
 123

LN
BI

P
34

7

Selected and Revised Papers from the
Web Technologies Track at SAC 2017 and SAC 2018
and the Software Development for Mobile Devices,
Wearables, and the IoT Minitrack at HICSS 2018

Towards Integrated
Web, Mobile, and
IoT Technology

Tim A. Majchrzak
Cristian Mateos
Francesco Poggi
Tor-Morten Grønli (Eds.)

Lecture Notes
in Business Information Processing 347

Series Editors

Wil van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Tim A. Majchrzak • Cristian Mateos •

Francesco Poggi • Tor-Morten Grønli (Eds.)

Towards Integrated
Web, Mobile, and
IoT Technology
Selected and Revised Papers from the
Web Technologies Track at SAC 2017 and SAC 2018
and the Software Development for Mobile Devices,
Wearables, and the IoT Minitrack at HICSS 2018

123

Editors
Tim A. Majchrzak
Department of Information Systems
University of Agder
Kristiansand, Norway

Cristian Mateos
ISISTAN-UNICEN-CONICET
Tandil, Argentina

Francesco Poggi
University of Bologna
Bologna, Italy

Tor-Morten Grønli
Kristiania University College
Oslo, Norway

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-030-28429-9 ISBN 978-3-030-28430-5 (eBook)
https://doi.org/10.1007/978-3-030-28430-5

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2581-9285
https://orcid.org/0000-0001-5761-1898
https://orcid.org/0000-0001-6577-5606
https://orcid.org/0000-0002-2026-4551
https://doi.org/10.1007/978-3-030-28430-5

Towards Integrated Web, Mobile, and IoT Technology:
Foreword

The World Wide Web is relentlessly evolving. Once it was a single interconnection of
static, physically distributed content passively accessed by human users through per-
sonal computers. During the explosion of Web-based social networks, the Web evolved
into an environment allowing users worldwide to interact and collaborate in the cre-
ation of user-generated content within many virtual communities. In this line, Web 2.0
is the umbrella term used to encompass several developments which followed, namely
social networking sites and social media sites (e.g. Facebook), blogs, wikis, folk-
sonomies (e.g. Flickr), video sharing sites (e.g. YouTube), collaborative platforms, and
mashup applications. Many technologies such as HTML5, CSS3, AJAX, and
client-side scripting helped to bring these ideas into practice. Simultaneously, the
mobile ecosystem evolved and through the smartphone revolution from 2007 mobile
applications (“apps”) became the predominant factor on our personal devices.

The current Web is an evolutionary step from the Web 2.0 in that access to content
is nowadays ubiquitous, content itself is far more heterogeneous, and “users” come in
mixed and different flavors. First, ubiquitous access has been mainly pushed by the
inception of mobile computing and mobile devices; in fact, reports show that by 2020
the number of mobile device users will be about 70% of the global population. This has
given birth to new areas of research beyond Web that seek to produce tailored com-
puting paradigms – namely Dew, Fog, and Edge Computing – aimed at both addressing
mobile devices’ inherent limitations and exploiting their capabilities to build novel
applications. Secondly, served and published Web content is not only those following
traditional interchange formats (text, images, video) but also executable code or Web
APIs (e.g. Mashape.com, ProgrammableWeb.com), from which new applications can
be built and in turn published back to the Web. The recent notion of “Web of objects,”
which find its roots in Web-accessible IoT applications, promotes the interconnection
of hardware elements capable of producing huge amounts of sensor data. Finally, the
role of Web application end users and Web developer and designers is somewhat
blurry, due to modern Web technologies that greatly simplify the creation and
deployment of rich Web sites that might consume Web-accessible services. In addition,
the advent of Semantic Web technologies paves the way for one research stream
towards the creation of intelligent applications, and thus the tandem human
user-browser is no longer the only way to take advantage of Web content.

In this context, novel approaches and techniques, new tools and frameworks are
needed to address the increasing complexity of the distributed computing paradigms
that are coming and the applications therein. Motivated by these necessities, we have
therefore brooded over the idea of putting selected, extended papers from pertinent
highly-reputed conferences into a collection with a fitting theme. This volume contains
extended papers from (a) the Web Technologies track at the 33rd ACM/SIGAPP
Symposium On Applied Computing (ranked B according to core 2018), (b) the Web

Technologies track at the 32nd ACM/SIGAPP Symposium On Applied Computing
(ranked B according to core 2018), and (c) the Software Development for Mobile
Devices, Wearables, and the Internet-of-Things Minitrack at the 51st Hawaii Interna-
tional Conference on System Sciences (ranked A according to core 2018). Thus, it
contributes with a uniform view of cutting-edge research in Web, Mobile, and IoT
technologies, having these venues as a primary source.

The first contribution in this volume is “Metamorphic Testing of Mapping Soft-
ware,” by Joshua Brow, Zhi Quan Zhou, and Yang-Wai Chow. The authors apply the
concept of metamorphic testing to Web-based Map services, namely the wide-spread
Google Maps and OpenStreetMap. Their work deepens the understanding of this
technique in the context of the Web, as well as provides a concrete evaluation.

The second article, “Multi-criteria Recommendations by Using Criteria Preferences
as Contexts,” by Yong Zheng, addresses recommender systems. This classical topic in
the realm of Web technologies is broadened to multi-criteria recommender systems
(MCRS). The author presents exhaustive work on the advancement of the state of the
art.

In the third article, “Towards Pluri-Platform Development: Evaluating a Graphical
Model-Driven Approach to App Development Across Device Classes,” by Christoph
Rieger and Herbert Kuchen, the authors focus on cross-platform app development.
However, due to the complexity of developing apps not for ‘merely’ incompatible
platforms on similar devices but rather among the devices classes, they propose the
term ‘pluri-platform development’. The authors present work on MAML, a framework
they suggest as a step towards pluri-platform development.

The fourth article is “What Matters for Chatbots? Analyzing Quality Measures for
Facebook Messenger’s 100 Most Popular Chatbots,” by Juanan Pereira and Oscar
Díaz. The authors chose a very timely topic, which will likely gain even more
momentum. Their work indicates that the most popular chatbots that they analyzed
were rather simple – an observation that they expect to change within a short time.

In the firth article, “Linguistic Abstractions for Interoperability of IoT Platforms,” by
Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and Stefano Pio Zingaro, we
move to the Internet-of-Things. The authors address IoT interoperability – a major
challenge of IoT application. Building on Jolie, the authors propose a language-based
approach for the integration of disparate IoT platforms.

The sixth and final article is “Energy-Efficient Scheduling of Tasks with Conditional
Precedence Constraints on MPSoCs,” by Umair Ullah Tariq, Hui Wu, and
Suhaimi-Abd-Ishak. As the most formal paper in this volume, it targets
energy-efficiency, a topic particularly relevant in mobile computing and embedded
systems. The authors present a heuristic-based approach that significantly improves the
state of the art.

We sincerely thank the anonymous reviewers that helped us to review the papers
included in this volume. It is worth mentioning that the quality of the contributions
presented in this volume is also due to the hard work of the members of the Program
Committees of the Web Technologies Track within SAC (32nd and 33rd editions) and

vi Towards Integrated Web, Mobile, and IoT Technology: Foreword

the Software Development for Mobile Devices, Wearables, and the Internet-of-Things
Minitrack within HICSS (51st edition). Finally, we would like to thank Springer for
making this volume possible.

We wish you a pleasant and stimulating read.

Tim
Cristian

Francesco
Tor-Morten

Towards Integrated Web, Mobile, and IoT Technology: Foreword vii

Contents

Metamorphic Testing of Mapping Software . 1
Joshua Brown, Zhi Quan Zhou, and Yang-Wai Chow

Multi-criteria Recommendations by Using Criteria Preferences as Contexts. . . . 21
Yong Zheng

Towards Pluri-Platform Development: Evaluating a Graphical
Model-Driven Approach to App Development Across Device Classes 36

Christoph Rieger and Herbert Kuchen

What Matters for Chatbots? Analyzing Quality Measures for Facebook
Messenger’s 100 Most Popular Chatbots . 67

Juanan Pereira and Óscar Díaz

Linguistic Abstractions for Interoperability of IoT Platforms. 83
Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese,
and Stefano Pio Zingaro

Energy-Efficient Scheduling of Tasks with Conditional Precedence
Constraints on MPSoCs . 115

Umair Ullah Tariq, Hui Wu, and Suhaimi Abd Ishak

Author Index . 147

Metamorphic Testing of Mapping
Software

Joshua Brown, Zhi Quan Zhou(B), and Yang-Wai Chow

Institute of Cybersecurity and Cryptology, School of Computing
and Information Technology, University of Wollongong,

Wollongong, NSW 2522, Australia
jb740@uowmail.edu.au, {zhiquan,caseyc}@uow.edu.au

Abstract. Mapping software is difficult to test because it is very costly
to evaluate its output. This difficulty is generally known as the ora-
cle problem, a fundamental challenge in software testing. In this paper,
we propose a metamorphic testing strategy to alleviate the oracle prob-
lem in testing mapping software. We first conduct a case study to test
Google Maps, the most popular web mapping service. The results of the
case study show that our testing approach is effective, with the detec-
tion of several real-life bugs that can hardly be exposed under conven-
tional testing paradigms. Following this, we conduct an analysis of the
system OpenStreetMap, well-known open-source mapping software built
and maintained by a community of users. We show the potential of meta-
morphic testing for such systems. These case studies show that metamor-
phic testing can be applied to mapping software for both verification and
validation purposes.

Keywords: Mapping software · Google Maps · OpenStreetMap ·
Navigation software · Web service · Graphical User Interface ·
Software testing · Oracle problem · Metamorphic testing

1 Introduction

A map is a representation of the world. It is a vast and complex system of
interconnecting land and sea, physical features, roads, intersections and other
features which is further extended through the use of attributes to refine the
maps representation. In the world, there are over 64 million kilometres of road
[2], which continues to grow and change every day. The mapping software has
a routing utility which is designed to plan an optimal route between two points
within the constraints it has been passed; the route contains the process that
the user should follow to reach the destination.

Mapping systems are one of the most popular applications on the Inter-
net, and in particular on smart phones. They are the most popular application

An initial version of this paper was presented at HICSS-51 [1].

c© Springer Nature Switzerland AG 2019
T. A. Majchrzak et al. (Eds.): Towards Integrated Web, Mobile,
and IoT Technology, LNBIP 347, pp. 1–20, 2019.
https://doi.org/10.1007/978-3-030-28430-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28430-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-28430-5_1

2 J. Brown et al.

installed on over 50% of the global smart phone market [3]. Furthermore, these
systems are mission critical applications, as their failure could potentially cause
traffic accidents, especially when they are used for the navigation of autonomous
vehicles such as self-driving cars. Mapping software and its components, there-
fore, must be thoroughly verified and validated.

In order to verify and validate software systems, testing is essential. It is
widely accepted that, in a typical commercial software development project, the
cost of testing can easily exceed 50% of the total development budget. Testing
involves executing the software under test (SUT) with a set of test cases together
with a mechanism against which the tester can decide whether the outcomes of
test case executions are correct (that is, a test oracle). The oracle problem refers
to the situation where an oracle does not exist or it is theoretically available but
practically too expensive to be applied. The oracle problem is a fundamental
challenge in software testing practice but this problem is often ignored by the
research community—compared with many other aspects of testing such as auto-
mated test case generation, the challenge of test oracle automation “has received
significantly less attention, and remains comparatively less well-solved” [8].

There is a severe oracle problem when testing some of the critical features
of mapping software. For example, the real-world road networks are so complex
that in most situations it is infeasible to validate whether or not a route returned
by the mapping software is correct and optimal, except trivial cases. This diffi-
culty results in a scenario where developers cannot utilize conventional testing
techniques. In fact, literature on automated testing of mapping software is very
limited.

A growing body of research has investigated the concept of metamorphic
testing (MT) [10–19,26,31], and has proven MT to be a highly effective test-
ing paradigm for the detection of real-life software faults in the absence of an
ideal test oracle. The idea of MT is simple: instead of focusing on the correct-
ness of each individual output, MT looks at the relations among the inputs and
outputs of multiple executions of the SUT. Such relations are called metamor-
phic relations (MRs), and are necessary properties of the intended software’s
functionality. For example, the accuracy and completeness of the search results
returned by a search engine is difficult to assess [14,34]. Nevertheless, MT can
be applied by identifying the following metamorphic relation: a stable search
engine should return similar results for similar queries. For instance, although a
search for [today’s movies in Honolulu] and a search for [Honolulu movies
today] may return different results, the two sets of search results should have
a large intersection, if the search engine under test is robust [14]. Because MT
looks at the relations among multiple SUT executions instead of focusing on the
verification of each individual output, it can be performed in the absence of an
ideal oracle, alleviating the oracle problem.

Although the basic concept of MT is simple, it requires specific study when
applied to different application domains [15]. This is because different application
areas can have different properties of interest to investigate. The present paper
proposes applying MT to test mapping software in order to alleviate the oracle

Metamorphic Testing of Mapping Software 3

problem in testing such systems. We conducted a case study with Google Maps
to test its mobile applications, its web service APIs (namely, the Directions API),
as well as its Graphical User Interface (GUI) at maps.google.com. Google Maps
was selected for the case study because it was the most popular mapping system
[3] (except in China, where Google services could not be accessed).

In this study we ask the following research question:
RQ: Can we have a practical and effective method of automatically testing

mapping software in the face of the severe oracle problem?
Following this case study we provide a plan to extend the testing method-

ology to OpenStreetMap. OpenStreetMap was selected because it was the most
popular open source mapping software. In addition, it had a large base consisting
of over 4.7 million users, 4.6 billion nodes, an average of three million change-
sets per day and it had over one million contributors [4,5]. OpenStreetMap had
some prominent users including Baidu Maps, Uber, SnapChat, the White House,
foursquare and Wolfram Alpha [6,7].

The contributions of this paper are summarized as follows:

– This work shows a proposal of the use of metamorphic testing to address the
automated testing of mapping software.

– This work shows a case study of testing Google Maps from a user’s perspec-
tive.

– This work shows the detection of real-life bugs in Google Maps, and demon-
strates the effectiveness of metamorphic testing.

– This work shows a preliminary analysis of testing OpenStreetMap from a
developer’s perspective.

– Given the limited literature on automated testing of mapping software, the
study of the functional correctness of driving navigation (which is an essential
feature of mapping software) presented in this paper, together with the detec-
tion of real-life bugs, is a significant piece of pioneering work in engineering
mapping software.

The testing methodology presented in this study can also be applied to other
forms of mapping systems beyond Google Maps and OpenStreetMap, and can
be used as the foundation for future work in the verification and validation of
systems such as self-driving cars [33] and delivery robots [32].

The rest of this paper is organized as follows: Sect. 2 further introduces some
background knowledge and Sect. 3 explains our testing approach with a focus
on the identified MRs for the mapping software under test. Section 4 presents
our test results by highlighting the detected defects in Google Maps. Section 5
makes further discussions and concludes the paper.

2 Background

2.1 Difficulties in Testing Mapping Software

As explained in Sect. 1, mapping software is difficult to test owing to the oracle
problem. Worse, the lack of system specifications adds further difficulties to user

http://maps.google.com

4 J. Brown et al.

validation: the vast majority of users do not have access to the detailed algorithm
designs and system/subsystem specifications of the mapping software they are
using. Without access to these specifications, the user manual or online help
pages are the only type of information source available to the users. However, as
pointed out by Zhou et al. [14], user manuals or online help pages are usually very
brief and are not equivalent to the system specification defined as “an adequate
guide to building a product that will fulfill its goals” [20]. Consequently, it is
basically impossible for users to evaluate the mapping system they are using
against its technical specifications or the intended algorithms.

Zhou et al. [14] pointed out that the above phenomenon can be quite common
when testing many types of software applications such as web services, poorly
evolved software, and open source software, and showed that MT can be an
effective approach to addressing these difficulties caused by a lack of detailed
knowledge about the system design and specifications coupled with the oracle
problem.

For developers of the mapping software, even if they have the complete doc-
umentation and specifications, it is still very challenging for them to test such
systems because of the complexity of the underlying algorithms and data. As
will be shown in this paper, MT can be an effective testing approach for both
developers and users, as well as third-party independent testers.

2.2 Metamorphic Testing (MT)

MT [10,26] alleviates the oracle problem by testing the SUT against prescribed
MRs, which are necessary properties of the intended program’s behavior. (Read-
ers are referred to Chen et al. [31] for a formal definition of MRs.) The difference
between MRs and other types of program properties is that an MR involves mul-
tiple executions of the target program. Even if the correctness of an individual
output cannot be verified due to the lack of an oracle, the tester can still check
whether the expected relation among multiple executions is satisfied. If the MR
is violated for any of the test cases, a fault is detected. MT has been applied
to many different application domains such as web services and applications,
computer graphics, simulation and modeling, machine learning, bioinformatics,
decision support, components, compilers, numerical programs, and so on [15].
Recently, MT has been used in combination with fuzzing to detect previously
unknown fatal defects in real-life self-driving cars [33].

To illustrate the concept of MT, consider the following example: let p(G, x, y)
be a program that calculates the shortest path from node x to node y in an
undirected graph G. When G is large and complex, it can be difficult to verify
the output of p because no oracle can be practically applied. To perform MT
in this situation, we can identify many MRs for the shortest path problem,
one of which can state that swapping the origin and destination nodes should
not affect the length of the calculated shortest path [21]. Using this MR, a
metamorphic test will run p twice, namely, a source execution on a source input
(G1, x1, y1) to produce a source output, and a follow-up execution on a follow-up
input (G2, x2, y2) to produce a follow-up output, where G2 = G1, x2 = y1, and

Metamorphic Testing of Mapping Software 5

y2 = x1. Any violation of this MR (that is, if the source output and the follow-
up output are found to have different lengths for some test case(s)) will reveal
a fault in p. Many other MRs can also be identified and used to test p [21], and
different MRs often have different fault-detection capabilities.

When MT was first proposed, it was designed as a verification technique,
where an MR is a necessary property of the intended algorithm or system spec-
ification to be implemented. In this situation, a violation of the MR reveals a
fault in the implementation. Later, it was observed that MRs can also be defined
based on user expectations “to reflect what they really care about,” rather than
based on the algorithms or system specifications of the developers—such algo-
rithms and specifications are often unknown to the users anyway [14]. In this
way, MT can be used as a user-oriented approach to perform validation and other
types of quality assessment (such as the assessment of usability and functional
completeness), and hence MT has been developed into a unified framework for
software verification, validation, and quality assessment [14].

2.3 Related Work

Nisner and Johannessen [23] reported on the failure rates and the failure modes
experienced with Standard Positioning Service (SPS) GPS receivers certificated
for aviation use. Another related study was conducted by Wright et al. [9],
where they manually evaluated the position accuracy and measurement accuracy
(driving distance) computed by GPS receivers against a local area road map.
Their study faced a limitation of having a tester drive the route out in order to
compare with the road map. They did not find unexplained flaws in the system
under test.

Elleuch et al. [24] introduced a process of converting raw GPS data to a
routable road map, where they presented an architecture that collected GPS
data from a large number of vehicles to get the road traces. They generated
a Tunisian map network from their database and map-matched it with Google
Maps to compare them and generate the missing road data. The same group of
authors continued this work [25] and presented a 100 GB database of geograph-
ical coordinates collected from GPS receivers in several vehicles. Their database
contained many types of information including speed. Based on these data, they
generated a road map of Tunisia and then compare it with the roads shown in
Google Maps.

While much research has been done with a focus on the accuracy of the
map data [30] and implementations of newly proposed methods and algorithms
[28,29], Goodman [27] noted that navigation outages due to receiver software
issues may pose great threats to the users and that the high cost of meeting
strict software quality standards, and the proprietary nature of Global Navi-
gation Satellite System (GNSS) receiver software, “makes it more difficult to
ensure quality software for safety-critical applications. Lack of integrator and
user insight into GNSS software complicates the integration and test process,
leading to cost and schedule issues.” Goodman also noted that “a close rela-
tionship with the GPS vendor, open communication among team members,

6 J. Brown et al.

Independent Verification and Validation of source code, and GPS receiver design
insight were keys to successful certification of GPS for operational use by the
space shuttle” [22].

3 Our Approach for Testing Navigation Software

3.1 The Identified Metamorphic Relations for Navigation Software

In the first part of our study, we investigate the testing tasks of Google Maps
using a user-orientated approach by utilizing the concept of MT, as we identify
some MRs (MRs 1–5) for mapping software from the users’ perspective. This
is because the algorithms and detailed system specifications of the SUT are
unavailable for reference. In the next part of this study, we consider the open
source software OpenStreetMap, where we identify two additional MRs (MRs
6–7) from the developers’ perspective because we can access the internal code
and data structures of the system, and hence make use of them. However, we
did not implement the test driver for OpenSteetMap due to a limited budget of
this project (this is because the coding task for the implementation of MRs 6–7
is non-trivial). Nevertheless, it should be noted that the proposal of MRs 6–7
is generally applicable to navigation systems where the data structures of the
underlying maps can be edited, and that MRs 1–5 are generally applicable to
most navigation systems. These seven MRs are described as follows.

3.1.1 MRSimilar
The first MR is named MRSimilar. Its design is based on the premise that a
mapping system should return similar results for similar queries, in a way similar
to a search engine [14].

For instance, after a source output (a route) is generated for a source input
(an origin and a destination point), we can produce a follow-up input by very
slightly changing the origin and/or the destination. Then, in most situations, the
follow-up output should be a route having a cost similar to that of the source
output. In this paper, the cost of a route is in terms of distance or time depending
on the user’s preference; monetary costs are not considered.

More specifically, let d(a, b) be a function that gives the cost of an optimal
route for travel from point a to point b. MRSimilar states that d(a, b) and d(a′, b′)
should be similar if a ≈ a′ and b ≈ b′. Here, x ≈ y means that x and y are
approximately at the same location.

In our experiments with MRSimilar, each source test case (namely, an origin
and a destination point) was formed by means of random selection from a set
of addresses (to be explained in Sect. 3.2), and the corresponding follow-up test
case was produced by adding a tiny amount of distance (e.g., a few millimeters
or centimeters on the same road) to the origin and/or destination point. A
comparison was then made assessing the difference between the source and the
follow-up outputs. An anomaly would be reported if a large amount of difference
(e.g., more than ten meters) was detected.

Metamorphic Testing of Mapping Software 7

Fig. 1. Google Maps failure detected using MRSimilar with American addresses.
(a) The entire driving direction generated by Google Maps (screenshot taken at
maps.google.com). (b) Zoom in to show that the destination point has been traversed
twice in the route. (c) Further zoom in to show the origin and destination points. (d)
A similar failure produced by the Google Maps app for Android on a Samsung Galaxy
S4 mobile phone.

http://maps.google.com

8 J. Brown et al.

3.1.2 MRRestriction
The second MR is named MRRestriction. It employs the mapping system’s abil-
ity to work under different conditions. Examples include avoiding elements of
the route such as tolls, ferries, and highways. The MR is focused on ensuring
that a restrictive condition does not result in a more desirable/optimal output.
More specifically, MRRestriction states that

dR(a, b) ≥ d(a, b),

where dR(a, b) is a function that gives the cost (distance or time) of an optimal
route for travel from a to b with a restriction, such as avoiding highways.

MRRestriction can be used to assess how the output of a mapping system is
affected by the rules placed on the user request or affected by external conditions
under which certain elements of the route are not available (such as outside ferry
operating hours). It is based on the concept that a query without any restriction
should yield a more beneficial result than a query that has restrictive rules on
it. For example, a route without any restriction should not be longer and slower
than a route that avoids highways.

In the experiments with MRRestriction, each metamorphic test started with
a source test case and then a follow-up test case was constructed with the addi-
tion of restrictions such as avoiding ferries, tolls, highways, or a combination
of these restrictions. If a follow-up output was more optimal than the source
output, an anomaly would be reported. A restriction can be added explicitly by
selecting certain options in the user query or implicitly by setting a travel time
outside certain road/ferry/bus/train operating hours.

3.1.3 MRSplit
The third MR is named MRSplit. It observes that the cost of a route from a to c
via b should be similar to the cost of a route from a to b plus the cost of a route
from b to c. More generally, MRSplit requires that dm(a1, a2, . . . , an) should
be similar to d(a1, a2) + d(a2, a3) + . . . + d(an−1, an), where dm(a1, a2, . . . , an)
denotes the cost of an optimal route for travel from a1 to an via a2, a3, . . ., an−1.

MRSplit can be used to assess how the output of the mapping software is
affected by intermediate nodes. In our experiments, each source test case included
some waypoint nodes between the origin and destination, and a series of follow-
up test cases were formed by splitting up the source test case.

3.1.4 MREnvironment
Our fourth MR is named MREnvironment. It assesses how the mapping soft-
ware’s behavior is affected by different user environments. An example of this
MR is the same request issued using the API (source input) and the mobile
application (follow-up input)—an ideal mapping system should return similar
results across these different user environments.

More specifically, let P and Q be two different environments or platforms.
Let dP and dQ be the cost functions for environments P and Q, respectively.
MREnvironment states that dP (a, b) and dQ(a, b) should be similar.

Metamorphic Testing of Mapping Software 9

In our experiments with MREnvironment, each metamorphic test consisted
of source and a follow-up test cases involving exactly the same query but different
environments. An anomaly would be reported if the outputs were significantly
different (e.g., having more than ten meters difference).

3.1.5 MRFlip
The fifth MR is named MRFlip. It observes that the cost of a route from a to b
should be similar to the cost of a route from b to a. More specifically, let d(a, b)
be a function that gives the cost of an optimal route for travel from point a to
point b. MRFlip states that d(a, b) and d(b′, a′) should be similar if a = a′ and
b = b′.

For instance, after a source output (a route) is generated for a source input
(an origin and a destination point), we can produce a follow-up input by swap-
ping the origin with the destination. Then, in most situations, the follow-up
output should be a route having a cost similar to that of the source output.

A B
7

C
8

D E
15

F G
11

5
9

5
5

6
8

9

Fig. 2. Sample graph.

It should be noted that this MR may not necessarily be valid if one-way traffic
is involved in a route. In our experiments with MRFlip, therefore, violations
involving one-way traffic were treated through a separate procedure. For all
valid tests, a violation would be reported if a large amount of difference between
the source and follow-up outputs was detected.

3.1.6 MRTrimOn
Our sixth MR is named MRTrimOn. It assesses how the mapping software’s
behavior is affected by changes in the map environments on the route.

10 J. Brown et al.

It observes that the cost of a source output from a to b which goes through
nodes c should be equivalent to or better than the cost of a follow-up route of a
to b where c is inaccessible.

An example of this MR can be demonstrated using Fig. 2. Let d(A,G) be a
function that gives the cost of an optimal route for travel from point A to point
G. Suppose the source output is (A,B,E,G). For a follow-up input where point
E in the graph becomes unusable (blocked), the follow-up output should not
have a cost that is better (smaller) than the previous cost; otherwise a violation
of the MR is reported.

This MR is designed for OpenStreetMap only because we are unable to
change the underlying maps of Google Maps.

3.1.7 MRTrimOff
Our seventh MR is named MRTrimOff. It states that the cost of an optimal route
returned by a mapping software should remain the same if there is an irrelevant
change in the map environment.

More specifically, MRTrimOff requires that the cost of a route from a to b
should remain the same if e is made inaccessible (blocked), where e is a node that
is not included in the source output (which is the route from a to b originally
returned by the mapping software).

An example of this MR can be demonstrated using Fig. 2. Suppose the map-
ping software returns the route (A,B,E,G) as the optimal route for travel from
point A to point G. Because C is not included in this route, in the follow-up
input if we block C in the graph then the follow-up output must not return
a route that has a better (lower) cost than the route (A,B,E,G); otherwise a
violation of the MR is reported.

This MR is designed for OpenStreetMap only because we are unable to
change the underlying maps of Google Maps.

3.2 General Design of the Experiments

For the experiments, a set of source test data was generated by randomly sam-
pling 10,000 addresses in Australia and 500 addresses in America, as it was more
convenient for the authors to validate Australian addresses.

An individual address formed the basis of a node. Each request to the map-
ping software can be broken down into five elements: a starting node, an ending
node, waypoint node(s) (that is, the intermediate stop(s)), time (departure or
arrival time), and restrictions.

3.3 General Design of the Google Maps Experiments

To ensure a stable and consistent testing environment, the real-time traffic fea-
ture of Google Maps was turned off during the experiments, as otherwise routing
might be affected by live traffic and the test results might not be repeatable.
To avoid personalized results, the tester did not log into any online accounts

Metamorphic Testing of Mapping Software 11

including Google accounts. Furthermore, when an anomaly was observed, the
test was immediately repeated. An anomaly would be reported only if it could
be reproduced. This treatment was to ensure that the reported anomalies were
not caused by the update or dynamics of the maps or algorithms.

The testing process was largely automated by means of test scripts and test
drivers. In this research, a total of 1,000 h of test executions were completed
across the different environments of Google Maps. As all of the tests were web-
based, the impact of hardware selection was very small.

3.4 General Design of the OpenStreetMap Testing Environment

To ensure a stable and consistent testing environment, a clone of OpenStreetMap
database and associated systems was compiled and this was to be used in a local
system environment to ensure that the results or the system will not be affected
by any online changes and allowing the test result set to be repeatable.

Any database changes were made in their own unique separate container to
ensure that it would not affect any other test executions. To ensure that hardware
or system changes do not affect the experiment, Docker containers will be used
to ensure a stable environment across all test executions. This testing process
will be largely automated by means of test scripts and test drivers.

We did not continue to implement the test driver for OpenStreetMap because,
as explained earlier, the programming tasks for manipulating the underlying
maps for MRs 6–7 is non-trivial. Nevertheless, our feasibility study (a “dirty
implementation”) has proven that MRs 6–7 can indeed be implemented for
OpenStreetMap and that it is only a matter of time to turn the “dirty imple-
mentation” (proof of concept) into a decent testing tool.

4 Issues Detected in Google Maps

Overall, Google Maps passed the majority of the executed tests; however, there
were cases where the system resulted in an unexpected output which was
detected by MR violations. A manual inspection of the MR violations revealed
several defects in Google Maps. This section will highlight some notable exam-
ples of these defects.

4.1 Defects Detected by MRSimilar

In this subsection, we report two failures detected by MRSimilar, where the
first failure was detected when searching for a route in America and the second
failure was detected when searching for a route in Australia. In software testing,
a failure refers to erroneous behavior of the SUT.

12 J. Brown et al.

4.1.1 Searching for a Route in America
When Google Maps was tested against MRSimilar, a source test case yielded
an output that had an expected time duration of 1 min and a distance of 0.0
miles. The follow-up test case featured the same starting node and the same
conditions and only modified the ending node by a distance of 0.98 cm; the
follow-up output, however, suddenly changed dramatically with an expected time
duration of 11 min and a distance of 4.3 miles, as shown in Fig. 1.

Figure 1(a) shows the entire driving direction generated by Google Maps.
The screenshot was taken by using Google Chrome to access the website
maps.google.com. Figure 1(b) zooms in to show a portion of the route surround-
ing the origin and destination points. It is surprising to see that the destination
point has been traversed twice in the driving direction, which is an obvious error.
Figure 1(c) zooms in further to show a Satellite View of the exact origin and des-
tination points. Figure 1(d) is an excerpt of a screenshot taken from a Samsung
Galaxy S4 mobile phone running the Google Maps app for Android. This screen-
shot shows that a similar failure was produced using the mobile device.

