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Abstract. Noise pollution severely threatens human well-being. Constructing a
noise map based on crowd-sensing can help city planners better understand
environmental noise at lower cost. Based on the strict sampling method limi-
tation of state-of-the-art techniques, we build a new calibration model aimed at
the pocket situations and the scenarios happened more frequently in actual life.
The proposed model consists of a Activity Recognition Model (ARM) and a
Signal Processing Model (SPM). Three types of data are taken into considera-
tion, which are sitting, standing, and walking. In ARM, we collect 3-axis
accelerometer data to identify current sampling context based on the convolu-
tional neural network. SPM mainly implements noise level measurement and
calibration according to the corresponding output of ARM under different phone
context. The average errors after calibration are controlled to be within ±3 dB
(A), and the classification precision reaches 99.2%. Finally, we display the noise
map adopting different criteria based on the building types, which is more
scientific and meaningful. The final results show that our proposed calibration
model is feasible and can improve the data quality under different situations.
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1 Introduction

Urban noise pollution is increasingly serious along with the development of the
industrial era and it becomes another unignored environmental problem following air
pollution and water pollution. In 2017, Ministry of Ecology and Environment (MEE) of
China received a total of 550,000 environmental noise complaints, accounting for
42.9% of the total environmental complaints [1]. Given that long-term disturbance of
noise will greatly affect human health and raise the risk of tinnitus, heart disease and
cardiovascular disease [2], establishing a noise map can effectively monitor urban
sound level.

Building up a noise map is very expensive for the government to deploy dense
sensor networks covering the whole city. Recently, thanks to the diverse and advanced
sensors embedded in smartphones, crowd-sensing technology seems to be a promising
solution by leveraging massive amount sensing data contributed by a large number of
users [3] and provides opportunities for citizens to interact with the ambient environ-
ment [4, 5]. Most of today’s smartphones are equipped with many powerful sensors,
such as gyroscopes, accelerometers, microphones, proximity sensors, GPS, and digital
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compasses, which makes mobile phones not only phones but also tools. Some papers
have researched and implemented noise mapping based on this technology [6–8] and
proved its feasibility and precision [9]. However, most of them require users to hold
phones in their hands, which greatly limits the available conditions because only 6.27%
people choose to hold phones in their hands instead of putting them in their bags or
their pockets [10]. In this paper, we consider the pocket situation and use activity
recognition techniques to study the effects of different behaviors on mobile phone
measurements and how to correct them. Human activity recognition (HAR) can
automatically detect human behavior and has been studied for a long time in many
fields. Unlike conventional HAR, mobile phones play the role of sensing nodes in this
paper, so only the equipped sensors can be utilized to identify users’ behaviors and the
3-axis accelerometers are most commonly used to detect activity information.

We study the relationship between the measurements of mobile phones and the
readings of sound level meters (SLM) in different phone context and propose a cali-
bration model. This model can automatically adjust the corresponding sub-model
according to the user’s current activity to improve the data quality when the mobile
phone is placed in the pocket. The proposed architecture consists of two models,
Activity Recognition Model (ARM) and Signal Processing Model (SPM). ARM takes
3-axis accelerometer data as input and processes it by activity recognition technology
based on convolutional neural network (CNN). ARM can identify three daily activities,
walking, standing, and sitting by directly leveraging time series input without any
manual operation. By adopting corresponding calculation sub-models in SPM, we can
improve the accuracy of sensing data in previously unavailable situations, so we can
get more data to analyze and construct a noise map.

The rest of this paper is organized as follows. In Sect. 2, we give an overview of
relate work. In Sect. 3, the proposed noise sensing method is described in detail. In
Sect. 4, we conduct the experiments and analyze the experimental results. Finally,
Sect. 5 concludes this paper and discusses the future work in this field.

