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1 Introduction

1.1 Overview of the Paper

The main purpose of this paper is to describe a program that solves elementary
mathematical problems, mostly but not exclusively in metric space theory, and that
presents the solutions in a form that is hard to distinguish from solutions that human
mathematiciansmight write. The following two proofs are examples of the program’s
output.1 The first is a proof that if f : X → Y is a continuous function and U is an
open subset of Y, then f −1(U ) is an open subset of X, and the second is a proof that
if f : X → Y is an injection and A and B are subsets of X, then f (A) ∩ f (B) ⊂
f (A ∩ B).

Let x be an element of f −1(U ). Then f (x) ∈ U . Therefore, since U is open, there exists
η > 0 such that u ∈ U whenever d( f (x), u) < η. We would like to find δ > 0 s.t. y ∈
f −1(U ) whenever d(x, y) < δ. But y ∈ f −1(U ) if and only if f (y) ∈ U . We know that
f (y) ∈ U whenever d( f (x), f (y)) < η. Since f is continuous, there exists θ > 0 such that
d( f (x), f (y)) < η whenever d(x, y) < θ . Therefore, setting δ = θ , we are done.

Let x be an element of f (A) ∩ f (B). Then x ∈ f (A) and x ∈ f (B). That is, there exists
y ∈ A such that f (y) = x and there exists z ∈ B such that f (z) = x . Since f is an injection,

1The program produces LaTeX output, which we reproduce verbatim here.
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f (y) = x and f (z) = x , we have that y = z. Wewould like to find u ∈ A ∩ B s.t. f (u) = x .
But u ∈ A ∩ B if and only if u ∈ A and u ∈ B. Therefore, setting u = y, we are done.

Themain challengewe have faced in creating this program, discussedmore exten-
sively below, is that it does not seem to be possible to reconstruct genuinely human-
like writeups from the proofs produced by automated provers from the machine-
oriented tradition. In order to be able to produce such writeups we have had to use
much more restricted proof methods than those available to modern provers. This
in turn makes it more challenging for the prover to solve any individual problem,
and indeed the program does not solve any problems that are beyond the reach of
existing fully automatic provers. We should also note that we see this prover as the
first stage of a long-term project to write a program that solves more complex prob-
lems in a ‘fully human’ way. We shall say a little about this wider project later in the
paper.

For the remainder of this section, we shall discuss the human-style output further.
We shall explain why we think it is a goal worth pursuing, and expand on the diffi-
culties just mentioned. In Sect. 2 we shall discuss related work. In Sect. 3 we outline
the main features of the prover. In Sect. 4 we describe the construction of the human-
style writeup. In Sect. 5 we provide more extensive technical details about how the
prover works, and in Sect. 6 we present a detailed example to illustrate how these
technical elements operate in practice. In Sect. 7, we describe an informal experiment
that we carried out in order to test whether the proofs produced by the program were
indeed similar to the proofs that a humanmight write, and in Sect. 8 we provide some
practical notes on running the program. Finally, in Sect. 9, we discuss possible future
work.

1.2 Why Bother with Human-Style Output?

These days there is a thriving subcommunity of mathematicians who use interac-
tive theorem provers such as Coq, HOL, Isabelle and Mizar. However, it is also
noticeable that the great majority of mathematicians do not use these systems and
seem unconcerned about the possibility that their arguments are incorrect, even
though there is plenty of evidence that incorrectness pervades the published liter-
ature.

There are several reasons for this, some of which are discussed by Bundy (2011).
One is that the mathematical community has simply learnt to deal with the current
state of affairs. Mistakes in the literature are less damaging than one might think,
because either they are in papers that nobody wishes to build on in future work,
or they are in papers that are important and tend therefore to be thoroughly scruti-
nized. Occasionally a paper by a reputable author makes an important claim that is
very hard to verify because the paper is extremely complicated or badly written. In
such situations, the paper will usually be treated with caution until some plausible
confirmation of its correctness has been provided.

Another reason is that learning to use an interactive theorem prover, though not
impossibly difficult, still requires an investment of time that most mathematicians
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are not prepared to make, when the reward is likely to be simply to tell them, after
substantial effort, that a result is correct that they are already confident is correct.
Of course, as just commented, sometimes mathematicians are not 100% confident
that a result is correct, and in such situations interactive theorem provers have an
extremely valuable part to play: among their recent triumphs are verification of the
four-colour theorem (Gonthier, 2019) and the Kepler conjecture (Hales et al., 2015).
Another remarkable achievement was the formalized proof of the odd order theorem
of Feit and Thompson (Gonthier et al., 2013): in that case the correctness of the
theorem was not in serious doubt, but the paper of Feit and Thompson was very
long and complicated and therefore difficult to check, so there is genuine value in
having a formalized proof. This will be especially true if, as the authors hope, it
leads to formalizations of other long and complicated proofs, of which there are an
ever-increasing number. However, these notable examples are the exception rather
than the rule, and the fact remains that most mathematicians do not feel that the
benefits of automatic theorem provers are worth the effort when it comes to ‘normal’
mathematics.

So what would be beneficial to ‘typical’ mathematicians? One possible answer is
to place far less emphasis on proofs as certifications of correctness and far more on
proofs as explanations. Many mathematicians say that their aim, when looking for
proofs, is to achieve understanding rather than to feel confident that a statement is
true. Indeed, there are several sociological facts that cannot otherwise be explained.
For example, why domathematicians try to find proofs of results when a combination
of experimental evidence and heuristic arguments establishes their truth beyond all
reasonable doubt? (Goldbach’s conjecture is a statement that falls into this category).
And why are new and different proofs of already known theorems sometimes highly
valued?Why do mathematicians have a clear sense that some proofs are ‘better’ than
others? It is clear that any answer to these questions, which have attracted consider-
able attention in the philosophical literature (see for example Mancosu (2008) and
the references therein), has to take into account far more than the mere correctness
of a proof.

Therefore, for an automatic theorem prover to be useful to mainstream mathe-
maticians, it will be highly desirable for it to produce ‘good’ proofs that ‘explain
what is going on’. Achieving this is of course a major challenge, but focusing on
how humans find proofs is a good way of trying to meet that challenge, since there
seems to be a close connection between the degree to which a proof is judged to be
‘explanatory’ and the ease with which one can see how somebody (a human, that
is) might have thought of it. So an automatic theorem prover that imitates the way
humans do mathematics is more likely to produce proofs that are appealing to human
mathematicians.

For a proof to appeal to human mathematicians, a minimum requirement is that it
should be written in a way that is similar to the way humans write. To design a system
that produces human-style output one has a choice. One possibility is for the system
to operate in a way that closely mirrors the way human mathematicians operate, in
which case it is fairly straightforward to convert each step of its reasoning process
into a piece of human-style prose, which will form the basis for the human-style



16 M. Ganesalingam and W. T. Gowers

output. The other possibility is for the system to operate in a quite different way
from humans, but then to do some highly nontrivial processing to convert its initial
logical output into a text that reads like what a human would write. The first of these
options looks much easier, but it forces one to pay close attention to many details
that would otherwise not matter. This gives rise to many interesting questions that
can be regarded as easier cases of some of the fundamental questions in automatic
theorem proving.

One such question is an obvious one that many people have asked: how do human
mathematicians manage to avoid a combinatorial explosion when they search for
solutions to complex problems?While we do not claim to have a satisfactory answer
to this, we take the view (which is by no means universally shared, so this is a
somewhat speculative claim) that a good way to look for the answer is to focus
on exactly the kinds of small technical difficulties that have arisen in our work. In
order to design a program that imitates human thought, we have had to place severe
restrictions on how it operates; our hope is that if we can get these restrictions right,
then we will have the beginnings of a program that can be scaled up to solve more
complex problems with only a very modest amount of searching.

1.3 Constraints and Challenges

As noted above, the main challenge we have faced is that we have not found it
to be possible to ‘bolt on’ genuinely human-like output to an existing automated
theorem prover. This seriously constrains the kind of methods that our prover can
use. For example, a simple example of a procedure that is used by many theorem
provers, especially those based on resolution, but that would be completely out of the
question for us is putting all goals into conjunctive normal form. Not only do human
mathematicians not do this, but the resulting search for a proof is quite unlike the
kind of search that human mathematicians undertake, to the point where converting
a successful search into a human-style write-up would be scarcely any easier than
obtaining the write-up had been before the program started. The difficulty faced here
is essentially the same difficulty found in decompilation of compiled code. In each
case the high-level description (a human-stylemathematical proof, a human-readable
program) can always be converted into a low-level equivalent (a logical derivation,
machine code). The translation is formally lossless, but at the same time some kind
of higher-level structure that is important to humans is ‘lost in translation’ so that
reversing the process, that is, converting machine code to a high-level program or a
logical derivation to a human-style proof, is extremely difficult.

A less obvious example is the use of modus ponens. One might expect this to
be fundamental to any theorem prover, but in fact pure modus ponens is almost
never used by human mathematicians. Although generations of mathematicians are
told that P =⇒ Q means the same as ¬P ∨ Q, this does not in fact reflect the
way mathematicians think or write (which causes genuine confusion to many first-
year undergraduates). The implications that mathematicians actually use are almost
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always quantified ones—that is, implications of the form ∀x (P(x) =⇒ Q(x))—
although the quantification may not be explicitly mentioned.

Suppose, for example, that a human mathematician wishes to show that 3996 ≡ 1
mod 997.A typical proof might read as follows: “Fermat’s little theorem states that if
p is a prime and a is not a multiple of p, then a p−1 ≡ 1mod p. Since 997 is prime, and
3 is not a multiple of 997, it follows that 3996 ≡ 1.” A theorem prover that performed
the deduction as follows would normally be regarded as acceptable:

1. ∀a, p ∈ N (p is prime ∧ p� |a =⇒ a p−1 ≡ 1 mod p).
2. 997 is prime.
3. 997� |3.
4. 997 is prime ∧ 997� |3 =⇒ 3997−1 ≡ 1 mod 997.
5. 3997−1 ≡ 1 mod 997.
6. 997 − 1 = 996.
7. 3996 ≡ 1 mod 997.

In the above chain of reasoning, statements 1–3 are given as initial assumptions, 4 is
obtained from 1 by universal instantiation, 5 is obtained from 2 to 4 by (unquantified)
modus ponens, and 7 is obtained from 5 and 6 by equality substitution.

If we were to convert this reasoning directly into prose, it might end up something
like this.

For every a, p ∈ N, if p is prime and a is not amultiple of p, then a p−1 ≡ 1mod p. Therefore,
if 997 is prime and 3 is not a multiple of 997, then 3997−1 ≡ 1 mod 997. But 997 is prime and
3 is not a multiple of 997. Therefore, 3997−1 ≡ 1 mod 997. But 997 − 1 = 996. Therefore,
3996 ≡ 1 mod 997.

This is noticeably different from what a human would write, because of the second
sentence, which corresponds to step 4. A human mathematician will deduce 5 from
1 to 3 using quantified modus ponens, so if we want to produce realistic human-style
write-ups, we either have to emulate this or suppress the universal instantiation step
when it comes to the write-up. But the latter option produces inappropriate proofs
in other cases: for example, if steps occur between the universal instantiation and
modus ponens, then the writeup can end up implicitly using a fact which has not
been mentioned for some time, which contravenes rules regarding the coherence of
discourse and so generates an unnatural writeup.

Another striking and important feature of human mathematical reasoning, which
is reflected in some but not all theorem provers, is that it tends to take place at as
high a level as possible, at least when it is done well. For example, an inexperienced
undergraduate, when asked to prove that the graph of the function f (x) = x2 is a
closed subset of R2, might well choose a point (x,y) in the complement of the graph
and laboriously find ε > 0 such that no point (z,w) within ε of (x,y) belonged to
the graph. A more experienced mathematician would give a high-level proof such as
this.

