
Mathematics Education in the Digital Era

Gila Hanna
David A. Reid
Michael de Villiers Editors

Proof
Technology in
Mathematics
Research and
Teaching

Mathematics Education in the Digital Era

Volume 14

Series Editors

Dragana Martinovic, University of Windsor, Windsor, ON, Canada
Viktor Freiman, Faculté des sciences de l’éducation, Université de Moncton,
Moncton, NB, Canada

Editorial Board

Marcelo Borba, State University of São Paulo, São Paulo, Brazil
Rosa Maria Bottino, CNR – Istituto Tecnologie Didattiche, Genova, Italy
Paul Drijvers, Utrecht University, Utrecht, The Netherlands
Celia Hoyles, University of London, London, UK
Zekeriya Karadag, Giresun Üniversitesi, Giresun, Turkey
Stephen Lerman, London South Bank University, London, UK
Richard Lesh, Indiana University, Bloomington, USA
Allen Leung, Hong Kong Baptist University, Kowloon Tong, Hong Kong
Tom Lowrie, University of Canberra, Bruce, Australia
John Mason, Open University, Buckinghamshire, UK
Sergey Pozdnyakov, Saint-Petersburg State Electro Technical University,
Saint-Petersburg, Russia
Ornella Robutti, Università di Torino, Torino, Italy
Anna Sfard, USA & University of Haifa, Michigan State University, Haifa, Israel
Bharath Sriraman, University of Montana, Missoula, USA
Anne Watson, University of Oxford, Oxford, UK
Eleonora Faggiano, Department of Mathematics, University of Bari Aldo Moro,
Bari, Bari, Italy

The Mathematics Education in the Digital Era (MEDE) series explores ways in
which digital technologies support mathematics teaching and the learning of Net
Gen’ers, paying attention also to educational debates. Each volume will address one
specific issue in mathematics education (e.g., visual mathematics and
cyber-learning; inclusive and community based e-learning; teaching in the digital
era), in an attempt to explore fundamental assumptions about teaching and learning
mathematics in the presence of digital technologies. This series aims to attract
diverse readers including: researchers in mathematics education, mathematicians,
cognitive scientists and computer scientists, graduate students in education,
policy-makers, educational software developers, administrators and
teachers-practitioners. Among other things, the high quality scientific work
published in this series will address questions related to the suitability of
pedagogies and digital technologies for new generations of mathematics students.
The series will also provide readers with deeper insight into how innovative
teaching and assessment practices emerge, make their way into the classroom, and
shape the learning of young students who have grown up with technology. The
series will also look at how to bridge theory and practice to enhance the different
learning styles of today’s students and turn their motivation and natural interest in
technology into an additional support for meaningful mathematics learning. The
series provides the opportunity for the dissemination of findings that address the
effects of digital technologies on learning outcomes and their integration into
effective teaching practices; the potential of mathematics educational software for
the transformation of instruction and curricula; and the power of the e-learning of
mathematics, as inclusive and community-based, yet personalized and hands-on.

Submit your proposal:

Book proposals for this series may be submitted per email to Springer or the Series
Editors. - Springer: Natalie Rieborn at Natalie.Rieborn@springer.com - Series
Editors: Dragana Martinovic at dragana@uwindsor.ca and Viktor Freiman at viktor.
freiman@umoncton.ca

Forthcoming volumes

Teaching Mathematics and Financial Education - Research and Practice
Edited by Annie Savard and Alexandre Soares Cavalcante

More information about this series at http://www.springer.com/series/10170

mailto:Natalie.Rieborn@springer.com
mailto:dragana@uwindsor.ca
mailto:viktor.freiman@umoncton.ca
mailto:viktor.freiman@umoncton.ca
http://www.springer.com/series/10170

Gila Hanna • David A. Reid •

Michael de Villiers
Editors

Proof Technology
in Mathematics Research
and Teaching

123

Editors
Gila Hanna
Ontario Institute for Studies in Education
University of Toronto
Toronto, ON, Canada

David A. Reid
AG Didaktik, Fachbereich 3
Universität Bremen
Bremen, Germany

Michael de Villiers
Faculty of Education
Stellenbosch University
Stellenbosch, South Africa

ISSN 2211-8136 ISSN 2211-8144 (electronic)
Mathematics Education in the Digital Era
ISBN 978-3-030-28482-4 ISBN 978-3-030-28483-1 (eBook)
https://doi.org/10.1007/978-3-030-28483-1

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-28483-1

Contents

Introduction

Proof Technology: Implications for Teaching . 3
Gila Hanna, David A. Reid and Michael de Villiers

Automatic Theorem Provers

A Fully Automatic Theorem Prover with Human-Style Output 13
M. Ganesalingam and W. T. Gowers

A Common Type of Rigorous Proof that Resists
Hilbert’s Programme . 59
Alan Bundy and Mateja Jamnik

SMTCoq: Mixing Automatic and Interactive Proof Technologies 73
Chantal Keller

Studying Algebraic Structures Using Prover9 and Mace4 91
Rob Arthan and Paulo Oliva

Theoretical Perspectives on Computer-Assisted Proving

Didactical Issues at the Interface of Mathematics and Computer
Science . 115
Viviane Durand-Guerrier, Antoine Meyer and Simon Modeste

Issues and Challenges in Instrumental Proof . 139
Philippe R. Richard, Fabienne Venant and Michel Gagnon

The Contribution of Information and Communication Technology
to the Teaching of Proof . 173
Maria Alessandra Mariotti

v

Journeys in Mathematical Landscapes: Genius or Craft? 197
Lorenzo Lane, Ursula Martin, Dave Murray-Rust, Alison Pease
and Fenner Tanswell

Suggestions for the Use of Proof Software in the Classroom

Using Automated Reasoning Tools to Explore Geometric
Statements and Conjectures . 215
Markus Hohenwarter, Zoltán Kovács and Tomás Recio

Computer-Generated Geometry Proofs in a Learning Context 237
Pedro Quaresma and Vanda Santos

Using 3D Geometry Systems to Find Theorems of Billiard
Trajectories in Polyhedra . 255
Heinz Schumann

Classroom Experience with Proof Software

Learning Logic and Proof with an Interactive Theorem Prover 277
Jeremy Avigad

Web-Based Task Design Supporting Students’ Construction
of Alternative Proofs . 291
Mikio Miyazaki, Taro Fujita and Keith Jones

Reasoning by Equivalence: The Potential Contribution
of an Automatic Proof Checker . 313
Christopher Sangwin

Virtual Manipulatives and Students’ Counterexamples During
Proving . 331
Kotaro Komatsu and Keith Jones

Afterword

Proof Technology and Learning in Mathematics: Common
Issues and Perspectives . 349
Nicolas Balacheff and Thierry Boy de la Tour

Author Index . 367

Subject Index. 375

vi Contents

Contributors

Rob Arthan School of Electronic Engineering and Computer Science, Queen
Mary University of London, London, UK

Jeremy Avigad Department of Philosophy, Carnegie Mellon University,
Pittsburgh, PA, USA

Nicolas Balacheff Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble,
France

Thierry Boy de la Tour Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG,
Grenoble, France

Alan Bundy University of Edinburgh, Edinburgh, UK

Michael de Villiers Stellenbosch University, Stellenbosch, South Africa

Viviane Durand-Guerrier IMAG, Univ Montpellier, CNRS, Montpellier, France

Taro Fujita University of Exeter, Exeter, UK

Michel Gagnon École Polytechnique de Montréal, Montréal, Canada

M. Ganesalingam Trinity College, Cambridge, UK

W. T. Gowers Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, Cambridge, UK

Gila Hanna Ontario Institute for Studies in Education, University of Toronto,
Toronto, Canada

Markus Hohenwarter Johannes Kepler University of Linz, Linz, Austria

Mateja Jamnik University of Cambridge, Cambridge, UK

Keith Jones School of Education, University of Southampton, Southampton, UK

Chantal Keller LRI, University of Paris-Sud, CNRS UMR 8623, Université
Paris-Saclay, Orsay Cedex, France

vii

Kotaro Komatsu Institute of Education, Shinshu University, Nagano, Japan

Zoltán Kovács The Private University College of Education of the Diocese of
Linz, Linz, Austria

Lorenzo Lane University of Oxford, Oxford, UK

Maria Alessandra Mariotti University of Siena, Siena, Italy

Ursula Martin University of Oxford, Oxford, UK

Antoine Meyer LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, Université
Paris-Est, Marne-la-Vallée, France

Mikio Miyazaki Shinshu University, Nagano, Japan

Simon Modeste IMAG, Univ Montpellier, CNRS, Montpellier, France

Dave Murray-Rust University of Edinburgh, Edinburgh, Scotland

Paulo Oliva School of Electronic Engineering and Computer Science, Queen
Mary University of London, London, UK

Alison Pease University of Dundee, Dundee, Scotland

Pedro Quaresma University of Coimbra, Coimbra, Portugal

Tomás Recio University of Cantabria, Santander, Spain

David A. Reid Universität Bremen, Bremen, Germany

Philippe R. Richard Université de Montréal, Montréal, Canada

Christopher Sangwin School of Mathematics, University of Edinburgh,
Edinburgh, UK

Vanda Santos University of Coimbra, Coimbra, Portugal

Heinz Schumann University of Education Weingarten, Weingarten, Germany

Fenner Tanswell University of St Andrews, St Andrews, Scotland

Fabienne Venant Université du Québec à Montréal, Montréal, Canada

viii Contributors

Introduction

Proof Technology: Implications
for Teaching

Gila Hanna, David A. Reid and Michael de Villiers

Proving is sometimes thought to be the aspect of mathematical activity most resistant
to the influence of technological change. While computational methods are well
known to have a huge importance in applied mathematics, there is a perception that
mathematicians seeking to derive new results are unaffected by the digital era. The
reality is quite different. Digital technologies are influencing thewaymathematicians
work together and the way they go about proving.

Checking billions of cases in extremely large but finite sets, impossible a few
decades ago, has now become a standard method of proof. Distributed proving,
by teams of mathematicians working independently on sections of a problem, has
become very much easier as digital communication facilitates the sharing and com-
parison of results. Proof assistants and dynamic proof environments have influenced
the verification or refutation of conjectures. Techniques from computer science for
checking the validity of programs are being used to verify mathematical proofs. In
fact, proof-checking by software is seen as a necessity by themathematicianVladimir
Voevodsky (1966–2017), who created groundbreaking tools for computer confirma-
tion of the accuracy of proofs, given that human readers have often failed to detect
errors in many important proofs, including his own. It has been his dream to have
an electronic proof assistant check any theorem before its publication, as a way to
accelerate the reviewing process.

G. Hanna (B)
Ontario Institute for Studies in Education, University of Toronto, Toronto, Canada
e-mail: gila.hanna@utoronto.ca

D. A. Reid
Universität Bremen, Bremen, Germany
e-mail: dreid@uni-bremen.de

M. de Villiers
Stellenbosch University, Stellenbosch, South Africa
e-mail: profmd1@mweb.co.za

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_1&domain=pdf
mailto:gila.hanna@utoronto.ca
mailto:dreid@uni-bremen.de
mailto:profmd1@mweb.co.za
https://doi.org/10.1007/978-3-030-28483-1_1

4 G. Hanna et al.

Mathematics education is faced with many challenges. Educators are expected
to equip students with the ability to succeed in a rapidly changing world, to learn
methods of reasoning and solving problems that are constantly reshaped by techno-
logical advances. These are sometimes called ‘21st century skills”: mental and social
flexibility, creativity, collaboration, etc. Technological tools like theorem provers can
play a significant role in the development of these skills.

Yet mathematics education has been slow to reflect the substantial and increasing
use of proof assistants by practicing mathematicians, though many of the tools are
readily available. The goal of this book is to begin a dialogue between mathematics
educators and researchers actively developing automatic theorem provers and related
tools. This book cannot hope to bridge the gap between these two communities
completely, but we hope it will strengthen the awareness of educators to the potential
of these powerful tools. It is intended for mathematics educators with an interest
in computer tools that support proving, developers of automated theorem provers
who are interested in the educational implications of their work, and new scholars in
both these fields who will find food for thought and useful starting places for further
research. It provides a sampler of current topics in the use of automated reasoning
tools. Along with theoretical aspects of computer-assisted proving relevant to the
teaching of proof, the book’s chapters explore the most recent developments in the
use of technology in proving, notably interactive theoremprovers and proof checkers,
and go on to provide examples of their potential application in the classroom. Some
chapters also present case studies of classroom experience with dynamic geometry
software.

The book is organized into an unavoidably rough grouping of four broad parts:
(1) Automatic theorem provers, (2) Theoretical perspectives on computer-assisted
proving, (3) Suggestions for the use of proof software in the classroom, and (4) Class-
room experience with proof software. A separate last chapter provides a discussion
of relevant issues and additional topics.

1 Part I: Automatic Theorem Provers

In “A fully automatic theorem prover with human-style output,” M. Ganesalingam
and W. T. Gowers show that automated provers do provide a much welcome help to
mathematicians, are mathematician-friendly, and can successfully assist mathemati-
cians in proving results. They first describe the state of the art in automated proofs
and then explain their own program, which is capable of outputting a reader-friendly
script. By using this program students can try out various ways of proving and ask
the system to let them know if they are on the right track. The authors also illus-
trate their program with a few examples. As their abstract indicates, this program
was able to solve elementary mathematical problems and present “solutions that are
hard to distinguish from solutions that might be written by human mathematicians.”
This fact alone is so compelling that it is hard to imagine a mathematics educator,
having read the chapter, who would not be impelled to explore the potential of this

Proof Technology: Implications for Teaching 5

program for mathematics education (This chapter appeared in the Journal of Auto-
mated Reasoning February 2017, 58, 2, 253–291. It is reproduced by permission
from Springer).

In their chapter “A common type of rigorous proof that resists Hilbert’s program-
me” Alan Bundy and Mateja Jamnik show that there is a class of rigorous proofs,
which they call “schematic”, which are commonly used in mathematics education
but which resist formalization in Hilbert’s sense. This challenges the assumption,
widespread in mathematics education, that a rigorous proof is in principle translat-
able into a formal one, that is, a sequence of formulae each of which is either an
axiom or follows from earlier formulae by a rule of inference. Bundy and Jamnik
provide a surprising insight by arguing that to be formalizable, schematic proofs
require a program more radical than Hilbert’s. They support their claim with con-
vincing evidence, through a detailed analysis of schematic proofs widely discussed
in mathematics education, namely Cauchy’s Proof of Euler’s Theorem as discussed
by Lakatos (1976), and a few number-theoretic diagrammatic proofs also known as
“proofs without words”.

An automatic theoremprover, such as that described byGanesalingamandGowers
in their chapter, can find proofs autonomously, but coding inaccuracies can lead to
errors. Interactive provers, in contrast, are designed to assist mathematicians by
checking the proofs they produce. Chantal Keller, in her chapter “SMTCoq: Mixing
automatic and interactive proof technologies”, describes the use of an interactive
prover to check the output of an automatic theorem prover. SMTCoq allows the
Coq interactive theorem prover to work with automatic theorem provers on large
combinatorial problems, as well as other areas of mathematics and computer science.
She provides examples of how SMTCoq works and outlines its modular and efficient
architecture. A key feature is that the automatic theoremprovers output the arguments
underlying their results, which allows reconstruction and checking by the interactive
theorem prover. It is interesting to imagine how such systems could evolve to the
point that students could outline a proof approach, use an automatic prover to handle
the tedious parts while constructing the interesting parts themselves, and have the
whole checked by an interactive prover.

Rob Arthan and Paulo Oliva, in their chapter “Studying algebraic structures using
Prover9 and Mace4”, present examples from Heyting algebras of the use of a fully
automated theorem prover as well as an automatic counterexample generator. They
illustrate howquick and effective Prover9 andMace4 are in assisting an investigation.
The counterexample generator helps to quickly rule out false conjectures, while the
theorem prover is sometimes more effective than a human being in verifying the rel-
evant algebraic identities in question. That some of these computer-generated proofs
can seem inaccessible to a human reader may provide an ‘intellectual challenge’ for
mathematicians: to unpack them and try to rewrite them in an easier, understandable
form. Lastly, some brief suggestions are also made about the possible use of such
tools in the teaching of algebra.

6 G. Hanna et al.

2 Part II: Theoretical Perspectives on Computer-Assisted
Proving

The chapter “Didactical issues at the interface ofmathematics and computer science”
by Viviane Durand-Guerrier, AntoineMeyer, and SimonModeste discusses research
on the interaction between the two subjects, and reflects on the epistemological
and didactical issues that surface. The authors identify proof as a central didactical
issue at both high school and undergraduate levels. To illustrate their arguments,
they examine and illustrate the links between the concepts of algorithm, proof and
computer program.

The notion of instrumental proof is defined and analyzed in the chapter “Issues
and challenges in instrumental proof” by Philippe Richard, Fabienne Venant, and
Michel Gagnon. Using the theory of mathematical workspaces, they investigate the
epistemology and semiotics of instrumental proofs in discursive-graphic, mechanical
and algorithmical contexts. Some reflections are also given on the necessary learn-
ing conditions for classroom use of computer devices to achieve a healthy balance
between informal heuristics and formal validation.

Maria Alessandra Mariotti, in her chapter “The contribution of information and
communication technology to the teaching of proof” outlines ways in which com-
puters can allow students not only to prove theorems that would be beyond them
without assistance, but also to learn about the nature of proof. She cites examples of
teaching experiments exploring this possibility, but, more importantly, she outlines
a theoretical framework, within the Theory of Semiotic Mediation, that informs and
justifies teaching approaches. One focus is the importance of understanding not only
that particular results are true but also the context of definitions, principles and ways
of reasoning, the ‘theory’, in which they are true. Mariotti sees great potential for
the use of computers to help students become aware of the theories in which they
are proving results, including the criteria for proofs’ validity. It is interesting to con-
sider the uses of computers in proving outlined in other chapters in the light of this
chapter’s ‘meta’ perspectives.

The chapter “Journeys in mathematical landscapes: genius or craft?” by Lorenzo
Lane, UrsulaMartin, DaveMurray-Rust, Alison Pease, and Fenner Tanswell, focuses
on how anglophone mathematicians view their professional activity. The authors
examine the idea that the production of mathematics is akin to the exploration
of unknown landscapes. They provide a number of quotations in support of the
notion that one need not possess a “magic ingredient” to be able to do mathemat-
ics. Rather, mathematics as craft is mastered through apprenticeship, practice, and
skill-development with the goal of understanding the relationships of individual ele-
ments in a proof or a problem, and making the distinction between knowing-how
and knowing-that. They also discuss an example of an online mathematical activity,
known as “polymath” in which people collaborate over the internet on the solution
of problems and the construction of proofs.

Proof Technology: Implications for Teaching 7

3 Part III: Suggestions for the Use of Proof Software
in the Classroom

In their chapter “Using automated reasoning tools to explore geometric statements
and conjectures” Markus Hohenwarter, Zoltán Kovács, and Tomás Recio describe
the integration of an automatic theorem prover into GeoGebra, a dynamic geometry
software often used in schools. This allows students to be certain that a proof exists for
a conjectured relation in a geometric situation. In the past, students could use dynamic
geometry software to amass empirical evidence for a conjecture by dragging, but the
tool described here is a true theorem-prover. It can also, if a conjecture is not true in
general, suggest changes to the constructions that wouldmake it true, thus facilitating
the identification of necessary conditions. The authors describe a hypothetical use
of the tool in a classroom, in which “the machine behaves like a mentor in the
learning process, helping students in the intermediate steps of developing their own
explanations of the truth of some geometric facts.”

Pedro Quaresma and Vanda Santos trace the evolution of dynamic geometry sys-
tems (DGSs) and geometry automated theorem provers (GATPs) in their chapter
“Computer-generated geometry proofs in a learning context”. These tools are now
being used by geometry practitioners (and students) not only to explore and test
new results and conjectures, but also to generate proofs with natural language and
visual rendering. Examples illustrate the use of the GATP features of GeoGebra and
Java Geometry Expert to, respectively, validate the well-known midpoint triangle
theorem, and to establish that the two lines are parallel in a particular configuration,
by basically giving the output ‘true’, but nothing else. Such validations clearly only
provide verification—they do not, for example address mathematicians’ needs for
understanding, explanation, clarification and systematization. However, the authors
proceed to give several examples of newer software developments that are now start-
ing to address these issues by giving outputs that are more human-readable, in the
form of natural language, logic and visual formats.

In his chapter “Using 3D geometry systems to find theorems of billiard trajecto-
ries in polyhedra” Heinz Schumann uses the dynamic geometry system Cabri 3D to
explore the trajectories of billiards in the cube and other convex polyhedra. Mathe-
matically, the investigation involves shortest paths and is equivalent to the discovery
of polygons with minimal perimeter inscribed within polyhedra. As illustrated with
many examples, the software provides opportunities for students to dynamically
explore, and easily make, many conjectures. The ability of the software to vary
parameters of geometric figures by dragging corresponding points assists 3D visu-
alization and heuristic thinking, as well as the gaining of confidence in the validity
of observations. A link is also provided to downloadable sketches that can be used
by the reader with a free Demo version of Cabri 3D.

8 G. Hanna et al.

4 Part IV: Classroom Experience with Proof Software

Jeremy Avigad’s chapter “Learning logic and proof with an interactive theorem
prover” advocates the virtues of learning both logic and proof through the use of an
interactive theorem prover. Avigad describes an undergraduate course specifically
designed to teach students to construct ordinary mathematical proofs using Lean, an
interactive theorem prover, providing sufficient details on both the contents of the
course and the way the course was taught. The chapter maintains that students learn
three notations simultaneously: informal mathematical language, formal symbolic
logic, and the language of Lean, each contributing unique insights, that seem to
be helpful to students. Avigad also argues that Lean was found to be particularly
effective in helping students internalize both the syntax and the rules of logic. He
also reveals that students rated the course highly in their evaluations, but grants that
a more rigorous evaluation is needed to support the claim that the use of interactive
theorem provers is indeed effective in teaching mathematics in general and proof in
particular.

The chapter byMikioMiyazaki, TaroFujita, andKeith Jones explores the potential
of a “Web-based task design supporting students’ construction of alternative proofs”
especially multiple proofs for a given geometrical statement. The tool provides feed-
back for different kinds of errors students are likely to make, and a flow-chart visual-
ization of the structure of the proof. The authors describe experience using this tool
in classroom contexts in which students could express quite sophisticated thinking
about how one proof can be transformed into another, logically distinct of the same
statement. The students showed awareness of logical principles (e.g., avoiding cir-
cular reasoning) and of the logical connections between statements (e.g., identifying
different theorems that can function in equivalent ways in a proof. They also devel-
oped some insight into ‘aesthetic’ aspects of proving, for example seeking proofs
that maximize efficiency.

In his chapter “Reasoning by equivalence: the potential contribution of an auto-
matic proof-checker,” Christopher Sangwin argues that reasoning by equivalence “is
themost important single form of reasoning in school mathematics”. He then focuses
on defining what he means by reasoning by equivalence, on the extent to which stu-
dents are asked to provide proofs, and on the design of an automatic proof-checker
within the STACK software which he created and which he uses to assess students’
responses. One characteristic element of the software is its focus on awhole argument
which can be submitted to formal verification; another is the important distinction
between reasoning and argumentation. The chapter underscores the fact that through
carefully designed tools, it is possible to communicate to students what is and is not
important in writing a satisfactory mathematical proof. The chapter gives several
examples of student work using STACK and ends with a thorough discussion of the
benefits and drawbacks on focusing on equivalence.

The chapter by Kotaro Komatsu and Keith Jones discusses “Virtual manipula-
tives and students’ counterexamples during proving” in an undergraduate geometry
course. The chapter is a useful reminder that instructionwith technologymust always

Proof Technology: Implications for Teaching 9

be planned judiciously. Careful consideration of the goals of teaching and the affor-
dances of the technology are needed, as well as awareness of the teacher’s role in
the lesson. The authors describe how they used task-design principles developed
for virtual manipulatives to reanalyze a dynamic geometry task they had developed
using different principles, and, drawing on an example of students’ work with that
task, they show the relevance of the design principles.

The last chapter, by Nicolas Balacheff and Thierry Boy De La Tour, is an After-
word.

5 Conclusion

We have indicated only a few ways in which the chapters can be used. They can of
course be read in a more selective way, highlighting the fruitful connection between
new proof technologies and teaching. The chapters also show that the connection
between proof technology and mathematics education is a wide field inviting further
investigation. We already have some sense that proof assistants greatly diminish the
need for verification and justification, but we know almost nothing of their potential
contribution to other roles of proof, such as explanation, communication, discovery,
and systematization, or how they now may become more relevant as pedagogical
motivation for the learning of proof in the classroom.

We hope that this volume will be part of a broader discussion on the value of
proof technology in both mathematics and mathematics education. We also hope it
will stimulate mathematics educators to learn more about proof technology and to
find innovative and effective classroom applications.

Acknowledgements Wewould like to thank all the authors for contributing their time and expertise
to this book. We wish to acknowledge the referees for their thoughtful and constructive reviews.
Many authors also served as referees; their double task is highly appreciated.

Special thanks go to Arleen Schenke, Hardy Grant, and Ed Barbeau for their stylistic polishing
of some of the chapters and for their most helpful editorial advice.

Thanks are due to the Journal of Automated Reasoning for permission to reproduce the article
“A Fully Automatic Theorem Prover with Human-Style Output” by M. Ganesalingam and W. T.
Gowers.

We wish to acknowledge the generous support of the Social Sciences and Humanities Research
Council of Canada.

Automatic Theorem Provers

A Fully Automatic Theorem Prover
with Human-Style Output

M. Ganesalingam and W. T. Gowers

1 Introduction

1.1 Overview of the Paper

The main purpose of this paper is to describe a program that solves elementary
mathematical problems, mostly but not exclusively in metric space theory, and that
presents the solutions in a form that is hard to distinguish from solutions that human
mathematiciansmight write. The following two proofs are examples of the program’s
output.1 The first is a proof that if f : X → Y is a continuous function and U is an
open subset of Y, then f −1(U) is an open subset of X, and the second is a proof that
if f : X → Y is an injection and A and B are subsets of X, then f (A) ∩ f (B) ⊂
f (A ∩ B).

Let x be an element of f −1(U). Then f (x) ∈ U . Therefore, since U is open, there exists
η > 0 such that u ∈ U whenever d(f (x), u) < η. We would like to find δ > 0 s.t. y ∈
f −1(U) whenever d(x, y) < δ. But y ∈ f −1(U) if and only if f (y) ∈ U . We know that
f (y) ∈ U whenever d(f (x), f (y)) < η. Since f is continuous, there exists θ > 0 such that
d(f (x), f (y)) < η whenever d(x, y) < θ . Therefore, setting δ = θ , we are done.

Let x be an element of f (A) ∩ f (B). Then x ∈ f (A) and x ∈ f (B). That is, there exists
y ∈ A such that f (y) = x and there exists z ∈ B such that f (z) = x . Since f is an injection,

1The program produces LaTeX output, which we reproduce verbatim here.

Reprinted with permission from Springer’s Journal of Automated Reasoning, February 2017, Vol-
ume 58(2), pp 253–291.

M. Ganesalingam (B)
Trinity College, Cambridge, UK
e-mail: mg262@cam.ac.uk

W. Gowers
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WB, UK

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_2&domain=pdf
mailto:mg262@cam.ac.uk
https://doi.org/10.1007/978-3-030-28483-1_2

14 M. Ganesalingam and W. T. Gowers

f (y) = x and f (z) = x , we have that y = z. Wewould like to find u ∈ A ∩ B s.t. f (u) = x .
But u ∈ A ∩ B if and only if u ∈ A and u ∈ B. Therefore, setting u = y, we are done.

Themain challengewe have faced in creating this program, discussedmore exten-
sively below, is that it does not seem to be possible to reconstruct genuinely human-
like writeups from the proofs produced by automated provers from the machine-
oriented tradition. In order to be able to produce such writeups we have had to use
much more restricted proof methods than those available to modern provers. This
in turn makes it more challenging for the prover to solve any individual problem,
and indeed the program does not solve any problems that are beyond the reach of
existing fully automatic provers. We should also note that we see this prover as the
first stage of a long-term project to write a program that solves more complex prob-
lems in a ‘fully human’ way. We shall say a little about this wider project later in the
paper.

For the remainder of this section, we shall discuss the human-style output further.
We shall explain why we think it is a goal worth pursuing, and expand on the diffi-
culties just mentioned. In Sect. 2 we shall discuss related work. In Sect. 3 we outline
the main features of the prover. In Sect. 4 we describe the construction of the human-
style writeup. In Sect. 5 we provide more extensive technical details about how the
prover works, and in Sect. 6 we present a detailed example to illustrate how these
technical elements operate in practice. In Sect. 7, we describe an informal experiment
that we carried out in order to test whether the proofs produced by the program were
indeed similar to the proofs that a humanmight write, and in Sect. 8 we provide some
practical notes on running the program. Finally, in Sect. 9, we discuss possible future
work.

1.2 Why Bother with Human-Style Output?

These days there is a thriving subcommunity of mathematicians who use interac-
tive theorem provers such as Coq, HOL, Isabelle and Mizar. However, it is also
noticeable that the great majority of mathematicians do not use these systems and
seem unconcerned about the possibility that their arguments are incorrect, even
though there is plenty of evidence that incorrectness pervades the published liter-
ature.

There are several reasons for this, some of which are discussed by Bundy (2011).
One is that the mathematical community has simply learnt to deal with the current
state of affairs. Mistakes in the literature are less damaging than one might think,
because either they are in papers that nobody wishes to build on in future work,
or they are in papers that are important and tend therefore to be thoroughly scruti-
nized. Occasionally a paper by a reputable author makes an important claim that is
very hard to verify because the paper is extremely complicated or badly written. In
such situations, the paper will usually be treated with caution until some plausible
confirmation of its correctness has been provided.

Another reason is that learning to use an interactive theorem prover, though not
impossibly difficult, still requires an investment of time that most mathematicians

A Fully Automatic Theorem Prover with Human-Style Output 15

are not prepared to make, when the reward is likely to be simply to tell them, after
substantial effort, that a result is correct that they are already confident is correct.
Of course, as just commented, sometimes mathematicians are not 100% confident
that a result is correct, and in such situations interactive theorem provers have an
extremely valuable part to play: among their recent triumphs are verification of the
four-colour theorem (Gonthier, 2019) and the Kepler conjecture (Hales et al., 2015).
Another remarkable achievement was the formalized proof of the odd order theorem
of Feit and Thompson (Gonthier et al., 2013): in that case the correctness of the
theorem was not in serious doubt, but the paper of Feit and Thompson was very
long and complicated and therefore difficult to check, so there is genuine value in
having a formalized proof. This will be especially true if, as the authors hope, it
leads to formalizations of other long and complicated proofs, of which there are an
ever-increasing number. However, these notable examples are the exception rather
than the rule, and the fact remains that most mathematicians do not feel that the
benefits of automatic theorem provers are worth the effort when it comes to ‘normal’
mathematics.

So what would be beneficial to ‘typical’ mathematicians? One possible answer is
to place far less emphasis on proofs as certifications of correctness and far more on
proofs as explanations. Many mathematicians say that their aim, when looking for
proofs, is to achieve understanding rather than to feel confident that a statement is
true. Indeed, there are several sociological facts that cannot otherwise be explained.
For example, why domathematicians try to find proofs of results when a combination
of experimental evidence and heuristic arguments establishes their truth beyond all
reasonable doubt? (Goldbach’s conjecture is a statement that falls into this category).
And why are new and different proofs of already known theorems sometimes highly
valued?Why do mathematicians have a clear sense that some proofs are ‘better’ than
others? It is clear that any answer to these questions, which have attracted consider-
able attention in the philosophical literature (see for example Mancosu (2008) and
the references therein), has to take into account far more than the mere correctness
of a proof.

Therefore, for an automatic theorem prover to be useful to mainstream mathe-
maticians, it will be highly desirable for it to produce ‘good’ proofs that ‘explain
what is going on’. Achieving this is of course a major challenge, but focusing on
how humans find proofs is a good way of trying to meet that challenge, since there
seems to be a close connection between the degree to which a proof is judged to be
‘explanatory’ and the ease with which one can see how somebody (a human, that
is) might have thought of it. So an automatic theorem prover that imitates the way
humans do mathematics is more likely to produce proofs that are appealing to human
mathematicians.

For a proof to appeal to human mathematicians, a minimum requirement is that it
should be written in a way that is similar to the way humans write. To design a system
that produces human-style output one has a choice. One possibility is for the system
to operate in a way that closely mirrors the way human mathematicians operate, in
which case it is fairly straightforward to convert each step of its reasoning process
into a piece of human-style prose, which will form the basis for the human-style

16 M. Ganesalingam and W. T. Gowers

output. The other possibility is for the system to operate in a quite different way
from humans, but then to do some highly nontrivial processing to convert its initial
logical output into a text that reads like what a human would write. The first of these
options looks much easier, but it forces one to pay close attention to many details
that would otherwise not matter. This gives rise to many interesting questions that
can be regarded as easier cases of some of the fundamental questions in automatic
theorem proving.

One such question is an obvious one that many people have asked: how do human
mathematicians manage to avoid a combinatorial explosion when they search for
solutions to complex problems?While we do not claim to have a satisfactory answer
to this, we take the view (which is by no means universally shared, so this is a
somewhat speculative claim) that a good way to look for the answer is to focus
on exactly the kinds of small technical difficulties that have arisen in our work. In
order to design a program that imitates human thought, we have had to place severe
restrictions on how it operates; our hope is that if we can get these restrictions right,
then we will have the beginnings of a program that can be scaled up to solve more
complex problems with only a very modest amount of searching.

1.3 Constraints and Challenges

As noted above, the main challenge we have faced is that we have not found it
to be possible to ‘bolt on’ genuinely human-like output to an existing automated
theorem prover. This seriously constrains the kind of methods that our prover can
use. For example, a simple example of a procedure that is used by many theorem
provers, especially those based on resolution, but that would be completely out of the
question for us is putting all goals into conjunctive normal form. Not only do human
mathematicians not do this, but the resulting search for a proof is quite unlike the
kind of search that human mathematicians undertake, to the point where converting
a successful search into a human-style write-up would be scarcely any easier than
obtaining the write-up had been before the program started. The difficulty faced here
is essentially the same difficulty found in decompilation of compiled code. In each
case the high-level description (a human-stylemathematical proof, a human-readable
program) can always be converted into a low-level equivalent (a logical derivation,
machine code). The translation is formally lossless, but at the same time some kind
of higher-level structure that is important to humans is ‘lost in translation’ so that
reversing the process, that is, converting machine code to a high-level program or a
logical derivation to a human-style proof, is extremely difficult.

A less obvious example is the use of modus ponens. One might expect this to
be fundamental to any theorem prover, but in fact pure modus ponens is almost
never used by human mathematicians. Although generations of mathematicians are
told that P =⇒ Q means the same as ¬P ∨ Q, this does not in fact reflect the
way mathematicians think or write (which causes genuine confusion to many first-
year undergraduates). The implications that mathematicians actually use are almost

A Fully Automatic Theorem Prover with Human-Style Output 17

always quantified ones—that is, implications of the form ∀x (P(x) =⇒ Q(x))—
although the quantification may not be explicitly mentioned.

Suppose, for example, that a human mathematician wishes to show that 3996 ≡ 1
mod 997.A typical proof might read as follows: “Fermat’s little theorem states that if
p is a prime and a is not a multiple of p, then a p−1 ≡ 1mod p. Since 997 is prime, and
3 is not a multiple of 997, it follows that 3996 ≡ 1.” A theorem prover that performed
the deduction as follows would normally be regarded as acceptable:

1. ∀a, p ∈ N (p is prime ∧ p� |a =⇒ a p−1 ≡ 1 mod p).
2. 997 is prime.
3. 997� |3.
4. 997 is prime ∧ 997� |3 =⇒ 3997−1 ≡ 1 mod 997.
5. 3997−1 ≡ 1 mod 997.
6. 997 − 1 = 996.
7. 3996 ≡ 1 mod 997.

In the above chain of reasoning, statements 1–3 are given as initial assumptions, 4 is
obtained from 1 by universal instantiation, 5 is obtained from 2 to 4 by (unquantified)
modus ponens, and 7 is obtained from 5 and 6 by equality substitution.

If we were to convert this reasoning directly into prose, it might end up something
like this.

For every a, p ∈ N, if p is prime and a is not amultiple of p, then a p−1 ≡ 1mod p. Therefore,
if 997 is prime and 3 is not a multiple of 997, then 3997−1 ≡ 1 mod 997. But 997 is prime and
3 is not a multiple of 997. Therefore, 3997−1 ≡ 1 mod 997. But 997 − 1 = 996. Therefore,
3996 ≡ 1 mod 997.

This is noticeably different from what a human would write, because of the second
sentence, which corresponds to step 4. A human mathematician will deduce 5 from
1 to 3 using quantified modus ponens, so if we want to produce realistic human-style
write-ups, we either have to emulate this or suppress the universal instantiation step
when it comes to the write-up. But the latter option produces inappropriate proofs
in other cases: for example, if steps occur between the universal instantiation and
modus ponens, then the writeup can end up implicitly using a fact which has not
been mentioned for some time, which contravenes rules regarding the coherence of
discourse and so generates an unnatural writeup.

Another striking and important feature of human mathematical reasoning, which
is reflected in some but not all theorem provers, is that it tends to take place at as
high a level as possible, at least when it is done well. For example, an inexperienced
undergraduate, when asked to prove that the graph of the function f (x) = x2 is a
closed subset of R2, might well choose a point (x,y) in the complement of the graph
and laboriously find ε > 0 such that no point (z,w) within ε of (x,y) belonged to
the graph. A more experienced mathematician would give a high-level proof such as
this.

Let g(x, y) = x2 − y for each x, y ∈ R. Then g is a continuous function and the graph of f
is the inverse image g−1({0}). Since the singleton {0} is closed, so is g−1({0}).

18 M. Ganesalingam and W. T. Gowers

This short argument illustrates several of the kinds of phenomena that concern us.
The main one we wish to highlight is that it does not make any use of the definition of
‘is closed’ beyond the fact that in order to apply a general result about inverse images
of closed sets one needs a match for the hypothesis ‘A is closed’. In particular, at
no point does the argument perform a definition expansion of the statement ‘{0} is
closed’.

Another feature of the argument is that although it is logically necessary to justify
the statement that g is continuous, it will be acceptable to many mathematicians not
to do so, since the continuity of g is ‘more basic’ than the statement being proved
(Similarly, if one were writing out a proof of this easier result, one would normally
rely on yet more basic statements such as the continuity of f (x) = x2 and of the
coordinate projections from R

2 to R). A similar remark applies to the statement that
the graph of f is equal to g−1({0}) and the statement that {0} is closed.

A different phenomenon is illustrated by the last sentence: it uses the result that
the inverse image of a closed set under a continuous function is closed without
explicitly mentioning it. It really does feel to a mathematician as though if a function
g is continuous and a subset A of its range is closed, then those two facts together
imply that g−1(A) is closed. This implication is ‘mathematical’ rather than ‘purely
logical’. Of course, one can analyse it logically by explicitly stating the theoretical
result being used and applying quantified modus ponens, but that is a temptation one
needs to resist if the program is to produce human-style write-ups without an undue
amount of processing.

There are several phenomena like these, and our main challenge has been to
identify and take account of them when writing our program. A subsidiary challenge
has been ordering the different tactics that humans use in order of attractiveness; if
this is not done correctly then the prover will still find proofs but those proofs will
read as ‘odd’, because they follow a line that seems strange to a human.

There is one further constraint that needs some justification, which is that our
program does not have any ability to backtrack: if it tries out a sequence of steps
and gets stuck, then it simply stops. This might seem to be a flaw with the program,
since human mathematicians definitely do backtrack. However, we took the decision
to concentrate on routine problems, which we define informally as precisely those
for which humans do not consciously backtrack, since it seems important to have a
program that performs well on routine problems before one tackles the formidable
question of just how humans limit their searches when the problems become more
difficult. Fortunately, there are many proofs that an experienced mathematician will
remember as ‘Just do the obvious thing at each stage and it all works out.’ Our initial
aim (which we are still a long way from achieving) was to write a program that
would solve all routine problems in the way that humans would solve them, which
in particular means without backtracking.

A Fully Automatic Theorem Prover with Human-Style Output 19

2 Related Work

2.1 Systems with Natural-Language Output

Several systems have been developed that use natural language to a greater or lesser
extent. An early example with some similarity to ours is that of Felty and Miller
(1987). They start with a proof tree and convert it into a more readable form. Their
system can also make significant changes to how a proof is presented. The following
is an example of output from their system: it is a proof that there are infinitely many
primes. The function f mentioned in the proof can be taken to be the function defined
by the formula f (n) = n! + 1: then the beginning of the proof is asserting some
properties of this function that are subsequently used in the proof (so any other
function with those properties would do just as well).

Assume∀x(f (x) > x) ∧ ∀x∀y(div(x, f (y)) ⊃ (x > y)) ∧ ∀x(¬prime(x) ⊃ ∃y(prime(y) ∧
div(y, x)). We have two cases. Case 1: Assume ¬prime(f (a)). By modus ponens, we
have ∃y(prime(y) ∧ div(y, f (a))). Choose b such that prime(b) ∧ div(b, f (a)). By modus
ponens, we have (b > a). Hence, (b > a) ∧ prime(b). Thus, ∃x((x > a) ∧ prime(x)).
Case 2: Assume prime(f (a)). Hence, (f (a) > a) ∧ prime(f (a)). Thus, ∃x((x > a) ∧
prime(x)). Thus, in either case, we have ∃x((x > a) ∧ prime(x)). Since a was arbitrary,
we have ∀n(∃x((x > n) ∧ prime(x))).

They describe their mechanism for converting the original tree-structured deduc-
tions into readable natural-language text as very simple. It is clear that with some
small changes they could have improved the readability. For example, they could
have replaced prime(x) by ‘x is prime’, div(x, y) by x|y and the symbols for con-
nectives by English words. However, the result would still have had some slightly
odd characteristics—for instance, no human mathematician would bother to write
‘by modus ponens’—that would have betrayed its mechanical origins.

Another program that produced readable text was written by
Holland-Minkley, Barzilay, and Constable (1999). Their aim was to create natural-
language output from the Nuprl system. This is an interactive system based on tactics
that is designed to mimic human reasoning. The output from the Nuprl system is not
at all easy for the untrained mathematician to read. However, they could convert it
into language that was considerably closer to what a human mathematician might
write, as the following sample demonstrates (We have slightly modified what they
wrote, replacing pairs of minus signs by the cutoff subtraction symbol −̇, which
seems to be what was intended).

Theorem: For integers a and b and natural number c, (a −̇ b) −̇ c = a −̇ (b + c).
Consider that a and b are integers and c is a natural number. Now, the original expres-
sion can be transformed to imax(imax(a − b; 0) − c; 0) = imax(a − (b + c); 0). From the
add com lemma, we conclude imax(−c + imax(a + −b; 0); 0) = imax(a + −b + −c; 0).
From the imax assoc lemma, the goal becomes imax(imax((a + −b) + −c; 0 + −c); 0) =
imax(a + −b + −c; 0). There are 2 possible cases. The case 0 + −c ≤ 0 is trivial. Consider
0 < 0 + −c. Now, the original expression can be transformed to imax((a + −b) + −c; 0 +
−c) = imax(a + −b + −c; 0). Equivalently, the original expression can be rewritten as
imax((a + −b) + −c) = imax(a + −b + −c; 0). This proves the theorem.

20 M. Ganesalingam and W. T. Gowers

In places this looks like the kind of continuous prose that a mathematician would
write, though as with Felty and Miller’s system there are a number of telltale signs
of the mechanical origins of the text. For instance, the first sentence is not quite
grammatical: a human would write, ‘Let a and b be integers and let c be a natural
number.’ There is also the trivial point that mathematicians would write ‘max’ rather
than ‘imax’ (trivial because it would be very easy to change this). There is also
a repetitive quality to the prose that gives it an automatically generated feel: for
instance, two sentences open with ‘Now, the original expression can be transformed
to’.

There are further differences that highlight a point that will be important to us
later. For example, when proving that A = B via a string of intermediate inequalities,
mathematicians will normally express the proof in the form A = A1 = · · · = Ak =
B. From the write-up above, it is clear that Nuprl prefers to deal with equivalences
between statements: a typical step might be to reduce the original goal A = B to the
goal A = Ak , for instance.

Another difference is that the proof makes use of terms that a human would
consider too ugly and unnatural to write. For example, no human mathematician
would ever write “The case 0 + −c ≤ 0,” instead writing the condition in the more
obvious way as “c > 0”.

It is perhaps helpful to distinguish between two kinds of unnaturalness of a pro-
gram’s output: roughly speaking, unnaturalness in how the program expresses its
thoughts, and unnaturalness of the thoughts themselves. Writing ‘imax’ and a + −b
are examples of the former, while avoiding equational reasoning and considering
expressions with strange terms in them are examples of the latter.

A further example of the latter, which we touched on in the previous section,
is use of tiny lemmas. Presumably ‘the imax assoc lemma’ is the statement that
the binary operation of taking the maximum of two numbers is associative. This
statement belongs to a troublesome class of statements that human mathematicians
will normally never state explicitly, even when they first meet the basic definitions.
The precise reason for this is unclear, but it appears to be something like that we
visualize the maximum of a finite set of numbers as its rightmost element on the
number line and can immediately see that that rightmost element will win a knockout
competition however the competition is organized.

Another example of a statement in this class is the general principle that if a binary
operation ◦ is associative, then the expression x1 ◦ · · · ◦ xk is unambiguous (More
precisely, however you bracket it, you will get the same result). The associativity
assumption itself is just the case k = 3, andyet generations ofmathematicians happily
use the more general principle that brackets are unnecessary without ever stopping
to prove it.

A third system that has aims that are in certain respects similar to ours is the
Theorema system of Buchberger et al. (2006). However, we ask significantly more
of our output than the developers of Theorema: for them it is sufficient that the output
should be comprehensible to mathematicians, whereas we ask that it should be hard
to distinguish from what a human might write. For example, this is the statement of
a lemma in the Theorema language (quoted in the paper referred to).

A Fully Automatic Theorem Prover with Human-Style Output 21

Lemma (“coprime”, any[a,b] with[nat[a]∧nat[b]], 2b2 = a2 =⇒ ¬coprime
[a,b]) A human rendition of this lemma would read more like this.

Lemma Let a and b be natural numbers satisfying the equation 2b2 = a2. Then a
and b are not coprime.

In otherwords, it would bewritten in continuous prose, albeit prose of a characteristic
‘semi-formal’ kind, which makes it significantly easier to read.2

This leads us to an important general point about all three of the systems discussed.
The output from these systems is comprehensible tomathematicians, in the sense that
they can decipher it. But it is hard work, enough so to prevent most mathematicians
from using these systems (It seems likely that one becomes used to reading proofs
like the ones above with exposure. But we suspect that this same factor leads those
who use theorem provers regularly to underestimate the uphill struggle a typical
mathematician faces when reading the proofs like the ones above).

Part of the difficulty in reading these proofs is due to an overreliance on symbols;
in proofs written by humans, symbolic material plays a very specific and limited
role (Ganesalingam, 2013), which does not include many of the uses in the example
above. But a larger part relates to higher-level structure: none of the proofs presented
above flow like real mathematical proofs. Mathematical proofs are like natural lan-
guage texts—such as the document you are reading—in that sentences link together
to form coherent discourses. From amathematician’s perspective, this is what allows
a proof to read as presenting a coherent argument rather than merely a sequence of
facts. The principles behind discourse structure have been extensively studied by
linguists (see e.g. Asher and Lascarides (2003)). We do not know of a way of tacking
on this kind of structure, which is key to readability, to the proofs presented in this
section; in order to produce it we have had to design our prover to support it from the
ground up. In particular, the prover operates in a way that models a human closely
enough to let it suppress irrelevant information and produce much larger blocks of
discourse-coherent text than in the proofs given above.

2.2 Other Related Work

The constraints involved in producing human-like writeups mean that our prover
functions in a very similar way to some older human-oriented provers produced by
WoodyBledsoe and his students (Bledsoe, 1971, 1977a, 1977b, 1983, 1995; Bledsoe,
Boyer, & Henneman, 1972; Ballantyne & Bledsoe, 1977; Bledsoe & Hodges, 1988).
His Non-resolution theorem proving (Bledsoe, 1977a) outlines the main concepts
involved in human-oriented theorem proving; a number of these are very relevant to

2At a deeper level there are further differences. For example the Theorema system will perform a
certain amount of backtracking even on routine problems such as that of showing that a limit of
the sum of two sequences is the sum of the limits. Thus, while there are many points in common
between our aims and those of the Theorema project, there are also important differences.

22 M. Ganesalingam and W. T. Gowers

the work we describe below, including the use of rewrite rules, forward chaining,
(a kind of) typing, a reluctance to expand definitions unless necessary, and the use
of ‘natural systems’. Further, as we shall describe below, our system shares the
‘waterfall architecture’ used in the provers created by Bledsoe’s students Boyer and
Moore (1979).

Although human-oriented proving has largely fallen out of fashion, there have
been some more recent systems that mimic natural proof styles. The most notable of
these is Weierstrass (Beeson, 1998), which is capable of generating ε-δ proofs. One
distinctive feature of this system is as follows:

The intention [ofWeierstrass] is, to produce a proof that can be read and checked for correct-
ness by a human mathematician; the standard to be met is “peer review”, just as for journal
publication. By contrast, the purpose of Weierstrass is not to produce formal proofs in a
specified formal system.

As we shall discuss more extensively in Sect. 3, the prover we are describing here
has exactly the same goals as Weierstrass: it aims to produce proofs for human
consumption, not proofs that are formally certified correct.

The article just cited does not provide any actual ε-δ proofs, noting simply that “the
strict length limit does not permit the inclusion of the actual output of Weierstrass”.
Similarly an article on the irrationality of e (Beeson, 2001) does not contain any
actual output. We have also been unable to obtain the program and are therefore not
able to comment on how human-like the output of Weierstrass actually is.

Another recent human-oriented system is Analytica (Clarke & Zhao, 1992), a
theorem prover built inside Mathematica. The output of this system contains some
words, but it is much less human-like than even the systems described in the previous
section; essentially it prints out a long sequence of equations connected by phrases
such as ‘reduces to’ and ‘rewrites as’. The result is not written in sentences, let alone
being grammatical, so we do not classify Analytica with the systems described in the
previous section (This is not a criticism of Analytica, as its authors make no claim
to produce human-readable output).

We should emphasize that theworkwedescribe is notmeant to be competitivewith
any of the provers described here when considered as a prover; as noted above, the
additional constraints involved in generating human-readable writeup are important
to our project, but they also rule out many sound and effective tactics. Thus, our
system is operating at a disadvantage, though it is our hope that ultimately the extra
workwe have to do nowwill help us see how to design systems that aremore powerful
than existing systems at solving the kinds of problems that human mathematicians
are good at.

There is also an extensive literature on systems that accept natural language-like
input, including MIZAR (Trybulec, 1978), NaProChe (Kuhlwein, Cramer, Koepke,
& Schröder, 2009), ForTheL (Vershinin & Paskevich, 2000) and MathNat (Humay-
oun & Raffalli, 2010); we will not discuss these further here because the acceptance
of human-like input and generation of human-like output are, from a linguistic per-
spective, almost unrelated problems. Additionally most systems of this kind focus

A Fully Automatic Theorem Prover with Human-Style Output 23

on checking that proofs are correct, which is (as discussed above) not a concern for
most human mathematicians. Thus, they serve a different purpose from that of the
work we are describing here.

3 Key Features of the Prover

The basic architecture of our prover is, as we have mentioned, very similar to the
‘waterfall’ architecture used in the Boyer-Moore provers. The program contains a
number of heuristics that transform the goal in a sound manner. These heuristics
are ranked by attractiveness. The program operates fully automatically by repeat-
edly applying the most attractive heuristic that has an effect. The underlying logic is
essentially first-order logic with equality, though there are some caveats to be made
here (in particular involving structural sharing of formulae and the use of metavari-
ables) which we will outline as we go through the paper.

Notwithstanding the overall waterfall architecture, the details of the operation of
the program are actually better described with reference to the goal-oriented tactic-
based style of proof used in some interactive LCF-style theorem provers (Paulson,
1987). The correspondence may be drawn simply by regarding each heuristic as a
tactic; the program can then be thought of as repeatedly applying a single tactic,
which is itself constructed by taking a list of subsidiary tactics and applying the first
that can be applied. In the remainder of the paper we will refer to tactics rather than
heuristics, not least because we do not expect the waterfall architecture to be the last
word on selecting tactics for a system of this kind.

We should stress that there is a key respect in which our system is not LCF-like.
Like the Weierstrass system described in Sect. 2, it is not attempting to certify proofs
correct in the way that LCF provers do; there is no small ‘safe’ kernel. Although
we have every respect for the goal of certification, our concern in this paper is the
generation of human-like proofs.

While it would certainly be possible to produce a program that generated human-
like proofs and certified them correct, this is not an easy exercise for a number of
reasons. One of these relates to the different number systems in use in mathematics:
most work in theorem proving treats, say, the natural number 3 as being distinct from
the rational number 3/1, whereas human mathematicians consistently treat them as
the same object. One way of seeing this is to consider a standard definition like

nCr = n!
r !(n − r)!

in which the definiendum is a natural number but the definiens is a rational number.
Handling the number systems in a human-like fashion in a theorem prover is far
from straightforward because under standard accounts, the natural numbers are used
to define the integers and thence the rational numbers. A full treatment requires an

24 M. Ganesalingam and W. T. Gowers

analysis of the operation of identification, which in turns requires modifications to
the underlying logic (Ganesalingam, 2013).

In the remainder of this section, we highlight some other significant respects in
which our approach differs from more typical approaches.

3.1 Targets, and the Structural Sharing of Goals

Rather than having a list or stack of goals, we have a single goal, which may be
regarded as a structurally shared version of the collection of goals found in a prover
such as HOL. This structural sharing is necessary both for efficiency and in order to
model human reasoning processes closely enough to produce human-like write-ups.
A human reasoner will generally keep track of a list of background ‘assumptions’
which are known to be true (and likely to be helpful) and a separate list of statements
that need to be proved. Under many circumstances the human will reason forwards
from the assumptions without knowing in advance which of the statements to be
proved will be deduced. If each goal were represented independently, this kind of
forwards reasoning would have to be performed more than once. Thus, in our sys-
tem the goal consists of a list of assumptions and a list of statements to be deduced
from those assumptions, which we refer to as targets. If we represent the goal as a
sequent A1, . . . , Am � B, where B is of the form B1 ∧ · · · ∧ Bk , then the targets are
the statements Bi .

We should emphasise that our targets are not the same as the consequents
C1, . . . , Ck of a sequent A1, . . . , Am � C1, . . . , Ck ; consequents are interpreted dis-
junctively, whereas targets are to be interpreted conjunctively. Thus our sequents
always have a single consequent, and the conjuncts of that consequent are the tar-
gets. This is a good illustration of our priorities. Consequents may be more attractive
from a logical point of view for symmetry reasons, but the convention we adopt,
where we list the assumptions and targets, is in our judgment closer to how humans
would think of ‘the current state of play’ when they are in the middle of solving a
problem, and that is more important to us than logical neatness.

3.2 The Library

Like many other systems, the program also has a library of statements that it may
assume. However, the role that our library plays is very different. With an interactive
program whose main aim is proof verification, the library will typically be a huge
database of statements that have already been fully checked and can therefore be
used safely.

By contrast, for us the library is provided by the user and represents a body of
results and definitions that a humanmathematicianwould know and feel free either to
quote or to use silently when trying to solve the problem at hand. Thus, the question

A Fully Automatic Theorem Prover with Human-Style Output 25

of whether or not a statement is appropriate for our library is one that has to be
considered carefully, and the answer varies from problem to problem. For example,
if the system is asked to prove the associativity of set intersection, then we do not
want it to say, ‘This result is already in the library, so we are done.’ But for a more
advanced problem, we want the associativity of set intersection to be available to the
program (or perhaps even built in to its reasoning processes) rather than requiring the
program to formulate and prove it as a lemma. As ever, this is because we are trying
to imitate human mathematical thought and so generate human-like output: one of
the things an undergraduate mathematician has to learn is what it is appropriate to
assume when proving a result.

Thus, to use the program, it is not usually enough simply to input the goal and hope
that the program will manage to prove it. Typically, the user has to add appropriate
background results to the library first.

The library that we have used with the problems we have worked on is small, so
we have not had to face the potential problem of the program using a result that is
‘more advanced’ than what it is supposed to be proving. However, when this problem
does arise, as it inevitably will, we plan to order our library results using a relation
‘is more advanced than’, so that for each problem we can simply instruct the library
not to use results beyond a certain point in the ordering.

We have also adopted a policy of being sparing about what we allow in the library.
Human mathematicians do not store all the true mathematical statements that they
come across in their brains. Rather, they seek out statements or techniques that have
a kind of general quality. Exactly what this quality is, we do not claim to understand.
It may be that for a more sophisticated program one should not expect to be able
to judge the appropriateness of a statement in advance, but should store promising
statements and then gradually forget about them if they turn out not to be especially
useful.

Two examples of results that we have in the library we currently use are the state-
ment that a closed subset of a metric space contains its limit points, and transitivity
of <. Actually, it is convenient to store four separate transitivity statements such as

a < b

b ≤ c

a < c

one for each way of choosing< and≤. This saves the program from rederiving these
variants from the transitivity of <. Once again, this is because we are modelling
human thought: a typical human mathematician will internalize all four transitivity
statements and use them without thinking. It would look very strange in a write-up
if the program stopped to prove the above transitivity statement as a lemma.

A statement such as the triangle inequality would be most usefully stored in the
library in the following form.

26 M. Ganesalingam and W. T. Gowers

d(x, y) < α

d(y, z) < β

α + β ≤ γ

d(x, z) < γ

In this form it is appropriate for most simple deductions, and reflects quite well how
humanmathematicians use the inequality. However, we do not yet have a satisfactory
understanding of the process whereby human mathematicians are told the triangle
inequality in the usual form

d(x, z) ≤ d(x, y) + d(y, z)

and then quickly use it to have thoughts such as, ‘I need d(x, z) to be less than γ , so it
will be enough to ensure that d(x, y) < γ/2 and d(y, z) < γ/2.’ That is not to say
that we cannot think of a mechanical method that would manage to make a deduction
like this: the difficulty comes when we try to understand (in order to imitate) how
humans do it.

At the moment, the library contains four kinds of data:

1. Results, i.e. facts that the program can utilise while constructing a proof.
2. Definitional expansions.
3. Term rewrite rules.
4. Constructions.

Results and (definitional) expansions are the key to reasoning at a high level,which
is in turn one of the keys to producing human-like proofs. Term rewrite rules and
instructions play a much smaller role in the program. The former are used to change
e.g. (f ◦ g)(x) into f (g(x)), which is an instinctive and automatic step for any
human mathematician. Constructions generally ‘finish off’ a problem by supplying
an object with certain properties that are being looked for. For example, suppose the
program needs to find x s.t. x � a and x � b; the library can be used to construct
min{a, b}, which has the necessary properties.

3.3 Removal of Assumptions

Another unusual aspect of our approach involves paying close attention to the removal
or deletion of assumptions.We include tactics for removing assumptions not because
they have a significant effect on the output of the program, but because of our com-
mitment tomodelling how humanmathematicians think. The particular phenomenon
we are trying to model is that when humans work out proofs, they often find it obvi-
ous that a statement has been ‘used up’ and will have no further role to play in

A Fully Automatic Theorem Prover with Human-Style Output 27

the proof. We have modelled this by incorporating tactics that, under appropriate
circumstances, remove assumptions from the list of all assumptions.

One reason we are interested in the removal of assumptions is that it forces us to
think about a relatively simple special case of a hard and important general problem
in theorem proving, namely the problem of deciding which statements are likely
to be relevant to the solution of a given problem. It is possible to write programs
that search through very large numbers of statements until they find something that
magically works, but humans do not do this. So we feel that any efforts we make to
understand this aspect of how humans do mathematics will pay dividends when we
try to scale up to systems that will find more complex proofs. Another advantage of
including tactics that remove assumptions is that it makes it considerably easier to
debug cases where the program is stuck, by removing a lot of the ‘noise’ that makes
it hard to understand intermediate goals.

4 Writing Up

In general, natural language generation is a complex process. It involves multiple
levels of planning,which drawon both domain knowledge andmodels of the intended
audience, and also a phasewhen the actual text is generated,which drawson syntactic,
morphological and lexical information. An overview of the process may be found in
Reiter and Dale (2000). Because of this complexity, building a fully fledged natural
language generation system is amajor task. Furthermore, sincemathematics contains
not just English words but also a large array of distinctive symbols used in distinctive
ways, it is not at all straightforward to use off-the-shelf systems.

Fortunately,mathematical language has properties thatmake the task considerably
simpler than it is for the English language in general. Foremost among these is the
fact that mathematical proofs almost always have a particularly simple rhetorical
structure. To some degree this is because the domain of discourse includes only
timeless facts,which itself rules out a large proportion of the rhetorical relations found
in general text. But the main reason is that there is a strong convention that further
constrains the rhetorical structure of proofs. A proof proceeds by the presentation of
a sequence of assertions, each of which follows from the premises of the theorem
being proved or from previous assertions. This structure is not accidental; it is a direct
reflection of the fact that mathematicians process proofs by reading and verifying
one sentence at a time, and would not expect the justification of a fact presented in
one sentence to be deferred to a later sentence (We are talking here about proofs of
the level of simplicity of the proofs discussed in this paper. For more complicated
arguments, facts may sometimes be used before they have been proved, but in good
mathematical writing this will be carefully flagged up to make it as easy as possible
for the reader to check that the resulting argument is complete and not circular).

This convention gives us an easy way to produce write-ups of our proofs. An
obvious strategy is to allow each application of a tactic to generate some number
of sentences (possibly zero), and then to concatenate the output from the different

28 M. Ganesalingam and W. T. Gowers

tactics to produce the final text. Note that this strategy is viable only because we are
absolutely rigorous about requiring our tactics to reflect steps in human reasoning; in
effect, the strategy ismimicking a humanwho is carefully writing down a proof while
coming up with it, which is quite straightforward for an experienced mathematician
(Again, this becomes less true if the proofs are more difficult). As we shall see below,
this simple strategy produces surprisingly good results, though with a weakness that
needs to be dealt with by a postprocessing phase that turns out to be straightforward.

Because we have a fixed list of tactics, implementing the strategy only requires
us to specify which sentences (if any) are produced for the applications of each
tactic. A very simple way to do this is to use template generation: each tactic is
associated with a template, or ‘piece of text with holes’, and the holes are filled in
with concrete information about the facts and objects used in the actual application.
So, for example, forwards reasoning may be associated with a very simple template
‘since <facts>, <deduced f act>’. Instantiating this template would produce text
like

Since A is open and x ∈ A, there exists η > 0 such that u ∈ A whenever d(x, u) < η.

Note that individual facts are expressed in idiomatic ways, rather being displayed in a
way that directly reflects the underlying predicate calculus; thus we have ‘A is open’
and ‘η > 0’ rather than ‘open(A)’ and ‘greater_than(η, 0)’. The same is true of
objects: we display ‘ f ◦ g’ rather than compose(f,g), and so on. Similarly quantifica-
tion is expressed idiomatically using words like ‘whenever’, where possible, rather
than using more stilted phrases like ‘for all’, which would more directly reflect the
underlying predicate calculus.

An example of the text produced by this method is as follows:

Let x be an element of A ∩ B. Since x ∈ A ∩ B, x ∈ A and x ∈ B. Since A is open and
x ∈ A, there exists η > 0 such that u ∈ A whenever d(x, u) < η. Since B is open and x ∈ B,
there exists θ > 0 such that v ∈ B whenever d(x, v) < θ . We would like to find δ > 0 s.t.
y ∈ A ∩ B whenever d(x, y) < δ. But y ∈ A ∩ B if and only if y ∈ A and y ∈ B. We know
that y ∈ A whenever d(x, y) < η. We know that y ∈ B whenever d(x, y) < θ . Assume now
that d(x, y) < δ. Since d(x, y) < δ, d(x, y) < η if δ ≤ η. Since d(x, y) < δ, d(x, y) < θ

if δ ≤ θ . We may therefore take δ = min{η, θ}. We are done.

The main problem with this text is that it suffers a lack of coherence, in the sense
defined in Knott (1996): the sentences are individually acceptable, but they do not
combine to form an idiomatic discourse. The principal reason for this is that the text
repeats information unnecessarily. For example, in

Since x ∈ A ∩ B, x ∈ A and x ∈ B. Since A is open and x ∈ A, there exists η > 0 such that
u ∈ A whenever d(x, u) < η.

the repetition of the underlined phrase is awkward. Because it is introduced by the
sentence immediately preceding the ‘since’ clause, it is awkward to have it spelt out
explicitly within that clause. Similarly, consider:

Since d(x, y) < δ, d(x, y) < η if δ ≤ η. Since d(x, y) < δ, d(x, y) < θ if δ ≤ θ .

A Fully Automatic Theorem Prover with Human-Style Output 29

Here, having two identical ‘since’ clauses in consecutive sentences is again awkward:
the repetition of material is unwieldy and unidiomatic.

We are of the opinion that (Knott, 1996) correctly diagnoses the underlying prob-
lem here: spelling out rhetorical relations, or aspects of rhetorical relations, that can
easily be inferred from the context violates Grice’s maxim of quantity (Grice, 1975).
Often the solution is to substitute an appropriate and less explicit cue phrase. For
example, ‘since A is open and x ∈ A, ...’ is better replaced by ‘therefore, since A
is open, ...’. The cue phrase ‘therefore’ (which assumes that the relevant reason has
just been given) is less explicit than the cue phrase ‘since’ (which subordinates an
explicitly stated reason), so it avoids spelling out information that is clear from the
context. In other cases repetition can be avoided by combining sentences; thus the
previous example may be changed into

Since d(x, y) < δ, d(x, y) < η if δ ≤ η and d(x, y) < θ if δ ≤ θ .

The initial ‘sentence by sentence’ process described above is followed by a series
of transformations that manipulate pairs of consecutive sentences in order to resolve
the issues just mentioned (Needless to say, the transformations operate on a structural
level rather than on the literal text). Applying this series of transformations to the
example text above yields:

Let x be an element of A ∩ B. Then x ∈ A and x ∈ B. Therefore, since A is open, there exists
η > 0 such that u ∈ A whenever d(x, u) < η and since B is open, there exists θ > 0 such
that v ∈ B whenever d(x, v) < θ . We would like to find δ > 0 s. t. y ∈ A ∩ B whenever
d(x, y) < δ. But y ∈ A ∩ B if and only if y ∈ A and y ∈ B. We know that y ∈ A whenever
d(x, y) < η and that y ∈ B whenever d(x, y) < θ . Assume now that d(x, y) < δ. Then
d(x, y) < η if δ ≤ η and d(x, y) < θ if δ ≤ θ . We may therefore take δ = min{η, θ} and
we are done.

One particular point worth emphasising is that the write-up process is determin-
istic: it will always produce the same output text for any given proof. This is for
two reasons. First, if any non-determinism had been present we would have had
to evaluate many outputs for any given proof, which would have made iterative
improvement and fine-tuning of the write-ups considerably slower. Secondly, and
more importantly, if the process were nondeterministic, our claim that the program
produced human-like output would be suspect, in that we would have been able to
run the program several times and ‘cherry pick’ output. Unfortunately, this determin-
ism has an undesirable (but fully anticipated) side-effect. When one compare several
proofs produced by the program, the write-ups are much more similar than those a
human would produce. For example, most proofs produced by the program end with
the phrase ‘we are done’. In the long run, we will undoubtedly need to introduce
nondeterministic stylistic variation, allowing the program to vary the text generated
for a particular step in just the way human would, despite the difficulties that will
cause.

Finally, it is worth noting that during the evaluation process described in Sect. 7,
we collated a wealth of data on how humans write up proofs. We anticipate using this
data in combination with carefully chosen natural language processing techniques
to create substantially improved versions of the write-up procedure.

30 M. Ganesalingam and W. T. Gowers

5 Technical Details

5.1 Formalism

The formulae used in the program are essentially formulae of first-order logic, aug-
mented with metavariables. More formally, we have:

1. A collection of functions, each with a distinct name and an (implicit) arity. An
example is compose.

2. A collection of predicates, each with a distinct name and an (implicit) arity. An
example is less_than. Equality is represented by a distinguished predicate.

3. A collection of mathematical types, each with a distinct name. An example is
positive real number. At the moment the collection of types is specialized for use
in problems involving metric spaces.

4. A variable is specified by a name (typically a single character), a mathematical
type and a ‘variable type’, which indicates whether or not the variable is a normal
variable or one of two kinds of metavariable, discussed in Sect. 5.8. Variables are
also annotated with information indicating that certain variables are independent
of other variables, which constrains inference.

5. A term is either a variable or a function together with a list of terms of appropriate
arity.

6. An atomic formula consists of a predicate together with a list of terms of appro-
priate arity.

7. A formula consists of one of the following,where vi are variables and Fi formulae:

• An atomic formula.
• ¬F1

• F1 ∨ F2

• F1 ∧ F2

• ∀v1 . . . vk .F1

• ∀v1 . . . vk .(F1 ∧ F2 ∧ ... ∧ Fn ⇒ Fn+1)

• ∃v1 . . . vk .F1

As discussed in Sect. 3, the structural sharing of goals means that the higher-level
datatypes used by the program are different from those used in e.g. an LCF-style
prover. The key datatypes are defined recursively as follows:

1. A box is either a nontrivial box or the special box �.
2. A nontrivial box consists of a list of variables, a list of formulae (called assump-

tions) and a list of targets.
3. A target consists of either a formula or a list of boxes.

In the absence of variables, the box consisting of variables v1 . . . vk , assumptions
H1 . . . Hn and targets T1 . . . Tm corresponds to the aim of proving that the formula

∀v1 . . . vk .(H1 ∧ . . . ∧ Hn ⇒ T1 ∧ . . . ∧ Tm)

A Fully Automatic Theorem Prover with Human-Style Output 31

holds. Where metavariables are present the corresponding quantifiers need to be
existential rather than universal.

Targets that consist of a list of boxes correspond to a disjunction of the formulae
corresponding to the individual boxes.

The goal consists of a single box, and tactics are functions that map boxes to
boxes. In the rest of this document, we will display the box consisting of variables
v1 . . . vk , assumptions H1 . . . Hn and targets T1 . . . Tm as follows:

H1

...

Hn

T1

...

Tm

Note that we suppress the variables as they tend to clutter the exposition; they are
however present in the debug code produced by the program.Where a target consists
of one or more boxes, we draw a rectangle around each box to delineate it.

We use the term statement to refer to a formula that appears either as an assump-
tion or a target in some box. Statements and boxes may be tagged with additional
information; for example, when a statement has been used together with certain other
statements by a tactic, it is tagged to indicate this. Tags never affect the logical inter-
pretation of the taggedmaterial, but are used when the program is evaluating whether
tactics are permissible. In particular, tags are used to prevent repeated application of
the same tactic to the same statements.

Both the human-like output and debugging code prettify the output in conventional
ways, for example by writing a < b for the atomic formula less_than(a, b). We
adopt such conventions throughout this document. In cases of ambiguity, quantifiers
should always be read as taking the widest scope possible.

5.2 Terminology

When a statement is built out of atomic statements using connectives and quantifiers,
the program classifies it according to the operations that appear at the top of its parse
tree. For example, the statement

∃x (x ∈ A ∧ d(x, y) < ε)

is an existential statement, whereas the statement

32 M. Ganesalingam and W. T. Gowers

x ∈ A ∧ d(x, y) < ε

is conjunctive. It is often useful to look more than one level down the parse tree. For
example, the program would call the statement

∀x (x ∈ A ⇒ x ∈ B)

a universal conditional statement (Because we do not allow ‘bare’ conditional state-
ments, this is a particularly important category). Similarly, the existential statement
above can be further classified as an existential conjunctive statement.

Finally, many atomic statements can be expanded into statements that are no
longer atomic. For example, the statement A ⊂ B expands to the universal condi-
tional statement above. It is often useful to know what a statement will become after
it is expanded: to specify this the program uses the prefix ‘pre-’. Thus, the statement
A ⊂ B is pre-universal conditional. Similarly, the statement “x has an inverse” is
pre-existential because it expands (in a suitable context) to

∃y xy = yx = 1

and the statement “A is unbounded” is pre-universal because it expands to

∀C ∃a ∈ A a > C.

An expansion is elementary if it does not introduce a quantifier. For example, the
expansion of A ⊂ B is not elementary, whereas the expansion of

x ∈ A ∩ B

as

x ∈ A ∧ x ∈ B

is elementary.

5.3 Substantive Hypotheses and Background Conditions

Consider the following definition. If A is a subset of a metric space X and x ∈ X ,
then x is an accumulation point of A if

∀ε > 0 ∃a ∈ A d(a, x) < ε.

An obvious way of rewriting this is

A Fully Automatic Theorem Prover with Human-Style Output 33

∀ε (ε > 0 =⇒ (∃a (a ∈ A ∧ d(a, x) < ε))).

However, that does not reflect how a mathematician will think about the definition.
The real number ε is not something that might conceivably be negative but happens
to have a useful property if it is positive. Rather, when it comes to selecting ε, the
universe from which we select it is the set of positive real numbers. So the condition
ε > 0 is not a ‘substantive’ assumption, but more like a background condition. By
contrast, the statement a ∈ A is substantive: it is an element of X that has the further
interesting property of belonging to A.

We capture this in our program by representing background conditions through
our type system. That is, instead of explicitly saying that ε > 0, we will take ε to
have the type ‘positive real number’.

Note that this is important for the categorization of statements discussed in the
previous subsection. For example, we want to think of a statement such as

∀ε > 0 ∃N ∀n ≥ N d(an, x) < ε

as a universal existential statement and not a universal conditional statement. This is
achieved by having the program represent it as

∀ε ∃N ∀n (n ≥ N =⇒ d(an, x) < ε)

and having the type system capture the fact that ε is a positive real number.
It is also important for deciding when a deduction is likely to be relevant. Suppose

that we have a universal-conditional statement in the library that has several premises
that match our assumptions. To mimic human reasoning, we would usually like this
to count as evidence that the library statement is relevant, but not if the assumptions
are merely background statements: if a library result requires a positive real number,
we will not get excited just because we have a positive real number floating around.

5.4 The Waterfall

The following lines are taken directly from the program’s code: they list, in order of
priority, the names of the tactics it can use (The names of the tactics do not always
match the terminology used in this paper, which we have standardized to match the
standard terminology used in interactive provers as far as we can). In Sects. 5.5–5.9,
we shall describe each tactic in turn.

--Deletion

deleteDone,

deleteDoneDisjunct,

deleteDangling,

deleteUnmatchable,

34 M. Ganesalingam and W. T. Gowers

--Tidying

peelAndSplitUniversalConditionalTarget,

splitDisjunctiveHypothesis,

splitConjunctiveTarget,

splitDisjunctiveTarget,

peelBareUniversalTarget,

removeTarget,

collapseSubtableauTarget,

--Applying

forwardsReasoning,

forwardsLibraryReasoning,

expandPreExistentialHypothesis,

elementaryExpansionOfHypothesis,

backwardsReasoning,

backwardsLibraryReasoning,

elementaryExpansionOfTarget,

expandPreUniversalTarget,

solveBullets,

automaticRewrite,

--Suspension

unlockExistentialUniversalConditionalTarget,

unlockExistentialTarget,

expandPreExistentialTarget,

convertDiamondToBullet,

--EqualitySubstitution

rewriteVariableVariableEquality,

rewriteVariableTermEquality

We stress here that because our system is fully automatic and intended to model
human thought processes, our efforts have been concentrated less on the tactics
themselves and more on how the program chooses which tactic to apply. For this
program, the general form of the answer is as follows: it just chooses a tactic of
the first type it can apply from the list above. Thus, if a tactic of type deleteDone
can be performed, it performs it. If not, but a tactic of type deleteDoneDisjunct can
be performed, then it performs that. Otherwise, it tries deleteDangling. And so on.
In this way our architecture is similar to the ‘waterfall’ architecture used by Boyer
and Moore in their provers NQTHM and ACL2. Like them we have tended to give
higher priority to ‘lower-risk’ tactics, since this appears to correspondwell to the way
humans choose what to do; one of the challenges in generating human-like proofs is
to assess correctly the risk of the different tactics. We discuss this point more fully
in Sect. 5.10.

In the remainder of this section we shall describe the tactics, splitting them into
some broad categories. One general preliminary remark is that a large proportion of
the tactics contain minor ‘postprocessing’ steps, applying operations such as exis-
tential elimination. This is appropriate in precisely the cases where a human would

A Fully Automatic Theorem Prover with Human-Style Output 35

apply such an operation in so automatic a fashion that it would not have any effect on
the writeup. We will not mention these postprocessing steps in the tactic descriptions
below as to do so would make them much longer (Readers may of course consult
the source code for full technical details).

5.5 Removal Tactics

These tactics remove assumptions (cf. Sect. 3.3) and targets. They never directly
contribute material to the writeup.

deleteDone

There are several situations where a tactic results in a target being replaced by �
because it has been proved. Once this has happened, the program immediately uses
this tactic to remove it. Thus, the aim of the program is to reach a goal with no targets.

deleteDoneDisjunct

If a target is disjunctive and one of its disjuncts is�, then the entire target is removed.

deleteDangling

If an assumption has previously been used and contains a variable that is not involved
in any other statement, then the program removes the assumption.

deleteUnmatchable

Roughly speaking, this tactic removes assumptions that have previously been used
by a tactic and that have no obvious use.

For example, suppose that we have the statements x ∈ A and A ⊂ B as assump-
tions. The expansion of A ⊂ B is ∀u (u ∈ A =⇒ u ∈ B). If we substitute x for u,
then the premise of this statement becomes x ∈ A, which is identical to the assump-
tion. We say that x ∈ A matches the premise of (the expansion of) A ⊂ B. We call
a statement unmatchable if there are no available matches for it.

The program is not allowed to substitute the same variable twice into the same
assumption (This is partly because no human would ever do so, and partly to avoid
non-termination). This can create further circumstances where an assumption is
unmatchable. For example, suppose we apply forwards reasoning to the statements
x ∈ A and A ⊂ B to deduce that x ∈ B. Thenwe canno longer use thematch between
x ∈ A and A ⊂ B, so x ∈ A becomes unmatchable (assuming that there is no other
statement that matches it). Since it has been used, it will therefore be removed. If
no other statement matches A ⊂ B, then that statement too is unmatchable and will
therefore be removed, since it too has been used.

5.6 Tidying Tactics

Tidying tactics are tactics that do not substantially change the content of a target, but
put it into a more convenient form.

36 M. Ganesalingam and W. T. Gowers

peelAndSplitUniversalConditionalTarget

If the target takes the form ∀x (P(x) ⇒ Q(x)), then this tactic removes it and adds
instead a variable x, a new assumption P(x) and a new target Q(x). This corresponds
to the human tactic of saying (or thinking), ‘Let x be such that P(x); we need to show
that Q(x).’

The tactic could be thought of as a composition of two more basic tactics, one an
application of universal generalization and the other an application of implication
introduction, but again our avoidance of bare conditionals demands that we treat it
as unitary.

If there is more than one target, then this tactic has to be modified, since we cannot
use the new assumption P(x) to help us prove a different target. In that situation, we
create a target that consists of a box.

That is, if we have a goal of the form

H1

...

Hn

∀x (P(x) =⇒ Q(x))

R

then the tactic will transform it to

H1

...

Hn

P(x)

Q(x)

R

The program can then use P(x) to prove Q(x) but not to prove R. The assumptions in
the outermost box (which in the diagram above we do not enclose) can be used to
prove both statements.

This tactic generates a representation which (if in isolation) would eventually be
transformed into text like “Let x be such that P(x).”

splitDisjunctiveHypothesis

If there is an assumption of the form P ∨ Q, then the program removes the disjunction
by replacing the target(s) by two new targets. One of these targets is a box with P as

A Fully Automatic Theorem Prover with Human-Style Output 37

an assumption and the original targets as its targets, and the other is a box with Q as
an assumption and the original targets as its targets.

This tactic and its counterpart splitDisjunctiveTarget constitute work in progress;
they are important for generating certain human-like proofs, but (because they split
the proof into cases) they are not compatible with the incremental, concatenative
tactic-by-tactic generation of writeups. We intend to extend the writeup generation
mechanism to accommodate these tactics in future versions. Note that neither tactic
is used in the problems we evaluate on.

splitConjunctiveTarget

If there is a target of the form P ∧ Q, then it is replaced by two targets P and Q. This
tactic does not contribute to the writeup.

splitDisjunctiveTarget

If there is a target that consists of a formula of the form P ∨ Q, then it is replaced
by a target consisting of boxes corresponding to P and Q.

This tactic exists for technical reasons: one reason is that the program sometimes
likes to attach tags to statements, for example to record whether they have been used
(which affects the deletion rules), but it has no facility for attaching tags to parts
of statements. Therefore, if we want to use a tag to record information about one
disjunct of a disjunctive target, we need to ‘split’ the target first.

Also see the note regarding splitDisjunctiveHypothesis above.

peelBareUniversalTarget

If the target is of the form ∀x P(x) and P is not a conditional statement, then this
tactic removes the universal quantifier.

This tactic generates a representation which (if in isolation) would eventually be
transformed into text like “Take ε > 0.”

removeTarget

This tactic is formed froma family of related sub-tacticswhose commonelement is
that under appropriate circumstances they replace a target with �. The most obvious
example is when a target equals an assumption (and that assumption is allowed to
be used to prove the target). A more complicated example is when the target is of
the form ∃u (P(u) ∧ Q(u)) and there are assumptions P(x) and Q(x). The other
circumstances are similar.

The sub-tactics generate representations that are eventually transformed into text
like “Therefore, setting δ = θ , we are done.”

collapseSubtableauTarget

If a target consists of a single boxB that has no assumptions and contains nometavari-
ables (see Sect. 5.8 for a discussion of these), then the target is replaced by the targets
of B. This tactic does not contribute to the writeup.

38 M. Ganesalingam and W. T. Gowers

5.7 Applying Tactics

An applying tactic is any tactic that corresponds to what human mathematicians
would call applying an assumption, result or definition.
forwardsReasoning

The most basic form of this tactic is universal modus ponens: that is, a combination
of substitution into a universal-conditional assumption followed by an implication
elimination that uses the resulting conditional statement. In other words, one uses
assumptions of the form ∀u (P(u) =⇒ Q(u)) and P(x) to obtain a new assumption
Q(x).

A slight variant of this tactic that is worth highlighting is illustrated by the fol-
lowing simple piece of reasoning: if we know that x ∈ A and that A ⊂ B then we
can deduce that x ∈ B. Humans will make this deduction in one step rather than first
expanding the statement A ⊂ B as ∀u (u ∈ A ⇒ u ∈ B), then substituting x for u,
and finally applying forward chaining. In order to produce a human-like writeup, our
program does the same. In general, for each type of reasoning tactic that involves a
universal conditional assumption, there is a variant that does the same thing to the
expansion of a pre-universal conditional assumption.

This tactic also handles deductions that involve more than one premise, such
as using assumptions of the form P(x), Q(x), and ∀u (P(u) ∧ Q(u) =⇒ R(u)) to
obtain the assumption R(x).

This tactic generates a representation which (if in isolation) would eventually be
transformed into text like “Since x ∈ A and A ⊂ B, x ∈ B.”

forwardsLibraryReasoning

This is reasoning that is ‘mathematical’ rather than ‘purely logical’. For example,
from the statements ‘(an) is a sequence in A’, ‘A is closed’ and ‘an → a’ one can
deduce that a ∈ A. Experienced human mathematicians will perform this deduction
in one step, because their mental library will contain the result that whenever a
sequence in a closed set tends to a limit, then the limit belongs to the closed set as
well. Mimicking this behaviour is very important for producing a write-up that is not
cluttered with an inappropriate amount of detail.

Logically speaking, one could unify forwards library reasoning with ordinary
forwards reasoning by adding the entire (allowable) content of the library to our list
of assumptions. However, there are one or two aspects of library reasoning that give it
a different flavour. The main one is that library results contain no free variables: they
are general facts that apply universally. This distinguishes them from assumptions,
which are more contingent. A second difference is that forwards library reasoning
is normally used to deduce an atomic assumption from other atomic assumptions.
A universal conditional statement is involved, but it is in the library and is not a
assumption. For these reasons, reasoning that uses library results tends to be used by
humans only when other forms of forwards reasoning are not available. Therefore,
for the program it is important not to unify the two forms of reasoning, so that library
reasoning can be given a lower priority.

A Fully Automatic Theorem Prover with Human-Style Output 39

It is also important to place some kind of restriction on forwards library reasoning
to stop the programmaking obviously irrelevant deductions. For instance, if it knows
that H is a subgroup of a group G and x ∈ H , and if a suitable result belongs to the
library, then an unrestricted forwardsLibraryReasoning would allow it to deduce that
x−1 ∈ H , but this deductionmaywell be of no help in solving the problemat hand and
a step that no human would think of taking. As a safeguard against this, we forbid the
program to apply the forwardsLibraryReasoning tactic if it creates a new term. This
aspect of the program is not stable: it seems that although human mathematicians
are indeed reluctant to create new terms in this way, they sometimes do so, even
in some fairly straightforward problems. More work is needed to understand the
circumstances under which such ‘speculative’ reasoning occurs.

This tactic generates a representation which (if in isolation) would be transformed
into text like “Since (an) is a sequence in A, A is closed and an → a, a ∈ A.”

expandPreExistentialHypothesis

As its name suggests, this means replacing a pre-existential assumption by its defi-
nition expansion (Recall that a statement is pre-existential if its definition expansion
is an existential statement). What the name of the tactic does not reveal is that this
expansion is followed immediately by an existential elimination. So for example
expansion of the hypothesis ‘A is bounded’ might result in the introduction of a vari-
able M and a new hypothesis ∀x (x ∈ A ⇒ |x | ≤ M). We do this because human
mathematicians almost always do it without comment, so our program should do so
as well. Although these features have no effect on which problems the program can
solve, they have a significant effect on the writing-up stage, saving the program from
having to judge that certain steps do not need to be spelt out.

This tactic generates a representation which (if in isolation) would be transformed
into text like “Since A is bounded, it follows that there exists M such that |x | ≤ M
whenever x ∈ A.” Note that, following standard human practice, in the rest of the
write-up the variable x would automatically be treated as an entity one could refer
to: the program is like a human in considering this kind of instance of ‘there exists M
such that ...’ as equivalent to ‘let M be such that ...’ (Also note that a human typically
suppresses the domain of quantification of M in this case, i.e. a human does not write
M ∈ R, and the program does the same.).

elementaryExpansionOfHypothesis

This takes a assumption that has an elementary expansion (recall that this means an
expansion that does not begin with a quantifier) and replaces it by that expansion.
This is sometimes combined with some tidying. For example, if the assumption in
question is x ∈ A ∩ B, then the elementary expansion is x ∈ A ∧ x ∈ B, but this
expansion is immediately converted into the two assumptions x ∈ A and x ∈ B and
does not itself appear in any intermediate goal—again so that the write-up will be
suitably concise.

This tactic generates a representation which (if in isolation) would be transformed
into text like “Since x ∈ A ∩ B, x ∈ A and x ∈ B.”

40 M. Ganesalingam and W. T. Gowers

backwardsReasoning

This is the obvious backwards counterpart of forwards reasoning, using universal
modus tollens instead of universal modus ponens. The most basic form is thus that
we are given a target Q(x) and an assumption ∀u (P(u) ⇒ Q(u)), and we replace
the target by P(x).

More generally, if we have a target Q(x) and an assumption ∀u (P1(u) ∧ · · · ∧
Pk(u) =⇒ Q(u)), then it is logically sound to replace the targetQ(x) by the k targets
P1(x), . . . , Pk(x), andmany provers will happily do so. Our program is allowed to do
this more complex backward chaining only under tightly constrained circumstances:
we require all but one of the statements P1(x), . . . , Pk(x) to be an assumption, so
that only one new target is created. This is another pragmatic decision: it is a crude
way of deciding whether applying the assumption ∀u (P1(u) ∧ · · · ∧ Pk(u) =⇒
Q(u)) is likely to be the right thing to do, and the severity of the test is intended to
stop the program making ‘speculative’ deductions that risk leading to combinatorial
explosion. It is clear that humans sometimes violate this rule, butmorework is needed
in order to understand when they do so.

Aswith forwards reasoning, there is a simple variantwhere the role of the universal
conditional assumption is played by a pre-universal conditional assumption instead.
For example, given a target x ∈ B and an assumption A ⊂ B the program could use
this variant to replace the target by x ∈ A.

The contribution of this move to the writeup is complex. An example of the output
it can produce is “We know that y ∈ A whenever d(x, y) < η.”

backwardsLibraryReasoning

This is backwards reasoning that makes use of a general result in the library. How-
ever, it is slightly subtler than forwards library reasoning, because it always uses
assumptions as well as a target. The precise rule is that if there are assumptions
P1(x), . . . , Pk−1(x), a library result ∀u (P1(u) ∧ · · · ∧ Pk(u) ⇒ Q(u)) and a target
Q(x), then the target can be replaced by Pk(x). (Of course, the premises of the library
result do not have to be stated in the order P1, . . . , Pk).

An example of this kind of reasoning would be to say, “It is sufficient to prove
that B is open,” if one wished to prove that A ∩ B was open and knew that A was
open. This would be making use of the result that an intersection of two open sets is
open.

Once again, the restriction we place is for pragmatic reasons: we do not want
the program to make highly speculative transformations of the goal that introduce
several new targets, since humans are usually reluctant to do this, especially when
solving simple problems of the kind we are focusing on. But this is another situation
where we would hope to improve the program in a future version, since humans do
sometimes introduce multiple targets and then tick them off one by one.

The contribution of this move to the writeup is complex. An example of the output
it can produce is “Since d(x, y) < δ, d(x, y) < η if δ � η.”

A Fully Automatic Theorem Prover with Human-Style Output 41

elementaryExpansionOfTarget

This replaces a target by an elementary expansion of that target, if it has one. In
the absence of metavariables, it generates a representation that will eventually be
transformed into text like “we would like to show that A is open, i.e. that ...”. In
the presence of metavariables, it generates a representation that will eventually be
transformed into text like “we would like to show that xy ∈ H ∩ K , i.e. that xy ∈ H
and xy ∈ K ”.

expandPreUniversalTarget

This replaces a pre-universal target by its expansion. This tactic will be followed by
one of the tidying tactics peelAndSplitUniversalConditionalTarget or peelBareUni-
versalTarget. It is usually the first tactic that the program applies when faced with a
naturally stated problem.

This tactic does not generate any write-up text.

solveBullets

As we are just about to discuss in more detail, we sometimes convert a variable w
into a metavariable. The metavariable needs at some stage to be chosen in such a
way that the problem can be solved. If the variable only ever appears in targets, then
one simple way in which this can often be done is to identify another variable x with
the property that if we substitute x for w, then every target that involves w is equal to
a assumption. In that situation, all those targets are replaced by �.

This tactic generates a representation that will (after postprocessing) be trans-
formed into text like “We may take ε = . . . and we are done.”

automaticRewrite

There are a few term rewriting rules stored as data in the library. An example is
that the term (g ◦ f)(x) is rewritten as g(f(x)). These rewriting rules are intended to
represent operations that are so automatic that a human would not comment on them,
and accordingly this tactic does not contribute to the writeup.

5.8 Creation of Metavariables

We now come to a class of tactics alluded to earlier: tactics that help us deal with
existential targets when it is not immediately clear what to substitute for the exis-
tentially quantified variable. A standard technique for this, which is essentially the
technique we use, is to form metavariables. The rough idea of a metavariable is that
one reasons with it as though it had been chosen, deferring the actual choice until
later when it becomes clearer what choice will make the argument work. Mathemati-
cians often use this trick: a classic example is the ‘3ε-argument’ used to prove that
a uniform limit of continuous functions is continuous.

We have found it convenient to introduce two kinds of metavariable, to model
two styles of reasoning that are logically similar but psychologically quite different.

42 M. Ganesalingam and W. T. Gowers

As ever, this mimicking of human reasoning is necessary to produce a human-like
writeup. These are displayed with diamonds or bullets, as described below.

unlockExistentialUniversalConditionalTarget

To illustrate this, supposewe have a target such as ∃δ ∀y (d(x, y) < δ ⇒ f (y) ∈ B),
and also a assumption ∀u u ∈ A =⇒ f (u) ∈ B. Then it is easy to see that we can
reduce the target to ∃δ ∀y (d(x, y) < δ =⇒ y ∈ A). However, this operation is not
open to the program because it is not allowed to ‘reason inside quantifiers’. This
is a matter of convenience: such operation are logically valid, but it is tedious to
specify appropriate variants of several of the reasoning tactics listed above. Instead,
we introduce a metavariable, which effectively moves aside the existential quantifier
and allows the program to reason as normal with the statements inside it.

More precisely,what the programdoes to is replace the statementwith a boxwhose
variables include the metavariable that is being introduced. In the example above,
it would have no assumptions and a single target ∀y (d(x�, y) < δ ⇒ f (y) ∈ B).
The diamond on the (meta)variable x indicates that x needs to be chosen.

It is important for the program not to interchange quantifiers accidentally. For this
reason, we tag the box just created with the variable x�, to indicate the scope of the
existential quantification over x.

After ‘unlocking’ the statement, the program applies the peelAndSplitUniversal-
ConditionalTarget tactic inside the box. After that, we have a box that looks like
this.

d(x�, y) < δ

f (y) ∈ B

Once we have done this, the statement f (y) ∈ B has become an internal target and
the program is free to apply backwards reasoning to it.

This tactic generates a representation that will (after postprocessing) be trans-
formed into text like, “We would like to find x s.t. P(x) whenever Q(x).”

unlockExistentialTarget

This tactic replaces a target of the form ∃x P(x) with a box that has the variable x�,
no assumptions and a single target P(x�).

This tactic will never be applied to an existential universal conditional target,
since that will have been dealt with by unlockExistentialUniversalConditionalTarget.
The main reason we have two separate tactics here is that we prefer to bundle the
unlocking together with the peelAndSplitUniversalConditionalTarget tactic when
that is possible.

To see what unlockExistentialTarget allows the program to do, suppose that we
have a target of the form ∃x (Q(x) ∧ R(x)) and also a assumption of the form
∀u (P(u) ⇒ Q(u)). In this situation we would like to be able to do backwards rea-
soning inside the existential quantifier to reduce the target to ∃x (P(x) ∧ R(x)).

A Fully Automatic Theorem Prover with Human-Style Output 43

However, the program does not have a tactic for this. Instead, it unlocks the exis-
tential target, so that it has a box with a target Q(x�) ∧ R(x�). The tidying tactic
splitConjunctiveTarget can now turn this new target into two targets, and once it has
done that, the applying tactic backwardsReasoning can be used to replace the target
Q(x�) by P(x�).

As another example of the use of unlocking, suppose that we wished to prove
that A ∩ B is non-empty and had the assumptions x ∈ A and x ∈ B. The program
cannot see that x is a witness to the non-emptiness of A ∩ B without doing some
processing. An obvious first step is to expand the target into the statement ∃u u ∈
A ∩ B. However, the program is not then allowed to do an elementary expansion
inside the quantifier. Instead, it unlocks u so that there is a new target u� ∈ A ∩ B.
This can now be expanded and split into the two targets u� ∈ A and u� ∈ B, which
solveBullets can then match with the assumptions.

This may seem a little circuitous, but it actually models quite closely how humans
think. A human might say, ‘I want to show that A ∩ B is non-empty, so I need to
find some u that belongs to A ∩ B. In other words, I need u to be in A and in B.
Aha, I can take x.’ The program’s unlocking models the silent disappearance of the
existential quantifier before the second sentence of the above, which we need to
model to produce a human-like writeup.

This tactic generates a representation which will (after postprocessing) be trans-
formed into text like “We would like to find x s.t. P(x).”

expandPreExistentialTarget

This does exactly what it says: it replaces a pre-existential target by its expansion.
It generates a representation that will eventually be transformed into text like “We
would like to show that”, explicitly presenting the expansion.

convertDiamondToBullet

There are certain tactics that the program will not apply to a ‘diamonded’ metavari-
able. In particular, it will not do any reasoning with an assumption that involves such
a metavariable: for that it needs another kind of metavariable, roughly speaking cor-
responding to the human operation of ‘pretending that a variable has been chosen’
and then reasoning with it. Logically this is not an important difference, but it is a
useful one for us because it reflects a difference in the way human mathematicians
think andwrite. This helps the program to producemore convincing write-ups.When
we convert a ‘diamonded’ variable into a full metavariable in this way, we change
the diamond to a bullet.

We do not need separate tactics for reasoning that involves assumptions with
bulleted metavariables: we just allow the reasoning tactics described above to handle
such metavariables.

An important technicality is that if we postpone the choice of a metavariable, we
must keep track of which other variables it is allowed to depend on. However, what
we actually do is note which variables it is not allowed to depend on. This is for two
reasons. First, it seems to reflect more accurately how human mathematicians think
about such variables, and secondly, it is more economical: there are typically many

44 M. Ganesalingam and W. T. Gowers

fewer variables on which a bulleted variable is not allowed to depend than variables
on which it is allowed to depend.

This tactic generates a representation that will (after postprocessing) be trans-
formed into text like “Assume now that”, explicitly stating all assumptions
involving the relevant metavariable.

5.9 Equality Substitution

If we are told that two objects are equal, then we can eliminate all mention of one
object in favour of the other. The precise rules governing when and how mathemati-
cians tend to avail themselves of this opportunity are not obvious. The rules below
are best regarded as a temporary solution: they do not always result in realistically
human choices, and we intend to replace them by more satisfactory rules when we
understand better what humans do.

rewriteVariableVariableEquality

If there is an assumption of the form x = y, then this tactic replaces all occurrences
of y by x and eliminates the assumption.

This tactic generates a representation that will eventually be transformed into text
like “Since x = y, ...”.

rewriteVariableTermEquality

If there is an assumption of the form v = t or t = v, where v is a variable and t is a
term, then this tactic replaces all occurrences of t by v.

This tactic generates a representation that will eventually be transformed into text
like “Since v = t, . . .”.

5.10 Justification for the Order of Priority

Aswe have already said, the tactics we use above are all either standard in themselves
or simple combinations of standard tactics (with the possible exception of our dis-
tinction between ‘diamonded’ variables andmore standard metavariables). Our main
concern is not the set of tactics available to the program, but the way the program
chooses which tactic to apply to any given goal. We have attempted to design this so
that the program can produce a realistically human style of output in an incremental
fashion. That is, each tactic needs to produce a list of human-like English sentences,
or more accurately a list of elements of a datatype that correspond to such sentences.
The postprocessing described in Sect. 4 does not change the fact that the output of
the program very closely matches its inner workings. This feature of the program
has governed many of the design decisions we have made.

A Fully Automatic Theorem Prover with Human-Style Output 45

How should the program decide which tactic to use in any given situation? Our
methodology for answering this question was to work through large numbers of
problems ourselves, making a note of which tactics seem appropriate. After a while
wewere in a position tomake afirst guess at a suitablemethod for choosing tactics.We
then tried the method out on more problems, adjusting it when it led to inappropriate
choices. After several iterations of this, we arrived at the order of priority of the
tactics that we set out in the previous section.

If our only justification for the order of priority were that it leads to good results
for the problems we have tried so far, it would not be very strong: what gives us
any confidence that the order of priority will be appropriate for other problems that
may be quite different from the ones we have looked at so far? However, there is an
informal guiding principle that explains quite a lot (though not all) of the order of
priority, which is that the program prefers “safe” tactics to “dangerous” tactics. As
we mentioned earlier, the same is true of the order of priority chosen by Boyer and
Moore in their ‘waterfall’ architecture (see Boyer and Moore (1979), p. 90).

Broadly speaking, a tactic is safe if the risk that it will lead to an undesirable
result, such as a dead end or a step that is completely irrelevant to the eventual proof,
is small. For example, tidying tactics are safe in this sense: by expressing the goal
in a more convenient form, they open up new options without closing off any old
ones. Since they are so safe, they come first in the order of priority. By contrast,
expanding a definition is substantially less safe: sometimes it is possible to reason
in a high-level way without expanding, and since we do not allow ‘de-expansion’ in
this program (and in general allowing it would be highly problematic because of the
danger of an infinite loop), expanding a definition is closing off the option of such
high-level arguments, so we are reluctant to do it unless we have convinced ourselves
that high-level arguments are not available. For example, if there is an assumption
of the form ‘(an) is Cauchy’, then we do not want our program to expand out the
definition of Cauchy unless it has checked that it is not thereby closing off the option
of a high-level deduction such as

X is complete

(an) is Cauchy

(an) converges

which would be a piece of forwards library reasoning in the program.
Thus, expansion has a fairly low priority. Having said that, some expansions,

such as elementary expansions or expansions of pre-existential assumptions, are
considerably safer, so those ones have higher priority.

Somewhere in between are the other reasoning tactics. Here it becomes more
complicated to apply the general principle, even as an informal guide, because the

46 M. Ganesalingam and W. T. Gowers

safety of a tactic depends heavily on context. In particular, forwards reasoning is
in general fairly unsafe—if you have a lot of information and do not know which
statements are relevant, then the probability that any given deduction will form part
of the eventual proof may be quite small—but it is much safer when it comes to
routine problems, which tend not to suffer from the problem of irrelevant informa-
tion.

It seems that when it is safe, humans tend to prefer forwards reasoning to back-
wards reasoning (Sweller, Mawer, & Ward, 1983; Owen & Sweller, 1985), though
this appears to be a question more of style than of problem-solving efficacy: we tend
to prefer not to keep track of a moving target if we do not have to. Since forwards rea-
soning tends to be safe for the highly routine problems our program tackles, we have
given all forwards reasoning a higher priority than all backwards reasoning. This
also has the beneficial effect of making the program reluctant to switch direction—
too much switching from forwards to backwards or vice versa would again be bad
mathematical style.

This aspect of our program is, however, unstable, for the reason just given. When
humans are faced with several possibilities for forwards reasoning, they will often
switch to backwards reasoning in order to lessen the risk of making irrelevant deduc-
tions, but our programdoes not yet have any facility formaking this kind of judgment.

One other feature of the ordering of reasoning tactics is that we prefer pure rea-
soning tactics to library reasoning tactics. That is because in general an assumption is
more likely to be relevant than a library statement, though if enough of the premises
of a library statement are present as assumptions, that is a fairly strong argument for
its relevance.

At the bottom of the list of priorities is the process of creating metavariables. That
is because humans tend to regard it as a last resort. When mathematicians need to
prove statements of the form ∃x P(x), then by and large they prefer to transform the
goal using other tactics until a suitable candidate x0 for x becomes obvious and it
remains to carry out the relatively easy task of verifying that P(x0). Only when this
straightforward approach fails do we take the more drastic step of pretending that x
has been chosen.

We will not say much more here about how we chose the priority order, but we
have two brief further points. First, although our reasons are not completely precise,
we found that in practice they were adequate, in the sense that they suggested an
order before we started, and we found that we did not have to modify the order when
we tried further problems (though, as commented above, there are certain aspects
of the architecture that will need to be changed in future versions). Secondly, when
it comes to the finer detail of the ordering, there may not be that much to choose
between different tactics. However, conflicts rarely arise between different tactics
that are not distinguished by any of the above criteria, so in practice these finer
details have little if any effect on what the program actually does.

A Fully Automatic Theorem Prover with Human-Style Output 47

6 Example of Operation: An Intersection of Two Open Sets
Is Open

Now that we have discussed how the program works, let us look at another example,
which involves most of the tactics we have discussed and shows how the order of
priority works in practice. The problem to be solved is the following.

Problem 1 Let A and B be open subsets of a metric space X. Prove that A ∩ B is
open.

The initial goal is represented as follows.

A is open

B is open

A ∩ B is open

No reasoning tactics are possible, sowe end up having to expand. The highest priority
tactic we can do is expandPreUniversalTarget, which, after the tidying peelAndSpli-
tUniversalConditionalTarget, has the following effect.

A is open

B is open

x ∈ A ∩ B

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

Recall that we do not explicitly specify here that δ > 0, but instead take the positivity
of δ to be part of its type. This is an example of why that is important: by suppressing
background conditions such as δ > 0, we make it much easier for the program not to
pay undue attention to them, and therefore easier for us to define our priority order
in a unified way.

At this point, the program is trying to prove a statement that existentially quantifies
over δ. The nuclear option would be to convert the variable δ to a metavariable, but
this operation has a low priority, so the programdoes asmuch forwards reasoning as it
possibly can before resorting to it. It beginswith elementaryExpansionOfHypothesis,
applied to the third assumption.

48 M. Ganesalingam and W. T. Gowers

A is open

B is open

x ∈ A

x ∈ B

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

This allows it apply forwardsReasoning twice. After the first application, the goal is
as follows.

A is open

B is open

x ∈ A

x ∈ B

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

Note that the last assumption is in a sense generated by a combination of subtactics:
the first is forwardsReasoning (using the assumptions x ∈ A and ‘A is open’) and
the second is an existential elimination (to get rid of ∃η that would otherwise occur
at the beginning of the statement). However, the latter is so automatic that it is not
listed as one of our tidying tactics: instead, it is considered as part of any other tactic
that potentially generates an existential assumption.

It is important to keep track of the fact that η depends on x, which is what is
signified by η[x].

After this, deleteUnmatchable causes the program to remove the statements x ∈ A
and ‘A is open’. This is because both statements have been used and because it is no
longer permissible to substitute x into ‘A is open’. The resulting goal is as follows.

B is open

x ∈ B

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

The program then runs through a similar process for B (it does not yet have the
capacity to recognise that the problem is symmetric in A and B and say, ‘Similarly
...’). After that process, it arrives at the following.

