
13Verification of Safety-Critical Systems

Key Topics

Software Reliability
Dependability
Safety-Critical Systems
Cleanroom
Vienna Development Method
Z Specification Language
Model-Oriented Approach
Axiomatic Approach
Refinement

13.1 Introduction

The release of an unreliable software product may result in damage to property or
injury (including loss of life) to a third party. Consequently, companies need to be
confident that their software products are fit for purpose prior to their release. It is
essential that software that is widely used is dependable, which means that the
software is available whenever required, and that it operates safely and reliably
without any adverse side effects.

Today, billions of devices and computers are connected to the Internet and this
has led to a growth in attacks on computers. It is essential that computer security is
carefully considered, and that developers are aware of the threats facing a system,
and techniques to eliminate them. The software developers need to be able to

© Springer Nature Switzerland AG 2019
G. O’Regan, Concise Guide to Software Testing,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-28494-7_13

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28494-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28494-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28494-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-28494-7_13

develop secure dependable systems that are able to deal with and recover from
external attacks.

A safety-critical system is a system whose failure could result in significant
economic damage or loss of life. There are many examples of safety-critical sys-
tems such as aircraft flight control systems, nuclear power stations, and missile
systems. It is essential to employ rigorous processes in their design and develop-
ment, and software testing alone is usually insufficient in verifying the correctness
of such systems (Fig. 13.1).

The safety-critical industry takes the view that any change to safety-critical
software creates a new program. The new program is therefore required to
demonstrate that it is reliable and safe to the public, and so extensive testing needs
to be performed. Other techniques such as formal verification and model checking
may be employed to provide an extra level of assurance in the correctness of the
system.

Safety-critical systems need to be reliable, dependable, and available for use
whenever required. The software must operate correctly and reliably without any
adverse side effects. The consequence of failure (e.g. the failure of a weapons
system) could be massive damage, leading to loss of life or endangering the lives of
the public.

The development of a safety-critical system needs to be rigorous, and subject to
strict quality assurance to ensure that the system is safe to use and that the public
will not be in danger. This involves rigorous design and development processes to
minimize the number of defects in the software, as well as comprehensive testing to
verify its correctness. It may not always be possible to test the safety-critical system
under real-world conditions, and in such situations, it is common to employ other

Fig. 13.1 Grafenrheinfeld Nuclear Power Plant. Germany. Creative Commons

236 13 Verification of Safety-Critical Systems

techniques to provide increased confidence in its correctness. Formal methods are
one approach that assists in the development and verification of safety-critical
systems.

Formal methods consist of a set of mathematical techniques to rigorously state
the requirements of the proposed system. They may be employed to derive a
program from its mathematical specification and to provide a rigorous proof that the
implemented program satisfies its specification. They provide the facility to prove
that certain properties are true of the specification, and this is valuable, especially
for safety-critical and security-critical applications. A mathematical specification is
not subject to the ambiguities inherent in a natural language description of a system,
and it may be subjected to a rigorous analysis to demonstrate the presence or
absence of key properties.

Safety-critical systems are generally designed for fault tolerance, where the
system can deal with (and recover from) faults that occur during execution. Fault
tolerance is achieved by anticipating exceptional events, and in designing the system
to handle them. A fault-tolerant system is designed to fail safely, and programs are
designed to continue working (possibly at a reduced level of performance) rather
than crashing after the occurrence of an error or exception. Many fault-tolerant
systems mirror all operations, where each operation is performed on two or more
duplicate systems, and so if one fails then the other system can take over.

13.2 Software Reliability

Software reliability is the probability that the program works without failure for a
period of time, and it is usually expressed as the mean time to failure. It is different
from hardware reliability, in that hardware is characterized by components that
physically wear out, whereas software is intangible and software failures are due to
design and implementation errors. In other words, software is either correct or
incorrect when it is designed and developed, and it does not physically deteriorate
over time.

