there exists a constant c > 0 and an interval I such that for
all x ∈ I , f (x) ≥ c and g(x) ≥ c. Then, there exists a coupling (X, Y ) (called a
maximal coupling) of μ and ν such that P (X = Y ) ≥ c|I |. For more details, see for
instance Section 4 of Chapter 1 of [7].

We end this part with a definition that we will use throughout this paper.

Definition 19.1 Let K ⊂ R
2 be a compact convex set.

We say that a pair of random variables (X, T ) living in ∂K×R
+ is α-continuous

on the set A× B ⊂ ∂K × R
+ if for any measurable A1 ⊂ A, B1 ⊂ B:

P (X ∈ A1, T ∈ B1) ≥ α|A1||B1|.

We can also adapt this definition for a single random variable.

19.2.2 Description of the Process

Let us now give a precise description of the stochastic billiard ((Xt , Vt ))t≥0 in a set
K .
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Fig. 19.1 A trajectory of the
stochastic billiard in a set K ,
starting in the interior of K

Kx0

XT0

v0

XT1

VT0

VT1

We assume that K ⊂ R
2 is a compact convex set with a boundary at least C1.

Let e = (1, 0) be the first coordinate vector of the canonical basis of R2. We
consider a law γ on the half-sphere Se = {v ∈ S

1 : e · v ≥ 0}. Let moreover
(Ux, x ∈ ∂K) be a family of rotations of S1 such that Uxe = nx , where we recall
that nx is the normal vector of ∂K at x pointing to the interior of K .

Let (ηn)n≥0 be a sequence of i.i.d. random variables on Se with law γ .
Given (x0, v0) ∈ K ×S

1, we consider the process ((Xt , Vt ))t≥0 living inK × S
1

constructed as follows (see Fig. 19.1):

• If x0 ∈ K \ ∂K , let (X0, V0) = (x0, v0) and let T0 = inf {t > 0 : x0 + tv0 /∈ K}.
For t ∈ [0, T0) let then Xt = x0 + tv0 and Vt = v0. Else, i.e. if x0 ∈ ∂K , let
T0 = 0.

• Let XT0 = x0 + T0v0, and VT0 = UX0η0.
• Let τ1 = inf{t > 0 : XT0 + tVT0 /∈ K} and define T1 = τ1 + T0. We put
Xt = XT0 + tVT0 , Vt = VT0 for t ∈ [T0, T1), and XT1 = XT0 + τ1VT0 .

Then, let VT1 = UXT1
η1.

• Let τ2 = inf{t > 0 : XT1 + tVT1 /∈ K} and define T2 = T1 + τ2. We put
Xt = XT1 + tVT1 , Vt = VT1 for t ∈ [T1, T2), and XT2 = XT1 + τ2VT1 .

Then, let VT2 = UXT2
η2.

• And we start again . . .

As mentioned in the introduction (XTn)n≥0 is a Markov chain living in ∂K and the
process ((Xt , Vt ))t≥0 is a Markov process living in K × S

1.
For x ∈ ∂K , it is equivalent to consider the new speed in Sx or to consider the

angle in
[−π

2 ,
π
2

]
between this vector speed and the normal vector nx . For n ≥ 1, we

thus denote by  n the random variable in
[−π

2 ,
π
2

]
such that rXTn , n(nXTn )

L= VTn ,
where for x ∈ ∂K and θ ∈ R, rx,θ denotes the rotation with center x and angle θ .

We make the following assumption on γ (see Fig. 19.2):

Assumption (H)

The law γ has a density function ρ with respect to the Haar measure on Se, which satisfies:
there exist J an open subset of Se, containing e and symmetric with respect to e, and
ρmin > 0 such that:

ρ(u) ≥ ρmin, for all u ∈ J .



524 N. Fétique

x

q* K
nx

Fig. 19.2 Illustration of Assumptions (H) and (H ′)

This assumption is equivalent to the following one on the variables ( n)n≥0:

Assumption (H ′)
The variables  n, n ≥ 0, have a density function f with respect to the Lebesgue measure
on
[− π

2 ,
π
2

]
satisfying: there exist fmin > 0 and θ∗ ∈ (0, π) such that:

f (θ) ≥ fmin, for all θ ∈
[
− θ

∗

2
,
θ∗

2

]
.

In fact, since these two assumptions are equivalent, we have

ρmin = fmin and |J |= θ∗.

In the sequel, we will use both descriptions of the speed vector depending on which
is the most suitable.

19.2.3 A Coupling for the Stochastic Billiard

Let us now informally describe the idea of the couplings used to explicit the speeds
of convergence of our processes to equilibrium. They will be explained explicitly in
Sects. 19.3 and 19.4.

To get a bound on the speed of convergence of the Markov chain recording the
location of hitting points on the boundary of the stochastic billiard, the strategy
is the following. We consider two stochastic billiard Markov chains with different
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initial conditions. We estimate the number of steps that they have to do before they
have a strictly positive probability to arrive on the same place at a same step. In
particular, it is sufficient to know the number of steps needed before the position of
each chain charges the half of the boundary of the set on which they evolve. Then,
their coupling time is stochastically smaller than a geometric time whose Laplace
transform is known.

The case of the continuous-time process is a bit more complicated. To couple
two stochastic billiards, it is not sufficient to make them cross in the interior of the
set where they live. Indeed, if they cross with a different speed, then they will not be
equal after. So the strategy is to make them arrive at the same place on the boundary
of the set at the same time, and then they can always keep the same velocity and
stay equal. We will do this in two steps. First, we will make the two processes hit
the boundary at the same time, but not necessarily at the same point. This will take
some random time, that we will be able to quantify. And secondly, with some strictly
positive probability, after two bounces, the two processes will have hit the boundary
at the same point at the same time. We repeat the scheme until the first success. This
leads us to a stochastic upper bound for the coupling time of two stochastic billiards.

Obviously, the way that we couple our processes is only one way to do that, and
there are many as we want. Let us for instance describe the coupling constructed in
[2]. Consider two stochastic billiard processes evolving in the set K with different
initial conditions. Their first step is to make the processes hit the boundary in the
neighbourhood of a good x1 ∈ ∂K . This can be done after n0 bounces, where n0 is
the minimum number of bounces needed to connect any two points of the boundary
of K . Once the two processes have succeeded, they are in the neighbourhood of x1,
but at different times. Then, the strategy used by the authors of [2] is to make the two
processes do round trips between the neighbourhood of x1 and the neighbourhood
of another good y1 ∈ ∂K . Thereby, if the point y1 is well chosen, the time difference
between the two processes decreases gradually, while the positions of the processes
stay the same after one round trip. However, the number of round trips needed
to compensate for the possibly big difference of times could be very high. This
particular coupling is therefore well adapted for sets whose boundary can be quite
“chaotic”, but not for convex sets with smooth boundary as we consider in this paper.

19.3 Stochastic Billiard in the Disc

In this section, we consider the particular case where K is a ball: K = Br , for some
fixed r > 0.

In that case, for each n ≥ 0, the couple (XTn, VTn) ∈ ∂Br×S
1 can be represented

by a couple (�n, n) ∈ [0, 2π)× [−π
2 ,
π
2

]
as follows (see Fig. 19.3):

• to a position x on ∂Br corresponds a unique angle φ ∈ [0, 2π). The variable
�n nominates this unique angle associated to XTn , i.e. (r,�n) are the polar
coordinates of XTn .



526 N. Fétique

Fig. 19.3 Definition of the
variables �n and  n in
bijection with the variables
XTn and VTn

XTn

VTn Φn
Θn

• at each speed VTn we associate the variable  n introduced in Sect. 19.2.2,
satisfying Assumption (H ′).

Remark that for all n ≥ 0, the random variable  n is independent of �k for all
k ∈ {0, · · · , n}. We also recall that the variables  n, n ≥ 0, are all independent.

In the sequel, we do not care about the congruence modulo 2π : it is implicit that
when we write �, we consider its representative in [0, 2π).

Let us state the following proposition that links the different random variables
together.

Proposition 19.1 For all n ≥ 1 we have:

τn = 2r cos( n−1) and �n = π + 2 n−1 +�n−1. (19.1)

Proof The relationships are immediate with geometric considerations. ��

19.3.1 The Embedded Markov Chain

In this section, the goal is to obtain a control of the speed of convergence of
the stochastic billiard Markov chain on the circle. For this purpose, we study the
distribution of the position of the Markov chain at each step.

Let �0 = φ0 ∈ [0, 2π).
Proposition 19.2 Let (�n)n≥0 be the stochastic billiard Markov chain evolving on
∂Br , satisfying assumption (H ′). Let us denote by f�n the density function of �n,
for n ≥ 1.
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We have

f�1(u) ≥
fmin

2
, ∀u ∈ I1 = [π − θ∗ + φ0, π + θ∗ + φ0

]
.

Moreover, for all n ≥ 2, for all η2, · · · , ηn such that η2 ∈ (0, 2θ∗), and for k ∈
{2, · · · , n− 1}, ηk+1 ∈

(
0,min

{
2θ∗; kθ∗ −∑k

�=2 η�

})
, we have

f�n(u) ≥
(
fmin

2

)n n∏
k=2

ηk,

∀u ∈ In =
[
n(π − θ∗)+ φ0 +

n∑
k=2

ηk, n(π + θ∗)+ φ0 −
n∑
k=2

ηk

]
.

Proof Since the Markov chain is rotationally symmetric, we do the computations
with φ0 = 0.

• Case n = 1:
We have, thanks to (19.1), �1 = π + 2 0 + φ0 = π + 2 0. Thus, for any

measurable bounded function g, we get:

E [g(�1)] = E [g (π + 2 0)] =
∫ π

2

− π
2

g (π + 2x) f (x)dx

≥ fmin

∫ θ∗
2

− θ∗
2

g (π + 2x) dx = fmin

2

∫ π+θ∗
π−θ∗

g(u)du.

We deduce:

f�1(u) ≥
fmin

2
, ∀u ∈ [π − θ∗, π + θ∗] .

