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Abstract. This work provides a new evaluation method of the dila-
tancy for cohesive soils from monotonic and cyclic undrained triaxial
tests. Herein it is implemented for experiments performed on Kaolin.
Leastwise for this soft soil the dilatancy turns out to be a function of
the stress ratio η and the void ratio e along with the intrinsic material
parameters. Furthermore, an OCR-definition, which includes the influ-
ence of both the stress ratio and void ratio such that d = f(OCR, C)
with C being a set of inherent parameters is proposed. In addition based
on the experimental observations it is suggested that there is an over-
consolidation ratio OCRci at which the soft soil behaviour changes from
contractant in case of OCR < OCRci to dilatant (the material can both
contract and dilate depending on η) in case of OCR > OCRci with the
PTL lying below the CSL in this case. Finally, a constitutive relation
describing the behaviour of soft soils including the dilatancy and viscos-
ity is proposed. Some simulations of monotonic as well as cyclic tests are
shown to prove the accurate performance of the model.

1 Introduction

The design of geotechnical installations in offshore constructions for example
gravity platforms, piled installations, suction anchors, drilling rigs, wind tur-
bines or constructions along the coast for example harbours, breakwaters, dams,
storm-surge barriers is governed by the bearing capacity and the serviceability of
the structures under cyclic loading [1]. In most of these cases, the underground
consists of soft and normalconsolidated clays, sand-clay or sand-silt mixtures.
A soft normalconsolidated clay subjected to cyclic loading passes through dif-
ferent overconsolidation ratios OCR ≥ 1. Though if the cyclic behaviour of a
normalconsolidated clay with a moderately number of cycles is described, the
behaviour of an overconsolidated clay is captured by the way. Various effects
of clays become increasingly important at different stages of these cyclic tests
as for example at the beginning OCR = 1 the time-dependent behaviour of a
plastic clay achieves its maximum. For 1 < OCR ≤ 2 the rate-dependency of
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the clay decays sparsely and depending on the subjected loading magnitude the
response of the material is contractant. This leads to the generation of excess
pore water pressure resulting in a reduction of the bearing capacity and decay
of the barotropic soil stiffness. Towards higher OCR > 2 a significant reduction
of the viscous effects is evident, whereby now the materials’ phase transforma-
tion line (PTL) lies below the critical state line, thus besides contractancy also
dilatant behaviour can be observed when reaching the PTL.

Dilatancy and contractancy, hereafter referred to collectively as dilatancy,
are highly relevant for geotechnical issues dealing with volumetric change due
to shearing. Under undrained conditions the prevented dilatancy leads to an
increase of the mean pressure and the prevented contractancy can lead to a con-
siderable decay of the same pressure. The consequences are then an increasing
accumulation of the pore water preassure, a decay of the barotropic stiffness as
well as a considerable reduction of the shear strength qmax. Accurate and reli-
able predictions of post-seismic irreversible displacements in retaining structures
supporting fine-grained and low-permeable soils can therefore be obtained only
if the adopted constitutive model is capable of capturing correctly the soil dila-
tancy as a function of the current stress and loading history [2]. Furthermore,
the dilatancy is shown to depend also on other state variables as the void ratio
e [3–8] as well as on the sample preparation method [9].

The dilatancy of sands has been the research target of many authors [3–8]
in the last decades. Among others, Taylor documented in [3]: “The shearing
strength” τm = σ tan ϕm “in sand may be said to consist of two parts, the inter-
nal, frictional resistance between grains, which is a combination of rolling and
sliding friction,” τc = σ tan ϕc “and a second factor for which the most common
name is interlocking.” τd = σ tan ϕd = σ tan ψ. “Interlocking contributes a large
portion of the strength in dense sands; this phenomenon does not occur in very
loose sands. The gradual loss of strength after the peak point is passed, ..., may
be attributed to a gradual descrease in interlocking which takes place because
the sample is decreasing in density. The angle of internal friction, in spite of its
name, does not depend solely on internal friction, since a portion of the shear-
ing stress on a plane of failure is utilized in overcoming interlocking.”1 which
mathematically can be expressed through:

τm = τc + τd (1)

whereby the subscripts m, c and d denote the mobilized, critical and dilatant state,
respectively. Further Taylor [3] suggests: “Interlocking can best be explained by
considerations of strain energy. Sands generally are undergoing increase in vol-
ume” (expansion) “when the φ-obliquity condition is reached,” Ed

e = σAΔh
(superscript d stays for dissipated, subscript e stays for expansion) “and the part
of the shearing stress that is acting to overcome interlocking may also be said to
be supplying the energy that is being expended in volume increase.” (See footnote
1) Es

e = τAΔu (superscript s stays for supplied). Assuming σ = const. as defined
in Fig. 1 we can establish the equilibrium between these two energies:
1 Taylor in 1954 [3], pp. 345–347.
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Ed
e = Es

e ⇒ σAΔh = τAΔu ⇒ τ = σΔh/Δu (2)

Due to the equality between the shear strength during expansion τ with the
shear strength resulting from interlocking τd, Eq. 1 can be rewritten to:

σ tan ϕm = σ tan ϕc + σΔh/Δu (3)
⇒ tan ϕm = tan ϕc + tan ψ. (4)

Fig. 1. Shearing of a dense sand with interlocking.

Note that the assumption σ = const. guarantees that the volume change dvd

is induced by pure shearing. Otherwise, for example in an undrained or drained
triaxial test (p �= const.) the knowledge about the elasticity of the material is
required in order to identify which portion of the volumetric and shear change
is due to the variation of the applied stresses and which one due to interlocking.
In this case instead of the normal σ and shear τ stresses, the stress tensor σ is
used and instead of the height change Δh and the horizontal displacement Δu,
the strain tensor ε is used. Then, the dilatancy is expressed through the ratio
between the increment of the plastic volumetric change and the plastic shear
strain increment:

d = dvp/|dγp|. (5)

Although the particular forms proposed by Taylor [3] and by Rowe [4] were
different, both of them recommended a unique function dependent on the stress
ratio η = q/p for the dilatancy, as depicted by Li and Dafalias [6] d = d(η, C)
whereby C is a set of inherent material properties. However, experimental evi-
dence postulates [5,9–11] a density dependence of the dilatancy as well. For
example dense sand dilates after minor initial contractancy and loose sand con-
tracts during shearing. For this purpose researchers proposed various expressions
of state-dependent dilatancy for sands, which will be reviewed in Sect. 3 after the
formal extension from direct shear to triaxial conditions, which are provided in
Sect. 2.

On the other side, too little attention has been paid to the dilatant behaviour
of clays. Li and Dafalias [6] indicate that d = d(η,M) with the slope of the crit-
ical state line denoted as M works quite well for clays. This may correspond
for normalconsolidated clays (compare the behaviour of loose sands). However,
experimental evidence has shown that overconsolidated clays dilate [9,12–15]
showing a similar response as medium dense and dense sand. Section 4 provides
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an overview and the evaluation of experimental data on normal- and overconsoli-
dated clays regarding their dilatancy. Then, in Sect. 5 a state dependent dilatancy
for clays is formulated. Finally, the reference model [15] is extended to account
for the dilatancy of clays. The models’ performance is evaluated through simu-
lations of experimental data of Kaolin with variation of initial OCR0.

