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1 Introduction

GeoGebra, a software tool for dynamic mathematics, has recently been enhanced
with an automated reasoning subsystem able to confirm/deny the truth of any geom-
etry statement displayed on the screen. In addition, if the statement is labeled as
false, GeoGebra can exhibit required modifications to the hypotheses that make the
statement true. The free availability and portability of GeoGebra have made it possi-
ble for millions of students worldwide to harness these novel techniques on tablets,
smartphones, and computers.

The mathematical background of this reasoning method—based on automati-
cally algebraizing a given geometric statement and associated construction and then
applying effective algebraic geometry tools—goes back to the work of Wen-Tsün
Wu in the 1970s (seeWu, 1978; Chou, 1987). Wu’s highly performing approach was
the starting point for the developing and implementing different algebraic geometry
based, automated reasoning algorithms in a large collection of programs. However,
there has never been a program as effective as GeoGebra in:

• merging dynamic geometry and computer algebra,
• addressing non-experts, and
• achieving an impact in the educational community worldwide.
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In this chapter we propose the exploration of a new kind of workflow in the
teaching/learning of elementary geometry with the help of the GeoGebra Automated
ReasoningTool (ART). Let us remark that the very recent launching of this toolmakes
our work a proposal not yet supported by experience. However, as we summarize
below and argue in more detail in the conclusion, we think it is important to reflect
on the potential uses and misuses of these tools in education early on.

It is well known that dynamic geometry systems (DGS), even without these spe-
cific features, can be useful (as well as challenging) tools in the teaching/learning
of reasoning and proof. DGS allow students to formulate certain geometric facts
(e.g., as intermediate steps in establishing the proof of a given statement) by drawing
auxiliary diagrams and then getting convinced of the truth/falsity of the proposed
assertion by checking its validity, in many instances, after randomly dragging some
elements of the figure (see Hohenwarter, Kovács, & Recio, 2017).

Moreover, DGS can help studentsmaking conjectures about a certain construction
by allowing them to drag some of its free objects and observe the behaviour of those
that depend on them. This dynamic visualization could enhance approaches listed
in Polya (1962) such as the “pattern of two loci”—one of Polya’s four “patterns
of thought.” An even simpler example of the potential relevance of dragging and
observing could be the study of the relation between segments AP and BP while P
moves in a circle with diameter AB.

Amore sophisticated context of geometric reasoning involvingDGSbasic features
arises when the user does backward conjecturing; that is, if the user makes, first, a
certain construction and then states some property that he/she wants to hold true over
the resulting figure. Obviously it does not hold true in general and the user has to look
for necessary changes in the construction. Dynamic geometry programs facilitate the
dragging of free objects and therefore the possibility of conjecturing how to restrict
the position of these objects for the desired property to emerge. For example, consider
a segment AB and a free point P. The user might want to find where to place P so that
AP,BP are perpendicular. Bymeasuring the angle∠APB and tracing the movements
of P so the angle keeps close to 90◦, the user can conjecture that P should be placed
in a circle with diameter AB.

All of these useful features—and their associated impact in the classroom—
belong, in some sense, to the past. Now, with GeoGebra ART, we can go much
further—both for conjecturing that some property actually happens in a given con-
struction and for discovering how to modify the construction for a given property to
hold. A first novelty is that GeoGebra can take the lead and formulate the conjectures
by itself. Thus, the program can, by simply comparing some geometric objects in a
particular instance of a construction by means of the Relation tool, suggest a prop-
erty holding between these elements as a conjectural truth. For example, in the above
example with P located in a circle of diameter AB, we can directly ask GeoGebra
for some relation between segments AP,BP produced by a concrete position of P in
the circle, yielding, as output, that for this particular instance, and computing with
the numerical coordinates of A,B,P, the two segments seem to be perpendicular.

A second improvement is that, in this context, GeoGebra can automatically verify
the general validity of this conjecture. In the affirmative case, it uses computation
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with symbolic coordinates to establish a mathematical proof; that is, a proof not
based on visual verification, approximate numerical calculations, or probabilistic
analysis. To avoid confusion, the proof is performed in the program background and
not shown to the user since it could fill hundreds of pages of algebraic formulas.
Eventually, a message highlighting the need to avoid some degenerate cases for the
truth of the given statement appears on the screen.

