
1Fundamentals of Software Quality

Key Topics

Shewhart
Deming
Juran
Crosby
Watts Humphrey
Metrics
Problem-solving
Cost of quality
Process improvement
Customer satisfaction

1.1 Introduction

The mission of a software company is to develop high-quality innovative products
and services at a competitive price to its customers and to do so ahead of its
competitors. This requires a clear vision of the business, a culture of innovation, an
emphasis on quality, detailed knowledge of the business domain, and a sound
product development strategy.

It requires a focus on software quality and customer satisfaction, and quality
must be built into the software product so that customers remain loyal to the
company. Customers have very high expectations on quality and expect
high-quality software products to be consistently delivered on time and on budget.

© Springer Nature Switzerland AG 2019
G. O’Regan, Concise Guide to Software Testing,
Undergraduate Topics in Computer Science,
https://doi.org/10.1007/978-3-030-28494-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28494-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28494-7_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28494-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-28494-7_1

The focus on quality requires effective software processes to be in place so that
quality software may be consistently produced.

Software testing plays a key role both in building quality into the software and in
verifying that the desired quality has been achieved. Quality improvement is
essential, and a focus on industrial best practice and emerging technologies assists
in performance improvement.

The history of quality and some of the key people who have contributed to the
quality movement are discussed later in the chapter. This includes well-known
quality gurus such as Shewhart, Deming, Juran, and Crosby. These figures played
an important role in promoting quality and transforming struggling manufacturing
companies. Watts Humphrey is considered the father of software quality, and his
important contributions to software process improvement are discussed.

The Standish Group Research (1999) (Fig. 1.1) on project cost overruns in the
US during 1998 indicate that 33% of projects were between 21 and 50% over
estimate, 18% were between 51 and 100% over estimate, and 11% of projects were
between 101 and 200% overestimate.1

Projects sometimes fail, and there are many examples of projects being aban-
doned prior to completion. For example, the Taurus project at the London stock
exchange is a well-known disaster. The project was eventually abandoned, and at
that stage, it was 11 years late and had cost the city of London hundreds of millions
of pounds (Manley 1995).

It is essential that requirements are properly managed as uncontrolled changes to
requirements may have a negative effect on the project. It may be necessary to
accept a late change to the requirements, but there are corresponding risks to the
project schedule and quality. However, a good requirements process will ensure
that changes to the requirements are minimized and controlled, and the

Fig. 1.1 Standish research—project cost estimation accuracy in 1998

1The study was from the mid/late 1990 and recent reports from the Standish Group show good
improvement trends.

2 1 Fundamentals of Software Quality

requirements process will often include prototyping or joint user reviews to ensure
that the requirements are actually those desired by the customer.

The implementation of the requirements involves design, development, and
testing activities. It may also involve the production of user manuals and training
materials as well as the technical documentation. Quality must be built into the
software, and the goal of the testing activities is to verify the correctness of the
software. The project manager is responsible for delivering the project on time and
for recovering the schedule when it falls behind.

Engineers have constructed bridges for several millennia, and bridge building is
considered a mature engineering activity. However, occasionally civil engineering
projects fall behind schedule or suffer design flaws. For example, the infamous
Tacoma Narrows Bridge (or Galloping Gertie as it was known) collapsed in 1940
due to a design flaw.

The Tacoma Narrows Bridge was known for its tendency to sway in windstorms.
The shape of the bridge was like that of an aircraft wing, and under windy con-
ditions, it would generate sufficient lift to become unstable. A large windstorm in
November 1940 caused catastrophic failure. The significance of the Tacoma Bridge
is its collapse and the subsequent investigation by engineers. They realized that
aerodynamical forces in suspension bridges were not sufficiently understood in the
design of the bridge and that new research was needed. It was recommended that
wind tunnel tests be used to aid in the design of the replacement bridge.

Software engineering is a less mature field than civil engineering, and it is only
in more recent times that investigations and recommendations from software pro-
jects have become part of the software development process. The study of software
engineering has led to new theories and understanding of software development.

1.2 History of Software Failures

There are many examples of software failures in the literature. These include the
year 2000 (or Y2K) problem which was a design flaw in the representation of the
date with two digits; the Intel Pentium microprocessor bug which referred to a
floating-point problem on an Intel microprocessor back in 1994; the Ariane 5
launcher disaster was due to an operand error that resulted from the conversion of a
64-bit floating-point number to a 16-bit signed integer number. Software failures
may cause major problems and adversely affect the customer’s business. They may
lead to credibility issues and damage to the customer relationship.

The Y2K bug is historical and part of computer science folklore. The event on 1
January 2000 had minimal impact on the world economy. However, organizations
spent large sums of money in identifying all code with a year 2000 impact;
changing the representation of the date from 2 digits to 4 digits; and verifying the
correctness of the changes made. The worldwide cost of this was in billions of
dollars.

1.1 Introduction 3

The Intel response to a famous microprocessor bug back in 1994 inflicted
temporary damage on the reputation of the company. Intel was slow to acknowl-
edge the floating-point problem and in providing adequate information. This led to
damage in its reputation and hundreds of millions of dollars to replace the flawed
microprocessors.

The Ariane 5 led to major embarrassment and damage to the credibility of the
European Space Agency (ESA). The maiden flight of the Ariane 5 launcher ended
in failure on 4 June 1996, after a flight time of 40 s. The first 37 s of flight
proceeded as normal. However, the launcher then veered off its flight path, broke
up, and exploded. An independent inquiry board investigated the cause of the
failure, and the report and recommendations to prevent a future failure are described
in Lions (1996).

The inquiry noted that the failure of the inertial reference system was followed
immediately by a failure of the backup inertial reference system. The problem was
traced to a software failure due to an operand error resulting from the conversion of
a 64-bit floating-point number to a 16-bit signed integer value number. The
floating-point number was too large to be represented in the 16-bit number, and this
resulted in the operand error.

The inertial reference system and the backup reference system reported failure
due to the software exception. The operand error occurred owing to an excep-
tionally high value related to the horizontal velocity, and this was due to the fact
that the early part of the trajectory of the Ariane 5 differed from the earlier Ariane 4,
and required a higher horizontal velocity. The inquiry board made a series of
recommendations to prevent a reoccurrence of similar problems.

These failures indicate that software quality needs to be a key driving force in
any organization. The effect of software failure may result in huge costs to correct
the software (e.g. Y2K), negative perception of a company and large replacement
costs (e.g. Intel microprocessor problem), or the loss of a valuable communications
satellite and all the costs associated with this (e.g. Ariane 5).

1.3 Background to Software Quality

Customers today have very high-quality and reliability expectations and expect
companies to adhere to very high standards. There are many quality software
products in the marketplace; however, the task of consistently producing
high-quality software products is non-trivial. Even the most respected organizations
occasionally deliver software that contains defects, or ship products late due to
quality problems. Defects may cause minor irritation to a customer, loss of credi-
bility, or lead to injury or loss of life.

