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Abstract. The stiffness of soils in compression increases with increas-
ing pressure. This property makes the strain-stress relation nonlinear and
strongly influences the propagation of compression waves: a smooth wave
front steepens and turns into a shock front. This paper discusses some
theoretical questions related to the formation and propagation of longitu-
dinal shock waves in soil within the pressure range typical of geotechnical
engineering problems (up to a few megapascals). In particular, the topics
discussed in the paper are the critical distance for dry and saturated soils
(the distance covered by a smooth front before it becomes discontinuous),
the jump conditions on a discontinuity, and smooth viscous shocks.

1 Introduction

A shock wave in a continuum in a narrow mathematical sense is a discontinuity
in the stress and velocity which moves with respect to the medium. In a broader
sense, a shock wave is the part of a continuous wave where the stress and velocity
change sharply on an interval much smaller than the characteristic length of the
problem under study. Shock waves as moving discontinuities can exist in both
linearly elastic and nonlinear media. In a linearly elastic medium, a shock wave
can be induced by a discontinuous step-like boundary condition, e.g. through an
impact or a collision with another body. In a nonlinear medium, a shock front as
a moving discontinuity can form even if the boundary condition is continuous.
The property of the medium responsible for the shock formation in this case is
the increase in the compressional stiffness with increasing pressure. This property
is characteristic of the constitutive response of soils.

This paper discusses some theoretical aspects of the formation and propa-
gation of shock waves in soil. Shock waves are often associated not only with
high strain rates but also with high pressures produced, for instance, in situ
by explosions. Actually, neither the emergence nor the propagation of a shock
front require the pressure to be high. The pressure amplitude does play a role
for the choice of the constitutive model for the mathematical description of the
dynamic deformation and, in particular, a shock wave in the soil. We assume that
the pressure does not exceed a few megapascals and thus lies within the range
typical of geotechnical engineering problems. We will consider plane longitudi-
nal waves with the simplest deformation mode – uniaxial compression (except
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for some reference made to spherical and cylindrical longitudinal waves as well).
The main two issues addressed in the paper are

• the formation of a shock front from a continuous wave and
• the propagation of a shock front.

2 Shock Formation. Plane Waves

We will study plane longitudinal waves propagating along the x1-axis of a Carte-
sian coordinate system (x1, x2, x3). The waves have one nonzero velocity com-
ponent v1 and three nonzero stress components σ11, σ22, σ33. In what follows,
we will write for brevity x for x1, v for v1 and σ for σ11. The stress compo-
nents σ22, σ33 will not be considered. The governing equations will be written in
the small-strain approximation with the partial time derivatives instead of the
material ones. The density of the medium will be treated as a constant. Com-
pressive stresses and deformations are taken to be negative according to the sign
convention of continuum mechanics.

The equation of motion for the waves reads

∂σ

∂x
= �

∂v

∂t
, (1)

where � is the density and t is the time variable. For rate-independent behaviour,
the constitutive equation can be written in rate form as

∂σ

∂t
= k

∂ε

∂t
, (2)

where ε is the axial deformation and k is the stiffness. Using the kinematic
relation

∂ε

∂t
=

∂v

∂x
, (3)

the constitutive equation can be written as

∂σ

∂t
= k

∂v

∂x
. (4)

The wave propagation is described by the hyperbolic system of two Eqs. (1),
(4) for two unknown functions v(x, t), σ(x, t). The system has two families of
characteristics with the slopes dt/dx = ±√

�/k.
Consider a half-space x ≥ 0 with a homogeneous initial stress σ+ and zero

initial velocity. Let a stress σb(t) with σb(0) = σ+ be applied at the boundary
x = 0. This stress induces a wave propagating in the half space. If the medium
is linearly elastic with k = const, the system (1), (4) is linear, and we obtain a
travelling-wave solution: the wave propagates with the characteristic wave speed
c =

√
k/� without changing its shape. Let σ+ be equal to −100 kPa and σb(t)

represent an increasing compressive stress as shown in Fig. 1. The travelling wave
induced by this boundary condition is shown in Fig. 2 for c = 400 m/s.
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Fig. 1. Boundary condition at x = 0 for the solutions in Figs. 2 and 3
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Fig. 2. Wave profiles in the half-space x ≥ 0 at different times for constant stiffness k
with the boundary condition in Fig. 1

The situation becomes qualitatively different if the wave propagates, for
instance, in a dry granular soil and the stress increase is sufficiently large, like
in the present example. The uniaxial (oedometric) compression of the soil up to
a few megapascals yields a nonlinear strain-stress relation σ(ε) with the increas-
ing stiffness k = dσ/dε (higher pressures will not be considered here, as they
may change the shape of the strain-stress curve because of grain crushing). For a
given curve σ(ε) obtained for the compression, k may be thought of as a function
of either ε or σ. Writing k(σ) allows us to consider again the system (1), (4) for
the same unknown functions v, σ. However, the system becomes quasilinear: the
coefficient k depends on the solution σ.