If the answer to the conjecture is negative and the user insists on requiring that the
established conjecture holds, he/she can ask GeoGebra via the LocusEquation com-
mand for the precise formulation of necessary changes to the statement hypotheses.

We situate this workflow in a technology-mediated paradigm where the machine
behaves like a mentor in the learning process, helping students in the intermediate
steps of developing their own explanations of the truth of some geometric facts and
fostering a creativity spiral as new discoveries are made by restarting the workflow
again and again.

In the next section, we present a short overview of maths apps and programs
related to dynamic geometry and theorem proving. We also give a basic description
of the mathematical algorithm and system requirements behind our GeoGebra ART.
In section three, we explore the use of these tools in education to help students
discover geometric facts both experimentally and by proving. Section four focuses on
a particularly novel feature of ART—the automatic discovery of missing hypotheses
for a given (false) statement to become true. We also emphasize how this feature can
help students “create” interesting, new geometric statements. Finally, section five
collects some arguments and conclusions on the possible effect of GeoGebra ART
in the learning and teaching of geometry.

2 Currently Available Maths Apps: A Short Overview

No doubt, there is a growing interest in developing convenient maths applications for
contemporary students who are very experienced in using new technology, including
smartphones and tablets. One of the most vibrant places to experiment with what the
new technology offers is the market of Android applications, in particular those that
are freely available and at the disposal of a very large set of users. Here we refer to a
recent survey by Corpuz (2017) that summarizes some of the most popular Android
and iOS apps as of October 2017. Corpuz’s collection consists of flexible scientific
calculators for special purposes such as scientific or financial inputs, equation solvers,
graphing calculators, and computational knowledge engines. Some of these popular
software tools support handwriting recognition and/or capturing and interpreting
camera shots of handwritten/printed formulas. On the other hand,

. . . when it comes to mathematics, it isn’t just getting the final answer that’s important; if
anything, correct step-by-step solutions are far more important when it comes to teaching
and learning math. (Corpuz, 2017, slide 9)
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In this context, let us remark that one of the examples in the survey, theMathway app,
is able to provide the user not only with the answer to a problem (mainly in Linear
Algebra, Calculus, or Trigonometry, introduced by typing or scanning handwritten
input via the smartphone camera) but also with each step of the solution.

Photomath is not listed in Corpuz’s collection but was the most popular maths
app on Google Play in March 2018. Photomath provides step-by-step solutions to a
comparable range of problems to the Mathway app free of charge in 36 languages.

It is, however, incautious to conclude that these examples represent a real change
in the educational paradigm, opening the door to a new approach based on computer-
mediated thinking. In fact, these apps are just enlarged pocket calculators that closely
follow school traditions. Some of the answers they provide, such as the detailed
steps in solving a linear univariate equation, are a usual requirement in the school
curriculum in many countries.

On the other hand, step-by-step solvers for other fields of the maths curriculum
(such as geometry) are not yet so popular. There are, however, remarkable attempts
in some other areas such as:

– Edukera (www.app.edukera.com) that teaches step-by-step proving in the fields
of logic, sets, calculus, and analysis,

– Euclidea (www.euclidea.xyz) that teaches Euclidean geometry constructions as
puzzles (120 puzzles are provided), with some basic dynamic geometry features.

These software tools are, however, only useful for finding solutions to pre-
programmed problems. Even though the input seems to be a wide-open set of formu-
las, they are limited to solving a concrete set of close-ended problems. Thus, what
they offer for a substantial part of mathematical activity—namely, for discovery—is
very limited. Of course for most learners, these wonderful pieces of software are still
inexhaustible, and their mathematical activity indeed simulates a kind of endless
discovery.

In the following, we focus on a radically different approach. In our proposal,
discovery plays a key role and the questions being posed challenge not only the
underlying software, but also the user—both human and machine collaborating in
the learning of something new!