Let g(x, y) = x2 − y for each x, y ∈ R. Then g is a continuous function and the graph of f
is the inverse image g−1({0}). Since the singleton {0} is closed, so is g−1({0}).
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This short argument illustrates several of the kinds of phenomena that concern us.
The main one we wish to highlight is that it does not make any use of the definition of
‘is closed’ beyond the fact that in order to apply a general result about inverse images
of closed sets one needs a match for the hypothesis ‘A is closed’. In particular, at
no point does the argument perform a definition expansion of the statement ‘{0} is
closed’.

Another feature of the argument is that although it is logically necessary to justify
the statement that g is continuous, it will be acceptable to many mathematicians not
to do so, since the continuity of g is ‘more basic’ than the statement being proved
(Similarly, if one were writing out a proof of this easier result, one would normally
rely on yet more basic statements such as the continuity of f (x) = x2 and of the
coordinate projections from R

2 to R). A similar remark applies to the statement that
the graph of f is equal to g−1({0}) and the statement that {0} is closed.

A different phenomenon is illustrated by the last sentence: it uses the result that
the inverse image of a closed set under a continuous function is closed without
explicitly mentioning it. It really does feel to a mathematician as though if a function
g is continuous and a subset A of its range is closed, then those two facts together
imply that g−1(A) is closed. This implication is ‘mathematical’ rather than ‘purely
logical’. Of course, one can analyse it logically by explicitly stating the theoretical
result being used and applying quantified modus ponens, but that is a temptation one
needs to resist if the program is to produce human-style write-ups without an undue
amount of processing.

There are several phenomena like these, and our main challenge has been to
identify and take account of them when writing our program. A subsidiary challenge
has been ordering the different tactics that humans use in order of attractiveness; if
this is not done correctly then the prover will still find proofs but those proofs will
read as ‘odd’, because they follow a line that seems strange to a human.

There is one further constraint that needs some justification, which is that our
program does not have any ability to backtrack: if it tries out a sequence of steps
and gets stuck, then it simply stops. This might seem to be a flaw with the program,
since human mathematicians definitely do backtrack. However, we took the decision
to concentrate on routine problems, which we define informally as precisely those
for which humans do not consciously backtrack, since it seems important to have a
program that performs well on routine problems before one tackles the formidable
question of just how humans limit their searches when the problems become more
difficult. Fortunately, there are many proofs that an experienced mathematician will
remember as ‘Just do the obvious thing at each stage and it all works out.’ Our initial
aim (which we are still a long way from achieving) was to write a program that
would solve all routine problems in the way that humans would solve them, which
in particular means without backtracking.
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2 Related Work

2.1 Systems with Natural-Language Output

Several systems have been developed that use natural language to a greater or lesser
extent. An early example with some similarity to ours is that of Felty and Miller
(1987). They start with a proof tree and convert it into a more readable form. Their
system can also make significant changes to how a proof is presented. The following
is an example of output from their system: it is a proof that there are infinitely many
primes. The function f mentioned in the proof can be taken to be the function defined
by the formula f (n) = n! + 1: then the beginning of the proof is asserting some
properties of this function that are subsequently used in the proof (so any other
function with those properties would do just as well).

Assume∀x( f (x) > x) ∧ ∀x∀y(div(x, f (y)) ⊃ (x > y)) ∧ ∀x(¬prime(x) ⊃ ∃y(prime(y) ∧
div(y, x)). We have two cases. Case 1: Assume ¬prime( f (a)). By modus ponens, we
have ∃y(prime(y) ∧ div(y, f (a))). Choose b such that prime(b) ∧ div(b, f (a)). By modus
ponens, we have (b > a). Hence, (b > a) ∧ prime(b). Thus, ∃x((x > a) ∧ prime(x)).
Case 2: Assume prime( f (a)). Hence, ( f (a) > a) ∧ prime( f (a)). Thus, ∃x((x > a) ∧
prime(x)). Thus, in either case, we have ∃x((x > a) ∧ prime(x)). Since a was arbitrary,
we have ∀n(∃x((x > n) ∧ prime(x))).

They describe their mechanism for converting the original tree-structured deduc-
tions into readable natural-language text as very simple. It is clear that with some
small changes they could have improved the readability. For example, they could
have replaced prime(x) by ‘x is prime’, div(x, y) by x|y and the symbols for con-
nectives by English words. However, the result would still have had some slightly
odd characteristics—for instance, no human mathematician would bother to write
‘by modus ponens’—that would have betrayed its mechanical origins.

Another program that produced readable text was written by
Holland-Minkley, Barzilay, and Constable (1999). Their aim was to create natural-
language output from the Nuprl system. This is an interactive system based on tactics
that is designed to mimic human reasoning. The output from the Nuprl system is not
at all easy for the untrained mathematician to read. However, they could convert it
into language that was considerably closer to what a human mathematician might
write, as the following sample demonstrates (We have slightly modified what they
wrote, replacing pairs of minus signs by the cutoff subtraction symbol −̇, which
seems to be what was intended).

Theorem: For integers a and b and natural number c, (a −̇ b) −̇ c = a −̇ (b + c).
Consider that a and b are integers and c is a natural number. Now, the original expres-
sion can be transformed to imax(imax(a − b; 0) − c; 0) = imax(a − (b + c); 0). From the
add com lemma, we conclude imax(−c + imax(a + −b; 0); 0) = imax(a + −b + −c; 0).
From the imax assoc lemma, the goal becomes imax(imax((a + −b) + −c; 0 + −c); 0) =
imax(a + −b + −c; 0). There are 2 possible cases. The case 0 + −c ≤ 0 is trivial. Consider
0 < 0 + −c. Now, the original expression can be transformed to imax((a + −b) + −c; 0 +
−c) = imax(a + −b + −c; 0). Equivalently, the original expression can be rewritten as
imax((a + −b) + −c) = imax(a + −b + −c; 0). This proves the theorem.



20 M. Ganesalingam and W. T. Gowers

In places this looks like the kind of continuous prose that a mathematician would
write, though as with Felty and Miller’s system there are a number of telltale signs
of the mechanical origins of the text. For instance, the first sentence is not quite
grammatical: a human would write, ‘Let a and b be integers and let c be a natural
number.’ There is also the trivial point that mathematicians would write ‘max’ rather
than ‘imax’ (trivial because it would be very easy to change this). There is also
a repetitive quality to the prose that gives it an automatically generated feel: for
instance, two sentences open with ‘Now, the original expression can be transformed
to’.

There are further differences that highlight a point that will be important to us
later. For example, when proving that A = B via a string of intermediate inequalities,
mathematicians will normally express the proof in the form A = A1 = · · · = Ak =
B. From the write-up above, it is clear that Nuprl prefers to deal with equivalences
between statements: a typical step might be to reduce the original goal A = B to the
goal A = Ak , for instance.

Another difference is that the proof makes use of terms that a human would
consider too ugly and unnatural to write. For example, no human mathematician
would ever write “The case 0 + −c ≤ 0,” instead writing the condition in the more
obvious way as “c > 0”.

It is perhaps helpful to distinguish between two kinds of unnaturalness of a pro-
gram’s output: roughly speaking, unnaturalness in how the program expresses its
thoughts, and unnaturalness of the thoughts themselves. Writing ‘imax’ and a + −b
are examples of the former, while avoiding equational reasoning and considering
expressions with strange terms in them are examples of the latter.

A further example of the latter, which we touched on in the previous section,
is use of tiny lemmas. Presumably ‘the imax assoc lemma’ is the statement that
the binary operation of taking the maximum of two numbers is associative. This
statement belongs to a troublesome class of statements that human mathematicians
will normally never state explicitly, even when they first meet the basic definitions.
The precise reason for this is unclear, but it appears to be something like that we
visualize the maximum of a finite set of numbers as its rightmost element on the
number line and can immediately see that that rightmost element will win a knockout
competition however the competition is organized.

Another example of a statement in this class is the general principle that if a binary
operation ◦ is associative, then the expression x1 ◦ · · · ◦ xk is unambiguous (More
precisely, however you bracket it, you will get the same result). The associativity
assumption itself is just the case k = 3, andyet generations ofmathematicians happily
use the more general principle that brackets are unnecessary without ever stopping
to prove it.

A third system that has aims that are in certain respects similar to ours is the
Theorema system of Buchberger et al. (2006). However, we ask significantly more
of our output than the developers of Theorema: for them it is sufficient that the output
should be comprehensible to mathematicians, whereas we ask that it should be hard
to distinguish from what a human might write. For example, this is the statement of
a lemma in the Theorema language (quoted in the paper referred to).
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Lemma (“coprime”, any[a,b] with[nat[a]∧nat[b]], 2b2 = a2 =⇒ ¬coprime
[a,b]) A human rendition of this lemma would read more like this.

Lemma Let a and b be natural numbers satisfying the equation 2b2 = a2. Then a
and b are not coprime.

In otherwords, it would bewritten in continuous prose, albeit prose of a characteristic
‘semi-formal’ kind, which makes it significantly easier to read.2

This leads us to an important general point about all three of the systems discussed.
The output from these systems is comprehensible tomathematicians, in the sense that
they can decipher it. But it is hard work, enough so to prevent most mathematicians
from using these systems (It seems likely that one becomes used to reading proofs
like the ones above with exposure. But we suspect that this same factor leads those
who use theorem provers regularly to underestimate the uphill struggle a typical
mathematician faces when reading the proofs like the ones above).

Part of the difficulty in reading these proofs is due to an overreliance on symbols;
in proofs written by humans, symbolic material plays a very specific and limited
role (Ganesalingam, 2013), which does not include many of the uses in the example
above. But a larger part relates to higher-level structure: none of the proofs presented
above flow like real mathematical proofs. Mathematical proofs are like natural lan-
guage texts—such as the document you are reading—in that sentences link together
to form coherent discourses. From amathematician’s perspective, this is what allows
a proof to read as presenting a coherent argument rather than merely a sequence of
facts. The principles behind discourse structure have been extensively studied by
linguists (see e.g. Asher and Lascarides (2003)). We do not know of a way of tacking
on this kind of structure, which is key to readability, to the proofs presented in this
section; in order to produce it we have had to design our prover to support it from the
ground up. In particular, the prover operates in a way that models a human closely
enough to let it suppress irrelevant information and produce much larger blocks of
discourse-coherent text than in the proofs given above.

2.2 Other Related Work

The constraints involved in producing human-like writeups mean that our prover
functions in a very similar way to some older human-oriented provers produced by
WoodyBledsoe and his students (Bledsoe, 1971, 1977a, 1977b, 1983, 1995; Bledsoe,
Boyer, & Henneman, 1972; Ballantyne & Bledsoe, 1977; Bledsoe & Hodges, 1988).
His Non-resolution theorem proving (Bledsoe, 1977a) outlines the main concepts
involved in human-oriented theorem proving; a number of these are very relevant to

2At a deeper level there are further differences. For example the Theorema system will perform a
certain amount of backtracking even on routine problems such as that of showing that a limit of
the sum of two sequences is the sum of the limits. Thus, while there are many points in common
between our aims and those of the Theorema project, there are also important differences.
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the work we describe below, including the use of rewrite rules, forward chaining,
(a kind of) typing, a reluctance to expand definitions unless necessary, and the use
of ‘natural systems’. Further, as we shall describe below, our system shares the
‘waterfall architecture’ used in the provers created by Bledsoe’s students Boyer and
Moore (1979).

Although human-oriented proving has largely fallen out of fashion, there have
been some more recent systems that mimic natural proof styles. The most notable of
these is Weierstrass (Beeson, 1998), which is capable of generating ε-δ proofs. One
distinctive feature of this system is as follows:

The intention [ofWeierstrass] is, to produce a proof that can be read and checked for correct-
ness by a human mathematician; the standard to be met is “peer review”, just as for journal
publication. By contrast, the purpose of Weierstrass is not to produce formal proofs in a
specified formal system.

As we shall discuss more extensively in Sect. 3, the prover we are describing here
has exactly the same goals as Weierstrass: it aims to produce proofs for human
consumption, not proofs that are formally certified correct.