2 From Direct Shear to General Conditions

In a general case the material state is described through the stress tensor σ
replacing the normal stress σ and the shear stress τ and through the strain rate
(increment tensor) ε̇ (dε). The dilatancy is then defined as the negative ratio
between the irreversible strain invariants: plastic volumetric strain increment
and the plastic deviatoric strain increment:

d = −dεp
v/|dεp

q |. (6)

In order to generalize the dilatancy rule given in Eq. 4 we start with the
thermodynamic equilibrium of a direct shear test whereby the introduced power
density τ γ̇ + σε̇ is partly stored as elastic power τ γ̇e + σε̇e and partly converted
into heat due to the friction between the grain contacts tanϕc σ|γ̇p|. Thus, a
constraint on the plastic strain rates (i.e. on the flow rule) can be established
from the relation:

τ γ̇p + σε̇p = tan ϕcσ|γ̇p|. (7)

Due to the vanishing plastic strains at reversals in elasto-plasticity, it is more
convenient to rewrite Eq. 7 with total strain rates:

τ γ̇ + σε̇ = tan ϕcσ|γ̇|. (8)

Note that the relation 8 is deduced considering σ = const. For triaxial con-
ditions Eq. 8 reads qε̇q + pε̇v = M p |ε̇q| and using the energetically conjugated
tensorial values σ : ε̇ for the left hand side and ε̇∗ for the last therm on the right
hand side the generalization of the dilatancy rule given in Eq. 8 is straightforward
and reads:

σ : ε̇ =

√
2
3

1
3
M 1 : σ|ε̇∗| (9)

with p = 1 : σ/3 = const. Relations 7, 8 and 9 operate as dilatancy constraints
for both loading εq > 0 and for unloading εq < 0 conditions. In order to impose
this constraint in an for example isotropic elastic model an anisotropic term Epq

of the stiffness tensor for the consideration of dilatancy is necessary. Without
loss of generality we consider triaxial conditions:[

Δp
Δq

]
=

[
Epp Epq

0 Eqq

] [
Δεv

Δεq

]
(10)

with Epp = K and Eqq = 3G. Imposing the dilatancy constraint according to
Eq. 9 for Δp = 0 the coupling stiffness therm between the increment of p and of
εq reads:

Epq = Epp (M − η). (11)
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Obviously, an undrained shearing ε̇v = 0 simulated with the model given
in Eq. 10 produces contractancy resulting in mean pressure reduction Δp < 0.
To impose the condition given in Eq. 9 in a sophisticated constitutive model is
however almost impossible. For this reason the generalization of other variables
that define the dilatancy is indispensable.

Pradhan and Tatsuoka reported in [10] the following two relations between
the dilatancy d (herein defined in strain invariants, see Eq. 6) and the dilatancy
angle ψ for isobaric triaxial conditions:

d =

⎧⎪⎨
⎪⎩

3
2

4 sin ψ

3 − sin ψ

−3
2

4 sin ψ

3 + sinψ

=
6 sin ψ

3 − sin ψ
for axial compression (dεq > 0)

= − 6 sin ψ

3 + sin ψ
for axial extension (dεq < 0).

(12)

Note that the factor 3/2 on the RHS is introduced because Pradhan & Tat-
suoka used dγp instead of the invariant dεp

q = 2/3 dγp appearing in Eq. 6. Taking
into consideration for example the Matsuoka-Nakai failure criterion [16] and the
Mohr-Coulomb criterion as well, the slope of the critical state line in triaxial
compression and triaxial extension with respect to the critical friction angle ϕc

reads:

M =

⎧⎪⎨
⎪⎩

6 sin ϕc

3 − sin ϕc
for compression (q > 0)

− 6 sin ϕc

3 + sinϕc
for extension (q < 0)

(13)

The analogy between d given in Eq. 12 and M presented in Eq. 13 is obvious.
Yet, it is mandatory to realize the difference in the definition of compression and
extension whether using the stress or the strain. The definition for the critical
state (CS) is realised in the stress space with q > 0 for compression and q < 0
for extension. Thus, the generalization of M to multiaxial space is executed by
means of the Lode angle of the stress θσ :

M =
6 sin ϕc

3 − sin ϕc cos(3θσ )
(14)

A similar relation leading to same results was proposed by Argyris et al. [17]
and was used for other constitutive models e.g. [18–20]. The link between the
stress and the strain in CS is established through the critical void ratio, to be
defined in Eq. 23.

Yet, when we consider the same stress ratio η (viz. same stress state), two dif-
ferent values for d depending on the direction of straining increment are possible
as documented by Pradhan et al. [5] for sands (experiments from [5] are illus-
trated exemplarily in Fig. 3). Figure 2b shows two different stress states (but
three strain states Fig. 2a, c) with different loading and straining directions:
1 = loading in axial compression leading to the blue point, whereby the devia-
toric strain tensor and its rate have the same direction as illustrated in Fig. 2c;
2 = loading reversal from axial compression to axial extension or unloading lead-
ing to stress and strain reversal and to the red point, the deviatoric strain tensor
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and its rate have opposite directions as illustrated in Fig. 2c; 3 = continued load-
ing in axial extension leading to the green square. Eventhough the stress state of
the green square coincides with the one of the blue point, the deviatoric strain
tensor of the green square and its rate have certainly the same direction but
nonetheless opposite to the ones of the blue point. For all states the deviatoric
stress direction shows in the same direction but the stress increment direction
is unknown. Thus, for the generalization of the dilatancy to multiaxial space,
neither the stress tensor nor its unknown increment can be used. However, given
the definition in strain space through Eq. 12, the most natural is to use the
direction of the deviatoric strain rate, which is also in accordance with the obser-
vations presented in Fig. 2 and with the experimental behavior of sand reported
for example in [5,10,21]. Thus, we propose a generalization of d considering the
direction of the strain rate through its Lode angle θε̇ = θε̇∗ (note that for the
Lode angle calculation only the deviatoric component of the tensor is needed):

d =
6 sin ψ

3 − sin ψ cos(3θε̇)
(15)

and thus the stress ratio at the phase transformation line ηPTL which we will
denote in general with Md reads:

ηPTL =
6 sin ϕPTL

3 − sin ϕPTL cos(3θε̇)
!= Md. (16)

Note that Eq. 16 establishes the interrelation between the strain space and
the stress space for the dilatancy. The phase transformation angle of friction
ϕPTL will be discussed and defined in the next Section.

Furthermore, Pradhan et al. [5,10,21] studied the relationship between the
dilatancy d and the stress ratio η of sand subjected to cyclic loading, whereby
they postulate a unique relationship between the stress ratio and the dilatancy
irrespective of void ratio and pressure level. During for example undrained cyclic
loading the void ratio remains the same but the mean pressure changes resulting
in a change of the critical void ratio. Hence, after a certain reduction of p the
soil state is dense e < ec and when the stress state goes towards the phase
transformation state η

!= ηPTL = qPTL/pPTL both the mean stress and the
deviatoric stress increase reaching a peak value. At the reversal point the stress
path goes towards lower p and q viz. lower η with the greatest contractancy.
Consequently, the dilatancy relation d − η of each cycle may be alike in shape,
but not the same because until e > ec d ≤ 0 holds and when e < ec d � 0
holds depending on η. Yet, neither Pradhan et al. [5,10,21] nor the relations 7–9
consider the void ratio dependence of the dilatancy.
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Fig. 2. Example of two different stress states (but three strain states) with different
loading and straining directions: 1 = loading in compression, the deviatoric strain tensor
and its rate have the same direction; 2 = loading in axial extension or unloading leading
to stress and strain reversal, the deviatoric strain tensor and its rate have opposite
directions; 3 = loading in extension leading to the green square. Eventhough the stress
state of the green square coincides with the one of the blue point, the deviatoric strain
tensor of the green square and its rate have certainly the same direction but nonetheless
opposite to the one of the blue point. For all states the deviatoric stress direction shows
in the same direction but the stress increment direction is unknown. (a) η − γ space,
(b) effective stress in p − q plane, (c) εp − εq space.
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3 Overview of Expressions Describing the
State-Dependent Dilatancy of Cohesionless Soils

Except of the state dependence, the dilatancy has to fulfill certain requirements
arising from experimental evidence. On one side, at the phase transformation line
(PTL) i.e. at η = Md the dilatancy vanishes d(η = Md) = 0 [22]. On the other
side, the critical state represents an ultimate state of failure at which η = M
and e = const. thus no volumetric strain occurs. The constant volumetric strain
dvd = 0 implies d(η = M, e = ec) = 0 at the critical state. A unique relationship
between d and η would render M = Md, which can represent an exceptional case
for a certain value of e0. However, in general laboratory data show that dense
sand dilates Md < M and loose sand contracts Md > M .