An important question is whether the quasilinear system with the stress-
dependent stiffness k(σ) possesses travelling-wave solutions like the linear sys-
tem. Let σ(ξ), v(ξ) be such a solution, where ξ = t − x/c, and c is the speed
of propagation. The partial derivatives of the functions σ(ξ), v(ξ) satisfy the
equalities

∂σ

∂t
+ c

∂σ

∂x
= 0,

∂v

∂t
+ c

∂v

∂x
= 0. (5)
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Fig. 3. Wave profiles in the half-space x ≥ 0 at different times for the stress-dependent
stiffness k(σ) given by (16)

Let us calculate the stiffness of a material element using this solution. Beginning
with the definition of k and then taking into account (5), the kinematic relation
(3), the equation of motion (1) and again (5), we obtain

k =
∂σ

∂t

(
∂ε

∂t

)−1

= −c
∂σ

∂x

(
∂v

∂x

)−1

= �c2
∂v

∂t

(
∂v

∂t

)−1

= �c2. (6)

This shows that, because c is a constant, k must be a constant as well. Thus, for
travelling-wave solutions to exist, the strain-stress relation σ(ε) must be linear.

For a nonlinear strain-stress relation such as in dry soil, two neighbouring
points on a moving wave profile propagate with different wave speeds: the point
with a higher stress moves faster than the point with a lower stress. For the
boundary condition with the increasing compressive stress shown in Fig. 1, the
wave profile steepens during the propagation until the gradients ∂σ/∂x, ∂v/∂x
become infinite at some point of the profile. At that instant, a discontinuity in
the solution (a shock) arises, and the solution differentiable everywhere in the
domain does not exist any longer. Figure 3 shows the numerical solution for the
same boundary loading as in Fig. 1 with a nonlinear constitutive function σ(ε) for
dry soil. The constitutive function and the method of solution will be discussed
below in Sects. 4 and 5. Here the focus is on the fact that the continuous front
turns into a shock at a distance of about 0.5 m from the boundary.

The mechanism of the transition from a continuous compression front to a
shock is well known and is in essence the same for fluids and solids [1–5]. It is
also a general property of quasi-linear systems that the solution may become
discontinuous in a finite time even if the initial and boundary data are contin-
uous [6]. The time at which the solution loses continuity is called the critical
time. In the case of the boundary value problem for the half-space formulated
above, the coordinate x at which the gradients ∂σ/∂x, ∂v/∂x become infinite at
the critical time is called the critical distance.

The solution to the boundary value problem for the half-space with stress-
dependent stiffness is continuous up to the critical time. This solution is a
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Fig. 4. Two straight characteristics on the (x, t)-plane

so-called simple wave [1]: the characteristics with the positive slopes dt/dx =√
�/k(σb) emanating from the t-axis on the (x, t)-plane are straight lines, and

the functions σ, v are constant on these characteristics, Fig. 4. The values of v on
the t-axis, vb(t) = v(0, t), are found from the solution of the ordinary differential
equation

dvb

dt
= − 1

√
�k(σb)

dσb

dt
(7)

with vb(0) = 0 (the initial condition for v). It can be verified directly that this
simple-wave solution satisfies the system (1), (4). For details and for a more
general system of two quasilinear equations, see [7].

The simple-wave solution allows us to derive an ordinary differential equation
for a certain linear combination of the gradients ∂σ/∂x, ∂v/∂x as functions of
x along a given characteristic with a positive slope [7]. The differential equa-
tion obtained is of the Bernoulli type. The equation has the property that the
solution may become infinite at a finite value of the independent variable. The
equation can be integrated to find the coordinate x at which the gradients tend
to infinity. This coordinate may be interpreted as the critical distance for a par-
ticular characteristic and will be denoted by xc(τ), where τ is the time at which
the characteristic emanates from the t-axis, see Fig. 4.

