
Geomechanical Influences of Interface
Dilatancy

A. P. S. Selvadurai(&)

Department of Civil Engineering and Applied Mechanics, McGill University,
Montreal, QC H3A 0C3, Canada

patrick.selvadurai@mcgill.ca

Abstract. This paper examines the influence of dilatant processes that can
occur at a discontinuity of finite dimensions located at a compressed elastic
geological interface, due to relative shear movement in the plane of the dis-
continuity. The dilatant phenomena will result in displacements in a direction
normal to the shear movement and these displacements will be influenced by the
elasticity of the geological materials and the compression at the interface. The
dilatant displacements will also create a zone where there is loss of contact at the
unilaterally constrained interface. The resulting problem is examined by appeal
to results of the mathematical theory of elasticity. The influence of dilatant
processes on the development of shear at the elastically constrained interface is
examined by considering the procedures proposed by D.W. Taylor to analyze
dilatant phenomena. The mathematical developments illustrate the combined
influence of elastic constraints and interface compression on the amplification of
the shear stress generated at the finite region. In the absence of dilatancy, the
developments reduce to the classical result involving only Coulomb friction.

1 Introduction

The mechanics of geologic interfaces, particularly faults and fractures, is important to
the field of engineering geosciences dealing with stability of geologic strata, the
development of tectonic motion, movements of pre-existing fractures and the inter-
action of constructed underground facilities. In the study of earthquake generating
mechanisms during movement at a transform fault (Fig. 1), the limiting stresses and the
movements necessary to rupture a locked-in region are important input parameters for
developing earthquake models.

The literature dealing with contact mechanics is extensive (covering nearly six
thousand references dealing with diverse areas of geomaterial interfaces, geologic fault
zones, tribology, wear, biomechanics, contact mechanics, etc.) and a complete review
is beyond the scope of this article. Historical studies related to the mechanics of contact
between surfaces can be found in the volumes by Bowden and Tabor [1] and Hisano
[2]. Other developments that emphasize engineering applications, mathematical mod-
elling, computational modelling and experimental aspects of contact mechanics are
given in several texts and review articles on contact mechanics and these developments
are documented in articles by Selvadurai and Boulon [3], Selvadurai [4], Selvadurai
and Yu [5], Selvadurai and Atluri [6] and Selvadurai et al. [7].
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In this article, we examine a rather idealized problem related to elastic isotropic
geomaterial halfspace regions in smooth contact, pre-compressed by a normal stress r0
and containing a circular patch that possesses both frictional and dilatant mechanical
properties. The Coulomb friction can be a result of the contact at the local scale of the
idealized Euclidean surfaces and dilatant effects can occur due to surface irregularities.
The dominant mechanism is asperity ride-up but the modelling can account for the
deterioration of the dilatancy angle that can be identified with asperity breakage and
damage, and indentation fracture (Selvadurai [8]). From a geo-environmental point of
view, the dilatant movement at fault zones can lead to an increase in the aperture at
contacts, which can enhance fluid flow through the fracture [5, 9–12]. The objective of
this study is to develop a convenient analytical result that can be used to estimate the
development of shear stresses at the frictional-dilatant circular patch during the relative
shearing movement at the otherwise frictionless interface.

The problem posed here can be quite complicated if the influence of the frictional
contact at the entire surfaces of the fracture and the dilatant effects of the circular patch
are considered simultaneously. Frictional “asperity” patches surrounded by frictionless
or stress free regions have been considered in the literature but these studies do not
examine the possible development of dilatancy in the frictional patches. We have
developed a theoretical approach for the study. However, it is unlikely that such a
complete frictional interface contact problem will be amenable to analytical treatment,
which is the basis for this study. The approach adopted here is to examine the
mechanics of the pre-compressed dilatant circular patch during shear, while main-
taining frictionless behaviour over the interface region exterior to the circular patch.
The rationale for assuming frictionless behaviour exterior to the circular patch is to
emphasize the constraint imposed by the dilatant patch and to evaluate the role that
dilatancy at the patch has on limiting the shear capacity of the dilatant region.
Observations of the property of dilatancy in geomaterials date back to the classical

