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Abstract. Experimental results have shown that waves propagating in non-
homogeneous and composite materials exhibit dispersive behavior even in cases
where they are characterized by isotropic effective properties. Concrete is such a
material and at both its fresh and hardened state wave dispersion is observed.
The dispersion becomes more pronounced when microdefects like microcracks
and air voids appear in the main body of the concrete. The goal of the present
work is threefold: first to examine numerically the contribution of various
defects to the wave dispersion in concrete, second to show through numerical
experiments that circular voids embedded in a concrete matrix is a good
approximation for simulating wave dispersion in damaged concrete and third to
capture the dispersive behavior of a longitudinal plane wave propagating in
damaged concrete with the aid of two theories, namely the multiple wave
scattering model of Waterman and Truell and the generalized elastic theory of a
strain gradient elastic material. Numerical, experimental and theoretical results
are compared and discussed throughout the paper.

1 Introduction

Ultrasonic pulse velocity is a widely spread non-destructive testing parameter that has
proven very reliable and relatively easy to use for decades. The empirical correlations
with strength of materials (especially concrete), although not theoretically justified,
seriously contribute in the evaluation of structural condition [1]. In the domain of
cementitious media the wave velocity is used as the first demonstrator of the structural
health and allows strength prediction either in hardening or hardened concrete [2]. The
majority of the scientific articles and even more of the in-situ cases, employ ultrasonic
pulse velocity as the main parameter for characterization. The reason is the relative
easiness to apply and the reliability on the strength estimation. Commercial, high-
voltage ultrasonic systems employ transducers of a fixed frequency (usually 54 kHz)
and detect the onset of the waveform at the receiving transducer through its first
crossing above a fixed threshold. Many correlations have seen publicity showing that
pulse velocities above 4000 m/s are measured in good quality concrete while velocities
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below 3000 m/s indicate problematic state. Relatively recently, the influence of fre-
quency has been studied. It is shown that as the heterogeneity of the medium increases,
the dependence of velocity on frequency (dispersion) becomes stronger. The hetero-
geneity in concrete is related to the impedance mismatch between its constituents. This
has been theoretically treated using scattering models and more recently with gradient
elastic theories [3–5]. To a limited extent, a mismatch is noted between the cement
matrix and the stiffer aggregates although in general, their density discrepancies are not
strong. More intensive scattering or microstructural effects are expected by air bubbles
(entrapped or entrained air) and cracks, as in these cases the impedance mismatch is
huge and the inclusions are in essence voids. The easier way to model these hetero-
geneities is the spherical shape. This is supposed to result in a wave velocity and
overall behavior, in general, close to a case with random inclusions and of random
distribution, provided of course that the volume content and the mechanical properties
are constant. Though this perception is common in the field of wave scattering, there is
no concrete study in the international literature to prove this for a variety of shapes of
inclusions. In this paper, numerical simulations are conducted using several shapes of
voids (inclusions with properties of air), distribution patterns and volume contents. The
results allow for comparison between the shapes, showing that even with the same
content, the inclusion shapes are responsible even for 20% difference in UPV. Thus,
one aim of the study concerns the basic level of wave propagation and is conducted
through numerical simulations, a second aim is the comparison with experimental data
from cementitious mortar with different volume content of polystyrene inclusions,
while a third aim is to verify the observed wave dispersion via the multiple wave
scattering model of Waterman and Truell [6] and the use of the simple strain gradient
elastic theory of Mindlin [7].

