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Abstract. The paper deals with the numerical modelling of the blast-
induced deformation of two neighbouring shallow tunnels and the sur-
rounding soil. The deformation is caused by an explosion inside one of
the tunnels. The explosion is simulated by a short-term pressure load of
moderate amplitude (8 MPa) applied to the tunnel lining. The lining of
both tunnels is circular with an inner diameter of 9.6 m and consists of
concrete segments (tubbings) assumed to be linearly elastic. The tun-
nels are located at a depth of 17 m in fully saturated soil. The effective
stresses in the soil are described by a hypoplasticity model. The mod-
elling incorporates pore water cavitation at zero absolute pore pressure.
The dynamic problem is solved in a two-dimensional plane-strain formu-
lation with the finite-element program Abaqus/Standard. The transient
deformation of the tunnel lining and the soil is analysed in detail. In
particular, the solution reveals the emergence of large cavitation zones
in the soil during the dynamic deformation.

1 Introduction

The problem of an explosion in a tunnel is a dynamic soil-structure interaction
problem whose solution is determined by both the design of the structure (the
tunnel lining) and the mechanical properties of the surrounding medium (soil,
rock). The ground surface also plays an important role for shallow tunnels and
should be included in the formulation of the problem. The modelling is usu-
ally aimed at finding the deformation and possible damage of the tunnel lining
and neighbouring structures, e.g. an adjacent tunnel or a construction above
the tunnel. If the tunnel is situated in saturated soil, an important question
is that of the expected residual deformations and permanent stress changes in
the soil. If the effective pressure in the soil is reduced to zero, the soil turns
into a liquefaction state. Saturated soils can liquefy not only under cyclic shear
deformation typical of earthquake-induced loading but also after large-amplitude
compression-extension cycles [1,2].

This paper presents results of the numerical modelling of the dynamic defor-
mation of two neighbouring tunnels and the surrounding saturated soil induced
by an explosion inside one of the tunnels. Similar problems with a single tunnel
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have been studied in [3,4]. The explosion is simulated by a short-term pressure
load of moderate amplitude (8 MPa) applied to the tunnel lining. The lining of
both tunnels is circular and consists of concrete segments (tubbings) assumed
to be linearly elastic. The constitutive description of the soil is based on the
effective-stress principle. The effective stresses are described by a hypoplasticity
model for granular soils. The choice of a constitutive model for soil in prob-
lems with blast-induced deformation is dictated by the magnitude of the applied
pressure. An increase in the effective pressure in a fully saturated soil under
undrained conditions is a small fraction of the total pressure applied to the soil.
For the loading considered in this paper, the transient effective-stress changes
in the soil do not exceed a few hundred kilopascals and lie within the validity
range of the hypoplasticity model. The constitutive description of the pore water
includes cavitation with zero stiffness at zero absolute pore pressure and linearly
elastic behaviour for a nonzero pressure.

The problem is solved with the finite-element program Abaqus/Standard in
a two-dimensional plane-strain formulation. Although a real explosion originates
from a point source and requires a three-dimensional formulation, an advantage
of the two-dimensional formulation is that it enables us to solve the problem with
fine spatial discretization. As pointed out in [3,4], problems with blast-induced
soil deformation require finer spatial discretization than problems with quasi-
static or earthquake-induced loading for the same geotechnical structure. Close
inspection of the literature reveals that this requirement is often disregarded and
the computational mesh is too coarse, especially for three-dimensional problems
(for literature on the numerical modelling of blast-induced soil-structure inter-
action, see e.g. references in [5,6]). The necessary degree of spatial discretization
depends on the spatial variation of the solution. Previous studies [3,4] as well as
theoretical estimations show that, in order to obtain reliable numerical solutions,
the grid spacing in a blast-induces soil-tunnel interaction problem should be as
small as several centimetres. The present two-dimensional formulation allows us
to obtain accurate solutions on a fine mesh and to analyse in detail the defor-
mation of the tunnel lining and the soil.