The late delivery of a product leads to extra costs, and it may adversely affect the
customer’s revenue, profitability, and business planning. Consequently, it is
essential to have a robust process to consistently develop high-quality software on

4 1 Fundamentals of Software Quality

time and within budget. The influential papers by Fred Brooks in Brooks (1975,
1986) suggest that there is no silver bullet to do this, and that instead, the focus
needs to be on incremental improvement to processes and tools.

1.3.1 What Is Software Quality?

There are various definitions of quality such as the definition proposed by Philip
Crosby as “conformance to the requirements”. This definition does not take the
intrinsic difference in quality of products into account in judging the quality of the
product. For example, this definition might suggest that a Mercedes car is of the
same quality as a Lada car.2 Further, the definition does not consider whether the
requirements are actually appropriate for the product.

Juran defines quality as “fitness for use”, and this is a better definition, although
it does not provide a mechanism to judge better quality when two products are
equally fit to be used. The ISO 9126 standard for information technology (ISO/IEC
1991) is a framework for the evaluation of software product quality. It defines six
product quality characteristics (Table 1.1), which indicate the extent to which a
software product may be judged to be of a high quality by the customers.

1.3.2 Early Quality Management

In the Middle Ages, a craftsman was responsible for the complete development of a
product from its conception to delivery to the customer. This led to a strong sense of
pride and ownership of the quality of the product, and apprentices joined craftsmen
to learn the skills of the trade.

The Industrial Revolution led to a change to this traditional paradigm, and labour
became highly organized with workers responsible for a particular part of the

Table 1.1 ISO 9126 quality characteristics

Characteristic Description

Functionality This indicates the extent to which the required functionality is available in
the software

Reliability This indicates the extent to which the software is reliable

Usability This indicates the extent to which the users of the software judge it to be
easy to use

Efficiency This characteristic indicates the efficiency of the software

Maintainability This indicates the extent to which the software product is easy to modify and
maintain

Portability This indicates the ease of transferring the software to a different environment

2Most rational people would judge the Mercedes to be of superior quality.

1.3 Background to Software Quality 5

manufacturing process. The sense of ownership and the pride of workmanship in
the product were diluted, as workers were now responsible only for their portion of
the product, and not the quality of the product as a whole.

This led to a requirement for more stringent management practices, including
planning, organizing, implementation, and control. It inevitably led to a hierarchy
of labour with various functions identified and a reporting structure for the various
functions. Supervisor controls were needed to ensure that quality and productivity
issues were addressed.

1.3.3 Total Quality Management

Total quality management (TQM) is a modern approach to quality management,
and this management philosophy involves customer focus, process improvement,
developing a culture of quality within the organization and developing a mea-
surement and analysis program. It emphasizes that customers have rights and
quality expectations, which should be satisfied, and that everyone in the organi-
zation is both a customer and has customers.

It is a holistic approach and requires that all functions, in the organization,
follow high standards. Quality needs to be built into the product by ensuring that
quality is addressed at every step in the process.

It requires total commitment from the top management, and that all staff be
trained in quality management and participate in quality improvement. It requires
that a commitment to quality be instilled in all staff, and that the focus within the
organization changes from firefighting to fire prevention. Problem-solving is used to
identify the root causes of problems, and corrective action is taken to prevent their
re-occurrence.

1.3.4 Software Quality Control

Software quality control is concerned with activities to ensure that the end product
satisfies the functional and non-functional requirements and is fit for purpose. It
includes inspections and testing to verify that the deliverables produced satisfy their
requirements. Inspections typically consist of a formal review of a deliverable by
independent experts, and the objective is to identify defects within the work product
and to provide confidence in its correctness.

Inspections in a manufacturing environment are quite different in that they take
place at the end of the production cycle and do not offer a mechanism to build
quality into the product. Instead, the defective products are removed from the batch
and reworked. There is a growing trend towards quality sampling at the early
phases of a manufacturing process to minimize reworking of defective products.

Software testing consists of “white box” or “black box” testing techniques, and
the testing activities include unit, system, performance, and acceptance testing. The
testing is quite methodical and includes a comprehensive set of manual or

6 1 Fundamentals of Software Quality

automated test cases. The verification and validation activities involve the execu-
tion of the defined tests and the correction of any failed or blocked tests.

The cost of correction of a defect is related to the phase in which it is detected in
the lifecycle. Errors detected in phase are the least expensive to correct, and defects
detected out of phase become increasingly expensive to correct. The most expen-
sive defect is that of a requirements’ defect identified by the customer, as its
correction may involve changes to the requirements, design, and code. Testing will
be required as well as a fix release for the customer. There is further overhead in
project management, configuration management, and in communication with the
customer.

It is, therefore, highly desirable to capture defects as early as possible in the
software lifecycle to minimize the effort required to correct. Modern software
engineering places emphasis on defect prevention and in learning lessons from the
defects. This approach is adopted from manufacturing environments and consists of
formal causal analysis meetings to brainstorm and identify root causes of problems
and to define the corrective actions necessary to prevent reoccurrence. The actions
are then implemented and tracked to completion.

1.4 History of Quality

This section considers the ideas of several pioneers who have influenced the quality
field. These include Walter Shewhart, W. Edwards Deming, Joseph Juran, and
Philip Crosby. We also discuss the influence of Watts Humphrey who is considered
the father of software quality.

1.4.1 Shewhart

Walter Shewhart was Statistician at AT&T Bell Laboratories (or Western Electric
Co. as it was known in the 1920s). He is regarded as Founder of statistical process
control (SPC), which remains important today in monitoring and controlling a
process (Fig. 1.2). Shewhart developed a control chart, which is used to control the
process, with upper and lower limits for process performance specified. The process
is under control if it is performing within these limits.

Shewhart’s ideas were applied to the Capability Maturity Model (CMM) in the
late 1980s as a way to control key software processes. Statistical process control
(SPC) plays an important role in process improvement and in ensuring that process
performance is acceptable. It is used to minimize variability in process perfor-
mance, as variability in the process affects product quality. SPC involves the
analysis of control charts so that the cause of variability can be identified and
eliminated. Deming and Juran worked with Shewhart at Bell Labs in the 1920s.

The Shewhart model is a systematic approach to problem-solving and process
control. It consists of four steps that are used for continuous process improvement,

1.3 Background to Software Quality 7

which are plan, do, check, act (Fig. 1.3). It is known as the “PDCA model” or
Shewhart’s model and is described in Table 1.2.

Shewhart argued that quality and productivity improve as process variability is
reduced. His influential book, The Economic control of quality of manufactured
product (Shewhart 1931), outlines the methods of statistical process control to
reduce process variability. It predicted that productivity would improve as process
variability was reduced, and this was verified by Japanese engineers in the 1950s.

This led to productivity improvements and increased market share for Japanese
companies. Today, companies around the world recognize the importance of
placing quality at the heart of the organization.