The hardware field has been very successful in developing sound reliability
models, which allows useful predictions of how long a hardware component (or
product) will function. This has led to a growing interest in the software field in the
development of a scientific software reliability model. Such a model would provide
a sound mechanism to predict the reliability of the software prior to its deployment
at the customer site, as well as providing confidence that the software is fit for
purpose and safe to use.

Definition 13.1 (Software Reliability) Software reliability is the probability that the
program works without failure for a specified length of time, and it is a statement of
the future behaviour of the software. It is generally expressed in terms of the mean-
time-to-failure (MTTF) or the mean-time-between-failure (MTBF).

13.1 Introduction 237

Statistical sampling techniques are often employed to predict the reliability of
hardware, as it is not feasible to test all items in a production environment. The
quality of the sample is used to make inferences on the quality of the entire
population, and this approach is effective in manufacturing environments where
variations in the manufacturing process often lead to defects in the physical
products.

A hardware failure generally arises due to a component wearing out and often a
replacement component is required. Hardware components are expected to last for a
certain period of time, and the variation in the failure rate of a hardware component
is often due to variations in the manufacturing process, or to the operating envi-
ronment of the component. Good hardware reliability predictors have been devel-
oped, and each hardware component has an expected mean time to failure. The
reliability of a product may be determined from the reliability of the individual
components of the hardware.

Software is an intellectual undertaking involving a team of designers and pro-
grammers. It does not physically wear out as such, and software failures manifest
themselves from particular user inputs. Each copy of the software code is identical,
and the software code is either correct or incorrect. That is, software failures are due
to design and implementation errors rather than to the software physically wearing
out over time. A number of software reliability models (e.g. the software reliability
growth models) have been developed, but the software engineering community has
not yet developed a sound software reliability predictor model that can be trusted.

The software population to be sampled consists of all possible execution paths of
the software, and since this is potentially infinite it is generally not possible to
perform exhaustive testing. The way in which the software is used (i.e. the inputs
entered by the users) will impact upon its perceived reliability. Let If represent the
fault set of inputs (i.e. if 2 If if and only if the input of if by the user leads to failure).
The randomness of the time to software failure is due to the unpredictability in the
selection of an input if 2 If. It may be that the elements in If are inputs that are rarely
used and that the software will be perceived as being reliable.

Harlan Mills and others showed that coverage testing is not as cost effective as
usage testing in increasing MTTF (Cobb and Mills 1990). Statistical usage testing
may be used to make predictions on the future performance and reliability of the
software. It requires an understanding of the expected usage profile of the system
and the population of all possible usages of the software. The sampling is done in
accordance with the expected usage profile, and a software reliability measure is
calculated.

Harlan Mills and others at IBM developed the Cleanroom approach to software
development (O’Regan 2006). This formal approach to software development
involves the application of statistical techniques to calculate a software reliability
measure of the software based on its expected use.1 This involves executing tests
chosen from the population of all possible uses of the software in accordance with

1The expected usage of the software (or operational profile) is a quantitative characterization
(usually based on probability) of how the system will be used.

238 13 Verification of Safety-Critical Systems

the probability of its expected use. Statistical usage testing is more effective than
coverage testing in finding defects that lead to failure.

Software reliability models are an attempt to predict the future reliability of the
software and in deciding on whether the software is ready for release. A defect does
not always result in a failure, as it may occur on a rarely used execution path.
Studies indicate that many observed failures arise from a small proportion of the
existing defects.

The defect count and defect density may be poor predictors of operational
reliability, and an emphasis on removing a large number of defects from the
software may not be sufficient to achieve high reliability. The correction of defects
in the software leads to a newer version of the software, and reliability models
assume reliability growth, i.e. the new version is more reliable than the older
version as several identified defects have been corrected. The safety-critical
industry (e.g. the nuclear power industry) takes the conservative viewpoint that any
change to a program creates a new program. The new program is therefore required
to demonstrate its reliability, and so extensive testing needs to be performed before
any conclusions may be drawn.