2 Related Work

As for noise sensing in intelligent terminals, microphones play a vital role in the system
implementation. But the hardware differences between mobile phones and standard
SLMs make it challenged to sense noise accurately. Mobile phones adopt Dual-Mic
Noise Suppression technology to reduce the impact of background sound while SLMs
equip a windshield to capture as much sound as possible [11–13]. Therefore, cali-
bration is inevitable to make mobile phones work as SLMs. For improving data quality
under different phone context, many researchers choose to use some extra devices. In
[14], an additional microphone with foam windscreen was installed into the mobile
phone so that no matter how the users moved the measurements reached relative stable
and accurate results after avoiding the influence of wind and friction. The study [15]
proved that using additional microphones installed into mobile phones could greatly
improve measurements accuracy and suggested using them. However, It is obviously
not so easy and convenient for everyone to get such an external microphone. So
researchers try to introduce context-aware and HAR technologies into noise sensing.
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In [16], they proposed a new architecture mainly including call detection module,
signal processing module, speech detection module, and context discovery module.
Sensing context was divided into hand and pocket or bag using a k-nearest neighbor
algorithm, and the samples were adopted only when the phone was in the hand. In [17],
a coarse-grained data analysis method was presented to classify collecting situations.
The author made a set of criteria for evaluating every situation identified by
accelerometer, gyroscope, proximity sensor and GPS. Each collection situation would
be scored and data was filtered according to that. Only the qualified data would be
adopted, which could effectively avoid the influence of friction and vibration caused by
user movements.

In order to fully use any possible data, HAR technologies are non-trivial to identify
and understand human performance. Differing from conventional methods requiring
high computing power for data fusion and image processing, HAR based on mobile
sensors embedded in smartphones must take low power and limited sensor types into
consideration. The accelerometers can determine the phone direction and are most
commonly used in HAR of mobile phones. WISDM Lab [18] collected six daily
activities and classified them using traditional machine learning classification algo-
rithms like J48, Logistic Regression, and Multilayer Perceptron. However, this kind of
classification algorithms needs to manually extract features, which requires domain
knowledge. Therefore, deep learning booms. The deep learning approaches can directly
use sensing data as input and reduce much pre-work. CNN is the most frequent and
effective-proven model of deep learning approaches used in HAR [19]. Once we solve
the input adaption problem caused by the difference between our input time series data
and images, using CNN in HAR will become relatively easy. In [12, 13], the 3-axis
time series data was considered as the 3-channel input like RGB images and conducted
the 1D convolution operation to them. However, the study in [20] argued that 1D
kernel could not capture the dependency between different sensors in different posi-
tions. Therefore they present a CNN model with a 2D kernel to handle this. They
concluded two types of modalities including sensors in different positions and different
types. For the first model, they grouped the data according to positions, and for another
model, they used padding zeros to avoid disturbance.

3 Noise Sensing Approach

3.1 The Proposed Architecture for Noise Sensing

In this paper, we propose a method for improving the data quality and for relieving data
sparsity for noise evaluation and map construction. The hand-hold phone context is not
the focus of this paper, so how to distinguish between hand hold and pocket context
will not be discussed here, as there are already some papers solved this problem
[21, 22]. What we try to do is to leverage sensing data even though the phones are put
into the trouser pockets (front and right) in an upside-down way and that’s the premise
of our architecture. Because of that, the mobile phone is closely attached to the user’s
leg, and the current activity of the user can be predicted by using an accelerometer to
sense the direction of the mobile phone and its changing law.
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In this section, we describe the proposed architecture of the whole system in detail
and give an overview of how it works. As we can see from Fig. 1, the architecture
composes of two major models, Activity Recognition Model (ARM) and Signal Pro-
cessing Model (SPM).

There are two embedded sensors we will use, accelerometer and microphone.
Firstly, the ARM detects the current activity of the user according to the accelerometer
data based on CNN. When the user is in a correctable state (namely standing or sitting),
the microphone is started to collect the acoustical signals, and the SPM module is
started to calculate the decibel value of the surrounding environment, then the corre-
sponding calibration sub-module is called to correct the initial measurements and
output the calibrated values.

