
143© Springer Nature Switzerland AG 2019 
G. N. Belibasakis et al. (eds.), Oral Mucosal Immunity and Microbiome, Advances in Experimental 
Medicine and Biology 1197, https://doi.org/10.1007/978-3-030-28524-1_11

Comparative Analysis of Gene 
Expression Patterns for Oral 
Epithelium-Related Functions 
with Aging

J. L. Ebersole, L. Orraca, M. J. Novak, S. Kirakodu, 
J. Gonzalez-Martinez, and O. A. Gonzalez

 Introduction

The majority of agents that cause infections in 
humans gain access through the mucosal sur-
faces of the body. As such, the epithelium and 
epithelial cells have evolved to provide an array 
of features to protect from pathogenic chal-
lenge. These include barrier functions in which 

the epithelial cells rapidly mature and are 
sloughed from the surface while maintaining tight 
junctions enhancing exclusion of deleterious 
agents at luminal surfaces (Parrish 2017; Yu 
et al. 2012). In addition to these mechanical bar-
riers, recent evidence has supported the capacity 
of epithelial cells to constitutively synthesize an 
array of innate immune protective molecules, as 
well as a range of cell communication factors 
providing an “early warning system” to the host 
inflammatory and immune armamentarium 
(Pardo-Camacho et al. 2018; Partida-Rodriguez 
et al. 2017; Ahluwalia et al. 2017). Moreover, a 
number of these protective signaling molecules 
are induced through engagement of microbial-
associated molecular patterns (e.g., MAMPs, 
PAMPs) and danger-associated molecular pat-
terns (DAMPs) (Rajaee et al. 2018; Patel 2018; 
De Lorenzo et  al. 2018; Stocks et  al. 2018; 
Walsh et al. 2013; Olive 2012). The functions of 
the epithelial cells continue to emerge as critical 
determinants of maintaining host integrity from 
challenge with pathogenic bacteria, viruses, and 
fungi, which includes receptor recognition and 
engagement resulting in specific intracellular 
signaling pathways leading to antimicrobial 
activities in the local mucosal environment 
(Jin and Weinberg 2018; Guncu et  al. 2015; 
Sukhithasri et  al. 2013; Ho et  al. 2013; 
McCormick and Weinberg 2010).

The oral cavity is somewhat unique in the 
properties of its epithelium. While other mucosal 
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sites in the body consider it a substantial benefit to 
maintain the integrity of the barrier function, in the 
oral cavity, the epithelium is routinely deliberately 
breached from about 6 months to 21 years of age 
with eruption of the deciduous and permanent 
dentition. This developmental anomaly of innate 
immune protection has fostered the development 
of a unique junctional epithelium that covers con-
nective tissue cells and a collagen matrix that 
attaches the erupted teeth to the underlying alve-
olar bone. This junctional epithelial lining of the 
subgingival sulcus, in health, is attached to the 
cementoenamel junction of the teeth (Tsukamoto 
et  al. 2012; Hatakeyama et  al. 2006; Bosshardt 
and Lang 2005). Interestingly, in health, this 
junctional epithelium is somewhat leaky and 
allows that passage of a low protein fluid transu-
date in the gingival crevice that mechanically 
aids in rinsing colonizing bacteria into the saliva, 
which is swallowed approximating 1  L/day. 
Accompanying accumulation of bacterial depos-
its supra- and subgingivally, the gingival tissue 
reacts with an inflammatory response with the 
classic signs of acute inflammation. This inflam-
mation, termed gingivitis, is considered a revers-
ible process that responds rapidly to removal of 
the bacterial insult (Tonetti et al. 2015; Chapple 
et al. 2015). An inability to clear this stimulus can 
lead to a persistent immunoinflammatory lesion, 
i.e., periodontitis, with ulceration of the epithe-
lium, influx of an array of inflammatory cells, 
breakdown of connective tissue and collagen, 
vasculitis, and net resorption of alveolar bone at 
the localized site of the microbial challenge 
(Tonetti et al. 2015). While substantial strides are 
being made in the area of tissue regeneration to 
reestablish normal function for the periodontium 
following disease, periodontitis remains consid-
ered as irreversible once tissue destruction has 
occurred.