2 Constitutive Description of the Soil

The total stress tensor in the soil is considered as the sum of the effective-
stress tensor σ (compressive stresses are taken to be negative) and the isotropic
tensor −pfI, where pf is the pore pressure (positive for compression) and I
is the unit tensor. The effective stress is described by a hypoplasticity model
with intergranular strain proposed in [7] for cohesionless granular soils with
rate independent behaviour. The model is an extension of an earlier version of
hypoplasticity [8] and includes the intergranular-strain tensor as a new state
variable in addition to the stress tensor and the void ratio. The constitutive
equation gives the effective-stress rate σ̇ as a function of the strain rate ε̇, the
effective-stress tensor σ, the intergranular-strain tensor δ and the void ratio e:

σ̇ = H (ε̇,σ, δ, e) . (1)
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The evolution of the intergranular-strain tensor is governed by the equation

δ̇ = F (ε̇, δ) . (2)

For a detailed description of the functions H and F in (1), (2), see the original
paper [7] or [9,10]. The constitutive parameters used in the present study are
given in Tables 1 and 2.

Table 1. Constitutive parameters of Karlsruhe sand [11]

ϕc [◦] hs [MPa] ec0 ed0 ei0 α β n

30 5800 0.84 0.53 1.0 0.13 1.0 0.28

Table 2. Additional constitutive parameters of the extended hypoplasticity model with
intergranular strain [10]

R mR mT βr χ

4 × 10−5 5.0 5.0 0.05 1.5

The constitutive equation (1) is corrected at small stresses as described in [4].
The correction consists in the multiplication of the function H by a factor which
depends on the mean stress. The correction has an effect on the constitutive
response only at small stresses (below 1 kPa in absolute value). This small-stress
correction, originally proposed in [12] for a different constitutive model, is used
in order to avoid numerical problems caused by zero effective stress when the
soil undergoes expansion. In the problem considered in this paper, large tensile
deformations in the vertical direction are produced in the upper layer of dry
soil after the reflection of the pressure wave from the free surface. With the
correction factor introduced in (1), the mean stress in tension approaches zero
asymptotically.

Assuming locally undrained conditions (zero soil permeability) and incom-
pressible solid phase, the constitutive equation for the pore pressure reads

ṗf = −Kf

n
tr ε̇, (3)

where Kf is the pore fluid bulk modulus, n is the porosity, and the deformation
rate is negative for compression. In fully saturated soil, Kf is equal to the bulk
modulus of pure water Kw = 2.2 GPa. If the soil undergoes tensile deformation
and the absolute pore pressure (including the atmospheric pressure) becomes
sufficiently low, the pore water begins to cavitate and the pore fluid bulk modulus
abruptly falls to a nearly zero value. We assume that the pore water cannot
withstand tensile stresses and that cavitation therefore begins at zero absolute
pore pressure. If p0f is the initial pore pressure in a soil element and εf is the
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current volumetric strain of the pore fluid (zero at p0f ), the pore fluid bulk
modulus is

Kf =
{

Kw if εf < (p0f + pa)/Kw,

0 if εf ≥ (p0f + pa)/Kw,
(4)

where pa is the atmospheric pressure (100 kPa). The volumetric strain of the pore
fluid, εf , is equal to the volumetric strain of the soil, tr ε, divided by the porosity.
Equation (4) produces a piecewise-linear strain-pressure dependence for the pore
fluid as shown by the solid line in Fig. 1. The compression from a cavitated state
with pf = −pa is assumed to follow the same piecewise-linear curve.

-200

-100

 0

 100

 200

 300

 400

-2 -1  0  1  2  3  4

p f
 [

kP
a]

εf × 104

Fig. 1. Pore fluid pressure as a function of the pore fluid volumetric strain with
p0
f = 100 kPa. Solid line: the function obtained with (4), dashed line: the smooth approx-

imation

Figure 2 shows an example of uniaxial (oedometric) extension of saturated
soil calculated with the hypoplasticity model for the soil skeleton. The kink on
the total-stress curve shown by the solid line corresponds to the beginning of pore
water cavitation according to (4). The total-stress curve for the compression from
a cavitated state with pf = −pa also has a kink at the point that corresponds
to the closure of the voids in the pore water or, in terms of relation (4), at the
point where εf = (p0f + pa)/Kw. The kink on the strain-stress curve due to
pore water cavitation introduces a strong nonlinearity in the overall constitutive
response of the soil in compression-extension in addition to the comparatively
weak nonlinearity in the effective-stress response, see the curve for the effective
stress in Fig. 2.

