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Abstract. A simple, yet versatile yield surface in the stress space is
combined with a hypoplastic equation to simulate the influence of recent
deformation history on the mechanical behaviour of sand. This yield sur-
face is used to describe the intensity of anelastic flow. In the model, the
state is fully described by the current stress, the void ratio and a novel
back stress-like tensor. This new state variable determines the shape and
size of the yield surface and accounts for recent deformation/stress his-
tory. The direction of the anelastic flow upon shearing is obtained from
a generalization of the Taylor’s dilatancy rule. As a distinctive feature
of the model, this dilatancy is able to reproduce the strong contractancy
upon reversals observed in experiments without the need of additional
state variables. The model corrects some known shortcomings of previous
hypoplastic models like overshooting and the excessive accumulation of
stress/strain upon strain/stress cycles of small amplitude (ratcheting).
Laboratory tests are simulated to show the capabilities of the model to
reproduce the soil behaviour under monotonic and cyclic loading condi-
tions after different deformation histories.

1 Introduction

Besides pycnotropic (density dependency) and barotropic (pressure depen-
dency), the mechanical behaviour of soils is also historiotropic, i.e. it is strongly
influenced by the loading history (stress/strain path dependency). Despite hav-
ing the same density and the same pressure, samples subjected to different
loading histories exhibit different mechanical responses. This well known phe-
nomenon can be observed in the experiments of Doanh et al. [1] on loose Hostun
sand. The Fig. 1 shows different stress paths obtained during undrained triaxial
compression and extension tests. At the beginning of the undrained tests, the
samples have the same isotropic stress p = 100 kPa and nearly the same void
ratio e ≈ 0.94, but different recent histories. These recent histories were gen-
erated by first subjecting the sample to drained triaxial compression up to a
certain stress ratio (marked as preloading with the numbers 1 to 10 in Fig. 1)
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and then reducing the stress ratio until the isotropic stress of p = 100 (marked
with the number 1) was reached. It can be observed that loose sand may behave
like dense sand (dilative behaviour) and can reach large deviatoric stresses if
the undrained shearing coincides with the direction of the previous deviatoric
strain/stress history. The higher the stress ratio reached during drained triaxial
compression the higher the stress ratio upon subsequent undrained triaxial com-
pression. On the contrary, a strong reduction of the maximum deviatoric stress
reached during undrained triaxial extension is observed when the sample was
previously subjected to drained triaxial compression.

Fig. 1. Undrained triaxial compression and extension tests on Hostun RF loose sand
preceded by different drained triaxial preloading. Experiment data adapted from [1].

The importance of recent history is not restricted to the monotonic behaviour
of loose samples. Triaxial tests reported by Ishihara und Okada [2] show the
effect of preshearing (application of a shear stress before the actual test) on the
cyclic behaviour of medium dense Fuji River sand. In these tests, the samples
were first subjected to undrained cyclic stresses until the pore water pressure
increased up to a certain value. Then, the drainage was opened, the pore water
dissipated, and the initial effective pressure was reached again (reconsolidation).
Finally, subsequent undrained cyclic stresses were applied to observe influence
of preshearing on the development of effective stresses and strains. Ishihara und
Okada found that after small preshearing, the reduction of effective pressure
and the accumulation of strains in the subsequent undrained stress cycles were
less than those obtained during the preshearing phase. However, “samples sub-
jected to large preshear on one side of triaxial loading, compression or extension,
became stiffer on that side, but softer on the opposite side”, [2]. Ishihara und
Okada defined small and large preshearing in terms of stress (not of strain)
and used the Phase Transformation Line (PTL) [3] as the boundary between
small and large. Preshearing that reaches stress ratios below and above the PTL
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were called small and large, respectively. These experiments show also that the
effects of stress histories reaching large stress ratios can be observed even after
the unloading from the large shear stress to the isotropic axis (with a shear
strain of approx. 0.5%) and after the reconsolidation (with a volumetric strain
of approx. 0.7%).

A similar behaviour has been observed in the experiments of Wichtmann and
Triantafyllidis [4] on dense Karlsruhe fine sand samples. After a preloading with
stresses beyond the PTL, the accumulation of pore water pressure in the subse-
quent undrained cyclic test with small stress amplitudes is so strong, that the
effective pressure in the sample almost vanished after few cycles. This surprising
effect, by which a dense sand behaves almost like a loose sand upon undrained
cyclic loading, may be attributed to the persistent influence of the stress history.

In order to describe the effects of recent stress/strain history on the mechan-
ical behaviour of sand, we propose a constitutive model that combines the well
known hypoplastic equation, [5] and [6], with a simple yield surface in stress
space. The yield surface is used to compute the intensity of anelastic flow. The
anelastic flow is more intense for stresses outside than for those inside the yield
surface. The shape of the yield surface is determined by a novel state variable
σB, which can be regarded as back-stress and provides information about the
recent stress loading history. The evolution of σB is provided separately for
its isotropic and deviatoric portions. The direction of the anelastic flow upon
shearing is obtained from a generalization of the Taylor’s [7] dilatancy rule.
As a distinctive feature of the model, this dilatancy is able to reproduce the
strong contractancy upon reversals observed in experiments without the need of
additional state variables. Furthermore, the hypoelastic stiffness is replaced by
a hyperelastic one (similar as in the neohypoplastic model [8]). The model cor-
rects some known shortcomings of previous hypoplastic models like overshooting
and the excessive accumulation of stress/strain upon strain/stress cycles of small
amplitude (ratcheting).

After defining the notation used throughout the paper in Sect. 2, the main
hypoplastic equation and the hyperelastic stiffness are described in Sects. 3 and
4, respectively. The constitutive model is designed to reproduce two observed
attractors: the Limiting Compression Curve (LCC) [9] upon monotonic com-
pressive volumetric straining and the Critical State (CS) [10] and [11] after long
monotonic shearing. In the CS, plastic deviatoric flow (tr �ε = 0 with �ε � 0)
is possible without changes in stress �σ = 0 when a critical void ratio e = ec
is reached. To describe these attractors, two different degrees of nonlinearities
and flow rules are adopted: YI and mI for radial compression and YD and mD

for shearing. The Sect. 5 presents a one dimensional model to simulate isotropic
compression. In this simple model, loading/unloading and reloading phases are
distinguished by the overconsolidation ratio, which is based on the concept of
overstress. The overconsolidation ratio is a measure of how close the current
stress and the yield stress are. In this simple model, the yield stress provides a
mechanism to “memorize” previous stress paths. These concepts, i.e. the distinc-
tion between loading and unloading and the yield stress as a memory mechanism,
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are generalized in Sect. 6 to the stresses and strains in 3 dimensions (and for shear
loading). For this purpose a yield surface in the stress space defined by a new
state variable σB is introduced. A novel flow rule that depends on void ratio,
stress and the direction of the strain rate is constructed from the well known
Taylor’s [7] dilatancy. In Sect. 7 the results of different element tests reported in
the literature are compared with the simulations computed with the model to
evaluate the performance of the proposed constitutive equation. In addition, a
special set of tests conducted to evidence the influence of monotonic loading on
subsequent cyclic behaviour is presented and contrasted with simulation results.