1.4.2 Deming

W. Edwards Deming (Fig. 1.4) was a major figure in the quality movement. He was
influenced by Shewhart’s work on statistical process control, and Deming’s
approach was adopted in post-Second World War Japan. He played an important
role in transforming Japan industry.

Fig. 1.2 Shewhart’s control chart

Fig. 1.3 Shewhart’s PDCA
cycle

8 1 Fundamentals of Software Quality

Deming argued that it is not sufficient for everyone in the organization to be
doing one’s best: instead, what is required is that there be a consistent purpose and
direction in the organization. That is, it is first necessary that people know what to
do, and there must be a constancy of purpose from all individuals to ensure success.

He argued that there is a very strong case for improving quality, as costs will
decrease due to less rework, and productivity will increase as less time is spent in
reworking defective products. This will enable the company to increase its market
share, with better quality and lower prices, and to stay in business. Conversely,
companies that fail to address quality issues will lose market share and go out of
business. Deming was highly critical of the then American approach to quality and
the lack of vision of American management in quality management.

Deming’s influential book Out of the Crisis (Deming 1986) proposed 14 prin-
ciples to transform the western style of management of an organization to a quality-
and customer-focused organization. These include:

Table 1.2 Shewhart cycle

Step Description

Plan This step identifies an improvement opportunity and outlines the problem or process
that will be addressed
– Select the problem to be solved
– Describe current process
– Identify the possible causes of the problem
– Find the root cause
– Develop an action plan to correct the root cause

Do This step involves carrying out the improvement actions, and it may involve a pilot of
the proposed changes to the process

Check This step involves checking the results obtained to determine their effectiveness

Act This step includes the analysis of the results to adjust process performance to achieve
the desired results

Fig. 1.4 W.E. Deming

1.4 History of Quality 9

• Constancy of purpose
• Quality built into the product
• Continuous improvement culture.

Deming’s ideas are described in more detail in Table 1.3.
Deming argued that there are several diseases that afflict companies in the

western world that prevent them for achieving high-quality results. The “five deadly
diseases” noted by Deming include (Table 1.4).

Comment (Deming)
Deming’s programme has been quite influential and has many sound points. His
views on slogans in the workplace are in direct opposition to the use of slogans like
Crosby’s “zero defects”. The key point for Deming is that a slogan has no value
unless there is a clear method to attain the particular goal described by the slogan.

1.4.3 Juran

Joseph Juran (Fig. 1.5) was a major figure in the quality movement, and he argued
for a top-down approach to quality. He defined quality as “fitness for use” and
argued that quality issues are the direct responsibility of management. Management
must ensure that quality is planned, controlled, and improved.

The trilogy of quality planning, control, and improvement is known as the
“Juran Trilogy” and is usually described by a diagram with time on the horizontal
axis and the cost of poor quality on the vertical axis (Fig. 1.6).

Quality planning consists of setting quality goals, developing plans, and iden-
tifying the resources needed to achieve the goals. Quality control consists of
evaluating performance, setting new goals, and taking appropriate action. Quality
improvement consists of improving delivery, eliminating wastage, and improving
customer satisfaction. Juran’s 10-step programme for quality planning is defined in
Juran (1951) and is summarized in Table 1.5.

Juran defined an approach to achieve a new quality performance level that is
termed “Breakthrough and Control”. It is described pictorially by a control chart
showing the old performance level with occasional spikes or random events; what is
needed is a breakthrough to a new and more consistent quality performance, i.e. a
new performance level with the performance achieved at that level.

The example in Fig. 1.7 presents a breakthrough in developing a more accurate
estimation process. Initially, the variation in estimation accuracy is quite large, but
as an improved estimation process is put in place, the control limits are narrowed
and more consistent estimation accuracy is achieved.

The breakthrough is achieved by a sustained and coordinated effort, and the old
performance standard becomes obsolete. The difference between the old and the
new performance level is known as the “chronic disease” which must be diagnosed
and cured. His approach to breakthrough and control is described in Table 1.6.

10 1 Fundamentals of Software Quality

Table 1.3 Deming 14-step programme

Step Description

Constancy of
purpose

Companies face short-term and long-term problems. The problems of
tomorrow require long-term planning on new products, training, and
innovation. This requires R&D and continuous improvement of
existing products and services

Adopt new
philosophy

Deming outlined the five deadly diseases that afflicted US companies.
These included lack of purpose and an excessive interest in short-term
profits

Build quality in Deming argued that performing mass inspections is equivalent to
planning for defects, as they are too late to improve quality.
Consequently, it is necessary to improve the production process to
build the quality into the product

Price and quality Deming argued against awarding business on price alone, as the price is
meaningless unless there is an objective measure of the quality of the
product being purchased

Continuous
improvement

There must be continuous improvement in all areas, including
understanding customer requirements, design, manufacturing, and test
methods

Institute training The organization must be a learning organization with a training
programme to educate management and staff about the company,
customer needs, and pride of workmanship in the products. Supervisors
and managers need training on the 14-point program

Institute leadership Deming argues that management is about leadership and not
supervision. Management should work to remove barriers, know the
work domain, and seek innovative solutions to resolve quality and
other relevant issues

Eliminate fear The presence of fear is a barrier to an open discussion of problems and
the identification of solutions or changes to prevent problems from
arising

Eliminate barriers The objective here is to break down barriers between different
departments and groups. It is not enough for each group to optimize its
own area: instead, what is required is for the organization to be working
as one team

Eliminate slogans Deming argued that slogans do not help anyone to do a better job.
Slogans may potentially alienate staff or encourage cynicism. Deming
criticized slogans such as “Zero Defects” or “Do it right the first time”
as inappropriate, as how can it be made right first time if the production
machine is defective. Most problems are due to the system rather than
the person

Eliminate numerical
quotas

Deming argued that quotas act as an impediment to improvement in
quality, as quotas are normally based on what may be achieved by the
average worker. People below the average cannot make the rate, and
the result is dissatisfaction and turnover. Thus, there is a fundamental
conflict between quotas and pride of workmanship

Pride of work The intention here is to remove barriers that rob people of pride of
workmanship (e.g. machines out of order)

(continued)

1.4 History of Quality 11

1.4.4 Crosby

Philip Crosby was a key figure in the quality movement, and his quality
improvement grid later influenced the design of the Capability Maturity Model
(CMM), which was developed by the Software Engineering Institute. His influential
book Quality is Free (Crosby 1979) outlines his philosophy of doing things right
the first time, i.e. the zero defects (ZD) program. Quality is defined as “confor-
mance to the requirements”, and he argues that people have been conditioned to
believe that error is inevitable.