Given the extremely small distance between the origin and destination points
shown in Fig. 1, a normal driver would probably not require any mapping soft-
ware to guide him or her. It is, however, not the case for self-driving vehicles or
robots because such autonomous machinery will always rely on software systems
to navigate. It is not acceptable for a driverless car to travel 4.3 miles to reach
a destination that is actually only two meters ahead.

4.1.2 Searching for a Route in Australia
Figure 3 shows another failure detected by MRSimilar, using Australian
addresses. Figure 3(a) shows a screenshot taken from a Huawei mobile phone
running the Google Maps app for Android. It shows that Google Maps returned
1 min walking distance from the current location to “Unit 9/890 Bourke Street,
Zetland NSW.”

To conduct MT, we also queried the Google Maps mobile app using a slightly
modified destination address, which differed from the previous address only in
the unit number (namely, using “Unit 8” instead of “Unit 9,” as we verified
that “Unit 8” was a valid address), but Google Maps returned a very different
location that was 2 km away, which required 11 min driving (Fig. 3(b)) or 26 min
walking (Fig. 3(c)). A violation of MRSimilar was reported because the difference
between the “Unit 8” route and the “Unit 9” route was too large given that they
were at the same street address.

After the MR violation was reported, we manually analyzed the test results
to investigate the root cause of the failure. We first validated that “Unit 8/890
Bourke Street, Zetland NSW” was indeed a correct address and that Unit 8 and
the other units were physically located near each other at 890 Bourke Street.
Figure 4 shows a picture taken at the entrance to Unit 8 during the site visit. We
further found that Google could not actually locate this unit (although it had
been a valid address for a long time) and therefore automatically changed the
user query from “Unit 8/890 Bourke Street, Zetland NSW” to “Bourke Street,

http://maps.google.com

Metamorphic Testing of Mapping Software 13

Redfern, NSW” without explicitly requesting the user to confirm the change. In
this modified address, the unit number “8” and the street number “890” were
removed, and the suburb “Zetland” was changed to “Redfern.” This explains
why the location returned by the Google Maps app was 2 km away.

Fig. 3. A Google Maps app failure on a Huawei Mate 9 Pro mobile phone running
Android, detected using MRSimilar with Australian addresses. (a) Google Maps app
returned “1 min” for walking from the current location to “Unit 9/890 Bourke Street,
Zetland NSW.” (b) Google Maps app returned “11 min” for driving from the current
location to “Unit 8/890 Bourke Street, Zetland NSW.” (c) Google Maps app returned
“26 min” for walking from the current location to “Unit 8/890 Bourke Street, Zetland
NSW.” In (a), (b), and (c), the “current location” was basically the same. It was found
that the location for the address “Unit 8/890 Bourke Street, Zetland NSW” generated
by the Google Maps app in (b) and (c) was wrong: It was 2 km away from the actual
location.

14 J. Brown et al.

Fig. 4. Site visit to Unit 8/890 Bourke Street, Zetland, NSW, Australia, which con-
firmed that this was a valid physical address and that Unit 8 and the other units were
located near each other.

We recognize that many so called “intelligent” systems (actually, their devel-
opers) might assume that they were smarter than the human users and therefore
could automatically “correct” user input without even informing the users. This
phenomenon was initially reported by Zhou et al. [14] where they studied web
search engines and found that major search engines could automatically change
user queries without explicitly informing the users, hence revealing a crucial
deficiency in the software system’s functional completeness.

4.2 Defects Detected by MRRestriction

Figure 5 shows a failure where Google Maps generated an infeasible route involv-
ing vehicular ferries. In Fig. 5(a), the user searched for a route and set the depart-
ing time to be “5:00 AM.” Google Maps returned a route that will “arrive around
5:30 AM.” The route involved the use of free vehicular ferry service operated by
the government, which carries cars across the Clarence River. According to the
government official website (Fig. 5(b)), the ferry operating hours start at 6:00
AM seven days a week. This means that the route shown in Fig. 5(a) is infeasible
for the user’s travel time (departing at 5:00 AM and arriving at the destination
around 5:30 AM). Google Maps failed to identify this restriction and still rec-
ommended the user to use the (unavailable) ferry service. Actually, there was a
nearby bridge that should be recommended instead for the given travel time.

This failure could be potentially due to incorrect ferry operating time data
in the Google Maps database.

4.3 Defects Detected by MRSplit

When testing the Google Maps API against MRSplit, one of the source test cases
involved an origin, a destination, and eight intermediate nodes. The correspond-
ing follow-up test cases consisted of the nodes broken up in individual queries.

Metamorphic Testing of Mapping Software 15

Fig. 5. Google Maps returned an infeasible route. (a) Excerpts of a screenshot showing
that Google Maps returned a route involving vehicular ferry service for travel departing
at “5:00 AM” and arriving “around 5:30 AM.” (b) Ferry operating times: it starts at
6:00 AM, seven days a week.

For the source test case, Google Maps API returned UNKNOWN ERROR as
follows:

{
” route s ” : [] ,
” s t a tu s ” : ”UNKNOWNERROR”
}

In Google Maps API online documentation, an UNKNOWN ERROR indicates
that “a directions request could not be processed due to a server error” [35]. The
“smaller” follow-up test cases, however, did not result in any error.

To further investigate this issue, we ran the test via the website GUI at
maps.google.com, and the test passed without causing any failure or error, as
shown in Fig. 6. This observation demonstrates that the Google Maps GUI and
API are actually not the same, and in this test the API appeared to be more
vulnerable to “large” input involving a large number of waypoint nodes. A fur-
ther investigation shows that this failure could also be replicated using other
“large” inputs.

http://maps.google.com

16 J. Brown et al.

Fig. 6. The Google Maps website GUI at maps.google.com successfully passed this test
case that had eight intermediate nodes, while the API failed.

4.4 Defects Detected by MREnvironment

More failures were detected that were unique to the API environment, an exam-
ple of which is shown in Fig. 7, where a problem related to Geocoding was
revealed. Geocoding is a process of converting addresses into geographic coor-
dinates. Figure 7 shows that, for the test case under consideration, the API
could not find the address, and therefore could not generate the geographic
coordinates. As a result, the API could not generate a route, hence reporting a
“NOT FOUND” status.

When the same query was made via the Google Maps website GUI, it gener-
ated a route without causing any problem, as shown in Fig. 8. This observation
again suggests that the Google Maps API was not as reliable as the website GUI.

” geocoded waypoints ” : [
{
” geo code r s t a tu s ” : ”ZERO RESULTS”
} ,
{
” geo code r s t a tu s ” : ”OK” ,
” p l a c e i d ” : ”ChIJd0ShQqAZE2sRLCpaDBjrqUY” ,
” types ” : [” s t r e e t a dd r e s s ”]
}
] ,
” route s ” : [] ,
” s t a tu s ” : ”NOTFOUND”
}

Fig. 7. Google Maps API failure: geocode not found.

http://maps.google.com

Metamorphic Testing of Mapping Software 17

Fig. 8. For the same test case, the Google Maps website GUI at maps.google.com has
passed (as shown in this figure) whereas the Google Maps API failed (as shown in
Fig. 7). This problem was detected using MREnvironment.

5 Discussions and Conclusion

In Sect. 1, we asked a research question: Can we have a practical and effective
method of automatically testing mapping software in the face of the severe oracle
problem?

To meet this challenge, we have proposed applying MT to test mapping sys-
tems, and have completed an initial case study using Google Maps. The results
of this study provide an affirmative response to the research question. The detec-
tion of several types of real-life bugs in Google Maps further demonstrated the
effectiveness of MT in testing “non-testable programs,” i.e. programs that are
difficult to test due to the lack of an oracle. Our testing approach can be used
by developers for software verification, by users for software validation, and by
independent testers for various quality assessment purposes.

Compared with the significance of the detection of major defects across sev-
eral different environments (namely, the Google Maps mobile app, its web ser-
vice API, and its GUI at maps.google.com), the testing cost we spent for Google
Maps was relatively small. The reported failures could be caused by problems in
the routing algorithms and/or the underlying databases. We have reported our
findings to Google, who later confirmed that these issues were being addressed.
In addition to Google Maps, we have also analysed the OpenStreetMap, and
identified metamorphic relations that could be used to test such systems, from a
developer’s perspective. To implement these metamorphic relations to conduct
testing will be an immediate research to be conducted in the near future.

This work suggests that mapping software can be considered as a special
type of search engine, which accepts user queries and returns routes or driving
directions. Previous results on search engine testing [14] can therefore be useful
for the testing of mapping software. This research employed a useful general
metamorphic relation (that is, a metamorphic relation pattern [32,34]) that is
valid for both search engines and mapping software, namely, the software under
test should return similar results for similar queries. This kind of pattern can
be used to derive many concrete MRs. In future research, more effort should be

http://maps.google.com
http://maps.google.com

18 J. Brown et al.

made into the identification of MR patterns that can be used across different
application domains.

This research contributes to the development of testing techniques for the
navigation software of self-driving vehicles and autonomous robots and drones.
Future research will be conducted at a larger scale by taking these systems into
consideration.

Acknowledgements. This work was supported in part by a linkage grant of the
Australian Research Council (project ID: LP160101691) and an Australian Government
Research Training Program scholarship.

References

1. Brown, J., Zhou, Z.Q., Chow, Y.-W.: Metamorphic testing of navigation software:
a pilot study with Google Maps. In: Proceedings of the 51st Annual Hawaii Inter-
national Conference on System Sciences (HICSS-51), pp. 5687–5696 (2018). http://
hdl.handle.net/10125/50602

2. The world factbook: Central Intelligence Agency (2013). https://www.cia.gov/
library/publications/the-world-factbook/fields/2085.html

3. BuiltWith: Mapping usage statistics (2017). https://trends.builtwith.com/
mapping

4. OpenStreetMap stats report: OpenStreetMap Foundation (2018). https://www.
openstreetmap.org/stats/data stats.html

5. Stats: OpenStreetMap Foundation (2018). https://wiki.openstreetmap.org/wiki/
Stats

6. List of OSM-based services: OpenStreetMap Foundation (2018). https://wiki.
openstreetmap.org/wiki/List of OSM-based services

7. OSM Internet Links: OpenStreetMap Foundation (2018). https://wiki.
openstreetmap.org/wiki/OSM Internet Links

8. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE Trans. Softw. Eng. 41(5), 507–525 (2015)

9. Wright, M., Stallings, D., Dunn, D.: The effectiveness of global positioning system
electronic navigation. In: Proceedings of IEEE SoutheastCon, pp. 62–67 (2003)

10. Chen, T.Y., Tse, T.H., Zhou, Z.Q.: Fault-based testing without the need of oracles.
Inf. Softw. Technol. 45(1), 1–9 (2003)

11. Chen, T.Y., Kuo, F.-C., Zhou, Z.Q.: An effective testing method for end-user pro-
grammers. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)

12. Liu, H., Kuo, F.-C., Towey, D., Chen, T.Y.: How effectively does metamorphic
testing alleviate the oracle problem? IEEE Trans. Softw. Eng. 40(1), 4–22 (2014)

13. Lindvall, M., Ganesan, D., Árdal, R., Wiegand, R.E.: Metamorphic model-based
testing applied on NASA DAT – an experience report. In: Proceedings of the 37th
International Conference on Software Engineering (ICSE 2015), pp. 129–138 (2015)

14. Zhou, Z.Q., Xiang, S., Chen, T.Y.: Metamorphic testing for software quality assess-
ment: a study of search engines. IEEE Trans. Softw. Eng. 42(3), 264–284 (2016)

15. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic
testing. IEEE Trans. Softw. Eng. 42(9), 805–824 (2016)

16. Chen, T.Y., et al.: Metamorphic testing for cybersecurity. Computer 49(6), 48–55
(2016)

http://hdl.handle.net/10125/50602
http://hdl.handle.net/10125/50602
https://www.cia.gov/library/publications/the-world-factbook/fields/2085.html
https://www.cia.gov/library/publications/the-world-factbook/fields/2085.html
https://trends.builtwith.com/mapping
https://trends.builtwith.com/mapping
https://www.openstreetmap.org/stats/data_stats.html
https://www.openstreetmap.org/stats/data_stats.html
https://wiki.openstreetmap.org/wiki/Stats
https://wiki.openstreetmap.org/wiki/Stats
https://wiki.openstreetmap.org/wiki/List_of_OSM-based_services
https://wiki.openstreetmap.org/wiki/List_of_OSM-based_services
https://wiki.openstreetmap.org/wiki/OSM_Internet_Links
https://wiki.openstreetmap.org/wiki/OSM_Internet_Links

Metamorphic Testing of Mapping Software 19

17. Kanewala, U., Pullum, L.L., Segura, S., Towey, D., Zhou, Z.Q.: Message from the
workshop chairs. In: Proceedings of the IEEE/ACM 1st International Workshop
on Metamorphic Testing (ICSE MET 2016), in Conjunction with the 38th Inter-
national Conference on Software Engineering (ICSE). ACM Press (2016)

18. Jarman, D.C., Zhou, Z.Q., Chen, T.Y.: Metamorphic testing for Adobe data ana-
lytics software. In: Proceedings of the IEEE/ACM 2nd International Workshop on
Metamorphic Testing (ICSE MET 2017), in Conjunction with the 39th Interna-
tional Conference on Software Engineering (ICSE), pp. 21–27 (2017)

19. Ding, J., Hu, X.-H., Gudivada, V.: A machine learning based framework for verifi-
cation and validation of massive scale image data. IEEE Trans. Big Data. https://
doi.org/10.1109/TBDATA.2017.2680460

20. Pezzè, M., Young, M.: Software Testing and Analysis: Process, Principles, and
Techniques. Wiley, New York (2008)

21. Chen, T.Y., Huang, D.H., Tse, T.H., Zhou, Z.Q.: Case studies on the selection of
useful relations in metamorphic testing. In: Proceedings of the 4th Ibero-American
Symposium on Software Engineering and Knowledge Engineering (JIISIC 2004).
Polytechnic University of Madrid, pp. 569–583 (2004)

22. Goodman, J.L.: The space shuttle and GPS: a safety-critical navigation upgrade.
In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580, pp. 92–100.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36465-X 9

23. Nisner, P.D., Johannessen, R.: Ten million data points from TSO-approved aviation
GPS receivers: results of analysis and applications to design and use in aviation.
Navigation 47(1), 43–50 (2000)

24. Elleuch, W., Wali, A., Alimi, A.M.: Mining road map from big database of GPS
data. In: 14th International Conference on Hybrid Intelligent Systems (HIS), pp.
193–198. IEEE (2014)

25. Elleuch, W., Wali, A., Alimi, A.M.: Collection and exploration of GPS based vehi-
cle traces database. In: 4th International Conference on Advanced Logistics and
Transport (ICALT), pp. 275–280. IEEE (2015)

26. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for
generating next test cases, Technical report HKUST-CS98-01, Department of Com-
puter Science, Hong Kong Univ. of Science and Technology (1998)

27. Goodman, J.L.: A software perspective on GNSS receiver integration and opera-
tion. In: Rycroft, M. (ed.) Satellite Navigation Systems. Space Studies, vol. 8, pp.
119–126. Springer, Dordrecht (2003). https://doi.org/10.1007/978-94-017-0401-
4 13

28. Luxen, D., Vetter, C.: Real-time routing with OpenStreetMap data. In: Proceed-
ings of the 19th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems (GIS 2011), pp. 513–516. ACM (2011)

29. Graf, F., Kriegel, H.-P., Renz, M., Schubert, M.: MARiO: multi-attribute routing
in open street map. In: Pfoser, D. (ed.) SSTD 2011. LNCS, vol. 6849, pp. 486–490.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22922-0 36

30. Cipeluch, B., Jacob, R., Winstanley, A., Mooney, P.: Comparison of the accuracy
of OpenStreetMap for Ireland with Google Maps and Bing Maps. In: Proceedings
of the 9th International Symposium on Spatial Accuracy Assessment in Natural
Resources and Environmental Sciences, pp. 337–341 (2010)

31. Chen, T.Y., et al.: Metamorphic testing: a review of challenges and opportunities.
ACM Comput. Surv. 51(1), 4:1–4:27 (2018)

32. Zhou, Z.Q., Sun, L., Chen, T.Y., Towey, D.: Metamorphic relations for enhancing
system understanding and use. IEEE Trans. Softw. Eng. https://doi.org/10.1109/
TSE.2018.2876433

https://doi.org/10.1109/TBDATA.2017.2680460
https://doi.org/10.1109/TBDATA.2017.2680460
https://doi.org/10.1007/3-540-36465-X_9
https://doi.org/10.1007/978-94-017-0401-4_13
https://doi.org/10.1007/978-94-017-0401-4_13
https://doi.org/10.1007/978-3-642-22922-0_36
https://doi.org/10.1109/TSE.2018.2876433
https://doi.org/10.1109/TSE.2018.2876433

20 J. Brown et al.

33. Zhou, Z.Q., Sun, L.: Metamorphic testing of driverless cars. Commun. ACM 62(3),
61–67 (2019)

34. Segura, S., Parejo, J.A., Troya, J., Ruiz-Cortés, A.: Metamorphic testing of REST-
ful Web APIs. IEEE Trans. Softw. Eng. 44(11), 1083–1099 (2018)

35. Google Maps Directions API: Google (2016). https://developers.google.com/
maps/documentation/directions/intro

https://developers.google.com/maps/documentation/directions/intro
https://developers.google.com/maps/documentation/directions/intro

Multi-criteria Recommendations by Using
Criteria Preferences as Contexts

Yong Zheng(B)

School of Applied Technology, Illinois Institute of Technology,
Chicago, IL 60616, USA
yong.zheng@iit.edu

Abstract. Recommender system is a well-known information system
which assists decision making by producing recommendations tailored
to user preferences. Multi-criteria recommender systems (MCRS) addi-
tionally take user preferences in multiple criteria into account, in order
to better generate recommendations. The major challenge in MCRS is
the process of aggregating user ratings in the multiple criteria. We claim
that user preferences in these criteria can be considered as contexts,
so that the overall taste on an item can be estimated by a process of
context-aware predictions. In this paper, we exploit and summarize dif-
ferent methods which produce the recommendations by using criteria
preferences as context information. We examine these methods based
on three real-world data sets. Our experimental results demonstrate the
effectiveness of these algorithms in the rating prediction task, in compar-
ison with the state-of-the-art multi-criteria recommendation approaches.

Keywords: Recommender system · Multi-criteria · Context ·
Context-aware

1 Introduction and Motivations

Recommender systems is an effective solution to alleviate the problem of infor-
mation overload and assist decision making. A traditional recommender may
produce a list of recommendations tailored by user preferences. It has been
widely applied to online streaming (e.g., Netflix, Spotify) [7,17], E-commerce
(e.g., Amazon.com) [18,20], social networks (e.g., Facebook) [5,12], tourism (e.g.,
TripAdvisor) [9,29], educations [5,14,26], etc.

Several novel recommender systems were proposed to improve the recom-
mendations and adapt to new applications. One of them is the context-aware
recommender systems (CARS) [3] which leverage the value of recommendations
by exploiting context information (e.g., time, location, weather, etc) that affects
user preferences. Context-awareness is necessary in the area of recommender sys-
tems, since a user’s taste may vary from contexts to contexts. For example, a user
may choose a different type of the movie if he or she is going to watch the movie

c© Springer Nature Switzerland AG 2019
T. A. Majchrzak et al. (Eds.): Towards Integrated Web, Mobile,
and IoT Technology, LNBIP 347, pp. 21–35, 2019.
https://doi.org/10.1007/978-3-030-28430-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28430-5_2&domain=pdf
http://Amazon.com
https://doi.org/10.1007/978-3-030-28430-5_2

22 Y. Zheng

Fig. 1. Multi-criteria ratings on TripAdvisor.com

with kids rather than with partner. Or, a user may perform a different outdoor
activity when it is at weekend instead of the weekday. Companion and the day
of the week are two context variables in these two examples. CARS additionally
take these context information into consideration so that the recommendations
can be adapted to these context situations.

Another interesting one is the multi-criteria recommender systems
(MCRS) [2] which take advantage of user preferences in multiple criteria. Take
the case of TripAdvisor.com as shown by Fig. 1 for example, a user can give rat-
ings on multiple criteria (e.g., room size, cleanness, customer service, etc) in addi-
tion to the overall rating on a hotel. MCRS try to aggregate these multi-criteria
ratings in order to better predict a user’s overall taste on the item. The practice
of MCRS has been successfully applied to TripAdvisor [9], Yahoo!Movie [9,22],
OpenTable [6], and so forth.

The major challenge in MCRS is the process of aggregating user preferences
in multiple criteria. Recently, we propose that user preferences in these criteria
can be viewed as contexts [22,23] so that context-awareness could be involved
in the multi-criteria recommendations. Different methods which implement this
idea have been proposed. This paper extends our previous work [23] presented
at the track on Web Technologies, ACM symposium on Applied Computing
in 20171. More specifically, we exploit and summarize these approaches, and
perform empirical evaluations on three real-world data sets in comparison with
the state-of-the-art multi-criteria recommendation algorithms. Out experimen-
tal results demonstrate the effectiveness of the multi-criteria recommendation
models using criteria preferences as contexts.

2 Related Work

In this section, we introduce the related work in CARS and MCRS. In addi-
tion, we describe the aggregation-based multi-criteria recommendation approach,

1 ACM SAC 2017, https://www.sigapp.org/sac/sac2017/.

http://TripAdvisor.com
http://TripAdvisor.com
https://www.sigapp.org/sac/sac2017/

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 23

upon which we discuss the extensions by using criteria preferences as contexts
in the following sections.

2.1 Context-Aware Recommender Systems

The standard formulation of the collaborative recommendation problem begins
with a two-dimensional matrix of ratings, organized by user and item: Users ×
Items → Ratings. Recommendation then becomes a prediction problem, inter-
polating new ratings not present in the original matrix. Context-aware recom-
mender systems add contextual variables to this question, making use of the
context in which a rating was made and the context in which a recommenda-
tion is sought, in order to add nuance to the resulting recommendations [3].
The updated rating prediction in CARS becomes Users × Items × Contexts →
Ratings.

Table 1. Contextual ratings on movies

User Item Rating Time Location Companion

U1 T1 3 weekend home alone

U1 T1 5 weekend cinema partner

U1 T1 ? weekday home family

The “context” information usually refers to the dynamic variables which may
change when a same activity was performed repeatedly [21]. For example, the
time, location, as well as a user’s emotions may vary every time when he or
she is going to watch movies or listen to songs. Take the context-aware movie
ratings in Table 1 for example, we introduce the terminologies in CARS as fol-
lows. There is one user U1, one movie T1, and three context variables – Time
(weekend or weekday), Location (at home or cinema) and Companion (alone,
partner, family). In the following discussion, we use context dimension to denote
the contextual variable, e.g. “Location”. The term context condition refers to
a specific value in a dimension, e.g. “home” and “cinema” are two contextual
conditions in “Location”. The contexts or context situation is, therefore, a set of
contextual conditions, e.g. {weekend, home, family}.

There are three ways to build a contextual recommender. Contextual pre-
filtering, such as the splitting-based methods [30], will use the context informa-
tion to filter out irrelevant rating profiles and apply the traditional recommenda-
tion algorithms to produce the recommendations. By contrast, contextual post-
filtering methods produce recommendations without considering contexts, and
then utilize contexts to adjust the predicted ratings or re-rank the items [15,24].
Contextual modeling [4,28,31] is the most complicated strategy, while contexts
are directly incorporated into the predictive models. There is limited research on
post-filtering, while pre-filtering and contextual modeling methods are usually
the more popular and effective ways to build CARS.

24 Y. Zheng

2.2 Multi-criteria Recommender Systems

MCRS tries to additionally take multi-criteria ratings into account to build bet-
ter recommenders. An example of data in MCRS can be shown by Table 2. The
rating refers to the users’ overall rating on the items. We also have users’ rat-
ings on multiple criteria, such as room, check-in and service. These ratings are
referred as criteria preferences. Given a user U3 and an item T1 shown in Table 2,
the rating prediction task in MCRS is how to predict U3’s overall rating on T1.
Note that we also do not know U3’s multi-criteria ratings on T1.

Table 2. Example of rating data from TripAdvisor

User Item Rating Room Check-in Service

U1 T1 3 3 4 3

U2 T2 4 4 4 5

U3 T1 ? ? ? ?

The heuristic and model-based methods have been developed to produce
multi-criteria recommendations. In the heuristic approaches, the multi-criteria
ratings can be used to better calculate user-user or item-item similarities in the
collaborative filtering algorithms. For example, Adomavicius et al. [1] proposed
the average and the worst-case as two strategies to aggregate the traditional user-
user similarities and the similarities obtained from criteria preferences. Another
contribution on improving user-user similarities was made by Manouselis and
Costopoulou [13], in which the similarities between users are obtained using
multi-criteria ratings, and the rest of the recommendation process can be the
same as in single-criterion rating systems.

By contrast, the model-based approaches may build a predictive model to
estimate a user’ overall rating on the item from the observed multi-criteria rat-
ings. Adomavicius et al. [1] proposed a linear-aggregation based multi-criteria
recommendation method, in which the overall rating can be estimated by a
linear regression model using the predicted criteria preferences as independent
variables. Sahoo et al. [16] proposed a probabilistic model by extending the
flexible mixture model (FMM) [19] to MCRS. Particularly, the dependency
among multiple criteria can be incorporated into the FMM structure and further
improve the recommendation performance. Most recently, we propose the utility-
based multi-criteria recommendation algorithm [27] for top-N recommendations.
More specifically, we propose to use a utility score to rank the candidate items,
while the score can be computed as the similarity between user expectations
and criteria preferences. We employ the listwise ranking to learn user expecta-
tions by maximizing the normalized discounted cumulative gain in the top-N
recommendations.

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 25

2.3 Preliminary: The Aggregation-Based Recommendation
Approach

The aggregation-based multi-criteria recommendation approach [1,10] is one of
the most popular and standard ways to produce multi-criteria recommenda-
tions. In this section, we introduce the general steps in these aggregation-based
approaches, and further discuss the models using criteria preferences as contexts
which were built upon these aggregation-based methods in Sect. 3.

R0 = f(R1, R2, ..., Rk) (1)

Generally, the aggregation-based approach builds an aggregation function f
that represents the relationship between the overall rating R0 and multi-criteria
ratings (e.g., R1, R2, ..., Rk), as shown in Eq. 1. Accordingly, there are two steps
to perform these aggregation-based approaches:

1. Multi-Criteria Rating Predictions: First of all, we need to predict the
rating on each individual criterion. As shown by the Table 2, we need to
predict how U3 will rate the item T1 in the criteria room, check-in and service
respectively. The predicted criteria preferences can be used for aggregations
in the next step.

2. Rating Aggregations: Once the ratings on each criterion (e.g., R1,
R2, ..., Rk) have been predicted, we can figure out the aggregation function
f to utilize these predicted criteria preferences to estimate the overall rating
on the items.

R0 = w1 ∗ R1 + w2 ∗ R2 + ... + wk ∗ Rk + t (2)

The simplest way for the aggregation is a linear regression [1] which assumes
there is a linear relationship between the multi-criteria ratings and the overall
rating. R0 can be estimated by a multiple linear regression as shown by Eq. 2,
where we assign a weight (e.g., wk) to each criterion, and finally learn these
weights, as well as the intercept t by minimizing the sum of the squared predic-
tion errors.

3 Methodologies by Using Criteria Preferences as
Contexts

In this section, we exploit and discuss different ways to build the multi-criteria
recommendation models by using criteria preferences as contexts.

First of all, we discuss the reason why criteria preferences can be viewed as
contexts. Take hotel booking on TripAdvisor.com as shown by Fig. 2 for example,
we assume a user is viewing the hotel reviews in order to learn whether the hotel
can meet his or her expectations. The user may already have a judgement against
the hotel in different criteria by referring to other users’ perspectives. In the
review above, the user may learn the location of the hotel is very convenient, but

http://TripAdvisor.com

26 Y. Zheng

Great location
Reviewed July 25, 2016

Great location beacuse it's close to train station. Dirty room with dirty mattresses and pillows.Room too small for
five people.Bathroom dirty and old with mold.
In the bathroom there weren't shower gel and soap

Date of stay: August 2015

Trip type: Traveled with friends
Location
Sleep Quality

Service

Fig. 2. Example of hotel reviews on TripAdvisor.com

the room is not clean enough. In terms of the psychology, the user may already
“rate” the hotel on different criteria in their mind, such as room cleanliness -
2 star (i.e., very bad), location - 4 star (i.e., good), and so forth. Afterwards
the user will make a final decision about whether they will reserve rooms in
this hotel, according to their judgements after reviews reading. In this case,
the users’ judgements on different aspects of the hotel (i.e., room cleanliness and
location) can be viewed as the contextual situation in which user will make a final
decision. It transforms the process of predicting the overall rating to a context-
aware procedure. Namely, the overall rating predictions can be formulated to
such a problem: given the contextual situation – how much a user likes different
aspects of the items, the system will predict how the user will like or dislike the
item.

As mentioned in the previous section, there are two steps in the aggregation-
based multi-criteria recommendations. As a result, we can utilize criteria pref-
erences as contexts in each of these two steps respectively. More specifically, we
discuss these methodologies as follows.

3.1 Multi-criteria Rating Predictions Using Criteria Preferences as
Contexts

In fact, we can predict the multi-criteria ratings independently or dependently.
In the independent method, we predict the rating on each criterion by using
the rating matrix associated with each criterion. Take Table 2 for example, to
predict how a user will rate an item in the criterion “Room”, we use the rating
matrix <User, Item, Room> only. This method is simple and straightforward,
but it ignores the correlations among the multiple criteria.

However, there could be correlations or dependencies among different crite-
ria. For example, a hotel close to train station may be far away from the city
center. It could also be noise in the hotel rooms due to its locations. As a result,
the rating in “location” and “quietness” may be correlated. In multi-criteria
recommendations, both FMM [19] and criteria chains [22] can incorporate the
dependency among criteria into the recommendation models. We particularly

http://TripAdvisor.com

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 27

discuss criteria chains in this section, since it is easier to be integrated in the
aggregation-based multi-criteria recommendations.

The major advantage of criteria chains is that it additionally considers the
correlations among multiple criteria. First of all, it defines the sequence of the
criteria as a chain by using information gain as the impurity criterion. We assume
the sequence is “Service - Room - Check-in” in the data shown by Table 2. In
this case, the variable “Service” is the dimension with largest impurity measured
by information gain, and “Check-in” is the one with least impurity. Once the
chain is defined, we will predict the rating in the dimension “Service” first. The
predicted rating in “Service” will be reviewed as context to be used to predict
the rating in the next dimension in the chain which is “Room”. Finally, the
predicted ratings in “Service” and “Room” will be considered as contexts to
predict the rating in “Check-in”. In other words, only the rating prediction on
the first criterion in the chain is a context-free process. The subsequent rating
estimations on other criteria are context-aware rating predictions, while any
rating prediction functions in the context-aware recommenders can be used for
this purpose. Once the multi-criteria ratings have been predicted, they can be
utilized in the process of rating aggregations to estimate the user’s taste on the
items. Note that the predicted multi-criteria ratings are numerical values with
decimals. To reduce the sparsity problem in context conditions, we can either
cast or round these values to integers in order to improve the performance of
context-aware predictions. In our experiments, rounding is the best option for
this operation.