Age-dependent variations in epithelial barrier 
function have been previously described in dif-
ferent tissues (e.g., skin, lung, intestine, and kid-
ney) of humans and animal models. A common 
finding is an impaired cell–cell adhesion medi-
ated by tight junctions consistent with aging- 
increased permeability (Parrish 2017). 
Additionally, this decline in epithelial barrier 
function and repair seems to be associated with 

an alteration in epithelium stem cells niches 
(Doles et  al. 2012; Moorefield et  al. 2017). 
Nevertheless, the molecular mechanisms associ-
ated to these observations remain unclear. Thus, 
as the epithelial cells and functions of the epithe-
lium are critical to the health of the oral cavity, 
we used a nonhuman primate model to profile the 
transcriptome of gingival tissues in health across 
the lifespan. It was hypothesized that in younger 
animals, epithelial genes related to functions of a 
more rigid, less developmentally flexible tissue 
would be decreased, enabling these young ani-
mals to respond to the microbial burden by 
enhanced signaling pathways associated with 
rapid wound healing, anti-inflammatory/inflam-
mation resolution, maintaining an effective bar-
rier. In contrast, in older animals, these patterns 
would differ creating epithelial cells highly 
responsive to the surrounding environment and 
less able to modulate and resolve the noxious 
challenge from the bacteria in the absence of 
some collateral damage of the periodontal tissues 
and enhancing the long-term risk for initiation 
and progression of periodontitis.

 Methods

 Nonhuman Primate Model and Oral 
Clinical Evaluation

Rhesus monkeys (Macaca mulatta) (n = 23; 10 
females and 13 males) housed at the Caribbean 
Primate Research Center (CPRC) at Sabana 
Seca, Puerto Rico, were used in these studies. 
Healthy animals (5–7/group) were distributed by 
age into four groups: ≤3 years (young), 3–7 years 
(adolescent), 12–16  years (adult), and 
18–23 years (aged). The nonhuman primates are 
typically fed a 20% protein, 5% fat, and 10% 
fiber commercial monkey diet (diet 8773, Teklad 
NIB primate diet modified: Harlan Teklad). The 
diet is supplemented with fruits and vegetables, 
and water is provided ad libitum in an enclosed 
corral setting.

A protocol approved by the Institutional 
Animal Care and Use Committee (IACUC) of 
the University of Puerto Rico enabled anes-
thetized animals to be examined for clinical 
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measures of periodontal including probing 
pocket depth (PD) and bleeding on probing 
(BOP) as we have described previously 
(Ebersole et al. 2008).

 Tissue Sampling and Gene Expression 
Microarray Analysis

A buccal gingival sample from healthy tissues 
from the premolar/molar maxillary region of 
each animal was taken using a standard gingivec-
tomy technique and maintained frozen in 
RNAlater solution. Total RNA was isolated from 
each gingival tissue using a standard procedure 
as we have described, and tissue RNA samples 
submitted to the microarray core to assess RNA 
quality analyze the transcriptome using the 
GeneChip® Rhesus Macaque Genome Array 
(Affymetrix) (Meka et al. 2010; Gonzalez et al. 
2011). Individual samples were used for gene 
expression analyses.

 Data Analysis

Normalization of values across the chips was 
accomplished through signal intensity standard-
ization across each chip using Affymetrix PLIER 
algorithm. The GeneChip® Rhesus Macaque 
Genome Array contained matched and mis-
matched pairs allowing the MAS 5 algorithm to 
be used. For each gene, we first determined dif-
ferences in expression across the groups using 
ANOVA (version 9.3, SAS Inc., Cary, NC). The 
healthy-aged tissues were then compared among 
the age groups using a t-test and accepting a 
p-value ≤0.05 for significance. Because of the 
cost of these types of nonhuman primate experi-
ments and availability of primates of the various 
ages, we did not have sufficient samples to iden-
tify if the relationship between age and gene 
expression could be treated using a linear model; 
thus, the subjects were classified and ANOVA 
was used for analysis. Correlations with aging 
and clinical parameters in healthy tissues were 
determined using a Spearman Rank correlation 
analysis. A p-value ≤0.05 was used to evaluate 
the significance of the correlation. The data have 

been uploaded to http://www.ncbi.nlm.nih.gov/
geo/info/submission.html.

 Results

 Epithelium Gene Transcriptome 
in Healthy Gingival Tissues

Using the microarray results, we examined 336 
genes that are linked to epithelium and epithelial 
cells functions (Table 1). The set of genes were 
categorized into 9 broad functional groups: extra-
cellular matrix and cell structure; extracellular 
matrix remodeling enzymes; cell adhesion mole-
cules, cytoskeleton regulation; inflammatory 
response; growth factors; kinases/cell signaling; 
cell surface receptors; junction associated mole-
cules; autophagy/apoptosis; antimicrobial pep-
tides; and transcription factors.