Fig. 1. Relative movement at a transform fault
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studies of Osborne Reynolds (1842–1912) that relate to volume expansion in the mass
of a granular material during shear. The specific problem of interface dilatancy relates
to the volume expansion that can take place at contacting surfaces due to the local
geometric structure. The problem of interface dilatancy has several geomechanical
applications, particularly those related to the load carrying capacity of embedded
structural elements such as anchors and rock fractures. With interface dilatancy, the
influences are restricted to the contact region and the adjacent domains can exhibit
continuum properties consistent with the geologic material behaviour. The analysis of
interface dilatancy lends itself to mathematical approaches that deal with the extended
domain and the frictional-dilatancy response at the contacting regions.

We assume that the dilatant processes come into effect when the interface expe-
riences a differential shear displacement in its plane. The dilatant movement is
accommodated through the uniform displacement of the circular patch normal to its
plane. The expansion can, of course, exhibit a variation over the circular region, but to
preserve the simplicity of the model, we assume that the dilatant patch exerts a uniform
displacement normal to its plane. This normal displacement can cause separation at the
initially mated frictionless surfaces exterior to the circular patch, through its indentation
into the deformable geologic media. The extent of separation will depend on (i) the
elasticity characteristics of the geologic material, (ii) the magnitude of the dilatant
displacement and (iii) the far-field normal stresses acting on the interacting surfaces.
The paper presents an analysis of the elasticity problem associated with the dilatant
patch and evaluates the normal stresses generated in the patch region during its dilatant
expansion. This result is used in conjunction with a virtual work formulation to obtain a
relationship for the shear stress at which the circular patch will experience failure or
rupture.

2 Mathematical Modelling of the Contact Problem

We examine the problem of the smooth contact between two halfspace regions com-
pressed by a normal stress r0 and containing a frictional-dilatant circular patch (Fig. 2).
The dilatant behaviour at the circular patch can be caused by the relative shearing
action between the halfspace regions and, in the process, the region can induce an
indentation orthogonal to the shearing displacements.

We consider the elastostatic interaction between the frictionless interface containing
the dilatant circular patch of radius a in a situation where the frictionless interface
experiences a total relative movement 2Du in its plane. (i) In general, the dilatancy-
induced displacement normal to the circular patch can be variable within the dilatant
region; for the purposes of developing a convenient analytical result, we assume that
the induced normal displacement at the frictional interface has a constant value Dv
imposed on both halfspace surfaces (Fig. 2). (ii) The dilatant behaviour of the circular
patch will cause separation between the halfspace regions that are in smooth contact
under the action of the compressive stress r0. (iii) The configuration of the boundary of
the zone of separation can be elliptical in shape depending on the extent of shear. In
this model, however, we assume that the boundary of separation can be approximated
by a circular profile of radius b, which is an unknown (Fig. 2) and needs to be
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determined by solving a unilateral contact problem for the two halfspace regions [4].
To develop results for (a) the separation region during dilatancy-induced indentation at
the circular region and (b) the force developed by the indentation displacement, we
consider the following auxiliary problems:

(i) The internal pressurization of an annular crack of internal radius a and external
radius b located in an elastic infinite space, by a pressure r0 and governed by the
following three-part axisymmetric mixed boundary value problem referred to a
halfspace region:

rrzðr; 0Þ ¼ 0; r� 0
uzðr; 0Þ ¼ 0; 0� r� a
rzzðr; 0Þ ¼ �r0; a\r\b
uzðr; 0Þ ¼ 0; b� r\1

ð1Þ

An approximate solution to this problem was developed by Selvadurai and Singh
[13] and the important results relate to (a) the evaluation of the Mode I stress
intensity factor at the outer boundary of the annular crack ðKr0

I Þ, and (b) the
resultant force developed in the ligament region 0� r� a.