There is a need to be careful with reliability growth models, as there is no
tangible growth in reliability unless the corrected defects are likely to manifest
themselves as a failure.2 Many existing software reliability growth models assume
that all remaining defects in the software have an equal probability of failure and
that the correction of a defect leads to an increase in software reliability. These
assumptions are questionable.

Software reliability testing is concerned with testing to determine the extent to
which the software functions correctly for a given period of time (Table 13.1).
Software reliability is the probability that the software works correctly for a given
period of time, and it is calculated from the failure rate k = 1/MTTF3 and the
reliability function R(t) = e−kt.

Table 13.1 Software reliability testing

Item Formula Description

Availability Availability ¼ MTBF
MTBFþMTTR

It is the percentage of the time that the
software system is running

Mean time
between
failure

MTBF ¼ Sample IntervalTime
#Outages

Average length of time between outages

Mean time
to repair

MTTR ¼ TotalOutageTime
#Outages

Average length of time that it takes to
correct the outage (average duration of
outage)

2We are assuming that the defect has been corrected perfectly with no new defects introduced by
the changes made.
3MTBF = MTTF + MTTR.

13.2 Software Reliability 239

13.3 Software Dependability

It is essential that software that is widely used is dependable (or trustworthy). In
other words, the software should be available whenever required, as well as oper-
ating properly, safely, and reliably, without any adverse side effects or security
concerns. This is especially true of the software used in the safety-critical and
security-critical fields, as the consequence of failure (e.g. the failure of a nuclear
power plant) could be catastrophic leading to massive damage leading or loss of life.

Dependability engineering is concerned with techniques to improve the
dependability of systems, and it involves the use of a rigorous design and devel-
opment process to minimize the number of defects in the software. A dependable
system is generally designed for fault tolerance, where the system can deal with
(and recover from) faults that occur during software execution. Such a system needs
to be secure, and able to protect itself from accidental or deliberate external attacks.
Table 13.2 lists a number of dimensions to dependability.

Modern software systems are subject to attack by malicious software such as
viruses that may change its behaviour, or corrupt data making the system unreliable.
Other malicious attacks include a denial of service attack that negatively impacts
the system’s availability.

The design and development of dependable software need to include protection
measures to prevent against such external attacks that compromise the availability
and security of the system. Further, a dependable system needs to include recovery
mechanisms to enable normal service to be restored as quickly as possible fol-
lowing an attack.

Dependability engineering is concerned with techniques to improve the
dependability of systems and in designing dependable systems. A dependable
system will generally be developed using an explicitly defined repeatable process,
and it may employ redundancy (spare capacity) and diversity (different types) to
achieve reliability.

There is a trade-off between dependability and system performance, as
dependable systems will need to carry out extra checks to monitor themselves and
to check for erroneous states, and to recover from faults before failure occurs. This
inevitably leads to increased costs in the design and development of dependable
systems.

Table 13.2 Dimensions of dependability

Dimension Description

Availability The system is available for use at any time

Reliability The system operates correctly and is trustworthy

Safety The system operates safely and does not injure people or damage the
environment

Security The system is secure and prevents unauthorized intrusions

240 13 Verification of Safety-Critical Systems

Software availability is the percentage of the time that the software system is
running and is a measure of the uptime/downtime of the software during a particular
time period. The downtime refers to a period of time when the software is
unavailable for use (including planned and unplanned outages), and many com-
panies aim to develop software that is available for use 99.999% of the time in the
year (i.e. an annual downtime of less than 5 min per annum). This goal is known as
five nines, and it is a common goal in the telecommunications sector. We discussed
availability metrics in Chap. 9.

Safety-critical systems are systems where it is essential that the system is safe for
the public, and that people or the environment is not harmed in the event of system
failure. The failure of a safety-critical system could in some situations lead to loss
of life or serious economic damage.