The strong nonlinearity in the compression from a cavitated to a fully satu-
rated state is caused by a sharp increase in the soil stiffness at the moment when
the cavitation voids in the pore water disappear. This increase has a substan-
tial qualitative influence on the solutions of a dynamic problem. The increasing
stiffness in combination with a high strain rate may lead to the formation of
discontinuities (shock fronts) [13]. Examples related to a similar problem (an
explosion in a tunnel) can be found in [3]. The shock fronts in [3] arise because
of a small amount (few volume percent) of free gas in the soil and, as a conse-
quence, the sharply increasing soil stiffness in compression. In the present study,
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Fig. 2. Uniaxial extension of saturated soil calculated with the hypoplasticity model
with a hydrostatic initial effective stress of −150 kPa, an initial pore pressure of 100 kPa
and a void ratio of 0.6. Dashed line: the smooth approximation of pore water cavitation

along with the cavitation-related mechanism of shock formation, a shock front
will also arise in the upper layer of dry soil where the mean stress will first
be reduced to a nearly zero value during the wave reflection and then grad-
ually restored during the subsequent compression. The increasing stiffness in
compression will produce a shock front.

The formation and propagation of shock fronts make the numerical solution
of a dynamic problem rather difficult, especially with commercial programs orig-
inally not intended to deal with discontinuous solutions. Besides the fact that
problems with shock fronts require fine spatial discretization, they also require
special means such as, for instance, viscous stresses. Otherwise the solution may
be completely spoiled by spurious numerical oscillations. Viscous stresses with
constant viscosity may not suffice: the oscillations may be eliminated, but at
the cost of unrealistically high damping and the excessive smearing of the shock
profile because of the too high viscosity. A more complicated approach may be
needed to obtain satisfactory solutions.

In the present study, spurious oscillations in the numerical solutions are
reduced by combining a smooth approximation of (4) and viscous stresses. First,
the piecewise-linear strain-pressure relation for the pore pressure is approximated
by a smooth curve as shown in Fig. 1 by the dashed line. The approximation is
obtained by using the bulk modulus of a mixture of water and free gas instead of
the modulus determined by (4). The smooth curve in Fig. 1 corresponds to the
compression-extension of a mixture with an initial degree of saturation of 0.99999
at a pressure of 100 kPa. Second, viscous stresses are introduced in addition to
the constitutive stresses (1) and the pore pressure. The values of the viscos-
ity coefficients which produce satisfactory results have been found by trial and
error. Constant viscosity coefficients turned out to be insufficient to achieve the
desired effect for cavitation-induced shocks. The viscosity is made variable with
a sharp increase during the transition of the pore fluid bulk modulus from zero
to 2.2 GPa. For more detail, see [4].
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3 Boundary-Value Problem

The boundary-value problem for two tunnels in a half-space is solved as a two-
dimensional plane-strain problem shown in Fig. 3. The water table and the tunnel
centres are located, respectively, at depths of 2 m and 17 m. The distance between
the tunnel centres is 25 m. The tunnel lining is circular with an inner radius of
4.8 m. The lining is 0.45 m thick and consists of individual concrete tubbings as
shown in Fig. 3. The tubbings and the concrete invert are modelled as linearly
elastic materials. The tubbings are not bolted at the interfaces. The forces at
the concrete-concrete and concrete-soil interfaces result from dry friction with
a given friction angle. The parameters of the concrete and the friction angles
are given in Table 3. The concrete-soil friction angle is taken to be zero because
the contact algorithms available in Abaqus does not allow the user to model
nonzero friction between concrete and saturated soil. The maximum shear stress
at the contact surface is determined by the effective normal stress in the soil,
whereas Abaqus uses the total normal stress when calculating the shear stress.
The contact algorithms available in Abaqus can allow or forbid separation in the
normal direction, depending on the user’s choice. The problem is solved with
separation for concrete-concrete interfaces and without separation for concrete-
soil interfaces.