Fig. 2. Indentation of the pre-compressed halfspace regions by the dilatancy in the circular
patch.
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(ii) The second auxiliary problem relates to the indentation of a penny-shaped crack
of radius b by a smooth rigid circular indenter of radius a and thickness 2Dv. This
problem can also be posed as an axisymmetric three-part mixed boundary value
problem referred to a halfspace region:

rrzðr; 0Þ ¼ 0; r� 0
uzðr; 0Þ ¼ Dv; 0� r� a
rzzðr; 0Þ ¼ 0; a\r\b
uzðr; 0Þ ¼ 0; b� r\1

ð2Þ

Approximate solutions to this mixed boundary value problem were developed by
Selvadurai and Singh [14], and Selvadurai [15, 16]. Here also, the results of interest to
the analysis of the dilatant patch problem are the Mode I stress intensity factor at the tip
of the penny-shaped crack ðKDv

I Þ and the force that is induced on the inclusion due to
the indentation.

The location of the zone of separation due to the dilatancy-induced expansion at the
unilaterally constrained interface can be obtained by the constraint of vanishing of the
combined stress intensity factor obtained from the auxiliary problems described above.
This constraint gives the result

GDv
2r0að1� mÞ
� �

cFDvðcÞ � Fr0ðcÞ ¼ 0 ð3Þ

where

FDvðcÞ ¼
4c
p þ 16c2

p3 þ c3 64
p5 þ 4

3p

� �
þ c4 80

9p3 þ 256
p7

� �þ c5 448
9p5 þ 1024

p9 þ 4
5p

� �
" #

ð4Þ

Fr0ðcÞ ¼
1� 4c

p2 � 16c2
p4 � c3 1

8 þ 64
p6

� �
� c4 16

3p4 þ 4
p2

1
24 � 8

9p2 þ 64
p6 þ 4

9p3
� �� �

� c5 16
p4

1
24 � 8

9p3 þ 64
p6 þ 8

9p2
� �þ 256

9p6 � 4
15p2

� �þOðc6Þ

2
4

3
5 ð5Þ

and cð¼ a=bÞ\1. The lowest root of (3) gives the extent of the zone of separation.
Omitting the details it can be shown that the force generated at the contact zone of the
indenting region 0 � r � a, with a separation region a � r � b and a re-
established contact zone b � r � ∞, can be evaluated in the form

PN ¼ r0pa
2 þ 4aGDv

ð1� mÞP
Dv
N � r0pa

2Pr0
N ð6Þ

where

PDv
N ¼ 1þ 4c

p

� �þ 16c2
p4 þ c3 64

p6 þ 16
9p4 � 8

9p2
� �

þ c4 256
p8 þ 64

9p4
� �þ c5 10240

p10 þ 9600
225p6 þ 92

225p2
� �� 	

ð7Þ
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Pr0
N ¼

� 8
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� �þ 8c 1
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p6

� �
� c2

9p8 4608þ p3 32� 64pþ 3p3ð Þ� �
� 4c3
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� c4
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ð8Þ

3 The Shear of the Dilatant Circular Patch

In general, at the dilatant zone the response will be elasto-plastic. In a strict sense, the
analysis of the shear rupture problem during the generation of frictional-dilatant phe-
nomena should be examined by appeal to a theory of plasticity applicable for elasto-
plastic phenomena with specified failure criteria and non-associated flow rules (Davis
and Selvadurai [17]). Here, we focus on the evaluation of the peak rupture stress that
can be generated at the circular patch when dilatancy is present. To estimate the
limiting response, we utilize the procedure presented by D.W. Taylor [18] for the
analysis of dilatancy processes in granular materials. In essence, when examining
failure processes associated with dilatancy effects, Taylor proposed a criterion that
neglects the elastic energy storage processes at the direct contact zone (see also
Christian and Baecher [19]). (To a certain extent, this argument is consistent with the
limit analysis concepts proposed by Drucker and Prager [20]; see also Davis and
Selvadurai [17] and Ichikawa and Selvadurai [21].) The basic hypothesis involves the
relationship between (i) the work done by the shearing forces and normal forces and
(ii) the energy dissipated at the frictional-dilatant region, expressed in terms of force
resultants rather than exact distributions over the contact zone. The work component W
consists of the work of the shear force (PT ) acting at the onset of rupture and the work
of the normal force (PN ) induced by dilatancy on the upper and lower surface: i.e.