The article just cited does not provide any actual ε-δ proofs, noting simply that “the
strict length limit does not permit the inclusion of the actual output of Weierstrass”.
Similarly an article on the irrationality of e (Beeson, 2001) does not contain any
actual output. We have also been unable to obtain the program and are therefore not
able to comment on how human-like the output of Weierstrass actually is.

Another recent human-oriented system is Analytica (Clarke & Zhao, 1992), a
theorem prover built inside Mathematica. The output of this system contains some
words, but it is much less human-like than even the systems described in the previous
section; essentially it prints out a long sequence of equations connected by phrases
such as ‘reduces to’ and ‘rewrites as’. The result is not written in sentences, let alone
being grammatical, so we do not classify Analytica with the systems described in the
previous section (This is not a criticism of Analytica, as its authors make no claim
to produce human-readable output).

We should emphasize that theworkwedescribe is notmeant to be competitivewith
any of the provers described here when considered as a prover; as noted above, the
additional constraints involved in generating human-readable writeup are important
to our project, but they also rule out many sound and effective tactics. Thus, our
system is operating at a disadvantage, though it is our hope that ultimately the extra
workwe have to do nowwill help us see how to design systems that aremore powerful
than existing systems at solving the kinds of problems that human mathematicians
are good at.

There is also an extensive literature on systems that accept natural language-like
input, including MIZAR (Trybulec, 1978), NaProChe (Kuhlwein, Cramer, Koepke,
& Schröder, 2009), ForTheL (Vershinin & Paskevich, 2000) and MathNat (Humay-
oun & Raffalli, 2010); we will not discuss these further here because the acceptance
of human-like input and generation of human-like output are, from a linguistic per-
spective, almost unrelated problems. Additionally most systems of this kind focus
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on checking that proofs are correct, which is (as discussed above) not a concern for
most human mathematicians. Thus, they serve a different purpose from that of the
work we are describing here.

3 Key Features of the Prover

The basic architecture of our prover is, as we have mentioned, very similar to the
‘waterfall’ architecture used in the Boyer-Moore provers. The program contains a
number of heuristics that transform the goal in a sound manner. These heuristics
are ranked by attractiveness. The program operates fully automatically by repeat-
edly applying the most attractive heuristic that has an effect. The underlying logic is
essentially first-order logic with equality, though there are some caveats to be made
here (in particular involving structural sharing of formulae and the use of metavari-
ables) which we will outline as we go through the paper.

Notwithstanding the overall waterfall architecture, the details of the operation of
the program are actually better described with reference to the goal-oriented tactic-
based style of proof used in some interactive LCF-style theorem provers (Paulson,
1987). The correspondence may be drawn simply by regarding each heuristic as a
tactic; the program can then be thought of as repeatedly applying a single tactic,
which is itself constructed by taking a list of subsidiary tactics and applying the first
that can be applied. In the remainder of the paper we will refer to tactics rather than
heuristics, not least because we do not expect the waterfall architecture to be the last
word on selecting tactics for a system of this kind.

We should stress that there is a key respect in which our system is not LCF-like.
Like the Weierstrass system described in Sect. 2, it is not attempting to certify proofs
correct in the way that LCF provers do; there is no small ‘safe’ kernel. Although
we have every respect for the goal of certification, our concern in this paper is the
generation of human-like proofs.

While it would certainly be possible to produce a program that generated human-
like proofs and certified them correct, this is not an easy exercise for a number of
reasons. One of these relates to the different number systems in use in mathematics:
most work in theorem proving treats, say, the natural number 3 as being distinct from
the rational number 3/1, whereas human mathematicians consistently treat them as
the same object. One way of seeing this is to consider a standard definition like

nCr = n!
r !(n − r)!

in which the definiendum is a natural number but the definiens is a rational number.
Handling the number systems in a human-like fashion in a theorem prover is far
from straightforward because under standard accounts, the natural numbers are used
to define the integers and thence the rational numbers. A full treatment requires an
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analysis of the operation of identification, which in turns requires modifications to
the underlying logic (Ganesalingam, 2013).

In the remainder of this section, we highlight some other significant respects in
which our approach differs from more typical approaches.

3.1 Targets, and the Structural Sharing of Goals

Rather than having a list or stack of goals, we have a single goal, which may be
regarded as a structurally shared version of the collection of goals found in a prover
such as HOL. This structural sharing is necessary both for efficiency and in order to
model human reasoning processes closely enough to produce human-like write-ups.
A human reasoner will generally keep track of a list of background ‘assumptions’
which are known to be true (and likely to be helpful) and a separate list of statements
that need to be proved. Under many circumstances the human will reason forwards
from the assumptions without knowing in advance which of the statements to be
proved will be deduced. If each goal were represented independently, this kind of
forwards reasoning would have to be performed more than once. Thus, in our sys-
tem the goal consists of a list of assumptions and a list of statements to be deduced
from those assumptions, which we refer to as targets. If we represent the goal as a
sequent A1, . . . , Am � B, where B is of the form B1 ∧ · · · ∧ Bk , then the targets are
the statements Bi .

We should emphasise that our targets are not the same as the consequents
C1, . . . , Ck of a sequent A1, . . . , Am � C1, . . . , Ck ; consequents are interpreted dis-
junctively, whereas targets are to be interpreted conjunctively. Thus our sequents
always have a single consequent, and the conjuncts of that consequent are the tar-
gets. This is a good illustration of our priorities. Consequents may be more attractive
from a logical point of view for symmetry reasons, but the convention we adopt,
where we list the assumptions and targets, is in our judgment closer to how humans
would think of ‘the current state of play’ when they are in the middle of solving a
problem, and that is more important to us than logical neatness.

3.2 The Library

Like many other systems, the program also has a library of statements that it may
assume. However, the role that our library plays is very different. With an interactive
program whose main aim is proof verification, the library will typically be a huge
database of statements that have already been fully checked and can therefore be
used safely.

By contrast, for us the library is provided by the user and represents a body of
results and definitions that a humanmathematicianwould know and feel free either to
quote or to use silently when trying to solve the problem at hand. Thus, the question
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of whether or not a statement is appropriate for our library is one that has to be
considered carefully, and the answer varies from problem to problem. For example,
if the system is asked to prove the associativity of set intersection, then we do not
want it to say, ‘This result is already in the library, so we are done.’ But for a more
advanced problem, we want the associativity of set intersection to be available to the
program (or perhaps even built in to its reasoning processes) rather than requiring the
program to formulate and prove it as a lemma. As ever, this is because we are trying
to imitate human mathematical thought and so generate human-like output: one of
the things an undergraduate mathematician has to learn is what it is appropriate to
assume when proving a result.

Thus, to use the program, it is not usually enough simply to input the goal and hope
that the program will manage to prove it. Typically, the user has to add appropriate
background results to the library first.

The library that we have used with the problems we have worked on is small, so
we have not had to face the potential problem of the program using a result that is
‘more advanced’ than what it is supposed to be proving. However, when this problem
does arise, as it inevitably will, we plan to order our library results using a relation
‘is more advanced than’, so that for each problem we can simply instruct the library
not to use results beyond a certain point in the ordering.

We have also adopted a policy of being sparing about what we allow in the library.
Human mathematicians do not store all the true mathematical statements that they
come across in their brains. Rather, they seek out statements or techniques that have
a kind of general quality. Exactly what this quality is, we do not claim to understand.
It may be that for a more sophisticated program one should not expect to be able
to judge the appropriateness of a statement in advance, but should store promising
statements and then gradually forget about them if they turn out not to be especially
useful.

Two examples of results that we have in the library we currently use are the state-
ment that a closed subset of a metric space contains its limit points, and transitivity
of <. Actually, it is convenient to store four separate transitivity statements such as

a < b

b ≤ c

a < c

one for each way of choosing< and≤. This saves the program from rederiving these
variants from the transitivity of <. Once again, this is because we are modelling
human thought: a typical human mathematician will internalize all four transitivity
statements and use them without thinking. It would look very strange in a write-up
if the program stopped to prove the above transitivity statement as a lemma.

A statement such as the triangle inequality would be most usefully stored in the
library in the following form.
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d(x, y) < α

d(y, z) < β

α + β ≤ γ

d(x, z) < γ

In this form it is appropriate for most simple deductions, and reflects quite well how
humanmathematicians use the inequality. However, we do not yet have a satisfactory
understanding of the process whereby human mathematicians are told the triangle
inequality in the usual form

d(x, z) ≤ d(x, y) + d(y, z)

and then quickly use it to have thoughts such as, ‘I need d(x, z) to be less than γ , so it
will be enough to ensure that d(x, y) < γ/2 and d(y, z) < γ/2.’ That is not to say
that we cannot think of a mechanical method that would manage to make a deduction
like this: the difficulty comes when we try to understand (in order to imitate) how
humans do it.

At the moment, the library contains four kinds of data:

1. Results, i.e. facts that the program can utilise while constructing a proof.
2. Definitional expansions.
3. Term rewrite rules.
4. Constructions.

Results and (definitional) expansions are the key to reasoning at a high level,which
is in turn one of the keys to producing human-like proofs. Term rewrite rules and
instructions play a much smaller role in the program. The former are used to change
e.g. ( f ◦ g)(x) into f (g(x)), which is an instinctive and automatic step for any
human mathematician. Constructions generally ‘finish off’ a problem by supplying
an object with certain properties that are being looked for. For example, suppose the
program needs to find x s.t. x � a and x � b; the library can be used to construct
min{a, b}, which has the necessary properties.

3.3 Removal of Assumptions

Another unusual aspect of our approach involves paying close attention to the removal
or deletion of assumptions.We include tactics for removing assumptions not because
they have a significant effect on the output of the program, but because of our com-
mitment tomodelling how humanmathematicians think. The particular phenomenon
we are trying to model is that when humans work out proofs, they often find it obvi-
ous that a statement has been ‘used up’ and will have no further role to play in
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the proof. We have modelled this by incorporating tactics that, under appropriate
circumstances, remove assumptions from the list of all assumptions.

One reason we are interested in the removal of assumptions is that it forces us to
think about a relatively simple special case of a hard and important general problem
in theorem proving, namely the problem of deciding which statements are likely
to be relevant to the solution of a given problem. It is possible to write programs
that search through very large numbers of statements until they find something that
magically works, but humans do not do this. So we feel that any efforts we make to
understand this aspect of how humans do mathematics will pay dividends when we
try to scale up to systems that will find more complex proofs. Another advantage of
including tactics that remove assumptions is that it makes it considerably easier to
debug cases where the program is stuck, by removing a lot of the ‘noise’ that makes
it hard to understand intermediate goals.

4 Writing Up

In general, natural language generation is a complex process. It involves multiple
levels of planning,which drawon both domain knowledge andmodels of the intended
audience, and also a phasewhen the actual text is generated,which drawson syntactic,
morphological and lexical information. An overview of the process may be found in
Reiter and Dale (2000). Because of this complexity, building a fully fledged natural
language generation system is amajor task. Furthermore, sincemathematics contains
not just English words but also a large array of distinctive symbols used in distinctive
ways, it is not at all straightforward to use off-the-shelf systems.

Fortunately,mathematical language has properties thatmake the task considerably
simpler than it is for the English language in general. Foremost among these is the
fact that mathematical proofs almost always have a particularly simple rhetorical
structure. To some degree this is because the domain of discourse includes only
timeless facts,which itself rules out a large proportion of the rhetorical relations found
in general text. But the main reason is that there is a strong convention that further
constrains the rhetorical structure of proofs. A proof proceeds by the presentation of
a sequence of assertions, each of which follows from the premises of the theorem
being proved or from previous assertions. This structure is not accidental; it is a direct
reflection of the fact that mathematicians process proofs by reading and verifying
one sentence at a time, and would not expect the justification of a fact presented in
one sentence to be deferred to a later sentence (We are talking here about proofs of
the level of simplicity of the proofs discussed in this paper. For more complicated
arguments, facts may sometimes be used before they have been proved, but in good
mathematical writing this will be carefully flagged up to make it as easy as possible
for the reader to check that the resulting argument is complete and not circular).