3.2 The Basis of Noise Level Measurement

We usually use the sound pressure level (SPL) to express the noise level and the A-
frequency weighting sound level is the main standard for noise assessment today
because it can reflect the loudness perceived by humans [14]. For evaluating the noise
level in mobile phones, we must do a series of processing to compute these indicators.
Since the frequency range that the human ear can sense is up to 20000 Hz, in our
experiments, we collect audio signals at the rate of 44100 Hz for preserving all the
audio signals information according to the Nyquist sampling theorem. We use the
Android API of AudioRecord to collect the acoustic signals, whose parameter settings
are displayed in Table 1.

Fig. 1. The proposed architecture for noise sensing when mobile phones are in trouser pockets

Table 1. Android AudioRecord API parameters

Parameters Value

Sampling rate 44100 Hz
Sample size 16 bit
Buffer size 4410 byte
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The mobile phone collects samples at a frequency of 44.1 kHz, that is, 44100
samples are collected per second. Following the settings in Table 1, each sample has 16
bit thus one buffer can store 2205 samples and there will be 20 buffers produced with
no overlapping per second.

In this paper, we use BENETECH GM1356 SLM to measure the actual noise level
and compare with mobile phone measurements. GM1356 is compliant with standards
of IEC PUB 651 TYPE2, whose time constants are 0.125 s for time-weighting F and
1 s for time-weighting S. We use its data storage function to record the noise level for a
period of time. This function can measure the A-weighted, time-averaged sound level
within 1 s with time-weighting S. But compared to the sampling rate of mobile phones,
it’s still much slower. Thus, we present a way to achieve data alignment, which is
intuitively illustrated in Fig. 2.

After microphone collects audio signals at the rate of 44.1 kHz, the samples are
stored in buffers temporally, we use an A-weighted filter [23] to obtain the A-weighted
SPL in each buffer and calculate the A-weighted equivalent continuous sound level
(LeqA;T ) [14] of the 20 buffers within 1 s. In this way, we can compare the measure-
ments with the SLM readings by means of point to point of every second.

4 Experiments and Analysis

In this section, a series of experiments are carried out under different phone context.
The mobile phones we used are MEIZU M5 Note, REDMI NOTE 5A and COOLPAD
C106-9, and the standard SLM is BENETECH GM1356. Sensitivity is an important
indicator of microphones, which is the ratio of the analog output voltage or digital
output value to the input pressure [24] and the difference of microphones between
mobile phones and SLM makes us have to do a series of processing and correction. In
this paper, we define the hand-hold situation as the standard situation because it has
been proven the feasibility and accuracy in many studies. All of our experiments are

Fig. 2. Date alignment for solving different sampling frequency of SLM and mobile phone
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under the conditions of trouser pockets during sitting, standing or walking, except for
the experiment in the standard situation.

4.1 Experiments for Constructing Calibration Sub-models

The experiments in this section are mainly for constructing calibration sub-models in
our architecture, which will be integrated into SPM presented in Fig. 1.

Experiments in the Standard Situation. This experiment is carried out in the stan-
dard situation for proving mobile phones can accurately measure noise level in an
acceptable range and comparing with the following experiments. In the experiment, we
hold the phone and SLM closely and play the audio of traffic noise that was manually
recorded before 1 m in front of them. This setting is for guaranteeing that both of them
can simultaneously receive the acoustical signals.

The raw time series data collected from the mobile phone and SLM are described as
Fig. 3.

In Fig. 3(a), it’s obvious that there exists a certain distance between SLM (orange
line) and mobile phone (blue line), and SLM readings are always larger than mobile
phone readings. For further analyzing the differences between them, we plot the his-
togram of original errors and investigate the data distribution. We can see that the errors
are intensive in the range of 5–10 and basically conform to the normal distribution. Its
normal distribution fitting is plotted with the blue line in Fig. 3(b) and the related
parameters of the fitting result can be found in Table 2. Also, we try to do linear fitting
between them and the coefficients of the obtained linear model is y ¼ 0:7534xþ 22:29.
We adopt this model to calibrate the raw measurements, the calibration result can be
intuitively seen from Fig. 3(c). The two lines generally overlap and the average error is
about �2:32 dB(A). It’s a satisfying result within an acceptable range because the 3 dB
difference is imperceptible to the human ear [25], thus we decided to use the linear
model to do the calibration.