If the knowledge of the gradients along the characteristic is not needed, the
value of xc(τ) alone can be found in a simpler way. Consider two neighbouring
characteristics with positive slopes emanating from the t-axis at times τ and
τ + Δτ as shown in Fig. 4. For the increasing stress at the boundary shown in
Fig. 1, the slope dt/dx of the characteristic for τ with σb(τ) will be greater than
the slope of the characteristic for τ + Δτ with σb(τ + Δτ), because the latter
corresponds to a higher stiffness and a higher wave speed. The two characteristics
cross at some x giving two different values of σ at this x, and the same is true for
v (recall that σ and v are constant on these characteristics in the simple-wave
solution). The solution must therefore be discontinuous at this point. If Δτ → 0,
the intersection point tends to a point which gives the critical distance xc(τ) for
this characteristic. The gradients ∂σ/∂x, ∂v/∂x become infinite at xc(τ). The
two characteristics in Fig. 4 are described on the (x, t)-plane by the equations
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t =
x

c(τ)
+ τ, t =

x

c(τ + Δτ)
+ τ + Δτ, (8)

where c(τ) =
√

k(σb(τ))/� is the wave speed as a function of τ . If Δτ → 0, the
two lines (8) cross at

xc(τ) = lim
Δτ→0

c(τ) c(τ + Δτ)Δτ

c(τ + Δτ) − c(τ)
= c2

(
dc

dτ

)−1

. (9)

This is the same xc(τ) as the one that would be obtained from the solution to
the Bernoulli equation mentioned above.

The time tc(τ) at which the gradients become infinite at xc(τ) is

tc(τ) = τ +
xc(τ)
c(τ)

. (10)

The critical time for the boundary value problem, denoted by t̂c, is therefore

t̂c = min
τ

tc(τ). (11)

The critical distance x̂c, defined above as the coordinate at which the gradients
become infinite at the critical time, is given by

x̂c = xc(τ̂), (12)

where τ̂ satisfies the equation t̂c = tc(τ̂).
Finding the critical distance x̂c with (9)–(12) for a particular problem may

be a rather intricate procedure. Theoretically, x̂c may even be nonunique: the
gradients may become infinite simultaneously at two different points of the wave
profile. In applications, where the strain-stress relation σ(ε) and the boundary
condition σb(t) are known only approximately, it suffices to obtain an estimation
of the critical distance from (9) rather than the exact value determined by (12).

Using the definition of c, (9) can be written as

xc(τ) =
2 k3/2

√
�

(
dk

dσ

)−1 (
dσb

dτ

)−1

=
2 k5/2

√
�

(
dk

dε

)−1 (
dσb

dτ

)−1

, (13)

where k, dk/dσ, dk/dε represent the values at the boundary and are functions of τ
due to their dependence on σb(τ). Let us take a closer look at these expressions
for xc. Since compressive stresses and deformations are taken to be negative,
dk/dσ and dk/dε are negative. For xc to be positive, the stress rate dσb/dτ at
the boundary must be negative, that is, the boundary condition must induce
a compression front. In the case of an expansion front, formula (13) gives a
negative value of xc. Such a front flattens out as it propagates and does not
turn into a shock. For a given strain-stress relation σ(ε), the critical distance is
inversely proportional to the stress rate dσb/dτ : the higher the rate, the shorter
xc. The critical distance is also inversely proportional to the second derivative of
the function σ(ε). If k = const, xc is infinite in accordance with the fact that the
wave profile in a linearly elastic medium does not change during the propagation.
The critical distance increases with increasing k if all other terms are fixed.
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3 Shock Formation. Cylindrical and Spherical Waves

A different way to study the formation of shocks from continuous solutions is to
consider acceleration waves, i.e. discontinuities in the first partial derivatives of
the functions σ(x, t), v(x, t) (called weak discontinuities, as distinct from strong
discontinuities, or shocks, when the functions σ, v themselves are discontinuous).
This approach is used in [8,9].

A weak discontinuity turns into a shock when the gradients ∂σ/∂x, ∂v/∂x
become infinite on one side of the discontinuity. The curve on the (x, t)-plane
where the partial derivatives are discontinuous is a characteristic curve of the
system. The vector of the jumps, ([[∂σ/∂x]], [[∂v/∂x]]), is proportional to an eigen-
vector of the matrix of the system, with the factor being defined as the amplitude
of the discontinuity. The amplitude as a function of the distance covered by the
front satisfies an ordinary differential equation of the Bernoulli type. The equa-
tion can be integrated if the front propagates into a quiescent region with a
known stress σ. The coordinate at which the amplitude becomes infinite is the
critical distance. As is readily seen from this description, the acceleration-wave
method requires the boundary condition σb(t) to have a nonzero rate dσb/dt
at t = 0 for which the critical distance is calculated. The point where infinite
gradients arise is the leading point of the wave profile. Although the formula
obtained for the critical distance coincides with (13), the method cannot be
directly applied to other points of the wave profile.