3.2 Rating Aggregations Using Criteria Preferences as Contexts

Alternatively, we can also use criteria preferences as contexts in the step of
rating aggregations. As mentioned previously, the predicted criteria preferences
will be used to aggregate and estimate a user’s overall rating on an item. Linear
regression has been applied as one of these aggregating functions. By contrast,
we propose the context aggregations [23]. More specifically, we view all of the
predicted criteria preferences as context information, and adopt a context-aware
recommender to predict the overall rating. In this case, we can predict the multi-
criteria ratings independently or dependently, and we round the predicted rat-
ings to integers which will be considered as context conditions. A context-aware
recommender will estimate the overall rating by using these predicted criteria
preferences as contexts.

3.3 Summary

According to the descriptions above, we have two options in the step of multi-
criteria rating predictions – independent and dependent methods. We also have
two options in the step of rating aggregations – linear and context aggregations.
It enables us to build four different multi-criteria recommendation models:

– Independent Linear Aggregation (ILA): We predict the multi-criteria
ratings independently, and then use linear aggregation to estimate the overall

28 Y. Zheng

rating. Note that we did not view criteria preferences as contexts in this
method. ILA is a standard aggregation-based approach and baseline method
to produce multi-criteria recommendations.

– Independent Context Aggregation (ICA): In this method, we predict
the multi-criteria ratings independently, and use the context aggregation to
estimate the overall rating. ICA is equivalent to the criteria-independent con-
textual models described in [22]. It is also the same as the full contextual
model in [23].

– Dependent Linear Aggregation (DLA): Or, we can predict the multi-
criteria ratings dependently by using the idea of criteria chains, but we finally
use linear aggregation to estimate the overall rating. DLA is equivalent to the
linear aggregation model using criteria chains described in [22].

– Dependent Context Aggregation (DCA): Finally, we can predict the
multi-criteria ratings dependently and use context aggregation to estimate
the overall rating. In this case, the criteria preferences are viewed as contexts
in all of the two steps. DCA is equivalent to the contextual model using
criteria chains described in [22].

3.4 Traditional and Context-Aware Rating Predictions

Note that we need a traditional and a context-aware rating prediction function
to estimate the multi-criteria ratings independently and dependently. In this
section, we briefly introduce these predictive methods used in our paper.

We utilize the biased matrix factorization (MF) [11] as the predictive function
for the independent predictions. MF is a latent-factor based learning technique
and it is usually considered as a standard and popular benchmark method in the
area of recommender systems. The rating prediction function is shown by Eq. 3.

r̂ui = μ + bu + bi + pT
u qi (3)

μ refers to the global average rating, while bu and bi are the bias associ-
ated with user u and item i respectively. pu and qi are the latent-factor vector
which can represent u and i respectively. The MF will learn these parameters by
minimizing sum of squared errors by using stochastic gradient descent (SGD)
as the optimizer. The L2 norms are usually added into the loss function as the
regularization terms in order to alleviate overfitting. The loss function can be
described by Eq. 4, where u, i is an entry in the training set T , and λ is the
regularization rate. rui and r̂ui are the real rating and predicted rating for the
entry u, i respectively. We use the implementation of MF algorithm in LibRec [8]
which is an open-source library for traditional recommendations.

Minimize
p∗,q∗,b∗

∑

(u,i)∈T

(rui − r̂ui)2 + λ(||pu||2 + ||qi||2 + b2u + b2i) (4)

In our work, we select context-aware matrix factorization (CAMF) [4] as the
model to perform dependent predictions. It is because CAMF is an effective and

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 29

standard contextual modeling technique which learns rating deviations in the
process of matrix factorization. There are different versions of CAMF, while we
use the basic one which learns the rating deviation in each context condition
individually. The rating prediction in the CAMF can be shown as Eq. 5.

r̂uick,1ck,2...ck,L
= μ + bu + bi +

L∑

j=1

Bck,j
+ −→pu · −→qi (5)

r̂uick,1ck,2...ck,L
denotes the predicted rating in a specific context situation ck.

Assume there are L contextual dimensions in total, ck = {ck,1ck,2...ck,L} is used
to describe the contextual situation, where ck,j denotes the contextual condition
in the jth context dimension. Therefore, Bijck,j

indicates the contextual rating
deviation associated with item i and the contextual condition in the jth dimen-
sion. −→pu and −→qi represent the user vector and item vector for user u and item i
respectively. They are the standard components in the technique of matrix fac-
torization. μ is the global average rating in the data, while bu and bi represent the
user bias and item bias. Bck,j

denote the bias or rating deviation in the context
condition ck,j . We adopt the SGD as the optimizer to learn these parameters.
We use the implementation of the CAMF algorithm in the CARSKit [32] which
is an open-source library for context-aware recommendations.

In addition, we need a context-aware recommender for the purpose of con-
text aggregations. The CAMF approach described above is also adopted in the
process of context aggregations.

4 Experiments and Results

4.1 Data Sets

There are not many data sets with multi-criteria ratings for public research,
and we use the following three real-world data sets for the purpose of empirical
evaluations:

– TripAdvisor data: This data was crawled by Jannach et al. [9]. The data
was collected through a Web crawling process which collects users’ ratings
on hotels located in 14 global metropolitan destinations, such as London,
New York, Singapore, etc. There are 22,130 ratings given by 1,502 users and
14,300 hotels. Each user gave at least 10 ratings which are associated with
multi-criteria ratings on seven criteria: value for the money, quality of rooms,
convenience of the hotel location, cleanliness of the hotel, experience of check-
in, overall quality of service and particular business services.

– Yahoo!Movie data: This data was obtained from Yahoo!Movies by Jannach
et al. [9]. There are 62,739 ratings given by 2,162 users on 3,078 movies. Each
user left at least 10 ratings which are associated with multi-criteria ratings
on four criteria: direction, story, acting and visual effects.

30 Y. Zheng

– ITMLearning data: This is a data set in the area of educational domain
which was collected by the user surveys [25]. There are 3,306 ratings given by
269 students on 70 projects. In addition to the overall ratings, each student
will rate the selected projects in three criteria (i.e., App, Data and Ease): how
interesting the application area is (App), how convenient the data processing
will be (Data), how easy the whole project is (Ease) by using this data set.

Both of the overall ratings and the multi-criteria ratings are in the scale 1 to
5 in the three data sets mentioned above.

4.2 Baselines and Evaluations

We compare the approaches which utilize criteria preferences as contexts (i.e.,
ICA, DLA, DCA) with other multi-criteria recommendation models2 which can
be listed as follows:

– The model MF is the biased matrix factorization model [11] by using the
rating matrix <User, Item, Ratings> only without considering multi-criteria
ratings.

– The model ILA [1] is the approach we introduced in Sect. 3.3. It is the stan-
dard aggregation-based multi-criteria recommendation method which pre-
dicts the multi-criteria ratings independently and uses a linear aggregation
to estimate a user’s overall rating on an item.

– The model FMM [16] is a probabilistic recommendation approach based on
the flexible mixture model (FMM) [19]. It is another effective approach which
additional takes the correlations among the criteria into considerations.

We use a 5-fold cross validation for each data and evaluate the recommen-
dation performance in the rating prediction task by using mean absolute error
(MAE) as the evaluation metric. MAE is a popular metric for rating predictions,
and it can be described in Eq. 6, where Te represents the testing set, Ru,i is the
real rating given by user u on item i, and R̂u,i is our predicted rating in the same
setting. From the perspective of the algorithms, we’d like to build or learn a pre-
dictive recommendation model based on the training set in order to minimize
the MAE in the testing set. We try different parameters in each recommender
to find the best setting and report the optimal results in MAE.

MAE =
1

|Te|
∑

(u,i)εTe

|R̂u,i − Ru,i| (6)

4.3 Experimental Results and Findings

By predicting multi-criteria ratings dependently, we need to identify the chain
of the criteria in the DLA and DCA approaches. Our previous work [22] has
2 We evaluate these models based on the rating prediction task in this paper. The

utility-based multi-criteria recommendation model [27] was not selected as one of
the baseline methods since it can only be used for top-N recommendations.

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 31

demonstrated that information gain was the best metric to rank the criteria.
Based on the information gain, the criteria chain for each data can be described
as follows (Table 3):

Table 3. Sequence of criteria chains

Data Sequence of criteria in criteria chains

TripAdvisor Value - Rooms - Service - Cleanliness - Check-in - Location -
Business Services

Yahoo!Movie Direction - Story - Acting - Visuals

ITMLearning App - Data - Ease

The experimental results based on the TripAdvisor and Yahoo!Movie data
sets can be depicted by Fig. 3. In addition to the MAE results, we use paired
two-sample hypothesis testing to examine to examine the significance of the
results between the approaches which utilize criteria preferences as contexts (i.e.,
ICA, DLA and DCA) and other baseline methods (i.e., MF, ILA and FMM).
More specifically, we use “*” to indicate the significant advantage of the selected
approaches (i.e., ICA, DLA and DCA) and the standard baseline methods includ-
ing MF and ILA. In addition, we mark the approach with an additional “*” if
the approach is able to significantly outperform the FMM method which is the
most of effective multi-criteria recommendation approaches.

We are able to observe that most of the approaches which utilize criteria pref-
erences as contexts can outperform the standard baselines (i.e., MF and ILA),
except the ICA method in the Yahoo!Movie data set. ICA produces lower MAE
than the ILA approach, but it fails the significance test. Furthermore, DCA is the
only approach which can beat FMM significantly. And DCA becomes the best
performing algorithm among all of these multi-criteria recommendation models.
These results demonstrate that it is effective to utilize criteria preferences as
contexts in the multi-criteria recommendations.

Figure 4 presents the results on the ITMLearning data set. The results are
significantly different from the ones in the TripAdvisor and Yahoo!Movie data.
First of all, ICA and FMM are the best performing algorithms. DLA and DCA
work worse than ICA, and they even did not produce better results than the
standard methods (i.e., MF and ILA). ICA outperforms the standard baselines,
which confirms the advantage of the methods that utilize criteria preferences as
contexts.

We further investigate the ITMLearning data to understand why DLA and
DCA fail to produce better results. Recall that we have three criteria in this
data – App, Data and Ease. However, it is not necessary to say a student may
like one project if they rate higher in these three criteria. We found that some
students preferred to select an easy project, while some others would like to
choose more challenging projects. It results in conflicting rating patterns. For
example, a student may give a higher overall rating to a project. It is possible

32 Y. Zheng

*

*

**

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MF ILA ICA DLA DCA FMM

TripAdvisor

* **

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MF ILA ICA DLA DCA FMM

YahooMovie

M
AE

Fig. 3. Experimental results based on MAE

*

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

MF ILA ICA DLA DCA FMM

ITMLearning

M
AE

Fig. 4. Experimental results of the ITMLearning data

that he gave higher and positive ratings to “App” and “Data” but lower rating in
“Ease”, since he prefers to select more challenging projects rather than the easy
ones. Therefore, the predicted multi-criteria ratings by the dependent method
(i.e., criteria chains which is used in DLA and DCA) may be not that accurate
due to these conflicting interests in the criteria preferences. By contrast, in other
applications, such as TripAdvisor and Yahoo!Movie, a user may gave a higher
overall rating, if his or her ratings on multiple criteria are all positive and higher.

Figure 5 shows the MAE results of the step of multi-criteria rating predic-
tions. We can observe that the MAE results are generally reduced if we use the
dependent methods. Note that the MAE results for the “Value” in the TripAd-
visor and the “Direction” in the Yahoo!Movie data are the same by the indepen-
dent and dependent methods, since these criteria are the first one according to
the sequence in the criteria chain. By contrast, Fig. 6 presents the results on the
ITMLearning data, where we can observe that the MAE values are increased by
using the dependent method. It explains the reason why DLA and DCA did not
perform well in this data.

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 33

0

0.2

0.4

0.6

0.8

Clean Loca on Value Room Checkin Service Business

M
AE

TripAdvisor

Independent Dependent

0.48
0.5

0.52
0.54
0.56
0.58
0.6

0.62

Ac ng Visual Direc on Story

M
AE

YahooMovie

Independent Dependent

Fig. 5. MAE of predicted criteria preferences

0

0.2

0.4

0.6

0.8

1

1.2

App Data Ease

M
AE

ITMLearning

Independent Dependent

Fig. 6. MAE of predicted criteria preferences on the ITMLearning data

5 Conclusions and Future Work

In this paper, we exploit and summarize different ways to build multi-criteria
recommendation models by using the criteria preferences as context information.
Our experimental results demonstrate the effectiveness of these approaches (i.e.,
ICA, DLA, DCA) in comparison with the state-of-the-art multi-criteria recom-
mendation algorithms. The approaches which utilize the dependent method to
predict the multi-criteria ratings failed to outperform the baseline methods in
the ITMLearning data, due to the special characteristics of the multiple crite-
ria and conflicting interests in the data. We will seek solutions to address these
issues in our future work.

Acknowledgement. We thank Master student Shephalika Shekhar in Illinois Insti-
tute of Technology for her assistance with parts of experimental results on the ITM-
Learning data set.

References

1. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rat-
ing systems. IEEE Intell. Syst. 22(3), 48–55 (2007)

2. Adomavicius, G., Kwon, Y.: Multi-criteria recommender systems. In: Ricci, F.,
Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 847–880.
Springer, Boston (2015). https://doi.org/10.1007/978-1-4899-7637-6 25

https://doi.org/10.1007/978-1-4899-7637-6_25

34 Y. Zheng

3. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recom-
mender systems. AI Mag. 32(3), 67–80 (2011)

4. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context
aware recommendation. In: Proceedings of the Fifth ACM Conference on Recom-
mender Systems, pp. 301–304. ACM (2011)

5. Burke, R., Zheng, Y., Riley, S.: Experience discovery: hybrid recommendation of
student activities using social network data. In: Proceedings of the 2nd Interna-
tional Workshop on Information Heterogeneity and Fusion in Recommender Sys-
tems, pp. 49–52. ACM (2011)

6. Das, S.: Making meaningful restaurant recommendations at OpenTable. In: Pro-
ceedings of the 9th ACM Conference on Recommender Systems, p. 235. ACM
(2015)

7. Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system: algorithms, busi-
ness value, and innovation. ACM Trans. Manag. Inf. Syst. (TMIS) 6(4), 13 (2016)

8. Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: LibRec: a Java library for recom-
mender systems. In: UMAP Workshops, vol. 4 (2015)

9. Jannach, D., Zanker, M., Fuchs, M.: Leveraging multi-criteria customer feedback
for satisfaction analysis and improved recommendations. Inf. Technol. Tour. 14(2),
119–149 (2014)

10. Jhalani, T., Kant, V., Dwivedi, P.: A linear regression approach to multi-criteria
recommender system. In: Tan, Y., Shi, Y. (eds.) DMBD 2016. LNCS, vol. 9714, pp.
235–243. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40973-3 23

11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

12. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social
regularization. In: Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, pp. 287–296. ACM (2011)

13. Manouselis, N., Costopoulou, C.: Experimental analysis of design choices in mul-
tiattribute utility collaborative filtering. Int. J. Pattern Recognit. Artif. Intell.
21(02), 311–331 (2007)

14. Manouselis, N., Drachsler, H., Verbert, K., Santos, O.C.: Recommender Systems
for Technology Enhanced Learning: Research Trends and Applications. Springer,
New York (2014). https://doi.org/10.1007/978-1-4939-0530-0

15. Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Exper-
imental comparison of pre-vs. post-filtering approaches in context-aware recom-
mender systems. In: Proceedings of the Third ACM Conference on Recommender
Systems, pp. 265–268. ACM (2009)

16. Sahoo, N., Krishnan, R., Duncan, G., Callan, J.: Research note-the Halo effect in
multicomponent ratings and its implications for recommender systems: the case of
yahoo! movies. Inf. Syst. Res. 23(1), 231–246 (2012)

17. Sánchez-Moreno, D., Zheng, Y., Moreno-Garćıa, M.N.: Incorporating time
dynamics and implicit feedback into music recommender systems. In: 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 580–
585. IEEE (2018)

18. Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In:
Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158–166.
ACM (1999)

19. Si, L., Jin, R.: Flexible mixture model for collaborative filtering. In: Proceedings of
the 20th International Conference on Machine Learning (ICML 2003), pp. 704–711
(2003)

https://doi.org/10.1007/978-3-319-40973-3_23
https://doi.org/10.1007/978-1-4939-0530-0

Multi-criteria Recommendations by Using Criteria Preferences as Contexts 35

20. Smith, B., Linden, G.: Two decades of recommender systems at amazon.com. IEEE
Internet Comput. 21(3), 12–18 (2017)

21. Zheng, Y.: A revisit to the identification of contexts in recommender systems.
In: Proceedings of the Conference on Intelligent User Interfaces Companion, pp.
133–136. ACM (2015)

22. Zheng, Y.: Criteria chains: a novel multi-criteria recommendation approach. In:
Proceedings of the 22nd ACM International Conference on Intelligent User Inter-
faces, pp. 29–33. ACM (2017)

23. Zheng, Y.: Situation-aware multi-criteria recommender system: using criteria pref-
erences as contexts. In: Proceedings of the ACM Symposium on Applied Comput-
ing, pp. 689–692. ACM (2017)

24. Zheng, Y.: Context-aware mobile recommendation by a novel post-filtering app-
roach. In: The Thirty-First International Flairs Conference (2018)

25. Zheng, Y.: Personality-aware decision making in educational learning. In: Pro-
ceedings of the 23rd ACM International Conference on Intelligent User Interfaces
Companion, p. 58. ACM (2018)

26. Zheng, Y.: Multi-stakeholder personalized learning with preference corrections. In:
Proceedings of 18th IEEE International Conference on Advanced Learning Tech-
nologies (ICALT) (2019)

27. Zheng, Y.: Utility-based multi-criteria recommender systems. In: Proceedings of
the 34th Annual ACM Symposium on Applied Computing. ACM (2019)

28. Zheng, Y., Anna Jose, A.: Context-aware recommendations via sequential predic-
tions. In: Proceedings of the 34th Annual ACM Symposium on Applied Computing.
ACM (2019)

29. Zheng, Y., Burke, R., Mobasher, B.: Differential context relaxation for context-
aware travel recommendation. In: Huemer, C., Lops, P. (eds.) EC-Web 2012.
LNBIP, vol. 123, pp. 88–99. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32273-0 8

30. Zheng, Y., Burke, R., Mobasher, B.: Splitting approaches for context-aware rec-
ommendation: an empirical study. In: Proceedings of the 29th Annual ACM Sym-
posium on Applied Computing, pp. 274–279. ACM (2014)

31. Zheng, Y., Mobasher, B., Burke, R.: CSLIM: contextual SLIM recommendation
algorithms. In: Proceedings of the ACM Conference on Recommender Systems,
pp. 301–304. ACM (2014)

32. Zheng, Y., Mobasher, B., Burke, R.: CARSKit: a Java-based context-aware rec-
ommendation engine. In: 2015 IEEE International Conference on Data Mining
Workshop, pp. 1668–1671. IEEE (2015)

https://doi.org/10.1007/978-3-642-32273-0_8
https://doi.org/10.1007/978-3-642-32273-0_8

Towards Pluri-Platform Development:
Evaluating a Graphical Model-Driven
Approach to App Development Across

Device Classes

Christoph Rieger(B) and Herbert Kuchen

ERCIS, University of Münster, Münster, Germany
{christoph.rieger,kuchen}@uni-muenster.de

Abstract. The domain of mobile apps encompasses a fast-changing
ecosystem of platforms and vendors in which new classes of heteroge-
neous app-enabled devices are emerging. To digitize everyday work rou-
tines, business apps are used by many non-technical users. However,
designing apps is mostly done according to traditional software devel-
opment practices, and further complicated by the variability of device
capabilities. To empower non-technical users to participate in the cre-
ation of supportive apps, graphical domain-specific languages can be
used. Consequently, we propose the Münster App Modeling Language
(MAML) to specify business apps through graphical building blocks on
a high level of abstraction. In contrast to existing process modelling nota-
tions, these models can directly be transformed into apps for multiple
platforms across different device classes through code generators with-
out the need for manual programming. To evaluate the comprehensibility
and usability of MAML’s DSL, two studies were performed with software
developers, process modellers, and domain experts.

Keywords: Graphical domain-specific language ·
Model-driven software development · Business app · Cross-platform

1 Introduction

The opportunities of Model-Driven Software Development (MDSD) with regard
to increased efficiency and flexibility have been studied extensively in the past
years. The use of MDSD techniques is one approach to counteract the variety
of platforms, programming languages, and human-interface guidelines found in
the domain of mobile business apps. Several approaches have been researched
in academic literature, including MD2 [34], Mobl [26], and AXIOM [30]. Those
approaches provide cross-platform development functionalities with one com-
mon model for multiple target platforms using textual domain-specific languages
(DSLs) to specify apps. Whereas these approaches significantly ease the devel-
opment of apps and thus also support current trends such as “Bring your own
c© Springer Nature Switzerland AG 2019
T. A. Majchrzak et al. (Eds.): Towards Integrated Web, Mobile,
and IoT Technology, LNBIP 347, pp. 36–66, 2019.
https://doi.org/10.1007/978-3-030-28430-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28430-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-28430-5_3

Evaluating a Graphical Model-Driven Approach to App Development 37

device” [58], the actual creation of apps is still restricted to users with program-
ming skills [37]. Business apps focus on specific tasks to be accomplished by
employees. Therefore, a centralized definition of such processes aligns well with
traditional software development practices but may deviate from the end user’s
needs. Consequently, the introduction of business apps may fall short of improv-
ing efficiency. In addition, operating employees have valuable insights into the
actual process execution as well as unobvious process exceptions. Giving them
a means to shape the software they use in their everyday work routines offers
not only the possibility to explicate their tacit knowledge for the development of
best practices, but also actively involves them in the evolution of the enterprise.
Instead of participating only in early requirements engineering phases of software
development, continuously co-designing such systems may increase the adoption
of the resulting application and possibly strengthen their identification with the
company [19]. Mobile app development can thus benefit from the incorporation
of people from all levels of the organization and development tools should be
understandable to both programmers and domain experts.

The research company Gartner predicted that more than half of all company-
internal mobile apps will be built using codeless tools by 2018 [51]. The general
trend towards low-code or codeless development of business apps can be sup-
ported by the introduction of graphical notations which are particularly suitable
to represent the concepts of a data-driven and process-focused domain. How-
ever, current approaches often lack the capacity for holistic app modelling, often
operating on a low level of abstraction with visual user interface builders or
approaches using view templates (e.g., [22,64]).

In order to advance research in the domain of cross-platform development of
mobile apps and investigate opportunities for organizations in a digitized world,
this paper presents and evaluates the Münster App Modeling Language (MAML)
framework. Rooted in the Eclipse ecosystem, the DSL grammar is defined as an
Ecore metamodel, the visual editor is built using the Sirius framework [57], and
technologies such as Xtend are used for the code generation of Android, iOS,
and Wear OS apps.

Moreover, the high level of abstraction and automatic inference required
for simple-to-use app development opens up opportunities for reusing the same
notation for heterogeneous target devices. The terms cross-platform or multi-
platform development typically denote the creation of applications for multiple
platforms within the same device class, for example iOS and Android in the
smartphone domain – potentially extended to technically similar tablets. How-
ever, the development of apps across device classes is not yet tackled system-
atically in academia or practice. To distinguish the additional requirements and
challenges introduced when creating applications across heterogeneous devices,
we propose the term pluri-platform development.

This article greatly extends the paper [46] presented at HICSS 20181. It has
been updated to reflect the latest developments, includes new content based on

1 Please note that verbatim content from the original paper is not explicitly highlighted
but for figures and tables already included there.

38 C. Rieger and H. Kuchen

additional work as well as on the discussions at the conference. Also, it has been
amended with a perspective on challenges and opportunities regarding model-
driven app development for novel device classes and a study on the suitability of
the MAML notation in this context. The remainder of this article is structured
as follows: After presenting related work in Sect. 2, MAML’s graphical DSL is
presented that allows for the visual definition of business apps (Sect. 3). The
codeless app creation capabilities are demonstrated using the MAML editor
with advanced modelling support and an automated generation of native app
source code through a two-step model transformation process. Section 4 discusses
the setup and results of two usability studies conducted to demonstrate the
potential and intricacies of an integrated app modelling approach for a wide
audience of process modellers, domain experts, and programmers. The possibility
to extend the approach to heterogeneous devices is covered in Sect. 5. In Sect. 6,
the findings and implications of MAML are discussed with regard to model-
driven development for heterogeneous app-enabled devices before concluding
with a summary and outlook in Sect. 7.

2 Related Work

Different approaches to cross-platform mobile app development have been
researched. In general, five approaches can be distinguished [35]. Concerning
runtime approaches, mobile webapps are browser-run web pages optimized for
mobile devices but without native user interface (UI) elements, hybrid approaches
such as Apache Cordova [3] provide a wrapper to web-based apps that allow for
accessing device-specific features through interfaces, and self-contained runtimes
provide separate engines that mimic core system interfaces in which the app runs.
In addition, two generative approaches produce native apps, either by transpiling
apps between programming languages such as J2ObjC [23] to transform Android-
based business logic to Apple’s language Objective-C, or model-driven software
development for transforming a common model to code.

With regard to model-driven development, DSLs are used to model mobile
apps on a platform-independent level. According to Langlois et al. [32], DSLs
can be classified in textual, graphical, tabular, wizard-based, or domain-specific
representations as well as combinations of those. Several frameworks for mobile
app development have been developed in the past years, both for scientific and
commercial purposes. In the particular domain of business apps – i.e., form-
based, data-driven apps interacting with back-end systems [35] – the graphical
approach JUSE4Android [15] uses annotated UML diagrams to generate the
appearance of and navigation within object graphs, and Vaupel et al. [60] pre-
sented an approach focusing around role-driven variants of apps using a visual
model representation. Other approaches such as AXIOM [30] and Mobl [26]
provide textual DSLs to define business logic, user interaction, and user inter-
face in a common model. An extensive overview of current model-driven frame-
works is provided by Umuhoza and Brambilla [59]. However, current approaches
mostly rely on a textual specification which limits the active participation of

Evaluating a Graphical Model-Driven Approach to App Development 39

non-technical users without prior training [65], and graphical approaches are
often incapable of covering all structural and behavioural aspects of a mobile
app. For generating source code, the work in this paper is based on the Model-
Driven Mobile Development (MD2) framework which also uses a textual DSL for
specifying all constituents of a mobile app in a platform-independent manner.
After preprocessing the models, native source code is generated for each target
platform as described by Majchrzak and Ernsting [34]. This intermediate step is,
however, automated and requires no intervention by the user (see Subsect. 3.4).

In contrast to DSLs, several general-purpose modelling notations exist for
graphically depicting applications and processes, such as the Unified Modeling
Language (UML) with a collection of interrelated standards for software develop-
ment. The Interaction Flow Modeling Language (IFML) can be used to model
user interactions in mobile apps, especially in combination with the mobile-
specific elements introduced as extension by Breu et al. [11]. Process workflows
can for example be modelled using BPMN [40], Event-Driven Process Chains [1],
or flowcharts [27]. However, such notations are often either suitable for generic
modelling tasks and remain on a superficial level of detail, or represent rather
complex technical notations designed for a target group of programmers [18].
A trade-off is necessary to balance the ease of use for modellers with the rich-
ness of technical details for creating functioning apps. Moody [38] has pointed
out principles for the cognitive effectiveness of visual notations and subsequent
studies have revealed comprehensibility issues through effects such as symbol
overload, e.g., for the WebML notation preceding IFML [25]. Examples of tech-
nical notations in the domain of mobile applications include a UML extension
for distributed systems [54] and a BPMN extension to orchestrate web services
[10]. Nevertheless, the approach presented in this work goes beyond pure process
modelling. While IFML is closest to the work in this paper regarding the purpose
of modelling user interactions, MAML covers both structural (data model and
views) and behavioural (business logic and user interaction) aspects.

Lastly, visual programming languages have been created for several domains
such as data integration [42] but few approaches focus specifically on mobile
apps. RAPPT combines a graphical notation for specifying processes with a tex-
tual DSL [8], and AppInventor provides a language of graphical building blocks
for programming apps [63]. However, non-technical users are usually ignored in
the actual development process. Hence, those visual notations do not exploit
the potential of including people with in-depth domain knowledge. Considering
commercial frameworks, support for visual development of mobile apps varies sig-
nificantly. In practice, many recent tools are limited to specific components such
as back-end systems or content management, or support particular development
phases such as prototyping [43]. Start-ups such as Bizness Apps [9] and Bubble
Group [13] aim for more holistic development approaches using configurators and
web-based editors. Similarly, development environments have started to provide
graphical tools for UI development, enhancing the programmatic specification of
views by complementary drag and drop editors [64]. The WebRatio Mobile Plat-
form also supports codeless generation of mobile apps through a combination of

40 C. Rieger and H. Kuchen

IFML, other UML standards, and custom notations [62]. In contrast, this work
focuses on a significantly more abstract and process-centric modelling level as
presented in the next section.

3 Münster App Modeling Language

At its core, the MAML framework consists of a graphical modelling notation
that is described in the following subsections. Contrary to existing notations,
its models contain sufficient information to transform them into fully functional
mobile apps. The framework also comprises the necessary development tools to
design MAML models in a graphical editor and generate apps without requiring
manual programming. The generation process is described in more detail in
Subsect. 3.4.

3.1 Language Design Principles

The graphical DSL for MAML is based on five design goals:
Automatic cross-platform app creation: Most important, the whole

approach is built around the key concept of codeless app creation. To achieve
this, individual models need to be recombined and split according to different
roles (see Subsect. 3.4) and transformed into platform-specific source code. As
a consequence, models need to encode technical information such as data fields
and interrelations between workflow elements in a machine-interpretable way as
opposed to an unstructured composition of shapes filled with text.

Domain expert focus: MAML is explicitly designed with a non-technical
user in mind. Process modellers as well as domain experts are encouraged to
read, modify, and create new models by themselves. The language should, there-
fore, not resemble technical specification languages drawn from the software
engineering domain but instead provide generally understandable visualizations
and meaningful abstractions for app-related concepts.

Data-driven process modelling: The basic idea of business apps to focus
on data-driven processes determines the level of abstraction chosen for MAML.
In contrast to merely providing editors for visual screen composition as replace-
ment for manually programming user interfaces, MAML models represent a sub-
stantially higher level of abstraction. Users of the language concentrate on visu-
alizing the sequence of data processing steps and the concrete representation of
affected data items is automatically generated using adequate input/output user
interface elements.