This convention gives us an easy way to produce write-ups of our proofs. An
obvious strategy is to allow each application of a tactic to generate some number
of sentences (possibly zero), and then to concatenate the output from the different
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tactics to produce the final text. Note that this strategy is viable only because we are
absolutely rigorous about requiring our tactics to reflect steps in human reasoning; in
effect, the strategy ismimicking a humanwho is carefully writing down a proof while
coming up with it, which is quite straightforward for an experienced mathematician
(Again, this becomes less true if the proofs are more difficult). As we shall see below,
this simple strategy produces surprisingly good results, though with a weakness that
needs to be dealt with by a postprocessing phase that turns out to be straightforward.

Because we have a fixed list of tactics, implementing the strategy only requires
us to specify which sentences (if any) are produced for the applications of each
tactic. A very simple way to do this is to use template generation: each tactic is
associated with a template, or ‘piece of text with holes’, and the holes are filled in
with concrete information about the facts and objects used in the actual application.
So, for example, forwards reasoning may be associated with a very simple template
‘since <facts>, <deduced f act>’. Instantiating this template would produce text
like

Since A is open and x ∈ A, there exists η > 0 such that u ∈ A whenever d(x, u) < η.

Note that individual facts are expressed in idiomatic ways, rather being displayed in a
way that directly reflects the underlying predicate calculus; thus we have ‘A is open’
and ‘η > 0’ rather than ‘open(A)’ and ‘greater_than(η, 0)’. The same is true of
objects: we display ‘ f ◦ g’ rather than compose(f,g), and so on. Similarly quantifica-
tion is expressed idiomatically using words like ‘whenever’, where possible, rather
than using more stilted phrases like ‘for all’, which would more directly reflect the
underlying predicate calculus.

An example of the text produced by this method is as follows:

Let x be an element of A ∩ B. Since x ∈ A ∩ B, x ∈ A and x ∈ B. Since A is open and
x ∈ A, there exists η > 0 such that u ∈ A whenever d(x, u) < η. Since B is open and x ∈ B,
there exists θ > 0 such that v ∈ B whenever d(x, v) < θ . We would like to find δ > 0 s.t.
y ∈ A ∩ B whenever d(x, y) < δ. But y ∈ A ∩ B if and only if y ∈ A and y ∈ B. We know
that y ∈ A whenever d(x, y) < η. We know that y ∈ B whenever d(x, y) < θ . Assume now
that d(x, y) < δ. Since d(x, y) < δ, d(x, y) < η if δ ≤ η. Since d(x, y) < δ, d(x, y) < θ

if δ ≤ θ . We may therefore take δ = min{η, θ}. We are done.

The main problem with this text is that it suffers a lack of coherence, in the sense
defined in Knott (1996): the sentences are individually acceptable, but they do not
combine to form an idiomatic discourse. The principal reason for this is that the text
repeats information unnecessarily. For example, in

Since x ∈ A ∩ B, x ∈ A and x ∈ B. Since A is open and x ∈ A, there exists η > 0 such that
u ∈ A whenever d(x, u) < η.

the repetition of the underlined phrase is awkward. Because it is introduced by the
sentence immediately preceding the ‘since’ clause, it is awkward to have it spelt out
explicitly within that clause. Similarly, consider:

Since d(x, y) < δ, d(x, y) < η if δ ≤ η. Since d(x, y) < δ, d(x, y) < θ if δ ≤ θ .
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Here, having two identical ‘since’ clauses in consecutive sentences is again awkward:
the repetition of material is unwieldy and unidiomatic.

We are of the opinion that (Knott, 1996) correctly diagnoses the underlying prob-
lem here: spelling out rhetorical relations, or aspects of rhetorical relations, that can
easily be inferred from the context violates Grice’s maxim of quantity (Grice, 1975).
Often the solution is to substitute an appropriate and less explicit cue phrase. For
example, ‘since A is open and x ∈ A, ...’ is better replaced by ‘therefore, since A
is open, ...’. The cue phrase ‘therefore’ (which assumes that the relevant reason has
just been given) is less explicit than the cue phrase ‘since’ (which subordinates an
explicitly stated reason), so it avoids spelling out information that is clear from the
context. In other cases repetition can be avoided by combining sentences; thus the
previous example may be changed into

Since d(x, y) < δ, d(x, y) < η if δ ≤ η and d(x, y) < θ if δ ≤ θ .

The initial ‘sentence by sentence’ process described above is followed by a series
of transformations that manipulate pairs of consecutive sentences in order to resolve
the issues just mentioned (Needless to say, the transformations operate on a structural
level rather than on the literal text). Applying this series of transformations to the
example text above yields:

Let x be an element of A ∩ B. Then x ∈ A and x ∈ B. Therefore, since A is open, there exists
η > 0 such that u ∈ A whenever d(x, u) < η and since B is open, there exists θ > 0 such
that v ∈ B whenever d(x, v) < θ . We would like to find δ > 0 s. t. y ∈ A ∩ B whenever
d(x, y) < δ. But y ∈ A ∩ B if and only if y ∈ A and y ∈ B. We know that y ∈ A whenever
d(x, y) < η and that y ∈ B whenever d(x, y) < θ . Assume now that d(x, y) < δ. Then
d(x, y) < η if δ ≤ η and d(x, y) < θ if δ ≤ θ . We may therefore take δ = min{η, θ} and
we are done.

One particular point worth emphasising is that the write-up process is determin-
istic: it will always produce the same output text for any given proof. This is for
two reasons. First, if any non-determinism had been present we would have had
to evaluate many outputs for any given proof, which would have made iterative
improvement and fine-tuning of the write-ups considerably slower. Secondly, and
more importantly, if the process were nondeterministic, our claim that the program
produced human-like output would be suspect, in that we would have been able to
run the program several times and ‘cherry pick’ output. Unfortunately, this determin-
ism has an undesirable (but fully anticipated) side-effect. When one compare several
proofs produced by the program, the write-ups are much more similar than those a
human would produce. For example, most proofs produced by the program end with
the phrase ‘we are done’. In the long run, we will undoubtedly need to introduce
nondeterministic stylistic variation, allowing the program to vary the text generated
for a particular step in just the way human would, despite the difficulties that will
cause.

Finally, it is worth noting that during the evaluation process described in Sect. 7,
we collated a wealth of data on how humans write up proofs. We anticipate using this
data in combination with carefully chosen natural language processing techniques
to create substantially improved versions of the write-up procedure.
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5 Technical Details

5.1 Formalism

The formulae used in the program are essentially formulae of first-order logic, aug-
mented with metavariables. More formally, we have:

1. A collection of functions, each with a distinct name and an (implicit) arity. An
example is compose.

2. A collection of predicates, each with a distinct name and an (implicit) arity. An
example is less_than. Equality is represented by a distinguished predicate.

3. A collection of mathematical types, each with a distinct name. An example is
positive real number. At the moment the collection of types is specialized for use
in problems involving metric spaces.

4. A variable is specified by a name (typically a single character), a mathematical
type and a ‘variable type’, which indicates whether or not the variable is a normal
variable or one of two kinds of metavariable, discussed in Sect. 5.8. Variables are
also annotated with information indicating that certain variables are independent
of other variables, which constrains inference.

5. A term is either a variable or a function together with a list of terms of appropriate
arity.

6. An atomic formula consists of a predicate together with a list of terms of appro-
priate arity.

7. A formula consists of one of the following,where vi are variables and Fi formulae:

• An atomic formula.
• ¬F1

• F1 ∨ F2

• F1 ∧ F2

• ∀v1 . . . vk .F1

• ∀v1 . . . vk .(F1 ∧ F2 ∧ ... ∧ Fn ⇒ Fn+1)

• ∃v1 . . . vk .F1

As discussed in Sect. 3, the structural sharing of goals means that the higher-level
datatypes used by the program are different from those used in e.g. an LCF-style
prover. The key datatypes are defined recursively as follows:

1. A box is either a nontrivial box or the special box �.
2. A nontrivial box consists of a list of variables, a list of formulae (called assump-

tions) and a list of targets.
3. A target consists of either a formula or a list of boxes.

In the absence of variables, the box consisting of variables v1 . . . vk , assumptions
H1 . . . Hn and targets T1 . . . Tm corresponds to the aim of proving that the formula

∀v1 . . . vk .(H1 ∧ . . . ∧ Hn ⇒ T1 ∧ . . . ∧ Tm)
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holds. Where metavariables are present the corresponding quantifiers need to be
existential rather than universal.

Targets that consist of a list of boxes correspond to a disjunction of the formulae
corresponding to the individual boxes.

The goal consists of a single box, and tactics are functions that map boxes to
boxes. In the rest of this document, we will display the box consisting of variables
v1 . . . vk , assumptions H1 . . . Hn and targets T1 . . . Tm as follows:

H1

...

Hn

T1

...

Tm

Note that we suppress the variables as they tend to clutter the exposition; they are
however present in the debug code produced by the program.Where a target consists
of one or more boxes, we draw a rectangle around each box to delineate it.

We use the term statement to refer to a formula that appears either as an assump-
tion or a target in some box. Statements and boxes may be tagged with additional
information; for example, when a statement has been used together with certain other
statements by a tactic, it is tagged to indicate this. Tags never affect the logical inter-
pretation of the taggedmaterial, but are used when the program is evaluating whether
tactics are permissible. In particular, tags are used to prevent repeated application of
the same tactic to the same statements.

Both the human-like output and debugging code prettify the output in conventional
ways, for example by writing a < b for the atomic formula less_than(a, b). We
adopt such conventions throughout this document. In cases of ambiguity, quantifiers
should always be read as taking the widest scope possible.

5.2 Terminology

When a statement is built out of atomic statements using connectives and quantifiers,
the program classifies it according to the operations that appear at the top of its parse
tree. For example, the statement

∃x (x ∈ A ∧ d(x, y) < ε)

is an existential statement, whereas the statement
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x ∈ A ∧ d(x, y) < ε

is conjunctive. It is often useful to look more than one level down the parse tree. For
example, the program would call the statement

∀x (x ∈ A ⇒ x ∈ B)

a universal conditional statement (Because we do not allow ‘bare’ conditional state-
ments, this is a particularly important category). Similarly, the existential statement
above can be further classified as an existential conjunctive statement.

Finally, many atomic statements can be expanded into statements that are no
longer atomic. For example, the statement A ⊂ B expands to the universal condi-
tional statement above. It is often useful to know what a statement will become after
it is expanded: to specify this the program uses the prefix ‘pre-’. Thus, the statement
A ⊂ B is pre-universal conditional. Similarly, the statement “x has an inverse” is
pre-existential because it expands (in a suitable context) to

∃y xy = yx = 1

and the statement “A is unbounded” is pre-universal because it expands to

∀C ∃a ∈ A a > C.

An expansion is elementary if it does not introduce a quantifier. For example, the
expansion of A ⊂ B is not elementary, whereas the expansion of

x ∈ A ∩ B

as

x ∈ A ∧ x ∈ B

is elementary.

5.3 Substantive Hypotheses and Background Conditions

Consider the following definition. If A is a subset of a metric space X and x ∈ X ,
then x is an accumulation point of A if

∀ε > 0 ∃a ∈ A d(a, x) < ε.

An obvious way of rewriting this is
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∀ε (ε > 0 =⇒ (∃a (a ∈ A ∧ d(a, x) < ε))).

However, that does not reflect how a mathematician will think about the definition.
The real number ε is not something that might conceivably be negative but happens
to have a useful property if it is positive. Rather, when it comes to selecting ε, the
universe from which we select it is the set of positive real numbers. So the condition
ε > 0 is not a ‘substantive’ assumption, but more like a background condition. By
contrast, the statement a ∈ A is substantive: it is an element of X that has the further
interesting property of belonging to A.

We capture this in our program by representing background conditions through
our type system. That is, instead of explicitly saying that ε > 0, we will take ε to
have the type ‘positive real number’.