• Induction: let us suppose that for some n ≥ 1, f�n(u) ≥ cn for all u ∈ [an, bn].
Then, using the relationship (19.1) and the independence between n and�n we
have, for any measurable bounded function g:

E [g(�n+1)] = E [g(π + 2 n +�n)]

≥ fmincn

∫ θ∗
2

− θ∗
2

∫ bn
an

g(π + 2θ + x)dxdθ.

Using the substitution u = π + 2θ + x in the integral with respect to x and
Fubini’s theorem, we have:

E [g(�n+1)] ≥ fmincn

∫ π+θ∗+bn
π−θ∗+an

(∫ θ∗
2

− θ∗
2

1 1
2 (u−π−bn)≤θ≤ 1

2 (u−π−an)dθ
)
g(u)du,



528 N. Fétique

and we deduce the following lower bound of the density function f�n+1 of�n+1:

f�n+1(u) ≥ fmincn

∣∣∣∣
[
−θ

∗

2
,
θ∗

2

]
∩
[

1

2
(u− π − bn) , 1

2
(u− π − an)

]∣∣∣∣ ,

for all u ∈ [π − θ∗ + an, π + θ∗ + bn
]
.

When u is equal to one extremal point of this interval, this lower bound

is equal to 0. However, let ηn+1 ∈
(

0,min
{

2θ∗; 1
2 (bn − an)

})
. Then the

intersection
[
− θ∗

2 ,
θ∗
2

]
∩
[

1
2 (u− π − bn) , 1

2 (u− π − an)
]

is non-empty, and

we have, for
u ∈ [π − θ∗ + an + ηn+1, π + θ∗ + bn − ηn+1

]
:

f�n+1(u) ≥ fmincn min
{
θ∗; ηn+1

2

}
= fmincn

ηn+1

2
.

The result follows immediately. ��
By choosing a constant sequence for the ηk , k ≥ 2 in the Proposition 19.2, we

immediately deduce:

Corollary 19.1 For all n ≥ 2, for all ε ∈ (0, θ∗), we have

f�n(u) ≥
(
fmin

2

)n
εn−1,

∀u ∈ Jn = [n(π − θ∗)+ φ0 + (n− 1)ε, n(π + θ∗)+ φ0 − (n− 1)ε
]
.

Let (Jn)n≥2 defined as in Corollary 19.1. We put J1 = I1 with I1 defined in
Proposition 19.2.

Theorem 19.1 Let (�n)n≥0 be the stochastic billiard Markov chain on the circle
∂Br , satisfying Assumption (H ′).

There exists a unique invariant probability measure ν on [0, 2π) for the Markov
chain (�n)n≥0, and we have:

1. if θ∗ > π
2 , for all n ≥ 0,

‖P (�n ∈ ·)− ν‖T V≤
(
1 − fmin(2θ

∗ − π))n−1
,

2. if θ∗ ≤ π
2 , for all n ≥ 0 and all ε ∈ (0, θ∗),

‖P (�n ∈ ·)− ν‖T V≤ (1 − α) nn0
−1
,

where

n0 =
⌊
π − 2ε

2(θ∗ − ε)
⌋
+ 1 and α =

(ε
2

)n0−1
fmin

n0
(
2n0θ

∗ − 2(n0 − 1)ε − π) .



19 Explicit Speed of Convergence of the Stochastic Billiard in a Convex Set 529

Proof The existence of the invariant measure is immediate thanks to the compact-
ness of ∂Br (see [4]). The following proof leads to its uniqueness and the speed of
convergence.

Let ((�n, n))n≥0 and ((�̃n,  ̃n))n≥0 be two versions of the process described
above, with initial positions φ0 and φ̃0 on ∂Br .

In order to couple �n and �̃n at some time n, it is sufficient to show that the
intervals Jn and J̃n corresponding to Corollary 19.1 have a non empty intersection.
Since these intervals are included in [0, 2π), a sufficient condition to have Jn ∩
J̃n �= ∅ is that the length of these two intervals is strictly bigger than π .

Let ε ∈ (0, θ∗). We have

|J1|= |J̃1|= 2θ∗,

and for n ≥ 2,

|Jn|= |J̃n|= 2nθ∗ − 2(n− 1)ε.

Therefore the length of Jn is a strictly increasing function of n (which is intuitively
clear).

• Case 1: θ∗ > π
2 . In that case we have |J1|= |J̃1|> π . Therefore we

can construct a coupling
(
�1, �̃1

)
(see the reminder on maximal coupling in

Sect. 19.2.1) such that we have, using Proposition 19.2:

P

(
�1 = �̃1

)
≥ fmin

2

∣∣∣J1 ∩ J̃1

∣∣∣

≥ fmin

2
2(2θ∗ − π)

= fmin(2θ
∗ − π).

• Case 2: θ∗ ≤ π
2 . Here we need more jumps before having a positive probability

to couple �n and �̃n. Let us thus define

n0 = min{n ≥ 2 : 2nθ∗ − 2(n− 1)ε > π} =
⌊
π − 2ε

2(θ∗ − ε)
⌋
+ 1.

Using the lower bound of the density function of �n0 obtained in Corollary 19.1,

we deduce that we can construct a coupling
(
�n0, �̃n0

)
such that:

P

(
�n0 = �̃n0

)
≥
(
fmin

2

)n0

εn0−1
∣∣∣Jn0 ∩ J̃n0

∣∣∣

≥
(
fmin

2

)n0

εn0−12
(
2n0θ

∗ − 2(n0 − 1)ε − π)

=
(ε

2

)n0−1
(fmin)

n0
(
2n0θ

∗ − 2(n0 − 1)ε − π) .
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To treat both cases together, let us define

m0 = 1θ∗>π2 +
(⌊

π − 2ε

2(θ∗ − ε)
⌋
+ 1

)
1θ∗≤ π

2
.

and

α = fmin(2θ
∗ −π)1θ∗>π2 +

(ε
2

)m0−1
(fmin)

m0
(
2m0θ

∗ − 2(m0 − 1)ε − π) 1θ∗≤ π
2
.

Since our processes (�n)n≥0 and (�̃n)n≥0 are Markovian processes, once they are
equal, we can let them equal afterwards. And then we get:

‖P (�n ∈ ·)− ν‖T V ≤ P

(
�n �= �̃n

)

≤ P

(
�! n

m0
"m0

�= �̃! n
m0

"m0

)

≤ (1 − α)! n
m0

"

≤ (1 − α) nm0
−1
.

19.3.2 The Continuous-Time Process

We assume here that the constant θ∗ introduced in Assumption (H ′) satisfies

θ∗ ∈
(

2π

3
, π

)
.

This condition on θ∗ is essential in the proof of Theorem 19.2 to couple our

processes with “two jumps”. However, if θ∗ ∈
(

0, 2π
3

]
we can adapt our method

(see Remark 19.2).

Notation We define a sequence (Sn)n≥0 of random times by

S0 = 0 and for n ≥ 1, Sn = Tn − T0.

By this way, we avoid the presence of the time T0 in the computations, and the law
of the random time Sn is the law of the instant of the nth bounce, when starting on
the boundary of Br . If T0 = 0, that is if the process starts on the boundary of Br ,
then (Sn)n≥0 = (Tn)n≥0.

We observe that thanks to the rotational symmetry of the process, for all

m, n, p ≥ 0 we have the following equality in law: Sn+m − Sm L= Sn L= Tn+p − Tp.
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Proposition 19.3 Let ((Xt , Vt ))t≥0 be the stochastic billiard process in the ball Br
satisfying Assumption (H ′) with θ∗ ∈

(
2π
3 , π

)
.

We denote by fS2 the density function of S2. Let η ∈
(

0, 2r
(

1 − cos
(
θ∗
2

)))
. We

have

fS2(x) ≥ δ for all x ∈ [4r cos

(
θ∗

2

)
+ η, 4r − η],

where

δ = 2f 2
min

r sin
(
θ∗
2

) min

{
θ∗

2
− arccos

(
cos

(
θ∗

2

)
+ η

2r

)
; arccos

(
1 − η

2r

)}
.

(19.2)

Proof If the density function f is supported on
[
− θ∗

2 ,
θ∗
2

]
, it is immediate to

observe that 4r cos
(
θ∗
2

)
≤ S2 ≤ 4r . But let us be more precise.

Let g : R → R be a bounded measurable function. Thanks to (19.1) we have
S2 = 2r (cos( 0)+ cos( 1)) with  0, 1 two independent random variables with
density function f . Therefore, using Assumption

(
H ′) we have:

E [g(S2)] = E [g (2r (cos( 0)+ cos( 1)))]

≥ f 2
min

∫ θ∗
2

− θ∗
2

∫ θ∗
2

− θ∗
2

g (2r (cos(u)+ cos(v))) dudv

= 4f 2
min

∫ θ∗
2

0

∫ θ∗
2

0
g (2r (cos(u)+ cos(v))) dudv.

The substitution x = 2r (cos(u)+ cos(v)) in the integral with respect to u gives
then:

E [g(S2)] ≥ 4f 2
min

∫ θ∗
2

0

∫ 2r(1+cos(v))

2r
(

cos
(
θ∗
2

)
+cos(v)

) g(x)
1

2r sin
(
arccos

(
x
2r − cos(v)

))dxdv.

Fubini’s theorem leads to

E [g(S2)]

≥ 2f 2
min

r

∫ 4r

4r cos
(
θ∗
2

)

⎛
⎝
∫ θ∗

2

0

1√
1 − ( x2r − cos(v)

)2 1 x
2r−1<cos(v)< x

2r−cos
(
θ∗
2

)dv

⎞
⎠ g(x)dx.
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We then deduce a lower-bound for the density function of S2:

fS2(x)

≥ 2f 2
min

r

∫ θ∗
2

0

1√
1 − ( x2r − cos(v)

)2 1 x
2r−1<cos(v)< x

2r−cos
(
θ∗
2

)dv1
x∈
(

4r cos
(
θ∗
2

)
,4r
).