Modularization: To engage in modelling activities without advanced knowl-
edge of software architectures, appropriate modularization is important to handle
the complexity of apps. MAML embraces the aforementioned process-oriented
approach by modelling use cases, i.e., a unit of functionality containing a self-
contained set of behaviours and interactions performed by the app user [41].
Combining data model, business logic, and visualization in a single model devi-
ates from traditional software engineering practices which, for instance, often

Evaluating a Graphical Model-Driven Approach to App Development 41

rely on the Model-View-Controller pattern [20]. In accordance with the domain
expert focus, the end user is, however, unburdened from this technical imple-
mentation issue.

Declarative description: MAML models consist of platform-agnostic ele-
ments, declaratively describing what activities need to be performed with the
data. The concrete representation in the resulting app is deliberately unspec-
ified to account for different capabilities and usage patterns of each targeted
mobile platform. The respective code generator can provide sensible defaults for
such platform specifics.

3.2 Language Overview

In the following, the key concepts of the MAML DSL are highlighted using
the fictitious scenario of a publication management app. A sample process to
add a new publication to the system consists of three logical steps: First, the
researcher enters some data on the new publication. Then, he can upload the
full-text document and optionally revise the corresponding author information.
This self-contained set of activities is represented as one model in MAML, the
so-called use case, as depicted in Fig. 1.

Fig. 1. MAML use case for adding a publication to a review management system [45]

A model consists of a start event (labelled with (a) in Fig. 1) and a sequence
of process flow elements towards an end event (b). A data source (c) specifies
what type of entity is first used in the process, and whether it is only saved

42 C. Rieger and H. Kuchen

locally on the mobile device or managed by the remote back-end system. Then,
the modeller can choose from predefined interaction process elements (d), for
example to create/show/update/delete an entity, but also to display messages,
access device sensors such as the camera, or call a telephone number. Because of
the declarative description, no device-specific assumptions can be made on the
appearance of such a step. The generator instead provides default representations
and functionalities, e.g., display a select entity step using a list of all available
objects as well as possibilities for searching or filtering. In addition, automated
process elements (e) represent steps to be performed without user interaction.
Those elements provide the minimum amount of technical specificity in order to
navigate between the model objects (transform), request information from web
services, or include other models to reuse existing use cases.

The order of process steps is established using process connectors (f), rep-
resented by a default “Continue” button unless specified differently along the
connector element. XOR (g) elements branch out the process flow based on a
manual user action by rendering multiple buttons (see differently labelled connec-
tors in Fig. 1), or automatically by evaluating expressions referring to a property
of the considered object.

The lower section of Fig. 1 contains the data linked to each process step.
Labels (h) provide explanatory text on screen. Attributes (i) are modelled as
combination of a name, the data type, and the respective cardinality. Data
types such as String, Integer, Float, PhoneNumber, Location, etc. are already
provided but the user can define additional custom types. To further describe
custom-defined types, attributes may be nested over multiple levels (e.g., the
“author” type in Fig. 1 specifies a first name and last name). In addition, com-
puted attributes (not depicted in the example) allow for runtime calculations
such as counting or summing up other attribute values.

A suitable UI representation is automatically chosen based on the type of
parameter connector (j): Dotted arrows signify a reading relationship whereas
solid arrows represent a modifying relationship. This refers not only to the man-
ifest representation of attributes displayed either as read-only text or editable
input field. The interpretation also applies in a wider sense, e.g., regarding web
service calls in which the server “reads” an input parameter and “modifies” infor-
mation through its response. Each connector also specifies an order of appearance
and, for attributes, a human-readable caption derived from the attribute name
unless manually specified.

Finally, annotating freely definable roles (k) to all interactive process ele-
ments allows for the coherent visualization of processes that are performed by
more than one person, for example in scenarios such as approval workflows.
When a role change occurs, the app automatically saves modified data and users
with the subsequent role are informed about the open workflow instance in their
app.

Evaluating a Graphical Model-Driven Approach to App Development 43

3.3 App Modelling

In contrast to other notations, all of the modelling work is performed in a single
type of model, mainly by dragging elements from a palette and arranging them
on a large canvas. The modelling environment was developed using the Eclipse
Sirius framework [57] that was extended with domain-specific validation and
guidance to provide advanced modelling support for MAML.

Fig. 2. MAML app generation process (cf. [46])

Modelling only the information displayed in each process step effectively cre-
ates a multitude of partial data models for each process step and for each use
case as a whole. Also, attributes may be connected to multiple process elements
simultaneously, or can be duplicated to different positions to avoid wide-spread
connections across the model. An inference mechanism [45] aggregates and vali-
dates the complete data model while modelling. During generation, app-internal
and back-end data stores are automatically created. As a result, the user does
not need to specify a distinct global data model and consistency is automatically
checked when models change.

Apart from validation rules to prevent users from modelling syntactically
incorrect MAML use cases in the first place, additional validity checks have
been implemented in order to detect inconsistencies across use cases (based on
the inferred data model) as well as potentially unwanted behaviour (e.g., missing
role annotations). Moreover, advanced modelling support attempts to provide
guidance and overview to the user. For example, the current data type of a
process element (lower label of (d) in Fig. 1) is automatically derived from the
preceding elements to improve the user’s imagination within the process. Also,
suggestions of probable values are provided when adding elements (e.g., known
attributes of the originating type when adding UI elements).

44 C. Rieger and H. Kuchen

3.4 App Generation

Technically, MAML relies on and integrates with the Eclipse Modeling Frame-
work (EMF), for example by specifying the DSL’s metamodel as an Ecore
model. In order to generate apps, the proposed approach reuses previous work on
MD2 (see Sect. 2). The complete generation process is depicted in Fig. 2. Because
of space constraints, the respective transformations are only sketched next.

First, model transformations are applied to transform graphical MAML mod-
els to the textual MD2 representation using the BXtend framework [14] and the
Xtend language. Amongst other activities, all separately modelled use cases are
recombined, a global data model across all use cases is inferred and explicated,
and processes are broken down according to the specified roles. In the subsequent
code generation step, previously existing generators in MD2 create the actual
source code for all supported target platforms.

This is, however, not an inherent limitation of the framework. Newly created
generators might just as well generate code directly from the MAML model or
use interpreted approaches instead of code generation.

It should be noted that this proceeding differs from approaches such as UML’s
Model Driven Architecture [5] in that the intermediate representation is still a
platform-independent representation but with a more technical focus. Option-
ally, a modeller has the possibility to modify default representations and con-
figure parts of the application in more detail before source code is generated
for each platform. Although the tooling around MAML is still in a prototypi-
cal state, it currently supports the generation of Android and iOS apps as well
as a Java-based server back-end component. Also, a smartwatch generator for
Google’s Wear OS platform highlights the applicability to further device classes
(cf. Sect. 5). The screenshots in Fig. 3 depict the generated Android app views
for the first process steps of the MAML model depicted in Fig. 1.

4 Evaluation

As demonstrated, MAML aligns with the goals of automated cross-platform
app creation from modular and platform-agnostic app models (cf. Subsect. 3.1).
However, the suitability of data-driven process models with regard to the target
audience needed to be evaluated in more detail. Therefore, an observational
study was performed to assess the utility of the newly developed language. After
describing the general setup in Subsect. 4.1, the results on comprehensibility and
usability of the graphical DSL are presented.

4.1 Study Setup

The purpose of the study was to assess MAML’s claim to be understandable
and applicable by users with different backgrounds, in particular including non-
technical users. From the variety of methodologies for usability evaluation, obser-
vational interviews according to the think-aloud method were selected as empir-
ical approach [21]. Participants were requested to perform realistic tasks with

Evaluating a Graphical Model-Driven Approach to App Development 45

the system under test and urged to verbalize their actions, questions, problems,
and general thoughts while executing these tasks. Due to the novelty of MAML
which excludes the possibility of comparative tests, this setup focused on obtain-
ing detailed qualitative feedback on usability issues from a group of potential
users.

Fig. 3. Exemplary screenshots of generated Android app views [46]

Therefore, 26 individual interviews of around 90 min duration were con-
ducted. An interview consisted of three main parts: First, an online questionnaire
had to be filled out in order to collect demographic data, previous knowledge in
the domains of programming or modelling, and personal usage of mobile devices.
Second, a MAML model and an equivalent IFML model were presented to the
participants (in random order to avoid bias) to assess the comprehensibility of
such models without prior knowledge or introduction. In addition to the verbal
explanations, a short 10-question usability questionnaire was filled out to calcu-
late a score according to the System Usability Scale (SUS) [12] for each nota-
tion (cf. Subsect. 4.2). Third, the main part of the interview consisted of four
modelling tasks to accomplish using the MAML editor. Finally, the standardized
ISONORM questionnaire was used to collect more quantitative feedback, aligned
with the seven key requirements of usability according to DIN 9241/110-S [28]
(cf. Subsect. 4.3).

46 C. Rieger and H. Kuchen

To capture the variety of possible usability issues, 71 observational features
were identified a priori and structured in six categories of interest: comprehensi-
bility, applying the notation, integration of elements, tool support, effectiveness,
and efficiency. In total, over 1500 positive or negative observations were recorded
as well as additional usability feedback and proposals for improvement.

Fig. 4. IFML model to assess the a priori comprehensibility of the notation [46]

Regarding participant selection, 26 potential users in the age range of 20 to 57
years took part in the evaluation. Although they mostly have a university back-
ground, technical experience varied widely and none had previous knowledge of
IFML or MAML. To further analyse and interpret the results, the participants
were categorized in three distinct groups according to their personal background
stated in the online questionnaire: 11 software developers have at least medium
knowledge in traditional/web/app programming or data modelling, 9 process
modellers have at least medium knowledge in process modelling (exceeding their
programming skills), and 6 domain experts are experienced in the modelling
domain but have no significant technical or process knowledge. Although it
is debated whether Virzi’s [61] statement of five participants being sufficient
to uncover 80% of usability problems in a particular software holds true [56],
arguably the selected amount of participants in this study is reasonable with
regard to finding the majority of grave usability defects for MAML and gener-
ally evaluating the design goals.

For their private use, participants stated an average smartphone usage of
19.2 h per week, out of which 16.3 h are spent on apps. In contrast, tablet use is
rather low with 3.5 h (3.2 h for apps), and notebook usage is generally high with
27.5 h but only 4.7 h are spent on apps. For business uses, similar patterns can be
observed on total/app-only usage per week on smartphones (5.5h/4.3h), tablets
(0.7h/0.2h), and notebooks (18.2h/3.7h). Although this sample is too low for

Evaluating a Graphical Model-Driven Approach to App Development 47

generalizable insights, the figures indicate a generally high share of app usage on
smartphones and tablets compared to the total usage duration, both for personal
and business tasks. In addition, with mean values of 1.81/2.12 on a scale between
0 (strongly reduce) and 4 (strongly increase), the participants stated to have no
desire of significantly changing their usage volumes of private/business apps.

4.2 Comprehensibility Results

Before actively introducing MAML as modelling tool, the participants should
explicate their understanding of a given model without prior knowledge. Com-
prehensibility is an important characteristic in order to easily communicate app-
related concepts via models without the need for extensive training. To compare
the results with an existing modelling notation, equivalent IFML (see Fig. 4) and
MAML models [47] of a fictitious movie database app were provided with the
task to describe the purpose of the overall model and the particular elements.
The monochrome models were shown to the participants on paper in random-
ized order to avoid bias from priming effects [7] and potential influences from a
particular software environment.

After each model, participants were asked to answer the SUS questionnaire
for the particular notation. This questionnaire has been applied in many contexts
since its development in 1986 and can be seen as easy, yet effective, test to
determine usability characteristics. Each participant answers ten questions using
a five-point Likert-type scale between strong disagreement and strong agreement,
which is later converted and scaled to a [0;100] interval according to Brooke
[12]. The participants’ scores for both languages and the respective standard
deviations are depicted in Table 1.

Table 1. System usability scores for IFML and MAML

SUS ratings IFML MAML

All participants 52.79 (σ = 23.0) 66.83 (σ = 15.6)

Software developers 45.91 (σ = 23.6) 64.09 (σ = 17.3)

Process modellers 64.17 (σ = 19.0) 69.44 (σ = 12.0)

Domain experts 48.33 (σ = 24.5) 67.92 (σ = 18.7)

However, it should be noted that the results do not represent percentage
values. Instead, an adjective rating scale was proposed by Bangor et al. [6] to
interpret the results as depicted in Fig. 5. The results show that MAML’s scores
are superior overall as well as for all three groups of participants. In addition,
the consistency of scores across all groups supports the design goal of creating
a notation which is well understandable for users with different backgrounds.
Particularly, domain experts without technical experience expressed a drastic
difference in comprehensibility of almost 20 points.

48 C. Rieger and H. Kuchen

Fig. 5. SUS ratings for IFML and MAML [46]

Fig. 6. SUS answers for domain experts (left) and technical users (right) [48]

Especially the distinction between domain experts and technical users (devel-
opers and process modellers together) is of interest to evaluate the design goal of
MAML to be comprehensible for different user groups. Figure 6 breaks down the
answers to the 10 questions of the SUS questionnaire (rescaled to a [0;4] inter-
val; 4 denoting strong acceptance). With one exception, responses for MAML are

Evaluating a Graphical Model-Driven Approach to App Development 49

higher than for the technical IFML notation. Moreover, domain experts reacted
significantly more positively when assessing the MAML notation as being wieldy
usable (+1.17 compared to IFML), fast to learn (+1.17), and self-descriptive
(+1.00). Consequently, the understandability and general applicability of the
notation is in the focus of domain experts, which aligns well with the inten-
tion to use MAML for communicating with potential end users and include
them in the development process. The strongest deviations for technical users,
in contrast, can be seen in questions regarding self-learnability (+1.05), per-
ceived consistency (+0.80), and pace of learning (+0.70). Conforming with their
technical background, these aspects emphasize the correct application of the
notation which apparently is perceived as positive in MAML, too.

Considering also the qualitative observations, some interesting insights can
be gained. According to the questionnaire results, most of the criticism is related
to the categories “easy to understand” and “confidence in the notation”. IFML’s
approach of visually hinting at the outcome through the order of elements and
their composition in screen-like boxes was often noted as positive and slightly
more intuitive compared to MAML. This argument is not unexpected as the
level of abstraction was designed to be higher than a pure visual equivalent
of programming activities. Also, the notation is not limited to the few types
of mobile devices known by a participant, e.g., smartwatches and smartphones
exhibit very different interface and interaction characteristics. Therefore, a fully
screen-oriented approach generally contradicts the desired platform-independent
design of MAML. However, this is valuable feedback for the future, e.g., improv-
ing modelling support by using an additional simulator component to preview
the outcome while modelling.

Surprisingly, IFML scores were worst for the group of software developers,
although they have knowledge of other UML concepts and diagrams. Despite
this apparent familiarity, reasons for the negative assessment of IFML can be
found in the amount of “technical clutter”, e.g., regarding parameter and data
bindings, as well as perceived redundancies and inconsistencies. In contrast, 86%
of these participants highlight the clarity of MAML regarding the composition
of individual models and 88% are able to sketch a possible appearance of the
final app result based on the abstract process specification.

Overall, three in four participants can also transfer knowledge from other
modelling notations, e.g., to interpret elements such as data sources. All partic-
ipants within the process modeller group immediately recognize analogies from
other graphical notations such as BPMN, and understand the process-related
concepts of MAML. Whereas elements such as data sources (understood by 75%
of all participants) and nested attribute structures (83%) are interpreted cor-
rectly on an abstract level, comprehensibility drops with regard to technical
aspects, e.g., data types (57%) or connector types (43%).

Finally, domain experts also have difficulties to understand the technical
aspects of MAML without previous introduction. Although concepts such as
cardinalities (0%), data types (25%), and nested object structures (67%) are not
initially understood and ignored, all participants in this group are still able to

50 C. Rieger and H. Kuchen

visualize the process steps and main actions of the model. As described in Sub-
sect. 3.1, further reducing these technical aspects constrains the possibilities to
generate code from the model. Some suggestions exist to improve readability, e.g.,
replacing the textual data type names with visualizations. Nevertheless, MAML
is comparatively well understandable. Curiously enough, the sample IFML model
is often perceived as being a more detailed technical representation of MAML
instead of a notation with equivalent expressiveness.

To sum up, MAML models are favoured by participants from all groups,
despite differences in personal background and technical experience. This part
of the study is not supposed to discredit IFML but emphasizes their different
foci: Whereas IFML covers an extensive set of features and integrates into the
UML ecosystem, it is originally designed as generic notation for modelling user
interactions and targeted at technical users. In contrast, the study confirms
MAML’s design principle of an understandable DSL for the purpose of mobile
app modelling.

4.3 Usability Results

In addition to the language’s comprehensibility, a major part of the study evalu-
ated the actual creation of models by the participants using the developed graph-
ical editor. After a brief ten-minute introduction of the language concepts and
the editor environment, four tasks were presented that cover many of MAML’s
features and concepts. In the hands-on context of a library app (cf. supplemen-
tary online material [47]), a first simple model to add a new book to the library
requires the combination of core features such as process elements and attributes.
Second, participants should model how to borrow a book based on screenshots
of the resulting app. This requires more interaction element types, a case distinc-
tion, and complex attributes. Third, modelling a summary of charges includes a
web service call, exception handling, and calculations. Fourth, a partial model
in a multi-role context needed to be altered.

The final evaluation was performed using the ISONORM questionnaire in
order to assess the usability according to the ISO 9241-110 standard [28]. 35
questions with a scale between −3 and 3 cover the seven criteria of usability as
presented in Table 2. Again, MAML achieves positive results for every criterion,
both for the participant subgroups and in total. Taking the interview obser-
vations into account for qualitative feedback, these figures can be evaluated in
more detail.

Regarding the suitability for the task, observations on the effectiveness and
efficiency of the notation show that handling models in the editor is achieved
without major problems. 94% of the participants themselves noticed a fast famil-
iarization with the notation, although domain experts are generally more wary
when using the software. The deliberately chosen high level of abstraction mani-
fests in 37% of participants describing this approach as uncommon or astonishing
(see also Sect. 6). Nevertheless, 67% of the participants state to have an under-
standing of the resulting app while modelling.

Evaluating a Graphical Model-Driven Approach to App Development 51

Table 2. ISONORM usability questionnaire results for MAML.

Criterion All participants Software developers Process modellers Domain experts

Suitability for the

task

1.63 (σ = 1.04) 1.36 (σ = 1.13) 1.62 (σ = 1.12) 2.13 (σ = 0.62)

Self-descriptiveness 0.51 (σ = 0.73) 0.62 (σ = 0.62) 0.38 (σ = 1.02) 0.50 (σ = 0.41)

Controllability 2.10 (σ = 0.83) 2.20 (σ = 0.63) 2.02 (σ = 0.63) 2.03 (σ = 1.41)

Conformity with

user expectations

1.78 (σ = 0.52) 1.85 (σ = 0.47) 1.64 (σ = 0.47) 1.87 (σ = 0.70)

Error tolerance 0.92 (σ = 0.96) 0.89 (σ = 0.63) 1.11 (σ = 0.81) 0.70 (σ = 1.63)

Suitability for

individualisation

1.20 (σ = 0.90) 1.04 (σ = 1.05) 1.42 (σ = 1.02) 1.17 (σ = 0.27)

Suitability for

learning

1.83 (σ = 0.67) 2.02 (σ = 0.54) 1.69 (σ = 0.66) 1.70 (σ = 0.90)

Overall score 1.43 (σ = 0.49) 1.43 (σ = 0.46) 1.41 (σ = 0.53) 1.44 (σ = 0.59)

Self-descriptiveness refers to comprehension issues but additionally deals
with the correct integration of different elements while modelling. For exam-
ple, the concept of user roles was introduced to the participants but not the
assignment in models. Still, 86% of them intuitively drag and drop role icons on
process elements correctly. Furthermore, process exceptions were not explained
at all in the introduction but 71% of the participants applied the “error event”
element correctly without help. Self-descriptiveness is, however, more limited
when dealing with technical issues. Side effects of transitive attributes are only
recognized by 43% of process modellers and 25% of domain experts. Model val-
idation or additional modelling support is needed in order to guide the users
towards semantically correct models. Similarly, the complexity of modelling web
service responses within the use case’s data flow poses challenges to 44% of the
participants.

The very positive responses for the controllability criterion can be explained
by the simplistic design of MAML and its tools. All modelling activities are per-
formed in a single model instead of switching between multiple perspectives. In
contrast to other notations, all of the modelling work is performed in a single
type of model, mainly by dragging elements from a palette and arranging them
on a large canvas. Many participants utter remarks such as “the editor does
not evoke the impression of a complex tool”. In parts, this impression can be
attributed to sophisticated modelling support, including live data model infer-
ence when connecting elements in the model, validation rules, and suggestions
for available data types.

Related to the clarity of possible user actions, the conformity with user expec-
tations is also clearly positive. Despite occasional performance issues caused by
the prototypical nature of the tools, a consistent handling of the program is con-
firmed by the participants. Although aspects such as the direction of parameter
connections may be interpreted differently (e.g., either a sum refers to attributes
or attributes are incoming arguments to the sum function), the consistent use
of concepts throughout the notation is easily internalized by the participants.

52 C. Rieger and H. Kuchen

Regarding error tolerance and suitability for individualisation, scores are
moderate but the prototype was not yet particularly optimized for production-
ready stability or performance. Also, an individual appearance was not intended,
thus providing only basic capabilities such as resizing and repositioning compo-
nents. Whereas the editor is very permissive with regard to the order of mod-
elling activities, adding invalid model elements is mostly avoided by syntactic
and semantic validity checks, e.g., which elements are valid end points of a con-
nector. Participants appreciate the support of not being able to model invalid
constellations. However, criticism arises from disallowing actions without further
feedback on why a specific action is invalid. The modelling environment Sirius
is currently not able to provide this information, yet users might benefit more
from such dynamic explanations than from traditional help pages.

Finally, suitability for learning can be demonstrated best using quotes such
as MAML being judged as “a really practical approach”, and participants having
“fun to experiment with different elements” or being “surprised about what I
am actually able to achieve”. Using the graphical approach, users can express
their ideas and apply concepts consistently to different elements. As mentioned
above, many unknown features such as roles or web service interactions can be
learned using known drag and drop patterns or read/modify relationships.

5 Towards Pluri-Platform Development

The term cross-platform as well as actual development frameworks in academia
and practice are usually limited to smartphones and sometimes – yet not always –
technically similar tablets. Thus, they ignore the differing requirements and capa-
bilities within the variety of novel devices and platforms reaching the mainstream
consumer market in the near future. Extending the boundaries of current cross-
platform development approaches requires a new scope of target devices which
can be subsumed under the term app-enabled devices. Following the definition
in [50], an app-enabled device can be described as being extensible with software
that comes in small, interchangeable pieces, which are usually provided by third
parties unrelated to the hardware vendor or platform manufacturer, and increase
the versatility of the device after its introduction. Although these devices are typ-
ically portable or wearable and therefore related to the term mobile computing,
there are further devices classes with the ability to run apps (e.g., smart TVs).

However, new challenges arise when extending the idea of cross-platform
development to app-enabled device classes. In particular, not all approaches
mentioned in Sect. 2 are generally capable for this extension as described in the
following.

5.1 Challenges

From the development and usage perspectives on app development, specific chal-
lenges can be identified related to app development across device classes and
which can be grouped into four main categories.

Evaluating a Graphical Model-Driven Approach to App Development 53

Output Heterogeneity: The user interface of upcoming device classes enables
more flexible and intuitive ways of device interaction compared to the prevalent
focus on medium screen sizes between 4′′ and 10′′. By design, graphical output
is very limited on wearables. On the other hand, smart TVs provide large-scale
screens beyond 20′′. Also, devices can use new techniques for presenting infor-
mation, e.g., auditive output by smart virtual assistants, or projection through
augmented reality (for example using the wind shield in vehicles). In addition,
even for screen-based devices the variability of output increases because of new
screen designs with drastically differing pixel density, aspect ratios, and form fac-
tors (e.g., round smartwatches) [50]. Techniques from the field of adaptive user
interfaces may be used to tackle these issues. To achieve this degree of adaptabil-
ity, specifying user interfaces needs to evolve from a screen-oriented specification
of explicitly positioned widgets to a higher level of abstraction which can use
semantic information to transform the content to a particular representation.

User Input Heterogeneity: The device interfaces for entering information by the
user also evolve and will use a wider spectrum of possible techniques for user
input [50]. This ranges from pushing buttons attached to the device, using remote
controls, directing pointing devices for graphical user interfaces, tapping on touch
screens, and using auxiliary devices (e.g., stylus pens) to hands-free interactions
via gestures, voice, or even neural interfaces. To complicate matters, a single
device may provide multiple input alternatives for convenience and especially
new device classes are often experimenting with different interactions patterns.
Again, this complexity calls for a higher level of abstraction when specifying
apps by decoupling actual input events from the intended actions of the user
interaction.

Device Class Capabilities: The variability of hardware and software across device
classes is also apparent besides the user interface. For example, the miniatur-
ization in wearable devices negatively impacts the computational power and
battery capacity. Complex computations may therefore be offloaded to poten-
tial companion devices or provided through edge/cloud computing [44]. Sensing
capabilities can vary both within and across device classes. In addition, platform
operating systems provide different levels of device functionality access and app
interoperability, e.g., regarding security issues in vehicles. To avoid the problem
of developing for the least common denominator of all targeted devices, suitable
replacements for unavailable sensors need to be provided. For example, auto-
matic location detection via GPS sensors can have fallback solutions such as
address lookup or manual selection on a map.

Multi-device Interaction: Whereas cross-platform approaches often provide self-
contained apps with the same functionality for different users (it is fairly uncom-
mon to own multiple smartphones with different platforms), users increasingly
own multiple devices of different device classes and aim for interoperable solu-
tions within their ecosystem. This complexity of multi-device interactions for a
single user might occur sequentially when a user switches to a different device

54 C. Rieger and H. Kuchen

depending on the usage context or user preferences (e.g., reading notifications on
a smartwatch and typing the response on a smartphone for convenience). More-
over, a concurrent usage of multiple devices for the same task is possible, for
instance in a second screening scenario in which one device provides additional
information or input/output capabilities for controlling another device [39]. In
both cases, fast and reliable synchronization of content is essential in order to
seamlessly switch between multiple devices.

5.2 Towards Pluri-Platform Development

To emphasize the difference in scope and the respective solution approaches
compared to traditional cross-platform development, we propose the term pluri-
platform development to signify the creation of apps across device classes, in
contrast to multi-/cross-platform development for several platforms within one
class of mostly homogeneous devices. Pluri-platform development can, therefore,
be understood as an umbrella term for different approaches aiming to bridge the
gap between multiple device classes by tackling the challenges of heterogeneous
input and output mechanisms, device capabilities, and multi-device interactions.
In contrast to cross-platform development, the focus lies on simplification of app
creation not just with regard to the representation of user interfaces but also the
integration with platform-specific usage patterns and the interaction within a
multi-device context. The related research fields of adaptive user interfaces and
context-aware interfaces thus only account for a subset of the required solutions
to achieve pluri-platform development.

Considering previous literature in this domain, very few works explicitly
deal with app development spanning multiple device classes, indicating that app
development beyond smartphones is not yet approached systematically but on
a case-by-case basis. Cross-platform overview papers such as [29] typically focus
on a single category of devices and apply a very narrow notion of mobile devices.
[50] provides the only classification that includes novel device classes. Few papers
provide a technical perspective on apps spanning multiple device classes. Singh
and Buford [55] describe a cross-device team communication use case for desktop,
smartphones, and wearables, and Esakia et al. [17] performed research on the
interaction between the Pebble smartwatch and smartphones in computer sci-
ence courses. In the context of Web-of-Things devices, Koren and Klamma [31]
propose a middleware approach to integrate data and heterogeneous UI, and
Alulema et al. [2] propose a DSL for bridging the presentation layer of het-
erogeneous devices in combination with web services for incorporating business
logic.

With regard to commercial cross-platform products, Xamarin [64] and
CocoonJS [33] provide Wear OS support to some extent. Whereas several other
frameworks claim to support wearables, this usually only refers to accessing
data by the main smartphone application or displaying notifications on already
coupled devices.

Together with the increase in devices, new software platforms have appeared,
some of which are either related to established operating systems (OS) for other

Evaluating a Graphical Model-Driven Approach to App Development 55

device classes or are newly designed to run on multiple heterogeneous devices.
Examples include Android/Wear OS, watchOS, and Tizen. Although these plat-
forms ease the development of apps (e.g., reusing code and libraries), subtle
differences exist in the available functionality and general cross-platform chal-
lenges remain.

5.3 Applicability of Existing Cross-Platform Approaches for
Pluri-Platform Development

Different instantiations and practical frameworks may be conceived which extend
the approaches to cross-platform development presented in Sect. 2.

A plethora of literature exists in the context of cross- or multi-platform
development. Classifications such as in [16] and [36] have identified five main
approaches to multi-platform app development which are varyingly suited to the
specific challenges of pluri-platform development. With regard to runtime-based
approaches, mobile webapps – including recently proposed Progressive Web Apps
– are mobile-optimized web pages that are accessed using the device’s browser
and relatively easy to develop using web technologies. However, most novel device
types, e.g., the major smartwatch platforms watchOS [4] and Wear OS by Google
[24], do not provide WebView components or browser engines that allow for the
execution of JavaScript code. Consequently, this approach cannot be used for
pluri-platform development targeting a broader range of devices.

Hybrid apps are developed similarly using web technologies but are encapsu-
lated in a wrapper component that enables access to device hardware and OS
functionality through an API. Although they are distributed as app packages
via marketplaces, hybrid apps rely on the same technology and can neither be
used for pluri-platform development.

In contrast, a self-contained runtime does not depend on the device’s browser
engine but uses platform-specific libraries provided by the framework developer
in order to use native functionality. Of the runtime environment approaches,
this is the only one that can be used for pluri-platform development. Although
usually based on custom scripting languages, a runtime can also be used as a
replacement for inexistent platform functionality. As an example, CocoonJS [33]
recreated a restricted WebView engine and, therefore, supports the development
of JavaScript-based apps also for the Wear OS platform. However, devices need
sufficient computing power to execute the runtime on top of the actual oper-
ating system. Also, synergies with regard to user input/output and available
hardware/software functionality across heterogeneous devices are dependent on
the runtime’s API.

Considering generative approaches to cross-platform development, model-
driven software development has several advantages as it uses textual or graph-
ical models as main artefacts to develop apps and then generates native source
code from this platform-neutral specification. Referring to domain-specific con-
cepts allows for a high level of abstraction, for example circumventing issues
such as input and output heterogeneity using declarative notations. Arbi-
trary platforms can be supported by developing respective generators which

56 C. Rieger and H. Kuchen

implement a suitable mapping from descriptive models to native platform-
specific implementations.

Finally, transpiling approaches use existing application code and transform
it into different programming languages. Pluri-platform development using this
approach is technically possible as the result is also native code. However, there
is more to app development than just the technical equivalence of code, which
also explains the low adoption of this approach by current cross-platform frame-
works. For instance, user interfaces behave drastically differently across different
device classes, and substantial transformations would be required to identify the
contextual patterns from the low-level implementation. It is therefore unlikely
that this approach provides a suitable means for pluri-platform development
beyond reusing individual components such as business logic.

To sum up, only self-contained runtimes and model-driven approaches are
candidates for pluri-platform development, of which the latter additionally ben-
efits from the transformation of domain abstractions to platform-specific imple-
mentations.