2 Numerical Simulation Model

In this section, a numerical experiment dealing with the propagation of a plane lon-
gitudinal elastic wave in a concrete specimen containing air voids in different shapes
and orientation is carried out. For the shake of simplicity plane strain conditions are
considered. The cases examined were solved numerically in order to produce the
waveform of the receiver and extract the transit time of the onset of the wave. The
fundamental equation governing the two-dimensional propagation of elastic waves in
an elastic medium, ignoring viscous losses, is as follows:

lr2u þ ðk þ lÞrr � u ¼ q
@2u
@t2

ð1Þ

where u = u(x, y, t) is the time-varying displacement vector, q is the material density, k
and l are the first and second Lamé constants, respectively, and t is time. The simulations
were conducted with commercially available software wave2000 [8], which solves the
above equation using the finite difference method in the plane strain case. Equation (1) is
solved at discrete points with respect to the boundary conditions of the model, which
include the input source that has predefined time-dependent displacements at a given
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location and a set of initial conditions [9]. For heterogeneous geometries like the ones
studied herein, wave propagation in each distinct homogeneous phase is solved according
to Eq. (1), while the continuity conditions for stresses and strains must be satisfied on the
interfaces [9].

The mechanical properties of the different materials are shown in Table 1. In total
three different types of materials were considered: cementitious matrix, voids (inclu-
sions of air), and aggregates.

The basic geometry was a square of 100 mm side on which the different inho-
mogeneities were incorporated, as shown in Fig. 1. Infinite boundary conditions were
applied to all sides of the geometry. The “pulser” was triggered by a displacement
excitation of 10 cycles of constant amplitude and the simulation was repeated for
several frequencies, namely 50 kHz, 150 kHz, 300 kHz and 500 kHz in order to
estimate the effect of the different wavelengths (roughly from 80 mm down to 8 mm).
The “receiver” was placed on opposite side of the geometry allowing for a propagation
distance of 100 mm between pulser and receiver. One example of a geometric model of
a matrix with few circular air inclusions is shown in Fig. 1.

Table 1. Material properties used for the numerical model.

Material Density q
(kg/m3)

First Lame k
(GPa)

Second Lame l
(GPa)

Ultrasonic velocity,
C (m/s)

Cement
matrix

2400 11.1 16.7 4216

Air 1.2 0.0001 0.00001 316

100
m
m

100 mm

Pu
ls

er
R

eceiver

Fig. 1. Geometrical model for the numerical simulations.
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The ‘‘receivers” provide the average vertical displacement over their length,
meaning that the receiver signal represents the average response over a number of
nodes. The simulation accuracy depends on the density of the points on which the
equation of motion is solved. Thus, preliminary simulations were conducted on a
specific geometry (with circular inclusions) to estimate the effect of mesh size on
accuracy as well as computation time. Mesh sizes from 8 mm down to 0.8 mm were
selected. It is seen that the resulted velocity is certainly influenced by the selected
resolution showing however convergence at 1 mm (Fig. 2). Therefore, the analysis was
done with the resolution of 1 mm, which was just 0.0066% different than the finest
resolution tried, but considerably faster. This resolution is much lower than the shortest
applied wavelength of 8 mm corresponding to the highest frequency applied of
500 kHz. The time resolution is 0.01537 ls, corresponding to sampling rate of
65 MHz, well above the applied frequencies.

Three different contents of inclusions were used, namely 2%, 5% and 10%. In
addition, several shapes of inclusions were applied. In total ten different cases of single
shaped voids (and orientations when applicable) were applied, and Fig. 3 shows five
indicative cases, concerning circles, squares, ellipses, rectangular at different orienta-
tion. For the two latter, four different orientations of the longitudinal axis of the
inclusion were applied (horizontal, vertical and ±45o). The dimensions of the different
inclusion shapes are shown in Table 2. The common characteristic for all shapes is
their area which is fixed to 11.11 mm2.
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Fig. 2. Convergence of pulse velocity results for finer resolution (mesh size).
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Apart from the single shape of inclusions, five different patterns were created by
mixing the different shapes. Three of them are shown in Fig. 4a. Finally, two cases
with random patterns of circular voids were created as shown in Fig. 4b, making a total
of 16 different cases.

Fig. 3. Indicative patterns of inclusions in the model (from left to right: circular, square, vertical
ellipses, horizontal ellipses, diagonal rectangles).