Table 1.3 (continued)

Step Description

Self improvement This involves encouraging education and self-improvement for
everyone in the company

Take action This requires that management agree on direction using the 14
principles, communicate the reasons for changes to the staff, and train
the staff on the 14 principles

Table 1.4 Deming—five deadly diseases

Disease Description

Lack of constancy of
purpose

Management is too focused on short-term thinking rather than
long-term improvements

Emphasis on
short-term profit

A company should aim to become the world’s most efficient provider
of product/service. Profits will then follow

Evaluation of
performance

Deming is against annual performance appraisal and rating

Mobility of
management

Mobility of management frequently has a negative impact on quality

Excessive
measurement

Excessive management by measurement

Fig. 1.5 Joseph Juran

12 1 Fundamentals of Software Quality

Crosby argued that people in their personal lives do not accept this: for example,
it would not be acceptable for nurses to drop a certain percentage of newly born
babies. He further argues that the term “acceptable quality level” (AQL) is a
commitment to produce imperfect material. Crosby notes that defects are due to two
main reasons: lack of knowledge or a lack of attention of the individual.

Fig. 1.6 Cost of poor quality—% of sales

Table 1.5 Juran’s 10-step programme for quality planning

Step Description

Identify customers This includes the internal and external customers of an organization;
e.g., the testing group is an internal customer, whereas the end-user of
the software is an external customer

Determine customer
needs

Customer needs are generally expressed in the language of the
customer’s organization. There is a need to elicit and determine the
actual desired requirements from discussion and communication with
the customer

Translate This involves translating the customer needs into the language of the
supplier

Units of
measurement

This involves defining the measurement units to be used

Measurement
programme

This involves setting up a measurement programme in the
organization, and it includes internal and external measurements of
quality and process performance

Develop product This step determines the product features to meet the needs of the
customer

Optimize product
design

The intention is to optimize the design of the product to meet the needs
of the customer and supplier

Develop process This involves developing processes that can produce the products to
satisfy the customer’s needs

Optimize process
capability

This involves optimizing the capability of the process to ensure that
high-quality products are produced

Transfer This involves transferring the process to normal product development
operations

1.4 History of Quality 13

He argued that lack of knowledge can be measured and addressed by training,
but that lack of attention is a mindset that requires a change of attitude by the
individual. The net effect of a successful implementation of a zero defects pro-
gramme is higher productivity due to less reworking of defective products. Thus,
quality, in effect, is free.

Crosby’s approach to achieving the desired quality level of zero defects was to
put a quality improvement programme in place. He outlined a 14-step quality
improvement programme (Table 1.7). It requires management commitment to be
successful, and an organization-wide quality improvement team needs to be set
up. A measurement programme is put in place to determine the status and cost of
quality within the organization. The cost of quality is then shared with the staff, and
corrective actions are identified and implemented. The zero defects programme is
communicated to the staff, and one day every year is made a zero defects day and is
used to emphasize the importance of zero defects to the organization.

Crosby’s Quality Management Maturity Grid (Table 1.8) measures the maturity
of the current quality system with respect to several quality management categories
and highlights areas that require improvement. Six categories of quality manage-
ment are considered: management understanding and attitude towards quality,
quality organization status, problem handling, the cost of quality, quality
improvement actions, and summation of company quality posture.

Fig. 1.7 Estimation accuracy—breakthrough and control

Table 1.6 Juran’s breakthrough and control

Step Description

Breakthrough in
attitude

This involves developing a favourable attitude to quality improvement

Pareto This involves identifying the key areas affecting quality

Organization This involves analysing the problem and coordinating a solution

Control This is concerned with achieving performance at the new level

Repeat This leads to continuous improvement with new performance levels set,
and new breakthroughs made to achieve higher performance levels

14 1 Fundamentals of Software Quality

Each category is rated on a 1-to-5 maturity scale which indicates the maturity of
the particular category. Crosby’s maturity grid was later adapted and applied to the
CMM. The five maturity levels of Crosby’s grid are:

Comment (Crosby)
Crosby’s programme has been quite influential, and his maturity grid has been
applied to the software CMM. The ZD part of the programme is difficult to apply to
the complex world of software development, where the complexities of the systems
to be developed are often the cause of defects rather than the mindset of software
professionals (who are generally professional and dedicated to quality). Slogans
may be dangerous and potentially unsuitable to some cultures, and a zero defects
day may potentially have the effect of de-motivating staff.

Table 1.7 Crosby’s 14-step programme

Step Description

Management
commitment

Management commitment and participation are essential to the success
of the quality improvement program. The profile of quality is raised
within the organization

Quality
improvement team

This involves the formation of an organization-wide cross-functional
team consisting of representatives from each of the departments

Quality
measurement

The objective is to determine the status of quality in each area of the
company to identify areas where improvements are required

Cost of quality
evaluation

The cost of quality indicates the financial cost of quality to the
organization. It is initially high, but reduces as the quality improvement
programme becomes effective

Quality awareness This involves sharing the cost of poor quality with staff and motivating
staff to identify corrective actions to deal with quality issues

Corrective action This involves resolving any problems that have been identified and
bringing any problems that cannot be resolved to the attention of
management

Zero defects
program

The key point is that zero defects is not a motivation program: instead,
it means doing things right the first time, i.e. zero defects

Supervisor training This requires that all supervisors and managers receive training on the
14-step quality improvement program

Zero defects day This involves setting aside one day each year to high-light zero defects
and its importance to the company

Goal setting This phase involves getting people to think in terms of
goals and how the goals may be achieved

Error cause
removal

This involves removing any roadblocks or problems that prevent
employees from performing error-free work

Recognition This involves recognizing employees who make outstanding
contributions to quality improvement

Quality councils This involves bringing quality professionals together on a regular basis
to share ideas on quality

Do it over again The principle of continuous improvement is a key part of the
programme, as improvement is continuous

1.4 History of Quality 15

1.4.5 Watts Humphrey

Watts Humphrey was an American software engineer and vice-president of tech-
nical development at IBM. He made important contributions to the software
engineering field and is considered the father of software quality. He dedicated
much of his career to addressing the problems of software development including
schedule delays, cost overruns, software quality, and productivity (Fig. 1.8).

He was born in Michigan in 1927 and served in the US Navy and completed a
bachelor’s degree in physics at the University of Chicago in 1949. He obtained a

Table 1.8 Crosby’s maturity grid

Level Name Description

1. Uncertainty Management has no understanding of quality and is likely to blame
quality problems on the quality department. Firefighting is
prevalent, and problems are fought as they occur. Root causes of
problems are not investigated, and there are few organized quality
improvement activities

2. Awakening Management is beginning to recognize that quality management
may be of value, but is unwilling to devote time and money to it.
Instead, the emphasis is on appraisal rather than prevention. Teams
are set up to address major problems, but long-term solutions are
rarely sought

3. Enlightenment Management is learning more about quality and is becoming more
supportive of quality improvement. The quality department reports
to senior management, and implementation of the 14-step quality
improvement programme is underway. There is a culture of
openness where problems are faced openly and resolved in an
orderly way

4. Wisdom Management is fully participating in the program and fully
understands the importance of quality management. All functions
within the organization are open to suggestions for improvement,
and problems are identified earlier. Defect prevention is now part
of the culture

5. Certainty The whole organization is involved in continuous improvement

Fig. 1.8 Watts Humphrey.
Courtesy of Watts Humphrey

16 1 Fundamentals of Software Quality

master’s degree in physics from the Illinois Institute of Technology (IIT) and an
MBA from the University of Chicago.