5.4 Evaluation of MAML in a Pluri-Platform Context

The MAML notation condenses the development of apps to a sequence of data
manipulation activities. Conceptually, the platform-agnostic nature and high
level of abstraction allow for a wider applicability beyond just smartphone plat-
forms. From the variety of novel app-enabled device classes [50], smartwatches
have so far become most prevalent on the consumer market which offers a multi-
tude of devices and several vendors promoting new platforms. Today’s situation
resembles the early experimental years after the introduction of the iPhone in
2007 and development using adequate abstractions is needed. Although a smart-
watch typically has a touch screen, the screen dimension as well as the user input
mechanisms, sensing capabilities, and usage patterns differ from smartphones.
Ideally, pluri-platform development approaches can bridge the gap between app
development not only for different smartwatches but integrate with existing
ecosystems of current app-enabled devices. This is especially beneficial in a
multi-device context in which one user owns several devices and can use platform-
adapted apps depending on personal preferences or usage contexts.

To investigate the practical opportunities and challenges of pluri-platform
development, we developed a new code generator for the Wear OS platform by
Google (formerly Android Wear) [24] which supports the creation of stand-alone
apps for respective smartwatches. Consequently, the model-driven foundation
of our framework now allows for the combined generation of smartphone and
smartwatch source code using the same MAML models as input. More details
on the required transformations to represent the desired content on a smartwatch
are presented in [49]. Yet, in this work we want to focus on the usability of the
notation with regard to the specification of apps across device classes.

Therefore, a second study was conducted in order to validate the previous
results in the established smartphone domain and gain insights on the suitabil-
ity towards other app-enabled device classes. The study was conducted with 23

Evaluating a Graphical Model-Driven Approach to App Development 57

Fig. 7. Use cases for adding and displaying items in a to-do management system [45]

students from a course on advanced concepts in software engineering of an infor-
mation systems master’s program. Whereas designing applications using MDSD
techniques is part of the course contents and knowledge of process modelling
notations can be presumed, no previous experience with app development was
expected in order to avoid a bias towards existing frameworks or approaches.
This is supported by the average responses regarding experience in the develop-
ment of web apps (3.26), hybrid apps (4.35), and native apps (4.30) on a 5-point
Likert scale.

Using a simple to-do management scenario depicted in Fig. 7, a 5-min intro-
duction to the MAML notation was given to explain the two processes of creating
a new to-do item in the system and displaying the full list of to-dos with the pos-
sibility to update items and ticking off the task. Subsequently, participants were
asked to express their conceptions of the resulting apps by sketching smartphone
and smartwatch user interfaces complying with these use cases.

Interestingly, 64% of the participants intuitively chose a square representation
for the smartwatch screen, which reflects the publicity of the Apple watch. Also,
a variety of interaction patterns could be derived from the sketches, for example
the representation of repetitive elements as a vertical scrollable list (65%) in
contrast to 17% using a horizontal arrangement. From the sketches that hint
towards navigation patterns, the master-detail pattern of the “list todos” use
case of Fig. 7 was conceived either via tapping on the element (42%), using an
edit button (33%), pressing a hardware button such as the watch crown (8%),
swiping to the right hand side (8%), or using a voice command (8%).

58 C. Rieger and H. Kuchen

As regards the creation of new entities, 35% of the participants imagined a
scrollable view containing all attributes, whereas 30% decided for separate input
steps for each attribute, 9% utilized the available screen dimensions and dis-
tributed the attributes across multiple views with more than one attribute on
each. In addition, 30% allowed the unstructured input of data via voice interface
and 26% allowed voice inputs per attribute (the total above 100% results from
multiple alternatives combined in the same sketches). It can also be said that a
common perception of navigation within a smartphone app has not been estab-
lished so far: From the identifiable navigation patterns, 53% relied on buttons
to continue through the creation process whereas horizontal or vertical swipe
gestures were depicted in 20% and 13%, respectively, and 14% decided to use
one or multiple hardware buttons for navigation.

Fig. 8. Generated Wear OS app for the system modelled in Fig. 7 (cf. [49])

The standardized SUS questionnaire was used to triangulate the results with
the initial study presented in Sect. 4. The resulting score of 66.85 (σ = 12.9)
aligns very well with the figures depicted in Table 1 for software developers and
process modellers and reinforces the validity of the previous study. Upon showing
the generated app result depicted in Fig. 8, the participants were asked about
their opinion on the smartwatch outcome (using again a 5-point Likert scale).
The participants agreed (2.04) that the generated smartwatch app suitably rep-
resents the process depicted in the MAML model. Furthermore, they supported

Evaluating a Graphical Model-Driven Approach to App Development 59

the statement (2.39) that the resulting app is functional with regard to the to-
do management scenario. The visual appearance of the smartwatch was rated
merely with 3.3 which can be explained by the generic transformations and
assumptions derived from the abstract process model. Also, the prototypical
nature of our generator needs more refinements to choose suitable representa-
tions.

Regarding the combined generation of apps for smartwatch and smartphone
from the same model, the participants did not feel that the common notation
makes app development unnecessarily complex (3.35) and tended to agree that
having one notation for both app representations accelerates app development
(2.48). When asked about specific durations, the students estimated the required
time to build the MAML models with 50 min on average, compared to a mean
value of 27.3 h when programming the application natively or with cross-platform
programming frameworks. Though the actual development was not performed
in this study, these estimates underline the possible economic impact of MDSD
to reduce the effort for creating specific applications and thus achieve a faster
time to market for new apps or app updates.

6 Discussion

In this section, key findings of the proposed MAML framework and subsequent
evaluation are discussed with regard to the design objectives and general implica-
tions on model-driven software development for mobile applications across device
classes. Regarding the principle of data-driven process modelling, using process
flows in a graphical notation has shown to be a suitable approach for declaratively
designing business apps. Graphical DSLs can also simplify modelling activities
for the users of other domains, especially those that benefit from a visual compo-
sition of elements such as graph structures. Particularly for MAML, the chosen
level of abstraction allows for a much wider usage compared to low-level graphi-
cal screen design: Besides the actual app product, models can be used to discuss
and communicate small-scale business processes in a more comprehensive way
than BPMN or similar process notations through combined modelling of process
flows and data structures. In contrast to alternative codeless app development
approaches focused on the graphical configuration of UI elements, users do not
get distracted by the eventual position of elements on screen but can focus on
the task to be accomplished. Moreover, the DSL is platform-agnostic and can
thus be used to describe apps for a large variety of mobile devices. Apart from
smartphones and tablets, generators for novel device types such as smartwatches
or smart glasses may be created in the future based on the same input models.

Second, the challenge of developing a machine-interpretable notation that is
understandable both for technical and non-technical users is a balancing act,
but the interview observations and consistent scores in the evaluation indicate
this design goal was reached. The most significant differences in the partici-
pants’ modelling results are related to technical accuracy, mostly because of
(missing) knowledge about programming or process abstractions. As such issues

60 C. Rieger and H. Kuchen

not always manifest as modelling errors but often happen through oversights,
preventing them while keeping a certain joy of use is only achievable using a
combined approach: The notation itself should be permissive instead of overly
formal. Moreover, clarity (e.g., wording of UI elements) and simplicity of the DSL
contribute to manageable models. Most important, however, is the extensive use
of modelling support for different levels of experience. Novice users learn from
hints (e.g., hover texts and error explanations) whereas advanced users can ben-
efit from domain-specific validation rules and optional perspectives to preview
results of model changes. Particularly for MAML, advanced modelling support
is achieved by interpreting the models and inferring a global object structure
from a variety of partial data models as described in [45]. Consequently, this fea-
ture allows for dynamically generated suggestions such as available data types,
implicit reactions such as forbidding illegitimate element connections, and val-
idation of conflicting data types and cardinalities. In general, a model-driven
approach with advanced modelling support enables the active involvement of
business experts in software development processes and can be regarded as major
influencing factor for a successful integration of non-programmers.

Finally, the choice of mixing data model, business logic, and view details in
a single model deviates from traditional software engineering practices in order
to ease the modelling process for non-technical users. This does not mean that
we recommend MAML for all process-oriented modelling tasks. Large business
processes are just too complex to be jointly expressed with all data objects in a
single model. However, mobile apps with small-scale tasks and processes are well
suited to this kind of integrated modelling approach. The evaluation has shown
that users appreciate the simplicity of the editor without switching between mul-
tiple interrelated models, a major distinction from related approaches to graph-
ical mobile app development. Possibly related to the aforementioned modelling
support, not even programmers miss the two-step approach of first specifying a
global data model and then separately defining the respective processes. Nev-
ertheless, as potential future extension, an optional view of the inferred data
model may be interesting for them to check the modelling result before gen-
eration. Similarly, two non-technical users stated the wish for a preview of the
resulting screens. However, both suggestions are neither meant to be editable nor
mandatory for the app creation process and rather serve as reassuring validation
while modelling the use case. It can therefore be said that modelling activities
should suit the users’ previous experience, potentially ignoring established con-
cepts of technical domains for the greater good of a more comprehensible and
seamless modelling environment.

As a result, bringing mobile app modelling to this new level of abstrac-
tion not only bridges the gap to the field of business process modelling but
can also impact organizations. On the one hand, new technical possibilities arise
from process-centric app models. For example, already documented business pro-
cesses can be used as input for cross-platform development targeting a variety
of heterogeneous mobile devices. On the other hand, codeless app generation
creates the opportunity for different development methodologies. The distinc-
tion between app developer and framework developer can lead to performance

Evaluating a Graphical Model-Driven Approach to App Development 61

benefits and better resource utilization on hardware-constrained devices such as
smartphones. Best practices of mobile software development can be adopted by
developers with expert knowledge of the respective platforms within the trans-
formations which are then applied consistently throughout all generated apps.
It has been shown that structural implementation decisions and even small-scale
code refactorings can significantly improve battery consumption and execution
times [52,53]. Also, instead of involving domain experts only in requirements
phases before the actual development, an equitable relationship with fast devel-
opment cycles is possible because changes to the model can be deployed instantly.
Furthermore, future non-technical users may themselves develop applications
according to their needs, extending the idea of self-service IT to its actual devel-
opment. All of these ideas, however, rely on the modelling support provided
by the environment, as begun with MAML’s data model inference mechanism.
Smart software to guide and validate the created models is required instead
of simply representing the digital equivalent of a sheet of paper. In the future,
graphical editors may evolve beyond just organizing and linking different models,
towards tools enabling novel digital ecosystems through supportive technology.

7 Conclusion

In this work, a model-driven approach to mobile app development called MAML
was presented which focuses around a declarative and platform-agnostic DSL to
graphically create mobile business apps. The visual editor component provides
advanced modelling support such as suggestions and validation through auto-
matic data model inference. In addition, transformations allow for a codeless gen-
eration of app source code for multiple platforms. To evaluate the notation with
regard to comprehensibility and usability, an extensive observational study with
26 participants was performed. The results confirm the design goals of achiev-
ing a wide-spread comprehensibility of MAML models for different audiences of
software developers, process modellers, and domain experts. In comparison to
the IFML notation, an equivalent MAML model is perceived as much less com-
plex – in particular by non-technical users – and participants felt a high level
of control, thus confidently solving their tasks. Furthermore, we analysed the
challenges when extending the cross-platform approach to multiple app-enabled
device classes. The applicability of MAML for this so-called pluri-platform devel-
opment was assessed using a second study on a newly developed generator for
the Wear OS smartwatch platform. As a result, MAML’s approach of describ-
ing a mobile app as process-oriented set of use cases reaches a suitable balance
between the technical intricacies of cross-platform app development and the sim-
plicity of usage through the high level of abstraction and can be used to create
app source code for both device classes from the same input models.

In case of the presented study results, some limitations may threaten their
validity. Although a reasonable amount of participants was chosen for the obser-
vational interviews, additional evaluations may be carried out after the next
iteration of MAML’s development. Also, our participants were mostly students

62 C. Rieger and H. Kuchen

which potentially reduces the generalizability of the results. However, their gener-
ation of app-experienced adults already participates in the general workforce and
can be seen as realistic (albeit not representative) sample. The synthetic exam-
ples within the case study were designed to test a wide range of MAML’s capa-
bilities and uncover usability issues. Therefore, a real-world application would
strengthen the validity of the approach and at the same time represents future
work.

Regarding limitations of the approach itself, the chosen level of abstraction
requires assumptions on the generic representation of data in the prototype.
Possibilities to customize low-level details such as UI styling for different device
classes need to be addressed in future, for example on the level of the intermediate
MD2 representation. Also, improvements of the generator prototype itself are
part of ongoing work to provide a wide set of platform-adapted representations.

The presented process-oriented DSL offers the opportunity for research on a
suitable framework structure for pluri-platform development and possible reuse
of common transformations among multiple generators. Also, the process of
developing such a framework of coupled components through a team with differ-
ent roles may be investigated to further integrate model-driven techniques with
traditional software development. Technically, further iterations on the frame-
work’s development are planned in order to provide additional user support,
improve performance, and incorporate feedback based on the observed usability
issues. Finally, the applicability of our approach to create business apps through
model-driven transformations of MAML’s platform-agnostic models to further
device classes with drastically different UIs such as smart virtual assistants also
presents exciting possibilities for future research.

References

1. van der Aalst, W.: Formalization and verification of event-driven process chains.
Inf. Softw. Technol. 41(10), 639–650 (1999). https://doi.org/10.1016/S0950-
5849(99)00016-6

2. Alulema, D., Iribarne, L., Criado, J.: A DSL for the development of heterogeneous
applications. In: FiCloudW, pp. 251–257 (2017)

3. Apache Software Foundation: Apache Cordova documentation (2019). https://
cordova.apache.org/docs/en/latest/

4. Apple Inc: watchOS (2019). www.apple.com/watchos/
5. Architecture Board ORMSC: Model driven architecture (MDA): Document

number ormsc/2001-07-01 (2001). http://www.omg.org/cgi-bin/doc?ormsc/2001-
07-01

6. Bangor, A., Kortum, P., Miller, J.: Determining what individual SUS scores mean:
adding an adjective rating scale. J Usability Stud. 4(3), 114–123 (2009)

7. Bargh, J.A., Chartrand, T.L.: Studying the mind in the middle: a practical guide to
priming and automaticity research. In: Judd, C.M., Reis, H.T. (eds.) Handbook of
Research Methods in Social and Personality Psychology, pp. 253–285. Cambridge
University Press, New York (2000)

https://doi.org/10.1016/S0950-5849(99)00016-6
https://doi.org/10.1016/S0950-5849(99)00016-6
https://cordova.apache.org/docs/en/latest/
https://cordova.apache.org/docs/en/latest/
www.apple.com/watchos/
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01
http://www.omg.org/cgi-bin/doc?ormsc/2001-07-01

Evaluating a Graphical Model-Driven Approach to App Development 63

8. Barnett, S., Avazpour, I., Vasa, R., Grundy, J.: A multi-view framework for gener-
ating mobile apps. In: IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pp. 305–306 (2015). https://doi.org/10.1109/VLHCC.
2015.7357239

9. Bizness Apps: Mobile app maker—bizness apps (2019). http://biznessapps.com/
10. Brambilla, M., Dosmi, M., Fraternali, P.: Model-driven engineering of service

orchestrations. In: 5th World Congress on Services (2009). https://doi.org/10.
1109/SERVICES-I.2009.94

11. Breu, R., Kuntzmann-Combelles, A., Felderer, M.: New perspectives on software
quality [guest editors’ introduction]. IEEE Softw. 31(1), 32–38 (2014). https://doi.
org/10.1109/MS.2014.9

12. Brooke, J.: SUS-a quick and dirty usability scale. In: Jordan, P.W., Thomas, B.,
Weerdmeester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry, pp.
189–194. Taylor and Francis, London (1996)

13. Bubble Group: Bubble - visual programming (2019). https://www.bubble.is/
14. Buchmann, T.: Bxtend - a framework for (bidirectional) incremental model

transformations. In: 6th International Conference on Model-Driven Engineering
and Software Development (MODELSWARD) (2018). https://doi.org/10.5220/
0006563503360345

15. da Silva, L.P., Brito e Abreu, F.: Model-driven GUI generation and navigation
for android BIS apps. In: 2014 2nd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), pp. 400–407 (2014)

16. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of cross-
platform mobile applications development approaches. Ain Shams Eng. J. (2015).
https://doi.org/10.1016/j.asej.2015.08.004

17. Esakia, A., Niu, S., McCrickard, D.S.: Augmenting undergraduate computer sci-
ence education with programmable smartwatches. In: SIGCSE, pp. 66–71 (2015).
https://doi.org/10.1145/2676723.2677285

18. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using UML 2.0: promises and pitfalls. Computer 39(2), 59–66 (2006). https://doi.
org/10.1109/MC.2006.65

19. Fuller, J.B., Hester, K., Barnett, T., Frey, L., Relyea, C., Beu, D.: Perceived
external prestige and internal respect: new insights into the organizational iden-
tification process. Hum. Relat. 59(6), 815–846 (2006). https://doi.org/10.1177/
0018726706067148

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley, Reading (1995)

21. Gediga, G., Hamborg, K.C.: Evaluation in der software-ergonomie. J. Psychol.
210(1), 40–57 (2002). https://doi.org/10.1026//0044-3409.210.1.40

22. GoodBarber: Goodbarber: Make an app (2019). https://www.goodbarber.com/
23. Google Inc: J2ObjC (2018). http://j2objc.org/
24. Google Inc: Wear OS by Google smartwatches (2019). https://wearos.google.com/
25. Granada, D., Vara, J.M., Brambilla, M., Bollati, V., Marcos, E.: Analysing the

cognitive effectiveness of the WebML visual notation. Softw. Syst. Model. (2015).
https://doi.org/10.1007/s10270-014-0447-8

26. Hemel, Z., Visser, E.: Declaratively programming the mobile web with Mobl. In:
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA), pp. 695–712. ACM (2011). https://doi.org/10.1145/2048066.2048121

27. International Organization for Standardization: ISO 5807:1985 (1985)

https://doi.org/10.1109/VLHCC.2015.7357239
https://doi.org/10.1109/VLHCC.2015.7357239
http://biznessapps.com/
https://doi.org/10.1109/SERVICES-I.2009.94
https://doi.org/10.1109/SERVICES-I.2009.94
https://doi.org/10.1109/MS.2014.9
https://doi.org/10.1109/MS.2014.9
https://www.bubble.is/
https://doi.org/10.5220/0006563503360345
https://doi.org/10.5220/0006563503360345
https://doi.org/10.1016/j.asej.2015.08.004
https://doi.org/10.1145/2676723.2677285
https://doi.org/10.1109/MC.2006.65
https://doi.org/10.1109/MC.2006.65
https://doi.org/10.1177/0018726706067148
https://doi.org/10.1177/0018726706067148
https://doi.org/10.1026//0044-3409.210.1.40
https://www.goodbarber.com/
http://j2objc.org/
https://wearos.google.com/
https://doi.org/10.1007/s10270-014-0447-8
https://doi.org/10.1145/2048066.2048121

64 C. Rieger and H. Kuchen

28. International Organization for Standardization: ISO 9241-110:2006 (2006)
29. Jesdabodi, C., Maalej, W.: Understanding usage states on mobile devices. In: ACM

International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp,
pp. 1221–1225. ACM (2015). https://doi.org/10.1145/2750858.2805837

30. Jones, C., Jia, X.: The AXIOM model framework: transforming requirements to
native code for cross-platform mobile applications. In: 2nd International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD).
IEEE (2014)

31. Koren, I., Klamma, R.: The Direwolf inside you: end user development for hetero-
geneous web of things appliances. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C.
(eds.) ICWE 2016. LNCS, vol. 9671, pp. 484–491. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38791-8 35

32. Langlois, B., Jitia, C.E., Jouenne, E.: DSL classification. In: The 7th OOPSLA
Workshop on Domain-Specific Modeling (2007)

33. Ludei Inc: Canvas+ Cocoon documentation (2019). https://docs.cocoon.io/article/
canvas-engine/

34. Majchrzak, T.A., Ernsting, J.: Reengineering an approach to model-driven devel-
opment of business apps. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2015. LNBIP, vol.
232, pp. 15–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24366-
5 2

35. Majchrzak, T.A., Ernsting, J., Kuchen, H.: Achieving business practicability of
model-driven cross-platform apps. OJIS 2(2), 3–14 (2015)

36. Majchrzak, T.A., Wolf, S., Abbassi, P.: Comparing the capabilities of mobile plat-
forms for business app development. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2015.
LNBIP, vol. 232, pp. 70–88. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-24366-5 6

37. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005). https://doi.org/10.1145/
1118890.1118892

38. Moody, D.: The “physics” of notations: towards a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(5), 756–778
(2009)

39. Neate, T., Jones, M., Evans, M.: Cross-device media: a review of second screen-
ing and multi-device television. Pers. Ubiquitous Comput. 21(2), 391–405 (2017).
https://doi.org/10.1007/s00779-017-1016-2

40. Object Management Group: Business process model and notation (2011). http://
www.omg.org/spec/BPMN/2.0

41. Object Management Group: Unified modeling language (2015). http://www.omg.
org/spec/UML/2.5

42. Pentaho Corp: Data integration - kettle (2017). http://community.pentaho.com/
projects/data-integration/

43. Product Hunt: 7 tools to help you build an app without writing
code (2016). https://medium.com/product-hunt/7-tools-to-help-you-build-an-
app-without-writing-code-cb4eb8cfe394

44. Reiter, A., Zefferer, T.: Power: a cloud-based mobile augmentation approach for
web- and cross-platform applications. In: CloudNet, pp. 226–231. IEEE (2015).
https://doi.org/10.1109/CloudNet.2015.7335313

45. Rieger, C.: Business apps with MAML: a model-driven approach to process-
oriented mobile app development. In: Proceedings of the 32nd Annual ACM Sym-
posium on Applied Computing, pp. 1599–1606 (2017)

https://doi.org/10.1145/2750858.2805837
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-319-38791-8_35
https://docs.cocoon.io/article/canvas-engine/
https://docs.cocoon.io/article/canvas-engine/
https://doi.org/10.1007/978-3-319-24366-5_2
https://doi.org/10.1007/978-3-319-24366-5_2
https://doi.org/10.1007/978-3-319-24366-5_6
https://doi.org/10.1007/978-3-319-24366-5_6
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/s00779-017-1016-2
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
http://community.pentaho.com/projects/data-integration/
http://community.pentaho.com/projects/data-integration/
https://medium.com/product-hunt/7-tools-to-help-you-build-an-app-without-writing-code-cb4eb8cfe394
https://medium.com/product-hunt/7-tools-to-help-you-build-an-app-without-writing-code-cb4eb8cfe394
https://doi.org/10.1109/CloudNet.2015.7335313

Evaluating a Graphical Model-Driven Approach to App Development 65

46. Rieger, C.: Evaluating a graphical model-driven approach to codeless business
app development. In: 51st Hawaii International Conference on System Sciences
(HICSS), pp. 5725–5734 (2018)

47. Rieger, C.: MAML code respository (2019). https://github.com/wwu-pi/maml
48. Rieger, C., Kuchen, H.: A process-oriented modeling approach for graphical devel-

opment of mobile business apps. Comput. Lang. Syst. Struct. 53, 43–58 (2018).
https://doi.org/10.1016/j.cl.2018.01.001

49. Rieger, C., Kuchen, H.: A model-driven cross-platform app development process for
heterogeneous device classes. In: 52nd Hawaii International Conference on System
Sciences (HICSS), pp. 7431–7440 (2019)

50. Rieger, C., Majchrzak, T.A.: A taxonomy for app-enabled devices: mastering the
mobile device jungle. In: Majchrzak, T.A., Traverso, P., Krempels, K.-H., Monfort,
V. (eds.) WEBIST 2017. LNBIP, vol. 322, pp. 202–220. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93527-0 10

51. Rivera, J., van der Meulen, R.: Gartner says by 2018, more than 50 percent of
users will use a tablet or smartphone first for all online activities (2014). http://
www.gartner.com/newsroom/id/2939217

52. Rodriguez, A., Mateos, C., Zunino, A.: Improving scientific application execution
on android mobile devices via code refactorings. Softw. Pract. Exp. 47(5), 763–796
(2017). https://doi.org/10.1002/spe.2419

53. Sahar, H., Bangash, A.A., Beg, M.O.: Towards energy aware object-oriented devel-
opment of android applications. Sustain. Comput. Inform. Syst. 21, 28–46 (2019).
https://doi.org/10.1016/j.suscom.2018.10.005

54. Simons, C., Wirtz, G.: Modeling context in mobile distributed systems with the
UML. J. Vis. Lang. Comput. 18(4), 420–439 (2007). https://doi.org/10.1016/j.
jvlc.2007.07.001

55. Singh, K., Buford, J.: Developing WebRTC-based team apps with a cross-platform
mobile framework. In: IEEE CCNC (2016). https://doi.org/10.1109/CCNC.2016.
7444762

56. Spool, J., Schroeder, W.: Testing web sites: five users is nowhere near enough.
In: CHI 2001 Extended Abstracts on Human Factors in Computing Systems, pp.
285–286. ACM (2001). https://doi.org/10.1145/634067.634236

57. The Eclipse Foundation: Sirius (2019). https://eclipse.org/sirius/
58. Thomson, G.: BYOD: enabling the chaos. Netw. Secur. 2012(2), 5–8 (2012).

https://doi.org/10.1016/S1353-4858(12)70013-2
59. Umuhoza, E., Brambilla, M.: Model driven development approaches for mobile

applications: a survey. In: Younas, M., Awan, I., Kryvinska, N., Strauss, C., Thanh,
D. (eds.) MobiWIS 2016. LNCS, vol. 9847, pp. 93–107. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44215-0 8

60. Vaupel, S., Taentzer, G., Harries, J.P., Stroh, R., Gerlach, R., Guckert, M.: Model-
driven development of mobile applications allowing role-driven variants. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 1–17. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11653-2 1

61. Virzi, R.A.: Refining the test phase of usability evaluation: how many subjects is
enough? Hum. Factors 34(4), 457–468 (1992)

62. WebRatio: WebRatio (2019). http://www.webratio.com

https://github.com/wwu-pi/maml
https://doi.org/10.1016/j.cl.2018.01.001
https://doi.org/10.1007/978-3-319-93527-0_10
http://www.gartner.com/newsroom/id/2939217
http://www.gartner.com/newsroom/id/2939217
https://doi.org/10.1002/spe.2419
https://doi.org/10.1016/j.suscom.2018.10.005
https://doi.org/10.1016/j.jvlc.2007.07.001
https://doi.org/10.1016/j.jvlc.2007.07.001
https://doi.org/10.1109/CCNC.2016.7444762
https://doi.org/10.1109/CCNC.2016.7444762
https://doi.org/10.1145/634067.634236
https://eclipse.org/sirius/
https://doi.org/10.1016/S1353-4858(12)70013-2
https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1007/978-3-319-11653-2_1
https://doi.org/10.1007/978-3-319-11653-2_1
http://www.webratio.com

66 C. Rieger and H. Kuchen

63. Wolber, D.: App inventor and real-world motivation. In: 42nd ACM Technical
Symposium on Computer Science Education (SIGCSE) (2011). https://doi.org/
10.1145/1953163.1953329

64. Xamarin Inc: Developer center - Xamarin (2019). https://developer.xamarin.com
65. Zy�la, K.: Perspectives of simplified graphical domain-specific languages as commu-

nication tools in developing mobile systems for reporting life-threatening situations.
Stud. Log. Gramm. Rhetor. 43(1) (2015). https://doi.org/10.1515/slgr-2015-0048

https://doi.org/10.1145/1953163.1953329
https://doi.org/10.1145/1953163.1953329
https://developer.xamarin.com
https://doi.org/10.1515/slgr-2015-0048

What Matters for Chatbots? Analyzing
Quality Measures for Facebook

Messenger’s 100 Most Popular Chatbots

Juanan Pereira(B) and Óscar Dı́az

ONEKIN Research Group, University of the Basque Country (UPV/EHU),
Bilbao, Spain

{juanan.pereira,oscar.diaz}@ehu.eus

Abstract. Chatbots are becoming mainstream. This work aims at
ascertaining what are the enablers behind this popularity. To this end,
we introduce four quality attributes, namely, “support of a minimal set
of commands”, “foresee language variations”, “human-assistance provi-
sion” and “timeliness”. These criteria are applied to the 100 most popular
Facebook Messenger chatbots. We review and measure both capacities
and performance in order to find correlations between quality attribute
fulfilment and popularity (chatbots’ ’likes’). Results show no significance
correlations between quality attributes and chatbot popularity. How-
ever, the experiment comes up with three main contributions. First,
a detailed description of how to measure these four quality attributes.
Second, insights about how this assessment can be automatized, paving
the way towards chatbot-evaluation platforms. Third, a checklist of fre-
quently committed interaction errors as found in the revised chatbots.
This might help developers to double-check their development.

Keywords: Conversational agents · Chatbots · Mobile UI · Messaging

1 Introduction

A chatbot is a computer program which conducts a conversation via instant
messaging. Chatbots are becoming pervasive: from flight reservation to purchase
tracking, from math quizzing to University entry advice, chatbots are percolat-
ing throughout an increasing number of activities. Chatbots have been around in
online web based environments for quite some time. But the breakthrough comes
from chatbots moving to a new realm: instant messaging. Benefits are numerous.
They ’live‘ in a familiar chat interface and builds upon existing infrastructure
of mobile and social commerce (e.g. ability to initiate a conversation or send

c© Springer Nature Switzerland AG 2019
T. A. Majchrzak et al. (Eds.): Towards Integrated Web, Mobile,
and IoT Technology, LNBIP 347, pp. 67–82, 2019.
https://doi.org/10.1007/978-3-030-28430-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28430-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-28430-5_4

68 J. Pereira and Ó. Dı́az

interesting updates1, a common known-interface2). Downloading and installing
apps is no longer necessary, and the use of smart-phones allows for easily access-
ing/monitoring personal data [9]. Furthermore, the use of chatbots can be more
cost effective than human-assisted support [7]. On top, chatbots are platform
independent as they use the messenger infrastructure. This makes app down-
loading redundant.

These benefits explain the staggering growing figures exhibited by chatbots
both in terms of users, savings and satisfaction. According to Gartner [4], by
2020, over 50% of medium to large enterprises will have deployed product chat-
bots. As for satisfaction, 38% of consumers rated their overall perception of bots
as positive [1], in comparison with only 11% who rate their interaction as nega-
tive. Nevertheless, not all chatbots are born equal. Even for the same platform,
chatbots enjoy a wide range of popularity as the number of “likes” so confirms.
This begs the question of what are those “likes” linked to.