Figure 1a–d summarizes the level of expres-
sion of genes in which the normalized signal was 
>100 in gingival tissues from any of the 4 groups 
of animals that included 255 genes. From these 
data, we identified a group of genes that were 
altered in younger and aged animals when com-
pared to expression levels in the adult tissues, 
which included selected extracellular matrix 
components (e.g., KRT2, KRT4, MMP1, MMP9, 
TIMP1, F13A1, SERPINF1, CTSK, FBN1, 
LAD1, CHI3L1), cytoskeleton regulators (e.g., 
ACTN1, TAGLN, ZYX, DES), cell surface 
receptors and adhesion molecules (e.g., SELL, 
ICAM2, ITGAL, SPP1, ITGB2, ITGA8, SELP, 
ITGAM, ICAM1, ITGAX), and host response 
genes (e.g., PPBP, CAMP, DEFB4, CXCL11).

 Aging Effects on Epithelium Gene 
Transcriptome

Within the subset of 255 genes, Fig.  2a–c pro-
vides volcano plot visualization of the distribu-
tion of altered responses and significant 
differences in the young, adolescent, and aged 
animals versus healthy adult levels that were con-
sidered to be the normal expression level. From 
these analyses, it appeared that a lower number of 
genes were significantly different in the young 
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animals versus the other groups, where 10–20% 
of the genes varied from healthy adult tissues.

Interrogating this dataset more specifically, 
Fig. 3 provides a heatmap representation of the 
fold increase or decrease in gene expression in 

healthy young, adolescent, and aged tissues com-
pared to adults. Additionally, the genes were clas-
sified into 9 categories across their range of 
functions for the epithelium and epithelial cells. 
The results showed that the extracellular matrix 

Fig. 1 (a–d): Gene expression levels in gingival tissues 
reflecting epithelium/epithelial cell functions. The lines 
represent the mean normalized signal level for each age 
group on animals. The genes are stratified into general 
functional categories and grouped in the graphs based 
upon the magnitude of signal (1: extracellular matrix 

components; 2: extracellular matrix enzymes; 3: cell 
adhesion molecules; 4: cytoskeleton regulators; 5: inflam-
matory cytokines/chemokines; 6: growth factors; 7: 
kinases/cell signaling; 8: cell surface receptors; 9: junc-
tion associated proteins; 10: autophagy/apoptosis; 11: 
antimicrobial molecules; 12: transcription factors)
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and cell structure, cell adhesion molecules, and 
cell surface receptor categories appeared to be 
most frequently different. Several extracellular 
matrix structural and cell adhesion molecules 
were elevated in the aged tissues, with generally 
decreased levels in the young tissue samples. The 
cell surface receptors were, generally, increased 
across the different age groups versus the adult 

levels. Also of interest was the lack of effect on 
the array of molecules related to epithelium junc-
tions, transcription factors, kinases, and genes 
linked to autophagy/apoptosis. Of note, specific 
genes such as SPP1 and PPBP showed and aging- 
related increase. Table  2 provides a pathway 
analysis to assess biologic processes that were 
enriched in the set of genes that were  significantly 
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Fig. 2 (a–c) Volcano 
plots of gene expression 
levels in young, 
adolescent, and aged 
animals compared to the 
healthy adult tissue 
levels. Each point 
denotes a gene related to 
fold and statistical 
difference from adult 
levels. The red dashed 
line signifies a p-value 
<0.05
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and/or >1.25-fold-regulated. As was seen in the 
heatmap, cell–matrix, cell–cell adhesion, and dif-
ferentiation were enriched. While the heatmap 
did not provide a clear visualization of alterations 
in MAPK signaling pathway genes, these were 
enriched in the pathway analysis evaluation.