Table 2. Basic shapes and dimensions of inclusions

Circle radius 1.9 mm

Rectangle 4.54x2.45 mm

Oval 2.9x1.2 mm

Square side 3.33 mm

Fig. 4. (a) Indicative patterns of mixed inclusions, (b) random pattern of spherical inclusions.
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3 Results

The transit time used for velocity calculations was determined by the first disturbance
on the receiver’s waveform (no threshold needed as all previous waveforms points
were zero). Two indicative waveforms are shown in Fig. 5 concerning the response to
150 kHz for the pure matrix and the matrix with circular inclusions to the content of
10%. The effect of heterogeneity is seen both in the delayed onset and the amplitude of
the waveform of 10% compared to 0%.

Figure 6 shows the pulse velocity vs. frequency curves for some indicative
heterogeneity patterns with 10% content. In all cases the velocity increases towards the
500 kHz, something that as will be seen later is also in agreement with the solution of
the scattering model of Waterman and Truell [6]. Nevertheless, similar results have
been reported for the field of concrete, suggesting increase of wave velocity with
increase of frequency for sound and damaged material [3, 10]. The cases with the least
dispersion are the ones with the horizontal inclusions (ellipses and rectangles). The
strongest dispersion along with the lower velocity curves are shown by the vertical
orientation of the same shapes. The diagonal orientation shows an intermediate velocity
curve. The circle shape of inclusions comes very close to the square shape starting at
3986 m/s and reaching 4210 m/s for 500 kHz. It is evident that as the frequency
increases, the discrepancies between the different shapes becomes negligible except for
the extreme cases of vertical inclusions which exhibit the strongest reflection fronts
against the propagating wave. Excluding these two extreme cases, the circular shape
seems to be a good approximation yielding velocities in the average of the other cases.
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Fig. 5. Simulated waveforms for 150 kHz excited frequency for matrix with 0% and 10% of
circular inclusions.
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Figure 7 shows the corresponding results for the mixed shapes cases, including
again the circular inclusion shape for comparison. The basic trend of the increasing
velocity with frequency holds for all cases and while there are patterns exhibiting
higher or lower velocity curve than the circular shape, the latter’s curve is placed closer
to the top rather than the bottom curve, something also noted earlier in Fig. 6.
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Fig. 6. Pulse velocity vs. frequency curves for different inclusion shapes and patterns of content
10%.
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Fig. 7. Pulse velocity vs. frequency curves for different mixed shape patterns of content 10%.
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The following graph (Fig. 8) concerns circular inclusions but with three different
distribution patterns. One is the rectangular pattern shown in Fig. 3 (left), while the
other two are random and shown in Fig. 4b. The curves are close with maximum
deviation of 50 m/s (approximately 1.25%) at 50 kHz. The distribution pattern seems
therefore, not to crucially influence the result provided that the inclusion shape and
content are constant.

In order to have a clear comparison for different shapes and combinations of them,
Fig. 9 includes the pulse velocity values at 50 kHz for 10% content. All the applied
patterns are shown for completeness. What is again evident is that apart from the cases
of ellipsoidal and rectangular horizontal inclusions which do not pose strong
obstruction to wave propagation and thus result in higher velocities, the circular case of
scatterer (either in specific distribution pattern or random) presents velocities at the
high level of 4000 m/s, only 5% less than the pure matrix velocity of 4216 m/s. Other
inclusion shapes/orientations present lower velocities like the ellipsoidal at 45o to the
propagation direction, which is close to 3850 m/s, while long inclusions with their axis
perpendicular to the propagation direction drop to values close to 3400 m/s. The cir-
cular case presents the 5th highest pulse velocity from the presented 16 cases.
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Fig. 8. Pulse velocity vs. frequency curves for circular inclusions and different patterns of
content 10%.
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4 Comparison with Experimental Data