Certainly, natural-language capabilities make a difference w.r.t. previous
technologies. And much work has been devoted to this issue in the academic
literature: [17] investigates methods to train and adapt a bot to a specific user’s
language use via a user-supplied training corpus; [16] rises the issue of the diffi-
culty in evaluating of domain-oriented chatbots as for natural language under-
standing and reasoning; [6] studies chatbots’ conversational abilities and context
sensitiveness (i.e. dialogue context detection, coherent dialogues, ability to repair
a dialog when parameters are missing, rich vocabulary). These studies illustrate
the preponderant role given to natural language abilities in the academic lit-
erature. However, the grey literature (i.e. blogs, wikis and the like) sustains a
different angle where aspects other than natural-language understanding might
be equally important for chatbot success [15]. Here, practitioners value chatbot
technology not so much for their human-like capabilities but their help to deliver
results [15]. This does not mean that there is not value in making chatbots more
human-like. This certainly plays a key role in user engagement/comprehension
but other factors could be equally important. This work attempts to apprehend
those other factors. Hence, this work tackles the following research question:
is there any correlation between these non-natural-language quality
attributes and chatbot success?

The answer to this question is important for new developments to find a
balance between the new features (e.g., machine learning, natural-language abil-
ities) and the more traditional features (e.g., conversational interfaces) in order
to optimize developers’ efforts. We aim at ascertaining whether a correlation
exists between traditional features and the chatbot popularity. Specifically:

– we take “likes” as the measure of chatbot popularity,

1 Mobile-bots have the push-message ability, updating users with interesting news
whenever they happen.

2 Web-bots were implemented ad-hoc, no standard UI was available for them to use, in
contrast with mobile-bots running inside well-know apps, like Messenger, Telegram,
Skype...

What Matters for Chatbots? 69

– we introduce four quality attributes: “support of a minimal set of commands”,
“foresee language variations”, “human-assistance provision” and “timeliness”.
The selection is grounded on scholarly but also reputed blog references from
2016 and 2017. In addition, we only use attributes that could be semi-
automatically extracted from interacting with the bot via a script, getting
rid of any subjectivity (Sect. 3),

– we analyze whether there is any correlation between the number of likes and
these quality attributes for the top 100 most popular chatbots at Facebook
Messager (Sect. 4)

– as a by-product, common shortcomings found among the 100 analyzed chat-
bots are also listed (Sect. 5)

This article extends our work [13] presented at SAC’18 (Web Technologies
Track), by adding a detailed explanation of how to develop the scripts for mea-
suring chatbot quality features.

2 Background

Wikipedia defines a chatbot as “a computer program which conducts a con-
versation via auditory or textual methods. Such programs are often designed
to convincingly simulate how a human would behave as a conversational part-
ner, thereby passing the Turing test”. This definition rests on the first examples
of chatbots back in 1966 where they were programmed to respond to a user’s
questions with simple matching patterns. Today, they possess sophisticated tech-
niques to understand users’ questions and deliver useful and relevant responses,
but the stress is still in the NLP side. Some authors question this stress: “Early
attempts at chatbots have fallen flat in their execution, mostly because they
have relied too much on natural language processing or A.I. capabilities that
simply don’t yet exist” [3]. Other authors highlight the role of chatbots as “a
combination of multiple services as it can combine communication services with
information services, entertainment and commercial transactions” [19], or their
role as a personal assistant capable of providing a range of services [18].

This change in perception is fueled by a change in technology. In contrast
with first-generation chatbots, mobile chatbots outperform previous technologies
in different ways:

– offering a sense of ubiquity. Mobile chatbots are always available
– broader knowledge base. Current chatbots can answer questions about many

knowledge-areas
– ability to be pro-active, i.e. initiating a conversation or sending interesting

updates. Mobile bots have the push-message ability, updating users with inter-
esting news whenever they happen,

– providing a common known-interface. Web-bots were implemented ad-hoc,
no standard UI was available for them to use, in contrast with mobile-bots
running inside well-know apps, like Messenger, Telegram, Skype...

70 J. Pereira and Ó. Dı́az

– ability to integrate with third-party APIs (like Uber, Google Flights, Deliv-
eroo, etc.)

– wider multimedia elements. Mobile chatbots capitalize smart-phone wealth
I/O resorts. Image, audio and video can be captured to send rich-media mes-
sages to the chatbot and the other way around: chatbots can answer using
the same media elements

– geo-position minded. This feature allows to program geo-context dependent
bots, opening a whole new set of context dependent applications. Some exam-
ples follow: offers in specific geo-areas, commuting schedule suggestions, deep
information about events happening near the user, ...

This boils down to chatbot developers struggling to keep up with a myriad of
technologies in constant flux. This begs the question of how to balance the new
features (machine learning, natural language processing abilities) with more tra-
ditional chatbot features (conversational interfaces) in order to optimize devel-
opers’ efforts. This in turn, advices to look into the extent traditional features
impact chatbot success. This moves us to the next section.

3 Quality Attributes for Chatbots

For Web-based chatbots, the most recent evaluation study we are aware of is the
one by [6]. Here, bots are evaluated along the visual look (e.g. cartoon-like anima-
tion, living-person video), embedded mechanism (e.g. floating window, pull-out
side bar, etc.), speech synthesis unit (e.g. availability of a speech synthesis unit),
knowledge base (e.g. answering capabilities for questions involving knowledge at
the level of an elementary school graduate), availability of clickable links that
trigger behavior in a context sensitive way, personalization options (e.g. change
of the visualization gender, access to the conversation history, recalling the user
name, etc.), and emergency response in unexpected situations (e.g. typos, mis-
spellings and various errors commonly appear in users’ statements). On the other
hand, Radziwill et al. conducts a literature review on 32 papers, summarizing effi-
ciency, effectiveness and user satisfaction chatbot quality attributes [14]. Many
of those characteristics tend to be subjective and hence, difficult to be subject
to automatization. By contrast, we are interested in analyzing a large number
of chatbots in order to find correlations. This requires quality attributes to be
obtained through scripting, and most importantly, being able to be replicated.
Therefore, this Section not only introduces quality attributes but a way for these
attributes to be automatically worked out.

Support of a Minimal Set of Commands. Bots should exhibit a common
set of frequently used commands, e.g. “Help” (to ask for help), “Hi” (for salut-
ing), or “Cancel” (for canceling the current conversation flow). It is likely users
might have already used other bots. Tapping on a shared vocabulary for common
scenarios will certainly reduce the learning bar. Unfortunately, bot designer are
not always aware of this fact. Figure 1 shows the case where “Help” does not
lead to a description of how to interact with the bot, i.e. the expected behaviour

What Matters for Chatbots? 71

(we asked for help and the bot answered with a simple greeting). Similar sit-
uations happens for “Cancel” where some bots insist on using “Start over” or
“Menu”, to start over a conversation.

How to Measure. Our tests specifically checks for the existence of the Help and
the Cancel commands. These are not mandatory, but our experience (and final
results so confirms) they are common practice.

Fig. 1. Counter example: When asking for help, bots should describe what commands
do they offer (unlike the bot in the picture)

Foresee Language Variations in Command Input. Bots don’t need to have
a top-notch natural language understanding to succeed. That said, a minimum
variation in their commands is recommended. Although it will be impossible to
avoid confusing dialects and other non-traditional forms of communication, the
bot can hone in on the consumers’ needs by offering hints. For example, avoid
open-ended questions and offer multiple-choice answers [11]. The expectations
are for bots to handle at least those commands that are available via button. The
presence of buttons do not make their text counterparts redundant. Users might
stick to the text, and directly type the commands. This double-channel interface
is not always planned. Figure 2 displays a case in point. Here, the user types
“Daily Round-Up”. The bot does not recognize this interaction despite being
one of the button-supported offers. Click on the “Daily Round-Up” button and
the bot correctly detects our intention.

How to Measure. Our testing script starts by clicking on a button. Next, the
button label is typed as text, and the outputs are compared. Finally, typing
errors (plural forms, spelling errors, ...) and synonyms are tried out, and their
outcome compared. Interesting enough, even simple variations are not always

72 J. Pereira and Ó. Dı́az

accounted for. Figure 3 shows the case for the mancity bot, where typing “Hi”
instead of “Hello” makes the bot crumble.

Fig. 2. Counter example: Bots should respond to text messages that mimic the same
text of button label (unlike the bot in the figure)

Fig. 3. Counter example: Not handling basic language variation: “Hi” for “Hello”

What Matters for Chatbots? 73

Exhibit Language Variations in Command Output. In search for human-
ity, chabots might add small, random variations: not answering always exactly
with the same limited set of words.

How to Measure. We used one of the commands available twice, and checked
the answers. They should be almost the same but, in best case scenario, exhibit
minor differences (using different emoticons, for example).

Provide Human Assistance. Do not try and trick your audience into thinking
they are speaking with a human rather than a bot [11]. Bots could not be
prepared to answer all questions related to their businesses, and the possibility to
contact human assistance should be there [3]. On the other end of the spectrum,
some companies just create a chatbot carcass whose only purpose is to transition
from Messenger to the traditional call-center. It rests to be seen whether this
strategy pays off.

How to Measure. Our script resorts to some heuristics to detect this scenario.
Variations on the sentence “I’d like to talk to a person” are worked out (“to
the manager”, “to an operator”) as well as checking for keywords (e.g. “redi-
rect”, “contact”, “human”). Nevertheless, some cases require manual checking
to confirm the redirection.

Efficiency. Efficiency is always a matter when the user is waiting. As reported
in Sect. 4.2, most of the reviewed bots answer in less than 2 s. However some
bots have a much greater delay, even to the extent of having to wait for days
or weeks for an answer. Obviously, this kind of bots are just simple re-directors
to humans. However, they don’t specifically state that, leaving users wondering
what they should do.

How to Measure. We measure the answer time for the “Help” command, twice
for each bot, obtaining mean values (in milliseconds).

Table 1 summarizes the described measures and cites literature references
that back the metric.

Table 1. Bot metrics to measure.

Metric Evidence backing sources Metric Tag

NL Expressiveness vs. buttom-style dialog [6,10,15,19] M1

Usage of emojis [12] M2

Answer variations [2] M2

Presence of the help command Authors of this article M3

Presence of the cancel command Authors of this article M3

Typos resilience [5] M4

Availability of human redirection Authors of this article M5

Answer Delay Authors of this article M6

74 J. Pereira and Ó. Dı́az

4 Experiment

About the Platform. This section describes how aforementioned quality
attributes have been measured for the 100 most popular chatbots in Facebook
Messenger. This platform enjoys over 1.2 billion users, with more than 60 million
companies sending messages every day (reaching 2 billion messages) [20]. The
platform accounts for over 30,000 bots [8] with over 150,000 developers registered
by April 2017.

Facebook offers an API for bot programming3. However, it lacks any facilities
to test those bots. In fact, some third-party frameworks attempt to overcome
this gap by simulating the Facebok API. Anyway, those frameworks are meant
for testing your own bot, rather than someone else’s bot.

About the Chats Under Study. We obtained a list of the 100 chatbots that
rank top on likes according to the chatbottle directory (https://chatbottle.co).

Table 2. An excerpt of the 25-first bots’ metrics values: “�” and “x” stands for pass-
ing or failing the metric, respectively. Metrics include: presence of the cancel command
(CANCEL); support for language variations in input (NLP and TYPO); language vari-
ations in command output (VARIANCE); support for human assistance (HUMAN);
extent of delays in bots’ answers (DELAY)

id botname Likes NLP

(M1)

VARIANCE

(M2)

CANCEL

(M3)

TYPO

(M4)

HUMAN

(M5)

DELAY

(M6)

1 Maroon5 39265054 x � � x x 2250

2 50cent 37267790 x x x x x 1200

3 NBA 32828370 x x x x x 2176

4 victoriassecret 28004345 x x � x � 1042

5 cnn 27147415 x x x x x 1233

6 samsungmobileusa 25556849 � � x x � 1246

7 mancity 24334688 x x x x x 2782

8 Burberry 17229903 x x x x � 942

9 dominos 17199558 x x � x x 1420

10 goal 16166262 x x � x x 1399

11 tommyhilfiger 11053612 � x x � � 3659

12 Jwoww 9653608 x x x x x 1026

13 al-jazeera 9306060 � x � � x 1698

14 skyscanner 9038401 � x x � � 1911

15 djhardwell 8671283 x x x x � 1323

16 TheWeatherChannel 7688430 � x x x x 6992

17 theguardian 7290368 x x x x � 1520

18 peoplemag 6803648 � x � x x 1480

19 WSL 6074759 � x x � x 1800

20 wsj 5614978 x x x x x 2041

21 robbiewilliams 4983836 x � x � � 1193

22 christinamilian 4691331 x x � x � 1004

23 wholefoods 4163177 � x � � � 972

24 redfoo 3902041 x x � x x 1300

25 mtvnews 3842979 x x x � x 2787

3 https://developers.facebook.com/docs/messenger-platform.

https://chatbottle.co
https://developers.facebook.com/docs/messenger-platform

What Matters for Chatbots? 75

Likes is the number of people that liked the bot in Facebook. It can be con-
sidered a direct and plausible evidence of success that can be easily checked,
though this number could be artificially inflated by bot owners. Using a browser
automation library (Puppeteer), we initiated a web conversation with each one.
Analyzing the HTML code of the initial message, we extracted each bot’s numer-
ical identifier and number of likes. This bot ID opens the door to interact with
the bot programmatically.

About the Procedure. Our evaluation framework rests on a custom NodeJS
solution that leverages Puppeteer, a library for managing a Chromium head-
less browser4. Our scripts are publicly available in Github5 for any stakeholder
interested. In addition, manual supervision was required to face captcha requests.
Section 4.1 describes main points of the implementation details.

Problems. Facebook’s abuse protection measures include: (1) banning of users
accessing Messenger from a cloud server IP address, and (2) banning users for
exceeding the maximum number of new connections with bots for each user and
day (this measures are thought to protect spamming the platform). Once a user
triggers any of these alerts, first Facebook will show a captcha that the user
should manually solve. If the user insists on override the limits, they will be
banned, temporally or, for recurrent offenders, for good.

4.1 Implementation Details

Our solution resorts to Puppeteer, a Node library which provides a high-level
API to control the headless Chrome browser over the DevTools protocol. Using
Puppeteer, our implemented analyzer communicates with Facebook Messenger
bots programmatically, simulating real-user actions.

The analyzer can be executed as a standalone command line script or as the
back-end of a Web application to offer real-time graphical updates to the user,
transmitting the information via webSockets.

The following sections define the inner workings of the solution, describing
the main classes and sequence diagrams of both the analyzer and Web front-end
main functions.

There are three main classes (Analyzer, HelperMessages, HelperPuppeteer)
and three wrapper classes (WebInterface, Server, ScriptLauncher) involved in
the solution (Fig. 4).

Analyzer: this is the main class, contains the function responsible for per-
forming the complete analysis of the chatbot. This includes: obtaining number
of likes, Messenger identificator, percentage of emojis and multimedia elements
used, the time it takes for the bot to respond to each message, its ability to
process the text commands (as if the specific button had been pressed), the use-
fulness of the initial and help messages, support of variations in the answers and
finally, support for understanding messages with small typos.
4 https://github.com/GoogleChrome/puppeteer.
5 https://github.com/petuscov/puppeteerFacebook.

https://github.com/GoogleChrome/puppeteer
https://github.com/petuscov/puppeteerFacebook

76 J. Pereira and Ó. Dı́az

Fig. 4. Class diagram of the solution

HelperPuppeteer: this class performs more complex interactions with Pup-
peteer, facilitating actions such as logging in Messenger, closing conversations,
initiating them with the indicated bots, and sending and receiving messages.

HelperMessages: a class composed of utility functions, it is used to extract
information from the object that represents the response of a bot, as it is pro-
cessed by the corresponding function of the class mentioned above, HelperPup-
peteer.

ScriptLauncher: a simple class that acts as a wrapper of the chatbots analysis
function, to perform bots analysis directly from the command-line console.

Server: it also acts as a wrapper and calls the analysis function, but in addition,
it also opens the Web interface and bridges it with the analysis in progress,
updating the web front-end data obtained from the bot in real time.

Figure 5 shows the sequence diagram of the listenBotResponse function,
which is responsible for returning an object with the components of a bot
response in Messenger. This function is part of the helperPuppeteer NodeJS
module, and makes use, in turn, of eval, a function of the Puppeteer library
which allows the execution of code in headless Chrome. For detecting changes
(bot answers) in the DOM of the web page that we are interacting with, we
leverage the MutationObserver API.

What Matters for Chatbots? 77

Fig. 5. Sequence diagram of the listener (listenBotResponse) method

The eval function includes as its parameters three helper functions neces-
sary for processing the bot response: processNodeData, getBottomButtons and
getPath. Respectively, processNodeData analyzes the content of the received
messages, and getBottomButtons detects if buttons are displayed at the bottom
of the conversation. Both functions make use of getPath, since if it is the case
that there are lower buttons or if the buttons are displayed in a message, it
is necessary to obtain the path of these to be able to press them through a
Puppeteer action. processNodeData is also responsible of extracting the text of
the messages, and detect whether they contain images, multimedia elements or
emojis.

Figure 6 shows the sequence diagram that represents the flow that takes place
when launching the analysis with a web front-end. Running the script, a server is
launched and calls the analysis function, which in turn, communicates with the
server through webSockets (connection and update methods in the diagram).
The server subsequently opens a browser connecting with the web front-end.
Once this has been done, the successive information updates of the analyzer
are notified to the server, and this is transferred to the web interface (Fig. 7
shows a module of the web interface, where a graph depicts the time elapsed for
successive ‘goodbye’ messages).

78 J. Pereira and Ó. Dı́az

Fig. 6. Sequence diagram of the web interface method

Fig. 7. The web front-end, showing a real-time updated graph with response delays
and basic metadata of a bot.

What Matters for Chatbots? 79

4.2 Results

Table 2 summarizes the results obtained for the first 25 bots. Delays greatly
vary among chatbots due to the fact that some of them are simple re-directors
to humans. If we take apart those cases, and focus on real bots, the minimum
delay is of 697 ms, maximum of 6992 ms, with a mean of 1975 ms and a standard
deviation of 1376 ms. That is, on average, a near 2 s delay which seems acceptable.

With respect to basic NLP support, only 30% of the most popular 100 list
support basic natural-language recognition features and 24% of them are also
able to recognize commands with small typos. More surprising is the low number
of chatbots that support the Cancel command (38%). In some case, the Help
command t left a great deal to be desired (see Fig. 1). With regard to adding
random pieces of text to the output, only 14% of the bots use this approach to
simulate answer entropy. In the upside, 46% of the bots account for redirection
to human beings.

4.3 Correlation Analysis

We wanted to know if there exist any kind of correlation between the metrics
and the number of likes the chatbot receives.

Using R, we obtain a linear regression model with all the factors of Table 2
using this simple formula:

model <- lm(likes~NLP+variance+cancel+typo+human,data=data)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10933207 2668229 4.098 0.000172 ***
NLPv -171069 3873724 -0.044 0.964971
variancev -4999246 4273076 -1.170 0.248184
cancelv -1865723 3169168 -0.589 0.558999
typov -2877588 4201346 -0.685 0.496907
humanv -2810310 3074076 -0.914 0.365486

As we can see, none of the correlation terms is significant. The variance
explained by the coefficients is also very low. In fact, if we had followed those
coefficients, the popularity of the bot would have been inversely proportional
to implementing features like NLP or answer variance. The data also tells us a
metric for acceptable answering delays: 2 s.

5 Discussion

First results seem to support the insight that most popular IM chatbots don’t
even try to impersonate a real human conversation. They are quite mechanic in
their answers, and lack basic interaction and communication patterns. Many of

80 J. Pereira and Ó. Dı́az

the chatbots are quite mechanic in their behavior, just showing a button-based
navigation interface and lacking the minimum skills of text based commands
recognition. Their popularity is definitively not related to the degree of their
language or human skills, but, more probably, it is related to the already existing
popularity of the brand that the chatbot represents. Bots under the name of
Manchester City, CNN, NBA or any other popular brand will automatically
receive a lot of public attention. Only a few chatbots from the 100 most popular
ones are really connected to indie or no-mass-media brands.

Interacting with the most popular Messenger bots also help to detect some
common programming errors. Next subsection reports on this experience in
terms of a checklist for developers to quickly check them out.

5.1 Checklist of Frequently Observed Issues in Messenger Chatbots

Welcome message

– Does it fit in the screen of a smart-phone?
– Have you taken into account i18n issues? (instead of “Get Started”, what

happens when receiving a Spanish counterpart “Empezar” message?)
– Do you show a selection of your commands list alongside your first message?

Minimal set of common commands

– Do you support a “Cancel” command? (that aborts the last conversation
orand redirects the user to a starting menustate)

– Do you support a “Help” command? (that shows some available commands)

Basic language variations support

– Do you support text messages that are equivalent to the text commands
enclosed in buttons? (e.g. if your bot offers two buttons with Yes/No options,
do you accept also “Yes” and “No” typed answers?)

– Do you use any library or technique to allow small typos in your users’ mes-
sages?

– Do you support basic conversation recovery techniques? (e.g. when it stumbles
upon an unknown command?)

Variance

– Do you add some variations to your text answers? (rephrase your answers,
add emojis, add gifs, human expressions...)

Human redirection

– Do you have an option to contact a human being?

Efficiency

– Do you answer in a few seconds or is your bot a simple to-human re-director?
If the latter, do you inform the user about your average response time? is
e-mail an option?

What Matters for Chatbots? 81

6 Conclusions

We analyzed the 100 most popular bots of Facebook Messenger against four
quality attributes, namely: “support of a minimal set of commands”, “foresee
language variations”, “human-assistance provision” and “timeliness”. The aim:
looking for correlations between these attributes and chatbot popularity in terms
of number of “likes”. Results show that there is no significance correlation with
any of these attributes. Technically, we also offer a framework for researchers to
replicate the outcomes of the article, or adapt them to fit other bot platforms.
Developers and maintainers could leverage this platform to test their bots against
a series of research-backed, desirable bot features and metrics.

These findings lead us to conjecture that chatbots popularity is basically
influenced by the fame of the brand behind, or the usefulness of the information
obtained from the bot. This seems to be akin to Gartner’s survey where 48% of
users preferred a bot that solves their issues rather than a bot with “personality”
[4]. Nevertheless, two interesting insights can be drawn:

– newcomers do not need to exclusively focus on NLP or in performing human-
like dialogues in order to achieve a popular bot. Obviously this conclusions
should not be interpreted as an invitation to avoid those techniques, but as
a motivation for new developers to dare to program a bot even though they
lack skills on NLP or conversational interfaces,

– bot programming seems to be still in its infancy. This seems to be suggested
by the fact that only 12 out of 100 are programmed to avoid repetition in their
responses, a clear sign of being a bot rather than a human. Likewise, stud-
ied chatbots frequently resort to humans when the conversation gets stuck,
rather than conducting the user to other questions to overcome this scenario.
We appreciate this situation in 40 chatbots (e.g. darngoodyarn,1-800-flowers,
Opla, LawTrades). Finally, the lack of common communication patterns pre-
vent users from move their experiences and expectations from one chatbot to
another.

This situation will most certainly change in the short run as a new crop of
chatbot platforms are facilitating performant chatbot development. This should
go hand-in-hand with quality-testing frameworks, and evidence-based quality
attributes.

References

1. Beaver, L.: Chatbots are gaining traction (2017). https://www.businessinsider.
com/chatbots-are-gaining-traction-2017-5. Business Insider

2. Coniam, D.: The linguistic accuracy of chatbots: usability from an ESL perspective.
Text Talk 34(5), 545–567 (2014)

3. Emmet Connolly: Principles of bot design (2016). https://blog.intercom.com/
principles-bot-design/. Inside Intercom

4. Gartner: Chatbots will appeal to Modern Workers (2018). https://www.gartner.
com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/

https://www.businessinsider.com/chatbots-are-gaining-traction-2017-5
https://www.businessinsider.com/chatbots-are-gaining-traction-2017-5
https://blog.intercom.com/principles-bot-design/
https://blog.intercom.com/principles-bot-design/
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/
https://www.gartner.com/smarterwithgartner/chatbots-will-appeal-to-modern-workers/

82 J. Pereira and Ó. Dı́az

5. Klüwer, T.: From chatbots to dialog systems. Conversational agents and natural
language interaction: techniques and effective practices, pp. 1–22 (2011)

6. Kuligowska, K.: Commercial chatbot: performance evaluation, usability metrics
and quality standards of embodied conversational agents. Prof. Cent. Bus. Res. 2,
1–16 (2015)

7. Lester, J., Branting, K., Mott, B.: Conversational agents. In: The Practical Hand-
book of Internet Computing, pp. 220–240 (2004)

8. de Looper, C.: Facebook is now letting you pay for things through the Mes-
senger Platform, September 2016. https://www.digitaltrends.com/social-media/
facebook-messenger-chatbot-payments/

9. Messina, C.: 2016 will be the year of conversational commerce, January 2016.
https://medium.com/chris-messina/2016-will-be-the-year-of-conversational-
commerce-1586e85e3991

10. Morrissey, K., Kirakowski, J.: ‘Realness’ in chatbots: establishing quantifiable cri-
teria. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol. 8007, pp. 87–96. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-39330-3 10

11. Newlands, M.: Top 10 Practices for Making A Great Chatbot, June 2017. https://
www.entrepreneur.com/article/296358

12. Pauletto, S., et al.: Exploring expressivity and emotion with artificial voice and
speech technologies. Logop. Phoniatr. Vocology 38(3), 115–125 (2013)

13. Pereira, J., Dı́az, Ó.: A quality analysis of Facebook Messenger’s most popular
chatbots. In: Proceedings of the 33rd ACM/SIGAPP Symposium on Applied Com-
puting, pp. 33:2144–2150 (2018)

14. Radziwill, N.M., Benton, M.C.: Evaluating Quality of Chatbots and Intelligent
Conversational Agents. arXiv preprint arXiv:1704.04579 (2017)

15. Ramos, R.: Screw the Turing test - chatbots don’t need to act human (2017).
https://venturebeat.com/2017/02/03/screw-the-turing-test-chatbots-dont-need-
to-act-human/

16. Goh, O.S., Ardil, C., Wong, W., Fung, C.C.: A black-box approach for response
quality evaluation of conversational agent systems. Int. J. Comput. Intell. Syst. 3,
37–41 (2012)

17. Shawar, B.A., Atwell, E.: Different measurements metrics to evaluate a chatbot
system. In: Proceedings of the Workshop on Bridging the Gap: Academic and
Industrial Research in Dialog Technologies, pp. 89–96, April 2007

18. Sullivan, L.: Facebook Chatbots Hit 70% Failure Rate As Consumers Warm Up
To The Tech (2017). https://www.mediapost.com/publications/article/295718/
facebook-chatbots-hit-70-failure-rate-as-consumer.html

19. Van Eeuwen, M., Van Der Kaap, H.: Mobile conversational commerce: messenger
chatbots as the next interface between businesses and consumers (2017). http://
essay.utwente.nl/71706/1/vanEeuwen MA BMS.pdf

20. Wiggers, K.: Facebook Messenger can now find bots, order food, and more (2017).
https://www.digitaltrends.com/social-media/facebook-messenger-news-f8-2017/

https://www.digitaltrends.com/social-media/facebook-messenger-chatbot-payments/
https://www.digitaltrends.com/social-media/facebook-messenger-chatbot-payments/
https://medium.com/chris-messina/2016-will-be-the-year-of-conversational-commerce-1586e85e3991
https://medium.com/chris-messina/2016-will-be-the-year-of-conversational-commerce-1586e85e3991
https://doi.org/10.1007/978-3-642-39330-3_10
https://www.entrepreneur.com/article/296358
https://www.entrepreneur.com/article/296358
http://arxiv.org/abs/1704.04579
https://venturebeat.com/2017/02/03/screw-the-turing-test-chatbots-dont-need-to-act-human/
https://venturebeat.com/2017/02/03/screw-the-turing-test-chatbots-dont-need-to-act-human/
https://www.mediapost.com/publications/article/295718/facebook-chatbots-hit-70-failure-rate-as-consumer.html
https://www.mediapost.com/publications/article/295718/facebook-chatbots-hit-70-failure-rate-as-consumer.html
http://essay.utwente.nl/71706/1/van Eeuwen_MA_BMS.pdf
http://essay.utwente.nl/71706/1/van Eeuwen_MA_BMS.pdf
https://www.digitaltrends.com/social-media/facebook-messenger-news-f8-2017/

Linguistic Abstractions for Interoperability
of IoT Platforms

Maurizio Gabbrielli1, Saverio Giallorenzo2(B), Ivan Lanese1,
and Stefano Pio Zingaro1

1 Università di Bologna / INRIA, Bologna, Italy
{maurizio.gabbrielli,stefanopio.zingaro}@unibo.it, ivan.lanese@gmail.com

2 University of Southern Denmark, Odense, Denmark
saverio.giallorenzo@gmail.com

Abstract. The Internet of Things (IoT) advocates for multi-layered
platforms—from edge devices to Cloud nodes—where each layer adopts
its own communication standards (media and data formats). While this
freedom is optimal for in-layer communication, it puzzles cross-layer
integration due to incompatibilities among standards. Also enforcing a
unique communication stack within the same IoT platform is not a solu-
tion, as it leads to the current phenomenon of “IoT islands”, where dis-
parate platforms hardly interact with each other. In this paper we tackle
the problem of IoT cross-layer and cross-platform integration following a
language-based approach. We build on the Jolie programming language,
which provides uniform linguistic abstractions to exploit heterogeneous
communication stacks, allowing the programmer to specify in a declara-
tive way the desired stack, and to easily change it, even at runtime. Jolie
currently supports the main technologies from Service-Oriented Com-
puting, such as TCP/IP, Bluetooth, and RMI at transport level, and
HTTP and SOAP at application level. We integrate in Jolie the two most
adopted protocols for IoT communication, i.e., CoAP and MQTT. We
report our experience on a case study on Cloud-based home automation,
and we present high-level concepts valuable both for the general imple-
mentation of interoperable systems and for the development of other
language-based solutions.

1 Introduction

The Internet of Things (IoT) advocates for multi-layered software platforms,
each adopting its own media protocols and data formats [1–3]. The problem
of integrating layers of the same IoT platform, as well as different IoT vertical
solutions, involves many levels of the communication stack, spanning from link-
layer communication technologies, such as ZigBee and WiFi, to application-layer
protocols like HTTP, CoAP [4,5], and MQTT [6,7], reaching the top-most layers
of data-format integration [8].

Technology-wise, architects of IoT platforms can choose between two
approaches at odds. The first approach favors optimal in-layer communications,

c© Springer Nature Switzerland AG 2019
T. A. Majchrzak et al. (Eds.): Towards Integrated Web, Mobile,
and IoT Technology, LNBIP 347, pp. 83–114, 2019.
https://doi.org/10.1007/978-3-030-28430-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28430-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-28430-5_5

84 M. Gabbrielli et al.

i.e., choosing media protocols and data formats best suited for the interactions
happening among homogeneous elements, e.g., edge devices (connectionless pro-
tocols and binary data formats [3]), mid-tier controllers (gateways and aggre-
gators on the RESTful stack [9]), or Cloud nodes (scalable publish-subscribe
message queues [10]). Following this first approach is optimal for in-layer com-
munication. However, at the cross-layer level, the heterogeneity and possible
incompatibility of the chosen standards make enforcing integrity within the IoT
system complex and the resulting integration fragile. The second architectural
approach favors cross-layer consistency, enforcing a unique communication stack
over a single IoT platform. Here cross-layer integration is simpler thanks to the
adoption of a single medium and data format. However such enforced uniformity
is the main cause of the phenomenon known as “IoT island” [11,12], where IoT
platforms take the shape of vertical solutions that provide little support for col-
laboration and integration with each other. How to overcome this limitation is
currently a hot topic, tackled also by ongoing EU projects, e.g., symbIoTe [12]
and bIoTope [13].