2 Notation

A fixed orthogonal Cartesian coordinate system with unit vectors {e1, e2, e3} is
used throughout the text. A repeated (dummy) index in a product indicates
summation over this index taking values of 1, 2 and 3. A tensorial equation with
one or two free indices can be seen as a system of three or nine scalar equations,
respectively. We use the Notation Kronecker’s symbol δi j and the permutation
symbol ei jk . Vectors and second-order tensors are distinguished by bold typeface,
for example N,σ,v. Fourth order tensors are written in sans serif font (e.g. L).
The symbol · denotes multiplication with one dummy index (single contraction).
For instance, the scalar product of two vectors can be written as a · b = akbk .
Multiplication with two dummy indices (double contraction) is denoted with
a colon, for example A : B = tr (A · BT

) = Ai jBi j , wherein trX = Xkk reads
trace of a tensor. The expression ()i j is an operator extracting the component
(i, j) from the tensorial expression in brackets, for example (T · T)i j = TikTk j .
The tensor I is singular (yields zero for every skew symmetric tensor), but for
symmetric argument X, I represents the identity operator, such that X = I :
X. A tensor raised to a power, like Tn, is understood as a sequence of n − 1
multiplications T · T · . . .T. The brackets ‖ ‖ denote the Euclidean norm, i.e.
‖v‖ =

√

vivi or ‖T‖ =
√

T : T. The definition of Mc Cauley brackets reads
<x> = (x + |x |)/2. The deviatoric part of a tensor is denoted by an asterisk,
e.g. T∗ = T −

1
3 1trT, wherein ( 1)i j = δi j holds. The components of diagonal

matrices (with zero off-diagonal components) are written as diag[ , , ], for
example 1 = diag[1, 1, 1]. The Roscoe’s invariants for the axisymmetric case
σ2 = σ3 and ε2 = ε3 are then defined as p = − 1 : σ/3, q = −(σ1 −σ3), εv = − 1 : ε

and εq = −
2
3 (ε1 − ε3). The general definitions q =

√
3
2 ‖σ

∗

‖ and εq =

√
2
3 ‖ε

∗

‖

are equivalent to the ones from the axisymmetric case but may differ in sign.
The isomorphic invariants for the axisymmetric case are defined as P = −σ : �1,
Q = −σ : �1

∗

, εP = −ε : �1, and εQ = −ε : �1
∗

, with �1 = 1
√

3
diag[1, 1, 1] and

�1
∗

=

√
2
3 diag[1,−1/2,−1/2]. Dyadic multiplication is written without ⊗, e.g.

(ab)i j = aibj or (T 1)i jkl = Ti jδkl. Proportionality of tensors is denoted by tilde,
e.g. T ∼ D. The operator (	)→ = 	/‖	‖ normalizes the expression 	, for example
�D = D/‖D‖. The sign convention of general mechanics with tension positive is
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obeyed. Objective Zaremba-Jaumann rates are denoted with a superimposed
dot, for example the rate of the Cauchy stress is �σ.

3 The Hypoplastic Equation

In the new hypoplastic model, the stress rate �σ is written as nonlinear function
of the strain rate �ε as follows

�σ = E : (�ε − Ym ‖ �ε ‖) (1)

where the fourth rank tensor E(σ, e) is the hyperelastic stiffness, Y (σ, e,σB) is
the so called degree of nonlinearity and m(σ, e,σB, ��ε

∗

) is the flow direction. In
order to reproduce the influence of previous deformation paths on the current
material response, we introduce a new stress-like state variable, σB. Thus, the
material state is fully determined by the current stress σ, the current void ratio
e, and the current back-stress σB. In addition to the evolution of σ (1) and the
evolution of the void ratio e,

�e = (1 + e) tr �ε, (2)

the constitutive model requires the evolution of the back-stress σB, which is
described in Sect. 6.7.

4 Hyperelasticity

Previous hypoplastic models include an empirical dependency of the stiffness
tensor Ehp

(p) on the stress [5,12]. To reduce excessive ratcheting of hypoplastic-
ity, Niemunis and Herle [13] introduced a new strain-like variable (the so called
intergranular strain h) which is fully determined by the recent history of defor-
mation. During changes in the strain direction (detected by the angle between h
and �ε), the nonlinear part of the model (Ym ‖ �ε ‖) vanishes and the overall stiff-
ness increases. Since one cannot guarantee that there exists a one-to-one function
σ(ε), this model is called hypoelastic. Hypoelastic models have in general some
disadvantages. For example, one can find a closed strain loop for which neither
the stress nor the energy is recovered [6,14]. Since the model is path dependent
due to the arbitrarily included pressure dependency, energy can be either created
or dissipated depending on the sense of circulation in which the closed loop is
applied1. This may become a serious shortcoming for modeling cyclic loading. To
overcome this deficiency, we replaced the hypoelastic stiffness Ehp

(p) of previous
hypoplastic models [5] by a hyperelastic one E(σ).

We use the hyperelastic stiffness proposed for paraelasticity [15] and neo-
hypoplasticity [16]. This stiffness is a homogeneous function of stress of order
n ≈ 0.6, E(λσ) = λnE(σ) (with λ > 0). The complementary energy is given by

ψ̄(σ) = P0cP̄
α R̄2−n−α, (3)

1 Clockwise (CW) or counter clockwise (CCW).
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where the stress invariants P = −σ : �1 = −
1
√

3
trσ and R = ‖σ‖ are normalized

P̄ = P/P0, R̄ = R/P0 by the reference pressure P0, say P0 = 1 kPa, to attain unit
consistency. The constants c ≈ 1 ·10−4, n ≈ 0.6, and α ≈ 0.1 are material parame-
ters. The compliance C is obtained as the second derivative of the potential with
respect to the stress, i.e. C = (∂2ψ̄/∂σ∂σ). That is