Let x ∈
(

4r cos
(
θ∗
2

)
, 4r
)

. Cutting the interval
(

4r cos
(
θ∗
2

)
, 4r
)

at point

2r
(

1 + cos
(
θ∗
2

))
, we get, defining the intervals A1 =

(
4r cos

(
θ∗
2

)
,

2r
(

1 + cos
(
θ∗
2

))]
and A2 =

[
2r
(

1 + cos
(
θ∗
2

))
, 4r
)

:

fS2(x) ≥
2f 2

min

r

∫ θ∗
2

0

1√
1 − ( x2r − cos(v)

)2 1 x
2r−1<cos(v)< x

2r−cos
(
θ∗
2

)dv1x∈A1

+ 2f 2
min

r

∫ θ∗
2

0

1√
1 − ( x2r − cos(v)

)2 1 x
2r−1<cos(v)< x

2r−cos
(
θ∗
2

)dv1x∈A2

= 2f 2
min

r

∫ θ∗
2

arccos
(
x
2r−cos

(
θ∗
2

))
1√

1 − ( x2r − cos(v)
)2 dv1x∈A1

+ 2f 2
min

r

∫ arccos( x2r−1)

0

1√
1 − ( x2r − cos(v)

)2 dv1x∈A2 .

Then, for v ∈
(

arccos
(
x
2r − cos

(
θ∗
2

))
, θ

∗
2

)
we have cos(v) ≤ x

2r − cos
(
θ∗
2

)
, and

for
v ∈ (0, arccos

(
x
2r − 1

))
we have cos(v) ≤ 1. We thus have:

fS2(x) ≥
2f 2

min

r sin
(
θ∗
2

)
(
θ∗

2
− arccos

(
x

2r
− cos

(
θ∗

2

)))
1x∈A1

+ 2f 2
min

r

arccos
(
x
2r − 1

)
√
x
r

(
1 − x

4r

) 1x∈A2 .

We can observe that the lower bound of fS2 is strictly positive for x ∈(
4r cos

(
θ∗
2

)
, 4r
)

, but is equal to 0 when x is one of the extremal points of

this interval. Let us therefore introduce η ∈
(

0, 2r
(

1 − cos
(
θ∗
2

)))
. We have:
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• for x ∈ [4r cos
(
θ∗
2

)
+ η, 2r

(
1 + cos

(
θ∗
2

))
] we have

2f 2
min

r sin
(
θ∗
2

)
(
θ∗

2
− arccos

(
x

2r
− cos

(
θ∗

2

)))

≥ 2f 2
min

r sin
(
θ∗
2

)
⎛
⎝θ∗

2
− arccos

⎛
⎝4r cos

(
θ∗
2

)
+ η

2r
− cos

(
θ∗

2

)⎞
⎠
⎞
⎠

= 2f 2
min

r sin
(
θ∗
2

)
(
θ∗

2
− arccos

(
cos

(
θ∗

2

)
+ η

2r

))
;

• for x ∈
[
2r
(

1 + cos
(
θ∗
2

))
, 4r − η

]
we have

2f 2
min

r

arccos
(
x
2r − 1

)
√
x
r

(
1 − x

4r

) ≥ 2f 2
min

r

arccos
(

4r−η
2r − 1

)
√√√√ 2r

(
1+cos

(
θ∗
2

))

r

(
1 − 2r

(
1+cos

(
θ∗
2

))

4r

)

= 2f 2
min

r

arccos
(
1 − η

2r

)
√(

1 + cos
(
θ∗
2

)) (
1 − cos

(
θ∗
2

))

= 2f 2
min

r sin
(
θ∗
2

) arccos
(

1 − η

2r

)
.

The result follows then immediately. ��
Notation For x ∈ ∂Br , we denote by ϕx the unique angle in [0, 2π) describing the
position of x on ∂Br . Moreover, we write �xn for the position of the Markov chain
after n steps, and that started at position x on ∂Br .

Let us remark that thanks to the rotational symmetry of the process in the disc,
we do not have to take care of the starting position on ∂K when we look at the
inter-jump times.

Proposition 19.4 Let ((Xt , Vt ))t≥0 be the stochastic billiard process in Br satisfy-

ing Assumption (H ′) with θ∗ ∈
(

2π
3 , π

)
.

For all ε ∈
(

0, θ
∗

4

)
, the pair

(
�x2, S2

)
is

f 2
min

2r sin
(
θ∗
4

) -continuous on (ϕx − θ∗ +

4ε, ϕx + θ∗ − 4ε)×
(

4r cos
(
θ∗
4

)
, 4r cos

(
θ∗
4 − ε

))
for all x ∈ ∂Br .

Proof By symmetry of the process, it is sufficient to prove the lemma for x ∈ ∂Br
such that ϕx = 0, what we do.
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Let ε ∈
(

0, θ
∗

4

)
, A ⊂ (−θ∗ + 4ε, θ∗ − 4ε) and (r1, r2) ⊂

(
2r cos

(
θ∗
4

)
,

2r cos
(
θ∗
4 − ε

))
.

Let us recall that �0
2 = 2 0 + 2 1 and S2 = 2r(cos( 0) + cos( 1)), where

 0, 1 are independent variables with density function f . We thus have:

P

(
�0

2 ∈ A, S2 ∈ (r1, r2)
)

= P (2 0 + 2 1 ∈ A, 2r(cos( 0)+ cos( 1)) ∈ (r1, r2))

=
∫ π

2

− π
2

∫ π
2

− π
2

12u+2v∈A1
cos(u)+cos(v)∈

(
r1
2r ,

r2
2r

)f (u)f (v)dudv

≥ f 2
min

∫ θ∗
2

− θ∗
2

∫ θ∗
2

− θ∗
2

1 u+v
2 ∈A4 1

cos( u+v2 ) cos( u−v2 )∈
(
r1
4r ,

r2
4r

)dudv.

Let us consider

g : (u, v) ∈
[
−θ

∗

2
,
θ∗

2

]2

�−→
(
u+ v

2
,
u− v

2

)
.

We have

[
−θ

∗

4
,
θ∗

4

]2

⊂ g
([

−θ
∗

2
,
θ∗

2

]2
)
,

and

∣∣det Jacg
∣∣ = 1

2
.

With this substitution, and using Fubini’s theorem, we get:

P

(
�0

2 ∈ A, S2 ∈ (r1, r2)
)

≥ f 2
min

∫ θ∗
4

− θ∗
4

∫ θ∗
4

− θ∗
4

1
x∈A4 1

cos(x) cos(y)∈
(
r1
4r ,

r2
4r

)2dxdy

= 4f 2
min

∫ θ∗
4

− θ∗
4

∫ θ∗
4

0
1

cos(x) cos(y)∈
(
r1
4r ,

r2
4r

)dy1
x∈A4 dx.
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We now do the substitution z = cos(x) cos(y) in the integral with respect to dy:

P

(
�0

2 ∈ A, S2 ∈ (r1, r2)
)

≥ 4f 2
min

∫ θ∗
4

− θ∗
4

∫ cos(x)

cos
(
θ∗
4

)
cos(x)

1
z∈
(
r1
4r ,

r2
4r

) 1√
cos2(x)− z2

dz1
x∈A4 dx

≥ 4f 2
min

∫ θ∗
4

− θ∗
4

∫ cos(x)

cos
(
θ∗
4

)
cos(x)

1
z∈
(
r1
4r ,

r2
4r

) 1

sin
(
θ∗
4

)dz1x∈A4 dx

≥ 4f 2
min

sin
(
θ∗
4

)
∫ θ∗

4 −ε

− θ∗
4 +ε

∫ cos
(
θ∗
4 −ε

)

cos
(
θ∗
4

) 1
z∈
(
r1
4r ,

r2
4r

)dz1
x∈A4 dx

= f 2
min

4r sin
(
θ∗
4

) (r2 − r1) |A| ,

where we have used for the last equality the fact that A ⊂ [−θ∗ + 4ε, θ∗ − 4ε) and

(r1, r2) ⊂
(

4r cos
(
θ∗
4

)
, 4r cos

(
θ∗
4 − ε

))
.

This ends the proof. ��
Let us fix η ∈ (0, r

(
1 − 2 cos

(
θ∗
2

))
) and ε ∈

(
0, 2θ∗−π

8

)
(the condition θ∗ >

2π
3 ensures that we can take such η and ε).

Let us define

h = 4r

(
1 − cos

(
θ∗

2

))
− 2η− 2r = 2r

(
1 − 2 cos

(
θ∗

2

))
− 2η > 0 (19.3)

and

α = f 2
min

2r sin
(
θ∗
4

) (4θ∗ − 2π − 16ε)4r

(
cos

(
θ∗

4
− ε
)

− cos

(
θ∗

4

))

= 2f 2
min

sin
(
θ∗
4

) (4θ∗ − 2π − 16ε)

(
cos

(
θ∗

4
− ε
)

− cos

(
θ∗

4

))
. (19.4)

Theorem 19.2 Let ((Xt , Vt ))t≥0 be the stochastic billiard process in Br satisfying

Assumption (H ′) with θ∗ ∈
(

2π
3 , π

)
.

There exists a unique invariant probability measure χ on Br ×S
1 for the process

((Xt , Vt ))t≥0.

Moreover let η ∈ (0, r
(

1 − 2 cos
(
θ∗
2

))
) and ε ∈

(
0, 2θ∗−π

8

)
. For all t ≥ 0 and

all λ < λM we have

‖P (Xt ∈ ·, Vt ∈ ·)− χ‖T V≤ Cλe−λt ,



536 N. Fétique

where

λM = min

{
1

4r
log

(
1

1 − δh
)

; 1

4r
log

(
−(1 − δh)+√(1 − δh)2 + 4δh(1 − α)

2δh(1 − α)

)}
. (19.5)

and

Cλ = αδhe10λr

1 − e4λr (1 − δh)− e8λrδh(1 − α),

with δ, h and α respectively given by (19.2)–(19.4).

Remark 19.1 The following proof of this theorem is largely inspired by the proof
of Theorem 2.2 in [2].

Proof The existence of the invariant probability measure comes from the compact-
ness of the space Br × S

1. The following proof shows its uniqueness and gives the
speed of convergence of the stochastic billiard to equilibrium.

Let ((Xt , Vt ))t≥0 and ((X̃t , Ṽt ))t≥0 be two versions of the stochastic billiard with
(X0, V0) = (x0, v0) ∈ Br × S

1 and (X̃0, Ṽ0) = (x̃0, ṽ0) ∈ Br × S
1. We are going

to construct these two processes until they become equal.
We recall the definition of T0 and T̃0:

T0 = inf{t ≥ 0 : x0 + tv0 /∈ K}, and T̃0 = inf{t ≥ 0 : x̃0 + t ṽ0 /∈ K}.