In the following we will review two approaches for the constitutive description
of the state-dependent dilatancy of cohesionless soils.

3.1 State-Dependent Dilatancy for Monotonic Loading Described
by Li and Dafalias [6]

In order to account for the density dependence of the Dilatancy for sands, Li
and Dafalias [6] proposed a state-dependent expression for d:

d =
d0
M

(M exp(mψ) − η) , ψ = e − ec(p′). (17)

The fulfillment of the critical state requirements for e = ec ⇒ ψ = 0 and
η = M is evident. The second requirement d(η = Md) = 0 implies a void ratio
dependence of the phase transformation stress ratio Md = M exp(mψ).

The relationship proposed in Eq. 17 is illustrated in Fig. 3, whereby blue dots
represent the experimental results of Pradhan et al. [5]. It is obvious that the
relation given in Eq. 17 (orange lines in Fig. 3) is not in accordance with exper-
imental evidence for axial extension. These disadvantages of Eq. 17 resulted in
the introduction of the so-called fabric-dilatancy internal tensor-valued variable
z by Dafalias and Manzari [23].

3.2 State-Dependent Dilatancy Described by Grandas and
Triantafyllidis [24]

The dilatancy relation derived in Eq. 4 is void ratio independent and from Fig. 3
(purple lines) it can be observed that the Taylor’s rule neither captures the strong
contractancy upon reversals. To describe a state-dependent Dilatancy Grandas
and Triantafyllidis [24] proposed a modification of the term describing the critical
state tan ϕc analogous to the idea proposed by [6]. For this purpose the tangens of
the critical state angle of friction is replaced by tanϕPTL = tan ϕc/fe, whereby
fe is a scalar function of void ratio and mean pressure. Some requirements has
to be imposed on the formulation of the void ratio function fe:
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Fig. 3. Experimental results of constant pressure triaxial tests of Pradhan et al. [5]
compared with the dilatancy relations proposed by Li and Dafalias [6] and Grandas
and Triantafyllidis [24].

• if the mobilized state of the material is at failure i.e. the critical state is
reached then ϕm = ϕc and the dilatancy vanishes viz. ψ = 0. Thus, the void
ratio function should render fe = 1.

• when subjected to shearing, dense sand dilates which renders Md < M .
Hence, tan ϕPTL < tan ϕc resulting in fe > 1.

• loose sand upon shearing contracts and the phase transformation line lies
then above the critical state line Md > M and may not be reached under
monotonic loading. Thus, tanϕPTL > tan ϕc results in fe < 1.

Equation 4 now reads:

tan ψ = tan ϕm − tan ϕc/fe. (18)

Experiments evidence the maximum contractancy upon reversals of the strain
path, see Fig. 3 and the reflections made in Sect. 2. This effect can be described by
extending the dilatancy rule from Eq. 18 to account for the direction of shearing.
A thermodynamically conform extension is proposed through the relation:

tan ψ =
→
σ∗:

→
ε̇∗ tan ϕm − tan ϕc/fe. (19)

This relation is depicted in Fig. 3 with red lines and shows a perfect agreement
with the experimental data of Pradhan et al. [5]. Thus, the dilatancy expressed
by d or ψ is not only a function of stress as in Cam Clay theory d = f(σ, C) or
from stress and void ratio as assumed by Li and Dafalias [6] d = f(σ, e, C), but

also a function of the direction of shearing ψ = f(σ, e,
→
ε̇∗, C). Intrinsic material

parameters denoted with C are of course included.

4 Experimental Findings Regarding the Dilatancy
of Cohesive Soils

It is tentatively assumed that the dilatancy of fine-grained soils is only depen-
dent on the stress ratio and on the intrinsic material parameters [25–29]. Yet,
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experimental evidence gained for example in [9] shows that with increasing OCR
resulting in a lower void ratio e0 prior to the undrained monotonic shearing, the
material response is rendered more dilative and an increase of the undrained
shear strength is evidenced. For normalconsolidated samples the PTL may not
be reached during shearing Md ≥ M rendering the material response contrac-
tant. However, the PTL is observed to lie below the CSL for overconsolidated
samples Md < M . Similar dependencies of the dilatancy on the overconsolidation
ratio can be concluded from the experiments presented in [12,30–40]. Neverthe-
less, the dilatancy effects and their dependence on the overconsolidation ratio,
which is not trivial, was mostly ignored in the constitutive modeling of soft soils.

4.1 Basic Postulates

In order to proceed with some findings the therms normalconsolidated, lightly
overconsolidated and heavily overconsolidated need to be defined. Consider
isotropic states (q = 0) and isotropic loading directions (q̇ = 0) then the state
of the material is defined by a combination of the void ratio e and the mean
pressure p, whereby the normal consolidated state (OCR = 1) is given by the
maximum void ratio ei, see also Fig. 4:

ei = ei0 − λ ln(p/pref ). (20)

The slope of the normal consolidated line (NCL) in e vs. p diagram is deter-
mined through the compression index λ and its position is defined through the
material constant ei0 specified at a reference mean pressure pref . Equation 20
can be solved for the void ratio equivalent normalconsolidated pressure imposing
the condition e = ei. Then, the relation proposed by Hvorslev [41] is obtained:

pei = exp
(

ei0 − e

λ

)
. (21)

pei can be termed also as preconsolidation pressure (similarly to pc in Cam Clay)
and the formulation of its evolution rate is straightforward:

ṗei = − ė

λ
exp

(
ei0 − e

λ

)
(22)

Similarly to the NCL, the critical void ratio line in e vs. p diagram can be
defined through:

ec = ec0 − λ ln(p/pref,c). (23)

In analogy to sands and gravels, which are defined as loose or dense depending
on the position of the state with respect to the critical void ratio line, also clays
can be defined as lightly overconsolidated or heavily oversoncolidated. The anal-
ogy between the behaviour of grained and fine-grained soils has been depicted
also in the pioneer work of Atkinson [42], but has been almost ignored in sub-
sequent research. We define a material state lying between the NCL (OCR = 1)
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Fig. 4. State of soils for isotropic initial q0 = 0 and isotropic loading conditions q̇ = 0.

and the critical void ratio line (OCR = OCRci > 1) (blue area in Fig. 4) as
lightly overconsolidated (1 < OCR < OCRci), similar to the definitions in [42].
The subscript ci stays for the critical isotropic line. The necessity for this def-
inition will be clear after the generalization to three dimensional states in the
next pages. However, the aforementioned states of soils are likely to be called
on the “wet” side of the critical, not to be mixed up with the saturation of the
soil. The soil is either saturated or dry and “wet” means that the void ratio e
or the water content w at a mean pressure p is higher than the critical one ec or
more wet than the critical one wc, respectively. For a heavily overconsolidated
clay OCR > OCRci (green area in Fig. 4) the void ratio is lower than the critical
one. Therefore, the soil is termed on the “dry” side i.e. drier than at the critical
line. These classifications correspond to the analogous characterisations of loose
and dense sands. Note that only isotropic states q = 0 and isotropic loading
directions q̇ = 0 are discussed above and illustrated in Fig. 4.