Figure 4a and b focuses on the details of 
altered expression of the array of keratins that are 
critical for epithelial cell functions. The results 

showed that approximately 20 of the keratins 
were expressed at high levels in the gingival tis-
sues. Keratins 2, 5, 6B, 13, 16, 17 were all signifi-
cantly increased in healthy-aged tissues versus 
adults. In contrast, keratins 1 and 2 were signifi-
cantly decreased and keratin 17 increased in tis-
sue from young animals compared to healthy 
adults. An additional set of molecules critical for 
communication of the epithelial cells are the 

Fig. 3 Heatmap of fold differences in gene expression in 
young, adolescent, and aged animals compared to health 

adults. Genes are grouped into the 9 major categories, and 
the coloration reflects the mean differences in gene levels 
for the age group

Table 2 Major pathways of epithelial gene up-regulation in healthy gingival tissues

PANTHER biological processes
M. mulatta 
Genome # Tissue # Expected

Fold 
enrichment RawP- value FDR

Cell–matrix adhesion
Cell adhesion

46
308

5
18

0.16
1.07

31.16
16.75

9.18E−07
4.50E−17

5.06E−05
1.10E−14

Cell–cell adhesion 143 7 0.50 14.03 9.09E−07 7.39E−05
MAK cascade
Signal transduction
Cell communication

333
2088
2399

7
21
21

1.16
7.28
8.37

6.03
2.88
2.51

1.79E−04
6.37E−06
5.16E−05

5.47E−03
3.11E−04
1.80E−03

Regulation of phosphate 
metabolic processes

509 8 1.78 4.51 4.24E−04 1.15E−02

Cell differentiation
Developmental process

503
1412

7
16

1.75
1.93

3.99
3.25

1.96E−03
2.54E−05

4.78E−02
1.03E−03
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array of integrin surface receptors. Figure 5 pro-
vides an overview of these response profiles 
across the age groups. Approximately 15 of these 
integrins are highly expressed in the gingival tis-
sues across the age groups. Only ITGA8, ITGAM 
(CD11b), and ITGB2 were significantly increased 
in the aged tissues compared to adults, with no 
difference in the younger animals. ITGB2 is a 

component portion of integrins that bind ICAMs, 
VCAM, and even complement components. 
ITGAM/ITGB2 is particularly implicated in 
interactions of monocytes, macrophages, and 
granulocytes and the uptake of complement- 
coated particles. Thus, while these integrins can 
be related to epithelial cell biology, their role in 
these complex oral tissues may be more related to 
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Fig. 4 (a and b) Normalized gene expression levels for keratins in the 4 age groups. The bars denote mean group levels. 
The asterisk (∗) signifies statistically different than other groups at p < 0.05
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the physiologic inflammation of the gingiva and 
reflect tissue maintenance by inflammatory cell 
responses in these tissues. Lastly, we focused on 
the array of biomolecules related to epithelial 
junctions including desmosomal and hemides-
mosomal proteins (Fig. 6a, b). As was noted from 
the heatmap, few of these proteins were signifi-
cantly altered across the age groups, with only 
CDSN (corneodesmosin) being increased in 
younger animals versus adults, and COL7A1 
(collagen) and LAMA5 (laminin) decreased in 
the aged animal tissues.

The data were also analyzed beyond an age 
categorization (young, adolescent, adult, aged) 
by evaluating correlations of the gene expression 
profiles with age as a continuous variable 
(Fig. 7a). The results demonstrated about 10% of 
the genes demonstrated significant correlations 
(p  <  0.01) with similar numbers positively and 
negatively correlated. While those positively cor-
related genes represented a range of functions, of 
interest was the number of collagen and integrin 
genes that were significantly decreased with 
aging even in healthy tissues. Figure 7b, c pro-
vides a similar type of assessment, relating gene 
profiles to clinical features of the periodontium in 
the healthy animals (bleeding on probing—BOP; 
mean probing pocket depth—PPD). In contrast to 
the correlations with age, fewer relationships 
were observed with either of the clinical param-

eters, with only PLAU, SMURF1, and MAP 
3 K5 genes positively correlated and KRT17 and 
BMP2 negatively correlated with both BOP and 
PPD.