Note that this is important for the categorization of statements discussed in the
previous subsection. For example, we want to think of a statement such as

∀ε > 0 ∃N ∀n ≥ N d(an, x) < ε

as a universal existential statement and not a universal conditional statement. This is
achieved by having the program represent it as

∀ε ∃N ∀n (n ≥ N =⇒ d(an, x) < ε)

and having the type system capture the fact that ε is a positive real number.
It is also important for deciding when a deduction is likely to be relevant. Suppose

that we have a universal-conditional statement in the library that has several premises
that match our assumptions. To mimic human reasoning, we would usually like this
to count as evidence that the library statement is relevant, but not if the assumptions
are merely background statements: if a library result requires a positive real number,
we will not get excited just because we have a positive real number floating around.

5.4 The Waterfall

The following lines are taken directly from the program’s code: they list, in order of
priority, the names of the tactics it can use (The names of the tactics do not always
match the terminology used in this paper, which we have standardized to match the
standard terminology used in interactive provers as far as we can). In Sects. 5.5–5.9,
we shall describe each tactic in turn.

--Deletion

deleteDone,

deleteDoneDisjunct,

deleteDangling,

deleteUnmatchable,
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--Tidying

peelAndSplitUniversalConditionalTarget,

splitDisjunctiveHypothesis,

splitConjunctiveTarget,

splitDisjunctiveTarget,

peelBareUniversalTarget,

removeTarget,

collapseSubtableauTarget,

--Applying

forwardsReasoning,

forwardsLibraryReasoning,

expandPreExistentialHypothesis,

elementaryExpansionOfHypothesis,

backwardsReasoning,

backwardsLibraryReasoning,

elementaryExpansionOfTarget,

expandPreUniversalTarget,

solveBullets,

automaticRewrite,

--Suspension

unlockExistentialUniversalConditionalTarget,

unlockExistentialTarget,

expandPreExistentialTarget,

convertDiamondToBullet,

--EqualitySubstitution

rewriteVariableVariableEquality,

rewriteVariableTermEquality

We stress here that because our system is fully automatic and intended to model
human thought processes, our efforts have been concentrated less on the tactics
themselves and more on how the program chooses which tactic to apply. For this
program, the general form of the answer is as follows: it just chooses a tactic of
the first type it can apply from the list above. Thus, if a tactic of type deleteDone
can be performed, it performs it. If not, but a tactic of type deleteDoneDisjunct can
be performed, then it performs that. Otherwise, it tries deleteDangling. And so on.
In this way our architecture is similar to the ‘waterfall’ architecture used by Boyer
and Moore in their provers NQTHM and ACL2. Like them we have tended to give
higher priority to ‘lower-risk’ tactics, since this appears to correspondwell to the way
humans choose what to do; one of the challenges in generating human-like proofs is
to assess correctly the risk of the different tactics. We discuss this point more fully
in Sect. 5.10.

In the remainder of this section we shall describe the tactics, splitting them into
some broad categories. One general preliminary remark is that a large proportion of
the tactics contain minor ‘postprocessing’ steps, applying operations such as exis-
tential elimination. This is appropriate in precisely the cases where a human would
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apply such an operation in so automatic a fashion that it would not have any effect on
the writeup. We will not mention these postprocessing steps in the tactic descriptions
below as to do so would make them much longer (Readers may of course consult
the source code for full technical details).

5.5 Removal Tactics

These tactics remove assumptions (cf. Sect. 3.3) and targets. They never directly
contribute material to the writeup.

deleteDone

There are several situations where a tactic results in a target being replaced by �
because it has been proved. Once this has happened, the program immediately uses
this tactic to remove it. Thus, the aim of the program is to reach a goal with no targets.

deleteDoneDisjunct

If a target is disjunctive and one of its disjuncts is�, then the entire target is removed.

deleteDangling

If an assumption has previously been used and contains a variable that is not involved
in any other statement, then the program removes the assumption.

deleteUnmatchable

Roughly speaking, this tactic removes assumptions that have previously been used
by a tactic and that have no obvious use.

For example, suppose that we have the statements x ∈ A and A ⊂ B as assump-
tions. The expansion of A ⊂ B is ∀u (u ∈ A =⇒ u ∈ B). If we substitute x for u,
then the premise of this statement becomes x ∈ A, which is identical to the assump-
tion. We say that x ∈ A matches the premise of (the expansion of) A ⊂ B. We call
a statement unmatchable if there are no available matches for it.

The program is not allowed to substitute the same variable twice into the same
assumption (This is partly because no human would ever do so, and partly to avoid
non-termination). This can create further circumstances where an assumption is
unmatchable. For example, suppose we apply forwards reasoning to the statements
x ∈ A and A ⊂ B to deduce that x ∈ B. Thenwe canno longer use thematch between
x ∈ A and A ⊂ B, so x ∈ A becomes unmatchable (assuming that there is no other
statement that matches it). Since it has been used, it will therefore be removed. If
no other statement matches A ⊂ B, then that statement too is unmatchable and will
therefore be removed, since it too has been used.

5.6 Tidying Tactics

Tidying tactics are tactics that do not substantially change the content of a target, but
put it into a more convenient form.
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peelAndSplitUniversalConditionalTarget

If the target takes the form ∀x (P(x) ⇒ Q(x)), then this tactic removes it and adds
instead a variable x, a new assumption P(x) and a new target Q(x). This corresponds
to the human tactic of saying (or thinking), ‘Let x be such that P(x); we need to show
that Q(x).’

The tactic could be thought of as a composition of two more basic tactics, one an
application of universal generalization and the other an application of implication
introduction, but again our avoidance of bare conditionals demands that we treat it
as unitary.

If there is more than one target, then this tactic has to be modified, since we cannot
use the new assumption P(x) to help us prove a different target. In that situation, we
create a target that consists of a box.

That is, if we have a goal of the form

H1

...

Hn

∀x (P(x) =⇒ Q(x))

R

then the tactic will transform it to

H1

...

Hn

P(x)

Q(x)

R

The program can then use P(x) to prove Q(x) but not to prove R. The assumptions in
the outermost box (which in the diagram above we do not enclose) can be used to
prove both statements.

This tactic generates a representation which (if in isolation) would eventually be
transformed into text like “Let x be such that P(x).”

splitDisjunctiveHypothesis

If there is an assumption of the form P ∨ Q, then the program removes the disjunction
by replacing the target(s) by two new targets. One of these targets is a box with P as
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an assumption and the original targets as its targets, and the other is a box with Q as
an assumption and the original targets as its targets.

This tactic and its counterpart splitDisjunctiveTarget constitute work in progress;
they are important for generating certain human-like proofs, but (because they split
the proof into cases) they are not compatible with the incremental, concatenative
tactic-by-tactic generation of writeups. We intend to extend the writeup generation
mechanism to accommodate these tactics in future versions. Note that neither tactic
is used in the problems we evaluate on.

splitConjunctiveTarget

If there is a target of the form P ∧ Q, then it is replaced by two targets P and Q. This
tactic does not contribute to the writeup.

splitDisjunctiveTarget

If there is a target that consists of a formula of the form P ∨ Q, then it is replaced
by a target consisting of boxes corresponding to P and Q.

This tactic exists for technical reasons: one reason is that the program sometimes
likes to attach tags to statements, for example to record whether they have been used
(which affects the deletion rules), but it has no facility for attaching tags to parts
of statements. Therefore, if we want to use a tag to record information about one
disjunct of a disjunctive target, we need to ‘split’ the target first.

Also see the note regarding splitDisjunctiveHypothesis above.

peelBareUniversalTarget

If the target is of the form ∀x P(x) and P is not a conditional statement, then this
tactic removes the universal quantifier.

This tactic generates a representation which (if in isolation) would eventually be
transformed into text like “Take ε > 0.”

removeTarget

This tactic is formed froma family of related sub-tacticswhose commonelement is
that under appropriate circumstances they replace a target with �. The most obvious
example is when a target equals an assumption (and that assumption is allowed to
be used to prove the target). A more complicated example is when the target is of
the form ∃u (P(u) ∧ Q(u)) and there are assumptions P(x) and Q(x). The other
circumstances are similar.

The sub-tactics generate representations that are eventually transformed into text
like “Therefore, setting δ = θ , we are done.”

collapseSubtableauTarget

If a target consists of a single boxB that has no assumptions and contains nometavari-
ables (see Sect. 5.8 for a discussion of these), then the target is replaced by the targets
of B. This tactic does not contribute to the writeup.
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5.7 Applying Tactics

An applying tactic is any tactic that corresponds to what human mathematicians
would call applying an assumption, result or definition.
forwardsReasoning

The most basic form of this tactic is universal modus ponens: that is, a combination
of substitution into a universal-conditional assumption followed by an implication
elimination that uses the resulting conditional statement. In other words, one uses
assumptions of the form ∀u (P(u) =⇒ Q(u)) and P(x) to obtain a new assumption
Q(x).

A slight variant of this tactic that is worth highlighting is illustrated by the fol-
lowing simple piece of reasoning: if we know that x ∈ A and that A ⊂ B then we
can deduce that x ∈ B. Humans will make this deduction in one step rather than first
expanding the statement A ⊂ B as ∀u (u ∈ A ⇒ u ∈ B), then substituting x for u,
and finally applying forward chaining. In order to produce a human-like writeup, our
program does the same. In general, for each type of reasoning tactic that involves a
universal conditional assumption, there is a variant that does the same thing to the
expansion of a pre-universal conditional assumption.

This tactic also handles deductions that involve more than one premise, such
as using assumptions of the form P(x), Q(x), and ∀u (P(u) ∧ Q(u) =⇒ R(u)) to
obtain the assumption R(x).

This tactic generates a representation which (if in isolation) would eventually be
transformed into text like “Since x ∈ A and A ⊂ B, x ∈ B.”

forwardsLibraryReasoning

This is reasoning that is ‘mathematical’ rather than ‘purely logical’. For example,
from the statements ‘(an) is a sequence in A’, ‘A is closed’ and ‘an → a’ one can
deduce that a ∈ A. Experienced human mathematicians will perform this deduction
in one step, because their mental library will contain the result that whenever a
sequence in a closed set tends to a limit, then the limit belongs to the closed set as
well. Mimicking this behaviour is very important for producing a write-up that is not
cluttered with an inappropriate amount of detail.

Logically speaking, one could unify forwards library reasoning with ordinary
forwards reasoning by adding the entire (allowable) content of the library to our list
of assumptions. However, there are one or two aspects of library reasoning that give it
a different flavour. The main one is that library results contain no free variables: they
are general facts that apply universally. This distinguishes them from assumptions,
which are more contingent. A second difference is that forwards library reasoning
is normally used to deduce an atomic assumption from other atomic assumptions.
A universal conditional statement is involved, but it is in the library and is not a
assumption. For these reasons, reasoning that uses library results tends to be used by
humans only when other forms of forwards reasoning are not available. Therefore,
for the program it is important not to unify the two forms of reasoning, so that library
reasoning can be given a lower priority.
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It is also important to place some kind of restriction on forwards library reasoning
to stop the programmaking obviously irrelevant deductions. For instance, if it knows
that H is a subgroup of a group G and x ∈ H , and if a suitable result belongs to the
library, then an unrestricted forwardsLibraryReasoning would allow it to deduce that
x−1 ∈ H , but this deductionmaywell be of no help in solving the problemat hand and
a step that no human would think of taking. As a safeguard against this, we forbid the
program to apply the forwardsLibraryReasoning tactic if it creates a new term. This
aspect of the program is not stable: it seems that although human mathematicians
are indeed reluctant to create new terms in this way, they sometimes do so, even
in some fairly straightforward problems. More work is needed to understand the
circumstances under which such ‘speculative’ reasoning occurs.