A Fully Automatic Theorem Prover with Human-Style Output 49

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

∃δ ∀y (d(x, y) < δ ⇒ y ∈ A ∩ B)

It has now reached the point where conversion of δ to a metavariable is the only
option it has. In the first instance, it uses the tactic unlockExistentialUniversalCon-
ditionalTarget. The result is as follows.

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

d(x, y) < δ�[y]

y ∈ A ∩ B

The notation δ•[y] signifies that δ is not allowed to depend on y.
The highest priority tactic the program can now apply is elementaryExpansionOf-

Target, so it does that, and automatically splits the resulting conjunctive statement
(rather than using the tactic splitConjunctiveTarget).

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

d(x, y) < δ�[y]

y ∈ A
y ∈ B

This allows it to apply backwardsReasoning twice. After the two deductions it
reaches the following state (It does them separately, so we are jumping a step here).

∀u (d(x, u) < η[x] ⇒ u ∈ A)

∀v (d(x, v) < θ [x] ⇒ v ∈ B)

d(x, y) < δ�[y]

d(x, y) < η[x]
d(x, y) < θ [x]

50 M. Ganesalingam and W. T. Gowers

It then uses deleteUnmatchable to remove the two assumptions it has just used.

d(x, y) < δ�[y]

d(x, y) < η[x]
d(x, y) < θ [x]

At this point, there is not much that the program can do, because it is not allowed to
reason with the diamonded variable δ�. So the highest-priority tactic it can apply is
convertDiamondToBullet. Also, since there are no assumptions above the main line,
it replaces the goal by the inner box.

d(x, y) < δ•[y]

d(x, y) < η[x]
d(x, y) < θ [x]

Now it applies backwardsLibraryReasoning. The result in the library is that if a < b
and b ≤ c, then a < c. Applying that with the assumption and the first target results
in the following goal.

d(x, y) < δ•[y]

δ•[y] ≤ η[x]
d(x, y) < θ [x]

The removal tactics do not allow the program to remove the assumption we have just
used (and this is a good example of a situation where deletion would be a very bad
idea). However, it cannot use the assumption with the new target. The program then
uses backwardsLibraryReasoning again and this time it does remove the assumption,
on the grounds that the variable x that appears in the assumption does not appeat in
any other statement. After that, it has reached the following state.

δ•[y] ≤ η[x]
δ•[y] ≤ θ [x]

This is a ‘standard’ existence problem, whose solution is stored as a construction in
the library. The program uses this and declares the problem solved. It is here that the

A Fully Automatic Theorem Prover with Human-Style Output 51

background information that δ, η and θ are positive is used, since the library result
is that the minimum of two positive real numbers a and b is a positive real number
that is less than or equal to both a and b.

7 Testing the Write-Ups

Once the program had generated the write-ups for several problems, we wanted to
test whether they could pass for write-ups written by a human mathematician. In this
section we describe an informal experiment that we carried out for this purpose.

We began by asking two mathematicians, one an undergraduate and one a PhD
student, to write out proofs for five problems for which our program had generated
proof write-ups. We did not tell either of them why we were making this unusual
request, and we did not ask them to make their write-ups as good as possible. One of
the problems was to show that the inverse image of an open set under a continuous
function is open, and one of our volunteers decided to prove the converse, so that he
could use the topological definition of continuity to prove another of the assertions—
that a composition of continuous functions is continuous.Wehad to ask him to rewrite
the latter and give the epsilon-delta proof, since we wanted the differences between
the write-ups to be a matter of style rather than substance.

We had another problem of this kind, which was that both our volunteers made
frequent use of open balls. For example, their expansion of ‘A ∩ B is open’ was ‘for
every x ∈ A ∩ B there exists δ > 0 such that Bδ(x) ⊂ A ∩ B.’ This made some of
their arguments neater than the ones produced by our program. We contemplated
getting the program to redo the problems using open-balls expansions, but in the end
decided that it would be ‘cheating’ to make changes to its output in response to the
human write-ups we had solicited, so we left things as they were.

The program’s write-ups were not designed to be indistinguishable from human
write-ups: we merely wanted them to be acceptable as human write-ups. Therefore,
we left in certain features, such as ending every proof with the words, ‘we are done’,
that we could with a little trouble have changed (See the brief discussion of non-
determinism at the end of Sect. 4). For this reason, we did not want to ask people to
guess which write-ups were by the program. Instead, we presented all fifteen write-
ups—two by humans and one by the program for each of the five problems—on the
second author’s blog, and asked readers of the blog to comment on them in any way
they liked.We also asked them to award points for clarity and style. The orders of the
write-ups were chosen randomly and independently (The precise mechanism was to
decide on a one-to-one correspondence between the set {1, 2, 3, 4, 5, 6} to the set of
permutations of the set {1, 2, 3}, then to find a website that produced random dice
rolls). So that answers would be as independent as possible, all comments and ratings
were sent to the blog’s moderation queue and published only after the experiment
was finished and comments on the blog post were closed.

52 M. Ganesalingam and W. T. Gowers

The post can be found at http://gowers.wordpress.com/2013/03/25/an-
experiment-concerning-mathematical-writing/, together with all the comments and
ratings, but the real point of the experiment was to see whether anybody noticed that
not all the write-ups were by humans. Nobody expressed the slightest suspicion of
this kind.

Having said that, we should also remark that many commenters were highly
critical of the program’s output. Three criticisms in particular stand out. First, as
we expected, the fact that the program did not use open balls was unpopular: many
people commented that this made the write-ups unwieldy. Secondly, several of the
human write-ups stated the new target when the initial one had been stripped of
universal quantifiers and conjunctions. Several readers commented that they found
this helpful, and criticized our program for not doing it. And thirdly, commenters
did not like the way the program spelt out in detail how it thought of the right
variable to substitute into existential targets (such as choosing min{η, θ} for δ in the
intersection-of-open-sets problem.

It would be easy to modify the program so that none of these criticisms apply, so
they do not point to fundamentally non-human aspects of how it thinks. To change
the first, we would just have to use a library containing open-balls expansions of
definitions such as ‘A is open’ and ‘f is continuous’. To change the second, we
could alter the rule for what the write-up does when we remove quantifiers and
conjunctions, so that it states the new target (preceded by a phrase such as ‘We need
to show that’). The third criticismwould be harder to deal with, but in future versions,
we plan to switch to having two styles of write up: a ‘proof write-up’ and a more
detailed ‘proof-discovery account’. For the first stylewewill let the programwork out
the values of bulleted variables, then simply declare those values when the variable
is first mentioned after being converted to a metavariable. This will correspond to
the human practice of writing something like ‘Let δ = min{η, θ}’ or ‘Consider the
sequence (bn) defined by bn = an/(1 + an),’ which ‘magically’ does exactly what it
needs to do later in the proof.

Although our program’s output came in for quite a bit of criticism, so did the
write-ups by the undergraduate and PhD student—it seems that the readers were
harsh judges. However, for most of the problems, the human write-ups were found
preferable to the program’s.

After the success (as we considered it) of this experiment, we dared to try a direct
test. We published a new post, this time explaining that one proof was by a program,
one by an undergraduate and one by a PhD student, and inviting readers to vote on
which one they thought was by the program. For each problem, the write-ups were
numbered (a), (b) and (c). There were seven options for the voting: one could choose
between (a), (b) and (c), but also choose between ‘The computer-generated output is
definitely ∗’ and ‘I think the computer-generated output is ∗ but am not certain’; the
seventh option was ‘I have no idea which write-up was computer generated.’ Again
there was the opportunity to comment, for those who wanted to explain the reasons
for their choices.

We did not reveal the results of the voting so far, or anybody’s comments, until
the experiment was ended and the voting was closed. However, there was a different

http://gowers.wordpress.com/2013/03/25/an-experiment-concerning-mathematical-writing/
http://gowers.wordpress.com/2013/03/25/an-experiment-concerning-mathematical-writing/

A Fully Automatic Theorem Prover with Human-Style Output 53

kind of dependence between answers, which was that people had the opportunity to
look for clues that two different write-ups were from the same source. Given that
we had not tried to remove stylistic ‘tics’ from our program’s write-ups, this put the
program at a significant disadvantage. It was clear from the comments that many
people had noticed that for each problem exactly one write-up ended with the words
‘we are done’.

Despite this, the program did reasonably well at fooling people that it was
human. The typical pattern was that roughly half the voters would correctly guess
which output was by the program, with slightly under half of that half saying
that the output was definitely by the program. The undergraduate would always
‘come second’, and there would always be a fair number of people who said that
they had no idea which output was written by the computer. There were surpris-
ingly many votes for ‘The computer-generated output is definitely ∗,’ when ∗
was the wrong answer. The total number of votes was always at least 300, and
for the first problem listed (the intersection of open sets is open) it was over
1000. One slight complication was that after a day or two the post was listed
on the front page of Hacker News. The result was that the number of votes
doubled in a couple of hours, and it may be that the profile of a typical voter
changed. Fortunately, we had noted down the voting numbers just before this hap-
pened, so we presented those results as well as the final numbers. In the end,
however, the proportions did not change very much. The detailed numbers can
be found here: http://gowers.wordpress.com/2013/04/14/answers-results-of-polls-
and-a-brief-description-of-the-program/.

One thing this experiment could not tell us, except to a limited extent through
the comments, was whether the program was good at fooling mathematicians that
it was human. It could be that the more mathematically experienced readers found
the program’s output easy to distinguish, while the votes for the human write-ups
came from people who were not used to reading mathematical proofs. However, we
feel justified in concluding that the program’s output is not obviously written by a
computer program, and that was our objective.

8 Running the Program

The prover was written in Haskell, and contains about 3300 lines of source code.
Readers who wish to replicate the evaluation or try the prover on other problems can
obtain the source code at https://github.com/mg262/research/raw/master/robotone.
zip; the readme file inside the archive contains instructions on compiling and running
the prover. Note that although the problems and library are logically separated from
the rest of the program, they are is currently stored as pure data in a Haskell module

http://gowers.wordpress.com/2013/04/14/answers-results-of-polls-and-a-brief-description-of-the-program/
http://gowers.wordpress.com/2013/04/14/answers-results-of-polls-and-a-brief-description-of-the-program/
https://github.com/mg262/research/raw/master/robotone.zip
https://github.com/mg262/research/raw/master/robotone.zip

54 M. Ganesalingam and W. T. Gowers

and compiled with the rest of the code.3 Output is produced as LATEX source which is
then compiled to two human-readable PDFs; one of these simply contains the proofs,
and the other displays the step-by-step operation of the programwith goals displayed
at each stage.

Note that the shell script that invokes the prover also runs LATEX on its output,
and that this accounts for nearly all of its running time; the actual Haskell program
runs too fast to measure (<1ms) on the eight test problems included with the source
code. This speed is a consequence of our aim of solving routine problems without
backtracking or extensive search, just as a human does (Sect. 1.3).

Readers who wish to try the prover on other problems should be warned that the
library must be tailored to the problem being solved.4 It is not possible to create a
general, problem-independent library (without significantly modifying the program)
because then the prover will use “more advanced”s results to prove simpler ones.
For example, if one were simply to fill a library with every available result about real
analysis and then ask the prover to show that sin is continuous, it could well deduce
this from the fact that sin is differentiable and the fact that differentiable functions
are continuous. But this is clearly an absurd proof.

This point may be illustrated with a problem tried by a referee, namely to show
that a preimage of a closed set under a continuous function is closed. This problem
was tried with the default library, which does not contain the requisite body of facts
about sequences. In particular, the program contains the expansion

in(x,preimage(f,U)) --> in(applyfn(f,x),U)

which allows ‘x ∈ f −1(U)’ to be expanded into ‘ f (x) ∈ U ’. As with many other
expansions, this rule has a direct analogue for sequences (and one for families, one
for sets, etc.). Once that rule,

sequencein(x,preimage(f,U)) --> sequencein(applyfnpointwise(f,x),U)

which allows ‘(an) ∈ f −1(U)’ to be expanded into ‘ f ((an)) ∈ U ’, has been added
to the library, the prover produces a solution:

Let (an) and a be such that (an) is a sequence in f −1(U) and an → a. Then f (an) is a
sequence in U. We would like to show that a ∈ f −1(U), i.e. that f (a) ∈ U and since U is
closed, f (a) ∈ U if f (an) → f (a). Let ε > 0.Wewould like to findN s.t. d(f (a), f (an)) <

ε whenever n � N . Since f is continuous, there exists δ > 0 such that d(f (a), f (an)) < ε

whenever d(a, an) < δ. Since an → a, there exists N ′ such that d(a, an) < δ whenever
n � N ′. Therefore, setting N = N ′, we are done.

3Using a Haskell module has allowed us to leverage Haskell’s excellent type-checking system to
validatemuch of the input, and has alsomade it easy to construct specific libraries using higher-order
operations during testing, with a considerable reduction in redundancy relative to a text format.
4All of the data used by the prover, including the library used with the supplied problems, can be
found in TestData.hs.

A Fully Automatic Theorem Prover with Human-Style Output 55

This solution is unsatisfactory in that it is operating at too low a level by reproving
from scratch the fact that a continuous function preserves limits. Adding that result
to the library gives a more satisfactory proof:

Let (an) and a be such that (an) is a sequence in f −1(U) and an → a. Then f (an) is
a sequence in U. We would like to show that a ∈ f −1(U), i.e. that f (a) ∈ U . Since f is
continuous and an → a, we have that f (an) → f (a). Therefore, since U is closed and
f (an) is a sequence in U, we have that f (a) ∈ U and we are done.

Note that if the library contains the the fact that a continuous function preserves
limits, then the prover will generate a trivial proof when asked to prove that fact.

In cases where the program fails to solve a problem, the most likely cause is that
the supplied library is not appropriate. Examining the final goal presented in the
detailed output of the program usually makes it clear what fact(s) one has forgotten
to include. Note that this is a benefit of our strategy of not backtracking: there is a
definite single final state in which the program is ‘stuck’, and examining that state is
invariably helpful.

9 Future Work

In the short term, we would like to make a number of small improvements to the
program so that it handles a greater range of problems satisfactorily. In the longer
term, we would like to enlarge significantly the set of problems that our program, or
some new version of it, is capable of solving. To do this, we will have to enable the
program to handle certain kinds of deductions that it currently handles either not at
all or only in a rather rudimentaryway. In particular, an immediate target is to give the
program the means to deal with second-order quantification, which would allow it
to solve easy compactness problems, and also problems that require the construction
of ‘obvious’ sequences.

At a more basic level, the program does not currently solve problems that involve
proof by contraposition or contradiction. It is not hard to add tactics that allow it to
cope with a few problems of this kind, but it is trickier to do so while not letting
it apply those tactics in inappropriate contexts. More work is needed to understand
what triggers the ‘contradiction move’ in human mathematicians, but we expect to
be able to add this facility in the near future.

The program is also not as good as we would like at handling equality substitu-
tions. The situation here is similar: we can obviously add tactics that perform such
substitutions (and have done so in the current version of the program), but it is more
challenging to understand when humans make such substitutions. It is also tricky to
come up with a general understanding of how they choose which out of two equal
variables or complex terms to eliminate. At its most general, the problem of how to
handle equality is well known to be hard, but our immediate aim would be a program
that can handle the easy cases of that problem competently and in a human way.

56 M. Ganesalingam and W. T. Gowers

Related to this, we need to do more work in order to enable the program to solve
problems that require the arithmetic structure of the real numbers, rather than just the
order structure. For example, the prover does not yet solve problems such as showing
that the limit of the sum of two convergent sequences is the sum of the limits.

In the longer term, we would of course like the program to be able to solve non-
routine problems. A major step up in problem-solving sophistication is needed when
one is required to carry out mathematical constructions, especially when they are
far from unique. This is true even for very easy problems. Consider for example the
problem of finding an infinite set of positive integers that contains no three distinct
numbers x, y and z with x + y = z. One obvious example is to take the set of all odd
numbers. Another that works for a different reason is to take the set of all powers of
2. Yet another, {1, 2, 4, 7, 12, 20, . . . } is obtained by taking each new element to be
one more than the sum of the two largest elements so far. All these examples feel
like ones that a human might conceivably come up with in response to the problem.
We have ideas about how these kinds of simple (for humans) existence proofs are
discovered, but implementing those ideas in a program will be a great deal of work.

Acknowledgements Research supported by a Royal Society 2010 Anniversary Research Profes-
sorship.

References

Asher, N., & Lascarides, A. (2003). Logics of conversation. Cambridge: Cambridge University
Press.

Ballantyne, A. M., & Bledsoe, W. W. (1977). Automatic proofs of theorems in analysis using
non-standard techniques. Journal of ACM, 24(3), 353–374.

Beeson, M. (1998). Automatic generation of epsilon-delta proofs of continuity. In J. Calmet & J. A.
Plaza (Eds.), Proceedings of the International Conference on Artificial Intelligence and Symbolic
Computation (AISC ’98) (pp. 67–83). London, UK: Springer.

Beeson,M. (2001). Automatic derivation of the irrationality of e. Journal of Symbolic Computation,
32(4), 333–349.

Bledsoe, W. W. (1971). Splitting and reduction heuristics in automatic theorem proving. Artificial
Intelligence, 2(1), 55–77.

Bledsoe, W. W. (1977a). Non-resolution theorem proving. Artificial Intelligence, 9(1), 1–35.
Bledsoe, W.W. (1997b). Set variables. In: Proceedings of the 5th International Joint Conference on

Artificial Intelligence (Vol. 1, pp. 501–510). San Francisco, CA: Morgan Kaufmann Publishers
Inc. http://dl.acm.org/citation.cfm?id=1624548.

Bledsoe, W. W. (1983). Using examples to generate instantiations for set variables. Proceedings of
IJCAI, 83, 892–901.

Bledsoe, W. W. (1995). A precondition prover for analogy. BioSystems, 34(1), 225–247.
Bledsoe, W. W., Boyer, R. S., & Henneman, W. H. (1972). Computer proofs of limit theorems.

Artificial Intelligence, 3, 27–60.
Bledsoe, W. W., & Hodges, R. (1988). A survey of automated deduction. In H. Shrobe (Ed.),

Exploring artificial intelligence (pp. 483–541). San Mateo, CA: Morgan Kaufmann Publishers
Inc.

Boyer, R. S., & Moore, J. S. (1979). A computational logic. ACM Monograph, Cambridge: Aca-
demic Press.

http://dl.acm.org/citation.cfm?id=1624548

A Fully Automatic Theorem Prover with Human-Style Output 57

Buchberger, B., Crǎciun, A., Jebelean, T., Kovács, L., Kutsia, T., Nakagawa, K., et al. (2006).
Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic,
4(4), 470–504.

Bundy, A. (2011). Automated theorem provers: A practical tool for the working mathematician?
Annals of Mathematics and Artificial Intelligence, 61(1), 3–14.

Clarke, E., & Zhao, X. (1992). Analytica–A theorem prover in Mathematica. Berlin: Springer.
Felty, A., & Miller, D. (1987). Proof explanation and revision. Technical Report MS-CIS-88-17,
University of Pennsylvania.

Ganesalingam, M. (2013). The language of mathematics. Berlin: Springer.
Gonthier, G. (2019). A computer-checked proof of the four colour theorem. http://research.
microsoft.com/en-US/people/gonthier/4colproof.pdf.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., et al. (2013). A machine-
checked proof of the odd order theorem. In S. Blazy, C. Paulin-Mohring & D. Pichardie (Eds.),
Interactive theorem proving (pp. 163–179). Berlin: Springer.

Grice, H. P. (1975). Logic and conversation. In P. Cole & J. L. Morgan (Eds.), Syntax and semantics
(Vol. 3, pp. 41–58). New York: Academic Press.

Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., et al. (2015). A formal proof
of the Kepler conjecture. http://arxiv.org/abs/1501.02155.

Holland-Minkley, A. M., Barzilay, R., Constable, R. L. (1999). Verbalization of high-level formal
proofs. In Proceedings of Sixteenth National Conference on Artificial Intelligence (pp. 277–284).

Humayoun,M.,&Raffalli, C. (2010).MathNat—Mathematical text in a controlled natural language.
In Special issue: Natural Language Processing and its Applications(Vol. 46, pp. 293–307).

Knott, A. (1996). A data-driven methodology for motivating a set of coherence relations. Ph.D.
thesis, University of Edinburgh.

Kuhlwein, D., Cramer, M., Koepke, P., & Schröder, B. (2009). The Naproche system. http://www.
naproche.net/downloads/2009/emergingsystems.pdf.

Mancosu, P. (Ed.) (2008). Mathematical explanation: Why it matters. In The Philosophy of Math-
ematical Practice (pp. 134–149). Oxford: Oxford University Press.

Owen, E., & Sweller, J. (1985). What do students learn while solving mathematics problems?
Journal of Educational Psychology, 77(3), 272–284.

Paulson, L. C. (1987). Logic and computation: Interactive proof with Cambridge LCF. Cambridge:
Cambridge University Press.

Reiter, E.,&Dale,R. (2000).Building natural language generation systems. Cambridge:Cambridge
University Press.

Sweller, J., Mawer, R. F., &Ward,M. R. (1983). Development of expertise inmathematical problem
solving. Journal of Experimental Psychology: General, 112(4), 639–661.

Trybulec, A. (1978). The Mizar-QC/6000 logic information language. ALLC Bulletin (Association
for Literary and Linguistic Computing), 6(2), 136–140.

Vershinin, K., & Paskevich, A. (2000). Forthel—The language of formal theories. International
Journal of Information Theories and Applications, 7(3), 120–126.

http://research.microsoft.com/en-US/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-US/people/gonthier/4colproof.pdf
http://arxiv.org/abs/1501.02155
http://www.naproche.net/downloads/2009/emergingsystems.pdf
http://www.naproche.net/downloads/2009/emergingsystems.pdf

A Common Type of Rigorous Proof that
Resists Hilbert’s Programme

Alan Bundy and Mateja Jamnik

1 Introduction

Hilbert’s Programme is defined in (Zach, 2009, p. 9) as:

The main goal of Hilbert’s program was to provide secure foundations for all mathematics.
In particular this should include:

A formalization: of all mathematics; in other words all mathematical statements should
be written in a precise formal language, and manipulated according to
well defined rules.

Completeness: a proof that all true mathematical statements can be proved in the for-
malism.

Consistency: a proof that no contradiction can be obtained in the formalism of math-
ematics. This consistency proof should preferably use only “finitistic”
reasoning about finite mathematical objects.

Conservation: a proof that any result about “real objects” obtained using reasoning
about “ideal objects” (such as uncountable sets) can be proved without
using ideal objects.

Decidability: there should be an algorithm for deciding the truth or falsity of any
mathematical statement.

The problems with the goals of Completeness, Consistency and Decidability, that
were revealed by Gödel’s incompleteness theorems (Gödel, 1931), have been well
documented, but in this chapter, we are focused on the goal of Formalisation.

A. Bundy (B)
University of Edinburgh, Edinburgh, UK
e-mail: A.Bundy@ed.ac.uk

M. Jamnik
University of Cambridge, Cambridge, UK
e-mail: mateja.jamnik@cl.cam.ac.uk

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_3&domain=pdf
mailto:A.Bundy@ed.ac.uk
mailto:mateja.jamnik@cl.cam.ac.uk
https://doi.org/10.1007/978-3-030-28483-1_3

60 A. Bundy and M. Jamnik

Formalisation has become important in Computer Science as the basis of auto-
mated theorem proving, which has important practical applications, for instance, in
the verification of the correctness of computer software and hardware (Robinson &
Voronkov, 2001). Using one of many formal logics, the axioms and rules of inference
of a formal mathematical theory are represented as data-structures in an automated
theorem prover. Programs are then written to construct formal proofs by deriving
new formulae from old by applying these rules to them. In some provers, humans
can interact and guide the development of the proof; in others, the development is
completely automatic.

Zach (2009, p. 10) summarises the post-Gödel,modified formof the Formalisation
goal of Hilbert’s Programme as:

Although it is not possible to formalize all mathematics, it is possible to formalize essentially
all the mathematics that anyone uses. In particular Zermelo-Fraenkel set theory, combined
with first-order logic, gives a satisfactory and generally accepted formalism for essentially
all current mathematics.

Our claim in this chapter is that there is a form of proof, which we will call
schematic proof, that resists even this, generally accepted, Formalisation goal of the
Hilbert Programme.

As evidence to support our claim we will analyse Cauchy’s Proof of Euler’s
Theorem as discussed, for instance, in Lakatos (1976). Paraphrasing Hilbert (1930),
we will take Hilbert’s view of proof to be:

A proof is a sequence of formulae each of which is either an axiom or follows from earlier
formulae by a rule of inference.

There is a widespread assumption in the Mathematics community that the rigorous1

proofs one finds in Mathematics papers and textbooks are an abstraction of this
ideal. Instead of stating every formula in the sequence, some of them are omitted, the
assumption being that a typical reader will be able to skip several formal steps at a
time.DeBruijn’s factor even gives a numerical value of approximately 4 to the typical
ratio of the logical to the rigorous proof steps (de Bruijn, 1980). This was calculated
by surveying and analysing a number of proofs produced in different automated
theorem provers. Carrying out this formalisation part of Hilbert’s Programme then
consists of filling in the gaps: agreeing on an axiomatic system, such as Zermelo-
Fraenkel set theory, deriving all the elementary lemmas that might be assumed in a
proof, and interleaving the rigorous proof with the missing steps.

We will show that schematic proofs contradict this assumption and that a much
more radical programme is required to formalise them—provided they are not faulty.

Schematic proofs are of interest to Mathematics educators for both, positive and
negative reasons.

• On the positive side, they aremore intuitive, natural and accessible, and can engen-
der a deeper understanding of why a theorem holds than a Hilbertian proof can.

1The word ‘informal’ is sometimes used instead of ‘rigorous’. We avoid ‘informal’, as we will
claim, in Sect. 4, that schematic proofs can also be formalised.

A Common Type of Rigorous Proof that Resists Hilbert’s Programme 61

In a cube there are 8 vertices, 12 edges and 6 faces. So, V − E + F = 8 − 12 + 6 = 2.

Fig. 1 Euler’s Theorem in the case of the cube

• On the negative side, they are error prone. A proof of their correctness for all cases
is required, but is often omitted. If omitted, counter-examples can go undetected.

2 Cauchy’s ‘Proof’ of Euler’s Theorem

Polyhedra are the 3D version of polygons: objects whose faces are polygons. Exam-
ples include the five regular Platonic polyhedra: tetrahedron, cube, octahedron,
dodecahedron and icosahedron, as well as many other semi-regular and regular
objects. Euler’s ‘Theorem’2 states that in any polyhedron, the following holds,
V − E + F = 2, where V is the number of vertices, E the number of edges and
F the number of faces. Figure1 illustrates this ‘theorem’ in the case of the cube.

In (1976), Imre Lakatos uses a rational reconstruction of the history of Euler’s
‘Theorem’ as a vehicle to argue that themethodology ofmathematics had evolved and
become more sophisticated. He describes a fictional classroom in which a teacher
leads a (very bright!) class through this history. The teacher starts by presenting
Cauchy’s ‘proof’3 of the theorem. The students then confront it with various counter-
examples and suggest ways to cope with them.

Cauchy’s ‘proof’ is couched as the following ‘thought experiment’, quoted from
Lakatos (1976, pp. 7–8):

“Step 1: Let us imagine the polyhedron to be hollow, with a surfacemade of thin rubber. If we
cut out one of the faces, we can stretch the remaining surface flat on the blackboard,
without tearing it. The faces and edges will be deformed, the edges may become
curved, but V and E will not alter, so that if and only if V − E + F = 2 for the
original polyhedron, V − E + F = 1 for this flat network—remember we have
removed one face (Fig. 2 top left shows the flat network for the case of a cube).”

2The scare quotes indicate that there are issues with proving Euler’s ‘Theorem’. These issues are
the subject of this section. It would have been more accurate to call it ‘Euler’s Conjecture’.
3Again, the scare quotes indicate that there are issues with this alleged proof.

62 A. Bundy and M. Jamnik

Step 1 Step 2

(a) (b)Step 3

Fig. 2 Cauchy’s ‘proof’ applied to the cube

“Step 2: Nowwe triangulate ourmap—it does indeed look like a geographical map.We draw
(possibly curvilinear) diagonals in those (possibly curvilinear) polygons which are
not already (possibly curvilinear) triangles. By drawing each diagonal we increase
both, E and F by one, so that the total V − E + F will not be altered (Fig. 2 top
right).”

“Step 3: From the triangulated network we now remove the triangles one by one. To remove
a triangle we either remove an edge—upon which one face and one edge disappear
(Fig. 2 bottom left), or we remove two edges and a vertex—upon which one face,
two edges and one vertex disappear (Fig. 2 bottom right). Thus if V − E + F = 1
before a triangle is removed, it remains so after the triangle is removed. At the end
of this procedure we get a single triangle. For this V − E + F = 1 holds true. Thus
we have proved our conjecture.”

The bulk of Lakatos (1976) consists of the presentation of various counter-
examples to Euler’s ‘Theorem’, followed by discussions of how these can be dealt
with either by ruling them out as polyhedra or adapting the proof and/or theorem.
Figures3 and 4 give four such counter-examples.

3 Schematic Proof

Cauchy’s ‘proof’ in Sect. 2, quoted from Lakatos (1976, pp. 7–8), has some unusual
properties. It is an example of what we will call schematic proof. The hypothesis of
this chapter is that:

A Common Type of Rigorous Proof that Resists Hilbert’s Programme 63

The hollow cube is a cube with a cubical hole in the middle. The values of V , E and
F are all doubled. So V − E + F = 16 − 24 + 12 = 4.

Fig. 3 The hollow cube: a counter-example to Euler’s ‘Theorem’

V − E + F = 5 − 10 + 8 = 3 V − E + F = 7 − 12 + 8 = 3

V − E + F = 12 − 30 + 12 = −6

Fig. 4 Three more counter-examples to Euler’s Theorem

Schematic proofs resist Hilbert’s Programme to unpack rigorous proofs into logical ones.

These unusual properties are:

1. The ‘proof’ is not Hilbertian, that is, it is not a sequence of formulae each of
which is either an axiom or follows from earlier formulae by a rule of inference.
Rather, it is a procedure, which is to be applied to any polyhedron, during which
a property (V − E + F = 1) remains invariant.

64 A. Bundy and M. Jamnik

2. This procedure will produce a different sequence of steps for each polyhedron,
for example, when applied to a tetrahedron, the ‘map’ produced by step 1 will
consist of three triangles, in contrast to the five quadrilaterals produced for a
cube. Step 2 will then not be necessary and there will be fewer applications of
step 3. Indeed, we can see the procedure as generating a different proof for each
polyhedron.

3. The ‘proof’ is error prone, that is, some steps either cannot be applied to some
polyhedra, or they produce unanticipated effects. There is no attempt to prove
that the procedure will apply to all polyhedra, or that it will output a proof of
Euler’s ‘Theorem’ for each polyhedron.

4. The ‘proof’ is carried out in the absence of any definition of polyhedra. In a
Hilbertian proof, definitions must precede proofs. The absence of a definition
quickly becomes apparent. In the argument as to whether the hollow cube (Fig. 3)
is a polyhedron, two rival definitions are proffered (Lakatos, 1976, p. 14). In one,
a polyhedron is a solid, and the hollow cube is a polyhedron. In the other, a
polyhedron is a collection of surfaces, and the hollow cube falls apart into two
nested polyhedra. Even these definitions are not sufficient, as they still contain
undefined terms, such as ‘surface’.

5. The ‘proof’ was accepted for some time before counter-examples were discov-
ered. Even then, according to Lakatos’ account, there was considerable confusion
about exactly what was wrong with the ‘proof’ and how it should be fixed. How
is this possible? Hilbertian proofs can be mechanically checked and any errors
will quickly show up, for instance, a formula that does not follow by a rule of
inference from earlier formulae. Even before the advent of computers, humans
could be employed to check even a long proof.

The reason we call this ‘proof’ schematic is because of point 2 above. To present
it as a single proof we need to abstract from the varying number of steps it produces.
For this we need abstraction devices, such as ellipsis (cf. Fig. 6 in Sect. 5.1 and Fig. 10
in Sect. 5.2 below).

4 Formalisation of Schematic Proofs

We have argued that schematic proofs are not Hilbertian and that this presents an
obstacle to their formalisation within the usual assumptions of Hilbert’s Programme,
that is, the ‘filling in the gaps’ process outlined in Sect. 1. However, we will argue
that it is possible to give a logical account of schematic proofs, albeit a more complex
one. This logical account will use the constructive ω-rule (Shoenfield, 1959).

The ω-rule for the natural numbers 0, 1, 2, … is:

φ(0), φ(1), φ(2), . . .

∀x .φ(x)

A Common Type of Rigorous Proof that Resists Hilbert’s Programme 65

Mathematical Induction Philosophical Induction ω-rule

φ(0), ∀n φ(n) =⇒ φ(n + 1)
∀n. φ(n)

φ(n1), φ(n2) . . . φ(nm)
∀n. φ(n)

φ(0), φ(1) φ(2) . . .

∀n. φ(n)

Fig. 5 Difference between mathematical induction, philosophical induction and the ω-rule

that is, we can infer that φ(x) for all natural numbers x provided we can prove φ(n)

for n = 0, 1, 2, The ω-rule is clearly not a very practical rule of inference, since
it requires the proof of an infinite number of premises to prove its conclusion. A
Hilbertian proof using it would consist of an infinite sequence of formulae. Its use is
usually confined to theoretical discussions, for instance, in Gödel’s incompleteness
theorems (Gödel, 1931).

The constructive ω-rule is a refinement of the ω-rule that can be used in practical
proofs. It has the additional requirement that theφ(n) premises be proved in a uniform
way, that is, that there exists an effective procedure, proofφ , which takes a natural
number n as input and returns a proof of φ(n) as output. We will write this as
proofφ(n) � φ(n). The procedure proofφ formalises our notion of schematic proof.
Applied to the domain of polyhedra, rather than natural numbers, it could be used
to formalise Cauchy’s ‘proof’ of Euler’s ‘theorem’ given in Sect. 2. In particular,
the procedure, which given a polyhedron, proves Euler’s ‘theorem’ for it, can be
interpreted as the procedure proofφ , but for polyhedra rather than natural numbers.

The constructive ω-rule has been automated to generate schematic proofs in the
domain of natural numbers. Siani Baker’s Ph.D. thesis (Baker, 1993) automated the
schematic proofs of theorems of Peano Arithmetic. Mateja Jamnik’s Ph.D. thesis
(Jamnik, 2001) automated the proofs in Nelsen (1993) (see Sect. 5.1). These auto-
mated provers start with a theorem to prove and one or two instances of the proof of
this theorem for particular numbers: essentially just calculations of concrete instances
of the theorems. These proof instances are then generalised to a procedure proofφ .

Both of these automated provers then do something omitted in Cauchy’s ‘proof’:
the meta-proof that the procedure generated a proof for each φ(n). This is done by
mathematical induction4 on the natural numbers, that is, the proof that:

proofφ(0) � φ(0)

proofφ(n) � φ(n) =⇒ proofφ(n + 1) � φ(n + 1)

Not only was a comparable meta-proof omitted by Cauchy, it’s hard to see how he
could have provided it. The natural numbers have a recursive structure, which lends
itself to inductive proof. The set of polyhedra has no known recursive structure, so
a similar proof plan is not available. As we have seen in Sect. 2, the absence of this
meta-proof is a fatal flaw. It allows the possibility that there is a polyhedron poly

4Not to be confused with, the regrettably similarly named, philosophical induction, which is a rule
of conjecture, not deduction, or with the ω-rule. See Fig. 5.

66 A. Bundy and M. Jamnik

say, for which:

proofφ(poly) � φ(poly)

where φ is Euler’s ‘Theorem’. As we saw in Sect. 2, there are many such polyhedra.
This illustrates the negative side of schematic proof, which we mentioned at the end
of Sect. 1, that educators need to be aware of.

The situation with the extraction of schematic proofs is somewhat reminiscent
of the way that computer programs are typically developed. Programmers start with
a few development examples of the input/output relationship that the program is
intended to exhibit, and the series of steps it should go through in these concrete
instances. They then generalise from the steps for concrete instances into a general
procedure. The generalised procedure is then tested on further examples. This testing
can only cover a finite subset ofwhat is usually a potentially infinite set. So, there is no
guarantee that the procedure will not subsequently fail, especially on a kind of exam-
ple that the programmers did not think of. Ideally, the programmers would verify
the correctness of the program via the kind of meta-proof discussed above. In Com-
puting, this is called a verification proof. Unfortunately, verification proofs require
a high skill level and are time consuming. As a result, they are rarely undertaken,
except in highly safety or security critical applications. When they are undertaken,
then they, like Cauchy’s ‘proof’, often consist of showing that some invariant is pre-
served at each step of the procedure. This invariant might, for instance, be a safety or
security property, or it may assert the absence of deadlock or of other kinds of error.

5 Schematic Proofs are Common

Our claim in Sect. 1, that schematic proofs resist Hilbert’s Programme, would have
little force if the set of schematic proofs was very small, for example, consisting only
of Cauchy’s faulty proof. In this section, we argue that they are commonplace. We
will present two forms of evidence:

• Nelsen’s “Proofs without words” (Nelsen, 1993); and
• Ananalysis of human reasoning about recursive programs (Jamnik&Bundy, 2005;
Fugard, 2005).

5.1 Nelsen’s Proofs Without Words

In (1993), Roger Nelsen shows how the truth of a mathematical theorem can often
be convincingly demonstrated with a well chosen diagram. Some of these theorems
are about the natural numbers, one of which is illustrated in Fig. 6. It is these proofs
that Mateja Jamnik automated in Jamnik (2001) using the constructive ω-rule. Her

A Common Type of Rigorous Proof that Resists Hilbert’s Programme 67

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

.
. .

The diagram gives a proof of the theorem n2 = 1+3+ · · ·+(2n− 1). The diagram can
be viewed as describing both, the left and right hand sides of the equation. The whole
square represents n2. Each of the L-shapes represents one of the odd numbers summed
on the right-hand side.

Fig. 6 A proof without words

n×(n+1)
2 = 1 + 2 + 3 . . . n F ib(n) × Fib(n + 1) =

∑n
i=1 Fib(i)2

Fig. 7 Further examples of proofs without words

Diamond program used the procedure outlined in Sect. 4. That is, a proof-generating
procedure was abstracted from the proofs of a couple of special cases, say n = 3 and
n = 4, then a meta-proof showed that this procedure would generate a correct proof
for each natural number n. The success of her project shows that some of Nelsen’s
proofs without words can be characterised as schematic. Further examples of such
schematic proofs are given in Fig. 7.

Nelsen’s diagrammatic proofs illustrate the positive side of schematic proofs that
we argued at the end of Sect. 1. Many educators have long found them an intuitive
and accessible alternative to Hilbertian proofs.

68 A. Bundy and M. Jamnik

5.2 Human Use of Schematic Proof

In his M.Sc. project (Fugard, 2005), Andy Fugard reported on some experiments
to observe human reasoning about recursive programs. Participants were presented
with conjectures, some of which were true and some false. For instance, he asked
participants about the (true) rotate-length conjecture:

rot (len(l), l) = l (1)

where l is a list, such as [a, b, c], len(l) is the length of the list, say 3, and rot (n, l)
rotates n times the list l, where one rotation is to move the first element to the end of
the list, for example [a, b, c] to [b, c, a]. The formal recursive definition of rot is:

rot (0, l) = l

rot (n + 1, []) = []
rot (n + 1, [h|t]) = rot (n, app(t, [h]))

where app appends one list to the end of another and [h|t] is a list where h is the
first element and t is the rest of the list. In Fugard’s experiments the function names
were replaced with arbitrary letters so that participants were not influenced by the
meanings implied by names such as rot , len and app.

The Hilbertian proofs of theorems about recursive programs use mathematical
induction. Fugard did not observe any of his participants attempting an inductive
proof. Had they done so, they would have encountered a difficulty. The rotate-length
conjecture (1) is surprisingly tricky to prove. It requires an intermediate lemma. For
instance, the following generalised rotate-length conjecture works as an intermediate
lemma:

rot (len(l), app(l, k)) = app(k, l) (2)

where k is also a list. Lemma (2) is (surprisingly) easier to prove than (1) and, in
fact, (1) is an immediate corollary from (2) by setting k to be the empty list. Fugard’s
participants, however, found it harder to see that (2) was true and harder to prove
than (1).

The participants’ reasoning often used diagrams consisting of a succession of
lists being rotated, in which the last list was the same as the first. These lists often
started as concrete ones for particular lists, but were then converted into schematic
ones via the use of ellipsis, or similar abstraction devices. Diagrams often showed
signs of alteration, where a concrete list was converted into a more schematic one.
Figure8 shows an example. These diagrams approximated the more formal accounts
of a concrete and schematic proof given in Figs. 9 and 10, respectively.

One can speculate why people might prefer schematic proofs. Firstly, it’s a com-
mon observation ofMathematics andComputing teachers that students find recursion
and mathematical induction puzzling and difficult when they first encounter them.
They are thought, for instance, to be circular: defining a function in terms of itself;

A Common Type of Rigorous Proof that Resists Hilbert’s Programme 69

assuming the conclusion youwant to prove. On the other hand,most people are famil-
iar at an early age with philosophical induction (see Fig. 5) and the generalisation
from concrete examples to a general one. They are used to developing general proce-
dures to deal with new situations by generalising from successful concrete cases. It
is, thus, very natural to apply this technique to mathematical problems—even though
it is error prone.

Aswe argued at the end of Sect. 1, educatorswill, therefore, often find that students
understand schematic proofs more readily than they do Hilbertian ones.

The contrast between the accessibility of schematic and Hilbertian proofs is
acutely illustrated in Lakatos (1976, Chap. 2). It relates Poincaré’s Hilbertian proof
of a special case of Euler’s ‘Theorem’. Not only is the proof extremely technical, but
the uncertainty about its correctness is transferred from the proof itself to whether
the encoding of polyhedra into incidence matrices is faithful.

6 Discussion

We have defined a common class of proofs, which we call schematic, that we claim
resist the part of Hilbert’s Programme that asserts that all proofs can be readily
formalised as a sequence of formulae that are either axioms or follow from earlier
formulae by a rule of inference. Schematic proofs can be formalised—using the
constructiveω-rule—but not asHilbertian proofs. Rather, their formalisation consists
of a procedure that generates a different Hilbertian proof for each concrete case, that
is, different in the sense that each such concrete case consists of a different sequence
of proof steps.

Moreover, schematic proofs are error prone in that they can yield unexpected
counter-examples. Schematic proofs can be shown to be error free if a meta-proof is

A concrete diagram was first drawn on the left and then extended on the right using
ellipsis and annotation to indicate generality.

Fig. 8 Example diagram drawn by one of Fugard’s participants for rotate-length conjecture

rot(len([a1, a2, a3]), [a1, a2, a3]) = rot(len([a2, a3]), [a2, a3, a1])
= rot(len([a3]), [a3, a1, a2])
= rot(len([]), [a1, a2, a3])
= rot(0, [a1, a2, a3])
= [a1, a2, a3]

Fig. 9 A concrete proof of the rotate-length theorem for n = 3

70 A. Bundy and M. Jamnik

rot(len([a1, a2, a3, . . . , an]), [a1, a2, a3, . . . , an]) = rot(len([a2, a3, . . . , an]), [a2, a3, . . . , an, a1])
= rot(len([a3, . . . , an]), [a3, . . . , an, a1, a2])
...
= rot(len([]), [a1, a2, a3, . . . , an])
= rot(0, [a1, a2, a3, . . . , an])
= [a1, a2, a3, . . . , an]

Fig. 10 A schematic proof of the rotate-length theorem

conducted to prove that the proof generation procedure produces correct proofs for
all inputs. Unfortunately, this part of the process is often omitted. Also, schematic
proofs can be conducted in the absence of definitions that would be crucial in a
Hilbertian context. This is possible because, apart from the meta-proof, schematic
proving is just based on an analysis and generalisation of the concrete proofs of a
few examples. It is possible to agree that these are examples of a concept without
formally defining that concept. If the meta-proof is omitted, as it often is, the issue
of definitions only arises when potential counter-examples are discovered, and it is
necessary to decide whether they are really examples of the concept.

The formalisation part of Hilbert’s Programme has, here-to-fore, largely avoided
the criticism that theCompleteness,Consistency andDecidability goals have attracted
because of Gödel’s incompleteness theorems.We have argued that this Formalisation
goal of the Programme is also not as straightforward as it is sometimes assumed to
be.

Acknowledgements The research reported in this chapter is based on Bundy et al. (2005), Jamnik
and Bundy (2005), Bundy (2012). It was supported by EPSRC grants GR/S01771, GR/S31099 and
EP/N014758/1. Many thanks to Predrag Janic̆ić and Alison Pease for drawing some of the images
and to Andy Fugard for permission to use a diagram drawn by one of the participants in his study.
Thanks to Gila Hanna and Andy Fugard for comments on an earlier version.

References

Baker, S. (1993). Aspects of the constructive omega rule within automated deduction. Unpublished
Ph.D. thesis, Edinburgh.

de Bruijn, N. G. (1980). A survey of the project Automath. In J. P. Seldin & J. R. Hindley (Eds.),
To H. B. Curry; Essays on combinatory logic, lambda calculus and formalism (pp. 579–606).
Academic Press.

Bundy,A. (2012).Reasoning about representations in autonomous systems:What Pólya andLakatos
have to say. In D.McFarland, K. Stenning, &M.McGonigle-Chalmers (Eds.), The complex mind:
An interdisciplinary approach, chapter 9 (pp. 167–183). Palgrave Macmillan.

Bundy, A., Jamnik, M., & Fugard, A. (2005). What is a proof? Philosophical Transactions of the
Royal Society A, 363(1835), 2377–2392.

Fugard, A. J. B. (2005). An exploration of the psychology of mathematical intuition. Unpublished
M.Sc. thesis, School of Informatics, Edinburgh University.

A Common Type of Rigorous Proof that Resists Hilbert’s Programme 71

Gödel, K. (1931). Über formal unentscheidbare sätze der principia mathematica und verwandter
systeme i. Monatshefte fÜr Mathematik und Physik, 38, 173–198. English translation in [van
Heijenoort, 1967].

Hilbert, D. (1930). Die Grundlebung der elementahren Zahlenlehre (Vol. 104). Mathematische
Annalen.

Jamnik, M., & Bundy, A. (2005). Psychological validity of schematic proofs. In Volume LNCS 2605
of lecture notes in computer science (pp. 321–341). Springer-Verlag GmbH.

Jamnik,M. (2001).Mathematical reasoning with diagrams: From intuition to automation. Stanford,
CA: CSLI Press.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge Uni-
versity Press.

Nelsen, R. B. (1993). Proofs without words: Exercises in visual thinking. The Mathematical Asso-
ciation of America.

Robinson, A., & Voronkov, A. (Eds.). (2001). Handbook of automated reasoning, 2 volumes. Else-
vier.

Shoenfield, J. R. (1959). On a restricted ω-rule. Bulletin de l’Académie Polonaise des Sciences:
S’erie des sciences mathematiques, astronomiques et physiques, 7, 405–407.

van Heijenoort, J. (1967). From Frege to Gödel: A source book in mathematical logic, 1879–1931.
Cambridge, Mass: Harvard University Press.

Zach, R. (2009). Hilbert’s program. Stanford Encyclopedia of Philosophy.

SMTCoq: Mixing Automatic
and Interactive Proof Technologies

Chantal Keller

1 Introduction

Mechanization ofmathematical reasoning can be seen as starting from two somewhat
opposite applications (Mackenzie, 1995).

On the one hand, interactive theorem provers (also known asproof assistants) aim
at checking (even complex) mathematical proofs with great confidence. Theorems
and proofs should be stated and written interactively by mathematicians, with the
help of the system to deduce facts, discharge automatically trivial sub-goals, and
check the actual proof. To achieve confidence, these systems rely on a kernel that
is a piece of code, as small as possible, implementing a proof checker for a well-
defined logic (Harrison et al., 1996). Among the most successful current interactive
theorem provers, one can cite the HOL family (Gordon, 2000) (HOL4, HOL Light,
Isabelle/HOL), the type-theoretical family (Agda (Norell, 2009), Coq (Huet & Her-
belin, 2014), Lean (de Moura, Kong, Avigad, van Doorn, & Jakob von Raumer,
2015), Matita (Asperti, Ricciotti, Coen, & Tassi, 2011), …) and many other sys-
tems such as PVS (Owre, Rushby, & Shankar, 1992), Mizar (Bancerek et al., 2015)
or Nuprl (Allen, Constable, Eaton, Kreitz, & Lorigo, 2000). Interactive theorem
provers often come with high-level tactics that translate the interaction with the user
into low-level proofs that are checked by the kernel. These tactics offer the possibility
of having safe automation by performing complex reasoning while relying on the
kernel. Most of the time, such tactics are dedicated decision procedures (Grégoire &
Mahboubi, 2005; Besson, 2006): they can automatically solve problems that belong
to a recognized fragment of a logic.

On the other hand, automated theorem provers aim at finding proofs fully auto-
matically. Theorems should be stated in a logic accepted by the systemwhichmay, in
return, prove it, give a counter-example, or fail, if the problem falls into an undecid-
able fragment or the proof search exceeds some heuristic limit. While the algorithms
are shown to be correct on paper, actual implementations involve fast automatic proof

C. Keller (B)
LRI, University of Paris-Sud, CNRS UMR 8623, Université Paris-Saclay,
Bât 650 Ada Lovelace Université Paris Sud, 91405 Orsay Cedex, France
e-mail: Chantal.Keller@lri.fr

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_4

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_4&domain=pdf
mailto:Chantal.Keller@lri.fr
https://doi.org/10.1007/978-3-030-28483-1_4

74 C. Keller

searches andmay thus contain bugs (Brummayer &Biere, 2009). They are very pow-
erful tools in proving automatically generated goals, for instance in the context of
proof of programs (Filliâtre & Paskevich, 2013; Swamy et al., 2016). More recently
they have been used to settle combinatorial problems such as the Erdős Discrep-
ancy Conjecture (for discrepancy up to 3) (Konev & Lisitsa, 2015) or the Boolean
Pythagorean Triples problem (Heule, Kullmann, & Marek, 2016). Currently, the
most two successful approaches rely on satisfiability (Biere, Heule, van Maaren, &
Walsh, 2009), in particular with Conflict-Driven Clause Learning SAT (Silva, Lynce,
& Malik, 2019) and SMT (Satisfiability Modulo Theories) provers (zChaff (Fu,
Marhajan, & Malik, 2007), CVC4 (Barrett et al., 2011), Z3 (de Moura & Bjørner,
2008), veriT (Bouton, de Oliveira, Déharbe, & Fontaine, 2009), …), and saturation-
based resolution and superposition (Bachmair & Ganzinger, 1998) with first-order
provers (SPASS (Weidenbach et al., 2019), Vampire (Riazanov & Voronkov, 2002),
E (Schulz, 2013), …).

The idea to deploy both human interaction and expressive automation in a sin-
gle tool started in the ’90s. One can in particular cite NQTHM and its successor
ACL2 (Kaufmann & Moore, 1996), which implements an interactive prover on top
of a powerful automated prover. Confidence was achieved by implementing ACL2
in ACL2 itself, with the possibility of establishing properties on the system.

Subsequently, the independent success of both interactive and automated provers
led again to the need for reconciling both worlds. A first approach, called the autarkic
approach, close to what has been done for ACL2, was to implement and prove cor-
rect automatic provers inside proof assistants (Lescuyer, 2011; Hurd, 2005). This
approach formally establishes the correctness of the underlying algorithms, but
has the major drawback of fixing an implementation that would be very difficult
to enhance without re-doing most of the proof work. More recently, the skeptical
approach makes use of external solvers that, in addition to a yes/no answer, can out-
put a certificate, that is to say the arguments underlying the proof they found, that
allows proof reconstruction in the proof assistants (Böhme & Weber, 2010; Paulson
& Blanchette, 2010; Blanchette, Kaliszyk, Paulson, & Urban, 2016; Armand et al.,
2019). This approach actually scales since it allows the use of state-of-the-art exter-
nal solvers, which may evolve independently. Moreover, proof checking is faster and
easier rather than proof search.

The skeptical approach has had a major success with the Isabelle/HOL sledge-
hammer tactic (Paulson & Blanchette, 2010), that employs multiple external solvers
in parallel and reconstructs an Isabelle/HOL proof script based in particular on autar-
kic solvers. It allows users of this interactive prover to sketch the interesting part of
mathematical proofs (induction, intermediate lemmas) and leave the remaining auto-
matic. This idea has been recently ported to the Coq proof assistant (Blanchette et
al., 2016).

In this chapter, we present SMTCoq1 (Armand et al., 2019; Ekici et al., 2016,
2017), a Coq plugin to interact with SAT and SMT external solvers via certifi-
cates. The objective is to provide a generic and efficient proof checker for automated

1SMTCoq is available at https://smtcoq.github.io.

https://smtcoq.github.io

SMTCoq: Mixing Automatic and Interactive Proof Technologies 75

provers, with the same degree of confidence as Coq itself. This tool can be used to
take advantage of automation in Coq (Sect. 4.3). Care has also been taken to ensure
efficiency of proof checking (Sect. 3), which allows for the certification of big cer-
tificates that arise when proving large combinatorial problems (Sects. 4.1 and 4.2).
We start by explaining the kind of problems that SMTCoq handles (Sect. 2).

2 The Satisfiability and Satisfiability Modulo Theories
Problems

SAT solvers are automated provers to decide the satisfiability of (quantifier-free)
Boolean formulas. They rely on an efficient exploration of the possiblemodels of such
formulas. By nature, they are powerful tools to solve combinatorial problems (Konev
& Lisitsa, 2015; Heule et al., 2016).

On top of them, SMT solvers (standing for Satisfiability Modulo Theory solvers)
automatically determine whether first-order formulas living in a combination of the-
ories are satisfiable. Theories often include equality, arithmetic over various domains
(integers, rationals, reals), and representation of data-structures (algebraic data-
structures, arrays, bit vectors, …). SMT solvers try to satisfy SMT formulas by
the interaction of a SAT solver with theory reasoners (see (Nieuwenhuis, Oliveras,
& Tinelli, 2006) for a detailed explanation), with the possibility to instantiate quan-
tified hypotheses (de Moura & Bjørner, 2007; Barbosa, 2016), making the logic very
expressive.

2.1 Examples

Let us illustrate the kind of problems SAT and SMT can be used for on the combi-
natorial example of the Erdős Discrepancy Conjecture.

Conjecture 1 (Erdős Discrepancy Conjecture) For any infinite sequence
〈x1, x2, . . . 〉 of ±1 integers and any integer C, there exist integers k and d such
that ∣

∣
∣
∣
∣

k
∑

i=1

xi×d

∣
∣
∣
∣
∣
> C

To prove this conjecture for a particular C0, one has to find a length l of sequences
such that the formula

∀〈x1, x2, . . . , xl〉,∀k,∀d,

∣
∣
∣
∣
∣

k
∑

i=1

xi×d

∣
∣
∣
∣
∣
� C0

76 C. Keller

is unsatisfiable.Konev andLisitsa proposed anon trivial encodingof this problem into
SAT, allowing to prove the conjecture up to C = 3 with modern SAT solvers (Konev
& Lisitsa, 2015). More naively, the problem can be easily encoded into SMT using
the theory of Linear Integer Arithmetic.

Example 1 For l = 6, the formula can be encoded in SMT by the conjunction of:

• (x1 = −1 ∨ x1 = 1) ∧ · · · ∧ (x6 = −1 ∨ x6 = 1) (domain of the sequence)
• (−C � x1 + x2 � C) ∧ · · · ∧ (−C � x1 + x2 + x3 + x4 + x5 + x6 � C) (sums
for d = 1)

• (−C � x2 + x4 � C) ∧ (−C � x2 + x4 + x6 � C) (sums for d = 2)
• (−C � x3 + x6 � C) (sum for d = 3)

Most SMT solvers supporting integer arithmetic are able to prove the conjecture
for C0 = 1 by choosing the encoding for l = 12.

Theorem 1 Any sequence of length at least 12 has discrepancy at least 2.

The proof of such a theorem relies on (a) an encoding of the original problem into
a SMT formula, encoding which must be automatically generated for C � 2 since
the formula becomes very large and (b) an automatic proof from a SAT or SMT
solver. To increase confidence, one can formally establish such theorems in a proof
assistant by (a) proving the correctness of the encoding and its generator and (b)
proving the correctness of the SMT answer, using the autarkic or skeptical approach.

SMTCoq is, in particular, a way to formally establish (b) for the Erdős Discrep-
ancy Conjecture, based on the skeptical approach. In comparison to similar work in
checking these proofs in Coq (Cruz-Filipe & Schneider-Kamp, 2017), there was no
need to implement and prove correct a dedicated checker: SMTCoq is generic and
efficient enough to encompass such proofs.

The expressivity of SMTCoq makes it possible to formally and efficiently check
SATandSMTproofs coming fromanykind of problem. Indeed, SATand in particular
SMT are very expressive and can encode problems coming from multiple areas of
mathematics and computer science.We illustrate this aspect by two examples coming
from program testing, where one has to generate inputs satisfying the preconditions
of a program (Example 2), and programproving,where one has to establish properties
for all the possible runs of a program (Example 3).

Example 2 The problem of automatically generating sorted integer arrays of a given
length is a satisfiability problem in the combination of the theories of arrays and
integer arithmetic. For instance, for length 4, it can be formulated as such: find a
value for the variable a (belonging to the sort of arrays) such that:

• length a = 4
• a[0] � a[1] ∧ a[1] � a[2] ∧ a[2] � a[3]

Example 3 Toprove the correctness of themergesort algorithmon arrays, one should
be able to establish2 that if:

2This corresponds to proving the invariant of the merge loop stating that the array is sorted up to a
certain point.

SMTCoq: Mixing Automatic and Interactive Proof Technologies 77

• ∀ k1 � k2 < k, a[k1] � a[k2]
• ∀ k1 < k, a[k1] � x
• a[k] = x

then:

• ∀ l1 � l2 � k, a[l1] � a[l2]

where a is an array and k1, k2, k and x are integers. The validity of this formula
can be encoded as the unsatisfiabilty of the negation of the conclusion under the
same hypotheses, which corresponds to the following SMT problem: check that the
conjunction of

1. ∀ k1 � k2 < k, a[k1] � a[k2]
2. ∀ k1 < k, a[k1] � x
3. a[k] = x
4. l1 � l2 � k ∧ a[l1] > a[l2]

is unsatisfiable, that is to say that there is no concrete instance for the variables a, k,
l1 and l2 that satisfy the four formulas.

2.2 SAT and SMT Proof Evidence

SMTCoq considers SMT solvers as black boxes that input a SMTproblem and output
evidence of the satisfiability or unsatisfiability of the problem (or nothing or a partial
evidence if it was not able to solve it). The input format has been standardized in the
SMT-LIB project (Barrett, de Moura, Ranise, Stump, & Tinelli, 2010) and is thus
common to most state-of-the-art SMT solvers. However, the output format currently
differs from one system to another.

If the problem is satisfiable, most provers return as evidence an instance of the
variables that satisfies it, called a model.

Example 4 There exists a sequence of length 11 of discrepancy 1:

〈1,−1,−1, 1,−1, 1, 1,−1,−1, 1, 1〉

So the SMT encoding of the Erdős Discrepancy Conjecture for C0 = 1 and l = 11
is satisfiable and a possible model is:

{x1 �→ 1 ; x2 �→ −1 ; x3 �→ −1 ; x4 �→ 1 ; x5 �→ −1 ; x6 �→ 1 ;

x7 �→ 1 ; x8 �→ −1 ; x9 �→ −1 ; x10 �→ 1 ; x11 �→ 1}

Example 5 The problem of Example 2 is satisfiable and a possible model is:

{

a �→ −2 3 17 42
}

78 C. Keller

However, if the problem is unsatisfiable, while generic formats have been pro-
posed (Stump, 2009; Besson, Fontaine, & Théry, 2011), the evidence output by vari-
ous SMT solvers may differ a lot, particularly in terms of granularity of the proof. To
interact with various solvers at small cost, SMTCoq is based on a certificate format
inspired by Besson et al. (2011) that can represent most existing SMT reasoning, and
is also modular to be easily extensible with new theories or proofs with a different
level of details.3 This will make SMTCoq easy to extend at small cost, as detailed in
Sect. 3.1.

The idea of this format is to combine independent steps. A step can be any deduc-
tion that transforms a (possibly empty) set of clauses into a clause that is implied:
a step must preserve satisfiability of clauses. A clause consists of a disjunction of
literals, where a literal can be any formula (positive literal) or its negation (negative
literal).4

Example 6 The problem of Example 1 consists of 14 clauses:

• 6 clauses of two positive literals each (e.g. a positive literal is x4 = −1) for the
domain of the sequence;

• 5 clauses of one positive literal each for the sums for d = 1;
• 2 clauses of one positive literal each for the sums for d = 2;
• 1 clause of one positive literal for the sums for d = 2.

The four formulas corresponding to the problem of Example 3 are four clauses with
a single positive literal (which is the formula itself).
The first clause deduced in Example 7:
¬ (a[l1] > a[l2]) ∨ ¬ (a[l1] = a[l2])
contains two negative literals.

A certificate then combines steps to deduce, in the end, the empty clause from the
initial problem. Since the empty clause is unsatisfiable, and each step must preserve
satisfiability, it implies that the initial problem is indeed unsatisfiable.

Example 7 The problemof Example 3 is unsatisfiable and a possible certificate starts
with the following steps5:

Step Deduced clause Premises Justification
5 ¬ (a[l1] > a[l2]) ∨ ¬ (a[l1] = a[l2]) – LIA
6 ¬ (l1 = l2) ∨ (a[l1] = a[l2]) – Congruence
7 l1 � l2 � k 4 ∧ Projection
8 a[l1] > a[l2] 4 ∧ Projection
9 ¬ (l1 = l2) 5, 6, 8 Resolution
… … … …

3This format has been designed together with the veriT (Bouton et al., 2009) proof production
engine.
4This definition of a clause is more general than the usual one: a literal can be any formula, even
containing logical connectives.
5It corresponds to the certificate given by veriT, stable version of 2016.

SMTCoq: Mixing Automatic and Interactive Proof Technologies 79

This piece of certificate reads as follows. The first four steps (which are not written)
consist of taking the four input clauses (in Example 3) as known clauses. Step 5
deduces a new clause from no premise (hence the clause must be a tautology) in the
theory of Linear Integer Arithmetic. Step 6 again produces a tautology by congruence
of equality with respect to array lookup. Steps 7 and 8 project the ∧ from the fourth
input clause, respectively on the left-hand-side and on the right-hand-side. Finally,
step 9 produces a new clause from steps 5, 6 and 8 by resolution (meaning that literals
appearing both positively and negatively can be simplified out).

Example 8 Similarly, a certificate6 for the SMT problem corresponding to Theo-
rem 1 is a proof of the empty clause obtained by combining, using resolution, the
initial problem with tautologies in Linear Integer Arithmetic such as:

(1 � x1 ∧ 1 � x2) ⇒ x1 + x2 > 1

Themain idea for modularity is that steps need only agree on the representation of
formulas, but otherwise can be completely independent from each other. In particular,
they independently deal with the various theories: as illustrated in the example,
propositional reasoning is represented by resolution and connective steps (Tseitin,
1970); equality reasoning, by congruence (and transitivity) steps (Besson,Cornilleau,
& Pichardie, 2019),…etc.Moreover, they can have a different granularity: resolution
is very fine-grained but nothing prevents a step from representing a full SAT solving
step.

Notice that results of unsatisfiability are the main use of SMTCoq: as illustrated
in Example 3, by contradiction, a formula is valid (i.e. always true) if and only if
its negation is unsatisfiable. The remaining of the chapter thus focuses on this part.
Nonetheless, checking the satisfiability given a model is much simpler.7

3 A Certified, Efficient and Modular Checker for SMT

3.1 A Modular Checker

The choice of the certificate format naturally induces a modular checker based on
the architecture given in Fig. 1.

To each kind of step corresponds what we call a small checker, whose task is
to check this particular kind of step independently of the other possible steps. The
role of the main checker is simply to dispatch each step to the corresponding small
checkers, and check in the end that the empty clause has been deduced.

6The certificate given by veriT, stable version of 2016, contains 178 steps.
7In Coq, one simply needs to assign the variables using the model and compute that the formula
reduces to the true formula.

80 C. Keller

CNF

resolution chains

EUF

LIA

Main checker

Coq checker

input certificate

yes no

CNF

resolution chains

EUF

LIA

Small checkers

Fig. 1 Architecture of the SMTCoq checker

Small and main checkers operate over a state S . This state initially contains the
problem whose unsatisfiability is to be verified (Steps 1–4 in Example 7), and is,
throughout the process, augmented with the clauses that are deduced by the small
checkers (Steps 8 and beyond in Example 7). The data-structure used for states will
be explained in the next subsection. One crucial aspect is that states can be embedded
into Coq terms by a Coq function � • �ρ :S → bool that interprets the state as the
conjunction of the interpretation of each formula, and for each formula, interprets
each syntactic connective and operator by its Coq counterpart (we refer the reader
to (Armand et al., 2019) for a detailed explanation of this interpretation function). As
standard, the valuation ρ is a mapping of the variables to Coq terms. The property
∀ρ, � s �ρ = false thus means that a state s ∈ S is unsatisfiable.

As explained in the previous section, a small checker takes as input a (possi-
bly empty) set of clauses and returns a new clause that is implied, in the sense of
satisfiability. Concretely, a small checker is thus given by:

• a function sc : S → step → S that, given a state and a step, returns the
state augmented with the deduced clause;

• a proof that this function preserves satisfiability:

sc_ok : ∀ (s:S) (p:step),
∀ ρ, � s �ρ = true ⇒ � sc s p �ρ = true

Adding a new small checker consists of providing such a function and its proof of
correctness, independently of existing small checkers, making SMTCoq extensions
to new checkers easy.

As the figure suggests, various small checkers have already been implemented
for major SMT theories: the initial development of SMTCoq (Armand et al., 2019)

SMTCoq: Mixing Automatic and Interactive Proof Technologies 81

implemented small checkers for propositional reasoning (via CNF computation and
resolution), Equality of Uninterpreted Functions, and Linear Integer Arithmetic, and
implementations of small checkers for the theories of bit vectors and arrays have
been recently added (Ekici et al., 2016), confirming the modularity of SMTCoq.

3.2 An Efficient Checker

For the skeptical approach to be practical, certificate checking must be far cheaper
than proof search. This is theoretically the case for most concrete SAT and SMT
problems, and SMTCoq has been designed to be as efficient as possible while being
implemented and proved correct inside Coq.

The SMTCoq checker has been designed to run in a branch of Coq, called native-
coq8 (Boespflug, Dénès, & Grégoire, 2019), that in particular lifts in Coq native
data-structures such as machine integers and mutable arrays (with history), while
preserving soundness. SMTCoq makes intensive use of these data-structures to be
efficient.

As an example, formulas are hash-consed using mutable arrays instead of being
represented by a standard recursive algebraic datatype: each sub-formula is stored
in a cell of the array, and is referred to by its index in the array (which is a machine
integer). Literals are encoded as follows: the positive literal associated to the formula
at index i is represented by 2 × i , and the negative literal, by 2 × i + 1. This encoding
enjoys the following aspects:

• it is efficiently represented in memory, since it has maximal sharing;
• computations that appear often in SMT checking are really fast: for instance,
checking if a literal l is the negation of a literal m is computed by the bitwise
operations l ⊕ m = 1.

Example 9 The fourth formula ofExample 3 is the formula at index2 in the following
array:

Index 0 1 2
Sub-formula l1 � l2 � k a[l1] > a[l2] 0 ∧ 2

It corresponds to 0 ∧ 2 since 0 = 2 × 0 is the positive literal associated to the sub-
formula at index 0 and 2 = 2 × 1 is the positive literal associated to the sub-formula
at index 1.

Another place where native data-structures are crucial is in the presentation of
states. As detailed above, states start with the initial problem and are “augmented”
with new clauses that are deduced. Simply keeping all the clauses is infeasible in

8The native-coq branch of Coq is progressively being integrated into the main version.

82 C. Keller

Coq checker

pre-processors

yes no

input

certificate

optimized certificate

Coq checker

proof witness encoder

pre-processors

SAT/SMT proof witness

yes no

input

certificate

optimized certificate

Fig. 2 A certificate can be arbitrarily transformed before being validated by the Coq checker

practice, since a certificate may produce thousands of them. Thus, a state is a mutable
array, whose length is (at least) the number of clauses that are alive at the same time:
once all clauses that are implied from a clause c have been deduced, clause c is not
useful anymore.

Example 10 In Examples 3 and 7, the fourth clause will not be useful anymore after
Steps 7 and 8, and can thus be removed from the state.

It is necessary to know in advance, before certificate checking, how many clauses
are alive at the same time and in which cell to allocate each clause (in order to
overwrite clauses thatwill not be used anymore). This is doneby another nice property
of the skeptical method: before checking, certificates can be transformed as needed,
and thewhole process remains sound even if certificate transformations are not proved
correct. Indeed, if certificates are transformed in an unsound way, the checker will
not be able to reconstruct a proof.

This principle is widely applied in SMTCoq: upstream from the checker presented
in this section, many preprocessors have been implemented (without the need to
certify them), that in particular allocate clauses, but also clean certificates from
unused steps, …etc. The checker of Fig. 1 is thus used in the context of Fig. 2 (left),
where the preprocessors need not be certified.

3.3 Modular Link with State-of-the-Art SMT Solvers

In addition to efficiency, the preprocessing technique allows the use of the Coq
checker with any SMT solver without more certification, even if there is no standard

SMTCoq: Mixing Automatic and Interactive Proof Technologies 83

for SMT proof witnesses (Sect. 2): it is sufficient to encode proof witnesses into
the SMTCoq certificate format, and this encoding does not need to be proved (see
Fig. 2 (right)). Thus, handling a new solver is simply writing an uncertified encoder,
and the SMTCoq format is generic enough to welcome state-of-the-art solver’s for-
mats.

Encoders for the SATsolvers zChaff andGlucose, aswell as the SMTsolvers veriT
and CVC4 are currently implemented, allowing an efficient check of the answers of
all these solvers with the same certified checker.

4 Applications

4.1 Certified Validation

The direct application of this checker is to certify answers coming fromSATandSMT
solvers: given a SAT or SMT problem and a proof witness provided by a supported
solver, the checker can be used to check the unsatisfiability of the input problem,
using the proof witness as a hint. This idea is detailed in Fig. 3 (top left). Note that in
this use case, the parser of the SAT/SMT problemmust be trusted. If it was to replace
the input problemwith a trivially unsatisfiable problem, then the checker could easily
answer “yes” but it would have certified nothing! In SMTCoq, the parser has not been
certified, but it is a very small piece of code that straightforwardly transforms a string
into the corresponding SAT/SMT abstract syntax tree (contrary to the encoders and
preprocessors that can perform arbitrary transformations). Hence, in this application,
if the checker answers “yes”, we can be sure that the original problem is unsatisfiable:
the checker is correct. Note that, however, if the checker answers “no”, we know
nothing: the answer coming from the solver may be invalid or incomplete, or the
checker may fail to check the proof since it is not shown to be complete. However, it
has been tested against a very large benchmark of problems (coming from the SAT
and SMT competitions) to make sure that it is complete in practice.

To handle this application, SMTCoq offers two possibilities: the checker can be
called from Coq via a dedicated command, or extracted to the OCaml programming
language to be used without the need to install Coq. Thanks to the use of native-coq,
both methods are really efficient: applications to the benchmarks of the SAT and
SMT competitions showed that proof search by the solvers is the bottleneck, but not
proof checking by SMTCoq (Armand et al., 2019).

4.2 Theorem Import

More generally, the checker can be used to safely import new theorems into Coq
(Fig. 3 (top right)). Given a problem and a proof witness provided by a supported

84 C. Keller

Coq checker

input parser

proof witness encoder

pre-processors

SAT/SMT input file

SAT/SMT proof witness

yes no

input

certificate

optimized certificate

Coq checker

input parser

proof witness encoder

pre-processors

SAT/SMT input file

SAT/SMT proof witness

theorem error message

input

certificate

optimized certificate

Coq checker

proof witness encoder

pre-processors

SAT/SMT solver

reification + encoding

goal solved error message

Coq goal

proof witness

certificate

optimized certificate

Fig. 3 Applications of the SMTCoq checker

solver, a Coq command generates a new theorem, proved by an application of the
correctness of the checker (if the checker fails, then the theorem is not proved and not
added to Coq). This theorem can then be used to deduce facts inside Coq. Contrary
to the previous subsection, the input parser does not need to be trusted anymore; if
it changes the statement of the problem, then a useless theorem may be imported in
Coq, but it will not compromise soundness.

As illustrated in Sect. 2, this mechanism has been used to check mathematical
proofs containing very large combinatorial results, such as the proof of the Erdős Dis-
crepancy, by importing the combinatorial part from SAT and proving the remaining

SMTCoq: Mixing Automatic and Interactive Proof Technologies 85

as standard in Coq. An ongoing work applies this methodology to other combina-
torial proofs such as the Boolean Pythagorean Triples problem (Heule et al., 2016).
Moreover, SMTCoq is generic enough to import theorems based on SMT solving
from many domains.

4.3 Automatic Tactics

Finally, as discussed in the introduction, SMTCoq can also be used to automatically
solve Coq goals by discharging them to a SAT or a SMT solver and checking the
answer (Fig. 3 (bottom)). The input problemgiven to the solver comes froma concrete
goal that the user wants to prove: the goal is provable if and only if its negation is
unsatisfiable. Then, the same process as before is used. Hopefully, the chosen solver
returns a proof witness that can be verified by the SMTCoq checker, and if so, the
correctness of this latter allows to conclude. Notice that, if the goal is not provable,
then its negation is satisfiable and the SAT/SMT solver may return a model that can
be used to give a counter-example to the user.

SMTCoq comes with such tactics for most supported provers, which are actually
able to solve goals that belong to the combination of theories supported by the
provers. Ongoing work (Ekici et al., 2017) consists of improving the expressivity of
these tactics, in particular by encoding goals that are not directly supported by the
logic of SMT.

5 Conclusion and Perspectives

We have presented SMTCoq, a plug-in for the Coq proof assistant to work in con-
junction with external SAT/SMT solvers. SMTCoq has been designed to be modular
at many levels (handling new theories and new provers), making it extensible at small
cost, and already comes with support for state-of-the-art SAT and SMT solvers. It is
distributed as a Coq plug-in that users can enjoy, and is still under active development
and expansion. It can be used for various applications ranging from formal proofs of
combinatorial problems to day-to-day automation in Coq.

Recently, mathematicians have more frequently used programs and automated
provers to establish new results. In addition to the combinatorial problems already
presented, two major successes are the proofs of the four-color theorem (Gonthier,
2007) and of the Kepler conjecture (Hales et al., 2015). SMTCoq is today a generic
way to certify some of these proofs, and we argue that, as a Coq plugin, it may
become a way to revisit and discover mathematical knowledge by structuring them
in a new way (Gonthier et al., 2013).

The certificate approach has been designed first for proof exchange and proof
checking. However, we believe that it is more general and will become a standard
way of designing reliable proofs in mathematics and computer science.

86 C. Keller

As presented in the introduction, SMTCoq belongs to a long-term goal to take
advantage of mechanized mathematical reasoning which is both automatic and
extremely reliable. In this direction, having a single tool is unrealistic: many dif-
ferent proof assistants and automated provers have been designed in the last decades
because they all have strong and weak points (regarding automation and reliability,
but also expressivity, degree of expertise needed to master them, …etc.). We rather
advocate interoperability between different proof systems, and strongly argue that it
relies on universality of proofs and mathematical libraries (Miller, 2013; Kohlhase
& Rabe, 2016; Saillard, 2015). Proof systems should be able to output evidence of
their reasoning, in such a way that it can be combined with proofs coming from other
systems, while having the flexibility to have various granularity and underlying logic.

With respect to computer science, many successful tools (Filliâtre & Paskevich,
2013; Swamy et al., 2016) have been designed to prove the correctness of software
based on the autarkic approach, and are used in critical industries such as avionics or
cryptography (Jourdan, Laporte, Blazy, Leroy, & Pichardie, 2015; Delignat-Lavaud
et al., 2017). To reach a larger audience, and even be applicable to most software,
the skeptical approach offers a lighter technique that separates the software design
from its verification: instead of certifying (possibly complex) algorithms, we certify
checkers for their answers. Ongoingworks are applying thismethod to other domains
than proof checking, with an objective to generalize certificates rather than having
to design a checker for each application. Recent cryptographic technologies can be
applied in this direction (Parno, Howell, Gentry, & Raykova, 2013; Fournet, Keller,
& Laporte, 2016).

Recent works show that the interoperability between systems could be designed
in a correct-by-construction approach rather than relying on certificates (Bonacina,
Graham-Lengrand, Shankar, 2018; Boulmé & Maréchal, 2017). A way of under-
standing it is that a certificate checker can be turned into the kernel of a certificate
producer (Boulmé&Maréchal, 2017), in the same sense as a proof assistant. Ongoing
work consists of transforming SMTCoq into a kernel for an SMT solver that could
experiment with many proof search strategies without compromising soundness.9

Further work will lead to an understanding as to how this technique may apply to
generic a posteriori certification of software discussed in the previous paragraph.

Acknowledgements This work would be impossible without the help from past, present and future
contributors of SMTCoq. Past and present contributors are Mikäl Armand, Clark Barett, Valentin
Blot, Burak Ekici, Germain Faure, Benjamin Grégoire, Guy Katz, Tianyi Liang, Alain Mebsout,
Andrew Reynolds, Laurent Théry, Cesare Tinelli and Benjamin Werner. Contributors to the certi-
fication of the Erdős Discrepancy Conjecture include Maxime Dénès and Pierre-Yves Strub.

The author thanks Véronique Benzaken and Évelyne Contejean for providing good feedback in
the choice of the examples.

The author finally thanks the editors for their invitation to contribute to this book, and the
reviewers and editors for their valuable feedback.

9This research is supported by Labex DigiCosme (project ANR11LABEX0045DIGICOSME)
operated by ANR as part of the program «Investissement d’Avenir» Idex ParisSaclay
(ANR11IDEX000302).

SMTCoq: Mixing Automatic and Interactive Proof Technologies 87

References

Allen, S. F., Constable, R. L., Eaton, R., Kreitz, C., & Lorigo, L. (2000). The Nuprl open logical
environment. In D. A. McAllester (Ed.), Proceedings of Automated Deduction—CADE-17, 17th
International Conference on Automated Deduction, Pittsburgh, PA, USA, 17–20 June 2000 (Vol.
1831, pp. 170–176). Lecture Notes in Computer Science. Springer.

Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., & Werner, B. (2011). A modular inte-
gration of SAT/SMT solvers to coq through proof witnesses. In: J.-P. Jouannaud & Z. Shao (pp.
135–150).

Asperti, A., Ricciotti, W., Coen, C.S., & Tassi, E. (2011). The matita interactive theorem prover.
In N. Bjørner & V. Sofronie-Stokkermans (Eds.), Proceedings of Automated Deduction—CADE-
23—23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31–August
5, 2011 (Vol. 6803, pp. 64–69). Lecture Notes in Computer Science. Springer.

Barbosa, H. (2016). Efficient instantiation techniques in SMT (work in progress). In P. Fontaine, S.
Schulz, & J. Urban (Eds.), Proceedings of the 5th Workshop on Practical Aspects of Automated
Reasoning co-located with International Joint Conference on Automated Reasoning (IJCAR
2016), Coimbra, Portugal, 2 July 2016, CEUR Workshop Proceedings (Vol. 1635, pp. 1–10).
CEUR-WS.org.

Brummayer, B., & Biere, A. (2009). Fuzzing and delta-debugging SMT solvers. In Proceedings of
the 7th International Workshop on Satisfiability Modulo Theories (pp. 1–5). ACM.

Bancerek, G., Bylinski, C., Grabowski, A., Kornilowicz, A., Matuszewski, R., Naumowicz, et al.
(2015). Mizar: state-of-the-art and beyond. In M. Kerber, J. Carette, C. Kaliszyk, F. Rabe &
V. Sorge (Eds.), Proceedings of Intelligent Computer Mathematics—International Conference,
CICM 2015, Washington, DC, USA, 13–17 July 2015 (Vol. 9150, pp. 261–279). Lecture Notes
in Computer Science. Springer.

Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T., et al. (2011). CVC4.
In G. Gopalakrishnan & S. Qadeer (Eds.), Proceedings of Computer Aided Verification—23rd
International Conference, CAV 2011, Snowbird, UT, USA, 14–20 July 2011 (Vol. 6806, pp. 171–
177). Lecture Notes in Computer Science. Springer.

Besson, F., Cornilleau, P.-E., & Pichardie, D. (2011). In J.-P. Jouannaud, & Z. Shao (Eds.), Modular
SMT proofs for fast reflexive checking inside coq (pp. 151–166).

Boespflug, M., Dénès, M., & Grégoire, B. (2011). In J.-P. Jouannaud, & Z. Shao (Eds.), Full
reduction at full throttle (pp. 362–377).

Barrett, C., de Moura, L. M., Ranise, S., Stump, A., & Tinelli, C. (2010). The SMT-LIB initiative
and the rise of SMT—(HVC 2010 award talk). In S. Barner, I. G. Harris, D. Kroening, & O. Raz
(Eds.), Hardware and Software: Verification and Testing—6th International Haifa Verification
Conference, HVC 2010, Haifa, Israel, 4–7 October 2010. Revised Selected Papers (Vol. 6504, p.
3). Lecture Notes in Computer Science. Springer.

Besson, F. (2006). Fast reflexive arithmetic tactics the linear case and beyond. In T. Altenkirch & C.
McBride (Eds.), TYPES (Vol. 4502, pp. 48–62). Lecture Notes in Computer Science. Springer.

Besson, F., Fontaine, P., & Théry, L. (2011). A flexible proof format for SMT: A proposal. In PxTP
2011: First International Workshop on Proof eXchange for Theorem Proving August 1, 2011
Affiliated with CADE 2011, 31 July–5 August 2011 Wrocław, Poland (pp. 15–26).

Bachmair, L., & Ganzinger, H. (1998). Equational reasoning in saturation-based theorem proving.
Automated deduction—A basis for applications (Vol. 1, pp. 353–397).

Bonacina, M. P., Graham-Lengrand, S., & Shankar, N. (2018). Proofs in conflict-driven theory
combination. In J. Andronick & A. P. Felty (Eds.), Proceedings of the 7th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, 8-9
January 2018 (pp. 186–200). ACM.

Biere, A., Heule, M., van Maaren, H., & Walsh, T. (Eds.). (2009). Handbook of satisfiability (Vol.
185). Frontiers in Artificial Intelligence and Applications. IOS Press.

Blanchette, J. C., Kaliszyk, C., Paulson, L. C., & Urban, J. (2016). Hammering towards QED.
Journal of Formalized Reasoning, 9(1), 101–148.

88 C. Keller

Boulmé, S., & Maréchal, A. (2017). Toward certification for free! Working paper or preprint, July
2017.

Bouton, T., de Oliveira, D., Déharbe, D., & Fontaine, P. (2009). In R. A. Schmidt (Eds.), veriT: An
open, trustable and efficient SMT-solver (pp. 151–156).

Böhme, S. B., & Weber, T. (2010). Fast LCF-style proof reconstruction for Z3. In M. Kaufmann
& L. C. Paulson (Eds.), ITP, (Vol. 6172, pp. 179–194). Lecture Notes in Computer Science.
Springer.

Cruz-Filipe, L., & Schneider-Kamp, P. (2017). Formally proving the Boolean pythagorean triples
conjecture. In T. Eiter & D. Sands (Eds.), LPAR-21, 21st International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May 2017 (Vol. 46,
pp. 509–522). EPiC Series in Computing. EasyChair.

Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A., Swamy, N., et al.
(2017). Implementing and proving the TLS 1.3 record layer. In 2017 IEEE Symposium on Security
and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017 (pp. 463–482). IEEE Computer
Society.

de Moura, L. M., & Bjørner, N. (2007). Efficient e-matching for SMT solvers. In F. Pfenning (Ed.),
Proceedings of Automated Deduction—CADE-21, 21st International Conference on Automated
Deduction, Bremen, Germany, 17–20 July 2007 (Vol. 4603, pp. 183–198). Lecture Notes in
Computer Science. Springer.

de Moura, L. M., & Bjørner, N. (2008). Z3: An efficient SMT solver. In C. R. Ramakrishnan & J.
Rehof (Eds.), TACAS (Vol. 4963, pp. 337–340). Lecture Notes in Computer Science. Springer.

de Moura, L., Kong, S., Avigad, J., van Doorn, F., & von Raumer, J. (2015). The lean theorem
prover (system description). In A. P. Felty & Aart Middeldorp (Eds.), Proceedings of Automated
Deduction—CADE-25—25th International Conference on Automated Deduction, Berlin, Ger-
many, 1–7 August 2015 (Vol. 9195, pp. 378–388). Lecture Notes in Computer Science. Springer.

Ekici, B., Katz, G., Keller, C., Mebsout, A., Reynolds, A. J., & Tinelli, C. (2016). Extending SMT-
Coq, a certified checker for SMT (Extended Abstract). In J. Christian Blanchette & C. Kaliszyk
(Eds.), Proceedings First International Workshop on Hammers for Type Theories, HaTT@IJCAR
2016, Coimbra, Portugal, 1 July 2016 (Vol. 210, pp. 21–29). EPTCS.

Ekici, B.,Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., et al. (2017). SMTCoq:A plug-
in for integrating SMT solvers into Coq. In R. Majumdar & V. Kuncak (Eds.), Computer Aided
Verification—29th International Conference, CAV 2017, Heidelberg, Germany, 24–28 July 2017,
Proceedings, Part II (Vol. 10427, pp. 126–133). Lecture Notes in Computer Science. Springer.

Fournet, C., Keller, C., & Laporte, V. (2016). A certified compiler for verifiable computing. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal, June 27–July 1,
2016 (pp. 268–280). IEEE Computer Society.

Fu, Z., Marhajan, Y., & Malik, S. (2007). zChaff. Research Web Page. Princeton University, USA,
March 2007. http://www.princeton.edu/~chaff/zchaff.html.

Filliâtre, J.-C., & Paskevich, A. (2013). Why3—Where programs meet provers. In M. Felleisen
& P. Gardner (Eds.), Proceedings of Programming Languages and Systems—22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, 16–24 March 2013 (Vol. 7792, pp.
125–128). Lecture Notes in Computer Science. Springer.

Gonthier, G., Asperti, A., Avigad, J., Bertot, Y., Cohen, C., Garillot, F., et al. (2013). A machine-
checked proof of the odd order theorem. In S. Blazy, C. Paulin-Mohring & D. Pichardie (Eds.),
Proceedings of Interactive Theorem Proving—4th International Conference, ITP 2013, Rennes,
France, July 22-26, 2013 (Vol. 7998, pp. 163–179). Lecture Notes in Computer Science. Springer.

Grégoire, B., & Mahboubi, A. (2005). Proving equalities in a commutative ring done right in Coq.
In J. Hurd & T. F. Melham (Eds.), TPHOLs (Vol. 3603, pp. 98–113). Lecture Notes in Computer
Science. Springer.

Gonthier, G. (2007). The four colour theorem: Engineering of a formal proof. In D. Kapur (Ed.),
Computer Mathematics, 8th Asian Symposium, ASCM 2007, Singapore, 15–17 December 2007.
Revised and Invited Papers (Vol. 5081, p. 333). Lecture Notes in Computer Science. Springer.

http://www.princeton.edu/~chaff/zchaff.html

SMTCoq: Mixing Automatic and Interactive Proof Technologies 89

Gordon, M. (2000). From LCF to HOL: A short history. In G. D. Plotkin, C. Stirling & M. Tofte
(Eds.), Proof, language, and interaction, essays in honour of Robin Milner (pp. 169–186). The
MIT Press.

Harrison, J., et al. (1996). Formalized mathematics. Citeseer.
Hales, T. C., Adams, M., Bauer, G., Dang, D. T., Harrison, J., Le Hoang, T., et al. (2015). A formal
proof of the Kepler conjecture. CoRR. arXiv:abs/1501.02155.

Huet, G. P., & Herbelin, H. (2014). 30 years of research and development around coq. In S. Jagan-
nathan & P. Sewell (Eds.), The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, 20-21 January 2014 (pp. 249–250).
ACM.

Heule, M. J. H., Kullmann, O., & Marek, V. W. (2016). Solving and verifying the Boolean
pythagorean triples problem via cube-and-conquer. In N. Creignou & D. Le Berre (Eds.), Pro-
ceedings of Theory and Applications of Satisfiability Testing—SAT 2016—19th International
Conference, Bordeaux, France, 5–8 July 2016 (Vol. 9710, pp. 228–245). Lecture Notes in Com-
puter Science. Springer.

Hurd, J. (2005). System description: The Metis proof tactic. In Empirically Successful Automated
Reasoning in Higher-Order Logic (ESHOL) (pp. 103–104).

Jourdan, J.-H., Laporte, V., Blazy, S., Leroy, X., & Pichardie, D. (2015). A formally-verified C
static analyzer. In S. K. Rajamani & D. Walker (Eds.), Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai,
India, 15–17 January 2015 (pp. 247–259). ACM.

Jouannaud, J.-P. & Shao, Z. (Eds.). (2011). Proceedings of Certified Programs and Proofs—First
International Conference, CPP 2011, Kenting, Taiwan, 7–9 December 2011 (Vol. 7086). Lecture
Notes in Computer Science. Springer.

Konev, B., & Lisitsa, A. (2015). Computer-aided proof of erdős discrepancy properties. Artificial
Intelligence, 224, 103–118.

Kaufmann, M., &Moore, J. S. (1996). ACL2: An industrial strength version of Nqthm. In Proceed-
ings of the Eleventh Annual Conference on Computer Assurance, 1996. COMPASS’96, Systems
Integrity, Software Safety, Process Security (pp. 23–34). IEEE.

Kohlhase, M., & Rabe, F. (2016). QED reloaded: Towards a pluralistic formal library of mathemat-
ical knowledge. Journal of Formalized Reasoning, 9(1), 201–234.

Lescuyer, S. (2011). Formalizing and Implementing a Reflexive Tactic for Automated Deduction in
Coq. (Formalisation et developpement d’une tactique reflexive pour la demonstration automatique
en coq). Ph.D. thesis, University of Paris-Sud, Orsay, France.

MacKenzie, D. (1995). The automation of proof: A historical and sociological exploration. IEEE
Annals of the History of Computing, 17(3), 7–29.

Miller, D. (2013). Foundational proof certificates: Making proof universal and permanent. In A.
Momigliano, B. Pientka & R. Pollack (Eds.), Proceedings of the Eighth ACM SIGPLAN Interna-
tional Workshop on Logical Frameworks & Meta-languages: Theory & Practice, LFMTP 2013,
Boston, Massachusetts, USA, 23 September 2013 (pp. 1–2). ACM.

Norell, U. (2009). Dependently typed programming in Agda. In A. Kennedy & A. Ahmed (Eds.),
Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation, Savannah, GA, USA, 24 January 2009 (pp. 1–2). ACM.

Nieuwenhuis, R., Oliveras, A.,&Tinelli, C. (2006). Solving SAT and SATmodulo theories: From an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(). Journal of the ACM, 53(6),
937–977.

Owre, S., Rushby, J. M., & Shankar, N. (1992). PVS: A prototype verification system. In D. Kapur
(Ed.), Proceedings of Automated Deduction—CADE-11, 11th International Conference on Auto-
mated Deduction, Saratoga Springs, NY, USA, 15–18 June 1992 (Vol. 607, pp. 748–752). Lecture
Notes in Computer Science. Springer.

Paulson, L. C., &Blanchette, J. C. (2010). Three years of experience with sledgehammer, a practical
link between automatic and interactive theorem provers. In G. Sutcliffe, S. Schulz &E. Ternovska

http://arxiv.org/abs/abs/1501.02155

90 C. Keller

(Eds.), The 8th International Workshop on the Implementation of Logics, IWIL 2010, Yogyakarta,
Indonesia, 9 October 2011 (Vol. 2, pp. 1–11). EPiC Series in Computing. EasyChair.

Parno, B., Howell, J., Gentry, C., & Raykova, M. (2013). Pinocchio: Nearly practical verifiable
computation. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA,
19-22 May 2013 (pp. 238–252). IEEE Computer Society.

Riazanov, A., & Voronkov, A. (2002). The design and implementation of VAMPIRE. AI Commu-
nications, 15(2–3), 91–110.

Saillard, R. (2015). Typechecking in the lambda-Pi-Calculus Modulo : Theory and Practice. (Véri-
fication de typage pour le lambda-Pi-Calcul Modulo : théorie et pratique). Ph.D. thesis, Mines
ParisTech, France.

Schmidt, R. A. (Ed.). (2009). Proceedings of Automated Deduction—CADE-22, 22nd International
Conference on Automated Deduction, Montreal, Canada, 2–7 August 2009 (Vol. 5663). Lecture
Notes in Computer Science. Springer.

Schulz, S. (2013). System description: E 1.8. In K. McMillan, A. Middeldorp, & A. Voronkov
(Eds.), Proceedings of the 19th LPAR, Stellenbosch (Vol. 8312). LNCS. Springer.

Swamy, N., Hritcu, C., Keller, C., Rastogi, A., Delignat-Lavaud, A., Forest, S., et al.: Dependent
types and multi-monadic effects in F. In R. Bodík, R. Majumdar (Eds.), Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, 20–22 January 2016 (pp. 256–270). ACM.

Silva, J. P. M., Lynce, I., & Malik, S. (2009). Conflict-driven clause learning SAT solvers. In Biere
et al. (Ed.), (pp. 131–153).

Stump, A. (2009). Proof checking technology for satisfiability modulo theories. Electronic Notes
in Theoretical Computer Science, 228, 121–133.

Tseitin, G. (1970). On the complexity of proofs in propositional logics. Seminars in Mathematics,
8, 466–483.

Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., & Wischnewski, P. (2009). SPASS
version 3.5. In R. A. Schmidt (Ed.), (pp. 140–145).

Studying Algebraic Structures Using
Prover9 and Mace4

Rob Arthan and Paulo Oliva

1 Introduction

Prover9 is an automated theorem prover for first order logic (McCune, 2005). The
companion program Mace4 searches for finite models of first order theories. Tools
such as these have been used to attack problems in algebra formany years. A headline
result was McCune’s use of a predecessor of Prover9 to find the first proof of the
Robbins conjecture (McCune, 1997). It is noteworthy in connection with the present
chapter that the first proof relied on reductions of the conjecture that were originally
proved by Winker (1992) using a mixture of human reasoning and automated proof
search. Several peopleworked on human readable accounts of themachine-generated
proof (Dahn, 1998; Burris, 1997).

It is the goal of this chapter to illustrate an approach that we have found very
useful in research on algebraic structures: we develop human readable proofs of new
results by mixing automated proof search and human analysis of the proofs found
by Prover9 and of examples found by Mace4. We propose that guided use of such
tools on known examples could also be of benefit in teaching algebra.

In Sect. 1.1 we illustrate the use of the tools taking the theory of semilattices
as a simple example. In Sect. 1.2 we give an introduction to the class of algebraic
structures called hoops and apply Prover9 and Mace4 to an investigation of these
algebraic structures at the level of a possible undergraduate project.

In Sect. 2 of this chapter, we present some results from our own research obtained
with the assistance of Prover9 andMace4. Surprisingly, Prover9’smachine-generated

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-030-28483-1_5) contains supplementary material, which is
available to authorized users.

R. Arthan · P. Oliva (B)
School of Electronic Engineering and Computer Science, Queen Mary University
of London, Mile End Road, London E1 4NS, UK
e-mail: p.oliva@qmul.ac.uk

R. Arthan
e-mail: rda@lemma-one.com

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-28483-1_5
mailto:p.oliva@qmul.ac.uk
mailto:rda@lemma-one.com
https://doi.org/10.1007/978-3-030-28483-1_5

92 R. Arthan and P. Oliva

proofs can be tractable and useful artefacts. Human insight allows us to extract new
abstractions and further conjectures, leading to an iterative interactive process for
developing the theory and producing a human-oriented account of the proofs.

The examples in this chapter are supported by a set of Mace4 and Prover9 scripts,
available as ESM from https://doi.org/10.1007/978-3-030-28483-1_5. There the
reader can also find information about obtaining Prover9 and Mace4 and instruc-
tions for running the scripts. The examples are organised into two separate folders,
one for Sect. 1 and one for Sect. 2. In these sections, references to named files refer
either to the scripts or the output files produced by running them in the corresponding
folder.

As a final introductory remark, we would like to stress that we are concerned
here with applications of tools. Applications invariably suggest desirable new fea-
tures or new tools, but we are concerned here with the development of mathematical
knowledge, either in a research or a teaching context, by exploiting potential syn-
ergy between human capabilities and the capabilities of tools that are available now.
We believe that this kind of synergy will be required at every stage of technological
advancement and that to learn this from practical experience is a worthwhile achieve-
ment in its own right. We confine our thoughts on possible future developments to
the tools to our concluding remarks.

1.1 Using Prover9 and Mace4

In this section we will introduce Prover9 and Mace4 using the theory of semilattices
as an example.

Recall that a semilattice can be defined as a set equipped with a least upper bound
operation on pairs of elements: i.e., a structure (S,∪) where the binary operation ∪
is associative, commutative and idempotent, i.e., it satisfies:

x ∪ (y ∪ z) = (x ∪ y) ∪ z

x ∪ y = y ∪ x

x ∪ x = x .

Prover9 and Mace4 use a common syntax for first-order logic. In this syntax, we can
formalise the semilattice axioms as follows (see file semilattice.ax):

op(500, infix, "cup").
formulas(assumptions).

(x cup y) cup z = x cup (y cup z).
x cup y = y cup x.
x cup x = x.

end_of_list.

https://doi.org/10.1007/978-3-030-28483-1_5

Studying Algebraic Structures Using Prover9 and Mace4 93

Here the first line declares that we will use cup as an infix operator. This is followed
by the axioms of our theory (referred to as “assumptions” by Prover9 and its docu-
mentation) using cup in place of ∪.1 By convention, the letters x, y and z denote
variables that are implicitly universally quantified.

We can now ask Prover9 to prove theorems based on these assumptions. As a very
simple example we can formulate the following goal2:

formulas(goals).
x cup (x cup x) = x.

end_of_list.

If we now execute the following command:

Prover9 -f semilattice.ax sl-pr1.gl

then Prover9 will almost instantaneously respond with the pleasing message
“THEOREM PROVED”. Its output also includes a detailed linear representation of
the proof3:

1 x cup (x cup x) = x # label(non_clause) # label(goal). [goal].
2 x cup x = x. [assumption].
3 c1 cup (c1 cup c1) != c1. [deny(1)].
4 $F. [copy(5),rewrite([4(4),4(3)]),xx(a)].

At first glance this looks daunting, but with a little work it is possible to gain insight
from it. The Prover9 proofs are always presented as proofs by contradiction: after
stating the goal and the assumptions that will be used to prove it, Prover9 denies the
goal by asserting the existing of a constant c1 that does not satisfy the equation we
are trying to prove (!= is the Prover9 syntax for �=). In general, the line that denies
the goal will be followed by a sequence of steps each comprising a formula that can
be deduced by applying logical inference rules to formulas given in earlier steps. In
this case, there is just one step in this sequence, in which some rewriting has arrived
at the desired contradiction $F (Prover9 syntax for falsehood). In each inference
step, the formula is followed by a justification giving a precise description of the
inference rules and how they have been applied. There is a program prooftrans
supplied with Prover9 that can be used to perform some useful transformations on
proofs (we have already used it in generating the proof as shown above to renumber
the steps in consecutive order). In this case, we can ask for the rewriting steps to be
expanded giving:

4A c1 cup c1 != c1. [para(2(a,1),3(a,1,2))].
4B c1 != c1. [para(2(a,1),4A(a,1))].
4 $F. [copy(4B),xx(a)].

1Prover9 input uses only ASCII characters.
2See goal script sl-pr1.gl.
3See output file sl-pr1.txt.

94 R. Arthan and P. Oliva

It then quickly finds that repeated rewriting with the idempotency law (the assump-
tion, i.e., axiom stated in step 2) gives the false ($F) conclusion that c1 is not equal to
itself. The justifications in the Prover9 proofs look complicated because they encode
a very detailed description of how each inference rule has been applied. In trying to
understand the proof, one can generally ignore most of this detail. The rule names
copy, para4 etc. are followed by a list of parameters in brackets identifying the
steps that provided the inputs (antecedents) to the rule the list of letters and numbers
in brackets that come immediately after the step number identify exactly how the
rule was applied to the formula of that step, but in most cases that is obvious and this
information can be ignored.

In a semilattice, one defines a relation ≥ by

x ≥ y ⇔ x ∪ y = x .

We can formalise this definition in Prover9 syntax as follows (see file
sl-ge-def.ax):

formulas(assumptions).
x >= y <-> x cup y = x.

end_of_list.

We can now get Prover9 to prove some more interesting properties. E.g. the transi-
tivity of ≥5:

formulas(goals).
x >= y & y >= z -> x >= z.

end_of_list.

If we execute the command:

Prover9 -f semilattice.ax sl-ge-def.ax sl-trans.gl

then Prover9 will again quickly respond with “THEOREM PROVED”. In this case
the proof it finds has 20 steps.6 As always it is a proof by contradiction, but with a
little analysis it is easy to extract the elements of a human-readable direct proof from
it. As we will see later in this chapter, it is not always easy to extract human-readable
proofs from the Prover9 output, but analysis of the machine-generated proofs often
leads to useful insights.

The reader may well ask what happens if we ask Prover9 to prove a false conjec-
ture.What if wewere to conjecture that the ordering relation on a semilattice is a total
order? We would express this goal in Prover9 as follows (see file sl-total.gl):

4para stands for “paramodulation”, an inference rule that performs a form of equational reasoning
generalising the usual notion of using an equation to rewrite a term within formula.
5See goal script sl-trans.gl.
6See output file sl-trans.txt.

Studying Algebraic Structures Using Prover9 and Mace4 95

formulas(goals).
x >= y | y >= x.

end_of_list.

Here “|” denotes disjunction, and, recalling that variables are implicitly universally
quantified, in textbook logical notation the goal is ∀x∀y(x ≥ y ∨ y ≥ x). If we run
Prover9 on this goal it will necessarily fail to deduce a contradiction: it will either fail
to terminate or terminate without finding a proof (either because no new formulas
can be generated or because it has reached a user-specified bound on execution time
or memory usage). In this case the companion programMace4 does something much
more useful. If we execute the command:

mace4 -p 1 -f semilattice.ax sl-ge-def.ax sl-total.gl

then the Mace4 program will search for a finite semilattice that provides a counter-
example to our false conjecture. It quickly finds one and in its log of the search
process it prints out the counter-example as follows:

cup :
| 0 1 2

--+------
0 | 0 2 2
1 | 2 1 2
2 | 2 2 2

>= :
| 0 1 2

--+------
0 | 1 0 0
1 | 0 1 0
2 | 1 1 1

Here we see that Mace4 uses 0, 1, 2 . . . to represent the elements of the model, which
in this case has size 3. The model is the smallest example of a semilattice that is not
totally ordered. It is made up of two incomparable atoms 0 and 1 together with their
least upper bound 2 = 0 ∪ 1.

In conjunction with two companion programs isofilter and
interpformat, Mace4 can enumerate all the models of a given size. The
Makefile contains the commands to do this for all semilattices with at most 5
elements. This is particularly useful when investigating more complex algebraic
structures as generating examples by hand is often error prone, particularly if asso-
ciative operators are involved as associativity is time-consuming to check.

96 R. Arthan and P. Oliva

1.2 Investigating the Algebraic Structure of Hoops

In Sect. 1.1, we took semilattices as our running example for reasons of simplicity.
However, semilattices are a little too simple to demonstrate the real power of tools
such asProver9 andMace4. In this sectionwe introduce the algebraic structures called
hoops (Blok & Ferreirim, 2000; Bosbach, 1969; Büchi & Owens, 1974) that will
provide the running example for the rest of the paper. Hoops are a generalisation of
Heyting algebras (used in the study of intuitionistic logic7). They are of considerable
interest, e.g., in connection with Łukasiewicz logic and fuzzy logic, and there are
many difficult open problems concerning them.

These structures were originally investigated, first by Bosbach (1969), and inde-
pendently by Büchi and Owens (1974). In this section, we present an elementary
investigation of hoops using Prover9 and Mace4, and indicate how one might put
these tools to use at the level of an undergraduate project assignment.

A hoop8 is a structure (H, 0, 1,⊕,) satisfying the following axioms:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z (1)

x ⊕ y = y ⊕ x (2)

x ⊕ 0 = x (3)

x 	 x = 0 (4)

(x 	 y) 	 z = x 	 (y ⊕ z) (5)

x ⊕ (y 	 x) = y ⊕ (x 	 y) (6)

0 	 x = 0 (7)

x 	 1 = 0 (8)

The example scripts in the supporting material for this section contain a Prover9
formalisation of the hoop axioms (file hoop-eq-ax) and various goals for Prover9
and Mace4.

Axioms (1), (2) and (3) are very familiar as the axioms for a commutative monoid
with binary operation ⊕ and identity element 0. Axioms (4) and (5) are reminiscent
of properties of subtraction in a commutative group, but the remaining axioms are
less familiar.

Axiom (6) says that the operation ∪ defined by x ∪ y = x ⊕ (y 	 x) is commu-
tative. Using axioms (3) and (4) we see that this operation is also idempotent. We
might conjecture that ∪ is also associative, so that it makes any hoop into a semilat-
tice, and Prover9 will readily prove this for us.9 The proof is short but intricate. This

7In a Heyting algebra one normally uses x → y for y 	 x , and x ∧ y for x ⊕ y.
8Strictly speaking this is a bounded hoop: an unbounded hoop omits the constant 1 and axiom
(8). We are only concerned with bounded hoops in this book, so for brevity, we drop the word
“bounded”.
9See output file hp-semilattice.txt.