He took a position with Sylvania in Boston in the early 1950s, and he became
Manager of the circuit design group in the company. He recognized the importance
of planning and management early in his career, and he joined IBM in 1959 initially
as Hardware Architect, but most of his IBM career was in management. He was
eventually to become Vice-President of technical development, where he oversaw
4,000 engineers in 15 development centres in over 7 countries. Others at IBM
influenced him including Fred Brooks who was Project Manager of the IBM 360
project; Michael Fagan who developed the Fagan inspection methodology; and
Harlan Mills who developed the Cleanroom methodology. Humphrey ran the
software quality and process group at IBM towards the end of his IBM career and
became very interested in software quality.

He retired from IBM in 1986 and joined the newly formed SEI at Carnegie
Mellon University. He made a commitment to change the software engineering
world by developing sound management principles for the software industry.
The SEI has largely fulfilled this commitment, and it has played an important role in
enhancing the capability of software organizations throughout the world.

The SEI had a contract from the Department of Defence (DOD) to provide
guidance to the military in the selection of capable software subcontractors. This
evolved into the book “Managing the Software Process” (Humphry 1989) which
describes technical and managerial topics essential for good software engineering.
The book was influenced by the ideas of Deming and Juran in statistical process
control.

Humphrey established the software process programme at the SEI, and this led
to the development of the software Capability Maturity Model (CMM) and its
successors. Humphrey asked questions such as:

– How good is the current software process?
– What must I do to improve it?
– Where do I start?

The CMM is a framework to help an organization to understand its current
process maturity and to prioritize improvements. The SEI introduced software
process assessment and software capability evaluation methods, and these include
CBA/IPI and CBA/SCE. The CMM and the associated assessment methods were
widely adopted by organizations around the world, and their successors are the
CMMI Model and the SCAMPI appraisal methodology.

Humphrey focused his later efforts to developing the Personal Software Process
(PSP) and the Team Software Process (TSP). These are approaches that teach
engineers the skills they need to make and track plans and to produce high-quality
software with zero defects. The PSP helps the individual engineer to collect relevant
data for statistical process control, whereas the TSP focuses on teams, and the goal
is to assist teams to understand and improve their current productivity and quality of
their work.

1.4 History of Quality 17

He received many awards for his contributions to the computing field. He was
named the first SEI fellow in 1995 in recognition of his outstanding contribution to
the software quality field. He received the 2003 National Medal in Technology and
Innovation from President George Bush, and he was named an ACM fellow in 2009
for his outstanding contributions to computing and information technology. He was
the author of twelve books in the software engineering field, and he died in 2010.

1.4.6 Miscellaneous Quality Gurus

There are several other pioneers in the quality field including Shingo who devel-
oped his own version of zero defects termed “Poka-yoke” (or defects = 0). This
involves identifying potential error sources in the process and monitoring these for
errors. Causal analysis is performed on any errors found, and the root causes are
eliminated. This approach leads to the elimination of all errors likely to occur, and
thus only exceptional errors should occur. These exceptional errors and their causes
are then eliminated. The failure mode and effects analysis (FMEA) methodology is
a variant of this. Potential failures to the system or subsystem are identified and
analysed, and the causes and effects and probability of failure documented.

Genichi Taguchi’s definition of quality is quite different. Quality is defined as
“the loss a product causes to society after being shipped, other than losses caused
by its intrinsic function”. Taguchi defines a loss function as a measure of the cost of
quality; L(x) = c(x − T)2 + k. Taguchi also developed a method for determining the
optimum value of process variables which will minimize the variation in a process
while keeping a process mean on target.

Kaoru Ishikawa did work on quality control circles (QCCs). A quality control
circle is a small group of employees who do similar work and meet regularly to
identify and analyse work-related problems. This involves brainstorming, recom-
mending, and implementing solutions. The problem-solving tools employed include
Pareto analysis, fishbone diagrams, histograms, scatter diagrams, and control
charts. A facilitator will train the quality circle team leaders, and the activities in a
quality circle include:

• Select problem
• State and restate problem
• Collect facts
• Brainstorm
• Build on each other’s ideas
• Choose course of action
• Presentation.

Armand Feigenbaum did work in total quality control which concerns quality
assurance applied to all functions in the organization. It is distinct from total quality

18 1 Fundamentals of Software Quality

management: total quality control is concerned with controlling quality throughout,
whereas TQM embodies a philosophy of quality management and improvement
involving all staff and functions throughout the organization.

1.5 Modern Software Quality Management

The development of high-quality software requires a good software development
process to be in place, and this includes best practices in software engineering for:

• Project management
• Estimation
• Risk management
• Requirements’ development and management
• Design and development
• Software development lifecycles
• Quality assurance/management
• Software inspections
• Software testing
• Supplier selection and management
• Configuration management
• Customer satisfaction process
• Continuous improvement.

The cost of correction of a defect increases the later that it is detected in the
lifecycle. Consequently, it is desirable to detect an error as early as possible and
preferably within the phase in which it was created. Software inspections play a key
role in detecting defects in-phase, and they are discussed in the next section.

1.5.1 Software Inspections

The Fagan inspection process was developed by Michael Fagan of IBM (Fagan
1976), and it aims to identify and remove errors in work products. The process
mandates that requirement documents, design documents, source code, and test
plans all be formally inspected by experts independent of the author of the
deliverable.

There are various roles defined in the process including the moderator who
chairs the inspection. The moderator ensures that all of the inspectors are trained
and receive the appropriate materials for the inspection. He/she ensures that suffi-
cient preparation is done, and that the speed of the inspection does not exceed the
recommended guidelines. The reader reads or paraphrases the particular deliver-
able; the author is the creator of the deliverable and has a special interest in
ensuring that it is correct. The tester role is concerned with the test viewpoint.

1.4 History of Quality 19

The inspection process will consider whether the design is correct with respect to
the requirements, and whether the source code is correct with respect to the design.
The errors identified are classified into various types, and the data is generally
recorded to enable analysis to be performed on the most common types of errors to
yield actions to minimize the re-occurrence of the most common defect types.
Software inspections are described in more detail in Chap. 4.

1.5.2 Software Testing

Software testing plays a key role in verifying that the software is fit for purpose, and
two key types of software testing are black box and white box testing. White box
testing involves checking that every path in a module has been tested and involves
defining and executing test cases to ensure code and branch coverage. The goal of
black box testing is to verify the functionality of a module or feature or the com-
plete system itself. Testing is both a constructive activity in that it is verifying the
correctness of functionality, and it may be a destructive activity in that the objective
is to find defects in the implemented software. Testing verifies that the requirements
are correctly implemented, and it yields the presence or absence of defects.

There are various types of testing including unit, system, performance, and
usability testing. The effectiveness of the testing is influenced by the maturity of the
test process employed. Testing is described in detail in the remainder of this book.