Now let us consider general stress states with q �= 0. Then the soil is at
its critical state when both the critical state line (CSL) η = qc/pc

!= M and
the critical void ratio line e

!= ec are reached. Eventhough the definition of
the CS is “ordinary”, the classification lightly or heavily overconsolidated is not
straightforward. We first consider the state A in Fig. 5a on top, which is normal-
consolidated. The most natural is to think that point A which is in e vs. p space
uniquely defined, possesses infinite projections on the p vs. q plane along the
line pA = const. Three marking states along this line are illustrated in Fig. 5a at
the bottom: A1 at q = 0, A2 at q < qc and A3 at the critical state q = qc. Each
of these states are normalconsolidated if they are passed in the numbered order
A1−A2−A3. In order to ensure uniqueness for general states we introduce the
widely used concept of the loading surface. The (pre)loading surface represents a
constant void ratio e = const. and constant overconsolidation ratio surface which
intersects the p-axis at p = pei if OCR = 1. The critical state line and the loading
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surface intersect each other at p = pei/OCRci and q = ηc p. Consequently, the
points A1, A2 and A3 correspond to three different loading surfaces intersecting
the p-axis at different mean preassures pei,A1 = pA < pei,A2 < pei,A3. Figure 5(a
and b) shows exemplary the loading surface for A1, which expands for the load-
ing sequence A1–A2–A3 keeping the same shape. If they were projections of
point A then pei,A1 = pA = pei,A2 = pei,A3 would hold, which obviosly is in
contradiction with the loading surface theory. Therefore, the projection of the
NCL defined in e − p space can be only realised for q = 0, hence in the isotropic
axis of p − q diagram and then A = A1 is uniquely defined in both spaces. If the
initial state of the material corresponds to A2 and the sample is subjected to
deviatoric unloading until the isotropic axis is reached, then the final state of
the material is overconsolidated eventhough the void ratio and the mean stress
remain unchanged pei,A2 > pei,A1 = pA.

Secondly we will analyze states lying at the critical void ratio line denoted
with point B in e vs. p diagram (Fig. 5a on top) having the same void ratio as A
but lower mean pressure. Once more, one may think that infinite projections of
B are possible in the p− q space. In Fig. 5a on bottom, exemplary three of these
projections are illustrated. Along the same lines of thoughts as for the NCL,
also the critical void ratio line is to be projected at the isotropic axis. Thus, the
unique projection of B corresponds to B1 (q = 0) and is equivalent to the states
which separate the “wet” side from the “dry” side corresponding to a critical
overconsolidation ratio OCRci (the subindex ci= critical isotropic) in Fig. 4. For
this purpose, we propose to define the critical void ratio as a shift by the OCRci

of the maximum void ratio:

ec = ei0 − λ ln(OCRci) − λ ln(p/pref ). (24)

Thus, the loading surface can be constructed by knowing the current stress
and void ratio of the material, current OCR and OCRci solely. The state
B2 lies between q = 0 and q = qc and at a loading surface, which inter-
sects the p-axis at p+ei,B2 > p+ei,B1. Thus, B2 is characterised with a lower
OCRB2 < OCRB1 = OCRci as on the “wet” side of the critical state. Point
B3 lies at the critical state in the void ratio - pressure diagramm as well as in
the effective stress plane. Because the critical state represents the “constant”
state of the material and is independent of the initial state then it defines
also a normalconsolidated state OCRc = 1. Considering these observations the
isotropic critical overconsolidation ratio OCRci can be calibrated through an
undrained shearing test of a normalconsolidated sample following the path A1–
B3 ⇒ OCRci = pA1/pB3. Note, that it is mandatory for the state B3 to fulfill
both critical state requirements e = ec and η = ηc. Thus, in order to reach the
critical state strains greater than 10% are needed, in some soils even greater
than 50% [42].

Finally, we will consider the state C lying at the “dry” side of the criti-
cal void ratio line in Fig. 5(a). Its projection C1 on the p − q plane, Fig. 5a is
straightforward and corresponds to OCRC1 > OCRci characterizing a heavily
overconsolidated soft soil. For a state C2 (q �= 0) lying inside the loading surface
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Fig. 5. Interrelation between the stress space and the void ratio space.

of B1 the overconsolidation ratio is less than at C1 but greater than the isotropic
critical oversondolidation ratio OCRC1 > OCRC2 > OCRci. Similarly, a state
C3 lying outside the isotropic critical loading surface possesses OCRC3 < OCRci

characterizing a lightly overconsolidated soft soil. Eventhough C3 lies at the CSL
η = ηc the critical state is not reached as e �= ec. At long last, the state C4 lies
at the initial or preloading surface reaching a peak stress qp and OCRC4 = 1.
Thus state C, depending on the deviatoric stress q, can be characterized as all of
them: heavily overconsolidated at C1 p = 0 and at C2 0 < q < q(OCR = OCRci),
lightly overconsolidated at C3 q(OCR = OCRci) < q < q(OCR = 1) and nor-
malconsolidated at C4 q = q(OCR = 1) = qp. Thus, for isotropic states Fig. 4 or
Fig. 5a (e vs. p relationship) is sufficient in order to determine whether the soil
is normal-, lightly- or highly consolidated. At anisotropic states, both the e vs.
p relation and its generalization in p − q space is necessary.

A lightly overconsolidated clay when subjected to shearing is expected to
contract. We suggest that there is an overconsolidation ratio OCRci at which
the soft soil behaviour changes from contractant OCR < OCRci to dilatant (the
material can both contract and dilate depending on η) OCR > OCRci with the
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PTL lying below the CSL, as will be shown through experiments in the next
Sects. 4.2 and 4.3.

4.2 Triaxial Tests Under Monotonic Loading

In the last decades, many stress-dilatancy relations for sand have been proposed.
An example therefore presents Fig. 3. For these studies, mostly constant pres-
sure triaxial tests have been used, because then the volumetric change viz. the
volumetric strain rate ε̇v

2 corresponds to the plastic one ε̇p
v. However, drained

tests for clays are highly time-consuming and therefore very rare to find. For this
reason, in this work we used undrained triaxial tests (monotonic and cyclic) of
Kaolin Clay [14]. For the evaluation of its dilatancy behaviour some assumptions
and relations need to be established.

In general, the volumetric strain rate consists of a dilatancy component ε̇d
v

and of an another component denoted with ε̇c
v:

ε̇v = ε̇c
v + ε̇d

v (25)

ε̇d
v is totally plastic and is induced by a plastic shear strain rate ε̇p

q , whereas
ε̇c
v contains both elastic and plastic components induced by the change in the

effective mean stress p. Thus, the volumetric strain during tests with p = const.
is equally to the dilatant one:

ε̇v = ε̇p
v = ε̇d

v, for p = const. (26)

Similar relations are documented also by Shibata in [43]. Hence, a rearrange-
ment of Eq. 6 is necessary for p �= const. The dilatancy is then defined as the
relation between the dilatant volumetric strain increment (instead of total plastic
one) and the plastic deviatoric strain increment:

d = −dεd
v/|dεp

q |. (27)

Assuming that clays possess a unique normal consolidation line (NCL), then
reloading occurs at nearly the same line (with (strain)hystheretical behaviour at
the reverse direction) as the foregoing unloading did, see Fig. 6(a) and (b). For
undrained conditions the total volumetric change vanishes dεv = 0 and hence the
dilatant strain increment results from the prevention of the volumetric change
and can be termed also prevented dilatancy. If the loading was not undrained,
then the volumetric change would follow the unloading or unloading-reloading
line for OCR ≤ OCRci or OCR > OCRci, respectively (marked with dark-green
dottet line in Fig. 6(b)). On the other side, Fig. 6(c) and (d) show that sands do
not behave the same way. Its compaction during for example isotropic unloading
as presented in Fig. 6(c) leads to a new normal consolidation line lying below the
first one (marked with dark-green dottet line in Fig. 6(d). Thus, the volumetric
change upon subsequent undrained shearing goes along with the slope λ in the