Studying Algebraic Structures Using Prover9 and Mace4 97

Table 1 Hoops of order 2 and 3

Ordering Operation Tables Name

0 < 1

⊕ 0 1

0 0 1

1 1 1

	 0 1

0 0 0

1 1 0

L2

0 < a < 1

⊕ 0 a 1

0 0 a 1

a a 1 1

1 1 1 1

	 0 a 1

0 0 0 0

a a 0 0

1 1 a 0

L3

0 < a < 1

⊕ 0 a 1

0 0 a 1

a a a 1

1 1 1 1

	 0 a 1

0 0 0 0

a a 0 0

1 1 1 0

L2 � L2

semilattice structure induces an ordering on a hoop which turns out to be equivalent
to defining x ≥ y to hold when10 y 	 x = 0.

UsingMace4,we canquickly generate examples of hoops. Tables1 and2 are based
on the Mace4 output and show all hoops with between 2 and 4 elements. Inspection
of these tables is very instructive, particularly if one looks at the interactions between
the order structure and the algebraic operations.

In all cases, one notes that the elements in the rows and columns of the operation
tables for ⊕ are in increasing order; in the tables for 	 the elements in the rows
are in decreasing order while the elements in the columns are in increasing order.
This suggests the conjecture that ⊕ is monotonic in both its operands, while 	 is
monotonic in its right operand and anti-monotonic in its left operand. Prover9 quickly
proves this for us.11

Axiom (5) suggests (and inspection of the tables supports) the conjecture that for
any x, y and z, z ≥ x 	 y iff z ⊕ y ≥ x . This property, an analogue of one of the
laws for manipulating inequalities in an ordered commutative group, is known as the
residuation property and is quickly proved by Prover.12

A structure for the signature (0, 1,⊕,	,≥) such that (0,⊕,≥) is an ordered
commutative monoid with least element 0, greatest element 1 and satisfying the
residuation axiom:

z ≥ x 	 y ⇔ z ⊕ y ≥ x

10See output file hp-ge-sl.txt.
11See output file hp-plus-mono.txt, hp-sub-mono-left.txt and
hp-sub-mono-right.txt.
12See output file hp-res.txt.

98 R. Arthan and P. Oliva

Table 2 Hoops of order 4

Ordering Operation Tables Name

0 < a < b < 1

⊕ 0 a b 1

0 0 a b 1

a a a b 1

b b b 1 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 0 0

b b b 0 0

1 1 1 b 0

L2 � L3

0 < a < b < 1

⊕ 0 a b 1

0 0 a b 1

a a b 1 1

b b 1 1 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 0 0

b b a 0 0

1 1 b a 0

L4

0 < a < b < 1

⊕ 0 a b 1

0 0 a b 1

a a b b 1

b b b b 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 0 0

b b a 0 0

1 1 1 1 0

L3 � L2

0 < a < b < 1

⊕ 0 a b 1

0 0 a b 1

a a a b 1

b b b b 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 0 0

b b b 0 0

1 1 1 1 0

L2 � L2 � L2

0 < a, b < 1

a ≤| b

b ≥| a

⊕ 0 a b 1

0 0 a b 1

a a a 1 1

b b 1 b 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 a 0

b b b 0 0

1 1 b a 0

L2 × L2

is known as a (bounded) pocrim. One might conjecture that any pocrim is a hoop.
However this conjecture is false, if we ask Mace4 to enumerate small pocrims,13

it finds 2 pocrims with 4 elements that are not hoops, as shown in Table3. The
residuation property is strictly weaker than axiom (6). Inspection of the operation
tables reveals the weakness: in a hoop, if x ≥ y then x = y ⊕ (x 	 y), but in a
pocrim, even when x ≥ y, we can have x < y ⊕ (x 	 y): in the first example in
Table3, x ⊕ y = 1 unless one of x and y is 0. However, the axiomatisation of hoops

13 See output file pc-egs.txt.

Studying Algebraic Structures Using Prover9 and Mace4 99

Table 3 Pocrims that are not hoops

Ordering Operation Tables

0 < a < b < 1

⊕ 0 a b 1

0 0 1 1 1

a a 1 1 1

b b 1 1 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 0 0

b b a 0 0

1 1 a a 0

0 < a < b < 1

⊕ 0 a b 1

0 0 a b 1

a a a 1 1

b b 1 1 1

1 1 1 1 1

	 0 a b 1

0 0 0 0 0

a a 0 0 0

b b b 0 0

1 1 b a 0

via the pocrim axioms together with axiom (6) is often more convenient and intuitive
than the purely equational axiomatisation.

Inspection of Tables1 and 2, shows that for each n, there is a hoop of order n that
is linearly ordered and generated by its least nonzero element, in the sense that if a
is the least nonzero element, the other nonzero elements are a ⊕ a, a ⊕ a ⊕ a, etc.
For any n, let us define14

Ln = ({0, 1

n − 1
,

2

n − 1
, . . . , 1}, 0, 1,⊕,)

where x ⊕ y = min(x + y, 1) and x 	 y = max(x − y, 0). Then Ln is a linearly
ordered hoop generated by its least non-zero element 1

n−1 . Copies of Ln for various
n often appear in other hoops. Inspection of the first hoop in Table2 shows that,
the subset {0, b, 1} comprises a subhoop isomorphic to L3, while the subset {0, a}
is isomorphic to L2 viewed as a structure for the signature (0,⊕,) (i.e., ignoring
the fact that a �= 1). This suggests a way of constructing new hoops from old: given
hoops H1 and H2 with underlying sets H1 and H2, we can form what is called
the ordinal sum, H1 � H2 of the two hoops whose underlying set is the disjoint
union H1 (H2 \ {0}), with 0 (resp. 1) given by 0 ∈ H1 (resp. 1 ∈ H2) and with the
operation tables defined to extend the operations of H1 and H2 so that for h1 ∈ H1

and h2 ∈ H2, h1 ⊕ h2 = h2, h1 	 h2 = 0 and h2 	 h1 = h2. The column headed
“Name” in Tables1 and 2 gives an expression for each hoop as an ordinal sum or
product of the hoops Ln .

Linearly ordered hoops are of particular importance. We can see at a glance from
Tables1 and 2 that there is 1 linearly ordered hoop of order 2 and 2 of order 3 (and

14 We call these hoops Ln in honour of Łukasiewicz and Tarski (1930) whose multi-valued logics
have a natural semantics with values in these hoops.

100 R. Arthan and P. Oliva

these are the only hoops of these orders), while there are 4 linearly ordered hoops
of order 4 (and just one other). Mace4 tells us15 that there are 8 linearly ordered
hoops of order 5 (and two others16). This leads us to the following theorem. The
proof of this theorem proceeds by induction and Prover9 cannot be expected to find a
proof automatically, but if, informed by the examples provided by Mace4, we set up
the framework for the inductive proof, then Prover9 will help us with the low-level
details.

Theorem 1.1 For each n ≥ 2, there are 2n−2 isomorphism classes of linearly
ordered hoops of order n.

Proof We claim that any linearly ordered hoop of order n is isomorphic to an ordinal
sum Lm1 � . . . � Lmk for some k, m1, . . . ,mk ≥ 2 such that m1 + . . . + mk − k +
1 = n. It is easy to see that two such ordinal sums Lm1 � . . . � Lmk and Ln1 �

. . . � Lnl are isomorphic iff k = l andmi = ni , 1 ≤ i ≤ k. Moreover the sequences
〈m1, . . . ,mk〉 indexing these ordinal sums are in one-to-one correspondence with
the subsets of {1, . . . , n − 2} via:

〈m1, . . . ,mk〉 �→ {m1 − 1,m1 + m2 − 2, . . . ,m1 + · · · + mk−1 − k + 1},

Hence there are, indeed, 2n−2 such hoops. We have only to prove the claim which
follows immediately by induction from the observation that anyfinite linearly ordered
hoop H is isomorphic to Lm � K for some m and some subhoop K of H. This
observation may be proved by considering the subhoop generated by the least non-
zero element of H using the fact that (in any hoop), if x + x = x and y ≥ x , then
x + y = y, which Prover9 will readily verify for us.17

This theorem and its proof are a nice example of synergy between automated
methods and the traditional approach: Mace4 provides examples that suggest a gen-
eral conjecture and indicate a possible line of proof by induction. While it is not able
to automate the inductive proof,18 Prover9 can help us fill in tricky algebraic details.

We encourage readers interested in using tools such as Prover9 and Mace4 in
undergraduate teaching to use the example scripts we have provided to inform the
design of an undergraduate project involving a guided investigation of amore familiar
class of algebraic structure, say Boolean algebras or Heyting algebras using these
tools.

15See output file hp-linear-egs.txt.
16See output file hp-egs.txt.
17See output file hp-sum-lemma.txt.
18Prover9 is a theorem-prover for finitely axiomatisable first-order theories: it is not designed to
work with something like the principle of induction that can only be expressed either as an infinite
axiom schema or as a second-order property. The use of interactive proof assistants that can handle
induction is of potential interest inmathematics education, but is not the focus of the present chapter.
There has been research on fully automated proof in higher-order logic, but this is in its early days.

Studying Algebraic Structures Using Prover9 and Mace4 101

1. Start with a new conjecture φ

2. Use Mace4 to check φ does not have trivial (small) counterexamples

3. User Prover9 to search for a proof of φ

(a) Once proof found, mine the proof for new “concepts” and “properties”

(b) Rerun the proof search taking these new concepts and properties as given

(c) Use knowledge learned, formulate new conjecture, and go back to 1.

Fig. 1 Methodology

2 Analysing Larger Proofs

In the second part of this chapter we discuss, using the theory of hoops as a running
example, how we have used Prover9 and Mace4 to explore new conjectures, and
the methodology we used to analyse and “understand” Prover9’s machine generated
proofs. The main challenge we want to focus on is in dealing with large Prover9
proofs, andhowone should go about breaking these proofs into smaller,more intuitive
and understandable steps. As a general methodology, we have adopted the process
described in Fig. 1.

2.1 A Homomorphism Property for Hoops

Asmentioned in Sect. 1.2, hoops generalise Heyting algebras. Defining the dual of an
element as x⊥ = 1 	 x , we have that in Heyting algebras the double-dual operation
x �→ x⊥⊥ is a homomorphism. The conjecture φ we were working on, was whether
this was also the case for hoops, i.e. do the following two homomorphism properties
hold:

(x 	 y)⊥⊥ = x⊥⊥ 	 y⊥⊥ (9)

and

(x ⊕ y)⊥⊥ = x⊥⊥ ⊕ y⊥⊥ (10)

Using Mace4 we were able to check in just a few minutes that no small (size 20
or below) counter-examples existed.19 To our surprise, Prover9 found a proof of (9)

19See output files conjectureNNSNNSNN.txt and conjecturePNNNNPNN.txt.

102 R. Arthan and P. Oliva

is just over 100 min.20 This proof, however, is not as short as the ones we have seen
in the previous section, involving around 177 steps.

2.2 Discovering Derived Operations and Their Basic
Properties

When faced with a long Prover9 derivation such as the one above, we tried to identify
new concepts and intermediate steps in the proof that had intrinsic value, and could
be understood in isolation. For instance, we noticed that the patterns x⊥ ⊕ (x 	 y)
and x 	 (x 	 y) appeared multiple times in the derivation. This led us to introduce
new operations so thatmultiple steps in the proof could be understood as properties of
these new operations. In total we found, apart from x ∪ y, three further new derived
operations:

x ∪ y ≡ x ⊕ (y 	 x)
x ∩ y ≡ x 	 (x 	 y)
y \ x ≡ (x ⊕ y) 	 x
x ↓ y ≡ x⊥ ⊕ (x 	 y)

Our final choice of notation for these new operations came after we had studied
their properties. The Prover9 symbols we used for these (in ASCII) are shown in
Table4. When identifying these operations we also used our knowledge of the corre-
spondence between hoops and Heyting algebras. For instance, x ∩ y in logical terms
corresponds to (y → x) → x , which generalises double negation and in theoretical
computer science is known as the continuation monad (Moggi, 1989).

So, according to step 3. (a) and (b) of our methodology, we looked first for basic
properties of these new operations, or of their relation with the primitive operations.
We come up with six simple properties (listed in the following lemma) that we then
added as axioms, and rerun the proof search.

Lemma 2.1 The following hold in all hoops:

(i) x ≥ y ∩ x
(ii) x ≥ x \ y
(iii) (x \ y) 	 x = 0
(iv) x ⊕ y = x ⊕ (y \ x)
(v) z ∩ (y 	 x) ≥ (z ∩ y) 	 (z ∩ x)
(vi) x 	 (x ∩ y) = x 	 y

Adding these lemmas cut the proof search time to just over 10 min,21 and the
number of steps to 132. This is still a reasonably large proof, which would be hard

20See output file theoremNNSNNSNN-eq-expanded.txt.
21See output file theoremNNSNNSNN-eq-basic-lemmas.txt.

Studying Algebraic Structures Using Prover9 and Mace4 103

to “understand” as a whole. So we continued looking for more complex properties
of these new defined operations. This time we focused on the following four steps
in the proof script theoremNNSNNSNN-eq-basic-lemmas.txt, and noticed
that these do have intrinsic value:

126 (x ˜ y) + (1 ˜ x) = 1 ˜ (x ˜ (x ˜ y)).

states a duality between x ↓ y and x ∩ y, i.e. x ↓ y = (x ∩ y)⊥.

132 (x ˜ y) + (1 ˜ x) = (y ˜ x) + (1 ˜ y).

states the commutativity of x ↓ y, i.e. x ↓ y = y ↓ x .

134 1 ˜ (x ˜ (x ˜ y)) = 1 ˜ (y ˜ (y ˜ x)).

states the commutativity of x ∩ y under (·)⊥, i.e. (x ∩ y)⊥ = (y ∩ x)⊥.

153 1 ˜ (x ˜ (1 ˜ (1 ˜ x))) = 1.

immediately implies that although x 	 x⊥⊥ is not 0 in general, we do have that
(x 	 x⊥⊥)⊥⊥ = 0; and, as we will see, this is the crucial lemma in the proof of (9).

In order to emphasise how we were able to break this long proof into a small
collection of simple lemmas (each with a reasonably short proof), we will explicitly
give the proof of these lemmas, and the proof of the conjecture from these lemmas.
Readers who are not planning to undertake this kind of work themselves are invited to
skip the details. We believe, however, that the details will be helpful to those wanting
to apply a similar methodology in other contexts.

Notation. But before we do that, let us set up a notation for naming hoop properties.
We associate a letter to each of the operations as shown in Table4 and name each
property by reading all the operations on the statement of the property from left to
right. For instance, the property x ↓ y = y ↓ x is named AA. Although there is a
risk that two different properties will end up with the same name, this is not the case
for the properties we consider here.

2.3 Discovering Basic Properties

The first set of basic properties we discovered relate to commutativity. One of the
hoop axioms states that x ∪ y is commutative. It is easy to construct a model, how-
ever, which shows that x ∩ y is not commutative in general. When analysing proofs
generated by Prover9 we spotted two other interesting commutativity properties,
alluded to above. The first (which we call AA as discussed above) is that x ↓ y also
satisfies the commutativity property:

104 R. Arthan and P. Oliva

Table 4 Nomenclature

Operator Prover9 Letter Intuition

0 0 Z (zero)

1 1 O (one)

⊕ + P (plus)

	 ˜ S (subtraction)

∪ cup J (join)

∩ cap M (meet)

\ \ D (difference)

↓ nand A (ampheck)a

(·)⊥
(.)’ N (negation)

a“Ampheck” from a Greek word meaning “cutting both ways” was the name coined by C. S. Peirce
for the logical NAND operation

Lemma 2.2 (AA) x ↓ y = y ↓ x

Proof By symmetry it is enough to prove x ↓ y ≥ y ↓ x . Note that ((y 	 x) 	
x⊥) = 0, hence:

(x 	 y) ⊕ x⊥ = (x 	 y) ⊕ x⊥ ⊕ ((y 	 x) 	 x⊥) Axiom (3)

= (x 	 y) ⊕ (y 	 x) ⊕ (x⊥ 	 (y 	 x)) Axiom (6)

= (x 	 y) ⊕ (y 	 x) ⊕ ((y 	 x) ⊕ x)⊥ Axiom (5)

= (x 	 y) ⊕ (y 	 x) ⊕ (y ⊕ (x 	 y))⊥ Axiom (6)

= (y 	 x) ⊕ (x 	 y) ⊕ (y⊥ 	 (x 	 y)) Axiom (5)

= (y 	 x) ⊕ y⊥ ⊕ ((x 	 y) 	 y⊥) Axiom (6)

≥ (y 	 x) ⊕ y⊥. Monotonicity

We also identified this interesting duality between x ∩ y and x ↓ y:

Lemma 2.3 (MNA) (x ∩ y)⊥ = x ↓ y

Proof By Lemma 2.1 (i) we have y ≥ x ∩ y; and by [EFQ] we have 1 ≥ x . Hence,
(x ∩ y)⊥ ≥ x 	 y so that (∗) (x 	 y) 	 (x ∩ y)⊥ = 0. Clearly we also have that
(†) (x 	 y) 	 x = 0. Therefore

(x ∩ y)⊥ = (x ∩ y)⊥ ⊕ ((x 	 y) 	 (x ∩ y)⊥) (∗)

= (x 	 y) ⊕ ((x ∩ y)⊥ 	 (x 	 y)) Axiom (6)

= (x 	 y) ⊕ ((x 	 y) ⊕ (x ∩ y))⊥ Axiom (5)

= (x 	 y) ⊕ (x ⊕ ((x 	 y) 	 x))⊥ Axiom (6)

= (x 	 y) ⊕ x⊥. (†)

Studying Algebraic Structures Using Prover9 and Mace4 105

This duality when combined with Lemma 2.2 immediately implies that x ∩ y is
also commutative when in the following weaker form:

Lemma 2.4 (MNMN) (x ∩ y)⊥ = (y ∩ x)⊥

Note that we make the point of giving the full proofs of all the lemmas in order to
emphasise our goal of reducing the overall proof to a sequence of simple yet interest-
ing lemmas, eachofwhich should have reasonably short proofs (around10 steps). The
other steps in the proof theoremNNSNNSNN-eq-basic-lemmas.txt which
we found of interest were 101, 138 and 144, which again all have short proofs as
follows:

Lemma 2.5 (NPJSSO) x⊥ ⊕ ((y ∪ x) 	 (y 	 x)) = 1

Proof Note that (∗) x⊥ = (y 	 x) ⊕ (x⊥ 	 (y 	 x)). We have

1 ≥ x⊥ ⊕ ((y ∪ x) 	 (y 	 x)) Axiom (8)

= x⊥ ⊕ ((y ⊕ (x 	 y)) 	 (y 	 x)) Def. ∪
= (y 	 x) ⊕ (x⊥ 	 (y 	 x)) ⊕ ((y ⊕ (x 	 y)) 	 (y 	 x)) (∗)

= y ⊕ (x 	 y) ⊕ (x⊥ 	 (y 	 x)) ⊕ ((y 	 x) 	 (y ⊕ (x 	 y))) Axiom (6)

= x ⊕ (y 	 x) ⊕ (x⊥ 	 (y 	 x)) ⊕ ((y 	 x) 	 (y ⊕ (x 	 y))) Axiom (6)

≥ x ⊕ (y 	 x) ⊕ (x⊥ 	 (y 	 x)) Monotonicity

= x ⊕ x⊥ ⊕ ((y 	 x) 	 x⊥) Axiom (6)

≥ x ⊕ x⊥ Monotonicity

≥ 1. Residuation

Lemma 2.6 (NSNSM) x⊥ = (x 	 y)⊥ 	 (y ∩ x)

Proof Note that (∗) (x 	 y) 	 x = 0. Hence

x⊥ = (x ⊕ ((x 	 y) 	 x))⊥ (∗)

= ((x 	 y) ⊕ (x 	 (x 	 y)))⊥ Axiom (6)

= ((x 	 y) ⊕ (x ∩ y))⊥ Def. ∩
= (x ∩ y)⊥ 	 (x 	 y) Axiom (5)

= (y ∩ x)⊥ 	 (x 	 y) Lemma 2.4

= (x 	 y)⊥ 	 (y ∩ x). Axioms (2) and (5)

Lemma 2.7 (NNSSNN) x⊥ = x⊥ 	 (x 	 x⊥⊥)

Proof It is easy to show that (∗) x ⊕ (x⊥ 	 (x 	 x⊥⊥)) = 1. Let us use the abbrevi-
ation X = x 	 x⊥⊥. It is also easy to see that (†) ((X⊥ 	 x) 	 ((x ⊕ (x⊥ 	 X)) 	
x)) = 0. Hence

106 R. Arthan and P. Oliva

x⊥ = 1 	 x Def. (·)⊥
= (x ⊕ (x⊥ 	 (x 	 x⊥⊥))) 	 x (∗)

= ((x ⊕ (x⊥ 	 (x 	 x⊥⊥))) 	 x) ⊕ ((X⊥ 	 x) 	 ((x ⊕ (x⊥ 	 X)) 	 x))
(†)

= ((x 	 x⊥⊥)⊥ 	 x) ⊕ (((x ⊕ (x⊥ 	 X)) 	 x) 	 (X⊥ 	 x)) Axiom (6)

= (x 	 x⊥⊥)⊥ 	 x Axiom (5)

= x⊥ 	 (x 	 x⊥⊥). Axiom (5)

The above three lemmas are interesting, in the sense that it describes properties
of the duality operation x⊥, either showing equivalent ways of writing x⊥, or how it
relates to other complex expressions.

Finally, the crucial lemma of the proof shows that, although x 	 x⊥⊥ �= 0 in
general, we always have 1 	 (x 	 x⊥⊥) = 1.

Lemma 2.8 (SNNNO) (x 	 x⊥⊥)⊥ = 1

Proof Note that (∗) x⊥ ⊕ ((x 	 x⊥) 	 x⊥⊥) = x⊥ since (x 	 x⊥) 	 x⊥⊥ = 0.
Hence,

(x 	 x⊥⊥)⊥ = (x 	 x⊥⊥)⊥ ⊕ (x⊥ 	 x⊥) Easy

= (x 	 x⊥⊥)⊥ ⊕ ((x⊥ ⊕ ((x 	 x⊥) 	 x⊥⊥)) 	 x⊥) (∗)

= (x 	 x⊥⊥)⊥ ⊕ ((x⊥ ⊕ ((x 	 x⊥⊥) 	 x⊥)) 	 x⊥)

Axioms (2) and (5)

= (x 	 x⊥⊥)⊥ ⊕ ((x⊥ ∪ (x 	 x⊥⊥)) 	 x⊥) Def. ∪
= (x 	 x⊥⊥)⊥ ⊕ ((x⊥ ∪ (x 	 x⊥⊥)) 	 x⊥) Def. ∪
= (x 	 x⊥⊥)⊥ ⊕ ((x⊥ ∪ (x 	 x⊥⊥)) 	 (x⊥ 	 (x 	 x⊥⊥)))

Lemma 2.7

= 1. Lemma 2.5

Lemma2.8 immediately implies step159of theoremNNSNNSNN-eq-basic-
lemmas.txt, namely:

Lemma 2.9 (SSNNSNO) ((x 	 y) 	 (x⊥⊥ 	 y))⊥ = 1

Proof We have

1 = (x 	 x⊥⊥)⊥ Lemma 2.8

≤ ((x 	 x⊥⊥) 	 (y 	 x⊥⊥))⊥ Monotonicity

= (x 	 (x⊥⊥ ⊕ (y 	 x⊥⊥)))⊥ Axiom (5)

Studying Algebraic Structures Using Prover9 and Mace4 107

= (x 	 (y ⊕ (x⊥⊥ 	 y)))⊥ Axiom (6)

= ((x 	 y) 	 (x⊥⊥ 	 y))⊥ Axiom (5)

≤ 1

2.4 Producing a Human-Readable Proof of (9)

We are now in a position where we can derive a human-readable proof of the homo-
morphism property (9) using the lemmas of the previous section. Our proof is based
on the one in the proof script theoremNNSNNSNN-eq-expanded.txt.

Theorem 2.10 (NNSNNSNN) x⊥⊥ 	 y⊥⊥ = (x 	 y)⊥⊥

Proof Since (x⊥⊥ 	 y) 	 (x 	 y) = 0 it follows that (∗) (x⊥⊥ 	 y) ∩ (x 	 y) =
x⊥⊥ 	 y. Hence

x⊥⊥ 	 y⊥⊥ = (x⊥⊥ 	 y)⊥⊥ Lemma 2.1 (vi)

= (1 	 (x⊥⊥ 	 y))⊥ Def. (·)⊥
= (1 	 ((x⊥⊥ 	 y) ∩ (x 	 y)))⊥ (∗)

= (((x 	 y) 	 (x⊥⊥ 	 y))⊥ 	 ((x⊥⊥ 	 y) ∩ (x 	 y)))⊥
Lemma 2.9

= (x 	 y)⊥⊥. Lemma 2.6

2.5 Tackling the Harder Conjecture (10)

We have also been able to produce a human-readable proof of (10), although this
seems to be a much harder result. Prover9 is also able to find a proof of (10) from
the basic hoop axioms, but that takes almost 7 hours, and requires 624 steps.22 In a
process of “mining” this proof for new lemmas, and then searching for a proof again
using these lemmas, we were able to find a small set of lemmas from which Prover9
derives the proof of the conjecture in just a fraction of a second.23 Again, in order
to emphasise how we were able to produce a human-like mathematical presentation
of this proof, we prove here these other lemmas in full, and give the (short) proof of
(10) from these lemmas.

The first two lemmas enable us to rewrite x or x⊥ as a sum of two other elements.
In a hoop we do not have idempotence (x = x ⊕ x) in general, but we can obtain
weaker forms of this as follows:

22See file theoremPNNNNPNN-eq.txt.
23See file theoremPNNNNPNN-eq-lemmas.txt.

108 R. Arthan and P. Oliva

Lemma 2.11 (MPS) x = (x ∩ y) ⊕ (x 	 y)

Proof We have

x = x ⊕ ((x 	 y) 	 x) Axiom (3)

= (x 	 (x 	 y)) ⊕ (x 	 y) Axiom (6)

= (x ∩ y) ⊕ (x 	 y). Def. ∩

Lemma 2.12 (NSPJN) x⊥ = (y 	 x) ⊕ (x ∪ y)⊥

Proof That x⊥ ≥ (y 	 x) ⊕ (x ∪ y)⊥ followsdirectly since (x ∪ y)⊥ = (y 	 x)⊥ 	
x . For the other direction we have:

x⊥ = x⊥ ⊕ (y 	 1) Axiom (8)

≥ x⊥ ⊕ ((y 	 x) 	 x⊥) Easy

= (y 	 x) ⊕ (x⊥ 	 (y 	 x)) Axiom (6)

= (y 	 x) ⊕ (x ⊕ (y 	 x))⊥ Axiom (5)

= (y 	 x) ⊕ (x ∪ y)⊥. Def. ∪

The following two lemmas can be seen as properties relating x ⊕ y with the new
derived connectives x ∪ y, x ∩ y and x \ y.

Lemma 2.13 (PPMD) x ⊕ y = x ⊕ (y ∩ (y \ x))

Proof Note that (∗) (y 	 (y \ x)) 	 x = 0. Hence

x ⊕ y = (y \ x) ⊕ x Lemma 2.1 (iv)

= (y \ x) ⊕ x ⊕ ((y 	 (y \ x)) 	 x) (∗)

= (y \ x) ⊕ (y 	 (y \ x)) ⊕ (x 	 (y 	 (y \ x))) Axiom (6)

= y ⊕ ((y \ x) 	 y) ⊕ (x 	 (y 	 (y \ x))) Axiom (6)

= y ⊕ (x 	 (y 	 (y \ x))) Lemma 2.1 (iii)

= (y ∩ (y \ x)) ⊕ (y 	 (y \ x)) ⊕ (x 	 (y 	 (y \ x))) Lemma 2.11

= (y ∩ (y \ x)) ⊕ x ⊕ ((y 	 (y \ x)) 	 x) Axiom (6)

= x ⊕ (y ∩ (y \ x)). Monotonicity

Lemma 2.14 (NPNPM) x⊥ ⊕ y = x⊥ ⊕ (y ∩ x)

Proof That x⊥ ⊕ y ≥ x⊥ ⊕ (y ∩ x) follows directly from y ≥ y ∩ x . For the other
direction, note that x ≥ y \ x⊥. Hence, y ∩ x ≥ y ∩ (y \ x⊥). Therefore, the result
follows directly from Lemma 2.13.

The above lemmas give us another interesting and useful duality between the two
defined operations x ∩ y and x \ y:

Studying Algebraic Structures Using Prover9 and Mace4 109

Lemma 2.15 (JNND) (x ∪ y)⊥ = y⊥ \ x

Proof That y⊥ \ x ≥ (x ∪ y)⊥ is easy to show. For the converse, observe that by
Lemma 2.14 (with y and x interchanged) it follows that (∗) y⊥ ≥ (x + y⊥) 	 (x ∩
y). Hence

(x ∪ y)⊥ = (x ⊕ (y 	 x))⊥ Def. ∪
= (y ⊕ (x 	 y))⊥ Axiom (6)

= y⊥ 	 (x 	 y) Axiom (5)

≥ ((x ⊕ y⊥) 	 (x ∩ y)) 	 (x 	 y) (∗)

= ((x ⊕ y⊥) 	 ((x 	 y) 	 x)) 	 x Axiom (6)

= (x ⊕ y⊥) 	 x Easy

= y⊥ \ x . Def. \

The above, together with Lemma 2.15, immediately gives us another interesting
commutativity property.

Corollary 2.16 (NDND) y⊥ \ x = x⊥ \ y

The final main lemma in the proof of (10) is a surprising duality between 	 and
⊕.

Lemma 2.17 (SNNNPN) (y 	 x⊥)⊥ = x⊥ ⊕ y⊥

Proof That x⊥ ⊕ y⊥ ≥ (y 	 x⊥)⊥ is easy to derive. For the converse, note that we
have x⊥⊥ ≥ y 	 x⊥, and hence

(∗) (x⊥⊥ ⊕ (y 	 x⊥)⊥) 	 x⊥⊥ ≥ (x⊥⊥ ⊕ x⊥⊥⊥) 	 x⊥⊥ = x⊥⊥⊥.

Hence, taking x ′ = y 	 x⊥ and y′ = x⊥⊥ in Lemma 2.12, we have the first line
of the following chain

(y 	 x⊥)⊥ = (x⊥⊥ 	 (y 	 x⊥)) ⊕ ((y 	 x⊥) ∪ x⊥⊥)⊥ Lemma 2.12

= (x⊥⊥ 	 (y 	 x⊥)) ⊕ ((y 	 x⊥)⊥ \ x⊥⊥) Theorem 2.15

≥ (x⊥⊥ 	 (y 	 x⊥)) ⊕ x⊥⊥⊥ (∗)

= (x⊥ ⊕ (y 	 x⊥))⊥ ⊕ x⊥ Lemma 2.1 (vi)

= (x⊥ ∪ y)⊥ ⊕ x⊥ Def ∪
= (x⊥⊥ \ y) ⊕ x⊥ Theorem 2.15

= (y⊥ \ x⊥) ⊕ x⊥ Corollary 2.16 (i)

≥ x⊥ ⊕ y⊥. Residuation

110 R. Arthan and P. Oliva

Lemma 2.17 above, immediately implies the homomorphism property for x ⊕ y,
since (x ⊕ y)⊥⊥ = (y⊥ 	 x⊥⊥)⊥.

Theorem 2.18 (PNNNNPNN) (x ⊕ y)⊥⊥ = x⊥⊥ ⊕ y⊥⊥

Remark 2.1 It is interesting to observe that in the proof theoremPNNNNPNN-
eq.txt of property (10) one also finds some of the lemmas used in the proof of (9),
for instance, Lemmas 2.3 (step 329) and 2.12 (step 486), but more interestingly, it
also discovers Lemma 2.17 (step 633), and uses that to derive a more general duality
between 	 and ⊕ (step 683), namely

(x 	 y)⊥ = x⊥ ⊕ y⊥⊥

an interesting property, as in the absence of idempotence (x = x ⊕ x), i.e., in a hoop
that is not aHeyting algebra, it is usually hard to find non-trivial equivalences between
non-sums and sums.

3 Concluding Remarks

In Sect. 1 we have attempted to introduce the tools and methods we have been using
by examples at the level of an undergraduate project. We hope this is of interest
to educators and advocate introduction of tools such as Prover9 and Mace4 into
mathematical curricula.

At a more advanced level, we have discussed our own research using Prover9
and Mace4 to investigate algebraic structures. It is possible to demonstrate the prov-
ability of properties like duality, commutativity or homomorphism properties by
model-theoretic methods but these methods are not constructive, whereas the meth-
ods discussed in Sect. 2 construct explicit equational proofs.

In De Villiers (1990), argues that proof has many purposes apart from verifica-
tion, including explanation, systematization, intellectual challenge, discovery and
communication. Tools such as Prover9 automate the process of discovering a proof,
but at first glance, the proofs that are discovered seem inaccessible to a human
reader. We take this as an intellectual challenge in its own right and claim that with
human effort, judiciously applied, we can “mine” explanative and systematic human-
oriented proofs frommachine-generated ones, potentially leading to new insights into
the problem domain.

We have deliberately avoiding discussing potential developments of the tools in
the main body of this chapter. However, there are several obvious areas for future
investigation. Some automated support for refactoring the machine-generated proofs
could be very helpful. The refactoring steps of interest would include separating out
lemmas and retrofitting derived notations. It is certainly of interest to speculate on
possibilities for fully automating extraction of human-readable proofs frommachine-
generated proofs, but we view this as a hard challenge for Artificial Intelligence.

Studying Algebraic Structures Using Prover9 and Mace4 111

References

Blok, W. J., & Ferreirim, I. M. A. (2000). On the structure of hoops. Algebra Universalis, 43(2–3),
233–257.

Bosbach, B. (1969). Komplementäre Halbgruppen. Axiomatik und Arithmetik. Fundamenta Math-
ematicae, 64, 257–287.

Büchi, J. R., & Owens, T. M. (1974). Complemented monoids and hoops. Unpublished manuscript.
Burris, S. (1997). An Anthropomorphized Version of McCune’s machine proof that Robbins Alge-
bras are Boolean algebras. Private communication.

Dahn, B. I. (1998). Robbins algebras are Boolean: A revision of McCune’s computer-generated
solution of Robbins problem. Journal of Algebra, 208(2), 526–532.

De Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24.
Łukasiewicz, J., & Tarski, A. (1930). Untersuchungen über den Aussagenkalkül. C. R. Soc. Sc.
Varsovie, 23(1930), 30–50.

McCune, W. (2005–2010). Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/.
McCune, W. (1997). Solution of the Robbins problem. Journal of Automated Reasoning, 19(3),
263–276.

Moggi, E. (1989). Computational lambda-calculus andmonads. In Symposium of Logic inComputer
Science, California, June 1989. IEEE.

Winker, S. (1992). Absorption and idempotency criteria for a problem in near-Boolean algebras.
Journal of Algebra, 153(2), 414–423.

http://www.cs.unm.edu/~mccune/prover9/

Theoretical Perspectives on
Computer-Assisted Proving

Didactical Issues at the Interface
of Mathematics and Computer Science

Viviane Durand-Guerrier, Antoine Meyer and Simon Modeste

1 Introduction

The work supporting this chapter takes place in the context of the ongoing research
project DEMaIn (Didactics and Epistemology of interactions between Mathematics
and Informatics), funded by the French ANR (National Agency for Research). This
project addresses the epistemology and the didactics of the relations between mathe-
matics and computer science. Its aim is to gain a better understanding of the relations
between these two disciplines by studying the foundations, objects, methods, types
of questions and modes of thinking which they may share, or which may be specific
to one of them. It also proposes to consider the questions that each field asks the
other, and the uses that they may find for each other (as a tool or as an object of
study).

The DEMaIn project has two main axes. The first deals with the scientific founda-
tions of mathematics and computer science, in particular regarding logic, algorithms,
language and proof. Indeed, thinking of the relationships between mathematics and
computer science from an educational perspective leads to taking into consideration,
among other questions, issues regarding proofs (seen as scientific texts) and proving
(the activity of producing such texts) in both domains, and to identifying the role of
logic as a possible lens through which to examine and hopefully better understand
their interactions.

This chapter is structured as follows. In Section 2, we provide some additional
context and motivation. In Section 3, we highlight a few key aspects of the logical

V. Durand-Guerrier (B) · S. Modeste
IMAG, Univ Montpellier, CNRS, Montpellier, France
e-mail: viviane.durand-guerrier@umontpellier.fr

S. Modeste
e-mail: simon.modeste@umontpellier.fr

A. Meyer
LIGM (UMR 8049), UPEM, CNRS, ESIEE, ENPC, Université Paris-Est,
Marne-la-Vallée, France
e-mail: antoine.meyer@u-pem.fr

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_6&domain=pdf
mailto:viviane.durand-guerrier@umontpellier.fr
mailto:simon.modeste@umontpellier.fr
mailto:antoine.meyer@u-pem.fr
https://doi.org/10.1007/978-3-030-28483-1_6

116 V. Durand-Guerrier et al.

issues in mathematics and computer sciences. In Section 4, we analyze several ways
in which algorithms andmathematical proof might interact in an educational context.

2 Motivation and Context

2.1 The Necessity of Epistemological Insights
for Didactical Work

According to Howson andKahane (1986), the relationship betweenmathematics and
computer science—especially the influence of computer science in mathematics and
the role of mathematics in computer science—is an epistemological and didactical
issue that transcends school systems and national contexts. The use of computer tools
in the teaching of mathematics and informatics, raises questions about the nature of
these tools. This can be connected to the particular role played by mathematics in
computer science, the proximity of some aspects of both disciplines and the common
nature of some of their questions. For example, in a didactical perspective, is it
reasonable to use a chart plotter without questioning the accuracy of calculations or
that of the display on the screen? Can we use dynamic geometry software without
asking how exactly an intersection or a symmetry are built? Can we simulate random
experiments without questioning how a machine can produce, or at least imitate,
randomness? Can we implement a numerical or formal calculation without asking
how a computer can interpret it or, on the contrary, why it rejects it? Can we design
a long program without asking how we can make sure it does not contain errors?

The relationships betweenMathematics and Computer science are deep and com-
plex. According to Chabert (1999), they share objects, foundations and a part of their
history. Indeed, computer science finds much of its theoretical and practical under-
pinnings in mathematics and has partly built itself as a branch of applied mathemat-
ics and logic before emancipating. In this respect, logic plays an important role in
the interaction between mathematics and computer science. According to Sinaceur
(1991b), logic (in line with Tarski’s development) can be considered as an “effective
epistemology” providing means for analysing mathematical practices and hence for
understanding mathematical activity (op. cit. pp. 341–342). She also stressed that
logic became, through computer science, an applied science, which echoes Aristo-
tle’s view of logic as an Organon. In Sect. 2, we will present the main logical issues
in mathematics and computer science that we identify as relevant for our work.

Several authors consider that computer science raises new questions in math-
ematics, opens up new areas of research and enriches some traditional fields of
mathematics (Colton, 2007; Kahane, 2002). Main aspects concern the modes of val-
idation in mathematics through proofs such as those of the four-color theorem or
Kepler’s conjecture (e.g., Borwein, 2012), the value of the results by questioning the
place of constructive proofs and algorithms (e.g., Basu, 2006), and their methods,
in particular concerning the experimental dimension of mathematics (e.g., Perrin,

Didactical Issues at the Interface of Mathematics … 117

2007, 2012, 2012). New fields of mathematics such as discrete mathematics and the-
oretical computer science are developing at the interface between mathematics and
computer science. This questions mathematicians and didacticians about how these
fields should be passed on to teaching (see, Grenier and Payan, 1998; Hart, 1998;
Lovasz, 2007; Ouvrier-Buffet, 2014).

Following Modeste (2016) who studied the introduction of algorithmic in high
school in France, we formulate the hypothesis that an introduction of numerical
tools or computer science elements in curricula without significant consideration of
the epistemology of computer science, mathematics and their links, neither allows
nor participates in an in-depth renewal of mathematics education, nor answers the
problems of mathematics and computer science mentioned above. The increasing
introduction of computer science elements in the teaching of mathematics in the
curricula of various countries and in mathematics themselves, supports the impor-
tance and urgency of an epistemological and didactic study of interactions between
mathematics and computer science.

2.2 Institutional Context in France

We present here some specifics of the teaching of computer science, algorithms and
programming in French public schools. This section summarizes elements developed
in Gueudet et al. (2017).

In the 1980s, in line with an international dynamic (Howson and Kahane, 1986),
an optional teaching of computer science centered on algorithms and programming
was introduced in upper secondary school in France. However there was at the time
no social consensus in the country on the purpose and importance of this teaching
(Baron and Bruillard, 2011), and computer science disappeared as a school discipline
in the 1990s. It was replaced in curricula by a somewhat informal initiation to what is
nowadays often referred to as digital literacy, namely the set of abilities allowing one
to use computers and technology as tools for various purposes. These contents were
referred to in France as transversal to underline the fact that they were not perceived
as forming a standalone topic, but their teaching was rather spread amongts several
disciplines (and assumed usually by non-specialised teachers).

In the 2000s, the CREM1 (Kahane, 2002) advocated for the introduction of ele-
ments of computer science in mathematics school curricula and teachers’ education,
and defended the importance of interactions between mathematics and computer
science, relying on the following arguments:

1Commission de Réflexion sur l’Enseignement des Mathématiques, National Commission for
Reflection on the Teaching of Mathematics.

118 V. Durand-Guerrier et al.

• Algorithmic thinking, implicit in the teaching of mathematics, could be developed
and enlightened with the instruments of Algorithmic;

• Programming promotes formalized reasoning;
• Questions about effectiveness of algorithms involve mathematics;
• Data processing and digital computations are common in other disciplines;
• Computer Science transforms Mathematics, bringing new points of view on
objects, bringing new questions, creating new fields in mathematics that are
expanding rapidly, and changing the mathematician’s activity with new tools.

Just after this report was published, algorithmic content was introduced in mathe-
matics in grades 11 and 12, in literature series, and in optional mathematics courses
in the last year of the economy and sciences series.

Later, between 2009 and 2012 in new official programs, algorithms were intro-
duced as part of the mandatory mathematical content to be taught in all series of the
general curriculum (literature, economy, sciences) from grades 10–12. Finally, in the
2010s, computer science reappeared as an autonomous discipline in upper secondary
school, together with algorithms as part of the contents in mathematics. Since 2016,
computer science is also taught in cycle 4 (grades 7–9), but divided between two
disciplines (mathematics and technology).

This renewal of the teaching of computer science in French curricula in mathe-
matics raises the need for reworking and developing research in didactics of mathe-
matics and informatics and of their interactions, which was the motivation for project
DEMaIn. As a first step of the research, we led an epistemological study on these
interactions in a didactic perspective, with a main focus on proof and proving. This
is developed in Sect. 3.

3 Logical Issues in Mathematics and Computer Science

Following Durand-Guerrier and Arsac (2005), we consider that the classical first-
order logic, namely the predicate calculus in the semantic perspective opened by
Frege, Wittgenstein or Tarski, is a relevant epistemological reference for analysing
proof and proving in mathematics education. Following authors such as Gribomont
et al. (2000), we hypothesise that it is also the case for computer science. In this
section,2 we give a brief overview of this topic.

It should be noted that, even thoughmore specialized logics and techniques exist in
the research literature on programming language semantics and program verification,
we do not focus here on the theories underlying automated or computer-assisted
proof systems, even though they might be of interest as teaching tools. Since we are
concerned here with the practice of proof in secondary or undergraduate education,
we hypothesize that classical first-order logic is relevant for most of our goals.

2This was presented in an unpublished regular lecture given at ICME 11 (http://www.icme11.org/).

http://www.icme11.org/

Didactical Issues at the Interface of Mathematics … 119

3.1 Semantic Perspectives in Logico-Mathematical
Disciplines

In this text, semantics is considered in a logical perspective consistent with the
definitions given by Morris (1938): semantics concerns “the relation of signs to the
objects which they may or do denote” (op. cit. p. 21); syntax concerns the “relations
of signs to one another in abstraction from the relations of signs to objects and
interpreters” (op. cit. p. 13), and pragmatics refers to “the relation of signs to their
users” (op. cit. p. 29). Morris claims that “Syntactics, Semantics and Pragmatics are
components of the single science of semiotic but mutually irreducible components”
(op. cit. p. 54). We illustrate the relevance of this approach below.

For example,when considering the addition of natural numbers, the semantic point
of view refers to the definition of the sum as the cardinal of the union of two relevant
discrete collections; the result is independent of the nature of the involved objects
(provided that mixing these objects preserves their integrity). The syntactic point of
view arises when addition is defined as the iteration of the successor operation; it
does not require any reference to quantities; this provides algorithmic rules in a given
system of numeration. Finally the pragmatic aspect concerns the articulation between
syntax and semantics that is built by subjects in a back-and-forth between calculation
(syntax) and effective counting (semantics). According to Da Costa (1997, p. 42),
it is necessary to take in account all three of these aspects in order to gain a proper
understanding of logico-mathematical fields.

Regarding computer science, one may consider that syntax is at the very core
of the discipline, but there is evidence that semantic and pragmatic aspects are also
involved [see for instance Gribomont et al. (2000)].

The semantic perspective in logic appears in Aristotle, and was developed in the
late nineteenth and early twentieth centuries, mainly by Frege (1882), Wittgenstein
(1921), Tarski (1933, 1943) and Quine (1950). In particular, Tarski (1933, 1943)
provides a semantic definition of truth which he describes as formally correct and
materially adequate, through the crucial notion of satisfaction of an open sentence
by an object, and developed a model-theoretic point of view, of which semantics is
at the very core.

3.1.1 The Semantic Conception of Truth

The main concern of Tarski is to give a definition of truth materially adequate and
formally correct (Tarski, 1943). He claims his only intent in this work is to grasp the
intuitions formulated by the so-called “classical” theory of truth, i.e. the conception
that “truly” has the same meaning as “in agreement with reality” (contrary to a
conception that “true” means “useful in such or such regard” (Tarski, 1933).

In order to be formally correct, such a definition ought to be recursive, but recur-
sivity is usually difficult to grasp directly. Tarski’s idea was to introduce the notion
of satisfaction of a propositional function (in modern terms, a predicate) of a given

120 V. Durand-Guerrier et al.

formal language in a “domain of reality” (a piece of discourse, a mathematical theory
etc.). In the field of algebra, this definition coincides exactly with that of solution of
an equation. Tarski argues that this definition of satisfaction is the key for a recursive
definition of the truth of a complex sentence.

First, there is an extension of logical connectors between propositions, as defined
by Wittgenstein, to connectors between propositional functions (predicates). For
example, given an interpretation, and P and Q two monadic predicates (with exactly
one free variable), and a an element of the discourse universe, a satisfies P(x) ⇒
Q(x) if and only if a satisfies P(x) and Q(x), or a does not satisfy P(x).

Second, the two quantifiers “for all” and “there exists at least one” are defined
in agreement with common sense. Then, once the logical structure of a sentence is
identified (atomic formulae, scope of connectors and quantifiers), it is possible to
establish the truth of the whole sentence as soon as one knows the truth-value of the
interpretation of each atomic formula.

3.1.2 A Model-Theoretic Point of View

The model-theoretic point of view emerged in Tarski (1954, 1955), but the main
ideas were already present in previous papers. It relies on a simple and very fruitful
idea. At first, Tarski (1936, 1983) considers the notion of model of a formula. Given
a formalized language L , a syntax providing recursively well-formed statements
(formulae): F , G, H ..., an interpretative structure (a domain of reality, a piece of
discourse, a mathematical theory, a computation model) is a model of a formula F
of L if and only if the interpretation of F in this structure is a true statement.

Some formulae are true for every interpretation of their letters in every non-empty
domain. They are said to be universally valid (Quine, 1950). This is a generalisa-
tion of the notion of tautology in propositional calculus. A classical example is the
logical equivalence ∀x (P(x) ⇒ Q(x)) ⇔ ∀x (¬Q(x) ⇒ ¬P(x)) which describes
the equivalence between a universal implication and its contrapositive and gives a
logical basis to proofs by contraposition.

From the concept of model of a formula, Tarski defines the key concept of logical
consequence in a semantic perspective: “The sentence X follows logically from the
sentences of the class K if and only if every model of the class K is a also a model
of the sentence X” (Tarski, 1983, p. 417). As was the case for propositional logic in
Wittgenstein (1921), logical consequences support classical modes of reasoning. For
example Q(y) is a logical consequence of P(y) ∧ ∀x(P(x) ⇒ Q(x)). It corresponds
to the extension of the propositional inference rule named modus ponens to predicate
calculus.

3.1.3 The Methodology of Deductive Sciences

In his famous book Introduction to logic (Tarski, 1941; 1995), Tarski introduced in
chapter VIII the methodology of deductive sciences. To a given miniature deductive

Didactical Issues at the Interface of Mathematics … 121

theory (he gave the example of the congruence of line segments), in which there are
primitive terms, defined terms, axioms and theorems, one may associate an axiom
system, with no reference to objects, which takes the form of a language and a set of
formulae that can be reinterpreted in the given miniature theory. He then defines a
model of the axiom system as any interpretation inwhich the formulae corresponding
to the axioms of the given theory are interpreted as true. Of course the initial theory
is a model of the obtained axiomatic formal system, but there may also be other
models.

This leads to an important result and a powerfulmethod for proving. Tarski proves,
alongwith other logicians, the deduction theorem (in themeaning of Tarski), namely:

Every theorem of a given deductive theory is satisfied by any model of the axiom system of
this theory; and moreover, to every theorem there corresponds a general statement which can
be formulated and proved within the framework of logic and which establishes the fact that
the theorem in question is satisfied by any such model. We have here a general law from the
domain of methodology of deductive sciences, which, when formulated in a slightly more
precise way, is known as the law of deduction (or the deduction theorem). (Tarski, 1995, p.
127)

As a consequence, “All theorems proved on the basis of a given axiom system remain
valid for any interpretation of the system” (op. cit. p. 128).

This observation leads to the idea of proof by interpretation: one way to prove that
a given statement is not a logical consequence of the axioms of a certain theory is to
provide a model of the theory that is not a model of the formula associated with the
statement in question. This can be seen as analogous to the use of a counterexample
to the possibility of a proof or to the validity of a proof of a true statement.

Following Sinaceur (1991a), we consider that the model-theoretic point of view
offers powerful tools enabling us to take into account both form and content and to
distinguish between truth and validity, both crucial issues of the teaching and learning
of mathematics. In a didactic perspective, Durand-Guerrier (2008) has shown that
this point of view offers fruitful paths to enrich a priori analyses and to analyse
students’ activity in mathematics. We will now attempt to provide evidence that this
is also the case in computer science education.

3.1.4 Example: Tiling by Dominos

This example is based on our experience with research situations for the classroom
(Gravier, 2008; Godot and Grenier, 2004). The problem is the following: given a
rectangular grid (with integral dimensions), is it possible to tile it with dominoes
(1 × 2 rectangles)?

Theorem 1 A rectangular grid can be tiled by dominoes iff its area is even.

A frequent (incorrect) proof of the above theorem given by students is the follow-
ing. A grid can be tiled by dominos if and only if its area is 2k where k is the number
of dominos, which means that the area of the grid is even.

122 V. Durand-Guerrier et al.

The stated theorem is correct but the proof is not. It is sometimes difficult to
invalidate an incorrect proof of a true statement. In order to do so, one can notice
that the fact that the grid is rectangular was not used in the proof. So, this proof can
be used for any shape consisting of an even number of squares. It is easy to see that
the shape can not be tiled by dominos but has an even area.

In other words, the set of grids of arbitrary shapes is a model of the theory used
in the proof above. But in this model, the theorem becomes false. Hence, the initial
proof is invalid (because otherwise it could be transported into the new model).

3.2 Logic and Proof in Computer Science

In Hopcroft et al. (2007, p. 5), the authors give the following remark:

In the USA of the 1990s [sic] it became popular to teach proof as a matter of personal
feelings about the statement. While it is good to feel the truth of a statement you need to use,
important techniques of proof are no longer mastered in high school. Yet proof is something
that every computer scientist needs to understand.

In this section, we focus on the privileged role that logic and proof play in com-
puter science, in particular to reason about programs and algorithms. We start by
giving a few ideas on the interplay between syntax and semantics in the context of
programming, then on the issues underlying the translation of an ideal algorithm
into the rigid syntax of a programming language. We present a few classical types of
proofs required in the study of algorithms, provide an example of such a proof using
an ad-hoc deduction system, and close this section by a very brief presentation of
the links between logic and well-known computation models called finite automata.

3.2.1 Syntax and Semantics of Programming

The distinction between syntax and semantics is somewhatmore obvious in computer
science (in particular in programming) than inmathematics, due to theway computers
interpret programs. Indeed, for an algorithm to be executable by a machine, one
first has to express it as a text amenable to automated treatment, from the lowest
possible description level (elementary machine instructions) to the highest (modern
programming languages). In this context, “syntax” refers to the rules of composition
of a valid text in the chosen language, and “semantics” to the expected effect on the
actual machine (or a model thereof) of each construct in that language and of their
combinations.

Important pieces of software called compilers and interpreters, which rely on
theoretical advances from the last decades of the 20th century, enable automatic
translations of higher-level programs into machine-level lists of instructions (see for
instance, Aho et al. 1986). These tools proceed in several phases, the first of which
(lexical and syntactic analysis) aim at ensuring that the text of a program respects

Didactical Issues at the Interface of Mathematics … 123

the formal syntax of the chosen language. Further steps are mostly of a semantic
nature: checking for type errors, modifying parts of the program, translating it into
another, possibly lower-level language while preserving its meaning, or even running
(interpreting) the program directly.

Contrary to low-level program descriptions such as assembly languages, modern
languages are designed to be executable on several (possibly any) computer architec-
tures. This “abstraction” from material constraints is an essential aspect of modern
programming, in that it allows one to work at a level closer to general algorithmic
ideas rather than being distracted by technical issues. Enforcing the semantic consis-
tency of programs through each of these transformations regardless of the final target
architecture is thus an essential responsibility of programming language designers
and compiler implementers.

The study of programming language semantics is a wide and very active field of
research, with numerous links to deep mathematical theories. It is essential for the
design and understanding of whole paradigms of programming.

3.2.2 From Algorithms to Programs

Describing an algorithm as a machine-executable program is somehow similar to
translating an informal mathematical statement in some formal (for instance logical
or axiomatic) language, which can then be interpreted in the appropriate mathemat-
ical model. Indeed, algorithms are often described informally, using either natural
language, mathematical notations, pseudo-programs expressed in some semi-formal
language inspired by actual programming languages, or a mix of all three.

When one wishes to actually produce an executable program realizing the tasks
described by such an informal algorithm (its implementation), one therefore has to
remove any possible ambiguity, and ensure that this translation process faithfully
renders the ideas and principles which allow the algorithm to solve the problem
at hand. In some sense, like a mathematician’s, a programmer’s activity therefore
has to do with pragmatics: it proceeds as a constant back-and-forth between syntax
and semantics, with the additional parameter of technical constraints. This pragmatic
work is very similar to theworkof producing the formal proof of amathematical result
using a proof assistant. In some sense, formalizing an algorithm into a program is an
activity of the same nature as producing a formal proof from a standardmathematical
proof.

However, as is the case in mathematics, ensuring that some formal statement
is syntactically correct is not enough to guarantee that it is “true”, or in this case
that it actually performs the task it was meant to perform. Therefore, in order to
ascertain the actual correctness of a program (or even of the algorithm it is supposed
to implement), one usually has to resort to external arguments which are of a logical
or mathematical nature.

124 V. Durand-Guerrier et al.

3.2.3 Reasoning About Programs or Algorithms

One of the most obvious questions one may ask about an algorithm or a piece of
program is “Does it work?”. Trying to state this question more precisely leads to a
formal definition of computation problems, which one may summarize as: “math-
ematical relations between a set of instances and a set of results (or answers, or
solutions)”. One further distinguishes decision problems, where possible answers
are simply truth values. In this case, a problem might equivalently be described as its
set of positive instances, instances which are mapped to the value true. Such prob-
lems play an important role in the more theoretical aspects of computer science, in
particular in formal languages, automata and computation theories [see for instance
Hopcroft (2007)].

Correctness Let P denote an algorithmic problem. Seeing P as a map between
instances and outcomes, let us write P(x) the outcome associated with some admis-
sible instance x . To say that an algorithm or program A solves problem P means that
given any admissible instance x of P , A is able to provide (indeed compute), after a
finite sequence of elementary operations, a description of P(x). In view of this, the
question of knowing whether some algorithm A “works” (i.e. “proving” A) comes
down to establishing the following two properties, whose conjunction might be seen
as expressing the (full) correctness of A:

Termination: on any instance of P , A performs at most a finite number of
computation steps.

Partial correctness: on any instance x of P , the value computed by A is P(x).

Complexity The above questions are sometimes complemented by questions regard-
ing A’s efficiency, in terms of the number of computation steps it performs on
instances of a certain size (assuming some appropriate notion of size on instances).
One typical property of interest is:

Worst-case upper bound: Function f is a worst-case upper bound for the
complexity of A if there exists a positive constant c such that, on any instance
of size n of P , the number of computation steps performed by A is at most
c · f (n) for n large enough.

Didactical Issues at the Interface of Mathematics … 125

Similar questions can be asked of the amount of memory required by an algorithm
(space complexity). Such concerns form the well-established fields of complexity
theory and algorithm analysis, which strongly rely on tools and techniques from
algebra and combinatorics. In the above statement, one is concerned with worst-case
guarantees on the number of performed computation steps. Other natural questions
concern the behaviour of A on typical cases, bringing into play the question of
probabilistic distributions on instances, and possibly involving powerful techniques
from probability theory and analysis (see for instance Arora and Barak, Arora and
Barak (2009) for an introduction to the field, or Sedgewick and Flajolet (2013) for
more in-depth material on average-case analysis).

Lower bounds and optimal algorithms Finally, interesting questions lie beyond
the analysis of a single algorithm solving a problem P , and study the intrinsic com-
plexity of P itself. For instance, in the so-called comparison tree model, in which all
executions of an algorithm are decided through a series of elementary, binary com-
parisons between numbers, it can be shown that the well-known problem of sorting a
list of numbers cannot be solved using less than n log n comparisons, up to a constant
factor [for more details, see (Cormen et al. 2009)].

This impossibility result comes at the price of a rather involved argument, with
several “layers” of quantification: one has to consider the longest computation, on
any instance of some size n, of the (hypothetical) most efficient algorithm solving P .
This supports the claim that proficiency with logic and reasoning are a prerequisite
for a reasonably complete understanding of algorithmic concepts.

Modeste (2012, 2013) showed that this theoretical viewof algorithms,which leads
to adopting a definition of problem as a set of instances and a question about any of
the instances, can be used as a relevant didactic tool, in particular to help develop
an epistemological model for didactical purposes, to analyse curricula and to design
didactical situations (see Sect. 4). Meyer and Modeste (2018) give a example of the
didactical analysis of an algorithmic question (about the binary search algorithm and
the bisection method).

3.2.4 An Example: Partial Correctness Using a Deduction System

In Gribomont et al. (2000), several key examples of particularly fruitful uses of logic
in a computer science setting are given. The first such example is that of Hoare logic
(Hoare, 1969), which may be used to show the partial correctness of a sequential
program.

The main bulding block of Hoare logic takes the form of triples {P} C {Q}, called
Hoare triples, where P and Q are assertions (usually written in classical predicate
logic) and C is a program statement. Such a triple expresses the fact that, whenever
P holds in some state of the machine (or model thereof) over which statement C
is executed, it must be the case that Q holds in the state which is reached after
C is performed. Hoare triples are manipulated using deduction rules, which are
very reminiscent of classical proof systems. One of the simplest rules describes the
semantics of sequential composition:

126 V. Durand-Guerrier et al.

{P} C {Q} {Q} D {R}
{P} C; D {R}

This rule expresses the fact that if {P}C{Q} and {Q}D{R} are both valid Hoare
triples, then by performing statements C and D from a state verifying assertion P ,
one may guarantee that assertion R holds. Combining several rules of this kind and
additional mathematical knowledge about manipulated values (for instance arith-
metic) allows one to formally prove that, if and when a program terminates, some
assertion holds at the end of its execution. See Gribomont et al. (2000) for a more
detailed description and example, or Reynolds (1998) for a textbook covering this
topic among others.

The issue of termination is of a different nature and cannot be established using
this technique. It has to be proven separately, often relying on some kind of infinite-
descent argument. Other examples of how logico-mathematical formalisms may be
used in order to reason about other kinds of programs are given in Gribomont et al.
(2000). One may cite in particular the cases of functional programs (where recursion
and more particularly structural induction play a central role), concurrent or parallel
programs, etc.

A word on structural induction To conclude this section, let us remark that the
correctness of the final assertions obtained by applying the above technique actu-
ally relies on a structural induction argument: indeed, the syntactic structure of a
program’s text can be described by its so-called abstract syntax tree, whose nodes
are program constructs and whose leaves are essentially identifiers and values. Suc-
cessively applying deduction rules such as the one described above for sequential
composition actually comes down to inductively labelling each node of this tree,
from the leaves to the root, with sets of assertions. Finally, assertions carried by the
root of the tree represent true facts about the whole program.

Other (simpler) examples of the usefulness of structural induction are provided in
Gribomont et al. (2000), in the context of correctness proofs for functional programs
written in the language Lisp or Scheme.

3.2.5 Modelling Program Behaviour Through Logic and Automata

Another bridge between logic and computer science illustrated by Gribomont et al.
(2000) concerns the study of a class of computation models called automata, which
stem from a long line of research originating in the 1960s and have known many
interesting developments. These results are collectively referred to as automata the-
ory (see for instance Hopcroft et al. (2007) for a classical textbook, Straubing and
Weil (2012) or Thomas (1997) for a more logic-oriented exposition).

Finite-state automata A finite-state automaton is characterized by a finite directed
edge-labelled graph, whose vertices and edges are respectively called states and
transitions. Some states are marked as initial, others as terminal or accepting. The
labels of edges are called letters, theybelong to afinite set calledalphabet.A sequence

Didactical Issues at the Interface of Mathematics … 127

of letters, or word, is said to be accepted by an automaton if its letters label the
successive transitions along a path from some initial state to some final state (or in
the case of infinite words, to some kind of accepting “repetition”). Each automaton
therefore accepts a language, which is the set of all words it accepts.

Finite automata have very good and well-understood algorithmic properties. For
instance, one can write algorithms to decide whether a given automaton accepts
the empty language or the set of all possible words, build an automaton whose
language is the union or intersection of the languages of two other automata or the
complement of the language of a given automaton. A particularly strong connection
between automata and logic, discovered in the 1960s and much developed since, is
that the languages of some classes of automata coincide with the languages defined
by some classes of logics (see, Thomas, 1997). Furthermore, in several cases there
exist algorithms able to transform a logical formula into an equivalent automaton
and vice-versa.

Modelling and verifying programs A typical application of automata theory has
to do with automated program verification or model-checking. In this framework, a
program ismodeled as a (potentially very large) finite-state automaton, say A, in such
a way that each execution of the real program corresponds to a (possibly infinite)
path in A, but A may exhibit additional behaviours. A property ϕ to be verified on the
program might then be expressed in a well chosen logical framework. This formula
is then negated, and translated into another finite automaton A¬ϕ .

Determining whether the abstract program satisfies the property stated by formula
ϕ then amounts to checking whether the languages of automata A and A¬ϕ are
disjoint, which can be done algorithmically. By construction of A, an erroneous
answer may occur only in the case where some behaviour of A which violates ϕ

is detected, but this behaviour does not exist in the original program (this is called
a false positive). Otherwise, if no such execution is found, it is guaranteed that all
executions of the actual program respect the property ϕ.

This verification procedure has shown great success despite the fact that it deals
with finite-state computation models. Extending it to more realistic models while
conserving good algorithmic properties is one of the challenges undertaken by the
research field of program verification [see for instance Bérard (2001)].

3.3 First Conclusion

Adopting a semantic point of view, and being situated at a meta-mathematical level,
a model-theoretic point of view provides on the one hand a frame to analyse a
priori the situations under both mathematical and didactical aspects, and on the other
hand to analyse students’ activity, in particular by providing the researcher with a
methodology to identify and study the elaboration, the evolution and the eventual
overtaking of the local axiomatic all along the resolution and/or the proving process.

128 V. Durand-Guerrier et al.

It seems clear that Tarski’s meta-mathematical project goes beyond mathematics
and echoes key questions in computer science education, such as the relationship
between deductive systems and models, including the issue of limits of validity of
these models, the relationships between proofs and programs, the notion of proof of
an algorithm.

It should also be noted that the pervasive use of logic and other mathematical
tools in computer science has provided and will most likely continue to provide new
ideas, questions and perspectives to the fields of logic and mathematics themselves.

4 Modes of Interaction Between Mathematics and

Computer Science

The content of this section mainly originates from Modeste (2012). In a didactical
perpective and on the basis of an epistemological analysis, it proposes to distinguish
threemainmodes of interaction betweenmathematical proof and algorithms, and two
kinds of problems in which algorithms appear. This allows one to better understand
and analyse the interactions between both fields, and givemeaning to several possible
relationships with the concept of algorihm, that is, conceptions of algorithm.

This work draws upon the model of conceptions as developed by Vergnaud and
enriched by Balacheff. The cK c model (conception, knowing, concept) was devel-
oped by Balacheff (2013) to build a bridge between mathematics education and
research in educational technology. It proposes a model of learners’ conceptions
inspired by the theory of didactical situations (Brousseau, 1997) and the theory of
conceptual fields (Vergnaud, 2009).

In this model, conceptions are defined as quadruples (P, R, L ,Σ) in which P
is a set of problems, R a set of operators, L a representation system and Σ a con-
trol structure. P and L directly correspond with situations and representations in
Vergnaud’s model, R and Σ distinguish between operational invariants, those which
allow one to act on problems and those which allow one to control the actions. For
this reason, the cK c model is very relevant for emphasizing the dimension of proof.

4.1 Proof Paradigms

We first distinguish three frameworks in which our conceptions will be described,
which we call paradigms. They are the algorithmic proof (AP), the mathematical
algorithm (MA) and the computer algorithm (CA). These paradigms essentially
correspond to three possible habitats3 of the notion of algorithm in mathematical
and algorithmic activity.

3The term habitat was coined by Artaud (1998) in the context of the so-called ecological approach
to didactics.

Didactical Issues at the Interface of Mathematics … 129

• The AP paradigm corresponds to an activity of the form Problem–Theorem–
Proof, where the proof is of a finite, constructive nature and can thus be seen as
algorithmic in nature. Induction proofs in particular fall into this category.
In this paradigm, algorithms and proofs are not dissociable: algorithms are not
written directly but are implicit in the theorem’s proof. They may be made explicit
outside or after the proof, as a corollary or consequence thereof, in a fashion similar
to the second paradigm (MA).

• The MA paradigm corresponds to an activity of the form Problem–Algorithm–
Proof. For a given problem, one describes an algorithm solving all admissible
instances, then provides a proof that this algorithm is indeed (totally) correct,
in other words a termination proof (the algorithm provides an answer in a finite
amount of steps on any instance) together with a partial correctness proof (when-
ever an answer is provided on an instance, it is the correct one). In this paradigm,
algorithm and proof are clearly dissociated.

• The CA paradigm corresponds to an activity of the form Problem–Program–
Validation. The algorithm solving the problem is expressed as a program which is
expected to be executed on a machine.
The term “validation” should be understood here in its ordinary meaning. It may
or may not be of a mathematical nature, and may include all relevant tools and
practices such as syntactic analysis and type-checking performed by the compiler,
manual, semi-automatic, or automatic testing procedures, verification techniques
(for instance model-cheking tools as described in Sect. 3.2.5), etc. Note that math-
ematical validation of the program or the underlying algorithm via proof (as in
paradigm MA) may also provide a form of validation in CA.

A single problem can be addressed in different paradigms. Its study may even
draw on several of them simultaneously or successively.What distinguishes the three
paradigms is therefore not the kind of problems which are addressed but rather the
way inwhich they are treated, the kind of solution obtained, and the kind of validation
which is provided. They also differ in the concrete form in which algorithms are
expressed. This encourages us in our choice to make use of the model of conceptions
in order to formalize these differences in terms of operators, representation systems
and control structures.

Representation systems for algorithms are an important criterion for distinguish-
ing the three paradigms, but are not the only one. We must however acknowledge
their impact on the way algorithms are expressed.

It remains to ask which kind of problems are the most appropriate for giving
meaning to the concept of algorithm in the classroom.

4.2 The Tool–Object Dialectic

We propose to adapt here a definition which comes from the theory of algorithmic
complexity (see Sect. 3.2.3). According to this definition, a problem (e.g. finding the
gcd) is given by a pair (I, Q), with:

130 V. Durand-Guerrier et al.

• I a set of instances (e.g. N2, the set of all pairs of natural numbers) ;
• Q a question about these instances (e.g. what is the gcd of the 2 provided num-
bers?).

This definition of problems allows to formalize what an algorithm is. An algorithm
is a systematic method which must give an answer for all instances of the problem,
after a finite number of steps (e.g. Euclid’s algorithm solves the problem of gcd for
any pair of natural numbers).

Additionally, we say a problem is instantiated when one chooses a particular
instance i and tries to answer the question Q(i) for this particular case (e.g. what is
the gcd of 3654 and 76?). To grasp the concept of algorithm in its full generality, it
is important not to address only instantiated questions but to study a problem in all
of its instances.

It is also important to distinguish twokinds of problems giving sense to the concept
of algorithm:

• The set Pa of problems that may be solved using an algorithm (e.g. the problem
of finding the gcd);

• The set PA of problems that concern algorithms (which includes the problem of
determining if a given problem is in Pa , the problem of determining the complexity
of an algorithm, etc.).

In the first case, the algorithm is seen as a tool, and in a teaching context it is
important that at least some of the chosen exercises and problems are general, and
not instantiated (in some high school textbooks, several exercises in the same chapter
turn out to be instantiated versions of the same problem). In the second case, the
algorithm is seen as an object, and a problem can be instantiated (on a specific
algorithm for instance).

We argue that the tool–object dialectic (Douady, 1986) can be useful to think
about the interaction between mathematics and computer science, in particular to
deal with proof issues.

Computer Science can be seen as a tool for mathematics (simulating experiences,
or testing small cases) or an object (probabilities for analysing the complexity of an
algorithm). Conversely, mathematics can be seen as an object or a tool for computer
science, according to whether one is studying the mathematical or computer science
aspects of a situation (as presented above).

4.3 Six Conceptions to Analyse Algorithmic Activity

We now revisit the three paradigms defined above in the light of the tool–object
dialectic. We saw how the distinction between problems inPa , where the algorithm
is a tool, andPA, where it is the object of study, on one hand, and between instantiated
and non-instantiated problems on the other hand, provide insights on the tool–object
dialectic.

Didactical Issues at the Interface of Mathematics … 131

Table 1 Conceptions in paradigm AP

(a) The AP-tool conception

P: Problems in Pa

R: Operators are those of proof restricted to “constructive” modes of reasoning
(recurrence, induction, infinite descent, existence of lower or upper bounds of finite
sets...), excluding in particular proofs by contradiction or using the law of excluded
middle

L: The representation system is that of mathematical language. The involved objects are
mathematical object. In this conception, one manipulates information. At all times,
all information provided by the instance, and all deduced information is usable. The
only variables which are used are mathematical variables

Σ : The control structure is that of mathematical logic, together with known properties of
occurring objects

(b) The AP-object conception

P: Problems in PA

R: Operators are those of mathematical proof and operations on theoretical computation
models (algorithmic reductions, simulations, etc.)

L: The representation system is that of mathematical language together with theoretical
computation models (automata, Turing machines, recursive functions, decision
trees...)

Σ : The control structure is that of mathematical logic, together with properties of
occurring objects

We therefore further refine the three paradigms presented above, by distinguishing
in each case a tool-conception and an object-conception. This yields a total of six
conceptions which we will not describe in detail.

Tables1, 2 and 3 describe the different components (P: problems, R: operators,
L: representation structures and Σ : control structures) of each of these conceptions.
Each emphasized term in the description of a conception is explained below.

• The AP-tool conception (Table1a) concerns inherent, implicit algorithms in the
description of certain constructive mathematical proofs, whose object is not an
algorithm or algorithmic fact itself. One may relate this to the notion of construc-
tive mathematical proof.
In the table, by mathematical language we mean the language commonly used
in mathematical writings. By mathematical variables we refer to the different
kinds of variables used in mathematics. By mathematical logic, we mean the set
of implicit reasoning rules used in mathematical activity (in contrast with formal
logic).
Example: A proof of the characterization of Eulerian graphs (graphs which pos-
sess a cycle traversing each edge exactly once) as graphs whose vertices all have
even degree, written in usual mathematical terms, where each step is constructive
and the structure of reasoning attests to this constructiveness, might fall into this
conception.

132 V. Durand-Guerrier et al.

Table 2 Conceptions in paradigm MA

The MA-tool conception

P: Problems in Pa

R: Operators are explicit algorithmic constructs (conditions, iterations, recursion) and
effective, constructive operations on numbers, sets or other combinatorial or
mathematical objects

L: The representation system might be some type of pseudo programming language,
mixing mathematical language and vocabulary inspired by programming practices.
Manipulated objects are mathematical objects, sometimes belonging to the culture of
computer science (for instance abstract data types), each admitting a known set of
effective operations. Variables can be mathematical variables or computer variables

Σ : The control structure is that of algorithm proof (correctness and termination) using
all appropriate concepts and formalisms (logical proof systems, inductive proofs,
infinite descent, invariants...).

The MA-object conception

P: Problems in PA

R: Operators are those of mathematical proof: algorithm proof, properties of algorithms,
invariants, computational complexity...

L: The representation system is that of mathematical language

Σ : The control structure is that of mathematical logic, reasoning rules and properties of
occurring objects

Table 3 Conceptions in paradigm CA

The CA-tool conception

P: Problems in Pa

R: Operators are those provided by a given programming language, possibly including
instructions, conditional structures, loops, functions, and various predefined
operations on data

L: The representation system is a programming language. Manipulated objects are data
values which encode (or model) objects from the original problem using data
structures which allow certain operations

Σ : The control structures are provided by various computer programming tools and
practices, either manual or automatic, formal or informal

The CA-object conception

P: Problems in PA

R: Operators are those of formal program verification

L: The representation system is that of mathematical language, together with the
vocabulary and notations of appropriate analysis techniques and tools, possibly
including ad-hoc proof systems or formal logic frameworks

Σ : The control structure is provided by various relevant theories, including programming
language theory, language semantics, computation models, and formal logic

Didactical Issues at the Interface of Mathematics … 133

• The AP-object conception (Table1b) deals with mathematical proofs about algo-
rithmic objects or facts. Here, an algorithm or algorithmic problem may be pro-
vided as part of the question.
Examples: A proof on the intrinsic complexity of some algorithmic problemmight
fall in this category: for instance proofs of the fact that any comparison-based sort-
ing algorithm must perform at least O(n log n) comparisons in the worst case, or
that the knapsack problem is NP-complete.

• The MA-tool conception (Table2a) has to do with proofs explicitly providing an
algorithm solving the mathematical problem (whose object is not itself explicitly
algorithmic), and possibly providing some justification that the proposed algorithm
is correct.
In the table, the notion of abstract data type refers to the description of a specific
data domain (for instance finite lists and maps, stacks or queues, graphs) through
a set of allowed operations, without any a priori knowledge on implementation
details. These operations are assumed to be constructive, or effective (in the sense
that they can be performed algorithmically). Describing such algorithmic data
types is an important part of the field of algorithm design.
We call computer variables, for lack of a better term, entities that play the role of a
temporary assignment between a name and a value, which is subject to change over
time (for instance across multiple iterations of a loop). When a new assignment to
a certain name is performed, the value previously assigned to it, if any, is lost. This
is a simplified model of the memory of an actual computer during the execution
of a program, designed to hide irrelevant technological details.
Examples: A proof of the existence of the greatest common divisor of two integers,
presented first bywriting down Euclid’s algorithm, then by proving its correctness,
falls in this category. Other examples might include the description of list-sorting
or list-searching algorithms.

• The MA-object conception (Table2b) is similar to the AP-object conception in
that it concerns problems about algorithms and their proofs. One possible differ-
ence in this case is that actual algorithms are manipulated explicitly, instead of
potential or hypothetic algorithms.
In this conception the description of the algorithm itself is considered part of the
problem at hand; algorithmic description operators and representation systems are
therefore not included in the table.
Example: The analysis of the computational complexity (in terms of time or space)
of a particular algorithmmight fall into this category. The study of other properties
may appear as well, for instance the stability of a given sorting algorithm.

• The CA-tool conception (Table3a) refers to the activity of directly providing a
computer program expected to solve a given problem, either numerically or sym-
bolically, perhaps even in an approximate manner.
Particular care might be taken in the validation and control of the proposed solu-
tion, which is considered good programming practice. The least required effort
usually consists only in clear code documentation and sufficient testing, but other
compelling arguments may be provided by other tools and procedures, such as
syntactic analysis, type checking, certifiable code annotation, program verifica-
tion, automated testing, etc.

134 V. Durand-Guerrier et al.

Example: Computing the gcd of two integers using an implementation of Euclid’s
algorithm written in C or some other programming language falls into this con-
ception.

• The CA-object conception (Table3b) concerns questions asked about the prop-
erties of a given, explicit computer program.
Examples: Writing manual or computer-assisted proofs about the termination or
safety of programs relates to this conception.
Another interesting and rather extreme example is the development of automated
code analysis, interpretation or transformation tools themselves, for instance com-
pilers, interpreters, profilers or debuggers for a given programming language, or
automatic or semi-automatic verification software. In this case, the adopted repre-
sentation systemmust be able to handle code reification: namely, the representation
and manipulation of programs themselves.

4.4 Relationships Between Conceptions

4.4.1 The Tool–Object Continuum

Let usfirst review the relationship between the tool-conception andobject-conception
of the same paradigm.Wewish to make it clear that the boundary between these con-
ceptions is not as clear-cut as our taxonomy might seem to indicate. Indeed, there
is no wide gap between the two conceptions associated with a given paradigm, but
rather a continuity according to the tool–object dialectic, or rather a transition from
tool to object. This transition is accompanied by a move from specific, instantiated
problems towards generic ones. However, there may in practice exist several inter-
mediate problems which occur as one progressively extends and widens the set of
instances of the problem at hand. One should also note that the control structure
of the tool-conception plays a particular role in this transition from tool to object:
the more it is present in a given activity, the closer one gets to the corresponding
object-conception. The question of determining whether a given problem admits an
algorithmic solution also plays a central role in this articulation.

Moreover, it should be remarked that when we mention the existence of this shift
from tool to object, we do not mean to imply that algorithmic activity is necessarily
linear or one-way. In fact, there are clearly numerous alternations, just like in mathe-
matics, between tool and object. But it appears to us that this shift is globally directed
from tool to object, in the sense that the use of any tool may naturally bring questions
that make it a potential object of study. One can also see this as a movement which,
in terms of the conceptions model, tends to change the status of control structures
into operators in the context of new problems.

Didactical Issues at the Interface of Mathematics … 135

4.4.2 A Continuum Between Mathematics and Computer Science

Similarly, we have to point out that the distinction between paradigms AP, MA and
CA is not absolute, but rather witnesses a fine gradation of conceptions and con-
cerns between mathematics and computer science. This arbitrary split into three
paradigms seems to offer a reasonable granularity for use as an analysis tool, to
allow a sufficiently accurate representation of the various conceptions found in sci-
entific literature and to support reflections about the production of this knowledge.
Therefore, in addition to the tool–object continuity, there exists another continuity
along the AP–CA axis, and it might be the case that certain activities found either in
literature or in teaching may fall between two of our conceptions.

Still, let us remark that one may find some kind of “chronological” hierarchy
(which one should absolutely not see in terms of value) between AP, MA and CA.
For a given problem in Pa , scientific study rather follows a chronological shift
from AP to CA, via MA. One may decribe this as a transition from constructivity
concerns (AP) to effectivity concerns (MA) and finally to implementation concerns
(CA), accompanied by an increasing level of detail in the specification of algorithms.

This process obviously has exceptions, for instance in the case where no exact
proof of a certain phenomenon exists but empirical observation throughprogramming
may still offer insights as to its validity. One should also be aware that many (indeed
most) questions about algorithms and programs are of course undecidable in general.
It is therefore useless to expect a single computer program to check exactly, given the
text of any other program, whether its executions always terminate. Nevertheless, in
some cases automated tools may be able to provide exact information about elemen-
tary properties of programs, or approximate answers to more difficult questions.

The continuity along the AP–CA axis is also accompanied by an increasingly
clear separation of the aspects related to proof, syntax and semantics. Indeed, in the
AP paradigm, all three concerns are intermixed. In MA, the solution is given as a
“construction” or algorithm. It carries in some sense both syntax and semantics and is
separated from its validation. Finally inCA, a strong accent is put on syntax (indeed, a
computer executing a program only performs purely symbolic manipulations), while
concerns of semantics and proof are left to the designer of the program (possibly with
the help of computer-assisted tools). This interplay between validation, meaning and
representation of algorithms, which varies between paradigms, is, for us, a central
point to understand the role and place of proof in mathematics and computer science.
We make the hypothesis that it has a strong potential for studying didactical issues
about proof in mathematics, computer science and their interactions.

5 Perspectives

In this chapter, we have tried to provide evidence of the necessity and the relevance of
studying the interactions between mathematics and computer science, with a partic-
ular focus on proof and taking into account the interplay between syntax, semantics

136 V. Durand-Guerrier et al.

and pragmatics. This opens up new avenues of research by helping identify issues in
logic, mathematics and computer science that may be overlooked or remain implicit
in the classroom. An example we are currently exploring is the representation and
manipulation of polynomials. This topic illustrates several of the issues we discussed
in this chapter:

• representation issues—polynomials represented as lists of coefficients or as arbi-
trary expressions via their syntax trees;

• algorithmic issues—computations in both representations (naive evaluation or
using Horner’s scheme, arithmetic operations on polynomials, formal derivation
or integration, canonical forms, equivalence...);

• complexity analysis—comparison between representations;
• interplay between syntax and semantics—work on the structure of algebraic
expressions;

• possible context for the introduction of inductive constructions and reasoning;
• classical classroommathematical content—operator priorities and other algebraic
rules, decomposition of algebraic formulae into calculation programs.

Due to the role of polynomials in calculus and analysis, we consider that developing
didactical situations aiming to deal with these aspects will improve the knowledge
of polynomials as objects, and as a consequence will foster students’ skills in recog-
nizing and using them as tools in relevant contexts.

Acknowledgements Research funded by the french Agence Nationale pour la Recherche, project
number <ANR-16-CE38-0006-01>.

References

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, techniques. Addison Wesley.
Arora, S., & Barak, B. (2009). Computational complexity: A modern approach. Cambridge Uni-
versity Press.

Artaud, M. (1998). Introduction à l’approche écologique du didactique - L’écologie des organisa-
tions mathématiques et didactiques. Actes de la IXème école d’été de didactique des mathéma-
tiques (pp. 101–139). Caen: ARDM & IUFM.

Arzarello, F., Bussi,M.G. B., Leung, A.Y. L.,Mariotti,M.A.,&Stevenson, I. (2012). Experimental
approaches to theoretical thinking: Artefacts and proofs. In Proof and proving in mathematics
education (pp. 97–143). Springer.

Balacheff,N. (2013).cKc , amodel to reasonon learners’ conceptions. InPME-NA 2013-psychology
of mathematics education (pp. 2–15). North American Chapter.

Baron, G. L., & Bruillard, É. (2011). L’informatique et son enseignement dans l’enseignement
scolaire général français: enjeux de pouvoir et de savoirs. In: Recherches et expertises pour
l’enseignement scientifique (Vol. 1, pp. 79–90). De Boeck Supérieur.

Basu, S., Pollack, R., & Roy, M. F. (2006). Algorithms in real algebraic geometry (2nd ed.). In
Algorithms and computation in mathematics (Vol. 10). Berlin, New York: Springer.

Bérard,B. (2001).Systems and software verification: Model checking techniques and tools. Springer.
Borwein, J. M. (2012). Exploratory experimentation: Digitally-assisted discovery and proof. In

Proof and proving in mathematics education (pp. 69–96). Springer.

Didactical Issues at the Interface of Mathematics … 137

Brousseau, G. (1997).Theory of didactical situations in mathematics. KluwerAcademic Publishers.
Chabert, J. L. (1999). A history of algorithms from the pebble to the microchip. Springer.
Colton, S. (2007). Computational discovery in pure mathematics. In Computational discovery of

scientific knowledge (pp. 175–201). Springer.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd
ed.). The MIT Press.

Da Costa, N. C. A. (1997). Logiques classiques et non classiques: essai sur les fondements de la
logique. Paris: Masson.

Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en didactique des mathé-
matiques, 7(2), 5–31.

Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM, 40(3), 373–384.
Durand-Guerrier, V., & Arsac, G. (2005). An epistemological and didactic study of a specific
calculus reasoning rule. Educational Studies in Mathematics, 60(2), 149–172.

Frege, G. (1882). Über die wissenschaftliche Berechtigung einer Begriffsschrift. Zeitschrift für
Philosophie und philosophische Kritik, 81, 48–56. (English translation in Conceptual notation
and related articles. Clarendon Press (1972)).

Godot, K., & Grenier, D. (2004). Research situations for teaching: A modelization proposal and
examples. In Proceedings of ICME 10, IMFUFA, Roskilde University.

Gravier, S., Payan, C., & Colliard, M. N. (2008). Maths à modeler: Pavages par des dominos. Grand
N, 82, 53–68.

Grenier, D., & Payan, C. (1998). Spécificité de la preuve et de la modélisation en mathématiques
discrètes. Recherches en didactique des mathématiques, 18(2), 59–100.

Gribomont, P., Ribbens, D., & Wolper, P. (2000). Logique, automates, informatique. In F. Beets &
E. Gillet (Eds.), Logique en perspective: Mélanges offerts à Paul Gochet, Ousia (pp. 545–577).

Gueudet, G., Bueno-Ravel, L., Modeste, S., & Trouche, L. (2017). Curriculum in France. A national
frame in transition. In International perspectives on mathematics curriculum, research issues in
mathematics education series. IAP.

Hart, E. W. (1998). Algorithmic problem solving in discrete mathematics. In L. J. Morrow & M.
J. Kenney (Eds.), The teaching and learning of algorithm in school mathematics, 1998 NCTM
Yearbook (pp. 251–267). Reston, VA: National Council of Teachers of Mathematics.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of the
ACM, 12(10), 576–580.

Hopcroft, J., Motwani, R., & Ullman, J. (2007). Introduction to automata theory, languages, and
computation (3rd ed.). Addison-Wesley.

Howson, A. G., & Kahane, J. P. (Eds.). (1986). The influence of computers and informatics on
mathematics and its teaching, international commission on mathematical instruction edn. ICMI
Study Series. Cambridge University Press.

Kahane, J. P. (2002). Enseignement des sciences mathématiques : Commission de réflexion sur
l’enseignement des mathématiques : Rapport au ministre de l’éducation nationale (cndp ed.).
Paris: Odile Jacob.

Lovász L (2007) Trends in mathematics: How they could change education? In Conférence
européenne “The future of mathematics education in Europe”, Lisbonne.

Meyer, A., & Modeste, S. (2018). Recherche binaire et méthode de dichotomie, comparaison et
enjeux didactiques à l’interface mathématiques - informatique. In Proceedings of EMF, Paris,
France (to appear).

Modeste, S. (2012). Enseigner l’algorithme pour quoi ? Quelles nouvelles questions pour les mathé-
matiques ?Quels apports pour l’apprentissage de la preuve ? Ph.D. thesis, Université deGrenoble.

Modeste, S. (2013). Modelling algorithmic thinking: The fundamental notion of problem. In Pro-
ceedings of CERME 8, Antalya (Turkey).

Modeste, S. (2016). Impact of informatics on mathematics and its teaching. In F. Gadducci & M.
Tavosanis (Eds.), History and philosophy of computing (pp. 243–255). Cham: Springer Interna-
tional Publishing.

138 V. Durand-Guerrier et al.

Morris, C. W. (1938). Foundations of the theory of signs. In International encyclopedia of unified
science (pp. 1–59), Chicago University Press.

Ouvrier-Buffet, C. (2014). Discrete mathematics teaching and learning. In Encyclopedia of mathe-
matics education (pp. 181–186).

Perrin, D. (2007). L’expérimentation en mathématiques. Petit x, 73, 6–34.
Quine, W. V. (1950). Methods of logic. Harvard University Press.
Reynolds, J. C. (1998). Theories of programming languages. Cambridge University Press.
Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms. Pearson Edu-
cation.

Sinaceur, H. (1991a). Corps Et Modèles: Essai Sur l’Histoire de l’Algèbre Réelle. Vrin.
Sinaceur, H. (1991b). Logique: mathématique ordinaire ou épistémologie effective? In: Hommage
à Jean-Toussaint Desanti, Trans-Europ-Repress.

Straubing, H., &Weil, P. (2012). An introduction to finite automata and their connection to logic. In
P. S. Deepak D’Souza (Ed.), Modern applications of automata theory (pp. 3–43). IISc Research
Monographs: World Scientific.

Tarski,A. (1933). The concept of truth in the languages of the deductive sciences. PraceTowarzystwa
Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-Fizycznych 34(13), 172–198
(English translation in Tarski (1983)).

Tarski, A. (1936). On the concept of logical consequence. Przegla̧d Filozoficzny, 39, 58–68 (English
translation in Tarski (1983), pp. 409–420)

Tarski, A. (1941). Introduction to logic and to the methodology of the deductive sciences. Oxford
University Press (reedited in Tarski (1995))

Tarski, A. (1943). The semantic conception of truth and the foundations of semantics. Philosophy
and Phenomenological Research, 4(3), 341–376.

Tarski, A. (1954). Contributions to the theory of models, I–II. Indagationes Mathematicae, 16,
572–588.

Tarski, A. (1955). Contributions to the theory ofmodels, III. Indagationes Mathematicae, 17, 56–64.
Tarski, A. (1983). Logic, semantics, metamathematics: Papers from 1923 to 1938. Hackett (J. H.
Woodger, trans. Introduction: J. Corcoran).

Tarski, A. (1995). Introduction to logic and to the methodology of deductive sciences. New York:
Dover Publications, INC. (unabridged Dover republication of the edition published by Oxford
University Press, New York, 1946)

Thomas, W. (1997). Languages, automata, and logic. In Handbook of formal languages (pp. 389–
455). Springer.

Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83–94.
Wittgenstein, L. (1921). Logisch-philosophische abhandlung. Annalen der Naturphilosophie, 14
(English translations in C. K. Ogden trans. Routledge & Kegan Paul (1922) and D. F. Pears and
B. F. McGuinnes, trans. Routledge (1961)).

Issues and Challenges in Instrumental
Proof

Philippe R. Richard, Fabienne Venant and Michel Gagnon

1 Introduction

Optics appears to be a mathematical art based on instrumental proof.

Sven Dupré (2006)

The notion of instrumental proof is relatively new; but if the term is as yet of little
use in didactic literature, its association with technologies, old and new, seems self-
evident.

On the epistemological side, the discovery of Archimedes’ palimpsest recently
gave us a better understanding of how the weighing method was considered a kind
of mechanical proof, and this suggests that the association between proof and arti-
facts/tools is rather old. Similarly, in computer proofs such as the proof of the four-
colour theorem—first shown in 1976 by Kenneth Appel and Wolfgang Haken, then
formally addressed in 2005 using Coq software by Georges Gonthier and Benjamin
Werner—the decision or the verification of all cases rely on programs, and thus reflect
an unavoidable reality of contemporary mathematical work. Whether the tools are
physical or logical, their use in a validation certainly renews the common ideas we
have about the concepts of proof, modelling and representation of knowledge.

On the didactic side, it seems there is a constant struggle with paradoxes. Nowa-
days, when a student is asked to prove propositions, she has an automated reasoning

P. R. Richard (B)
Université de Montréal, Montréal, Canada
e-mail: philippe.r.richard@umontreal.ca

F. Venant
Université du Québec à Montréal, Montréal, Canada
e-mail: venant.fabienne@uqam.ca

M. Gagnon
École Polytechnique de Montréal, Montréal, Canada
e-mail: michel.gagnon@polymtl.ca

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_7

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_7&domain=pdf
mailto:philippe.r.richard@umontreal.ca
mailto:venant.fabienne@uqam.ca
mailto:michel.gagnon@polymtl.ca
https://doi.org/10.1007/978-3-030-28483-1_7

140 P. R. Richard et al.

informatics device at her disposal; but at the same time she is required to work with
meaningful knowledge of her own, and to transform this knowledge by working
more and more at the interface of computer tools that deal with some part of the rep-
resentation and of the treatment, sometimes experimenting on mathematical objects
(e.g. dynamic figures) as a physicist does with objects of his own domain. And all of
this happens while the teacher cannot refer to mathematics that could be described as
“technological”, since hewas educated in a deductive science traditionally developed
in writing.

It is then by developing ideas already expounded in our previous work, including
the recent paper The Concept of Proof in the Light of Mathematical Work (Richard,
Oller, & Meavilla, 2016), and adopting the conclusions of our current research
projects on the design of the tutorial system QED-Tutrix in high school geometry
(Font, Richard, & Gagnon, 2018; Richard, Gagnon, & Fortuny, 2018), and the use
of automated reasoning tools in teacher training (Kovács, Richard, Recio, & Vélez,
2017), that we address the question of instrumental proofs, keeping in mind that the
interaction between subject and milieu1 is a unit of epistemic necessity. With this
consideration, the subject can be either a reader, considering traditional proofs, or the
user of software or of a mathematical machine. The notions of reasoning in action or
through algorithms, and of reasoning that unfolds by othermeans than discourse, will
be addressed, aswill theTheory ofMathematicalWorkingSpaces,where the question
of the coordination of discursive, semiotic and instrumental geneses arises between
epistemological and cognitive planes (Kuzniak, Richard, & Michael-Chrysanthou,
2018).

2 Towards an Instrumental Proof

This assumed inference carries with it its own demonstration.

Alexis Claude Clairaut (1741)

2.1 Reasoning, Proof and Demonstration

The notions of proof and reasoning have always been closely linked; but if we can
hardly imagine proving a proposition without some use of reasoning, there is no
causal link or anteriority of one to the other. The classical definitions of these notions
speak rather of operations in a generic sense, which allow the logical sequence of
ideas or propositions (for the reasoning), or by which the accuracy of a result is
controlled (for the proof). One could believe that the discourse constitutes the essen-
tial unifying foundation of these operations. Duval (1995) considers that inference

1From Brousseau’s theory of didactical situations in mathematics (1998).

Issues and Challenges in Instrumental Proof 141

is a particular form of discursive expansion, like calculations for processing, and
that reasoning is a form of discursive expansion like demonstration, when certain
particular conditions of discursive organization are met. But beyond any mechanism
of discursive expansion, it must be remembered that proofs or reasoning can also be
expressed in action or with tools, and that they may invoke any of several registers
of semiotic representation (natural language, symbolic languages, graphs, geometri-
cal figures, etc.). Moreover, this deployment raises questions about the mobilization
of registers, their articulation and their coordination. But whether we prove or we
reason, we must remember that in addition to natural language and its means of
expression there is a whole range of instruments for performing these operations.

Wemust remember thatmathematical proof has its particular conditions of discur-
sive organization. If the demonstration is essentially a text (Barbin, Duval, Giorgiutti,
Houdebine, & Laborde, 2001), it allows the introduction of several registers of semi-
otic representation. In node theory, as an example, Sullivan (2000) shows reasoning
steps in which justification relies on figures or graphs. Despite the formal style of
the text, the deductive nature of the lemma-theorem-corollary organization and the
high epistemic level of the journal, the author adds several graphs to his demonstra-
tions—even going so far as to say, in the demonstration of a lemma (p. 309): “The
proof of the next lemma is given in Figure 22”, and to formulate all his reasoning
visually in the style of a comic strip. So it is not just a diagrammatic reasoning
about the understanding of concepts and ideas, visualized with the use of imagery
instead of by linguistic or symbolic means; it is authentic proof, based on a well-
constituted semiotic representation register, and it fulfils the functions of a proof (de
Villiers, 1993), as understood in mathematics. This type of demonstrative initiative is
in line with ProofWithoutWords (Alsina&Nelsen, 2006) which succeeds in proving
mathematical properties by all sorts of semiotic means, scrupulously avoiding the
use of natural language. But in these proofs there is always some sort of treatment
and control between what we know and what derives from that. Our conclusion is
that in mathematical activity, the inferential capacity of the means for expressing
the reasoning leads us to a mode of validation, even when conveyed by a tool or a
machine.

When, at the beginning of the section, we quote Clairaut, it was in order to go in
the same direction. That is, if “this assumed inference carries with it its own demon-
stration”,2 it was not the type of rationality that supported the shift from “presumed”
to “established”, but the inferential nature of operations that consists in acknowl-
edging a result by virtue of its connection with other results already acknowledged.
It is therefore not the type of rationality that carries itself from inductive to deduc-
tive reasoning, nor the same registers that are at stake. We can even add that in its
inductive argument, Clairaut tries to make dynamic a figure by reasoning, playing on
the fact that the text will be read and that the model reader will be able to visualize

2This translation was provided in 1881 by J. Kaines from the edition of the Éléments de géométrie
published in Paris in 1830. In the original in French (“cette induction présumée porte avec elle sa
demonstration”), Clairaut (1741) attempts to convince the reader of the relevance of a conjecture
through inductive reasoning, before embarking on a deductive demonstration.

142 P. R. Richard et al.

the animation while, in his demonstration, a classical figure like those in Euclid’s
Elements is proposed. In current terms, we can easily express this idea of inferential
connection with the following functional notation:

f (antecedents) = consequent,

where the “antecedents” are the previously acknowledged results and the “conse-
quent” the newly acknowledged result, according to the connection of epistemic
necessity f . We thus approach didactic definitions of reasoning, such as the one
given by Balacheff (1987), where the reasoning designates “the intellectual activity,
mostly non-explicit, of manipulating information to, from data, produce new infor-
mation” (p. 148), while specifying that the type of “inferential” connection is also “of
epistemic necessity”. If the quality of being necessary is shared, at a given moment,
within a community, it is indeed a proof, extending the meaning given by Balacheff
(1987) where “signification is the requirement to determine a validation system com-
mon to the interlocutors” (p. 148). Thus, by seeking his reader’s conviction, Clairaut
wants him to first join the community of those for whom his conjecture is necessary
(inductive proof), to the point of showing him why it is mathematically necessary
(deductive proof).

From an instrumental-proof perspective, we will examine the nature of f and
the issues and the challenges that it poses; this is the main purpose of our paper.
But before understanding more specifically what we mean by “instrument”, we must
clarify what is mathematical work.

2.2 Mathematical Work and Mathematical Thought:
A Temporal Invariance?

If writing is so important for the expression of reasoning, it is because mathemat-
ical models began with the first written documents. We can even suppose that it is
at that time that mathematical science begins. If our distant ancestors had a form
of mathematical thought, which we can describe as protomathematics, they had to
interact in one way or another with the objects they could represent, beyond the
act of visualization itself or the implicit treatment then imposed. It is known that,
long before writing, Homo sapiens and their Neanderthal cousins could express a
symbolic thought with geometric shapes that seem to be evidence of premeditated
creations (Hoffmann et al., 2018). But in the absence of direct testimony, we do not
know whether they reasoned with or about these forms, or whether these forms had
any instrumental function. Conversely, the oldest potentially mathematical artefacts,
such as Ishango’s bone, seem to tell us more. Although the problem of prehistoric
archaeological (strictly speaking), ethnographic and didactic sources calls for avoid-
ing any over-interpretation (Keller, 2004), we can have in mind that if these artefacts
had any mathematical function, it was the production of new information, like a

Issues and Challenges in Instrumental Proof 143

calculation or some reasoning. In other words, even before the invention of writing,
a form of mathematical thought had to exist to preside over the interaction between
reality and what would become models, the expression of this interaction implying
both signs and tools. In short, mathematics has been an instrumented activity since
its beginnings.

Even today, and to limit ourselves here to the world of education, it is not easy
to distinguish whether it is mathematics (as a science) or mathematical thought
(that does not necessarily proceed by writing) that is at stake (in a given situa-
tion/task/activity). In Canada, for example, a non-profit organization devoted to pro-
moting chess in schools proudly displays its benefits:

When learning the movement of the knight, the bishop and the rest of the pieces, did you
know that you were doing geometry? Yes, I assure you.3

If one considers mathematics a science, this assertion seems absurd: chess shares
neither rationality nor means of expression with geometry. Of course, one can do
mathematics when modelling some part of a game in graph theory, possibly with the
help of a computer to support the discovery of a winning strategy. Such activity does
not reflect the specifics of the game itself—but if the sentence above is replaced by:
“when learning the movement of the knight, the bishop and the rest of the pieces,
did you know that you were developing your geometrical thought?” one seems more
inclined to answer “yes”, just as one needs a sense of numbers to do arithmetic or a
sense of structure to do algebra.

We can push the question a little further: does the pupil do mathematics when
programming with Scratch?4 We can easily propose in the classroom tasks defined
in mathematics (or projects, as in designer jargon like Boutin, 2017), knowing that
the means of expression of the graphic signs manipulated to accomplish the task
(to realize a project) remain rather close to mathematical writing. At the same time,
the combination of these elements is instrumented by the gesture at the interface of
the computing device, which somewhat distances us from the writing. The choice
and ordering of the elements evoke the development of some deductive reasoning
or proof—such as a construction protocol in geometry too. But we can change the
order of elements (or some parameters) dynamically in noting the effect of its algo-
rithm on the interface, even when it is not completely executed. In this situation,
the student develops his mathematical thinking with Scratch in terms of expression,
reasoning and proof (when checking and executing an algorithm), and is thus “doing
mathematics” as an instrumented activity, similarly to what was done at the time of
Ishango’s bone, 20,000 years ago.

3This is the association Échecs et Maths, a pun in French that also means “checkmate” (retrieved
April 17, 2018 from https://echecs.org/les-bienfaits-des-echecs).
4Coding and algorithmic learning platform using a visual and dynamic programming language in
which programs are designed by assembling graphic elements (accessible April 17, 2018 at https://
scratch.mit.edu/).

https://echecs.org/les-bienfaits-des-echecs
https://scratch.mit.edu/

144 P. R. Richard et al.

2.3 The Mathematical Working Space

In thismathematical science and activity, both sides of the same coin,which is studied
and practised, we consider that mathematical work is the visible part of mathematical
thought. For over ten years, the concept of mathematical work in mathematics didac-
tics has been the object of collaborative research among various researchers, mainly
from French and Spanish speaking countries (Kuzniak, Tanguay, & Elia, 2016). The
Mathematical Working Space theory (MWS) aims to provide a tool for the specific
study of mathematical work engaged during mathematical sessions. Mathematical
work is progressively constructed, as a process of bridging the epistemological and
the cognitive aspects in accordance with three yet intertwined genetic developments,
identified in the theory as the semiotic, instrumental and discursive geneses (Kuz-
niak & Richard, 2014). MWS appears as a theoretical and methodological model
that allows one to report on mathematical activity, potential or real, during problem
solving or mathematical tasks. In particular it allows the description of dominant
interactions, whether finalized or not, depending on the nature or issue of significant
moments (e.g. didactic interactions during the devolution of a task, adidactic interac-
tions while solving a proof problem, etc.). In the next section, we interpret the types
of proofs in the light of the MWS.

The MWS model is presented in a basic form as a skeleton to which different
frameworks or theories ‘add flesh’, depending on the questions, problems or diffi-
culties involved in a research study. Thus, in Fig. 1, the vertical planes are related
to different phases of the mathematical work, as discovery, reasoning and commu-

Cognitive plane

Epistemological plane

Semiotic genesis

Instrumental genesis

Discursive genesis

Visualization

Construction

Proof

Representamen

Artefacts

Referential

Fig. 1 The components of the MWS from Kuzniak and Richard (2014) in which the concept of
proof is traditionally related to the epistemological plane by the discursive genesis

Issues and Challenges in Instrumental Proof 145

nication in a broad sense of mathematical competencies. The effective realization
of these phases can define, for example, some cognitive mathematical competen-
cies based on the coordination of the geneses, in order to think the integration of
the phases of mathematical work. However, in the base form of the diagram, these
planes are presented only with the generic labels sem-ins, ins-dis and sem-dis so that
the coordination of the geneses can be adapted to the task at hand. In Sect. 3, we will
take advantage of the adaptability of the model to describe our instrumental proofs.

The concept of fibration has been suggested to label moves, transitions and spe-
cific activities between the different elements of theMWS (Recio, Richard, &Vivier,
2015; Tanguay, Kuzniak, & Gagatsis, 2015). In Fig. 2, we see the internal fibrations
that can intervene in the process of conceptualization, during both the formation
of a mathematical conception and its implementation. In addition to internal fibra-
tion (between planes, between poles, between registers of representation, etc.), the
model considers external fibrations in the same logic between some MWSs from
various mathematical domains such as: during intra-mathematical modelling activ-
ity between analysis and statistics (Derouet, 2016), extra-mathematical modelling
with Physics (Moutet, 2016) or transversal modelling with algorithms (Laval, 2018).
The MWS model can then be articulated in a wide range of situations involving a
mathematical task, at one time or another.