An advantage of the acceleration-wave method over the previous one is that
it is applicable to cylindrical and spherical waves. The equations for such waves
include the circumferential stress as an additional unknown function. The equa-
tion of motion contains additional terms without derivatives. Continuous cylin-
drical and spherical waves can turn into shocks as well as plane waves if the
stiffness of the medium is stress-dependent. The critical distance is understood
as the distance from the cavity wall where the wave is generated by a radial
stress σb(t) applied to the wall. If the constitutive response of the medium sat-
isfies certain isotropy conditions, both plane and cylindrical, or both plane and
spherical, waves can exist. In this case, given a loading rate dσb/dt at the bound-
ary, a question arises as to how the critical distances for the three types of waves
differ from each other. As shown in [8], unique relations exist between the criti-
cal distances independently of the particular choice of the constitutive function.
The relations are also valid for a saturated porous solid in which the pore fluid
bulk modulus is a function of the pore pressure.

Let lP , lC , lS be the critical distances calculated with the acceleration-wave
method for plane, cylindrical and spherical fronts, respectively. The values of lC
and lS are connected with lP by the relations

lC = lP

(
1 +

lP
4r0

)
, (14)

lS = r0

[
exp

(
lP
r0

)
− 1

]
, (15)
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Fig. 5. Relations between the critical distances for plane, cylindrical and spherical
fronts [8]

where r0 is the cavity radius in the cylindrical and spherical problems [8]. It
is convenient to plot the ratios lC/lP and lS/lP as functions of lP /r0. These
functions are shown in Fig. 5. The distances lC and lS are always greater than
lP . If lP is much smaller than r0, both lC and lS are close to lP . The growth of
lS/lP with increasing ratio lP /r0 is much faster than that of lC/lP .

4 Critical Distances in Soil

In dry granular soils such as sand, the stiffness as a function of the confining
pressure is known to obey a power law with an exponent of about 0.5–0.6 [10].
Based on this fact, we consider a simple constitutive model in which the stiffness
k for uniaxial deformation is a function of σ of the form

k(σ) = k0

(
σ

σ0

)m

, (16)

where k0 is the value of k at σ = σ0, and m is a constant. It may be convenient
to use, instead of k0, the wave speed c0 =

√
k0/� in the dry soil at σ = σ0, where

� = (1−n)�s is the soil density, �s is the density of the solid phase (grains), and
n is the porosity. The strain-stress relation σ(ε) obtained with (16) is shown in
Fig. 6 (the curve for Sr = 0) with the model parameters given in Table 1.

Table 1. Model parameters

c0 [m/s] σ0 [kPa] m n �s [kg/m3] �f [kg/m3]

400 −100 0.6 0.375 2650 1000

Figure 7 shows the critical distance in dry soil as a function of σ calculated
with (13), (16) for the boundary rate dσb/dt equal to −103 MPa/s. The boundary
loading shown in Fig. 1 would have this rate if the stress increase were linear in
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time. Since the critical distance is inversely proportional to the stress rate, the
values for other rates can easily be found by multiplication. The shock formation
observed in Fig. 3 is in good agreement with Fig. 7.
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Fig. 7. Critical distance in dry soil as a function of the stress for the boundary rate
dσb/dt = −103 MPa/s

Formula (13) for the critical distance is applicable to saturated soil if the soil
permeability is low enough to assume locally undrained conditions (for nonzero
permeability, see [9]). For saturated soil, the stress σ with the stiffness (16) is
the effective stress defined as

σ = σtotal + p, (17)

where σtotal is the total stress, and p is the pore pressure (positive for com-
pression). The effective stress σ in (17) is determined by the deformation of the
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skeleton if the compressibility of the skeleton is much higher than the compress-
ibility of the solid phase (grains). The equation of motion (1) and the constitutive
equation (4) for saturated soil are written as

∂σtotal

∂x
= �

∂v

∂t
, (18)

∂σtotal

∂t
=

(
k +

Kf

n

)
∂v

∂x
, (19)

where � = (1 − n)�s + n�f is the soil density, �s, �f are the densities of the solid
and fluid phases, and Kf is the bulk modulus of the pore fluid. The boundary
loading σb(t) is understood as the total stress. The stiffness k in Eq. (13) for the
critical distance should be replaced with the total stiffness k + Kf/n. Since the
compression of saturated soil from a given initial state yields a definite strain-
stress function σtotal(ε), the total stiffness can be viewed as a function of either
the total stress or the skeleton deformation.