2 Note the equality �̇ = d � /dt.
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Fig. 6. Illustrative examples of isochoric shearing of a normalconsolidated (OCR0 = 1)
and highly overconsolidated (OCR0 > OCRci) clay sample (left) compared to a loose
(e0 > ec0) and dense (e0 < ec0) sand sample (right). The overconsolidated clay sam-
ple or the dense sand sample are obtained by drained isotropic unloading until either
OCR0 > OCRci or ec0, in order to satisfy the requirement e < ec0, are reached.
In a) it is shown that when subjected to undrained shearing the normalconsolidated
sample (blue point 1) is expected to contract (reaching blue point 2 at CSL) and a
highly overconsolidated sample (dark-green square 2) to dilate after an initial contrac-
tion (reaching dark-green square 4 at CSL). These effects result due to the prevented
dilatancy viz. if drained shearing occured then the unloading in the e − ln p space
in (b) would follow the line with the slope κ. Therefore, also the dilatant behaviour
starting from the dark-green square 3 in (a) and (b) would follow this line (marked
with a dotted line in (b)) in the reverse direction rendering a totally elastic response
at reloading until the NCL is reached. Thus for undrained shearing of clays holds:

ε̇v = ε̇c + ε̇d = ε̇el + ε̇d = 0 ⇒ ε̇d = −ε̇el = − κṗ

p(1 + e)
. Sands however possess more

than one NCL (depending on the initial void ratio e0 and the loading history), hence
after a compaction they always follow the line with the slope λ (new NCL) in the

e − ln p space as demonstrated in (d) and thus ε̇d �= −ε̇el but ε̇c =
λṗ

p(1 + e)
= −ε̇d.
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e − ln p space consisting of a reversible part dεel
v (belonging to the slope κ) and

a plastic one dεc
v + dεd

v (with the slope λ − κ). Following these realizations, for
clays we suggest that the volumetric change due to the change in p is solely
elastic ε̇c

v = ε̇el
v . Hence, the dilatant strain increment follows from:

dεv = dεel
v + dεp

v ⇒ dεd
v = dεp

v = −dεel
v (28)

The elastic strain increment can be calculated from the constitutive equation:
[
dpel

dqel

]
=

[
Epp Epq

Eqp Eqq

] [
dεel

v

dεel
q

]
(29)

⇒
[
dεel

v

dεel
q

]
=

[
Cpp Cpq

Cqp Cqq

] [
dpel

dqel

]
. (30)

Omitting the non-diagonal terms for an isotropic material and using the
hypoelastic stiffness:

Eiso = 3K
→
1

→
1 +2G Idev (31)

one obtains:
dεel

v = dp/Epp =
2λκ

λ + κ

dp

(1 + e)p
. (32)

Note that the void ratio during undrained shearing corresponds to the initial
void ratio e = e0.

For a transversal isotropic material the scaled hypoelastic stiffness can be
used instead as proposed in [15]:

Eabcd = Qabij : Eijkl : Qklcd (33)
Qabcd = μacμbd (34)

μ =
√

α1 + (1 − √
α)ms ⊗ ms, (35)

with the vector along the sedimentation axis ms and the material parameter
α denoted as anisotropic coefficient [15]. For a vertical sedimentation axis viz.
ms = {0, 0, 1} corresponding to a vertically cutted Kaolin sample from [14]
then the hypoelastic compliance from Eq. 30 in conjunction with the transversal
isotropic hypoelastic stiffness given through Eqs. 33–35 reads:

Cpp =
3K(α − 1)2 + G(α + 2)2

27GKα2

Cpq =
(α − 1)(6αK + 3K + 2G(α + 2))

27
√

2GKα2

Cqp =
(α − 1)(6αK + 3K + 2G(α + 2))

27
√

2GKα2

Cqq =
4G(α − 1)2 + 3K(2α + 1)2

54GKα2

This set of equations present the basis for the evaluation of the experimental
data published by Wichtmann and Triantafyllidis in [14]. Hereby we will discuss
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both the evaluation procedure and the results of the monotonic tests on normal
and overconsolidated samples OCR = {1, 2, 4, 8}. When trying to evaluate the
data, the change of the mean pressure dp underlied a huge data scattet such that
for example during some time points the same mean pressure was evaluated. This
led to a vanishing dilatancy d = 0 for unrealistic stress ratios η and not even for
a specific OCR0 a unique relationship between d − η could be established. For
this reason, the development of the mean pressure was approximated through
polynomial functions depending on the only equidistantly captured quantity i.e.
the time t as follows:

papprox =
n∑

i=0

ait
i, with 3 ≤ n ≤ 9. (36)

The value of n was varied aiming the minimum residual of (papprox−p) → 0.1
kPa. The affinity of the curves represented another important criterium. For a
transversal hypoelastic stiffness also the deviatoric stress q need to be approx-
imated because its increment dq is used for the calculation of the irreversible
components dεd

v and dεp
q .

Finally, we will now discuss the results of the d−η−OCR0 relation. Figure 7a
shows the relationship between the stress ratio and the dilatancy for different
initial overconsolidation ratios OCR0. It is evident that the normal consolidated
sample OCR0 = 1 as well as the lightly overconsolidated sample OCR0 = 2
contracts d < 0 upon undrained compressive shearing dεq > 0, whereas the
heavily overconsolidated samples with OCR0 = 4 and OCR0 = 8 dilate d > 0
for dεq > 0 after an initial contraction d < 0 for dεq > 0. The initial contraction
decays with an increasing initial overconsolidation ratio. Hence the subsequent
dilation increases and the phase transformation stress ratio η = ηPTL at d =
0 is reduced. These observations form the basis for the classification of clays’
dilatancy behaviour very similar to that of sands. The question arises which
value can be assigned to OCRci (see Eq. 24) and whether it represents the same
number for each clay. The Modified Cam Clay theory renders the value OCRci =
exp(1) = 2.71 as a constant value. However, for the first we will let this value as
a material parameter to be calibrated until we evaluate some cyclic undrained
triaxial tests in the next Section.

Sands are classified as dense or loose in therms of their relative density value
which would in this work coincide with the overconsolidation ratio for clays.
The classification dependent on the void ratio itself is not the most appropriate
for clays due to the experimental data scatter of the initial void ratio. On the
other side, knowing the consolidation process and the preloading of the soil, the
overconsolidation ratio can be determined by:

OCR =
pei

p+ei

(37)

with the Hvorslev stress pei defined in Eq. 21. To eleminate the data scatter of
the initial void ratio one may use for pei = max(p) the maximum mean pressure
the soil was subjected to. Here we of course assume that the loading history
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Fig. 7. Two- and three-dimensional relation between d − η − OCR evaluated from
monotonic undrained triaxial tests performed on Kaolin. (Experiments borrowed from
citewt17)

of the soil is known, which is mostly the case with reconstituted samples. Now
three different approaches for the definition of the mean pressure corresponding
to the actual void ratio of the soil p+ei are presented. Firstly, as a very simple
but also a very rough approximation can serve OCR = OCR0 thus p+ei = pei and
OCR = const. during the undrained shearing. The evaluated data corresponding
to this (absurde) assumption is presented in Fig. 8a and b. Thus, the critical state
OCR = 1 and η = ηc for initially overconsolidated samples OCR0 �= 1 will never
be reached in therms of OCR.