We are going to couple (Xt , Vt ) and (X̃t , Ṽt ) in two steps: we first couple the times,
so that the two processes hit ∂Br at a same time, and then we couple both position
and time.

Step 1 Proposition 19.3 ensures that S2 and S̃2 are both δ-continuous on

[4r cos
(
θ∗
2

)
+ η, 4r − η]. Therefore, the variables T2 and T̃2 are δ-continuous

on [T0 + 4r cos
(
θ∗
2

)
+ η, T0 + 4r − η] ∩ [T̃0 + 4r cos

(
θ∗
2

)
+ η, T̃0 + 4r − η],

with
∣∣∣[T0 + 4r cos

(
θ∗
2

)
+ η, T0 + 4r − η] ∩ [T̃0 + 4r cos

(
θ∗
2

)
+ η, T̃0 + 4r − η]

∣∣∣
≥ h since |T0 − T̃0|≤ 2r . Note that the condition θ∗ > 2π

3 has been introduced to
ensure that this intersection is non-empty.

Thus, there exists a coupling of T2 and T̃2 such that

P (E1) ≥ δh,
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where

E1 =
{
T2 = T̃2

}
.

On the event E1 we define T 1
c = T2.

On the eventEc1, we can suppose, by symmetry that T2 ≤ T̃2. In order to try again
to couple the hitting times, we need to begin at times whose difference is smaller
than 2r . Let us thus define

m1 = min
{
n > 2 : Tn > T̃2

}
and m̃1 = 2.

We then have, by construction of m1 and m̃1,
∣∣∣Tm1 − T̃m̃1

∣∣∣ ≤ 2r . Therefore, as

previously, there exists a coupling of Tm1+2 and T̃m̃1+2 such that

P
(
E2|Ec1

) ≥ δh,

where

E2 =
{
Tm1+2 = T̃m̃1+2

}
.

On the event Ec1 ∩ E2 we define T 1
c = Tm1+2.

We then repeat the same procedure. We thus construct two sequences of stopping
times (mk)k≥1, (m̃k)k≥1 and a sequence of events (Ek)k≥1, with

Ek =
{
Tmk−1+2 = T̃m̃k−1+2

}
,

satisfying

P
(
Ek|Ec1 ∩ · · · ∩ Eck−1

) ≥ δh.

On the event Ec1 ∩ · · · ∩ Eck−1 ∩ Ek we define T 1
c = Tmk+2. By construction, T 1

c is
the coupling time of the hitting times of the boundary.

Since the inter-jump times are directly linked to the speeds of the process, and
thus to its positions, we can construct both stochastic billiards (Xt , Vt ) and (X̃t , Ṽt )
until time T 1

c , and along with T 1
c .

We observe that by this construction of T 1
c , we have

T 1
c ≤st T0 +

G1∑
l=1

S1,l (19.6)
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with G1 ∼ G(δh) and S1,l , l ≥ 1, independent random times with distribution fS2 ,
and independent of G1.

Step 2 Let us now suppose that T 1
c , ((Xt , Vt ))0≤t≤T c1 and ((X̃t , Ṽt ))0≤t≤T c1 are

constructed as described above.
We define y = XT 1

c
and ỹ = X̃T 1

c
, which are by construction of T 1

c on ∂Br . We

also define N1
c = min

{
n > 0 : XTn = y}, which is deterministic conditionally to

T 1
c .

Proposition 19.4 ensures that the couples
(
XT

N1
c +2
, TN1

c+2 − TN1
c

)
and

(
X̃T

N1
c +2
, T̃N1

c+2 − T̃N1
c

)
are both

f 2
min

2r sin
(
θ∗
4

) -continuous on the set A × B where

A = (ϕy − θ∗ + 4ε, ϕy + θ∗ − 4ε) ∩ (ϕỹ − θ∗ + 4ε, ϕỹ + θ∗ − 4ε) and

B =
(

4r cos
(
θ∗
4

)
, 4r cos

(
θ∗
4 − ε

))
, with |A| ≥ 4θ∗ − 2π − 16ε (let us mention

that these intervals are seen in [0, 2π ]/(2πZ) since they are intervals of angles).
Note that the condition θ∗ > 2π

3 implies in particular that the previous intersection
in non-empty.

Therefore we can construct a coupling such that

P

(
F |Ec1 ∩ · · · ∩ Ec

N1
c−1 ∩ EN1

c
, T 1
c

)
≥ α,

where

F =
{
XT

N1
c +2

= X̃T
N1
c +2

and TN1
c+2 = T̃N1

c+2

}
.

On the event F we define Tc = TN1
c+2, and we construct ((Xt , Vt ))T 1

c ≤t≤Tc
and ((X̃t , Ṽt ))T 1

c ≤t≤Tc along with the coupling of (XT
N1
c +2
, TN1

c+2) and

(X̃T
N1
c +2
, T̃N1

c+2).

If F does not occur, we can not directly try to couple both position and time since
the two processes have not necessarily hit ∂Br at the same time. We thus have to
couple first the hitting times, as we have done in step 1.

Let us suppose that on
(
Ec1 ∩ · · · ∩ Ec

N1
c−1

∩ EN1
c

)
∩ Fc, we have TN1

c+2 ≤
T̃N1

c+2 (the other case can be treated in the same way thanks to the symmetry of
the problem). Let us define

� = min
{
n > N1

c + 2 : Tn > T̃N1
c+2

}
and �̃ = N1

c + 2

We clearly have
∣∣∣T� − T̃�̃

∣∣∣ ≤ 2r . Therefore, we can start again: we try to couple the

times at which the two processes hit the boundary, and then to couple the positions
and times together.
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Finally, the probability that we succeed to couple the positions and times in “one
step” (Step 1 and Step 2) is:

P

((
∪
k≥1

(
Ec1 ∩ · · · ∩ Eck−1 ∩ Ek

)) ∩ F
)

= P

(
F

∣∣∣∣ ∪
k≥1

(
Ec1 ∩ · · · ∩ Eck−1 ∩ Ek

))
P

(
∪
k≥1

(
Ec1 ∩ · · · ∩ Eck−1 ∩ Ek

))

= P

(
F

∣∣∣∣ ∪
k≥1

(
Ec1 ∩ · · · ∩ Eck−1 ∩ Ek

))

≥ α.

Therefore, the coupling time T̂ of the couples position-time satisfies:

T̂ ≤st T0 +
G∑
k=1

⎛
⎝
⎛
⎝
Gk∑
l=1

Sk,l

⎞
⎠+ Sk

⎞
⎠

where G ∼ G (α), G1,G2, · · · ∼ G (δh) are independent geometric variables,
and
(
Sk,l
)
k,l≥1,

(
Sk
)
k≥1 are independent random variables, independent from the

geometric variables, with distribution fS2 .
Let λ ∈ (0, λM), with λM defined in Eq. (19.5). Since all the random variables

Sk,l and Sk , k, l ≥ 1, are almost surely smaller than two times the diameter of the
ball Br , and since T0 is almost surely smaller than this diameter, we have:

P

(
T̂ > t

)
≤ e−λtE

[
eλT̂
]

≤ eλ(T0−t)E

⎡
⎣exp

⎛
⎝λ

G∑
k=1

⎛
⎝
⎛
⎝
Gk∑
l=1

Sk,l

⎞
⎠+ Sk

⎞
⎠
⎞
⎠
⎤
⎦

≤ eλ(2r−t)E

⎡
⎣
G∏
k=1

⎛
⎝
⎛
⎝
Gk∏
l=1

exp (λ4r)

⎞
⎠ exp (λ4r)

⎞
⎠
⎤
⎦

= eλ(2r−t)E
[
G∏
k=1

E

[
e4λr(Gk+1)

]]
.

Now, using the expression of generating function of a geometric random variable
we get:

P

(
T̂ > t

)
≤ eλ(2r−t)E

[
G∏
k=1

( ∞∑
l=1

e4λr(l+1)δh(1 − δh)l−1

)]

= eλ(2r−t)E
[(

e8λrδh

1 − e4λr (1 − δh)
)G]
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= eλ(2r−t) αe8λrδh

1 − e4λr (1 − δh)
1

1 − e8λr δh(1−α)
1−e4λr (1−δh)

= e−λt αe10λrδh

1 − e4λr (1 − δh)− e8λrδh(1 − α) .

These calculations are valid for λ > 0 such that the generating functions are well
defined, that is for λ > 0 satisfying

e4λr (1 − δh) < 1 and
e8λrδh(1 − α)

1 − e4λr (1 − δh) < 1.

The first condition is equivalent to λ < 1
4r log

(
1

1−δh
)

.

The second condition is equivalent to δh(1−α)s2 + (1− δh)s− 1 < 0 with s =
e4λr . It gives s1 < s < s2 with s1 = −(1−δh)−√

�
2δh(1−α) < 0 and s2 = −(1−δh)+√

�
2δh(1−α) > 1

where � = (1 − δh)2 + 4δh(1 − α) > 0. And finally we get λ < 1
4r log (s2).

Therefore, the estimation for P
(
T̂ > t

)
is indeed valid for all λ ∈ (0, λM). The

conclusion of the theorem follows immediately.

Remark 19.2 If θ∗ ∈
(

0, 2π
3

]
, Step 1 of the proof of Theorem 19.2 fails: the

intervals on which the random variables S2 and S̃2 are continuous can have an
empty intersection. Similarly, in Step 2, the intersection of the intervals on which

the couples
(
XT

N1
c +2
, TN1

c+2 − TN1
c

)
and
(
X̃T

N1
c +2
, T̃N1

c+2 − T̃N1
c

)
are continuous

can be empty depending on the value of θ∗.
However, instead of trying to couple the times or both positions and times in two

jumps, we just need more jumps to do that. Therefore, the method and the results
are similar in the case θ∗ ≤ 2π

3 , the only difference is that the computations and
notations will be much more awful.