Let us quickly recall that automated deduction of known or not yet discovered
geometric results has a wide literature going back to the appearance of the first
computers (see Botana et al., 2015 for a detailed overview). In particular, in planar
Euclidean geometry, the first successful attempts in the 1950s (see Gelernter, 1959)
led to a line of work in Formal Logic andArtificial Intelligence. Asmentioned above,
another important approach was based on Algebraic Geometry methods and was
started byWu (1978) and his early followers, including Chou (1987), and—focusing
on the Gröbner bases method—Kapur (1986), and Kutzler and Stifter (1986), among
others.

This is precisely the method used in the current GeoGebra implementation and
that we roughly describe as follows: first, geometric statements are internally trans-
lated in terms of algebraic equations. For example, assume that the translation of the

www.app.edukera.com
www.euclidea.xyz
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hypotheses H and the thesis T of a given statement {H ⇒ T } is a collection of poly-
nomial equations H = {h1 = 0, . . . , hr = 0} (respectively T = {f = 0}). Then, the
geometric instances verifying the hypotheses (respectively the thesis) are identified
with the solution set of the corresponding polynomial system. And, if a non-empty
and large subset (technically speaking: if a Zariski-open subset) of the algebraic vari-
ety of solutions of H is contained in the solution set of T , the theorem is labelled as
generally true. This key inclusion test is performed by using Elimination procedures
with Gröbner basis and checking whether the result is zero or not (see Recio &Velez,
1999 for further technical details).

DGS became very popular and well known with the breakthrough of personal
home computers. Beginning with theGeometric Supposer (Schwartz &Yerushalmy,
1983) in 1981, widely used tools such as The Geometer’s Sketchpad (Jackiw,
1995), Cabri Geometry (Baulac, Bellemain, & Laborde, 1994), and Cinderella
(Kortenkamp, 1999) were available commercially. Another breakthrough, GeoGe-
bra’s (Hohenwarter, 2002) free availability for millions of users, opened the road to
considering dynamic geometry as a natural education tool in the classroom.

Combining automated deduction in geometry (ADG) and DGS was a somewhat
newer topic, but was already present in the 1990s as more than a research concept in
the first versions of several DGS (de Villiers, 1999). These pioneer approaches, how-
ever, mostly used numerical and statistical methods for verifying properties holding
among elements of a geometric figure. Just a few years later, in the second half of the
1990s, software tools appeared that used pure symbolicmethods to prove or visualize
geometric facts (see Botana & Valcarce, 2002; Oldenburg, 2008; Ye, Chou, & Gao,
2011).

We emphasize that a further requirement was essential to making substantial
improvements in harnessing the possibilities of DGS; namely, accessing symbolic
computations reliably and quickly, and connecting them dynamically with geometric
objects. This is now possible in GeoGebra thanks to Giac (Kovács & Parisse, 2015).
GeoGebra is currently able to perform symbolic computations that allow the user to
manipulate (simplify, expand, etc.) algebraic expressions in a way as rigorous as any
well known computer algebra system.1

Finally, the application of these symbolic computations tools to automatic rea-
soning in geometry in GeoGebra was initiated by Recio, Botana and Abánades in
2010, and continued by many others, including Kovács, Weitzhofer, Parisse, and
Sólyom-Gecse over the last years (for more precise technical information and fur-
ther references see Botana et al., 2015; Kovács & Parisse, 2015). The outcome of
this work, GeoGebra ART, will be discussed in the following sections.

1https://en.wikipedia.org/wiki/Computer_algebra_system.

https://en.wikipedia.org/wiki/Computer_algebra_system


220 M. Hohenwarter et al.

3 Discovery and Creativity

Corless (2004) describes computer-mediated thinking by citing Peter Jones’ notion
of “intelligent partnership” (Jones, 1996) between the student and the computer (see
Martinovic, Muller, & Buteau, 2013 for a detailed description). Corless mentions
several examples of significant computational results achieved during this fruitful
partnership. They are not only non-trivial for undergraduate students, but also sur-
prising formany researchers, too. In fact, as Corless recalls by quoting the Portuguese
Jewish philosopher, Abarbanel, mathematical discovery should be a surprising
activity:

“I have absolutely no interest in proving things I know are true.” (Corless, 2004, p. 10)

The relevance of student-computer cooperation in apprehending mathematical
ideas through discovery is also emphasized in Buchberger’s graphic creativity spiral
describing the learner’s workflow (Buchberger & The Theorema Working Group,
1998, see Fig. 1).