P0C = Aα
�1�1 + Bα(

�1�σ + �σ �1) + Cα�σ�σ + DαI (4)

wherein I represents the fourth order identity tensor Ii jkl =
(
δikδjl + δilδjk

)
/2

and

Aα = c(α − 1)αP̄α−2 R̄2−n−α (5)
Bα = −cα(2 − n − α)P̄α−1 R̄1−n−α (6)
Cα = c(2 − n − α)(−n − α)P̄α R̄−n−α (7)
Dα = c(2 − n − α)P̄α R̄−n−α (8)

For a given degree of homogeneity n of the stiffness with respet to the pressure,
the exponent α can be related to the Poisson ratio νiso at the isotropic stress
axis (Q = 0) using [15]:

α =
n2νiso + n2 − 5nνiso − 2n + 6νiso

2νiso − 1
(9)

The hyperelastic stiffness is obtained after the inversion of the compliance. For
convenience (see Sect. 5), and in order to take into account the influence of the
void ratio on the stiffness, we introduce the factor F(e) = (1 + e)/e. Finally, the
stiffness is written as

E =
1 + e
e

C−1 (10)

5 Model for Isotropic Compression

Let consider the special case of isotropic compression, i.e. isotropic stress (Q = 0,
P � 0) and isotropic strain rates ( �εQ = 0, �εP � 0). We assume that upon isotropic
compression, regardless of the initial void ratio and pressure, the Limiting Com-
pression Curve (LCC) proposed by Pestana and Whittle [9] is asymptotically
reached. Furthermore, we merge the concept of LCC with the pycnotropy func-
tion ei(P) of the hypoplastic model of Gudehus [17] and Bauer [18], which
describes the loosest possible state at a given pressure P. States beyond ei,
that is e > ei, are not allowed. The LCC (or ei(P)) is described by the Bauer’s
[18] formula

ei = ei0 exp
[
−

(
√

3P/hsi
)nBi

]
, (11)

where the maximum allowed void ratio at zero pressure ei0, the so called hardness
of solid phase hsi, and the exponent nBi are material constants.
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The bulk modulus Ki =
∂p

∂εvol
= 1

3
∂P
∂εP

along the LCC is obtained after solving
(11) for P, replacing ei by e, and differentiating after εP

Ki =
1
3
∂P
∂e
∂e
∂εP

=
hsi
3nBi

(
√

3P/hsi
)1−nBi 1 + e

e
(12)

with ∂e
∂εP

= −(1 + e)
√

3 from (2).
If we assume that unloading and reloading are nearly elastic processes, we

can describe them using the hyperelastic stiffness given in (10). The bulk stiffness
K for hyperelasticity2 yields

K =
1
3
�1 : E : �1 =

P0

3c(n − 2)(n − 1)

(
P
P0

)n 1 + e
e

(13)

The loading/unloading/reloading processes can be described by

�P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3Ki �εP for normal compression along LCC with e = ei

3K �εP for unloading/reloading
(14)

In order to simulate these processes with the hypoplastic Eq. (1), we must find
a suitable definition of Y . We start by extracting the isotropic portion of the
model by multiplying both sides of (1) by −

�1 :

�P = −
�1 : �σ = −

�1 : E : (�ε − Ym ‖ �ε ‖). (15)

Since the deformation is purely volumetric �ε = −
�1 : �εP and the stress remains

isotropic Q = 0, the flow rule must be isotropic m = −
�1. Therefore, (15) becomes

�P = 3K ( �εP − Y | �εP |) . (16)

We propose the following expression for Y

Y = YIOCR−nO (17)

with

YI = max
[
0, 1 −

( ei
e

)nO Ki

K

]
(18)

and the overconsolidation Ratio OCR defined as

OCR =
PB

P
(19)

2 Notice that the K can be obtained directly from the hyperelastic potential as K =

1+e
e

[
3
∂2ψ̄
∂P2

]
−1

. In this case, the potential simplifies to ψ̄(P, R) = P0cP̄2−n because
P = R holds for Q = 0.
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where PB is a state variable that resembles the preloading pressure, i.e. it
accounts for previous stress loading.

The evolution of PB upon volumetric compression must satisfy some empirical
observations. In contrast to clay3, there is no unique virgin compression line for
sand. Sand samples prepared at the same initial pressure but different initial
densities show different compression lines. However, for a sample prepared at
a given initial density e0 and pressure P0 there is a single compression line, at
which we may regard the sample state as “normal consolidated”. Along this line
the pressure P and the preconsolidation pressure PB are identical, i.e. OCR =

PB/P = 1. Therefore, we propose the evolution of the preconsolidation pressure
PB due to volumetric compression to be

�PB = 3K (1 − YI )OCR−nO
�εP (20)

where nO is a material constant. During volumetric compression starting from
PB = P (i.e. OCR = 1), Eqs. (20) and (16) become identical (hence, �PB = �P and
OCR = 1). Upon unloading (volumetric extension), OCR increases and both �PB

and Y tend to zero. In this case the model response (16) is nearly hyperelastic.
This means, both processes in (14) can be described with a single equation
Eq. (15). Instead of an explicit criterion for loading and unloading, the term
OCR−nO provides a smooth switch between the two expressions in (14). Notice
that states at which the current pressure P is larger than the preconsolidation
pressure PB, that means OCR < 1, are allowed.

Notice also that in (18) we introduced the function max() because the expres-
sion 1 − (ei/e)

nO Ki/K becomes negative for P smaller than

Pneg =

⎡⎢⎢⎢⎢⎣
hsi
nBi

c(n − 2)(n − 1)
P1−n
0

(
√

3
hsi

)1−nBi ⎤⎥⎥⎥⎥⎦

ξ

(21)

with ξ = −1/(1 − n − nBi).

6 Constitutive Model with Historiotropic Yield Surface

The notions developed for the 1-Dimensional model presented in Sect. 5 are now
extended to represent more general stress states and strain paths. In particular,
the 3-D model must be able to describe the asymptotic state reached upon
shearing. The material behaviour observed in oedometric, isotropic, and triaxial
tests should be also described by the model.