The above numerical results are compared with experimental results on the effect of
frequency on pulse velocity. The experimental data are taken from [11], where film-
shape light inclusions of 15 � 15 � 0.5 mm were added during mixing of cementi-
tious mortar in volume contents from 0% (reference), 1%, 5% to 10%. Figure 10a
shows the experimental pulse velocity vs. frequency curves. All curves (even plain
mortar) exhibit a dispersive trend, which is expected due to the inherent heterogeneity
of mortar. This dispersion is more pronounced for higher number of voids leading to
quite strong discrepancies between the velocity at 30 kHz (3390 m/s) and the velocity
of 500 kHz (3900 m/s) for 10% vol. content. The corresponding numerical results are
shown in Fig. 10b. There, the curves corresponding to the ellipsoidal vertical shape are
presented revealing many similarities to the experimental results. The frequency
dependence increases for high amount of voids, while even the values are quite close.
Obviously the wave dispersion observed in Fig. 10a is due not only to the presence of
the randomly oriented film-shape light inclusions but also to the heterogeneity of the
cementitious mortar matrix. Since all numerical experiments consider non-dispersive
matrix, it is expected that the mixed models of Fig. 4a provide wave behavior being
less dispersive than that observed experimentally. This explains why in Fig. 10(b) the
numerical results are close to experimental ones, when vertical ellipsoidal voids are
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Fig. 9. Pulse velocities for 50 kHz for all cases of inclusion shapes and geometrical distribution
patterns for content of 10%.
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considered. Indicatively for the 10% voids case, the velocity at low frequencies for both
numerical and experimental approach is at the level of 3400 m/s, while for the highest
frequency it reaches 3800–3900 m/s. In addition, it is interesting to note that the
discrepancy between 10% and 5% is much more than between 5% and 0% both in
numerical and experimental, showing the accumulated effect of damage.
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Fig. 10. (a) Experimental pulse velocity vs. frequency curve for concrete with different
percentage of light plate inclusions [10]. (b) Numerical pulse velocity vs. frequency curve for
ellipsoidal voids vertical to propagation.
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5 Theoretical Predictions

The main purpose of this section is to develop an understanding of the mechanism
responsible for the dispersive behavior of the longitudinal elastic waves observed
numerically and experimentally in Sects. 3 and 4, respectively. Depending on the
frequency, all the results obtained so far converge to the conclusion that voids of
various shapes affect drastically, even in very small volume concentrations, the velocity
of propagating waves. Many researchers have proposed the multiple scattering of the
incident wave by the distributed voids as the main mechanism of the observed wave
dispersion [3, 12–14]. Others believe that the microstructure of the nonhomogeneous
material is responsible for the phenomenon. However, due to the lack of internal length
scale parameters that correlate the microstructure with the macrostructure, the classical
theory of elasticity is not able to capture wave dispersion in those materials. For this
reason enhanced elastic theories like the micropolar and stainn gradient elasticity are
preferred [5, 15–17]. In this section the scattering theory of Waterman and Truell [6]
and the strain gradient elastic theory of Mindlin [7] are employed in order to explain the
numerical results presented in Sect. 3. For demonstration purpose, only circular voids
are considered.

5.1 Wave Dispersion Predictions via the Waterman and Truell Scattering
Model

According to Waterman and Truell [6], the wave dispersion of an elastic wave prop-
agating in a nonhomogeneous elastic medium is undertaken through the multiple
scattering theory which, solves problems dealing with the scattering of incident plane
waves by a cloud of inclusions embedded in an elastic matrix. According to this theory,
the wave dispersion and attenuation in a nonhomogeneous medium can be obtained in
terms of the particle/void concentration and the forward as well as the backward far
field scattering amplitudes. More precisely, the wave dispersion and attenuation is
represented via the frequency-dependent complex wavenumber, k(x), which is
expressed in terms of the void concentration and the forward as well as the backward
far-field scattering amplitudes, i.e.

kðxÞ
kc

� �2

¼ 1þ 3u
k2cR

3 f ð0Þþ
9u2

4k4cR6 ½f 2ð0Þ � f 2ðpÞ� ð2Þ

where kc is the real wavenumber of the matrix material, u the volume fraction of the
inclusion, R the particle radius when spherical particles are considered and f(0) and f(p)
are the complex single scattering forward and backward scattering amplitudes,
respectively. The latter are evaluated analytically for circular voids [18] and numeri-
cally for arbitrarily shaped cavities.