Fig. 3. (a) Time series data collected by the mobile phone; (b) Normal distribution fitting of the
differences between measurements and SLM readings; (c) Time series data of standard SLM and
mobile phone after linear model calibration (Color figure online)
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Experiments in Other Situations. The ideal hand-hold phone context is not always
available, in many situations, most people will choose to put phones in their trouser
pockets. Considering that people are actionless and there is no friction between the
phone and the pocket when they are standing or sitting, there may exist a slightly
different calibrated model from the standard one because the microphone is in an
enclosed space.

In this section, for verifying our assumption, we carry out a series of experiments
under different phone context, sitting, standing, and walking when the phone is in the
pocket. The experimental materials used in experiments are always kept the same, jeans
pocket covered by the plaid shirt. The experimental results are intuitively depicted in
Fig. 4.

The Fig. 4(a) and (c) are the raw time series signals collected by the mobile phone.
We can directly see from them that there also exits a certain difference between them
like the previous experiment and SLM readings are always larger than mobile phone
readings. Thus, we calculate the differences between measurements and SLM readings
whose histogram is plotted in the Fig. 4(b) and (d). The distributions of standing and
sitting data fit with normal distribution better according to the log likelihood of
−1806.52 and −2055.19, respectively. Furthermore, the lines of normal distribution
fitting are depicted for better observing results and other indicators such as the mean
and variance of fitting results are shown in Table 2. Compared with the results of the
first experiment, obviously, the values of standing and sitting data are much closer to
the standard situation than the walking data, which means the high possibility of
correction. We analyze the differences not only in the time domain but also in the
frequency domain under the standard situation, sitting and standing. Figure 5 shows the
comparison lines of their 1/3 octave band spectrums under these three situations when
receiving the same audio signals. These three figures are not exactly the same because
they are in three different states. When sitting, due to the posture, the microphone of the
mobile phone in the pocket is blocked, and the measurements are obviously lower than
the other two cases. When standing, the difference is not so obvious, just because the
mobile phone is in a closed space, slightly different from the standard situation.
Although like this, the trends of sitting and standing are basically the same as the
standard situation, which is consistent with the normal distribution fitting results.

Thus, we do the linear fitting to standing and sitting data similar to Sect. 4.1 and
obtain respective coefficients. After linear fitting (y = 0.8316x + 17.15) of standing
data, we get the result depicted in Fig. 4(e) whose average error is about ±2.90 dB(A).
The raw data in Fig. 4(c) after the linear fitting (y = 0.7911x + 20.02) looks like
Fig. 4(f) and the calibration model whose average error is within ±3.06 dB(A) is
available. As for walking data, unfortunately, as we can see from its time series plot
and scatter plot in Fig. 4(g–h), we can’t find a suitable relation and fitting model
between walking data and SLM readings. The reason may be that the friction caused by
users’ periodical motion when the phone is put in the pocket leads to deviant readings.
And that’s why we decide to discard the walking data in our system architecture.
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Fig. 4. (a) Raw time series of standing data; (b) Normal distribution fitting of raw errors of
standing data; (c) Raw time series of sitting data; (d) Normal distribution fitting of raw errors of
sitting data; (e) Time series of standing data after calibration; (f) Time series of sitting data after
calibration; (g) Raw time series of walking data; (h) Scatter plot of SLM readings and raw data
calculated by the mobile phone;
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Based on the above results, the standing calibration sub-model and sitting calibra-
tion sub-model are proved to be feasible and reasonable. So we integrate the two linear
calibration sub-models into the SPM. After the integration, we can eventually conduct
the experiments for the whole proposed architecture and validate its effectiveness in the
next section.