Suppose that the pore water contains a small amount (a few volume percent)
of free gas. The bulk modulus of such a water-gas mixture, considered as a single
fluid, is [11–13]

Kf =
(

Sr

Kw
+

1 − Sr

Kg

)−1

, (20)

where Sr is the degree of saturation, Kw is the bulk modulus of pure water
(2.2 GPa), and Kg is the bulk modulus of the free gas. The difference between
the pressures in the water and in the gas is the capillary pressure due to surface
tension at the water-gas interface. For fine sand and high saturation, the pressure
difference does not exceed a few kilopascals and is neglected. Furthermore, the
mass of the free gas in the pore water is assumed to remain constant (this may
not be true for slow compression, as part of the free gas would be dissolved in
the water according to the Henry law). For an ideal gas, the bulk modulus Kg

is proportional to the absolute gas pressure: Kg = γ(p + pa), where pa is the
atmospheric pressure (100 kPa), γ = 1 for isothermal processes and γ = 1.4 for
adiabatic processes for air. We take γ = 1 assuming that the pore water hinders
the temperature rise in the gas. For a given degree of saturation S0

r at an initial
pore pressure p0, the modulus Kf is a function of the current pressure p [13].

The strain-stress relation for saturated soil is shown in Fig. 6 for three values
of S0

r . If the soil is fully saturated, the pore fluid bulk modulus, Kf , is equal to the
modulus of pure water, Kw. Since this modulus is much higher than the skeleton
stiffness, the strain-stress relation for the total stress is practically linear. The
presence of a small amount of free gas in the pore water substantially reduces
the bulk modulus of the pore fluid. As follows from (20), one volume percent of
free gas at p0 = 100 kPa reduces Kf from 2.2 GPa to 20 MPa. This makes the
soil stiffness nearly the same as in the dry soil, see the curves for S0

r = 0.99 and
S0

r = 0 in Fig. 6. Even the case with S0
r = 0.999 is markedly different from full

saturation in that the strain-stress relation is nonlinear.
The nonlinearity of the strain-stress relation leads to the formation of shocks

for compression fronts. Figure 8 shows the critical distance in saturated soil as a
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function of the gas content 1 − Sr for the boundary rate dσb/dt = −103 MPa/s.
Comparison of Figs. 8 and 7 shows that the critical distance in saturated soil is
close to that in dry soil for the degrees of saturation up to 0.999. A similar plot
with slightly different constitutive parameters can be found in [8].
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Fig. 8. Critical distance in saturated soil as a function of the gas content for the
boundary rate dσb/dt = −103 MPa/s

So far we have considered a specific boundary value problem for the half-
space with a compressive boundary condition. Of course, if the boundary condi-
tion is not compressive but the dynamic process develops in such a way that the
soil undergoes compression, shock fronts may also arise. We have seen that the
critical distance for fully saturated soil is much larger than in the other cases
considered because of the dominant contribution of the bulk modulus of water
to the total stiffness of the soil. The constant modulus of water makes the soil
stiffness nearly constant as well. However, under certain conditions shock fronts
can also arise very quickly in problems with fully saturated soil. If the soil is
subjected to tensile deformation, the pore pressure may become sufficiently low
to give rise to pore water cavitation. At that instant, the pore fluid bulk modulus
abruptly falls from 2.2 GPa to a nearly zero value determined by the compress-
ibility of the vapour in the bubbles. Assuming that the cavitation begins at zero
absolute pore pressure and neglecting the vapour pressure, the tensile deforma-
tion of the soil produces a strain-stress relation like that shown in Fig. 9. The
kink on the curves corresponds to the beginning of cavitation, after which the
pore fluid bulk modulus is zero and the soil stiffness is determined solely by
the stiffness of the skeleton. As the soil is compressed after the expansion, the
strain-stress path will be slightly different from that shown in Fig. 9 due to the
plastic behaviour of the skeleton, but the curve will also have a kink at the point
where all cavitation bubbles disappear and the fluid bulk modulus is restored
to 2.2 GPa. Because of the sharp increase in the stiffness, the compression will
produce a shock front. The jump in the stiffness in this simple cavitation model
means an infinite second derivative d2σtotal/dε2 and, as seen from (13), a zero
critical distance.
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Pore water cavitation in fully saturated soil may occur if a large-amplitude
pressure wave propagates upwards in the ground and is reflected from the free
surface. Examples of such waves induced by an explosion in a tunnel can be
found in [14,15]. If the ground were elastic, the reflected wave would have a
tensile stress of the same magnitude as the incident wave. In fully saturated soil,
large tensile stresses are impossible because neither the skeleton nor the pore
water can withstand such stresses. As a result of the interaction of the incident
wave with the free surface, a large cavitation zone forms in the soil [14,15]. The
subsequent shrinkage of the cavitation zone is accompanied by the formation of
shock fronts at the boundary of the cavitation zone according to the mechanism
described above. Although the amplitudes of these shock fronts are much smaller
than the amplitude of the primary pressure wave, these shocks, like any others,
entail numerical problems because of spurious numerical oscillations which are
difficult to eliminate.