According to this concept, a continuous workflow can be identified starting with
computational results. These results lead by intuition (or nowadays we could say
by “big data” mining) to the invention of new conjectures that, in turn, yield to the
formulation and eventually the proof of new theorems. From there, as Buchberger
emphasizes, these results could lead to new algorithms and, by programming these
algorithms, to new computational results about some mathematical fact. The spiral
then continues with further inventions and conjectures (see also Kovács, 2018).

Of course, this process describes not only the learner’s attitude to knowing math-
ematics better, but the researcher’s position as well. In fact, both could be considered
as quite similar, if we recall Halmos’ idea (Halmos, 1982, p. vii) that “the only way
to learn mathematics is to do mathematics.”

Let us emphasize that both Corless’ notion and Buchberger’s spiral assume that
the discovery process requires a computer. Thus, in the following, wewill apply these
basic principles of discovering geometric facts to the mediation of DGS. Also, we
suppose—following the Jaworski’s concept on the teaching triad: management of

Fig. 1 Buchberger’s
concept, the creativity spiral
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learning, sensitivity to students, and mathematical challenge (Jaworski, 1994)—that
the related learning process will involve the presence of a human mentor as well.
The mentor serves as a “personal coach and influencer” who attempts to affect the
way a student behaves during a geometric task by suggesting concrete activities for
finding the solution. On the other hand, as with sports coaches, we think it is useful
to minimize the role of the teacher in the discovery process. The role of teachers
in this new context is a delicate issue that needs precise research. One example of
such research (described in Martinovic & Manizade, 2014) shows future teachers
exploring activities designed to develop both technological and geometric skills.

We summarize our proposal for a novel approach to geometry learning through
the use of the newly implemented ART in GeoGebra (see Kovács, Recio, & Vélez,
2017), as follows:

1. (a) The teacher provides the students with a kind of demo or tutorial on the use
of DGS automated reasoning tools.

(b) The teacher poses a problem. The nature of the problem is an open-ended
question (in the sense of Foster, 2013) like “find all points P in the plane
that have a certain property” (an “implicit locus problem”). More generally,
we are thinking of questions for which the student has not been taught to
follow a predetermined path for finding a solution. Of course, this is a very
subjective situation. Using computers to “discover” shows that there is indeed
a predetermined path to success, but not for the human user!

2. Some computations are performed with the DGS, based on a construction made
by the student. In many cases this results in using the software tool for either
random experiments or for experiments planned by the teacher. As an example,
we will focus on computing a particular implicit locus (say, a circle).

3. A conjecture describing the characteristics of the output curve (e.g., a circle going
through the three vertices of a given triangle) is made by the student.

4. The conjecture is checked numerically and symbolically by the DGS. We accept
this result without further verification as a basic step. We now have a theorem. If
applicable, the proof can be worked out by paper and pencil as well.

5. The next activity suggested by Buchberger’ spiral—the “programming” step—
can be interpreted here as using the obtained result as a “piece” towards achieving
more involved statements. These new pieces can then be assembled into new
algorithms.

In this way, the obtained theorems and algorithms could be considered as a
mere step towards the design and execution of “further experiments” by the stu-
dent, whether controlled by the teacher or not, involving new computations with
DGS (Step 1, second round). The process of Buchberger’s spiral then continues with
Step 2.
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4 An Example: Implicit Loci in GeoGebra

Using the steps above we now give some examples of how GeoGebra ART supports
the discovery of an implicit locus. Let us consider the following simple implicit locus
problem:Given a line segment, describe the position of all points that are equidistant
from the segment’s endpoints.

The solution to this basic introductory question is well known, both theoreti-
cally and through exploration with a DGS. In fact, this “direct” locus problem can be
considered as an elementary instance of Voronoi diagrams, well known for their man-
ifold real-life applications (Lindenbauer & Reichenberger, 2015). Yet, the teacher
may propose this problem in an open-ended form (Step 0 (b)).

For the student, Step 1may be to draw a triangle inGeoGebra by using thePolygon
tool . By default, triangle ABC with sides a, b and c is created (here and in the
rest of the paper we assume that sides a, b and c are opposite vertices A, B and
C respectively). Now the student can consider points A and B as fixed during the
observation, and C as arbitrary and freely draggable. In the Algebra View it can be
observed how side lengths a and b change when point C is dragged.