Formal methods provide a precise way of specifying the requirements and
demonstrating (using mathematics) that key properties are satisfied in the formal
specification. They may be used to show that the implemented program satisfies its
specification, and their use leads to increased confidence in the correctness of
dependable systems.

The security of the system refers to its ability to protect itself from accidental or
deliberate external attacks, which are common today since most computers are
networked and connected to the Internet. There are various security threats in any
networked system including threats to the confidentiality and integrity of the system
and its data, and threats to the availability of the system.

Therefore, controls are required to enhance security and to ensure that attacks are
unsuccessful. Encryption is one way to reduce system vulnerability, as encrypted
data is unreadable to the attacker. There may be controls that detect and repel
attacks, which are used to monitor the system and to take action to shut down parts
of the system or restrict access in the event of an attack. There may be controls that
limit exposure (e.g. insurance policies and automated backup strategies) that allow
recovery from the problems introduced.

It is important to have a reasonable level of security as otherwise all of the other
dimensions of dependability (reliability, availability, and safety) are compromised.
Security loopholes may be introduced in the development of the system, and so care
needs to be taken to prevent hackers from exploiting security vulnerabilities.

Risk analysis plays a key role in the specification of security and dependability
requirements, and this involves identifying risks that can result in serious incidents.
This leads to the generation of specific security requirements as part of the system
requirements to ensure that these risks do not materialize, or if they do materialize
then serious incidents will not materialize.

13.3 Software Dependability 241

13.4 Formal Methods

The term “formal” is used to refer to form, structure or rules rather than content, and
examples include a formal dance or a formal meeting (Fig. 13.2). The term “formal
methods” refer to various mathematical techniques used for the formal specification
and development of software. They consist of a formal specification language and
employ a collection of tools to support the syntax checking of the specification, as
well as the proof of properties of the specification. They allow questions to be asked
about what the system does independently of the implementation.

The use of mathematical notation avoids speculation about the meaning of
phrases in an imprecisely worded natural language description of a system. Natural
language is inherently ambiguous, whereas mathematics employs a precise rigorous
notation. Spivey (1992) defines formal specification as:

Definition 13.1 (Formal Specification) Formal specification is the use of mathe-
matical notation to describe in a precise way the properties that an information
system must have without unduly constraining the way in which these properties
are achieved.

The formal specification thus becomes the key reference point for the different
parties involved in the construction of the system. It may be used as the reference
point for the requirements; program implementation; testing and program docu-
mentation. It promotes a common understanding for all those concerned with the

Fig. 13.2 Formal signing of the treaty of Versailles in 1919. Public Domain

242 13 Verification of Safety-Critical Systems

system. The term “formal methods” is used to describe a formal specification
language and a method for the design and implementation of a computer system.
Formal methods may be employed at a number of levels:

– Formal specification only (program developed informally)
– Formal specification, refinement, and verification (some proofs)
– Formal specification, refinement, and verification (with extensive theorem
proving).

The specification is written in a mathematical language, and the implementation
may be derived from the specification via step-wise refinement.4 The refinement
step makes the specification more concrete and closer to the actual implementation.
There is an associated proof obligation to demonstrate that the refinement is valid
and that the concrete state preserves the properties of the abstract state. Thus,
assuming that the original specification is correct and the proofs of correctness of
each refinement step are valid, then there is a very high degree of confidence in the
correctness of the implemented software.

Step-wise refinement is illustrated as follows: the initial specification S is the
initial model M0; it is then refined into the more concrete model M1, and M1 is then
refined into M2, and so on until the eventual implementation Mn = E is produced.

S ¼ M0YM1YM2YM3Y.YMn ¼ E

Requirements are the foundation of the system and irrespective of the best
design and development practices; the product will be incorrect if the requirements
are incorrect. The objective of requirements validation is to ensure that the
requirements reflect what is actually required by the customer (in order to build the
right system). Formal methods may be employed to model the requirements, and
the model exploration yields further desirable or undesirable properties.