4.2 Experiments for Validating the Proposed Architecture

In this section, we carry out the experiment in the whole process based on the proposed
architecture depicted in Fig. 1. In order to verify that there is no problem with device
dependencies, we use three different types of mobile phones, MEIZU M5 Note,
REDMI NOTE 5A, and COOLPAD C106-9 to validate the calibration model.
Meanwhile, we use the classification models, support vector machine (SVM), k-nearest
neighbor (KNN), and logistic regression (LR) to compare the performance with our
CNN model.

Dataset. The dataset we collected from three mobile phones of different models
includes 3-axis accelerometer data of x, y, and z sampled at 25 Hz and the raw original
audio signals sensed by microphones at 44.1 kHz. The number of each type is shown in
Table 3.

Fig. 5. The comparison lines under different situations (the lines are connected by the points
corresponding to the values of 1/3 octave band spectrums under different situations, respectively)

Table 2. Results of normal distribution fitting

Log likelihood Mean Variance

Standard situation −1780.94 8.78134 17.9977
Standing −1806.52 7.47372 14.5815
Sitting −2055.19 8.71402 15.1505
Walking −4146.17 5.20406 164.998
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We collected 511391079 time series signal samples and 61940 3-axis accelerometer
data in x, y, and z axis separately as the input data for training and testing the model.
Firstly, we process the input 3-axis time series signals by our proposed CNN model and
use it to classify and identify current user behaviors. Then, we leverage the calibration
model obtained in the previous section to correct raw data and analyze the experimental
results. More details will be explained in the next sub-sections.

The Proposed CNN Structure. Convolutional neural network (CNN) is one of the
representative algorithms of deep learning. Since CNN can extract features from signals
well and has the advantages of local dependency and scale invariance [26, 27]. We
adopt the CNN model to process the raw time series accelerometer data following the
idea of [26, 27] where the 3-axis data will be treated as the 3-channel input like RGB
images. Given that we will integrate the classification model into mobile phones in the
future, there is a tradeoff between computation and accuracy. In this paper, a relatively
simple and classical CNN structure is adopted and the specific parameters are shown in
Fig. 6.

Due to the obvious numerical feature differences among these three activities
walking, sitting and standing, the architecture we leveraged is quite simple but the
classified result is very satisfying. The structure consists of 1 input layer, 2 convolution
layers, 2 max-pooling layers, 1 full connection layer and 1 output layer. In our model,
we directly take the time series data as input differing from traditional image input, so
some transformations must be done before inputting. We set a sliding window with the
length of 50 to segment the raw time series accelerometer readings. The window size is
the sample length of 2 s, which is long enough to capture the repeated walking motion.
The sliding window moves forward in a half-overlapping manner (namely 25 samples

Fig. 6. The structure of CNN model used for classifying user activities, including the input
layer, 6 hidden layers (between input layer and output layer), and output layer.

Table 3. The number of samples

xyz-axis accelerometer Audio signal

Sitting 24775 114357442
Walking 19371 197102180
Standing 17794 199931457
Total 61940 511391079
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per step). Then segments are input into the input layer in 3-channel way. In the
following convolution layer, a 1*5 filter (stride = 1) is adopted to conduct a one-
dimensional convolutional operation. In pooling layer, we use max-pooling (size =
1*5, stride = 2) to reduce the dimensionality of feature maps in the previous layer.
The operations and parameters in the next convolution layer and pooling layer are the
same as these two’s. The flattened last pooling layer is connected to a full-connection
layer with 500 hidden units and the output layer will give the final classified result
standing, sitting or walking.

Experimental Results. We use the 10-fold cross validation method to perform the
classification model. The performance comparison of different classifier results is
shown in Table 4. The precision, recall, and F1 of CNN classification results are the
highest of all, which reach 99.2%, 99.1% and 99.1%, respectively. In conventional
classifier of machine learning, KNN performs better than the other two and its precision
is very close to CNN’s.