Secondly, as a more natural, appropriate and still simple but as will be
explained not ideal approach one can approximate the mean pressure cor-
responding to the actual isotropic stress state ignoring the influence of the
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Fig. 8. OCR−η and OCR−d relationships evaluated from monotonic undrained triax-
ial tests performed on Kaolin with different OCR definitions. (Experiments borrowed
from [14])
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deviatoric stress viz. p+ei = p. Figure 8c and d present the results for this app-
roach in OCR = pe/p vs. η space and in OCR−d plane, respectively. An increase
of OCR for the normalconsolidated sample can be observed during the shearing.
If the postulate that normalconsolidated samples contract when subjected to
undrained shearing holds, then with this approach the critical state line imply-
ing OCR = 1 and η = ηc will never be reached for initially normalconsolidated
samples. More controversial is the fact that an initially normal consolidated sam-
ple becomes overconsolidated during undrained shearing. As one might expect,
the initially overconsolidated samples are not able to reach the CSL for this eval-
uating approach neither. One may build a conceptual case when OCR = 1 can
be reached then the dilation must be so large that the mean pressure reachs its
initial value p ≥ p0. To the authors knowledge this behaviour is not supported
by any experimental evidence.

Finally, we suggest for the definition of p+ei the same relation we already
proposed in [15,44]:

p+ei = exp
(

ei0 − e+

λ

)
(38)

Therefore the loading surface relation from [15,44] is solved for the void ratio
e+ corresponding to the actual stress state:

e+ = A1/nf ei, A = 1 −
( |η|

Mfb0

)
(39)

nf =
ln(f2

b0 − 1)/f2
b0

ln(ec/ei)
(40)

with the bounding surface material parameter fb0. This formulation of the
bounding surface and of OCR is also used for the explanations presented in
Fig. 5b. The dilatancy relationships for Kaolin are once more for this approach
illustrated in Fig. 8e and f. Hereby the consistency with the critical state surface
is evident, hence the critical state is reached when OCR = 1 is obtained. Note,
that this limit state is reached only when η = ηc (which arises also from the
limit calculation lim

η→ηc

OCR = 1). Thus OCR = 1 represents a sufficient condi-

tion for the CSL! Fig. 8e and f indicate that for the sample with OCR0 = 8 the
critical state is not reached yet which is in accordance with the documentation
in [14]. In [42] Atkinson explained: “The critical state will normally be reached
after strains greater than 10%.”... At this stage “the movements of grains are
essentially turbulent, involving relative movements and rotations of both clay
and sand grains. At larger displacements, however, the strains become localized
into distinct zones of intense shearing and the shear stresses applied to the clay
soil decrease.” Thus, it is likely that for this sample the critical state was not
reached, but a sort of “laminar flow” of flat clay grains which became parallely
oriented to a very thin shearing zone occured. Furthermore, the limits of the
application of continuum theory are reached in this case.

Figures 7b, c and d present the above discussed relations in the three-
dimensional space d−η −OCR. Once more it is evident that the third approach
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presented in Fig. 7d renders both d = 0 and OCR = 1 at the critical state,
following the first approach illustrated in Fig. 7b the CSL will never be reached
and according to the second approach in Fig. 7c both the CSL is reached under
controversial conditions and the development of OCR for example for initially
normal consolidated samples is very unrealistic. Note that these observations
along with Eqs. 37, 38, 38, 40 and pei = p0 (for initially isotropically consolidated
samples) represent a sufficient condition for the CSL, avoiding the experimental
void ratio scatter. Thus, the OCR value calculated through Eq. 37 is a very good
indicator whether the ultimate state is reached or not.

4.3 Triaxial Tests Under Cyclic Loading

A cyclic undrained triaxial test named C08 and presented in [14] is evaluated for
the dilatancy relation in the following. With a constant rate of axial strain ε̇1 =
0.12/h and a deviatoric amplitude of qampl = 70 kPa the sample could withstand
nearly 7 cycles until the failure criterion of |ε1| = 10% is reached. For purposes
of the dilatancy evaluation, the cycles are separated according to the direction
of the shear strain increment Δγ (separation points correspond to the loading
direction reversals) in 0.5 units beginning with 0.25. An essential point (for all
time-depentent materials) is that the shearing velocity was held constant during
the test to ||Δγ|| = 0.0113 = const. corresponding to Δγ = 0.0113 at loading
in axial compression (the sample is axially compressed) and Δγ = −0.0113 at
unloading in axial compression (the sample is axially extended).

Two different approaches are used for the calculation of elasticity. First the
isotropic hypoelasticity as described in [20] is adopted. The compression index
λ and the swelling index κ are calibrated to fit the oedometric tests: λ as the
slope of the virgin compression line and κ the average slope of the unloading-
reloading hystheresis. The initial void ratio in the evaluation was adjusted to
account for the initial overconsolidation ratio e0 = ei0 − λ ln(p0 · OCR0). The
authors of the experiments [14] reported normalconsolidated sample for C08,
thus OCR0 = 1. The maximum void ratio ei0 was calibrated at a reference
pressure of pref = 1 kPa for the OCR = 1 isotache, as described in [15,20,45].
Secondly, the transverse isotropic hypoelasticity as introduced by the authors in
[15,44] is utilized. Therefore, the calibration of the anisotropic coefficient α is
required. A calibration scheme of α in conjunction with the Poisson ratio ν is
also given in [15,44]. Table 1 lists the parameters’ values used for the evaluation
of the elasticity in C08.

Finally, Fig. 9 shows the resulting dilatancy relations. Note that through-
out all these figures d = −dεd

v/dγtot has been used in order to provide a more
comparative study with the results of Pradhan et al. for sand [5]. To obtain
the relation described in Eq. 6 a factor of 3/2 (εq = 2/3γ for triaxial condi-
tions) should be introduced which would solely elongate the dilatancy curves.
In absence of p′ = const. tests with intermediate small loops of unloading and
reloading, γtot presents a good approximation for γp. Further research in this
point is required. The figures on the left side (Figs. 9a, c and e) accounted for
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Table 1. Parameters used for the elasticity evaluation in C08

Elasticity approach ν
[−]

α
[−]

λ
[−]

κ
[−]

ei0
[−]

Hypoelasticity 0.3 − 0.13 0.05 1.76

Transverse isotropic hypoelasticity 0.3 1.8 0.13 0.05 1.76

hypoelasticity, while the figures on the right side (Figs. 9b, d and f) for the trans-
verse isotropic hypoelasticity. It is to be noted, that when the loading direction
was reversed the different approaches did not yield the same behaviour. By com-
paring the Figs. 9a, b, c, d, e and f the following points may be noticed.

• Considering all cycles Figs. 9a and c (hypoelasticity used), b and d (transverse
isotropic hypoelasticity used) the d − η relation is different among different
loading cycles, especially at loading reversals in axial extension. Differences
between the elasticity approaches may be observed intensively comparing
Figs. 9a or c with b or d, respectively. While using the hypoelasticity the points
at loading reversals from axial compression to axial extension jump all to the
dilatant area. Yet, Kaolin turned out to be transverse isotropic as showed in
[15,20,44], thus the usage of transverse isotrope hypoelasticity would provide
a more representative approach for Kaolin. Then, it can be observed that
among some data scatter the loading reversals from axial compression to
axial extension jump to the contractant area as observed also for sands. Note
that no data points has been omitted during these evaluations.

• Figures 9e and f account only for regular cycles. The scattering in the relation
is no longer present. As discussed also before it is now in fact more obvious
that accounting for hypoelasticity the loading reversal Δγ > 0 → Δγ < 0
renders dilatancy, whereas using transverse isotropic hypoelasticity it results
in dilatancy, which is conform with the findings for sand in [5]. The shape of
the curves is also different comparing both elasticity approaches. It may be
concluded once more that the transverse isotropic hypoelasticity corresponds
better to the behaviour of Kaolin.

• Pradhan et al. [5,10,21] claimed that using dγp instead of dγtot would reduce
the scattering in the relations for sand. We however observe a scattering in
the first (non regular cycles), see Figs. 9e and f. The scattering in the first
and intermediate cycles can possibly be reduced by using dγp.