6.1 Historiotropic Yield Surface g = 0

For the 1D model (see Sect. 5), the overconsolidation ratio was defined in (19)
as OCR = pB/p. In this case, the state variable pB could be related to the
3 In clay, a family of parallel virgin compression lines (in the e − ln(p)−diagram) can

be obtained by deforming the samples at different straining rates.
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Fig. 2. Simulation of isotropic compression tests on Toyoura Sand [19] and [20] with
the material constants of Table 1.

preconsolidation pressure, e.g. the maximum pressure at which the sample has
been subjected before the actual test. However, the definition of OCR for the
general case has to be modified in order to include the influence of the deviatoric
portions of the stress σ. Furthermore, it has to account for a more general
definition of the preconsolidation pressure pB, i.e. the preconsolidation stress
tensor σB

σB ≡ pB (− 1 +Ω) , (22)

which is a new state variable with isotropic −pB 1 and deviatoric pBΩ (i.e.
trΩ = 0) parts. To achieve this goal, we propose the equation

g(σ,σB, e) ≡ w : w −

2
3
M2

w (1 − α) (1 − β)2 = 0, (23)

with

α = (p/pB)
cb and β =

√
3
2
〈�w : Ω〉
Mo

, (24)

to define a yield surface that can be used to compute the OCR in the general case,
see Fig. 3. Stresses σ lying on the yield surface, i.e. all stresses that satisfy (23)
for a given void ratio e and preconsolidation stress σB, correspond to OCR = 1.
The size pB and inclination Ω of the yield surface with respect to the isotropic
axis in the stress space is determined by the new state variable σB. In (24),
cb is a material constant and the Mc Cauley brackets operator is defined as
〈	〉 = 1

2 (	 + |	|). The deviatoric tensor

w = σ̂∗

−Ω with σ̂∗ =
σ∗

p
(25)

represents the inclination of the current stress with respect to the major axis of
the yield surface. Near the origin of the p−axis, the maximum opening of the
yield surface is controlled by peak friction angle ϕpeak via

Mw = M
(
ϕpeak, θw

)
and Mo = M

(
ϕpeak, θΩ

)
(26)
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Fig. 3. Historiotropic yield surface g = 0 in the triaxial p − q−space

where Mw and Mo are the maximum stress ratios (q/p) in the direction of the
tensors w and Ω, respectively. The peak friction angle ϕpeak is a function of
the void ratio and the pressure, see Sect. 6.4.2. For a given angle ϕ and a given
tensor 	 we use a general expression for the slope M(ϕ, θ

	
) of the stress ratio on

the p− q−plane. The slope M can be found as an interpolation between the two
extreme values for triaxial compression Mc and triaxial extension Me over the
Lode’s angle θ as M = 1

2 [(Mc − Me) cos(3θ) + (Mc + Me)] or

M = M(ϕ, θ) =
6s (3 + sc)

(3 + s)(3 − s)
(27)

with s = sin ϕ and c = cos(3θ). The Lode’s angle θ
	

of the tensor 	 is defined as

cos(3θ
	
) = −

√

6 �	∗

i j �	∗

jk �	∗

ki (28)

and �	∗ = (	
∗

)
→ �

(
�	
)
∗. For isotropic tensors, i.e. ‖	∗

‖ = 0, Eq. (28) cannot be
used due to the division by zero in �	∗ = 	

∗

/‖	
∗

‖. In this case we arbitrary set
cos(3θ

	
) = 1. Triaxial compression and extension are especial cases of (27)

Mc = M(ϕ, θσ = 0◦) and Me = M(ϕ, θσ = 60◦)

Conversely, for a given M and θ (c = cos(3θ)) we can find the mobilized angle ϕ
from (27) as

sin ϕ =
−9 + 3

√

9 + 6cM + M2

6c + M
(29)

Notice that the projection of the surface q/p − M = 0 (with M defined by (27))
onto the deviatoric plane may become concave for large friction angles. Although,
alternative convex surfaces, like that from Matsuoka and Nakai [21], could be
adopted, we use this concave surface because of its simplicity and because the
flow rule is not associative (c.f. [22]).
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Fig. 4. Historiotropic yield surface g = 0 in the triaxial p − q−space for different back-
stresses σB.

Similar to the yield surface of the SANISAND model [22], the surface (23)
can be thought as a conical surface with sharp apex at p = 0. The opening of
this cone around its axis Ω varies from a maximal value Mw at p = 0 to zero
at p/pB = 1 (the cap of the surface), see α in (24) and Fig. 4. Furthermore, the
opening of the cone reduces when the inclination Ω reaches its maximum value
in the direction of w, see β in (24).

Notice that both the maximum opening Mw of the yield surface and the
maximum slope Mo of the Ω in the p − q−space are determined by the peak
friction angle, ϕpeak , which is a function of the void ratio and the pressure.

6.2 Overconsolidation Ratio OCR

In Sect. 5 we used the Overconsolidation Ratio in the multiplicator OCR−nO as
a way to distinguish between first loading and unloading/reloading. In order to
expand this idea to general stress states (and not only for the isotropic case),
we combine the concept of overstress [23] with the yield surface g = 0. This
generalization has been implemented in hypoplastic constitutive models for clay,
e.g. [6] and [24]. Stress states lying on the yield surface g = 0 correspond to
OCR = 1. Within (OCR < 1) the yield surface is the intensity of anelastic flow
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smaller than outside (OCR > 1) the yield surface. OCR is defined as

OCR ≡ pB/pB+, (30)

where pB+ is the “size” of a pseudo-yield surface on which the current stress σ
lies. To compute pB+ we proceed as follows. For a given stress σ, void ratio e,
and inclination Ω, we find pB+ from a surface g+ = 0

g+(σ,σB+, e) = 0 with σB+ = pB+ (− 1 +Ω) (31)

Fig. 5. Graphical interpretation of pB and pB+ used in the definition of OCR (30)

The surface g+ = 0 is affine to g = 0, i.e. both have the same inclination Ω,
the same opening ϕpeak(e, p), but different back pressure pB+ (instead of pB),
see Fig. 5. Using (31) and (23) with the substitution (24) we obtain

pB+ = p

[
1 −

3w : w
2M2

w (1 − β)2

]
−1/cb

(32)

6.3 Generalized Taylor’s Dilatancy Md

The dilatancy Md, which is the ratio of plastic volumetric �ε
p
v to the plastic

deviatoric �ε
p
q strain rates, i.e. Md = �ε

p
v /

��
�ε
p
q

��, is a distinctive phenomenon of
granular materials and is one of the most important aspects in the description of
the mechanical behaviour of soils. The accurate modeling of dilatancy becomes
even more relevant for cyclic loading. The experiments of Pradhan and Tatsuoka
[25] and [26] show that the dilatancy Md is a function not only of stress η = q/p
(like in Camclay model [10] Md(σ)), or of the void ratio (like in [27] Md(σ, e)),
but also a function of the direction of shearing Md(σ, e, ��ε∗).

Consider a triaxial compression test on a dense sand sample at constant
pressure. For stress ratios larger than the critical one η = q/p > Mc, the dilatancy
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is positive, i.e. the volume of the sample increases with shearing. At this state we
may have two different dilatancies depending on the direction of shearing. Upon
continued shearing, the sample dilates, i.e. Md > 0. If the direction of shearing
is reversed, say from triaxial compression to triaxial extension, then the sample
contracts, i.e. Md < 0. To describe this dependency of dilatancy on the strain
direction, Pradhan and Tatsuoka [25] use two different equations: one for triaxial
compression and other for triaxial extension.