After classification, if it’s walking, the data is abandoned directly. For the other two
cases, we adopt corresponding calibration sub-models obtained in Sect. 4.1. The
average errors of MEIZU, REDMI and COOLPAD finally obtained are ±3.0563 dB
(A), ±3.0644 dB(A) and ±4.8252 dB(A), respectively. MEIZU and REDMI perform
better than COOLPAD and control the errors in a similar range, about ±3 dB(A) which
is an acceptable value. The results prove that the proposed calibration model can
efficiently improve data quality under different phone context. Though the COOLPAD
performs not as well as MEIZU and REDMI, it’s already better than the original
average error (±13.6740 dB(A)). More intuitively, let’s take 120 samples before and
after calibration as the example. The raw data of mobile phones and SLM are shown in
Fig. 7(a). In the raw time series data, the first 60 samples are recorded during sitting
while the following 60 samples are standing data.

In Fig. 7(a), all the lines of the three phones deviate from the SLM readings (blue
line) at different levels and are smaller than the blue line, this is consistent with our
previous experiments. As how the designed system architecture works, the three dif-
ferent lines are calibrated by sitting calibration sub-model and standing calibration sub-
model, respectively. As we can see from the corrected result shown in Fig. 7(b), most
points of MEIZU and REDMI are very close to the SLM readings and the orange and
red lines generally overlap blue line. Although the purple line still has a small distance,
it is much closer than Fig. 7(a). The differences among them after calibration mainly
caused by the hardware configuration differences. The hardware configuration of

Table 4. Performance comparison of different classifier results

Precision Recall F1

CNN 0.99170 0.99140 0.99141
LR 0.98735 0.98710 0.98713
KNN 0.99083 0.99054 0.99057
SVM 0.98625 0.98538 0.98554
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different brands and different models of mobile phones is quite different, and it will
certainly affect the accuracy of the measured values to a certain extent. This is
something we have no way to overcome at present but we will continue to study and
solve it in the future work.

5 Conclusions

Noise pollution has obtained increasing attention in recent years with much more
realization of its harm. But it’s limited for us to know the specific sound strength,
which is bad for monitoring ambient noise level. The previous work leveraging mobile
sensors of mobile phones requires strict sampling conditions leading to little available
data. The sparse data makes it difficult to reconstruct data for building up a noise map
which can make people know the noise situation from a macroscopic perspective and
provide much useful and meaningful information for the government.

In this paper, we conduct a sequence of experiments for validating feasibility in the
standard situation and digging out the relations between phone readings and SLM
readings during sitting and standing. The results show that linear fitting can reduce the
differences between them and control the errors in the desirable range,±2.09 dB(A) and
±3.06 dB(A) respectively. In Sect. 4.2, the calibration model and the CNN-based
activity recognition classification are integrated into one to perform the whole noise
sensing process. To avoid device dependent problem, we use three mobile phones of
different models to conduct the experiments. In the first classification model, we
leverage the 3-axis accelerometer data only but the accuracy reaches 99.2%. Then,
output the classified result and choose a corresponding calibration sub-model to modify
the raw noise data. Finally, we get the average error of ±3.06 dB(A), ±3.06 dB(A) and
±4.8252 dB(A), respectively. The results prove that the proposed noise sensing cali-
bration model can fully leverage noise data under different phone context which is
unavailable in previous work and relieve the data sparsity problem in some way.

Fig. 7. Time series data, the first 60 samples are sitting data and the remaining is standing data
(a) The raw series data before calibration; (b) The series data after calibration (Color figure
online)
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Even though both REDMI and MEIZU perform well in the calibration model and
obtain high-precision results, the COOLPAD works not as nicely as them. The main
reason is the heterogeneous problem among different mobile phones that can’t be
ignored. The hardware configuration differences between different mobile phone
models actually influence the model accuracy, and this is the major problem we must
consider and solve in our future work.
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