W ¼ 2PT Duð Þþ 2PNð�DvÞ ð9Þ

The energy dissipated at the dilatant circular patch is given by

D ¼ 2PN ðDuÞ tanu ð10Þ

where u is the contact friction angle and Dv is the dilatant displacement. We note that
the work of forces and the dissipation on both faces of the circular patch have to be
included in the formulation. In Taylor’s hypothesis, the conventional association
between Dv and Du is through the linear relationship Dv ¼ Du tan a0, where a0 is the
constant dilatancy angle. The work of Selvadurai et al. [7], extends Taylor’s definition
of dilatant displacements to include dilatancy effects of the form

Dv ¼ a
Du
a

� �2

tan a ð11Þ
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and with variation in the dilatancy angle a is described by

tan a ¼ exp �k
Du
a

����
����

� �
tan a0 ð12Þ

where k is a non-dimensional parameter and the modulus sign accounts for the
invariance of the dilatancy angle on the sense of the shear displacement. Selvadurai
et al. [7] show that the representation (12) correlates well with experimental obser-
vations of the mechanics of dilatant geologic interfaces. Omitting details, it can be
shown that the shear stress developed on the dilatant circular patch can be expressed in
the form

sD ¼ r0 1þ 4G
1� mð Þr0p

Du
a

� �2

exp �k
Du
a

����
����

� �
tan a0PDv

N � Pr0
N

 !

� tanuþ Du
a

exp �k
Du
a

����
����

� �
tan a0

� � ð13Þ

and the radius of the separation zone is now obtained from the smallest positive root of
the characteristic equation

G
r0ð1� mÞ
� �

Du
a

� �2

exp �k
Du
a

����
����

� �
tan a0 cFDvðcÞ � 2Fr0ðcÞ ¼ 0 ð14Þ

The result (13) for the shear stress generated at failure at the dilatant circular patch
can be compared with the analogous result for the non-dilatant case, which corresponds
to the interface with purely Coulomb friction. The shear stress amplification factor
(SSAF) is given by

SSAF ¼ sD
sC

¼ 1þ 4G
1� mð Þr0p

Du
a

� �2

exp �k
Du
a

����
����

� �
tan a0PDv

N � Pr0
N

 !

� 1þ Du
a

exp �k
Du
a

����
����

� �
tan a0
tanu

� � ð15Þ

In the limiting case when a0 ! 0, the result (15) reduces to unity assuming that
when c ! 1, Pr0

N ! 0. This assumption is invoked in view of the nature of the series
approximations used in the solutions of the three-part mixed boundary value problems
defined by (1) and (2). Figures 3 and 4 illustrate the typical variations in the shear stress
amplification with (i) the shear displacement, (ii) the Coulomb friction angle, (iii) the
dilatancy angle, (iv) the dilatancy degradation parameter and (v) the magnitude of the
in situ compressive stress relative to the shear modulus. The basic approach can also be
used to estimate the in-plane load carrying capacity of flat anchors [22] that are created
by pressure grouting techniques (Fig. 5).
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Fig. 3. The variation in the shear stress amplification factor with the relative shear movement

Fig. 4. The variation in the shear stress amplification factor with the relative shear movement
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4 Concluding Remarks

Dilatant processes at geological interfaces can have a strong influence on the shear
stresses that are needed to rupture the region exhibiting dilatancy. The analysis of the
shear rupture of an elastically and unilaterally constrained interface is non-routine since
it requires the evaluation of the zone of separation induced by dilatancy effects with
appeal to the solution of three-part mixed boundary value problems in elasticity theory
applicable to a halfspace region. The paper demonstrates the efficient use of solutions
available in the literature to evaluate the separation zone and the forces that are gen-
erated at the contact zone during dilatational displacement over a circular contact zone.
The enhancement of the shear stresses needed to create shear rupture is demonstrated.
This observation has implications for the interpretation of the seismic moment calcu-
lations, which currently accounts for only the relative shear displacements. It is shown
that the analysis can also be extended to include interface dilatancy degradation that
can result from asperity breakage during shear, resulting in a progressive decrease in
the dilatancy angle with shear.
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Fig. 5. In-plane loading for a flat anchor embedded in a fracture
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