Formal methods provide the facility to prove that certain properties are true of
the specification, and this is valuable, especially in safety-critical and
security-critical applications. The properties are a logical consequence of the
mathematical requirements and the requirements may be amended where appro-
priate. Thus, formal methods may be employed in a sense to debug the require-
ments during requirements validation.

The use of formal methods generally leads to more robust software and to
increased confidence in its correctness. They may be employed at different levels
(e.g. it may just be used for specification with the program developed informally).
The use of formal methods does not eliminate the need for software testing, but their
use provides additional confidence in the correctness of the implemented system.
The challenges involved in the deployment of formal methods in an organization

4It is questionable whether step-wise refinement is suitable in mainstream software engineering, as
it involves re-writing a specification several times and takes significant time to prove that the
refinement steps are valid. It is more relevant to the safety-critical field.

13.4 Formal Methods 243

include the education of staff in formal specification, as the use of these mathe-
matical techniques may be a culture shock to many staff.

Formal methods have been applied to several areas, especially the safety- and
security-critical fields, to develop reliable and dependable software. The applica-
tions include the verification of software in the railway sector, microprocessor
verification, the specification of standards, and the specification and verification of
programs (Hinchey and Bowen 1995).

The use of a formal method such as Z or VDM forces the software engineer to be
precise, and this helps in avoiding the ambiguities present in natural language
(Bjorner and Jones 1982; Diller 1990). Clearly, a formal specification should be
subject to peer review to provide confidence in its correctness. Formal methods are
potentially quite useful and reasonably easy to use. However, new formalisms need
to be intuitive to be usable, as some of the formalisms introduced have been a
culture shock to users. There are advantages in using classical mathematics as the
notation, since mathematical notation is intuitive and familiar to high-school
students.

13.5 Cleanroom Methodology

Harlan Mills and others at IBM developed the Cleanroom methodology as a way to
develop high-quality software (Cobb and Mills 1990). Cleanroom helps to ensure
that the software is released only when it has achieved the desired quality level, and
the probability of zero-defects is very high. The name “cleanroom” comes from
specialized industrial production in the microprocessor and pharmaceutical sector
(Fig. 13.3).

The way in which the software is used will impact on its perceived quality and
reliability. Failures will manifest themselves on certain input sequences only, and as
users often employ different input sequences, each user may have a different per-
ception of the reliability of the software. The knowledge of how the software will
be used allows the software testing to focus on verifying the correctness of common
everyday tasks carried out by users.

This means that it is important to determine the operational profile of users to
enable effective software testing to be performed. The operational profile may be
difficult to determine and it could change over time, as users may change their
behaviour as their needs evolve. The determination of the operational profile
involves identifying the common operations to be performed, and the probability of
each operation being performed.

Cleanroom employs statistical usage testing rather than coverage testing and this
involves executing tests chosen from the population of all possible uses of the
software in accordance with the probability of its expected use. The software
reliability measure is calculated by statistical techniques based on the expected
usage of the software, and Cleanroom provides a certified mean time to failure of
the software.

244 13 Verification of Safety-Critical Systems

Coverage testing involves designing tests that cover every path through the
program, and this type of testing is as likely to find a rare execution failure as well
as a frequent execution failure. It is essential to find failures that occur on frequently
used parts of the system. The advantage of usage testing (that matches the actual
execution profile of the software) is that it has a better chance of finding execution
failures on frequently used parts of the system. This helps to maximize the expected
mean time to failure of the software.

The Cleanroom software development process is described in O’Regan (2006),
and some of its successes and benefits are described in Cobb and Mills (1990). The
process and calculation of the software reliability measure are described, and the
Cleanroom development process enables engineers to deliver high-quality software
on time and on budget.