In order to describe the relation between dilatancy, stress (ratio), void ratio
and strain direction, we generalize of the Taylor’s interlocking concept [7] by
assuming that:

1. the division of strength into a portion due to internal friction and another
due to dilatancy applies also for states different to the peak.

2. the dilatancy is zero at two stages: at PTL and at the critical state CS.
3. the Taylor’s rule observed in simple shear test can be extended to multiaxial

stress states.

We start from the concept of interloking, which was stated by Taylor [7] as
follows. Consider a direct shear test on dense sample. The shear strength at the
peak τpeak consists of two portions:

τpeak = τc + τe (33)

where τc = σ tan ϕc is the internal shear strength, with ϕc as the critical friction
angle, and τe is the portion of the shear strength related to interlocking. At the
peak, the sample thickness h increases with the shearing displacement u, which
represents a ratio of Δhpeak units of height per unit of Δupeak . The expansion
of the sample is resisted by the normal stress σ. For the occurrence of the
expansion, energy must be supplied. The amount of energy Eused

e used during
expansion is the product of the normal force σA applied on the top and bottom
of the sample and the thickness increment Δhpeak , i.e. Eused

e = σAΔhpeak . The
portion of the shearing stress τe supplies the energy for expansion Esupplied

e , which
is the product of the shear force τeA and the shearing displacement Δupeak , i.e.
Esupplied
e = τeAΔupeak . Setting these two energies equal, Eused

e = Esupplied
e , we

obtain

σAΔhpeak = τeAΔupeak (34)

or τe = σΔhpeak/Δupeak . We can therefore rewrite (33) as

τpeak = σ tan ϕc + σΔhpeak/Δupeak (35)

Dividing the last equation by σ and substituting τpeak/σ = tan ϕpeak yields

tan ϕpeak = tan ϕc + tanψpeak (36)

where

tanψpeak ≡ Δhpeak/Δupeak (37)
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and ψpeak is defined as the dilatancy angle at peak state. If we assume that the
relation between mobilized friction angle ϕm and dilatancy angle ψ given in (36)
holds at any state (and not just at peak state where ϕm = ϕpeak and ψ = ψpeak),
(36) becomes

tan ϕm = tan ϕc + tanψ (38)

Equation (38) can be interpreted as a constraint between stress and strain ratios
during shearing. Notice that (38) has been obtained for constant σ. The advan-
tage of direct shear or constant pressure triaxial tests is that volume changes
induced by pure shearing can be easily identified. On the contrary, in drained
triaxial tests, for example, a constitutive relation is required to identify which
portion of the volume change is due to the change of applied pressure, and which
portion is due just to interlocking.

We modify now the Taylor’s rule given by (38) to incorporate two effects:
the void ratio (and pressure) dependency and the strong contractancy upon
reversals. Experiments of Ishihara [3] show that the dilatancy equals zero at
two stages: at the critical state CS and at the Phase Transformation Line PTL.
To reproduce this observation, we replace tan ϕc by tan ϕPTL in (38), where
ϕPTL(e, p) is a function of void ratio and pressure, see Sect. 6.4.3. For dense sand
e < ec(p), the PTL lies below the critical state line CSL, ϕPTL < ϕc. For loose
sand e > ec(p), the PTL lies above the CSL ϕPTL > ϕc and may not be reached
upon undrained shearing. After long monotonic shearing, the sample approaches
the critical state, at which deviatoric straining produces neither stress nor volume
change. Therefore, at the critical state (where e = ec), the PTL coincides with
CSL, i.e. ϕPTL = ϕc.

Experiments show also that the maximum contractancy is attained upon
reversals of the strain path. We propose the factor �σ∗ : ��ε∗ as a way to reproduce
this observation. Incorporating this two modifications into (38), we obtain

tanψ = �σ∗ : ��ε∗ tan ϕm − tan ϕPTL (39)

For a given mobilized friction angle ϕm > ϕPTL , we can obtain two different
dilatancies from a single Eq. (39): a positive dilatancy tan ϕm − tan ϕPTL if �σ∗ :
�
�ε∗ > 0 or a stronger contractancy − tan ϕm−tan ϕPTL if the strain rate is reversed,
e.g. �σ∗ : ��ε∗ < 0. Notice, however, that (39) relates three angles: ψ, ϕm, and ϕPTL .
In order to generalize this equation for three dimensions, we must find a relation
between the angle ψ and the volumetric and deviatoric invariants of the strain
rate. Neglecting the difference between plastic and total deviatoric strain rates
we can use (27), which express an angle in terms of stress invariants, to relate
the dilatancy angle ψ with tensor invariants of the plastic strain rate

Md = M(ψ, θw) =
�ε
p
v��
�εq
�� =

6s (3 + sc)
(3 + s)(3 − s)

(40)

where s = sinψ and c = cos(3θw). In hypoplasticity, the direction of the devi-
atoric anelastic strain has the same direction as the deviatoric stress. In (40),
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however, we have assumed that the plastic deviatoric shearing is parallel to w.
This assumption is based on the observation, that after long monotonic shearing,
w and σ∗ become parallel, see (53). Using (40) and writing Md = tr �ε p/

√
2
3 ‖ �ε∗‖,

we can now formulate a flow rule for shearing as

mD =

(
1
3

√
2
3
Md 1 + w

)
→

(41)

Figure 6 compares the flow rule (41) with experimental results. In this simu-
lations it has been assumed that the plastic strain rate is given by �ε p = mD ‖ �ε ‖
with w = �σ∗ and ϕPTL = ϕc = 27◦.

6.4 Characteristic Curves

Besides the Limiting Compression Curve (LCC) defined in (11), the model
requires explicit relations between the critical void ratio, the maximum friction
angle, and the phase transformation line with the pressure.

6.4.1 Critical Void Ratio ec(p)
After large monotonic shearing a sand sample approaches a state at which fur-
ther isochoric shearing is possible at constant stress. This state is approached
independently of the initial density or stress of the sample. At this state, the so
called critical state, the material reaches a critical void ec, which is a one-to-one
function of the pressure p, and a critical stress ratio M (at which the mobi-
lized friction angle ϕm = ϕc). The critical void ratio is described by the Bauer’s
formula [18]

ec(p) = ec0 exp [− (p/hsc)
nBc

]

with the constants ec0, hsc, and nBc.