5 Shock Propagation

After a shock front has formed from the continuous wave, the dynamic deforma-
tion can no longer be described by differential equations in the whole domain as
before the shock formation. The differential equations cannot be applied directly
to a point where the solution is discontinuous. We can still use the differential
equations for the smooth part of the wave, but need new relations on the shock
to be able to solve the problem further. In this Section we discuss the question
of how plane longitudinal shock fronts can be described in the context of soil
mechanics and to what extent the description is correct.

Relations on discontinuities can be derived if the dynamic process is governed
by differential equations in the form of conservation laws

∂ui

∂t
+

∂

∂x
fi(u1, . . . , uN ) = 0, i = 1, . . . , N, (21)
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where ui are the unknown functions, and fi are sufficiently smooth functions of
u1, . . . , uN . System (21) can be integrated with respect to x and written as

d

dt

∫ xb

xa

uidx + fi(u1, . . . , uN )
∣∣∣
xb

xa

= 0, i = 1, . . . , N, (22)

where xa, xb are two fixed points. As distinct from (21), the integral form (22)
is applicable to discontinuous solutions. Let [[ui]] = u+

i − u−
i denote the jump

in the function ui across the shock, where u+
i and u−

i are the values ahead of
and behind the shock, respectively, as shown in Fig. 10. If the solution has a
discontinuity moving with a speed s, the values of the functions on the shock
satisfy the Rankine-Hugoniot jump conditions [2–5,16–18]

[[ui]]s = [[fi]], i = 1, ..., N. (23)

Conditions (23) are obtained by considering a discontinuity between xa and xb

in (22) and taking the limit xb → xa.
We restrict ourselves to plane longitudinal waves in the half-space described

by Eqs. (1) and (4) for two unknown functions σ, v, with a monotonic boundary
condition like that shown in Fig. 1. To see how many jump conditions are neces-
sary to solve the problem with a shock, consider large times at which the wave
consists of the shock and two spatially homogeneous states ahead of and behind
the shock, see Fig. 3, t = 3 ms and Fig. 10 left. The known quantities are σ+, v+

(the initial conditions in the half-space) and σ− (the boundary condition). The
unknown quantities are the velocity v− behind the shock and the shock speed s.
Hence, we need two equations to determine the two unknowns. It can be shown
that, if the smooth part of the wave is not homogeneous (Fig. 10 right), we also
need two jump conditions to solve the problem in the whole domain.

Whereas Eq. (1) is in the conservation-law form (21) (we assumed � = const),
Eq. (4) with variable k is not in this form and does not give any jump condition,
unless the medium is linearly elastic with k = const. A second jump condition
can be found if we take ε and v as unknown functions and use Eq. (3) instead of
(4). The stress σ in (1) is then viewed as a known function of ε obtained from
the strain-stress relation for the uniaxial compression. The two Eqs. (1) and (3)
give two required jump conditions

[[v]]�s = −[[σ]], [[ε]]s = −[[v]]. (24)

As follows from (24), the shock speed s is determined by the jumps in the strain
and stress as

s2 =
[[σ]]
[[ε]]�

. (25)

A question that arises in connection with the shock description is whether
σ− as a function of ε immediately behind the shock can be obtained from the
same strain-stress curve σ(ε) as for the smooth part of the solution. These two
functions need not be the same. Moreover, certain considerations suggest that
they are different. The difference is due to the way that the soil deforms in time
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Fig. 10. A propagating shock with homogeneous (left) and inhomogeneous (right)
states in the neighbourhood of the shock

and space. Constitutive models of soil mechanics and their calibration are based
on the results of element tests (in the present case – the oedometric test). Shock
front as a discontinuity in the solution is a mathematical notion pertinent to
hyperbolic conservation laws. A real shock front in the soil is continuous with a
nonzero thickness which may be assumed not to exceed the size of the soil sample
in an element test. The strain rate in an element test is much lower than the strain
rate on a shock front. Since the strain rate is equal to the velocity gradient, it
tends to infinity as the shock thickness tends to zero. Another essential difference
lies in the strain rate gradient. The deformation in an element test is more or
less homogeneous, at least for small strains. Although the residual deformation
behind a shock can also be spatially homogeneous, the strain rate during the
shock passage is inherently inhomogeneous. The smaller the shock thickness,
the higher the degree of inhomogeneity in the strain rate. This is illustrated
in Fig. 11 for a smooth shock front of thickness Δx. The strain rate in a soil
layer of the same thickness Δx is always inhomogeneous, unless it is zero before
and after the shock passage. The deformation like that shown in Fig. 11 cannot
be reproduced in element tests. More sophisticated dynamic experiments with
propagating shocks and inhomogeneous strain rates are required. A high strain
rate alone does not suffice. Taking the function σ(ε) for the shock description is
an approximation with as yet unknown inaccuracy.