After collecting the results for a sufficiently high number of positions of C, a
conjecture about the locus of C can be made. For some students this will be easy,
but for others, probably not. To help the latter, additional colouring of the trace of
C when a and b are close to each other could be enabled (Fig. 2, see Losada, 2014
for more details). This visual help may be unnecessary in this simple example, but
for more difficult questions it could be quite relevant (see, e.g., Losada, Recio, &
Valcarce, 2011).

Alternatively, GeoGebra can numerically compute the solution for the partic-
ular case when A and B are fixed. The student just needs to enter the com-
mand LocusEquation(a==b,C)2 to obtain the algebraic equation of the result-
ing geometric curve; that is, the bisector line of segment AB, with the equation
−8800x + 250y = −8607. Figure 3 shows the result.

Of course, learners need to have some minimal knowledge of analytic geometry
to be able to recognize that the obtained curve is indeed a line. This is, however, not
strictly required. The conjecture could instead be formulated by simply observing
the visual output of the locus in the Graphics View.

To confirm this, the student will also want to drag the points A or B. This could
generalize the obtained result by creating several other setups of the input points.
Figure 4 shows a few particular cases where A was moved from the original position
to the position (−2, 3). Of course, tracing should not be enabled in this step. It was
done here to demonstrate the number of video frames shown during a short dragging
interval.

2Notice that, according to the syntax of GeoGebra, the equation sign must be entered twice; this
information is available in the GeoGebra Help or in Kovács (2017), but should also be remarked
by the teacher in Step 0 (a).
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Fig. 2 Colouring the plane to find the locus. Here tracing is enabled for point C and Dynamic
Colors are set for each RGB component by using the formula 1

|a−b|+1

In the final position, we obtained a linear equation again (here −328x + 46y =
−303). Hopefully, most students have the correct conjecture at this point; namely,
that the locus is the perpendicular bisector of AB.

To continue with Buchberger’s schema, the student then goes on to Step 3—
proving the conjecture numerically and symbolically. This substantial step requires
a somewhat different construction. After disabling or deleting the obtained implicit
curve d in the construction, the student should create the perpendicular bisector f

of AB by using the Perpendicular Bisector tool . Then, by attaching an arbitrary
point D on f , and—by using the Segment tool —creating segments g = AD and
h = BD, point D will be freely draggable on f only and the Algebra View will show
up-to-date information on the lengths of g and h.

Finally, using the Relation tool with respect to g and h, the student tests (first,
numerically) the validity of conjecture about the equidistance of all the points in the
perpendicular bisector to the extremes of the segment. The Relation tool asks for any
potential relation between these two segments.

Things are actually more complicated than simply concluding that g = h in all
cases. Figure 5 shows an apparent counterexample concerning the lengths of these
two segments after setting Options/Rounding to 15 Decimal Places. Luckily, when
comparing them by with the Relation tool, GeoGebra knows that a difference in



224 M. Hohenwarter et al.

Fig. 3 Computing the locus equation in a particular case

precisely the last digit may be just a numerical error and assumes—just for the
output of Relation—that the numerical comparison resulted in equality (Fig. 6).

Finally, overcoming all these potential numerical inaccuracies, by clicking the but-
ton “More. . .”, a symbolic check (that is, a mathematically rigorous proof)rigorous
proof will be performed. ‘Symbolic’ here means a lot. Indeed, the input data are
not anymore points with numerical coordinates, but with coordinates expressed by
means of variables. The construction steps do not yield equations with numerical
coefficients, but parametric equations depending on the parameters describing the
coordinates of the free points, etc. Then, using sophisticated computer algebra algo-
rithms, a complete proof consisting of up to a few millions of algebraic steps is done
in the background. Only the final result “always true” is shown to the user (Fig. 7;
see Kovács, 2015 for details).

Now the student has reached a point where there is more than enough evidence,
based on the DGS automated reasoning tools, that the searched locus is the perpen-
dicular bisector. The teacher (or the student) may then want to find a non-automated
proof, and also a chain of reasons why the theorem holds. In this paper we do not
focus on how this could be done in the best way.