Fig. 2 Internal fibrations in anMWS from Lagrange, Recio, Richard, and Vivier (2017) that shows
the roles of the tool (operational means), of representation and control that have been retainedwithin
the model

146 P. R. Richard et al.

2.4 Instrumented Reasoning, Instrumental Proof

So far, we have used the notion of instrument to designate either a tool or a system of
signs (diagram, figure or other registers of semiotic representation) used by someone
in order to get something done. With such a broad definition, we could consider the
many figural inferences we can find in Alsina and Nelsen (2006) as some kind of
instrumented inferences. Thus, to prove the equality of areas a + b + c = d in the
partition of the following parallelogram (Richard, 2003):

a b

cd

X

Y

the following sequence of figures is used as justification:

It is then a question of a structure inference: f (a + b + c, ▱, d) = (a + b + c
= d), where f is the inference that emerges from the sequence of figures and ▱,
the signifying figural propositions from the top figure. Can we really say that this
is instrumentation? In terms of the MWS model, the visualization of the properties
represented by f is typical of semiotic genesis. One can also grant a role of semiotic
tool to the sequence of figures (fibration), because the material support and the
sequence itself, as a means of action animated by the reader, are not specific to the
figural register, and allow him not only to view amovement but also to compare areas
going back and forth from one figure to another. If, instead of a sequence of figures,
the situation was set at the interface of a dynamic geometry software (see Appendix
1), it would be easy to interpret the situation as one of instrumentation in the user-
milieu interaction (IT milieu). However, we will see in Sect. 3.1 that the activity
of reading a figure and its interactive manipulation generate different connections
of epistemic necessity. In our example, we consider that linking the rationale to the
antecedents and to the consequent involves the discursive genesis: one can recognize
here a step of discursive-graphical reasoning (in the sense of Richard, 2004a, 2004b),
highlighting the coordination of these two geneses (sem-dis plane).

In the French didactic tradition, the notion of instruments is inspired by the work
of Rabardel (1995). In his cognitive approach to contemporary instruments, it is
no longer “the artefact that is explicitly or implicitly considered as the instrument”
(p. 4), but a new entity that is both a subject and an artifact. According to Trouche
(2005): “The word ‘instrument’ will designate a mixed entity consisting of ‘the
technical object and its modes of use’ constructed by a user” (p. 93). Thus, since the

Issues and Challenges in Instrumental Proof 147

instruments are not immediately given to the user, he must develop their use through
his mathematical activity of instrumental genesis. In this perspective, we consider
that a figural inference5 as instrumented during the recognition of figural invariants
(inductive) or instrumented construction (deductive), whether by the intervention
of the ruler and the compass, a software of dynamic geometry or “mathematical
machines” (see especially Bartolini-Bussi & Maschietto, 2005, but also Bryant &
Sangwin, 2008). In his work, Rabardel does not address the question of proof, and
he speaks little of reasoning. He mentions, with regard to Gérard Vergnaud’s theory
of conceptual fields, the inferences (reasonings) which allow the treatment and the
anticipation from the schemas of a subject, while specifying that “there is always
a lot of implicitness in a schema, and therefore difficulties in making it explicit for
subjects.” (Rabardel, 1995, p. 88). Rather, this limit encourages us to exploit the
subject’s interaction with a milieu to speak about reasoning.

Besides, the very idea of instrumental proof is not at all contemporary. Recently,
Cormack (2017) stresses the importance of so-called practical mathematics in early
modern Europe, in order to show how the mathematization (and modelling) of natu-
ral philosophy became an investigation of the interplay between useful mathematics
and its practitioners, and natural philosophers. For example, the book explains that
cartographer EdwardWright first explainedMercator’s cartographic projection, pro-
viding an elegant Euclidean proof of the geometry involved. It is a typical modelling
approach between, on the one hand, a cartographic representation system (the situ-
ation model, in the meaning of Blum & Leiß, 2007; see also Fig. 3 for details) and
its mathematization in geometry on the other, the proof remaining attached to a dis-
cursive genesis activity within the mathematical model. But a diametrically opposed
approach is also evoked in the collective book, which we readily assimilate to a
cycle of “antimodelling” that starts from the mathematical model to be interpreted
first in the reality of a situation model. We particularly consider as such Archimedes’
mechanical approaches, like the weighing method to discover the area of a parabola

mathe-
matical
model

mathematical
resultsreal

results

real
model

situation
modelreal-

situation

Reality Mathematics

1 2

3

4

5

6

1 understanding
the task

2 simplifiying/
structuring

3 mathematizing
4 working

mathematically
5 interpretation
6 validation
7 presenting

7

Fig. 3 Modelling cycle from Blum and Leiß (2007). According to Borromeo-Ferri’s (2006) cog-
nitive point of view, the situation model is a mental representation of reality

5SeeRichard (2004a, 2004b) for a definition of a figural inference, andCoutat, Laborde, andRichard
(2016), for the instrumented figural inference.

148 P. R. Richard et al.

segment or the volume of a ball (Netz & Noel, 2008). In this approach the validity
is assumed by the physical coherence under the constraints of a proper use of the
method, before going back to the mathematical model to infer the areas or the vol-
umes. UnlikeWright’s problem, Archimedes’s task is set in mathematics, so in order
to solve a mathematical problem Archimedes needs his method to be anchored in
physical reality.

Although the subject goes well beyond the purpose of our article, we can briefly
raise the question of the validity of this mechanical proof. If it is at least a heuristic
means of great pedagogical value—in this sense,Archimedes andClairaut participate
in the same movement—it can be restricted to an empirical method which would
need mathematical discourse to give it a high epistemic value, understanding that
Archimedes might have kept hidden in his drawers a more formal proof equivalent.
Moreover, as Keller (2017) says:

For Plutarch, his biographer who lived long after Archimedes, the great mathematician could
not really have found intellectual satisfaction in hismachines; he could only havemeant them
to serve to impress the vulgar (…) who could not appreciate more abstract ideas. Supposedly
forArchimedes and Plato (Plutarchwould have assumed),mathematical theorems and proofs
dealt with ideal situations and one should not think of them as applicable to real life, which
is by necessity so untidy. (p. 116).

Nevertheless,Vitrac (1992) shows that some scientific historians have long consid-
ered that the mechanical method is mathematically admissible. That is, if he does not
deny that Archimedes “never assigns the status of proof to the mechanical method”
(p. 76), it testifies to an Archimedes “axiomatizing mechanics [which] includes at
least a part of it in geometry” (pp. 75–76). From this we deduce that physical coher-
ence is induced not only by matter itself, but also by a scientific method that enables
the interpretation of what is happening. So that if this type of proof appeared as
justification for an inference, to the epistemic necessity connection f , it must be
associated with its instrumental validity, as much in terms of use (of the method, of
the artifact) as of the machine (its constitution, its domain of validity).

From the mental stress fromwhich theory and practice derive, Dupré (2017) gives
the example of the way in which Ettore Ausonio, mathematician and instruments
creator,6 appropriated the reading of Witelo’s optical treaty Perspectiva:

His teaching was based above all on his reading ofWitelo’s Perspectiva, but his lecture notes
reveal highly selective reading practices. These notes listed onlyWitelo’s descriptions of the
instruments to measure reflection and refraction and those propositions in which the Polish
perspectivist claimed the use of these instruments as proof of the proposition. Ausonio left
out all of Witelo’s propositions not established with the instruments, and in the selected
propositions, he discarded the geometrical demonstrations and the geometrical diagrams.
In sum, Ausonio appropriated Witelo’s optics in such a way that optics appeared to be a
mathematical art based on instrumental proof. (p. 140)

6We also write “Ettor Eusobio”. The Thesaurus of the Consortium of European Research Librairies
(CERL) considers him as an instrument maker (from German “instrumentenbauer”, see https://
thesaurus.cerl.org/record/cnp02134922), and in the 1678 edition of Leonardo Fioravanti’s Dello
specchio di scientia universale, it is said of him: “the great philosopher and mathematician, Mr.
Ettor Eusobio da Venetia; inventor of the most beautiful mathematical material ever seen” (p. 94).

https://thesaurus.cerl.org/record/cnp02134922

Issues and Challenges in Instrumental Proof 149

Compared to Archimedes’s method, Ausonio’s approach seems quite radical.
Because not only does he avoid the geometrical demonstrations, he rejects geometri-
cal diagrams. His mathematical activity would be limited mainly to the instrumental
genesis, or if we prefer to reuse the spirit of the “mathematical art based on instrumen-
tal proof” by Dupré, it reflects a competence and a practice of validation requiring
planning and intelligence, as an art. Unlike Archimedes, who deals “with ideal sit-
uations” in mathematics, the initial questioning of Ausonio, and the purpose of his
work, is in op. And unlike Wright, who seeks to validate mathematically, Ausonio
wants to perform a validation that remains in the universe of his instruments (artifact
sense). From these considerations, we draw a first type of instrumental proof inmath-
ematical work, the mechanical proof, which proceeds essentially by coordination of
semiotic and instrumental genesis. In choosing a term relating to mechanics, it is not
so much to highlight the fact that the proof depends on the operation of a machine
or a mechanism, but that the justification is based on some sort of laws of motion
or balance that objects exercise in relation to each other. This definition allows us,
first, to account for certain proofs that already exist in mathematical education, such
as the mathematics of, in and for the reality from Emma Castelnuovo or those that
frequently emerge from pedagogical initiatives (Fig. 4), and it is consistent, second,
with the use of mathematical machines, and especially with dynamic geometry soft-
ware. For the “laws of motion” and the “balance of forces” relate to the operation
of the software and the logic of the construction of the figure, with the particularity
that by acting on the figure or on its elements, the user also acts on the register of
semiotic representation, which is not seen in Archimedes’s approach. From a didac-
tic perspective, our point of view is the idea of the physicist geometer described by
Tanguay and Geeraerts (2014).

Fig. 4 Examples of mechanical proofs of Pythagoras’s theorem in mathematical education. The
first on the left is justified by comparison of weights (Castelnuovo & Barra, 1976) and the sec-
ond, on the right, by the transfer of liquid volumes (YouTube, 2009) (Extract from the original
video entitled Pythagorean theorem water demo (retrieved August 3, 2018 from https://youtu.be/
CAkMUdeB06o))

https://youtu.be/CAkMUdeB06o

150 P. R. Richard et al.

2.5 Algorithmic and Proof

Various algorithms were already known in antiquity, in arithmetic or in, geometry,
including, among the most familiar:

– rules for calculating the length of arcs and the area of surfaces, in Egypt and in
Greece;

– several methods for solving integer equations, following the work of Diophantus
of Alexandria in the 4th century AD;

– the Euclid algorithm (c. 300 BC) that calculates the greatest common divisor of
two natural numbers;

– the calculation schema of the number π due to Archimedes.

If there were to be a tool-object dichotomy at play, like the theory-practice
dichotomy in Sect. 2.4, it would only be purely functional. Because the determi-
nation of geometric measurements or the approximation of irrational numbers like π

refers to the essential nature of real numbers and suggests, as Gray and Tall (1994)
show in a learning context with the notion of procept, that mathematical objects
are formed by encapsulating processes. An algorithm therefore solves not a single
problem but a whole class of problems differing only by the data and the specific
course-of-values, but controlled by the same requirements—that is, it must operate
with certainty regardless of the given problem.

Let’s imagine Archimedes today trying to solve a problem of counterfeit coins
with his weighing method and a Roberval scale. The problem goes like this:

In a set of coins, indistinguishable by sight or touch, there are false coins. Real coins all
have the same weight, and so do counterfeits, but their weight is different from that of real
coins. With the help of a scale and without being able to have a reference weight, how can
Archimedes find the counterfeit coins? Which is the method that would allow him to find
them with as little weighting as possible?

Such is the problem posed by Modeste, Gravier, and Ouvrier-Buffet (2010), but
without Archimedes (!), to pre-service teachers, playing on the constraints of weight
and the number of counterfeit coins. This problem does indeed concern an algo-
rithmic problematic, because it is a matter of elaborating an effective method to
search for counterfeit coins, proving it and studying its optimality, e.g. by means
of successive weighing operations or trees. In this type of open problem, students
need to think about both the definition of the situation and the search for valid solu-
tions, the design factors associated with the problem, the plausible creative processes
in some kind of iterative problematic and an innovative line of reasoning behind
the constraints, factors and the design choices made. This activity can be seen as a
problematic-modelling dynamic between reality and the mathematical world (Fig. 3)
which allows, under certain conditions, to get some results and enrich the understand-
ing of reality (Fig. 5). According to the authors: “this problem andmost of its variants,
are not yet completely solved as far as mathematical research is concerned” (p. 61),
which presupposes from the outset that it will be necessary to be inventive. The
algorithmic approach would first be used for programming a mathematical work by

Issues and Challenges in Instrumental Proof 151

Fig. 5 When we attack a complex real problem, the modelling cycle (Fig. 3) is characterized by
some back and forth processes that we wish to converge (infundibuliform path), at least until we
obtain a stable problematic.At this tipping point, the cycle can continue for results (cycle tightening),
or the real situation can be rethought by considering new constraints (cycle widening). The situation
model is modified and the cycle starts again (vignette)

gradually approaching a reference situation through successive problem solving or
judiciously considered cases.

Traditionally, algorithmic is the study and production of rules and techniques that
are involved in the definition and design of algorithms, which are structured steps
that transform well-defined inputs into desirable outputs. We can then talk about
disconnected algorithmic. However, the algorithms can be encoded in a machine to
reproduce these steps very efficiently, especially when it comes to solving complex
problems that require a large computing capacity. Moreover, to function effectively,
i.e. to ensure that it is executedquickly and that it converges towards desirable outputs,
the algorithmmust be stable andnotmodify itself.Otherwise itwould be autonomous,
even intelligent (in the sense of adapting to a new situation), and we could no longer
predict or optimize how it would work towards the desired results. This algorithmic
determinism may seem the complete opposite of human intelligence, which must
constantly adapt to the unexpected. But it is this capacity for human adaptation

152 P. R. Richard et al.

that makes it possible to govern the solution of a complex problem, in the sense
that it is the human being who breaks down the problem, chooses the constraints,
builds the necessary algorithms, possibly delegates the execution of the algorithm
to a machine, and carries out the necessary verification (validity of the algorithm,
encoding, response, calculability in a reasonable time, etc.). And it is also s/he who,
if necessary, remodels the model situation to enrich the understanding of reality, the
dimension of the initial problem or the validity domain of the resolution process that
s/he has thus systematized. This human attitude to solve a problem in such a dynamic
and which invites to “think about the tasks to be accomplished in the form of a series
of steps” (cf. Venant, 2018, p. 58) is what we call the algorithmic spirit.

To remain in the mathematical sphere, the idea of a line of action or a series of
operations proposed to achieve a result is highlighted by the algorithmic approach
in solving the areas problem developed by Trahan (2016)7:

Let any two polygons have the same area. It is possible to cut the first polygon into a finite
number of pieces and then reform into the second polygon.

This is the classic statement of Wallace-Bolyai-Gerwien’s theorem. Exactly as
in the previous problem, the statement is simple and it is by playing on constraints
that we succeed in demonstrating this result, in verifying certain effects and won-
dering about possible implications or generalizations, whether it be to curvilinear
figures or higher dimensions. Without entering into a particular formalization, we
can show the structure of its approach in four steps (Fig. 6). Although this does not
appear in our paper, the author carefully demonstrates each of his propositions: his
mathematical work is essentially activated through a discursive genesis, with sev-
eral steps of discursive-graphic reasoning when he considers particular examples.
But his reasoning is broader than that. Although it is easy to describe a posteriori
his approach as systematic and to see only a series of traditional demonstrations,
possibly presentable in the lemma-theorem-corollary mode, his program is an inven-
tive mathematical work that shows vividly the search for a validation of the original
problem. Despite this connection between the heuristics of mathematical discov-
ery and validation by this type of proof approach, algorithmic is much more than a
mathematical way of working. Moreover, this algorithmic spirit, already implicitly
present in teaching, could be worked out and brought to light thanks to algorithmic
instruments.

Trahan’s attitude is close to the way that mathematicians treat long proofs. By the
1980s, according to Krieger (2004), a variety of rigorous proofs were provided of
various fundamental facts about our world, many of them lengthy and complex and
involving much calculation (Krieger, 2004):

Actually, many of the preliminary theorems motivate the proof and indicate what is needed
if a proof is to go through. And the lemmas might be seen as lemmas hanging from a tree of
theorems or troops lined up to do particular work. As in many such calculations, the result
almost miraculously appears at the end. (…) The achievement (of lengthy and complex

7The author explained that part of his resolution program is inspired by the website Choux
romanesco, Vache qui rit et intégrales curvilignes accessible from http://eljjdx.canalblog.com/.

http://eljjdx.canalblog.com/

Issues and Challenges in Instrumental Proof 153

Theorem (not surprising)
If you cut a polygon into a nite number of
pieces to reform another, then both
polygons will have the same area.

Theorem (more surprising)
Should any two polygons have the same
area, it is possible to cut the rst into a
 nite number of pieces to then form the
second.

New situations (to pose and solve)
• Generalization: curved surface?
• Generalizations in 3 dimensions
• (…)

Hilbert's 3rd problem: given two polyhedrons of equal volume, can we
cut the rst polyhedron into polyhedra and bring them together to form
the second polyhedron?
- No: Dehn found an invariant (Dehn invariant) that is preserved during a

cut; the cube and the tetrahedron do not have the same invariant.
- Some possible cuttings...

Conclusion
Any polygon can be cut into a nite number of pieces to
then form a square.

Propositions (program)
1. Any polygon can be cut into a nite number of triangles.
2. Any triangle can be cut to form a rectangle.
3. Any rectangle can be cut to form a square.
4. Any pair of squares can be cut to form a square.

Resolution (breakdown by case)
1. Demonstration in two cases: convex polygon and concave polygon.
2. Check the four corners of the rectangle and check the

«joints» (alignment of points).
3. In a rectangle L by : case < L 4 , checking of the angles, of the

«joints» then sides; case L > 4 , check also lengths and sides.
4. Veri cation of angles, "joints" then sides.

Can we do better? Yes, the demonstration makes it
possible to obtain a division between two polygons, but
this is not optimal.

Verification with interesting cuttings
(demonstrated in other research work)
• Square in equilateral triangle.
• Square in nonagon.
• Some cutting of the pentagon.

Deriving proposition
If two polygons of the same surface can be cut into a nite number of
pieces to each form a square, then there is a split of the rst polygon
to form the second.

Solution
Superposition of the two cuttings.

1

2

3

4

Fig. 6 Structure of the process of solving of theArea Puzzle Problem from the Trahan’s algorithmic
approach (2016): setting the situation (part 1), first resolution program (part 2), second resolution
program with effect verification (step 3) and opening towards new problematizations with results
anticipation (step 4). The derived proposition in step 3 is an illustration of a modified situation
model as suggested in the vignette in Fig. 5. For the convenience of the reader, a transcript of the
contents of the boxes is presented in the Appendix 2

proofs) is again the ability to divide up the problem into tractable parts, to orchestrate the
parts so that they work together, and to be able to tell a story of the proof. (p. 1227–1228)

Some of these “facts about our world” begin with questions initially asked in
physics, but the proofs in question do indeed stem from mathematical work. We
consider that this idea of orchestration of parts, which works with the same goal of
proof, is typical of the algorithmic spirit. Of course, a general algorithm makes it
possible to produce a proof and can possibly constitute other algorithms to verify
parts of it, as it is also done with traditional proofs of lemmas.

Besides, in the research of Modeste et al. (2010), the natural link between the
algorithmic approach and the learning of proof is particularly emphasized:

The algorithmic approach uses arguments that are common to mathematics, but also to
a specific way of thinking. It seems essential that the study of the algorithm as an object
allows for a challenge to this way of thinking. A central concern of mathematics is to provide
demonstrations of its results, so it is inevitable, if one looks at the algorithm as an object of
mathematics, to query the algorithm-proof link (p. 55).

154 P. R. Richard et al.

Even if it is not a surprise for the authors, the tone is set: the algorithm is not
only a mathematical way of working, but also an object that must be implemented
in school. At the same time, since the introduction of algorithms as objects, new
questions emerge, such as the efficiency of the algorithm in terms of the number of
operations or thememory necessary for execution, all of whichmay divert thematical
work. Anyway, computer science has changedmathematics, in particular by allowing
objects to be studied from new perspectives, by bringing new questions, by creat-
ing emerging mathematical fields that are now booming, and by transforming the
mathematician’s activity thanks to new tools (ibidem, p. 57). In addition, computer
programming allows some formalization of reasoning to support the student in math-
ematical tasks like derivation, discovery, and proving geometry statements (Kovács
et al., 2017) or in learning mathematical proof (Tessier-Baillargeon, Richard, Leduc,
& Gagnon, 2017).

2.6 Another Instrumental Proof

At an epistemological level, many situations ask for rethinking mathematical work:
toomany cases to study, intrinsic inability to demonstrate bymathematical induction,
research by repeated tests or the conjecture invalidation iterations are not convergent,
etc. The proof of the four-colour theorem, which we cited in our Introduction, is an
example of a mathematical work that we cannot yet achieve without a computer.
In a critical commentary that goes back some forty years, Appel and Haken (1977)
already said:

Our proof of the four-colour theorem suggests that there are limits to what can be achieved in
mathematics by theoretical methods alone. It also implies that in the past the need for com-
putational methods in mathematical proofs has been underestimated. It is of great practical
value to mathematicians to determine the powers and limitations of their methods. We hope
that our work will facilitate progress in this direction and that this expansion of acceptable
proof techniques justifies the immense effort devoted over the past century to proving the
four-colour theorem. (p. 121).

The fundamental problem for the acceptability of this type of proof is that, despite
its great interest, algorithmic thinking does not convey amode of validation in itself.8

On the contrary, the theorem-demonstration problem moves towards a problem of
validation of the algorithm and its execution by themachine. In otherwords, youmust
be sure that the algorithm is achieving theproper result,whatever the pendingproblem
might be. In a very pragmatic way, it often happens that computer experts validate an
algorithm by using verification methods. But in computability and complexity, one
usually tries to prove mathematically the effectiveness of the algorithm, even if it

8Although we know that solving algorithmically a problem of proof and using a program to verify
a set of particular cases is not the same thing, we can state as Clairaut said that an algorithm often
carries with it its own demonstration. This wink to our quotation of Clairaut in an algorithmic
context comes from Simon Modeste.

Issues and Challenges in Instrumental Proof 155

is necessary to reformulate its domain of validity. The algorithmic way of thinking,
as a characteristic of mathematical work, as well as the execution of an algorithm
by a machine, suggest the existence of a type of instrumental proof different from
mechanical proof. We call this type of proof algorithmic proof: it usually proceeds
by coordination of the discursive and instrumental geneses.

In some cases, the learning of the proof is instrumented by a computing device and
it can go through an algorithmic process, constituting rightly an algorithmic proof
according to the definition given above. Thus, in secondary school, we can mention
the resolution of a problem of proof at the interface of the QED-Tutrix tutorial system
(Leduc et al., 2017; Leduc, 2016; Tessier-Baillargeon, 2015). In this kind of tutorial
system, we tend to support the student in elaborating a deductive proof, mostly
by forcing him to construct his proof by forward chaining (from the hypotheses
of the problem to the conclusion) or backward chaining (the other way round).
However, the QED-Tutrix system accepts that the student can enter the propositions
of his demonstration in whatever order he wants, whether they are assumptions,
justifications or results that he deduced or he supposes are valid (Fig. 7). It even
happens that the student tests the system itself by watching its reaction to one of his
propositions (instrumental genesis). But the system is programmed to support the
student in the logic of the problem, and to lead him gradually to write a deductive
proof (discursive genesis).

Fig. 7 QED-Tutrix interface, an intelligent tutorial system that supports solving problems of proof
in geometry. From the problem statement (top), the student writes propositions (bottom), acts on the
figure of the Geogebra dynamic geometry module (left) and discuss with an artificial pedagogical
agent (right)

156 P. R. Richard et al.

The instrumental proof would thus not materialize only by the engagement of
artefacts, tools or methods to a process of mathematical proof. It would also open
up to physical or algorithmic modes of thinking, renewing several questions about
the epistemic necessity, the control of knowledge or the decision-making that arise
from different types of reasoning. The example of proof learning and its quest using
QED-Tutrix testifies that deductive reasoning is not necessarily an instruction tool
for learning demonstration, contrary to what is sometimes heard among supporters
of the old school.9 This is also what Brousseau (2004) reminds us with his paradoxes
about the study of the teaching of reasoning and proof:

The “orthodox” presentation of mathematical texts gives the impression that formal logic
(modus ponens, with perhaps a few other tools of logic) is the fundamental and neces-
sary instrument of mathematics, and that the aim of mathematics is to demonstrate that
its author has not produced any contradictions (with himself or with known mathematics).
Many teachers tend to deduce from this that since mathematical reasoning is the sole means
of establishing publicly that a mathematical statement is true, this reasoning must also nec-
essarily describe (or serve as a model for describing) the thinking that correctly constructs
mathematics, hence that describes the thinking of mathematicians and of students. As a
result, they try to teach directly how to think, and then how to reason as one does in making
a proof. They thus mix up the activity and mathematical reasoning of the students with their
cultural product: the standard method of communication.

If, on the other hand, one assumes that the natural functioning of thought produces exact
knowledge by some processes (rhetorical, heuristic, psychological…) which cannot be
reduced to the presentations and notations that are most convenient (for mathematicians
and their research), then what are those processes, and how can they be realized? or how can
someone be led to achieve them?

Certainly, one might fear that by its versatility, instrumental proof inherently
creates a problem of validity for mathematical theory, or for mathematics that is
constructed as a science. Nevertheless, mathematical activity is much more than the
slow establishment of a non-contradictory reference system, and this is even truer
when it comes to mathematical work at school. But it is necessary from the outset to
distinguish the mathematical work of the student from that of the teacher: the latter
must develop not one but two kinds of geneses: one of them personal, for his or
her mathematical work, and the other one professional, for teaching (see Haspekian,
2011, about a double instrumental genesis; Derouet, 2016, on the student-teacher
contrast or Leduc et al., 2017, for the genetic distinction between mathematical work
and didacticwork). As a result, in addition to appearing legitimate from a didactic and
epistemological point of view, the instrumental proofs become particularly useful in
answering Brousseau’s questions about “those processes”.

9It is still common to hear at conferences that automated reasoning, however used, is not appropriate
for learningmathematical proof in school. Even very recently, a colleague showed us an anonymous
assessor’s comment for the evaluation of an important project: “automatic proofs are not necessarily
suitable for educational purposes, therefore most parts of action are somewhat out of interest in
this context”. This point of view seems to us similar to the one where, in the 1970s, it was feared
that students would no longer learn to calculate, after the introduction of calculators in schools.
Paradoxically, this artefact is today practically tossed in the dustbin of history in favor of tools once
unthinkable.

Issues and Challenges in Instrumental Proof 157

3 Three Types of Proof in the Mathematical Work

I would also claim that, in a very specific sense, mathematical work is a form of philosophical
analysis.

The mathematicians and mathematical physicists find out through their rigorous proofs just
which features of the world are necessary if we are to have the kind of world we do have.

Martin H. Krieger (2004)

3.1 In the Model of the Mathematical Working Space

By introducing the mathematical working space theory, we were able to deal with the
notion of proof both in school and in the work of the mathematician. Even if, since
Chevallard’s anthropological theory of the didactic (1992), we have a better under-
standing of why school mathematics is not a reduction of scholarly mathematics,
Kuzniak et al. (2016) remind us that the MWS “involved in mathematics education,
are related to different kinds of vigilance—epistemological, didactic, and cogni-
tive” (p. 729). Moreover, among students who are destined to become mathematics
teachers, the knowledge conveyed often moves from one mathematical paradigm to
another, to the point that even the meanings of the mathematical concepts at stake
seem to be agglutinated (Arzarello, 2006; Tanguay & Venant, 2016). Facing the
inescapable complexity of mathematical work at school and in order to set our types
of proof according to MWS, we have to make assumptions about the mathematical
task, the subject-milieu interaction, the proof/reasoning nesting and the valence of
the proof activity in mathematics, as follows.

1. The proof results from amathematical task and not from a problem set in physics
or in algorithmics. For example, some situations in special relativity at school
involve Minkowski diagrams at the interface of a dynamic geometry software,
playing on rationality frameworks in both physical sciences and mathematics
(Moutet, 2016). In such a case, we must consider two epistemological planes,
modelling links between these planes and external fibrations respectively between
elements of the semiotic and instrumental geneses of each plane. If a mechanical
proof had to be recognized in the resolution of the initial situation, then itwould be
necessary to start from a well-identified mathematical task during the resolution
process and to deal with external coordination issues between geneses. Similarly,
some algorithmic situations are already close to mathematics, such as introduc-
ing the dichotomy algorithm to find a square root bounding of prime numbers, or
determining the zeros of a function by the sweeping-out method (Laval, 2018).
In each case, one can start working with some software like Algobox10 and ask
the software to test the algorithm that has been composed, evoking the algo-
rithmical proof. Nevertheless, the transition between the worlds of Algorithmics

10Freeware by Pascal Brachet (2018) available at http://www.xm1math.net/algobox/.

http://www.xm1math.net/algobox/

158 P. R. Richard et al.

(A) and Mathematics (M) is not symmetrical: although the A → M direction
is essentially based on a mathematization, the M → A direction is closer to a
conversion, or even to intramathematical modelling. In the problems of bounding
or determination of zeros, the mathematical work is expressed conceptually in
a dynamics of K(epsilon)-game (Bartle & Sherbert, 2011) because of the very
nature of real numbers (see Sect. 2.5). The activation of an MWS and its proof
types would start at the same time as the mathematical task.

2. The proof is defined by the interaction between a subject, who can be a reader
and/or a user, and amilieu. This idea of interaction is inspired by the adidactic sit-
uations described by Brousseau (1998) and from themodel to reason on learners’
conceptions of Balacheff andMargolinas (2005). We have previously shown that
the epistemic necessity is characteristic of this interaction for the instrumented
learning of properties in geometry (Coutat, Laborde, & Richard, 2016) and that
the type of proof of the same property may vary depending on the nature of this
interaction (Richard et al., 2016). It follows that even traditional proofs are not
the prerogative of individuals, but also of the milieu that supports them (paper-
pencil, computers, etc.). When a proof involves an automated reasoning tool, the
interest for the process is not in the calculation by the machine, as a tooled neces-
sity, but in the questioning that triggers the calculation and in the interpretation
of the results. If a proof encapsulates a procedure by semiotic, instrumental or
discursive means, one must be able either to explain how the procedure works,
despite the black box effect that could result, or to vary it with an additional,
compensatory or confirmatory proof. TheMWS can then be considered a system
of activities that evidences the types of proof.

3. A proof may consist of several steps of reasoning, and reasoning may consist
of several proofs. In addition to our considerations from Sect. 2.1, reasoning
can consist of a sequence of inferences f1, f2, . . . , fn , where the fi s are the
inferential justifications, both in traditional or instrumental reasoning. But justi-
fications may depend on the very structure of the propositions at stake, such as in
a syllogism, in a semantic inference, according to a third-party statement (from
the French “énoncé-tiers”, by Duval, 1995), or in a deduction or in a discursive
inference. Besides the discursive register, these justifications can be expressed
through a discursive-graphic reasoning, the use of an artifact or within an encap-
sulated procedure. In the same way, a proof can be structured by a sequence of
connections of epistemic necessity, by adopting deductive, inductive or abductive
validation modes. What must be emphasized here is not the structuring aspect of
the inferences, but rather the functional purpose of the connection of epistemic
necessity in the interaction between a subject and a milieu.11 This hypothesis is
that of a possible structuring for reasoning and a functional validation for the one
who advances a proof in his mathematical work.

11For more information, see the analysis of student texts and of the editorial organization from
Duval (1995), and the analyses of the strategic contexture of proofs in secondary school by Richard
(2004a).

Issues and Challenges in Instrumental Proof 159

4. The ability to prove that results from subject-milieu interactions is affected if the
semiotic, instrumental and discursive means of mathematical work are opened
or constrained. In Richard et al. (2016), we define the set of the potential subject-
milieu interactions related to a type of epistemic necessity as the space of epis-
temic necessity. This allows us to consider the ability to prove, when interacting
with different milieus, in terms of tolerance to possible variations in the coordi-
nation of geneses. Like the concept of valence of mathematical work, there is a
valence of proof activity in mathematics in a given space of epistemic necessity.
Originally, the concept of tolerance is based on the engineering tolerance which
focuses on the permissible limit(s) of the potential interactions in a MWS. Thus,
the tolerance analysis of a proof is the study of the operating domain of these
interactions related to a given space of epistemic necessity. Because a specific
milieu conveys mathematical knowledge and processes that are revealed in the
use of a tool or of a semiotic production, a variation that involves the geneses
into a MWS allows one to test the ability to produce a proof.

The first type of proof we retain is the discursive-graphic proof which is repre-
sented in the back vertical plane in Fig. 8 (the sem-dis plane in the base form of the
diagram, see Fig. 1). This is the most common proof in the mathematical work, oper-
ating essentially by the coordination of semiotic and discursive geneses. Traditional
demonstrations or those involving well-defined registers of semiotic representation
in mathematics are examples of this type of proof. In other words, proofs without
words would be the proofs least dependent on the discursive genesis in the mathe-

Fig. 8 In the model of MWS, the instrumental proofs appear on the salient vertical planes and
the discursive-graphic proof, in the background plane, in order to highlight the coordination of the
dominant geneses in mathematical work

160 P. R. Richard et al.

matical activity, and formal proofs, those least related to the semiotic genesis. As we
already mentioned Sect. 2, the question of medium for representation is important.
In the absence of dynamism due to the material device (i.e., any form of physi-
cal or electronic data carrier), the subject has to animate and control the properties
represented. To understand the articulation of connections of epistemic necessity,
especially for someone who is not the author of “what to see”, it may be very helpful
to give some wording to the reasoning, such as a discursive description or the use
of plastic means (colours, textures, grain, lighting, frame, arrows, etc.) to focus on
significant elements.

The second type of proof is the mechanical proof, which we have already intro-
duced in Sect. 2.4. These proofs, represented in Fig. 8 in the left vertical plane (the
sem-ins plane), proceed above all by the coordination of the semiotic and instru-
mental geneses. In the same way that discursive-graphic proofs can be described as
effective, thanks to non-verbal semiotic representations that do not necessarily have
to bear the weight of the discursive processing, the mechanical proofs are only func-
tional, and if they “carry with it their own demonstrations”, it’s not according to a
purelymathematical rationality. But this advantage has its drawback, because it raises
the question of the operative transparency. The joint use of an artifact raises what
Rabardel (1995) calls the phenomenal material causality. It concerns the structure
of the artifact, its functioning, even its conduct (e.g. systems producing reasoning
as the Automated Reasoning Tool (ART) with dynamic geometry software), or at
least what is relevant for the subject’s action. To this causality is added the sub-
ject’s instrumented action oriented towards the finality of the task. Thus, during a
mechanical proof, knowing that it is not the artifact, the method or the implemented
reference model that is at stake, but the way they are used, is an example of causality
of the instrumented action in proving. Some mechanical proofs can then introduce
some ART with a certain independence from what is done with these tools, without
compromising the very fact that it is proof.

Somemathematical properties are clearly revealed in an instrumented perspective,
while engaging reasonings are activated on different planes within the MWS. Thus,
to show that the tangent to a circle is perpendicular to the radius, we can construct a
figure-situation at the interface of a dynamic geometry software where the centre of
the circle and the end of the radius are defined on grid nodes, the tangent line being
able to pivot around the point of tangency (Fig. 9, top left). To see the property, it
is necessary to oscillate between satisfactory and unsatisfactory configurations: it is
the invariance during these back-and-forth draggings that allow the property to be
induced. This is amechanical proof.Now, ifwe leave the figure in a positionwhere the
perpendicularity is visible, we can certainly see the property according to the visual
appearance, but also by counting on the grid nodes (verification of the orthogonality
criterion) to notice that we are definitely in a situation of two perpendicular lines.
This time it is a discursive-graphic proof that could very well have been done without
the computer tool, assuming that constraints are considered when defining the object.
The hypothesis of nesting between proof and reasoning is clarified here: a connection
of epistemic necessity that concludes similarly (being perpendicular to the radius)

Issues and Challenges in Instrumental Proof 161

Cognitive necessity
of the link constraints-conclusion

Recognition of invariants by
induction on the operational
dynamic figure

Unsatisfactory
configurations

Satisfactory
configurations

Conception
(link constraints-conclusion)

Reading and accepting of the conclusion
by discursive-graphic reasoning

Instrumental necessity
of the link constraints-conclusion

Interactions
(model reader-user)

Procept
(object-process expressed using
the register of dynamic figures)

Fig. 9 Two types of epistemic necessity in the subject-milieu interaction (Richard et al., 2016)

can be both instrumental and cognitive, depending on the type of interaction involved
such as an action at the interface or a reading.

The third type of proof is the algorithmic proof. In the same way that it is easy to
consider the instrumental genesis when the execution of an algorithm by a machine
is governed by the user, the setting up or the development of an algorithm is naturally
associatedwith the discursive genesis. In an algorithmic proof process, in themeaning
we introduced in Sect. 2.6, it is not so much a matter of validating an algorithm in
a sort of disconnected computer activity, but rather of considering the algorithmic
connected to a mathematical task whose purpose is to prove. Indeed, if we present
the algorithmic proofs in the right vertical plane in Fig. 8 (the ins-dis plane), it is in
order to highlight the interplay of geneses during the design-in-use of proving, that is
the adaptive design of an algorithm while using a machine. However, the algorithm

162 P. R. Richard et al.

thinkingmode inmathematical work can appear independently of the execution of an
algorithm by a machine, as in Trahan’s example (Fig. 6), or during an instrumented
reasoning that responds to the student’s discourse, as does the QED-Turix system
(Fig. 7). Like the mechanical proofs, these two examples of algorithmic proofs show
that it is possible from time to time to engage in reasonings on separate planes in the
MWS, which is the case with the joint support of discursive-graphic steps (proofs or
reasonings).

3.2 Didactic Implications

If we were not to consider the types of proofs we have just defined, we would still
have the essentially discursive proofs, such as traditional demonstrations, the semiotic
proofs, such as proofs without words, and the machine-computable proofs, such as
proofs tooled by automated reasoning; all these types of proofs would constitute a
very good core. But to take into account the complexity of the proving activity, the
“other proofs” become necessary. According to the model of mathematical working
spaces, there is no executable representamen, hence the need to separate the semiotics
from the instrumental and the discursive. For instance, when a geometric figure is
represented at the interface of a dynamic geometry software, onewhomanipulates the
figure is alsomanipulating a semiotic representation systemmanaged partly by a tool,
and this evokes the mechanical proof. Also, every time we use a semiotic method to
draw conclusions, such as aVenn diagram to determine the probability of a composed
event or with the spatial organization of the subtraction of equations to identify the
general term of a geometric series, we are exactly in a process of discursive-graphic
proofs. In the past, without any software, it was quite difficult to act on a dynamic
representamen—there are very few material signs that react by themselves to an
action—and the conjecture had to be suggested before the proof because the geneses
involved in eachprocesswere fundamentally distinct. Such awork could be laborious,
even going so far as to blatantly mask the process of discovery. Just remember how
we could determine a locus of points using ruler and compass, starting with the
production of several drawings. As soon as we had a good enough idea of the locus,
we hid with shame our research activity to show discursively the necessity for it,
quickly closing our sketchbook, and struggling to prove it properly. However, the
significant heuristic moments could have been encapsulated in an instrumental proof
worthy of interest, a prelude to the elaboration of reasoning considered as a routine
for a class of problems. Whether one needs a discourse or a computer tool to animate
the representamen, the opening of the perspective of instrumented proofs brings the
heuristics of validation closer in the same crucible that the mathematical experience.
In what follows, we focus on the issues concerning automated reasoning tools and
intelligent tutorial systems.

Adopting this open attitude is particularly important when it comes to using ART
in schools or teacher training. Until now, we have explained that a proof can consist
of a series of connections of epistemic necessity, that these connections can be in

Issues and Challenges in Instrumental Proof 163

deductive, inductive or abductive reasoning modes, but that the questioning must be
at the initiative of the student so that the computer-milieu remains a partner. Thus,
questioning an oracle at the interface of a dynamic geometry software may seem
worrisome if the objective of the task is limited to an immediate production of some
deductive reasoning. But this same questioning appears to be very powerful when it
comes to support the derivation, discovery and proof of geometry statements (Kovács
et al., 2017).WithART tools, we can easily imagine the student’smathematical activ-
ity realized in a situation (context, problem or task) where she proactively questions
the milieu, in the specific logic of the situation and in the more general logic of the
didactic contract that links her to the knowledge at stake. The student then seeks
answers adapted to the context, to solve the problem or to accomplish the task, with-
out having to bear all the weight of the logical artillery of the “orthodox presentation
of mathematical texts” (see Sect. 2.6). With a dynamic geometry software, for exam-
ple, we can refer to the many ways that promote investigating geometrical properties
of a figure or generalizing some observed/conjectured geometric properties (cf. the
nine tools of Kovács, Recio & Vélez, 2018a), and to the combine use of LEGOs and
the software to link proving, computation and experimental views in modelling tasks
(Kovács, 2018).

In terms of reasoning, ART helps the student in producing valid abductions, as in
Pierce’smeaning,which brings his experience to the property to be discovered, foster-
ing rigorous creativity during the solving of surprising problems. In fact, researches
in didactics of mathematics do not sufficiently address the modelling of physical
phenomena using geometrical tools. The same applies to problem-solving: most of
the time, we work on problems of proof that rarely go beyond the simple discovery of
well-defined properties already known by the teacher or even by the student himself.
Undoubtedly, the student’s adherence to geometric science requires the development
of competence in modelling form, shape and space; but, unfortunately, modelling
activity is generally not widely practised in compulsory education—the tasks can
be solved using standard representations and definitions, routine procedures, pre-
determined heuristics or well-defined methods. While few mathematics teachers
in compulsory education or training initiatives seem to be concerned with solving
open problems, we believe that the functionalities of ART are particularly useful for
designing situations that engage mathematical work on the basis of well-founded
judgments, relying on discovery and proof during the quest for problematization-
modelling as instrumental proofs do.

The computer-assisted mathematical proof and the interactive proof assistants
in schooling are two very different concepts. The QED-Tutrix system is based on
this difference. The computer-assisted mathematical proof in an automated proof
perspective allows users to check statements and to discover new ones. According
to Font et al. (2018), one of the main goals of the research community in automated
theorem—proving is to operate efficiently (here meaning fast and focused). Since
synthetic approaches are typically slower, most solvers rely on algebraic resolutions.
The problem with these systems of automated proving is that the algebraic model
makes it possible to say if a geometric statement is true or not, ormaybe true (or false)
in parts (cf. Kovács, Recio, & Vélez, 2018b), but it does not provide any proof of

164 P. R. Richard et al.

that, let alone a proof that a student can master. With the interactive proof assistants,
the major problem is often the rigidity of the system that forces the student to work
in forward or backward chaining, and this brings us back to Brousseau’s paradoxes
(2004). It is indeed the modelling of the learning conditions of mathematics in an
instrumented perspective by the IT tool that must appear in the design of these
tutorial systems. In other words, it is not towards the acceptance of systems to be
used as they are, but towards those designed to integrate students, and this very early
in the design process. The didactic advantage of an approach like QED-Tutrix is
that it allows the student to prove jointly, with verbal and figural statements, as in
discursive-graphic proofs, and that it accepts statements in the order suggested by
the user. This is an indispensable condition for producing any algorithmic proofs. In
fact, if it is no longer the user whomanages the structure of the proof, he or she would
be condemned to proceed as in a deductive calculation (e.g. by forward or backward
chaining). Furthermore, he or she could not integrate the recognition of invariants
when dragging, which would unnecessarily hinder the realization of instrumental
proofs. If automated reasoning tools can be integrated into the interactive proof
assistants, it is mainly to operate with readable proofs.

If we were to pursue research beyond this paper, consideration could be given
to the development of a catalogue of instrumental proofs, both proofs that already
exist in educational practice and those that should be encouraged in the classroom.
If we consider that teachers, trainer and researchers may take different avenues in
their proofs, it is obvious that the notion of mathematical work will still be playing a
unifying role. We knew that our initial idea about merging thought and activity may
be considered as surprising but bright, because we know that they are not similar.
But it appears to be useful because it is difficult to distinguish, in algorithmical
thinking, when an algorithm “carries with it its own demonstration”, independently
of any execution by a machine, just as it is difficult to distinguish in interaction with
physical reality, which is related to semiotics or to instrumented representation.

4 Conclusion

Two proofs are better than one. “It is safe riding at two anchors”.

George Pólya (1973)

The notion of proof has long been a subject of study in mathematics education.
Thematic working groups, such as the International Congress on Mathematical Edu-
cation (ICME) or the Congress of the European Society for Research inMathematics
Education (CERME), and some websites, such as La lettre de la preuve,12 offer a
very good inventory of published papers and monographs on the subject. As for the
consequences of proof in the teaching and learning of mathematics, synthetic works

12This international newsletter on the teaching and learning of mathematical proof, whose current
name is simply Preuve, is available at http://www.lettredelapreuve.org (ISSN 1292-8763).

http://www.lettredelapreuve.org

Issues and Challenges in Instrumental Proof 165

such as the book Developing research in mathematics education: twenty years of
communication, cooperation and collaboration in Europe (Dreyfus, Artigue, Potari,
Prediger, & Ruthven, 2018) show very well its transversal character in mathematical
work. It is precisely by taking advantage of this idea of overlapping of the proof
on several mathematical, scientific and thematic fields that we have supported our
discourse. The added value of the three types of proofs we have defined in this paper
is rooted from the outset in this transversality. But what we wish to highlight above
all is that the recognition of these proofs, particularly the instrumental ones, implies
an opening on the different ways that proof can get in mathematical work in school.
In a culture of this difference, Pólya (1973) said:

When the solution that we have finally obtained is long and involved, we naturally suspect
that there is some clearer and less roundabout solution: Can you derive the result differently?
Can you see it at a glance? Yet even if we have succeeded in finding a satisfactory solution
we may still be interested in finding another solution. We desire to convince ourselves of the
validity of a theoretical result by two different derivations as we desire to perceive a material
object through two different senses. Having found a proof, we wish to find another proof as
we wish to touch an object after having seen it. (❡) Two proofs are better than one. “It is
safe riding at two anchors”. (pp. 61–62)

If it is obvious that with his heuristics, Pólya was an apostle of the combined
use of semiotics and discursive in his reasonings. We believe he would have been
very comfortable with the concept of the discursive-graphic proofs. But he rarely
addressed the issue of working with instruments, except in a classical perspective
as “shall we draw the figures exactly or approximately, with instruments or free-
hand?” (p. 105). Even so, knowing the influence that his book13 has had among some
physicists and computer scientists, we can believe that if he had had a computer on
hand easily as today, he would no doubt have found a way to engage us wisely in the
instrumental opportunity:

The expert has, perhaps, no more ideas than the inexperienced, but appreciates more what
he has and uses it better. A wise man will make more opportunities than he finds. A wise
man will make tools of what comes to hand. A wise man turns chance into good fortune. Or,
possibly, the advantage of the expert is that he is continually on the lookout for opportunities.
Have an eye to the main chance (p. 224).

Following Pólya’s footsteps and willingly adding the discursive-graphic proofs,
we deduce from this that the integration of instrumental proofs in mathematical work
in school is a desirable enrichment of the means of validation, and in doing so an
approach to the expert’s work. If these “other proofs”, compared to traditional writ-
ten demonstrations in natural language, appear to involve more obviously heuristic
characteristics, then the cross-cutting nature of proving could be formulated through
the geneses of mathematical work, their coordination and the fibrations weaving the
working space. Furthermore, while the ability to prove at school depends on the
students’ resourcefulness, it also depends on the learning opportunities they have
been offered, the quality of the milieu chosen by the teacher and the habits conveyed

13The first English translation of How to solve it still dates from 1945.

166 P. R. Richard et al.

by the didactic contract, particularly the tolerance to possible variations in the coor-
dination of geneses. For the notion of valence of proof activity to become relevant,
it must be understood that mathematical proofs intervene in many different tasks
and that the epistemic necessity is likely to vary greatly from one task to another.
If mechanical proofs and algorithmic proofs serve very well this idea of valence,
more exploration has to be done about their usefulness for teaching and research in
mathematics didactics. If two proofs are better than one, now imagine three proofs!

Acknowledgements Wewish sincerely to thank Prof. Annette Braconne-Michoux for her devoted
and far-sighted work of linguistic review.

Appendix 1: Area Partition Activity

In an activity of dynamic geometry, de Villiers (2018)14 proposes the study of situa-
tions which allow us to show that “to the working mathematician, proof is not merely
a means of verifying an already discovered result, but often also a means of explor-
ing, analyzing, discovering and inventing new results”. It begins by proposing an
interactive version of the proof without words presented in Sect. 2.4, automatically
providing the measures on both sides of equality:

This is a proof that is both mechanical and discursive-graphic, as is our consider-
ations around Fig. 9. At the interface of the situation, the author adds a help button
that participates in the devolution of the problem (hint) and a generalization button

14From http://dynamicmathematicslearning.com/area-parallelogram-partition-richard-theorem.
html.

http://dynamicmathematicslearning.com/area-parallelogram-partition-richard-theorem.html

Issues and Challenges in Instrumental Proof 167

that allows the user to move to the next situation (pentagon). In fact, the user can
always move to a more general situation (pentagon or to another (k+1)-gon, until an
octagon) without even having solved the previous problem (parallelogram or k-gon):

This dynamicity of the activity makes it possible to identify invariants in the
equality of areas of figures and to reinvest them in a set of proof problems:

Carefully reflect on your proof, and consider how this same proof can also apply to a certain
type of pentagon, hexagon, etc.Make generalizations and check your generalized conjectures
by clicking on the Link buttons on the right to go to pentagons, hexagons, etc. with a similar
area partition property. (extract from the activity instructions)

It would then be a particularly rich activity of proof which also makes it possible
to engage an algorithmic proof.

Appendix 2: Transcription of Text from Dense Figures

This is the sequential transcription of Trahan’s approach structured in Fig. 6.

Step 1

Theorem (not surprising)
If you cut a polygon into a finite number of pieces to reform another, then both

polygons will have the same area.

Theorem (more surprising)
Should any two polygons have the same area, it is possible to cut the first into a

finite number of pieces to then form the second.

168 P. R. Richard et al.

Step 2

Propositions (program)

1. Any polygon can be cut into a finite number of triangles.
2. Any triangle can be cut to form a rectangle.
3. Any rectangle can be cut to form a square.
4. Any pair of squares can be cut to form a square.

Resolution (breakdown by case)

1. Demonstration in two cases: convex polygon and concave polygon.
2. Check the four corners of the rectangle and check the «joints» (alignment of

points).
3. In a rectangle L by �: case � < L ≤ 4 �, checking of the angles, of the «joints»

then sides; case L > 4 �, check also lengths and sides.
4. Verification of angles, “joints” then sides.

Conclusion
Any polygon can be cut into a finite number of pieces to then form a square.

Step 3

Deriving proposition
If two polygons of the same surface can be cut into a finite number of pieces to each
form a square, then there is a split of the first polygon to form the second.

Solution
Superposition of the two cuttings.

Can we do better?
Yes, the demonstration makes it possible to obtain a division between two polygons,
but this is not optimal.

Verification with interesting cuttings (demonstrated in other research work)

• Square in equilateral triangle.
• Square in nonagon.
• Some cutting of the pentagon.

Step 4

New situations (to pose and solve)

• Generalization: curved surface?
• Generalizations in 3 dimensions
• (…)

Issues and Challenges in Instrumental Proof 169

Hilbert’s 3rd problem: given two polyhedra of equal volume, can we cut the first
polyhedron into polyhedra and bring them together to form the second polyhedron?

• No: Dehn found an invariant (Dehn invariant) that is preserved during a cut; the
cube and the tetrahedron do not have the same invariant.

• Some possible cuttings…

References

Alsina, C.,&Nelsen, R. (2006).Math made visual. Creating images for understanding mathematics.
Washington: The Mathematical Association of America.

Appel, K., & Haken, W. (1977). The solution of the four-color-map problem. Scientific American,
237(4), 108–121. https://doi.org/10.1038/scientificamerican1077-108.

Arzarello, F. (2006). Semiosis as a multimodal process. Revista latinoamericana de investigación
en matemática educativa, 9(1), 267–299.

Balacheff, N. (1987). Processus de preuve et situations de validation. Educational Studies in Math-
ematics, 18(2), 147–176.

Balacheff, N., & Margolinas, C. (2005). Ck¢, modèle de connaissances pour le calcul de situations
didactiques. In A.Mercier &C.Margolinas (Eds.), Balises pour la didactique des mathématiques
(pp. 75–106). Grenoble: La Pensée Sauvage.

Barbin, É., Duval, R., Giorgiutti, I., Houdebine, J., & Laborde, C. (2001). Produire et lire des textes
de démonstration. Paris: Éditions Ellipses.

Bartle, R. G., & Sherbert, D. R. (2011). Introduction to real analysis (4th ed.). Wiley & Sons.
Bartolini Bussi, M.G., & Maschietto, M. (2005). Macchine Matematiche: Dalla storia alla scuola.
Springer.

Blum, W., & Leiß, D. (2007). How do students and teachers deal with modelling problems? In C.
Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Educa-
tion, engineering and economics (pp. 222–231). Chichester, UK: Horwood Publishing. https://
doi.org/10.1533/9780857099419.5.221.

Borromeo-Ferri, R. (2006). Theoretical and empirical differentiations of phases in the modelling
process. ZDM—The International Journal on Mathematics Education, 38(2), 86–95. https://doi.
org/10.1007/BF02655883.

Boutin, F. (2017). Le cahier Transmath d’algorithmique Cycle 4 (5e/4e/3e). Nathan.
Brousseau, G. (1998). Théorie des situations didactiques. Grenoble: La Pensée Sauvage.
Brousseau, G. (2004). Introduction to the study of the teaching of reasoning and proof: Paradoxes.

La lettre de la preuve—International newsletter on the teaching and learning of mathematical
proof. Retrieved April 17, 2018, from http://www.lettredelapreuve.org/OldPreuve/Newsletter/
04Ete/04EteThemeUK.html.

Bryant, J., & Sangwin, C. (2008). How round is your circle? Where engineering and mathematics
meet. Princeton University Press.

Castelnuovo, E., & Barra, M. (1976). Matematica nella realtà. Torino: Boringhieri.
Chevallard, Y. (1992). La transposition didactique. Grenoble: La Pensée Sauvage.
Clairaut, A.C. (1741). Élémens de Géométrie. Paris: David Fils.
Clairaut, A.C. (1881). Elements of geometry. Traduction du texte de l’édition de 1830 publié à Paris.
London: C. Kegan Paul & Co.

Cormack, L.B. (2017). Introduction: Practical mathematics, practical mathematicians, and the case
for transforming the study of nature. In L.B. Cormack, S.A. Walton, & J.A. Schuster (Eds.),
Mathematical practitioners and the transformation of natural knowledge in Early Modern Europe
(pp. 1–8), Studies in History and Philosophy of Science 45. https://doi.org/10.1007/978-3-319-
49430-2_1.

https://doi.org/10.1038/scientificamerican1077-108
https://doi.org/10.1533/9780857099419.5.221
https://doi.org/10.1007/BF02655883
http://www.lettredelapreuve.org/OldPreuve/Newsletter/04Ete/04EteThemeUK.html
https://doi.org/10.1007/978-3-319-49430-2_1

170 P. R. Richard et al.

Coutat, S., Laborde, C., & Richard, P. R. (2016). L’apprentissage instrumenté de propriétés en
géométrie: propédeutique à l’acquisition d’une compétence de démonstration. Educational Stud-
ies in Mathematics, 1–27. https://doi.org/10.1007/s10649-016-9684-9.

Derouet, C. (2016). La fonction de densité au carrefour entre probabilités et analyse en terminale
S: Étude de la conception et de la mise en oeuvre de tâches d’introduction articulant lois à
densité et calcul intégral. Thèse de doctorat, Sorbonne Paris Cité. https://tel.archives-ouvertes.
fr/tel-01431913/document.

Dreyfus, T., Artigue, M., Potari, D., Prediger, S., & Ruthven, K. (2018). Developing research
in mathematics education—Twenty years of communication, cooperation and collaboration in
Europe. Oxon, UK: Routledge (ISBN: 978-1-138-08027-0).

Dupré, S. (2006). Visualization in Renaissance optics: The function of geometrical diagrams and
pictures in the transmission of practical knowledge. In S. Kusukawa & I. Maclean (Eds.), Trans-
mitting knowledge : Words, images, and instruments in early modern Europe (pp. 11–39). Oxford
University Press.

Dupré, S. (2017). The making of practical optics: Mathematica practitioners’ appropriation of
optical knowledge between theory and practice. In L.B. Cormack, S.A. Walton, & J.A. Schuster
(Eds.),Mathematical practitioners and the transformation of natural knowledge in Early Modern
Europe (pp. 131–148), Studies in History and Philosophy of Science 45. https://doi.org/10.1007/
978-3-319-49430-2_7.

Duval, R. (1995). Sémiosis et pensée humaine: registre sémiotique et apprentissages intellectuels.
Berne: Peter Lang.

Font, L., Richard, P.R., &Gagnon, M. (2018). Improving QED-Tutrix by automating the generation
of proofs. In P. Quaresma & W. Neuper (Eds.), Proceedings 6th International Workshop on
Theorem Proving Components for Educational Software, (ThEdu’17), Electronic Proceedings in
Theoretical Computer Science (Vol. 267, pp. 38–58). https://doi.org/10.4204/eptcs.267.3.

Gray, E., & Tall, D. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arith-
metic. The Journal for Research in Mathematics Education, 26(2), 115–141.

Haspekian, M. (2011). The co-construction of a mathematical and a didactical instrument. In M.
Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European
Society for Research in Mathematics Education (CERME 7) (pp. 2298–2307). Rzeszów, Poland.

Hoffmann,D.L., Standish, C.D.,García-Diez,M., Pettitt, P.B.,Milton, J.A., Zilhão, J.,…Pike,W.G.
(2018). U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science,
359(6378), 912–915. https://doi.org/10.1126/science.aap7778.

Keller, A.G. (2017). Machines as mathematical instruments. In L.B. Cormack, S.A. Walton, &
J.A. Schuster (Eds.), Mathematical practitioners and the transformation of natural knowledge in
Early Modern Europe (pp. 115–127), Studies in History and Philosophy of Science 45. https://
doi.org/10.1007/978-3-319-49430-2_6.

Keller, O. (2004).Aux origines de la géométrie: le Paléolithique, le monde des chasseurs-cueilleurs.
Paris: Vuibert.

Kovács, Z. (2018). Motion with LEGOs and dynamic geometry. Virginia Mathematic Teacher,
44(2), 43–48.

Kovács, Z., Recio, T., & Vélez, M. P. (2018a). Using automated reasoning tools in GeoGebra in the
teaching and learning of proving in geometry. International Journal of Technology in Mathematics
Education, 25(2), 33–50. https://doi.org/10.1564/tme_v25.2.03.

Kovács, Z., Recio, T., & Vélez, M.P. (2018b). Detecting truth, just on parts, in automated reasoning
in geometry. In F. Botana, F. Gago, & M. Ladra (Eds.), Proceeding of the 24th Conference of
Applications of Computer Algebra (pp. 32–35).

Kovács, Z., Richard, P.R., Recio, T., & Vélez, M.P. (2017). GeoGebra automated reasoning tools: A
tutorial with examples. In G. Aldon, & J. Trgalova (Eds.), Proceedings of the 13th International
Conference on Technology in Mathematics Teaching (pp. 400–404). https://hal.archives-ouvertes.
fr/hal-01632970.

Krieger, M.H. (2004). Some of what mathematicians do. Notices of the AMS, 51(10), 1226–1230.

https://doi.org/10.1007/s10649-016-9684-9
https://tel.archives-ouvertes.fr/tel-01431913/document
https://doi.org/10.1007/978-3-319-49430-2_7
https://doi.org/10.4204/eptcs.267.3
https://doi.org/10.1126/science.aap7778
https://doi.org/10.1007/978-3-319-49430-2_6
https://doi.org/10.1564/tme_v25.2.03
https://hal.archives-ouvertes.fr/hal-01632970

Issues and Challenges in Instrumental Proof 171

Kuzniak,A.,&Richard, P.R. (2014). Espaces de travailmathématique. Point de vues et perspectives.
Revista latinoamericana de investigación en matemática educativa 17.4(I), 5–40.

Kuzniak, A., Richard P.R., & Michael-Chrysanthou, P. (2018). Chapter 1. From geometrical think-
ing to geometrical working competencies. In T. Dreyfus, M. Artigue, D. Potari, S. Prediger, &
K. Ruthven (Eds.), Developing research in mathematics education—Twenty years of communi-
cation, cooperation and collaboration in Europe. New Perspectives on Research in Mathematics
Education series (Vol. 1, pp. 8–22). Oxon, UK: Routledge (ISBN: 978-1-138-08027-0).

Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical Working Spaces in schooling: An intro-
duction. ZDM—The International Journal on Mathematics Education, 48(6), 721–737. https://
doi.org/10.1007/s11858-016-0812-x.

Lagrange, J. B., Recio, T., Richard, P. R., & Vivier, L. (2017). Synthesis of topic 2—Specificities of
tools and signs in the mathematical work. In I. Gómez-Chacón, A. Kuzniak, K. Nikolantonakis, P.
R. Richard, & L. Vivier (Eds.), Actes du 5e symposium Espaces de Travail Mathématique (ETM
5) (pp. 207–239). Greece: University of Western Macedonia.

Laval, D. (2018). L’algorithmique au lycée entre développement de savoirs spécifiques et usage
dans différents domaines mathématiques. Thèse de doctorat, Sorbonne Paris Cité.

Leduc, N. (2016). QED-tutrix: système tutoriel intelligent pour l’accompagnement des élèves en
situation de résolution de problèmes de démonstration en géométrie plane. Thèse de doctorat,
École Polytechnique de Montréal. https://publications.polymtl.ca/2450/.

Leduc, N., Tessier-Baillargeon, M., Corbeil, J. P., Richard, P. R., & Gagnon, M. (2017). Étude
prospective d’un système tutoriel à l’aide du modèle des espaces de travail mathématique. In
I. Gómez-Chacón, A. Kuzniak, K. Nikolantonakis, P. R. Richard, & L. Vivier (Eds.), Actes du
5e symposium Espaces de Travail Mathématique (ETM 5) (pp. 281–295). Greece: University of
Western Macedonia.

Modeste, S., Gravier, S., & Ouvrier-Buffet, C. (2010). Algorithmique et apprentissage de la preuve.
Repères IREM, 79, 51–72.

Moutet, L. (2016). Diagrammes et théorie de la relativité restreinte: Une ingénierie didactique.
Thèse de doctorat, Sorbonne Paris Cité. https://hal.archives-ouvertes.fr/tel-01611332/document.

Netz, W., & Noel, W. (2008). Le codex d’Archimède—Les secrets du manuscrit le plus célèbre de
la science. Paris: JC Lattès.

Polya, G. (1973). How to solve it. A new aspect of mathematical method. New Jersey: Princeton
University Press.

Rabardel, P. (1995). Les hommes et les technologies, une approche cognitive des instruments con-
temporains. Paris: Armand Colin.

Recio, T., Richard, P. R., & Vivier, L. (2015). Synthesis of topic 2—Specific features of tools and
signs in the mathematical work. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard
(Eds.), Actes du 4e symposium Espaces de Travail Mathématique (ETM 4) (pp. 197–226). Spain:
Universidad Complutense de Madrid.

Richard, P. R. (2003). Proof without words: Equal areas in a partition of a parallelogram. Mathe-
matics Magazine, 76(5), 348.

Richard, P. R. (2004a). Raisonnement et stratégies de preuve dans l’enseignement des mathéma-
tiques. Berne: Peter Lang.

Richard, P. R. (2004b). L’inférence figurale: Un pas de raisonnement discursivo-graphique. Educa-
tional Studies in Mathematics, 57(2), 229–263.

Richard, P.R., Gagnon, M., & Fortuny, J.M. (2018). Chapter 20. Connectedness of problems and
impasse resolution in the solving process in geometry: A major educational challenge. In P.
Herbst, U.H. Cheah, P.R. Richard, & K. Jones (Eds.), International perspectives on the teaching
and learning of geometry in secondary schools (19 pp.). Cham, Switzerland: Springer (ISBN:
978-3-319-77475-6).

Richard, P. R., Oller, A.M., &Meavilla, V. (2016). The concept of proof in the light of mathematical
work. ZDM—The International Journal on Mathematics Education, 48(6), 843–859. https://doi.
org/10.1007/s11858-016-0805-9.

Sullivan, M. C. (2000). Knot factoring. The American Mathematical Monthly, 107(4), 297–315.

https://doi.org/10.1007/s11858-016-0812-x
https://publications.polymtl.ca/2450/
https://hal.archives-ouvertes.fr/tel-01611332/document
https://doi.org/10.1007/s11858-016-0805-9

172 P. R. Richard et al.

Tanguay, D., & Geeraerts, L. (2014). Conjecture, postulats et vérifications expérimentales
dans le paradigme du géomètre physicien: comment intégrer le travail avec des logiciels
de géométrie dynamique? Revista latinoamericana de investigación en matemática educativa
17.4(II), 287–302.

Tanguay, D., & Venant, F. (2016). The semiotic and conceptual genesis of angle. ZDM—The Inter-
national Journal on Mathematics Education, 48(6), 875–894. https://doi.org/10.1007/s11858-
016-0789-5.

Tanguay, D., Kuzniak, A., &Gagatsis, A. (2015). Synthesis of topic 1—Themathematical work and
mathematical working spaces. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard
(Eds.), Actes du 4e symposium Espaces de Travail Mathématique (ETM 4) (pp. 20–38). Spain:
Universidad Complutense de Madrid.

Tessier-Baillargeon,M. (2015).GeoGebraTUTOR: Développement d’un système tutoriel autonome
pour l’accompagnement d’élèves en situation de résolution de problèmes de démonstration en
géométrie plane et genèse d’un espace de travail géométrique idoine. Thèse de doctorat, Univer-
sité de Montréal. https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/15902/Tessier-
Baillargeon_Michele_2016_these.pdf.

Tessier-Baillargeon, M., Leduc, N., Richard, P.R., Gagnon, M. (2017). Étude comparative de sys-
tèmes tutoriels pour l’exercice de la démonstration en géométrie. Annales de didactique et de
sciences cognitives (Vol. 22, pp. 91–117). IREM de Strasbourg: Université Louis Pasteur.

Trahan, A. (2016, October). Casse-tête de polygones. Workshop session presented at the 60th
Congress of the Association Mathématique du Québec under the theme Des Mathématiques
Surprenantes, Québec, Québec.

Trouche, L. (2005). Construction et conduite des instruments dans les apprentissages mathéma-
tiques: nécessité des orchestrations. Recherche en Didactique des Mathématiques, 25, 91–138.

Venant, F. (2018). Programmer lesmathématiques: la pensé informatique à l’école primaire.Bulletin
AMQ LVIII(3), 57–70.

Villiers, M. (1993). El Papel y la Función de la demostración en matemáticas. Epsilon, 26, 15–30.
Vitrac, B. (1992). À propos de la chronologie des œuvres d’Archimède. In J.Y. Guillaumin (Ed.),

Mathématiques dans l’Antiquité (pp. 59–93). Publications de l’Université de Saint-Etienne.

https://doi.org/10.1007/s11858-016-0789-5
https://papyrus.bib.umontreal.ca/xmlui/bitstream/handle/1866/15902/Tessier-Baillargeon_Michele_2016_these.pdf

The Contribution of Information
and Communication Technology
to the Teaching of Proof

Maria Alessandra Mariotti

1 Introduction

Research on proof and proving in mathematics education has been carried out for
a long time. It began with criticizing old models of teaching proof (Herbst, 2002)
for their inefficiency in understanding the role of proof in mathematics and the
development of students’ skills in producing conjectures and constructing proofs. In
many countries the reaction to this criticism led to abandoning the practice of proof at
school, sometimes getting rid of theorems, and in general reducing the importance of
proving in secondary school curricula. Nevertheless, studies in the field of teaching
and learning proof have opened new perspectives and generated a lively stream of
research. On the one hand, research has focused on epistemological reflections about
the relationship between proof and proving in mathematical practice and education
(e.g., Hanna, 1989; Hanna & Janke, 2007; Duval, 2007; Balacheff, 2008 Hanna,
Jahnke, & Pulte, 2009). On the other, it has focused on student practices related to
proof and proving (e.g., Harel & Sawder, 1998) from both a cognitive and didactic
point of view. An overview and detailed discussion of these issues can be found
in Mariotti (2006), Reid and Knipping (2010), Hanna and De Villiers (2012), and
Stylianides, Bieda and Morselli (2016).

1

Most of the new proposals are based on short-term experiments limited to a very
specific proof task (see, for instance, Miyazaki, Fujita, & Jones, 2015). Only a few,
such as the examples found in Boero (2007), have been rooted in long-term design-
based experiments.What I present here are some findings from teaching experiments
that investigate the use of ICT to introduce secondary school students to proof and
proving and, more generally, to developing specific mathematical meanings related

1A rich source of references can be found at http://lettredelapreuve.org.

M. A. Mariotti (B)
University of Siena, Siena, Italy
e-mail: mariotti21@unisi.it

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_8

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_8&domain=pdf
http://lettredelapreuve.org
mailto:mariotti21@unisi.it
https://doi.org/10.1007/978-3-030-28483-1_8

174 M. A. Mariotti

to proof and proving. Some of these experiments were carried out by the author,
sometimes in collaboration with other colleagues. Some of them lasted for years
and involved different classes for a whole academic year while others were more
circumscribed, involving individuals or pairs of students. The interviews aimed at
observing students’ behaviours in great detail. In elaborating on this wide base of
findings, my objective is not to provide an overview of the rich research on proof in
relation to technological settings, but to illustrate the potentials of a specific kind of
software environment for fostering a sense of proof and, more widely, a theoretical
perspective. Some of the results presented here have been published elsewhere; for
instance, in Mariotti (2012, 2014) and Baccaglini-Frank, Antonini, Leung and Mar-
iotti (2018). In the following, I offer a synthesis of contributions presented in the
past years based on the unifying lens of the theory of semiotic mediation (TSM) and,
specifically, the construct of the semiotic potential of an artefact.

In the first section, I introduce the educational and epistemological perspectives
that shape my discussion. I use the theoretical construct of semiotic potential in order
to explain why and how certain designed activities in a Dynamic Geometry Environ-
ment2 (DGE) may contribute to the construction of specific meanings constituting
the mathematical meaning of proof. After introducing a specific characterization of
a theorem that sheds light on the mathematical meaning of proof I start to discuss
the potentialities offered by a DGE. I firstly elaborate on construction problems dis-
cussing how the solution of such problems may be related to the key meanings of
axioms and theorems. In the following sections, I discuss how open construction
problems and the related conjecturing process may give sense to the notion of condi-
tional statement when carried out in a DGE, offering a context to relate spontaneous
arguments to mathematical proof. The last issue concerns the potential offered by
exploring impossible figures in a DGE with respect to indirect proof.

2 Theoretical Background

In this section, I discuss the theoretical foundations of my research on the use of ICT
to foster student engagement with mathematical proof. These foundations include
an educational perspective based on the theory of semiotic mediation, an epistemo-
logical perspective based on key mathematical meanings related to proof, and the
notion of mathematical theorem.

2Following Sinclair and Robutti (2012), I use the term “dynamic geometry environment.” As the
authors write, since at least 1996, this term has been used over dynamic geometry software “to
underscore the fact that we are dealing with microworlds (including pre-existing sketches and
designed tasks) and not just a software program.” (p. 571).

The Contribution of Information and Communication Technology … 175

2.1 Educational Perspective

The Theory of Semiotic Mediation (TSM) (Bartolini Bussi & Mariotti, 2008; Mari-
otti, 2009) combines a semiotic and an educational perspective. It elaborates on the
Vigotskian notion of semiotic mediation, which considers the role of human medi-
ation in the teaching-learning process as crucial. Starting from the key notion of
artefact,3 TSM interprets the teaching and learning process through a semiotic lens.
It focusses on students’ production of signs and the evolution of these signs from per-
sonal meanings emerging from the use of an artefact to the mathematical meanings
that are the goal of teaching.Abasic assumption is that personalmeanings that emerge
in accomplishing a task may be related to specific mathematical meanings, but also
that such a relationship cannot be taken for granted. On the contrary, the intentional
intervention of the teacher is needed to promote students’ conscious construction
of this relationship in social interaction. According to a Vygotskian approach, TSM
sees both the individual production of signs and their collective elaboration within
social activities as fundamental, and in particular within mathematical discussions
(Bartolini & Mariotti, 2008).

In the past years, several long-term teaching experiments have been conducted
to check, refine, and elaborate our assumptions. Different artefacts were involved,
either concrete or digital, as well different school levels (see Bartolini Bussi, 1996;
Mariotti, 2007, 2010). The theoretical framework of TSM originated and developed
around two key elements: the notion of the semiotic potential of an artefact and the
notion of a didactic cycle (Bartolini Bussi & Mariotti, 2008). Here I focus on the
notion of @@@ semiotic potential which will be used in the following discussion.

When an artefact is used to accomplish a task, it may happen that an expert—a
mathematician—recognizes the echo of specific mathematical notions. For instance,
the use of an abacus may immediately bring to mind the mathematical notion of posi-
tional notation and the polynomial notation of numbers. As I discuss later, drawing
a figure in a dynamic geometry system may evoke the classic notion of geometric
construction by ruler and compass. However, if the user is not an expert, themeanings
emerging from use of the artefact may not be immediately and consciously related
to mathematical meanings. Instead, they are related to the specific context and the
specific individual. They are ‘personal meanings.’

To express the double relation linking the artefact and its use with, on the one
hand, possible personal meanings and, on the other, with mathematical meanings,
TSM introduces the notion of @@@semiotic potential (Bartolini Bussi & Mariotti,
2008, p. 754). This notion also expresses the double use of an artefact in an edu-
cational context. The artefact is used by the students to accomplish a task, but is
simultaneously used by the teacher to exploit its semiotic potential and foster stu-
dents’ mathematical meanings. Consequently, analysing the semiotic potential of
an artefact is at the core of designing and teaching a sequence of lessons. Such an
analysis involves both cognitive and epistemological aspects. The former identifies

3The term artefact refers to any generic product of human culture purposefully designed to act or
interact in a human setting.

176 M. A. Mariotti

meanings that can emerge in accomplishing a given task while the latter identifies the
possible mathematical meanings evoked. In this chapter, I use the notion of semiotic
potential to illustrate and discuss the educational potential of a DGE with respect to
mathematical meanings related to proof.

2.2 Epistemological Perspective

Proof is one of the key elements of mathematics. It is the product of a process of
validation that allows the inclusion of any new statement in a specific theory given
that such a statement can be logically derived from the set of axioms previously
assumed. Such a formal perspective (Arzarello, 2007) makes a proof independent of
any interpretation and factual verification of the statements involved. In this respect,
the specificity of proof contrasts with argumentation and any action or process of
reasoning aimed at convincing others (or oneself) that something is true or false.

As Duval clearly stated (2007), argumentation and proof must be distinguished.
Further, a cognitive gap might exist between the two processes in spite of their
possible contiguity. The epistemological gap concerns the unbridgeable distance
between the semantic level,where the interpretation of any statement finds reasons for
its acceptability, and the theoretical level where the theoretical validity of a statement
must be stated in accordance with laws of logic within a hypothetical–deductive
approach. The cognitive gap concerns the distinction between the main function of
argumentation—convincing oneself and others that a statement is true—and themain
function of mathematical proof—logical validation of a statement within a specific
theory.

According to this analysis, the educational challenge concerns the possibility of
mistaking the two processes. In principle, a mathematical proof should not refer to
any interpretation of the statement involved. However, it is not realistic for mathe-
maticians or students to think that such interpretation does not play a crucial role in
both producing and/or accepting a proof. Indeed, it is the interpretation given to the
statements that determines the final epistemic value attributed to the statement that
has been proved. Moreover, it is on the semantic plane that the explicative function
any proof is expected to provide is based (Hanna, 1989). The semantic plane develops
understanding of ‘why’ what has been proved is true (Dreyfus & Hadas, 1996).

In summary, the didactic question of proof requires resolving the potential conflict
between the two main functions of proof: theoretically validating, and explaining
why. Thismeans developing a teaching intervention that enables students to develop a
coherent intertwining of argumentation and proof, though preserving their specificity.
In this perspective, in the following I elaborate a bit more on the notion of proof.

The termproof is often used, both in the current literature and in textbooks,without
any clear reference to the other key elements involved. As said above, distinguishing
argumentation from mathematical proof is based on differentiating their aims: on
the one hand, stating the epistemic value of a statement and, on the other, validating
a statement with a theory. Though these two aims may overlap, no clear idea of

The Contribution of Information and Communication Technology … 177

mathematical proof is possible without explicitly linking it to the idea of theory—
both the theoretical system defined by the axioms, definitions, and already proven
theorems and the meta-theoretical system of the inference rules stating what is meant
by logically derived.

Very often, when discussing the issue of proof, we take the perspective of mathe-
matics experts and leave reference to a statement and a theory implicit. However, if
we take the students’ point of view, we realize that neither of these perspectives can
be taken for granted and the complexity of the notion of theory cannot be underesti-
mated. On the one hand, meaningsmust be developed in relation to the status and role
of the different statements involved in a proof. That is, the mathematical meaning
of terms like theory, axioms, definitions, and theorems must be developed. On the
other hand, consciousness of the means of supporting any single step of a proof—the
specific ‘logical means’ that can be used to validate a new statement—must also be
developed. The centrality of the latter has been clearly pointed out by Sierpinska
(2005):

Theoretical thinking asks not only, Is this statement true? but also What is the validity of
our methods of verifying that it is true? Thus theoretical thinking always takes a distance
towards its own results. […] theoretical thinking is thinking where thought and its object
belong to distinct planes of action. (pp. 121–23)

In the school context, the complexity of this meta-theoretical level seems to be
ignored. It is commonly taken for granted that students’ways of reasoning are sponta-
neously adaptable to the sophisticated functioning of a theoretical system. Therefore,
not much is said about it, and inference rules in particular and their functioning in
the development of a theory are rarely made explicit.4

In fact, at least two aspects at themeta-level should bemade explicit and discussed
in the classroom: (1) the acceptability of some specific inference means, and (2) the
fact that, except for those explicitly shared, noother inferencemeans are acceptable. If
meta-theoretical aspects remain implicit, students have no control of their arguments.
Control remains totally in the hands of the teacher, with the consequence that students
feel confusion, uncertainty, and lack of understanding. Awareness of a reference
theory as a system of shared principles and inference rules is needed if we are to
speak of proof in a mathematical sense. Indeed, “what characterises a Mathematical
Theorem is the system of statement, proof, and theory” (Mariotti et al. 1997, p. 182).

Developing the interrelated meanings of the three components of the notion of
Mathematical Theorem therefore becomes a crucial pedagogical objective. In the
following, I discuss how teaching can be designed to address this objective.

4An exception is that of mathematical induction. But mathematical induction is very rarely pre-
sented in comparison to other modalities of proving, which are commonly considered natural and
spontaneous ways of reasoning.

178 M. A. Mariotti

3 Introducing Students to Theorems

For some time different research studies have highlighted the potentials and pitfalls
(de Villliers, 1998) of DGEs in offering powerful resources for introducing students
to proof. As Hadas, Hershkowitz and Schwarz (2000) have pointed out:

[The] findings concerning the failure to teach proofs, the recognition of themultiple aspects of
proving, and the existence of DG tools lead naturally to the design of investigative situations
in which DG tools may foster these multiple aspects. (p. 130)

In the following, I describe the potentials of a DGE in relation to geometrical
construction and situate it within the theoretical framework of TSM; that is, in terms
of semiotic potential.

3.1 Geometrical Construction in a DGE

Let us start from the relationship, immediately evoked in the mind of any math-
ematician, between drawing a figure in a DGE and the mathematical meaning of
geometrical construction; that is, drawing a figure by ruler and compass. In terms
of TSM, such a relationship can be articulated through both an epistemological and
cognitive analysis, and leads to outlining the semiotic potential of the artefact ‘DGE’
with respect to the meaning of Theorem.

Euclidean geometry is traditionally referred to as ‘ruler-and-compass geometry.’
However, despite referring to a concrete objective—e.g., producing a graphic trace
on a sheet of paper or other surface—a geometrical construction has a pure theoret-
ical nature. Solving a construction problem corresponds to proving a theorem that
validates the construction procedure (Mariotti, 2007).

The use of ruler and compass generates a set of axioms defining the theoretical
system of Euclid’s Elements. To appreciate the key role played by construction prob-
lems in Euclidean Geometry, it suffices to remember that the very first proposition
of the first book of the Elements deals with the construction of an equilateral tri-
angle, and that the solution to the long puzzling problem of trisecting an angle was
definitely proved impossible to solve by ruler and compass. The constructability or
non-constructability of a figure has been a central issue in mathematics (Arzarello
et al., 2012). Although, as classic research studies have shown (Schoenfeld, 1985),
the theoretical meaning of geometrical construction is complex and difficult to grasp,
the centrality of its role in the history of geometry and the revival triggered by the
advent of DGE make it worthy of consideration.

On the one hand, the use of virtual tools simulates the concrete use of traditional
tools like the ruler and compass. On the other, the digital architecture of a DGE
embedding the theoretical framework of Euclidean Geometry (Laborde & Sträßer,
1990) enables the user to implement the logical relationships between the geomet-
rical properties constructed by the tools and the geometrical properties that are their
consequences. Moreover, any DGE offers a dragging modality which represents the

The Contribution of Information and Communication Technology … 179

core of the technological environment. The dragging modality allows the user to
move any constructed figure after clicking and dragging one of its basic points. After
a selected point has been dragged, the figure on the screen is redrawn and recalcu-
lated from the subsequent new positions, but maintains all the properties defined by
the constructing procedure. As a consequence, the stability of dragging constitutes
the standard test of correctness for any drawn figure. Thus, a solution is acceptable
if and only if the figure on the screen is stable under the dragging test. Because any
DGE embodies a system of relationships consistent with the broad system of a geo-
metrical theory, solving construction problems in a DGE means not only accepting
all the facilities of the software, but also accepting a logic system within which to
make sense of the geometrical phenomena that occur in that environment.

A dynamic figure behaves according to its intrinsic logic: its elements are related
by the hierarchical relationships stated by the constructing procedure. Such a hier-
archy corresponds to a relationship of logical dependence among the properties in
the sense that the final figure will show not only the constructed properties, but also
all the properties that can be derived from them according to Euclidean Geome-
try. Specific tools on the DGE menu correspond to a set of theoretical construction
tools in Euclidean Geometry (Laborde & Laborde, 1991). This makes it possible to
state a correspondence between the control of dragging (dragging test) and valida-
tion by theorems (e.g., validation by mathematical proof within Euclidean Geometry
theory).5

3.2 The Semiotic Potential of DGE Construction Tools

Interpreting the previous analysis in terms of semiotic potential we can recognize a
double relationship between some tools of a DGE and, on the one hand, meanings
emerging from their use in solving a construction task and, on the other, specific
mathematical meanings related to the notion of Theorem. Specific construction tools
can be related to a virtual dynamic drawing representing a geometrical figure whose
acceptability as a solution of the construction problem can be controlled by checking
its stability by dragging. At the same time, the use of these specific construction tools
may evoke specific geometrical axioms and theorems that can be used for validating
the construction procedure within Euclidean Geometry theory. In other words, the
solution of a construction problem within a DGE can evoke the theoretical meaning
of geometrical constructions. Exploiting the semiotic potential of a DGE may thus
lead to developing the mathematical meaning of MT and specifically the meanings
of proof referring to a particular theory.

5Actually aDGEprovides a larger set of tools, including for instance “measure of an angle,” “rotation
of an angle,” and the like. This implies that the whole set of possible constructions does not coincide
with that attainable only with ruler and compass. See Stylianides and Stylianides (2005) for a full
discussion.

180 M. A. Mariotti

This was the design principle of a number of the long-term teaching experiments
I conducted. It involved developing a sequence of didactic cycles using specific con-
struction tools and semiotic activities aimed at the individual and social elaboration
of signs (see Mariotti, 2001, 2009). As explained above, the semiotic potential of an
artefact concerns the relationship between the meanings emerging from the activities
with the artefact and the mathematical meanings evoked.

A construction task consists of:

• producing a DGE figure that should be stable by dragging;
• writing a description of the procedure used to obtain the DGEfigure and producing
a validation of the ‘correctness’ of such a procedure.

Thus a construction task consists of two types of requests. The first asks for
interaction with the artefact, the second for producing a written text referring to the
interaction. The request for validating the correctness of the procedure acquires its
meaning in relation to theDGEenvironment: the construction problem is solved if the
figure obtained on the screen passes the dragging test. Validating such a construction
means explaining and gaining insight into the reason why it passes the test.

In the framework of TSM, students’ development of a theoretical perspective can
be witnessed by the evolution of the sign “construction.” At the beginning, the term
construction makes sense only in relation to using particular tools to draw a DGE
figure and having that figure pass the dragging test. Later on, the meaning of the term
construction acquires the theoretical meaning of geometrical construction (Mariotti,
2001) validated by a proof within a geometry theory. In other words, the evolution of
meanings, accomplished in the mathematical discussion led by the teacher, occurs
through the elaboration of a correspondence between specific DGE tools and their
modes of use on the one hand, and Euclidean axioms and derived theorems and
definitions on the other.

At the very beginning, starting from an emptymenu, students are invited to discuss
the choice of appropriate tools to introduce in the menu. At the same time a corre-
sponding set of @@@construction axioms are formulated and stated as the first core
of the geometry theory that any validation should refer to. I want to stress the power
of the semiotic potential of a DGEwith respect to the possibility of selecting the tools
that are available; in other words, the semiotic potential that the artefact “available
menu” has with respect to the mathematical meaning of theory and specifically to
the property of growth—adding new theorems and definitions—that is crucial to
understanding the hypothetical–deductive structure of any mathematical theory. As
the results of a number of teaching experiments showed, students not only produced
new statements and their proofs, but also became aware of the theory within which
the proofs made sense, and how such a theory is developed. As long as new prob-
lems are solved and new constructions are produced, the corresponding theorems
can be validated, added to the set of shared validating principles, and reported in stu-
dents’ notebooks. The students participated in two parallel processes of evolution: the
enlargement of the available menu in the DGE and the corresponding development
of a geometry theory.

The Contribution of Information and Communication Technology … 181

In summary, a DGE offers a rich and powerful context for introducing students
to a theoretical perspective. It provides an environment for phenomenological expe-
riences of the mathematical meanings of:

• axioms that correspond to the use of specific construction tools
• geometrical theorems that validate specific geometrical constructions
• meta-theoretical actions related to the development of the theory by adding new
theorems and definitions.

Experiences in the classroom over the course of our teaching experiments con-
firmed both the unfolding of the semiotic potential and the evolution of an interlaced
sense of proof and theory. Different aspects of this evolution are presented and dis-
cussed in several papers (Mariotti, 2001, 2007, 2009). The following two excerpts
are examples from our findings that show the theoretical meaning of construction
and its relationship with the mathematical meaning of theorem.

Example. The theorem of the angle bisector.
The first excerpt shows a student’s answer to the task of constructing the angle
bisector of an angle using only specific DGE tools such as line, ray, segment (point,
point), and compass (point, segment). The students had already learned the corre-
spondence between the use of these tools and the classic three criteria of congruence
that constitute the germ of the available theory.

Excerpt 1
Max produces a stable figure in the DGE and the list of the construction steps. Then
he writes:

Prove that the angle bisector by construction is an angle bisector by congruence criterion
(ita. criterio di uguaglianza)

AB = AC by circle

AO is in common

OB = OC by circle

center A and B

The two triangles are equal because of the third criterion of congruence (�ABO=�AOC)

Equal sides correspond to equal angles and thus

< OAC = < BAO

AO is the angle bisector of BAC

As was to be proved.

From the point of view of mathematics, this text is still very rough. However,
it is possible to recognize the germ of a proof and, overall, to see how the student
is explicitly relating the construction steps to the theoretical elements available.
What is particularly significant is the reformulation of the task at the beginning
of the proof text (“Prove that the angle bisector…”). It demonstrates the student’s
need to anticipate interpreting the list of ‘theoretical statements’ according to the
construction.

182 M. A. Mariotti

Excerpt 2
After a first sequence of activities, the teacher opened a collective discussion with
the aim of revising the students’ personal notebooks. From a comparison of the note-
books, the teacher then guided amathematical discussion on ordering the sequence of
the theoretical elements and giving them the right status: are they axioms, theorems,
or definitions?

After the discussion, each student was asked to write a report on the activity. Dur-
ing the discussion some time was devoted to the construction of angle bisectors and
the proof of the corresponding “bisector theorem.” Different proofs were proposed
based on applying different theorems. Traces of this part of the discussion can be
found in the following report by another student, Stefano. It shows how he grasped
the sense of theory both in terms of conventionality and a logically ordered system
of statements. He writes:

We then switched to examine the proof of the bisector theorem. One of my classmates stated
that the bisector theorem could be proved also with the isosceles triangle, but to do that we
would have needed to have the last theorem concerning the perpendicular. If I say that even
having the theorem, we couldn’t use it, it doesn’t mean that we are fools but simply that when
we began [the proof] we didn’t have it, and our means for proving were in minor quantity.

In commenting on the intervention of one of his classmates, Stefano explicitly
states the need for a proof to refer to the theory available.

4 More About the Semiotic Potential of a DGE

In this section I elaborate a bit more on the potential of a DGE with respect to
the notion of mathematical theorem. In particular, I consider the semiotic potential
offered by dragging in relation to the third component of MT—the statement.

Difficulties often arise in the interpretation of a given statement to be proved.
These difficulties concern the meaning of the premise and the conclusion, as well
the meaning of the logical dependency between them. Not many studies have been
devoted to this specific issue. However, an interesting exception is the work of Selden
and Selden (1995) which discussed the specific phenomenon of “unpacking an infor-
mal statement.” This refers to the challenge that students often face of making the
formal elements—for instance, the logical quantifiers—of the statement to be proved
explicit.

This difficulty has a parallel in the challenges students face when asked to for-
mulate a conjecture in the form of a conditional statement—“if … then …” (Boero,
Garuti, & Lemut, 1999). The failure to manage conditionality and to grasp the differ-
ent status of premises and conclusions may be a true obstacle to developing a correct
meaning of MT. Developing the mathematical meaning of a conditional statement
can therefore be considered a crucial issue in the general context of developing the
meaning of MT.

In the current literature, there is a shared opinion about the fundamental role
that open problems and conjecturing activities play in developing a sense of proof

The Contribution of Information and Communication Technology … 183

and fostering a productive relationship between ‘spontaneous’ argumentation pro-
cesses and theoretical validation (Arsac & Mante, 1983; Arsac, 1992; Pedemonte,
2002). Different contexts allow for open questions in different ways, thereby offering
different potentials for posing and solving open problems and, consequently, for for-
mulating conjectures. In the following section, I focus on conjecturing tasks and the
very particular context of Dynamic Geometry. Specifically, I illustrate the semiotic
potential of specific dragging modalities performed in a DGE context while solving
conjecturing tasks.

Previous studies carried out by Boero and his colleagues focused on differ-
ent aspects of students’ real world experience, but showed how dynamic aspects
of the phenomena under investigation were fundamental. Their studies confirmed
what other studies claimed (Simon, 1996; Harel & Sawder, 1998)—that dynamic-
ity seemed to foster transformational mental processes that are key to producing
conditional statements. The formulation of a conjecture can be described as a “crys-
tallization” of a dynamic exploration—a specific moment, and a specific position,
when the occurrence of one fact in a conditional statement has the occurrence of
another fact as a consequence (Boero et al., 1999, 2007). This makes it reasonable to
address the role of modes of dragging in conjecture production and to consider the
solution of conjecturing open problems in a DGE.

4.1 Conjecturing in a DGE: Dragging as a Semiotic
Mediator of Conditionality

I use the term ‘conjecture open problem’ in the following to refer to a task that explic-
itly asks the solver to formulate a conjecture (Mariotti, 2014). This is a very common
case in geometry and involves asking the solver to formulate a conditional statement
expressing a possible logical dependency between the geometrical properties of a
given configuration. In a DGE, preliminary explorations are expected that involve,
firstly, the construction of a dynamic figure implementing the initial configuration
and, then, active transformations of the figure in search of a possible answer. This
means that while observing the dynamic image on the screen, the solver has to inter-
pret the perceptual data coming from the screen and transform them into geometrical
properties that formulate a statement expressing a conditional relationship between
the properties.

Several studies done on students’ exploration processes show both different drag-
ging modalities and the potential of suchmodalities in assisting the conjecturing pro-
cess (Arzarello, Olivero, Paola, & Robutti, 2002; Olivero, 2003; Hölzl, 1996; Leung
& Lopez-Real, 2002; Lopez-Real & Leung, 2006). Elaborating on these results,
it is possible to outline the semiotic potential of particular modalities of dragging
with respect to the mathematical meaning of conditional statement in a geometry
context. Dragging modalities can be considered as specific artefacts used to solve

184 M. A. Mariotti

an open problem, and the meanings emerging from their use can be related to the
mathematical meanings of premise, conclusion, and the logical dependency between
them.

4.2 Invariants by Dragging and Their Relationship

The notion of invariant by dragging is at the core of any DGE. As discussed above,
when a figure is acted upon, two kinds of properties simultaneously appear as invari-
ants—those stated by the commands used in the construction and all the result-
ing properties within Euclidean Geometry. This means that a specific relationship
between invariants is preserved by dragging, and this relationship corresponds to
the validity of a logical implication between properties of a geometrical figure. This
becomes a crucial element when solving an open problem asking for a conjecture.

Because of their simultaneity, it may be difficult to maintain control of the logical
hierarchy between the different invariants. Nevertheless, a careful analysis of the
movement of the different elements of a figure (see Mariotti, 2014) reveals an asym-
metry between the two kinds of invariants. In other words, two different movements
occur that are worth distinguishing and analysing carefully. One movement—direct
motion—is the variation of an element in the plane under the direct control of the
mouse. The second movement—indirect motion—is the variation of any other ele-
ment as a consequence of direct motion.

During a dynamic exploration, the solver can ‘feel’ motion dependency through a
conscious use of the dragging tool. This allows him/her to distinguish between direct
invariants and indirect invariants and interpret their dynamic relationship in terms
of the logical consequences between geometrical properties, and eventually express
it as a conditional statement between a premise and a conclusion.

Let us consider the following conjecturing open problem: given a quadrilateral
and the midpoint of its sides, what can we say about the quadrilateral that has these
midpoints as vertices.

Once the quadrilateral and its midpoints have been constructed, explorations of
the possible configurations make rather evident the emergence of new properties
concerning both the parallelism and the equality between the sides of the new quadri-
lateral. This may lead to the conjecture (Varignon’s Theorem): “Given a quadrilateral
and the midpoint of its sides, the quadrilateral that has these midpoints as vertices is
a parallelogram.”

The distinction between direct and indirect movement produces a new interpreta-
tion of some of the classic results on different dragging explorations. The modality
of dragging previously described as Dummy locus dragging (or Lieu muet dragging)
is especially worthy of attention. This modality consists of dragging a configuration
with the intention of maintaining a specific property; that is, achieving a constrained
movement of the original figure as if a specific property were ‘invariant.’. This type
of invariant named Indirectly Induced Invariant (Baccaglini-Frank&Mariotti, 2010)
corresponds to the consequence of the combination of all the properties given by the

The Contribution of Information and Communication Technology … 185

construction plus a new hypothesis corresponding to the constrained dragging. In
other words, via the constrained dragging that we call Maintaining Dragging (MD)
(Baccaglini-Frank &Mariotti, 2010), a new property is added to the initial premises.
This corresponds to what mathematicians commonly refer to as exploring “under
which condition…a certain property occurs.”

What is meaningful for my purpose here is that using MD to solve a conjectur-
ing open problem, the student can directly and intentionally control the distinction
between which property is maintained and which property is searched. This dis-
tinction corresponds to the distinction between the premises and conclusion of a
conditional statement: the conclusion is the property the solver decides to maintain,
the premise is the property corresponding to the constrained movement, and the
conditional relationship between these properties corresponds to the simultaneity of
their occurrence.

Taking the perspective of semiotic mediation, I claim that the different dragging
modalities, together with the different types of invariants, offer rich semiotic poten-
tial with respect to the mathematical notion of conjecture and specifically to the
mathematical meaning of a conditional statement as the logical relationship between
premises and a conclusion. The asymmetry of the relationship between invariants
offers the possibility of distinguishing the logical status of the properties of a DGE
figure; that is, their status as premise or conclusion. Thus, according to the previous
analysis, it is possible to outline the following semiotic potential of the different
means of dragging in solving a conjecture-production task in respect to the math-
ematical meaning of conditionality. The semiotic potential is recognizable in the
relationship between:

• the indirectly induced invariant (the property the solver intends to achieve) and
the mathematical meaning of the conclusion of the conjecture statement

• the invariant constrained by the specific goal-orientedmovement (the property that
must be assumed in order to obtain the induced invariant) and the mathematical
meaning of the premise of the conjecture statement

• the haptic sensation of causality relating the direct and the indirect movement and
themathematicalmeaning of logical dependence between premise and conclusion.

Results from several studies show how different meanings related to the notion of
conjecture may emerge and how the different kinds of invariant can be characterized
by their specific status in the activity of exploration. These results can be used by
teachers to exploit the semiotic potential of dragging and specifically of MD (see
Baccaglini-Frank & Mariotti, 2010).

5 Impossible Figures and Proof by Contradiction

In the previous sections, I discussed specific aspects of the didactic potential of a
DGE for introducing students to mathematical theorems. In this section, I focus
on the potential offered by a DGE with respect to indirect proof—that is, proof by

186 M. A. Mariotti

contradiction and proof by contraposition. Before showing examples, I present a
short account of the model of indirect proof.

Given a principal statement, there are two levels at which a proof develops: the
theoretical level and the meta-theoretical level. The very beginning of the proving
process consists of a shift to a new statement characterized by new premises. It
is usually introduced by the claim “let us start from negating the conclusion.” We
call this new statement the secondary statement. This new statement is related to
the principal statement by the fact that its premise includes the negation of the
conclusion of the principal statement. The validation of the secondary statement is
reached through a direct deductive proof.

The relationship between the validation of the secondary statement and the
expected proof of the principal statement is usually taken for granted—commonly
ratified by the generic assertion “thus the theorem is proved.” However, after proving
the secondary statement, something remains unsolved, as clearly explained by Leron
(1985):

Formally, we must be satisfied that the contradiction has indeed established the truth of
the theorem (having falsified its negation), but psychologically, many questions remain
unanswered. What have we really proved in the end?What about the beautiful constructions
we built while living for a while in this false world? Are we to discard them completely?
And what about the mental reality we have temporarily created? I think this is one source
of frustration, of the feeling that we have been cheated, that nothing has been really proved,
that it is merely some sort of a trick—a sorcery—that has been played on us. (p. 323)

The crucial point lies in the final laconic assertion: “thus the theorem is proved.”
Validating the principal statement pertains to themeta-theoretical level and condenses
a meta-theorem relating the validation of the secondary statement to the validation of
the principal statement. What is often missing is something that could bridge the gap
between the validation of the principal statement and the absurd conclusion resulting
from the proof of the secondary statement. In order to clarify the source of such
difficulties for students, investigations focused on posing problems in a DGE. The
aim was to explore if and how a DGE offers a base for bridging the gap.

5.1 Dragging Impossible Figures

The appearance of conflicting or impossible configurations is one of the critical
elements of the production of an indirect proof (Fischbein, 1993). In the case of
DGE figures, Leung & Lopez-Real (2002) introduced the notion of pseudo object
to refer to a figure on which the user forces an assumption so that it is “biased with
extra meaning.” “This biased DGE,” they maintain, “exists as a kind of hybrid state
between the visual-true DGE (a virtual representation of the Euclidean world) and a
pseudo-true interpretation” (p. 22).

Interesting behaviours are described when the solution of a conjecturing task
involves impossible robust figures. They show how the aim of restoring harmony
between the figural and theoretical aspects (Fischbein, 1993) can help not only to

The Contribution of Information and Communication Technology … 187

overcome a possible impasse, but also construct the argument providing the missing
step for validating the falsity of an assumption (Antonini &Mariotti, 2008). The link
between premises and conclusions, expressed by the relationship between invariant
properties observed on the screen after dragging a figure, may contribute to bridging
the (logical) gap between the absurd conclusion coming from the proof of the sec-
ondary statement and the validation of the principal statement. In other words, in a
DGE, this potential bridge can be realized with the support of dragging modes that
induce the solver to conceive a pseudo object. The dynamic of the figure induces the
solver to interpret the constructed figure as simultaneously representing properties
that are contradictory within Euclidean theory.

In the following, I report some results from our classroom research via two exem-
plary cases. They refer to two different formulations of an open problem, both leading
to a conjecture that is expected to be supported by an indirect argument, and conse-
quently providing an introduction to indirect proof.

Case 1. The case of Paolo and Riccardo
This first case concerned the task: What can you say about the angle formed by two
angle-bisectors in a triangle?

Exploring the possible configurations can lead the solver to consider the case
of orthogonality between two angle-bisectors, and to the conjecture that this case
is impossible. Among the protocols of solving processes collected in our studies
(Mariotti & Antonini, 2009), we found examples of indirect arguments leading to a
contradictory conclusion. The following example is drawn from the interview of a
pair of grade 12 students, Paolo and Riccardo.

In the first part of the exploration, Paolo and Riccardo consider the case that
the angle between the angle bisectors is an obtuse angle. They then exclude this
possibility and move on to consider the case of orthogonality.

61 P: As for 90 [degree], it would be necessary that […] K/2= 45, H/2= 45 […].
62 I: In fact, it is sufficient that […] K/2 + H/2 is 90.
63 R: Yes, but it cannot be.
64 P: Yes, but it would mean that K + H is … a square […]
65 R: It surely should be a square, or a parallelogram
66 P: (K-H)/2 would mean that […] K + H is 180°…
67 R: It would be impossible. Exactly, I would have with these two angles already

180, that surely it is not a triangle. […]
71 R: We can exclude that [the angle] π

2 is [right] because it would become a
quadrilateral. […]

81 R: [the angle] is not 90° because I would have a quadrilateral, in fact the sum of
the two angles would be already 180, without the third angle.

Then the only possible case is that I have a quadrilateral, that is, the sum of the
angles is 360 (Fig. 1).

Using an abductive argument, implicitly based on the theorem about the sum
of the measures of the angles of a triangle, Paolo and Riccardo arrive at the con-
jecture: “it is sufficient that […] K/2 + H/2 is 90.” But Riccardo acknowledges the

188 M. A. Mariotti

Fig. 1 Paolo and Riccardo’s
figure

impossibility of this condition (63), immediately followed by Paolo who identifies an
immediate consequence of the configuration: “it would mean K+N is…” Realizing
the absurd, he seeks a figural interpretation of the ‘absurd’ conclusion that generates
the adaptation of the figure: “it surely should be a square, …” (65). The falsity of
the original assumption is now acceptable “because it would become a quadrilat-
eral,” i.e., not a triangle. More specifically, a new interpretation of the image on the
screen is achieved that fulfils the given properties, but also leads to a new conclusion
allowing the students to overcome the previous contradictory conclusion. This new
interpretation gives sense and opens the development of an indirect argument.

This protocol shows the dynamics of a pseudo object: the initial appearance of an
impossible figure is overcome by the image of a square, immediately generalized into
a parallelogram. This new image solves the distress of the absurd without canceling
its origin.

Because of its nature as pseudo object—representing a contradictory relation
and likely to turn into a coherent representation—the dynamic figure acted upon
by the solver has the potential, on the one hand, to offer support to the proof of
the secondary statement and, on the other, to maintain the relationship between the
secondary statement and the principal statement.

According to the model above, the secondary statement “If S (the angle between
the angle bisectors) is right, then the configuration becomes a quadrilateral” can be
interpreted as “It is not possible that S is right because otherwise the triangle would
become a quadrilateral.” This interpretation allows the solver to relate the secondary
statement to the principal statement.

Case 2. The Case of Stefano and Giulio
Let us now consider the second case (Baccaglini-Frank et al., 2013). The structure
of the problem is still a conjecturing open problem, but the text explicitly requests a
geometrical construction and an explanation for a negative answer.

The task sounds like this: Is it possible to construct a triangle with two perpen-
dicular angle bisectors? If so, provide steps for a construction. If not, explain why.

In the following example, similar to what happened in the previous case, we can
observe how the emergence of a pseudo object can be related to a first awareness about
the impossibility of a construction. However, we can also observe the role played by
the DGE figure in that emergence. The excerpt is drawn from the interview of a pair
of high school students (grade 12), Stefano and Giulio.

1. Stefano: No, the only way is to have 90 degree angles… [unclear which angles
these are as he was not constructing the figure or looking at the screen]

The Contribution of Information and Communication Technology … 189

2. Giulio: That for a triangle is a bit difficult! [giggling]… So… they have to be…
3. Stefano: If triangles have 4 angles…
4. Giulio: No, I was about to say something silly…

Stefano immediately states that there is only a possibility. Some elements of an
impossible configuration are mentioned and then the students quickly move on to
constructing a figure in theDGE.Giulio constructs two perpendicular lines and refers
to them as the bisectors of the triangle (Fig. 2a).

5. Stefano: Yes, these are bisectors, right?
6. Interviewer: Yes.
7. Giulio: So, now we need to get… bisectors… how can we have an angle from

the bisector?
8. Giulio: the symmetric image?… It’s enough to do the symmetric of this one.

The solvers have constructed a figure with two robust angle bisectors that intersect
perpendicularly (Fig. 2b).

9. Stefano: The only thing is that this (Fig. 2b) isn’t a triangle!
10. Giulio: Therefore now we could do like this here [drawing the lines through the

symmetric points and the two drawn vertices of the triangle]
11. Interviewer: Yes.
12. Stefano: It’s that something atrocious comes out!
13. Giulio: And here… theoretically the point of intersection should be … the

points… very small detail…hmmm
14. Stefano: No, we proved that this is equal to this [pointing to angles], and this

is equal to this because they are bisectors… these two are equal so these are
parallel.