19.4 Stochastic Billiard in a Convex Set with Bounded
Curvature

We make the following assumption on the set K in which the stochastic billiard
evolves:

Assumption (K)

K is a compact convex set with curvature bounded from above by C < ∞ and bounded
from below by c > 0.

This means that for each x ∈ ∂K , there is a ball B1 with radius 1
C

included in K
and a ball B2 containingK , so that the tangent planes ofK , B1 and B2 at x coincide
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x K1
C

1
c

B1

B2

Fig. 19.4 Illustration of Assumption (K)

(see Fig. 19.4). In fact, for x ∈ ∂K , the ball B1 is the ball with radius 1
C

and with
center the unique point at distance 1

C
from x in the direction of nx . And B2 is the

one with the center at distance 1
c

from x in the direction of nx .

In this section, we consider the stochastic billiard in such a convex K .
Let us observe that the case of the disc is a particular case. Moreover, Assumption

(K) excludes in particular the case of the polygons: because of the upper bound C
on the curvature, the boundary of K can not have “corners”, and because of the
lower bound c, the boundary can not have straight lines.

In the following, D will denote the diameter of K , that is

D = max{‖x − y‖: x, y ∈ ∂K}.
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Fig. 19.5 Definition of the
quantities ϕx,y and ly,x for
x, y ∈ ∂K

x

y
y , x

x , y

ly , x

K

19.4.1 The Embedded Markov Chain

Notation We define lx,y = y−x
‖x−y‖ = −ly,x and we denote by ϕx,y the angle

between lx,y and the normal nx to ∂K at the point x (see Fig. 19.5).

The following property, proved by Comets and al. in [2], gives the dynamics of
the Markov chain (XTn)n≥0 defined in Sect. 19.2.2.

Proposition 19.5 The transition kernel of the chain (XTn)n≥0 is given by:

P
(
XTn+1 ∈ A ∣∣XTn = x ) =

∫
A

Q(x, y)dy

where

Q(x, y) = ρ(U−1
x lx,y) cos(ϕy,x)

‖x − y‖ .

This proposition is one of the main ingredients to obtain the exponentially-fast
convergence of the stochastic billiard Markov chain towards its invariant probability
measure.

Theorem 19.3 Let K ⊂ R
2 satisfying Assumption (K) with diameter D. Let

(XTn)n≥0 be the stochastic billiard Markov chain on ∂K verifying Assumption (H).
There exists a unique invariant measure ν on ∂K for (XTn)n≥0.
Moreover, recalling that θ∗ = |J | in Assumption (H), we have:

1. if θ∗ > C|∂K|
8 , for all n ≥ 0,

‖P (XTn ∈ ·)− ν‖T V≤
(

1 − qmin

(
8θ∗

C
− |∂K|

))n−1

;
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2. if θ∗ ≤ C|∂K|
8 , for all n ≥ 0 and all ε ∈

(
0, 2θ∗

C

)
,

‖P (XTn ∈ ·)− ν‖T V≤ (1 − α) nn0
−1

where

n0 =
⌊ |∂K|

2 − 2ε
4θ∗
C

− 2ε

⌋
+ 1 and

α = (4θ
∗

C
)n0−1qmin

n0

(
4

(
2n0θ

∗

C
− (n0 − 1)ε

)
− |∂K|

)

with

qmin =
cρmin cos

(
θ∗
2

)

CD
.

Proof Once more, the existence of the invariant measure is immediate since the
state space ∂K of the Markov chain is compact. The following shows its uniqueness
and gives the speed of convergence of (XTn)n≥0 towards ν.

Let (XTn)n≥0 and (X̃Tn)n≥0 be two versions of the Markov chain with initial
conditions x0 and x̃0 on ∂K . In order to have a strictly positive probability to couple
XTn and X̃Tn at time n, it is sufficient that their density functions are bounded from
below on an interval of length strictly bigger than |∂K|

2 . Let us therefore study the
length of set on which the density function fXTn of XTn is bounded from below by
a strictly positive constant.

Let x ∈ ∂K . For v ∈ Sx , we denote by hx(v) the unique point on ∂K seen from
x in the direction of v. We firstly get a lower bound on |hx(UxJ)|, the length of the
subset of ∂K seen from x with a strictly positive density.

It is easy to observe, with a drawing for instance, the following facts:

• |hx(UxJ)| increases when ‖x − hx(nx)‖ increases,
• |hx(UxJ)| decreases when the curvature at hx(nx) increases,
• |hx(UxJ)| decreases when |ϕhx(nx),x | increases.

Therefore, |hx(UxJ)| is minimal when ‖x−hx(nx)‖ is minimal, when the curvature
at hx(nx) is maximal, and then equal toC, and finally when ϕhx(nx),x = 0. Moreover,
the minimal value of ‖x−hx(nx)‖ is 2

C
since C is the upper bound for the curvature

of ∂K . The configuration that makes the quantity |hx(UxJ)| minimal is thus the
case where x and hx(nx) define a diameter on a circle of diameter 2

C
(see Fig. 19.6).

We immediately deduce a lower bound for |hx(UxJ)|:

|hx(UxJ)|≥ 2θ∗ × 2

C
= 4θ∗

C
.
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Fig. 19.6 Worst scenario for
the length of hx(UxJ)

y = hx (nx )

x

q*

hx (Ux )

2
C

This means that the density function fXT1
of XT1 is strictly positive on a subset

of ∂K of length at least 4θ∗
C

.

Let now ε ∈
(

0, 2θ∗
C

)
. As it has been done in Sect. 19.3 for the disc, we can

deduce that for all n ≥ 2, the density function fXTn is strictly positive on a set of

length at least 2nθ∗ 2
C

− 2(n− 1)ε = 4nθ∗
C

− 2(n− 1)ε.
Let us define, for x ∈ ∂K and n ≥ 1, Jnx the set of points of ∂K that can be

reached from x in n bounces by picking for each bounce a velocity in J .
We now separate the cases where we can couple in one jump, and where we need

more jumps.

• Case 1: θ∗ > C|∂K|
8 . In that case we have, for all x ∈ ∂K , |J1

x |≥ 4θ∗
C
>

|∂K|
2 ,

and we can thus construct a coupling (XT1 , X̃T1) such that:

P

(
XT1 = X̃T1

)
≥ qmin

∣∣∣J1
x0

∩ J̃1
x̃0

∣∣∣ ≥ qmin × 2

(
4θ∗

C
− |∂K|

2

)

= qmin

(
8θ∗

C
− |∂K|

)
,

where qmin is a uniform lower bound ofQ(a, b) with a ∈ ∂K and b ∈ ha(UaJ),
i.e.

qmin ≤ min
a∈∂K,b∈ha(UaJ)

Q(a, b).

Let us thus give an explicit expression for qmin. Let a ∈ ∂K and b ∈ ha(UaJ).
We have

Q(a, b) ≥ ρmin cos
(
ϕb,a
)

D
.
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b
a

1
c

nb

d

b,a

K

a

b

q*

1
C

dmin

Fig. 19.7 Illustration for the calculation of a lower bound for cos
(
ϕb,a
)

with a ∈ ∂K and b ∈
ha(UaJ)

We could have cos
(
ϕb,a
) = 0 if a and b were on a straight part of ∂K , which

is not possible since the curvature of K is bounded from below by c. Thus, the
quantity cos

(
ϕb,a
)

is minimal when a and b are on a part of a disc with curvature
c. In that case, cos

(
ϕb,a
) = δc

2 , where δ is the distance between a and b (see the

first picture of Fig. 19.7). Since b ∈ ha(UaJ), we have δ ≥ δmin := 2 cos
(
θ∗
2

)

C

(see the second picture of Fig. 19.7). Finally we get

Q(a, b) ≥
cρmin cos

(
θ∗
2

)

CD
=: qmin.

• Case 2: θ∗ ≤ C|∂K|
8 . In that case, we need more than one jump to couple the two

Markov chains. Therefore, defining

n0 = min

{
n ≥ 2 : 4nθ∗

C
− 2(n− 1)ε >

∂K

2

}
=
⌊ |∂K|

2 − 2ε
4θ∗
C

− 2ε

⌋
+ 1,

we get that the intersection Jn0
x0 ∩ J̃n0

x̃0
is non-empty, and then we can construct

XTn0
and X̃Tn0

such that the probability P

(
XTn0

= X̃Tn0

)
is strictly positive. It

remains to estimate a lower bound of this probability.
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First, we have

∣∣∣Jn0
x0

∩ J̃n0
x̃0

∣∣∣ ≥ 2

(
4n0θ

∗

C
− 2(n0 − 1)ε − |∂K|

2

)

= 4

(
2n0θ

∗

C
− (n0 − 1)ε

)
− |∂K|.

Moreover, let x ∈ {x0, x̃0} and y ∈ Jn0
x0 ∩ J̃n0

x̃0
. We have:

Qn0(x, y) ≥
∫
hx(UxJ)

∫
hz1 (Uz1J)

· · ·
∫
hzn−2 (Uzn−2J)

Q(x, z1)Q(z1, z2) · · ·Q(zn0−1, y)dz1dz2 · · · dzn0−1

≥ (4θ
∗

C
)n0−1qmin

n0 .

We thus deduce:

P

(
XTn0

= X̃Tn0

)
≥ (4θ

∗

C
)n0−1qmin

n0

∣∣∣Jn0
x0

∩ J̃n0
x̃0

∣∣∣

≥ (4θ
∗

C
)n0−1qmin

n0

(
4

(
2n0θ

∗

C
− (n0 − 1)ε

)
− |∂K|

)
.

We can now conclude, including the two cases: let us define

m0 = 1
θ∗>C|∂K|

8
+
(⌊ |∂K|

2 − 2ε
4θ∗
C

− 2ε

⌋
+ 1

)
1
θ∗≤C|∂K|

8

and

α = qmin

(
8θ∗

C
− |∂K|

)
1
θ∗>C|∂K|

8
|

+ (4θ
∗

C
)m0−1qmin

m0

(
4

(
2m0θ

∗

C
− (m0 − 1)ε

)
− |∂K|

)
1
θ∗≤C|∂K|

8
.