In this paper we tackle the problem of IoT integration (both cross-layer and
cross-platform) following a language-based approach focused on integration at
both the transport (TCP or UDP) and application layer. To reach our goal we
do not start from scratch, but we leverage the work done in the area of Service-
Oriented Architectures (SOAs) [14] and we build on the Jolie programming lan-
guage [15–18]. In particular, we rely on those abstractions provided by Jolie
that (i) let different communication protocols seamlessly coexist and interoper-
ate within the same program and (ii) let programmers dynamically choose which
communication stack should be used for any given communication. Concretely,
we fork the Jolie interpreter—written in Java—into a prototype called JIoT [19],
standing for “Jolie for IoT”. JIoT supports all the protocols already supported by
the Jolie interpreter (TCP at the transport level, and protocols such as SOAP,
RMI and HTTP at the application level), while adding the application-level
protocols for IoT, namely CoAP (and, as a consequence, UDP at the transport
level) and MQTT. Notably, when the application protocol supports different
representation formats (such as JSON, XML, etc.) of the message payload, as
in the case of HTTP and CoAP, JIoT, like Jolie, can automatically marshal and
un-marshal data as required.

We structure our presentation as follows. We overview in Sect. 2 our approach
and summarize our contribution in Sect. 3. Then, we discuss the main challenges
we faced in our development in Sect. 4, we present how a programmer can use
CoAP/UDP (Sect. 5) and MQTT (Sect. 6) in JIoT, and we detail our imple-
mentation in Sect. 7. We describe, in Sect. 8, a scenario on Cloud-based home
automation where a JIoT architecture coordinates heterogeneous edge devices.
Finally, we position our contribution with respect to related work in Sect. 9 and
we draw final remarks in Sect. 10.

JIoT is available at [19], released under the LGPL v2.1 license. The code
snippets reported in this paper are based on version 1.2 of JIoT. The integration
of JIoT into the official code-base of the Jolie language is ongoing work.

Language Abstractions for Interoperability of IoT Platforms 85

2 Approach Overview

Without proper language abstractions, guaranteeing interoperability among pro-
tocols belonging to different technology stacks is highly complex. The problem is
further exacerbated when one has to modify the technology stack used for some
specific interaction. The replacement may be either static, e.g., because of the
deployment of new, heterogeneous devices in a pre-existing system, or dynamic,
e.g., to support a changing topology of disparate mobile devices. Contrarily, with
JIoT most of the complexity of guaranteeing interoperability is managed by the
language interpreter and hidden from the programmer.

As an illustrative example of the proposed approach, let us consider a scenario
where we want to integrate two islands of IoT devices, both collecting temper-
ature data, but relying on different communication stacks, namely HTTP over
TCP and CoAP over UDP. The end goal is to program a collector which receives
and aggregates temperature measurements from both islands.

Following the structure of Jolie programs, the collector programmed in JIoT
is composed of two parts: a behavior, specifying the logic of the elaboration, and
a deployment, describing in a declarative way how communication is performed.
This separation of concerns is fundamental to let programmers easily change
which communication stack to use, preserving the same logic for the elaboration.

As an example of program behavior, let us consider the code below, where
main is the entry point of execution of Jolie programs.
1 main {
2 ...
3 receiveTemperature(data);
4 ...
5 }

Above, line 3 contains a reception statement. Receptions in Jolie indicate a
point where the program waits to receive a message. In this case, the collector
waits to receive a temperature measurement on operation receiveTemperature

(an operation in Jolie is an abstraction for technology-specific concepts such as
channels, resources, URLs, . . .). Upon reception, it stores the retrieved value
in variable data. Besides the logic of computation of the collector, we also
need to specify the deployment, i.e., on which technologies the communica-
tion happens; in the example above, how the collector receives messages from
other devices. In Jolie this information is defined within ports. For example, the
port to receive (denoted with keyword inputPort) HTTP measurements can be
defined as in Listing 1. Port CollectorPort1 specifies that the collector expects
inbound communications via Protocol http using a TCP/IP socket receiving at
URL "localhost" on TCP port 8000. A port exposes a set of operations, col-
lected within a set of Interfaces. In the example, the input port CollectorPort1

declares to expose interface TemperatureInterface, which is defined at lines 1–3 of
Listing 1. The interface declares the operation receiveTemperature, including the
type of expected data (string), as a OneWay operation, namely an asynchronous
communication that does not require any reply from the collector (except the
acknowledgment automatically provided by the TCP implementation).

86 M. Gabbrielli et al.

1 interface TemperatureInterface {
2 OneWay: receiveTemperature(string)
3 }
4
5 inputPort CollectorPort1 {
6 Location: "socket://localhost:8000"
7 Protocol: http
8 Interfaces: TemperatureInterface
9 }

Listing 1. Example of interface and input port in Jolie.

Thanks to port CollectorPort1, the collector can receive data from the HTTP
island. To integrate the second island, we just need to define an additional port,
similar to CollectorPort1, except for using UDP/IP datagrams at the transport
layer and CoAP [4,5] at the application layer. Hence, the whole code of the
collector becomes:

1 interface TemperatureInterface {
2 OneWay: receiveTemperature(string)
3 }
4
5 inputPort CollectorPort1 {
6 Location: "socket://localhost:8000"
7 Protocol: http
8 Interfaces: TemperatureInterface
9 }

10
11 inputPort CollectorPort2 {
12 Location: "datagram://localhost:5683"
13 Protocol: coap
14 Interfaces: TemperatureInterface
15 }
16
17 main {
18 ...
19 receiveTemperature(data);
20 ...
21 }

Listing 2. Code of the Collector Example.

The example above highlights how, using the proposed language abstractions,
the programmer can write a unique behavior and exploit it to receive data sent
over heterogeneous technology stacks. Indeed, the receiveTemperature operation
takes measurements from both the inputPorts. For instance, if communication
over CollectorPort2 fails, port CollectorPort1 can still receive data. Programmers
can also specify elaborations that depend on the used technologies, by using dif-
ferent operations in different ports. Jolie supports both inbound and outbound

Language Abstractions for Interoperability of IoT Platforms 87

communications, the latter declared with outputPorts, whose structure follows
that of inputPorts. Furthermore, the Location and Protocol of outputPorts can be
changed at runtime, enabling the dynamic selection of the appropriate technolo-
gies for each context.

As mentioned, Jolie enforces a strict separation of concerns between behav-
ior, describing the logic of the application, and deployment, describing the com-
munication capabilities. The behavior is defined using the typical constructs of
structured sequential programming, communication primitives, and operators to
deal with concurrency (parallel composition and input choices [17]).

Jolie communication primitives comprise two modalities of interaction.
Outbound OneWay communications send a message asynchronously, while

RequestResponse communications send a message and wait for a reply (they
capture the well-known pattern of request-response interactions [20]). Dually,
inbound OneWay communications wait to receive a message, without sending a
reply, while inbound RequestResponses wait for a message and send back a reply.

Jolie supports many communication media (via keyword Location) and data
protocols (via keyword Protocol) in a simple, uniform way. This is one of the
main features of the Jolie language, and the reason why we base our approach
on it. Each communication port declares the medium and data protocol used to
communicate, hence, to switch to a different technology stack, one just needs to
change the declaration of Location and Protocol of a given port. As expected, the
behavior (i.e., the actual logic of computation) of any Jolie program is unaffected
by any change to its ports. Hence, a Jolie program can provide the same service
(i.e., the same behavior) through different media and protocols just by specifying
different deployments. Being born in the field of SOAs, Jolie supports the main
technologies from that area: e.g., communication media like TCP/IP sockets,
Bluetooth L2CAP, Java RMI, and Unix local sockets; and data protocols like
HTTP, JSON-RPC, XML-RPC, SOAP and their respective SSL versions.

3 Contribution

To substantiate the effectiveness of our language-based approach to IoT inte-
gration, we add to Jolie support for the main communication stacks used in the
IoT setting. Concretely, the added contribution of JIoT with respect to Jolie is
the integration of two application protocols relevant in the IoT scenario, namely
CoAP [4,5] and MQTT [6,7]. Notably, in JIoT the usage of such protocols is
supported by the same linguistic abstractions that Jolie uses for SOA protocols
such as HTTP and SOAP.

Even if Jolie provides support for the integration of new protocols, when
set in the context of IoT technology, the task is non trivial. Indeed, all the
protocols previously supported by Jolie exploit the same internal interface, based
on two assumptions: (i) the usage of underlying technologies that ensure reliable
communications and (ii) a point-to-point communication pattern.

88 M. Gabbrielli et al.

However, those assumptions do not hold when considering the two IoT tech-
nologies we integrate:

– CoAP communications can be unreliable since they are based on UDP con-
nectionless datagrams. CoAP provides options for reliable communications,
however these are usually disabled in an IoT setting, since it is important to
preserve battery and bandwidth;

– MQTT communications are based on the publish-subscribe paradigm, which
contrasts with the point-to-point paradigm underlying the Jolie communi-
cation primitives. Hence, we need to define a mapping to express publish-
subscribe operations in terms of Jolie communication abstractions. In doing
so, we need to balance two factors: (i) preserving the simplicity of use of the
point-to-point communication style and (ii) capturing the typical publish-
subscribe flow of communications. Such a mapping is particularly challeng-
ing in the case of request-response communications. Remarkably, the map-
ping that we present in this work is general and could be used also in other
contexts.

This paper integrates, revises, and extends material from [21], where we pre-
sented, discussed, and provided basic technical details on the proposed language-
based approach to IoT integration. Main extensions comprise:

– advanced technical details on our implementation (Sect. 7) including:
– a general account on how media and protocols are separated from the

Jolie interpreter and how they can be developed as independent modules;
– extensive details on the implementation of UDP, CoAP, and MQTT

protocols;
– a comprehensive case study on a home automation scenario (Sect. 8) where

we consider:
– local, cross-layer communication among things and mid-tier controllers

(edge devices and fog nodes);
– remote, cross-layer interactions among Cloud nodes and mid-tier

controllers.

We conclude this section briefly discussing the current limitations of JIoT related
to its usage in the programming of low-level edge devices—like Arduinos and
other microcontrollers. JIoT supports dynamic scenarios where the nodes in
the network can switch among many technology stacks according to internal
or environmental conditions, such as available energy or quality of communi-
cation. From preliminary discussions with collaborators and IoT practitioners,
we collected positive opinions on the idea of using JIoT for programming low-
level edge devices. Given these positive remarks, we investigated the feasibility
of running JIoT programs over edge devices, possibly including additional lan-
guage abstractions to provide low-level access to in-board sensors and actuators.
However, our survey revealed a market of devices fragmented over incompat-
ible hardware architectures and characterized by strong constraints over both

Language Abstractions for Interoperability of IoT Platforms 89

computational power and energy consumption. Considering these limitations,
we concluded that supporting the execution of JIoT-like programs over edge
devices would require a strong engineering effort. While this research direction
is promising, we deem it non-urgent, since currently developers tend to program
very simple behaviors for edge devices [3], which usually capture some data (e.g.,
through one of their sensors) and then send them to mid-to-top-tier devices. The
latter usually process and coordinate the flow of data: they have powerful hard-
ware, they communicate over reliable channels, and they have fewer (if any)
constraints with respect to battery/energy consumption.

Considered the discussion above, in this work we omit the low-level program-
ming of edge devices and we focus on mid-to-top-tier ones, which can host the
JIoT runtime and which, given their topological context, directly benefit from
the flexibility of the approach.

4 JIoT: Jolie for IoT

Jolie currently supports some of the main technologies used in SOAs (e.g., HTTP,
SOAP). However, only a limited amount of IoT devices uses the media and
protocols already supported by Jolie. Indeed, protocols such as CoAP [4,5] and
MQTT [6,7], which are widely used in IoT scenarios, are not implemented in
Jolie. Integrating these protocols, as we have done, is essential to allow Jolie
programs to directly interact with the majority of IoT devices. We note that
emerging frameworks for interoperability, such as the Web of Things [22], rely on
the same protocols we mentioned for IoT, thus JIoT is also compliant with them.
However there are some challenges linked to the integration of these technologies
within Jolie:

– lossless vs. lossy protocols — In SOAs, machine-to-machine communication
relies on lossless protocols: there are no strict constraints on energy consump-
tion or bandwidth and it is not critical how many transport-layer messages are
needed to ensure reliable delivery. That is not true in IoT networks, where
communication is constrained by energy consumption, which defines what
technology stack can be used. Indeed, many IoT communication technolo-
gies, among which the mostly renowned CoAP application protocol, rely on
the UDP transport protocol — a connectionless protocol that gives no guar-
antee on the delivery of messages, but allows one to limit message exchanges
and, by extension, energy and bandwidth consumption. Since Jolie assumes
lossless communications, the inclusion of connectionless protocols in the lan-
guage requires careful handling to prevent misbehaviors;

– point-to-point vs. publish-subscribe — The premise of the Jolie language is to
provide communication constructs that do not depend on a specific tech-
nology. To do so, the language assumes a point-to-point communication
abstraction, which is common to many protocols like HTTP and CoAP.
However, to integrate the MQTT protocol in Jolie, we need to model
Jolie point-to-point semantics as MQTT publish-subscribe operations.

90 M. Gabbrielli et al.

Indeed, Jolie already provides language constructs usable with many commu-
nication protocols, hence the less disruptive approach is to use the same con-
structs, which are designed for a point-to-point setting, also for MQTT. This
requires to find for each point-to-point construct a corresponding effect in the
publish-subscribe paradigm. The final result is that the execution of a given
Jolie behavior is similar under both point-to-point and publish-subscribe
technologies.

5 Supporting Constrained Application Protocol in Jolie

The Constrained Application Protocol (CoAP) [4,5] is a specialized web transfer
protocol for constrained scenarios where nodes have low power and networks are
lossy. The goal of CoAP is to import the widely adopted model of REST archi-
tectures [23] into an IoT setting, that is, optimizing it for machine-to-machine
applications. In particular, like HTTP, CoAP makes use of GET, PUT, POST,
and DELETE methods. Following the RFC [5], CoAP is implemented on top of
the UDP transport protocol [24], with optional reliability. Indeed, CoAP provides
two communication modalities: a reliable one, obtained by marking the message
type as confirmable (CON), and an unreliable one, obtained by marking the
message type as non confirmable (NON).

As an example, we consider a scenario with a controller, programmed in
JIoT, that communicates with one of many thermostats in a home automation
scenario. Thermostats are accessible at the generic address "coap://localhost/##"
where "##" is a two-digit number representing the identifier of a specific
device. Each thermostat accepts two kinds of interactions: a GET request on
URI "coap://localhost/##/getTemperature", that returns the current tempera-
ture, and a POST request on URI "coap://localhost/##/setTemperature", that
sets the temperature of the HVAC (heating, ventilation, and air conditioning)
system.

We comment below Listing 3, where we report the code of a possible JIoT
controller that interacts with a specific thermostat.

Our scenario includes two CoAP resources, referred to as "/getTemperature"

and "/setTemperature". We model them in JIoT at lines 4–7 of Listing 3, by defin-
ing the interface ThermostatInterface, which includes a RequestResponse oper-
ation getTmp, representing resource "/getTemperature", and a OneWay operation
setTmp, representing resource "/setTemperature". By default, we map operation
names to resource names, hence in our example we would need resources named
"/getTmp" and "/setTmp", respectively. However one can override this default by
defining the coupling of resource names and operations as desired. This allows
programmers to use interfaces as high level abstractions for interactions, while
the grounding to the specific case is done in the deployment. Here we purpose-
fully choose to use operation names that differ from resource names to underline
that the two concepts are related but loosely coupled. On the one hand the
coupling between the name of the resource and the operation can be seen as
a way of quickly binding actions exposed by the CoAP server with operations.

Language Abstractions for Interoperability of IoT Platforms 91

1 type getTmpType: void { .id: string }
2 type setTmpType: int { .id: string }
3
4 interface ThermostatInterface {
5 RequestResponse: getTmp(getTmpType)(int)
6 OneWay: setTmp(setTmpType)
7 }
8
9 outputPort Thermostat {

10 Location: "datagram://localhost:5683"
11 Protocol: coap {
12 .osc.getTmp << {
13 .messageCode = "GET",
14 .contentFormat = "text/plain",
15 .messageType = "CON",
16 .alias = "/%!{id}/getTemperature"
17 };
18 .osc.setTmp << {
19 .messageCode = "POST",
20 .messageType = "CON",
21 .alias = "/%!{id}/setTemperature"
22 }
23 }
24 Interfaces: ThermostatInterface
25 }
26
27 main {
28 getTmp@Thermostat({ .id = "42" })(temp);
29 if (temp > 27) {
30 setTmp@Thermostat(24 { .id = "42" })
31 } else if (temp < 15) {
32 setTmp@Thermostat(22 { .id = "42" })
33 }
34 }

Listing 3. JIoT controller communicating over CoAP/UDP.

On the other hand decoupling resource names and operations permits to handle
more complex deployments where, for instance, a single operation responds for
different resources. At lines 9–25 we define an outputPort to interact with the
Thermostat. At line 10 we specify the Location of the thermostat. Recalling that
the scheme of the resources of the thermostats is "coap://localhost/##/...", we
define the Location of the port using the UDP "datagram://" protocol, followed
by the first part of the resource schema "localhost" and the UDP port on which
it accepts requests. Here we assume thermostats to use CoAP standard UDP
port, which is "5683". Note that, in the Location, we do not define the address of
a specific thermostat, e.g., "datagram://localhost:5683/42". On the contrary, we
just specify the generic address to access thermostats in the system, while the

92 M. Gabbrielli et al.

specific binding will be done at runtime, thanks to the .alias parameter of the
coap protocol, described later on.

At line 11 we define coap to be the protocol used by the outputPort. At
lines 12–22 we specify some parameters of the coap protocol — this matches the
standard way in which Jolie defines parameters for Protocols in ports. Here, we
follow the methodology presented in [25] for the implementation of the HTTP
protocol in Jolie — indeed CoAP adopts HTTP naming schema and resource
interaction methods. In particular, we draw from [25] the parameter prefix .osc,
whose name is the acronym of “operation-specific configuration” and which is
used for configuration parameters related to a specific operation.

In the example, we define .osc parameters for both operations getTmp and
setTmp. At line 13 we specify that the CoAP verb used for operation getTmp is
"GET". At line 14 we define, using the .contentFormat parameter, that the encoding
of the payload of the message is in text format. Other accepted values for the
.contentFormat parameter are "json" and "xml". Marshalling and un-marshalling
is automatic and transparent to the programmer. This feature is enabled by the
structure of Jolie variables, which are always tree-shaped, hence they can be
easily translated into representations based on that shape. At line 15 we set the
.messageType parameter to "CON", that stands for confirmable. Accepted values
for the .messageType parameter are confirmable and not confirmable ("NON"),
the latter being the default value. In the first case the sender will receive an
acknowledgment message from the receiver, in the second case it will not. At
line 16, following the practice introduced in [25], we specify that getTmp aliases
a resource whose path concatenates a static part, given by the Location, and
the instantiation of the template provided by protocol
parameter .alias. The template is instantiated using values from the parameter
of the operation invocation in the behavior, e.g., value 42 at line 281. Hence,
the interpretation of the declaration at line 16 is that, when invoking operation
getTmp at runtime, the element id of the invocation will be removed from the
payload and used to form the address of the requested resource. The aliasing
for operation setTmp (line 21) is similar to that of getTmp, while the operation
uses verb POST. Since here the .contentFormat parameter is omitted, the default
"text/plain" is used.

To conclude, we briefly comment the runtime execution of the example,
described in the behavior at lines 28–33. At line 28 the controller invokes opera-
tion getTmp. Being an outgoing RequestResponse, the invocation defines on which
port to perform the request (Thermostat) and presents two pairs of round brack-
ets: the first contains the data for the request, the second points to the vari-
able that will store the received response. Recalling the aliasing defined at line
16, at line 28 we define the value of element id = 42, thus the URI of the
resource invoked at runtime is "coap://localhost/42/getTemperature". Notably,
in the example we hard-coded the id of the device, however in a more realis-
tic setting the value of id would be retrieved dynamically, e.g., as an execu-

1 In Jolie the dot . defines path traversals inside trees. Hence, the notation {.id = 42}
indicates a tree with an empty root and a subnode called id, whose value is 42.

Language Abstractions for Interoperability of IoT Platforms 93

tion parameter, from a configuration file or from a database. Once received, the
response from thermostat 42 is assigned to variable temp. The example concludes
with a conditional in which, if the temperature is above 27◦ (line 29), the ther-
mostat is set to lower room temperature to 24◦, while, if the temperature lies
below 15◦, the thermostat is set to raise the temperature to 22◦.

Dually to outputPorts, inputPorts allow the programmer to specify inbound
communications. The parameters described above are valid also for inputPorts,
with the only difference that messageType works only for RequestResponses, and
specifies whether the communication of the reply is reliable or not. Note that,
concerning the .alias parameter, the template is instantiated using the address
of the incoming communication and the values are inserted among the elements
of the payload.

6 Supporting Message Queue Telemetry Transport
in Jolie

Message Queue Telemetry Transport (MQTT) [6,7] is a publish/subscribe mes-
saging application protocol built on top of the TCP transport protocol.

A typical publish/subscribe interaction pattern can be diagrammatically rep-
resented as in Fig. 1 where:

1. a Subscriber subscribes to topic (a) at some Broker;
2. a Publisher publishes a message to topic (a) at the same Broker;
3. the Broker forwards the message to topic (a) to the Subscriber.

Fig. 1. Typical publish/subscribe interaction pattern.

More generally, messages published on a topic are forwarded to all current
subscribers for the topic.

On top of the basic mechanism of publish/subscribe, MQTT defines three
levels of quality of service (QoS) for the delivery of each message published by a
publisher. QoS levels determine whether messages can be lost and/or duplicated.
Concretely, QoS levels are as follows:

– At most once — the message can be lost, no duplication can occur.

94 M. Gabbrielli et al.

1 interface TemperatureInterface {
2 OneWay: receiveTemperature(string)
3 }
4
5 inputPort CollectorPort3 {
6 Location: "socket://localhost:8050"
7 Protocol: mqtt {
8 .broker = "socket://localhost:1883"
9 }

10 Interfaces: TemperatureInterface
11 }
12
13 main {
14 ...
15 receiveTemperature(data);
16 ...
17 }

Listing 4. Code of the Collector Example, revised for MQTT.

– At least once — delivery of the message is guaranteed, but duplication may
occur.

– Exactly once — delivery of the message is guaranteed and duplication cannot
occur.

To present how we model the MQTT protocol in JIoT, we first detail the
simpler case of OneWay communications in Sect. 6.1. Then, we address the more
complex case of RequestResponse communications in Sect. 6.2. Notably, our mod-
eling of end-to-end communications over a publish/subscribe channel is indepen-
dent from JIoT, i.e., it is a general reference on how to implement one-way and
request-response communications on top of any publish/subscribe channel.

6.1 One-Way Communications in MQTT

We first consider the case of inbound communications and then the case of
outbound communications.

We exemplify OneWay inbound communications using the example in
Listing 4, which is a revision of the example in Listing 2 by omitting the ports
CollectorPort1 and CollectorPort2 and by adding an MQTT inputPort named
CollectorPort3.

As expected, the program behavior and the structure of the inputPort are
unchanged. Main novelties are:

– the used Location (line 6) has the prefix "socket://" (as seen in the HTTP
port) since MQTT relies on TCP transport protocol;

– the used Protocol (line 7) is mqtt;
– the .broker protocol parameter (line 8), which is compulsory when the mqtt

protocol is used in inputPorts, specifies the address of the Broker.

Language Abstractions for Interoperability of IoT Platforms 95

From the perspective of the programmer, the syntax and the effect of the com-
munication primitive are the same as in Listing 2. However, we actually exchange
several messages to capture that effect in MQTT, as shown in Fig. 2.

Fig. 2. Representation of the example in Listing 4.

Beyond defining such message exchanges, we also need to decide how to
identify the topic on which the message exchange is performed.

Regarding the message exchanges, from the point of view of the programmer,
an inbound OneWay communication receives a datum from the communication
partner. To obtain the same effect using the publish/subscribe paradigm, one
has first to subscribe at the Broker to the chosen topic and then wait to receive a
message on that topic, forwarded by the Broker. How topics are selected will be
detailed later on. The execution of a reception on a OneWay operation comprises
two actual communications: a subscription from the program to the Broker and
a message delivery in the opposite direction. However, subscription to topics and
the execution of a message reception are logically separated and can be done at
different moments. Indeed, the subscription is performed when the JIoT program
is launched for all operations present in MQTT inputPorts. This choice is more
in line with the expected behavior of Jolie programs — and of Service-Oriented
programs in general — where messages to operations whose reception statements
are not yet enabled are stored until the actual execution of the reception. Here,
if the subscription is performed along with the execution of the OneWay operation,
previous messages could be no more available. In JIoT, the compulsory param-
eter .broker is needed precisely to know the address at which the subscription
needs to be performed. The address for the delivery of the actual message is the
usual Location of the inputPort.

Regarding the selection of topics, similarly to what done for CoAP resources,
in MQTT by default we map JIoT operations to topics, otherwise we use
the .osc parameter .alias to loose the coupling between operations and top-
ics. We remark that .alias parameters in inputPorts have a different behav-
ior in MQTT with respect to HTTP and CoAP. In CoAP the name of the
resource extracted from the received message is used to derive the instanti-
ation of the .alias template. The values resulting from the match are then

96 M. Gabbrielli et al.

inserted among the elements of the payload before storing it in the target vari-
able data. Instead, in MQTT, the .alias parameter is used to identify the topic
for subscription. For example, in Listing 4, one could add the Protocol param-
eter .osc.receiveTemperature.alias = "temperature" to specify that the selected
topic for operation receiveTemperature is "temperature". Note that, since there is
no outgoing data, templates in MQTT inputPorts, such as "temperature" in the
example, are constants (we require all such constants defined within the same
inputPort to be distinct). Having only constant aliases is not a relevant limitation
in the context of IoT, where topics are mostly statically fixed. Addressing this
limitation without disrupting the uniformity of the Jolie programming model is
not trivial and it is left as future work.

To conclude the mapping of OneWay operations in MQTT, we consider here
the case of outbound operations, exemplified in Listing 5. Outgoing OneWay oper-
ations simply cause the publication of the value passed as the parameter of the
invocation (line 19) at the Broker. The address of the Broker is defined by the
Location (line 6) of the outputPort Broker. The topic is derived from the name
of the operation and the parameter of the invocation, using protocol parame-
ter .alias as usual. Being an MQTT publication, we specify the .QoS protocol
parameter (line 10), which selects the QoS level “Exactly once” for the operation
setTmp. Similarly to what we have done in CoAP with the contentFormat protocol

1 interface ThermostatInterface {
2 OneWay: setTmp(TmpType)
3 }
4
5 outputPort Broker {
6 Location: "socket://localhost:1883"
7 Protocol: mqtt {
8 .osc.setTmp << {
9 .format = "raw",

10 .QoS = 2, // exactly once QoS
11 .alias = "%!{id}/setTemperature"
12 }
13 }
14 Interfaces: ThermostatInterface
15 }
16
17 main {
18 ...
19 setTmp@Broker(24 { .id = "42" });
20 ...
21 }

Listing 5. Example of outgoing MQTT OneWay communication.

Language Abstractions for Interoperability of IoT Platforms 97

parameter, we define in .format the encoding of the message payload, in this case
a “raw” stream of bytes.

1 interface ThermostatInterface {
2 RequestResponse: getTmp(TmpType)(int)
3 }
4
5 outputPort Broker {
6 Location: "socket://localhost:1883"
7 Protocol: mqtt {
8 .osc.getTmp << {
9 .format = "raw",

10 .QoS = 2, // exactly once QoS
11 .alias = "%!{id}/getTemperature",
12 .aliasResponse = "%!{id}/getTempReply"
13 }
14 }
15 Interfaces: ThermostatInterface
16 }
17
18 main {
19 ...
20 getTmp@Broker({ .id = "42" })(temp);
21 ...
22 }

Listing 6. JIoT controller communicating over MQTT.

6.2 Request-Response Communications in MQTT

To discuss RequestResponse communications, let us consider the example in
Listing 3, revised in Listing 6 by replacing the CoAP protocol with MQTT. We
omit OneWay communications and concentrate on the outbound RequestResponse.
Afterwards, we will also discuss the dual inbound RequestResponse.

Syntactically, the main novelty with respect to the outputPort in Listing 5 is
the addition of Protocol parameter .aliasResponse. This parameter specifies the
name of the topic where the receiver will publish its response.

From the point of view of the programmer, an outbound RequestResponse is
composed of an outgoing communication followed by an inbound reply. The out-
going communication is implemented using the approach already seen for OneWay

communications, i.e., using the .alias Protocol parameter to identify the topic.
Then, one has the issue of relating the outgoing request with its reply. Many
standard point-to-point communication technologies, such as HTTP/TCP and
the already discussed CoAP/UDP, support request-response communications
by defining means to link a given outgoing request to its reply. MQTT does
not provide dedicated means to do such a linking. Thus we specify topics for
both the request and the response, but it is responsibility of the programmer

98 M. Gabbrielli et al.

to ensure that corresponding topics are used in the client and in the server.
A possibility for the programmer is to send the topic for the response inside
the payload of the request message. We identify the topic for the reply with
the .aliasResponse Protocol parameter. Like for .alias parameters, the template
of the .aliasResponse parameter is instantiated using the content of the mes-
sage sent in the behavior. For example, in Listing 6, we use .id in line 20 to
obtain "42/getTemperature" and "42/getTempReply", respectively the publication
and reply topics.

We can now describe the pattern of interactions that we use to implement the
outgoing RequestResponse communication at line 20 in Listing 6. As a reference,
the pattern of interactions is depicted in the left part of Fig. 3. We will describe
the right part later on, after having introduced inbound request-response com-
munications.

First, the controller subscribes to the reply topic "42/getTempReply" at the
Broker. Then, the controller sends to the Broker the request message on topic
"42/getTemperature". The execution of the RequestResponse terminates when the
Broker forwards the reply received on topic "42/getTempReply" to the controller.

Differently from inbound OneWay communications, here we do not subscribe
to the reply topic when the program is launched. Indeed, it would be useless
since no relevant message can arrive on this topic before the controller sends its
message to the Broker, and anticipating the subscription would complicate the
usage of runtime information in templates.

Fig. 3. Interaction in the temperature automation example in MQTT.

Language Abstractions for Interoperability of IoT Platforms 99

To exemplify inbound RequestResponse communications, we assume that the
thermostat in our example is programmed in JIoT. We report its code in
Listing 7.