Using Automated Reasoning Tools to Explore Geometric … 225

Fig. 4 Computing the locus equation for more than one case

Fig. 5 Rounding errors may lead to confusing results
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Fig. 6 The Relation tool assumes that a minor numerical error may still not be contradictory to the
conjecture

Fig. 7 Symbolic check in the Relation tool

4.1 A Second Round

Instead, we suggest going for a second round in the creativity spiral. Step 4 is about
“programming”—here it could mean constructing a new figure or observing some-
thing different but related to the first round. There are several ideas to think about,
but we will focus on the following:Can we change the proposed statement by using a
different formula than a == b? This idea involves just a minimal modification of the
context, but results in a surprising change of the output. For example, let us consider
the formula a == 2b.

The students can start again with Step 1 by doing various computations, including
entering LocusEquation(a==2b,C). Figure 8 shows the result.

It may be not obvious to the studentwhat type of curve is shown as the output. Here
the equation x2 + 8x + y2 − 4y = −4 is shown, which is equivalent to the formula
(x + 4)2 + (y − 2)2 = 42—clearly a circle. The student should, however, do several
other attempts by dragging points A and/or B to verify other particular cases (Fig. 9).
In the final position A = (3, 4), B = (4, 2), the implicit curve 3x2 − 16x + 3y2 −
28y = −80 is obtained, which is, again, a circle, with a more difficult equivalent
form. The intermediate curves also seem to be circles; that is, we may have a strong
conjecture that the equation is a circle in general.
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Fig. 8 Computing the locus equation in a particular case (second round)

We leave the reader to find the equivalent formula for the final circle in Fig. 9.
It should help to discover the exact position of the conjectured circle. In addition,
Fig. 10 discloses how the conjectured circle can be constructed by using a compass
and a straightedge ruler. For some GeoGebra implementation issues, these tools are
required to enable symbolic checks in the Relation tool.

Here we observe that the obtained circle is a circle of Apollonius (of Perga), with
foci A and B and ratio 2.

4.2 Other Rounds

Clearly, other interesting questions can arise in this context, with surprising answers
and involving unusual geometric facts. Here we only mention one simple possi-
ble modification of the previous formula; namely, considering LocusEquation
(a==2b+1,C), as shown in Fig. 11.

The set of obtained curves are of various geometry. In some cases, two closed
curves are shown as the locus, but in other cases, just a subset of points in the
locus output fulfills the formula requirements. For example, in Fig. 11 only the exter-
nal curve provides points such that a = 2b + 1, while the internal one fulfills the
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Fig. 9 Computing the locus equation in some particular cases (second round)

condition a = 2b − 1. The reason behind this unexpected effect has deeper roots
in algebraic geometry and cannot be discussed in the classroom or in this chapter.
Instead, we would like to emphasize that seemingly simple questions can actually
lead to involved issues. In our opinion, however, this should not prevent us from ask-
ing freely—even more so, if our students ask questions on their own and get curious
to discover the answer!

Finally, let us mention here the proposal of Krause (1975) that introducing a
minimal change in the geometric assumptions of a given context results in a surprising
shift towards a substantially new theory.We think the best educational setting happens
when students are surprised by the answers they get and inspired to spend more time
on discovering the richness of mathematics.

In this section we have discussed just one particular topic in planar geometry.
However, many other topics can be raised in the classroom by using the “implicit
locus approach”. Some typical curriculum topics include:

1. (The converse of) Thales’ circle theorem (see Artigue, 2012; Kovács & Schiffler,
2017): Given a segment AB, what is the locus of points C such that AC ⊥ BC?
(A generalization of this approach yields the inscribed angle theorem.)

2. A variation of the triangle inequality: Given a triangle ABC with side lengths a,
b and c, where the points A and B are fixed, what is the locus of points C such
that a + b = c?
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Fig. 10 Constructing the solution by using steps defined only by a compass and a ruler

Fig. 11 Sometimes the locus equation can be a “yet unknown”, “strange” curve
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Fig. 12 GeoGebra ART detects an unusual locus when analyzing a traditional statement

3. (The converse of) Pythagoras’ theorem: Given a triangle ABC with side lengths
a, b and c, where the points A and B are fixed, what is the locus of points C such
that a2 + b2 = c2?