 Discussion

Within the paradigms of gingivitis and periodon-
titis that affect the global population, there remain 
some observations that have yet to be understood 
at the molecular level. First, while gingivitis is 
generally considered to presage to periodontal 
lesions, identified populations have long- 
standing, florid gingival inflammation and never 
progress to periodontitis (Loe et al. 1986; Lang 
et  al. 2009). Second, many cases of localized 
aggressive periodontitis that tend to occur in 
younger individuals associated with infection 
with Aggregatibacter actinomycetemcomitans 
demonstrate substantial rapid localized bone loss 
in the absence of gross inflammatory changes in 
the gingival tissues (Kinane and Hodge 2001; 
Jenkins and Papapanou 2001; Bimstein et  al. 
2002). Third, in children and adolescents, there is 
a high incidence of gingivitis that increases in prev-
alence and severity through puberty, in the absence 
of progressing to periodontitis (Albandar and 
Tinoco 2002; Modeer and Wondimu 2000; 
Bimstein et al. 2013; Bimstein and Ebersole 1989). 
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Fourth, during pregnancy, subsets of women can 
develop rather severe pregnancy- associated gin-
givitis that has been suggested to be linked to 
hormonal changes that could influence the oral 
microbial ecology, although there remains sparse 

data documenting the molecular features of this 
unique gingivitis that does not progress to peri-
odontitis (Gumus et al. 2016; Gursoy et al. 2014; 
Barak et al. 2003). Finally, periodontitis has long 
been described as a disease of aging with sub-
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stantial increases in incidence and severity in 
aging populations, and thought to be related to a 
lifetime accumulation of noxious challenge to the 
gingival tissues (Papapanou and Susin 2017; Wu 
et  al. 2016; Lamster et  al. 2016; Hajishengallis 
2014; Huttner et al. 2009). Thus, there remains a 
need to better understand the underlying molecu-
lar biology of the range of cells in gingival tissues 
and how their functions can dictate variation in 
disease expression across the lifespan.

This study used a nonhuman primate model to 
focus in the biology of the epithelium and epithe-
lial cells in gingival tissues to test a hypothesis 
that alterations in the transcriptome representing 
a range of functions of these cells/tissues would 
be altered with aging even in clinically healthy 
sites. We had previously reported on rather dra-
matic changes in various immune and inflamma-
tory cells in gingival tissues in this model. There 
were clear alterations even in healthy-aged tis-
sues with regard to lymphocyte classes (Ebersole 
et  al. 2014, 2016a), apoptosis (Gonzalez et  al. 
2011, 2013), macrophage function and antigen 
recognition and presentation (Gonzalez et  al. 
2014, 2015, 2018), hypoxia (Ebersole et  al. 
2018), and inflammasome characteristics 
(Ebersole et  al. 2016b). However, while there 
were some differences in the epithelial-related 
gene expression profiles in periodontal health 
with aging, the number of genes affected with a 
fold-change >1.25 was only about 30% and only 
8% >1.5-fold. These alterations were also focused 
on a more limited functional activity of the epi-
thelium/epithelial cells with extracellular matrix 
structural components, cell adhesion molecules, 
and cell surface receptors appearing to be most 
greatly affected.

Drilling down into these categories, multiple 
collagen and keratin gene levels were lower in 
young versus aged tissues, which were confirmed 
with correlation analysis related to aging. These 
findings suggested that these altered structural 
components in healthy aging could either reflect 
a physiological adaptation with aging that helps 
to maintain healthy tissues, or potentially these 
changes reflect altered epithelium characteristics 
that could increase the risk for initiation of peri-
odontitis. Clear histopathological results demon-

strate a breakdown in epithelium integrity 
accompanying the chronic inflammation of peri-
odontitis (Bosshardt and Lang 2005; Dale 2002; 
Van der Velden 1984). It is accepted that these 
microulcerations enhance access of the microbi-
ome components (e.g., bacteria, bacterial struc-
tures) into deeper tissues contributing to 
activating the local inflammatory response 
responsible for tissue destruction. Additionally, 
this process is considered as part of the feature 
allowing bacteria to traverse the gingival tissues 
and enter into the systemic circulation (Cardoso 
et  al. 2018; Abbayya et  al. 2015; Maddi and 
Scannapieco 2013; Kumar 2013). However, 
examination of the genes related to cell–cell 
interactions and cell–matrix interactions (desmo-
somes, hemidesmosomes) did not show a sub-
stantial impact of aging on the expression of 
these molecules. Thus, how these patterns reflect 
aging processes in health and risk for disease 
remains ill-defined, and further studies will be 
required to discriminate between these options.