This tactic generates a representation which (if in isolation) would be transformed
into text like “Since (an) is a sequence in A, A is closed and an → a, a ∈ A.”

expandPreExistentialHypothesis

As its name suggests, this means replacing a pre-existential assumption by its defi-
nition expansion (Recall that a statement is pre-existential if its definition expansion
is an existential statement). What the name of the tactic does not reveal is that this
expansion is followed immediately by an existential elimination. So for example
expansion of the hypothesis ‘A is bounded’ might result in the introduction of a vari-
able M and a new hypothesis ∀x (x ∈ A ⇒ |x | ≤ M). We do this because human
mathematicians almost always do it without comment, so our program should do so
as well. Although these features have no effect on which problems the program can
solve, they have a significant effect on the writing-up stage, saving the program from
having to judge that certain steps do not need to be spelt out.

This tactic generates a representation which (if in isolation) would be transformed
into text like “Since A is bounded, it follows that there exists M such that |x | ≤ M
whenever x ∈ A.” Note that, following standard human practice, in the rest of the
write-up the variable x would automatically be treated as an entity one could refer
to: the program is like a human in considering this kind of instance of ‘there exists M
such that ...’ as equivalent to ‘let M be such that ...’ (Also note that a human typically
suppresses the domain of quantification of M in this case, i.e. a human does not write
M ∈ R, and the program does the same.).

elementaryExpansionOfHypothesis

This takes a assumption that has an elementary expansion (recall that this means an
expansion that does not begin with a quantifier) and replaces it by that expansion.
This is sometimes combined with some tidying. For example, if the assumption in
question is x ∈ A ∩ B, then the elementary expansion is x ∈ A ∧ x ∈ B, but this
expansion is immediately converted into the two assumptions x ∈ A and x ∈ B and
does not itself appear in any intermediate goal—again so that the write-up will be
suitably concise.

This tactic generates a representation which (if in isolation) would be transformed
into text like “Since x ∈ A ∩ B, x ∈ A and x ∈ B.”
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backwardsReasoning

This is the obvious backwards counterpart of forwards reasoning, using universal
modus tollens instead of universal modus ponens. The most basic form is thus that
we are given a target Q(x) and an assumption ∀u (P(u) ⇒ Q(u)), and we replace
the target by P(x).

More generally, if we have a target Q(x) and an assumption ∀u (P1(u) ∧ · · · ∧
Pk(u) =⇒ Q(u)), then it is logically sound to replace the targetQ(x) by the k targets
P1(x), . . . , Pk(x), andmany provers will happily do so. Our program is allowed to do
this more complex backward chaining only under tightly constrained circumstances:
we require all but one of the statements P1(x), . . . , Pk(x) to be an assumption, so
that only one new target is created. This is another pragmatic decision: it is a crude
way of deciding whether applying the assumption ∀u (P1(u) ∧ · · · ∧ Pk(u) =⇒
Q(u)) is likely to be the right thing to do, and the severity of the test is intended to
stop the program making ‘speculative’ deductions that risk leading to combinatorial
explosion. It is clear that humans sometimes violate this rule, butmorework is needed
in order to understand when they do so.

Aswith forwards reasoning, there is a simple variantwhere the role of the universal
conditional assumption is played by a pre-universal conditional assumption instead.
For example, given a target x ∈ B and an assumption A ⊂ B the program could use
this variant to replace the target by x ∈ A.

The contribution of this move to the writeup is complex. An example of the output
it can produce is “We know that y ∈ A whenever d(x, y) < η.”

backwardsLibraryReasoning

This is backwards reasoning that makes use of a general result in the library. How-
ever, it is slightly subtler than forwards library reasoning, because it always uses
assumptions as well as a target. The precise rule is that if there are assumptions
P1(x), . . . , Pk−1(x), a library result ∀u (P1(u) ∧ · · · ∧ Pk(u) ⇒ Q(u)) and a target
Q(x), then the target can be replaced by Pk(x). (Of course, the premises of the library
result do not have to be stated in the order P1, . . . , Pk).

An example of this kind of reasoning would be to say, “It is sufficient to prove
that B is open,” if one wished to prove that A ∩ B was open and knew that A was
open. This would be making use of the result that an intersection of two open sets is
open.

Once again, the restriction we place is for pragmatic reasons: we do not want
the program to make highly speculative transformations of the goal that introduce
several new targets, since humans are usually reluctant to do this, especially when
solving simple problems of the kind we are focusing on. But this is another situation
where we would hope to improve the program in a future version, since humans do
sometimes introduce multiple targets and then tick them off one by one.

The contribution of this move to the writeup is complex. An example of the output
it can produce is “Since d(x, y) < δ, d(x, y) < η if δ � η.”
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elementaryExpansionOfTarget

This replaces a target by an elementary expansion of that target, if it has one. In
the absence of metavariables, it generates a representation that will eventually be
transformed into text like “we would like to show that A is open, i.e. that ...”. In
the presence of metavariables, it generates a representation that will eventually be
transformed into text like “we would like to show that xy ∈ H ∩ K , i.e. that xy ∈ H
and xy ∈ K ”.

expandPreUniversalTarget

This replaces a pre-universal target by its expansion. This tactic will be followed by
one of the tidying tactics peelAndSplitUniversalConditionalTarget or peelBareUni-
versalTarget. It is usually the first tactic that the program applies when faced with a
naturally stated problem.

This tactic does not generate any write-up text.

solveBullets

As we are just about to discuss in more detail, we sometimes convert a variable w
into a metavariable. The metavariable needs at some stage to be chosen in such a
way that the problem can be solved. If the variable only ever appears in targets, then
one simple way in which this can often be done is to identify another variable x with
the property that if we substitute x for w, then every target that involves w is equal to
a assumption. In that situation, all those targets are replaced by �.

This tactic generates a representation that will (after postprocessing) be trans-
formed into text like “We may take ε = . . . and we are done.”

automaticRewrite

There are a few term rewriting rules stored as data in the library. An example is
that the term (g ◦ f )(x) is rewritten as g(f(x)). These rewriting rules are intended to
represent operations that are so automatic that a human would not comment on them,
and accordingly this tactic does not contribute to the writeup.

5.8 Creation of Metavariables

We now come to a class of tactics alluded to earlier: tactics that help us deal with
existential targets when it is not immediately clear what to substitute for the exis-
tentially quantified variable. A standard technique for this, which is essentially the
technique we use, is to form metavariables. The rough idea of a metavariable is that
one reasons with it as though it had been chosen, deferring the actual choice until
later when it becomes clearer what choice will make the argument work. Mathemati-
cians often use this trick: a classic example is the ‘3ε-argument’ used to prove that
a uniform limit of continuous functions is continuous.

We have found it convenient to introduce two kinds of metavariable, to model
two styles of reasoning that are logically similar but psychologically quite different.
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As ever, this mimicking of human reasoning is necessary to produce a human-like
writeup. These are displayed with diamonds or bullets, as described below.

unlockExistentialUniversalConditionalTarget

To illustrate this, supposewe have a target such as ∃δ ∀y (d(x, y) < δ ⇒ f (y) ∈ B),
and also a assumption ∀u u ∈ A =⇒ f (u) ∈ B. Then it is easy to see that we can
reduce the target to ∃δ ∀y (d(x, y) < δ =⇒ y ∈ A). However, this operation is not
open to the program because it is not allowed to ‘reason inside quantifiers’. This
is a matter of convenience: such operation are logically valid, but it is tedious to
specify appropriate variants of several of the reasoning tactics listed above. Instead,
we introduce a metavariable, which effectively moves aside the existential quantifier
and allows the program to reason as normal with the statements inside it.

More precisely,what the programdoes to is replace the statementwith a boxwhose
variables include the metavariable that is being introduced. In the example above,
it would have no assumptions and a single target ∀y (d(x�, y) < δ ⇒ f (y) ∈ B).
The diamond on the (meta)variable x indicates that x needs to be chosen.

It is important for the program not to interchange quantifiers accidentally. For this
reason, we tag the box just created with the variable x�, to indicate the scope of the
existential quantification over x.

After ‘unlocking’ the statement, the program applies the peelAndSplitUniversal-
ConditionalTarget tactic inside the box. After that, we have a box that looks like
this.

d(x�, y) < δ

f (y) ∈ B

Once we have done this, the statement f (y) ∈ B has become an internal target and
the program is free to apply backwards reasoning to it.

This tactic generates a representation that will (after postprocessing) be trans-
formed into text like, “We would like to find x s.t. P(x) whenever Q(x).”

unlockExistentialTarget

This tactic replaces a target of the form ∃x P(x) with a box that has the variable x�,
no assumptions and a single target P(x�).

This tactic will never be applied to an existential universal conditional target,
since that will have been dealt with by unlockExistentialUniversalConditionalTarget.
The main reason we have two separate tactics here is that we prefer to bundle the
unlocking together with the peelAndSplitUniversalConditionalTarget tactic when
that is possible.

To see what unlockExistentialTarget allows the program to do, suppose that we
have a target of the form ∃x (Q(x) ∧ R(x)) and also a assumption of the form
∀u (P(u) ⇒ Q(u)). In this situation we would like to be able to do backwards rea-
soning inside the existential quantifier to reduce the target to ∃x (P(x) ∧ R(x)).
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However, the program does not have a tactic for this. Instead, it unlocks the exis-
tential target, so that it has a box with a target Q(x�) ∧ R(x�). The tidying tactic
splitConjunctiveTarget can now turn this new target into two targets, and once it has
done that, the applying tactic backwardsReasoning can be used to replace the target
Q(x�) by P(x�).

As another example of the use of unlocking, suppose that we wished to prove
that A ∩ B is non-empty and had the assumptions x ∈ A and x ∈ B. The program
cannot see that x is a witness to the non-emptiness of A ∩ B without doing some
processing. An obvious first step is to expand the target into the statement ∃u u ∈
A ∩ B. However, the program is not then allowed to do an elementary expansion
inside the quantifier. Instead, it unlocks u so that there is a new target u� ∈ A ∩ B.
This can now be expanded and split into the two targets u� ∈ A and u� ∈ B, which
solveBullets can then match with the assumptions.

This may seem a little circuitous, but it actually models quite closely how humans
think. A human might say, ‘I want to show that A ∩ B is non-empty, so I need to
find some u that belongs to A ∩ B. In other words, I need u to be in A and in B.
Aha, I can take x.’ The program’s unlocking models the silent disappearance of the
existential quantifier before the second sentence of the above, which we need to
model to produce a human-like writeup.

This tactic generates a representation which will (after postprocessing) be trans-
formed into text like “We would like to find x s.t. P(x).”

expandPreExistentialTarget

This does exactly what it says: it replaces a pre-existential target by its expansion.
It generates a representation that will eventually be transformed into text like “We
would like to show that ... .”, explicitly presenting the expansion.

convertDiamondToBullet

There are certain tactics that the program will not apply to a ‘diamonded’ metavari-
able. In particular, it will not do any reasoning with an assumption that involves such
a metavariable: for that it needs another kind of metavariable, roughly speaking cor-
responding to the human operation of ‘pretending that a variable has been chosen’
and then reasoning with it. Logically this is not an important difference, but it is a
useful one for us because it reflects a difference in the way human mathematicians
think andwrite. This helps the program to producemore convincing write-ups.When
we convert a ‘diamonded’ variable into a full metavariable in this way, we change
the diamond to a bullet.

We do not need separate tactics for reasoning that involves assumptions with
bulleted metavariables: we just allow the reasoning tactics described above to handle
such metavariables.

An important technicality is that if we postpone the choice of a metavariable, we
must keep track of which other variables it is allowed to depend on. However, what
we actually do is note which variables it is not allowed to depend on. This is for two
reasons. First, it seems to reflect more accurately how human mathematicians think
about such variables, and secondly, it is more economical: there are typically many
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fewer variables on which a bulleted variable is not allowed to depend than variables
on which it is allowed to depend.

This tactic generates a representation that will (after postprocessing) be trans-
formed into text like “Assume now that ... .”, explicitly stating all assumptions
involving the relevant metavariable.