If we accept the necessity of two different functions σ(ε) and σ−(ε), the
overall mathematical description of the dynamic deformation will become more
complicated. This concerns, in particular, the analysis of the shock existence
and the task of incorporating the two functions into a single boundary value
problem.

If the shocks and the continuous deformation are described by the same
function σ(ε), one can establish an inequality relation between the shock speed
and the characteristic wave speeds ahead of and behind the shock. Assume the
function σ(ε) to be such that d2σ/dε2 < 0. Since the shocks are compressive,
we have σ+ > σ−, and it is easy to see that the shock speed given by (25) is
greater than the characteristic wave speed

√
k(σ+)/� ahead of the shock, and

less than the characteristic wave speed
√

k(σ−)/� behind the shock. This result
constitutes a necessary condition for the existence of the shock [2–5,16–18] and is
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Fig. 11. Velocity and strain rate profiles at different times

also well known from gas dynamics: a shock propagates with a supersonic speed
with respect to the medium ahead of the shock, and with a subsonic speed with
respect to the medium behind the shock [1].

A better insight into the shock propagation phenomenon can be gained if we
try to find the strain-stress path that a soil element follows between ε+ and ε−

as the shock crosses the element. Note that we could say that it has no sense
to speak of a strain-stress path as such, but only of the initial and final states
on the shock, (ε+, σ+) and (ε−, σ−). However, the question of the strain-stress
path arises naturally if we take into account that a real shock in the soil is
continuous, has a nonzero thickness and, if modelled within the framework of
continuum mechanics, must have a definite strain-stress path. This path can be
identified even for an idealised zero-thickness shock with the help of the energy
balance.

For the analysis of shock propagation we have used two conservation laws
(1), (3) for two unknown functions σ, ε, which yields two jump conditions (24).
Given σ+, σ−, v+ and a function σ−(ε), the two jump conditions enable us to
determine the shock, i.e. to find two unknowns v−, s. The energy balance is
another conservation law which has not been used so far. For the present one-
dimensional case, the energy balance can be written either in the integral form

d

dt

∫ xb

xa

(
E +

1
2
�v2

)
dx − (σv)

∣
∣∣
xb

xa

= 0 (26)

or in the differential form

∂

∂t

(
E +

1
2
�v2

)
− ∂

∂x
(σv) = 0, (27)

where E is the internal energy of the medium per unit volume. For continuous
solutions, the energy balance (27) together with the equation of motion (1) and
the kinematic relation (3) leads to the familiar expression for the energy rate:

∂E

∂t
= σ

∂ε

∂t
. (28)

For discontinuous solutions, the conservation law (27) yields the jump condition
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Fig. 12. Strain-stress path on the shock

[[
E +

1
2
�v2

]]
s = −[[σv]]. (29)

Using (29), (24) and the formulae for the jump of a product,

[[ab]] = [[a]]b+ + [[b]]a− =
1
2
(b+ + b−)[[a]] +

1
2
(a+ + a−)[[b]], (30)

we can derive an expression for the jump in the internal energy:

[[E]] =
1
2
(σ+ + σ−)[[ε]]. (31)

If the deformation path on the shock is described by some function σ∗(ε),
then, according to (28), the increase in the internal energy across the shock is

ΔE(1) =
∫ ε−

ε+
σ∗(ε)dε > 0. (32)

On the other hand, the increase in the internal energy across the shock is
ΔE(2) = −[[E]] > 0. As follows from the comparison of (31) and (32), for any
curve σ∗(ε) that lies above the linear path (Fig. 12),

ΔE(1) < ΔE(2), (33)

and the energy balance is violated. Hence, the strain-stress path across the shock
must be linear independently of the form of the function σ−(ε) between ε+ and
ε−. This seeming discrepancy is resolved in the next Section where we consider
smooth shocks of nonzero thickness.

6 Viscous Shocks

Smooth shocks can be obtained by introducing an additional viscous stress σvis =
μ∂v/∂x, where μ is a viscosity coefficient. The equation of motion (1) then
becomes

∂σ

∂x
+

∂σvis

∂x
= �

∂v

∂t
, (34)
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Fig. 13. Stresses as functions of the strain at two points in the numerical solution
shown in Fig. 3

where σ is the rate-independent constitutive stress determined by a function
σ(ε). This approach has been used for the numerical solution of the boundary
value problem for the half-space formulated in Sect. 2. The stress σ is given by the
constitutive model (16) with the parameters from Table 1. The solution for dry
soil shown in Fig. 3 is obtained by the finite-difference method with the viscosity
coefficient μ = 10−3 MPa · s and 1300 discretization points between x = 0 and
x = 1.8 m.