• The “elastic dilatancy” in reversals evident for example in Fig. 9c, which
is eliminated using the transverse isotropic hypoelasticity, see for example
Fig. 9d, provokes an increase of the effective mean stress resulting in a slope
to the upper left of the effective stress path [14,15,44]. It is well known that
clays possess a greater elastic locus compared to sands. If the elasticity was
isotropic than the described p − q path would be vertical with respect to
p−axis. Thus, we can call the inherent anisotropy responsible for an even
lower excessive pore water pressure after loading reversal. Sands in contrast
react with the “highest” contraction after loading reversal. Hence, the greater
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Fig. 9. d-η relationship evaluated for C08. (Experiment borrowed from [14])
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elastic regime cannot be overcomed through the contractancy and thus results
in a non vanishing mean pressure at cyclic mobility p′ �= 0. This effect can be
implified with the inherent anisotropy according to the sedimentation axis.
Thus, a cutting direction of the sample may be found at which the soft soil
would also liquify (weak axis). The last assumption requires further research.
Some authors explain the non-liquefaction behaviour of clays with the viscos-
ity and its cohesive effect. If this was supposed to be truth, than the intensity
of creep would not vanish with higher over consolidation ratio as has been
experimentally documented in [28,46]. On the other side, it implies the exis-
tence of a special strain rate (loading velocity) with which the cyclic undrained
shearing of a clay sample would result in liquefaction. Following our theory
this would be the case for the greatest velocity ε̇1 → ∞, hence the viscous
effects wouldn’t have time to develope. The experimentes presented in [14]
and the discussions made in [44] give a hint to this phenomenon. However,
further research work is required in order to bring more light and explain this
phenomenon.

• With the undrained cyclic loading of normal consolidated samples the over-
consolidation ratio increases and the stress ratios at the phase transformation
line Mdc and Mde from Eq. 16 appears to be not affected as illustrated in
Figs. 9e and f. Considering the non-regular cycles, Figs. 9a–d, ηPTL seems to
increase with the number of cycles in axial extension. Such effects has not
been reported in the literature, moreover the monotonic tests illustrated in
Figs. 8 and 7 show opposite behaviour (but only for axial compression, no
monotonic tests were available for axial extension). Further research works
are required at this point.

In general, we can conclude that following the experimental evidence gained
on Kaolin in [14] and evaluated in this work the dilatancy is a function of the
stress ratio η and the void ratio e along with the intrinsic material parameters
summarized under C, hence d = f(η, e, C). Furthermore, we proposed an OCR-
definition in Eq. 37, which includes the influence of both the stress ratio and void
ratio such that d = f(OCR, C).

If the assumption d = f(η, C) would hold, the direction of plastic flow influ-
encing the direction of the undrained stress path would be able to render dilatant
direction only for η = M ⇒ Md = M independent of the overconsolidation ratio
of the material. Thus, the same behaviour would be obtained for each OCR con-
tradicting the findings gained in experiments and explained in this Section as
illustrated in Figs. 7, 8 and 9.

5 Constitutive Description of the Dilatancy of Cohesive
Soils

Perusal of actual research works regarding constitutive modeling of soft soils
suggest that for clays a unique relation between the dilatancy d and the stress
ratio η exist. This relation was used by the Cam Clay theory d = M − η in [25]
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or d = (M2 − η2)/η [26] resulting in a dilative response only when the stress
ratio reaches the critical state line thus Md = M . Similarly, the hypoplastic
model developed by Masin [27] is able to reproduce dilatant behaviour only for
states lying above the critical state. The usage of a unique relation between
d and η is reported as satisfactorily for cohesive soils by some authors [6,27].
This assumption may be consistent for normalconsolidated clays subjected to
monotonic loading. However, we showed in Sects. 4.2 and 4.3 that the overcritical
dilation is not sufficiently described for general initial states of cohesive soils and
the less for cyclic loading.

5.1 Incorporation in a General Hypoplastic Model

We start with the dilatancy relation given in Eq. 6. Note the difference between
this definition of d and the one determined by Pradhan et al. in [5,10] d =
−dεp

v/|dγp| with dγ = 3/2dεq. For multiaxial generalization purposes we will
however stick to our formulation, Eq. 6, which can be rearranged to:

d = − tr(ε̇p)√
2/3 ||ε̇∗p|| ⇒ −1 : ε̇p = d

√
2/3 ||ε̇∗p|| (41)

with the deviator of the plastic strain rate ε̇∗p. The dilatacy evaluated on sands
rendered a similar relationship when using dεq instead of dεp

q . In particular, even-
though the scattering of the data is reduced when using dεp

q , it was very difficult
to evaluate d after the loading reversal, because when both values dεp

v and dεp
q

are very small ||ε̇|| < 10−5 it can be defined also as completely elastic regime [5].
Similar effects are shown in Sect. 4.3 for the behaviour of clays. Moreover, for
the evaluations presented in Figs. 7, 8 and 9 we used the total deviatoric strain
rate instead of the plastic one, thus in Eq. 41 we can substitute ||ε̇∗p|| ≈ ||ε̇∗|| to
obtain:

− 1 : ε̇p = d
√

2/3 ||ε̇∗||. (42)

From the point of view of a constitutive equation, the plastic strain rate
has to be identified from Eq. 41. We start by expressing ε̇p by its isotropic and
deviatoric components with unknown magnitudes a and b respectively:

ε̇p = a1 + b
→
ε̇∗p (43)

By multiplying both sides from left of Eq. 43 with 1 and inserting Eq. 42 we
obtain for the isotropic magnitude a:

1 : ε̇p = 3a
42= −d

√
2/3 ||ε̇∗|| (44)

⇒ a = −1
3

√
2
3

d ||ε̇∗||. (45)

Inserting Eq. 45 and b = ||ε̇∗p|| ≈ ||ε̇∗|| in Eq. 43 and dividing both sides of
Eq. 43 with ||ε̇∗|| renders the following relation for ε̇p:

ε̇p

||ε̇∗|| = −1
3

√
2
3

d1+
→
ε̇∗ . (46)
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For the derivation of Eq. 46 the assumption
→
ε̇∗p≈

→
ε̇∗ was involved as well.

Finally the well known hypoplastic constitutive equation:

σ̇ = E :
(
ε̇ − ε̇hp

)
= E (ε̇ − Y m||ε̇||) (47)

is considered. The viscous strain rate is without loss of generality disregarded in
respect thereof. Drawing parallels between the plastic (Eq. 46) and the hypoplas-
tic strain rate (Eq. 47) explicit relations for the flow rule and the degree of non-
linearity are obtained:

m =

(
−1

3

√
2
3

d1+
→
ε̇∗

)→
(48)

YD =
||ε̇∗||
||ε̇||

∣∣∣∣∣
∣∣∣∣∣−

1
3

√
2
3

d1+
→
ε̇∗

∣∣∣∣∣
∣∣∣∣∣ . (49)

The last relation defining Y can be simplified to read:

YD =

√
1 − 1

3
I21(ε̇)
I1(ε̇2)

∣∣∣∣∣
∣∣∣∣∣−

1
3

√
2
3

d1+
→
ε̇∗

∣∣∣∣∣
∣∣∣∣∣ (50)

Note that the relation 50 serves only to define the degree of nonlinearity
for shearing and should not be mixed up or used for the isotropic or radial
compression. For radial compression YI the relations proposed in [15,20,44,47]
or in [24] can be used for clays or sands, respectively. An interpolation function
between YI for isotropic states and radial loading directions and YD for shearing
is convenient.