Fig. 3. Two tunnels in the half-space



Two Neighbouring Tunnels in Saturated Soil Under Blast Loading 287

Table 3. The concrete parameters and the friction angles

Young modulus [GPa] 40

Poisson ratio 0.2

Density [kg/m3] 2400

Concrete-concrete friction angle [◦] 45

Concrete-soil friction angle [◦] 0

The initial stresses in the soil and in the tunnel lining are in static equilibrium
with the gravity and are hydrostatic in the far field. The initial void ratio e is
homogeneous and equal to 0.6. This corresponds to a relative density of 0.77
estimated as (ec0−e)/(ec0 −ed0), see Table 1. An explosion inside the left tunnel
is simulated by a given pressure applied to the inner surface of the tunnel. The
boundary condition for all points of the surface is shown in Fig. 4. The size of
the computational domain is 250 m× 150 m. Transparent boundary conditions
at the outer boundary are not used in the calculations. The type of boundary
conditions at the outer boundary plays no role in this case, as the numerical
solutions are valid only until the waves reflected from the outer boundary reach
the domain of interest around the tunnels. The present computational domain
enables us to model up to 120 ms.

-2

 0

 2

 4

 6

 8

 10

-2  0  2  4  6  8  10  12

Pr
es

su
re

 [
M

Pa
]

Time [ms]

pamp

Fig. 4. Pressure applied to the inner surface of the tunnel

The boundary-value problem is solved with the finite-element program
Abaqus/Standard with the implicit Hilber-Hughes-Taylor time integration
scheme using the 4-node bilinear quadrilateral elements CPE4 with selectively
reduced integration. The element size varies from about 6 cm in the tubbings
and in the soil near the tunnels to 1 m near the outer boundary of the domain.
The finite-element mesh near the lining is shown in Fig. 5. The time increment
is 10−5 s.
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Fig. 5. Finite-element mesh near the lining

4 Deformation of the Lining

The pressure pulse shown in Fig. 4 is applied to the inner surface of the left tun-
nel. The motion of the tubbings can be traced by considering the displacements
of two points P1 and P2 located in two neighbouring tubbings of the left tunnel
near the contact surface between them as shown in Fig. 3. The displacement
components at these points are shown in Fig. 6. The applied pressure causes
the tubbings to move in the radial direction, see the curve for the horizontal
displacement component u1. Since the tubbings are not connected at the inter-
face, their radial displacements result in the loss of contact between them at
the beginning of the motion (in 1 ms), see two curves for the vertical component
u2. The maximum gap between the tubbings in this separation phase reaches
6 mm. The two curves for the vertical displacements also reveal high-frequency
oscillations of the tubbings in the circumferential direction during the separation
phase. The oscillations will be seen better from the stress curves below.
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Fig. 6. Displacement components in the tubbings at points P1 and P2
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The soil reaction decelerates the radial motion of the tubbings and then
accelerates them in the opposite direction to the tunnel centre until the contact
between them is restored again. As seen from Fig. 6, the separation phase lasts
27 ms. The duration of the separation phase may differ by few milliseconds for
different pairs of tubbings. The maximum radial displacement of the tubbings
during the separation phase is 4.5 mm, see the curve for u1 in Fig. 6.

In order to trace the stresses induced in the tunnel lining during its deforma-
tion, consider two points P3 and P4 located, respectively, near the free surface
and near the concrete-soil interface in the middle part of the tubbing, see Fig. 3.
The circumferential stress component at points P3 and P4 is shown in Fig. 7.
The curves in the figure reveal high-frequency oscillations of the tubbing in
the circumferential direction during the separation phase mentioned above. The
oscillations arise in the form of a standing wave with a frequency of 480 Hz.
The frequency depends on the tubbing length in the circumferential direction
and would be higher for shorter tubbings as is the case, for instance, in [4]. The
maximum tensile and compressive stresses during the oscillations are, respec-
tively, 15 and 12 MPa. These values are greater than the pressure applied to the
lining (8 MPa). Since the oscillations occur in the form of a standing wave, the
stress amplitude varies along the tubbing: it is maximal in the middle part and
vanishes near the ends.
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Fig. 7. Circumferential stresses in the lining of the left tunnel at points P3 and P4

located, respectively, near the free surface and near the concrete-soil interface

The closure of the gaps between different pairs of tubbings at the end of
their separation phases is not simultaneous. The tubbings collisions during the
nonsimultaneous closure induce irregular oscillations of the circumferential stress
in the interval between 25 and 50 ms observed in Fig. 7. In the time between 60
and 80 ms, the curves in Fig. 7 show a relatively slow loading-unloading cycle
with a high compressive stress between 7 and 17 MPa. This indicates that the
whole lining is subjected to an external pressure. The cause of this pressure will
be evident from the analysis of the soil deformation in the next Section.