4. (The converse of) the right triangle altitude theorem (also known as geometric
mean theorem): Given a triangle ABC with altitude h (with respect to C) and two
line segments p and q that it creates on side c, what is the locus of points C such
that h = √

pq (or, equivalently, h2 = pq)? (See Fig. 12).

Let us highlight here that the obtained locus in the last example is not just a
circle—according to the right triangle being assumed in the traditional theorem—
but also a hyperbola (Abánades, Botana, Kovács, Recio, & Sólyom-Gecse, 2016a).
This provides an immediate but not well known generalization of the right altitude
theorem.

On the other hand, implicit loci are just a part of the new possibilities in GeoGebra
ART. Other commands like direct Prove, ProveDetails or Envelope computation, are
also available.

We refer to Botana (2016), Hašek (2017), Kovács and Vajda (2017), Kovács
(2017, 2018), Abánades et al. (2016a, b), Kovács et al. (2017) for further details and
examples of these recent methods in GeoGebra and to (Kovács et al., 2017) for full
documentation.
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5 Conclusion

It was stated 30 years ago in the futurist ICMI Study “School Mathematics in the
1990s” (Howson & Wilson, 1986) that

. . . even if the students will not have to deal with computers till they leave school, it will be
necessary to rethink the curriculum, because of the changes in interests that computer have
brought.

It was also long ago that an inspiring paper (Davis, 1995) by Philip Davis included
a section specifically on the power of computer-based proofs to “transfigure” geom-
etry statements and therefore to affect the potential role in mathematics education of
software programs dealing with automatic theorem proving.

Another seminal paper in this context is Gila Hanna’s “Challenges to the Impor-
tance of Proof” (Hanna, 1995). Hanna considered the pedagogical and epistemolog-
ical impact of different ways of using the computer to prove mathematical facts—for
example, verifying a finite number of cases that remain to be checked for complet-
ing the proof of a statement, the so-called zero-knowledge proofs, and the case of
proofs with a high probability of being correct. She also raised another challenge: the
increasing habit of using the computer to establish the truth of a statement (visually
or numerically) through experiments rather than formal proof.

Most of these messages about the relation between computers and proofs were
essentially warning signs about issues that could take place in future worlds. Yet we
think they are still quite present today. In fact, we see three basic concerns regarding
dynamic geometry and mathematical reasoning. The first relates to the negative
influence of the versatile visualization features of dynamic geometry programs. As
Lin, Yang, Lee, Tabach, and Stylianides emphasize in (2012),

[The] increased availability in school mathematics instruction of . . . dynamic geometry
systems. . . raised the concern that such programmes would make the boundaries between
conjecturing and proving even less clear for students.

[They] allow students to check easily and quickly a very large number of cases, thus helping
students ‘see’ mathematical properties more easily and potentially ‘killing’ any need for
students to engage in actual proving.

Indeed, what is involved in the easy checking of a large number of cases is the
“dragging” feature of DGS and, therefore, the above worries apply very particularly
to all DGS.

The second concern relates only to the few DGS that currently provide automated
reasoning tools, with at least the ability to confirm/deny themathematical (not proba-
bilistic) truth of a geometric statement. In the case of GeoGebra, as mentioned above,
these tools are enlarged with other features for automatic discovery and beyond.

In fact, DGS with ART features can be considered “geometry calculators” and
therefore as reflecting the already well known concerns about arithmetic or scientific
calculators in mathematics education:

Can students be intellectually attracted to compute 23456769 × 98765432, once they know
there is an algorithm that yields the correct answer 2316717923609208 and that it has been
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implemented in their personal, say, tablet or phone? Likewise, will they be interested in
finding whether the three heights of a triangle meet always at one point, if their pocket phone
is able to guarantee, with a mathematical algorithm, that they certainly do so? (Hohenwarter
et al., 2017)

Furthermore,we could ask:will they be interested in developing a local “deductive
theory” (de Villiers, 1990) when insight into mathematical evidence does not seem to
require this ability anymore, but, instead, a different kind of “cooperative reasoning”
with the machine as described above?