1.5.3 Software Quality Assurance

The software quality assurance department provides visibility into the quality of the
work products being built and the processes being used to create them. Its activities
include audits of the various groups involved in software development.

The quality group promotes quality in the organization and is independent of the
development group. It provides an independent assessment of the quality of the
product being built, and this viewpoint is independent of the project manager and
development viewpoint. The quality assurance group acts as the voice of the cus-
tomer and aims to ensure that quality is considered at each step in the process.

The quality group will perform audits of various projects, groups, and depart-
ments and will determine the extent to which the process is followed and report any
weaknesses in the processes and non-compliances identified. Any non-compliance
issues that are not addressed may be escalated to the next level of management for
resolution. Its key responsibilities are:

• Promotes quality in organization
• Conducts audits to verify compliance
• Reports audit results to management

20 1 Fundamentals of Software Quality

• Provides visibility to management on processes followed
• Facilitates software process improvement
• Release sign-offs.

The quality audit provides visibility into the work products and processes used to
develop the work products. The audit consists of an interview with the project team,
and the auditor examines the processes followed and deliverables produced by each
team member and assesses if there are any quality risks associated with the project
based on the information provided.

The auditor needs good written and verbal communication skills and will
consider the role that the participant is performing and relates this to the defined
process for their area. The auditor writes a report detailing the findings from the
audit and the recommended corrective actions with respect to any identified
non-compliance to the defined procedures. He/she will perform follow-up activity
at a later stage to verify that the corrective actions have been carried out. The audit
activities include planning activities, the audit meeting, gathering data, reporting the
findings and assigning actions, and following the actions through to closure.

1.5.4 Problem-Solving Techniques

There is a relationship between the quality of the process and the quality of the
products built from the process. Defects may be due to a defect in the process itself,
and so it is important to identify the causes of defects and to correct any systemic
defects in the process.

Problem-solving teams are formed to solve a particular problem and to identify
appropriate corrective actions. The team may be disbanded after successful reso-
lution of the problem, and they first agree on the problem to be solved. They collect
and analyse the facts and perform analysis to determine the appropriate solution.
They use various tools such as fishbone diagrams, histograms, trend charts, Pareto
diagrams, and bar charts to assist with problem-solving and to analyse and identify
appropriate corrective actions.

Fishbone Diagrams
This well-known cause-and-effect diagram is in the shape of the backbone of a fish.
The approach is to identify the possible causes of some particular quality effect.
These may include people, materials, methods, and timing. Each of the main causes
may then be broken down into subcauses. The root cause is then identified, as often
80% of problems are due to 20% of causes (the 80:20 rule).

Histograms
A histogram is a way of representing data via a frequency distribution in bar chart
format, and it is a graphical representation of the underlying distribution of the data.
It illustrates the shape, variation, and centring of the underlying distribution. The
data is divided into a number of buckets, where a bucket is a particular range of data

1.5 Modern Software Quality Management 21

values, and the relative frequency of each bucket is displayed in bar format. The
shape of the process and its spread from the mean is evident from the histogram.

Pareto Chart
The objective of a Pareto chart is to identify the key problems and to focus on these.
Problems are classified into various types or categories, and the frequency of each
category of problem is then determined. The chart is displayed in a descending
sequence of frequency, with the most significant category detailed first, and the least
significant category detailed last. The success in problem-solving activities over a
period of time may be judged from the trends in the Pareto chart, and if
problem-solving activities are successful, then the key problem categories in the old
chart should show a noticeable improvement in the new Pareto chart.

Trend Graph
A trend graph is a graph of a variable over time and is a study of observed data for
trends or patterns over time.

Scatter Graphs
The scatter diagram is used to measure the relationship between variables and to
determine whether there is a correlation between the variables. The results may be a
positive correlation, negative correlation, or no correlation between the data. The
scatter diagram provides a means to confirm a hypothesis that two variables are
related and provides a visual means to illustrate the potential relationship.

Failure Mode Effect Analysis
This involves identifying all of the possible failures of the system and the impact of
each failure. Each possible failure mode is documented, as well as the impact of
failure, the cause of failure, the frequency of occurrence, its severity, the estimate of
detection of the failure, the risk and corrective action to minimize the risk. FMEAs
are usually applied at the design stage.

Problem-solving techniques are discussed in more detail in Chap. 9.

1.5.5 Cost of Quality

Crosby argued that the most meaningful measurement of quality is the cost of
quality and that the emphasis of the improvement activities should be to reduce the
cost of poor quality (COPQ).

The cost of quality includes the cost of external and internal failure, the cost of
providing an infrastructure to prevent the occurrence of problems, and the cost of
the infrastructure to verify the correctness of the product. It was divided into four
subcategories (Table 1.9) by Feigenbaum in the 1950s and evolved further by
James Harrington of IBM.

22 1 Fundamentals of Software Quality

The cost of quality graph (Fig. 1.9) will initially show high external and internal
costs and very low prevention costs, and the total quality costs will be high.
However, as an effective quality system is put in place and becomes fully opera-
tional there will be a noticeable decrease in the external and internal cost of quality
and a gradual increase in the cost of prevention and appraisal. The total cost of
quality will substantially decrease, as the cost of provision of the quality system is
substantially below the savings gained from lower cost of internal and external
failure.

1.5.6 Software Process Improvement

Software process improvement initiatives support the organization in achieving its
key business goals such as delivering software faster to the market, improving
quality, reducing or eliminating waste. The objective is to work smarter and to build
software better, faster, and cheaper than competitors. It makes business sense and
provides a tangible return on investment.

Table 1.9 Cost of quality categories

Type of Cost Description

Cost external
failure

This includes the cost of external failure and includes engineering repair,
warranties, and a customer support function

Cost internal
failure

This includes the internal failure cost and includes the cost of reworking
and retesting of any defects found internally

Cost prevention This includes the cost of maintaining a quality system to prevent the
occurrence of problems and includes the cost of software quality assurance
and the cost of training

Cost appraisal This includes the cost of verifying the conformance of a product to the
requirements and includes the cost of provision of software inspections and
testing processes

Fig. 1.9 Cost of quality

1.5 Modern Software Quality Management 23

An improvement programme is a project in its own right and needs to be
managed as such. Model-based approaches to process improvement involve using
models such as the CMM, CMMI, ISO 9000, PSP or TSP. A software process
maturity model provides a set of best practices in software engineering, and an
assessment of the organization against the model will yield the current strengths and
weaknesses of the organization with respect to the model. The organization needs to
prioritize the improvements that will give the greatest business return.

The employees of the company are, in effect, the owners of the process
infrastructure within the organization, as they work with the processes and proce-
dures on a daily basis. They have an interest in having the best possible processes,
and a good improvement programme will empower employees to make suggestions
for continuous improvement. A reward and recognition mechanism helps to make
process improvement part of the organization culture.