As can be inferred from Fig. 3, the wave front that passes, for instance,
through the point x = 0.8 m has not yet fully turned into a shock and has both
a (theoretically) discontinuous part from σ+ = −100 kPa to σ− = −900 kPa
and a continuous part from −900 to −1100 kPa. The front that passes through
the point x = 1.4 m is entirely discontinuous from σ+ = −100 kPa to σ− =
−1100 kPa. Figure 13 shows the stresses as functions of the strain at these two
points. While the stress σ follows the curve determined by the constitutive equa-
tion, the total stress σ + σvis follows a linear strain-stress path on the discon-
tinuous part of the front. The viscous stress on the shock develops to such an
extent that the total stress becomes a linear function of the strain, and the
energy balance (31), (32) is satisfied. Given σ+ and σ−, the viscous stress on
the shock is the difference between the linear function and the constitutive curve
σ(ε) and, therefore, does not depend on the viscosity coefficient μ. The value
of μ determines the shock thickness: the greater μ, the thicker the shock. The
discontinuous shock is obtained as a limit for μ → 0 with the same viscous stress
and the linear strain-stress relation on the shock.

As the numerical viscous shock shown in Fig. 3 propagates, it tends to a
travelling-wave solution (a steady shock). The problem of finding this asymptotic
solution is formulated as follows: given σ+, σ−, v+, find the wave speed c and
the functions ε(y), v(y), where y = x−ct, y ∈ (−∞,+∞), which satisfy (3), (34)
and the boundary conditions

lim
y→+∞ σ(y) = σ+, lim

y→−∞ σ(y) = σ−, lim
y→+∞ v(y) = v+, (35)

lim
y→+∞ σvis(y) = 0, lim

y→−∞ σvis(y) = 0. (36)
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The constitutive function σ(ε) is assumed to be such that d2σ/dε2 < 0. The
solution to this problem can be derived in explicit form. For brevity, we omit
intermediate computations and present the final result. It can be verified directly
that the solution satisfies the equations and the boundary conditions. In the
formulae below, ε+ and ε− are determined from the constitutive function:
σ(ε+) = σ+, σ(ε−) = σ−.

The speed of the smooth viscous shock is the same as that of a discontinuous
shock:

c2 =
σ+ − σ−

�(ε+ − ε−)
. (37)

The inverse to the function ε(y) is given by the integral

y(ε) = μc

∫ ε

ε0

dη

σ(η) − σ− − �c2(η − ε−)
, (38)

where ε ∈ (ε−, ε+), and ε0 is an arbitrary fixed strain between ε− and ε+. The
velocity profile is obtained from the function ε(y):

v(y) = −cε(y) + cε+ + v+. (39)

This gives the unknown quantity v− = limy→−∞ v(y):

v− = −cε− + cε+ + v+. (40)

Equation (40) coincides with the second jump condition (24). The first jump
condition (24) also holds true and can readily be derived from (37) and (40). As
we have seen in Sect. 2, the strain-stress relation in a travelling wave is necessarily
linear. In the present case, this relation is

σ(y) + σvis(y) =
σ+ − σ−

ε+ − ε−
(
ε(y) − ε+

)
+ σ+. (41)

7 Concluding Remarks

The strain-stress relation for soil in compression is nonlinear with increasing
stiffness. This nonlinearity strongly influences the propagation of compression
waves: a smooth wave front steepens and turns into a shock front. If the consti-
tutive behaviour is rate-independent, the solution becomes discontinuous. The
distance covered by a smooth front before it becomes discontinuous (the criti-
cal distance) is determined by (13). The critical distance depends on the stress
rate applied at the boundary and on the curvature of the strain-stress function.
For given medium and boundary loading, the critical distances for the cylindri-
cal and spherical waves are related to the critical distance for the plane wave
by (14), (15). The relations are independent of the constitutive function. The
propagation of waves with discontinuities is governed, besides the differential
equations for the smooth part of the wave, by the jump conditions (24) on the
shock fronts. The same jump conditions hold true for steady viscous shocks.
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The soil deformation on the shock is essentially different from the deformation
on the smooth part of the wave. The strain rate on the shock is not only high
but also highly inhomogeneous in space, Fig. 11. Using the same strain-stress
curve for the shock and for the smooth part of the wave should be regarded as
approximation.
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