13.6 Formal Methods and Testing

Formal methods have traditionally been used for the specification and development
of software, but their use does not eliminate the need for software testing. Formal
methods and testing are generally seen as two complementary techniques for the
reduction of defects in software systems, and the development of safety-critical
systems employs both techniques. A formal specification may also support testing

Fig. 13.3 Cleanroom in semiconductor manufacturing. Public Domain

13.5 Cleanroom Methodology 245

in determining the test cases, and so formal methods may be used to improve the
software testing process.

It is essential that the formal specification is correct, and so a review of the
specification is required to ensure its correctness. The verification of the formal
specification may take the form of specification animation with a tool, or with the
use of theorem provers (usually using mechanized tools) to show the presence or
absence of desirable or undesirable properties. That is, the mathematical proof is
employed to show that certain desired properties are always true in the specifica-
tion, whereas certain other undesirable properties are always false.

Once there is confidence in the correctness of the specification the implemen-
tation takes place, (either formal or informal development) and the system is then
ready for verification with comprehensive testing. One approach where formal
methods can assist is the derivation of the test cases from the formal specification,
and this is termed “testing from specification” (Fig. 13.4).

13.7 UML and Testing

UML is an expressive graphical modelling language for visualizing, specifying,
constructing, and documenting a software system. It provides several views of the
software’s architecture, and it has a clearly defined syntax and semantics. Each
stakeholder (e.g. project manager, developers, and testers) has a different per-
spective and looks at the system in different ways at different times during the
project. UML is a way to model the software system before implementing it in a
programming language. It may be employed to document the software system, and
it has been used in several domains such as the banking sector, defence, and
telecommunications.

A UML specification consists of precise, complete, and unambiguous models.
The models may be employed to generate code in a programming language such as
Java or C++. The reverse is also possible, and so it is possible to work with either
the graphical notation of UML, or the textual notation of a programming language.
UML expresses things that are best expressed graphically, whereas a programming

Fig. 13.4 Deriving tests from abstract model

246 13 Verification of Safety-Critical Systems

language expresses things that are best expressed textually, and tools are employed
to keep both views consistent.

A UML model presents an abstract representation of the desired behaviour of a
system under test. The test cases derived from the abstract model (the abstract test
suite) is at the same level of abstraction as the model, and may not be directly
executed against the system under test (Fig. 13.4). This means that the executable
test suite must be derived from the abstract test suite by mapping the abstract test
cases to concrete test cases that are suitable for execution.

13.7.1 Model Checking and Testing

Model checking is an automated technique such that given a finite-state model of a
system and a formal property, (expressed in temporal logic) and then it systemat-
ically checks whether the property is true or false in a given state in the model
(Fig. 13.5). It is an effective technique to identify potential design errors, and it
increases the confidence in the correctness of the system design. Model checking is
an effective verification technology and is widely used in the hardware and software
fields. It has been employed in the verification of microprocessors; in security
protocols; in the transportation sector (trains); and in the verification of software in
the space sector.

Model checking is a formal verification technique based on graph algorithms and
formal logic. It allows the desired behaviour (specification) of a system to be
verified, and its approach is to employ a suitable model of the system and to carry
out a systematic and exhaustive inspection of all states of the model to verify that
the desired properties are satisfied. These properties are generally safety properties
such as the absence of deadlock, request-response properties, and invariants. The

Fig. 13.5 Model checking

13.7 UML and Testing 247

systematic search shows whether a given system model truly satisfies a particular
property or not.

The phases in the model-checking process include the modelling, running, and
analysis phases (Table 13.3).

The model-based techniques use mathematical models to describe the required
system behaviour in precise mathematical language, and the system models have
associated algorithms that allow all states of the model to be systematically
explored. Model checking is used for formally verifying finite-state concurrent
systems (typically modelled by automata), where the specification of the system is
expressed in temporal logic, and efficient algorithms are used to traverse the model
defined by the system (in its entirety) to check if the specification holds or not. Of
course, any verification using model-based techniques is only as good as the
underlying model of the system.