6.4.2 Maximum Friction Angle ϕpeak

The maximum attainable stress obliquity depends on the void ratio and the
pressure. Larger stress obliquities can be reached by dense sands than by looser
ones, see Fig. 7. We describe the maximum stress obliquity in terms of the friction
angle ϕpeak via

tan ϕpeak = tan ϕc
( ec
e

)npeak

(42)

with the constant npeak . Notice that at the critical state e = ec the maximum
friction angle equals the critical one.
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Fig. 6. Experimental results of constant pressure triaxial tests [25,26] compared with
the dilatancy given by (40) and (41) with w = �σ∗ and ϕPTL = ϕc = 27◦. Conventions:
dvd = εa +2εr , dγ = εa −εr where εa and εr are the axial and radial strain components
(compression positive), respectively. dγd represents the plastic portion of dγ.

6.4.3 Friction Angle at Phase Transformation Line ϕPTL

The Phase Transformation Line (PTL) described by Ishihara et al. [3] indicates
the stress ratio at which, upon monotonic shearing, the sand changes from con-
tractive to dilative behaviour. The PTL (usually depicted in the p − q−space)
is related to the friction angle ϕPTL and depends on the pressure and the void
ratio

tan ϕPTL = tan ϕc

(
e
ec

)nPT L

(43)

with the constant nPTL. Dense sands reach the PTL at lower stress ratios than
loose ones, see Fig. 7. Notice that at the critical state e = ec, where unbounded
shear strain is possible with no volume changes, the PTL line becomes the CSL,
i.e. tan ϕPTL = tan ϕc.

6.5 Intensity of Anelastic Flow

The intensity of anelastic flow Y is defined as an interpolation between two main
loading cases: YD for shearing and YI for isotropic compression (see Sect. 5)

Y = [YI + (1 − YI )YD]OCR−nO (44)

Upon shearing, the degree of nonlinearity is given by (see Fig. 8)

YD =
[ a
b

]nYD

=

⎡⎢⎢⎢⎢⎢⎣

w :
(
σ̂∗

−Ω
)

w :
(
σ̂∗

f −Ω
)
⎤⎥⎥⎥⎥⎥⎦

nYD

(45)
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with

σ̂∗

f =
σ∗

f

p
(46)

where σ∗

f is the deviatoric portion of the stress σ f , σ f is the image of the current
stress σ projected onto the limiting surface f = 0 in the direction of w, and the
exponent nYD is a material constant. The limiting surface f = 0 is an open cone
in the stress space, whose opening is determined by the maximum friction angle
ϕpeak . This surface is given by the equation

f (σ, ϕpeak) ≡
‖σ∗

‖

p
−

√
2
3
M = 0 with M = M(ϕpeak, θσ). (47)

Since σ∗

f is parallel to w, we can find σ∗

f from (47) as

σ∗

f = p

√
2
3
Mw �w with Mw = M(ϕpeak, θw) (48)

6.6 Flow Rule m

The flow rule m is interpolated from the two special cases: the flow rule mD for
isochoric shearing and the flow rule mI for radial compression

m = [mDYD + mI exp (−ξYD)]→ (49)

where ξ is a large number, say ξ ≈ 1000. During isochoric shearing, YD > 0 and
the second term on the right-hand side of (49) vanishes. Upon radial compression,
Ω alienates asymptotically with the current stress ratio σ̂∗ and w tends to zero.
In this case YD cannot be determined from (45). For this special case we define

YD = 0 for ‖w‖ < wtol (50)

where wtol is a small number, say wtol = 10−4, and the first term on the right
hand side of (49) vanishes. Notice that a similar interpolation of the flow rule has
been used in the SANISAND model [22]. In order to reproduce the asymptotic
behaviour upon radial compression, i.e. those tests with σ̂∗ = const and tr �ε < 0,
the flow rule m should be given by

mI =
(
− 1 + cmI σ̂

∗
)
→ (51)

where cmI is a material constant. The asymptotic value of the deviatoric portion
Ω of the back stress σB upon radial compression is Ω = σ̂∗. At this stage �Ω = 0,
the tensor w vanishes w = 0, see Sect. 6.7, and YD = 0 (50). In addition the
stress path approaches a constant stress ratio, at which the directional homo-
geneity �

�σ(T,D) = �
�σ(λ2T,D) can be observed [6]. Using this property of the

hypoplastic Eq. (1), the constant cmI can be found by making the flow direction
mI compatible with the stress σK0 ∼ − diag [1,K0,K0], which is reached after
long oedometric compression. K0 can be computed from the empirical “Jacky”
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Fig. 7. Critical ϕc , maximum ϕpeak , and phase transformation line ϕPTL angles as
functions of the normalized void ratio e/ec . Here: ϕc = 33◦, npeak = 2, and nPTL = 1

Fig. 8. Graphical interpretation of YD for triaxial compression.

formula K0 = 1 − sin ϕc. In the asymptotic case, the direction of flow must be
uniaxial, i.e. mI = − diag [1, 0, 0]. Therefore, cmI is

cmI =
1 + 2K0

1 − K0
=

3
sin ϕc

− 2 (52)

6.7 Evolution of the State Variable σB

Similar as in the anisotropic viscohypoplastic model [24], the evolution of the
state variable σB is given in separate equations for Ω and pB. For the evolution
of Ω, i.e. the inclination of the yield surface g = 0, we propose

�Ω = C2

(
σ̂∗

−Ω
)
OCR−nO

‖ �ε ‖ . (53)

According to this equation, Ω evolves upon any kind of deformation (isotropic
or deviatoric). The evolution rate is controlled by the material constant C2 and
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is larger for stresses outside (OCR < 1) than for stresses inside (OCR > 1) the
yield surface g = 0. Ω evolves in the direction given by the difference between
the current stress ratio σ̂∗ and Ω. To avoid numerical problems when the stress
reaches the limit stress surface, and therefore ‖Ω‖ >

���σ̂∗

f

���, the stress σ̂∗ in
(53) should be replaced by σ̂∗

f . After long radial compression, both Ω and σ̂∗

approach an asymptotic stress ratio and the evolution of Ω ceases.
The evolution of pB, i.e. the size of the yield surface g = 0, consists of two

portions

�pB = �pBI + �pBD, (54)

�pBI is related to volumetric and �pBD to deviatoric deformations. The evolution
of pB during isotropic compression has been discussed in Sect. 5 and is given by
(20). Hence,

�pBI = −K (1 − YI )OCR−nO tr �ε (55)

With this equation, pBI increases during volumetric compression and reduces
during volumetric extension. However, during volumetric extension OCR
increases making the reduction of pBI negligible. Therefore, �pBI can be thought
to be similar to the isotropic hardening of Camclay.