15. Stefano: These two [referring to the two parallel lines] have a hole so it is not
a triangle.

Fig. 2 a Giulio’s construction of the angles’ bisectors. b The completed figure

190 M. A. Mariotti

The solvers use the DGE to construct two perpendicular lines. Then the property
of being bisectors is realized through constructing the symmetric image of a generic
segment that has its extremes each on a different line. Once the construction is
completed, it is possible to observe the properties that are consequences of these
two robustly constructed properties. The students notice that “the figure must have
two adjacent angles with two parallel sides” (Lines 9–14) and, at the same time,
that there is “a hole” in what was expected to be a triangle (Line 15). The pseudo
object emerges. It has a base as a triangle should have and two parallel sides as a
parallelogram has. The figure on the screen has the property “triangle” projected onto
it, though is it clearly not a triangle. This pseudo object shows that it is not possible
to robustly construct what they were asked to construct, but at the same time shows
why it is not possible. This figure, because of its nature as a pseudo object, enables
connecting the principal statement “the requested construction is not possible” with
the secondary statement “if the angle bisectors are perpendicular, then the triangle
is a quadrilateral.”

Our investigations of indirect argumentation and indirect proof produced by stu-
dents have shown that they may be supported by dragging exploration leading to
perceiving what we have called pseudo objects (Baccaglini-Frank et al. 2013, p. 65).
Nevertheless, the effectiveness of the appearance of a pseudo object for trigger-
ing an indirect argument is related to the logical control of the dynamic figure. In
other words, what is essential is awareness of the logical meaning of the dynamic
figure—awareness that allows the solver at the same time to project on it the expected
properties and to recognize in it the consequences of the constructed properties. Such
a double logical interpretation of the dynamic figure allows the solver to make sense
of the “absurd” and provides him/her with a bridge to fill the logical gap between
the principal and the secondary statement.

Based on these results, it seems possible to claim that a DGE offers a suitable
context for handling indirect proof because dragging to produce an impossible con-
figuration or pseudo object provides an informal language to talk about the absurd.
This reminds us of Thompson’s (1996) claim:

If such indirect proofs are encouraged and handled informally, then when students study the
topic more formally, teachers will be in a position to develop links between this informal
language and the more formal indirect-proof structure. (p. 480)

Specifically, within a DGE context, open problems that ask about the construction
of geometrically impossible figures may play a crucial role in unfolding the semiotic
potential of dragging with respect to the mathematical meanings of deriving the
absurd. In this way, they contribute to developing meanings related to indirect proof.

The Contribution of Information and Communication Technology … 191

6 Conclusions

I begin my concluding arguments by reflecting on the distance between the way in
which experts and novices approach the discovery of a new theorem. As Polya wrote
(De Villiers, 2001), mathematicians are highly motivated to search for a proof:

[H]aving verified the theorem in several particular cases, we gathered strong inductive evi-
dence for it. The inductive phase overcame our initial suspicion and gave us a strong confi-
dence in the theorem.Without such confidence we would have scarcely found the courage to
undertake the proof which did not look at all a routine job. When you have satisfied yourself
that the theorem is true, you start proving it. (Polya, 1954, pp. 83–84, emphasis added)

Such experiences, so natural for experts, do not belong to the reality of novices
and students who commonly gravitate toward empirical approaches to truth and often
disagree only on the number of confirmations needed. In spite of the fact that proof
lies at the heart of mathematics, research on mathematics education has shown the
complexity of fostering students’ sense of proof and, more generally, of introducing
a theoretical perspective in school mathematics. The advent and development of
new technological devices has opened new directions of research and posed crucial
questions about the possibilities and challenges of supporting the transition from
informal to formal proof in mathematics.

In this chapter, I selected the specific technological context of a DGE and, elab-
orating on results from my investigations, discussed its potential for teaching at the
secondary school level. I used TSM to frame the educational context and focused on
the notion of semiotic potential to describe the relationship between using specific
DGE tools for specific tasks, the situated meanings that are expected to emerge, and
their connection with the mathematical meanings related to proof or, more broadly,
mathematical theorem. I explained the semiotic potential that emerged in solving
a construction task and showed how it relates, on the one hand, to the meaning of
drawing constrained by the use of specific tools and, on the other, to themathematical
meaning of proving a statement within a set of shared assumptions and theorems.
Exploiting this semiotic potential allows teachers to guide students in constructing
and intertwining different meanings of MT. Specifically, it allows teachers to guide
the co-emergence of the mathematical meaning of proof and theory.

Further analysis of dragging modalities highlighted the semiotic potential of con-
jecturing open problems in a DGE. Different dragging modalities can be related to
different types of invariants and also to the different logical status of the properties
of the geometrical object represented on the screen. Some properties correspond to
the premise of a statement and others to the conclusion, while their simultaneity cor-
responds to the logical relationship between them. In other words, the mathematical
meaning of a conditional statement can be related to the relationship between the
specific invariant elements that emerge in exploring a configuration and the intention
of producing a conjecture.

Additional semiotic potentials of dragging emerged in the solving of non con-
structability tasks. The semiotic potential of a pseudo object was shown to relate to
themathematical meaning of indirect proof. Specifically, I claim that, in a DGE, rigid

192 M. A. Mariotti

construction combined with intentional and controlled dragging may lead the solver
to perceive the figure as degenerating into a pseudo object. The hybrid nature of
pseudo objects seems to support making sense of indirect proof and creates a bridge
between the principal statement to be proved and the absurd configuration emerging
from the proof of the secondary statement.

Beyond illustrating the educational potential of a specific technology, the discus-
sion offers insight into the complexity of managing problem solving productively
in a DGE. The strict dependence between the experience of acting geometrically in
a DGE and the development of a coherent web of mathematical meanings enabling
theoretical control over what is drawn and moved on the screen gives us a key for
interpreting both the strength and the fragility of using DGE activities in school prac-
tice. In particular, experimenting with conjecturing and proving in a DGE requires
adequate training in a mathematician’s eye and feel for theory. After all, interpreting
one’s own perceptions as mathematical evidence in terms of geometric properties
and logical relationships is not a spontaneous or immediate process. On the con-
trary, developing a theoretical eye is the result of a complex learning process that
is inconceivable without a teacher’s expertise in setting specific tasks and guiding
student awareness of the link between their personal experience and mathematical
knowledge.

References

Antonini, S., & Mariotti, M. A. (2008). Indirect proof: What is specific to this way of proving?
ZDM: Mathematics Education, 40(3), 401–412.

Arsac, G., & Mante, M. (1983). Des “problème ouverts” dans nos classes du premier cycle. Petit x,
2, 5–33.

Arsac, G. (1992). Initiation au raisonnement au college. Presse Universitaire de Lyon.
Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises
in Cabri environments. Zentralblatt für Didaktik der Mathematik, 34(3), 66–72.

Arzarello, F. (2007). The proof in the 20th century: From Hilbert to automatic theorem proving. In
P. Boero (Ed.), Theorems in school from history and epistemology to cognitive and educational
issues (pp. 43–64). Rotterdam: Sense Publishers.

Arzarello, F. Bartolini Bussi, M. G., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2012)
Experimental approaches to mathematical thinking: Artefacts and proof. In G. Hanna, & M.
De Villier, Proof and proving in mathematics education (pp. 1–10). Springer, New ICMI Study
Series, Volume 15, 2012.

Baccaglini-Frank, A., &Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The
maintaining dragging model. International Journal of Computers for Mathematical Learning,
15(3), 225–253.

Baccaglini-Frank,A.,Antonini, S., Leung,A.,&Mariotti,M.A. (2013). Reasoning by contradiction
in dynamic geometry. PNA, 7(2), 63–73.

Baccaglini-Frank, A., Antonini, S., Leung, A., & Mariotti, M. A. (2018). From pseudo-objects in
dynamic explorations to proof by contradiction. Digital Experiences in Mathematics Education,
1–23. https://doi.org/10.1007/s40751-018-0039-2.

Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: an essay
on the case of proof. ZDM: The International Journal on Mathematics Education, 40, 501–512.

https://doi.org/10.1007/s40751-018-0039-2

The Contribution of Information and Communication Technology … 193

Bartolini Bussi, M.G. (1996). Mathematical discussion and perspective drawings in primary school.
Education Studies in Mathematics 31, 11– 41.

Bartolini Bussi, M. G., &Mariotti, M. A. (2008). Semiotic mediation in themathematics classroom:
Artifacts and signs after a Vygotskian perspective. In L. English, M. Bartolini Bussi, G. Jones, R.
Lesh, & D. Tirosh (Eds.), Handbook of international research in mathematics education, Second
revised edition (pp. 746–805). Lawrence Erlbaum, Mahwah, NJ.

Boero, P., Garuti, R., & Lemut, E. (1999). About the generation of conditionality of statements and
its links with proving. Proceedings of the Conference of the International Group for, 2, 137–144.

Boero, P., Garuti, R., & Lemut, E. (2007). Approaching theorems in grade VIII: Some mental
processes underlying producing and proving conjectures, and conditions suitable to enhance them.
In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom
practice (pp. 247–262). Rotterdam, The Netherlands: Sense Publishers.

de Villiers, M. (1998). An alternative approach to proof in dynamic geometry. In R. Lehrer, & D.
Chazan (Eds.), Designing learning environments for developing understanding of geometry and
space (pp. 369–394). Erlbaum, Mahwah.

De Villiers, M. (2001). Papel e funcoes da demonstracao no trabalho com o Sketchpad. Educa-
caoMatematica, 63, 31–36. (retrived online: https://mzone.mweb.co.za/residents/profmd/proofc.
pdf).

Dreyfus, T., & Hadas, N. (1996). Proof as answer to the question why. Zentralblatt fur Didaktik der
Mathematik/International Reviews on Mathematical Education, 28(1), 1–5.

Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof.
In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom
practice (pp. 138–162). Rotterdam, The Netherlands: Sense Publishers.

Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2),
139–162.

Hadas, N., Hershkowitz, R., & Schwarz, B. (2000). The role of contradiction and uncertainty in
promoting the need to prove in dynamic geometry environments. Educational Studies in Mathe-
matics, 44(1–3), 127–150.

Hanna, G. (1989). More than formal proof. For the Learning of Mathematics, 9(1), 20–25.
Hanna, G., & Jahnke, H. N. (2007). Proving and modelling. In W. Blum, P. L. Galbraith, H.W.
Henn, & M. Niss (Eds.), Applications and modelling in mathematics education. The 14th ICMI
study (pp. 145–152). Dordrecht: Springer.

Hanna, G., Jahnke, H. N., & Pulte, H. (Eds.). (2009). Explanation and proof in mathematics:
Philosophical and educational perspectives. Berlin: Springer.

Hanna, G., & De Villiers, M. (Eds.). (2012). Proof and proving in mathematics education: The 19th
ICMI study (Vol. 15). Springer Science & Business Media.

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. In A.
Schonfeld, J. Kaput, & E. Dubinsky (Eds.) Research in collegiate mathematics education III.
(Issues in Mathematics Education, Vol. 7, pp. 234–282). American Mathematical Society.

Herbst, P. G. (2002). Establishing a custom of proving in American school geometry: Evolution of
the two-column proof in the early twentieth century. Educational Studies in Mathematics, 49(3),
283–312.

Hölzl, R. (1996). How does “dragging” affect the learning of geometry. International Journal of
Computer for Mathematical Learning, 1(2), 169–187.

Laborde, C. & Laborde, J. M. (1991). Problem solving in geometry: From microworlds to intelli-
gent computer environments. In J. P. Ponte, J. F. Matos, & D. Fernandes (Eds.), Mathematical
problem solving and new information technologies (pp. 177–192). NATO AS1 Series F, New
York: Springer.

Laborde, J. M., & Strässer, R. (1990). Cabri-géomètre: a microworld of geometry for guided dis-
covery learning. Zentralblatt für Didaktik der Mathematik, 90(5), 171–177.

Leron, U. (1985). A Direct approach to indirect proofs. Educational Studies in Mathematics, 16(3),
321–325.

https://mzone.mweb.co.za/residents/profmd/proofc.pdf

194 M. A. Mariotti

Leung, A., & Lopez-Real, F. (2002). Theorem justification and acquisition in dynamic geometry: A
case of proof by contradiction. International Journal of Computers for Mathematical Learning,
7, 145–165.

Lopez-Real, F., & Leung, A. (2006). Dragging as a conceptual tool in dynamic geometry. Interna-
tional Journal of Mathematical Education in Science and Technology, 37(6), 665–679.

Mariotti, M. A. (2001). Justifying and proving in the Cabri environment. International Journal of
Computer for Mathematical Learning, 6(3), 257–281.

Mariotti, M.A. (2006). Proof and proving in mathematics education. In A. Gutiérrez & P. Boero
(Eds.) Handbook of research on the psychology of mathematics education (pp. 173–204). Rot-
terdam, The Netherlands: Sense Publishers.

Mariotti, M. A. (2007). Geometrical proof: The mediation of a microworld. In P. Boero (Ed.), The-
orems in school: From history epistemology and cognition to classroom practice (pp. 285–304).
Rotterdam, The Netherlands: Sense Publishers.

Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: The role of the teacher.
ZDM: The International Journal on Mathematics Education, 41, 427–440.

Mariotti, M. A. (2010). Proofs, semiotics and artefacts of information technologies. In G. Hanna,
H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics: Philosophical and
educational perspectives (pp. 169–190). Springer.

Mariotti, M. A. (2012). Proof and proving in the classroom: Dynamic geometry systems as tools of
semiotic mediation. Research in Mathematics Education 14(2), 163–185 (2012).

Mariotti, M. A. (2014). Transforming images in a DGS: The semiotic potential of the dragging tool
for introducing the notion of conditional statement. In S. Rezat, M. Hattermann, &A. Peter-Koop
(Eds.), Transformation. A fundamental idea of mathematics education. Springer New York.

Mariotti, M. A. & Antonini, S. (2009). Breakdown and reconstruction of figural concepts in proofs
by contradiction in geometry. In F. L. Lin, F. J. Hsieh, G. Hanna, &M. de Villers (Eds.), Proof and
proving in mathematics education, ICMI study 19 conference proceedings (Vol. 2, pp. 82–87).

Mariotti, M.A., Bartolini Bussi, M., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geom-
etry theorems in contexts: from history and epistemology to cognition. In E. Pehkonen (Ed.),
Proceedings of PME-XXI, (Vol. 1, pp. 180–195). Lathi, Finland.

Miyazaki, M., Fujita, T., & Jones, K. (2015). Flow-chart proofs with open problems as scaffolds
for learning about geometrical proofs. ZDM: International Journal on Mathematics Education,
47(7), 1–14.

Olivero, F. (2003). Proving within dynamic geometry environments, Doctoral Dissertation, Grad-
uate School of Education, Bristol. https://telearn.archives-ouvertes.fr/file/index/docid/190412/
filename/Olivero-f-2002.pdf.

Pedemonte, B. (2002)Etude didactique et cognitive des rapports de l’argumentationet de la demon-
stration en mathématiques, (Unpublished) Thèse de Doctorat, Université Joseph Fourier, Greno-
ble. http://tel.archives-ouvertes.fr/tel-00004579/.

Reid, D. A., & Knipping, C. (2010). Proof in mathematics education: Research, learning and
teaching. Rotterdam, The Netherlands: Sense Publisher.

Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic press.
Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational

Studies in Mathematics, 29(2), 123–151.
Sierpinska, A. (2005). On practical and theoretical thinking. In M. H. G. Hoffmann, J. Lenhard, &
F. Seeger (Eds.), Activity and sign—Grounding mathematics education. Festschrift for Michael
Otte (pp. 117–135) New York: Springer.

Simon,M.A. (1996). Beyond inductive and deductive reasoning: The search for a sense of knowing.
Educational Studies in Mathematics, 30(2), 197–209.

Sinclair, N., & Robutti, O. (2012). Technology and the role of proof: The case of dynamic geom-
etry. In Third international handbook of mathematics education (pp. 571–596). New York, NY:
Springer.

Sinclair, N., Bussi, M. G. B., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K.
(2017). Geometry education, including the use of new technologies: A survey of recent research.

https://telearn.archives-ouvertes.fr/file/index/docid/190412/filename/Olivero-f-2002.pdf
http://tel.archives-ouvertes.fr/tel-00004579/

The Contribution of Information and Communication Technology … 195

In Proceedings of the 13th international congress on mathematical education (pp. 277–287).
Cham: Springer.

Stylianides, G. J., & Stylianides, A. J. (2005). Validation of solutions of construction problems in
dynamic geometry environments. International Journal of Computers for Mathematical Learn-
ing, 10(1), 31–47.

Stylianides, A. J., Bieda, K. N., &Morselli, F. (2016). Proof and argumentation in mathematics edu-
cation research. In The second handbook of research on the psychology of mathematics education
(pp. 315–351). Rotterdam: Sense Publishers.

Thompson, D. R. (1996). Learning and teaching indirect proof. The Mathematics Teacher, 89(6),
474–482.

Journeys in Mathematical Landscapes:
Genius or Craft?

Lorenzo Lane, Ursula Martin, Dave Murray-Rust, Alison Pease
and Fenner Tanswell

1 Prelude

In 1993 Andrew Wiles announced the proof of Fermat’s Last Theorem. A subse-
quent interview by the US PBS (Wiles, 2000) plays to the popular notion of a lone
genius, waiting for inspiration to strike, and highlights the “passion and emotion” of
mathematics, lingering on the moment where Wiles says

And sometimes I realized that nothing that had ever been done before was any use at all.
Then I just had to find something completely new; it’s a mystery where that comes from,

followed by a dramatic pause.
Mathematical genius and creativity have received much attention (Robinson,

2011). Yet the interview also highlights more day-to-day aspects of mathematicians’
work, which in this paper we designate as the “craft” of mathematics, as in the
paragraph immediately preceding the quote above

L. Lane · U. Martin (B)
University of Oxford, Oxford, UK
e-mail: Ursula.Martin@maths.ox.ac.uk

L. Lane
e-mail: lorenzo.lane@hotmail.co.uk

D. Murray-Rust
University of Edinburgh, Edinburgh, Scotland
e-mail: d.murray-rust@ed.ac.uk

A. Pease
University of Dundee, Dundee, Scotland
e-mail: a.pease@dundee.ac.uk

F. Tanswell
University of St Andrews, St Andrews, Scotland
e-mail: f.tanswell@lboro.ac.uk

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_9

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_9&domain=pdf
mailto:Ursula.Martin@maths.ox.ac.uk
mailto:lorenzo.lane@hotmail.co.uk
mailto:d.murray-rust@ed.ac.uk
mailto:a.pease@dundee.ac.uk
mailto:f.tanswell@lboro.ac.uk
https://doi.org/10.1007/978-3-030-28483-1_9

198 L. Lane et al.

I used to come up to my study, and start trying to find patterns. I tried doing calculations
which explain some little piece of mathematics. I tried to fit it in with some previous broad
conceptual understanding of some part of mathematics that would clarify the particular
problem I was thinking about. Sometimes that would involve going and looking it up in a
book to see how it’s done there. Sometimes it was a question of modifying things a bit, doing
a little extra calculation.

These small explorations formpart of a largerwhole, cast as exploring an unknown
landscape:

Perhaps I can best describemy experience of doingmathematics in terms of a journey through
a dark unexplored mansion. You enter the first room of the mansion and it’s completely dark.
You stumble around bumping into the furniture, but gradually you learn where each piece
of furniture is. Finally, after six months or so, you find the light switch, you turn it on, and
suddenly it’s all illuminated. You can see exactly where you were. Then you move into
the next room and spend another six months in the dark. So each of these breakthroughs,
while sometimes they’re momentary, sometimes over a period of a day or two, they are the
culmination of—and couldn’t exist without—the many months of stumbling around in the
dark that proceed them.

This notion of “stumbling” inspired a previous paper (Martin, 2015), where online
and computational mathematics were analysed to shed light this fine-grained math-
ematical practice of the craft of mathematics.

This paper is an initial study of this craft, attempting to reconcile the contrasting
notions of genius and craft through viewing the mathematician as crafting a journey
through a mathematical landscape, with mathematical education providing wayfarer
with the necessary skills and tools. We look first, in Sect. 2, at mathematicians’
metaphors of journeys in space; then in Sect. 3 give an initial indication of how
these might be framed in terms of literary studies, social science and philosophy,
suggesting that ideas of explorations of a fixed landscape might be broadened to
consider howmathematicians themselves create that landscape. In Sect. 4we contrast
such notions of genius and inspiration in traversing the landscape with notions of
mathematics education as developing skills in the learner. In Sect. 5 we discuss
the “polymath” online collaborations, a form of “social machine”, and their use in
mathematics education. In Sect. 6 we suggest how theories of craft, in particular
Ingold’s notion of crafting as wayfaring, open up new possibilities for framing the
practice of mathematics, and shed further light on the educational role of polymath
collaborations.

2 Mathematicians on Mathematics: The Journey in Space

Newton’s remark that

I know not what I may seem to the world, but as to myself, I seem to have been only like
a boy playing on the sea-shore and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered
before me. (Turnow, 1806), cited in (Schaffer, 2009, p. 243).

Journeys in Mathematical Landscapes: Genius or Craft? 199

is often taken as the epitomeof the lonemathematician exploring the naturalworld,
and modestly presenting his (always his) activities to a small coterie of followers.
Schaffer (2009) observes that the remark, or alleged remark, only reported some
years after Newton’s death, is likely to have been taken up so that Newton’s isolation
and intellectual approach might add authority to his ideas. Newton worked among
informants skilled in so-called “practical mathematics”, the arithmetic and geometry
needed for accounting, surveying, navigation and warfare, and a staple of education
for anyone above the labouring classes. The nineteenth century saw this tradition
somewhat at oddswith the rise of abstraction inmathematical education and research,
following more rigorous approaches emerging from Europe.

Augustus De Morgan, a celebrated educator in this newer more abstract tradition,
writes in the 1842 preface to his influential (and monumental) calculus textbook (De
Morgan, 1842) that

the way to enlarge the settled country [of mathematics] has not been by keeping within it,
but by making voyages of discovery (De Morgan, 1842, p. vii)

and quotes Newton’s supposed remark approvingly to his pupil Ada Lovelace
(Hollings et al., 2017)

That which you say about the comparison of what you do with what you see can be done
was equally said by Newton when he compared himself to a boy who had picked up a few
pebbles from the shore … so that you have respectable authority for supposing that you will
never get rid of that feeling; and it is no use trying to catch the horizon [quoted in Hollings
et al., 2017, p. 208; original in LB 170, 15 September 1840, f. 14r]

Such metaphors of exploration and colonisation are unsurprising for the time, and
sat comfortably with sensibilities of later British mathematicians: Cambridge’s G H
Hardy, a keen climber himself, and friend of the climbers Mallory and Irving, who
were lost attempting to scale Everest, wrote (Hardy, 1929)

I have myself always thought of a mathematician as in the first instance an observer, a man
who gazes at a distant range of mountains and notes down his observations. His object is
simply to distinguish clearly and notify to others as many different peaks as he can. There are
some peaks which he can distinguish easily, while others are less clear. He sees A sharply,
while of B he can obtain only transitory glimpses. At last he makes out a ridge which leads
from A, and following it to its end he discovers that it culminates in B. (Hardy, 1929, p. 18)

Hardy extends this metaphor to reflect on the nature of proof:

B is now fixed in his vision, and from this point he can proceed to further discoveries. In other
cases perhaps he can distinguish a ridge which vanishes in the distance, and conjectures that
it leads to a peak in the clouds or below the horizon. But when he sees a peak he believes
that it is there simply because he sees it. If he wishes someone else to see it, he points to it,
either directly or through the chain of summits which led him to recognise it himself. When
his pupil also sees it, the research, the argument, the proof is finished. (Ibid.)

Hardy’s notion of education is striking to the modern reader: the pupil needs to
see the result is true, but nothing is said about the process of learning to do proofs.

200 L. Lane et al.

The analogy is a rough one, but I am sure that it is not altogether misleading. If we were
to push it to its extreme we should be led to a rather paradoxical conclusion; that there is,
strictly, no such thing as mathematical proof; that we can, in the last analysis, do nothing
but point; that proofs are what Littlewood and I call gas, rhetorical flourishes designed to
affect psychology, pictures on the board in the lecture, devices to stimulate the imagination
of pupils. (Ibid.)

Gilbert Ryle takes the metaphor to the jungle, (Ryle, 1971)

the pioneering path-finder, Pythagoras say, has no tracks to follow …through the jungle [it
may be that]…. he will have made a track along which he can now guide docile companions
safely and easily right through the jungle. How does he achieve this? Not by following
tracks, since there are none to follow. Not by sitting down and wringing his hands. But by
walking over ground where tracks certainly do not exist, but where, with luck, assiduity
and judgement, tracks might and so perhaps will exist. All his walkings are experimental
walkings on hypothetical tracks or candidate-tracks or could-be tracks, or tracks on appro;
and it is by so walking that, in the end, while of course he finds lots and lots of impasses, he
also finds (if he does find), a viable track. (Ryle, 1971, p. 224)

and the contemporary mathematician and author du Sautoy (2015), channelling
Hardy, argues, with a nod to Tolkein, that:

A proof is like themathematician’s travelogue. Fermat gazed out of hismathematicalwindow
and spotted this mathematical peak in the distance, the statement that his equations do not
have whole number solutions. The challenge for subsequent generations of mathematicians
was to find a pathway leading from the familiar territory that mathematicians had already
navigated to this foreign new land. Like the story of Frodo’s adventures in Tolkien’s Lord of
the Rings, a proof is a description of the journey from the Shire to Mordor.

A successful proof is like a set of signposts that allow all subsequent mathematicians to make
the same journey. Readers of the proof will experience the same exciting realisation as its
author that this path allows them to reach the distant peak. Very often a proof will not seek
to dot every i and cross every t, just as a story does not present every detail of a character’s
life. It is a description of the journey and not necessarily the re-enactment of every step. The
arguments that mathematicians provide as proofs are designed to create a rush in the mind
of the reader.

In recent years a number ofmathematicians havewritten accounts of the discipline
for the general reader, with the “landscape” metaphor remaining prominent. For
2010 Fields medallist Villani (2015), whose book largely consists of transcriptions
of emails sent as his work developed,

The complexity of the mathematical landscape…makes my head spin (Villani, 2015, p. 80)

and he notes the role of analogy:

The ability to detect connections between different areas of mathematics is what has made
my reputation. These connections are invaluable. It is a bit like a game of Ping-Pong: every
discovery you make on one side helps you discover something new on the other. The con-
nections make it possible to see more of the landscape on both sides. (Villani, 2015, p. 135)

Harris (2015), in a wide-ranging account of the mathematical process, draws on
the more contemporary analogy of video-games, in describing the sense of being an
avatar in the virtual world, while John Conway (Roberts, 2015) graphically describes
the physicality of the geometrical worlds he is investigating:

Journeys in Mathematical Landscapes: Genius or Craft? 201

For a time I was thinking so geometrically about these things that I used to imagine myself
with lots and lots of arms and legs, extra limbs. Because if I have two arms and point ’em
out, then they both lie in a plane. And I’ll use a leg as well, and now they are lying in three-
dimensional space. To form an adequate idea, an adequate geometric visualisation, of what
is going on in 24 dimensions is more or less impossible. In large dimensional space, there are
large numbers of directions to point, so you would seem to need quite a lot of arms and legs.
I distinctly remember imagining myself stuck in the middle of this space, and waving all my
arms and legs in the air, and trying to understand things, looking up at the stars, pretending
they are the lattice points, and just sort of daydreaming.

3 The Journey in Space: Broader Reflections

Suchmetaphors have been castmore broadly by authors in philosophy, social science,
sociology of knowledge and literary theory. Jenkins (2007) unpicks approaches to
understanding and categorisation of the “spaces” and “landscapes” of knowledge,
from the Romantic movement in literature onwards. As Jenkins observes,

the same kinds of mental processes that allow us to perceive the organization of a landscape
are analogous to the ones that allow us to perceive the organization of a body of knowledge
… strategies used to regulate access to knowledge and to manage the twin pulls towards
spread and containment of information. (Jenkins, 2007, p. 7)

Thesemetaphors can be construed as themanifestation of relations of class, power
and colonialism:

Some of these strategies involved use of spatial metaphor, for instance by imagining knowl-
edge as a landscape in which certain kinds of journeys and certain kinds of traveller were
permitted and others excluded. (Ibid.)

Lane (2017) draws on Bourdieu (1985) and Sewell (1992) in interpreting substan-
tial ethnographic observation to show how mathematical perception is built up from
the domains of physical, conceptual and discourse space. Bourdieu sees such catego-
rizations as the manifestations of the social world (Bourdieu, 1985), and Lane argues
that the crafting of ideas changes as a function of space, these spaces being socially
determined. These domains share schemaswhich aremobilised during problem solv-
ing and proof construction, to guide mathematicians’ intuitions; and are utilised dur-
ing communicative acts, in order to create common ground and common reference
frames.Different structuring principles are utilised according to the contexts inwhich
the act of knowledge production or communication take place. Lane argues further
that the degree of formality, privacy or competitiveness of environments affects the
presentation of mathematicians’ selves and ideas, and that mathematicians’ percep-
tions of mathematical phenomena are dependent upon their positions and relations
in this “social space”.

Metaphors are important. These mathematicians present mathematics as a fixed
Platonic landscape, open to conquest and colonisation by intrepid mathematician-
explorers, who show others the paths they have made and the things they have dis-

202 L. Lane et al.

covered. To join them the pupils too have to be fearless and intrepid: and little is said
about how to learn the skills of exploration.

Yet the approach of sociologists opens up the question of how the mathematicians
themselves might be creating that landscape, and what skills that might require. It is
beyond our scope here to look at broader philosophical issues, for example the con-
trast between mathematics as theory-building, and mathematics as problem-solving,
as inGowers (2000). Butmathematicians themselves can sometimes question if land-
scape metaphors are too constraining: for example Jim Propp, quoted in (Roberts,
2015), wonders if John Conway:

is the rare sort of mathematician whose ability to connect his pet mathematical interests
makes one wonder if he isn’t, at some level, shaping mathematical reality and not just
exploring it. The example of this that I know best is a connection he discovered between
sphere packing and games. These were two separate areas of study that Conway had arrived
at by two different paths. So there’s no reason for them to be linked. But somehow, through
the force of his personality, and the intensity of his passion, he bent themathematical universe
to his will. (Roberts, 2015, p. 2)

The account by Ehrhardt (2010) of the work of Evariste Galois gives a nice
example of how such apparently fixed landscapes can be both post hoc constructions,
ways of organising knowledge, as indicated by Jenkins; and be shaped by social as
well as scientific forces as indicated by Bourdieu and Lane. Galois’s work on the
solution of equationswas dismissed by Poisson andLacroix, and his contributionwas
only recognised once later mathematicians had developed the theory of equations in
a broader context. As Ehrhardt remarks:

Indeed, the meaning of a mathematical text is the product of a long social and scientific
process, one that, in the case of Galois’s text, took over one hundred years. During this long
period, Galois’s text was read, interpreted and recast by a large number of actors who did not
agree as to its meaning and mostly construed it through local lenses. Only at the beginning
of the 20th century, when Galois theory entered the realm of teaching in European countries,
did it acquire a more unified meaning.

A further philosophical aspect beyond our scope is that of the aesthetic of math-
ematics: the philosopher Thomas (2016) offers a different metaphor for the choices
a mathematician makes in shaping the landscape:

Much mathematical effort is more like landscape gardening than like picture drawing. I take
picture drawing to begin with a blank sheet … Mathematical creation is not so free, hence
the contrasting analogy of the landscape gardener, who needs a good grasp of the topography
before getting down to creating something beautiful (Thomas, 2016, p. 124)

4 Mathematicians on Mathematics: Genius Versus Craft

Yet, while such metaphors of journeys of discovery in a space of mathematical
possibilities are widespread, much less attention is paid in such popular writing on
mathematics to the practice of mathematics. WhileWiles’s presentation of the messy

Journeys in Mathematical Landscapes: Genius or Craft? 203

day-to-day businessmathematicians’work, above, as “stumbling around in the dark”,
seems credible, for others there is a more idealistic view. For du Sautoy (2015) such
practice is seemingly about a world of choices based on narrative impact:

When I am creating a new piece of mathematics the choices I will make will be motivated
by the desire to take my audience on an interesting mathematical journey full of twists and
turns and surprises. I want to tease an audience with the challenge of why two seemingly
unconnected mathematical characters should have anything to do with each other. And then
as the proof unfolds there is a gradual realisation or sudden moment of recognition that these
two ideas are actually one and the same character.

Roberts (2015), while acknowledging that her subject is an unreliable narrator,
makes light of the labour of one of Conway’s major discoveries:

Conway had expected to keep to his house-arrest work ethic for weeks or months or beyond.
Locking himself away that first Saturday, he unfurled an unused roll of wallpaper backing
paper and sketched out all he knew about the problem. By that very evening, he’d figured it
out. He’d deduced the Leech lattice’s number of symmetries.

Such unrealistic representations play to the further self-presentation of the math-
ematician as an idiosyncratic genius possessed of an indefinable charisma: an obser-
vant account is presented byMichael Harris in his bookMathematics without Apolo-
gies (Harris, 2015). Harris frames such mathematical charisma, including his own,
by quoting Bourdieu:

The charismatic leader manages to be for the group what he is for himself, instead of being
for himself, like those dominated in the symbolic struggle, what he is for others. He ‘makes’
the opinion which makes him; he constitutes himself as an absolute by a manipulation of
symbolic powerwhich is constitutive of his power since it enables him to produce and impose
his own objectification. (Bourdieu, 1984, p. 208)

It is beyond our scope to consider in detail how such self-perpetuating accultura-
tion influences all aspects of the doing of mathematics: not just the public perception
of mathematics, or how people become mathematicians, or the career and prestige of
individuals, but also choice and acceptability of problems, and credibility of proposed
proofs.

A striking example is provided by the discussion by leaders of the field, on Frank
Calegari’s well-respected blog (Calegari, 2017), of the recent claims byMochizuki to
have proved the long-standing ABC conjecture. Mochizuki’s claims, because of his
previous work, or “charisma”, initially carried some credibility. Doubts increased,
due to the difficulty in understanding the papers, his disinclination to present thework
in public, and reports that it was to be published in a journal of which he is himself
the editor. Terence Tao pointed out how unusual it was that the lengthy development
did not contain within it a “proof of concept”—a smaller result which would give
the reader some confidence in the direction of travel (Tao, 2017)

It seems bizarre tome that there would be an entire self-contained theorywhose only external
application is to prove the abc conjecture after 300+ pages of set up, with no smaller fragment
of this setup having any non-trivial external consequence whatsoever.

204 L. Lane et al.

Tanswell (2017) proposes framing this debate in terms of the philosophical theory
of mathematical “virtues”, identifying a tension betweenMochizuki’s defence of the
rigour of his collaborators, the expectation of the virtues of significant labour and
humility on the part of even his expert readers, and the expectation of those readers
of the virtues of transparency and clarity and links to other mathematical material.
Tanswell’s “Moderate Proposal” is that virtues and vices of mathematicians are rel-
evant to mathematical knowledge, and virtues, vices and values can be incorporated
more generally into philosophy of mathematics. Mason and Hanna (2016) extend
this to education, identifying the tension between values of care for students, and
care for mathematics, in choices of expository style.

Thus valuable and credible as the reflections of mathematicians are, in shedding
light on controversies in mathematics, and how practitioners think about their own
discipline, they still tell us less about the “how” of doing mathematics, or of learning
how to do mathematics. Indeed, by reinforcing stereotypes of the mathematician
as an inspired genius, and mathematics as a competitive sport, they contribute to
a perception of mathematical ability as a fixed trait. This view has been strongly
challenged by researchers in mathematical education, notably Dweck (2006) and
Boaler (2016), who argue that such a “fixed mindset”, seeing mathematical ability as
unusual and unchangeable, hampers student learning, and that achievement increases
when students shift to a “growth mindset” of believing that their abilities can be
developed and their intelligence is malleable.

Terry Tao, a Fields medallist and respected mentor, teacher and mathematical
innovator, who was himself a child prodigy, makes similar points. A prolific blogger
on education, his 2007 blog post against the notion of genius forcefully presents
mathematical ability as a skill to be learned:

Does one have to be a genius to do mathematics?

The answer is an emphatic NO. In order to make good and useful contributions to mathe-
matics, one does need to work hard, learn one’s field well, learn other fields and tools, ask
questions, talk to other mathematicians, and think about the “big picture”. And yes, a reason-
able amount of intelligence, patience, and maturity is also required. But one does not need
some sort of magic “genius gene” that spontaneously generates ex nihilo deep insights,
unexpected solutions to problems, or other supernatural abilities. (Tao, 2007)

concluding, in the spirit of amassing “capital” in the form of understanding and
contributions to a collective effort, but at odds with Harris’s more flamboyant notions
of “charisma”, that

It’s also good to remember that professional mathematics is not a sport (in sharp contrast
to mathematics competitions). The objective in mathematics is not to obtain the highest
ranking, the highest “score”, or the highest number of prizes and awards; instead, it is
to increase understanding of mathematics (both for yourself, and for your colleagues and
students), and to contribute to its development and applications. For these tasks, mathematics
needs all the good people it can get. (Ibid.)

The tools of ethnography, and the emerging field of “mathematical practice”, give
a more realistic account of the day to day activities of mathematicians.

Journeys in Mathematical Landscapes: Genius or Craft? 205

Ethnographers observemathematicians’ day to day activity, alone andwith others,
on notepads and blackboards, as they strive to understand and develop ideas (Barany,
2014):

We call attention to the vast labor of decoding, translating, and transmaterializing official
texts without which advanced mathematics could not proceed. … tentative, transitory marks
that try to produce new orders out of old ones (with a crucial stage of disorder in between)
(Barany, 2014, p. 108)

This labour, as in the examples above, plays down the notion of genius, replac-
ing it with the idea of detailed skilled work in developing ideas and working out
possibilities. Lane (2017) sees the blackboard as a tool for assembling and manipu-
lating mathematical objects: by erasing and “boxing”, drawing arrows and relating,
the mathematician is more quickly able to discover patterns and perceive order. The
blackboard thus becomes a space for envisioning possibilities and crafting structure,
rather than just a space for proving and refining arguments, enabling the exploration
of the embodied processes involved in picturing, intuiting and manipulating mathe-
matical spaces. Mathematical practice becomes perceived as a set of skilled actions,
habits, and bodily sensations, with the mathematician a craftsperson, skilfully using
the physical tools of the mathematician, chalk and blackboard, and the intellectual
tools of a variety of mathematical techniques.

This language of craft resonates with many accounts of learning how to do math-
ematics, by both mathematicians and educators. Polya’s famous problem solving
techniques (Polya, 1945) are often presented as the “craft of discovery” or simi-
lar terms, (Davis, 1995; Zeitz, 2006). Tao’s extensive and influential blog posts on
learning mathematics (Tao, 2007) resonate with Boaler’s work on growth mindset,
advising mathematicians to continually refine their craft through mastery of a tool-
box of techniques, both developing skill with existing tools, and acquiring new ones.

In the final sectionwe return towriting on craft for a framing of these observations,
but first we consider a new area for ethnographic enquiry, the online collaborations
known as “polymath”.

5 Crafting Online Collaboration

Tao, with his fellow Fields medallist Tim Gowers and others, is responsible for
“polymath”, an endeavour for tackling significant mathematical problems through
collective online activity: at the time of writing the sixteenth such project under way.
The infrastructure consists solely of postings on a blog, with “house rules” (Gowers,
2009), established through collective discussion, designed to encourage interaction,
accessibility and rapid exchange of informal ideas. These include, for example “It’s
OK for amathematical thought to be tentative, incomplete, or even incorrect”, “better
to have had five stupid ideas than no ideas at all” and “An ideal polymath research
comment should represent a ‘quantum of progress’.”

206 L. Lane et al.

Polymath is sometimes described as “crowdsourced science”, though the crowd is
a small and expert one. The unstructured development of the ideas through complex
threading of multiple blog comments allows a variety of perspectives and serendip-
itous connections, with lines of enquiry, some fruitful, some not, weaving together
in a manner much more akin to a novel than a conventional scientific paper.

As Gowers and Nielsen observe (Gowers, 2009)

Who would have guessed that the working record of a mathematical project would read like
a thriller? (Gowers, 2009, p. 880)

Polymath is an example of a social machine, a concept due to Berners-Lee,
defined as “purposeful human interaction on the web”, where machines enable mass
human collaboration, rather than acting asmechanical problem solving agents. Social
machines cover phenomena as diverse as Wikipedia, twitter, or Zooniverse, and this
enmeshed nature of contributor threads, allowing serendipitous interactions, has been
identified as a powerful element of their success.

Polymath conversations rapidly become too unwieldy and interwoven to self-
organise: a leader draws together the threads from time to time, suggesting the most
appropriate next direction, and restarting the discussion with a substantial new blog
post. These posts, presented in a more conventional mathematical style, then form
the basis of the eventual published paper. Though all polymath projects seem to have
produced something useful, not all have proved their target result, with attempts
failing through finding a counter-example, or for of lack of participants or fruitful
ideas. The most successful have led to published papers, under the pseudonym “D H
J Polymath”, where the initials refer to the Density Hales-Jewett theorem, which was
the subject of the first Polymath. Participants themselves (Polymath, 2014) are aware
of the complex social space thus created, for example reflecting on the opportunities
and risks of collaboration behind a pseudonym, rather than a more modest sole
contribution.

A recent book by Neale (2017) presents the most notable polymath to date, which
extended work of Yitang Zhang tomassively reduce the bound on the so called “Twin
Primes conjecture”. Neale’s book starts in a landscape, not Hardy’s distant views of
lofty peaks, but hands-on climbing in the manner of Ryle’s jungle walks:

You stand looking at the sheer surface of your mathematical problem, searching for toeholds
and crevices that might give a way up. After a long time looking, you start to make out an
indistinct crack to the left, and a slight pattern in the rock up and to the right that reminds
you of a climb you heard about once. Putting together all the features you’ve noticed, you
can sketch out a possible route up the rock face, although it’s not quite clear whether that
small ledge will make a good toehold and there’s a pretty ambitious reach near the top that
might well be a stretch too far.

Still, now that you have a possible route in mind, you can step off the ground, and hope that
the details will become clearer along the way. Perhaps that reach will be too big, but when
you get a bit closer maybe there’ll be a crack in just the right place for your fingers.

Unfortunately, when you’re three-quarters of the way up a sliver of rock breaks away, your
toehold disappears from beneath your feet, and you drop back some way. Eventually, how-
ever, if you persevere you might reach the top. (Neale, 2017, p. 1)

Journeys in Mathematical Landscapes: Genius or Craft? 207

The polymath blogs display mathematical proofs, and attempts at proofs, in
exactly this fashion: discussion of possible partial approaches, working through the
details, resolving bottle-necks and retreating from dead-ends, perhaps by refining
current techniques, perhaps by trying something new, and vividly demonstrating
how advance may come from sharing and refinement of small insights, as well as
from one big breakthrough. The contrast with Hardy’s view of an educator’s expo-
sition of a completed proof, “rhetorical flourishes designed to affect psychology” is
striking.

By contrast with an isolated researcher working on one idea at a time, a polymath
project can pursue several lines of attack simultaneously, adding to the potential for
fruitful interaction at the cost of greater attention to the ideas of others. We have
discussed elsewhere (Martin, 2015) how polymath, and similar mathematical social
machines, shed light on the everyday practice of mathematics. We highlighted how
few of the blog comments are actual steps in the final proof, with other phenomena
such as examples, conjectures, concept formation, and planning, playing key roles in
exploring the landscape, and indicated the importance of dead ends and mistakes in
increasing understanding, and the value of collaboration in providing diverse skills,
capturing mistakes and allowing more risks to be taken.

Lakatos’s (1976) account of the development of proofs, presented in an educa-
tional framework, seems a much tidier view, in which every action has a clear logical
role in the development of the final proof, presented using a theory of responses
to counterexamples. However Lakatos was providing a rational reconstruction, and,
just as in an account of a successful rock-climb, pruning some of the dead-ends and
abandoned lines of enquirymakes for greater readability without altering the purpose
of the narrative.

The developers of “polymath” were motivated not just by finding new ways of to
solve problems, but also by a strong interest in mathematical education, and in show-
ing their readers, far more clearly than in a standard textbook or lecture, the messy
day to day process of doing mathematics, as well as the final proof that emerged.
Originally they had hoped to encourage newcomers to take part, an aim not entirely
realised, as taking part required a level of specialist knowledge, a commitment of
time, and a willingness to make mistakes in public. However, the educational value
of polymath is undisputed, in showing, as Tao put it “how the sausage is made”, with
educators following the proofs as they developed, enabling students to see the sheer
excitement of doing mathematics, as well as seeing that even top mathematicians
get stuck, make mistakes and need to ask for help (Martin, 2015). The MIT-based
“crowdmath” project follows the model of polymath, providing structured and men-
tored environment for high-school and college students to collaborate on research
level problems, and has led to several published research papers (Crowdmath, 2015).
Other online experiments, in which technology is used to enhance learning outcomes
include an experimental MOOC developed by Boaler et al., designed to encourage
participation, interaction, and a move to a “growth mindset”. It has attracted over
160,000 participants, and has been used to demonstrate correlations between this
intervention and both academic achievement and attitudes towards mathematics.

208 L. Lane et al.

6 Mathematics and Craft

Craft has a scholarly literature of its own, and in this final section we reflect
on what it might contribute to understanding the practice of mathematics.
Heidegger (1962) characterised crafting as an embodied process of bringing
objects/concepts/structures into being in the world, a form of skilled work by
which such objects/concepts/structures are built up dynamically through encoun-
ters between the subject of the craft-person and the object which is being crafted.
He argued that the distinction between subject and object is dissolved through the
process of crafting, as the thing being materialised is imbued with the character and
will of the craft-person.

This concept of craft is closely linked to Levi-Strauss’s (1966) idea of bricolage
(assembly, ormaking). Bricolage is undertaken by a bricoleur, who assembles diverse
objects together into a coherent assemblage, through uniting material objects within
the framework of an idea: what transforms the material assemblage of a bricolage
from a mess into a craft-work is not the identification of each of the elements as iso-
lated wholes, but rather the higher conceptual structure within which these elements
are related, as part of an intentional composition by the craft-person. Mackenzie
(2003) introduces the idea of mathematical practice as bricolage, which he char-
acterises as “creative tinkering” guided by broader principles, in his work on the
creation the Black-Scholes equation. In a mathematical proof it is not the individual
elements which give insight, but rather their relationships within a wider discourse
structure, which orients them towards a certain purpose.

As Ingold, in his work on “making” (Ingold, 2011) indicates, a deeper history
of craft stretches back to the classical era, where craft or “practice” (technê) is
contrasted with knowledge or “theory” (Epistêmê). Craft is concerned with skills
or practices, obtained through apprenticeship with a master craft-person, with such
skills developed through practice, so they become a form of know-how or embodied
knowledge and habit. In the case ofmathematics, themathematician directs their craft
skills to the goal of understanding andmanipulatingmathematical objects. Tanswell’s
thesis (Tanswell, 2017) develops this in a discussion of Ryle’s distinction between
knowing-how and knowing-that, showing that both are necessary, and intertwined in
the process of doing mathematics.

David Pye, a furniture maker and eminent scholar of craft, characterises craft as
(Pye, 1968, p. 20)

simply any kind of technique or apparatus, in which the quality of the result is not predeter-
mined, but depends on judgment, dexterity and care which the maker exercises as he works.
The essential idea is that the quality of the result is continually at risk during the process of
making; and so I shall call this kind of workmanship “The workmanship of risk”

He contrasts this with the “workmanship of certainty” where every step and hence
the outcome is prescribed, leaving no decisions to the maker, and observes the need
for both.

Much writing on craft is concerned with the physicality of tool use, the numerous
small choices made in controlling a saw for example. In developing a mathemati-

Journeys in Mathematical Landscapes: Genius or Craft? 209

cal proof the “tools” might be techniques or approaches: “find a minimum”, “look
for a bound” and so on, each requiring its own skill in application – the process
of “stumbling around in the dark” so articulately described by Wiles. Processes
like Wiles’s “a little more calculation” are routine and certain in their outcome, the
“workmanship of certainty”, whereas “modifying things a bit” is more akin to the
“workmanship of risk”. A polymath proof development shows exactly the choices
and refinements being made, as participants debate the choice of different “tools” at
each stage, mitigating the “risk” by having others check or comment on their work,
and sharing out the routine labour which has more “certainty”, for example doing a
routine calculation.

Ingold (2011) gives a close description of using a saw to illustrate the preces-
sional quality of tool use, where precise phases are not delineated, but each contains
the seeds of the next as part of an overall “umbrella plan”, a notion similar to Alan
Bundy’s proof plans (Bundy, 1988), and characterises the essence of skill in such
activities as “the improvisational ability of practitioners to disassemble the construc-
tions of technology and creatively to incorporate the pieces”. Ingold, and we recall
here Wiles, Hardy, Ryle, du Sautoy and Neale, compares the activity to a journey:

It does not take just one step, however, to saw a plank. It takes many steps; moreover these
steps are no more discrete or discontinuous than those of the walker. That is to say, they
do not follow one another in succession, like beads on a string. Their order is precessional,
rather than successional. In walking, every step is a development of the one before and a
preparation for the one following. The same is true of every stroke of the saw. Like going
for a walk, sawing a plank has the character of a journey, (Ingold, 2011, p. 53)

Ingold thinks of the craftsman as a “wayfarer”, and Murray Rust and others
(2015) have identified this wayfaring as characteristic of crafting a path through
the landscape of a social machine, like polymath, in terms that nicely fit Neale’s
climber:

a journeyer situated in a landscape, with signs which can be read, and possible directions
to explore. Rather than a top-down map of the world, on which routes can be meticulously
planned out, navigation is local and responsive. The wayfarer is engaged in a constant
exchange with their environment, deciphering, orienting and acting. (Murray-Rust, 2015,
p. 1144)

Ingold uses the term “meshwork” for the collection of paths taken, offering signs
to the wayfarer, and acting as records of their passage; such paths are not a well-
organised network, but in the entanglings offer new creative possibilities, much like
Ryle’s “ground where tracks certainly do not exist, but where, with luck, assiduity
and judgement, tracksmight and so perhaps will exist”, which others can then follow,
or the multiple paths through a space of mathematical possibilities.

Ingold, like du Sautoy, identifies such journeys with stories:

landscape tells – or rather is – a story. … To perceive the landscape is therefore to carry out
an act of remembrance, and remembering is not so much a matter of calling up an internal
image, stored in the mind, as of engaging perceptually with an environment that is itself
pregnant with the past. (Ingold, 1993, p. 189)

210 L. Lane et al.

We have but scratched the surface in this essay, and philosophers, ethnographers,
social scientists, humanists, educators and scholars of craft have much to say about
matters we have left unaddressed.

In our reading, Newton’s beach or Hardy’s Himalaya or Ryle’s jungle or Wiles’s
cellar or Neale’s cliff-face or Thomas’s garden are comprehended and communi-
cated as wayfarings in landscapes. These landscapes, as articulated by Jenkins, are
metaphors for mathematicians’ internal representations, themselves made of a col-
lection proof attempts/journeys/stories, and constantly reshaped through their own
new proof attempts/journeys/stories, and through learning of those of others. Ryle’s
distinction between knowing-what and knowing-how becomes a matter of degree
rather than a matter of kind: in the most general terms Hardy surveying the distant
peaks knows that there is a proof/route and convinces others, and Neale, scrambling
up the rock-face, knows how to enact it. But Hardy sometimes gets his fingernails
dirty, and Neale sometimes draws back and inspects the route.

For the educator, the view of mathematics as a craft activity, and of mathematical
ability as a skill to be developed, rather than a fixed talent, is not new, and Tao’s
emphasis on continually extending one’s knowledge and skills is a good antidote
to unrealistic notions of genius. Activities like polymath allow learners to better
understand and learn the craft of how mathematics is done through seeing others
exercising those craft skills, and offer an opportunity to develop their own skills by
taking part.

The knowledge and skills of both learners and established mathematicians is
continually moderated by their own journeys and those of others, raising further
questions as to the nature of this mathematical material that is being crafted, and
in turn crafting its crafters, the mathematicians. Yet what material is as vital as
mathematics, in its ability to affect change on the world, and to push back on the
hands and minds of practitioners?

Acknowledgements We thank Dave de Roure and Pip Willcocks for helpful discussions, and the
referees for their thoughtful comments. Support from the UK Engineering and Physical Sciences
Research Council is acknowledged under grants EPSRC EP/K040251/2 (Martin, Lane, Tanswell),
EP/J017728/2 (Murray-Rust) and EP/P017320/1 (Pease).

References

Barany, M, & Mackenzie, D. (2014). Chalk: Materials and concepts in mathematics research. In
Representation in scientific practice revisited (pp. 107–130). MIT Press.

Boaler, J. (2016). Mathematical mindsets: Unleashing students’ potential through creative math,
inspiring messages and innovative teaching. San Francisco, CA: Wiley & Sons.

Bourdieu, P. (1984).Distinction: A social critique of the judgement of taste, tr. RichardNice. Harvard
University Press.

Bourdieu, P. (1985). The social space and the genesis of groups. Theory and Society, 14, 723–744.
Bundy, A. (1988). The use of explicit plans to guide inductive proofs. In International Conference
on Automated Deduction.

Journeys in Mathematical Landscapes: Genius or Craft? 211

Calegari, F. (2017). galoisrepresentations.wordpress.com/2017/12/17/the-abc-conjecture-has-still-
not-been-proved/.

Crowdmath. (2015). https://artofproblemsolving.com/polymath.
Davis, P. J. & Hersh, R. (1995). The mathematical experience (study ed.). Birkhauser.
De Morgan, A. (1842). The differential and integral calculus (p. vii). Baldwin and Cradock.
du Sautoy, M. (2015). How mathematicians are storytellers and numbers are the characters.
The Guardian. www.theguardian.com/books/2015/jan/23/mathematicians-storytellers-numbers-
characters-marcus-du-sautoy.

Dweck, C. S. (2006). Mindset: The new psychology of success. New York, NY: Random House
Incorporated.

Ehrhardt, C. (2010). A social history of the “Galois Affair” at the Paris academy of sciences. Science
in Context, 23(1), 91–119.

Gowers, T. (2000). The two cultures of mathematics. In V.I. Arnold (Ed.), Mathematics: Frontiers
and perspectives. AMS. https://www.dpmms.cam.ac.uk/~wtg10/2cultures.pdf.

Gowers, T. (2009). https://www.gowers.wordpress.com/2009/01/27/ismassively-collaborative-
mathematicspossible/. Gowers, T., & Nielsen, M. (2009). Massively collaborative mathematics.
Nature, 461, 879–881.

Hardy, G. H. (1929). Mathematical proof. Mind.
Harris, M. (2015). Mathematics without apologies. Princeton.
Heidigger, M. (1962). Being and time, tr J. Macquarrie & E. Robinson. Harper & Row.
Hollings, C., Martin, U., & Rice, A. (2017). The Lovelace–De Morgan mathematical correspon-
dence: A critical re-appraisal. Historia Mathematica, 44(3), 202–231.

Ingold, T. (1993). The temporality of the landscape. World Archaeology, 152–174.
Ingold, T. (2011). Being alive: Essays on movement, knowledge and description. Taylor & Francis.
Jenkins, A. (2007). Space and the ‘March of Mind’: Literature and the physical sciences in Britain
1815–1850. OUP.

Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.
Lane, L. (2017). The bridge between worlds: Relating position andDdsposition in the mathematical
field, Ph.D. thesis, University of Edinburgh

Levi-Strauss, C. (1966). The savage mind. University of Chicago Press.
Mackenzie,D. (2003).Anequation and itsworlds:Bricolage, exemplars, disunity andperformativity
in financial economics. Social Studies of Science, 33, 831–868.

Martin, U. (2015). Stumbling around in the dark: Lessons from everyday mathematics. In A. P.
Felty & A. Middeldorp (Eds.), Proceedings of CADE-25. Lecture Notes in Artificial Intelligence
(Vol. 9195). Springer.

Mason J., &Hanna, G. (2016). Values in caring for proof. In B. Larvor (Ed.),Mathematical cultures.
Springer Trends in the History of Science.

Murray-Rust, D., et al. (2015). On wayfaring in social machines. In Proceedings of the 24th Inter-
national Conference on the World Wide Web (pp. 1143–1148).

Neale, V. (2017).Closing the gap, the quest to understand prime numbers. Oxford University Press.
Polya, G. (1945). How to solve it. Princeton University Press.
Polymath, D. H. J. (2014). The ‘bounded gaps between primes’ polymath project: A retrospective
analysis. Newsletter of the European Mathematical Society, 94, 13–23.

Pye, D. (1968). The nature and art of workmanship. Cambridge University Press.
Roberts, S. (2015). John Horton Conway, the world’s most charismatic mathemati-
cian. The Guardian. www.theguardian.com/science/2015/jul/23/john-horton-conway-the-most-
charismatic-mathematician-in-the-world.

Robinson, A. (2011). Genius, a very short introduction. Oxford University Press.
Ryle, G. (1971). Thinking and self-teaching. Journal of Philosophy of Education, 5, 216–228.
Simon, S. (2009). Newton on the beach: The information order of Principia Mathematica. History
of Science, xlvi. Science History Publications Ltd.

Sewell, W. H. (1992). A theory of structure: Duality, agency, and transformation. American Journal
of Sociology, 98, 1–29.

http://galoisrepresentations.wordpress.com/2017/12/17/the-abc-conjecture-has-still-not-been-proved/
https://artofproblemsolving.com/polymath
http://www.theguardian.com/books/2015/jan/23/mathematicians-storytellers-numbers-characters-marcus-du-sautoy
https://www.dpmms.cam.ac.uk/%7ewtg10/2cultures.pdf
https://www.gowers.wordpress.com/2009/01/27/ismassively-collaborative-mathematicspossible/
http://www.theguardian.com/science/2015/jul/23/john-horton-conway-the-most-charismatic-mathematician-in-the-world

212 L. Lane et al.

Tanswell, F. (2017). Proof, rigour and informality: A virtue account of mathematical knowledge.
Ph.D. thesis, University of St Andrews.

Tao, T. (2007). Does one have to be a genius to do maths? terrytao.wordpress.com/career-advice/
does-one-have-to-be-a-genius-to-do-maths/.

Tao, T. (2017). Blog comment on “The ABC conjecture has (still) not been proved”. galoisrepre-
sentations.wordpress.com/2017/12/17/the-abc-conjecture-has-still-not-been-proved/#comment-
4563.

Thomas, R. (2016). Beauty is not all there is to aesthetics inmathematics.PhilosophiaMathematica,
25, 116–127.

Turnor, E., Collections for the history of the town and soke of Grantham (London, 1806, Vol. 173,
No. 2), where it is claimed this was said by Newton “a little before his death”.

Villani, C. (2015). Birth of a theorem: A mathematical adventure. Farrar, Straus and Giroux.
Wiles, A. (2000). Transcription of interview by PBS. www.pbs.org/wgbh/nova/physics/andrew-
wiles-fermat.html.

Zeitz, P. (2006). The art and craft of problem solving. Wiley.

http://terrytao.wordpress.com/career-advice/does-one-have-to-be-a-genius-to-do-maths/
http://galoisrepresentations.wordpress.com/2017/12/17/the-abc-conjecture-has-still-not-been-proved/#comment-4563
http://www.pbs.org/wgbh/nova/physics/andrew-wiles-fermat.html

Suggestions for the Use of Proof
Software in the Classroom

Using Automated Reasoning Tools
to Explore Geometric Statements
and Conjectures

Markus Hohenwarter, Zoltán Kovács and Tomás Recio

1 Introduction

GeoGebra, a software tool for dynamic mathematics, has recently been enhanced
with an automated reasoning subsystem able to confirm/deny the truth of any geom-
etry statement displayed on the screen. In addition, if the statement is labeled as
false, GeoGebra can exhibit required modifications to the hypotheses that make the
statement true. The free availability and portability of GeoGebra have made it possi-
ble for millions of students worldwide to harness these novel techniques on tablets,
smartphones, and computers.

The mathematical background of this reasoning method—based on automati-
cally algebraizing a given geometric statement and associated construction and then
applying effective algebraic geometry tools—goes back to the work of Wen-Tsün
Wu in the 1970s (seeWu, 1978; Chou, 1987). Wu’s highly performing approach was
the starting point for the developing and implementing different algebraic geometry
based, automated reasoning algorithms in a large collection of programs. However,
there has never been a program as effective as GeoGebra in:

• merging dynamic geometry and computer algebra,
• addressing non-experts, and
• achieving an impact in the educational community worldwide.

M. Hohenwarter
Johannes Kepler University of Linz, Linz, Austria
e-mail: markus.hohenwarter@jku.at

Z. Kovács (B)
The Private University College of Education of the Diocese of Linz, Linz, Austria
e-mail: zoltan@geogebra.org

T. Recio
University of Cantabria, Santander, Spain
e-mail: tomas.recio@unican.es

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_10

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_10&domain=pdf
mailto:markus.hohenwarter@jku.at
mailto:zoltan@geogebra.org
mailto:tomas.recio@unican.es
https://doi.org/10.1007/978-3-030-28483-1_10

216 M. Hohenwarter et al.

In this chapter we propose the exploration of a new kind of workflow in the
teaching/learning of elementary geometry with the help of the GeoGebra Automated
ReasoningTool (ART). Let us remark that the very recent launching of this toolmakes
our work a proposal not yet supported by experience. However, as we summarize
below and argue in more detail in the conclusion, we think it is important to reflect
on the potential uses and misuses of these tools in education early on.

It is well known that dynamic geometry systems (DGS), even without these spe-
cific features, can be useful (as well as challenging) tools in the teaching/learning
of reasoning and proof. DGS allow students to formulate certain geometric facts
(e.g., as intermediate steps in establishing the proof of a given statement) by drawing
auxiliary diagrams and then getting convinced of the truth/falsity of the proposed
assertion by checking its validity, in many instances, after randomly dragging some
elements of the figure (see Hohenwarter, Kovács, & Recio, 2017).

Moreover, DGS can help studentsmaking conjectures about a certain construction
by allowing them to drag some of its free objects and observe the behaviour of those
that depend on them. This dynamic visualization could enhance approaches listed
in Polya (1962) such as the “pattern of two loci”—one of Polya’s four “patterns
of thought.” An even simpler example of the potential relevance of dragging and
observing could be the study of the relation between segments AP and BP while P
moves in a circle with diameter AB.

Amore sophisticated context of geometric reasoning involvingDGSbasic features
arises when the user does backward conjecturing; that is, if the user makes, first, a
certain construction and then states some property that he/she wants to hold true over
the resulting figure. Obviously it does not hold true in general and the user has to look
for necessary changes in the construction. Dynamic geometry programs facilitate the
dragging of free objects and therefore the possibility of conjecturing how to restrict
the position of these objects for the desired property to emerge. For example, consider
a segment AB and a free point P. The user might want to find where to place P so that
AP,BP are perpendicular. Bymeasuring the angle∠APB and tracing the movements
of P so the angle keeps close to 90◦, the user can conjecture that P should be placed
in a circle with diameter AB.

All of these useful features—and their associated impact in the classroom—
belong, in some sense, to the past. Now, with GeoGebra ART, we can go much
further—both for conjecturing that some property actually happens in a given con-
struction and for discovering how to modify the construction for a given property to
hold. A first novelty is that GeoGebra can take the lead and formulate the conjectures
by itself. Thus, the program can, by simply comparing some geometric objects in a
particular instance of a construction by means of the Relation tool, suggest a prop-
erty holding between these elements as a conjectural truth. For example, in the above
example with P located in a circle of diameter AB, we can directly ask GeoGebra
for some relation between segments AP,BP produced by a concrete position of P in
the circle, yielding, as output, that for this particular instance, and computing with
the numerical coordinates of A,B,P, the two segments seem to be perpendicular.

A second improvement is that, in this context, GeoGebra can automatically verify
the general validity of this conjecture. In the affirmative case, it uses computation

Using Automated Reasoning Tools to Explore Geometric … 217

with symbolic coordinates to establish a mathematical proof; that is, a proof not
based on visual verification, approximate numerical calculations, or probabilistic
analysis. To avoid confusion, the proof is performed in the program background and
not shown to the user since it could fill hundreds of pages of algebraic formulas.
Eventually, a message highlighting the need to avoid some degenerate cases for the
truth of the given statement appears on the screen.

If the answer to the conjecture is negative and the user insists on requiring that the
established conjecture holds, he/she can ask GeoGebra via the LocusEquation com-
mand for the precise formulation of necessary changes to the statement hypotheses.

We situate this workflow in a technology-mediated paradigm where the machine
behaves like a mentor in the learning process, helping students in the intermediate
steps of developing their own explanations of the truth of some geometric facts and
fostering a creativity spiral as new discoveries are made by restarting the workflow
again and again.

In the next section, we present a short overview of maths apps and programs
related to dynamic geometry and theorem proving. We also give a basic description
of the mathematical algorithm and system requirements behind our GeoGebra ART.
In section three, we explore the use of these tools in education to help students
discover geometric facts both experimentally and by proving. Section four focuses on
a particularly novel feature of ART—the automatic discovery of missing hypotheses
for a given (false) statement to become true. We also emphasize how this feature can
help students “create” interesting, new geometric statements. Finally, section five
collects some arguments and conclusions on the possible effect of GeoGebra ART
in the learning and teaching of geometry.

2 Currently Available Maths Apps: A Short Overview

No doubt, there is a growing interest in developing convenient maths applications for
contemporary students who are very experienced in using new technology, including
smartphones and tablets. One of the most vibrant places to experiment with what the
new technology offers is the market of Android applications, in particular those that
are freely available and at the disposal of a very large set of users. Here we refer to a
recent survey by Corpuz (2017) that summarizes some of the most popular Android
and iOS apps as of October 2017. Corpuz’s collection consists of flexible scientific
calculators for special purposes such as scientific or financial inputs, equation solvers,
graphing calculators, and computational knowledge engines. Some of these popular
software tools support handwriting recognition and/or capturing and interpreting
camera shots of handwritten/printed formulas. On the other hand,

. . . when it comes to mathematics, it isn’t just getting the final answer that’s important; if
anything, correct step-by-step solutions are far more important when it comes to teaching
and learning math. (Corpuz, 2017, slide 9)

218 M. Hohenwarter et al.

In this context, let us remark that one of the examples in the survey, theMathway app,
is able to provide the user not only with the answer to a problem (mainly in Linear
Algebra, Calculus, or Trigonometry, introduced by typing or scanning handwritten
input via the smartphone camera) but also with each step of the solution.

Photomath is not listed in Corpuz’s collection but was the most popular maths
app on Google Play in March 2018. Photomath provides step-by-step solutions to a
comparable range of problems to the Mathway app free of charge in 36 languages.

It is, however, incautious to conclude that these examples represent a real change
in the educational paradigm, opening the door to a new approach based on computer-
mediated thinking. In fact, these apps are just enlarged pocket calculators that closely
follow school traditions. Some of the answers they provide, such as the detailed
steps in solving a linear univariate equation, are a usual requirement in the school
curriculum in many countries.

On the other hand, step-by-step solvers for other fields of the maths curriculum
(such as geometry) are not yet so popular. There are, however, remarkable attempts
in some other areas such as:

– Edukera (www.app.edukera.com) that teaches step-by-step proving in the fields
of logic, sets, calculus, and analysis,

– Euclidea (www.euclidea.xyz) that teaches Euclidean geometry constructions as
puzzles (120 puzzles are provided), with some basic dynamic geometry features.

These software tools are, however, only useful for finding solutions to pre-
programmed problems. Even though the input seems to be a wide-open set of formu-
las, they are limited to solving a concrete set of close-ended problems. Thus, what
they offer for a substantial part of mathematical activity—namely, for discovery—is
very limited. Of course for most learners, these wonderful pieces of software are still
inexhaustible, and their mathematical activity indeed simulates a kind of endless
discovery.

In the following, we focus on a radically different approach. In our proposal,
discovery plays a key role and the questions being posed challenge not only the
underlying software, but also the user—both human and machine collaborating in
the learning of something new!

Let us quickly recall that automated deduction of known or not yet discovered
geometric results has a wide literature going back to the appearance of the first
computers (see Botana et al., 2015 for a detailed overview). In particular, in planar
Euclidean geometry, the first successful attempts in the 1950s (see Gelernter, 1959)
led to a line of work in Formal Logic andArtificial Intelligence. Asmentioned above,
another important approach was based on Algebraic Geometry methods and was
started byWu (1978) and his early followers, including Chou (1987), and—focusing
on the Gröbner bases method—Kapur (1986), and Kutzler and Stifter (1986), among
others.

This is precisely the method used in the current GeoGebra implementation and
that we roughly describe as follows: first, geometric statements are internally trans-
lated in terms of algebraic equations. For example, assume that the translation of the

www.app.edukera.com
www.euclidea.xyz

Using Automated Reasoning Tools to Explore Geometric … 219

hypotheses H and the thesis T of a given statement {H ⇒ T } is a collection of poly-
nomial equations H = {h1 = 0, . . . , hr = 0} (respectively T = {f = 0}). Then, the
geometric instances verifying the hypotheses (respectively the thesis) are identified
with the solution set of the corresponding polynomial system. And, if a non-empty
and large subset (technically speaking: if a Zariski-open subset) of the algebraic vari-
ety of solutions of H is contained in the solution set of T , the theorem is labelled as
generally true. This key inclusion test is performed by using Elimination procedures
with Gröbner basis and checking whether the result is zero or not (see Recio &Velez,
1999 for further technical details).

DGS became very popular and well known with the breakthrough of personal
home computers. Beginning with theGeometric Supposer (Schwartz &Yerushalmy,
1983) in 1981, widely used tools such as The Geometer’s Sketchpad (Jackiw,
1995), Cabri Geometry (Baulac, Bellemain, & Laborde, 1994), and Cinderella
(Kortenkamp, 1999) were available commercially. Another breakthrough, GeoGe-
bra’s (Hohenwarter, 2002) free availability for millions of users, opened the road to
considering dynamic geometry as a natural education tool in the classroom.

Combining automated deduction in geometry (ADG) and DGS was a somewhat
newer topic, but was already present in the 1990s as more than a research concept in
the first versions of several DGS (de Villiers, 1999). These pioneer approaches, how-
ever, mostly used numerical and statistical methods for verifying properties holding
among elements of a geometric figure. Just a few years later, in the second half of the
1990s, software tools appeared that used pure symbolicmethods to prove or visualize
geometric facts (see Botana & Valcarce, 2002; Oldenburg, 2008; Ye, Chou, & Gao,
2011).

We emphasize that a further requirement was essential to making substantial
improvements in harnessing the possibilities of DGS; namely, accessing symbolic
computations reliably and quickly, and connecting them dynamically with geometric
objects. This is now possible in GeoGebra thanks to Giac (Kovács & Parisse, 2015).
GeoGebra is currently able to perform symbolic computations that allow the user to
manipulate (simplify, expand, etc.) algebraic expressions in a way as rigorous as any
well known computer algebra system.1

Finally, the application of these symbolic computations tools to automatic rea-
soning in geometry in GeoGebra was initiated by Recio, Botana and Abánades in
2010, and continued by many others, including Kovács, Weitzhofer, Parisse, and
Sólyom-Gecse over the last years (for more precise technical information and fur-
ther references see Botana et al., 2015; Kovács & Parisse, 2015). The outcome of
this work, GeoGebra ART, will be discussed in the following sections.

1https://en.wikipedia.org/wiki/Computer_algebra_system.

https://en.wikipedia.org/wiki/Computer_algebra_system

220 M. Hohenwarter et al.

3 Discovery and Creativity

Corless (2004) describes computer-mediated thinking by citing Peter Jones’ notion
of “intelligent partnership” (Jones, 1996) between the student and the computer (see
Martinovic, Muller, & Buteau, 2013 for a detailed description). Corless mentions
several examples of significant computational results achieved during this fruitful
partnership. They are not only non-trivial for undergraduate students, but also sur-
prising formany researchers, too. In fact, as Corless recalls by quoting the Portuguese
Jewish philosopher, Abarbanel, mathematical discovery should be a surprising
activity:

“I have absolutely no interest in proving things I know are true.” (Corless, 2004, p. 10)

The relevance of student-computer cooperation in apprehending mathematical
ideas through discovery is also emphasized in Buchberger’s graphic creativity spiral
describing the learner’s workflow (Buchberger & The Theorema Working Group,
1998, see Fig. 1).

According to this concept, a continuous workflow can be identified starting with
computational results. These results lead by intuition (or nowadays we could say
by “big data” mining) to the invention of new conjectures that, in turn, yield to the
formulation and eventually the proof of new theorems. From there, as Buchberger
emphasizes, these results could lead to new algorithms and, by programming these
algorithms, to new computational results about some mathematical fact. The spiral
then continues with further inventions and conjectures (see also Kovács, 2018).

Of course, this process describes not only the learner’s attitude to knowing math-
ematics better, but the researcher’s position as well. In fact, both could be considered
as quite similar, if we recall Halmos’ idea (Halmos, 1982, p. vii) that “the only way
to learn mathematics is to do mathematics.”

Let us emphasize that both Corless’ notion and Buchberger’s spiral assume that
the discovery process requires a computer. Thus, in the following, wewill apply these
basic principles of discovering geometric facts to the mediation of DGS. Also, we
suppose—following the Jaworski’s concept on the teaching triad: management of

Fig. 1 Buchberger’s
concept, the creativity spiral

Using Automated Reasoning Tools to Explore Geometric … 221

learning, sensitivity to students, and mathematical challenge (Jaworski, 1994)—that
the related learning process will involve the presence of a human mentor as well.
The mentor serves as a “personal coach and influencer” who attempts to affect the
way a student behaves during a geometric task by suggesting concrete activities for
finding the solution. On the other hand, as with sports coaches, we think it is useful
to minimize the role of the teacher in the discovery process. The role of teachers
in this new context is a delicate issue that needs precise research. One example of
such research (described in Martinovic & Manizade, 2014) shows future teachers
exploring activities designed to develop both technological and geometric skills.

We summarize our proposal for a novel approach to geometry learning through
the use of the newly implemented ART in GeoGebra (see Kovács, Recio, & Vélez,
2017), as follows:

1. (a) The teacher provides the students with a kind of demo or tutorial on the use
of DGS automated reasoning tools.

(b) The teacher poses a problem. The nature of the problem is an open-ended
question (in the sense of Foster, 2013) like “find all points P in the plane
that have a certain property” (an “implicit locus problem”). More generally,
we are thinking of questions for which the student has not been taught to
follow a predetermined path for finding a solution. Of course, this is a very
subjective situation. Using computers to “discover” shows that there is indeed
a predetermined path to success, but not for the human user!

2. Some computations are performed with the DGS, based on a construction made
by the student. In many cases this results in using the software tool for either
random experiments or for experiments planned by the teacher. As an example,
we will focus on computing a particular implicit locus (say, a circle).

3. A conjecture describing the characteristics of the output curve (e.g., a circle going
through the three vertices of a given triangle) is made by the student.

4. The conjecture is checked numerically and symbolically by the DGS. We accept
this result without further verification as a basic step. We now have a theorem. If
applicable, the proof can be worked out by paper and pencil as well.

5. The next activity suggested by Buchberger’ spiral—the “programming” step—
can be interpreted here as using the obtained result as a “piece” towards achieving
more involved statements. These new pieces can then be assembled into new
algorithms.

In this way, the obtained theorems and algorithms could be considered as a
mere step towards the design and execution of “further experiments” by the stu-
dent, whether controlled by the teacher or not, involving new computations with
DGS (Step 1, second round). The process of Buchberger’s spiral then continues with
Step 2.

222 M. Hohenwarter et al.

4 An Example: Implicit Loci in GeoGebra

Using the steps above we now give some examples of how GeoGebra ART supports
the discovery of an implicit locus. Let us consider the following simple implicit locus
problem:Given a line segment, describe the position of all points that are equidistant
from the segment’s endpoints.

The solution to this basic introductory question is well known, both theoreti-
cally and through exploration with a DGS. In fact, this “direct” locus problem can be
considered as an elementary instance of Voronoi diagrams, well known for their man-
ifold real-life applications (Lindenbauer & Reichenberger, 2015). Yet, the teacher
may propose this problem in an open-ended form (Step 0 (b)).

For the student, Step 1may be to draw a triangle inGeoGebra by using thePolygon
tool . By default, triangle ABC with sides a, b and c is created (here and in the
rest of the paper we assume that sides a, b and c are opposite vertices A, B and
C respectively). Now the student can consider points A and B as fixed during the
observation, and C as arbitrary and freely draggable. In the Algebra View it can be
observed how side lengths a and b change when point C is dragged.

After collecting the results for a sufficiently high number of positions of C, a
conjecture about the locus of C can be made. For some students this will be easy,
but for others, probably not. To help the latter, additional colouring of the trace of
C when a and b are close to each other could be enabled (Fig. 2, see Losada, 2014
for more details). This visual help may be unnecessary in this simple example, but
for more difficult questions it could be quite relevant (see, e.g., Losada, Recio, &
Valcarce, 2011).

Alternatively, GeoGebra can numerically compute the solution for the partic-
ular case when A and B are fixed. The student just needs to enter the com-
mand LocusEquation(a==b,C)2 to obtain the algebraic equation of the result-
ing geometric curve; that is, the bisector line of segment AB, with the equation
−8800x + 250y = −8607. Figure 3 shows the result.

Of course, learners need to have some minimal knowledge of analytic geometry
to be able to recognize that the obtained curve is indeed a line. This is, however, not
strictly required. The conjecture could instead be formulated by simply observing
the visual output of the locus in the Graphics View.

To confirm this, the student will also want to drag the points A or B. This could
generalize the obtained result by creating several other setups of the input points.
Figure 4 shows a few particular cases where A was moved from the original position
to the position (−2, 3). Of course, tracing should not be enabled in this step. It was
done here to demonstrate the number of video frames shown during a short dragging
interval.

2Notice that, according to the syntax of GeoGebra, the equation sign must be entered twice; this
information is available in the GeoGebra Help or in Kovács (2017), but should also be remarked
by the teacher in Step 0 (a).

Using Automated Reasoning Tools to Explore Geometric … 223

Fig. 2 Colouring the plane to find the locus. Here tracing is enabled for point C and Dynamic
Colors are set for each RGB component by using the formula 1

|a−b|+1

In the final position, we obtained a linear equation again (here −328x + 46y =
−303). Hopefully, most students have the correct conjecture at this point; namely,
that the locus is the perpendicular bisector of AB.

To continue with Buchberger’s schema, the student then goes on to Step 3—
proving the conjecture numerically and symbolically. This substantial step requires
a somewhat different construction. After disabling or deleting the obtained implicit
curve d in the construction, the student should create the perpendicular bisector f

of AB by using the Perpendicular Bisector tool . Then, by attaching an arbitrary
point D on f , and—by using the Segment tool —creating segments g = AD and
h = BD, point D will be freely draggable on f only and the Algebra View will show
up-to-date information on the lengths of g and h.

Finally, using the Relation tool with respect to g and h, the student tests (first,
numerically) the validity of conjecture about the equidistance of all the points in the
perpendicular bisector to the extremes of the segment. The Relation tool asks for any
potential relation between these two segments.

Things are actually more complicated than simply concluding that g = h in all
cases. Figure 5 shows an apparent counterexample concerning the lengths of these
two segments after setting Options/Rounding to 15 Decimal Places. Luckily, when
comparing them by with the Relation tool, GeoGebra knows that a difference in

224 M. Hohenwarter et al.

Fig. 3 Computing the locus equation in a particular case

precisely the last digit may be just a numerical error and assumes—just for the
output of Relation—that the numerical comparison resulted in equality (Fig. 6).

Finally, overcoming all these potential numerical inaccuracies, by clicking the but-
ton “More. . .”, a symbolic check (that is, a mathematically rigorous proof)rigorous
proof will be performed. ‘Symbolic’ here means a lot. Indeed, the input data are
not anymore points with numerical coordinates, but with coordinates expressed by
means of variables. The construction steps do not yield equations with numerical
coefficients, but parametric equations depending on the parameters describing the
coordinates of the free points, etc. Then, using sophisticated computer algebra algo-
rithms, a complete proof consisting of up to a few millions of algebraic steps is done
in the background. Only the final result “always true” is shown to the user (Fig. 7;
see Kovács, 2015 for details).

Now the student has reached a point where there is more than enough evidence,
based on the DGS automated reasoning tools, that the searched locus is the perpen-
dicular bisector. The teacher (or the student) may then want to find a non-automated
proof, and also a chain of reasons why the theorem holds. In this paper we do not
focus on how this could be done in the best way.

Using Automated Reasoning Tools to Explore Geometric … 225

Fig. 4 Computing the locus equation for more than one case

Fig. 5 Rounding errors may lead to confusing results

226 M. Hohenwarter et al.

Fig. 6 The Relation tool assumes that a minor numerical error may still not be contradictory to the
conjecture

Fig. 7 Symbolic check in the Relation tool

4.1 A Second Round

Instead, we suggest going for a second round in the creativity spiral. Step 4 is about
“programming”—here it could mean constructing a new figure or observing some-
thing different but related to the first round. There are several ideas to think about,
but we will focus on the following:Can we change the proposed statement by using a
different formula than a == b? This idea involves just a minimal modification of the
context, but results in a surprising change of the output. For example, let us consider
the formula a == 2b.

The students can start again with Step 1 by doing various computations, including
entering LocusEquation(a==2b,C). Figure 8 shows the result.

It may be not obvious to the studentwhat type of curve is shown as the output. Here
the equation x2 + 8x + y2 − 4y = −4 is shown, which is equivalent to the formula
(x + 4)2 + (y − 2)2 = 42—clearly a circle. The student should, however, do several
other attempts by dragging points A and/or B to verify other particular cases (Fig. 9).
In the final position A = (3, 4), B = (4, 2), the implicit curve 3x2 − 16x + 3y2 −
28y = −80 is obtained, which is, again, a circle, with a more difficult equivalent
form. The intermediate curves also seem to be circles; that is, we may have a strong
conjecture that the equation is a circle in general.

Using Automated Reasoning Tools to Explore Geometric … 227

Fig. 8 Computing the locus equation in a particular case (second round)

We leave the reader to find the equivalent formula for the final circle in Fig. 9.
It should help to discover the exact position of the conjectured circle. In addition,
Fig. 10 discloses how the conjectured circle can be constructed by using a compass
and a straightedge ruler. For some GeoGebra implementation issues, these tools are
required to enable symbolic checks in the Relation tool.

Here we observe that the obtained circle is a circle of Apollonius (of Perga), with
foci A and B and ratio 2.

4.2 Other Rounds

Clearly, other interesting questions can arise in this context, with surprising answers
and involving unusual geometric facts. Here we only mention one simple possi-
ble modification of the previous formula; namely, considering LocusEquation
(a==2b+1,C), as shown in Fig. 11.

The set of obtained curves are of various geometry. In some cases, two closed
curves are shown as the locus, but in other cases, just a subset of points in the
locus output fulfills the formula requirements. For example, in Fig. 11 only the exter-
nal curve provides points such that a = 2b + 1, while the internal one fulfills the

228 M. Hohenwarter et al.

Fig. 9 Computing the locus equation in some particular cases (second round)

condition a = 2b − 1. The reason behind this unexpected effect has deeper roots
in algebraic geometry and cannot be discussed in the classroom or in this chapter.
Instead, we would like to emphasize that seemingly simple questions can actually
lead to involved issues. In our opinion, however, this should not prevent us from ask-
ing freely—even more so, if our students ask questions on their own and get curious
to discover the answer!

Finally, let us mention here the proposal of Krause (1975) that introducing a
minimal change in the geometric assumptions of a given context results in a surprising
shift towards a substantially new theory.We think the best educational setting happens
when students are surprised by the answers they get and inspired to spend more time
on discovering the richness of mathematics.

In this section we have discussed just one particular topic in planar geometry.
However, many other topics can be raised in the classroom by using the “implicit
locus approach”. Some typical curriculum topics include:

1. (The converse of) Thales’ circle theorem (see Artigue, 2012; Kovács & Schiffler,
2017): Given a segment AB, what is the locus of points C such that AC ⊥ BC?
(A generalization of this approach yields the inscribed angle theorem.)

2. A variation of the triangle inequality: Given a triangle ABC with side lengths a,
b and c, where the points A and B are fixed, what is the locus of points C such
that a + b = c?

Using Automated Reasoning Tools to Explore Geometric … 229

Fig. 10 Constructing the solution by using steps defined only by a compass and a ruler

Fig. 11 Sometimes the locus equation can be a “yet unknown”, “strange” curve

230 M. Hohenwarter et al.

Fig. 12 GeoGebra ART detects an unusual locus when analyzing a traditional statement

3. (The converse of) Pythagoras’ theorem: Given a triangle ABC with side lengths
a, b and c, where the points A and B are fixed, what is the locus of points C such
that a2 + b2 = c2?

4. (The converse of) the right triangle altitude theorem (also known as geometric
mean theorem): Given a triangle ABC with altitude h (with respect to C) and two
line segments p and q that it creates on side c, what is the locus of points C such
that h = √

pq (or, equivalently, h2 = pq)? (See Fig. 12).

Let us highlight here that the obtained locus in the last example is not just a
circle—according to the right triangle being assumed in the traditional theorem—
but also a hyperbola (Abánades, Botana, Kovács, Recio, & Sólyom-Gecse, 2016a).
This provides an immediate but not well known generalization of the right altitude
theorem.

On the other hand, implicit loci are just a part of the new possibilities in GeoGebra
ART. Other commands like direct Prove, ProveDetails or Envelope computation, are
also available.

We refer to Botana (2016), Hašek (2017), Kovács and Vajda (2017), Kovács
(2017, 2018), Abánades et al. (2016a, b), Kovács et al. (2017) for further details and
examples of these recent methods in GeoGebra and to (Kovács et al., 2017) for full
documentation.

Using Automated Reasoning Tools to Explore Geometric … 231

5 Conclusion

It was stated 30 years ago in the futurist ICMI Study “School Mathematics in the
1990s” (Howson & Wilson, 1986) that

. . . even if the students will not have to deal with computers till they leave school, it will be
necessary to rethink the curriculum, because of the changes in interests that computer have
brought.

It was also long ago that an inspiring paper (Davis, 1995) by Philip Davis included
a section specifically on the power of computer-based proofs to “transfigure” geom-
etry statements and therefore to affect the potential role in mathematics education of
software programs dealing with automatic theorem proving.

Another seminal paper in this context is Gila Hanna’s “Challenges to the Impor-
tance of Proof” (Hanna, 1995). Hanna considered the pedagogical and epistemolog-
ical impact of different ways of using the computer to prove mathematical facts—for
example, verifying a finite number of cases that remain to be checked for complet-
ing the proof of a statement, the so-called zero-knowledge proofs, and the case of
proofs with a high probability of being correct. She also raised another challenge: the
increasing habit of using the computer to establish the truth of a statement (visually
or numerically) through experiments rather than formal proof.

Most of these messages about the relation between computers and proofs were
essentially warning signs about issues that could take place in future worlds. Yet we
think they are still quite present today. In fact, we see three basic concerns regarding
dynamic geometry and mathematical reasoning. The first relates to the negative
influence of the versatile visualization features of dynamic geometry programs. As
Lin, Yang, Lee, Tabach, and Stylianides emphasize in (2012),

[The] increased availability in school mathematics instruction of . . . dynamic geometry
systems. . . raised the concern that such programmes would make the boundaries between
conjecturing and proving even less clear for students.

[They] allow students to check easily and quickly a very large number of cases, thus helping
students ‘see’ mathematical properties more easily and potentially ‘killing’ any need for
students to engage in actual proving.

Indeed, what is involved in the easy checking of a large number of cases is the
“dragging” feature of DGS and, therefore, the above worries apply very particularly
to all DGS.

The second concern relates only to the few DGS that currently provide automated
reasoning tools, with at least the ability to confirm/deny themathematical (not proba-
bilistic) truth of a geometric statement. In the case of GeoGebra, as mentioned above,
these tools are enlarged with other features for automatic discovery and beyond.

In fact, DGS with ART features can be considered “geometry calculators” and
therefore as reflecting the already well known concerns about arithmetic or scientific
calculators in mathematics education:

Can students be intellectually attracted to compute 23456769 × 98765432, once they know
there is an algorithm that yields the correct answer 2316717923609208 and that it has been

232 M. Hohenwarter et al.

implemented in their personal, say, tablet or phone? Likewise, will they be interested in
finding whether the three heights of a triangle meet always at one point, if their pocket phone
is able to guarantee, with a mathematical algorithm, that they certainly do so? (Hohenwarter
et al., 2017)

Furthermore,we could ask:will they be interested in developing a local “deductive
theory” (de Villiers, 1990) when insight into mathematical evidence does not seem to
require this ability anymore, but, instead, a different kind of “cooperative reasoning”
with the machine as described above?

The answer is unclear to us. It is possible the two contexts (arithmetic, geometry
calculators) are not actually that parallel. In fact, the elementary geometry curriculum
has always been deeply affected by the choice of “geometry tools” such as the ruler
or the compass. Perhaps it is now the turn of a different geometry based on the
existence and possibilities of Dynamic Geometry ART. Perhaps we should not just
keep using new technology for old problems (old problems that are intimately “old
tools”-driven). And perhaps we should consider the new technology as something
other than a source of “concerns” (as outlined in Lin et al., 2012).

A third concern, going beyond the educational world, and considering GeoGe-
bra ART just as a tool for the professional mathematician, has to do with one of
Hanna’s “challenges to the importance of proof.” Although very relevant and nowa-
days increasingly present in professionalmath activity, themethods referred inHanna
(1995) for deciding the truth of a statement (using the computer to verify a large set
of instances; zero-knowledge proofs; probabilistic proofs) have little to do with our
approach, except for one collateral coincidence. In fact, as we have already empha-
sized, GeoGebra ART algorithms yield an exact (not numerically approximate, prob-
abilistic, visual, or experimental) proof that would be accepted by the mathematical
community as if it were made by hand by a human. This highlighted phrase is,
perhaps, the crucial point. As Hanna poses in the above article:

Should mathematicians accept proofs that can not be verified by others?

Well, no, in our opinion. But, as described above, the main role we are proposing
for the educational use of GeoGebra ART is not ‘acceptance,’ but “suggesting” ideas
and ways for producing a formal, human readable, proof. The problem, of course,
does not end with this declaration. We could also ask: what does “verified by others
(humans)” mean today? Is using a calculator to verify a numerical computation
such as 23456769 × 98765432 forbidden in this context? Is “the verification” more
acceptable only if the algorithm for this multiplication is done by hand on a piece
of paper? How do we verify the correction of the algorithm and its implementation
(by hand, by the human)? And, finally, if humans are allowed to use calculators to
verify computations, should we restrict this to numerical calculators (and not to those
performing algebraic computations)? Should the algorithmic expansion of (x + y)100

performedbyGeoGebra on amobile phone appbe considered less “humanverifiable”
than the same computation done by a human on a blackboard?

We think there is a need to address urgently the extended impact of themerging, in
one single tool, of the above three challenges related to DGS and Automatic Reason-
ing: (1) the potential, discouraging influence of powerful visualization features, (2)

Using Automated Reasoning Tools to Explore Geometric … 233

the availability of an exact “geometry calculator”, and (3) the precise meaning today
of “human readable” or “human verifiable” in a society where computers, laptops,
and mobile phones are everywhere from kindergarten up.

Yet, the very recent survey (Sinclair et al., 2016) by Sinclair, Bartolini Bussi,
de Villiers, Jones, Kortenkamp, Leung and Owens does not refer at all to automated
reasoning tools. We think it is an urgent issue to address in future surveys of this
kind, given the large expansion of GeoGebra in the classroomsworldwide—over 100
million users of its apps and website in 2017—and the fact that ART features have
recently been included in it (see Kovács, 2015). This quantitative fact, indeed, has
made a qualitative difference: as with pocket calculators, people will probably use
ART for checking geometric facts with or without the consensus of the pedagogical
community on its role.

We do not feel competent at this point to propose a concrete route towards geome-
try teaching and learning in this new context. We need feedback from the educational
community (researchers, teachers, students) concerning what it means to teach and
to learn and what elementary geometry means in this extended framework.

We simply feel GeoGebra’s automated reasoning capabilities can help our stu-
dents to do mathematics better or faster, just as we think it is beneficial to have an
electronic calculator to compute the square root of a number much faster than using
the traditional, mechanical method by hand (which, not surprisingly, is no longer
part of most curricula).

On the other hand, in the previous sections we have shown that even a simple
question can yield difficult or surprising issues. It is in addressing these issues that
mathematical creativity and reasoning can be fully developed but in a non-traditional
way: human and machine equally ready to explore the geometric context. In this way
we could argue that the intention ofART is not just to do the samekind ofmathematics
better and faster, but to do “a better kind of mathematics.” Let us borrow Kaput’s
visionary words, cited by Balacheff (1997): instead of doing (old) things better we
should focus on doing better things.

Acknowledgements We thank the referees for many interesting suggestions and comments and,
in particular, for pointing us to several relevant bibliographic references. Special thanks to Gila
Hanna, Dragana Martinovic, Chris Sangwin, Arleen Schenke, and David A. Reid for their direct
help in improving the text of this chapter.

The second and third authors have been partially funded by Spanish and EDF Research Grant
MTM2017-88796-P.

References

Abánades, M., Botana, F., Kovács, Z., Recio, T., & Sólyom-Gecse, C. (2016a). Towards the auto-
matic discovery of theorems in GeoGebra. In G. M. Greuel, T. Koch, P. Paule, & A. Sommese
(Eds.), Mathematical Software—ICMS 2016. 5th International Conference, Berlin, Germany,
July 11–14, 2016, Proceedings. Volume 9725 of Lecture Notes in Computer Science (pp. 37–42).
Cham: Springer International Publishing.

234 M. Hohenwarter et al.

Abánades, M., Botana, F., Kovács, Z., Recio, T., & Sólyom-Gecse, C. (2016b). Development of
automatic reasoning tools in GeoGebra. ACMCommunications in Computer Algebra, 50, 85–88.

Artigue, M. (2012). What is inquiry-based mathematics education (IBME)? In M. Artigue & P.
Baptist (Eds.), Inquiry in mathematics education (pp. 3–13). Fibonacci Project.

Balacheff, N. (1997). ICME 8, TG19 followup report. Computer-Based Learning Environments:
“CBILE”. http://mathforum.org/mathed/seville/followup.html.

Baulac, Y., Bellemain, F., & Laborde, J. M. (1994). Cabri geometry II. Dallas: Texas Instruments.
Botana, F., & Kovács, Z. (2016). New tools in GeoGebra offering novel opportunities to teach loci
and envelopes. arXiv:1605.09153.

Botana, F.,&Valcarce, J. L. (2002). A dynamic-symbolic interface for geometric theoremdiscovery.
Computers and Education, 38, 21–35.

Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., et al. (2015). Automated
theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55, 39–
59.

Buchberger, B., & The Theorema Working Group. (1998). Theorema: Theorem proving for the
masses using Mathematica. In Invited Talk at the Worldwide Mathematica Conference, Chicago,
June 18–21, 1998.

Chou, S. C. (1987). Mechanical geometry theorem proving. Springer Science+Business Media.
Corless,R.M. (2004).Computer-mediated thinking. http://www.apmaths.uwo.ca/~rcorless/frames/
PAPERS/EDUC/CMTpaper.pdf.

Corpuz, J. (2017). Best math apps. https://www.tomsguide.com/us/pictures-story/1300-best-math-
apps.html.

Davis, P. (1995, March). The rise, fall, and possible transfiguration of triangle geometry: A mini-
history. The American Mathematical Monthly, 102, 204–214.

de Villiers, M. (1999). Rethink proof with sketchpad. Emeryville: Key Curriculum Press.
de Villiers, M. (1990). The role and function of proof in mathematics. Pythagoras, 24, 17–24.
Foster, C. (2013).Mathematical études: Embedding opportunities for developing procedural fluency
within rich mathematical contexts. International Journal of Mathematical Education in Science
and Technology, 55, 765–774.

Gelernter, H. (1959). Realisation of a geometry-proving machine. In Proceedings of the Interna-
tional Conference on Information Processing, Paris, June 15–20, 1959 (pp. 273–282).

Halmos, P. R. (1982). A Hilbert space problem book (2nd ed.). New York, Heidelberg, Berlin:
Springer.

Hanna, G. (1995). Challenges to the importance of proof. For the Learning of Mathematics, 15,
42–49.

Hašek, R., Kovács, Z., & Zahradník, J. (2017). Contemporary interpretation of a historical locus
problem with the use of computer algebra. In I. S. Kotsireas & E. Martínez-Moro (Eds.), Appli-
cations of Computer Algebra: Kalamata, Greece, July 20–23, 2015. Volume 198 of Springer
Proceedings in Mathematics & Statistics. Springer.

Hohenwarter, M. (2002). GeoGebra: Ein Softwaresystem für dynamische Geometrie und Algebra
der Ebene. Master’s thesis, Paris Lodron University, Salzburg, Austria.

Hohenwarter, M., Kovács, Z., & Recio, T. (2017). Deciding geometric properties symbolically in
GeoGebra. In R&E-SOURCE (2017) Special Issue #6: 13th International Congress on Mathe-
matical Education (ICME-13).

Howson, G., & Wilson, B. (1986). ICMI Study Series: School mathematics in the 1990s. Kuwait:
Cambridge University Press.

Jackiw, N. R. (1995). The Geometer’s Sketchpad, v3.0. Berkeley, CA: Key Curriculum Press.
Jaworski, B. (1994). Investigating mathematics teaching: A constructivist enquiry. Studies inMath-
ematics Education Series: 5. The Falmer Press.

Jones, P. L. (1996). Handheld technology and mathematics: Towards the intelligent partnership (pp.
87–96). http://ued.uniandes.edu.co/roless-calc.html.

Kapur, D. (1986). Using Gröbner bases to reason about geometry problems. Journal of Symbolic
Computation, 2, 399–408.

http://mathforum.org/mathed/seville/followup.html
http://arxiv.org/abs/1605.09153
http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/EDUC/CMTpaper.pdf
http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/EDUC/CMTpaper.pdf
https://www.tomsguide.com/us/pictures-story/1300-best-math-apps.html
https://www.tomsguide.com/us/pictures-story/1300-best-math-apps.html
http://ued.uniandes.edu.co/roless-calc.html

Using Automated Reasoning Tools to Explore Geometric … 235

Kortenkamp, U. (1999). Foundations of dynamic geometry. Ph.D. thesis, ETH Zürich.
Kovács, Z. (2015). Computer based conjectures and proofs in teaching Euclidean geometry. Ph.D.
thesis, Johannes Kepler University, Linz.

Kovács, Z. (2017). Real-time animated dynamic geometry in the classrooms by using fast Gröbner
basis computations. Mathematics in Computer Science, 11.

Kovács, Z. (2018). Automated reasoning tools in GeoGebra: A new approach for experiments in
planar geometry. South Bohemia Mathematical Letters, 25.

Kovács, Z., & Parisse, B. (2015) Giac and GeoGebra—Improved Gröbner basis computations. In J.
Gutierrez, J. Schicho, &M. Weimann (Eds.), Computer algebra and polynomials. Lecture Notes
in Computer Science (pp. 126–138). Springer.

Kovács, Z., & Schiffler, K. (2017). Unterstützung des Mathematikunterrichts mit automatischem
Beweisen mit GeoGebra. In: PH forscht II, Linz, Austria.

Kovács, Z., & Vajda, R. (2017). A note about Euler’s inequality and automated reasoning with
dynamic geometry. arXiv:1708.02993v2.

Kovács, Z., Recio, T., & Vélez, M. P. (2017). gg-art-doc (GeoGebra Automated Reasoning Tools.
A tutorial). A GitHub project. https://github.com/kovzol/gg-art-doc.

Kovács, Z., Recio, T., Richard, P. R., & Vélez, M. P. (2017). GeoGebra automated reasoning tools:
A tutorial with examples. In G. Aldon & J. Trgalova (Eds.), Proceedings of the 13th Interna-
tional Conference on Technology in Mathematics Teaching. (pp. 400–404). https://hal.archives-
ouvertes.fr/hal-01632970.

Krause, E. F. (1975). Taxicab geometry: An adventure in non-Euclidean geometry. Addison-Wesley.
Kutzler, B., & Stifter, S. (1986). On the application of Buchberger’s algorithm to automated geom-
etry theorem proving. Journal of Symbolic Computation, 2, 389–397.

Lin, F. L., Yang, K. L., Lee, K. H., Tabach,M., & Stylianides, G. (2012). Principles of task design for
conjecturing and proving. In G. Hanna&M. de Villiers (Eds.), Proof and Proving inMathematics
Education. The 19th ICMI Study (pp. 305–326). Springer.

Lindenbauer, E., & Reichenberger, S. (2015). Voronoi-Diagramme. GeoGebra Materials. https://
www.geogebra.org/m/sAaFMcTA.

Losada, R. (2014). El color dinámico en GeoGebra. La Gaceta de la Real Sociedad Matemática
Española, 17(3), 525–547.

Losada, R., Recio, T., & Valcarce, J. L. (2011). Equal bisectors at a vertex of a triangle. In B.
Murgante, O. Gervasi, A. Iglesias, D. Taniar, & B. Apduhan (Eds.), Computational Science and
Its Applications—ICCSA 2011. Lecture Notes in Computer Science (Vol. 6785, pp. 328–341).
Berlin, Heidelberg: Springer.

Martinovic, D., & Manizade, A. G. (2014). Technology as a partner in the geometry classrooms.
The Electronic Journal of Mathematics and Technology, 8, 69–87.

Martinovic, D., Muller, E., & Buteau, C. (2013). Intelligent partnership with technology: Moving
from a math school curriculum to an undergraduate program. Comput. Schools, 30, 76–101.

Oldenburg, R. (2008). FeliX - mit Algebra Geometrie machen (German) (pp. 15–17). Computeral-
gebra Rundbrief: Sonderheft zum Jahr der Mathematik.

Polya, G. (1962). Mathematical discovery: On understanding, learning, and teaching problem
solving. London, UK: Wiley.

Recio, T., & Vélez, M. P. (1999). Automatic discovery of theorems in elementary geometry. Journal
of Automated Reasoning, 23, 63–82.

Schwartz, J. L., & Yerushalmy, M. (1983). The Geometric Supposer. Pleasantville, NY: Sunburst
Communications.

Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., et al.
(2016). Recent research on geometry education: An ICME-13 survey team report. ZDM Mathe-
matics Education, 48, 691–719.

Wu, W. T. (1978). On the decision problem and the mechanization of theorem-proving in elemen-
tary geometry. Scientia Sinica, 21(2). Reprinted In W. W. Bledsoe, & D. W. Loveland (Eds.),
Automated Theorem-Proving: After 25 Years. Providence, RI: AMS (1983).

http://arxiv.org/abs/1708.02993v2
https://github.com/kovzol/gg-art-doc
https://hal.archives-ouvertes.fr/hal-01632970
https://hal.archives-ouvertes.fr/hal-01632970
https://www.geogebra.org/m/sAaFMcTA
https://www.geogebra.org/m/sAaFMcTA

236 M. Hohenwarter et al.

Ye, Z., Chou, S. C., & Gao, X. S. (2011). An introduction to Java Geometry Expert. In Automated
Deduction in Geometry, 7th International Workshop, ADG 2008, Shanghai, China, September
22–24, 2008. Revised Papers, Lecture Notes in Computer Science (Vol. 6301, pp. 189–195).
Springer.

Computer-Generated Geometry Proofs
in a Learning Context

Pedro Quaresma and Vanda Santos

1 Introduction

Given its formal, logical, and spatial properties, geometry is well suited to teach-
ing environments that include dynamic geometry systems (DGSs), geometry auto-
mated theorem provers (GATPs), and repositories of geometric problems. These
tools enable students to explore existing knowledge in addition to creating new
constructions and testing new conjectures. With the help of a DGS, students can
visualise geometric objects and link the formal, axiomatic nature of geometry (e.g.,
Euclidean geometry) with its standard models and corresponding illustrations (e.g.,
the Cartesian model). With the help of GATPs, students can check the soundness
of a construction (e.g., if two given lines are parallel) and also create formal proofs
of geometric conjectures. Supported by repositories of geometric knowledge, these
tools provide teachers and students with a framework and a large set of geometric
constructions and conjectures for doing experiments.

In this chapter, we trace the evolution of current automatic proving technologies,
how these technologies are beginning to be used by geometry practitioners in gen-
eral to validate geometric conjectures and generate proofs with natural language and
visual rendering, and foresee their evolution and applicability in an educational set-
ting. Following Hanna’s (2000, p. 8) argument that “the best proof is one that also
helps understand the meaning of the theorem being proved: to see not only that it is
true, but also why it is true,” and the large number of articles on proof and proving
in mathematics education from the ICMI Study 19 Conference (Lin, Hsieh, Hanna,
& de Villiers, 2009a, 2009b), we focus our attention on practices of verification,
explanation, and discovery in the teaching and learning of geometry.

In the classroom, the fundamental question a proof must address is “why?” In this
context, then, it is only natural to viewproofs first and foremost as explanations and, as

P. Quaresma (B) · V. Santos
University of Coimbra, 3001-501 Coimbra, Portugal
e-mail: pedro@mat.uc.pt

V. Santos
e-mail: vsantos7@gmail.com

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_11

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_11&domain=pdf
mailto:pedro@mat.uc.pt
mailto:vsantos7@gmail.com
https://doi.org/10.1007/978-3-030-28483-1_11

238 P. Quaresma and V. Santos

a consequence, to givemore value to those that provide a better explanation. Dynamic
geometry systems encourage both exploration and proof because theymake it so easy
to pose and test conjectures. The feature that preservesmanipulations allows students
to explore “visual proofs” of geometric conjectures. Such a powerful feature gives
them strong evidence that a theorem is true and reinforces the value of exploration
by giving them confidence in a theorem.