290 V. A. Osinov and S. Chrisopoulos

The pressure pulse applied to the lining of the left tunnel is transmitted to
the soil and transforms into a pressure wave. The wave propagates in the soil and
compresses the lining of the right tunnel leading to an increase in the compressive
circumferential stresses in the tubbings and a few oscillations of the lining as a
whole. This is seen from Fig. 8 which shows the circumferential stresses at points
P9 and P10 in the tubbings of the right tunnel. The maximum increase in the
compressive stresses is about 7 MPa. Neither tensile stresses nor separation of
the tubbings are observed in the lining of the right tunnel.
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Fig. 8. Circumferential stresses in the lining of the right tunnel at points P9 and P10

5 Deformation of the Soil

The loading applied to the tunnel lining induces a complicated dynamic process
in which the soil is subjected to both compressive and tensile deformation. The
tensile deformation turns out to be large enough to reduce the absolute pore
pressure to zero and thus to give rise to pore water cavitation. Recall that the
transition to cavitation in this study is approximated by a smooth curve, see
Fig. 1, so that zero absolute pressure is reached asymptotically and the onset
of cavitation becomes undefined. However, for the analysis of solutions it is
convenient to distinguish between cavitated and noncavitated water. In order to
be able to identify a cavitation zone, we say that the pore water is cavitated if
the pore pressure pf is below −99 kPa.

The pore pressure distribution in the soil at different times is shown in Figs. 9,
10. The cavitation begins in three distinct places: near the upper half of the
lining of the left tunnel, beneath the upper layer of dry soil and near the right
tunnel. The cavitation around the left tunnel begins after 7 ms, yet before the top
tubbings reach their maximum radial displacement. The cavitation beneath the
dry soil layer arises at nearly the same time when the pressure wave (red colour
in Fig. 9 for t = 11 ms) reaches this layer. If the half-space were linearly elastic,
the reflected wave would have a tensile stress of the same order of magnitude as
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in the incident pressure wave. The interaction of a high-pressure wave with the
ground surface in saturated soil is more complicated and has much in common
with the reflection of high-pressure waves from the free surface in water. In
both cases, tensile stresses are limited to 100 kPa (zero effective stress in the soil
skeleton and zero absolute pore pressure assumed as a threshold for pore water
cavitation). As a consequence, the interaction of the blast-induced pressure wave
with the ground surface in the soil results in the formation of a cavitation zone
instead of a reflected wave with high tensile stresses. The third cavitation zone
near the right tunnel arises at a later time when the pressure wave passes around
the tunnel and interacts with the tunnel lining, see Fig. 9 for t = 11 ms. The
interaction leads to the wave reflection with large tensile deformations and pore
water cavitation. The mechanism is similar to that of the reflection from the
ground surface.

The three emerging cavitation zones grow in size, coalesce and form one big
cavitation zone as seen in Fig. 9 for t = 16 and 26 ms. As the upper tubbings of the
left tunnel come into contact with each other at the end of the separation phase,
they stop the radial motion of the adjacent soil. The cavitated pore water in the
soil is compressed to a noncavitated state, and the cavitation boundary moves
upwards from the lining into the soil. At the same time, the upper boundary of
the cavitation zone moves downwards, leading to the shrinkage of the cavitation
zone as well. The shrinkage of the cavitation zone is a complicated process with
highly nonlinear soil behaviour in compression near the boundary of the zone,
see Figs. 1, 2 for the one-dimensional uniaxial case. In particular, Fig. 10 for
t = 56 ms reveals singularities with high pressure gradients at the ends of the
narrow cavitation zone at the final stage of its shrinkage.