Improvement tends to be most successful when performed in small steps rather
than trying to do too much initially. It is generally easier for an organization to
adjust to a series of small changes rather than one big major change. Changes
within an organization need to be carefully planned and controlled. Training for the
existing employees may be required to ensure that they fully understand the
rationale for the proposed changes and are in a position to implement the proposed
changes in the organization.

1.5.7 Software Metrics

The use of measurement is an integral part of science and engineering disciplines,
and software measures are increasingly used in software engineering. The term
“software metric” was coined by Tom Gilb in his influential book on software
measurement (Gilb 1977). The purpose of measurement in software engineering is
to provide an objective indication of the effectiveness of the organization in
achieving its key goals and objectives.

It is essential that the measurements are relevant and closely related to the
organization goal. One way to ensure this is to employ the goal, question, metric
(GQM) approach which mandates the organization to first identify its key goals;
then, it identifies the questions which need to be answered to assess the extent to
which the goal is being satisfied, and then, it formulates a metric to give an
objective answer to the particular question. This approach was formulated by Victor
Basili and others and is described in Basili and Rombach (1988).

Measurement may be used to verify that an organization has actually improved,
as quantitative data before and after the improvement initiative can be compared to
judge the extent of the improvements. The initial measurements prior to the
improvement programme serve as the baseline measurement of the current capa-
bility of the organization. A successful improvement programs will lead to
improvements, and this will be reflected in the metrics. The implementation of
metrics involves:

24 1 Fundamentals of Software Quality

• Business goals
• Questions related to goals
• Metrics
• Data gathering
• Presentation of charts
• Trends
• Action plans.

Metrics are discussed in more detail in Chap. 9.

1.5.8 Customer Satisfaction

The customer will ultimately judge the effectiveness of the quality management
system in delivering high-quality software, and the level of customer satisfaction
will influence the customer in purchasing again from the company or recom-
mending the company. Customer satisfaction surveys are used to determine the
level of customer satisfaction with the company.

A customer satisfaction survey involves the customer rating the organization in
several key areas such as the quality of the software, its reliability, the timeliness of
delivery, and so on. The process takes the form of a closed feedback loop, and the
customer satisfaction feedback will be analysed and acted upon appropriately.

The survey is conducted, and the feedback analysed and used to prepare the
action plan. The actions are executed, and the customer is surveyed again at later
date (Fig. 1.10). The follow-up activity may involve a telephone conversation with
the customer or a visit to the customer site to discuss the specific issues. The
objective is to ensure that customers are totally satisfied with the product and
service, as a loyal customer will repurchase and recommend the company to other
potential customers.

Fig. 1.10 Customer
satisfaction process

1.5 Modern Software Quality Management 25

The customer satisfaction process is summarized as follows:

• Define customer surveys
• Send customer surveys
• Customer satisfaction ratings
• Customer meeting and key issues
• Action plans and follow-up
• Metrics for customer satisfaction.

The questionnaire will vary according to the business, but it will cover the
relevant questions to determine where the organization is weak and areas where it is
strong. The questions typically employ a rating scheme to allow the customer to
give quantitative feedback on satisfaction, and the survey will also enable the
customer to go into more detail on issues.

A sample survey form with 10 questions is included in Table 1.10, and the form
will also include open-ended questions to enable the customer to go into more detail
on any issues. Customer satisfaction metrics provide visibility into the level of
customer satisfaction and enable trends to be determined (Fig. 1.11).

1.5.9 Assessments (Appraisals)

The objective of an assessment (or appraisal) of an organization is to determine its
maturity with respect to a maturity model such as the CMMI or SPICE or against an
international quality standard such as ISO 9000.

The appraisal is performed by an external or internal assessment team and yields
the strengths and weaknesses of the organization with respect to the model. The
appraisal report is used to plan and prioritize future improvements.

It is a major review of the organization, and it needs to be conducted by an
experienced assessment team. It involves interviews with the project managers and

Table 1.10 Sample customer satisfaction questionnaire

No Question Unacceptable Poor Fair Satisfied Excellent N/A

1. Quality of software □ □ □ □ □ □
2. Ability to meet agreed dates □ □ □ □ □ □
3. Timeliness of projects □ □ □ □ □ □
4. Effective testing of software □ □ □ □ □ □
5. Expertise of staff □ □ □ □ □ □
6. Value for money □ □ □ □ □ □
7. Quality of support □ □ □ □ □ □
8. Ease of installation □ □ □ □ □ □
9. Ease of use □ □ □ □ □ □
10. Timely problem resolution □ □ □ □ □ □

26 1 Fundamentals of Software Quality

project teams as well as the review of relevant documentation. The assessment
report will detail the extent to which the model is implemented, and any gaps and
improvement opportunities are highlighted in the report.

1.5.10 Total Quality Management

Total quality management (TQM) is a management philosophy that is focused on
quality and on developing a culture of quality in the organization. It is a holistic
approach, and it applies to all levels and functions within the organization. Quality
is a company-wide objective, and the goal is total customer satisfaction. The
company aims to deliver products and services that totally satisfy the customer
needs.

TQM uses many of the ideas of the pioneers in the quality movement. Man-
agement is required to take charge of the implementation of quality management,
and all staff will need to be trained in quality improvement activities.

The implementation of TQM involves a focus on all areas in the organization
and in identifying potential improvements. The problems in the particular area are
evaluated, and data is collected and analysed. An action plan is then prepared and
the actions implemented and monitored. This is then repeated for continuous
improvement. The implementation is summarized as follows:

• Identify improvement area
• Problem evaluation
• Data collection
• Data analysis
• Action plan
• Implementation of actions

Fig. 1.11 Customer satisfaction metrics

1.5 Modern Software Quality Management 27

• Monitor effectiveness
• Repeat.

There are four main parts of TQM which are summarized in Table 1.11.
The ISO 9000 standard [see Chap. 11 of O’Regan (2014)] is a structured

approach to the implementation of TQM. Its clauses are guidelines for what needs
to be done and include requirements to be satisfied for the organization to satisfy
ISO 9000.

1.6 Miscellaneous

Software quality management is, in many ways, the application of common sense to
software engineering. In this section, we discuss organization culture and change as
well as legal aspects of failure, and finally, we discuss quality and the Web.

1.6.1 Organization Culture and Change

Every organization has a distinct culture, and this reflects the way in which things
are done in the company. Organization culture includes the ethos of the organi-
zation, its core values, its history, its success stories, its people, amusing incidents,
and so on. The culture of the organization may be favourable or unfavourable to
developing high-quality software.

Occasionally, a change to the organization culture is required, and this may be
difficult as it could involve changing its fundamental ways of working, and there
may be a resistance to this. Successful change management often involves:

Table 1.11 Total quality management

Part Description

Customer focus This involves identifying internal and external customers and
recognizing that all customers have expectations and rights which need
to be satisfied first time and every time. Quality must be considered in
every aspect of the business, and the focus is on fire prevention

Process This involves a focus on the process and improvement to the process via
problem-solving to reduce waste and eliminate errors

Measurement and
analysis

This involves setting up a measurement programme to enable objective
and effective analysis of the quality of the process and product

Human factors This involves developing a culture of quality and customer satisfaction
throughout the organization. The core values of quality and customer
satisfaction need to be instilled in the organization. This requires
training for the employees on quality, customer satisfaction, and
continuous improvement

28 1 Fundamentals of Software Quality

• Kick-off meeting
• Motivate rationale for changes
• Present plan
• Training
• Implement changes
• Monitor implementation
• Institutionalize.