The challenge facing classroom teachers is how to use the excitement and enjoy-
ment of exploration tomotivate students while also explaining that visual exploration
is not a proof. Visual exploration is a useful aid, but is still only the exploration of a
finite number of cases. One reason for giving students a formal proof is that explo-
ration does not reflect the need for rigour in mathematics. Indeed, mathematicians
aspire to a degree of certainty that can only be achieved by a proof. A second reason
is that students should come to understand the first reason. As most mathematics
educators would agree, students need to be taught that exploration, useful as it may
be in formulating and testing conjectures, does not constitute a proof (Hanna, 2000;
Hanna & Sidoli, 2007). A proof is a means of obtaining certainty about the validity
of a conjecture (proof as a validation tool) and a strategy to further understand a
formulated conjecture (proof as an instrument of understanding).

Geometry automated theorem provers open the possibility of formally validating
properties of geometric constructions. For example: Cinderella1 (Richter-Gebert &
Kortenkamp, 1999) has a randomised theorem checker; Geometry Constructions
LaTeX Converter (GCLC)2 (Janičić, 2006) andGeoGebra3 (version 5) (Hohenwarter,
2002) incorporate a number of automated theorem provers that provide a formal
answer to a given validation question (Botana et al., 2015; Janičić & Quaresma,
2007).

By means of the deductive database method (Ye, Chou, & Gao, 2010b), GATPs
also enable students to explore new knowledge and discover new results and the-
orems (e.g., the algebraic formula of a loci (Abánades, Botana, Kovács, Recio, &
Sólyom-Gecse, 2016; Recio & Vélez, 2012)). An important addition to any learning
environment would be a GATP with the ability to produce human readable formal
proofs with, eventually, visual counterparts (Chou, Gao, & Zhang, 1996a, 1996b;
Janičić, Narboux,&Quaresma, 2012; Kovács, 2015; Stojanović, Pavlović, & Janičić,
2011; Stojanović, Narboux, Bezem, & Janičić, 2014).

In this chapter, we focus on the subjects of verification and explanation.
Section2 describes the past, present, and foreseeable future of geometry automated
theorem proving. Section 3 uses examples to introduce the use of GATPs in the for-
mal validation of a conjecture. In Sect. 4, we explore GATPs that produce readable
formal proofs. In Sect. 5, we extend this exploration to GATPs that produce formal
proofs with the addition of natural language and visual rendering. In Sect. 6, we draw
conclusions and anticipate future avenues of research.

1https://cinderella.de.
2http://poincare.matf.bg.ac.rs/~janicic/gclc/.
3https://www.geogebra.org/.

https://cinderella.de
http://poincare.matf.bg.ac.rs/~janicic/gclc/
https://www.geogebra.org/

Computer-Generated Geometry Proofs in a Learning Context 239

2 Formal Geometric Proofs

Given the cognitive complexity of geometric activities, learning geometry is not
always immediate or easy. However, visualisation can be used to understand proofs
and help mathematical reasoning. Visual elements attract students’ attention, raise
their awareness, and help them make connections between subjects and concepts.
Visualization contributes to a better understanding of the results obtained from a
search for different approaches to solving a problemor proving a theorem. It promotes
new forms of reasoning that can inspire simple and elegant solutions to similar
problems, allowing students to respond to more complex problems or prove new
theorems (de Villiers, 2006).

Introducing DGSs in the learning process enables greater experimentation than
previous tools did. DGSs allow free geometric objects to be continuously modified,
thereby keeping geometric properties unchanged. Although these manipulations are
not formal proofs because only a finite set of positions is considered and because visu-
alisation can bemisleading (when the image, for example, refers to a particular case),
they provide a first clue to the truthfulness of a given geometric conjecture (Hoyles &
Jones, 1998; Nelsen, 1993; de Villiers, 2006). It can be said that DGSs provide an ini-
tial non-formal link between theories and models of geometry (Janičić & Quaresma,
2007; Ruthven, Hennessy, & Deaney, 2008).

Geometry automated theorem provers similarly enhance learning. First, they can
be used to validate a geometric construction such as: are two given lines parallel?
The answer—yes!/no!/cannot be established—is a “black box” approach (it does not
answer the “why”), but can be useful in situations where formal proofs are not being
considered. Second, some GATPs are able to provide formal proofs—not only the
answer to a question, but also the “why.” As said above, this constitutes the “best
proof.”

Unlike DGSs that are similar in their approach and capabilities, GATPs vary sig-
nificantly in terms of the method they use (e.g., synthetic vs. algebraic), the imple-
mentation (e.g., area vs. full-angle), and the output (formal proof vs. only a yes/no
answer) (Chou & Gao, 2001; Chou, Gao, & Zhang, 1994; Quaresma, 2017; Wang &
Su, 2015; Wu, 1984). According to Jiang and Zhang (2012), consideration needs to
be given to the somehow opposite goals of efficiency and readability. Efficiency is
important because, in a learning situation, it is not viable to wait more then a couple
of seconds to get an answer. Readability is important given that, without it, the “why”
would be lost.

The first methods proposed in the 1950s adapted general reasoning approaches
from the field of artificial intelligence to the automation of traditional geometric
proving processes. In order to avoid combinatorial explosion while applying postu-
lates, many suitable heuristics were used; for example, adding auxiliary elements to
geometric configurations, and using the corresponding geometric constructions as
a source of counterexamples to help the reasoning procedure choose the right path.
Although these methods produced readable proofs that could be used in learning,
they were very narrow in scope and inefficient (Wu, 1984). However, some recent

240 P. Quaresma and V. Santos

results using this approach in education focus on developing GATPs scoped for a
given set of problems (Paneque, Cobo, Fortuny, & Richard, 2016; Richard, Oller
Marcén, & Meavilla Seguí, 2016). Still, its usefulness in education has yet to be
established.

The next step in creatingmore generic, powerful, and efficient provers was to inte-
grate algebraic methods such as the characteristic set method (also known as Wu’s
method) (Chou, 1985;Wu, 1984), the polynomial elimination method (Wang, 1995),
the Gröbner based method (Kapur, 1986), and the Clifford algebra approach (Li,
2000). These methods reduced the complexity of logical inferences by computing
relations between coordinates of geometric entities. The corresponding implementa-
tions could successfully solve many complicated geometric problems and discover
new theorems. However, human readability of the proofs was lost, and the algebraic
proofs were complex and not related to geometric reasoning (Chou et al., 1994; Wu,
1984). Nonetheless, there aremany recent implementations of thesemethods (Botana
et al., 2015; Janičić et al., 2012; Janičić & Quaresma, 2006; Kovács, 2015; Ye, Chou,
&Gao, 2011) and, in Sect. 3,we explore the possible use of theseGATPs in education.

In an effort to combine the readability of synthetic methods and the efficiency of
algebraic methods, some approaches, such as the area method (Chou et al., 1996a;
Janičić et al., 2012) and the full-angle method (Chou et al., 1996b), represent geo-
metric knowledge with respect to geometric invariants. These methods and some of
their implementations are capable of proving a large number of complex geometric
theorems and, in many cases, rendering the proofs in readable natural language. In
Sects. 4 and 5, we describe this innovation in length.

3 Verification of the Truth of a Geometric Statement

Dynamic geometry programs give users an initial visual validation of a geometric
property. Instead of producing a fixed example, these programs produce a large set
of examples that reinforce confidence in the truth of a statement. However, given that
not all possible cases can be covered, this can be misleading.

GeoGebra has had, since an early version, a validation tool, the “a
?= b” tool. This

tool performs a numerical verification instead of a formal proof, and suffers from the
fact that numerical errors may led to erroneous conclusions. However, since version
5, GeoGebra has been enhanced with the support of GATPs. This makes it possible
to ask for a formal validation of a given geometric statement (Botana et al., 2015)
such as the Midpoint Theorem.

Theorem 1 (Midpoint Theorem) Let ABC be a triangle, and let D and E be the
midpoints of AB and BC respectively. Then the line DE is parallel to the base AC.

Havingmade the geometric construction (seeFig. 1), aGeoGebra user can check if
the conjecture is indeed true. Entering the command “Prove
(AreParallel(b,f))” produces the answer “d=true” (see Fig. 1). This is
a formal validation generated by GeoGebra’s built-in GATPs.

Computer-Generated Geometry Proofs in a Learning Context 241

Fig. 1 GeoGebra construction validation

Other DGSs also have integrated GATPs. For example, GCLC incorporates
GCLCprover, which gives the following response to a similar situation (Janičić &
Quaresma, 2007):

Deduction check invoked: the property that led to the
error will be tested for validity.

Once the conjecture is successfully proved, the critical property always holds.
The prover output is written in the file error-proof.tex.

A similar approach is used by theDGS/GATP Java Geometry Expert (JGEX)4 (Ye
et al., 2011). It calculates fix-points during the construction; that is, all the properties
that can be inferred from the construction to a certain point. When a user tries to
perform an illegal construction, the tool says why it is not possible to perform that
construction (see Fig. 2).

If we jump to “explanation”—providing insight into why a given statement is
true—weneed to consider proofs. In the next two sections,we explore the capabilities
of current GATPs to produce readable proofs with a natural language and even visual
rendering.

4http://www.cs.wichita.edu/~ye/.

http://www.cs.wichita.edu/~ye/

242 P. Quaresma and V. Santos

Fig. 2 JGEX construction validation, F E || AB

4 Proofs with a Natural Language Rendering

Some of the methods used for geometric automated theorem proving, especially
algebraic methods, are not useful in terms of the proofs produced. After a synthetic
geometric representation is converted to an algebraic representation, the proofs are
all done using complex algebraic reasoning without any connection to the geomet-
ric construction. The algorithms implemented in GeoGebra are of this type. They
produce a time efficient answer to a verification problem, but are useless if the proof
itself is the focus.

In (2010a), Ye et al. list the features they feel important to the dynamic visualisa-
tion of proofs in geometry. The first of these features is that “The proof text created by
the program should be readable, similar to proofs in geometry textbooks or books.”

The semi-synthetic methods like the area method, the full-angle method or
the deductive database method, along with the coherent logic based method, are
able to produce readable geometric proofs. Implementations like the GCLC (area
method) (Janičić et al., 2012; Quaresma, Janičić, Tomašević, Vujošević-Janičić, &
Tošić, 2008), the JGEX (area method, full-angle method, and deductive databases)
(Ye et al., 2010a, 2010b, 2011) and the ArgoCLP5 (coherent logic) (Stojanović et al.,
2011) are examples of systems with such capabilities.

The Area Method The area method is a decision procedure for a fragment of
Euclidean plane geometry. It deals with problems as sequences of specific geo-
metric construction steps, using a set of specific geometric quantities to define rela-
tions (Janičić et al., 2012).

5http://argo.matf.bg.ac.rs/?content=downloads.

http://argo.matf.bg.ac.rs/?content=downloads

Computer-Generated Geometry Proofs in a Learning Context 243

Table 1 Expressing geometry predicates in terms of area method geometric quantities

Property Area method geometric quantities

Points A and B are identical PAB A = 0

Points A, B, C are collinear SABC = 0

AB is perpendicular to C D PAB A �= 0 ∧ PC DC �= 0 ∧ PAC D = PBC D

AB is parallel to C D PAB A �= 0 ∧ PC DC �= 0 ∧ SAC D = SBC D

O is the midpoint of AB SABO = 0 ∧ PAB A �= 0 ∧ AO
AB

= 1
2

AB has the same length as C D PAB A = PC DC

Points A, B, C , D are harmonic SABC = 0 ∧ SAB D = 0 ∧ PBC B �=
0 ∧ PB DB �= 0 ∧ AC

C B
= D A

DB

Angle ABC has the same measure as DE F PAB A �= 0 ∧ PAC A �= 0 ∧ PBC B �=
0 ∧ PDE D �= 0 ∧ PDF D �= 0 ∧ PE F E �= 0∧
SABC · PDE F = SDE F · PABC

A and B belong to the same circle arc C D SAC D �= 0 ∧ SBC D �= 0 ∧
SC AD · PC B D = SC B D · PC AD

• Ratio of parallel directed segments, denoted AB/C D. If the points A, B, C , and
D are collinear, AB/C D is the ratio between the lengths of directed segments AB
and C D. If the points A, B, C , and D are not collinear, and it holds AB‖C D,
there is a parallelogram AB P Q such that P , Q, C , and D are collinear and then
AB
C D

= Q P
C D

.

• Signed area for a triangle ABC , denoted SABC is the area of the triangle ABC ,
negated if ABC has a negative orientation.

• Pythagoras difference,6 denoted PABC , for the points A, B, C , defined asPABC =
AB

2 + C B
2 − AC

2
.

These three geometric quantities allow for expressing (in the form of equalities)
geometry properties such as the collinearity of three points, the parallelism of two
lines, the equality of two points, the perpendicularity of two lines, and so forth (see
Table1).

The basic objects in an area method conjecture are the points—free points if they
are freely placed in the Euclidean plane, and constructed points if they are obtained as
the result of a given geometric construction. For example, in the Midpoint Theorem
(see Theorem 1) the points A, B and C are free points not defined by construction
steps. The constructed points D and E are the midpoints of AB and BC respectively.

The proof of a conjecture is based on eliminating all the constructed points in
reverse order until equality is reached in only the free points. If the equality is
provable, then the original conjecture is also a theorem. For Theorem 1, the proof
automatically found by GCLCprover (see Fig. 3) shows not only the steps leading to

6The Pythagoras difference is a generalisation of the Pythagorean equality regarding the three sides
of a right triangle, to an expression applicable to any triangle (for a triangle ABC with the right
angle at B, it holds that PABC = 0).

244 P. Quaresma and V. Santos

Fig. 3 GCLCprover output—Proof of Midpoint Theorem

the solution, but also the justification for those steps. GCLCprover uses the axioms
and rules of inference of the area method to reach the conclusion in 16 steps, of
which only 5 are applications of lemmas of the method (e.g., Lemma 29).

The area method implementation in GCLC took 0.001s to prove the Midpoint
Theorem. It also found that there are no non-degenerated conditions to this result;
that is, it is true in any configuration.

Given that the area method does not follow the normal chain of geometric rea-
soning used in primary and secondary schools, the resulting proofs are not directly
usable by students. However, with the help of teachers, the area method (the full-
angle method is similar) could be used at secondary and college levels. This claim
needs validation by case studies (see Sect. 6).

Computer-Generated Geometry Proofs in a Learning Context 245

Fig. 4 JGEX screen capture—Proof of Midpoint Theorem

The Full-Angle Method The full-angle method is similar to the area method, but
introduces the full-angle as another geometric quantity. Intuitively, a full-angle,
∠[u, v], is the angle from line u to line v (not between segments).

Formally, full-angles can also be defined using the signed area and the Pythagoras
difference. A full-angle is defined as an ordered pair of lines which satisfies a set of
axioms and rules of inference that constitute the base of the method. The proofs are
similar to those using the area method (Chou et al., 1996a).

The JGEX system implements the full-angle method and the deductive database
method (based on full-angle rules). Using the full-angle prover, the Midpoint The-
orem (see Theorem 1) can be proved (see Fig. 4) in a very concise form. However,
the JGEX system does not produce a PDF output file.

Like the area method proofs, the use of full-angle method proofs in primary and
secondary levels is limited by the axioms and rules of inference used. JGEX does
not produce a proof with a natural language rendering. Unless the reader is familiar
with the axiom system and corresponding inference rules, the proofs are somehow
difficult to follow.

Coherent Logic Provers A different approach is given by the ArgoCLP, a coherent
logic-based theorem prover. Coherent logic is a fragment of first-order logic where
the conjectures can be proved directly (i.e., not by refutation). Proofs in coherent logic
are natural and intuitive, and reasoning is constructive (Bezem & Coquand, 2005).
Coherent logic is therefore a suitable framework for producing both readable and
formal proofs. The ArgoCLP automatically and simultaneously generates traditional
human readable proofs and formal proofs of geometry theorems (for various axiom
systems). The generated step-by-step proofs are very similar to the proofs given in
standard geometry textbooks. Unfortunately, however, efficiency issues prevent its
use in education (Stojanović et al., 2011, pp. 13–14).

246 P. Quaresma and V. Santos

5 Proofs with Natural Language and Visual Rendering

Given the current implementations in geometry automated theorem proving, it is now
possible to begin work on a new approach: proofs that interrelate geometric elements
in the proof text and the construction.

As Ye et al. (2010a) show in their features of visually dynamic proofs in geometry,
effective connection between the visual rendering and textual rendering is key:

The displays of the proof text and the geometry elements in the construction are separated,
but should be internally related. By clicking a step or a part of a step of the proof’s text, the
corresponding geometric elements in the construction should be highlighted using various
dynamic visual effects.

They propose visual effects such as translations, rotations, reflections, and scal-
ing to show congruence and similarities between geometric elements. Colours and
blinking effects can be used to show the relations between the two renderings of a
proof.

As discussed above (see Sect. 4), natural language rendering is possible and usable
with some limitations in different contexts. Is it possible to connect natural language
rendering with a formal proof and visual rendering? In the following, we examine
the strengths and challenges of different approaches.

5.1 Area Method Visual Rendering of Proofs

As mentioned above (see Sect. 4), the area method deals with problems stated as
sequences of specific geometric construction steps, using a set of specific geometric
quantities (Chou et al., 1996a, 1996b; Janičić et al., 2012). In the following, we
establish a connection between the axioms and inference rules of this method. Using
this connection makes it possible to synchronize a formal proof, a natural language
rendering, and a visual rendering.
Visual Counterparts of Geometric Quantities The ratio of parallel directed seg-
ments and the signed area have a clear visual counterpart. The Pythagoras difference

needs the support of the algebraic quantity AB
2 + C B

2 − AC
2
(see Fig. 5).

Fig. 5 Illustration for area method geometric quantities

Computer-Generated Geometry Proofs in a Learning Context 247

Fig. 6 Illustration for
elimination Lemma 1:
P M
QM

= SP AB
SQ AB

Axioms and Lemmas of the Area Method The area method uses a large set
of lemmas that characterise the geometric quantities and facilitate structuring the
proofs (Chou et al., 1996a; Janičić et al., 2012; Quaresma & Janičić, 2009). Many
of these lemmas are about technical issues related to the formal proofs; for exam-
ple, how two triangles that differ only in the order of their vertices can be considered
the same. The most important for area method proofs and also for their visualisation
are the elimination lemmas.

In the following, we introduce two of these lemmas and present their visual coun-
terparts.

Theorem 5.1 (Elimination Lemma 1—The Co-side Theorem) Let M be the inter-
section of two non-parallel lines AB and P Q and Q �= M. Then it holds that
P M
QM

= SP AB
SQ AB

; P M
P Q

= SP AB
SP AQ B

; QM
P Q

= SQ AB

SP AQ B
(Fig.6).

Theorem 5.2 (Elimination Lemma 3 (reduced version)) Let SABY be the �ABY
signed area where point Y is the intersection of lines U V and P Q. Then it holds
that (Fig.7)

SABY = SU P QSABV − SV P QSABU

SU PV Q
.

Area Method Visual Proof—Midpoint Theorem Using the visual counterparts of
the lemmas of the areamethodwe can revisit theMidpoint Theorem (see Theorem 1).

Fig. 7 Illustration for elimination Lemma 3: SABY = SU P QSABV −SV P QSABU
SU PV Q

248 P. Quaresma and V. Santos

This time the GCLCprover area method proof has two parts: a natural language part
and a visual counterpart.
(1–2) by the statement and geometric simpli-
fications
SDEA = SDEC

SADE = SCDE
A C

B

D E

(3–4) by Lemma 29 (point E eliminated) and
algebraic simplifications
SADC + 1

2 (SADB − SADC) = SCDE

1
2SADC + 1

2SADB = SCDE

1
2

1
2

A C

B

D E

(5–7) by Lemma 29 (point E eliminated),
geometric and algebraic simplifications
1
2SADC + 1

2SADB = SCDC + 1
2 (SCDB − SCDC)

1
2SCAD + 1

2SBAD = 0 + 1
2 (SBCD − 0)

SCAD + SBAD = SBCD A C

B

D E

(8–10) by Lemma 29 (point D eliminated),
geometric and algebraic simplifications
SCAA + 1

2 (SCAB − SCAA) + SBAD = SBCD

0 + 1
2 (SCAB − 0) + SBAD = SBCD

1
2SCAB + SBAD = SBCD

1
2

A C

B

D E

(11–13) by Lemma 29 (point D eliminated),
geometric and algebraic simplifications
1
2SCAB + SBAA + 1

2 (SBAB − SBAA) = SBCD

1
2SCAB + 0 + 1

2 (0− 0) = SBCD

1
2SCAB = SBCD

1
2

A C

B

D E

(14–16) by Lemma 29 (point D eliminated),
geometric and algebraic simplifications
1
2SCAB = SBCA + 1

2 (SBCB − SBCA)
1
2SCAB = SCAB + 1

2 (0− SCAB)
0 = 0 Q.E.D.

0 0

A C

B

D E

Computer-Generated Geometry Proofs in a Learning Context 249

Fig. 8 JGEX—Example 84, Steps 2 and 5

The example illustrates how to express a problem using the given geometric quan-
tities and how to prove it in a concise, easily understood way with a corresponding
visual rendering.

As far as we know, there are no systems for the area method that provide such a
connection. It is not yet a feature of GCLC (see Sect. 6). However, JGEX (Ye et al.,
2010a, 2010b, 2011) does provide this connection for the full-angle method.

5.2 Full-Angle Method Visual Proofs

Using the JGEX system,we can build a given construction, state a conjecture about it,
and then, using one of the built-inGATPs, prove it. Using the full-anglemethod based
GATP we can produce examples where the formal proof has a visual counterpart.

Figure8 was taken from the tool’s own set of examples. Clicking on a step of the
formal proof produces a visual animation of the step on the construction. The related
relations between objects on the construction—e.g. the angles between two lines in
Fig. 8 (left)—initially “blink.” They then become fixed, but use colours to clearly
show the corresponding relations in the formal proof.

In both situations, the drawback is that neither the area method nor the full-angle
method use the usual set of axioms and rules of inference of primary and secondary
school geometry. Instead, they use the geometric quantities ratio of parallel directed
segments, signed area, Pythagoras difference and full-angle, and the axioms and
rules of inference for these geometric quantities. Using these methods in secondary
schooling could prove difficult.

6 Conclusions and Future Work

Geometry, with its very strong and appealing visual content and its formal axiomatic
theory, is a privileged domain. It is an area where computational tools can signifi-
cantly enhance the learning environment and make students active in building their
knowledge.

250 P. Quaresma and V. Santos

Introducing dynamic geometry systems enhances exploration and proof by mak-
ing it easy to posit and test conjectures. The ability to make, properties-preserving,
manipulations enables students to explore “visual proofs” of geometric conjectures.
DGSs significantly help students to acquire knowledge about geometric objects and,
more generally, to acquire mathematical rigour.

Geometry automated theorem provers capable of construction validation and
human readable proofs consolidate the knowledge acquired with the use of DGSs.
If the GATP produces synthetic proofs, the proof of a conjecture or the proof of the
soundness of a construction can be used as an object of study providing a logical
explanation. With a DGS, students can visually explore constructions or check that
certain conjectures are true. However, these systems do not provide mathematical
arguments for the conclusions they produce. Instead of producing a “visual check,” a
GATP can be used to draw accurate mathematical conclusions. Thus, we claim that
GATPs can be used in the learning process (Janičić & Quaresma, 2007; Quaresma
& Janičić, 2006; Santos & Quaresma, 2012, 2013).

The natural language rendering of a formal proof, especially if paired with a
visual rendering, would allow for a wider application of GATPs in learning contexts.
This is still an active area of research involving exploration of different methods,
implementations, and renderings. Currently, we are exploring the construction of
a controlled hybrid language for geometry; that is, a pair of controlled languages
(natural and visual) with common semantics. By considering figures as sentences in a
visual language sharing semantics with the natural language of geometric statements,
we can achieve interaction between parts of text and corresponding figures. We can
connect formal proofs to natural language and visual descriptions. This approach is
more generic than the concrete cases described above. It is a line of research we are
already pursuing.7

Given the availability of GATP technology and the work currently being done
on the rendering of the proofs, it is important to begin integrating these advances in
learning environments. As authors, we have already developed the Web Geometry
Laboratory (WGL),8—an adaptive and collaborative blended-learningWeb environ-
ment that integrates a dynamic geometry system (Quaresma, Santos, & Bouallegue,
2013; Quaresma, Santos, & Marić, 2018; Santos, Quaresma, Marić, & Campos,
2018). A short/medium term goal of theWGL is to connect with theOpenGeoProver
(OGP)9 (Baeta & Quaresma, 2013), an open library of GATPs that we are currently
developing alongside with others researchers. The connection between WGL and
OGP will provide the lab with the automatic deduction capabilities discussed in this
chapter; namely, checking the validation of a construction and getting formal proofs
with a human readable and visual rendering (Quaresma & Santos, 2016). This and
other projects like the integration of GATPs inGeoGebra (Botana et al., 2015) aim to

7Haralambous,Yannis andQuaresma, Pedro,Geometric Statements as Controlled Hybrid Language
Sentences, an Example in preparation.
8http://hilbert.mat.uc.pt/WebGeometryLab.
9https://github.com/ivan-z-petrovic/open-geo-prover.

http://hilbert.mat.uc.pt/WebGeometryLab
https://github.com/ivan-z-petrovic/open-geo-prover

Computer-Generated Geometry Proofs in a Learning Context 251

include the power of automatic deduction in the learning and teaching of geometry.
Ultimately, our goal is to help teachers and students answer the question “why.”

References

Abánades,M., Botana, F., Kovács, Z., Recio, T., &Sólyom-Gecse, C. (2016). Towards the automatic
discovery of theorems in GeoGebra. In G. M. Greuel, T. Koch, P. Paule, & A. Sommese (Eds.),
Mathematical Software—ICMS 2016 (pp. 37–42). Cham: Springer International Publishing.

Baeta, N., & Quaresma, P. (2013). The full angle method on the OpenGeoProver. In C. Lange,
D. Aspinall, J. Carette, J. Davenport, A. Kohlhase, M. Kohlhase, P. Libbrecht, P. Quaresma,
F. Rabe, P. Sojka, I.Whiteside,&W.Windsteiger (Eds.),MathUI, OpenMath, PLMMS and ThEdu
Workshops and Work in Progress at the Conference on Intelligent Computer Mathematics, no.
1010 in CEUR Workshop Proceedings. Aachen. http://ceur-ws.org/Vol-1010/paper-08.pdf.

Bezem,M.,&Coquand, T. (2005). Automating coherent logic. InG. Sutcliffe&A.Voronkov (Eds.),
Logic for programming, artificial intelligence, and reasoning. LectureNotes in Computer Science
(Vol. 3835, pp. 246–260). Berlin/Heidelberg: Springer. https://doi.org/10.1007/11591191_18.

Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T., et al. (2015). Automated
theorem proving in GeoGebra: Current achievements. Journal of Automated Reasoning, 55(1),
39–59. https://doi.org/10.1007/s10817-015-9326-4.

Chou, S. (1985). Proving and discovering geometry theorems usingWu’s method. Ph.D. thesis, The
University of Texas, Austin.

Chou, S. C., & Gao, X. S. (2001). Automated reasoning in geometry. In J. A. Robinson &
A. Voronkov (Eds.), Handbook of automated reasoning (pp. 707–749). Elsevier Science Pub-
lishers B.V.

Chou, S. C., Gao, X. S., & Zhang, J. Z. (1994). Machine proofs in geometry. World Scientific.
Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996a). Automated generation of readable proofs with
geometric invariants, I. Multiple and shortest proof generation. Journal of Automated Reasoning,
17(13), 325–347. https://doi.org/10.1007/BF00283133.

Chou, S. C., Gao, X. S., & Zhang, J. Z. (1996b). Automated generation of readable proofs with
geometric invariants, II. Theorem proving with full-angles. Journal of Automated Reasoning,
17(13), 349–370. https://doi.org/10.1007/BF00283134.

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Math-
ematics, 44(1–2), 5–23. https://doi.org/10.1023/A:1012737223465.

Hanna,G.,&Sidoli,N. (2007).Visualisation andproof:Abrief survey of philosophical perspectives.
ZDM, 39(1–2), 73–78. https://doi.org/10.1007/s11858-006-0005-0.

Hohenwarter, M. (2002). Geogebra—A software system for dynamic geometry and algebra in the
plane. Master’s thesis, University of Salzburg, Austria.

Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. InPerspectives on the teaching
of geometry for the 21st century (pp. 121–128). Springer. https://eprints.soton.ac.uk/41227/.

Janičić, P. (2006). GCLC—A tool for constructive Euclidean geometry and more than that. In
A. Iglesias & N. Takayama (Eds.) Mathematical Software—ICMS 2006. Lecture Notes in Com-
puter Science (Vol. 4151, pp. 58–73). Springer. https://doi.org/10.1007/11832225_6.

Janičić, P., Narboux, J., & Quaresma, P. (2012). The area method: A recapitulation. Journal of
Automated Reasoning, 48(4), 489–532. https://doi.org/10.1007/s10817-010-9209-7.

Janičić, P., & Quaresma, P. (2006). System description: GCLCprover + GeoThms. In U. Furbach,
N. Shankar (Eds.), Automated reasoning. Lecture Notes in Computer Science (Vol. 4130, pp.
145–150). Springer. https://doi.org/10.1007/11814771_13.

Janičić, P., & Quaresma, P. (2007). Automatic verification of regular constructions in dynamic
geometry systems. In F. Botana & T. Recio (Eds.), Automated deduction in geometry. Lecture

http://ceur-ws.org/Vol-1010/paper-08.pdf
https://doi.org/10.1007/11591191_18
https://doi.org/10.1007/s10817-015-9326-4
https://doi.org/10.1007/BF00283133
https://doi.org/10.1007/BF00283134
https://doi.org/10.1023/A:1012737223465
https://doi.org/10.1007/s11858-006-0005-0
https://eprints.soton.ac.uk/41227/
https://doi.org/10.1007/11832225_6
https://doi.org/10.1007/s10817-010-9209-7
https://doi.org/10.1007/11814771_13

252 P. Quaresma and V. Santos

Notes in Computer Science (Vol. 4869, pp. 39–51). Springer. https://doi.org/10.1007/978-3-540-
77356-6_3.

Jiang, J., & Zhang, J. (2012). A review and prospect of readable machine proofs for geometry
theorems. Journal of Systems Science and Complexity, 25(4), 802–820. https://doi.org/10.1007/
s11424-012-2048-3.

Kapur, D. (1986). Using Gröbner bases to reason about geometry problems. Journal of Symbolic
Computation, 2(4), 399–408. https://doi.org/10.1016/S0747-7171(86)80007-4.

Kovács, Z. (2015). Computer based conjectures and proofs in teaching Euclidean geometry. Ph.D.
thesis, Universität Linz. urn:nbn:at:at-ubl:1-5034.

Kovács, Z. (2015). The relation tool in GeoGebra (Vol. 5, pp. 53–71). Springer International Pub-
lishing. https://doi.org/10.1007/978-3-319-21362-0_4.

Li, H. (2000). Clifford algebra approaches to mechanical geometry theorem proving. In X. S. Gao
& D. Wang (Eds.), Mathematics mechanization and applications (pp. 205–299). San Diego, CA:
Academic Press.

Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (Eds.). (2009a). Proceedings of the ICMI
Study 19 Conference: Proof and Proving in Mathematics Education (Vol. 1). The Department of
Mathematics: National Taiwan Normal University.

Lin, F. L., Hsieh, F. J., Hanna, G., & de Villiers, M. (Eds.). (2009b). Proceedings of the ICMI
Study 19 conference: Proof and Proving in Mathematics Education (Vol. 2). The Department of
Mathematics: National Taiwan Normal University.

Nelsen, R. B. (1993). Proofs without words: Exercises in visual thinking (Vol. 1). MAA.
Paneque, J., Cobo, P., Fortuny, J., & Richard, P. R. (2016). Argumentative effects of a geometric
construction tutorial system in solving problems of proof. In:Proceedings of the 4th International
Workshop on Theorem Proving Components for Educational Software, July 15, 2015,Washington,
D.C., USA. CISUC Technical Reports (Vol. 2016-001, pp. 13–35). CISUC.

Quaresma, P. (2017). Towards an intelligent and dynamic geometry book.Mathematics in Computer
Science, 11(3), 427–437. https://doi.org/10.1007/s11786-017-0302-8.

Quaresma, P., & Janičić, P. (2006). Integrating dynamic geometry software, deduction systems,
and theorem repositories. In J. M. Borwein & W. M. Farmer (Eds.), Mathematical knowledge
management. Lecture Notes in Computer Science (Vol. 4108, pp. 280–294). Berlin: Springer.
https://doi.org/10.1007/11812289_22.

Quaresma, P., & Janičić, P. (2009). The area method, rigorous proofs of lemmas in Hilbert’s style
axiom system. Tech. Rep. 2009/006, Centre for Informatics and Systems of the University of
Coimbra.

Quaresma, P., Janičić, P., Tomašević, J., Vujošević-Janičić, M., & Tošić, D. (2008). Communicating
mathematics in the digital era. In XML-bases format for descriptions of geometric constructions
and proofs (pp. 183–197). Wellesley, MA: A. K. Peters, Ltd.

Quaresma, P., & Santos, V. (2016). Visual geometry proofs in a learning context. In W. Neuper
& P. Quaresma (Eds.), Proceedings of ThEdu’15, CISUC Technical Reports (Vol. 2016001, pp.
1–6). CISUC. https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR2016-01.pdf.

Quaresma, P., Santos, V., & Bouallegue, S. (2013). The Web Geometry Laboratory project. In
J. Carette, D. Aspinall, C. Lange, P. Sojka & W. Windsteiger (Eds.), CICM 2013. Lecture Notes
in Computer Science (Vol. 7961, pp. 364–368). Springer. https://doi.org/10.1007/978-3-642-
39320-4_30.

Quaresma, P., Santos, V., & Marić, M. (2018). WGL, a web laboratory for geometry. Education
and Information Technologies, 23(1), 237–252. https://doi.org/10.1007/s10639-017-9597-y.

Recio, T., & Vélez, M. P. (2012). An introduction to automated discovery in geometry through sym-
bolic computation (pp. 257–271). Vienna: Springer. https://doi.org/10.1007/978-3-7091-0794-
2_12.

Richard, P. R., Oller Marcén, A. M., & Meavilla Seguí, V. (2016). The concept of proof in the light
of mathematical work. ZDM, 48(6), 843–859. https://doi.org/10.1007/s11858-016-0805-9.

Richter-Gebert, J., & Kortenkamp, U. (1999). The interactive geometry software Cinderella.
Springer.

https://doi.org/10.1007/978-3-540-77356-6_3
https://doi.org/10.1007/978-3-540-77356-6_3
https://doi.org/10.1007/s11424-012-2048-3
https://doi.org/10.1007/s11424-012-2048-3
https://doi.org/10.1016/S0747-7171(86)80007-4
https://doi.org/10.1007/978-3-319-21362-0_4
https://doi.org/10.1007/s11786-017-0302-8
https://doi.org/10.1007/11812289_22
https://www.cisuc.uc.pt/ckfinder/userfiles/files/TR2016-01.pdf
https://doi.org/10.1007/978-3-642-39320-4_30
https://doi.org/10.1007/978-3-642-39320-4_30
https://doi.org/10.1007/s10639-017-9597-y
https://doi.org/10.1007/978-3-7091-0794-2_12
https://doi.org/10.1007/978-3-7091-0794-2_12
https://doi.org/10.1007/s11858-016-0805-9

Computer-Generated Geometry Proofs in a Learning Context 253

Ruthven, K., Hennessy, S., &Deaney, R. (2008). Constructions of dynamic geometry: A study of the
interpretative flexibility of educational software in classroom practice. Computers & Education,
51(1), 297–317.

Santos, V., & Quaresma, P. (2012). Integrating DGSs and GATPs in an adaptative and collaborative
blended-learning Web-environment. In First Workshop on CTP Components for Educational
Software (THedu’11), EPTCS (Vol. 79, pp. 111–123). https://doi.org/10.4204/EPTCS.79.7.

Santos, V., & Quaresma, P. (2013). Collaborative aspects of the WGL project. Electronic Journal
of Mathematics & Technology, 7(6). Mathematics and Technology, LLC.

Santos, V., Quaresma, P., Marić, M., & Campos, H. (2018). Web geometry laboratory: Case studies
in Portugal and Serbia. Interactive Learning Environments, 26(1), 3–21. https://doi.org/10.1080/
10494820.2016.1258715.

Stojanović, S., Narboux, J., Bezem, M., & Janičić, P. (2014). A vernacular for coherent logic. In S.
M. Watt, J. Davenport, A. Sexton, P. Sojka, & J. Urban (Eds.), Intelligent computer mathematics.
Lecture Notes in Computer Science (Vol. 8543, pp. 388–403). Springer International Publishing.
https://doi.org/10.1007/978-3-319-08434-3_28.

Stojanović, S., Pavlović, V., & Janičić, P. (2011). A coherent logic based geometry theorem prover
capable of producing formal and readable proofs. In P. Schreck, J. Narboux, & J. Richter-Gebert
(Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol. 6877, pp.
201–220). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-25070-5_12.

de Villiers, M. (2006). Some pitfalls of dynamic geometry software. Learning and Teaching Math-
ematics, 2006(4), 46–52.

Wang, D. (1995). Reasoning about geometric problems using an elimination method. In J. Pfalzgraf
& D. Wang (Eds.), Automated practical reasoning (pp. 147–185). New York: Springer.

Wang, K., & Su, Z. (2015). Automated geometry theorem proving for human-readable proofs.
In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15 (pp.
1193–1199). AAAI Press. http://dl.acm.org/citation.cfm?id=2832249.2832414.

Wu, W. (1984). On the decision problem and the mechanization of theorem proving in elementary
geometry. In Automated theorem proving: After 25 years (Vol. 29, pp. 213–234). American
Mathematical Society.

Ye, Z., Chou, S.C.,&Gao,X. S. (2010a).Visually dynamic presentation of proofs in plane geometry,
Part 1. Journal of Automated Reasoning,45, 213–241. https://doi.org/10.1007/s10817-009-9162-
5.

Ye, Z., Chou, S.C.,&Gao,X. S. (2010b).Visually dynamic presentation of proofs in plane geometry,
Part 2. Journal of Automated Reasoning,45, 243–266. https://doi.org/10.1007/s10817-009-9163-
4.

Ye, Z., Chou, S. C., & Gao, X. S. (2011). An introduction to java geometry expert. In T. Sturm &
C. Zengler (Eds.), Automated deduction in geometry. Lecture Notes in Computer Science (Vol.
6301, pp. 189–195). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-21046-
4_10.

https://doi.org/10.4204/EPTCS.79.7
https://doi.org/10.1080/10494820.2016.1258715
https://doi.org/10.1080/10494820.2016.1258715
https://doi.org/10.1007/978-3-319-08434-3_28
https://doi.org/10.1007/978-3-642-25070-5_12
http://dl.acm.org/citation.cfm?id=2832249.2832414
https://doi.org/10.1007/s10817-009-9162-5
https://doi.org/10.1007/s10817-009-9162-5
https://doi.org/10.1007/s10817-009-9163-4
https://doi.org/10.1007/s10817-009-9163-4
https://doi.org/10.1007/978-3-642-21046-4_10
https://doi.org/10.1007/978-3-642-21046-4_10

Using 3D Geometry Systems to Find
Theorems of Billiard Trajectories
in Polyhedra

Heinz Schumann

Billiards in Euclidean spaces of dimension three or more are
essentially in an infantile state. In brief: practically nothing is
known in general.
−Berger (2010)

1 Introduction

The topic of this chapter belongs to the complex and developing theory of mathemat-
ical billiards. The use of 3D dynamic geometry systems (D3DGS) opens new topics
in spatial geometry. One of these topics is billiards in convex polyhedra. Discovering
distinctive billiards trajectories in a cube and its generalizations is suitable for spatial
geometry activities beyond regular classroom lessons.

The basic literature comprises Tabachnikov’s study of billiards on a plane in
Geometrie undBillard (2013), andGalperin andSemliakov’sworkon spatial billiards
inMathematische Billarde (1990). The only sufficient and non necessary conditions
known for billiards trajectories in polygons or polyhedra are that these trajectories
exist in convex polygons or convex polyhedra whose sides with a common vertex
or whose faces with a common edge enclose angles that are a rational multiple of π

(180°).
The following general problem formulation can be used for a directed theorem

discovery at school or undergraduate level:

For which special convex 2n-faced polyhedra is there a billiards trajectory traversing all
faces that takes the shape of a regular 2n-gon. And vice versa: Which 2n-faced polyhedron
can be constructed for a given regular spatial 2n-gon that represents a billiards trajectory?

H. Schumann (B)
University of Education Weingarten, Kirchplatz 2, 88250 Weingarten, Germany
e-mail: schumann@ph-weingarten.de

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_12

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_12&domain=pdf
mailto:schumann@ph-weingarten.de
https://doi.org/10.1007/978-3-030-28483-1_12

256 H. Schumann

This problem formulation is equivalent to the following:

Forwhich special convex 2n-faced polyhedra is there an inscribed 2n-gon ofminimal perime-
ter that is regular. And vice versa: Which 2n-faced polyhedron can be constructed upon a
given regular spatial 2n-gon as an inscribed polygon of minimal perimeter?

To provide an example: A regular spatial 2n-gon is the Petrie polygon of an n-
gonal antiprism formed by regular congruent base areas, one of which is turned by
180°/n (π/n). The convex hull of this regular spatial 2n-gon is the corresponding
n-gonal antiprism. There can be no spatial n-gons with an odd number of vertices.

In the following sections, the given problem settings will be pursued for n = 3.
The term cushion is used to describe the impact of a billiard with a reflection of the
(point-shaped) billiards ball or an atomic particle or light corpuscle on the plane, and
largely avoid the specialist terms of the theory of mathematical billiards.

By means of a suitable 3D dynamic geometry system (D3DGS) such as Cabri 3D
(Bainville&Laborde, 2004–2015), billiardsmoves can be dynamically examined for
simple polyhedra such as cubes, cuboids, parallelepipeds, and so forth. This creates
elementary geometric access. Finding assertions about these billiards in a D3DGS
is medially supported by the visualization, construction, measurement, and direct
manipulation and variation of spatial objects (Schumann, 2007). Further, the use of a
D3DGS reinforces the role of heuristic strategies in discovery; namely (see Winter,
1989; Borwein, 2012):

• the formation of analogies (especially from plane to spatial geometry)
• induction
• restructuring and variation
• generalization and specification
• analysis and synthesis
• composition
• reversibility.

Comment 1: These heuristic strategies can be expanded to include “case discrim-
ination.”

Confidence in the validity of conjectures produced by 3D dynamic geometry
software such as Cabri 3D diminishes the need for proof as a means of verification.
However, utilizing students’ natural desire for explanation – to determine causality
(Harel, 2013) – can instead, as argued by De Villiers (1990, 2010) and Hanna (2000),
motivate proof as ameans of explanation (or as systematization or discovery). In other
words, a pedagogical paradigm shift from the traditional focus of proof only as a
means of verification to a broader view of proof serving many other functions in
mathematics is therefore required.

It is also conceivable that using dynamic 3D geometry software can help students
progress through the Van Hiele-like levels of understanding 3D geometry identified
by Gutierez et al. (2004). To explore this conjecture and also the trajectories of 3D
billiards outlined in this chapter, research is needed on the use of 3D geometry soft-
ware with students. Such follow-up research would assist in a better understanding
not only of students’ conceptualization of 3D, but also of their ability to construct

Using 3D Geometry Systems to Find Theorems of … 257

proofs for their observations. This focus, however, falls outside the scope of this
chapter and is identified as an important area for future research.

The chapter will now examine the case of billiards in a square, then extending it to
billiards in cubes by using the analogy between squares and cubes. Some properties
and specific shapes of the hexagonal billiard trajectories (or paths) in cubes will
be discussed. Next, these findings are generalized to equilateral parallelepipeds, and
some point symmetric polygons that are formed. In the last two sections, the heuristic
process is firstly reversed by using the hexagon to construct the hexahedron for which
the hexagon is a billiards trajectory, and secondly, special tetrahedrons are identified
along inscribed symmetrical 3Dquadrangles results. Note that the polygonal billiards
trajectories (paths) investigated here for polyhedra, are spatial ones.

2 From Square Billiards to Cube Billiards

Preliminary notes:

1. The dragging hand () symbolizes the potential to vary a shape from the
position of a point (In the following, the property of a D3DGS to vary parameters
of geometric figures by dragging corresponding points is not explicitly explained.
However, the interactive dynamic Cabri 3D sketches for the investigations below
can be downloaded from ‘Springer ExtraMaterials’ at http://extras.springer.com/
A demo, trial version of Cabri 3D can be downloaded for free from https://cabri.
com/en/student/cabri-3d/-Trial).

2. To provide a better visual perception of the shape properties that follow, the
virtual space is displayed in parallel projection.

3. Print media can give only a poor impression of the interactive and dynamic work
process, and the visualization possibilities.

2.1 Elementary Billiards Trajectories

Figure 1 shows the given positions S and T of two balls and the cushion g. How does
the ball in S need to be pushed in order to make it reflect on g in such a way that it
hits the ball in T?

The billiards trajectory hits g in R so that both trajectories enclose the same
(non-obtuse) reflection angle (angle of incidence = angle of reflection). R is the
intersection point of g with a straight line connecting T and the mirror image S′ of S
with respect to g. This elementary billiards trajectory is simultaneously the shortest
polygonal chain connecting S and T that passes a point on g, as the triangle inequality
ensures that |SPT| > |SRT| for every point P different from R on g. This holds true
analogously in space for the billiards trajectory from S to T with reflection on the
plane e (Fig. 2). The straight lines RT and RS are symmetrically identical with regard

http://extras.springer.com/
https://cabri.com/en/student/cabri-3d/-Trial

258 H. Schumann

Fig. 1 Elementary billiards
trajectory on the plane

Fig. 2 Elementary billiards
trajectory in space with
reflection on plane

to the perpendicular in R on g and e respectively (Figs. 1 and 2). This property can
be used, for example, to check if SRT is a billiards trajectory.

2.2 From Billiards Trajectories in a Square
to the Construction of Billiards Trajectories in a Cube
via Analogy Formation

It is well known that the simple closed billiards trajectory in a square consists of a
rectangle R1R2R3R4 (Fig. 3) symmetrical to the square’s centre M, whose opposing
sides are each parallel to one of the square’s diagonals and whose perimeter is double
a square diagonal. The billiards rectangles are thus all of the same perimeter. The
angle between two adjunct sides of a rectangle is equal to the angle between the
square diagonals.

A billiards rectangle with the starting point R1 is best constructed by drawing
a parallel line to one of the square’s diagonals through R1. It cuts an adjunct side

Using 3D Geometry Systems to Find Theorems of … 259

Fig. 3 Billiards quadrangle
in the square

of the square in R2. Another parallel to the second diagonal of the square is drawn
through this point, resulting in R3 as an intersection point with another square side.
Reflection of the polygonal chain R1R2R3 to the square centre M completes the
billiards rectangle R1R2R3R4.

It appears logical to construct billiards trajectories on the cube in analogy to the
billiards rectangle. For that, we may, for example, start from a point R1 on one face
of the cube (Fig. 4) and construct a parallel to the space diagonal with the end point
A. The parallel intersects one of the faces in the point R2. We construct a parallel to
the space diagonal with end point B through this point, which intersects another face
of the cube in R3. The parallel to the space diagonal with the end point C through R3

intersects another cube face in R4. The reflection of the polygonal chain R1R2R3R4

on the cube centreM results in a spatial billiards hexagon R1R2R3R4R5R6. Likewise,
there is another, different billiards hexagon for the starting point R1 (Fig. 5). In space,
these situations are generally more comprehensive than on a plane. A review of all
potential construction cases shows that, aside from particular positions of the starting
vertex R1, there are always only two different hexagons for the same starting vertex.

Fig. 4 Spatial billiards
hexagon in a cube type 1

260 H. Schumann

Fig. 5 Spatial billiards
hexagon in a cube type 2

2.3 Properties of the Billiards Hexagons

The perimeters of the hexagons that are symmetrical to the cube centre equal twice the
length of the space diagonal. This means that all billiards hexagons have the same perimeter.
The hexagon has equal interior angles, which are equal to the obtuse angle between the
diagonals. The billiards hexagon is thus an equiangular hexagon whose interior angle size
remains constant regardless of form changes.

For determination: The given construction of the type 1 hexagon is valid for any
starting point R1 within the triangle ABC (Fig. 6). If the starting point R1 of the
construction lies within the diagonal AB, the hexagon shrinks to a parallelogram.
The same applies to the billiards hexagon of type 2 with a starting point R1 within the
triangle BCD. A perpendicular 90° rotation through the centre of the square ABCD
projects the generating space diagonals of the type 1 hexagon onto the generating
space diagonals of the type 2 hexagon. Each type 1 hexagon (R1R2R3R4R5R6) thus
transforms into a type 2 hexagon (R1

′R2
′R3

′R4
′R5

′R6
′) and vice versa (Fig. 7). A

differentiation betweenhexagons of type 1 and type 2 is thus only relevant if a billiards
trajectory is to be constructed from the same starting point. Billiards hexagons with
starting points on the other five faces can be constructed by rotation and/or reflection

Fig. 6 Type 1 billiards
hexagon with starting area

Using 3D Geometry Systems to Find Theorems of … 261

Fig. 7 Rotation of a type 1
billiards hexagon into a
type 2 billiards hexagon

of a hexagon with a starting point inside the triangle ABC and the generating space
diagonals through A, B, and C.

2.4 Special Shapes of the Billiards Hexagon

Special shapes of the type 1 billiards hexagon occur if R1 is chosen so that it lies
within one of the medians of the triangle ABC (Fig. 8, R1 lies within BMb). If this is
the case, the hexagon will have two diametrical pairs of adjunct sides, all of which
have the same length. The same holds for type 2 billiards hexagons in relation to the
triangle BCD.

If R1 lies on the centre of a square side, which is also the centre of mass of this
side, the billiards rectangle is a square (Fig. 9). If R1 coincides with the centre of
mass of the triangle ABC, the spatial billiards hexagon is even equilateral (Fig. 10).
The same is true for type 2 billiards hexagons with regard to the triangle BCD.

Comment 2: Gardner (1971) does not comment on the aforementioned properties
of a billiards hexagon for special positions of starting point R1.

Fig. 8 Special shape of the
billiards hexagon

262 H. Schumann

Fig. 9 Equilateral billiards
rectangle (square)

Fig. 10 Equilateral billiards
hexagon, thus regular and
point symmetrical

3 A First Generalization: Billiards in Equilateral
Parallelepipeds

The cube can be generalized so that either its right-angled vertices or the equality of
its edges or even the congruence of its six faces remain unchanged. Such general-
izations of the cube are the cuboid (right-angled parallelepiped) and the equal-edged
parallelepiped whose faces are rhombi. There is a special case for the latter in which
the figure has congruent rhombi as faces, and so is an equilateral parallelepiped. I
will limit my observations to billiards in equilateral parallelepipeds as their shape is
determined by only one parameter: the size of the rhombus angle (α).

Comment 3: The generalizations of billiards to the cuboid and the parallelepiped
leads to the problem of abstraction from the variety of shape parameters. Thus,
findings about the billiards trajectories can be gained even more than before through
inductive means. At the same time, this illustrates the limits of the inductive method.

3.1 Billiards Trajectories in Equilateral Parallelepipeds

The billiards trajectory in a rhombus is an intersecting quadrangle symmetrical to
one of the rhombus’s diagonals (Fig. 11). In an equilateral parallelepiped with acute

Using 3D Geometry Systems to Find Theorems of … 263

Fig. 11 Billiards trajectory
in a rhombus

rhombus angle α, this trajectory corresponds to a hexagonal billiards trajectory with
the following properties (Fig. 12): The angles with the vertices R2, R3, R4 and R5 are
equal, as are the angles with the vertices R1 and R6. The sides R1R2 and R4R5 are
equal in length. For an equilateral parallelepiped and a reflection analogous to the
one in the rhombus (Fig. 13), the special case of an intersecting, point-symmetrical
billiards hexagon occurs (Fig. 14). In this hexagon, even the sides R1R6, R6R5, R2R3

and R3R4 are equal in length; however, its perimeter is not minimal. For the rhombus
angle α = 90°, there are no billiards trajectories with reflection on opposite faces.

Fig. 12 Billiards trajectory
in an equilateral
parallelepiped

Fig. 13 Point symmetrical
billiards-quadrangle in a
rhomb

264 H. Schumann

Fig. 14 Point symmetrical
billiards hexagon in an
equilateral parallelepiped

In contrast to the rhombus, there are, as in the cube, also billiards traces with
a reflection on consecutive faces of the equilateral parallelepiped. There are also
hexagonal billiards trajectories that are symmetrical to one of the diagonal planes of
the parallelepiped. In this case, R1 lies on a corresponding diagonal plane (Fig. 15).
Whereas in a non-square rhombus, all billiards quadrangles are equiangular but no
equilateral billiards quadrangle exists, it is natural to ask about the existence of an
equiangular and equilateral billiards hexagon in an equilateral parallelepiped. As a
special case of the plane-symmetrical billiards trajectory, there is a billiards hexagon
symmetrical to the centre M of the equilateral parallelepiped, which is equiangu-
lar and equilateral (Fig. 16). Among all billiards hexagons within the equilateral
parallelepiped this is the one with the smallest perimeter.

Comment 4: The convex hull of the regular point-symmetrical billiards hexagon
in the equilateral parallelepiped is, as in the case of the cube, a triangular antiprism
with congruent equilateral triangles as base areas.

Fig. 15 Plane-symmetrical
billiards hexagon in an
equilateral parallelepiped
with reflection on adjunct
faces

Using 3D Geometry Systems to Find Theorems of … 265

Fig. 16 Regular
point-symmetrical billiards
hexagon in an equilateral
parallelepiped with reflection
on adjunct faces

4 From the Spatial Regular Hexagon Towards
the Equilateral Parallelepiped for Which This Hexagon
Constitutes an Orbiting Billiards Trajectory

So far, I have constructed the respective billiards hexagons for the cube and a spe-
cial generalization of the cube. In the following, I pursue the heuristic method of
reversibility and approach the issue from the other side by using the hexagon to
construct the hexahedron for which the hexagon is a billiards trajectory. In this way,
types of hexahedra may be discovered which depend on the shape of the spatial
hexagon.

Construction: Regular spatial hexagons R1R2R3R4R5R6 result, for example, from
triangular antiprisms with an equilateral triangle as base area and another con-
gruent triangle as the other base, but vertically shifted and rotated by 180° (a so-
called antiprismatic hexagon or Petrie polygon of the antiprism—see Fig. 17). The

Fig. 17 Triangular
antiprism with a regular
point-symmetrical hexagon
(Petrie polygon), symmetry
axes, and symmetry centre

266 H. Schumann

antiprism’s symmetrical properties transfer to the hexagon. The angle bisectors for
such a hexagon are constructed (Fig. 18).

Perpendicular planes are then constructed in the vertices R1, R2, R3, R4, R5 and
R6 of the angle bisectors (with perpendicular planes for R1, R3 and R5 and their inter-
section point A—see Fig. 19). All three non-parallel perpendicular planes through
the vertex intersect in a three-edged vertex of a polyhedron. Due to the properties of
the regular point-symmetrical 3D hexagon, this polyhedron is an equilateral paral-
lelepiped ABCDEFGH (Fig. 20). First, the two-fold rotation axes of the antiprismic
hexagon are projected onto the two-fold axes connecting the centres of opposing
edges. Second, the three-fold symmetry axis of the hexagon is projected onto one of
the three-fold symmetry axes of the parallelepiped. And third, the symmetry centre
is projected onto the symmetry centre of the parallelepiped. Unfolding the paral-
lelepiped to a net illustrates and confirms its equilateral property (Fig. 21). Thus, we
arrive at the following assertion:

Fig. 18 Regular point-symmetrical hexagon with angle bisectors

Fig. 19 Intersection of three perpendicular planes of three angle bisectors in a regular point-
symmetrical hexagon

Using 3D Geometry Systems to Find Theorems of … 267

Fig. 20 Equilateral
parallelepiped with
generating regular
point-symmetrical hexagon

Fig. 21 A net of the
equilateral parallelepiped

For a regular point-symmetrical spatial hexagonR1R2R3R4R5R6 there is exactly one equilat-
eral parallelepiped ABCDEFGH, for which the given hexagon R1R2R3R4R5R6 constitutes
an orbiting billiards trajectory.

Comment 5: Besides the antiprismic regular hexagons, there are other closed
spatial hexagons that are regular (Fig. 22—example of a regular 3D hexagon that is
axially symmetrical, but not point symmetrical).

Comment 6: If the angle of the regular hexagon is 2 arccos 2
√
3

6 , the equilateral
parallelepiped is a cube (this angle equals the obtuse angle between two spatial
diagonals of a cube).

Furthermore, by applying the result of the previous section (Fig. 16), we discover
that the equilateral parallelepiped has a regular, point-symmetrical hexagon as its
orbiting billiards trajectory. A property of the equilateral parallelepiped:

A hexahedron is an equilateral parallelepiped if and only if it has a single-orbit billiards
trajectory which is a point-symmetrical 3D hexagon.

268 H. Schumann

Fig. 22 Regular 3D
hexagon, which has only one
two-fold symmetry axis

Or:

A hexahedron is an equilateral parallelepiped if and only if it has an inscribed regular point-
symmetrical 3D hexagon with minimal perimeter.

Comment 7: This can be followed by a study of simply closed regular point-
symmetrical billiards trajectories with 8, 10, 12, … vertices which lead to trape-
zohedrons consisting of a corresponding number of congruent kites. Symmetrical
billiards quadrangles result in special tetrahedrons, amongst which the equilateral
tetrahedron can be found (Schumann 2017).

Insertion: Besides the (simply closed) regular point-symmetrical hexagons, there
are also, for example, self-intersecting regular hexagons with a three-fold symmetry
axis that can be constructed easily from three-sided prisms with regular base areas
(Fig. 23).

For regular hexagons of the self-intersecting type, there is a convex hull of the
planes perpendicular to the angle bisectors in the vertices which forms a three-sided
double pyramid, each consisting of congruent isosceles triangles (Fig. 24). The three-
sided double pyramid from equilateral triangles is a special case.

This leads to the following statement:

Fig. 23 Regular symmetric
self-intersecting 3D hexagon

Using 3D Geometry Systems to Find Theorems of … 269

Fig. 24 Three-sided double
pyramid with generating
self-intersecting regular
point-symmetrical 3D
hexagon

A hexahedron is a three-sided double pyramid consisting of congruent isosceles triangles if
and only if there is a simple orbiting billiards trajectory in the shape of a self-intersecting
regular hexagon with a three-fold symmetry axis.

Or:

A hexahedron is a three-sided double pyramid consisting of congruent isosceles triangles if
and only if there is an inscribed self-intersecting regular hexagon with three-fold symmetry
axis whose perimeter is minimal.

Comment 8: An examination of such self-intersecting regular billiards trajecto-
ries with 10, 14, 18, … vertices leads to trapezoids with corresponding numbers of
congruent kites. Such polyhedra are also called deltoids.

Due to lack of space, I close my examination with identification of the paral-
lelepiped.

Comment 9: It is questionable whether overtaking the definition of regular planar
polygons by equilaterality and equiangularity for spatial polygons is sensible, as this
definition also includes spatial polygons which do not “look” regular, as they are
not vertex equivalent like the regular planar polygons. It is appropriate to require
vertex transitivity for equilateral spatial polygons in order for them to be defined as
regular; this includes equiangularity. According to this definition, the only remaining
regular spatial polygons with more than five vertices are the 2n-sided polygons of the
corresponding n-gonal antiprisms for n= 3, 4, 5, … and the 2(2n+1)-sided polygons
of the face self-intersecting diagonals of the corresponding (2n+1)-sided prisms for
n = 1, 2, 3, … This was proven by Efremovitch and Il’jashenko (1962).

4.1 Identification of the parallelepiped

There are billiards trajectories within the parallelepiped that are (simply closed)
point-symmetrical hexagons. Vice versa, a construction of the convex hull formed

270 H. Schumann

Fig. 25 Parallelepiped with generating point-symmetrical 3D hexagon

by the perpendicular planes to the angle bisectors in the vertices of such hexagons
creates a parallelepiped (Fig. 25). This leads to the following statement:

A hexahedron is a parallelepiped if and only if it has a point-symmetrical billiards hexagon.

Or:

A hexahedron is a parallelepiped if and only if it has an inscribed point-symmetrical hexagon
with minimal perimeter.

Comment 10: As far as I know, the theorems heuristically elaborated in this section
have not yet been published.

5 An Identification of Special Tetrahedra

If symmetrical 3D quadrangles are those quadrangles emerging from unfolding
the corresponding symmetrical plane quadrangles along one of their diagonals
(Schumann, 2017), the following identification of special tetrahedrons along
inscribed symmetrical 3D quadrangles results (Fig. 26):

• A tetrahedron consists of four congruent isosceles triangular faces if and only if its
billiards quadrangle is an equiangular 3D rhombus. Thismeans that the tetrahedron
is isosceles and equilateral.

• A tetrahedron consists of four congruent triangular faces if and only if its billiards
quadrangle is an equiangular 3D parallelogram. This means the tetrahedron is
equilateral.

• A tetrahedron consists of two pairs of triangular faces, each of which consists of
two congruent isosceles triangles, if and only if its billiards quadrangle is a 3D
rhombus.

Using 3D Geometry Systems to Find Theorems of … 271

Fig. 26 Symmetrical 3D quadrangles as billiards quadrangles

• A tetrahedron consists of two pairs of triangular faces, each of which consists of
two congruent triangles, if and only if its billiards quadrangle is a 3Dparallelogram.

• A tetrahedron consists of two pairs of triangular faces, one of which consists of
two congruent isosceles triangles and the other of congruent triangles, if and only
if its billiards quadrangle is a 3D kite.

Comment 11: Not all 3D kites will reveal a tetrahedron whose simply closed
billiards trajectory is this kite. This sets the kite apart from the other symmetrical 3D
quadrangles.

6 Concluding Remarks

The investigations presented here can be transferred to omnihedral orbiting billiards
trajectories in other convex polyhedra, such as the other platonic solids (Hudelsohn,
n.d.), Archimedean solids, Johnson solids (convex polyhedra with regular polygon
faces), or Catalan solids (Archimedean dual solids). This relation between convex
polyhedra and special 3D polygons can be denoted as a type of “orthogonal-duality.”
Themore faces these polyhedra have, themore difficult the interactive construction of
corresponding billiards polygons becomes. Indeed, such investigations are not always
successful. If the investigation is based on special 3D polygons, different convex

272 H. Schumann

polyhedra can be found as convex hulls of the perpendicular planes to the angle
bisectors in the vertices of the polygon, which can be identified by their polygonal
properties.

Several open questions remain regarding the existence of polyhedra for given
billiards polygons. When regarding 3D polygons as polygonal billiards trajectories,
the lack of a thorough theoretical investigation concerning such polygons becomes
obvious. However, with the aid of dynamic 3D-software as described and used in
this chapter, such investigations are now a feasible reality.

Lastly, with available software, students at both high school and undergraduate
level, can easily conduct such investigations. With the confidence provided by such
empirical investigations, students can be encouraged to explain (prove) the results in
a variety of ways ranging from the use of symmetry, synthetic geometry, and vectors.
Such investigations can be valuable extensions of plane geometry to 3D geometry.

References

Bainville, E., & Laborde, J.-M. (2004–2015) Cabri 3D 2.1. Grenoble: Cabrilog (www.cabri.com).
Berger, M. (2010). Geometry revealed. A Jacob’s ladder to modern higher geometry (p. 728).
Heidelberg: Springer.

Borwein, J. (2012). Exploratory experimentation: digitally-assisted discovery and proof. In G.
Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education. New ICMI Study
Series 15 (pp. 69–95). Springer. https://doi.org/10.1007/978-94-007-2129-6_4.

De Villiers, M. (1990). The role and function of proof. Pythagoras, 24, 17–24.
De Villiers, M. (2010). Experimentation and proof in mathematics. In G. Hanna, H. Jahnke & H.
Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives
(pp. 205–221). Springer. https://doi.org/10.1007/978-1-4419-0576-5_14.

Efremovitch, V. A., & Il’jashenko, J. S. (1962). Regular Polygons in En (Russian). BulletinMoscow
University, Series I 17, No. 5, pp. 18–23.

Galperin, G. A., & Semliakov, A. N. (1990). Mathematical billiards (Russian). Moskau: Nauka.
Gardner, M. (1971).Martin Gardener’s sixth book of mathematical games from scientific American
(pp. 29–38). San Francisco: W. H. Freeman.

Gutierrez, A., Pegg, J., & Lawrie, C. (2004). Characterization of students’ reasoning and proof
abilities in 3-dimensional geometry. Proceedings of the 28th Conference of the International
Group for the Psychology of Mathematics Education (Vol. 2, pp. 511–518).

Hanna, G. (2000). Proof, explanation and exploration: An overview. Educational Studies in Math-
ematics, 44, 5–23.

Harel, G. (2013). Intellectual need. In K. Leatham (Ed.), Vital directions for mathematics education
research (pp. 119–151). New York (NY): Springer.

Hudelson, M. (not specifiable). Periodic omnihedral billiards in regular polyhedra and polytopes.
Schumann,H. (2007). Schulgeometrie im virtuellenHandlungsraum (School geometry in the virtual
action space). Hildesheim: Verlag Franzbecker.

Schumann, H. (2017). Das räumliche Viereck – eine Einführung (The spatial quadrangle—An
introduction). MNU Journal 6(70), 382–389.

Tabachnikov, S. (2013). Geometrie und Billard (Geometry and Billiards). Berlin, Heidelberg:
Springer.

Winter, H. (1989). Entdeckendes Lernen im Mathematikunterricht (Dicovery learning in the teach-
ing of mathematics). Braunschweig: Verlag Vieweg.

http://www.cabri.com
https://doi.org/10.1007/978-94-007-2129-6_4
https://doi.org/10.1007/978-1-4419-0576-5_14

Using 3D Geometry Systems to Find Theorems of … 273

Links

http://stanwagon.com/public/hudelsonbilliards.pdf. Accessed 13 Aug 2019.
http://mathworld.wolfram.com/Billiards.html. Accessed 13 Aug 2019.

http://stanwagon.com/public/hudelsonbilliards.pdf
http://mathworld.wolfram.com/Billiards.html

Classroom Experience with Proof Software

Learning Logic and Proof
with an Interactive Theorem Prover

Jeremy Avigad

1 Introduction

Although mathematical language and the canons of proof have been evolving for
centuries, the fundamentals have remained remarkably stable over time. High school
students can still profitably read Euclid’sElements and follow the deductive structure
of the arguments. They can similarly make sense of Cardano’s solution to the cubic
equation and read Euler’s proof of the theorem that if p is a prime number and a is
not divisible by p, then a p−1 is congruent to 1 modulo p.

In contemporary terms, the definition of a prime number might be rendered as
follows:

Definition 1.1 A natural number p is prime if and only if p ≥ 2 and for every n, if
n | p, then n = 1 or n = p.

Symbolic logic provides idealized languages to model informal mathematical ver-
nacular, and in a language in which variables are assumed to range over the natural
numbers, the definition of a prime number might be rendered as follows:

Prime(p) ≡ p ≥ 2 ∧ ∀n (n | p → n = 1 ∨ n = p).

Logicians like to think that symbolic logic helps students understand mathemat-
ical language and proof, since it is specifically designed to codify the rules and
norms that govern mathematical reasoning. This chapter provides at least anecdotal
evidence that this is the case, describing a course that teaches symbolic logic and
ordinarymathematical proof together. The course asks students to recognize that they

J. Avigad (B)
Department of Philosophy, Carnegie Mellon University, Baker Hall 161, Pittsburgh,
PA 15213, USA
e-mail: avigad@cmu.edu

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_13

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_13&domain=pdf
mailto:avigad@cmu.edu
https://doi.org/10.1007/978-3-030-28483-1_13

278 J. Avigad

are dealing with two different languages and keep them distinct, donning a mathe-
matician’s hat and a logician’s hat at different times. This provides complementary
perspectives on mathematical reasoning and encourages students to think about the
relationships between the two.

A novel feature of the course is that students also learn to use a third language,
namely, the language of the Lean interactive theorem prover (de Moura, Kong, Avi-
gad, van Doorn, & von Raumer, 2015). In this system, the definition of a prime
number can be rendered as follows:

def prime (p : N) := p ≥ 2 ∧ ∀ n, n | p → n = 1 ∨ n = p

Such definitions are parsed and checked for grammatical correctness by the sys-
tem. Students are asked to write proofs that can be checked by the system as well, in
a proof language that looks much like a programming language. This requires them
to don yet a third hat, namely, that of the computer scientist, and put up with the
trials and tribulations of formal specification.

The goal of the course is to teach students to read, write, and understand ordinary
mathematical proofs. There are independent reasons to teach students symbolic logic,
which is an interesting branch of mathematics in its own right, with applications
to philosophy, computer science, linguistics, and other disciplines. There are also
independent reasons to teach students how to use an interactive theorem prover:
not only are such systems becoming important tools for the verification of complex
hardware and software systems, but, more generally, facility with logical formalisms
and specification languages is important in a number of branches of computer science,
ranging from programming languages and database theory to artificial intelligence.
But these are not explicitly addressed in the course, and we take these benefits to be
ancillary. The course remains focused on mathematics.

Robert Y. Lewis, Floris van Doorn, and I have taught the course to undergraduates
at Carnegie Mellon University over the past three years, based on course materials
that we are still developing (Avigad, Lewis, & van Doorn, 2019). These are freely
available online:

http://leanprover.github.io/logic_and_proof

The textbook can be read in a browser, and clicking on examples and exercises in
Lean launches a version of the program that also runs in the browser. A PDF version
of the textbook is also available for download, and Lean can be installed and run
independently. Running Lean in the browser is slower than running a native version,
but it is more than adequate for the purposes of the course.

Here I report on our experiences teaching the course. When I say “we tell students
…” or “we discuss …,” I am describing our general classroom practice. But since
we developed the textbook specifically to support the lectures, statements like these
generally describe the contents of the textbook as well.

http://leanprover.github.io/logic_and_proof

Learning Logic and Proof with an Interactive Theorem Prover 279

2 Course Outline

The course was taught with three weekly 50-minute meetings over the course of a
14-week semester. The textbook’s introductory chapter proclaims to students that
the goals are as follows:

• to teach you to write clear, “literate,” mathematical proofs
• to introduce you to symbolic logic and the formal modeling of deductive proof
• to introduce you to interactive theorem proving
• to teach you to understand how to use logic as a precise language formaking claims
about systemsof objects and the relationships between them, and specifying certain
states of affairs.

We tell students that they will learn three separate languages, and that they should
take care not to conflate them. We also tell them that the course can be viewed
simultaneously as an introduction tomathematical proof, an introduction to symbolic
logic, and an introduction to interactive theorem proving. We emphasize, however,
that the latter two components are carried out in service of the first.

The first third of the course focuses on symbolic logic. It begins with a logic
puzzle by George Sumner, “Malice and Alice,” that presents a list of assertions about
a cast of characters consisting of Alice, her husband, her brother, her son, and her
daughter, and the murder of one by another. Students are asked to work out a solution
to the problem on their own, but then we turn to an analysis of the language and form
of Sumner’s published solution. We ask students to reflect on the role of words
and phrases like “and,” “or,” “if …then,” and “this is impossible,” the last of which
signals a contradiction. We then introduce symbols corresponding to these verbal
constructions, and begin to analyze the rules governing their use.

Our introduction to symbolic logic is fairly conventional. We first present propo-
sitional logic and introduce natural deduction as our system of formal proof. We
describe truth-table semantics, and explain the notions of soundness and complete-
ness informally. We then continue with the language of first-order logic, including
function and relation symbols, quantifiers, and equality. Once again, we present the
relevant proof rules in natural deduction, followed by an informal discussion of the
semantics. We get students to recognize that a first-order sentence can be interpreted
in various structures, and that the role of the proof system is to certify certain entail-
ments as valid, which means that the conclusion holds in any structure that satisfies
the hypotheses.

The main novelty is that the conventional presentation is accompanied by an
introduction to the use of logic in Lean. As we go, we show students how to write
formal expressions and proofs that can be checked automatically. This material is
treated in separate chapters in the textbook, with a clearly delineated shift in the
exposition. Roughly every third class, we set aside conventional lectures to project a
laptop display to the front of the classroom and work through examples and proofs
together. Weekly homework assignments reflect a similar balance: roughly one third
of the exercises are carried out formally in Lean, with the remainder consisting of
conventional pen-and-paper exercises.

280 J. Avigad

The remaining two thirds of the course provide a similarly conventional intro-
duction to the fundamental concepts of mathematics and mathematical proof. We
present elementary set theory, the conventional operations on sets, and the usual set
identities. We talk about relations, including order relations and equivalence rela-
tions. We deal with functions and their general properties. We then turn to the natural
numbers and proof by induction. With these fundamentals in place, we illustrate
their use with quick tours of key mathematical topics: elementary number theory,
finite combinatorics and counting principles, a construction of the real numbers via
Cauchy sequences, and the theory of the infinite. A final chapter brings the logical
foundations and the informal mathematics together by presenting and exploring the
axioms of set theory.

In this latter part of the course, symbolic logic plays a more limited role. Initially,
we show students how informal proofs of set identities can be carried out in natural
deduction, but while natural deduction is useful for modeling the building blocks
of proof, once those building blocks have been established, the utility of the system
diminishes quickly. Natural deduction does not scale to writing real mathematical
arguments, and laboriously representing longmathematical arguments in those terms
would produce no new insights. This is not to say that logic has no role in clarifying
concepts: later in the course, we return to logic to cast the principle of induction
in symbolic terms and observe that it quantifies over predicates. Similarly, we ask
students to recognize that the statement “a function is surjective if and only if it has
a right inverse” involves an implicit quantification over functions. The set-theoretic
axioms, at the very end of the course, are presented explicitly in the first-order
language of set theory. This return to symbolic logic brings the presentation full circle.

When it comes to modeling ordinary mathematical proof in formal terms, Lean
allows us to get further than natural deduction. The chapters on sets, relation, func-
tions, and the natural numbers are also tracked by chapters that show how to reason
about them in Lean. Lean’s logic is very expressive, so that, in principle, any ordi-
nary mathematical theorem can be formalized and proved in the system. But the
course is not a course in interactive theorem proving, and teaching students to use
the range of Lean’s features and libraries falls well outside the scope. Rather, we
focus on small examples: set theoretic identities, elementary properties of relations
and functions, and simple proofs by induction. As with logical reasoning, the point is
primarily to solidify students’ understanding of the patterns of reasoning by showing
them the formal analogues. Thus we provide students with just enough information
to carry out basic, illustrative homework examples, and ask them to carry out more
complicated pen-and-paper proofs in ordinary mathematical language.

Over time, we expect Lean to evolve to the point where we will be able to use
automation to support writingmore complicatedmathematical proofs in a style that is
close to the informal ones we expect students to write. As a result, we ultimately hope
to extend the textbook with Lean-based chapters on combinatorics, number theory,
the real numbers, and so on. In the meanwhile, the approach we have adopted is
decidedly pragmatic: we use Lean as long as it is a useful tool for helping students to
understand the logical structure of mathematical concepts and proofs, and otherwise
rely on conventional mathematical presentations.

Learning Logic and Proof with an Interactive Theorem Prover 281

3 Formal Perspectives on Proof

In this section, I will discuss the ways that using an interactive theorem prover can
help students understand the logical structure of mathematical statements and proofs.
Representing natural language assertions in symbolic terms takes some getting used
to. We explain to students that, in the language of propositional logic, we might
assign propositional variables to basic assertions as follows:

• A: Alice’s husband was in the bar
• B: Alice was on the beach
• C : Alice was in the bar
• D: Alice’s husband was on the beach.

With that assignment, the statement “either Alice’s husband was in the bar and Alice
was on the beach, or Alice was in the bar and Alice’s husband was on the beach” is
rendered as

(A ∧ B) ∨ (C ∧ D).

In Lean, we can declare propositional variables and write the expression as fol-
lows:

variables A B C D : Prop
#check (A ∧ B) ∨ (C ∧ D)

The #check command provides immediate feedback to the student and confirms
that the expression is a well formed proposition. Lean is designed as a research tool
and not for pedagogical purposes, and error messages can be cryptic. But they are
generally good enough for students to locate problems and fix them, with some trial
and error. For that purpose, Lean’s real-time feedback is essential.

For another example, after we introduce relations and quantifiers, students learn
that they can express the fact that a binary relation < is dense by writing

∀x, y (x < y → ∃z (x < z ∧ z < y)).

In Lean, they can declare a binary relation on a datatype, A, assign the< notation,
and express the assertion as follows:

variables (A : Type) (R : A → A → Prop)
local infix ‘ < ‘ := R

#check ∀ x y, x < y → ∃ z, x < z ∧ z < y

The correspondence between the usual notation of first-order logic and Lean’s
syntax is not exact. For example, in first-order logic one usually fixes the underlying
domain of all the variables and functions, whereas in Lean one declares the under-
lying data type A explicitly and models the relation R as a function which takes two
elements of A and returns a proposition. (In computer science and interactive theorem
proving, it is common to take the binary arrow operation in R : A → A → Prop to
associate to the right, to make declarations like this convenient.) Another difference

282 J. Avigad

is that in mathematical logic it is common to take quantifiers to bind tightly, which
means that the parentheses in the first rendering above are needed to make the scope
of the universal quantifier over x and y bind the rest of the formula. In contrast,
in computer science, it is common to give quantifiers the widest scope possible,
which explains why no parentheses are needed in Lean’s formulation. We do not shy
away from explaining this to students: learning to use a symbolic formal language
requires learning the relevant conventions. To avoid overwhelming them, we do our
best to limit the information they need to understand the examples and carry out
the homework assignments. To our pleasant surprise, we have found that minor syn-
tactic differences between the three languages—informal mathematical language,
symbolic logic, and Lean—do not cause problems. Students are capable of moving
between the different linguistic contexts while at the same time recognizing them as
alternate representations of a common logical structure.

In the course, we use both natural deduction and Lean to convey to students the
common patterns and idioms of mathematical proof. For example, informally, we
tell students that in order to prove a statement of the form “if A then B,” they should
assume A hypothetically and use that assumption to argue that B holds. As a natural
deduction proof rule, this pattern is represented as follows:

A
...

B
A → B

The line over the hypothesis A indicates that the hypothesis is canceled when the
inference is complete. The vertical ellipsis represents the argument for B. In Lean,
the pattern is rendered as follows:

variables A B : Prop

example : A → B :=
assume h : A,
show B, from . . .

Once again, the ellipsis represents the argument for B using A. Notice that the
hypothesis A is labeled with the letter h. We will see below how such labels can be
used in a proof.

In a similar way, we teach students the standard patterns for dealing with conjunc-
tion, disjunction, negation, and universal and existential quantifiers. In each case, we
use informal examples to motivate the corresponding rules in natural deduction, and
later show students how to implement the patterns in Lean. The rule for eliminating
a disjunction, corresponding to a proof by cases in ordinary mathematics, is a nice
example. In natural deduction, the rule is represented as follows:

A ∨ B

A
...

C

B
...

C
C

Learning Logic and Proof with an Interactive Theorem Prover 283

The rule is used to establish that a statement C follows from the assumption “A or
B,” denoted A ∨ B in symbolic logic. The rule has three premises: assuming, first,
that we know that A or B holds, second, that we can prove that C follows from A,
and, third, that we can prove that C follows from B, we can conclude that C holds
outright. Once again the lines over the local hypotheses A and B signify that these
are only temporary assumptions, and that the resulting proof of C does not depend
on them. In Lean, proof by cases is carried out as follows:

example : C :=
have h : A ∨ B, from . . .,
or.elim h

(assume h1 : A,
show C, from . . .)

(assume h1 : B,
show C, from . . .)

This example is only schematic; in actual use, A, B, and C would likely be com-
pound formulas, and ambient assumptions or previously established facts would
allow us to fill in the ellipses with actual proofs. Notice that h labels the fact that
A ∨ B is available in the current context, and or.elim h tells Lean what we wish
to use the or-elimination rule described in symbolic terms above. The terminology
matches the conventions used to name rules in natural deduction, solidifying the
relationship in students’ minds.

The following natural deduction proof establishes the implication A ∧ (B ∨
C) → (A ∧ B) ∨ (A ∧ C):

1
A ∧ (B ∨ C)

B ∨ C

1
A ∧ (B ∨ C)

A
2

B
A ∧ B

(A ∧ B) ∨ (A ∧ C)

1
A ∧ (B ∨ C)

A
2

C
A ∧ C

(A ∧ B) ∨ (A ∧ C)
2

A ∧ B) ∨ (A ∧ C)
1

A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

Students were expected to be able to carry out proofs like this for homework or
during an exam. The labels on the hypotheses are used to tag the places in the proof
where those hypotheses are canceled. Here is a corresponding proof in Lean:

variables A B C : Prop

example : A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C) :=
assume h : A ∧ (B ∨ C),
have h1 : A, from and.left h,
have h2 : B ∨ C, from and.right h,
or.elim h2

(assume h3 : B,
have h4 : A ∧ B, from and.intro h1 h3,
show (A ∧ B) ∨ (A ∧ C), from or.inl h4)

(assume h3 : C,
have h4 : A ∧ C, from and.intro h1 h3,
show (A ∧ B) ∨ (A ∧ C), from or.inr h4)

284 J. Avigad

Students were also expected to be able to carry out proofs like this on their
homework. (We gave ordinary pen-and-paper exams, so their ability to use Lean was
only assessed on homework assignments.) The lines that begin with have support
forward reasoning, establishing facts that can be used later on. The keyword show is
usually unnecessary, but allows the user to display the conclusion of the proof that
follows, making the proof more readable and robust.

As with assertions, the correspondence between natural deduction proofs and
proofs in Lean is not exact, and we have to teach students how to translate their
intuitions from one to the other. Thus, once again, the two representations provide
alternative perspectives on informal mathematical proof and reinforce one another.
The syntax is precise and unforgiving, and students often struggle with it. But most
come to enjoy it in the end. Using a proof assistant offers instant gratification: when
a proof is correct, students know it right away, and feel good about it.

4 Formal Perspectives on Mathematics

It may not seem surprising that an interactive theorem prover can be useful for
teaching the syntax and rules of logic. But after a few weeks in our course, logic
is relegated to the background, and we turn to the fundamental building blocks of
mathematics. We found that Lean continues to be a helpful tool in that respect as
well.

We beginwith a conventional treatment of sets, covering not just binary operations
like union and intersection, but indexed unions and intersections as well. When we
initially designed the course, an aspect of Lean’s underling foundational framework
gave us pause. In ordinary mathematical discourse, it is permissible to say “let A,
B, and C be any three sets,” without specifying what sort of elements they contain.
In practice, mathematicians generally deal with sets of objects of some domain—for
example, sets of numbers, sets of points, or sets of elements of some group. In Lean,
every object is assumed to live in some such domain, its type, and it is most natural
to introduce the concept of a set of elements of a particular type. In other words, in
a Lean formulation, one can say “let A, B, and C be sets of natural numbers,” or,
more abstractly, “letU be some type, and let A, B, and C be sets of elements ofU .”

On the informal side, wewere committed to following conventional mathematical
terminology, making the treatment in our text seem as run-of-the-mill as possible.
When we first designed the course, we worried a good deal about how to smooth
over themismatches between our ordinarymathematical presentations and the formal
representations in Lean. As it turns out, we needn’t have been concerned. It is easy to
explain to students thatwhereas the broadest conception of set allowsmathematicians
to consider the three-element set consisting of the number seven, the function which
maps any real number to its square, and the president of France, the representation
in Lean is more restrictive. Students know that informal language is not the same
as a formal language, and can appreciate the design decisions that are made when
deciding how to represent informal proof in formal terms.

Learning Logic and Proof with an Interactive Theorem Prover 285

An ordinary mathematics textbook might offer the following example of a proof
of a set theoretic identity:

Theorem 4.1 Let A, B, and C be any three sets. Then (A \ B) \ C = A \ (B ∪ C).

Proof. Suppose x is any element of (A \ B) \ C . Then x is in A \ B but not C , and
hence x is in A but not B. But this means that x is in A but not B or C , and hence
not in B ∪ C . So x is in A \ (B ∪ C), as required.

Conversely, suppose x is in A \ (B ∪ C), …

A corresponding proof in Lean is not as concise. Below we break out the implicit
inference used above that if x is not an element either B orC then it is not an element
of B ∪ C , and make it an independent lemma. Modulo that lemma, the formal proof
follows the structure of the informal one closely.

import data.set
open set

variables {U : Type}

lemma ex41a {A B : set U} {x : U} (h1 : x /∈ A) (h2 : x /∈ B) :
x /∈ A ∪ B :=

assume h3 : x ∈ A ∪ B,
or.elim h3

(assume h4 : x ∈ A,
show false, from h1 h4)

(assume h4 : x ∈ B,
show false, from h2 h4)

theorem ex41 (A B C : set U) : (A \ B) \ C = A \ (B ∪ C) :=
eq_of_subset_of_subset

(assume x : U,
assume h1 : x ∈ (A \ B) \ C,
have h2 : x ∈ A \ B, from h1.left,
have h3 : x /∈ C, from h1.right,
have h4 : x ∈ A, from h2.left,
have h5 : x /∈ B, from h2.right,
have h6 : x /∈ B ∪ C, from ex41a h5 h3,
show x ∈ A \ (B ∪ C), from 〈h4, h6〉)

. . .

In the current implementation of the system, students are required to import

the relevant theory and open the set namespace. The latter allows users to write
eq_of_subset_of_subset rather than set.eq_of_subset_of_subset to name
the relevant lemma. We try to shield students from implementation details like these
by providing them with templates on the homework assignments that provide such
information. For example, we might carry out all the relevant imports, declare some
variables, offers some examples of the background theorems we expect them to use,
state a theorem, and then leave them the task of filling in the proof. This keeps the
focus of the course on learning how to construct the proofs rather than learning how
to use the theorem prover and its libraries.

286 J. Avigad

In cases like this, automated proof procedures could be used to decrease the
length of the proof. The level of detail above therefore represents an extreme form
of mathematical rigor, in which every inference is spelled out explicitly. Though
tedious, the practice helps students get used to the low-level mechanics of a proof.
Over time, they learn how to moderate the level of detail when writing ordinary
mathematics.

Formal languages are equally useful in clarifying the logical structure of common
properties of relations and functions. For example, after introducing the notions of
injectivity, surjectivity, and bijectivity, we ask students how they can be represented
in terms of symbolic logic. By this point, students are generally comfortable making
the translation, and so the corresponding definitions in Lean come as no surprise:

variables {X Y Z : Type}

def injective (f : X → Y) : Prop := ∀ {x1 x2}, f x1 = f x2 →
x1 = x2

def surjective (f : X → Y) : Prop := ∀ y, ∃ x, f x = y

def bijective (f : X → Y) := injective f ∧ surjective f

In Lean, curly braces around arguments like x1 and x2 indicate that they are
to be left implicit when writing expressions, because they can typically be inferred
from the context of the expression and other arguments. With these definitions, it
is not hard to prove that the composition of two injective functions is injective, and
similarly for surjective functions:

theorem injective_comp {g : Y → Z} {f : X → Y}
(Hg : injective g) (Hf : injective f) :

injective (g ◦ f) :=
assume x1 x2,
assume : (g ◦ f) x1 = (g ◦ f) x2,
have f x1 = f x2, from Hg this,
show x1 = x2, from Hf this

theorem surjective_comp {g : Y → Z} {f : X → Y}
(hg : surjective g) (hf : surjective f) :

surjective (g ◦ f) :=
assume z,
exists.elim (hg z) $
assume y (hy : g y = z),
exists.elim (hf y) $
assume x (hx : f x = y),
have g (f x) = z, from eq.subst (eq.symm hx) hy,
show ∃ x, g (f x) = z, from exists.intro x this

The use of the keyword this is another syntactic gadget in Lean: users can omit
the label on a hypothesis, in which case this refers to the most recent hypothesis
that has been left unlabeled. We introduce tricks like these casually, as side remarks.
Some students enjoy using them, but they are by no means essential to carrying out
the tasks that we assign for homework.

Learning Logic and Proof with an Interactive Theorem Prover 287

By this point, the gap between the kinds of facts we ask students to establish with
pen-and-paper proofs and the kinds of facts we ask students to establish in Lean
has grown. Full-blown interactive theorem proving can be a tedious and difficult
affair, and it is a subject in and of itself. In our course we are committed instead to
making sure that students are capable of writing the kinds of proofs that they would
be expected to write in any course on the fundamentals of mathematical proof, and so
we use only small examples in Lean that illuminate the main concepts and patterns
of argument. For example, to illustrate proof by induction, we show students how
to write a recursive foundational specification of addition on the natural numbers
in terms of zero and the successor operation. We can then prove things like the
commutativity of addition in Lean:

theorem add_comm (m n : N) : m + n = n + m :=
nat.rec_on n

(show m + 0 = 0 + m, by rewrite [add_zero, zero_add])
(assume n,

assume ih : m + n = n + m,
show m + succ n = succ n + m, from calc

m + succ n = succ (m + n) : by rewrite add_succ
. . . = succ (n + m) : by rewrite ih
. . . = succ n + m : by rewrite succ_add)

In contrast,when treating induction informally,weprovidemore interesting exam-
ples of combinatorial and number-theoretic identities, and discuss more general
forms of induction. Ultimately, we would like to include some examples of these
in Lean as well. But, at the moment, the material we have is more than sufficient to
fill a one-semester course, and getting students used to the formal overhead would
be too much of a distraction from our main goals.

5 Results

We have taught this course for three years now in the Dietrich College of Humanities
and Social Sciences at Carnegie Mellon University, developing the materials along
the way. The course is listed as a 200-level course, signaling that it is appropriate
for first- and second-year undergraduate students but more advanced than courses at
the 100 level. It fills a mathematical modeling breadth requirement for the college
that can also be filled with a calculus or statistics course. The course draws students
from awide range of backgrounds, frommajors inmathematics, computer science, or
physics tomajors in philosophy or even business administration. Students at Carnegie
Mellon are generally strong and not averse to mathematics and computer science,
but the course does not presuppose any background beyond ordinary high-school
mathematics.

Students rated the course highly in their evaluations. Each year we also solicited
informal feedback verbally and with short questionnaires, and in the second year
we enlisted the aid of Carnegie Mellon’s Eberly Center for Teaching Excellence to

288 J. Avigad

carry out a more formal mid-semester evaluation. The classes were small and we
have not accumulated precise data or developed quantitative measures of student
improvement, so the data we report here is only anecdotal.

Students generally enjoyed the course, and some were quite enthusiastic. (“This
was my favorite class to attend this semester—I always looked forward to it, and left
happy.”) On questionnaires we identified the various components of the course—
symbolic logic, ordinary mathematics, and Lean—and asked students to compare
them in terms of difficulty and interest. Students generally felt that the material
was appropriately balanced. Some expressed a slight preference for one component
over another, but among these students the specific preferences were fairly evenly
distributed. Most importantly to us, students found the combination to be natural and
helpful, and did not find it confusing when we asked them to switch between the
different perspectives on proof.

Lean’s syntax takes getting used to, and students were sometimes frustrated when
the error messages were not sufficient for them to figure out what they were doing
wrong. But all of them got the hang of it eventually, andmany really enjoyed it. Using
an interactive theorem prover offers instant gratification when a proof is accepted:
Freek Wiedijk once described the feeling as being “like clearing a screen in a video
game, but better.” One student told us that she worked on unassigned problems in
Lean in order to procrastinate writing English essays. Many students reported that,
if anything, writing ordinary mathematical proofs was harder than writing formal
proofs in Lean: at least with Lean they knew what the rules were, whereas they could
not anticipate how their informal proofs would be received by the person grading
them.

The juxtaposition of formal and informal language led to interesting classroom
discussion. Students were interested to discover that from a logical perspective the
locution “A, but B” functions the same as “A and B” and the locution “A unless
B” functions the same as “A or B.” This led them to reflect as to what information
is conveyed by the natural-language variants. Some of our discussions focused on
the ability of symbolic logic to clear up ambiguity, for example, by distinguishing
between an inclusive and exclusive “or.” We also discussed the fact that the phrase
“everybody loves somebody” can be interpreted ambiguously as asserting that for
every person there is another person they love, or that there is a single person that
everybody loves. It is then interesting to see how the symbolic use of quantifiers
resolves the ambiguity. Students got used to relativizing quantifiers, that is, translating
phrases like “every car is red” and “some car is red” into the language of first-order
logic.

Because we asked students to prove ordinary set-theoretic identities right after
we completed the chapters on first-order logic, their natural tendency was to use
symbols like quantifiers and arrows in their informal proofs. We explicitly told them
not to do that, on the grounds that ordinary mathematical language favors using the
words “every,” “some,” and “if…then” instead. Students were at first surprised and
even skeptical of the claim that books and papers in ordinary mathematics, outside
of formal logic, rarely use the logical symbols. After all, they are acutely aware that
symbolic notation is central to mathematics. This led to interesting (and speculative)

Learning Logic and Proof with an Interactive Theorem Prover 289

discussions as to why natural language is used for the logical connectives. Perhaps it
can be attributed to the vagaries of linguistic convention, but perhaps it is because we
find it easier to follow arguments verbally, as we recite them to ourselves. We also
discussed theways that the use of natural language can signal nuances, such as the use
of the word “but” in a proof to signal either something unexpected, a contradiction,
a fact that somehow complements a statement that has come right before, or the end
of a proof.

The juxtaposition of formal proof and informal proof also facilitates another
important discussion. In a formal proof it is clear that every step has to follow one of
the given rules, but how much detail is needed in an informal proof? This question
highlights the fact that the purpose to writing an informal proof is not just to be
correct, but also to convince someone else of the validity of a result and help them
understand why it is true. Of course, these issues can also be discussed in an ordinary
mathematics class, but the contrast with formal proof helps make the differences
salient and meaningful.

We plan to continue developing the textbook, for example, with a chapter on
algebraic structures and another on probability. More interestingly, as Lean evolves
and gains new libraries and functionality, we plan to extend its use as well. We
will use our pedagogical goals as a guideline: anything that provides useful insight
into the nature of mathematical proof is worthwhile, whereas things that serve as a
distraction from that goal are best avoided.

As we have taught it, the course covers a lot of ground. It requires commitment
from the students, a general aptitude for mathematics, and comfort with computer
languages and their precise syntactic requirements. It could easily be expanded to a
longer course, which would allow for a more leisurely pace, greater depth, and the
inclusion of additional topics.

Our course aims primarily to prepare students for higher-level mathematics
courses, introducing them to the definition-theorem-proof style of presentation, and
making them consciously aware of mathematical norms and expectations of rigor. At
the same time, the course prepares students formore advanced courses in logic: by the
time they are done, they are comfortable speaking in the language of first-order logic,
which is to say, reading, writing, and interpreting formal expressions. This puts them
in a good position to appreciate metatheoretic results about syntax and semantics,
including results regarding provability, definability, and completeness. Finally, the
course offers good preparation for branches of computer science that invoke logical
notions, including database theory, automated reasoning, and formal verification. In
a number of branches of that discipline, facility with formal languages, formal rules,
and semantic notions is essential.

We are by no means the only ones to use software to teach mathematical proof.
Jon Barwise and John Etchemendy’s Hyperproof (Barwise and Etchemendy, 1994)
is an early and notable example of using software to teach proof and general log-
ical reasoning. Daniel Velleman offers an online Java applet for writing proofs in
elementary set theory to accompany his popular introductory text, How to Prove It
(Velleman, 2006). The AProS project (Sieg, 2007), also at Carnegie Mellon, uses
an interactive proof tutor and allows students to write proofs in first-order logic and

290 J. Avigad

elementary set theory. Nathan C. Carter and Kenneth G. Monks are developing a
mathematical word processor, Lurch (Carter and Monks, 2016), that can track the
logical structure of a proof and verify inferences using back-end automation tools.
They have used Lurch successfully in proof-based mathematics courses. In all the
examples just cited, the approaches and technologies are slightly different from ours,
but we expect that the pedagogical benefits are largely the same as the ones reported
here. The goal of this chapter is just to share our own experience and observations,
and to add our voices to the mounting chorus in support of using such tools to teach
students how to read and write mathematical proofs.1

Although this chapter provides anecdotal evidence to support the claim that inter-
active theorem proving software helps teach students mathematics, it does not consti-
tute hard data. Work is needed to develop suitable quantitative measures and careful
means of assessment. It is also an interesting question as to the extent to which math-
ematical reasoning skills transfer to other domains (Inglis and Attridge, 2017). Our
experiences have shown that using formal methods to teach mathematics is at least
possible, and, in the right circumstances, enjoyable. We hope they encourage others
to give it a try.

Acknowledgements I am grateful to Mateja Jamnik and Keith Jones for helpful comments, cor-
rections, and suggestions.

References

Avigad, J., Lewis, R. Y., & vanDoorn, F. (2019). Logic and Proof. http://leanprover.github.io/logic_
and_proof/.

Barwise, J., & Etchemendy, J. (1994). Hyperproof. Stanford, CA: CSLI Publications.
Carter, N. C., & Monks, K. G. (2016). From formal to expository: using the proof-checking word
processor Lurch to teach proof writing. In Schwell, Steurer & Vasquez (Eds.), Beyond lecture:
Techniques to improve student proof-writing across the curriculum.MAAPress. http://lurchmath.
org/.

de Moura, L., Kong, S., Avigad, J., van Doorn, F., & von Raumer, J. (2015) The Lean theorem
prover. In A. P. Felty & A. Middeldorp (Eds.), Proceedings of the 25th International Conference
on Automated Deduction (CADE-25) (pp. 378–388). Berlin: Springer. https://leanprover.github.
io/.

Inglis, M., & Attridge, N. (2017). Does mathematical study develop logical thinking. Testing the
Theory of Formal Discipline. London: World Scientific.

Sieg, W. (2007). AProS project: Strategic thinking and computational logic. Logic Journal of the
IGPL 15(4), 359–368. http://www.phil.cmu.edu/projects/apros.

Velleman, D. (2006) How to prove it: A structured approach (2nd ed.). Cambridge: Cambridge
University Press. https://app.cs.amherst.edu/~djvelleman/pd/pd.html.

1Logic-based software is also often used to teach other topics in logic and computer science. The
web page https://avigad.github.io/formal_methods_in_education/ provides links to some resources.

http://leanprover.github.io/logic_and_proof/
http://leanprover.github.io/logic_and_proof/
http://lurchmath.org/
http://lurchmath.org/
https://leanprover.github.io/
https://leanprover.github.io/
http://www.phil.cmu.edu/projects/apros
https://app.cs.amherst.edu/~djvelleman/pd/pd.html
https://avigad.github.io/formal_methods_in_education/

Web-Based Task Design Supporting
Students’ Construction of Alternative
Proofs

Mikio Miyazaki , Taro Fujita and Keith Jones

1 Improvement of Proof Construction by Using Technology

The teaching and learning of proof and proving is acknowledged globally as a crucial
part of mathematics education (Hanna & de Villiers, 2012) not only for echoing the
nature of mathematics, but also for cultivating generic competencies of authentic
explorative thinking (Miyazaki & Fujita, 2015). Yet students at the secondary school
level (and beyond) suffer serious difficulties related to constructing and evaluating
proofs in mathematics in general, and in geometry in particular (e.g. McCrone &
Martin, 2004).

In order to improve on these difficulties, learning environments with technology
for proof learning has been developed in two directions. One direction relates to
developments in Artificial Intelligence (AI) by offering environments that focus on
what might be considered more formal aspects of proving and how learners might be
guided to construct correct proofs by appropriate feedback on their proofs and prov-
ing (from early systems, e.g. Anderson, Boyle, & Yost, 1986, to current initiatives,
e.g. Wang & Su, 2017). The second direction is characterized by dynamic geometry
environments (DGEs, such as Cabri Express, Sketchpad Explorer and GeoGebra).
This direction has contributed to stimulating the use of conjecturing and the dialec-
tical relationship between proofs and refutations in mathematics classrooms (e.g.
González & Herbst, 2009; Komatsu & Jones, 2019). A slightly different approach to

M. Miyazaki (B)
Shinshu University, Nagano, Japan
e-mail: miikun.miikun@gmail.com; mmiyaza@shinshu-u.ac.jp

T. Fujita
University of Exeter, Exeter, UK
e-mail: T.Fujita@exeter.ac.uk

K. Jones
University of Southampton, Southampton, UK
e-mail: d.k.jones@soton.ac.uk

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_14

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_14&domain=pdf
http://orcid.org/0000-0001-8475-8502
http://orcid.org/0000-0002-3547-456X
http://orcid.org/0000-0003-3677-8802
mailto:miikun.miikun@gmail.com
mailto:mmiyaza@shinshu-u.ac.jp
mailto:T.Fujita@exeter.ac.uk
mailto:d.k.jones@soton.ac.uk
https://doi.org/10.1007/978-3-030-28483-1_14

292 M. Miyazaki et al.

the two directions is to create a domain-specific learning space or environment for
students (e.g. Cabri-Eulid (Luengo, 2005)). In our studywework on integrating tech-
nologies into daily mathematics lessons so teachers and learners use technologies
effectively to advance their learning (for our technology, see Sect. 3.2.3). We argue
that this approach might improve the status quo of proof learning at the secondary
school level, especially in terms of constructing proofs as this is not yet satisfactory.

Oneway to improve students’ capabilities related to constructing proofs bymeans
of technology is to focus on the strategic knowledge needed by learners during not
only proof constructions (Weber, 2001) but also during proof ‘reconstructions’ where
students need to consider and apply this knowledge in order to change their proofs into
alternatives. As such, and given that proving tasks with technology may contribute
to developing strategic knowledge required for constructing alternative proofs, the
purpose of this chapter is to explore how a proving task with technology can be
designed to encourage students’ emerging strategic knowledge of how to construct
alternative proofs to the same problem, and how the designed task might enrich
learners’ strategic knowledge in proving in the context of geometrical proof that is
commonly used to teach deductive proofs and proving in lower secondary schools
(Fujita & Jones, 2014; also see Sect. 4.1).

2 Strategic Knowledge of How to Construct Alternative
Proofs to the Same Problem

2.1 Constructing Alternative Proofs in the Process
of Explorative Proving

Luengo (2005, p. 13) views the construction of a mathematical proof as “a prob-
lem solving activity”. In line with this, we take proving in mathematics is a fal-
libilistic activity (e.g. Lakatos, 1976) that involves producing statements induc-
tively/deductively/analogically, planning and constructing proofs, looking back over
proving processes and overcoming global/local counter-examples or errors, as well
as utilizing already-proved statements in the context of working on further proofs
(see Fig. 1). We define explorative proving as having the following three phases that
inter-relate: (1) producing propositions, (2) producing proofs (planning and con-
struction), and (3) looking back (examining, improving and advancing) (Miyazaki
& Fujita, 2015).

In the process of explorative proving, students may need/want to be challenged to
construct alternative proofs. When confronting mistakes and errors in their proving,
they try to overcome them if they need to. When noticing more sophisticated ideas,
they are willing to improve their previous proofs. At all these times, they may need
to change the used theorems, assumptions or conclusions, rephrase their statements
more clearly and so on. More globally, they sometimes need to switch from a direct
proof to an indirect proof or vice versa, or overcome circular arguments (Fujita,
Jones, & Miyazaki, 2018), and so on. We call such activities of producing different

Web-Based Task Design Supporting Students’ Construction … 293

Fig. 1 Explorative proving

proofs based on already constructed proofs, ‘reconstructing (either correct/incorrect)
proofs’.

2.2 Forms of Strategic Knowledge of How to Reconstruct
Proofs

Strategic knowledge, the ‘knowing-how’ in problem solving (Greeno, 1978), enables
students to “recall actions that are likely to be useful or to choose which action to
apply among several alternatives” (Weber, 2001, p. 111). Such knowledge plays an
important role in explorative proving.

Strategic knowledge of how to reconstruct proofs has a domain-specific aspect
related to achieving successful resolutions in the concerned domain. Especially, proof
problems usually request students to show the logical connection between premises
and conclusions. In the solving process, students are engaged in the activity, including
constructing and reconstructing proofs as appropriate to the proof problem. As such,
we propose the following three types of strategic knowledge of how to reconstruct
proofs; strategic knowledge for constructing proofs, strategic knowledge for recon-
structing proofs, strategic knowledge appropriate for solving the proof problem. We
consider each in turn.

Strategic knowledge for constructing proofs (SKC) is used to connect premises
and conclusions in order to form an original proof even if the proof contains some
errors. This can involve, at a minimum, distinguishing conclusions and premises,
decidingwhich theorems and/or definitions can be applied, and arranging theways of
thinking backward from conclusions to premises and thinking forward in the opposite

294 M. Miyazaki et al.

direction. Knowledge of thinking backward/forward, especially, can fundamentally
inform students’ proof construction (e.g. Heinze, Cheng, Ufer, Lin, & Reiss, 2008).
This can work successfully, particularly when supported by more general strategic
knowledge such as ‘planning’ (Schoenfeld, 1985), ‘working backward’ (Anderson,
Corbett, Koedinger, & Pelletier, 1995), metacognition, and so on. For example, in
constructing a geometrical proof, students often need to choose an appropriate tri-
angle congruent condition before choosing which singular propositions can be used
as premises. In this case, they use SKC related to deciding which theorems and/or
definitions can be applied to the particular proof problem.

Strategic knowledge for reconstructing proofs (SKRc) is used to evaluate the
previous proofs and improve/advance them. This can involve checking premises
(definitions, axioms, etc.) and the validity of the used theorems during reconstructing
proofs. Moreover, from a local point of view, it also involves organizing the elements
of proofs to overcome any errors. For example, in the case of geometrical proofs,
students often need to switch between three types of congruent triangle conditions
in accordance with the problem conditions. In this case, they use SKRc related to
validating the used theorems that can be applied.