5.9 Equality Substitution

If we are told that two objects are equal, then we can eliminate all mention of one
object in favour of the other. The precise rules governing when and how mathemati-
cians tend to avail themselves of this opportunity are not obvious. The rules below
are best regarded as a temporary solution: they do not always result in realistically
human choices, and we intend to replace them by more satisfactory rules when we
understand better what humans do.

rewriteVariableVariableEquality

If there is an assumption of the form x = y, then this tactic replaces all occurrences
of y by x and eliminates the assumption.

This tactic generates a representation that will eventually be transformed into text
like “Since x = y, ...”.

rewriteVariableTermEquality

If there is an assumption of the form v = t or t = v, where v is a variable and t is a
term, then this tactic replaces all occurrences of t by v.

This tactic generates a representation that will eventually be transformed into text
like “Since v = t, . . .”.

5.10 Justification for the Order of Priority

Aswe have already said, the tactics we use above are all either standard in themselves
or simple combinations of standard tactics (with the possible exception of our dis-
tinction between ‘diamonded’ variables andmore standard metavariables). Our main
concern is not the set of tactics available to the program, but the way the program
chooses which tactic to apply to any given goal. We have attempted to design this so
that the program can produce a realistically human style of output in an incremental
fashion. That is, each tactic needs to produce a list of human-like English sentences,
or more accurately a list of elements of a datatype that correspond to such sentences.
The postprocessing described in Sect. 4 does not change the fact that the output of
the program very closely matches its inner workings. This feature of the program
has governed many of the design decisions we have made.
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How should the program decide which tactic to use in any given situation? Our
methodology for answering this question was to work through large numbers of
problems ourselves, making a note of which tactics seem appropriate. After a while
wewere in a position tomake afirst guess at a suitablemethod for choosing tactics.We
then tried the method out on more problems, adjusting it when it led to inappropriate
choices. After several iterations of this, we arrived at the order of priority of the
tactics that we set out in the previous section.

If our only justification for the order of priority were that it leads to good results
for the problems we have tried so far, it would not be very strong: what gives us
any confidence that the order of priority will be appropriate for other problems that
may be quite different from the ones we have looked at so far? However, there is an
informal guiding principle that explains quite a lot (though not all) of the order of
priority, which is that the program prefers “safe” tactics to “dangerous” tactics. As
we mentioned earlier, the same is true of the order of priority chosen by Boyer and
Moore in their ‘waterfall’ architecture (see Boyer and Moore (1979), p. 90).

Broadly speaking, a tactic is safe if the risk that it will lead to an undesirable
result, such as a dead end or a step that is completely irrelevant to the eventual proof,
is small. For example, tidying tactics are safe in this sense: by expressing the goal
in a more convenient form, they open up new options without closing off any old
ones. Since they are so safe, they come first in the order of priority. By contrast,
expanding a definition is substantially less safe: sometimes it is possible to reason
in a high-level way without expanding, and since we do not allow ‘de-expansion’ in
this program (and in general allowing it would be highly problematic because of the
danger of an infinite loop), expanding a definition is closing off the option of such
high-level arguments, so we are reluctant to do it unless we have convinced ourselves
that high-level arguments are not available. For example, if there is an assumption
of the form ‘(an) is Cauchy’, then we do not want our program to expand out the
definition of Cauchy unless it has checked that it is not thereby closing off the option
of a high-level deduction such as

X is complete

(an) is Cauchy

(an) converges

which would be a piece of forwards library reasoning in the program.
Thus, expansion has a fairly low priority. Having said that, some expansions,

such as elementary expansions or expansions of pre-existential assumptions, are
considerably safer, so those ones have higher priority.

Somewhere in between are the other reasoning tactics. Here it becomes more
complicated to apply the general principle, even as an informal guide, because the
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safety of a tactic depends heavily on context. In particular, forwards reasoning is
in general fairly unsafe—if you have a lot of information and do not know which
statements are relevant, then the probability that any given deduction will form part
of the eventual proof may be quite small—but it is much safer when it comes to
routine problems, which tend not to suffer from the problem of irrelevant informa-
tion.

It seems that when it is safe, humans tend to prefer forwards reasoning to back-
wards reasoning (Sweller, Mawer, & Ward, 1983; Owen & Sweller, 1985), though
this appears to be a question more of style than of problem-solving efficacy: we tend
to prefer not to keep track of a moving target if we do not have to. Since forwards rea-
soning tends to be safe for the highly routine problems our program tackles, we have
given all forwards reasoning a higher priority than all backwards reasoning. This
also has the beneficial effect of making the program reluctant to switch direction—
too much switching from forwards to backwards or vice versa would again be bad
mathematical style.

This aspect of our program is, however, unstable, for the reason just given. When
humans are faced with several possibilities for forwards reasoning, they will often
switch to backwards reasoning in order to lessen the risk of making irrelevant deduc-
tions, but our programdoes not yet have any facility formaking this kind of judgment.

One other feature of the ordering of reasoning tactics is that we prefer pure rea-
soning tactics to library reasoning tactics. That is because in general an assumption is
more likely to be relevant than a library statement, though if enough of the premises
of a library statement are present as assumptions, that is a fairly strong argument for
its relevance.

At the bottom of the list of priorities is the process of creating metavariables. That
is because humans tend to regard it as a last resort. When mathematicians need to
prove statements of the form ∃x P(x), then by and large they prefer to transform the
goal using other tactics until a suitable candidate x0 for x becomes obvious and it
remains to carry out the relatively easy task of verifying that P(x0). Only when this
straightforward approach fails do we take the more drastic step of pretending that x
has been chosen.

We will not say much more here about how we chose the priority order, but we
have two brief further points. First, although our reasons are not completely precise,
we found that in practice they were adequate, in the sense that they suggested an
order before we started, and we found that we did not have to modify the order when
we tried further problems (though, as commented above, there are certain aspects
of the architecture that will need to be changed in future versions). Secondly, when
it comes to the finer detail of the ordering, there may not be that much to choose
between different tactics. However, conflicts rarely arise between different tactics
that are not distinguished by any of the above criteria, so in practice these finer
details have little if any effect on what the program actually does.
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6 Example of Operation: An Intersection of Two Open Sets
Is Open

Now that we have discussed how the program works, let us look at another example,
which involves most of the tactics we have discussed and shows how the order of
priority works in practice. The problem to be solved is the following.

Problem 1 Let A and B be open subsets of a metric space X. Prove that A ∩ B is
open.

The initial goal is represented as follows.

A is open

B is open

A ∩ B is open

No reasoning tactics are possible, sowe end up having to expand. The highest priority
tactic we can do is expandPreUniversalTarget, which, after the tidying peelAndSpli-
tUniversalConditionalTarget, has the following effect.

A is open

B is open

x ∈ A ∩ B

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

Recall that we do not explicitly specify here that δ > 0, but instead take the positivity
of δ to be part of its type. This is an example of why that is important: by suppressing
background conditions such as δ > 0, we make it much easier for the program not to
pay undue attention to them, and therefore easier for us to define our priority order
in a unified way.

At this point, the program is trying to prove a statement that existentially quantifies
over δ. The nuclear option would be to convert the variable δ to a metavariable, but
this operation has a low priority, so the programdoes asmuch forwards reasoning as it
possibly can before resorting to it. It beginswith elementaryExpansionOfHypothesis,
applied to the third assumption.
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A is open

B is open

x ∈ A

x ∈ B

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

This allows it apply forwardsReasoning twice. After the first application, the goal is
as follows.

A is open

B is open

x ∈ A

x ∈ B

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

Note that the last assumption is in a sense generated by a combination of subtactics:
the first is forwardsReasoning (using the assumptions x ∈ A and ‘A is open’) and
the second is an existential elimination (to get rid of ∃η that would otherwise occur
at the beginning of the statement). However, the latter is so automatic that it is not
listed as one of our tidying tactics: instead, it is considered as part of any other tactic
that potentially generates an existential assumption.

It is important to keep track of the fact that η depends on x, which is what is
signified by η[x].

After this, deleteUnmatchable causes the program to remove the statements x ∈ A
and ‘A is open’. This is because both statements have been used and because it is no
longer permissible to substitute x into ‘A is open’. The resulting goal is as follows.

B is open

x ∈ B

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

The program then runs through a similar process for B (it does not yet have the
capacity to recognise that the problem is symmetric in A and B and say, ‘Similarly
...’). After that process, it arrives at the following.
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∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

It has now reached the point where conversion of δ to a metavariable is the only
option it has. In the first instance, it uses the tactic unlockExistentialUniversalCon-
ditionalTarget. The result is as follows.

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

d(x, y) < δ�[y]

y ∈ A ∩ B

The notation δ•[y] signifies that δ is not allowed to depend on y.
The highest priority tactic the program can now apply is elementaryExpansionOf-

Target, so it does that, and automatically splits the resulting conjunctive statement
(rather than using the tactic splitConjunctiveTarget).

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

d(x, y) < δ�[y]

y ∈ A
y ∈ B

This allows it to apply backwardsReasoning twice. After the two deductions it
reaches the following state (It does them separately, so we are jumping a step here).

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

d(x, y) < δ�[y]

d(x, y) < η[x]
d(x, y) < θ [x]
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It then uses deleteUnmatchable to remove the two assumptions it has just used.

d(x, y) < δ�[y]

d(x, y) < η[x]
d(x, y) < θ [x]

At this point, there is not much that the program can do, because it is not allowed to
reason with the diamonded variable δ�. So the highest-priority tactic it can apply is
convertDiamondToBullet. Also, since there are no assumptions above the main line,
it replaces the goal by the inner box.

d(x, y) < δ•[y]

d(x, y) < η[x]
d(x, y) < θ [x]

Now it applies backwardsLibraryReasoning. The result in the library is that if a < b
and b ≤ c, then a < c. Applying that with the assumption and the first target results
in the following goal.

d(x, y) < δ•[y]

δ•[y] ≤ η[x]
d(x, y) < θ [x]

The removal tactics do not allow the program to remove the assumption we have just
used (and this is a good example of a situation where deletion would be a very bad
idea). However, it cannot use the assumption with the new target. The program then
uses backwardsLibraryReasoning again and this time it does remove the assumption,
on the grounds that the variable x that appears in the assumption does not appeat in
any other statement. After that, it has reached the following state.

δ•[y] ≤ η[x]
δ•[y] ≤ θ [x]

This is a ‘standard’ existence problem, whose solution is stored as a construction in
the library. The program uses this and declares the problem solved. It is here that the
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background information that δ, η and θ are positive is used, since the library result
is that the minimum of two positive real numbers a and b is a positive real number
that is less than or equal to both a and b.

7 Testing the Write-Ups

Once the program had generated the write-ups for several problems, we wanted to
test whether they could pass for write-ups written by a human mathematician. In this
section we describe an informal experiment that we carried out for this purpose.

We began by asking two mathematicians, one an undergraduate and one a PhD
student, to write out proofs for five problems for which our program had generated
proof write-ups. We did not tell either of them why we were making this unusual
request, and we did not ask them to make their write-ups as good as possible. One of
the problems was to show that the inverse image of an open set under a continuous
function is open, and one of our volunteers decided to prove the converse, so that he
could use the topological definition of continuity to prove another of the assertions—
that a composition of continuous functions is continuous.Wehad to ask him to rewrite
the latter and give the epsilon-delta proof, since we wanted the differences between
the write-ups to be a matter of style rather than substance.

We had another problem of this kind, which was that both our volunteers made
frequent use of open balls. For example, their expansion of ‘A ∩ B is open’ was ‘for
every x ∈ A ∩ B there exists δ > 0 such that Bδ(x) ⊂ A ∩ B.’ This made some of
their arguments neater than the ones produced by our program. We contemplated
getting the program to redo the problems using open-balls expansions, but in the end
decided that it would be ‘cheating’ to make changes to its output in response to the
human write-ups we had solicited, so we left things as they were.