It should be noticed here that the Waterman and Truell theory ignores the inter-
action between the inclusions and for this reason its applicability is confined to con-
centrations of particles or voids being below to 12%. For higher concentrations can be
replaced by the iterative effective medium approximation technique illustrated in [19].
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For the concrete matrix perforated by 10% of circular voids, described in Sect. 2, the
phase velocity of a longitudinal plane wave is evaluated according to (2) and depicted as
a function of frequency in Fig. 11. The results are compared to corresponding numerical
ones obtained by the wave2000 commercial code [8] as it is explained in Sect. 3. As it is
apparent, relation (2) provides a reasonable explanation for the wave dispersion
occurred in the concrete due to the presence of 10% circular cavities.

5.2 The Concrete as a Strain Gradient Elastic Material

Mindlin [7], in the Form-II version of his strain gradient elastic theory, considered that
the potential energy density is a quadratic form not only of the strains but also of the
gradient of strains. Similarly, the kinetic energy appears to be a quadratic function of
both velocity and gradient of velocity. Under those consideration, his theory concludes
to an equation of motion, which in its simplest form, can be written as

ð1� g2r2Þ½lr2uþðkþ lÞrr � u� ¼ q €ðu� h2r2 €uÞ ð3Þ

where u stands for the displacement vector, k, l represent the classical elastic Lame
constants, ∇ and ∇2 indicate the gradient and Laplace operator, respectively, dots
indicate differentiation with respect to time and g, h are the stiffness and inertia,
respectively, internal length scale parameters that correlate the microstructure with the
dynamic macrostructural behavior of the strain gradient elastic material.

Considering displacements as harmonic plane waves of frequency x, Eq. (3) leads
to the following dispersion relation

Fig. 11. Phase velocity vs. frequency curve for 10% vol. assuming circular shape of inclusions,
based on the scattering model of Waterman and Truell [6].
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Vp;s ¼ x
kp;s

¼ Cp;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2k2p;s
1þ h2k2p;s

s
ð4Þ

where Vp,s represents the phase velocity of a longitudinal (p) or transverse (s) plane
wave propagating in the strain gradient elastic material, while Cp,s and kp,s stand for the
phase velocity and the wave number, respectively, of a plane wave traveling in a
classical linear elastic medium characterized by the Lame constants k, l.

Equation (4) reveals that, unlike the classical elastic case characterized by constant
velocities of longitudinal and shear waves and hence nondispersive wave propagation,
the gradient elastic is characterized by phase velocities for longitudinal and shear
waves, which are functions of the wave number, indicating wave dispersion. This
dispersion is imposed with the presence of the two intrinsic parameters g2 and h2. It is
apparent that for g = h = 0, Eq. (4) reads Vp,s = Cp,s, but what is interesting here is that
dispersion disappears when the micro-stiffness coefficient g is equal to micro-inertia
one h. Dispersion relation (4) can be written in terms of frequency as follows:

Vp;s ¼ Cp;s

1� xh
Cp;s

� �2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xh

Cp;s

� �2
� �2

þ 2 xg
Cp;s

� �2
s

2
ð5Þ

Considering the material of the previous subsection as a homogenized strain gra-
dient elastic medium and utilizing the dispersion relation (5), the frequency dependent
phase velocity of a longitudinal plane wave propagating in the considered strain gra-
dient elastic material is evaluated and depicted in Fig. 12.