Finally, strategic knowledge appropriate for solving the proof problem (SKSP)
is used to supplement the parts of the logical connection in constructing and recon-
structing proofs by using SKCandSKRc. This can involve considering the conditions
of the problem to be solved and using theorems appropriate to them. For example,
even if students can choose or switch an appropriate triangle congruent condition in
constructing a geometrical proof, they also need to find/replace pairs of sides/angles,
or triangles correctly. In this case, they use SKSP related to using theorems according
to the problem conditions.

3 Task Design to Develop Strategic Knowledge of How
to Reconstruct Proofs

In developing students’ strategic knowledge of how to reconstruct proofs, it is nec-
essary to organise activities for students that cultivate their strategic knowledge in
proving. In this section we discuss key ideas for our task design and how technology
is used to support students’ learning.

3.1 Necessary Components of a Task for Problem Solving

A ‘task’ generally means an activity that needs to be undertaken and accomplished.
In education, a task is expected to have distinct roles to guide learners’ attention
and interests towards desirable aspects of the concerned content (Doyle, 1983) that,
in the context of mathematics education, encompasses thinking about, developing,

Web-Based Task Design Supporting Students’ Construction … 295

using, and making sense of mathematics (Stein, Grover, & Henningsen, 1996). For
more on task design in mathematics education, see the various chapters in Watson
and Ohtani (2015).

In order to undertake and accomplish a task as an intended activity in education,
the task should be designed with essential components that lead learners toward the
targets of the activity. Given that an intended activity is related to problem solving,
the two questions ‘What should be solved?’ and ‘How should it be solved’ should
be addressed. The first can be answered by the characteristics of a problem to be
tackled. The second question has two aspects; a process to solve the problem and an
environment that encourages the process. The former can be designed for managing
and directing learners’ solving processes toward appropriate ones. The latter can be
designed for supporting learners’ solving processes. Therefore, in this study, three
components are adopted to design a task to develop strategic knowledge of how to
reconstruct proofs: a problem to be tackled, a learning environment where to solve
the problem, and a process to solve the problem.

3.2 Three Components of a Task Designed to Develop
Strategic Knowledge of How to Reconstruct Proofs

Here we consider “what to design; which tools are necessary, or beneficial, for
task design and under what conditions” (Jones & Pepin, 2016, p. 115). In our task
design, we use ‘open problems with flow-chart proofs’ (what to design), web-based
proof support system (hereinafter ‘the system’) that provides automatic translations
of figural to symbolic objects and feedback in accordance with the type of errors
(which tools are necessary, or beneficial) and specially-designed worksheets for
students (under what conditions). We explain the detail below.

3.2.1 Open Problems with Flowchart Proofs

To develop strategic knowledge of how to reconstruct proofs, domain-specific strate-
gic knowledge is applied in the problem-solving process consisting of a series of
propositions and their transformations. In order to actualize, and be conscious of,
this domain-specific strategic knowledge, open problems with a flow-chart proof
format can be adopted. Open problems encourage students to construct multiple
solutions by deciding the assumptions and intermediate propositions necessary to
deduce a given conclusion. A flow-chart proof format can demonstrate the logical
chains of propositions, and support students to construct proofs systematically.

Based on a scaffolding analysis (Sherin, Reiser, & Edelson, 2004), the use of open
problems with flowchart proofs can enhance the structural understanding of proofs
because it is expected that flow-chart format provides a visualization of the structural
aspects of proofs in geometry, and encourages thinking backward/forward interac-

296 M. Miyazaki et al.

In the right-hand side diagram, you can prove
ABO = ACO by showing that these triangles

are congruent. What else do you need to add to
prove this? What type of condition of congruence
and what property of congruent figures do you use
in there? Let’s complete the flow-chart!

Fig. 2 Example of open problems with flow-chart proofs

tively because learners freely choose assumptions to prove the conclusion (Miyazaki,
Fujita,& Jones, 2015).Open problems can function successfully in developing strate-
gic knowledgeof how to reconstruct proofs because students are encouraged to switch
from an existing proof to an alternative proof by appropriate use of the viewpoint of
proof structure; that is, “the relational network via deductive reasoning that combines
singular and universal propositions” (Miyazaki, Fujita, & Jones, 2017, p. 226).

For example, the problem in Fig. 2 is intentionally designed so that students can
freely choose which assumptions they use to draw the conclusion ∠ABO = ∠ACO.
One solution is to show ∠ABO = ∠ACO by using SSS condition. Nevertheless,
other solutions can be found. One alternative solution might be to use AO = AO as
the same line and hence �ABO ≡ �ACO can be shown by assuming AB = AC and
∠OAB = ∠OAC using the SAS condition. During the time to find these solutions,
by using flow-chart proofs format students can distinguish theorems and pairs of
sides/angles/triangles, and then think backward/forward flexibly.

3.2.2 Learning Environment with Web-Based Proof Learning Support
System

In order to support students to tackle open problems, our web-based system has
three characteristics; translating automatically figural to symbolic objects, reviewing
a learner’s answer, providing systematic feedback during/after constructing proofs
(Miyazaki, Fujita, Jones, & Iwanaga, 2017; Fujita, Jones, & Miyazaki, 2018).

Web-Based Task Design Supporting Students’ Construction … 297

Our system has some similarities to the Cabri-Euclid system designed by Luengo
(2005). The Cabri-Euclid system supports learners’ proof construction process with
workspaces dedicated to dynamic representations of geometrical figures, graphs to
represent algorithms, and text spaces for exploiting direct manipulation and a set of
operators to express statements and organise them under a precise “proof” “format”
(p. 4). At the same time, Cabri-Euclid gives feedback to learners to support their
proof construction process, e.g. “if the student attempts a deduction without giving
a deduction rule, the software will ask the student for a theorem or a definition.”
(p. 11).

Cabri-Euclid is a powerful tool to support learners’ proof construction process,
but one issue is that students need to learn specific ways of inputting their texts as
“The textual component of Cabri-Euclide has a limited linguistic capability.” (ibid.,
p. 5). As we have described above, our system adopts a flow-chart format as we
consider this is more intuitive for novice learners so that they do not have to learn
specific commands and language to use the system.

Unlike Cabri-Euclid, the diagrams in our system for representing geometrical
figures are static, but this is because of a technological reason—the interface of
the system translates automatically from figural to symbolic objects. For example,
to insert the symbol �ABO into the target box of flow-chart proof, by clicking the
triangle on the diagram, the character gives message “�ABO closed”, and red circles
appear on the possible boxes (Fig. 3). Next, by clicking the proper box, the symbol
�ABO appears inside the box. The opposite way (firstly click the box, then click the
triangle) can also be executed. This automatic transformation of symbols is intended
to reduce the representational barrier that students encounter when proof writing.

In order to complete the open problem, students are expected to seek multiple
solutions, and, in such processes, are expected to find it useful to review the solutions
that they have already found. Similarly, in the case of open problems with flow-chart
proofs, students might find difficulties in distinguishing whether the on-going proof
is different from their previous proofs. Our system supports students to review their
correct proofs. For example, the problem shown in Fig. 2 has four kinds of solutions
indicated with the number of stars ‘✯’. If learners find correct solutions, the stars
corresponding to these solutions are filled in yellow with an icon that shows the
used congruent triangle condition. In the case illustrated (Fig. 4), the learners have
already found two solutions with different conditions. As part of their search for the
two remaining solutions, they can review their previous answers by clicking each
yellow star.

In the process of proving, there can occur different kinds of errors. Students may
notice some errors, but not others, and it is necessary to give support for this, e.g. by
providing feedback. However, it is not an easy task to organize automated feedback
from the computer. In fact, this was an issue for Cabri-Euclid – Luengo wrote that
“during experimentations,… the erroneousmessage is not understood by the students
because there are several errors and the system give the first that it found.” (p. 26).
In order to deal with such situations, our system provides systematic, user-friendly
feedback during/after constructing proofs and this is perhaps one of the most impor-
tant technological features of our system (for the examples of learners’ use of the

298 M. Miyazaki et al.

Fig. 3 Interface of web-based proof learning support system

system’s feedback, see Fujita, Jones, & Miyazaki, 2018). There are four categories
of feedback; Category A: errors related to hypothetical syllogism, Category B: errors
related to universal instantiation, Category C: errors related to singular propositions,
CategoryD: errors related to proof-format. CategoryA,B, C are based on a viewpoint
of proof structure. For example, Category A incudes a logical circulation that use
conclusions as assumptions (Fig. 4), Category B includes an error of choosing theo-
rems, and Category C includes an error of choosing pairs of sides/angles. Category
D includes proof-format errors, usually rather trivial ones related to singular propo-
sitions. Particularly in geometrical proof, a singular proposition concerning angles
or sides should correspond to a singular proposition concerning triangle congruency.

3.2.3 Process of Expressing Strategic Knowledge of How
to Reconstruct Proofs

In reconstructing proofs, the applied strategic knowledge is fundamentally implicit
for students. Therefore, there needs an intervention that includes strategic knowledge
of how to reconstruct proofs to enable them to express their ideas on changing

Web-Based Task Design Supporting Students’ Construction … 299

Fig. 4 Example of feedback of category A

their proofs into alternatives. Expressing the applied strategic knowledge encourages
students to make explicit, and notice, their own ways of reconstructing proofs. This
recognition enables them to apply their own strategic knowledge intentionally, and
to expand the range of its application.

In order to realize the intervention, our approach is to devise a worksheet com-
prising some boxes that facilitate students expressing their ideas on changing their
proofs into alternatives; see Fig. 5. Using the worksheet, students first write a proof
checked by our system in ➀. After finding an alternative proof by using our system,
they write this proof in ➁, and then express their ideas on changing their proof into
an alternative in➂. The worksheet consists of a series of boxes. The number of boxes
depends on howmany correct proofs there are for the open problem. For example, the
problem in Fig. 3 has four correct proofs so the worksheet for the problem consists
of three boxes connected successively; as shown in Appendix 1.

4 Experimental Lessons

4.1 Learning Deductive Proving in Geometry in Japan

In Japan, deductive proof is explicitly taught in ‘Geometry’ in Grade 8. Although
the Japanese national ‘Course of Study’ prescribes no official teaching sequence,
some kinds of progressions can be found in the seven authorized textbooks (Fujita &

300 M. Miyazaki et al.

Fig. 5 Worksheet used by
students

Jones, 2014).Most schools follow the progressions in the textbooks. Building on geo-
metrical reasoning in earlier grades, students in Grade 8 gradually access deductive
proofs through studying properties of angles and lines, triangles, and quadrilaterals.
After learning congruent triangle conditions, they reach deductive proofs through
learning the structure of deductive proofs and how to construct the proofs, and then
explore and prove properties of triangles and properties of quadrilaterals. Recently,
explorative proving (see Sect. 2.1) is also emphasized in teaching and assessment
(Miyazaki & Fujita, 2015).

4.2 General Information of Classes and the Plan
of the Experimental Lessons

The experimental lessons were carried out in a grade 8 class of an attached junior
high school of a national university in Japan. The lessons took place after the students
had learnt properties of angles and lines, triangles, and quadrilaterals, and used these
in related proofs. The class had forty students, and was taught by a teacher with more
than 20 years of teaching experience. The classes was relatively homogeneous with
the most recent mathematics test scores being closely equal. Each lesson had the
following instructional flow; understanding a problem (checking the conditions and
the goal, reminding of what they learned, etc.), planning how to solve it (finding the

Web-Based Task Design Supporting Students’ Construction … 301

ways of solving and guessing the solution), solving it based on the plan, discussing
ways to solve this type of problem, summarizing ideas of how to solve this type of
problem.

Four lessons (each 50 min long) were planned, as below. The 1st and 2nd lessons
were conventional and aligned with the authorized textbooks. In contrast, the 3rd
and 4th lesson were designed to develop strategic knowledge of how to reconstruct
proof shown as set out above (Sect. 3.2).

1st: Understanding the meaning of congruent figures and their properties.
Students learn that congruent figures can put on top of each other, and then
solve a problem to find the sides of corresponding sides/angles of congruent
figures by using the properties of congruent figures.

2nd: Understanding three conditions of congruent triangles.
Students explore the way of constructing congruent triangles, and then find
three conditions of congruent triangles. Finally, students apply these conditions
and to state them they used to find by solving a problem that requires to find
congruent pairs among a lot of triangles by using.

3rd: Constructing flow-chart proof with conditions of congruent triangles.
Students solve an open problem with flow-chart proofs (Sect. 3.2.1) with
conditions of congruent triangles that requires one step of deductive reason-
ing by using web-based proof learning support system (Sect. 3.2.2) as they
express strategic knowledge of how to reconstruct proofs on their worksheet
(Sect. 3.2.3).

4th: Constructing flow-chart proofwith conditions of congruent triangles and prop-
erties of congruent figures.
Students solve an open problem with flow-chart proofs with conditions of
congruent triangles and properties of congruent figures that requires two steps
of deductive reasoning by using the system as they express strategic knowledge
of how to reconstruct proofs on their worksheet.

4.3 Data and Analysis

Data from 3rd and 4th lessons that adopted our task design principles were collected
by three video cameras. One recorded the whole class activity, the others recorded
two students’ activity individually. These students were chosen by the mathematics
teacher based on daily performances and behaviors. For the purposes of this paper,
we select one student, Tatsumi (all names are pseudonyms), to exemplify emerging
strategic knowledge of how to reconstruct proofs by using the web-based proof
learning support system effectively. His strategic knowledge was captured by his
interactions with the system and writings on his worksheet concerning his ideas of
how he changed his proofs into alternatives (we refer to such ideas as ‘tips’).

In what follows, we analyze the fourth lesson as this aimed at students’ recon-
structing a flow-chart proof with conditions of congruent triangles and properties of

302 M. Miyazaki et al.

congruent figures by using the designed task explained in Sect. 3. The lesson devoted
time to each phase of its instructional flow as follows (time in minutes); understand-
ing a problem (checking the conditions and the goal, reminding of what they learned,
etc., 1:25), planning how to solve it (finding the ways of solving and guessing the
solution, 2:30), solving it individually based on the plan (finding flow-chart proof by
using the system, and writing their proofs and strategic knowledge on their work-
sheet, 28:21), discussing in the class how to solve it (presenting some students’
strategic knowledge and sharing/improving them, 10:42), summarizing ideas of how
to solve this type of problem (organizing their strategic knowledge and applying the
other problem, 7:33). In our analysis, we focus on the student activity related to the
emergence of strategic knowledge of how to reconstruct proofs. As well as student
Tsunami, we also refer to the work of other students during the ‘discussion’ phase
of the lesson.

5 Analysis of the Teaching Experiment

5.1 Emerging Strategic Knowledge of How to Reconstruct
Proofs

In the lesson, student Tatsumi easily constructed his proof with SSS condition by
filling out all the cells of the flow-chart proof displayed in our proof learning support
system, and wrote it down on his worksheet. Next, he changed “BO = CO” to
“∠ABO= ∠ACO”, and then changed the condition SSS to SAS. After checking this
proof by the system, he also transcribed it to his worksheet, and after a while wrote
his “Tips” for reconstructing proofs in ➂ (see Fig. 6): “I noticed that a congruent
triangle condition ought to be inserted in the green box, and also a property of
congruent figures be inserted in the yellow box. So, I put a different condition for
congruent triangles.”. In this “Tips”, he mentioned the order of the theorems used
in the first proof, and the change of congruent triangle conditions. Thus, the former
was triggered by the knowledge of keeping the order of theorems embedded in the
previous proofs, and the latter by the knowledge of changing a theorem into another
that can deduce the same property. These belong to the strategic knowledge for
reconstructing proofs (SKRc).

In reconstructing the second proof to a third proof, and in keeping with SAS,
Tatsumi changed “AB = AC” to “BO = CO” and then changed “∠ABO = ∠ACO”
to “∠BOA = ∠COA”. After checking this proof using the web-based system, he
also transcribed it to his worksheet, and after a while wrote his “Tips” as follows: “I
made the second proof with SAS. In a pair of triangles, I noticed there were two way
of using SAS, then I kept the shared side OA and chose the different sides.”. In this
“Tips”, he mentioned how to change a pair of sides with keeping up SAS. Thus, this
was triggered by the knowledge of changing the elements of proofs with remaining
the theorem used in previous proofs. This belongs to the strategic knowledge proper

Web-Based Task Design Supporting Students’ Construction … 303

Fig. 6 Tatsumi’s description in the worksheet

to reconstructing proofs (SKRc). Notably, he pointed out there were two ways of
using SAS. As he avoided using this problem’s conclusion, “∠ABO = ∠ACO”, in
his proofs, this is likely to mean that he functioned with knowledge of avoiding
logical circularity in his strategic knowledge for constructing proofs (SKC).

In reconstructing from his third to his fourth proof, he further changed “BO =
CO” to “∠OAB = ∠OAC”, and checked his proof, then received from the system
the feedback “Is this theorem OK? If you want to use it, what do you need to use?”.
Based on this feedback, he realized his error, changed SAS to ASA, and then he
completed all four correct proofs (Fig. 7).

After writing his fourth proof on his worksheet, he wrote his “Tips”: “I chose the
condition that I didn’t use yet. The shared side OA is necessary to make proofs, then
I chose the pairs of angles that included the side OA.”. In this “Tips”, he mentioned
changing congruent triangle conditions and changing elements of proofs based on
the givens of the problem. Thus, the former was triggered by the knowledge of
changing a theorem into another that can deduce the same conclusion. This belongs
to the strategic knowledge for reconstructing proofs (SKRc). Moreover, the latter
was triggered by the knowledge of using theorems according to the conditions of the

304 M. Miyazaki et al.

Fig. 7 System’s feedback for using congruent triangle conditions appropriately

problem to be solved. This belongs to the strategic knowledge for solving the proof
problem (SKSP).

5.2 Sharing Strategic Knowledge of How to Reconstruct
Proofs in Class

At the start of the phase of the lesson ‘discussing ways to solve this type of problem’,
the class teacher asked four students to write on the blackboard their proof to the
flow-chart problem. The teacher explained that these four proofs, shown in Table 1,
were typical among the students in the class, and encouraged the class to focus on
the differences between the proofs (minutes 35:01–36:14).

For example, concerning the change from the first to the second proof, the teacher
pointed out the mysterious picture drawn by student Shinnosuke on the blackboard
to explain his idea of changing proofs (see Fig. 8), and guided him to explain the
meaning of this picture as follows (minutes 36:34–37:32).

T61: Shinnosuke, so I asked you to draw the ‘mystery’ pictures below but what
are these pictures about? What were you thinking when you drew this?

S105: Ah, yes, uh, I thought [my proofs] in that order.
T62: Ah, OK, that order (the four pictures).
S106: When I was working with the iPad, um, I thought this would be the least

number of ways…
T63: The least number of ways… What do you mean, the least number of ways?

Web-Based Task Design Supporting Students’ Construction … 305

Table 1 Proofs on the blackboard chose by Teacher

Proof Assumption Conclusion

1st OA = OA SSS �ABO ≡ �ACO CPCTC (Angle) ∠ABO = ∠ACO

AB = AC

BO = CO

2nd OA = OA SAS �ABO ≡ �ACO CPCTC (Angle) ∠ABO = ∠ACO

AB = AC

∠OAB = ∠OAC

3rd OA = OA SAS �ABO ≡ �ACO CPCTC (Angle) ∠ABO = ∠ACO

BO = CO

∠BOA = ∠COA

4th OA = OA ASA �ABO ≡ �ACO CPCTC (Angle) ∠ABO = ∠ACO

∠OAB = ∠OAC

∠BOA = ∠COA

Fig. 8 Shinnosuke’s mysterious picture

S107: Ah, well, that [the left SSS triangle], if I change one of the sides to angles,
then I can have the second proof. Then change the side to angle, um, the third
proof, and then angle to side, so the fourth one.

T64: That angles or that sides… Can you see? [saying to the other students in the
class] Can you see? If you follow that [order], then we can complete with
the least number of ways. The most efficient method, I would say. This way
of thinking, it is interesting, isn’t it? Yes? Three small claps!

As can be seen from this extract, Shinnosuke explained not only how to change
the congruent triangle conditions, but also the reason why this order of change was
very efficient. This suggests Shinnosuke applied his strategic knowledge of switching
between theorems that can deduce the same property and of judging its efficiency.
These belong to the strategic knowledge for reconstructing proofs (SKRc). After his
explanation, the teacher wrote Shinnosuke’s ideas on blackboard in order to record
his strategic thinking, and praised him and his classmate.

Next, concerning the change from the second to the third proof, both of which
use the SAS condition, the teacher asked student Yuki to explain the way and the
reason of this change. Yuki explained that he chose the alternative pairs of side/angle
different from the second proof because the common side OA had not been changed.

306 M. Miyazaki et al.

S118: OK, I have done ➁, so, um, the sides OA are shared so I thought I cannot
change. So I exchanged the rest of the side and angles.

This suggests that Yuki applied his strategic knowledge of changing the elements
of proofs while retaining the theorem used in the previous proof. This belongs to the
strategic knowledge for reconstructing proofs (SKRc). The teacher also wrote his
idea on blackboard to share it in class.

In the last section of the lesson, on the change from the third to the fourth proof,
the teacher asked student Narumi to explain the change, and the reason of this change.
She showed her ideas as follows.

S119: Yes, um, um, as usual, OA, OA are always equal, so OA will be there. And
the last one we need to prove angles ABO = ACO, so I used the other two
angles.

T77: OK, I think you understoodwell. Do you see this (saying to the other students
in the class)? Can you say it again? OK? He is going to say very important
thing so please listen carefully!

S120: Um…
T78: These (OA = OA). We really need these (OA = OA).
S121: And, uh, the last thing I want to say is, uh, angles ABO = ACO, so, uh, of

these three pairs of angles, I thought the other pairs than ABO = ACO.
T79: You thought about. That sounds very good (the others started clapping their

hands). OK, angles ABO and ACO, and then… And then what? I forgot
(laugh). What was it? What was the last thing you wanted to say?

S122: Equal.
T80: Yes, we want to say they are equal.

As above, Naomi pointed out that she did not choose “∠ABO = ∠ACO” because
this is a conclusion to be proven and cannot be used as an assumption. This sug-
gests that Naomi applied her strategic knowledge of avoiding logical circularity that
belongs to strategic knowledge for constructing proofs (SKC). The teacher wrote
Naomi’s ideas that “We want to conclude angles ABO = ACO, so we cannot use
this. Therefore, we have to find the other pairs of angles.” on the blackboard, and
praised her strategic thinking. Figure 9 shows how the blackboard was used during
the 4th lesson.

By analyzing the data from our teaching experiment, we identified the students’
strategic knowledge of how to construct alternative proofs to the same problem.
In the case of student Tatsumi, as in the analysis above, we identified the strategic
knowledge that emerged during the classroom activity.

In doing so, we found that we could exemplify the three categories of strategic
knowledge that we set out in Sect. 2.2, viz:

• Strategic knowledge for constructing proofs (SKC)

– Avoiding logical circularity (Tatsumi, Naomi)

• Strategic knowledge for reconstructing proofs (SKRc)

Web-Based Task Design Supporting Students’ Construction … 307

Fig. 9 Use of the blackboard in the 4th lesson (photo used with permission)

– Keeping the order of theorems embedded in the previous proofs (Tatsumi)
– Changing a theorem into another that can deduce the same property (Tatsumi)
– Changing the elements of proofs with remaining the theorem used in previous
proofs (Tatsumi, Yuki)

– Switching between theorems that can deduce the same property (Shinnosuke)
– Judging the efficiency of switching between theorems (Shinnosuke)

• Strategic knowledge appropriate for solving the proof problem (SKSP)

– Using theorems according to the conditions of the problem to be solved (Tat-
sumi).

6 Discussion

Most of the examples of strategic knowledge listed immediately above echo the
characteristics of geometrical proof based on triangle congruency. For example,
switching between theorems that can be used to deduce the same property strongly
relates to the three conditions of congruent triangles. This type of knowledge belongs
to the “knowledge of the domain’s proof techniques” that Weber (2001, p. 111)
hypothesized as the type of strategic knowledge that undergraduates appear to lack.

In order for this strategic knowledge to emerge, it is necessary for students to notice
it, and apply it, in the context of proof problem solving. Additionally, by expressing
the knowledge students clarify and enrich their own thinking as well as noticing and
applying it objectively. Moreover, the designed task to develop strategic knowledge
of how to reconstruct proofs consists of three components described in Sect. 3. These

308 M. Miyazaki et al.

components and their interactions could contribute to students noticing, applying,
and expressing their strategic knowledge.

In fact, Tatsumi firstly reconstructed his proof, and then could use his strategic
knowledge that he had applied to reconstructing it as shown in Sect. 5.1. This activity
was especially encouraged by open problem with flow-chart proofs and technolo-
gies of web-based proof learning support system. As shown above (Sect. 3.2.1), open
problem with flow-chart proofs encourage students to construct multiple solutions
by supporting them when deciding the assumptions and intermediate propositions.
Similar to the activities illustrated in our previous studies (e.g. Miyazaki, Fujita, &
Jones, 2015), the open problems with flow-chart proofs encouraged Tatsumi, on the
one hand, to construct his proof, and reconstruct another based on the previous by
switching the congruent triangle conditions and the properties of congruent figures,
and changing the pairs of sides/angles. On the other hand, in every trail of recon-
structing his proofs, he checked his proof by using the system and gained confidence
to progress his proof solving. Additionally, he could take into account suggestions
of how to resolve his error informed by the feedback of the system (e.g. “Is this
theorem OK? If you want to use it, what do you need to use?”(see Sect. 5.2). Hence,
the technologies of our system also encouraged him to reconstruct his proofs by
providing systematic feedback according to his errors or mistakes, accompanied by
offering a useful interface to switch between the elements of proof and suggesting
whether his proof was correct or not.

Moreover, Tatsumi was encouraged to express his strategic knowledge by writing
his ideas on the worksheet composed of three boxes (see Fig. 6) as shown in Sect. 5.1.
Similarly, in analysis of the part of the 4th lesson on discussing how to solve the
problem in the class (as shown in Sect. 5.2), students were also inspired to pay
attention to the ideas of how to reconstruct proofs, rather than the four proofs whose
correctness was certificated by the system. Thus, the process of expressing strategic
knowledge of how to reconstruct proofs contributed to formulating these students’
strategic knowledge.

Concerning using technology, the system enables students to tackle open problem
with flow-chart proofs efficiently and enhance their understanding of proof structure
(Miyazaki, Fujita, & Jones, 2017), informed by the systematic feedback (Fujita,
Jones & Miyazaki, 2018) that is more user-friendly than earlier systems such as
Cabri-Euclid (Luengo, 2005). As a result, students could begin to build their strategic
knowledge of ‘changing the elements of proofs whilst retaining the theorem used in
previous proofs’ by understanding universal instantiation as well as the knowledge
related to the elements of proof.Also in terms of proof structure, students encountered
the strategic knowledge ‘avoiding logical circularity’ on the whole structure of proof.
Moreover, the system enabled students to recognize a proof as a group of ‘modules’
(Weber&Mejia-Ramos, 2011;Mejia-Ramos, et al., 2012). In the case of geometrical
proofs by using triangle congruency, most proofs have the same groups of ‘modules’
that combines a congruent triangle condition with a property of congruent figures.
Thus, the strategic knowledge of ‘keeping the order of theorems embedded in the
previous proofs’ is certainly a fundamental key to reconstructing proofs, and most
students are implicitly getting to apply this knowledge by their experience of proof

Web-Based Task Design Supporting Students’ Construction … 309

construction. By using these technological advantages, open problems with flow-
chart proofs came to be more effective for students to reconstruct proofs.

However, a teacher’s instruction is another important factor (Parero & Aldon,
2016). In the 4th lesson, the teacher’s instructions for students on how to find their
proofs by using the system, and how to write their ideas clearly, took a role of orga-
nizing the process of expressing the strategic knowledge. Particularly, the instruction
about looking back on how to think in changing their proofs was essential to express-
ing this knowledge. Moreover, the teacher praised Shinnosuke’s idea concerning
judging the efficiency of switching between theorems and Naomi’s idea concerning
avoiding logical circularity as shown in Sect. 5.2. These teacher’s actions suggest
what to be expressed as the strategic knowledge to reconstruct proofs.

7 Conclusion

This study explored how a proving task with technology can be designed to develop
strategic knowledge of how to construct alternative proofs to the same problem, and
how the designed task enriched learners’ strategic knowledge in proving in the con-
text of geometrical proof. For the former, the taskwe designed had three components;
open problem with flow-chart proofs, learning environment with the web-based sup-
port system, and process of expressing strategic knowledge of how to reconstruct
proofs. For the latter, through the observation of individual student activity, and the
part of the 4th lesson on ‘discussing ways to solve this type of problem’, our analysis
shows how these components, and their interactions encouraged students to notice,
apply, and express this strategic knowledge.

The adoption of this designed task in the proof lessons was found to encourage
students to carry out the process of explorative proving accompanied with recon-
structing proofs as necessary. What is more, the way that the tasks were designed
can contribute to advancing research on task design. Especially, concerning the role of
technology, the support system canmake open problemswith flow-chart proofs more
effective for students to reconstruct proofs, and promote the process of expressing
strategic knowledge of how to reconstruct proofs. Nevertheless, a teacher’s appro-
priate involvement and participation can help to ensure that students acquire this
strategic knowledge. It shows the necessity of refining this design task in coopera-
tionwith teachers (Jones&Pepin, 2016) and designing teaching to organize students’
activities in the most productive way.

Acknowledgements This research was supported by the Grant-in-Aid for Scientific Research,
Ministry of Education, Culture, Sports, Science, and Technology, Japan. Special thanks to
Mr. Yasuyuki Matsunaga for data collection, and Mr. Daisuke Ichikawa for practicing the lessons.

310 M. Miyazaki et al.

Appendix 1: Worksheet of Lesson 4 to Express Ideas
on Reconstructing Proofs

Web-Based Task Design Supporting Students’ Construction … 311

Appendix 2: Post-test After the 4th Lesson

References

Anderson, J. R., Boyle, C. F., & Yost, G. (1986). Using computers to teach: The geometry tutor.
Journal of Mathematical Behavior, 5(1), 5–19.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons
learned. Journal of the Learning Sciences, 4(2), 167–207.

Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159–199.
Fujita, T., Jones, K.,&Miyazaki,M. (2018). Learning to avoid logical circularity in deductive proofs
through computer-based feedback: Learners’ use of domain-specific feedback.ZDMMathematics
Education, 50(4), 699–713.

Fujita, T., & Jones, K. (2014). Reasoning-and-proving in geometry in school mathematics textbooks
in Japan. International Journal of Educational Research, 64, 81–91.

González, G., & Herbst, P. G. (2009). Students’ conceptions of congruency through the use of
dynamic geometry software. International Journal of Computers for Mathematical Learning,
14(2), 153–182.

Greeno, J. G. (1978). A study of problem solving. In R. Glaser (Ed.), Advances in instructional
psychology (Vol. 1). Hillsdale NJ: Lawrence Erlbaum Associates.

Hanna, G., & de Villiers, M. (2012). Aspects of proof in mathematics education. In G. Hanna &
M. de Villiers (Eds.), Proof and proving in mathematics education: the ICMI Study (pp. 1–10).
New York: Springer.

312 M. Miyazaki et al.

Heinze, A., Cheng, Y.-H., Ufer, S., Lin, F.-L., & Reiss, K. (2008). Strategies to foster students’
competencies in constructing multi-steps geometric proofs: Teaching experiments in Taiwan and
Germany. Zentralblatt für Didaktik der Mathematik, 40(3), 443–453.

Jones, K., & Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal
of Mathematics Teacher Education, 19(2–3), 105–121.

Komatsu, K.& Jones, K. (2019). Task design principles for heuristic refutation in dynamic geometry
environments. International Journal of Science and Mathematics Education, 17(4), 801–824.
https://doi.org/10.1007/s10763-018-9892-0.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, UK:
Cambridge University Press.

Luengo, V. (2005). Some didactical and epistemological considerations in the design of educational
software: The Cabri-Euclide example. International Journal of Computers for Mathematical
Learning, 10(1), 1–29.

McCrone, S. S., &Martin, T. S. (2004). Assessing high school students’ understanding of geometric
proof. Canadian Journal for Science, Mathematics, and Technology Education, 4(2), 223–242.

Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., & Samkoff, A. (2012). An assessment model
for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics,
79(1), 3–18.

Miyazaki, M., & Fujita, T. (2015). Proving as an explorative activity in mathematics education:
New trends in Japanese research into proof. In B. Sriraman, et al. (Eds.), First sourcebook on
Asian research in mathematics education: China, Korea, Singapore, Japan, Malaysia and India
(pp. 1375–1407). Charlotte, NC: Information Age Publishing.

Miyazaki, M., Fujita, T., & Jones, K. (2015). Flow-chart proofs with open problems as scaffolds
for learning about geometrical proofs. ZDM Mathematics Education, 47(7), 1–14.

Miyazaki, M., Fujita, T., & Jones, K. (2017a). Students’ understanding of the structure of deductive
proof. Educational Studies in Mathematics, 94(2), 223–239.

Miyazaki, M., Fujita, T., Jones, K., & Iwanaga, Y. (2017b). Designing a web-based learning support
system for flow-chart proving in school geometry.Digital Experiences inMathematics Education,
3(3), 233–256.

Panero, M., & Aldon, G. (2016). How teachers evolve their formative assessment practices when
digital tools are involved in the classroom. Digital Experiences in Mathematics Education, 2(1),
70–86.

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.
Sherin, B., Reiser, B. J., & Edelson, D. (2004). Scaffolding analysis: Extending the scaffolding
metaphor to learning artifacts. The Journal of the Learning Sciences, 13(3), 387–421.

Stein, M. K., Grover, B. W., & Henningsen, M. (1996). Building student capacity for mathematical
thinking and reasoning: An analysis of mathematical tasks used in reform classrooms. American
Educational Research Journal, 33(2), 455–488.

Weber, K. (2001). Student difficulty in constructing proofs: The need for strategic knowledge.
Educational Studies in Mathematics, 48(1), 101–119.

Wang, K., & Su, Z. (2017). Interactive, intelligent tutoring for auxiliary constructions in geometry
proofs. https://arxiv.org/abs/1711.07154v1.

Watson, A., & Ohtani, M. (Eds.). (2015). Task design in mathematics education: ICMI study 22.
Cham, Switzerland: Springer.

Weber, K., & Mejia-Ramos, J. (2011). Why and how mathematicians read proofs: An exploratory
study. Educational Studies in Mathematics, 76(3), 329–344.

https://doi.org/10.1007/s10763-018-9892-0
https://arxiv.org/abs/1711.07154v1

Reasoning by Equivalence: The Potential
Contribution of an Automatic Proof
Checker

Christopher Sangwin

1 Introduction

The heart of mathematics is setting up abstract problems and solving them, and the
outcome of this process is a “proof”. Polya (1962) identified four patterns of thought
to help structure thinking about solving mathematical problems. His “pattern of
two loci” is highly geometric. To use the pattern of two loci keep only one of the
conditions needed and solve this simpler problem, expecting to get a set (locus)
of solutions in this less constrained situation. Keep each condition in turn, and the
overall solution is where the loci intersect. For example, when finding the tangents
to a circle centred at O through an external point A, the tangent line must be at
right angles to the radius. The set of points P for which OP is perpendicular to AP
is the circle centered at the midpoint of OA through O. This is one locus, and the
circle itself is the second. The “superposition” pattern also breaks constraints into
separate parts in a more algebraic way. Examples include Lagrange interpolation,
and solving linear differential equations. The “recursion” pattern solves a problem
by using a smaller (or simpler) case, for example finding the binomial coefficients
using Pascal’s triangle.

Legitimate patterns of thought directly translate into what is considered to be an
acceptable proof. For example, recursion solves the problem and proof by induction
is the resulting formal justification.

The “Cartesian” pattern is where a problem is turned into a system of equations,
before the equations are solved using algebra. Note that the algebraic manipulation
is the technical middle step in the process: setting up the equations and interpreting
the solutions are essential parts to complete this pattern. My previous work Sang-
win and Köcher (2016) examined questions set in school-level examination papers
and found that line-by-line algebraic reasoning, termed by Nicaud, Bouhineau, and
Chaachoua (2004) as reasoning by equivalence, is the most important single form of
reasoning in school mathematics. This is closest to Polya’s “Cartesian pattern” and
this predominates normative answers to school examination questions.

C. Sangwin (B)
School of Mathematics, University of Edinburgh, Edinburgh, UK
e-mail: c.j.sangwin@ed.ac.uk

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_15

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_15&domain=pdf
mailto:c.j.sangwin@ed.ac.uk
https://doi.org/10.1007/978-3-030-28483-1_15

314 C. Sangwin

Reasoning by equivalence is essentially a symbol-pushing technique, which
reduces algebraic reasoning to a mechanical calculation. There is nothing pejora-
tive in describing this activity as symbol-pushing or as mechanical: in some senses
this automation is liberating. Indeed Leibniz (1966) sought a “universal calculus”
and Boole (1847) explicitly sought to replace syllogisms in language with symbolic
calculus. This work continues with attempts to automate proof more generally, see
Beeson (2004) for a survey.

This research is based on the following epistemological position: to successfully
automate a process it is necessary to understand it profoundly. It follows that automa-
tion of a process necessitates the development of a certain kind of understanding. I
am trying to automate the assessment of students’ line by line algebraic reasoning,
including provision of effective feedback on their progress. As I hope to show, the
attempt to implement a line by line assessment system reveals ambiguities, inconsis-
tencies and outright errors in elementary algebra as currently taught and learned. For
example, using algebraic rules uncritically outside the domains of definition such as√
ab = √

a
√
b leads to contradictions such as −1 = 1, which have been examined

elsewhere, e.g. Bernardo and Carmen (2009), Tirosh and Evan (1997) and Levenson
(2012). While professionals might dismiss such errors as trivial they have been made
by the very best mathematicians in the past (e.g. see Euler, 1822, p. 43, §148) and
students regularly continue to do so (Kirshner and Awtry, 2004).

In this chapter I examine the role of reasoning by equivalence in mathematical
proof. This chapter contains a number of sections. First I define the mathematics of
reasoning by equivalence. By looking at what students are asked to do in high-stakes
national examinations I examine the extent to which students are currently asked to
“prove”, “show” or “justify” and themathematics this involves. I then report research
into how students go about solving such problems on paper. This evidence has been
used to inform the design of softwarewhich assesses students’ responses, and I report
on the use of such software with students. I then discuss the implications for what
constitutes mathematical “proof” at school level, and how this might be taught and
learned online.

2 Reasoning by Equivalence

In educational terms reasoning by equivalence is a loose collection of rules, such as
“doing the same thing” to both sides of an equation. In Sangwin and Köcher (2016)
we did not define the process more formally, indeed the rules of elementary algebra
are not normally articulated carefully. When seeking to develop technology, a loose
collection of rules is simply not sufficient or satisfactory and so in this section I define
reasoning by equivalence.

The phrase “doing the same thing” to both sides of an equation has a focus on the
individual steps, and the legitimacy of working in steps. Reasoning by equivalence
does not follow a prescribed routine, with fixed size steps in working. Instead, the
move between adjacent lines from one expression to the next is legitimate if and

Reasoning by Equivalence: The Potential Contribution … 315

Fig. 1 Reasoning by equivalence in the STACK system

only if adjacent expressions are equivalent. In most situationsmany algebraic “steps”
are combined, including associativity, commutativity and basic integer arithmetic.
Hence, defining what is and is not a legitimate step turns out to be problematic in an
educational context.

Let X ⊂ K whereK is a set of numbers given by the context, such asQ, R or C.
For the purposes of this chapter, I define “a correct argument” as an ordered list of
mathematical expressions E1, . . . ,En so that all the Ej are equivalent. For example,
in the case of equations in a single variable x this means the solution set of Ej is
precisely the same for all j = 1, . . . , n. The role ofK is in deciding what is and is not
a solution, e.g. x4 − 9 ≡ x2 − 3 inR, but not inQ orC. Reasoning by equivalence is
the process by which an individual takes successive representatives from a particular
equivalence class.

The advantage of defining the correctness of an argument in terms of equivalence
is that the student is free to take any route they choose. In an educational context,
overall correctness will additionally require that E1 is some specific expression (i.e.
the problem to be solved) and that En is given as a specific form, such as x =? in the
case of a linear equation. A teacher might also require some other properties from a
student for an answer to be fully correct. An example of a student solving a quadratic
equation using reasoning by equivalence, as implemented in the STACK system (see
Sangwin, 2013), is shown in Fig. 1. In this case, the student has correctly solved
the quadratic specified and the (automatically generated) ⇔ symbols1 indicate the
equivalence of adjacent lines. However, the final system-generated feedback (omitted
in the figure) actually says “The question asked you to solve the equation by factoring.
The factored form should appear as one line in your working.” and no numerical
marks are awarded: the student has not followed the instructions in the question. This

1The symbol ⇔ should be read “if and only if” just as = is read “is equals to”. The symbol := is
read as “is defined to be”.

316 C. Sangwin

example is typical of many educational situations. “Correctness” is a combination
of properties, and correct line by line reasoning is only one of them.

Two expressions are equivalent if they take the same value when evaluated at
each of the points in the domain of the variables. For example, x2 − 1 is equivalent
to (x − 1)(x + 1) on the domain of real numbers. The difference between equations
and expressions is illustrated by the following example.

|x − 1/2| + |x + 1/2| − 2 = 0 ⇔ |x| − 1 = 0

but
|x| − 1 �= |x − 1/2| + |x + 1/2| − 2 for all x ∈ R.

I shall write ≡ to indicate equality of expressions on their domain of definition, the
third bar indicating the stronger condition. That is

p ≡ q ⇔ p(x) = q(x), ∀x ∈ X .

Equivalence of equations can be defined in two useful ways, and for educational
purposes both are needed. V (p) = {x ∈ X |p(x) = 0} is called the variety defined by
p. This is a geometric notion of the set of solutions, but the variety lacks any way to
distinguish between repeated roots. Formally, and for completeness, for systems of
polynomial equations themultiplicity of the roots can be distinguished by calculating
the reduced Gröbner basis, with respect to a specified order of the variables which
gives a canonical representation of the equivalence class, see Adams and Loustaunau
(1994). For a set of polynomials in a single variable the Gröbner basis is given
by the highest common factor, and hence provides the mutual solutions including
multiplicity. For a set of linear equations in many variables the Gröbner basis is
equivalent to the reduced echelon form, with respect to an ordering of the variables.

These abstract definitions do not help someone learn how to solve algebraic prob-
lems. The issue then is the algebraic operations applied to the expressions on both
sides of an equation that provide an equivalent equation. For the purposes of this
discussion, I restrict to single variable expressions over the set X ⊂ K, the natural
domain of the expressions. Solving the equation p = q necessitates finding those
values of x ∈ X so that p(x) = q(x). To legitimately do the same thing to both sides
of an equation p = q, it is necessary to ensure that

p = q ⇔ f (p) = f (q).

Since f is a function
p = q ⇒ f (p) = f (q).

A function f : X → Y is injective if

∀p, q ∈ X , f (p) = f (q) ⇒ p = q.

Reasoning by Equivalence: The Potential Contribution … 317

Hence “doing the same thing to both sides” is legitimate if and only if f is an injective
function.

Note that multiplication by a term a is an injection if and only if a �= 0. Cases
when a is an algebraic term which might be zero give rise to various false arguments,
see e.g. Maxwell (1959) and Northrop (1945). This problem can be entirely avoided
by auditing to track the side condition a �= 0, see Sangwin (2015).

A substitution2 is a syntactic transformation of a formal expression in which a
variable, sub-expression, or term, is consistently replaced by other expressions. For
substitution assume s : X → X is a function, then substitution involves replacing a
term x by s(x). For this to be legitimate it is necessary to ensure that

p(x) = q(x) ⇔ p(s(x)) = q(s(x)), ∀x ∈ X .

Since s is a function it follows immediately that

p(x) = q(x) ⇒ p(s(x)) = q(s(x)), ∀ x ∈ X .

However in general the converse is false. For example, let X = R, p(x) := x and
q(x) := |x| and s(x) := x2. Then x2 = |x2| but x �= |x| for all x ∈ R. If s : X → X is
surjective then

∀x′ ∈ X , ∃x ∈ X such that x′ = s(x).

The hypothesis p ◦ s ≡ q ◦ s and the assumption of surjectivity of s prevents a counter
example of the form ∃x′ ∈ X p(x′) �= q(x′).

In summary, “doing the same thing to both sides” retains equivalence if and only
if f is injective, and substitution retains equivalence if and only if s is surjective. In
both these definitions the domain X is crucial.

I should acknowledge that since there is no conscious “direction of travel” or
sense of “progress”, in educational terms, reasoning by equivalence looks very odd.
It is entirely possible for correct reasoning to have repetitive steps, unnecessary loops
or digressions. Aesthetic judgements are a separate matter from correctness, as is
what might be considered an appropriate “jump” or level of detail. Only further
experience and development will allow us to decide if additional aesthetic measures
can be automated. For example, an aesthetic measures might include “distance from
a model answer”.

A more serious, and unfortunate, consequence of this definition is that some
correct equivalence reasoning arguments do not correspond to correct mathematical
steps.

2Note, by “substitution” I mean capture-avoiding substitution. A substitution is said to be a capture-
avoiding substitutionwhen the process avoids accidentally allowing free variables in the substitution
to be captured inside the original expression. For example, in the function x �→ x y if I replace y
with x, the function would become x �→ x × x which is different. Both xs now refer to the argument
of the function. The second x in x �→ x × x which was originally “free” has been “captured”.

318 C. Sangwin

Table 1 Descriptive statistics of marks available on Higher Mathematics questions from 2015

M A R N

of marks 65 50 3 12

% 50 38 2 9

IB % 31 50 4 15

[M] Marks awarded for attempting to use a correct Method; working must be seen
[A] Marks awarded for an Answer or for Accuracy: often dependent on preceding M marks
[R] Marks awarded for clear Reasoning
[N] Marks awarded for correct answers if no working shown

x2 − 6x + 9 = 0
⇔ (x − 5)(x − 1) = −2 × 2
⇔ x − 5 = −2 or x − 1 = 2
⇔ x = 3

Fortunately good nonsense of this kind is surprisingly hard to find.

3 Reasoning and School Examinations

My previous joint work, Sangwin and Köcher (2016), examined questions set in
school-level examination papers and found that a third of the marks for school exam-
inations were awarded for reasoning by equivalence. In Sangwin and Köcher (2016)
our methodology was to take a corpus of published examination questions, together
with the official mark scheme. We examined the extent to which we could automat-
ically mark answers to these questions using the STACK software in a way which
was faithful to the published mark scheme. In that research we selected the specimen
questions on paper 1 and paper 2 for International Baccalaureate3 (IB) Mathematics
Higher level, for first examinations in 2008. In this section I repeat the analysis,
using different questions and with the benefit of a number of years of software devel-
opment. The reasoning by equivalence engine now exists as a working prototype,
and this research provides an opportunity to test my previous claims regarding the
potential automation of assessment of students’ equivalence reasoning.

The IB specification has nowbeen superseded and so for this chapter I took the two
Mathematics papers from the 2015 Scottish Higher Mathematics examinations. In
Scotland school students typically take five Higher subjects aged 16–17, which form
the basis of university entrance criteria. Universities outwith Scotland, e.g. in the rest
of the UK, may require students to study to Advanced Higher level aged 17–18, so
that the Highers do not perfectly align with the IB. Paper 1 is a non-calculator paper
with a 70min time duration, and with 60 marks available. Paper 2 permitted the use

3International Baccalaureate is a registered trademark of the International Baccalaureate Organiza-
tion.

Reasoning by Equivalence: The Potential Contribution … 319

Table 2 The extent to which Higher Mathematics questions can be automatically assessed

marks %

(i) Awarded by STACK exactly 47 36

(ii) Of which reasoning by
equivalence

35 27

of a calculator, with a 90min time duration, and with 70marks available. Students sat
both papers on the morning of Wed 20 May 2015. The examination papers, together
with the official mark scheme, are publicly available from the Scottish Qualifications
Authority website.

For the purposes of this chapter I repeated the following methodology from Sang-
win and Köcher (2016). The IB and Highers examination systems are similar, but
not identical. However the similarity and the specificity of the supplied mark scheme
made it is straightforward to map the Higher marks onto the IB classifications, pro-
viding comparability with the previous work, see (Table1).

My analysis of these questions sought to determine the extent to which answers
could be automatically assessed by STACK exactly as in the mark scheme. I noted
the extent to which this assessment included reasoning by equivalence as the method
marks. The results are shown in Table2. For the Highers, I implemented 27% of the
marks as reasoning by equivalence. I previously suggested that for the IB papers 36%
of the marks could be awarded. This discrepancy can be accounted for, since there
is still reasoning by equivalence which is not yet accessible because calculus oper-
ations are not currently included. Typically, students either algebraically rearrange
an expression before integrating/differentiating (e.g. see Highers paper 1 Q7, and
paper 2, Q8b) or they perform calculus and rearrange the result, or form an equation.
Inclusion of calculus operations in STACK would substantially increase the range
of answers which could be fully assessed. These results, therefore, represent a lower
bound on the extent to which school examinations could ultimately be automatically
assessed.

As with the IB, the “reasoning” marks are an almost insignificant component of
the examination marks. In the case of the Highers questions I decided that only 3
marks (from 130) were available for reasoning. Higher paper 1 Q3 asked students
to use the remainder theorem to show (x + 3) was a factor of x3 − 3x2 − 10x + 24;
Higher paper 1 Q9 required students to establish if points were colinear; and paper
2 Q3b asked students to reason about the model based on derived inequalities. Most
questions asked students to calculate, rather than reason based on calculations.

The results reported in this section support the hypothesis that the most important
single form of reasoning in school mathematics is, and remains, algebraic reason-
ing by equivalence. In many cases students’ first, very simple, proofs are entirely
algebraic. Even where additional reasoning is used, reasoning by equivalence is a
central component of most current school-level proofs. In the next section I describe
students’ traditional paper and pencil attempts at solving algebraic problems, before
reporting on their attempts at reasoning by equivalence with the STACK software.

320 C. Sangwin

4 Students’ Attempts at Algebraic Reasoning

Following from the research reported in Sangwin and Köcher (2016) and curious to
pursue the potential of reasoning by equivalence as a starting point for assessment
of complete mathematical arguments, albeit of the most elementary kind of proof,
I started to consider how software might automatically assess the correctness of a
student’s algebraic derivation. To inform this design process I investigated students’
attempts at algebraic reasoning. My prior experience as a teacher strongly suggests
that students’ written algebraic work typically contains no logical connectives or
other justification and entirely ignores natural domain conventions. When solving
an equation students appear to work line-by-line, but each line is apparently discon-
nected from the previous lines. There is some literature on this issue, e.g. Bernardo
and Carmen (2009), Levenson (2012), Tirosh and Evan (1997), but none of this
directly relates to university mathematics students. I therefore set out to investigate
the following, working on paper in the traditional way.

1. To what extent do students use (and correctly use) logical connectives between
lines of algebraic working?What other justification is evident other than “implied
equivalence”?

2. To what extent do students acknowledge the natural domains of definition? For
example in the expression 1

x−4 the value x = 4 is excluded from the natural
domain.

3. To what extent do students show evidence they have checked a particular answer
is actually correct?

In Sangwin (2016) my experimental instrument to address the above research ques-
tions consisted of the following two algebraic problems.

Q1. Please solve
x + 5

x − 7
− 5 = 4x − 40

13 − x
. (1)

Q2. Please solve
√
3x + 4 = 2 + √

x + 2. (2)

These two question were chosen because they require line by line reasoning but
there are opportunities for applying rules outside the domain of applicability. For
example, an erroneous solution to the first question, taken from (Northrop, 1945,
p. 81), is shown in Fig. 2. The “rule” a

b = a
c ⇔ b = c obscures the requirement that

a �= 0. The purpose of including this question was to see how many students cancel
a term such as 4x − 40, and evidence for how students dealt with the subsequent
contradiction.

The typical algebraic solution to the second question, taken from Newman (1957,
p. 8), involves squaring both sides and collecting terms to get x − 1 = 2

√
x + 2 and

squaring again to obtain a quadratic with real roots x = 7 or x = −1. However, there
is only one real solution as shown in the graphical solution of Fig. 3. It is relatively
straightforward to construct similar examples with no real solutions (e.g.

√
x + 2 =

2 + √
3x + 4), see Bonnycastle (1836, p. 88), Durell (1930, p. 46) or Lund (1852,

Reasoning by Equivalence: The Potential Contribution … 321

x+ 5
x − 7

− 5 =
4x − 40
13 − x

x+ 5 − 5(x − 7)
x − 7

=
4x − 40
13 − x

4x − 40
7 − x

=
4x − 40
13 − x

7 − x = 13 − x

7 = 13.

Fig. 2 An erroneous solution to question (1)

−3−2−1 1 2 3 4 5 6 7 8 9 10 11

1
2
3
4
5
6
7

0

y =
√
3x+ 4

y = 2 +
√
x+ 2

Fig. 3 A graphical solution to question (2)

p. 130). In some problems of this kind the natural domain can be used to eliminate
one of the solutions, but x = −1 does not violate the domain constraints of

√
3x + 4

or
√
x + 2, i.e. x ≥ −4/3. In this case it the reversibility of squaring both sides of an

equation which introduces a spurious solution, rather than domain constraints.
As reported in Sangwin (2016), students solved these two equations writing

answers on paper. The cohort were a group of 175 students taking an engineer-
ing programme at a good United Kingdom university. The detailed methodology and
results are reported in Sangwin (2016). For question 1, of the 113 correct responses,
53 (46.9%) cross multiplied, expanded out all brackets and solved the resulting equa-
tion correctly to get the unique answer x = 10. Therefore, these students missed the
opportunity to cancel the term 4x − 40 on both sides. In this question 25 (22%) stu-
dents started by writing the left hand side as a rational expression. While 22 of these
students had the opportunity to cancel a factor none of them did so. For question 1,
only 14 (9.5%) of students showed any evidence of logical connectives between alge-
braic statements. Only 2 students wrote any evidence of having performed a check
that their answer satisfied the original equation, and only 1 student explicitly consid-
ered domains of definition of the rational expression by excluding x = 7 and x = 13
from the domain of definition for the original equation. Overall, only 17 (11.6%) of
students wrote any evidence of more than algebraic symbolic manipulation.

For question 2, the most popular answer consisted of squaring both sides, rear-
ranging and squaring again before solving the resulting quadratic to get roots x = 7,
x = −1. 85 students took this approach, of which 24 students also checked that

322 C. Sangwin

their answers satisfied the original equation, giving complete and correct solutions
by only 16% of the cohort. For question 2, only 4 students showed any evidence
of checking domains of definition and only a further 3 students used any logical
connectives. The most common mistake was squaring a binomial incorrectly, e.g.
(
√
a + √

b)2 = a + b. In particular, 18 students wrote

√
3x + 4 = 2 + √

x + 2, 3x + 4 = 4 + x + 2, x = 1. (3)

What was perhaps surprising was that even for comparatively elementary problems,
students took on average 10 or 14 lines to achieve a correct solution to questions (1)
and (2) respectively. This strongly suggests that online assessment systems, such as
STACK, need to assess more than the final answer, particularly in a formative setting.

5 Developing Algebraic Reasoning by Equivalence
in STACK

Based on the analysis of examination questions, and research associated with stu-
dents’ algebraic reasoning, I started to develop an extension to the STACK online
assessment system to assess students’ reasoning by equivalence. Initially I decided
that the minimum worthwhile functionality should include (i) rearranging a simple
equation tomake a particular variable the subject, and (ii) solving linear and quadratic
equations in a single real variable, over the real numbers. However, ultimately the first
version included sufficient additional functionality to allow automatic assessment of
the problems in questions (1) and (2).

In developing a reasoning by equivalence system I adopted the following design
principles.

P1 The system should be mathematically and logically correct.
P2 Students should provide a complete line by line solution. A student’s answer

constitutes a single mathematical object, which is to be subject to verification.
P3 The system should mirror current practice as closely as possible, within the

constraints of a liberal typed linear syntax, see Sangwin and Ramsden (2007).

A distinctive aspect of this design is the focus on the whole argument as a single
object which can be subject to formal verification. That is to say, the student’s lines
of working are assumed to be connected by equivalence symbols and this becomes
the single mathematical object. Similarly, I decided that students should not need to
explicitly add in the natural domain of expressions. However, in line with (P1), the
system would indicate natural domain constraints automatically.

There is an important distinction between reasoning and argumentation.

Reasoning is […] the line of thought adopted to produce assertions and reach conclusions.
Argumentation is the substantiation, the part of the reasoning that aims at convincing oneself
or someone else that the reasoning is appropriate. (Boesen, Lithner, & Palm, 2010, p. 92)

Reasoning by Equivalence: The Potential Contribution … 323

Therefore reasoning can be valid or invalid. Similarly, argumentationmay ormay not
correctly justify a particular step. Teachers often use a phrase such as “right method,
wrong reason” to describe various types ofmistake. In linewith (P3) I decided that, in
the first version, students would only be required to provide their reasoning (i.e. the
algebraic expressions) but not also supply the argumentation to justify what they
have done or why.

The decision not to require students to provide details of (i) argumentation and
(ii) natural domains significantly simplified the input mechanism. STACK already
has a well-developed input mechanism for algebraic expressions, as described in
Sangwin and Ramsden (2007) and later in Sangwin (2013). A distinctive feature of
this interface is a separation of “validity” of input from “correctness” of an answer.
Feedback relating to the validity of input includes syntactic problems such asmissing
brackets, and this feedback is intended to always be available even during an exam-
ination or other high-stakes situation. The provision of validity feedback mediates
the difference between a typed expression (e.g. 1/(1+xˆ2)) and traditional two
dimensional displayed forms (e.g. 1

1+x2), helping students to ensure the expression
they typed matches what they intended. Rejecting expressions as “invalid” rather
than “wrong” immediately helps prevent students from being penalised on a techni-
cality. Separating validity from correctness has been found to be an essential feature
of effective online assessment of mathematics.

The interface, implementing question 2, is shown in the left of Fig. 4. The student
has typed a number of lines of working into the textarea on the left. STACK has
automatically and instantaneously displayed their line by line working in the box to
the right. In addition to the expressions typed by the student, STACK has inferred
and indicated the natural domain as blue text to the right. The right hand side of
Fig. 4 shows the outcome of the assessment. In this case, the line by line reasoning
is not correct in three places. Two involve squaring both sides (and additionally
a domain enlargement), whereas the last line omits a root from the previous line
without justification. Here the system uses a ⇐ symbol to indicate the subset of one
variety within another.

Notice that in Fig. 1 STACK added in ⇔ symbols into the validation feedback
area to indicate lines are equivalent, whereas these have not been added automatically
in the left of Fig. 4. In some situations a teacher may want to immediately indicate

Fig. 4 A student’s attempt at reasoning by equivalence in the STACK system

324 C. Sangwin

whether adjacent lines are equivalent. In other situations feedback on whether lines
are equivalent constitutes part of what makes up “correctness” of the answer, and
so the equivalence symbols are not displayed until the student considers they have
a complete and correct solution worthy of assessment. The teacher is faced with a
large number of choices about the nature and timing of feedback, and what should
be part of the validity check, and what is core to the correctness of an answer.

The interfacewas developed byme, and question 2was trialled on a year 1 calculus
course at a good UK university. The course contains 568 students, academically
comparable to the group who undertook the original paper and pencil trial (but at
different institutions, and some three years later). In this situation students were
permitted multiple attempts at the quiz, and Fig. 4 shows one student’s attempt. Over
477 students provided valid attempts to this question. Of these attempts 33 students
only stated the question (valid, but wrong). A further 33 students stated the question
and jumped to the final answer x = 7 (valid, and correct) and five students stated the
question and gave x = 1 as the next line (valid, but wrong, and note (3)). If a teacher
wants more than just the question and a final answer an additional property, such as
the minimum number of lines, would need to be specified. There were 387 different
valid responses, with only 15 being given more than once. What is interesting is the
number of lines of working used in students’ final answers. Of the students who did
more than state the question and answer, i.e. who provided three or more lines of
working, the mean number of lines used was 8.0 with a standard deviation of 2.4
and only 12 students used more than 12 lines. In the online interface students used
fewer lines than for the same problem on paper. The ability to copy, paste and delete
input lines within the textarea makes it likely students tidied up their answer before
final submission, reducing unnecessary lines.

The original goal was to implement minimum functionality to support (i) rear-
ranging a simple equation and (ii) solving linear and quadratic equations. In order to
achieve this functionality the following issues needed to be addressed.

• There is general ambiguity about how to expressmultiplicity of roots. If (x − 1)2 =
0 is not equivalent to x = 1 then students need to indicate multiplicity of roots, but
I am aware of no consensus on how this should be notated.

• Students need to enter sets of real numbers, sometimes as a set, sometimes using
interval notation and at other times via inequalities.

My approach tomultiplicity of roots is illustrated in Fig. 5. The equation (x − 3)2 = 0
and the expression “x = 3 or x = 3” are considered to be equivalent, because they

Fig. 5 Dealing with repeated roots

Reasoning by Equivalence: The Potential Contribution … 325

Fig. 6 Support for assignment of a value to an expression within an argument

have the same roots with the same multiplicity. The expressions “x = 3 or x = 3”
and “x = 3” have the same variety, but are not identical. This is, of course, slightly
awkward since logical “or” is idempotent, and so “x = 3 or x = 3” and “x = 3”
would be equivalent at a symbolic level. For this reason, STACK accepts x = 3 as
equivalent to (x − 3)2 = 0, but with an acknowledgement.

This leads us onto the issue of entry of sets of real numbers. If reasoning by
equivalence is merely choosing a list of representatives of an equivalence class, then
any of these representatives describes the set of real numbers! In an educational
context, teachers normally look for more normative ways of writing this set, such as
x = 1. After much thought, and experimentation, I decided to require forms such as
“x = 1 or x = 2” rather than the alternatives “x = 1, 2” or “x = 1 or 2”. The state-
ment “x = 1 and x = 2” represents no real numbers (i.e. the empty set) and so is
normally simply wrong, although the sentence “The roots are 1 and 2.” is perfectly
correct and is in no way ambiguous. Currently I do not support entry of expressions
like x ∈ {1, 2} although this will be added in a future version, as will be support for
interval notation.

What became clear during the automation of questions from the Scottish Highers
Examinations, was that the addition of a small number of additional mathematical
moves, combined with reasoning by equivalence, would significantly expand the
range of mathematical questions which can be completely assessed automatically.
In particular (i) a “let” assigning a value to an expression, (ii) support for equating
coefficients, (iii) support for basic symbolic calculus operations.

As an example of the “let” statement consider the response shown Fig. 6, taken
fromScottishHighers (2015), paper 2, Q4a. This does not, strictly speaking,maintain
an equivalence but it proves very useful indeed if the system will allow evaluation of
an expression, followed by subsequent algebraic manipulation. Beyond the scope of
this chapter is discussion of support for basic symbolic calculus operations, which
the STACK system already supports extensive functionality to implement. Suffice to
say, that differentiating an expression, equating to zero and solving the subsequent
equation is a very common task at this level.

326 C. Sangwin

Designers of other tutor software have taken very different decisions. For example,
Mathpert is a stand-alone desktop systemwhich allows its user to solvemathematical
problems by constructing a step-by-step solution.

Mathpert is intended to replace paper-and-pencil homework in algebra, trig, and calcu-
lus, retaining compatibility with the existing curriculum while at the same time supporting
innovative curriculum changes; to provide easy-to-use computer graphics for classroom
demonstration in those subjects, as well as for home study; to replace or supplement chalk-
and-blackboard in the classroom for symbolic problems as well as graphs. (Beeson, 1998)

Students either pick a built-in topic or enter the problem they wish to solve. Students
then use the calculation window to solve the problem in a step-by-step fashion. To do
this, users select part (or all) of an expression and the system responds with a menu
of operations which can be performed on that selection. The software performs the
selected operation automatically. Having written my own software, I full endorse its
fundamental approach to the mathematical underpinning.

... if we start with an educational purpose, [...] it is impossible to achieve ideal results
by tacking on some additional “interface” features to a previously existing computational
system. To put it another way: it is not possible to entirely separate “interface” considerations
from “kernal” considerations. (Beeson, 1998)

Other important works in this area are Heeren et al. (2010) and Prank (2011). In
particular, Aplusix focuses on reasoning by equivalence, see Nicaud et al. (2004).
One difficulty, highlighted by Nicaud et al. (2004), with the menu-driven application
of rules occurs when a single rule is applicable to different sub-expressions. For
example, in the expression x4 − x2 − 9 the rule a2 − b2 → (a − b)(a + b) can be
applied in two different ways, either matching to x4 − x2 or to x4 − 9. In this situation
it is difficult to select the sub-expression x4 − 9 from x4 − x2 − 9without re-ordering
some of the terms.More detailed discussion of these issues is given by Beeson (1998,
2004).

6 Discussion

This chapter opened by considering the four “patterns of thought” identified by Polya
(1962), namely (i) “the pattern of two loci”, (ii) “superposition”, (iii) “recursion”
and (iv) the “Cartesian” pattern of thought. The Cartesian pattern of problem solving
involves setting up an equation, then solving it and interpreting any solution. These
patterns relate to how to go about solving problems. However, more than half (21/40)
of the separate question parts in the examination questions of Sect. 3 do not relate
to a problem at all. Rather they instruct students to undertake a well-rehearsed set
of techniques, isolated from any problem. For example, highers paper 1 Q6 asks
students to evaluate log6(12) + 1

3 log6(27). Technique alone does not correspond to
the Cartesian pattern of thought. All but one of the other question parts asked students
to set up and solve equations. One question part does relate to recursion, expecting
students to recognise the limit of a recurrence relation would result in the fixed point

Reasoning by Equivalence: The Potential Contribution … 327

of an equation. Burkhardt (1987), and others, have argued that in a very real sense
to students, the subject of mathematics is defined by what we, as a mathematics
community, expect students to do in examinations. Currently, school level problem
solving and proof is confined to algebraic and calculus methods in which the primary
technique is reasoning by equivalence.

Reasoning by equivalence continues to play a central role in mathematics beyond
school examinations, and into undergraduate work. As already mentioned, it forms
much of the work in symbolic calculus problems. Further, with many proofs rea-
soning by equivalence is central. For example, in induction to prove results such as∑n

k=1 k
2 = 1

6n(n + 1)(2n + 1) the central work in the induction step is reasoning by
equivalence. Therefore all technology designed to support proof in teaching should
support reasoning by equivalence as a central component.

In this work I have focused on equivalence, rather than on re-write rules. There is
an extensive literature on re-write rules, e.g. Bundy (1983), and these are commonly
taught in school mathematics. The Mathpert system of Beeson (1998) avoids the
problem of deciding if a student’s step is legitimate by providing a menu of steps
fromwhich the student must choose. It is certainly possible to infer some of the steps
a student has made, and so some analysis of students’ steps is a valuable addition
to the reasoning by equivalence described here. However, steps alone will not be
sufficient. Indeed, one goal of developing fluency in algebra is to become proficient
at combining small individual steps into one. Taken to an extreme, a student might
well move from the equation x2 + 2x + 1 = 0 directly to the solution x = 1. These
equations are equivalent, but whether this single step is acceptable will depend on
the teacher and context. The teacher might additionally require other properties in
a complete solution. For example, they may require a minimum number of lines of
working, or that a particular form (e.g. factored) appears as one line of working.

Perhaps the most significant drawback of focusing on equivalence is the problem
that addition, removal and permutation of equivalent intermediate steps will all be
accepted by a pure equivalence reasoning engine. Firstly I should note that students
do, in fact, sometime backtrack or write unnecessary steps. While this might well
be sub-optimal or less aesthetically pleasing this does not make their work “wrong”.
Further work with live students will be needed to decide the extent to which this
is actually a problem, and to design mechanisms for avoiding the problems which
arise. Ultimately in addition to equivalence the teacher will seek to establish a range
of other properties which may include inferring which steps were taken where this
is possible, and the relationship (if any) to a teacher’s envisaged model answer.

Current dynamic geometry systems provide powerful tools for experimentation.
However, none of the current systems of which I’m aware allow students to move
beyond experimentation towrite up amore formal claimandproof.Allowing students
to write simple proofs based on Polya’s “pattern of two loci” appears to be a sensible
starting point, and combining algebra and geometry another.

There are more profound differences at the level of logic. Most automatic theorem
proving softwaremakes use of the resolution rule of inferencewhich is closely related
to the contrapositive, Bundy (2013). To use existing automatic theorem proving
software a more profound shift in how we teach logic is needed.

328 C. Sangwin

7 Conclusion

This chapter takes the hypotheses that students continue to need to learn how to
perform reasoning by equivalence accurately, regardless of the technology available
to them. More specifically, the hypothesis is that all students will need to encounter
some reasoning by equivalence as a basic part of algebra: teaching how to solve linear
and quadratic equations is unlikely to disappear from curricula in the future. In the
version of STACKdescribed here, students are expected to perform the computations
themselves and type in their answer, hence the need for flexibility of what is and is
not a step. In contrast, when usingMathXpert students chose what to do, but were not
expected to do it. Not saying what you are doing is defensible when only reasoning
by equivalence. However, as soon as other operations are included (e.g. let, equate
coefficients, and calculus) then this position becomes unsustainable. One solution is
what Back, Mannila, and Wallin (2010) called structured derivations. Another very
early approach, illustrated in Brancker, Pell, and Rahn (1668), is the three column
proof in which the argumentation and reasoning are clearly laid out with reference
to numbered lines.

We do have an opportunity, through carefully designed tools, to communicate to
students what is and is not important in writing an acceptable mathematical proof.
If logical symbols such as ⇔ matter, then either the system should include them
automatically or students should be constrained to write them. Templates provide
another alternative in creating constraints in which people work. Constraints can be
liberating: they remove the need to worry about whether the overall form of the proof
is acceptable, leaving the proof author instead to focus on the details. Designing
software to automate a process is another, very demanding, type of constraint. I
think the attempt to automate assessment of students’ proofs is a valuable way of
understanding the nature of elementary mathematics, and the challenges associated
with teaching and learning mathematics.

References

Adams, W. W., & Loustaunau, P. (1994). An introduction to Grobner bases (Vol. 3). Providence,
Rhode Island: American Mathematical Society.

Back, R. J., Mannila, L., & Wallin, S. (2010). It takes me longer, but I understand better’—Student
feedback on structured derivations. International Journal of Mathematical Education in Science
and Technology, 41(5), 575–593. https://doi.org/10.1080/00207391003605221.

Beeson, M. (1998). Design principles of Mathpert: Software to support education in algebra and
calculus. In N. Kajler (Ed.), Computer-human interaction in symbolic computation (pp. 89–115).
Vienna, Austria: Springer. https://doi.org/10.1007/978-3-7091-6461-7.

Beeson, M. (2004). The mechanization of mathematics. In C. Teuscher (Ed.), Alan Turing: Life and
legacy of a great thinker (pp. 77–134). Berlin, Germany: Springer. https://doi.org/10.1007/978-
3-662-05642-4.

Bernardo, G., & Carmen, B. (2009). The ambiguity of the sign . In Proceedings of CERME6,
Lyon, France, Working Group 4 (pp. 509–518).

https://doi.org/10.1080/00207391003605221
https://doi.org/10.1007/978-3-7091-6461-7
https://doi.org/10.1007/978-3-662-05642-4
https://doi.org/10.1007/978-3-662-05642-4

Reasoning by Equivalence: The Potential Contribution … 329

Boesen, J., Lithner, J., & Palm, T. (2010). The relation between types of assessment tasks and
the mathematical reasoning students use. Educational Studies in Mathematics, 75(1), 89–105.
https://doi.org/10.1007/s10649-010-9242-9.

Bonnycastle, J. F. (1836). An introduction to algebra (16th ed.). London, UK: Longman.
Boole,G. (1847).Themathematical analysis of logic, being an essay towards a calculus of deductive
reasoning. Cambridge, UK: MacMillan, Barclay, & Macmillan.

Brancker, T., Pell, J., & Rahn, J. H. (1668). An introduction to algebra. London, UK: Printed by
W.G. for Moses Pitt.

Bundy, A. (1983). The computer modelling of mathematical reasoning. London, UK: Academic
Press.

Bundy, A. (2013). The interaction of representation and reasoning.Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences, 469(2157). https://doi.org/10.1098/rspa.
2013.0194.

Burkhardt, H. (1987). What you test is what you get. In I. Wirszup & R. Streit (Eds.), The dynamics
of curriculum change in developments in school mathematics worldwide. University of Chicago
School Mathematics Project.

Durell, C. V. (1930). New algebra for schools (3 Vols.). London, UK: Bell & Sons.
Euler, L. (1822). Elements of algebra (3rd ed.). London, UK: Longman, Hurst, Rees, Orme and
Co. (Translated from the French, with the notes of M. Bernoulli and the Additions of M. de La
Grange by J. Hewlett).

Heeren, B., Jeuring, J., & Gerdes, A. (2010). Specifying rewrite strategies for interactive exercises.
Mathematics in Computer Science, 3(3), 349–370. https://doi.org/10.1007/s11786-010-0027-4.

Kirshner, D., & Awtry, T. (2004, July). Visual salience of algebraic transformations. Journal for
Research in Mathematics Education, 35(4), 224–257. https://doi.org/10.2307/30034809.

Leibniz, G. (1966). Logical papers: A selection. Oxford, UK: Oxford University Press.
Levenson, E. (2012, June). Teachers’ knowledge of the nature of definitions: The case of the
zero exponent. The Journal of Mathematical Behavior, 31(2), 209–219. https://doi.org/10.1016/
j.jmathb.2011.12.006.

Lund, T. (1852). The elements of algebra designed for the use of students in the university (14th
ed.). London, UK: Longman, Brown, Green and Longmans.

Maxwell, E. A. (1959). Fallacies in mathematics. Cambridge, UK: Cambridge University Press.
Newman, M. H. A., et al. (1957). The teaching of algebra in sixth forms: A report prepared for the
Mathematical Association. London, UK: G. Bell and Sons Ltd.

Nicaud, J. F., Bouhineau, D., & Chaachoua, H. (2004). Mixing microworlds and CAS features in
building computer systems that help students learn algebra. International Journal of Computers
for Mathematical Learning, 9(2), 169–211. https://doi.org/10.1023/B:IJCO.0000040890.20374.
37.

Northrop, E. P. (1945). Riddles in mathematics: A book of paradoxes. London, UK: The English
Universities Press.

Polya, G. (1962). Mathematical discovery: On understanding, learning, and teaching problem
solving. London, UK: Wiley.

Prank, R. (2011). What toolbox is necessary for building exercise environments for algebraic trans-
formations. The Electronic Journal of Mathematics and Technology, 5(3).

Sangwin, C. J. (2013).Computer aided assessment of mathematics. Oxford, UK: Oxford University
Press.

Sangwin, C. J. (2015, July). An audited elementary algebra. The Mathematical Gazette, 99(545),
290–297. https://doi.org/10.1017/mag.2015.37.

Sangwin, C. J. (2016). Undergraduates’ attempts at reasoning by equivalence in elementary algebra .
InDidactics of Mathematics in Higher Education as a Scientific Discipline: Conference Proceed-
ings (pp. 335–341). Universität Kassel, Leuphana Universität Lneburg, Universität Paderborn.

Sangwin, C. J., & Köcher, N. (2016). Automation of mathematics examinations. Computers and
Education, 94, 215–227. https://doi.org/10.1016/j.compedu.2015.11.014.

https://doi.org/10.1007/s10649-010-9242-9
https://doi.org/10.1098/rspa.2013.0194
https://doi.org/10.1098/rspa.2013.0194
https://doi.org/10.1007/s11786-010-0027-4
https://doi.org/10.2307/30034809
https://doi.org/10.1016/j.jmathb.2011.12.006
https://doi.org/10.1016/j.jmathb.2011.12.006
https://doi.org/10.1023/B:IJCO.0000040890.20374.37
https://doi.org/10.1023/B:IJCO.0000040890.20374.37
https://doi.org/10.1017/mag.2015.37
https://doi.org/10.1016/j.compedu.2015.11.014

330 C. Sangwin

Sangwin, C. J., & Ramsden, P. (2007). Linear syntax for communicating elementary mathematics.
Journal of Symbolic Computation, 42(9), 902–934. https://doi.org/10.1016/j.jsc.2007.07.002.

Tirosh, D., & Evan, R. (1997). To define or not to define: The case of (−8)
1
3 . Educational Studies

in Mathematics, 33(3), 321–330. https://doi.org/10.1023/A:100291660.

https://doi.org/10.1016/j.jsc.2007.07.002
https://doi.org/10.1023/A:100291660

Virtual Manipulatives and Students’
Counterexamples During Proving

Kotaro Komatsu and Keith Jones

1 Introduction

Counterexamples play a vital role in the development of mathematics (Lakatos,
1976), and the learning of counterexamples has many benefits in school mathemat-
ics. For example, students can experience the reinvention of mathematics through
producing and addressing counterexamples (Larsen & Zandieh, 2008), and such
activity could result in students obtaining deeper and more authentic insights into
the nature of mathematics (de Villiers, 2010). Counterexamples not only stimulate
such mathematical practice, but also enhance the learning of mathematical content,
including concept formation and definitions (de Villiers, 1998).

However, several studies (e.g. Hoyles & Küchemann, 2002; Ko & Knuth, 2013;
Zaslavsky & Peled, 1996) have reported that students encounter difficulties in pro-
ducing appropriate counterexamples. In addition, some students cannot properly
address counterexamples that they discover themselves or that others, such as class-
mates and teachers, present to them (Balacheff, 1991). There are at least two options
for coping with counterexamples to conjectures: restricting the domains of the con-
jectures to exclude the counterexamples, or modifying the conjectures so that the
counterexamples can be included as examples of the modified conjectures. How-
ever, some students do not perform these actions, but rather ignore counterexamples
and consider that conjectures remain true despite the existence of counterexamples
(Balacheff, 1991).

K. Komatsu (B)
Institute of Education, Shinshu University, Nagano, Japan
e-mail: kkomatsu@shinshu-u.ac.jp

K. Jones
School of Education, University of Southampton, Southampton, UK
e-mail: d.k.jones@soton.ac.uk

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_16

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_16&domain=pdf
http://orcid.org/0000-0002-2246-4012
http://orcid.org/0000-0003-3677-8802
mailto:kkomatsu@shinshu-u.ac.jp
mailto:d.k.jones@soton.ac.uk
https://doi.org/10.1007/978-3-030-28483-1_16

332 K. Komatsu and K. Jones

Intervention studies focusing on counterexampleswould be necessary for address-
ing these students’ difficulties, but such studies are scarce in mathematics education
research (Stylianides, Stylianides, &Weber, 2017). We initially focused on this issue
by examining task design and teachers’ roles for enhancing students’ mathematical
activity involving proofs and refutations in paper-and-pencil environments (Komatsu,
2017; Komatsu, Tsujiyama, Sakamaki, & Koike, 2014). Given the potential for pos-
itive impacts of computer technology on proof and proving (e.g. Arzarello, Bartolini
Bussi, Leung, Mariotti, & Stevenson, 2011), we are extending our studies by tak-
ing the availability of dynamic geometry environments (DGEs) into consideration
(Komatsu & Jones, 2019). In the study with DGEs, we developed theory-informed
task design principles, designed sets of tasks based on these principles, and examined
the affordances of the tasks by implementing task-based interviews with secondary
school students and undergraduate students.

While we developed the tasks according to a set of theory-informed design prin-
ciples derived from existing studies, our purpose here is to re-analyse these tasks,
and illustrate the implemented task-based interviews, using a different framework.
Here, a different framework for task design means a framework that was not used in
the original theory-informed task design. The benefits of networking different theo-
retical approaches have been deliberated by Prediger, Bikner-Ahsbahs and Arzarello
(2008, p. 172), who advocate “looking at the same phenomenon from different theo-
retical perspectives as a method for deepening insights on the phenomenon”. In our
research, the empirical phenomena are the designed tasks and implemented task-
based interviews. Our premise is that if a certain task design is examined through a
framework that was not used in the original task design, this deepens insight into the
theoretical basis of the task design and adds support for the task design.

To that purpose, we employ Osana and Duponsel’s (2016) framework for research
on virtual manipulatives.Wewere not aware of their frameworkwhen initially devel-
oping our task design principles (Komatsu & Jones, 2019). After designing the tasks
and implementing the task-based interviews, we became aware of their work and
came to realise that their framework can be employed for re-examining our task
design.

A virtual manipulative is defined as “an interactive, technology-enabled visual
representation of a dynamic mathematical object, including all of the programmable
features that allow it to be manipulated, that presents opportunities for construct-
ing mathematical knowledge” (Moyer-Packenham & Bolyard, 2016, p. 13). Some
representations constructed inDGEs canbe considered as virtualmanipulatives.Geo-
metric figures as theoretical objects can be represented with DGE diagrams that are
constructed so as to be ‘robust’; that is, the diagram has the necessary and sufficient
geometrical properties that hold when any point or line is ‘dragged’ (Healy, 2000;
Jones, 2000; Laborde, 2005). With such ‘robust’ diagrams, it is possible to observe
the dynamic transformation of the diagrams in an interactive way by manipulating
them through dragging on-screen points and lines. The diagrams’ geometrical prop-
erties aremaintained during this dragging, and thusDGEs can provide an opportunity
to gain knowledge about the invariant properties of the geometric figures (for another
example of DGEs as virtual manipulatives, see Manizade & Martinovic, 2016).

Virtual Manipulatives and Students’ Counterexamples … 333

By reviewing existing studies of concrete and virtual manipulatives, Osana and
Duponsel constructed a framework that consists of three elements: the surface fea-
tures of the representations, the pedagogical support, and the students’ perceptions
and interpretations. They argue that the framework can be employed for task design.
While, for Osana and Duponsel, the focus of their framework is on the learning of
mathematical concepts, manipulatives are used not only for enhancing the learning
of mathematical concepts and procedures but also for facilitating students’ success
in mathematical practices such as proving (an example being the ‘action proofs’ in
Semadeni, 1984). Hence, we anticipate that Osana and Duponsel’s framework can
be applied to task design for proof-related activity, one of the themes of this book.
The purpose of this chapter is to re-analyse our designed tasks and an implemented
task-based interview using Osana and Duponsel’s framework for research on virtual
manipulatives.

2 Analysing Task Design for Producing and Addressing
Counterexamples Using a Framework on Virtual
Manipulatives

Table 1 shows the set of task design principles that we have elaborated for helping
students produce and address counterexamples. Figure 1 provides one example of a

Table 1 Task design principles for producing and addressing counterexamples

Principle Description of the principle

Principle 1 Using statements whose conditions are purposefully implicit and thus allow the
production of particular proofs and the occurrence of counterexamples

Principle 2 Providing tools that enhance the production of counterexamples, while making
explicit the purpose of the tools’ use (i.e. investigating the existence of
counterexamples)

Principle 3 Increasing students’ recognition of contradictions that can help them revise
conjectures/statements and/or proofs

Task 1. In parallelogram ABCD, we draw perpendicular

lines AE and CF to diagonal BD from points A and C,

respectively. Prove that quadrilateral AECF is a

parallelogram.

Task 2. Construct the diagram shown in Task 1 using a DGE. Move the vertices to change the shape of

parallelogram ABCD, and examine whether quadrilateral AECF is always a parallelogram.

Fig. 1 A set of designed tasks

334 K. Komatsu and K. Jones

Table 2 Employment of the principles for the task design

Principle Task design

Principle 1 Task 1 is based on this principle. The statement includes a hidden condition in the
given diagram assuming that perpendicular lines from points A and C always
intersect with diagonal BD. A proof of the statement can be constructed for the
given diagram. However, if the shape of parallelogram ABCD is changed, cases
where quadrilateral AECF is not constructed can be discovered

Principle 2 This principle was used for designing Task 2. Students are asked to use a DGE to
construct the diagram given in Task 1, to transform it as required by dragging, and
to investigate the truth of the statement

Principle 3 This principle was used for sequencing Tasks 1 and 2. In this sequence, students
are asked to construct a proof in Task 1 and then transform the diagram with the
DGE in Task 2. The expectation is that proof construction in Task 1 could
increase students’ conviction of the truth of the statement, and that thereby, a
contradiction could likely be evoked more sharply between the students’
conviction and its subsequent refutation in Task 2

set of designed tasks, and Table 2 explains how the design principles were employed
for designing these tasks. Our intention of this chapter is not to address the design
principles shown in Table 1 themselves because we have already discussed their
theoretical basis elsewhere; see Komatsu & Jones (2019). Rather, our purpose here
is to analyse the designed tasks shown in Fig. 1 in terms of the three elements of
Osana and Duponsel’s framework.

We consider each of the three elements of Osana and Duponsel’s framework in
turn, beginning with the surface features of the representations.

2.1 Surface Features of Representations

Mathematical concepts are abstract entities that cannot be directly observed, and
manipulatives are used for making the abstract concepts concrete and visible, and
thereby accessible for students. Thus, the benefit of manipulatives for mathemati-
cal learning cannot be judged only from the manipulatives themselves. Rather, as
Osana and Duponsel (2016, p. 97) say, “the use of manipulatives is beneficial to the
extent that students make clear associations between the objects themselves and the
mathematical concepts they are intended to represent”.

There can be various different manipulatives for one mathematical concept, and
their representational features can vary on many dimensions, such as the extent to
which they resemble the concept they are intended to represent. Based on a thorough
review of the literature on the use of manipulatives, Osana and Duponsel (2016)
argue that if manipulatives include surface features irrelevant to the underlying ideas
the manipulatives target (e.g. attractive and perceptually-rich manipulatives), these
manipulatives can distract students’ attention and hinder their capacity to see beyond
the manipulatives to the targeted ideas. In other words, Osana and Duponsel’s frame-

Virtual Manipulatives and Students’ Counterexamples … 335

work highlights the importance of task design with careful consideration of the rep-
resentational features of virtual manipulatives so that the manipulatives better help
students achieve the intended learning goals.

The statement in Task 1 (in Fig. 1) is relevant to the consideration of the surface
features of representations. Our aim in the task design is to engage students in discov-
ering and addressing counterexamples, and for that purpose, it is first of all necessary
to use statements where counterexamples can be produced. A surface feature of the
representation in Task 1 is in the given diagram with a particular characteristic: this
diagram includes a hidden condition of assuming that perpendicular lines from points
A and C always intersect with diagonal BD. While quadrilateral AECF is actually a
parallelogram in the given diagram, cases where quadrilateral AECF does not appear
can be found if parallelogram ABCD is transformed (as shown later in this chapter).

In proof tasks in school geometry, it is common that particular diagrams (usually
one diagram per task) are given and the statements are described with reference
to those diagrams (Herbst & Brach, 2006). If the described statements are general
statements (such as for-all statements), students have to consider, on the one hand,
the statements and proofs while taking into account not only the given diagrams but
also certain general domains to which the diagrams belong. On the other hand, one
diagram inevitably has to be one particular case and thus may suffer from “one-
case concreteness” (Presmeg, 1986; Yerushalmy & Chazan, 1990): one diagram
cannot represent the generality of the geometrical concept andmay include properties
that do not pertain to the concept. Hence, it is likely in some tasks (though not
all) that statements based on the given diagrams are true only for subsets of the
general domains. The statement in Task 1 has this representational feature—the
particularity of the given diagram makes the condition of the statement implicit and
thus counterexamples can occur in the subsequent Task 2 (for other tasks having this
feature, see Komatsu, 2017).

This representational feature can be reinforcedwithDGEs because dynamic trans-
formation in DGEs can represent, to some extent, the generality of geometrical con-
cepts and thereby overcome the particularity of one diagram. Through performing
dragging in DGEs, students not only can see examples but also may happen upon
non-examples and counterexamples (Healy & Hoyles, 2001; Marradez & Gutiérrez,
2000).

Before continuing the examination of our task design, we would like to clarify
the meaning of counterexample in the context of our study. We use this term sub-
jectively, in that we judge a case to be a counterexample if students consider that a
conjecture/statement is refuted by the case, regardless of whether it is really a coun-
terexample in a logical sense. For example, Task 1 assumes, though implicitly, that
quadrilateral AECF can be constructed, and under this assumption, the statement
infers that this quadrilateral is a parallelogram. Hence, the cases shown later in this
chapter are, mathematically, non-examples rather than counter-examples because
they do not satisfy this assumption. However, as in Task 1, if statement conditions
are not clear, it can be a subtle matter to discern whether a case is a counter-example
or a non-example. Thus, we use the term counterexample from a subjective, student
standpoint, not from a purely mathematical standpoint.

336 K. Komatsu and K. Jones

We now turn to consider the second element of Osana and Duponsel’s framework,
that of pedagogical support.

2.2 Pedagogical Support About the Use of Tools

According to Osana and Duponsel’s framework, the second aspect crucial for task
design with virtual manipulatives concerns the provision of adequate pedagogical
support. As mentioned above, the benefit of using manipulatives rests on whether
students can see meaningful connections between the manipulatives and their target
concepts, but students may not construct these connections by themselves. Research
on manipulatives shows that students’ performance is enhanced when they receive
explicit explanations that connect manipulatives and their conceptual referents.

However, some researchers warn against providing students with too much
instruction about how to use manipulatives. With reference to Gravemeijer (2002),
Osana and Duponsel (2016) state that “when students are given prescriptions for
how to use manipulatives, their use of the objects can become highly mechanical,
which is not conducive tomathematical understanding” (p. 106). Thus, in task design
with virtual manipulatives, while certain instruction about the connections between
the manipulatives and their intended goals is necessary, students should be allowed
to make explorations with the manipulatives so that they can find their way to the
intended goals on their own.

Task 2 is relevant to this level of pedagogical support. In this case, a virtual
manipulative is an on-screen object created by students with a DGE, and the task
asks students to investigate whether the statement in Task 1 is always true. With
respect to DGEs, mathematics education researchers have illustrated several types
of dragging modalities and measuring modalities (e.g. Arzarello, Olivero, Paola, &
Robutti, 2002; Olivero & Robutti, 2007). On the one hand, this shows the power
of DGEs to enhance various proof-related activities such as making conjectures and
getting ideas for proof construction. On the other hand, different dragging modalities
may lead to different activities.While one of the draggingmodalities, dragging test, is
specifically relevant to the discovery of counterexamples, other dragging modalities
(e.g. wandering dragging, which is performed casually, without any goal) may not
be helpful for that purpose. To focus students’ attention on the intended activity,
pedagogical support about the purpose of the use of a DGE is included in Task
2: “Move the vertices to change the shape of parallelogram ABCD, and examine
whether quadrilateral AECF is always a parallelogram” (Fig. 1), rather than simply
“use a DGE”.

Task 2 implicitly has another goal of triggering students’ additional mathematical
activity—extending the statement in Task 1 to cope with counterexamples. However,
this activity is not implied in the wording of Task 2 because of the expectation that
students would spontaneously engage in this activity if they are stimulated in a
certain way, which is described in the next section. In summary, a certain amount of
pedagogical support is included in Task 2 in that while students are directly asked to

Virtual Manipulatives and Students’ Counterexamples … 337

investigate the existence of counterexamples with a DGE, they are expected to act
on their own initiative after the discovery of counterexamples.

The third element of Osana and Duponsel’s framework is that of students’ per-
ceptions and interpretations.

2.3 Students’ Perceptions and Interpretations

The third element of Osana and Duponsel’s framework suggests that in task design
with virtual manipulatives, how students might interpret the manipulatives should
be taken into account. As mentioned above, the success of mathematical learning
with manipulatives rests on how students perceive and interpret the manipulatives.
However, students may interpret manipulatives in various ways, some of which may
be different than expected.

In our task design, possible interpretations by students were considered in the
sequencing of Tasks 1 and 2. It is entirely possible to ask students to construct the
given diagram with a DGE and explore various diagrams by dragging before proof
construction. In these explorations, they may come upon counterexamples to the
statement. However, without proving the statement, they may not be convinced of its
truth and, consequently, may not be inclined to improve the statement for addressing
the counterexamples. Indeed, research indicates that when students (and teachers)
encounter cases resulting in counterexamples, some may merely reject the cases,
rather than interpreting them as genuine counterexamples (Balacheff, 1991; Zazkis
& Chernoff, 2008).

To address this issue, we have capitalised on the potential of ‘confusion’, in
particular, the benefit of contradictions that students face between their expectations
and the results they obtain (D’Mello, Lehman, Pekrun, & Graesser, 2014; Prusak,
Hershkowitz,&Schwarz, 2012).As explained inTable 2, Tasks 1 and 2 are sequenced
such that proof construction in Task 1 could increase students’ conviction of the truth
of the statement, and that thereby, a contradiction could likely be evoked between
their conviction and the subsequent counterexamples in Task 2; this contradiction
could play a role as a catalyst for triggering students to improve the statement.

In the next section, we illustrate the affordances of our task design with a task-
based interview that we conducted using the task shown in Fig. 1.

3 A Task-Based Interview

The tasks in Fig. 1 were implemented separately with two pairs of undergraduate
students at a Japanese university. The purpose of the task-based interviews was
to investigate how the tasks enabled undergraduates to engage in discovering and
addressing counterexamples. The first author of this chapter conducted the task-
based interviews. The role of the interviewer was simply to give the tasks and observe

338 K. Komatsu and K. Jones

the undergraduates’ behaviour, and the undergraduates worked on the tasks without
significant intervention from the interviewer.

Although the tasks are related to secondary school geometry, undergraduates were
chosen as participants because proof construction in Task 1 might be challenging for
secondary school students. All of the participants were prospective teachers training
to teach at the primary and secondary school levels. The undergraduateswere selected
based on our anticipation that they would likely provide expansive verbal utterances
useful for data analysis. The DGE GeoGebra was used in the task-based interviews,
and the participants already had considerable experience in using this DGE.

Each task-based interview lasted for approximately 35 min. Two cameras were
used for recording each case, one placed to film the undergraduates and the other to
record the computer screen. The data we used for analysis were the video record-
ings, the transcriptions made from the recordings, the worksheets the undergraduates
completed, and the DGE files they made. The analysis was conducted with a specific
focus on what kind of diagram the undergraduates produced, whether they accepted
the diagrams as counterexamples, and whether and how they revised the statement
and their proofs (for more details about the data, see Komatsu & Jones, 2019).

Because the two pairs of undergraduates tackled the tasks in almost identicalways,
this chapter focuses on one pair (Kenta andTsubasa; pseudonyms) to avoid repetition.
In the task-based interview, we prepared two worksheets, one which included only
Task 1 and another one which included only Task 2. The undergraduates began by
working on the first worksheet, and then received the second worksheet after they
had solved Task 1 in the first worksheet.

3.1 The Proof of the Original Statement and the Types
of Produced Diagrams

Because our focus in this chapter is on the undergraduates’ encounters with coun-
terexamples that occurred using DGE technology after proof construction, here we
describe only briefly how the undergraduates constructed their proof in answer to
Task 1.

The two undergraduates, Kenta and Tsubasa, began by planning to show that the
diagonals of quadrilateral AECF intersected at their midpoints. Due to its difficulty,
however, they abandoned this plan, and then saw another possibility—proving that
�ABE ≡ �CDF and thereby showing that a pair of opposite sides of quadrilateral
AECF were equal and parallel. Below is the summary of the undergraduates’ proof:

∠AEB = ∠CFD = 90° and AB = CD (the suppositions).
Since AB // DC (the supposition), ∠ABE = ∠CDF (alternate angles).
Hence, �ABE ≡ �CDF (a congruence condition for right-angled triangles), and
thus AE = CF.
Since ∠AEF = ∠CFE (the supposition), AE // CF.
Hence, quadrilateral AECF is a parallelogram (a condition for parallelograms).

Virtual Manipulatives and Students’ Counterexamples … 339

The undergraduates moved on to Task 2, where they used the DGE to construct
the diagram shown in Task 1 following the conditions of the statement. Here, they
selected the perpendicular line tool to draw perpendicular lines that passed through
points A and C and intersected with diagonal BD, and defined points E and F as the
intersection points of these perpendicular lines and diagonal BD. When doing so,
they drew segments AE and CF, and made the perpendicular lines AE and CF not
displayed.

After that, the undergraduates performed dragging to produce various types of
diagrams (Fig. 2). They first considered the case where the positions of points E and
F were reversed (Fig. 2a).1 They then discovered the case where points E and F (and
therefore quadrilateral AECF) disappeared as the perpendicular lines from points A
and C did not intersect with diagonal BD (Fig. 2b). When exploring this case, they
observed a border case between Fig. 1 and Fig. 2b where points E and F coincided
with points B and D, respectively (Fig. 2c). The case where points E and F coincided
was also found (Fig. 2d).

The undergraduates thought that the statement in Task 1 was true for Fig. 2a, c.
With respect to Fig. 2d, they said, “In this case, there is no quadrilateral [AECF]
itself, so difficult”. Tsubasa mentioned that rhombuses produced Fig. 2d, including
squares as a subtype of rhombus, based on his understanding of the hierarchical
classification of quadrilaterals. In what follows, we focus on the undergraduates’
engagement with the case of Fig. 2b because this involved the undergraduates dealing
with a counterexample.

Fig. 2 The types of diagrams produced by the undergraduates in Task 2

1It is more exact to state ‘the type illustrated in Figure X’, not just ‘Figure X’, because the under-
graduates considered more than one diagram for one type by dragging. In this chapter, we simply
state ‘Figure X’ for readability.

340 K. Komatsu and K. Jones

3.2 The Discovery of a Counterexample and the Extension
of the Statement

Below is the undergraduates’ exchange when they came upon Fig. 2b:

153 Tsubasa: The case when [the statement is] not true…. Oh, this is different.

154Kenta:Yes….There is a casewherewe can’t draw the perpendicular lines to the diagonal.

155 Tsubasa: Well …

156 Kenta: What figure?

157 Tsubasa: That is.

158 Kenta: The case where [the perpendicular lines are] outside [the parallelogram].

159 Tsubasa: Yes, it is.

160 Kenta: Yeah. This is a case when [the perpendicular lines] disappear.

161 Tsubasa: Well. After this [Fig. 2c].

162 Kenta: Yes. [The perpendicular lines] disappear.

163 Tsubasa: [The statement is] not true in this case.

Here the undergraduates encountered a contradiction: on the one hand, before the
above exchange, they had been convinced of the truth of the statement by proving it
in Task 1, and had increased their conviction at the beginning of Task 2 by verifying
the truth of the statement for Fig. 2a; on the other hand, during this exchange, the
undergraduates actually discovered Fig. 2b, where quadrilateral AECF disappeared
in theDGEbecause the perpendicular lines from points A andC did not intersect with
diagonal BD (lines 154, 160, and 162). On this basis, the undergraduates considered
this type to be a counterexample to the statement in Task 1 (line 163). After that,
they began to explore this type more deeply:

166 Kenta: Because disappearing, we have to make this visible.

167 Tsubasa: Yes. We have to make visible.2

168 Kenta: Does it mean changing [diagonal] BD to a line?

169 Tsubasa: Yes.

Both of the undergraduates said, “we have to” (lines 166 and 167), and this shows
that the contradiction they faced triggered their spontaneous activity. For addressing
Fig. 2b, the undergraduates extended the statement by drawing ‘line BD’, construct-
ing perpendicular lines that passed through points A and C and intersected with line
BD, and redefining points E and F as the intersection points of these perpendicular
lines and line BD (Fig. 3).

This left the undergraduates with the matter of proving the extended statement.

2It might appear that the undergraduates perceived the problem just from whether they correctly
constructed the diagram in theDGE.However, their constructionwas logically correct as it followed
the conditions of the statement (e.g. the definitions of points E and F mentioned in the previous
section). Hence, they perceived the problem from the viewpoint of logic, not just from the viewpoint
of correct construction.

Virtual Manipulatives and Students’ Counterexamples … 341

Fig. 3 The extended case

3.3 The Proof of the Extended Statement

Tsubasa proposed to prove that quadrilateralAECF inFig. 3was also a parallelogram.
In the subsequent phase of the interview, he reflected on this moment: “I supposed
[quadrilateralAECFwas] a parallelogramat first glance, but I couldn’t be convinced”.

The undergraduates planned to show that �ABE ≡ �CDF in Fig. 3, and then
Kenta suggested using their earlier proof produced in Task 1: “Well, how about a
similar way to the previous one?” They found that AE // CF could be proved in a
similar way, and started to write a proof for Fig. 3 by copying their earlier proof.
However, they noticed that it was not possible to show that ∠ABE = ∠CDF in the
same way as before3:

251 Tsubasa: First of all, we have to show this parallel. AB parallel CD.

252 Kenta: We show the parallel. This is the same as before.

255 Tsubasa: Next is, because alternate angles are equal, right?

266 Kenta: There [∠ABE] and where?

267 Tsubasa: Here [∠ABE] and here [∠CDF].

274 Kenta: What? Are those alternate angles?

275 Tsubasa: Can’t we say that?

276 Kenta: Alternate angles are … inside and inside of parallel, right?

277 Tsubasa: I see. We can’t say [that]. We must consider the supplement.

278 Kenta: Since [∠ABE and ∠CDF are] outside and outside.

279 Tsubasa: Well, we can make a subtraction from 180.

Tsubasa initially thought that their earlier proof was applicable here, as he sup-
posed that ∠ABE and ∠CDF were alternate angles (lines 255, 267, and 275). How-
ever, Kenta’s objections (lines 266, 274, and 276) helped Tsubasa realise his mis-
take (line 277). After noting that ∠ABD = ∠CDB (since AB // CD), the under-
graduates considered the supplements of these angles (line 279) and showed that
∠ABE = 180◦ − ∠ABD = 180◦ − ∠CDB = ∠CDF. They completed their activity
by using their earlier proof to show the remaining parts. Thus, the undergraduates

3Some parts of the transcripts are omitted in this excerpt because the full transcripts are lengthy.

342 K. Komatsu and K. Jones

managed to prove the extended statement, thereby showing that Fig. 2b, which was
initially considered as a counterexample, could be incorporated as an example of the
extended statement.4

4 Discussion

In the task-based interview, the undergraduates successfully worked on a mathemat-
ical activity through which they discovered and addressed a counterexample. Their
activity was stimulated by the tasks they tackled, and as discussed earlier, the design
of the tasks is supported by Osana and Duponsel’s (2016) framework for research on
virtual manipulatives. Task 1 consists of the given diagram, which includes a certain
hidden condition as the representational feature. This feature, and pedagogical sup-
port explaining the purpose of the DGE use in Task 2, allowed the undergraduates
to discover counterexamples (Figs. 2b, d) to the statement in Task 1. Task 2 gave
the undergraduates the opportunity to explore on their own by not specifying what
they were expected to do when discovering counterexamples. The sequence of Tasks
1 and 2, which was designed by taking students’ interpretations of counterexam-
ples into consideration, stimulated the undergraduates’ spontaneous activity where
they succeeded in addressing the case of Fig. 2b by extending the original statement
(Fig. 3) and proving that this case was no longer a counterexample to the extended
statement.

The tasks in Fig. 1 were originally developed according to the task design princi-
ples (Table 1) that we elaborated based on existing studies (Komatsu & Jones, 2019).
In this chapter, we have re-analysed these tasks by employing a different framework:
the framework for research on virtual manipulatives (Osana & Duponsel, 2016).
As mentioned in the introduction to this chapter, our work is motivated by one of
the benefits of networking theoretical approaches: combining theoretical approaches
contributes to obtainingmulti-faceted, deeper insights into an empirical phenomenon
(Prediger, Bikner-Ahsbahs, & Arzarello, 2008). One empirical phenomenon in our
case is the set of tasks shown in Fig. 1, and this chapter shows that the design of
the tasks is now supported by two different theoretical approaches—the task design
principles in Table 1 and Osana and Duponsel’s framework. The advantage of the
tasks is also empirically illustrated with the results of the task-based interview (for
another case study, see Komatsu & Jones, 2019).

4The undergraduates did not reformulate the statement by replacing the term diagonal BD in the
problem sentence (Fig. 1) with line BD. Instead, the subsequent phase of the task-based interview
revealed that they extended the statement by discarding the typical definition of ‘diagonal’, namely
a segment connecting two nonadjacent vertices of a polygon, and redefining a diagonal as a line
connecting such vertices. While the undergraduates succeeded in incorporating the counterexample
by their redefinition, there is a problem here because their redefinition is not compatible with the
normal definition of diagonals. See Komatsu and Jones (2019) for the related data and our further
discussion.

Virtual Manipulatives and Students’ Counterexamples … 343

Task design has recently gainedmore attention inmathematics education research
(Jones & Pepin, 2016; Watson & Ohtani, 2015), but the benefit of task design is
commonly examined in a relatively small number of case studies. Some research
addresses ways to increase the possibility that task design can successfully achieve
the intended learning goals, such as the iteration of design-implementation-analysis
cycles (Stylianides & Stylianides, 2009). Another method exemplified in this chapter
is to re-analyse existing theory-informed task design from a different theoretical
perspective. Such re-analysis, which seems lacking in current research, at least in the
area of proof, could strengthen the theoretical underpinnings of the task design and
improve the design where necessary.

Although we implemented secondary-school-geometry tasks with prospective
teachers (undergraduates) rather than secondary school students, this can be consid-
ered an advantage for teacher education (for a task-based interview with secondary
school students, see Komatsu & Jones, 2019). Teachers may teach mathematics in
a manner similar to their own experiences learning mathematics when they were
students. For example, if teachers received instruction where proofs were treated as
ritualistic and authoritative, their proof teaching is likely to follow the same instruc-
tional design. In other words, a possible way to improve proof teaching is to help
prospective teachers accumulate the experiences of engaging in meaningful proving
activities with a range of school mathematics tasks. As shown in this chapter, the
tasks developed in our study enable prospective teachers to work with a dynamic
process where mathematics grows through the dialectic of proofs and refutations. It
is expected that the trainee teachers will subsequently introduce the tasks into their
future classes and share these fruitful experiences with their students.