The program’s write-ups were not designed to be indistinguishable from human
write-ups: we merely wanted them to be acceptable as human write-ups. Therefore,
we left in certain features, such as ending every proof with the words, ‘we are done’,
that we could with a little trouble have changed (See the brief discussion of non-
determinism at the end of Sect. 4). For this reason, we did not want to ask people to
guess which write-ups were by the program. Instead, we presented all fifteen write-
ups—two by humans and one by the program for each of the five problems—on the
second author’s blog, and asked readers of the blog to comment on them in any way
they liked.We also asked them to award points for clarity and style. The orders of the
write-ups were chosen randomly and independently (The precise mechanism was to
decide on a one-to-one correspondence between the set {1, 2, 3, 4, 5, 6} to the set of
permutations of the set {1, 2, 3}, then to find a website that produced random dice
rolls). So that answers would be as independent as possible, all comments and ratings
were sent to the blog’s moderation queue and published only after the experiment
was finished and comments on the blog post were closed.
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The post can be found at http://gowers.wordpress.com/2013/03/25/an-
experiment-concerning-mathematical-writing/, together with all the comments and
ratings, but the real point of the experiment was to see whether anybody noticed that
not all the write-ups were by humans. Nobody expressed the slightest suspicion of
this kind.

Having said that, we should also remark that many commenters were highly
critical of the program’s output. Three criticisms in particular stand out. First, as
we expected, the fact that the program did not use open balls was unpopular: many
people commented that this made the write-ups unwieldy. Secondly, several of the
human write-ups stated the new target when the initial one had been stripped of
universal quantifiers and conjunctions. Several readers commented that they found
this helpful, and criticized our program for not doing it. And thirdly, commenters
did not like the way the program spelt out in detail how it thought of the right
variable to substitute into existential targets (such as choosing min{η, θ} for δ in the
intersection-of-open-sets problem.

It would be easy to modify the program so that none of these criticisms apply, so
they do not point to fundamentally non-human aspects of how it thinks. To change
the first, we would just have to use a library containing open-balls expansions of
definitions such as ‘A is open’ and ‘f is continuous’. To change the second, we
could alter the rule for what the write-up does when we remove quantifiers and
conjunctions, so that it states the new target (preceded by a phrase such as ‘We need
to show that’). The third criticismwould be harder to deal with, but in future versions,
we plan to switch to having two styles of write up: a ‘proof write-up’ and a more
detailed ‘proof-discovery account’. For the first stylewewill let the programwork out
the values of bulleted variables, then simply declare those values when the variable
is first mentioned after being converted to a metavariable. This will correspond to
the human practice of writing something like ‘Let δ = min{η, θ}’ or ‘Consider the
sequence (bn) defined by bn = an/(1 + an),’ which ‘magically’ does exactly what it
needs to do later in the proof.

Although our program’s output came in for quite a bit of criticism, so did the
write-ups by the undergraduate and PhD student—it seems that the readers were
harsh judges. However, for most of the problems, the human write-ups were found
preferable to the program’s.

After the success (as we considered it) of this experiment, we dared to try a direct
test. We published a new post, this time explaining that one proof was by a program,
one by an undergraduate and one by a PhD student, and inviting readers to vote on
which one they thought was by the program. For each problem, the write-ups were
numbered (a), (b) and (c). There were seven options for the voting: one could choose
between (a), (b) and (c), but also choose between ‘The computer-generated output is
definitely ∗’ and ‘I think the computer-generated output is ∗ but am not certain’; the
seventh option was ‘I have no idea which write-up was computer generated.’ Again
there was the opportunity to comment, for those who wanted to explain the reasons
for their choices.

We did not reveal the results of the voting so far, or anybody’s comments, until
the experiment was ended and the voting was closed. However, there was a different

http://gowers.wordpress.com/2013/03/25/an-experiment-concerning-mathematical-writing/
http://gowers.wordpress.com/2013/03/25/an-experiment-concerning-mathematical-writing/
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kind of dependence between answers, which was that people had the opportunity to
look for clues that two different write-ups were from the same source. Given that
we had not tried to remove stylistic ‘tics’ from our program’s write-ups, this put the
program at a significant disadvantage. It was clear from the comments that many
people had noticed that for each problem exactly one write-up ended with the words
‘we are done’.

Despite this, the program did reasonably well at fooling people that it was
human. The typical pattern was that roughly half the voters would correctly guess
which output was by the program, with slightly under half of that half saying
that the output was definitely by the program. The undergraduate would always
‘come second’, and there would always be a fair number of people who said that
they had no idea which output was written by the computer. There were surpris-
ingly many votes for ‘The computer-generated output is definitely ∗,’ when ∗
was the wrong answer. The total number of votes was always at least 300, and
for the first problem listed (the intersection of open sets is open) it was over
1000. One slight complication was that after a day or two the post was listed
on the front page of Hacker News. The result was that the number of votes
doubled in a couple of hours, and it may be that the profile of a typical voter
changed. Fortunately, we had noted down the voting numbers just before this hap-
pened, so we presented those results as well as the final numbers. In the end,
however, the proportions did not change very much. The detailed numbers can
be found here: http://gowers.wordpress.com/2013/04/14/answers-results-of-polls-
and-a-brief-description-of-the-program/.

One thing this experiment could not tell us, except to a limited extent through
the comments, was whether the program was good at fooling mathematicians that
it was human. It could be that the more mathematically experienced readers found
the program’s output easy to distinguish, while the votes for the human write-ups
came from people who were not used to reading mathematical proofs. However, we
feel justified in concluding that the program’s output is not obviously written by a
computer program, and that was our objective.

8 Running the Program

The prover was written in Haskell, and contains about 3300 lines of source code.
Readers who wish to replicate the evaluation or try the prover on other problems can
obtain the source code at https://github.com/mg262/research/raw/master/robotone.
zip; the readme file inside the archive contains instructions on compiling and running
the prover. Note that although the problems and library are logically separated from
the rest of the program, they are is currently stored as pure data in a Haskell module

http://gowers.wordpress.com/2013/04/14/answers-results-of-polls-and-a-brief-description-of-the-program/
http://gowers.wordpress.com/2013/04/14/answers-results-of-polls-and-a-brief-description-of-the-program/
https://github.com/mg262/research/raw/master/robotone.zip
https://github.com/mg262/research/raw/master/robotone.zip
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and compiled with the rest of the code.3 Output is produced as LATEX source which is
then compiled to two human-readable PDFs; one of these simply contains the proofs,
and the other displays the step-by-step operation of the programwith goals displayed
at each stage.

Note that the shell script that invokes the prover also runs LATEX on its output,
and that this accounts for nearly all of its running time; the actual Haskell program
runs too fast to measure (<1ms) on the eight test problems included with the source
code. This speed is a consequence of our aim of solving routine problems without
backtracking or extensive search, just as a human does (Sect. 1.3).

Readers who wish to try the prover on other problems should be warned that the
library must be tailored to the problem being solved.4 It is not possible to create a
general, problem-independent library (without significantly modifying the program)
because then the prover will use “more advanced”s results to prove simpler ones.
For example, if one were simply to fill a library with every available result about real
analysis and then ask the prover to show that sin is continuous, it could well deduce
this from the fact that sin is differentiable and the fact that differentiable functions
are continuous. But this is clearly an absurd proof.

This point may be illustrated with a problem tried by a referee, namely to show
that a preimage of a closed set under a continuous function is closed. This problem
was tried with the default library, which does not contain the requisite body of facts
about sequences. In particular, the program contains the expansion

in(x,preimage(f,U)) --> in(applyfn(f,x),U)

which allows ‘x ∈ f −1(U )’ to be expanded into ‘ f (x) ∈ U ’. As with many other
expansions, this rule has a direct analogue for sequences (and one for families, one
for sets, etc.). Once that rule,

sequencein(x,preimage(f,U)) --> sequencein(applyfnpointwise(f,x),U)

which allows ‘(an) ∈ f −1(U )’ to be expanded into ‘ f ((an)) ∈ U ’, has been added
to the library, the prover produces a solution:

Let (an) and a be such that (an) is a sequence in f −1(U ) and an → a. Then f (an) is a
sequence in U. We would like to show that a ∈ f −1(U ), i.e. that f (a) ∈ U and since U is
closed, f (a) ∈ U if f (an) → f (a). Let ε > 0.Wewould like to findN s.t. d( f (a), f (an)) <

ε whenever n � N . Since f is continuous, there exists δ > 0 such that d( f (a), f (an)) < ε

whenever d(a, an) < δ. Since an → a, there exists N ′ such that d(a, an) < δ whenever
n � N ′. Therefore, setting N = N ′, we are done.

3Using a Haskell module has allowed us to leverage Haskell’s excellent type-checking system to
validatemuch of the input, and has alsomade it easy to construct specific libraries using higher-order
operations during testing, with a considerable reduction in redundancy relative to a text format.
4All of the data used by the prover, including the library used with the supplied problems, can be
found in TestData.hs.
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This solution is unsatisfactory in that it is operating at too low a level by reproving
from scratch the fact that a continuous function preserves limits. Adding that result
to the library gives a more satisfactory proof:

Let (an) and a be such that (an) is a sequence in f −1(U ) and an → a. Then f (an) is
a sequence in U. We would like to show that a ∈ f −1(U ), i.e. that f (a) ∈ U . Since f is
continuous and an → a, we have that f (an) → f (a). Therefore, since U is closed and
f (an) is a sequence in U, we have that f (a) ∈ U and we are done.

Note that if the library contains the the fact that a continuous function preserves
limits, then the prover will generate a trivial proof when asked to prove that fact.

In cases where the program fails to solve a problem, the most likely cause is that
the supplied library is not appropriate. Examining the final goal presented in the
detailed output of the program usually makes it clear what fact(s) one has forgotten
to include. Note that this is a benefit of our strategy of not backtracking: there is a
definite single final state in which the program is ‘stuck’, and examining that state is
invariably helpful.

9 Future Work

In the short term, we would like to make a number of small improvements to the
program so that it handles a greater range of problems satisfactorily. In the longer
term, we would like to enlarge significantly the set of problems that our program, or
some new version of it, is capable of solving. To do this, we will have to enable the
program to handle certain kinds of deductions that it currently handles either not at
all or only in a rather rudimentaryway. In particular, an immediate target is to give the
program the means to deal with second-order quantification, which would allow it
to solve easy compactness problems, and also problems that require the construction
of ‘obvious’ sequences.

At a more basic level, the program does not currently solve problems that involve
proof by contraposition or contradiction. It is not hard to add tactics that allow it to
cope with a few problems of this kind, but it is trickier to do so while not letting
it apply those tactics in inappropriate contexts. More work is needed to understand
what triggers the ‘contradiction move’ in human mathematicians, but we expect to
be able to add this facility in the near future.

The program is also not as good as we would like at handling equality substitu-
tions. The situation here is similar: we can obviously add tactics that perform such
substitutions (and have done so in the current version of the program), but it is more
challenging to understand when humans make such substitutions. It is also tricky to
come up with a general understanding of how they choose which out of two equal
variables or complex terms to eliminate. At its most general, the problem of how to
handle equality is well known to be hard, but our immediate aim would be a program
that can handle the easy cases of that problem competently and in a human way.
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Related to this, we need to do more work in order to enable the program to solve
problems that require the arithmetic structure of the real numbers, rather than just the
order structure. For example, the prover does not yet solve problems such as showing
that the limit of the sum of two convergent sequences is the sum of the limits.

In the longer term, we would of course like the program to be able to solve non-
routine problems. A major step up in problem-solving sophistication is needed when
one is required to carry out mathematical constructions, especially when they are
far from unique. This is true even for very easy problems. Consider for example the
problem of finding an infinite set of positive integers that contains no three distinct
numbers x, y and z with x + y = z. One obvious example is to take the set of all odd
numbers. Another that works for a different reason is to take the set of all powers of
2. Yet another, {1, 2, 4, 7, 12, 20, . . . } is obtained by taking each new element to be
one more than the sum of the two largest elements so far. All these examples feel
like ones that a human might conceivably come up with in response to the problem.
We have ideas about how these kinds of simple (for humans) existence proofs are
discovered, but implementing those ideas in a program will be a great deal of work.
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