In case of shear deformations, we propose an evolution equation similar to
(53)

�pBD = C2 (p − pB)OCR−nO
‖ �ε∗‖ (56)

This equation allows for strong reductions of pB during undrained cyclic loading,
which resembles the material degradation observed in phenomena like cyclic
mobility. Such reductions of pB during pure deviatoric shearing can also describe
the discrepancy between the compression curve and reconsolidation curves after
some undrained shear cycles observed by Ishihara und Okada [2].

7 Comparison of the Model with Experimental Results

The proposed constitutive model has been implemented in a Fortran code (called
UMAT – User MATerial subroutine) that is compatible with the commercial
Finite Element program Abaqus. The UMAT is also compatible with the Incre-
mentalDriver routine [28], which is an open-source code designed to verify the
numerical implementation of the constitutive model and to simulate element
tests.

To evaluate the performance of the model, experimental results of mono-
tonic and cyclic triaxial tests on different sands were simulated. Furthermore,
additional experiments on Karlsruhe fine sand, which were specially designed
to study the influence of previous deformation histories on subsequent cyclic
loading, were also simulated.
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7.1 Monotonic Triaxial Tests

Figures 9, 10, and 11 compare the laboratory with the simulation results of triax-
ial compression tests on loose, medium dense, and dense Toyoura sand samples
[29], respectively. These experiments are commonly used as benchmark for con-
stitutive models because they account for the material response to monotonic
undrained shearing over a wide range of pressures and densities. The material
constants used in the simulations are listed in Table 1. Isotropic compression
tests on Toyoura sand for different densities have been also simulated, Fig. 2. It
can be seen that the model is able to reproduce the experimental results in an
acceptable way for all pressures and densities.

Fig. 9. Experiment results and simulation of triaxial compression tests on Toyoura
sand for dense (e = 0.735) samples. Experiment data adapted from [29].

7.2 Drained and Undrained Triaxial Tests on Loose Sand

To show the influence of previous deformation history on the subsequent material
response, Doanh [1] conducted a set of experiments on Hostun RF loose sand.
Starting at an isotropic stress of p0 = 100 kPa, the samples were subjected to
drained triaxial compression up to different stress ratios denoted by the dots (1
to 10) in Fig. 12, upper part, left. Then the deviatoric stress was reduced in order
to reach the initial isotropic stress with p = 100 kPa. At this point, all samples
had similar void ratios, e0 ≈ 0.94. Then, undrained triaxial compression and
extension tests were conducted. It can be observed that the maximum deviatoric
stress upon undrained compression increases with the stress ratio attained during
the preloading phase. Converserly, the maximum deviatoric stress attained in
undrained extension reduces with the stress ratio reached during the preceding
drained triaxial compression. This observation can be qualitatively reproduced
by the proposed constitutive model, see Fig. 12, lower part, right.

7.3 Cyclic Triaxial Tests

The capabilities of the model were also tested under cyclic conditions. Figure 13
shows the simulation of undrained cyclic triaxial tests of small amplitude on
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Karlsruhe fine sand [4]. Starting from an isotropic stress of p0 = 200 kPa and
e0 = 0.952 (ID0 = 0.27) stress cycles of amplitude qampl = 40 kPa were applied.
It can be observed that in the experiment as well as in the simulation, the
accumulation of pore water pressure (or the reduction of effective pressure) after
each cycle reduces with the number of cycles. The experiment was stopped when
the accumulated axial strain reached 10%. This criterion was satisfied after 72
cycles in the experiment and after 120 cycles in the simulation. However, an
acceptable agreement between experiment and simulation can be observed.

Fig. 10. Experiment results and simulation of triaxial compression tests on Toyoura
sand for medium dense (e = 0.833) samples. Experiment data adapted from [29].

Fig. 11. Experiment results and simulation of triaxial compression tests on Toyoura
sand for loose (e = 0.907) samples. Experiment data adapted from [29].

A cyclic undrained triaxial test with larger stress amplitude qampl = 60 kPa
was also simulated, see Fig. 14. The cyclic loading started from an isotropic
stress of p0 = 200 kPa and an initial void ratio of e0 = 0.726 (ID0 = 0.87). After
about 80 cycles, the effective stress pressure reduces to nearly zero. Beyond that
point, a cyclic attractor, a butterfly-shaped stress path in the p − q−space can
be observed. The model simulates a stronger reduction of the effective stress
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Fig. 12. Undrained triaxial compression and extension tests on Hostun RF loose sand
preceded by different drained triaxial preloading. Experiment data adapted from [1].

than the one observed in the experiment. After 27 cycles, the accumulated axial
strain was about 10% and the effective pressure became zero. However, the cyclic
attractor could not be properly captured by the simulation.

7.4 Combination of Monotonic and Cyclic Loading

In a further validation attempt, experiments with cyclic loads of variable ampli-
tude as well as combinations of monotonic and cyclic loading were simulated.
Figure 15 shows the simulation of an undrained triaxial test with successive load-
ing/unloading phases. The experiment starts from an isotropic stress of p0 = 200
kPa and an initial density of ID0 = 0.34. After the application of a (compressive)
strain increment of Δε1 = 0.05%, the deviatoric stress is reduced to zero. Then,
successive cycles of reloading (with strain increment Δε1 = 0.05%) and unload-
ing (reduction of deviatoric stress up to q = 0) phases took place. As reference,
the results of a purely monotonic test is depicted. In contrast to hypoplasticity
[13] or the ISA model [30], where the previous deformation path is tracked by
a strain-like state variable (i.e. the intergranular strain), it can be seen that the
proposed model can reproduce the cyclic loading of variable amplitude without
overshooting or ratcheting effects.

A similar performance can be observed in the simulation of cyclic tests with
small and large amplitudes. Figure 16 presents the simulation of a drained tri-
axial test with constant pressure and cycles of small and large amplitude on
Toyoura sand. Figure 17 shows the simulation of an undrained triaxial test on
dense Karlsruhe sand with cycles of small and large amplitude too. In both cases
it can be observed that the model can “remember” the stress point from which the
unloading (cycle of small amplitude) process started and that this stress point
is reached again upon reloading. A stiffer and nearly elastic response during the
small “unloading cycles” can be also reproduced by the model.
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Fig. 13. Undrained cyclic triaxial tests of small stress amplitude on Karlsruhe fine
sand. Experiment data adapted from [4].