The closure of the cavitation zone produces a spreading high-pressure zone
with pressures of up to 1.5 MPa and two pressure waves, one of which propagates
upwards and the other one downwards, see Fig. 10 for t = 62 ms. The wave that
propagates upwards is reflected from the upper soil layer in the same manner as
the primary blast-induced pressure wave and produces a new smaller cavitation
zone, Fig. 10 for t = 70 ms. The wave that propagates downwards passes around
the tunnel, deforms the tunnel lining and increases the circumferential stresses
in the tubbings in the time between 60 and 80 ms as we have seen in Fig. 7.

The time dependence of the volumetric strain and the mean effective stress
in the soil is shown in Figs. 11, 12 at four points P5, P6, P7, P8 around the
left tunnel and at point P11 near the right tunnel. The points are located at
a distance of 1 m from the tunnel, see Fig. 3. The blast-induced pressure wave
produces a short compression-extension cycle followed by a longer extension-
compression cycle. The latter coincides with the cavitation phase, except for
point P8 where no cavitation is observed. An analysis of the individual strain
components reveals that the principal axes of the strain tensor rotate, making the
deformation path rather complicated. Figure 12 shows that the mean effective
stress in the soil is substantially reduced. The residual effective stress is difficult
to predict, as it depends, besides the loading amplitude, on many factors such as
the constitutive behaviour of the skeleton, the pore fluid compressibility and the
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Fig. 9. Pore pressure in the soil at different times
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Fig. 10. Pore pressure in the soil at different times
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initial stress state. Deformation paths like those in Fig. 11 with sufficiently large
compression and extension amplitudes can eventually lead to the reduction of the
effective stress to zero and to momentary soil liquefaction [1,2]. This may happen
not only at higher loading amplitudes but also in the case of a small amount of
free gas in the pore water, which results in higher pore fluid compressibility and,
as a consequence, in a larger strain during the compression phase [3].
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Fig. 11. Volumetric strain in the soil at different points
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Fig. 12. Mean effective stress in the soil at different points

The motion of the soil does not end after 120 ms covered by the present
numerical solution. This is seen in Fig. 13 which shows the vertical displacement
components at three points in the soil above the left tunnel. The first two points
lie in the upper layer of dry soil.
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In order to assess the influence of the adjacent tunnel, the present problem
has also been solved with a single tunnel. A comparison of the two solutions
in the vicinity of the tunnel up to a few metres from the lining shows that the
influence of the adjacent tunnel is insignificant.

6 Conclusion

The main features of the blast-induced deformation of the tunnel lining and
the soil can be summarized as follows. The tubbings of the tunnel subjected to
blasting lose contact with each other after 1 ms and are in a separation phase
during the next 25–28 ms (Fig. 6). The maximum radial displacement and the
maximum gap between the tubbings in the separation phase are of the order
of several millimetres. The tubbings exhibit high-frequency oscillations (480 Hz)
during the separation phase, with the maximum tensile and compressive oscil-
lating stresses being by 50–80% greater than the blast pressure applied to the
lining (Fig. 7).

The numerical solution shows an important role of pore water cavitation in
the deformation process. The soil expansion following the blast-induced pressure
wave is large enough to give rise to pore water cavitation (Fig. 9, t = 11 ms). A
big cavitation zone forms after 15 ms between the tunnels and the ground sur-
face (Fig. 9, t = 16 and 26 ms). The volumetric soil stiffness sharply increases in
the transition from a cavitated state back to full saturation, making the strain-
pressure relation highly nonlinear (Figs. 1, 2). As a consequence, the shrinkage of
the cavitation zone is accompanied by high gradients (shock fronts) and singular-
ities at the boundaries of the cavitation zone (Fig. 10, t = 56 ms). The ultimate
closure of the cavitation zone produces a high-pressure domain which in turn
induces two pressure waves (Fig. 10, t = 62 and 70 ms).
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The complexity of the deformation paths makes it difficult to predict perma-
nent changes in the effective pressure in the soil. The qualitative conclusion is
that the effective pressure in the vicinity of both tunnels may be considerably
reduced (Fig. 12). The largest decrease is observed above the tunnel subjected
to blasting.
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