Model checking is an automated technique such that given a finite-state model of
a system and a formal property, and then a systematic search may be conducted to
determine if the property holds for a given state in the model. The set of all possible
states is called the model’s state-space, and when a system has a finite state-space it
is then feasible to apply model-checking algorithms to automate the demonstration
of properties, with a counter example exhibited if the property is not valid. For more
detailed information on model checking, see O’Regan (2019).

13.8 Review Questions

1. Explain the difference between software reliability and system availability
2. What is software dependability?
3. Explain the relevance of formal methods in testing
4. Describe the Cleanroom methodology
5. Describe the characteristics of a good software reliability model
6. Explain the relevance of security engineering

Table 13.3 Model-checking process

Phase Description

Modelling
phase

Model the system under consideration
Formalize the property to be checked

Running phase Run the model checker to determine the validity of the property in the
model

Analysis phase Is the property satisfied? If applicable, check next property
If the property is violated, then

1. Analyse generated counter example
2. Refine model, design or property

If out of space try alternative approach (e.g. abstraction of system model)

248 13 Verification of Safety-Critical Systems

7. What is a safety-critical system?
8. Explain how model checking can determine whether a desired property

holds at all times in a system
9. Explain how UML may support testing.

13.9 Summary

A safety-critical system is a system whose failure could result in significant eco-
nomic damage or loss of life, and it is essential to employ rigorous processes in
their design and development. Software testing alone is usually insufficient in
verifying the correctness of such systems, and often an extra level of assurance is
required to provide additional confidence in their correctness.

We discussed software reliability and dependability; availability; security; and
safety-critical systems in this chapter. Software reliability is the probability that the
program works without failure for a period of time, and it is usually expressed as
the mean time to failure. Software dependability means that the software is avail-
able when required, as well as operating safely and reliably without any adverse
side effects. These systems are generally fault tolerant and are designed to deal with
(and recover) from faults that occur during execution.

The security of the system refers to its ability to protect itself from accidental or
deliberate external attacks. There are various security threats in any networked
system including threats to the confidentiality and integrity of the system and its
data, and threats to the availability of the system.

Cleanroom involves the application of statistical techniques to calculate software
reliability, and it is based on the expected usage of the software. Formal methods
and testing are two complementary techniques, and a formal specification may also
support testing in determining the test cases by deriving them from the formal
specification.

A UML model presents an abstract representation of the desired behaviour of a
system under test. Test cases may be derived from the abstract model (the abstract
test suite), and they are at the same level of abstraction as the model. This means
that the executable test suite must be derived from the abstract test suite by mapping
the abstract test cases to concrete test cases suitable for execution.

Model checking is an automated technique such that given a finite-state model of
a system and a formal property, (expressed in temporal logic) and then it system-
atically checks whether the property is true of false in a given state in the model.

13.8 Review Questions 249

References

Bjorner D, Jones C (1982) Formal specification and software development. Prentice Hall
International Series in Computer Science

Cobb RH, Mills HD (1990) Engineering software under statistical quality control. IEEE Software
Diller A (1990) An introduction to formal methods. Wiley, England
Hinchey M, Bowen J (1995) Applications of formal methods. Prentice Hall International Series in

Computer Science
O’Regan G (2006) Mathematical approaches to software quality. Springer, London
O’Regan G (2019) Concise guide to formal methods. Springer, London
Spivey JM (1992) The Z Notation. A reference manual. Prentice Hall International Series in

Computer Science

250 13 Verification of Safety-Critical Systems

	13 Verification of Safety-Critical Systems
	13.1 Introduction
	13.2 Software Reliability
	13.3 Software Dependability
	13.4 Formal Methods
	13.5 Cleanroom Methodology
	13.6 Formal Methods and Testing
	13.7 UML and Testing
	13.7.1 Model Checking and Testing

	13.8 Review Questions
	13.9 Summary
	References