7.5 Cyclic Loading with Different Deformation Histories

To investigate (and/or test) the evolution equation for the novel state variable
σB, we conducted special tests applying the same cyclic loads, but preceded
by different deformation histories on dense sand samples. The Karlsruhe fine
sand can be characterized by the following parameters: d50 = 0.14mm, Cu = 1.5
(≤ 5, i.e. poorly graded sand), emin = 0.677, emax = 1.054 and �s = 2.65 g/cm3.
The samples, with diameter d = 100mm and height h= 200mm, were prepared
using either the dry pluviation or the moist tamping method. Then, the pores
of the samples were fully saturated with water to allow a precise measurement
of volume changes by means of a differential pressure transducer DPT that was
connected to a pipette system.

All drained cyclic tests started from the same initial isotropic stress of
p0 = 100 kPa and from nearly the same density (ID0 ≈ 0.8). The stress con-
trolled cyclic loading consisted of stress increments of magnitude lpq = 40 kPa
applied successively upon 16 different stress ratios η = Δq/Δp in the following
sequence: η = 1.125, 1.0, 0.875, . . . ,−0.625, and −0.750. Each stress increment
with stress ratio ηi (loading) was followed by another stress increment with −ηi
(unloading) until the initial stress p0 = 100 kPa and q0 = 0 was reached. Then,
the next stress increment, with ηi+1 was applied. The process was repeated for
each of the 16 stress increments, see Fig. 18(a), left. The resulting strains are
also shown in Fig. 18(a), right.
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Fig. 14. Undrained cyclic triaxial tests of large stress amplitude on Karlsruhe fine
sand. Experiment data adapted from [4].

Fig. 15. Experiment results and simulation of an undrained triaxial compression test
with successive loading/unloading phases on Karlsruhe fine sand. Experiment data
adapted from [4].
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Fig. 16. Combination of cycles of large and small amplitude. Experiment data adapted
from [25].

Fig. 17. Combination of cycles of large and small amplitude. Experiment data adapted
from [4].

In order to investigate the influence of previous deformation history on the
cyclic behaviour of the material, sand samples were subject to undrained triaxial
deformations in compression as well as in extension before the drained cyclic tests
described above were conducted, see Fig. 18(b) and (c). The monotonic and cyclic
components of the axial loading were applied by means of a pneumatic cylinder
located below the pressure cell. The cell pressure was applied pneumatically with
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water in the cell. Both the vertical σ1 and the horizontal σ3 total stresses were
controlled independently.

These experiments were simulated using the proposed model and the
hypoplastic model with intergranular strain [13], see Fig. 19. The material con-
stants for the proposed constitutive model and for hypoplasticity are given in
Tables 1 and 2, respectively. It can be observed that in comparison with hypoplas-
ticity, the present model is able to reproduce (qualitatively) better the influence
of previous deformation on the material response to the subsequent cyclic loads.
Furthermore, the mechanical behaviour of the samples during the undrained
monotonic preloading and unloading phases is better captured by the proposed
model than by hypoplasticity.

Fig. 18. Test results on Karlsruhe fine sand (a) without preloading history (Test AP1)
as reference test, (b) preloading history in compression area (Test AP2) and (c) preload-
ing history in extension area (Test AP3). ID0 after sample preparation (air pluviation)
and ID1 at start of drained stress paths.
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Fig. 19. Simulations of the experiments from Fig. 18 (red) with hypoplasticity with
intergranular strain after Niemunis and Herle [13] (blue) and with the proposed model
(black).

Figure 20 shows the same experiments as in Fig. 18, but on samples prepared
by the moist tamping method. Compared to the air pluviation, the moist tamp-
ing method produces samples that show less contractancy during the undrained
preloading and unloading phases. Furthermore, the overall response of the sam-
ples prepared by the moist tamping method is stiffer than that of the samples
prepared by the air pluviation method. The influence of the preparation method
on the mechanical behaviour of sand cannot be captured by the proposed con-
stitutive model.
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Fig. 20. Test results on Karlsruhe fine sand (a) without preloading history (Test
MT1) as reference test, (b) preloading history in compression area (Test MT2) and
(c) preloading history in extension area (Test MT3). ID0 after sample preparation
(moist tamping) and ID1 at start of drained stress paths.

8 Conclusions

The present model introduces three main changes to the well known hypoplastic
equation [5]: (1) a hyperelastic stiffness, (2) a yield surface to account for recent
deformation history, and (3) a new state variable (a back-stress) σB, which
describes the size and inclination of the yield surface. These changes enable the
proposed model to overcome some known shortcoming not only of hypoplastic,
but also of elastoplastic constitutive models:

1. In contrast to yield surfaces with a constant elastic range defined in the strain
space (like in hypoplasticity with intergranluar strain [13] or in the ISA model
[30]), the size of the proposed yield surface g = 0, which is defined in the stress
space, varies with the back stress σB. Combined with the concept of OCR,
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this yield surface allows the simulation of cyclic loads of different amplitudes
without overshooting or excessive ratcheting.

2. The influence of recent deformation history on the mechanical behaviour of
sand can be captured with the additional state variable σB and the yield
surface.

3. The presented model is able to simulate the degradation of the material
stiffness during undrained cyclic loading without additional state variables.
Advanced constitutive models like SANISAND [22], ISA [30], or Neohypoplas-
ticity [16] require an additional state variable (the so called z variable) to
induce extra contractancy after reversals at large stress obliquities.

4. Radial compression paths with loading and unloading cycles can be also well
reproduced by the proposed model.

Appendix

Table 1. Material constants for the proposed constitutive model

Symbol Description Toyoura Karlsruhe

Hyperelasticity

α coefficient 0.1 0.1

n barotropy exponent 0.6 0.677

c coefficient 0.0015 0.001096

Critical state

ϕc critical friction angle (
◦

) 32.5 33

ec0 critical void ratio at p = 0 0.929 1.054

nBc exponent 0.79 0.27

hsc reference pressure (kPa) 56000 4 · 106

Limiting compression curve

ei0 max. void ratio at p = 0 1.115 1.1

nBi exponent 0.79 0.48

hsi reference pressure (kPa) 1.9 · 105 8.4 · 106

Friction angles

npeak exponent peak 1 2

nptl exponent PTL 1 1

Yield surface

nO exponent of OCR 4 4

cb exponent 1 0.2

nYD exponent of YD 1 1

Evolution of σB

c2 coefficient 30 50
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Table 2. Hypoplastic material constants for Karlsruhe fine sand

ϕc (◦) ec0 ei0 ed0 hs (kPa) n α β mT mR Rmax βx χ

33 1.054 1.212 0.677 4 · 106 0.27 0.14 2.5 2 5 0.0001 0.5 6
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