Future research could implement the tasks undertaken in this study in a classroom
context and take teachers’ roles into consideration. For instance, if Task 2 in Fig. 1
is enacted, students would produce a variety of diagrams as shown in Fig. 2. It is
probably better for teachers to select and sequence these cases purposefully (Stein,
Engle, Smith, & Hughes, 2008), rather than completely leaving them to students, so
that, for example, students can focus on a worthwhile case to be explored further,
and cases tackled by students can gradually become more challenging. In our task
design, pedagogical support in the sense of Osana and Duponsel’s framework (2016)
is given in the task sentence about the purpose of the tool’s use. Given the critical
roles of teachers in mathematics classrooms (Johnson, Coles, & Clarke, 2017), it
is imperative to consider both task design and teachers’ roles in implementing the
tasks.

5 Conclusion

In this chapter we present a re-analysis, using Osana and Duponsel’s (2016) frame-
work for research on virtual manipulatives, of a task design for students producing
and addressing counterexamples. We illustrate the affordances of our task design
through a re-analysis of a task-based interview that we conducted using one of our

344 K. Komatsu and K. Jones

designed tasks. Through the re-analysis of our task design using Osana and Dupon-
sel’s framework, and through the illustrative example, we show the benefits of net-
working theoretical approaches to obtain a multi-faceted and deeper insight into the
empirical phenomena of students producing and addressing counterexamples using
tasks that include virtual manipulatives in a DGE environment. Such an analysis
helps to strengthen the theoretical underpinnings of the task design.

Authors’ note
The illustrations in Figs. 1, 2 and 3 are copyright the authors. While the chapter has
been written specifically for this book, we make use of previously published work
(Komatsu & Jones, 2019) adapted to the theme of the book.

Acknowledgements Wewish to express our thanks to the reviewer for providing helpful comments
on the earlier version of this chapter. This study is supported by the Japan Society for the Promotion
of Science (Nos. 15H05402, 16H02068, and 18K18636).

References

Arzarello, F., Bartolini Bussi, M. G., Leung, A. Y. L., Mariotti, M. A., & Stevenson, I. (2011).
Experimental approaches to theoretical thinking: Artefacts and proofs. In G. Hanna & M. de
Villiers (Eds.), Proof and proving in mathematics education: The 19th ICMI study (pp. 97–143).
New York, NY: Springer.

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging prac-
tises in Cabri environments. ZDM—The International Journal on Mathematics Education, 34(3),
66–72.

Balacheff, N. (1991). Treatment of refutations: Aspects of the complexity of a constructivist
approach to mathematics learning. In E. von Glasersfeld (Ed.), Radical constructivism in math-
ematics education (pp. 89–110). Dordrecht, Netherlands: Kluwer Academic Publishers.

de Villiers, M. (1998). An alternative approach to proof in dynamic geometry. In R. Lehrer & D.
Chazan (Eds.), Designing learning environments for developing understanding of geometry and
space (pp. 369–393). Mahwah, NJ: Lawrence Erlbaum Associates.

de Villiers, M. (2010). Experimentation and proof in mathematics. In G. Hanna, H. N. Jahnke, & H.
Pulte (Eds.), Explanation and proof in mathematics: Philosophical and educational perspectives
(pp. 205–221). New York, NY: Springer.

D’Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for
learning. Learning and Instruction, 29, 153–170.

Gravemeijer, K. (2002). Preamble: From models to modeling. In K. Gravemeijer, R. Lehrer, B. van
Oers., & L. Verschaffel (Eds.), Symbolizing, modeling, and tool use in mathematics education
(pp. 7–22). Dordrecht, Netherlands: Kluwer Academic Publishers.

Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What is
it that is going on for students? Cognition and Instruction, 24(1), 73–122.

Hoyles, C., & Küchemann, D. (2002). Students’ understandings of logical implication. Educational
Studies in Mathematics, 51(3), 193–223.

Healy, L. (2000). Identifying and explaining geometrical relationship: Interactions with robust and
soft Cabri constructions. In T.Nakahara,&M.Koyama (Eds.),Proceedings of the 24th conference
of the international group for the psychology of mathematics education (Vol. 1, pp. 103–117).
Hiroshima, Japan: PME.

Virtual Manipulatives and Students’ Counterexamples … 345

Healy, L., & Hoyles, C. (2001). Software tools for geometrical problem solving: Potentials and
pitfalls. International Journal of Computers for Mathematical Learning, 6(3), 235–256.

Johnson, H. L., Coles, A., &Clarke, D. (2017).Mathematical tasks and the student: Navigating “ten-
sions of intensions” between designers, teachers, and students. ZDM: Mathematics Education,
49(6), 813–822.

Jones, K. (2000). Providing a foundation for deductive reasoning: Students’ interpretations when
using dynamic geometry software and their evolving mathematical explanations. Educational
Studies in Mathematics, 44(1–3), 55–85.

Jones, K., & Pepin, B. (2016). Research on mathematics teachers as partners in task design. Journal
of Mathematics Teacher Education, 19(2–3), 105–121.

Ko, Y. Y., & Knuth, E. J. (2013). Validating proofs and counterexamples across content domains:
Practices of importance formathematicsmajors. Journal of Mathematical Behavior, 32(1), 20–35.

Komatsu, K. (2017). Fostering empirical examination after proof construction in secondary school
geometry. Educational Studies in Mathematics, 96(2), 129–144.

Komatsu,K.,& Jones,K. (2019). Task design principles for heuristic refutation in dynamic geometry
environments. International Journal of Science and Mathematics Education, 17(4), 801–824.

Komatsu, K., Tsujiyama, Y., Sakamaki, A., & Koike, N. (2014). Proof problems with diagrams:
An opportunity for experiencing proofs and refutations. For the Learning of Mathematics, 34(1),
36–42.

Laborde, C. (2005). Robust and soft constructions: Two sides of the use of dynamic geometry
environments. In S. C. Chu, W. C. Yang, & H. C. Lew (Eds.), Proceedings of the tenth Asian
technology conference in mathematics (pp. 22–35). South Korea: Advanced Technology Council
in Mathematics.

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge, Eng-
land: Cambridge University Press.

Larsen, S., & Zandieh, M. (2008). Proofs and refutations in the undergraduate mathematics class-
room. Educational Studies in Mathematics, 67(3), 205–216.

Manizade, A. G., & Martinovic, D. (2016). Developing an interactive instrument for evaluating
teachers’ professionally situated knowledge in geometry and measurement. In P. S. Moyer-
Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual
manipulatives (pp. 323–342). Cham, Switzerland: Springer.

Marradez, R.,&Gutiérrez, Á. (2000). Proofs produced by secondary school students learning geom-
etry in a dynamic computer environment. Educational Studies in Mathematics, 44(1), 87–125.

Moyer-Packenham, P. S., & Bolyard, J. J. (2016). Revisiting the definition of a virtual manipu-
lative. In P. S. Moyer-Packenham (Ed.), International perspectives on teaching and learning
mathematics with virtual manipulatives (pp. 3–23). Cham, Switzerland: Springer.

Olivero, F., & Robutti, O. (2007). Measuring in dynamic geometry environments as a tool for
conjecturing and proving. International Journal of Computers for Mathematical Learning, 12(2),
135–156.

Osana, H. P., & Duponsel, N. (2016). Manipulatives, diagrams, and mathematics: A framework
for future research on virtual manipulatives. In P. S. Moyer-Packenham (Ed.), International
perspectives on teaching and learning mathematics with virtual manipulatives (pp. 95–120).
Cham, Switzerland: Springer.

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for
connecting theoretical approaches: First steps towards a conceptual framework. ZDM—The Inter-
national Journal on Mathematics Education, 40(2), 165–178.

Presmeg, N. C. (1986). Visualisation in high school mathematics. For the Learning of Mathematics,
6(3), 42–46.

Prusak, N., Hershkowitz, R., & Schwarz, B. B. (2012). From visual reasoning to logical necessity
through argumentative design. Educational Studies in Mathematics, 79(1), 19–40.

Semadeni, Z. (1984). Action proofs in primary mathematics teaching and in teacher training. For
the Learning of Mathematics, 4(1), 32–34.

346 K. Komatsu and K. Jones

Stein, M. K., Engle, R. A., Smith, M. S., & Hughes, E. K. (2008). Orchestrating productive mathe-
matical discussions: Five practices for helping teachersmove beyond show and tell.Mathematical
Thinking and Learning, 10(4), 313–340.

Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments
to proof. Journal for Research in Mathematics Education, 40(3), 314–352.

Stylianides, G. J., Stylianides, A. J., & Weber, K. (2017). Research on the teaching and learning of
proof: Taking stock andmoving forward. In J. Cai (Ed.),Compendium for research in mathematics
education (pp. 237–266). Reston, VA: National Council of Teachers of Mathematics.

Watson, A., & Ohtani, M. (Eds.). (2015). Task design in mathematics education: An ICMI study
22. New York, NY: Springer.

Yerushalmy, M., & Chazan, D. (1990). Overcoming visual obstacles with the aid of the Supposer.
Educational Studies in Mathematics, 21(3), 199–219.

Zaslavsky, O., & Peled, I. (1996). Inhibiting factors in generating examples by mathematics teach-
ers and student teachers: The case of binary operation. Journal for Research in Mathematics
Education, 27(1), 67–78.

Zazkis, R.,&Chernoff, E. J. (2008).Whatmakes a counterexample exemplary?Educational Studies
in Mathematics, 68(3), 195–208.

Afterword

Proof Technology and Learning
in Mathematics: Common Issues
and Perspectives

Nicolas Balacheff and Thierry Boy de la Tour

1 Introduction

Mathematical proof is undoubtedly the cornerstone ofmathematics. Indeed, nomath-
ematical work is definitively completewithout the final QED.Mathematics educators
know this centrality of proof, the challenges it presents in terms of teaching, and the
complexity of its learning. The rapid spread of mathematical digital technology over
the last three decades has changed the field of mathematical experience for learners
and opened new avenues in the teaching of proof. The example of dynamic geometry,
as Maria-Alessandra Mariotti observes in this volume, plays a very special role in
this context. The availability of more andmore powerful digital technologies has also
changed the work of mathematicians to the point where the very notion of mathemat-
ical proof is being questioned. Beyondmechanizing computation, these technologies
are now mechanizing mathematical reasoning and proving with unprecedented con-
sequences: logicians and computer scientists have made such progress that not only
are automated theorem proving tools available, but even proof assistants. How will
these new technologies impact mathematics teaching and learning?

Written by researchers from both sides—from the fields of automated theorem
proving and of mathematics education—the chapters in this volume unpack the com-
plexity and meaning of this question, open new issues, offer responses, and invite
readers to think about the next step.Which comprehensive multidisciplinary projects
in the near future will trigger a breakthrough in offering the smartest technology-
enhanced environments for the learning and teaching of mathematical proof?

N. Balacheff (B) · T. Boy de la Tour
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
e-mail: nicolas.balacheff@imag.fr

T. Boy de la Tour
e-mail: thierry.boy-de-la-tour@imag.fr

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1_17

349

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28483-1_17&domain=pdf
mailto:nicolas.balacheff@imag.fr
mailto:thierry.boy-de-la-tour@imag.fr
https://doi.org/10.1007/978-3-030-28483-1_17

350 N. Balacheff and T. Boy de la Tour

As authors of this afterword, we also come from both sides. In the following,
we share our discussion of the ideas suggested by the preceding chapters. The next
sections reflect our readings and visions of the future—first, in relation to automated
theorem proving and second, in relation to the design of technology-enhanced envi-
ronments for the learning of proof in mathematics. In the epilogue, we venture a bit
further to consider a world where the mechanization of proving is fully achieved.

2 Automated Theorem Proving

As the performance of computers and Automated Theorem Provers (ATPs)1

increases, we can expect a greater number of users of these systems either through
direct learning of the indispensable but austere skills they require or through the
specialized tools that academies and industries may provide. Thus, as with computer
algebra systems and numerical simulations, these tools are likely to impact all activ-
ities related to mathematics. For instance, in 1964, Martinus Veltman developed the
Schoonschip program for symbolic evaluation of algebraic expressions. This con-
tributed to his work on particle physics and, in 1999, this work won him the Nobel
prize.

2.1 Computer Proofs

Even if ATPs have not yet contributed to winning a Fields Medal, they have settled
certain conjectures. A recent example published in Heule, Kullmann, and Marek
(2016) determined the maximal integer n for which the set {1, …, n} can be parti-
tioned in two parts such that none contains three numbers a, b, c such that a2 + b2

= c2. This number happens to be 7824. It is actually easy to prove that the set {1,
…, 7824} admits such a partition simply by providing a bi-partition and running a
simple program to check that no triple of integers in each part has the property above.
It is much more difficult to prove that all bi-partitions of {1, …, 7825} contain such
triples of integers because they total 27825. It would require a very elaborate program
to explore such a huge search space in a reasonable period of time. Fortunately, SAT-
solvers (ATPs devoted to propositional logic) are very elaborate programs. Indeed,
it is quite remarkable that a program that was not designed specifically to solve this
problem was actually able to do so simply from a standard translation into proposi-
tional logic (and some adequate tuning that need not concern us here).

1We do not distinguish here between fully and semi-automated theorem provers. Since techniques
of automated proving are present in both, we will use the acronym ATP in a generic way to make
the reading smoother for non-experts. The context should be sufficient to identify the differences
when necessary.

Proof Technology and Learning in Mathematics … 351

This being said, the computation took four years of CPU time, dispatched among
800 cores in parallel. The mere fact that this computation happened cannot be con-
sidered a proof of the conjecture: computing errors can occur (e.g., a cosmic ray
may hit the wrong core at the wrong time) and the SAT-solver could be bugged. The
specificity of ATPs compared to other mathematical software is that they are able to
support their computations (in a successful event) by a proof. Thus the provability
of the conjecture is reduced to the validity of the proof, and we only need to read it
to be convinced. Alas, the proof produced by this computation took 200 terabytes of
memory and can obviously not be read by a mathematician.

So what have we gained with this huge amount of data? Simply the fact that this
proof can be checked for correctness by a simple program and independently of the
SAT-solver that produced it (this is known as the de Bruijn criterion). Running this
proof checker several times minimizes the probability of a computing error, thereby
reducing the provability of the conjecture to the correctness of a simple program.
Further, it is not difficult to prove that such simple proof checkers only accept valid
proofs.

Of course, this kind of proof is very different from those produced by mathemati-
cians. This is not surprising as mathematicians themselves have been unable to prove
the conjecture. Only a computer has so far been able to find a proof. This is likely one
characteristic of the future of ATPs in mathematics—they will help mathematicians
with tasks they cannot achieve alonewhile also creating frustration. This is linked not
only to the length of computer proofs, but also to the fact that many ATPs translate
statements into an internal format (a normal form) that yields very uniform proofs.
This uniformity benefits efficiency but not clarity.

2.2 Mathematical Proofs

The concept of proof we have sketched so far is close to the notion of witness, as
a natural number n is the witness of membership2 of an element f (n) in a recur-
sively enumerable set {f (n) | n ∈ N} (where f is a computable total function). From
this purely computational point of view, sets of theorems are nothing more than
recursively enumerable sets, and theorems are produced by the rules of a meaning-
less game. This is fine for computers, but mathematicians have a habit of endowing
mathematical statements with meaning. The standard set-theoretic semantics of first
and higher order logic constitute a good approximation of this meaning (even if
categorical or other semantics may seem more appropriate as a foundation). In this
semantic context, we can only admit inference rules that preserve the meaning of
mathematical statements. This is what guarantees the correctness of mathematical
deductions (and excludes inductive reasoning, a common but incorrect inference that
should not be confused with mathematical induction).

2Let S = {f (n) | n ∈ N}, then x ∈ S iff ∃n ∈ N such that x = f (n). Hence if x ∈ S, there is a witness
n which proves this fact. On the opposite side, if x /∈ S then there is no witness to prove it.

352 N. Balacheff and T. Boy de la Tour

In mathematical proofs found in textbooks, inference rules are generally implicit.
Statements follow each other separated by “thus”, “hence”, and “therefore,” some-
times requiring a great deal of thinking (and writing) just to understand why one
statement is implied by others. By leaving standard or secondary details to the reader,
a proof can be made shorter and thus emphasize its core arguments—those that the
writer perceives as pivotal. Sometimes arguments are supported by figures, as is
common in category theory and geometry, or in the schematic proofs in the chapter
by Alan Bundy andMateja Jamnik in this volume. It is clear that usual mathematical
proofs do not meet the de Bruijn criterion; no simple program can check that they
are correct.

Yet mathematicians do make mistakes—sometimes superficial, sometimes
deep—and every mathematical proof is as likely to contain bugs as programs are.
Every devoted referee knows how difficult and time consuming it can be to hunt for
bugs in proofs written by colleagues. These are strong incentives to develop software
that can automatically verify mathematical proofs. As computers can only handle
syntax, this means that mathematical proofs should be translated into formal proofs
in a convenient logic. This is a job for ATPs.

One pioneering project in this direction is the Mizar system developed by the
group founded by Andrzej Trybulec in 1973 (see Bancerek et al., 2018). The aim of
this system is to automatically check given texts in a language as close as possible to
standard mathematics and hence readable by a human being. The author of an article
is asked to fill in intermediary details (using feedback from the system) until Mizar
achieves its verification. Of course, it is tempting to use such systems not simply to
check a completed mathematical proof, but also to develop an incomplete proof in a
partially automated way—in other words, to use the system as a proof assistant by
exploiting its proving capabilities.

Many proof assistant systems are designed to provide this kind of help. Among
themost popular are PVS, Isabelle, andCoq (see the chapter by Chantal Keller in this
volume). All these systems have an input language that offers the possibility of writ-
ing mathematical definitions and statements, and triggering a number of automated
proving tools. Many satisfy the de Bruijn criterion in the sense that statements are
recognized as theorems only if they have a formal proof in the logic of the system.

This leads to a concept of proof as the information provided to a proof assistant
that allows it to find a formal proof of a statement (or at least to verify it). This means
that what is considered a proof depends on the state of the system (including its
libraries of mathematical knowledge and automated tools). More fundamentally, the
problem of verifying such proofs (including mathematical proofs) is undecidable,
and contrary to formal proofs where inference rules should always be decidable
relations.

One important aspect of proof assistants is the language in which they require
users to write mathematics. Obviously these languages, called logical frameworks,
should be both general enough to express any kind of mathematics and close enough
to the standards of mathematical language. The burden of translating from the latter
to the former is left to the user and would be very difficult to automatize. It requires
a good knowledge of the target language, but also of the level of detail required for

Proof Technology and Learning in Mathematics … 353

a verification to be possible. In terms of length, this translation can be expected to
multiply the original text by a factor of approximately four. This is currently more
time consuming than refereeing a paper but, of course, it is safer.

2.3 Proof Theory

We can also see proof assistants as systems that translate (some form of) mathe-
matical proofs into formal proofs. We may thus examine the possibility of a reverse
translation—from formal proofs to the kind of proofs that mathematicians write,
and that we can read. This kind of translation would ideally leave aside all the gory
details that readers do not need to know and provide only the essence of the proof.
Two important methods for structuring proofs are illustrated in the chapter by Rob
Arthan and Paulo Oliva: factorizing recurring terms into definitions and splitting the
proof between lemmas.

Alternatively, we could design ATPs that produce readable proofs directly. For
instance, Pedro Quaresma and Vanda Santos address in their chapter the challenging
problem of producing proofs in geometry that can be illustrated step by step on
figures and illustrate that this is not simply a problem of proof search, but mostly of
the logic in which proofs are searched for. Another example is the chapter by Mohan
Ganesalingam and William Timothy Gowers where most of the effort is devoted to
designing a logic that would “imitate human thought.”

These problems are related to proof theory—the study of the structure of mathe-
matical proofs—and particularly to thework ofGerhardGentzen (see Takeuti, 1975).
In his famous sequent calculus, theorems have the form Γ ��, where Γ and � are
sequences of formulas (statements). The intendedmeaning is that the logical disjunc-
tion of the formulas on the right can be deduced from the formulas on the left. This
grants a nice symmetry (or duality) between the inferences of formulas on the left
and right sides. It is also undeniable that sequents of the form ϕ�ϕ, for any formula
ϕ, should be accepted as axioms.

Another obvious inference (at least when � is empty) is the cut rule

Γ ��,ϕ ϕ, Γ ′��′

Γ, Γ ′��,�′

where can be considered as a lemma that is proved in the first premise and used in the
second to complete the proof. This rule is inconvenient for ATPs because using it to
attempt to prove the conclusion requires guessing the lemma. The fundamental result
obtained by Gentzen, known as Gentzen’s Hauptsatz or cut-elimination theorem,
shows that in first order logic every proof can be transformed into a cut-free proof
(possibly with a huge increase in size). Thus ATPs can conveniently search for cut-
free proofs, which is close to the so-called tableaux method (see Hähnle, 2001). But
such proofs could be much reduced if we could introduce cut rules, and therefore

354 N. Balacheff and T. Boy de la Tour

lemmas, by inverting cut-elimination. Recent results in this direction have been
presented in Ebner, Hetzl, Leitsch, Reis, and Weller (2018).

Most of the logical frameworksmentioned above are formulated as sequent calculi
with various features convenient for proving and expressingmathematical statements.
An interesting example is the λπ-Calculus Modulo Theory (Assaf et al., 2016) that
offers the option of separating computations from deductions, thus hiding compu-
tations in a possible translation of such proofs in natural language. Sequent calculi
offer many possibilities to express statements and also proofs in different forms, and
to study their possible transformations. It is clear that the future of proof technology
does not rely simply on the design of efficient ATPs but also, and fundamentally, on
the development of proof theory.

3 Designing Technology for Enhancing Proof Learning

3.1 Proof Tutors

Interest inATP research for educational applications emerged in the early 70swith the
belief that “building a theorem prover is an exciting alternative to the usual classroom
presentation” (Goldstein, 1973, p. 3). Technically, Goldstein’s geometry prover was
based on representations of procedural knowledge with the objective of “developing
a high-level, ‘natural’ formalism for representing mathematical knowledge.” (Ibid.).
The identified challenge was to find efficient methods for “finding a proof amidst a
surfeit of geometric knowledge” (Ibid.). However, the choice of backward chaining to
model reasoning was not as natural as the formalism could have been. Nevins (1974),
thanks to an “efficient representation” of the knowledge base and to “confining” the
exploration to objects (points and lines) implicit in the statement but appearing in the
diagram, proposed a solution with forward chaining. These seminal works prepared
the ground for Geometry Tutor (Anderson, Boyle, & Yost, 1988)—the emblematic
tutor for the learning of mathematical proof designed on the principles of the ACT*
model of cognition (Anderson, 1983). Geometry Tutor was “based on considerable
theoretical analysis of the characteristics of the problem domain and on a great
empirical observation of students’ behavior” (Anderson et al., 1988, p. 4). It included
an “ideal model” in order to “generate proofs in what we felt was a natural, human
way—in contrast to somemethods of proof” (Ibid., p. 5) and “buggymodels” to allow
diagnosing student errors as production rules. The Tutor traces students’ behaviour
through its ideal and buggy models and provides immediate or “near immediate”
feedback to keep them on the right track.

However, Geometry Tutor was criticized for the restricted possibilities it gave
learners, the limited relevanceof its feedback, and its static diagrams.These criticisms
led to theAngle Project (Koedinger&Anderson, 1990)which gave amore active role
to diagrams, and then to a new generation of Cognitive tutors including a cognitive

Proof Technology and Learning in Mathematics … 355

model of the content to be learned andmore subtle scaffolding strategies for feedback
and advice (Anderson, Corbett, Koedinger, & Pelletier, 1995).

Although these tutors went to school and successwas reported in various domains,
they showed limits inherited from production rule systems, especially in relation to
mathematical proof. These systems satisfied the requirements for modeling compe-
tences, but imposed severe limits on modeling mathematical problem solving due to
their incapacity to properly express mathematical knowledge.

ATP research developed long before the birth of research on mathematical proof
learning environments. It was focused on modeling human reasoning, mainly with
a view to implementing propositional logic. The first significant project, the Logic
Theorist (Newell & Simon, 1956), made a breakthrough. It had some educational
use for the teaching of information processing languages (Stefferud, 1963), but this
remained limited. Based on the Principia Mathematica, the Logic Theorist relied
on mathematicians’ introspection and a few empirical observations of students. This
weakness was later overcome by a systematic observation of students solving proof
problems in symbolic logic. It led to an improvedmodel, theGeneral Problem Solver
(Newell, Shaw,&Simon, 1959), but thismodel still had to face amuchmore demand-
ing challenge: “problem solving is the battle of selection techniques against a space of
possibilities that keeps expanding exponentially” (Ibid., p. 26). The lessons learned
from the Logic Theorist shaped the design of the Geometry Machine (Gelernter,
1959) by limiting the domain and searching for a specifics heuristic (e.g., drawing
benefit from diagrams) that could model “the discovery of proofs for theorems in
elementary Euclidean plane geometry in the manner, let us say, of a high school
sophomore” (Ibid., p. 135). To some extent, the approach was pragmatic:

[T]he machine is granted the same privileges enjoyed by the high-school student who is
always assuming (i.e., introducing as additional axioms) the truth of a plethora of ‘obviously
self-evident’ statements concerning, for example, the ordering properties of points on a line
and the intersection properties of lines in a plane. (Ibid., p. 139)

Such a statement and the evidence that the Geometry Machine could solve high
school geometry problems opened some perspective for the design of Technology
Enhanced Learning (TEL) environments for mathematical proving. Unfortunately
that was not the case even though the Gelernter paper, first published in Computer
and Thoughts in 1959, was reprinted in Intelligent Tutoring Systems in 1963. The
convergence of ATP and educational technology fell short.

Several issues had to be addressed to make a convergence possible: the depth of
the gap between machine and human ways of reasoning, the multiplicity of represen-
tations in geometry (including diagrams and hence reasoning based on visualization),
the constraints on human–machine communication—just to mention a few.

Interestingly,whileATP research focused on computationalmodels, theGeometry
Tutor project came to recognize that “placing interface design ahead of production-
systems design represents amajor restructuring of our approach to tutor construction”
(Anderson et al., 1995, p. 35). This was because of the impact of the interface on the
skills students acquire; the interface is the space in which they experience and learn.
Beneath the interface, the implemented models must ensure that communication

356 N. Balacheff and T. Boy de la Tour

makes representations accessible to students and enables interactions that enhance
learning—hence the following objective from the early 2000s which could be shared
by many projects:

Our long-term goal is to build an intelligent tutoring system for elementary geometry. Any
proofs and constructions found by our automated geometry theorem prover [GRAMY] must
be stated with the common ontology of Euclidean geometry—the axiomatized geometry
system taught in schools. (Matsuda & VanLehn, 2004, p. 3)

However, provers have to comply not only with the constraints of the interface,
but also with the professional responsibilities of teachers. This imposes an additional
filter: “the desired geometry theorem prover must not only be able to find a single
comprehensible proof, it should also be able to find all proofs that are considered
acceptable to instructors” (Ibid., p. 4). Along with providing ATP features for math-
ematicians, computer-based tutors must take three additional categories of users into
account: the curriculum decision makers (who specify the standard of mathematical
validation at a given grade), the teachers (who orchestrate learning and decide what
counts as a proof in relation to a standard), and the learners (who are simultaneously
constructing an understanding of proof and of the related content).

3.2 From Empirical Validation to Mathematical Proof

How to assess the validity of learners’ statements is a question throughout primary
and secondary schooling. Indeed, the means and criteria of assessment from the per-
spective of the learner and the perspective of the teacher at each grade level differ
in a significant way. Even at the university level, students continue to shape their
understanding of what counts as a mathematical proof; for example, despite being
familiar with proving in advanced algebra or calculus, they are often destabilized
by proving in discrete mathematics (e.g., graph theory). However, the gap between
advanced learning and early learning constitutes another order of magnitude. At the
earliest stages, validation is dominated by naive induction and empirical verification.
It is constrained by language, discourse structures, and the available representations
of mathematical objects and relations. This approach gradually develops into more
elaborate types of argumentation based on generic examples or thought experiments.
These early forms of argumentation reflect the everyday structure of argumenta-
tive discourse, which is not devoid of logic but can display the ill-defined content
and implicitness of ad hoc situations. Hence, at some point in the middle school
curriculum, mathematics teachers face the challenge of introducing students to the
sociomathematical norms of argumentation (Yackel & Cobb, 1996, p. 466 sqq) and
ultimately to the basics of mathematical proof. This is also a challenge for the design
of ATP-based TEL environments, whether based on proof assistants for pedagogical
use or proof tutors.

Learning mathematical proof is less an evolution than an epistemological revolu-
tion: students must evolve from the position of practitioner, driven by the practical

Proof Technology and Learning in Mathematics … 357

realities of a situation, to the position of theoretician, driven by the requirements
of knowledge. The validity of a mathematical statement does not depend on the
beliefs and conceptions of the proposer (epistemic value, Duval, 2007, p. 138) or of
a community, but only on the relations it has with other previously validated state-
ments following given norms of inference which ensure that it has a place within
a mathematical theory (ontic value, Hanna, 2017). Being aware of the existence of
such a reference theory bounding the discourse supporting the validity of a mathe-
matical statement is as critical as understanding and mastering logical rules—hence
the claim that a mathematical theorem is not a statement backed by a proof but, as
Mariotti states in her chapter, by “the system of statement, proof and theory.” This
conception of theorem is consistent with the conception driving the design of TEL
environments. It offers a starting point for the convergence of both fields of research
by emphasizing that decisions must be based not only on the nature and complexity
of proofs, but also, and inseparably, on the underlying theory.

This definition of theorem builds a first bridge between the two sides of a proof—
validation and explanation. Explanation, in the sense of Duval (1992), refers here to
a system of relations in which the statement to be explained finds its place. While
solving a problem comforts the positive epistemic value of the solution statement, its
meaning comes from the coherence of this statement’smembershipwith the problem-
solver system of knowledge. Hence, a consequence for the relevance and viability
of the pedagogical use of ATP-based TEL environments is that these environments
should either facilitate learners’ appropriation of the epistemic value of the solution
(providing an argumentation) or situate the proof in a theoretical framework compat-
ible and coherent with the learners’ system of knowledge (providing an explanation).
The difficulty in doing so comes from the inherent formal nature of ATPs, although
logicians and computer scientists are aware that “at the research level, mathematics
is often quite vaguely formulated because mathematicians can usually rely on the
deep understanding and intuition of themselves and their fellows to keep them out
of trouble” (Harrison, Urban, & Wiedijk, 2014, p. 57). As a matter of fact, in a less
“radical” way, this also holds true for the learner.

When students propose a proof, and teachers present a proof to the class, they are
supposed to find the right balance between what must be made explicit and what is
tacitly accepted. This does not mean a lack of rigour or a tolerance of vague approxi-
mations. It is just a property of human communication that applies to mathematics as
it does to other domains: a mathematical proof is a discourse that should be both con-
vincing and meaningful. Indeed, throughout its history, mathematics has framed its
discourse and established a standard centered on formalization as a means of ensur-
ing the rigour and validity of its outcomes. But as the Bourbaki group—the paragon
of formalism—claimed, this mathematical discourse remains “naïve” insofar as it
includes natural language and necessarily admits some shortcuts in proofs.

Looking at proof as a discourse reveals an unresolved tension. In the most clas-
sic teaching tradition, solving a problem is presented step by step in such a way
that the end produces at once both the solution and the proof. This is reinforced by
the use of representations such as two-column proofs, flow-chart proofs, and stan-
dardized paragraph proofs. These reify the mathematical norm, monitor or scaffold

358 N. Balacheff and T. Boy de la Tour

students’ activity, and serve as a professional pedagogical resource (Weiss, Herbst,
& Chen, 2009). The private activity of the student, like the private activity of the
mathematician, is foreign to this ideal picture. When not reduced to the application
of a few theorems or the implementation of a standard reasoning, problem solving
is driven and supported by heuristic argumentation (Duval, 1992, p. 51). Heuristic
argumentation is not meant to convince, but to allow choices in a context where not
all statements and possibilities have been strictly verified or even made explicit, as is
the case, for example, with plausible reasoning (Polya, 1945). Writing a proof con-
sists of logically structuring, making explicit, and verifying all the statements that
relate the hypothesis to the claimed solution. In terms of the content, a continuity
exists between the heuristic argumentation and the proof, precisely observed and
conceptualized by Paulo Boero as the “cognitive unity of theorems”:

During the production of the conjecture, the student progressivelyworks out his/her statement
through an intensive argumentative activity functionally intermingled with the justification
of the plausibility of his/her choices. During the subsequent statement-proving stage, the
student links up with this process in a coherent way, organising some of the previously
produced arguments according to a logical chain. (Garuti, Boero, & Lemut, 1998)

When associated with a purely deductive problem-solving process, this continuity
facilitates a natural transition to proof. But when the problem has some complexity,
abduction and induction having played a key role, a structural distance emerges
between argumentation and proof (Pedemonte, 2007) even though the discursive
surface structure of argumentation may be close to the structure of a proof (Duval,
1992, p. 38). The transition from problem solving to proving is not straightforward,
and students have to achieve it in a demanding context. First, the representations
and controls they use may lead to technical difficulties. Second, they have to adapt
to sociomathematical norms they are in the process of learning and understanding.
Third, they have to comply with the teacher’s evolving expectations. Despite the
analogies between the work of mathematicians and students, there are differences
of an epistemological nature that result from the process of teaching mathematical
proof (Herbst & Balacheff, 2009) and from the distance from professional values
and norms (Dawkins & Weber, 2016).

Results from research on the learning of mathematical proof show that the con-
tribution of ATPs requires understanding and solving new problems. Some design
issues are common—mainly bridging the gap between human reasoning and ATP
models, and delivering readable write ups. But addressing learning raises other issues
such as: (i) bridging the gap between argumentation and proof, (ii) facilitating the
transition from problem solving to proving, and (iii) scaffolding the transition from
empirical validation to the mathematical norms at play in the classroom.

3.3 Technology Enhanced Learning of Mathematical Proof

The largest body of research on technology and the learning of proof has focused
on Dynamic Geometry Environments (DGEs) (see, e.g., Sinclair et al., 2017). This

Proof Technology and Learning in Mathematics … 359

is an effect of the influence of Logo and the concept of microworld born in the
80s. The strength of DGEs is that they provide students with a field of experience
(Boero et al., 1995) for exploring mathematical facts, making conjectures, shaping
their argumentation, and proposing proofs (Baccaglini-Frank & Mariotti, 2010).
Because research on proof tutors was essentially related to AI and cognitive science,
the contribution of ATP research to research on mathematics education has until
recently been rather limited (Hauer, Kovács, Recio, & Vélez, 2018, p. 2). One of
the many DGEs, Cinderella, includes a randomized theorem prover that offers the
possibility of checking and proving properties. But, as Kortenkamp and Richter-
Gebert (2004) point out: “it has been developed as a tool for mathematicians in
research, publishing and teaching” (p. 1). Actually, to mathematics educators, ATP
technology seems far from satisfying the constraints of the educational context.
Some ATP researchers are well aware of this critique: “[ATP] generated proofs are
unnatural and incomprehensible as these systemsdonot approachgeometry problems
like how secondary school students are taught” (Wang & Su, 2017, p. 10). But are
models that approach mathematics in the same way as learners do necessary to TEL
environments? The example of Cinderella suggests this is not strictly the case:

Sometimes the semantics of a user’s action can be unclear. For example, when he tries to
insert the intersection of three lines by placing a point on it, it is unclear whether he assumes
that these always meet in one point or not. A software that “knows” whether the three lines
are always concurrent can react properly in that situation: When they are, it is not necessary
to ask which pair of points should define the intersection, as all three define the same one.
When they are not, the software can signalize that it needs the attention of the user to resolve
an ambiguity. (Kortenkamp & Richter-Gebert, 2004, p. 8)

Cinderella did not primarily target an educational audience. The seminal project
Cabri-géomètre, which does, included an algebraic oracle that could verify properties
and support student inquiries with messages like: “The property is true in general” or
“The property seems true on the figure but is false in general. A counterexample can
be proffered” or “The property is true for this figure but Cabri-géomètre cannot tell
for the general case” (Laborde, 1990, p. 137). This feature was exploited to develop
the proof microworld Cabri-Euclide (Luengo, 1997).

The question then is: which services can ATP provide in a TEL environment?
Or, more precisely, what kind of feedback could ATP provide while the student is
engaged in problem solving and proving?

Depending onwhether the student is solving a problemor validating a solution, the
feedback could target the strategy rather than a particular rule, the related knowledge
and not the logical thread, or the standard for a successful achievement at a given
grade and not the underlying logical structure. It could immediately spot themisuse of
a theorem or a flaw in reasoning, or wait to provide a counterexample to the proposed
proof. It could be textual or visual and, in the case of geometry, preferably both. In
this sense, geometry is the best case for addressing the difficulties in designing such
environments, especially for early learning.

A DGE is a natural working space that enables free heuristic argumentation for
solving a geometrical problem. These environments have a built-in validating feed-
back that is prompted by messing up a construction (Healy, Hoelzl, Hoyles, & Noss,

360 N. Balacheff and T. Boy de la Tour

1994). ATP could provide further services in terms of confirming or invalidating cer-
tain properties on demand. For example, the DGE GeoGebra “[can answer] a query
posed by a user about the truth or falsity of any geometric statement” or “present
further hypotheses that should be considered for the proposition to become true”
(Hauer, Kovács, Recio, & Vélez, 2018, p. 2). Teachers may expect a service such as
scaffolding the writing of a proof, hence providing feedback on a textual represen-
tation of the solution to a problem. Still, feedback could have a textual or a visual
form.

Feedback responds to actions of the student who, in turn, can respond with new
actions and hence with new decisions on how to solve a problem or shape a proof.
Unlike ATP, the reasoning of the student is semi-empirical rather than apodictic. It
is not exact and stable, and may inherit from experience as well as formal learning.
Let’s call this knowledge under construction a conception (which is not necessarily
a misconception). One could characterize it as the operators, controls, and semiotic
representations the student uses in order to solve a given set of problems (Balacheff,
2010). The feedback may lead to an evolution of the reasoning, the proof, or related
conceptions. From the perspective of early learning, an ATP-based environment
is less a tool than a rational agent able to communicate and argue, and build its
reasoning on information gathered from student activities and conceptions as they
evolve (Luengo, 1999).

Nowadays, digital technologies can be used by mathematicians to solve problems
and supplement their proofs. Significantly, the editors of the Annals of Mathematics
outline the journal’s conditions for considering “computer-assisted proof of impor-
tant mathematical theorems”:

The human part of the proof, which reduces the original mathematical problem to one
tractable by the computer, will be refereed for correctness in the traditional manner. The
computer part may not be checked line-by-line, but will be examined for the methods by
which the authors have eliminated or minimized possible sources of error […] We will print
the human part of the paper in an issue of the Annals. The authors will provide the computer
code, documentation necessary to understand it, and the computer output, all of whichwill be
maintained on the Annals of Mathematics website online. (Annals of Mathematics, retrieved
01-22-2019)

Thanks to their progress, ATP-based tools can be expected to contribute to solving
the most important problems in mathematics or checking very long and complex
proofs such as Fermat’s last theorem, and hence become part of the “computer-
assisted proofs” the editors of the Annals of Mathematics mention.

Nevertheless, this progress is not sufficient for educational needs; research needs
to take further steps to solve the specific problems raised by learning. Such improve-
ment is possible by integrating a didactic heuristic into the best suited tools, as well as
a distributed architecture for allocating services. The latter reflects Gelernter’s vision
of splitting complexity among specialized entities: a “syntax computer,” a “diagram
computer,” and a “heuristic computer” (Gelernter, 1959, p. 139). For example, a
“write-up computer” that uses the services of an ATP engine could be in charge of
high level communication. This suggests looking precisely at what a multi-agent
architecture could offer (Webber, Pesty, & Balacheff, 2002). As to the former, the

Proof Technology and Learning in Mathematics … 361

specificity of learning situations inmathematics creates favorable conditions for ATP
searches for a solution to a problem or the verification of a proof. First, it is possible
to use the hypothesis of “proving in a closed world” (Trilling, 1996): any statement
is true because claimed so by the problem statement, or can be proved with limited
effort. Second, the ATP logical model can be augmented with a complete description
of a priori accepted statements (theorems, definitions), instantiating the theory and
completing the triplet (statement, proof, theory). Third, such a theory need not be
complete with respect to mathematics itself, nor to one of its subdomains. It could be
a micro-theory in the sense of Minsky (i.e., sufficient for solving a cluster of prob-
lems at a specific grade level). Fourth, the degree of implicitness and the desirable
structure of the proof can be specified by the teacher providing multiple examples.
Comparing proofs replaces the obligation to conform to an “ideal” proof.

Finally, what could a TEL environment look like that takes advancements in
research on mathematics education into account? First, it would facilitate identifying
different types of activity and enabling navigation among them. A problem-solving
space (e.g., a mathematical microworld) could be identified and associated with a
formulation space (e.g., a digital notebook for expressing and freely linking mathe-
matical statements) andwith a validation space (for expressing a proof in linewith the
curriculum; e.g., as a two column proof, flowchart proof, graph, or paragraphs). Sec-
ond, the ATPwould be initialized with axioms and theorems chosen by the teacher or
stipulated by the curriculum. This initialization would create a theoretical reference
framework in line withMariotti’s model of theorem (statement, proof, theory) and be
easily accessible to students. It would give students a foundation for understanding
that they are proving a statement within a theory.

The problem-solving space would be open to students’ strategies and friendly
to empirical validation. The formulation space would set the context and gather
data for grounding ATP services such as verifying proofs, diagnosing flaws, build-
ing counterexamples, comparing proofs, or providing hints. The productive links
between the different spaces would create a digital mathematical working space
responding to students’ early need for support in pragmatic and theoretical thinking
(see the chapter by Philippe Richard, Fabienne Venant, & Michel Gagnon). These
links would also enhance the ATP’s ability to get an accurate picture of student
activity from their DGE diagrams (Caferra, Peltier, & Puitg, 2001). Some of these
features are already included in existing designs—Cabri-Euclide (Luengo, 1997);
Baghera (Soury-Lavergne, 2003); Advanced Geometry Tutor (Matsuda & VanLehn,
2004); AgentGeom (Cobo, Fortuny, Puertas, & Richard, 2007); PACT Geometry
Tutor (Aleven, 2010); andQED-Tutrix (Leduc, 2016)—hence making these sugges-
tions plausible. Integrating them fully and using the full power of ATP would be a
breakthrough.

362 N. Balacheff and T. Boy de la Tour

4 Epilogue

The editors of this book remind us of the dream of Vladimir Voevodsky: “to have
an electronic proof assistant check any theorem before its publication, as a way to
accelerate the reviewing process.” This dream could be extended further, questioning
the need for both mathematicians and mathematics teachers.

The development of collaborative mathematics through online social media, as
addressed in the chapter byLorenzoLane and his colleagues, opens the samequestion
as other collaborative online activities: can participants be replaced by machines?
This is an important problem for online poker or chess wheremachines now exist that
are much better players than humans. This is of course not the case for mathematics,
but it suggests a kind of Turing test for ATPs which could be granted the status of
artificial mathematicians provided they were able to participate in a collaborative
mathematical project and remain undetected by human participants. To pass this test,
a machine would need to be able to read mathematical texts, develop mathematical
ideas related to the project, andwrite themdownas a humanwould (this last part of the
test is indeed considered in the first chapter of this volume). This seems impossibly
difficult, but may be more accessible to machines than the kind of knowledge needed
to live in a human society with a human body, whichmachines can hardly experience.
At least artificial mathematicians would bemore worthy of artificial intelligence than
the famous chatbot Tay, more adequately classified among the artificial deplorables.

But the challenge of designing such systems cannot be disconnected from the
social significance of mathematics and the reasons that compel us to search, write,
and teach mathematical proofs. One may argue that the reason for funding these
activities is essentially economic, but as an economy is always required for funding
anything, this is not a specific explanation. JeanDieudonné asserted thatmathematics
exist “for the honor of the human mind.” There is grandeur in this view of mathemat-
ics, but it seems incompatiblewith the use of computers to overcome our deficiencies.
Whatever the reason may be, it certainly has to do with the discrepancy between our
natural abilities and the requirements of rational thinking. This suggests that learning
mathematical proofs is not simply a challenge for students (or their teachers), but part
of normal mathematical activity and deeply intertwined with searching and writing
proofs, and learning mathematics. As noted by Jeremy Avigad in this volume, after
having worked with the Lean ATP, “logic [was] relegated to the background, and
the courses turned to the fundamental building blocks of mathematics.” Both math-
ematicians and learners are engaged in constructing new mathematical content and
shaping newmathematical concepts and tools.Mathematical proof as the cornerstone
should not hide the beauty and essence of this construction.

Ultimately, one is always a student who tries to find a proof, and always a teacher
who writes it down. The nature of the relation between these two aspects is hard to
fathom, but should be considered a major issue in automated theorem proving and
the teaching of proof.

Proof Technology and Learning in Mathematics … 363

References

Aleven,V. (2010). Rule-based cognitivemodeling for intelligent tutoring systems. InR.Nkambou, J.
Bourdeau, & R.Mizoguchi (Eds.), Advances in intelligent tutoring systems (Vol. 308, pp. 33–62).
Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-14363-2_3.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA, USA: Harvard University
Press.

Anderson, J. R., Boyle, C. F., & Yost, G. (1988). The geometry proof tutor (Advanced Computer
Tutoring Project). Carnegie-Mellon University, Pittsburgh, PA 15213. Retrieved from http://act-
r.psy.cmu.edu/wordpress/wp-content/uploads/2012/12/124GeoTutor.ABYost.pdf.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors:
Lessons learned. Journal of the Learning Sciences, 4(2), 167–207. https://doi.org/10.1207/
s15327809jls0402_2.

Annals of Mathematics. (n.d.). Statement by the editors on computer-assisted proofs. Retrieved 22
January, 2019, from http://annals.math.princeton.edu/board.

Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., … Saillard, R. (2016).
Expressing theories in the λΠ -calculus modulo theory and in the Dedukti system. Presented at
the 22nd International Conference on Types for Proofs and Programs (TYPES 2016), Novi Sad,
Serbia: Springer.

Baccaglini-Frank, A., &Mariotti, M. A. (2010). Generating conjectures in dynamic geometry: The
maintaining dragging model. International Journal of Computers for Mathematical Learning,
15(3), 225–253. https://doi.org/10.1007/s10758-010-9169-3.

Balacheff, N. (2010). Bridging knowing and proving in mathematics: An essay from a didactical
perspective. In G. Hanna, H. N. Jahnke, & H. Pulte (Eds.), Explanation and proof in mathematics
(pp. 115–135). Berlin Heidelberg: Springer.

Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A.,Matuszewski, R., Naumowicz, A., et al.
(2018). The role of the Mizar mathematical library for interactive proof development in Mizar.
Journal of Automated Reasoning, 61(1–4), 9–32. https://doi.org/10.1007/s10817-017-9440-6.

Boero, P., Dapueto, C., Ferrari, P., Ferrero, E., Garuti, R., Lemut, E., … Scali, E. (1995). Aspects of
the mathematics—Culture relationship in mathematics teaching-learning in compulsory school.
In L. Meira & D. Carraher (Eds.), Proceedings of the Annual Conference of the International
Group for the Psychology of Mathematics Education (17 pp.). Recife. Retrieved from http://
didmat.dima.unige.it/progetti/COFIN/biblio/art_boero/boero%26c_PME_XIX.pdf.

Caferra, R., Peltier, N., & Puitg, F. (2001). Emphasizing human techniques in automated geom-
etry theorem proving: A practical realization. In J. Richter-Gebert & D. Wang (Eds.), Pre-
sented at the Workshop on Automated Deduction in Geometry, Zurich, Switzlerland (Vol. LNAI
2061, pp. 268–305). Berlin, Heidelberg: Springer. Retrieved from https://link-springer-com.
gaelnomade-1.grenet.fr/content/pdf/10.1007%2F3-540-45410-1.pdf.

Cobo, P., Fortuny, J. M., Puertas, E., & Richard, P. R. (2007). AgentGeom: A multiagent system
for pedagogical support in geometric proof problems. International Journal of Computers for
Mathematical Learning, 12(1), 57–79. https://doi.org/10.1007/s10758-007-9111-5.

Dawkins, P. C., & Weber, K. (2016). Values and norms of proof for mathematicians and students.
Educational Studies in Mathematics, 95(2), 123–142. https://doi.org/10.1007/s10649-016-9740-
5.

Duval, R. (1992). Argumenter, prouver, expliquer: continuité ou rupture cognitive? Petit x, 31,
37–61.

Duval, R. (2007). Cognitive functioning and the understanding of mathematical processes of proof.
In P. Boero (Ed.), Theorems in school: From history, epistemology and cognition to classroom
practice (pp. 137–161). Sense Publishers.

Ebner, G., Hetzl, S., Leitsch, A., Reis, G., & Weller, D. (2018). On the generation of quantified
lemmas. Journal of Automated Reasoning, 1–32. https://doi.org/10.1007/s10817-018-9462-8.

Garuti, R., Boero, P., & Lemut, E. (1998). Cognitive unity of theorems and difficulties of proof.
In A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of the International

https://doi.org/10.1007/978-3-642-14363-2_3
http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2012/12/124GeoTutor.ABYost.pdf
https://doi.org/10.1207/s15327809jls0402_2
http://annals.math.princeton.edu/board
https://doi.org/10.1007/s10758-010-9169-3
https://doi.org/10.1007/s10817-017-9440-6
http://didmat.dima.unige.it/progetti/COFIN/biblio/art_boero/boero%2526c_PME_XIX.pdf
https://link-springer-com.gaelnomade-1.grenet.fr/content/pdf/10.1007%252F3-540-45410-1.pdf
https://doi.org/10.1007/s10758-007-9111-5
https://doi.org/10.1007/s10649-016-9740-5
https://doi.org/10.1007/s10817-018-9462-8

364 N. Balacheff and T. Boy de la Tour

Group for the Psychology of Mathematics Education (Vol. 2, pp. 345–352). Stellenbosch (SA).
Retrieved from http://www.mat.ufrgs.br/~portosil/garuti.html.

Gelernter, H. (1959). Realization of a geometry-theorem proving machine. In J. H. Siekmann & G.
Wrightson (Eds.), Automation of reasoning (pp. 99–122). Berlin, Heidelberg: Springer. https://
doi.org/10.1007/978-3-642-81952-0_8.

Goldstein, I. (1973). Elementary geometry theorem proving (AIM No. 280) (p. 46). MIT AI
Laboratory. Retrieved from https://dspace.mit.edu/bitstream/handle/1721.1/5798/AIM-280.pdf?
sequence=2.

Hähnle, R. (2001). Tableaux and related methods. In A. Robinson &A. Voronkov (Eds.),Handbook
of automated reasoning (Vol. 1, pp. 101–178). Elsevier Science B.V.

Hanna, G. (2017). Connecting two different views of mathematical explanation. In Enabling
mathematical cultures. Mathematical Institute, University of Oxford. Retrieved from https://
enablingmaths.wordpress.com/abstracts/.

Harrison, J., Urban, J., &Wiedijk, F. (2014). History of interactive theorem proving. in handbook of
the history of logic (Vol. 9, pp. 135–214). Elsevier. https://doi.org/10.1016/B978-0-444-51624-
4.50004-6.

Hauer, B., Kovács, Z., Recio, T., & Vélez, P. (2018). Automated reasoning in elementary geometry:
Towards inquiry learning. Pädagogische Horizonte, 2(2), 14.

Healy, L., Hoelzl, R., Hoyles, C., & Noss, R. (1994). Messing up. Micromath, 10(1), 14–17.
Herbst, P., & Balacheff, N. (2009). Proving and knowing in public: The nature of proof in a class-
room. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof
across the grades: A K-16 perspective (pp. 40–63). New York: Routledge.

Heule, M. J. H., Kullmann, O., & Marek., V. W. (2016). Solving and Verifying the Boolean
Pythagorean Triples problem via Cube-and-Conquer (Vol. LNCS 9710, pp. 228–245). Presented
at the SAT 2016. Springer. https://doi.org/10.1007/978-3-319-40970-2_15.

Koedinger, K., & Anderson, J. R. (1990). Theoretical and Empirical Motivations for the Design of
ANGLE: A New Geometry Learning Environment. Presented at the Knowledge-Based Environ-
ments for Learning and Teaching, Standford University. Retrieved from http://pact.cs.cmu.edu/
pubs/Koedinger,%20Anderson%20-90.pdf.

Kortenkamp, U., & Richter-Gebert, J. R. (2004). Using automatic theorem proving to improve the
usability of geometry software. In Proceedings of MathUI 2004 (p. 12). Retrieved from https://
pdfs.semanticscholar.org/8892/faa455ea7442438d3f126bd05ba4d8c51e81.pdf.

Laborde, J.-M. (1990). Cabri-géomètre - Manuel de l’utilisateur.
Leduc, N. (2016). QED-Tutrix: Système tutoriel intelligent pour l’accompagnement d’élèves en
situation de résolution de problèmes de démonstration en géométrie plane. Montréal: Université
de Montréal.

Luengo, V. (1997). Cabri-Euclide : un micromonde de preuve intégrant la réfutation. Univer-
sité Joseph Fourier (Grenoble 1), Grenoble. Retrieved from https://www.researchgate.net/
publication/34765259_Cabri-euclide_un_micromonde_de_preuve_integrant_la_refutation_
principes_didactiques_et_informatiques_Realisation.

Luengo, V. (1999). Semi-empirical agent to learn mathematical proof. In Proceedings of Artificial
Intelligence in education (AIED 99) (p. 10). Le Mans, France: Amsterdam: IOS.

Matsuda, N., & VanLehn, K. (2004). GRAMY: A geometry theorem prover capable of construc-
tion. Journal ofAutomatedReasoning, 32(1), 3–33. https://doi.org/10.1023/B:JARS.0000021960.
39761.b7.

Nevins,A. J. (1974).Planegeometry theoremprovingusing forward chaining (AIMNo. 303) (p. 35).
MIT AI Laboratory. Retrieved from https://dspace.mit.edu/bitstream/handle/1721.1/6218/AIM-
303.pdf?sequence=2.

Newell,A., Shaw,&Simon,H. (1959).Report on ageneral problem-solving program (p. 27).RAND
Corporation. Retrieved from http://bitsavers.trailing-edge.com/pdf/rand/ipl/P-1584_Report_On_
A_General_Problem-Solving_Program_Feb59.pdf.

http://www.mat.ufrgs.br/%7eportosil/garuti.html
https://doi.org/10.1007/978-3-642-81952-0_8
https://dspace.mit.edu/bitstream/handle/1721.1/5798/AIM-280.pdf%3fsequence%3d2
https://enablingmaths.wordpress.com/abstracts/
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1007/978-3-319-40970-2_15
http://pact.cs.cmu.edu/pubs/Koedinger%2c%20Anderson%20-90.pdf
https://pdfs.semanticscholar.org/8892/faa455ea7442438d3f126bd05ba4d8c51e81.pdf
https://www.researchgate.net/publication/34765259_Cabri-euclide_un_micromonde_de_preuve_integrant_la_refutation_principes_didactiques_et_informatiques_Realisation
https://doi.org/10.1023/B:JARS.0000021960.39761.b7
https://dspace.mit.edu/bitstream/handle/1721.1/6218/AIM-303.pdf%3fsequence%3d2
http://bitsavers.trailing-edge.com/pdf/rand/ipl/P-1584_Report_On_A_General_Problem-Solving_Program_Feb59.pdf

Proof Technology and Learning in Mathematics … 365

Newell, A., & Simon, H. (1956). The logic theory machine—A complex information processing
system (No. P-868) (p. 40). The Rand Corporation. Retrieved from http://shelf1.library.cmu.edu/
IMLS/MindModels/logictheorymachine.pdf.

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed?
Educational Studies in Mathematics, 66(1), 23–41. https://doi.org/10.1007/s10649-006-9057-x.

Polya, G. (1945).How to solve it. PrincetonUniversity Press. Retrieved fromhttps://press.princeton.
edu/titles/669.html.

Sinclair, N., Bartolini Bussi, M. G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., &
Owens, K. (2017). Geometry education, including the use of new technologies: A survey of recent
research. In G. Kaiser (Ed.), Proceedings of the 13th International Congress on Mathematical
Education (pp. 277–287). Cham: Springer International Publishing. https://doi.org/10.1007/978-
3-319-62597-3_18.

Soury-Lavergne, S. (Ed.). (2003). Baghera an hybrid and emergent educational society (Cahier du
laboratoire Leibniz No. 81). Laboratoire Leibniz - IMAG.

Stefferud, E. (1963). The logic theory machine: A model of heuristic program (Memorandum No.
RM-3731-CC) (198 pp.). The Rand Corporation. Retrieved from https://history-computer.com/
Library/Logic%20Theorist%20memorandum.pdf.

Takeuti, G. (1975). Proof Theory. Amsterdam: North Holland.
Trilling, L. (1996). Rétrospective sur le projet Mentoniezh. Sciences et Technologies de
l’Information et de la Communication pour l’Éducation et la Formation, 3(2), 157–162. https://
doi.org/10.3406/stice.1996.1294.

Wang, K., & Su, Z. (2017). Interactive, intelligent tutoring for auxiliary constructions in geometry
proofs. arXiv:1711.07154 [Cs, Math]. Retrieved from http://arxiv.org/abs/1711.07154.

Webber, C., Pesty, S., & Balacheff, N. (2002). A multi-agent and emergent approach to student
modelling. In F. van Harmelen (Ed.), 15th European Conference on Artificial Intelligence (ECAI
2002) (pp. 98–102). IOS Press. Retrieved from https://telearn.archives-ouvertes.fr/hal-00003043.

Weiss, M., Herbst, P., & Chen, C. (2009). Teachers’ perspectives on “authentic mathematics” and
the two-column proof form. Educational Studies in Mathematics, 70(3), 275–293. https://doi.
org/10.1007/s10649-008-9144-2.

Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in math-
ematics. Journal for Research in Mathematics Education, 27(4), 458–477. https://doi.org/10.
2307/749877.

http://shelf1.library.cmu.edu/IMLS/MindModels/logictheorymachine.pdf
https://doi.org/10.1007/s10649-006-9057-x
https://press.princeton.edu/titles/669.html
https://doi.org/10.1007/978-3-319-62597-3_18
https://history-computer.com/Library/Logic%20Theorist%20memorandum.pdf
https://doi.org/10.3406/stice.1996.1294
http://arxiv.org/abs/1711.07154
http://arxiv.org/abs/1711.07154
https://telearn.archives-ouvertes.fr/hal-00003043
https://doi.org/10.1007/s10649-008-9144-2
https://doi.org/10.2307/749877

Author Index

A
Abánades, M., 230, 238
Adams, M., 15, 85
Adams, W. W., 316
Aho, A. V., 122
Aldon, G., 309
Aleven, V., 361
Allen, S. F., 73
Alsina, C., 141, 146
Anderson, J. R., 291, 294, 354, 355
Antonini, S., 174, 187, 188, 190
Appel, K., 139, 154
Armand, M., 74, 80, 83
Arora, S., 125
Arsac, G., 118, 183
Artaud, M., 128
Artigue, M., 165, 288
Arzarello, F., 157, 176, 178, 183, 332, 336,

342
Asher, N., 21
Asperti, A., 15, 73, 85
Assaf, A., 354
Attridge, N., 290
Avigad, J., 15, 73, 85, 278
Awtry, T., 314

B
Baccaglini-Frank, A., 174, 184, 185, 188, 190,

359
Bachmair, L., 74
Back, R. J., 328
Baeta, N., 250
Bainville, E., 256
Baker, S., 65

Balacheff, N., 128, 142, 158, 173, 233, 331,
337, 358, 360

Ballantyne, A. M., 21
Bancerek, G., 73, 352
Barak, B., 125
Barany, M., 205
Barbin, É., 141
Barbosa, H., 75
Baron, G. L., 117
Barra, M., 149
Barrett, C., 74, 77
Bartle, R. G., 158
Bartolini Bussi, M. G., 147, 175, 177, 178,

332, 358
Barwise, J., 289
Barzilay, R., 19
Basu, S., 116
Bauer, G., 15, 85
Baulac, Y., 219
Beeson, M., 22, 314, 326, 327
Bellemain, F., 219
Bérard, B., 127
Berger, M., 255
Bernardo, G., 314, 320
Bertot, Y., 15, 85
Besson, F., 73, 78, 79
Bezem, M., 238, 245
Bieda, K. N., 173
Biere, A., 74
Bikner-Ahsbahs, A., 332, 342
Bjørner, N., 74, 75
Blanchette, J. C., 74
Blazy, S., 86
Bledsoe, W. W., 21
Blok, W. J., 96

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1

367

https://doi.org/10.1007/978-3-030-28483-1

Blum, W., 147
Boaler, J., 204, 205, 207
Boero, P., 173, 177, 182, 183, 358, 359
Boesen, J., 313, 322
Boespflug, M., 81
Böhme, S. B., 74
Bolyard, J. J., 332
Bonacina, M. P., 86
Bonnycastle, J. F., 320
Boole, G., 314
Borromeo-Ferri, R., 147
Borwein, J. M., 116, 256
Bosbach, B., 96
Botana, F., 218, 219, 230, 238, 240, 250
Bouallegue, S., 250
Bouhineau, D., 313, 326
Boulmé, S., 86
Bourdieu, P., 201–203
Boutin, F., 143
Bouton, T., 74, 78
Boyer, R. S., 21, 22
Boyle, C. F., 291, 354
Brach, C., 335
Brancker, T., 328
Brousseau, G., 128, 140, 156, 158, 164
Bruillard, É., 117
Brummayer, B., 74
Bryant, J., 147
Buchberger, B., 20, 220, 221, 223
Büchi, J. R., 96
Bueno-Ravel, L., 117
Bundy, A., 14, 66, 70, 209, 327
Burel, G., 354
Burkhardt, H., 327
Burris, S., 91
Byliński, C., 73, 352

C
Caferra, R., 361
Calegari, F., 203
Campos, H., 250
Carmen, B., 314, 320
Carter, N. C., 290
Castelnuovo, E., 149
Cauderlier, R., 354
Chaachoua, H., 313, 326
Chabert, J. L., 116
Chazan, D., 335
Chen, C., 358
Cheng, Y.-H., 294
Chernoff, E. J., 337
Chevallard, Y., 157

Chou, S. C., 215, 218, 219, 238–242, 245–247,
249

Clairaut, A. C., 140–142, 148, 154
Clarke, D., 343
Clarke, E., 22
Cobb, P., 240, 356, 361
Coen, C. S., 73
Cohen, C., 15, 85
Coles, A., 343
Colliard, M. N., 121
Colton, S., 116
Constable, R. L., 19, 73
Conway, C. L., 74
Coquand, T., 245
Corbeil, J. P., 154–156
Corbett, A. T., 294, 355
Corless, R. M., 220
Cormack, L. B., 147
Cormen, T. H., 125
Cornilleau, P.-E., 78, 79
Corpuz, J., 217, 218
Coutat, S., 147, 158
Crǎciun, A., 20
Cramer, M., 22
Crowdmath, 207
Cruz-Filipe, L., 76

D
Da Costa, N. C. A., 119
Dahn, B. I., 91
Dale, R., 27
Dang, D. T., 15, 85
Dapueto, C., 359
Davis, P. J., 205, 231
Dawkins, P. C., 358
Deaney, R., 239
de Bruijn, N. G., 60
Déharbe, D., 74, 78
Delahaye, D., 354
Delignat-Lavaud, A., 74, 86
de Morgan, A., 199
de Moura, L. M., 73–75, 77
Dénès, M., 81
de Oliveira, D., 74, 78
Derouet, C., 145, 156
Deters, M., 74
de Villiers, M., 110, 173, 191, 219, 232, 233,

237, 239, 256, 291, 331, 358
Dimova, D., 74
D’Mello, S., 337
Douady, R., 130
Dowek, G., 354

368 Author Index

Doyle, W., 294
Dreyfus, T., 165, 176
Dubois, C., 354
Duponsel, N., 332–334, 336, 337, 342–344
Dupré, S., 139, 148, 149
Durand-Guerrier, V., 118, 121
Durell, C. V., 320
du Sautoy, M., 200, 203, 209
Duval, R., 140, 141, 158, 173, 176, 357, 358
Dweck, C. S., 204

E
Eaton, R., 73
Ebner, G., 354
Edelson, D., 294
Efremovitch, V. A., 269
Ehrhardt, C., 202
Ekici, B., 74, 81, 85
Elia, I., 144
Engle, R. A., 343
Etchemendy, J., 289
Euler, L., 314
Evan, R., 314, 320

F
Faure, G., 74, 80, 83
Felty, A., 19, 20
Ferrari, P., 359
Ferreirim, I. M. A., 96
Ferrero, E., 359
Ferri, F., 177
Fietzke, A., 74
Filliâtre, J.-C., 74, 86
Fischbein, E., 186
Flajolet, P., 125
Fontaine, P., 74, 78
Font, L., 140, 163
Forest, S., 74, 86
Fortuny, J. M., 140, 240, 361
Foster, C., 221
Fournet, C., 86
Frege, G., 119
Fugard, A., 66
Fugard, A. J. B., 68
Fujita, T., 173, 291, 292, 296, 298, 300, 308
Fuller, E., 308
Fu, Z., 74

G
Gagatsis, A., 145
Gagnon, M., 140, 154–156, 163
Galperin, G. A., 255
Ganesalingam, M., 21, 24

Ganzinger, H., 74
Gao, X. S., 238–242, 245–247, 249
García-Diez, M., 142
Gardner, M., 261
Garillot, F., 15, 85
Garuti, R., 173, 177, 182, 183, 358, 359
Geeraerts, L., 149
Gelernter, H., 218, 355, 360
Gentry, C., 86
Gerdes, A., 326
Giorgiutti, I., 141
Gödel, K., 59, 65
Godot, K., 121
Goldstein, I., 354
Gonthier, G., 15, 85
González, G., 291
Gordon, M., 73
Gowers, T., 202, 205, 206
Grabowski, A., 73, 352
Graesser, A., 337
Graham-Lengrand, S., 86
Gravemeijer, K., 336
Gravier, S., 121, 150, 153
Gray, E., 150
Greeno, J. G., 298
Grégoire, B., 73, 74, 80, 81, 83
Grenier, D., 117, 121
Gribomont, P., 118, 119, 125, 126
Grice, H. P., 29
Grover, B. W., 295
Gueudet, G., 117
Gutiérrez, Á., 256, 335

H
Hadarean, L., 74
Hadas, N., 176, 178
Hähnle, R., 353
Haken, W., 139, 154
Hales, T. C., 15, 85
Halmos, P. R., 220
Hanna, G., 173, 176, 204, 231, 232, 237, 238,

256, 291, 357
Hardy, G. H., 199, 200, 206, 207, 209, 210
Harel, G., 173, 183, 256
Harris, M., 200, 203, 204
Harrison, J., 15, 73, 85, 357
Hart, E. W., 117
Hašek, R., 230
Haspekian, M., 156
Hauer, B., 359, 360
Healy, L., 332, 335, 359
Heeren, B., 326
Heidigger, M., 208

Author Index 369

Heinze, A., 294
Henneman, W. H., 21
Hennessy, S., 239
Henningsen, M., 295
Herbelin, H., 73
Herbst, P. G., 173, 291, 335, 358
Hershkowitz, R., 178, 337
Hersh, R., 205
Hetzl, S., 354
Heule, M. J. H., 74, 75, 85, 350
Hilbert, D., 60
Hoang, T. L., 15
Hoare, C. A. R., 125
Hodges, R., 21
Hoelzl, R., 359
Hoffmann, D. L., 142
Hohenwarter, M., 216, 218, 219, 221, 232,

238, 240, 250
Holland-Minkley, A. M., 19
Hollings, C., 199
Hölzl, R., 183
Hopcroft, J., 122, 124, 126
Houdebine, J., 141
Howell, J., 86
Howson, A. G., 116, 117, 231
Hoyles, C., 239, 331, 335, 359
Hritcu, C., 74, 86
Hsieh, F. J., 237
Huet, G. P., 73
Hughes, E. K., 343
Humayoun, M., 22
Hurd, J., 74

I
Il’jashenko, J. S., 269
Inglis, M., 290
Ingold, T., 198, 208, 209
Iwanaga, Y., 296

J
Jackiw, N. R., 219
Jahnke, H. N., 173
Jamnik, M., 65, 66
Janičić, P., 218, 219, 238–242, 245–247, 250
Jaworski, B., 220, 221
Jebelean, T., 20
Jenkins, A., 201, 202, 210
Jeuring, J., 326
Jiang, J., 239
Johnson, H. L., 343
Jones, K., 173, 239, 291, 292, 295, 296, 298,

308, 309, 311, 332, 334, 338, 342–344,
358

Jones, P. L., 220
Jourdan, J.-H., 86
Jovanovic, D., 74

K
Kahane, J. P., 116, 117
Kaliszyk, C., 74
Kapur, D., 218, 240
Katz, G., 74, 81, 85
Kaufmann, M., 74
Keller, A. G., 148
Keller, C., 74, 80, 81, 83, 85, 86
Keller, O., 142
King, T., 74
Kirshner, D., 314
Knipping, C., 173
Knott, A., 28, 29
Knuth, E. J., 331
Köcher, N., 313, 314, 318–320
Koedinger, K. R., 294, 354, 355
Koepke, P., 22
Kohlhase, M., 86
Kohlweiss, M., 86
Koike, N., 332
Komatsu, K., 291, 332, 334, 335, 338,

342–344
Konev, B., 74–76
Kong, S., 73, 278
Korniłowicz, A., 73, 352
Kortenkamp, U., 219, 233, 238, 358, 359
Kovács, L., 20
Kovács, Z., 163, 216, 218–222, 224, 228, 230,

232, 233, 238, 240, 250, 359, 360
Ko, Y. Y., 331
Krause, E. F., 228
Kreitz, C., 73
Krieger, M. H., 152, 157
Küchemann, D., 331
Kuhlwein, D., 22
Kullmann, O., 74, 75, 85, 350
Kumar, R., 74
Kutsia, T., 20
Kutzler, B., 218
Kuzniak, A., 140, 144, 145, 157

L
Laborde, C., 141, 147, 158, 179, 332
Laborde, J. M., 178, 179, 219, 256, 359
Lagrange, J. B., 145
Lakatos, I., 5, 60–62, 64, 69, 207, 292, 331
Lane, L., 201, 202, 205
Laporte, V., 86
Larsen, S., 331

370 Author Index

Lascarides, A., 21
Laval, D., 145, 157
Lawrie, C., 256
Leduc, N., 154–156, 361
Lehman, B., 337
Le Hoang, T., 85
Leibniz, G., 314
Leiserson, C. E., 125
Leiß, D., 147
Leitsch, A., 354
Lemut, E., 173, 182, 183, 358, 359
Leron, U., 186
Leroy, X., 86
Lescuyer, S., 74
Leung, A. Y. L., 174, 178, 183, 186, 188, 190,

332, 358
Levenson, E., 314, 320
Levi-Strauss, C., 208
Lewis, R. Y., 278
Li, H., 240
Lin, F. L., 237, 294
Lisitsa, A., 74–76
Lithner, J., 313, 322
Lopez-Real, F., 183, 186
Lorigo, L., 73
Loustaunau, P., 316
Lovász, L., 117
Luengo, V., 292, 297, 308, 359–361
Łukasiewicz, J., 99
Lund, T., 320
Lynce, I., 74

M
Mackenzie, D., 73, 205, 208
Mahboubi, A., 73
Malik, S., 74
Mancosu, P., 15
Manizade, A. G., 332
Mannila, L., 328
Mante, M., 183
Maréchal, A., 86
Marek, V. W., 74, 75, 85, 350
Margolinas, C., 158
Marhajan, Y., 74
Marić, M., 250
Mariotti, M. A., 173–175, 177, 178, 180, 181,

183–185, 187, 188, 190, 332, 359
Marradez, R., 335
Martinovic, D., 332
Martin, T. S., 157, 291
Martin, U., 198, 199, 207
Maschietto, M., 147
Mason J., 204

Matsuda, N., 356, 361
Matuszewski, R., 73, 352
Mawer, R. F., 46
Maxwell, E. A., 317
McCrone, S. S., 291
McCune, W., 91
Meavilla Seguí, V., 240
Meavilla, V., 140, 158, 159, 161
Mebsout, A., 74, 81, 85
Mejia-Ramos, J. P., 308
Meyer, A., 125
Michael-Chrysanthou, P., 140
Miller, D., 19, 20, 86
Milton, J. A., 142
Miyazaki, M., 173, 291, 292, 296, 298, 300,

308
Modeste, S., 117, 125, 128, 150, 153, 154
Moggi, E., 102
Monks, K. G., 290
Moore, J. S., 22, 74
Morris, C. W., 119
Morselli, F., 173
Motwani, R., 122, 124, 126
Moutet, L., 145, 157
Moyer-Packenham, P. S., 332
Murray-Rust, D., 209

N
Nakagawa, K., 20
Narboux, J., 238, 240, 242, 246, 247
Naumowicz, A., 73, 352
Neale, V., 206, 209, 210
Nelsen, R. B., 65, 66, 141, 146, 239
Netz, W., 148
Nevins, A. J., 354
Newell, A., 355
Newman, M. H. A., 320
Nicaud, J. F., 313, 326
Nieuwenhuis, R., 75
Noel, W., 148
Norell, U., 73
Northrop, E. P., 317, 320
Noss, R., 359

O
Ohtani, M., 295, 343
Oliveras, A., 73
Olivero, F., 183, 336
Oller, A. M., 140, 158, 159, 161
Oller Marcén, A. M., 240
Osana, H. P., 332–334, 336, 337, 342–344
Ouvrier-Buffet, C., 117, 150, 153
Owen, E., 46

Author Index 371

Owens, K., 358
Owens, T. M., 96
Owre, S., 73

P
Palm, T., 313, 322
Paneque, J., 240
Panero, M., 00
Paola, D., 183, 336
Parisse, B., 219
Parno, B., 86
Paskevich, A., 22, 74, 86
Paulson, L. C., 74, 23
Pavlović, V., 238, 242, 245
Payan, C., 117, 121
Pedemonte, B., 183, 358
Pegg, J., 256
Pekrun, R., 337
Peled, I., 331
Pelletier, R., 294, 355
Pell, J., 328
Peltier, N., 361
Pepin, B., 295, 309, 343
Perrin, D., 116
Pesty, S., 360
Petrović, I., 218, 219, 238, 240, 250
Pettitt, P. B., 142
Pichardie, D., 78, 79, 86
Pike, W. G., 142
Pollack, R., 116
Polya, G., 164, 165, 205, 313, 326, 358
Polymath, D. H. J., 198, 205–207, 209, 210
Potari, D., 165
Prank, R., 326
Prediger, S., 165, 332, 342
Presmeg, N. C., 335
Protzenko, J., 86
Prusak, N., 337
Puertas, E., 361
Puitg, F., 361
Pulte, H., 173
Pye, D., 208

Q
Quaresma, P., 238–242, 246, 247, 250
Quine, W. V., 119, 120

R
Rabardel, P., 146, 147, 160
Rabe, F., 86
Raffalli, C., 22
Rahn, J. H., 328
Ramsden, P., 322, 323
Ranise, S., 77

Rastogi, A., 74, 86
Raykova, M., 86
Recio, T., 140, 145, 154, 163, 216, 218, 219,

221, 230, 232, 238, 240, 250, 359, 360
Reid, D. A., 173
Reiser, B. J., 294
Reis, G., 354
Reiss, K., 294
Reiter, E., 27
Reynolds, A. J., 74, 81, 85
Reynolds, J. C., 128
Rhoads, K., 308
Riazanov, A., 74
Ribbens, D., 118, 119, 125, 126
Ricciotti, W., 73
Rice, A., 199
Richard, P. R., 140, 144–147, 154–156, 158,

163, 230, 240, 361
Richter-Gebert, J. R., 238, 359
Rivest, R. L., 125
Roberts, S., 200, 202, 203
Robinson, A., 60, 197
Robutti, O., 174, 183, 336
Roy, M. F., 116
Rushby, J. M., 73
Ruthven, K., 165, 239
Ryle, G., 200, 206, 208–210

S
Saillard, R., 86, 354
Sakamaki, A., 332
Samkoff, A., 308
Sangwin, C. J., 147, 313–315, 317–323
Santos, V., 250
Scali, E., 359
Schiffler, K., 228
Schneider-Kamp, P., 76
Schoenfeld, A. H., 178, 294
Schröder, B., 22
Schulz, S., 74
Schumann, H., 256, 268, 270
Schwarz, B. B., 178, 337
Sedgewick, R., 125
Selden, A., 182
Selden, J., 182
Semadeni, Z., 333
Semliakov, A. N., 255
Sethi, R., 122
Sewell, W. H., 201
Shankar, N., 73, 86
Shaw, 355
Sherbert, D. R., 158
Sherin, B., 294
Shoenfield, J. R., 64

372 Author Index

Sidoli, N., 238
Sieg, W., 289
Sierpinska, A., 177
Silva, J. P. M., 74
Simon, H., 355
Simon, M. A., 183
Sinaceur, H., 116, 121
Sinclair, N., 174, 358
Smith, M. S., 343
Sólyom-Gecse, C., 230, 238
Soury-Lavergne, S., 361
Sowder, L., 173, 183
Standish, C. D., 142
Stefferud, E., 355
Stein, C., 125
Stein, M. K., 295, 343
Stevenson, I., 178, 332
Stojanović, S., 238, 242, 245
Strässer, R., 178
Straubing, H., 126
Stump, A., 77, 78
Stylianides, A. J., 173, 179, 332, 343
Stylianides, G. J., 179, 332, 343
Suda, M., 74
Sullivan, M. C., 141
Su, Z., 239, 291, 359
Swamy, N., 74, 86
Sweller, J., 46

T
Tabachnikov, S., 255
Takeuti, G., 353
Tall, D., 150
Tanguay, D., 144, 145, 149, 157
Tanswell, F., 204, 208
Tao, T., 203–205, 207, 210
Tarski, A., 99, 119–121
Tassi, E., 73
Tessier-Baillargeon, M., 154–156
Théry, L., 74, 78, 80, 83
The Theorema Working Group., 230
Thomas, R., 202, 210
Thomas, W., 126, 127
Thompson, D. R., 190
Tinelli, C., 73, 74, 77, 81, 85
Tirosh, D., 314, 320
Tomašević, J., 242
Tošić, D., 242
Trahan, A., 152, 153, 162, 167
Trilling, L., 361
Trouche, L., 117, 146
Trybulec, A., 22

Tseitin, G., 79
Tsujiyama, Y., 332
Turnow, E., 198

U
Ufer, S., 294
Ullman, J. D., 122, 124, 126
Urban, J., 74, 357

V
Vajda, R., 230
Valcarce, J. L., 219
van Doorn, F., 73, 278
van Maaren, H., 74
VanÚ, K., 356, 361
Vélez, M. P., 140, 154, 163, 221, 230, 238
Vélez, P., 359, 360
Velleman, D., 289
Venant, F., 152, 157
Vergnaud, G., 128
Vershinin, K., 22
Villani, C., 200
Villiers, M., 141
Vitrac, B., 148
Vivier, L., 145
von Raumer, J., 73, 278
Voronkov, A., 60, 74
Vujošević-Janičić, M., 242

W
Wallin, S., 328
Walsh, T., 74
Wang, D., 240
Wang, K., 239, 291, 359
Ward, M. R., 46
Watson, A., 295, 343
Weber, K., 292, 293, 307, 308, 332, 358, 360
Weber, T., 74
Weidenbach, C., 74
Weil, P., 126
Weiss, M., 358
Weller, D., 354
Werner, B., 74, 80, 83
Wiedijk, F., 357
Wiles, A., 197, 202, 209, 210
Wilson, B., 231
Winker, S., 91
Winter, H., 256
Wischnewski, P., 74
Wittgenstein, L., 119, 120
Wolper, P., 118, 119, 125, 126
Wu, W., 239, 240

Author Index 373

Y
Yackel, E., 356
Yerushalmy, M., 335
Ye, Z., 238, 240–242, 246, 249
Yost, G., 291, 354

Z
Zach, R., 59, 60

Zahradník, J., 230
Zandieh, M., 331
Zaslavsky, O., 331
Zazkis, R., 337
Zeitz, P., 205
Zhang, J. Z., 238–240, 245–247
Zhao, X., 22
Zilhão, J., 142

374 Author Index

Subject Index

A
ABC-conjecture, 203
Advanced geometry tutor, 361
AgentGeom, 361
Algebraic Geometry, 215, 218, 228
Algorithmic, 117–119, 123–125, 127–129,

131–134, 136, 150–157, 161, 162, 164,
166, 167, 232

Algorithms, 6, 59, 73, 74, 76, 86, 115–118,
122–125, 127–135, 140, 143, 145,
150–154, 157, 161, 164, 215, 220, 221,
224, 231, 232, 242, 297

Analogy, 200, 202, 256, 258, 259, 358
Analysis, 24, 54, 66, 70, 91, 94, 122, 125, 128,

129, 132–136, 145, 159, 175, 176, 178,
179, 184, 185, 191, 200, 217, 218, 256,
279, 295, 301, 302, 306, 308, 309, 318,
319, 322, 327, 338, 344, 354

Android/iOS math apps
Edukera, 218
Euclidea, 218
mathway, 218
photomath, 218

Angle project, 354
Antiprism

n-gonal antiprism, 256
Argumentation, 8, 176, 183, 190, 322, 323,

328, 356–359
Artificial mathematician, 362
ATP/automated theorem proving/automated

provers, 14, 60, 65, 74, 75, 85, 86, 238,
242, 349–362

Automata, 122, 124, 126, 127, 131
Automated deduction

automated deduction in geometry, 218, 219

Automated proof search, 91
Automatic discovery, 217, 231
Automatic proving/automatic theorem prover

geometry automated theorem prover,
237–239, 250

Automation in combinatorics, 75, 85

B
Baghera, 361
Billiards

Elementary billiards, 257
Binary operation, 20, 92, 96, 284
Bricolage, 208

C
Cabri 3D, 256, 257
Cabri-Euclide, 297, 359, 361
Cabri Geometry/Cabri-géomètre, 219, 359
Case discrimination, 256
Catalan solids, 271
Causality, 160, 185, 256
Charisma, 203, 204
Cinderella, 219, 238, 359
Complexity, 27, 124, 125, 129, 130, 132, 133,

136, 154, 157, 162, 177, 191, 192, 200,
239, 240, 349, 357, 358, 360

Composition, 36, 51, 122, 125, 126, 208, 256,
286

Computer algebra, 215, 219, 224, 350
Computer algebra system

Giac, 219
Computer science, 3, 5, 6, 60, 76, 85, 86,

115–119, 121, 122, 124–126, 128, 130,
132, 135, 136, 154, 278, 281, 282, 287,
289, 290

© Springer Nature Switzerland AG 2019
G. Hanna et al. (eds.), Proof Technology in Mathematics Research
and Teaching, Mathematics Education in the Digital Era 14,
https://doi.org/10.1007/978-3-030-28483-1

375

https://doi.org/10.1007/978-3-030-28483-1

Concept, 6, 21, 70, 102, 120, 125, 128–130,
132, 139–141, 144, 145, 157, 159, 163,
165, 203, 206–208, 219, 220, 239, 280,
284, 287, 331, 333–336, 351, 352, 359

Conception, 119, 128–131, 133–135, 145, 158,
284, 357, 360

Conditionality, 182, 183, 185
Conjecture, 3, 5, 7, 15, 62, 65, 68, 74–77, 85,

86, 91, 92, 94–98, 100, 101, 103, 107,
116, 142, 154, 162, 167, 173, 182–185,
187, 191, 199, 203, 206, 207, 216, 217,
220–223, 226, 237–241, 243, 245, 249,
250, 256, 331, 333, 335, 336, 350, 351,
358, 359

Construction, 6, 14, 26, 50, 55, 56, 127, 136,
143, 147, 149, 174, 175, 178–186,
188–192, 201, 202, 209, 215, 216, 223,
224, 237–243, 246, 249, 250, 256, 259,
260, 265, 271, 279, 280, 292, 294, 297,
309, 334, 336–338, 355, 356, 359, 360,
362

Continuation monad, 102
Constructive omega rule, 64–66, 69
Contradictions, 55, 59, 79, 93–95, 131, 156,

185, 186, 279, 289, 314, 320, 333, 334,
337, 340

Convex hull, 256, 264, 268, 269, 272
Correctness, 14, 15, 22, 60, 61, 66, 69, 74, 76,

80, 84–86, 123–126, 129, 132, 133,
179, 180, 278, 308, 315–317, 320, 323,
324, 351, 360

Counterexample, 5, 8, 95, 101, 121, 207, 223,
239, 331, 333, 335–340, 342, 343, 359,
361

Craft, 6, 197, 198, 202, 205, 208, 210
Cube, 61, 63, 64, 169, 256, 257, 259, 260, 262,

264, 265, 267
Cuboid, 256, 262
Cut rule, 353

D
3D dynamic geometry systems, 255–257
3D hexagon

Equiangular 3D hexagon, 260
Equilateral 3D hexagon, 261, 267
Point symmetric 3D hexagon, 266, 269
Regular 3D hexagon, 267, 268
Self-intersecting 3D hexagon, 268
Symmetric 3D hexagon, 270

3D kite, 271
3D parallelogram, 271
3D polygon, 61, 271

3D quadrangle, 257, 270, 271
3D rhomb, 270
De Bruijn criterion, 351, 352
Decompilation of compiled code, 16
Deduction, 19, 26, 33, 38–40, 45, 46, 49, 55,

65, 78, 121, 122, 125, 126, 158, 241,
250, 251, 279, 280, 282–284, 290, 297,
351, 354

Deltoid, 269
Diagram, 36, 66, 68, 69, 145, 146, 148, 149,

157, 159, 162, 216, 222, 297, 332, 334,
335, 337–339, 342, 343, 354, 355, 360,
361

Diagrammatic reasoning, 141
Didactic heuristic, 360
Didactical/didactics, 6, 115, 116, 118, 125,

127, 128, 135, 136, 144, 163, 166
Double pyramid

Three-sided double pyramid, 268, 269
Dragging test, 179, 180, 336
Dynamic geometry, 4, 7, 9, 116, 146, 147, 149,

155, 157, 160, 162, 163, 166, 174, 175,
183, 215–219, 231, 232, 237, 240, 250,
256, 291, 327, 332, 349, 358

Dynamic Geometry Environment (DGE)/
Dynamic Geometry Systems (DGS),
174, 176, 178–192, 216, 237, 239, 241,
250, 332–334, 336–340, 342, 344,
359–361

E
Effectiveness, 118, 154, 190
Elementary geometry

apollonius circle, 227
geometric mean theorem, 181, 230
Pythagoras' theorem, 230
right triangle altitude theorem, 230
Thales' circle theorem, 228
triangle inequality, 228, 257

Empirical validation, 356, 358, 361
Enrichment, 165
Epistemic value, 148, 176, 357
Epistemological revolution, 356
Epistemology, 115, 117
Ethnography, 204
Explanation, 7, 15, 75, 80, 110, 188, 217, 237,

238, 241, 250, 256, 305, 336, 357, 362

F
Feedback, 8, 86, 233, 281, 287, 291, 295–299,

303, 304, 308, 314, 315, 323, 324, 352,
354, 355, 359, 360

376 Subject Index

Field of experience, 359
Formalism, 59, 60, 126, 132, 278, 354, 357
Formalization, 5, 15, 59, 152, 154, 357

G
Generalization, 36, 152, 166–168, 228, 230,

256, 262, 265
General Problem Solver, 355
Genius, 6, 197, 202–205, 210
GeoGebra

Automated Reasoning Tools (ART), 221,
224, 231, 233

envelope command, 230
LocusEquation command, 217, 222,

225–229
Relation command, 216, 223, 224, 226, 227
Prove command, 230, 240
ProveDetails command, 230

Geometer's Sketchpad, 219, 291
Geometer Supposer, 219
Geometric reasoning

algorithm, 217
conjecture, 216
theorem, 217

Geometry
geometrical, 178–181
geometric construction, 175, 218, 237, 239,

240, 242, 243, 246
geometric locus, 162, 222, 227
spatial geometry, 255, 256

Geometry machine, 355
Geometry tutor, 354, 355, 361
Google Play, 218

H
Heuristic

Heuristic argumentation, 358, 359
Hexahedron, 265, 268–270
Heyting algebra, 96, 100–102, 110
Hilbert's program, 59, 60, 63, 64, 66, 69, 70
Hoop, 91, 96–103, 107, 110
Human-oriented

human-like output, 22, 25, 29, 31
human-like write-ups, 24
human-oriented theorem proving, 21

I
Implicit locus, 221, 222, 228
Indirect proof, 174, 185–187, 190–192, 292
Induction, 65, 68, 69, 74, 100, 129, 131, 154,

256, 280, 287, 313, 327, 351, 356, 358

Information and Communication Technology
(ICT), 6, 173, 174

Interactive theorem prover, 5, 14, 15, 73, 278,
281, 284, 288

J
Johnson solids, 271
Justification, 18, 27, 45, 78, 93, 94, 133, 244,

313, 320, 323

K
Kite, 268, 269, 271

L
Language, 7, 19, 20, 27, 59, 115, 118,

120–124, 126, 127, 131, 132, 134, 141,
165, 190, 205, 237, 238, 240–242, 245,
246, 248, 250, 277–282, 284, 286, 288,
289, 297, 314, 352, 354–357

Lean, 8, 278–289, 362
Learning

discovery learning, 7, 9, 143, 154, 205,
218, 220, 221, 237

Learning and teaching of geometry
computer-mediated thinking, 218, 220
creativity spiral, 217, 220, 226
geometry calculator, 231–233
mentor, 204, 217, 221
teaching triad, 220
technology-mediated paradigm, 217

Logic, 7, 8, 23, 30, 60, 73, 75, 85, 86, 91, 92,
96, 99, 100, 115, 116, 118, 119, 121,
122, 125–128, 131, 136, 145, 149, 155,
156, 163, 176, 179, 218, 242, 245,
277–284, 286, 288–290, 327, 350–353,
355, 362

Logical framework, 127, 352, 354
Logic theorist, 355

M
Mace4, 5, 91, 92, 95–98, 100, 101, 110
Manipulatives, 8, 332–337, 342–344
Mathematical concept, 157, 280, 333, 334
Mathematical practice, 116, 198, 204, 205,

208, 331, 333
Mathematical virtues, 204
Mathematical working space, 140, 144, 157,

162, 361
Mathematics, 3–6, 8, 9, 15, 23, 27, 59–61, 68,

76, 85, 100, 115–118, 121–123, 128,
130, 131, 134–136, 140, 143, 144,

Subject Index 377

147–149, 153, 154, 156–159, 163–166,
173, 176, 177, 181, 191, 197–200,
202–205, 207, 208, 210, 215, 217, 220,
228, 231, 233, 237, 238, 256, 278, 280,
282, 284–292, 294, 295, 300, 301, 313,
314, 318–320, 323, 327, 328, 331, 332,
336, 343, 349–352, 356, 357, 359–362

Meshwork, 209
Metaphors of space and landscape, 198
Method

heuristic method, 163, 265
Metric space, 13, 25, 30, 32, 47
Microworld, 359, 361
Mindset, 204, 205, 207
Model, 21, 24, 26, 27, 34, 41, 43, 75, 77, 79,

85, 91, 95, 103, 110, 120–123,
125–129, 131–134, 141–148, 151–153,
156–160, 162, 163, 173, 186, 188, 207,
237, 239, 277, 281, 317, 319, 327, 354,
355, 358, 359, 361

Modelling, 25, 26, 126, 139, 143, 145, 147,
151, 157, 158, 163, 164

Model-theoretic, 110, 119–121, 127

N
Natural language, 7, 19, 21, 27, 29, 123, 141,

165, 240, 242, 245, 246, 250, 281, 354,
357

Networking theoretical approaches, 342, 344
2n-gon

Regular 2n-gon, 255
Spatial 2n-gon, 256

Non-example, 335

O
Ontic value, 357
Orbit, 267
Ordinal sum, 99, 100

P
PACT Geometry Tutor, 361
Parallelogram, 146, 167, 184, 187, 188, 190,

243, 260, 270, 333–336, 338, 340, 341
Pedagogical support, 231, 233, 333, 336, 342,

343
Perimeter

minimal perimeter, 7, 256, 268, 270
Platonic solids, 61, 271
Pocrim, 98, 99
Polygon

convex polygon, 168, 255

hexagonal polygon, 257
inscribed polygon, 256
Petrie polygon, 256
point symmetric polygon, 262, 268–270
spatial polygon, 269

Polyhedra
convex polyhedra, 7, 255, 271

Polyhedron
2n-faced polyhedron, 255, 256

Polymath, 6, 198, 205–207, 209, 210
Pragmatics, 40, 119, 123, 136, 154, 280, 355,

361
Programming, 83, 117, 118, 122, 123,

132–135, 143, 150, 154, 220, 221, 226,
278

Proof
proof certificate, 308
proofs with a natural language rendering, 7,

242
proofs with a visual rendering, 7, 246
proof theory, 353, 354
proof tutor, 289, 354, 356, 359
rigorous proof, 5, 60, 63, 152, 157, 224
schematic proof, 60, 63–70, 352

Properties, 158, 160, 163, 167, 180, 184, 185,
190, 237–241, 243, 250, 257, 258, 280,
286, 300, 302, 305, 307, 308, 315, 316,
324, 327, 350, 357, 359

Prover9, 5, 91–97, 100–104, 107, 110

Q
QED-Tutrix, 140, 155, 156, 163, 164, 361
Quadrilateral, 64, 184, 187, 188, 190, 300,

333–336, 338–341

R
Reasoning

reasoning backwards, 40, 42, 46
reasoning forwards, 24, 28, 35, 38, 40, 46,

47
reasoning tactics, 42, 43, 45–47

Reflection, 27, 135, 148, 173, 201, 204, 246,
256, 257, 259, 260, 264

Refutation, 3, 245, 291, 332, 334, 343
Reinforcement, 204, 238, 240, 256, 284, 335,

357
Representations, 37, 128, 129, 131–136,

139–141, 145–147, 149, 159, 160,
162–164, 188, 203, 210, 242, 282, 284,
297, 316, 332–335, 354–358, 360

Restructuring, 256, 355

378 Subject Index

Reversibility, 256, 265, 321
Rhombus, 339
Robbins conjecture, 91

S
Semantics, 99, 118, 119, 122, 123, 125, 132,

135, 136, 158, 176, 250, 279, 289, 351,
359

Semilattice, 91, 92, 94–97
Semiotic potential, 174–176, 178–183, 185,

190, 191
Sequent calculus, 353
Skill, 4, 6, 66, 136, 173, 198, 202, 204, 205,

207–210, 221, 290, 350, 355
Social machine, 198, 206, 209
Space

Euclidean space, 255
virtual space, 257

Specification, 135, 256, 278, 287, 318
Square, 122, 157, 168, 187, 188, 233,

257–261, 284, 339
Structural induction, 126
Students’ perceptions, 333, 337
Symmetry, 24, 104, 116, 203, 266, 268, 269,

353
Syntax, 8, 83, 92–94, 119, 120, 122, 123, 126,

135, 136, 222, 281, 284, 288, 289, 322,
352, 360

Synthesis, 174, 256

T
Task-based interview, 332, 333, 337, 338, 342,

343
Task design, 8, 294, 295, 301, 309, 332–337,

342–344

Technology Enhanced Learning (TEL),
355–359, 361

Termination, 124
Tetrahedra, 270
Theorem

Cognitive unity of theorem, 358
model of theorem, 361

Theorem proving/provers
automatic theorem proving/provers, 4, 5, 7,

8, 15, 16, 231, 350
interactive theorem proving/provers, 8, 14,

15, 33, 73, 279–281, 284
Theory of semiotic mediation, 6, 174, 175
Trajectory, 255, 257, 258, 260, 263, 264, 267
Trapezohedron, 268
Trapezoid, 269
Turing test, 362
Twin Primes conjecture, 206

V
Variation, 29, 159, 166, 184, 228, 256
Verification, 3, 7–9, 15, 24, 60, 66, 86, 110,

118, 127, 129, 132–134, 139, 152–154,
160, 168, 176, 217, 221, 232, 237, 238,
240, 242, 256, 278, 289, 322, 352, 353,
356, 361

Vertices, 61, 126, 131, 184, 189, 221, 222,
247, 256, 262, 263, 268–270, 333, 336

Virtual manipulative, 8, 332, 333, 335–337,
342, 343

W
Wayfarer, 198, 209

Subject Index 379

	Contents
	Contributors
	Introduction
	Proof Technology: Implications for Teaching
	1 Part I: Automatic Theorem Provers
	2 Part II: Theoretical Perspectives on Computer-Assisted Proving
	3 Part III: Suggestions for the Use of Proof Software in the Classroom
	4 Part IV: Classroom Experience with Proof Software
	5 Conclusion

	Automatic Theorem Provers
	A Fully Automatic Theorem Prover with Human-Style Output
	1 Introduction
	1.1 Overview of the Paper
	1.2 Why Bother with Human-Style Output?
	1.3 Constraints and Challenges

	2 Related Work
	2.1 Systems with Natural-Language Output
	2.2 Other Related Work

	3 Key Features of the Prover
	3.1 Targets, and the Structural Sharing of Goals
	3.2 The Library
	3.3 Removal of Assumptions

	4 Writing Up
	5 Technical Details
	5.1 Formalism
	5.2 Terminology
	5.3 Substantive Hypotheses and Background Conditions
	5.4 The Waterfall
	5.5 Removal Tactics
	5.6 Tidying Tactics
	5.7 Applying Tactics
	5.8 Creation of Metavariables
	5.9 Equality Substitution
	5.10 Justification for the Order of Priority

	6 Example of Operation: An Intersection of Two Open Sets Is Open
	7 Testing the Write-Ups
	8 Running the Program
	9 Future Work
	References

	A Common Type of Rigorous Proof that Resists Hilbert's Programme
	1 Introduction
	2 Cauchy's `Proof' of Euler's Theorem
	3 Schematic Proof
	4 Formalisation of Schematic Proofs
	5 Schematic Proofs are Common
	5.1 Nelsen's Proofs Without Words
	5.2 Human Use of Schematic Proof

	6 Discussion
	References

	SMTCoq: Mixing Automatic and Interactive Proof Technologies
	1 Introduction
	2 The Satisfiability and Satisfiability Modulo Theories Problems
	2.1 Examples
	2.2 SAT and SMT Proof Evidence

	3 A Certified, Efficient and Modular Checker for SMT
	3.1 A Modular Checker
	3.2 An Efficient Checker
	3.3 Modular Link with State-of-the-Art SMT Solvers

	4 Applications
	4.1 Certified Validation
	4.2 Theorem Import
	4.3 Automatic Tactics

	5 Conclusion and Perspectives
	References

	Studying Algebraic Structures Using Prover9 and Mace4
	1 Introduction
	1.1 Using Prover9 and Mace4
	1.2 Investigating the Algebraic Structure of Hoops

	2 Analysing Larger Proofs
	2.1 A Homomorphism Property for Hoops
	2.2 Discovering Derived Operations and Their Basic Properties
	2.3 Discovering Basic Properties
	2.4 Producing a Human-Readable Proof of (9)
	2.5 Tackling the Harder Conjecture (10)

	3 Concluding Remarks
	References

	Theoretical Perspectives on Computer-Assisted Proving
	Didactical Issues at the Interface of Mathematics and Computer Science
	1 Introduction
	2 Motivation and Context
	2.1 The Necessity of Epistemological Insights for Didactical Work
	2.2 Institutional Context in France

	3 Logical Issues in Mathematics and Computer Science
	3.1 Semantic Perspectives in Logico-Mathematical Disciplines
	3.2 Logic and Proof in Computer Science
	3.3 First Conclusion

	4 Modes of Interaction Between Mathematics and Computer Science
	4.1 Proof Paradigms
	4.2 The Tool–Object Dialectic
	4.3 Six Conceptions to Analyse Algorithmic Activity
	4.4 Relationships Between Conceptions

	5 Perspectives
	References

	Issues and Challenges in Instrumental Proof
	1 Introduction
	2 Towards an Instrumental Proof
	2.1 Reasoning, Proof and Demonstration
	2.2 Mathematical Work and Mathematical Thought: A Temporal Invariance?
	2.3 The Mathematical Working Space
	2.4 Instrumented Reasoning, Instrumental Proof
	2.5 Algorithmic and Proof
	2.6 Another Instrumental Proof

	3 Three Types of Proof in the Mathematical Work
	3.1 In the Model of the Mathematical Working Space
	3.2 Didactic Implications

	4 Conclusion
	Appendix 1: Area Partition Activity
	Appendix 2: Transcription of Text from Dense Figures
	References

	The Contribution of Information and Communication Technology to the Teaching of Proof
	1 Introduction
	2 Theoretical Background
	2.1 Educational Perspective
	2.2 Epistemological Perspective

	3 Introducing Students to Theorems
	3.1 Geometrical Construction in a DGE
	3.2 The Semiotic Potential of DGE Construction Tools

	4 More About the Semiotic Potential of a DGE
	4.1 Conjecturing in a DGE: Dragging as a Semiotic Mediator of Conditionality
	4.2 Invariants by Dragging and Their Relationship

	5 Impossible Figures and Proof by Contradiction
	5.1 Dragging Impossible Figures

	6 Conclusions
	References

	Journeys in Mathematical Landscapes: Genius or Craft?
	1 Prelude
	2 Mathematicians on Mathematics: The Journey in Space
	3 The Journey in Space: Broader Reflections
	4 Mathematicians on Mathematics: Genius Versus Craft
	5 Crafting Online Collaboration
	6 Mathematics and Craft
	References

	Suggestions for the Use of Proof Software in the Classroom
	Using Automated Reasoning Tools to Explore Geometric Statements and Conjectures
	1 Introduction
	2 Currently Available Maths Apps: A Short Overview
	3 Discovery and Creativity
	4 An Example: Implicit Loci in GeoGebra
	4.1 A Second Round
	4.2 Other Rounds

	5 Conclusion
	References

	Computer-Generated Geometry Proofs in a Learning Context
	1 Introduction
	2 Formal Geometric Proofs
	3 Verification of the Truth of a Geometric Statement
	4 Proofs with a Natural Language Rendering
	5 Proofs with Natural Language and Visual Rendering
	5.1 Area Method Visual Rendering of Proofs
	5.2 Full-Angle Method Visual Proofs

	6 Conclusions and Future Work
	References

	Using 3D Geometry Systems to Find Theorems of Billiard Trajectories in Polyhedra
	1 Introduction
	2 From Square Billiards to Cube Billiards
	2.1 Elementary Billiards Trajectories
	2.2 From Billiards Trajectories in a Square to the Construction of Billiards Trajectories in a Cube via Analogy Formation
	2.3 Properties of the Billiards Hexagons
	2.4 Special Shapes of the Billiards Hexagon

	3 A First Generalization: Billiards in Equilateral Parallelepipeds
	3.1 Billiards Trajectories in Equilateral Parallelepipeds

	4 From the Spatial Regular Hexagon Towards the Equilateral Parallelepiped for Which This Hexagon Constitutes an Orbiting Billiards Trajectory
	4.1 Identification of the parallelepiped

	5 An Identification of Special Tetrahedra
	6 Concluding Remarks
	References

	Classroom Experience with Proof Software
	Learning Logic and Proof with an Interactive Theorem Prover
	1 Introduction
	2 Course Outline
	3 Formal Perspectives on Proof
	4 Formal Perspectives on Mathematics
	5 Results
	References

	Web-Based Task Design Supporting Students’ Construction of Alternative Proofs
	1 Improvement of Proof Construction by Using Technology
	2 Strategic Knowledge of How to Construct Alternative Proofs to the Same Problem
	2.1 Constructing Alternative Proofs in the Process of Explorative Proving
	2.2 Forms of Strategic Knowledge of How to Reconstruct Proofs

	3 Task Design to Develop Strategic Knowledge of How to Reconstruct Proofs
	3.1 Necessary Components of a Task for Problem Solving
	3.2 Three Components of a Task Designed to Develop Strategic Knowledge of How to Reconstruct Proofs

	4 Experimental Lessons
	4.1 Learning Deductive Proving in Geometry in Japan
	4.2 General Information of Classes and the Plan of the Experimental Lessons
	4.3 Data and Analysis

	5 Analysis of the Teaching Experiment
	5.1 Emerging Strategic Knowledge of How to Reconstruct Proofs
	5.2 Sharing Strategic Knowledge of How to Reconstruct Proofs in Class

	6 Discussion
	7 Conclusion
	Appendix 1: Worksheet of Lesson 4 to Express Ideas on Reconstructing Proofs
	Appendix 2: Post-test After the 4th Lesson
	References

	Reasoning by Equivalence: The Potential Contribution of an Automatic Proof Checker
	1 Introduction
	2 Reasoning by Equivalence
	3 Reasoning and School Examinations
	4 Students' Attempts at Algebraic Reasoning
	5 Developing Algebraic Reasoning by Equivalence in STACK
	6 Discussion
	7 Conclusion
	References

	Virtual Manipulatives and Students’ Counterexamples During Proving
	1 Introduction
	2 Analysing Task Design for Producing and Addressing Counterexamples Using a Framework on Virtual Manipulatives
	2.1 Surface Features of Representations
	2.2 Pedagogical Support About the Use of Tools
	2.3 Students’ Perceptions and Interpretations

	3 A Task-Based Interview
	3.1 The Proof of the Original Statement and the Types of Produced Diagrams
	3.2 The Discovery of a Counterexample and the Extension of the Statement
	3.3 The Proof of the Extended Statement

	4 Discussion
	5 Conclusion
	References

	Afterword
	Proof Technology and Learning in Mathematics: Common Issues and Perspectives
	1 Introduction
	2 Automated Theorem Proving
	2.1 Computer Proofs
	2.2 Mathematical Proofs
	2.3 Proof Theory

	3 Designing Technology for Enhancing Proof Learning
	3.1 Proof Tutors
	3.2 From Empirical Validation to Mathematical Proof
	3.3 Technology Enhanced Learning of Mathematical Proof

	4 Epilogue
	References

	Author Index
	Subject Index