We have proved that we can construct a coupling
(
XTm0

, X̃Tm0

)
such that

P

(
XTm0

= X̃Tm0

)
≥ α, and then we get

‖P (XTn ∈ ·)− ν‖T V≤ (1 − α) nm0
−1
.
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19.4.2 The Continuous-Time Process

In this section, we will work in the case |J |= θ∗ = π .

Notations We still use the following notation, already introduced in the case of the
disc:

S0 = 0 and for n ≥ 1, Sn = Tn − T0.

Moreover, for x ∈ ∂K , we write Sxn an XxSn respectively for the nth hitting time of
∂K and the position of the Markov chain after n steps, and that started at position
x ∈ ∂K .

Thereby, we have the following equalities: L(XxSn) = L(XTn |XT0 = x) and
L(Sxn ) = L(Tn − T0|XT0 = x).
Proposition 19.6 Let K ⊂ R

2 satisfying Assumption (K). Let ((Xt , Vt ))t≥0 the
stochastic billiard process evolving in K and verifying Assumption (H) with |J |=
π .

For all x ∈ ∂K , the random time Sx1 , which is the first hitting time of ∂K when

starting at point x, is cρmin-continuous on
[
0, 2
C

]
.

Proof Let x ∈ ∂K . Let us recall that the curvature of K is bounded from above by
C, which means that for each x ∈ ∂K , there is a ball B1 with radius 1

C
included in

K so that the tangent planes of K and B1 at x coincide. Therefore, starting from x,
the maximal time to go on another point of ∂K is bigger than 2

C
(the diameter of the

ball B1).

That is why we are going to prove the continuity of Sx1 on the interval
[
0, 2
C

]
.

Let thus 0 ≤ r ≤ R ≤ 2
C

.
Let  be a random variable living in

[−π
2 ,
π
2

]
such that the velocity vector

(cos( ), sin( )) follows the law γ .
The time Sx1 being completely determined by the velocity VT0 and thus by its

angle with respect to nx , it is clear that there exist −π
2 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ π

2
such that we have:

P
(
Sx1 ∈ [r, R]

) = P ( ∈ [θ1, θ2] ∪ [θ3, θ4]) .

Then, thanks to Assumption (H) on the law γ , and since we assume here that |J |=
π , the density function of  is bounded from below by ρmin on

[−π
2 ,
π
2

]
. It gives:

P
(
Sx1 ∈ [r, R]

) ≥ ρmin (θ2 − θ1 + θ4 − θ3) .

Moreover, since the curvature is bounded from below by c, there exists a ball B2
with radius 1

c
containing K so that the tangent planes of K and B2 at x coincide.

And it is easy to see that the differences θ2 − θ1 and θ4 − θ2 are larger than the
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difference α2 − α1 where α1 and α2 are the angles corresponding to the distances r
and R starting from x and to arrive on the ball B2.

The time of hitting the boundary ofB2 is equal to d ∈
[
0, 2
C

]
if the angle between

nx and the velocity is equal to arccos
(
cd
2

)
. We thus deduce:

P
(
Sx1 ∈ [r, R]

) ≥ 2ρmin

(
arccos

(cr
2

)
− arccos

(
cR

2

))

≥ 2ρmin

∣∣∣∣
cr

2
− cR

2

∣∣∣∣
= ρminc (R − r) ,

where we have used the mean value theorem for the second inequality.

Let us introduce some constants that will appear in the following results.
Let β > 0 and δ > 0 such that |∂K|

3 − max{2δ;β + δ} > 0.

Let ε ∈
(

0,min{β; 2
C
}
)

such that h > 0 where

h = δ

D

(
βc

2

)2

− εM, (19.7)

with

M = 2

(
1

1
C

− ε + 1

β − ε + C
)
. (19.8)

Let us remark that M is non decreasing with ε, so that it is possible to take ε
small enough to have h > 0.

Proposition 19.7 Let K ⊂ R
2 satisfying Assumption (K) with diameter D. Let

((Xt , Vt ))t≥0 the stochastic billiard process evolving inK and verifying Assumption
(H) with |J |= π .

Let x, x̃ ∈ ∂K with x �= x̃.
There exist R1 > 0, R2 > 0 and J ∗ ⊂ ∂K , with |J ∗|< hε, such that the couples

(XxS2
, Sx2 ) and (X̃x̃

S̃2
, S̃x̃2 ) are both η-continuous on J ∗ × (R1, R2), with

η = 1

2

(cρmin

2D

)2
(

1

C
− ε
)
(β − ε) .

Moreover we have R2 − R1 ≥ 2 (hε − |J ∗|).
Remark 19.3 The following proof is largely inspired by the proof of Lemma 5.1 in
[2].
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Proof Let x, x̃ ∈ ∂K , x �= x̃. Let us denote by �xx̃ the bisector of the segment
defined by the two points x and x̃. The intersection �xx̃ ∩ ∂K contains two points,
let us thus define ȳ the one which achieves the larger distance towards x and x̃ (we
consider this point of intersection since we need in the sequel to have a lower bound
on ‖x − ȳ‖ and ‖x̃ − ȳ‖).

Let t ∈ I �→ g(t) be a parametrization of ∂K with g(0) = ȳ, such that ‖g′(t)‖=
1 for all t ∈ I . Consequently, the length of an arc satisfies length(g|[s,t]) = ||g(t)−
g(s)|| = |t − s|. We can thus write I = [0, |∂K|], and g(0) = g(|∂K|). Note that
the parametrization g is C2 thanks to Assumption (K).

In the sequel, for z ∈ ∂K , we write sz (or tz) for the unique s ∈ I such that
g(s) = z. And for A ⊂ ∂K , we define IA = {t ∈ I : g(t) ∈ A}.

Let us define, for s, t ∈ I and w ∈ {x, x̃}:

ϕw(s, t) = ‖w − g(s)‖+‖g(s)− g(t)‖.

Lemma 19.1 There exists an interval I ∗β,δ ⊂ I , satisfying |I ∗β,δ|< hε, such that for
w ∈ {x, x̃}:

|∂sϕw(s, t)|≥ h, for s ∈ Bεȳ and t ∈ I ∗β,δ,

where Bεȳ = {s ∈ I ; |s − sȳ |≤ ε}.
We admit this lemma for the moment and prove it after the end of the current proof.

Let us suppose for instance that ∂sϕw(s, t) is positive for s ∈ Bεȳ and t ∈ I ∗β,δ , for
w = x and w = x̃. If one or both of ∂sϕx(s, t) and ∂sϕx̃(s, t) are negative, we just
need to consider |ϕx | or |ϕx̃ |, and everything works similarly.

We thus have, by the lemma:

∂sϕw(s, t) ≥ h, for s ∈ Bεȳ and t ∈ I ∗β,δ.

Let us now define:

r1 = sup
t∈I∗β,δ

inf
s∈Bεȳ

ϕx(s, t) and r2 = inf
t∈I∗β,δ

sup
s∈Bεȳ

ϕx(s, t)

and

r̃1 = sup
t∈I∗β,δ

inf
s∈Bεȳ

ϕx̃(s, t) and r̃2 = inf
t∈I∗β,δ

sup
s∈Bεȳ

ϕx̃(s, t).

Since s �→ ϕx(s, t) and s �→ ϕx̃(s, t) are strictly increasing on Bεȳ for all t ∈ I ∗β,δ ,
we deduce that, considering Bεȳ as the interval (s1, s2),

r1 = sup
t∈I∗β,δ

ϕx(s1, t), r2 = inf
t∈I∗β,δ

ϕx(s2, t), r̃1 = sup
t∈I∗β,δ

ϕx̃(s1, t), r̃2 = inf
t∈I∗β,δ

ϕx̃(s2, t).
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Lemma 19.2 We have r1 < r2 and r̃1 < r̃2.
Moreover, there exist R1, R2 with 0 ≤ R1 < R2 satisfying R2 − R1 ≥ 2(hε −

|I ∗β,δ|), such that (r1, r2) ∩ (r̃1, r̃2) = (R1, R2).

We admit this result to continue the proof, and will give a demonstration later.

We can now prove that the pairs
(
XxS2
, Sx2

)
and
(
X̃x̃
S̃2
, S̃x̃2

)
are both η-continuous

on I ∗β,δ × (R1, R2) with some η > 0 that we are going to define after the
computations.

We first prove that
(
XxS2
, Sx2

)
is η-continuous on I ∗β,δ × (r1, r2). By the same

way we can prove that
(
X̃x̃
S̃2
, S̃x̃2

)
is η-continuous on I ∗β,δ × (r̃1, r̃2). These two

facts imply immediately the continuity with (R1, R2) since the interval (R1, R2) is
included in (r1, r2) and (r̃1, r̃2).

Let (u1, u2) ⊂ (r1, r2) and A ⊂ I ∗β,δ . We have:

P

(
XxS2

∈ A, Sx2 ∈ (u1, u2)
)

≥
∫
IA

∫
Bεȳ

Q(x, g(s))Q(g(s), g(t))1ϕx(s,t)∈(u1,u2)dsdt.

Let s ∈ Bεȳ and t ∈ I ∗β,δ . We now give a lower bound of Q(x, g(s)) and
Q(g(s), g(t)).

Proposition 19.5 gives:

Q(x, g(s)) = ρ(U−1
x lx,g(s)) cos

(
ϕg(s),x

)
‖x − g(s)‖

≥ cρmin

2D

(
1

C
− ε
)
,

where we have used the same method as in he proof of Theorem 19.3 (with Fig. 19.7)
to get that cos

(
ϕg(s),x

) ≥ ‖x−g(s)‖c
2 , and then the fact that ‖x−g(s)‖≥ 1

C
−ε. Let us

prove this latter. With the notations of Fig. 19.8, by Pythagore’s theorem we have, for

ȳ ∈ {ȳ1, ȳ2}, ‖x−ȳ‖2=
( ‖x−x̃‖

2

)2+‖u−ȳ‖2. Moreover, since the curvature ofK is

bounded by C, it follows that ‖ȳ1 − ȳ2‖≥ 2
C

, and then max{‖u− ȳ1‖; ‖u− ȳ2‖} ≥
1
C

. We deduce: max{‖x − ȳ1‖; ‖x − ȳ2‖} ≥ 1
C

. Therefore, by the definition of
ȳ, we have ‖x − ȳ‖≥ 1

C
. Thus, the reverse triangle inequality gives, for s ∈ Bεȳ ,

‖x − g(s)‖≥ 1
C

− ε.
By the same way, since ‖g(t)− g(s)‖≥ β − ε, we have:

Q(g(s), g(t)) ≥ cρmin

2D
(β − ε) .
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Fig. 19.8 Upper bound for
the distance ‖w − ȳ‖,
w ∈ {x, x̃}

K

x

x̃
Δx , x̃

ȳ2

ȳ1

u

Therefore we get:

P

(
XxS2

∈ A, Sx2 ∈ (u1, u2)
)
≥ a
∫
IA

∫
Bεȳ

1ϕx(s,t)∈(u1,u2)dsdt,

with

a =
(cρmin

2D

)2
(

1

C
− ε
)
(β − ε) . (19.9)

Let us define, for t ∈ I ∗β,δ:

Mx,t (u1, u2) :=
{
s ∈ Bεȳ : ϕx(s, t) ∈ (u1, u2)

}
.