A fundamental drawback of the flow rule presented in Eq. 48 is the deviatoric
direction. For hypoplastic models a deviatoric direction of the flow rule equally
to the deviatoric direction of the strain rate would mean that at loading reversals
from stress states lying at the critical state the flow rule would try to get the
stress state outside the critical state (or the bounding surface if introduced).
The FE-simulation would loose the controllability and abort the calculation.
Moreover, experimental observations show indeed deviatoric flow direction at
the critical state but corresponding to the direction of the deviatoric stress. For
this purpose a modified flow rule for hypoplastic models will be used:

m =

⎛
⎝−1

3

√
2
3

d1+

→(
σ∗

p

)⎞
⎠

→

(51)

For the stiffness tensor E in Eq. 47 the hypoelastic stiffness from [15,44,47]
is adopted. The equations of the reference model presented in [44] which are
ommitted in this section are therefore summarized in the Appendix.
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5.2 Simulations

Now the simulations compared with the experimental results (borrowed from
[14]) which are reviewed, evaluated and discussed in Sects. 4.2 and 4.3 are shown.
For the different tests the same set of material parameters, listed in Table 2, has
been used.

Table 2. Material parameters

ν α λ κ ei0 Mc fb0 nPTL nOCR χ Iv

0.3 1.8 0.13 0.05 1.76 1.0 1.5 3 2 20 0.025

Figure 10 presents the simulations of the monotonic undrained triaxial tests
with different initial overconsolidation ratios OCR0 = {1, 2, 4, 8}, whereby the
dilatant behaviour is evident for higher OCR0 > 2. These tests are also used for
the evaluations in Sect. 4.2. The simulations show very good agreement with the
experimental results in both effective stress paths (right figure) and deviatoric
stress vs. axial strain space (left figure). The shearing at strains greater than
approximately 12% can provoke inhomogenity of the sample and localization of
shear strains, thus it was not considered by the model. In the q − ε1 space it
corresponds to the softening of the deviatoric stress evident in the experimental
curves. Furthermore, the inherent anisotropy of Kaolin is captured well by the
model as can be seen from the simulation for OCR0 = 1.

Fig. 10. Experimental results from [14] and simulations with the proposed model of
undrained triaxial tests with variation of the initial overconsolidation ratio OCR0 =
{1, 2, 4, 8}. The displacement rate was held constant in each test to ṡ = 0.025 mm/min.
The laboratory tests are presented with dashed lines, whereas the simulations with solid
lines.

Figure 11 presents an undrained triaxial cyclic test of a normalconsolidated
sample OCR0 = 1 with deviatoric amplitude of qampl = 70 kPa. The failure
criterion for the experiment was defined as an axial strain of 10%. The simulation
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in q−ε1 space is in good accordance with the experimental findings. Furthermore,
the hysteresis when reaching the cyclic mobility is satisfactorily described. The
same conclusions can be drawn for the effective stress path whereby 7 cycles
has been surpassed. The 8-shaped cyclic mobility of the p − q path is in good
agreement with the experiment.

Fig. 11. Experimental result from [14] and simulation with the proposed model of a
cyclic undrained triaxial test with constant displacement rate ṡ = 0.1 mm/min and
deviatoric amplitude of qampl = 70 kPa.

6 Concluding Remarks

This work provides a new evaluation method of the dilatancy from monotonic and
cyclic undrained triaxial tests. Herein it has been realized for the experiments
performed on Kaolin [14]. In general we can conclude that leastwise for this soft
soil the dilatancy is a function of the stress ratio η and the void ratio e along
with the intrinsic material parameters (as observed for sands). Furthermore,
we proposed an OCR-definition, which includes the influence of both the stress
ratio and void ratio such that d = f(OCR, C). We suggest that there is an
overconsolidation ratio OCRci at which the soft soil behaviour changes from
contractant OCR < OCRci to dilatant (the material can both contract and
dilate depending on η) OCR > OCRci with the PTL lying below the CSL, as
was also shown in the present study. We further proposed a constitutive relation
describing the behaviour of soft soils including the dilatancy and viscosity. Some
simulations of monotonic as well as cyclic tests are shown.

In order to verify these results for plastic clays, soft soils with higher plasticity
should be evaluated in a subsequent work. In addition laboratory tests with
constant mean pressure are required for the improvement of the dilatancy relation
for cohesive soils.
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Appendix

Constitutive model

Constitutive equation:
σ̇ = E :

(
ε̇ − ε̇hp − ε̇vis

)
(52)

Elasticity:

Eiso = 3K
→
1

→
1 +2G Idev (53)

Eabcd = Qabij : Eijkl : Qklcd (54)

with Qabcd = μacμbd and μ =
√

α1 + (1 − √
α)ms ⊗ ms. (55)

Hypoplasticity:
ε̇hp = Y m ||ε̇||, (56)

Y = [Y0 + (1 − Y0)YD] OCR−nOCR , Y0 =
λ − κ

λ + κ

(
pei

p

)2

, (57)

m =

(
−1

3

√
2
3

d1+
→
σ∗

)→
(58)

Viscosity:

ε̇vis = Iv λ

(
1

OCR

)1/Iv

m, (59)

OCR =
pei

p+ei

, p+ei = exp
(

ei0 − e+

λ

)
(60)

e+ = A1/nf ei, A = 1 −
( |η|

Mfb0

)
, nf =

ln(f2
b0 − 1)/f2

b0

ln(ec/ei)
(61)
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38. Chu, D.B., Stewart, J.P., Boulanger, R.W., Lin, P.S.: Cyclic softening of low-
plasticity clay and its effect on seismic foundation performance. J. Geotech. Geoen-
viron. Eng. ASCE 134(11), 1595–1608 (2008)

39. Abdulhadi, N.O., Germaine, J.T., Whittle, A.J.: Stress-dependent behavior of sat-
urated clay. Can. Geotech. J. 49, 907–916 (2012)

40. Duong, N.T., Suzuki, M., Hai, N.V.: Rate and acceleration effects on residual
strength of kaolin and kaolin-bentonite mixtures in ring shearing. Soils Found. 58,
1153–1172 (2018)

41. Hvorslev, M.: Physical components of the shear strength of saturated clays. In:
ASCE Research Conference, Shear Strength of Cohesive Soils, Boulder Colorado
(1960)

42. Atkinson, J.: The Mechanics of Soils and Foundations. McGraw-Hill, New York
(1993)

43. Shibata, T.: On the volume changes of normally-consolidated clays. In: Annuals,
Disaster Prevention Research Institute, Kyoto (1963). (in Chinese)

44. Tafili, M., Triantafyllidis, T.: AVISA: anisotropic visco ISA model and its perfor-
mance at cyclic loading. Submitted for Acta Geotech. (2019)

45. Tafili, M., Triantafyllidis, T.: Constitutive model for viscous clays under the ISA
framework. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Instal-
lation Processes - Theoretical Results and Applications, vol. 82, pp. 324–340.
Springer, Heidelberg (2017)

46. Niemunis, A., Krieg, S.: Viscous behaviour of soils under oedometric conditions.
Can. Geotech. J. 33, 159–168 (1996)

47. Fuentes, W., Hadzibeti, M., Triantafyllidis, T.: Constitutive model for clays under
the ISA framework. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotech-
nical Installation Processes - Benchmarks and Simulations, vol. 80, pp. 115–130.
Springer, Heidelberg (2015)


	State-Dependent Dilatancy of Soils: Experimental Evidence and Constitutive Modeling
	1 Introduction
	2 From Direct Shear to General Conditions
	3 Overview of Expressions Describing the State-Dependent Dilatancy of Cohesionless Soils
	3.1 State-Dependent Dilatancy for Monotonic Loading Described by Li and Dafalias lid2000
	3.2 State-Dependent Dilatancy Described by Grandas and Triantafyllidis grandas19

	4 Experimental Findings Regarding the Dilatancy of Cohesive Soils
	4.1 Basic Postulates
	4.2 Triaxial Tests Under Monotonic Loading
	4.3 Triaxial Tests Under Cyclic Loading

	5 Constitutive Description of the Dilatancy of Cohesive Soils
	5.1 Incorporation in a General Hypoplastic Model
	5.2 Simulations

	6 Concluding Remarks
	References