The answer is unclear to us. It is possible the two contexts (arithmetic, geometry
calculators) are not actually that parallel. In fact, the elementary geometry curriculum
has always been deeply affected by the choice of “geometry tools” such as the ruler
or the compass. Perhaps it is now the turn of a different geometry based on the
existence and possibilities of Dynamic Geometry ART. Perhaps we should not just
keep using new technology for old problems (old problems that are intimately “old
tools”-driven). And perhaps we should consider the new technology as something
other than a source of “concerns” (as outlined in Lin et al., 2012).

A third concern, going beyond the educational world, and considering GeoGe-
bra ART just as a tool for the professional mathematician, has to do with one of
Hanna’s “challenges to the importance of proof.” Although very relevant and nowa-
days increasingly present in professionalmath activity, themethods referred inHanna
(1995) for deciding the truth of a statement (using the computer to verify a large set
of instances; zero-knowledge proofs; probabilistic proofs) have little to do with our
approach, except for one collateral coincidence. In fact, as we have already empha-
sized, GeoGebra ART algorithms yield an exact (not numerically approximate, prob-
abilistic, visual, or experimental) proof that would be accepted by the mathematical
community as if it were made by hand by a human. This highlighted phrase is,
perhaps, the crucial point. As Hanna poses in the above article:

Should mathematicians accept proofs that can not be verified by others?

Well, no, in our opinion. But, as described above, the main role we are proposing
for the educational use of GeoGebra ART is not ‘acceptance,’ but “suggesting” ideas
and ways for producing a formal, human readable, proof. The problem, of course,
does not end with this declaration. We could also ask: what does “verified by others
(humans)” mean today? Is using a calculator to verify a numerical computation
such as 23456769 × 98765432 forbidden in this context? Is “the verification” more
acceptable only if the algorithm for this multiplication is done by hand on a piece
of paper? How do we verify the correction of the algorithm and its implementation
(by hand, by the human)? And, finally, if humans are allowed to use calculators to
verify computations, should we restrict this to numerical calculators (and not to those
performing algebraic computations)? Should the algorithmic expansion of (x + y)100

performedbyGeoGebra on amobile phone appbe considered less “humanverifiable”
than the same computation done by a human on a blackboard?

We think there is a need to address urgently the extended impact of themerging, in
one single tool, of the above three challenges related to DGS and Automatic Reason-
ing: (1) the potential, discouraging influence of powerful visualization features, (2)
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the availability of an exact “geometry calculator”, and (3) the precise meaning today
of “human readable” or “human verifiable” in a society where computers, laptops,
and mobile phones are everywhere from kindergarten up.

Yet, the very recent survey (Sinclair et al., 2016) by Sinclair, Bartolini Bussi,
de Villiers, Jones, Kortenkamp, Leung and Owens does not refer at all to automated
reasoning tools. We think it is an urgent issue to address in future surveys of this
kind, given the large expansion of GeoGebra in the classroomsworldwide—over 100
million users of its apps and website in 2017—and the fact that ART features have
recently been included in it (see Kovács, 2015). This quantitative fact, indeed, has
made a qualitative difference: as with pocket calculators, people will probably use
ART for checking geometric facts with or without the consensus of the pedagogical
community on its role.

We do not feel competent at this point to propose a concrete route towards geome-
try teaching and learning in this new context. We need feedback from the educational
community (researchers, teachers, students) concerning what it means to teach and
to learn and what elementary geometry means in this extended framework.

We simply feel GeoGebra’s automated reasoning capabilities can help our stu-
dents to do mathematics better or faster, just as we think it is beneficial to have an
electronic calculator to compute the square root of a number much faster than using
the traditional, mechanical method by hand (which, not surprisingly, is no longer
part of most curricula).

On the other hand, in the previous sections we have shown that even a simple
question can yield difficult or surprising issues. It is in addressing these issues that
mathematical creativity and reasoning can be fully developed but in a non-traditional
way: human and machine equally ready to explore the geometric context. In this way
we could argue that the intention ofART is not just to do the samekind ofmathematics
better and faster, but to do “a better kind of mathematics.” Let us borrow Kaput’s
visionary words, cited by Balacheff (1997): instead of doing (old) things better we
should focus on doing better things.
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