Fig. 12. Wave velocity vs. frequency according to Mindlin’s gradient elastic theory [7]
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It is obvious that both Waterman and Truell and strain gradient elastic approaches
exhibit a similar trend with increasing velocity for higher frequency up to 500 kHz
while some differences only exist at the low band of frequency below 50 kHz. The
values of the Mindlin’s microstructural coefficients leading to a good agreement with
numerical results are g (micro-stiffness) = 7.7 mm and h (micro-inertia) = 7.1 mm. It
is noted that the circular void (the case of which is included in the comparison of
Fig. 12) has a diameter of 3.8, being approximately the half of the value of
microstiffness.

Due to the interaction of a propagating elastic wave with the voids of the concrete
material, the choice of the Waterman and Truell multiple scattering model as a can-
didate theory to explain the observed wave dispersion was quite reasonable. The
spontaneous question here is why to consider one the concrete with the circular voids
as a strain gradient elastic material. It is well known that the strain gradient elasticity is
a theory, which by definition can be applied only in materials where significant strain
gradients occur. Thus, in order to give an answer to that question, the traction field that
follows the direction of a propagating harmonic longitudinal wave is evaluated for the
cases of 50 kHz, 150 kHz and 300 kHz. To this end, 175 circular cavities in a
hexagonal arrangement, embedded in an infinitely extended cementitious matrix with
the properties of Table 1, are considered. The representative volume element of this
periodic structure corresponds to a void concentration of 10%. A longitudinal plane
harmonic wave at the frequencies of 50 kHz, 150 kHz, 300 kHz and wavelengths
0.085 m, 0.0283 m, 0.0141 m, respectively, impinges upon the rows of cavities. The
tractions fields created between the voids for the aforementioned frequencies are
evaluated with the aid of the Boundary Element Method (BEM), which undoubtedly is
the most accurate method for calculating stress fields in linear elastic structures. An
advanced BEM, explained in [20, 21], is employed to this purpose. The traction fields,
with respect to the propagation direction, are evaluated and shown in Fig. 13. Nor-
malizing with the highest traction the results are presented, for each frequency, in a
dimensionless scale from −1(compressive stress) to 1(tensile stress). Since the matrix is
considered as a classical elastic material, it is apparent that high gradients of stresses
correspond to high gradients of strains. As it can be seen from Fig. 13(a), qualitatively,
there are certain areas where high stress and thus high strain gradients occur. These
strain gradients appear as sudden changes of the contour colors from blue to cyan and
red to yellow in the compressive and tensile regions, respectively. Mainly, they appear
in the region between the voids and in a direction being perpendicular to the wave
propagation. Similar results obtained in the recent work [22] where strain gradients
appear in the body of bended perforated plates. Although the figure seems to be
different in Fig. 13(b) and (c), a careful observation reveals that almost all the regions
between the holes appear sudden changes from tensile to compressive tractions, which
are associated with significant strain gradients. Such a behavior justifies the use of
strain gradient elasticity as a theory that can capture dispersion phenomena in damaged
concrete.
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6 Conclusions

The present numerical investigation sheds light into the effect of shape of inclusions
(voids) in the wave propagation velocity in an elastic matrix. Results highlight the
dispersive nature of the heterogeneous material. The pulse velocity increases with
frequency between 50 and 500 kHz by as much as 12%, making frequency a very
crucial parameter of any ultrasonic test in concrete. Furthermore, the differences
between inclusion shapes are more evident at low frequencies where the wavelength is
much longer than the heterogeneity size and tend to diminish for higher frequency
where the wavelength is of the same order with the inclusion size. Results show that the
circular shape of inclusion is a generally good approximation resulting however, in
velocities a few percent higher than the average of the different shapes. Care should be
taken when there is a specific orientation preference of heterogeneity. Then the wave
direction relatively to the voids orientation becomes relevant and the result may differ
by almost 30% between favorable and unfavorable direction. In addition, experimental
results obtained by plate-like inclusions are presented showing strong similarity with
the numerical cases concerning ellipsoidal vertical inclusions. Finally, the numerical
results are compared with theoretical from scattering models and Mindin’s gradient
elastic theory, showing a convergence and implying that all different approaches are
different prisms to study the same phenomenon.
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