The culture of an organization is often illustrated by the phrase: “That’s the way
we do things around here”. For example, the evolution from one level of the CMM
to another often involves a change the way that things are done in the organization.
The focus on prevention requires a change in mindset to focus on problem-solving
and fire prevention, rather than on firefighting.

1.6.2 Law of Negligence

The impact of a flaw in software may be catastrophic, and several software failures
were discussed earlier in this chapter. Clearly, every organization must take all
reasonable precautions to prevent the occurrence of defects, especially in the
safety-critical domain where defects may cause major damage or even loss of life.
Reasonable precautions consist of having appropriate software engineering prac-
tices in place to allow the organization to consistently produce high-quality
software.

A quality management system indicates that the organization takes software
quality seriously and that has a sound software development process in place that
serves the needs of the organization and its customers. Modem quality assurance
systems include processes for software inspections, testing, quality audits, customer
satisfaction, software development, project planning, etc.

The organization will require evidence or records to prove that the quality
management system is in place that it is appropriate for the organization and that it
is fully operational within the organization. The proof that the quality system is
actually operational typically takes the form of records of the various activities. The
records also enable the organization to prepare a legal defence to show that it took
all reasonable precautions in software development, especially if a customer decides
to take legal action for negligence against the software provider following a serious
problem in the software at the customer site.

The presence of records may be used to indicate that all reasonable steps were
taken, and the records typically include lists of all the deliverables in the project;
minutes of project meetings; records of reviews of requirements, design, and
software code, records of test plans and test results; and so on.

1.6 Miscellaneous 29

1.6.3 Quality and the Web

The explosive growth of the World Wide Web and electronic commerce has made
the quality of websites a key concern. Web technology is rapidly becoming ubiq-
uitous in society and is quite distinct from other software systems in that:

• It may be accessed from anywhere in the world
• It may be accessed by many different browsers
• The usability and look and feel of the application is a key concern
• The performance of the website is a key concern
• Security is a key concern
• Thewebsitemust be capable of dealingwith a large number of transactions at any time
• The website has very strict availability constraints (typically 24 � 365)
• The website needs to be highly reliable.

It is inappropriate to employ the waterfall lifecycle for this domain, and usually a
spiral lifecycle will be employed as the requirements are often incomplete at project
initiation and evolve to the agreed set during the project. Often, rapid application
development (RAD), joint application development (JAD) or the Agile methodol-
ogy is employed.

1.7 Review Questions

1. Discuss the contributions of Deming and Juran.
2. Describe Crosby’s maturity grid and discuss how it influenced the

Capability Maturity Model?
3. Explain why Watts Humphrey is considered the father of software quality.
4. Explain the difference between software inspections and testing?
5. What is an assessment (appraisal) and explain how it forms part of the

improvement cycle.
6. Why is the cost of poor quality an important measure?
7. Discuss the role of software metrics in problem-solving.
8. Explain the importance of customer satisfaction and describe how it may

be measured.

1.8 Summary

This chapter gave a short introduction to the software quality field, and we dis-
cussed the contributions of several pioneers in the quality field including Shewhart,
Deming, Juran, and Crosby. We also discussed Watts Humphrey, who is considered
the father of software quality.

30 1 Fundamentals of Software Quality

We examined various definitions of quality such as Crosby’s “conformance to
the requirements” and Juran’s “fitness for purpose”, as well as considering the
various dimensions of software product quality listed in ISO 9126.

We considered several software failures such as the Ariane 5 disaster, the year
2000 problem, and a maths bug in the Intel Pentium microprocessor. A software
failure may have devastating consequences and so it is essential to develop
high-quality software.

We discussed software inspections that build quality into the software; software
testing that verifies that the software is of high quality as well as finding defects in
the software; software quality assurance to provide visibility into the processes;
problem-solving techniques to prevent problems from re-occurring; the cost of poor
quality to the organization; software process improvement to improve the key
processes in the organization; and customer satisfaction to determine the level of
customer satisfaction with the organization.

References

Basili V, Rombach H (1988) The TAME project. Towards improvement-oriented software
environments. IEEE Trans Softw Eng 14(6)

Brooks F (1975) The mythical man month. Addison Wesley, Boston
Brooks F (1986) No silver bullet. Essence and accidents of Software Engineering. Information

processing. Elsevier, Amsterdam
Crosby P (1979) Quality is free. The art of making quality certain. McGraw Hill, New York
Deming WE (1986) Out of crisis. M.I.T. Press, Cambridge
Fagan M (1976) Design and code inspections to reduce errors in software development. IBM

Syst J 15(3)
Gilb T (1977) Software metrics. Winthrop Publishers, Winthrop
Humphry W (1989) Managing the software process. Addison Wesley, Boston
ISO/IEC 9126 (1991) Information Technology. Software product evaluation: quality character-

istics and guidelines for their use
Juran J (1951) Juran’s quality handbook. McGraw Hill, New York
Lions JL (1996) Ariane 5. Flight 501. Failure report by enquiry board
Manley E (1995) Taurus: how I lived to tell the tale (American Programmer: Software failures)
O’Regan G (2014) Introduction to software quality. Springer, Berlin
Shewhart W (1931) The economic control of manufactured products. D. van Nostrand & Co. Inc.,

New York
Standish Group Research Note (1999) Estimating: art or science. Featuring Morotz cost expert

1.8 Summary 31

	1 Fundamentals of Software Quality
	1.1 Introduction
	1.2 History of Software Failures
	1.3 Background to Software Quality
	1.3.1 What Is Software Quality?
	1.3.2 Early Quality Management
	1.3.3 Total Quality Management
	1.3.4 Software Quality Control

	1.4 History of Quality
	1.4.1 Shewhart
	1.4.2 Deming
	1.4.3 Juran
	1.4.4 Crosby
	1.4.5 Watts Humphrey
	1.4.6 Miscellaneous Quality Gurus

	1.5 Modern Software Quality Management
	1.5.1 Software Inspections
	1.5.2 Software Testing
	1.5.3 Software Quality Assurance
	1.5.4 Problem-Solving Techniques
	1.5.5 Cost of Quality
	1.5.6 Software Process Improvement
	1.5.7 Software Metrics
	1.5.8 Customer Satisfaction
	1.5.9 Assessments (Appraisals)
	1.5.10 Total Quality Management

	1.6 Miscellaneous
	1.6.1 Organization Culture and Change
	1.6.2 Law of Negligence
	1.6.3 Quality and the Web

	1.7 Review Questions
	1.8 Summary
	References