An array of genes for cell adhesion molecules 
including cadherins, integrins, caveolins, and 
selectins were increased with aging. These mol-
ecules are critical for maintaining homeostasis of 
the epithelium in the septic environment of the 
oral cavity. Thus, since the tissue samples were 
from clinically healthy sites in the aged animals, 
this type of response profile may signify an effec-
tive healthy aging process in the tissues from 
these animals. Of note, remarkably elevated gin-
gival expression levels of SPP (osteopontin) and 
PPBP (pro-platelet basic protein:CXCL7:NAP-2) 
were observed with aging. SPP has been shown 
to play important roles in wound healing seem-
ingly through inhibiting apoptosis and modulat-
ing the expression of MMPs (Icer and 
Gezmen-Karadag 2018). From an epithelial cell 
function viewpoint, PPBP as a heterodimer with 
other chemokines is involved in glycosaminogly-
can interactions with cells via the CXCR2 recep-
tor (Brown et al. 2017). It is a chemoattractant for 
neutrophils and has some antimicrobials activi-
ties. This chemokine has been associated with the 
pathogenesis of chronic diseases, such as cancer 
and arthritis (Yeo et  al. 2016; Desurmont et  al. 
2015). It is also identified as one of a group of 
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platelet-associated chemokines that were system-
ically elevated in patients with antiphospholipid 
syndrome (Patsouras et al. 2015), which has also 
been linked to the microbiome in periodontitis 
(Schenkein et al. 2003). Finally, a recent study by 
Shusterman et  al. (2017) combining data from 
murine studies and an existing human dataset 
identified a gene cluster of platelet factor 4 
(PF4:CXCL4)/PPBP/CXCL5 (neutrophil acti-
vating peptide 78: ENA-78) being significantly 
associated with aggressive periodontitis. These 
variations are consistent with previous reports 
demonstrating the persistence of inflammatory 
cells in diseased gingiva that may results from 
decreased apoptotic responses and/or enhanced 
transmigration of neutrophils into the inflamma-
tory lesion with aging (Gonzalez et  al. 2013; 
Wael Youssef 2018; Xia et al. 2017; Zhang et al. 
2016; Jang et al. 2015; Sakai et al. 1999). Since 
this study showed elevations in “clinically 
healthy” aging tissues, there is a potential that 
this profile describes an enhanced risk of exhibit-
ing disease initiation in the aged individuals.

While considerable effort has been delivered 
in attempting to delineate the microbiome and 
host response parameters that drive the disease 
process, there remains much less information 
defining, at the molecular level, what tissue 
responses are required to help maintain health. 
Recently, understanding the characteristics of the 
bacteria that constitute a healthy microbiome and 
the metabolic functions for these commensal 
bacteria has come under increasing scrutiny as 
both an explanatory variable in determining the 
population variation in disease and as a potential 
therapeutic target for more biologically oriented 
treatment strategies (Nassar et al. 2017; Ebersole 
et  al. 2017; Hajishengallis and Lamont 2016; 
Lamont and Hajishengallis 2015; Wade 2013). 
However, much less is known regarding the host 
features controlling the periodontal microbiome 
in health. As an example, there is limited litera-
ture that the expression of various epithelial 
genes/proteins can be regulated by microbial bio-
films and that members of the “red complex” can 

alter components of the epithelial junctions, par-
ticularly desmosomal components (Belibasakis 
et  al. 2015). However, if age-associated altera-
tions in these epithelial functions can affect the 
characteristics of the subgingival microbiome in 
moving from health to disease related remains 
unknown.

As noted, our previous examination of the gin-
gival transcriptome in healthy nonhuman primates 
with aging, as well as with naturally occurring 
periodontitis demonstrated significant differences 
in gene profiles that supported innate and adaptive 
immune responses, inflammation, and cellular 
senescence changes occur in aging gingival tissues 
even when clinically healthy. These findings sug-
gested that a basis for increased periodontitis in 
the human population with age may be linked to 
inherent changes in the biology of the gingival tis-
sues during aging decreasing the capacity of the 
tissues to respond to local environmental changes, 
including alterations in the pathogenic capacity of 
the microbiome (Belibasakis 2018). The findings 
from this study suggested some changes in the 
functional activities of the epithelium and epithe-
lial cells with aging; however, these differences 
were considerably less that noted with aging 
effects on immune system components. These 
more marginal changes in healthy aging will need 
to be evaluated in the context of the changes taking 
place in naturally occurring periodontitis, as well 
as the dynamics of epithelial responses in the gin-
gival during ligature-induced periodontitis using 
this human-like disease model. Therefore, a more 
clear understanding of the fundamental biologic 
responses of the epithelium should provide insight 
into disease variation related to increased suscepti-
bility or resistance to periodontitis across the 
population.
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