Using the fact that s �→ ϕx(s, t) is strictly increasing on Bεȳ for t ∈ I ∗β,δ we get

(ϕ−1
w (s, t) stands for the inverse function of s �→ ϕx(s, t)):

∣∣Mx,t (u1, u2)
∣∣ =
∣∣∣
{
s ∈ Bεȳ : s ∈

(
ϕ−1
x (u1, t), ϕ

−1
x (u2, t)

)}∣∣∣

=
∣∣∣(s1, s2) ∩

(
ϕ−1
x (u1, t), ϕ

−1
x (u2, t)

)∣∣∣ .

By definition of r1 and r2, and since (u1, u2) ⊂ (r1, r2) we have:

ϕx(s1, t) ≤ r1 ≤ u1 and ϕx(s2, t) ≥ r2 ≥ u2,

and since s �→ ϕx(s, t) is strictly increasing:

s1 ≤ ϕ−1
x (u1, t) and s2 ≥ ϕ−1

x (u2, t).
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Therefore we deduce:

∣∣Mx,t (u1, u2)
∣∣ =
∣∣∣
(
ϕ−1
x (u1, t), ϕ

−1
x (u2, t)

)∣∣∣

=
∣∣∣ϕ−1
x ((u1, u2), t)

∣∣∣

≥ 1

2
(u2 − u1).

For the last inequality we have used the following property. Let ψ : R �→ R a
function. If for all x ∈ [a1, a2] we have c1 < ψ

′(x) < c2 with 0 < c1 < c2 < ∞,
then for any interval I ⊂ [ψ(a1), ψ(a2)], we have c−1

2 |I |≤ |ψ−1(I )|≤ c−1
1 |I |. In

our case, the Cauchy–Schwarz inequality gives ∂sϕx(s, t) ≤ 2 (see Eq. (19.10) for
the expression of ∂sϕx(s, t)).

Finally we get, with a given by (19.9):

P

(
XxS2

∈ A, Sx2 ∈ (u1, u2)
)
≥ a
∫
A

1

2
(u2 − u1)dz

= a

2
(u2 − u1)|A|,

which proves that
(
XxS2
, Sx2

)
is a2 -continuous on I ∗β,δ × (r̃1, r̃2).

Thanks to the remarks before, the proof is completed with η = a
2 and J = I ∗β,δ .

Let us now give the proofs of Lemmas 19.1 and 19.2 that we have admitted so
far.

Proof (Proof of Lemma 19.1) We use the notations introduced at the end of the
proof of Proposition 19.7.

We have, for s, t ∈ I :

∂sϕw(s, t) =
〈
g(s)− w

‖g(s)− w‖ + g(s)− g(t)
‖g(s)− g(t)‖ , g

′(s)
〉
. (19.10)

By the definition of g, we note that g′(s) is a director vector of the tangent line of
∂K at point g(s).

It is easy to verify that for w ∈ {x, x̃}, there exists a unique t ∈ I \ {sȳ} such that

∂sϕw(sȳ , t) = 0. (19.11)

For w = x (resp. w = x̃), we denote by tzx (resp. tzx̃ ) this unique element of I . With
our notations we thus have g(tzx ) = zx and g(tzx̃ ) = zx̃ .
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Let w ∈ {x, x̃}. We have:

∂t∂sϕw(s, t)

= ∂t
(〈

g(s)− g(t)
‖g(s)− g(t)‖ , g

′(s)
〉)

= 1

‖g(t)− g(s)‖
(
− 〈g′(t), g′(s)〉+

〈
g(t)− g(s)

‖g(t)− g(s)‖ , g
′(t)
〉

〈
g(t)− g(s)

‖g(t)− g(s)‖ , g
′(s)
〉)
.

Let us look at the term in parenthesis. Let us denote by [u, v] the oriented angle
between the vectors u, v ∈ R

2. We have:

− 〈g′(t), g′(s)〉+
〈
g(t)− g(s)

‖g(t)− g(s)‖ , g
′(t)
〉 〈

g(t)− g(s)
‖g(t)− g(s)‖ , g

′(s)
〉

= − cos
([g′(t), g′(s)])+ cos

([g(t)− g(s), g′(t)]) cos
([g(t)− g(s), g′(s)])

= − cos
([g′(t), g′(s)])+ 1

2
cos
([g(t)− g(s), g′(t)] − [g(t)− g(s), g′(s)])

+ 1

2
cos
([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)])

= − cos
([g′(t), g′(s)])+ 1

2
cos
([g′(s), g′(t)])

+ 1

2
cos
([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)])

= −1

2
cos
([g′(t), g′(s)])+ 1

2
cos
([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)])

= − sin

(
1

2

([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)] + [g′(t), g′(s)])
)

× sin

(
1

2

([g(t)− g(s), g′(t)] + [g(t)− g(s), g′(s)] − [g′(t), g′(s)])
)

= − sin
([g(t)− g(s), g′(s)]) sin

([g(t)− g(s), g′(t)]) .

Therefore we get

∂t∂sϕw(s, t) = − 1

‖g(t)− g(s)‖ sin
([g(t)− g(s), g′(s)]) sin

([g(t)− g(s), g′(t)]) ,
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and then

|∂t∂sϕw(s, t)| = 1

‖g(t)− g(s)‖
∣∣sin
([g(t)− g(s), g′(s)]) sin

([g(t)− g(s), g′(t)])∣∣

= 1

‖g(t)− g(s)‖
∣∣cos
(
ϕg(s),g(t)

)
cos
(
ϕg(t),g(s)

)∣∣ .

Let t ∈ I such that |t − sȳ |≥ β (we recall that β is introduced at the beginning of
the section). Using once more Fig. 19.7, we get, as we have done in the proof of
Theorem 19.3:

|∂t∂sϕw(s, t)| ≥ 1

‖g(t)− g(s)‖
(
βc

2

)2

≥ 1

D

(
βc

2

)2

. (19.12)

Using Eqs. (19.11) and (19.12), the mean value theorem gives: for t ∈ I such that
|t − sȳ |≥ β and |t − tzw |≥ δ (δ is introduced at the beginning of the section),

∣∣∂sϕw(sȳ , t)
∣∣ = ∣∣∂sϕw(sȳ , t)− ∂sϕw(sȳ , tzw )

∣∣ ≥ 1

D

(
βc

2

)2

|t − tzw |≥
δ

D

(
βc

2

)2

.

(19.13)
We want now such an inequality for s ∈ I near from sȳ . We thus compute:

∂2
s ϕw(s, t)

= 1

‖w − g(s)‖ + 1

‖g(s)− g(t)‖ +
〈
g(s)− w

‖g(s)− w‖ + g(s)− g(t)
‖g(s)− g(t)‖ , g

′′
(s)

〉

− 1

‖w − g(s)‖
〈
w − g(s)

‖w − g(s)‖ , g
′(s)
〉2

− 1

‖g(s)− g(t)‖
〈
g(s)− g(t)

‖g(s)− g(t)‖ , g
′(s)
〉2
.

We immediately deduce, using the Cauchy–Schwarz inequality, and the fact that
‖g′(s)‖= 1 for all s ∈ I :

|∂2
s ϕw(s, t)|

≤ 1

‖w − g(s)‖ + 1

‖g(s)− g(t)‖ + 2‖g′′
(s)‖+ 1

‖w − g(s)‖ + 1

‖g(s)− g(t)‖

≤ 2

(
1

‖w − g(s)‖ + 1

‖g(s)− g(t)‖ + C
)
,
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where we recall that C is the upper bound on the curvature of K .
Let now t ∈ I such that |t − sȳ |≥ β and |t − tzw |≥ δ, and let s ∈ I such that

|s − sȳ |≤ ε. With such s and t we have |t − s|≥ β − ε. Moreover, we have already
seen in proof of Proposition 19.7 (with Fig. 19.8) that ‖w−g(s)‖≥ 1

C
−ε for s ∈ Bεȳ .

Therefore, for such s and t :

|∂2
s ϕw(s, t)|≤ 2

(
1

1
C

− ε + 1

β − ε + C
)

= M > 0. (19.14)

Using once again the mean value theorem with Eqs. (19.13) and (19.14), we deduce
that for all t ∈ I such that |t − sȳ |≥ β and |t − tzw |≥ δ, and for all s ∈ I such that
|s − sȳ |≤ ε:

|∂sϕw(s, t)| ≥ δ

D

(
βc

2

)2

− εM = h > 0.

Let us now take I ∗β,δ ⊂ I \ {sȳ , tzx , tzx̃ } an interval of length strictly smaller than
hε (this condition on the length of I ∗β,δ is not necessary for the lemma, but for
the continuation of the proof of the proposition), and such that for all t ∈ I ∗β,δ ,|t − tzx |≥ δ, |t − tzx̃ |≥ δ and |t − sȳ |≥ β. In order to ensure that I ∗β,δ is not empty,

we take β and δ such that |∂K|
3 −max{2δ;β+δ} > 0. Indeed, it is necessary that one

of the intervals "(tzx , tzx̃ )", "(tzx , sȳ)" and "(sȳ , tzx̃ )" at which we removes a length
β or δ on the good extremity, is not empty. And since the larger of these intervals
has a length at least ∂K3 , we obtain the good condition on β and δ.

We thus just proved that |∂sϕw(s, t)| ≥ h for s ∈ Bεȳ and t ∈ I ∗β,δ , which is the
result of the lemma. ��
Proof (Proof of Lemma 19.2) Let us first prove that r1 < r2. We do it only for r1
and r2 since it is the same for r̃1 and r̃2. We have:

r2 − r1 = inf
t∈I∗β,δ

ϕx(s2, t)− sup
t∈I∗β,δ

ϕx(s1, t)

= inf
t∈I∗β,δ

ϕx(s2, t)− inf
t∈I∗β,δ

ϕx(s1, t)−
⎛
⎝ sup
t∈I∗β,δ

ϕx(s1, t)− inf
t∈I∗β,δ

ϕx(s1, t)

⎞
⎠

≥ h(s2 − s1)−
⎛
⎝ sup
t∈I∗β,δ

|∂tϕx(s1, t)|
⎞
⎠
∣∣∣I ∗β,δ
∣∣∣

≥ 2hε −
∣∣∣I ∗β,δ
∣∣∣ ,

and this quantity is strictly positive since |I ∗β,δ|< hε by construction.
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For the first inequality, we have used the mean value theorem twice, and for the
last inequality, we have used the fact that

supt∈I∗β,δ |∂tϕx(s1, t)| = supt∈I∗β,δ
∣∣∣
〈
g(t)−g(s1)‖g(t)−g(s1)‖ , g

′(t)
〉∣∣∣ ≤ 1 thanks to the

Cauchy–Schwarz inequality.
Let us now prove that the intersection (r1, r2) ∩ (r̃1, r̃2) is not empty.
Let t ∈ I ∗β,δ , we have:

r2 − ϕx(sȳ , t) = inf
t∈I∗β,δ

ϕx(s2, t)− ϕx(sȳ , t)

= inf
t∈I∗β,δ

ϕx(s2, t)− inf
t∈I∗β,δ

ϕx(sȳ , t)−
(
ϕx(sȳ , t)− inf

t∈I∗β,δ
ϕx(sȳ , t)

)

≥ h(s2 − sȳ)− |I ∗β,δ|
= hε − |I ∗β,δ|
> 0,

once again thanks to the mean value theorem. Similarly we have

ϕx(sȳ , t)− r1 = ϕx(sȳ , t)− sup
t∈I∗β,δ

ϕx(s1, t)

= ϕx(sȳ , t)− sup
t∈I∗β,δ

ϕx(sȳ , t)−
⎛
⎝ sup
t∈I∗β,δ

ϕx(s1, t)− sup
t∈I∗β,δ

ϕx(sȳ , t)

⎞
⎠

≥ −|I ∗β,δ|+h(sȳ − s1)
= hε − |I ∗β,δ|
> 0.

Moreover, since ȳ ∈ �x,x̃ , we have ϕx(sȳ , t) = ϕx̃(sȳ , t), and we thus can prove
the same inequalities with r̃1 and r̃2 instead of r1 and r2.

Finally we thus get that the interval (R1, R2) = (r1, r2) ∩ (r̃1, r̃2) is well defined
and

R2 − R1 ≥ 2
(
hε − |I ∗β,δ|

)
.

Remark 19.4 The fact that |J |= π is here to ensure that the process can go from x
and x̃ to ȳ in the proof of Proposition 19.7. If |J |< π , since x and x̃ are unspecified
and ȳ can therefore be everywhere on ∂K , nothing ensures that this path is available.

We can now state the following theorem on the speed of convergence of the
stochastic billiard in the convex set K .
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Theorem 19.4 Let K ⊂ R
2 satisfying Assumption (K) with diameter D. Let

((Xt , Vt ))t≥0 the stochastic billiard process evolving inK and verifying Assumption
(H) with |J |= π .

There exists a unique invariant probability measure χ on K × S for the process
((Xt , Vt ))t≥0.

Moreover, let us define n0 and p by (19.15) and (19.16) with ζ ∈
(

0, 2
C

)
. Let us

consider η, I ∗β,δ , R1, R2 as in Proposition 19.7 and Lemma 19.1, and let us define κ
by (19.17).

For all t ≥ 0 and all λ < λM :

‖P (Xt ∈ ·, Vt ∈ ·)− χ‖T V≤ Cλe−λt ,

where

λM = min

{
1

2D
log

(
1

1 − p
)
; 1

2D
log

(
−(1 − p)+√(1 − p)2 + 4p(1 − κ)

2p(1 − κ)

)}

and

Cλ = pκe5λD

1 − e2λD(1 − p)− e4λDp(1 − κ) .

Proof As previously, the existence of an invariant probability measure for the
stochastic billiard process comes from the compactness of K × S

1. The following
proof ensures its uniqueness and gives an explicit speed of convergence.

Let ((Xt , Vt ))t≥0 and ((X̃t , Ṽt ))t≥0 be two versions of the stochastic billiard with
(X0, V0) = (x0, v0) ∈ K × S

1 and (X̃0, Ṽ0) = (x̃0, ṽ0) ∈ K × S
1.

We define (or recall the definition for T0 and T̃0):

T0 = inf{t ≥ 0, x0 + tv0 /∈ K}, w = x0 + T0v0 ∈ ∂K,

and

T̃0 = inf{t ≥ 0, x̃0 + t ṽ0 /∈ K}, w̃ = x̃0 + T̃0ṽ0 ∈ ∂K.

Step 1 From Proposition 19.6, we deduce that for all x ∈ ∂K and all ζ ∈
(

0, 1
C

)
,

Sxn is (cρmin)
nζ n−1-continuous on the interval !n = [(n− 1)ζ, nC2 − (n− 1)ζ

]
.

Let thus ζ ∈
(

0, 1
C

)
and let us define

n0 = min {n ≥ 1 : |!n|> D} =
⎢⎢⎢⎣ D − 2ζ

2
(

1
C

− 1
)
⎥⎥⎥⎦+ 1. (19.15)
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The variables Tn0 and T̃n0 are both (cρmin)
n0ζ n0−1-continuous on [T0 + (n0 − 1)ζ,

T0 + nC
2 − (n0 − 1)ζ

] ∩
[
T̃0 + (n0 − 1)ζ, T̃0 + nC

2 − (n0 − 1)ζ
]
. Since

∣∣∣T0 − T̃0

∣∣∣
≤ D, this intersection is non-empty and its length is larger that 2n0

C
−2(n0−1)ζ−D.

Let us define

p = (cρmin)
n0ζ n0−1

(
2n0

C
− 2(n0 − 1)ζ −D

)
. (19.16)

Using the fact that the for all x ∈ ∂K , Sxn0
≤ n0D almost surely, we deduce that we

can construct a coupling such that the coupling-time T 1
c of Tn0 and T̃n0 satisfies:

T 1
c ≤st T0 + n0DG

1

with G1 ∼ G (p).

Step 2 Let us now suppose that T 1
c , ((Xt , Vt ))0≤t≤T c1 and ((X̃t , Ṽt ))0≤t≤T c1 are

constructed as described above.

We define y = XT 1
c

and ỹ = X̃T 1
c

, which are by construction of T 1
c on ∂K . We

also define N1
c = min

{
n > 0 : XTn = y}, which is deterministic conditionally to

T 1
c .

By the Proposition 19.7, we can construct a coupling of (XyS2
, S
y

2 ) and (X̃ỹ
S̃2
, S̃
y

2 )

such that

P

(
X
y
S2

= X̃ỹ
S̃2

and Sy2 = S̃y2
)
≥ η|I ∗β,δ|(R2 − R1).

Therefore we can construct ((Xt , Vt )) and ((X̃t , X̃t )) until time TN1
c+2 such that

P

(
XT

N1
c +2

= X̃T
N1
c +2

and TN1
c+2 = T̃N1

c+2

)
≥ η|I ∗β,δ|(R2 − R1).

Defining

κ = η|I ∗β,δ|(R2 − R1), (19.17)

we get that the entire coupling-time of the two processes satisfies:

T̂ ≤st T0 +
G∑
l=1

(
n0DG

l + n0D
)
= T0 +

G∑
l=1

(
n0D(G

l + 1)
)

whereG ∼ G(κ) and the (Gl)l≥1 are independent G(p) distributed, and independent
of G.
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Finally, we get

P

(
T̂ > t

)
≤ e−λt pκe5λD

1 − e2λD(1 − p)− e4λDp(1 − κ) ,

for all λ ∈ (0, λM).

19.5 Discussion

All the results presented in this paper are in dimension 2. However, the ideas
developed here can be adapted to higher dimensions. Let us briefly explain it.

19.5.1 Stochastic Billiard in a Ball of Rd

Let us first look at the stochastic billiard (X, V ) in a ball B ⊂ R
d with d ≥ 2.

As we have done in Sect. 19.3, we can represent the Markov chain (XTn, VTn)n≥0
by another Markov chain. Indeed, for n ≥ 1, the positionXTn ∈ ∂B can be uniquely
represented by its hyperspherical coordinates: a (d−1)-tuple (�1

n, · · · ,�d−1
n ) with

�1
n, · · · ,�d−2

n ∈ [0, π) and �d−1
n ∈ [0, 2π).

Similarly, for n ≥ 1, the vector speed VTn ∈ {v ∈ S
d−1 : v · nXTn ≥ 0

}
can be

represented by its hyperspherical coordinates.
Thereby, we can give relations between the different random variables as in

Proposition 19.1, and in theory, we can do explicit computations to get lower bounds
on the needed density function. Then the same coupling method in two steps can be
applied. Nevertheless, it could be difficult to manage the computations in practice
when the dimension increases.

19.5.2 Stochastic Billiard in a Convex Set K ⊂ R
d

To get bounds on the speed of convergence of the stochastic billiard (X, V ) in a
convex set K ⊂ R

d , d ≥ 2, satisfying Assumption (K), we can apply exactly
the same method as in Sect. 19.4. The main difficulty could be the proof of the
equivalent of Proposition 19.7. But it can easily be adapted, and we refer to the
proof of Lemma 5.1 in [2], where the authors lead the proof in dimension d ≥ 3.
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