1 interface ThermostatInterface {
2 RequestResponse: getTmp(TmpType)(TmpType)
3 }
4
5 inputPort Thermostat {
6 Location: "socket://localhost:9000"
7 Protocol: mqtt {
8 .broker = "socket://localhost:1883";
9 .osc.getTmp << {

10 .format = "raw",
11 .alias = "42/getTemperature",
12 .aliasResponse = "42/getTempReply"
13 }
14 }
15 Interfaces: ThermostatInterface
16 }
17
18 main {
19 // ↓ receive the temperature and store it under the root of temp
20 getTmp(temp)(temp){
21 // ↑ update the content of temp and send it back as response
22 }
23 }

Listing 7. JIoT thermostat communicating over MQTT.

At line 11 in Listing 7, the .alias parameter "42/getTemperature" must be
defined statically, as required for inputPorts. When the thermostat program is
launched, it subscribes to topic "42/getTemperature". When a message on this
topic arrives, the payload (empty in this case) is passed to the behavior. The
body of the RequestResponse (line 20) is executed to compute the return value.
Finally, the return value is published on the reply topic "42/getTempReply", as
specified by osc parameter .aliasResponse. While in this example the parameter
.aliasResponse is statically defined, our implementation supports the definition
of dynamic .aliasResponses as in outputPorts (e.g., as seen in Listing 6).

We now summarize the exchange between the controller and the thermostat
(left part of Fig. 3):

1. when the thermostat is started, it subscribes to topic "42/getTemperature" at
the Broker;

2. when the outgoing RequestResponse is executed, the controller subscribes to
topic "42/getTempReply" at the Broker;

3. the controller publishes the request message to topic "42/getTemperature";
4. the Broker forwards the message in topic "42/getTemperature" to the thermo-

stat;

100 M. Gabbrielli et al.

5. the thermostat publishes the computed response at topic "42/getTempReply";
6. the Broker forwards the message on topic "42/getTempReply" to the controller.

We remark that RequestResponse operations in Jolie are meant to be end-to-
end communications. To ensure this in a publish/subscribe setting while using
the approach above, one has to ensure that no other participant subscribes to
the selected topics, which essentially act as namespaces.

7 Implementation

To illustrate the structure of our implementation, in Sect. 7.1 we discuss how
media and protocols are separated from the Jolie interpreter and available as
independent libraries. Then we describe the highlights of the implementation of
UDP and CoAP in Sect. 7.2 and of MQTT in Sect. 7.3.

7.1 Programming a Jolie Extension

In Jolie the implementations of the supported application and transport pro-
tocols are independent. This enables the composition of any transport protocol
with any application protocol. Concretely, the Jolie language is written in Java
and provides proper abstract classes that represent application and transport
protocols. Each protocol is obtained as an implementation of the corresponding
abstract classes. Each implementation is a separated library which is loaded only
if the protocol is used. This expedites the integration of new protocols in the
language.

To better illustrate this structure, we report in Fig. 4 a conceptual represen-
tation of the call flow that originates from the execution logic of the language
and interacts with the external libraries present in a given installation. The flow
starts from the Execution Engine, which interprets Jolie commands, and which is
the originator of the communication flows. This is represented by arrow 0 from
the Execution Engine. From there, the call reaches the Communication Core, which
implements the generic logic of channel creation, in turn relying on the pairing
of a medium and a protocol. In the interpreter, this division is generalized with
abstract factories for media and protocols. At runtime, the Communication Core
proceeds (arrows 1) to load the medium factory requested in the call from the
Execution Engine — in the figure we assume this is Socket — and, from that, it
obtains an implementation of the actual logic of TCP/IP channels, split between
a channel class, to handle outbound communications, and a listener class, for
inbound communications. Finally, the Communication Core associates (arrows
2) a protocol to the obtained medium. The flow is similar to that of media:

the Communication Core loads the protocol factory requested in the call from the
Execution Engine — in the figure we assume this is HTTP — and, from that, it
obtains an object that implements the logic of the HTTP protocol.

Language Abstractions for Interoperability of IoT Platforms 101

7.2 Implementation of CoAP/UDP in Jolie

Since by specification the CoAP protocol relies on the UDP medium protocol,
in order to integrate CoAP in Jolie we also had to integrate the UDP medium.
As described in Sect. 7.1, this entailed the creation of two new libraries for the
Jolie interpreter: a medium library for UDP and a protocol library for CoAP.

We remark that, since UDP and CoAP are independent libraries, our imple-
mentation of UDP can also be used to support other protocols relying on UDP,
such as MQTT-SN [26]. The implementation of UDP consists in a listener and
a channel class, both based on the Netty framework [27]. Since the structure
expected by Jolie and the one provided by Netty are similar, the integration
of UDP is smooth. An interesting point is that exceptions raised by Netty are
captured and transformed into Jolie exceptions. These exceptions are notified
to the application protocol, which can either manage them or raise them at the
level of the behavior of the Jolie program.

Legend

Interpreter

Channel Creation
 - Medium Creation
 - Protocol Creation

Communication Core
Execution Logic
Communication Logic

Execution Engine

Abstract Protocol Abstract Protocol Factory

Abstract Medium

Abstract Medium Factory

Socket Library

Socket Medium

Socket Medium Factory

RMI Library

RMI Medium

RMI Medium Factory

HTTP Library

HTTP Protocol

HTTP Protocol Factory

SOAP Library

SOAP Protocol

SOAP Protocol Factory

Artefact (jar)

1

0

1

2

2

Call Flow Instantiation

Fig. 4. Conceptual representation of the call flow among the Jolie interpreter and its
communication libraries.

102 M. Gabbrielli et al.

The implementation of the CoAP library consists in a class taking care of
encoding and decoding the message abstraction of Jolie, namely the Communica-
tion Message, into a CoAP formatted one. A second class, handling the encoding
and decoding of a CoAP message into a buffer of bytes, is based on the work
done in nCoAP [28], an open source project providing a CoAP implementation
for Java, based itself on Netty.

CoAP supports request-response communications and, in particular, CoAP
messages include fields (i) to specify at which address the reply is expected
and (ii) to match a reply with a previous request. Hence, the implementation of
RequestResponse communications in CoAP is sound also with a transport protocol
which is not connection-oriented, such as UDP. This would be a problem for
protocols that do not provide such a facility, such as HTTP, which is indeed not
commonly used over UDP.

Notably, Jolie comes with a formal semantics (in terms of a process calcu-
lus) [29], which enables to rigorously reason on the behavior of Jolie programs.
This has been instrumental in the evolution of the language, e.g., to specify
and prove properties on the fault handling mechanisms of the language [30]
or to correctly implement sessions [31] based on correlation mechanisms [32].
The semantics in [29] only considers reliable communications and needs to be
extended to also cover the unreliable case. We do not report here on this topic,
since it is not central for the purpose of this paper.

7.3 Implementation of MQTT in Jolie

By specification, MQTT relies on the TCP/IP protocol, already implemented
in Jolie. This means that, theoretically, the implementation of MQTT would
have only entailed the creation of a dedicated MQTT protocol library. How-
ever, as detailed in Sect. 7.1, Jolie assumes an end-to-end communication pat-
tern where the caller initiates the creation of a communication channel with a
server, which in turn expects such inbound requests. For this reason, given a cer-
tain medium, inputPorts and outputPorts use a medium-specific implementation
of, respectively, a listener class and a channel class. This pattern, separating
listeners from channels, does not apply to publish/subscribe protocols, where
both the subscriber and the publisher need to establish a connection with the
broker. In our implementation, we mediated between the two approaches with
a Publish-Subscribe medium, which is essentially a wrapper implementing the
logic of Publish-Subscribe message handling on any other point-to-point medium
available (TCP socket in the case of MQTT) to the interpreter. Although we
strove to separate the concerns between the Jolie interpreter and this new Public-
Subscribe channel, we had to introduce a minimal update into the Jolie Com-
munication Core so that it could choose between the standard end-to-end media
and the new wrapper.

The MQTT protocol class both encodes and decodes messages and imple-
ments the QoS policies of the MQTT standard. Concretely, as for CoAP, we
based the implementation of MQTT on Netty [27]. The main difficulty in the
implementation of the protocol is the definition of the message patterns needed

Language Abstractions for Interoperability of IoT Platforms 103

Adafruit DHT22
Temperature

Sensor

Adafruit
GA1A12S202
Light Sensor

ESP8266
Thermostat

Microcontroller
Philips Hue

Hub

JIoT
Orchestration

Samsung
SmartThings

Hub

Hue White
Lamp

Motion
Sensor

Arduino

Hue White
Lamp

CoAP/UDP HTTP/TCP

HTTP/TCPMQTT/TCP

Fig. 5. Conceptual overview of the home automation case study.

to implement OneWay and RequestResponse communications, which have been
described in Sect. 6. Beyond being invoked when operations are executed, the
MQTT class is also invoked when the program is started, to perform port initial-
ization. In particular, this is when subscriptions to topics identified in inputPorts
are performed (along with the related connections to the brokers).

8 Case Study

In this section, we detail the programming of a home automation case study with
JIoT. We remark that the techniques presented in this case study are not specific
to home automation and can be used in any setting where heterogeneous IoT
technology stacks need interact. The use case is peculiar as new edge devices can
be included in the system at runtime. The source code of the system is released
under the GPL v.3 license and available at [19]. We report in Fig. 5 a schematic
overview of the case study, where Cloud nodes and mid-tier controllers (repre-
sented by the element labeled “JIoT Orchestration” in Fig. 5) are programmed
in JIoT and orchestrate the behavior of a number of heterogeneous edge devices
(whose low-level programming is omitted here):

– Philips Hue Hub: a hub to control the Philips Hue smart home devices;
– Philips Hue White Lamps: connected to the hub above;
– Samsung SmartThings Hub: a hub to control devices following the Smart-

Things specification [33];
– Samsung SmartThings Motion Sensor : connected to the hub above and used

as a presence sensor;

104 M. Gabbrielli et al.

– Arduino Uno: a general-purpose microcontroller;
– Adafruit GA1A12S202 Analog Light Sensor : connected to the Arduino above;
– Adafruit DHT22 Temperature Sensor : also connected to the Arduino above;
– ESP8266 : a microcontroller to manage a pre-existing thermostat.

The case study combines commercial solutions — e.g., the Philips Hue Hub
and the Hue White Lamps system where the Lamps are controlled by the Hub —
with custom ones — these span from sensors directly connected to a board, as it
happens for the Adafruit DHT22 temperature sensor, to solutions that integrate
a pre-existing hardware, like the ESP8266 that manages a pre-existing thermo-
stat. As illustrated in Fig. 5, this heterogeneity of devices provides for a com-
prehensive scenario where we need JIoT programs that use different application
and transport protocols. In particular, Philips and Samsung Hubs communicate
with the orchestrator over HTTP/TCP, the Arduino over MQTT/TCP, and the
ESP8266 over CoAP/UDP.

In the use case we build a simple logic providing two functionalities: lighting
and temperature system control. The lighting system turns on the lights when
the motion sensor detects someone at home and the outdoor luminosity is below
some threshold. The temperature control checks the temperature and turns on
the heating system when the temperature is below some threshold. The threshold
has different values depending on whether someone is at home or not.

Logic
Engine
Service

Thing
Description

File

Driver
Service

Edge Device

Driver
Service

Thing
Description

File

Edge Device

JIoT O
rchestratio

n

Fig. 6. Scheme of orchestration in the case study.

Language Abstractions for Interoperability of IoT Platforms 105

8.1 Structure of the Orchestration

We now describe the structure of the orchestration in the case study, which is
illustrated in Fig. 6. The orchestration is composed of multiple JIoT programs.
From top to bottom of Fig. 6, the LogicEngine contains the general logic of
system control (i.e., the one that collects the data from sensors and coordinates
the execution of the actuators in the system). Since the LogicEngine interacts
with a multitude of mid-tier devices, its natural deployment is in the Cloud,
where it is possible to scale it according to the number of managed devices and
the load of computation. At the mid-tier level we have JIoT Drivers. Each Driver
interacts with a specific edge device and it is deployed in a mid-tier machine in
the proximity of the controlled edge device.

8.2 Thing Descriptors

In the case study, the Drivers are statically configured to manage a single fixed
device using a JSON-LD 1.1 (that stands for JSON Linkage Data) configuration
file [34]. The choice of JSON-LD is not mandatory, but it has the benefit of
following the standard W3C Web of Things [22] definition of Thing Description
(TD). This makes our Drivers already compliant with other WoT frameworks,
simplifying future integrations with other WoT systems.

While discussing the full structure of TD is out of the scope of this paper,
we present in Figs. 7 and 8 examples of TDs used in our case study. In Fig. 7 we
report the TD for the DHT22 temperature sensor. For each device the JSON-
LD file specifies whether it is a sensor or an actuator (key "type") and provides
a textual description (key "description") and its name (key "name"). Each TD
provides a list of properties (key "properties") that can be read. Each property is
described by the property identifier, "temperature" in our example. The property
identifier has various sub-elements describing it. In our example we use just key
"label" to describe the unit of measure.

Fig. 7. Adafruit DHT22 Thing Descriptor.

106 M. Gabbrielli et al.

Fig. 8. Philips Hue White Lamp Thing Descriptor.

JSON-LD configuration files for MQTT and HTTP devices are similar. Also
configuration files for sensors and actuators are similar. As an example, we report
in Fig. 8 the configuration file for Philips Hue White Lamps. There the main
differences with respect to the previous TD (Fig. 7) are:

– the "type" is now "actuator";
– the key "actions" replaces the key "properties";
– the key "description" is used also to describe the single action.

In principle a TD can describe multiple properties belonging to a group of one
or more edge devices controlled by the same Driver. For simplicity, here we have
one TD for each edge device and, correspondingly, one Driver that controls one
edge device. We also assume that each sensor provides one property.

8.3 System Deployment

Deployment-wise, JIoT provides a vast choice regarding what technology stack
to use between the LogicEngine and the Drivers. Moreover, since both pro-
grams are developed in JIoT, it is easy to change their deployment, switching
to the technology stack that best suites a given scenario (e.g., HTTP, to exploit
caching, or binary formats like SODEP [17], to limit bandwidth usage). Here,
we choose to use the HTTP/TCP stack to make our system compatible with
the majority of existing third-party solutions [9]. However, different technology
stacks fit different purposes. The benefit of JIoT is that programmers can re-use
the same software components adapting their deployment to the desired commu-
nication stacks. For example, if our goal was to be natively compatible with other
JavaScript IoT frameworks, we could have used the JSON-RPC binary protocol;
if we wanted to deploy our system as part of a Service-Oriented Architecture [14],
we could have used the SOAP protocol.

While JIoT-to-JIoT deployment is flexible, the deployment towards edge
devices is defined by the technology supported by the edge device. Concretely,
in our case study each Driver communicates with its edge device using (one of)
the protocol(s) supported by the latter.

Language Abstractions for Interoperability of IoT Platforms 107

8.4 Components Behavior

When started, a Driver loads the TD configuration file of its edge device. Then
it registers itself to the LogicEngine. In the registration, it sends the information
retrieved from the TD, enriched with two additional pieces of information: the
address where the edge device can be contacted — i.e., the Driver location —
and the identifier of the user to which the edge device belongs. Once registered,
the Driver acts as a forwarder between the LogicEngine and the edge device.

The LogicEngine runs on the Cloud and manages a number of sensors and
actuators. More precisely the LogicEngine has one running session for each user
(distinguished according to the user identifier), managing all her sensors and
actuators. Each session is associated with an array of devices that can be scanned
to find the location of devices with specific properties and interact with them;
e.g., at lines 10–26 of Listing 8 the procedure getTemperature of the LogicEngine,
computing the average temperature recorded by the sensors of one user.

108 M. Gabbrielli et al.

Briefly, procedure getTemperature:

– scans the devices structure (line 13) containing all registered Drivers;
– selects those whose type is "sensor" and have a property (under the sub-

structure properties) named temperature. Note how Jolie tree-shaped vari-
ables ease the exploration of structured data; in this case the one sent by the
Drivers at registration time (and read from their associated JSON-LD file);

– it dynamically sets (line 16) the location of outputPort Driver (lines 5–8) to
contact the selected Driver;

– it sets the request operation to getTemperature (line 17);
– it retrieves the temperature sensed by the edge device controlled by the

selected Driver, invoking it through operation engineRequest;
– it aggregates the sensed temperature in variable sum and keeps track of the

number of requests in variable n (lines 19–20);
– it computes the mean temperature (lines 23–25).

The procedures that calculate the mean of the sensed external luminosity
and the one to check the presence of people at home are similar to the one in
Listing 8, except that the searched properties are light in the first case, and
motion in the second.

We report in Listing 9 one of the procedures managing the actuators, specif-
ically the one used to set the temperature. The main difference with respect to
the logic in Listing 8 is that procedure setTemperature:

– selects the devices whose type is "actuator" (line 3);
– sets the request operation to "setTemperature" and passes the value in variable

comfortTemperature as parameter of the request (lines 6–7).

Note that the operation called on the Driver is engineRequest both in
Listing 8 and Listing 9. This support the extension of the LogicEngine with new

1 define setTemperature {
2 for (device in devices) {
3 if(device.type == "actuator" &&
4 is_defined(device.properties.temperature)) {
5 Driver.location = device.location ;
6 request.operationName = "setTemperature" ;
7 request.deviceRequest = comfortTemperature ;
8 engineRequest@Driver(request)(response)
9 }

10 }
11 }

Listing 9. LogicEngine setTemperature procedure.

Language Abstractions for Interoperability of IoT Platforms 109

procedure definitions that implement a given goal without requiring to change
the interface between the LogicEngine and the Drivers. In turn, a request with
the same operationName (e.g., "setTemperature") triggers different behaviors in
different Drivers, as each implements the specific logic of interaction with its
associated edge device.

8.5 Cloud Deployment

We conclude this section by describing the Cloud deployment of the LogicEngine,
which is containerized using Docker [35]. The container is deployed automatically
into an Amazon Web Service cluster via the Docker Swarm manager [36]. The
LogicEngine is deployed in the worker cluster, allowing the manager to balance
the load of requests. We report in Listing 10 the content of the Dockerfile used
to deploy the LogicEngine.

At line 1 we declare the starting image for the container, which is the
lightweight Linux Alpine distribution with OpenJDK 8 pre-installed. At lines
3–4 we install the JIoT fork interpreter and we set the environmental variable
JOLIE_HOME to point to the location of the installed interpreter. At lines 6–7 we
add the source code of the LogicEngine in the home directory of the image.
Finally, at line 8 we start the execution of the LogicEngine.

9 Related Work

In the literature there are many proposals for platforms, middlewares, smart
gateways, and general systems, all aimed at solving the interoperability problem
arising from the current “babel” of IoT technologies (protocols, formats, and
languages). Without any claim of being complete, here we mention a few notable
examples which are somehow related to the topic of the current paper.

Recently the W3C started the Web of Things (WoT) Working Group [22].
The aim of WoT is to define a standard stack of layered technologies, as well
as software architectural styles and programming patterns, to uniform and sim-
plify the creation of IoT applications. In this context, the W3C is working on

1 FROM openjdk:alpine
2
3 RUN java -jar jiot.jar -jh /usr/lib/jolie/ -jl /usr/bin/
4 ENV JOLIE_HOME /usr/local/lib/jolie
5
6 ADD logic_engine.ol /home/.
7 WORKDIR /home
8 RUN jolie logic_engine.ol

Listing 10. The Dockerfile used to deploy the LogicEngine.

110 M. Gabbrielli et al.

a WoT Architecture [37]. The main concept of the architecture is the notion of
“servient”, a virtual entity that represents a physical IoT device. Servients provide
technology-independent, standard APIs that developers can use to transparently
operate in heterogeneous environments. Remarkably, both the WoT proposal and
ours concern high-level abstractions for low-level access to devices provided via,
e.g., HTTP, CoAP, and MQTT. However, while we propose a dedicated lan-
guage, they provide API specifications. More in general, there are many propos-
als for the integration of WoT and IoT. For example [38] and [39] define general
platforms covering different layers of IoT, including an accessibility layer which
integrates concepts like smart gateways and proxies to facilitate the connection
of (smart) Things into the Internet infrastructure, using architectural princi-
ples based on REST. Smart gateways and proxies are used in several industrial
proposals to facilitate the development of applications. Common denominator
of some of these proposals, e.g., [33,40,41], is the abstraction of low-level func-
tionalities provided by embedded devices (e.g., connectivity and communication
over low-level protocols like ZigBee, Z-Wave, Wi/IP/UPnP, etc.). Smart gate-
ways are used also to translate (or integrate) CoAP into HTTP [42–44] and to
integrate both CoAP and MQTT by means of specific middlewares [45]. Eclipse
IoT [46] is an IoT integration framework proposed by the Eclipse IoT Working
Group. Aim of Eclipse IoT is to build an open IoT stack for Java, including
the support for device-to-device and device-to-server protocols, as well as the
provision of protocols, frameworks, and services for device management. There
exist several European projects, notably INTER-IoT [47] and symbIoTe [12],
that address the issue of interoperability in IoT and have produced several con-
crete proposals. Finally, a work close to ours is [48], where a middleware converts
IoT heterogeneous networks into a single homogeneous network.

Although related to our aim in this paper, the cited proposals tackle the
problem of IoT integration from a framework perspective: they provide chains
of tools, each addressing a specific level of the integration stack. Differently, we
extend a language specifically tailored for system integration and advanced flow
manipulation, Jolie, to support integration of IoT devices. This offers a single
linguistic domain to seamlessly integrate disparate low-level IoT devices and
intermediate nodes (collectors, aggregators, gateways). Moreover, Jolie is already
successfully used for building Cloud-based, microservice solutions [49,50]. This
makes the language useful also for assembling advanced architectures for IoT,
e.g., to handle real-time streaming and processing of data from many devices.
The benefit, here, is that, while solutions based on frameworks require dedicated
proficiencies on each of the included tools, Jolie programmers can directly work
at any level of the IoT stack, without the need to acquire specific knowledge on
the tools in a given framework.

To conclude our revision of related work, we narrow our focus on language-
based integration solutions for IoT. The work mostly related to ours is Sen-
sorML [51]. SensorML, abbreviation of Sensor Model Language, is a model-
ing language for the description of sensors and, more in general, of measure-
ment processes. Some features modeled by the language are: discovery and

Language Abstractions for Interoperability of IoT Platforms 111

geolocalization of sensors, processing of sensor observations, and functionali-
ties to program sensors and to subscribe to sensor events. While some traits of
SensorML are common to our proposal, the scopes of the two languages sensibly
differ. Indeed, while Jolie is a high-level language for programming generic archi-
tectures (spanning from Cloud-based microservices to low-level IoT integrators),
SensorML just models IoT devices, their discovery, and the processing of sensor
observations.

10 Discussion and Conclusion

In this paper, we proposed a language-based approach for the integration of
disparate IoT platforms. We built our treatment on the Jolie programming lan-
guage. This first result is an initial step towards a more comprehensive solution
for IoT ecosystem integration and management. Concretely, we included in Jolie
the support for two of the most widely used IoT protocols. The inclusion enables
Jolie programmers to interact with the majority of present IoT devices. Sum-
marizing our results: (i) we included in Jolie the CoAP application protocol,
also extending the Jolie language to support the UDP transport protocol, (ii)
we added the support for the MQTT protocol and, in doing so, (iii) we tackled
the challenging problem of mapping the renowned pattern of request-responses
(typical of HTTP and other widely used protocols) into the publish/subscribe
message pattern of MQTT. The mapping abstracts from peculiarities of MQTT
and is applicable to any publish/subscribe protocol.

Regarding future work, we are currently investigating the integration in Jolie
of more IoT protocols [3], in order to extend the usability of the language in the
IoT setting.

It would also be interesting to extend not only the Jolie interpreter, as we
have done, but also the formal model behind it [29,31,52]. To this end, we can
take ideas from the formal model of IoT systems presented in [53].

Another interesting direction for future developments is studying how Jolie
can support the testing of IoT technologies, e.g., to test how different protocol
stacks perform over a given IoT topology. Thanks to the simplicity of changing
the combination of the used protocols (application and transport), experimenters
can quickly test many configurations, also enjoying a more reliable platform to
compare them. Indeed, usually even changing one of the protocols in the config-
ured stack would require an almost complete rewrite of the logic of network
components. Contrarily, in Jolie, this change just requires an update of the
deployment part of programs, leaving the logic unaffected. Moreover, such an
update could even be done programmatically, making the practice of repeated
experimenting on IoT networks easier and more standardized.

Finally, as future work, we also consider the possibility of developing a light-
weight version of the language, to be used on low-power IoT devices. Indeed,
in this paper, we assumed that these devices are programmed with low-level
languages, since they can support only a very constrained execution environment.
Clearly, letting programmers develop all the components of an IoT network in

112 M. Gabbrielli et al.

the same language would not only ease its implementation but also testability,
deployment, and maintenance. However, achieving such a result would require a
very challenging engineering endeavor.

Acknowledgments. We thank Marco Di Felice, Luca Bedogni, and Federico Montori
for useful suggestions and comments.

References

1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

2. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of Things: a survey on enabling technologies, protocols, and applications. IEEE
Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

4. Bormann, C.: CoAP website. http://coap.technology/ (2016)
5. Shelby, Z., Hartke, K., Bormann, C.: The constrained application protocol (CoAP),

RFC 7252, IETF (2014)
6. MQTT community: MQTT website. http://mqtt.org (2014)
7. Banks, A., Gupta, R.: MQTT Version 3.1.1, Oasis standard, Oasis (2014). http://

docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
8. Milenkovic, M.: A case for interoperable IoT sensor data and meta-data formats:

the Internet of Things (Ubiquity symposium). Ubiquity 2015, 2:1–2:7 (2015)
9. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media Inc, Newton

(2008)
10. Garg, N.: Apache Kafka. Packt Publishing Ltd, Birmingham (2013)
11. Soursos, S., Žarko, I.P., Zwickl, P., Gojmerac, I., Bianchi, G., Carrozzo, G.: Towards

the cross-domain interoperability of IoT platforms. In: EuCNC, pp. 398–402. IEEE
(2016)

12. Gojmerac, I., Reichl, P., Podnar Žarko, I., Soursos, S.: Bridging IoT islands: the
symbIoTe project. Elektrotechnik und Informationstechnik 133(7), 315–318 (2016)

13. The bIoTope project. http://www.biotope-project.eu/ (2017)
14. Erl, T.: Soa: Principles of Service Design. Prentice Hall Press, New Jersey (2007)
15. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a java orchestration

language interpreter engine. ENTCS 181, 19–33 (2007)
16. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In:

ECOWS, pp. 13–22. IEEE (2007)
17. Montesi, F., Guidi, C., Zavattaro, G.: Service-oriented programming with Jolie.

Web Services Foundations. Springer, New York (2014). https://doi.org/10.1007/
978-1-4614-7518-7_4

18. Jolie website. http://jolie-lang.org (2017)
19. Gabbrielli, M., Giallorenzo, S., Lanese, I., Zingaro, S.P.: Jolie for IoT website.

http://www.cs.unibo.it/projects/jolie/jiot.html (2017)
20. W3C: Transport message exchange pattern: single-request-response. https://www.

w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP (2001)
21. Gabbrielli, M., Giallorenzo, S., Lanese, I., Zingaro, S.P.: A language-based app-

roach for interoperability of IoT platforms. In: HICSS, AIS Electronic Library
(AISeL) (2018)

http://coap.technology/
http://mqtt.org
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/
http://www.biotope-project.eu/
https://doi.org/10.1007/978-1-4614-7518-7_4
https://doi.org/10.1007/978-1-4614-7518-7_4
http://jolie-lang.org
http://www.cs.unibo.it/projects/jolie/jiot.html
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP
https://www.w3.org/2000/xp/Group/1/10/11/2001-10-11-SRR-Transport_MEP

Language Abstractions for Interoperability of IoT Platforms 113

22. Web of Things. https://www.w3.org/WoT/ (2017)
23. Fielding, R.T.: Architectural styles and the design of network-based software archi-

tectures. PhD thesis, University of California, Irvine (2000)
24. Postel, J.: User datagram protocol. RFC 768, IETF (1980)
25. Montesi, F.: Process-aware web programming with Jolie. SCP 130, 69–96 (2016)
26. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S–a publish/subscribe pro-

tocol for wireless sensor networks. In: COMSWARE, pp. 791–798. IEEE (2008)
27. Maurer, N., Wolfthal, M.: Netty in Action. Manning Publications, New York (2016)
28. Kleine, O.: nCoAP. https://github.com/okleine/nCoAP
29. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: a calculus

for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006). https://doi.org/10.
1007/11948148_27

30. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundam. Inform. 95(1), 73–102 (2009)

31. Montesi, F., Carbone, M.: Programming services with correlation sets. In: Kappel,
G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp.
125–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-
9_9

32. OASIS: Web Services Business Process Execution Language. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

33. SmartThings. http://www.smartthings.com/ (2016)
34. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N. : JSON-LD

1.1. https://json-ld.org/spec/latest/json-ld/
35. Merkel, D.: Docker: lightweight linux containers for consistent development and

deployment. Linux J., vol. 2014, Mar 2014
36. Soppelsa, F., Kaewkasi, C.: Native Docker Clustering with Swarm. Packt Publish-

ing, Birmingham (2017)
37. Web of Things architecture. https://w3c.github.io/wot/architecture/wot-

architecture.html (2017)
38. Dominique, G.: A web of things application architecture-integrating the real-world

into the web. Zurich Diss. ETH 19891, 10–12 (2011)
39. Corredor, I., Metola, E., Bernardos, A.M., Tarrío, P., Casar, J.R.: A lightweight

web of things open platform to facilitate context data management and personal-
ized healthcare services creation. IJERPH 11(5), 4676–4713 (2014)

40. Meshlium. http://www.libelium.com/products/meshlium/ (2016)
41. Thinking things. http://www.thinkingthings.telefonica.com/ (2016)
42. Sulaeman, A.B., Ekadiyanto, F.A., Sari, R.F.: Performance evaluation of HTTP-

CoAP proxy for wireless sensor and actuator networks. In: APWiMob, pp. 68–73,
IEEE (2016)

43. Ludovici, A., Calveras, A.: A proxy design to leverage the interconnection of CoAP
wireless sensor networks with web applications. Sensors 15(1), 1217–1244 (2015)

44. Mingozzi, E., Tanganelli, G., Vallati, C.: CoAP proxy virtualization for the Web
of Things. In: CloudCom, pp. 577–582. IEEE Computer Society (2014)

45. Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.: Performance evaluation
of MQTT and CoAP via a common middleware. In: ISSNIP, pp. 1–6. IEEE (2014)

46. The Eclipse for IoT Project. https://iot.eclipse.org/ (2017)
47. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Semantic

technologies for the IoT - an inter-IoT perspective. In: IoTDI, pp. 271–276. IEEE
(2016)

https://www.w3.org/WoT/
https://github.com/okleine/nCoAP
https://doi.org/10.1007/11948148_27
https://doi.org/10.1007/11948148_27
https://doi.org/10.1007/978-3-642-25535-9_9
https://doi.org/10.1007/978-3-642-25535-9_9
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.smartthings.com/
https://json-ld.org/spec/latest/json-ld/
https://w3c.github.io/wot/architecture/wot-architecture.html
https://w3c.github.io/wot/architecture/wot-architecture.html
http://www.libelium.com/products/meshlium/
http://www.thinkingthings.telefonica.com/
https://iot.eclipse.org/

114 M. Gabbrielli et al.

48. Zhiliang, W., Yi, Y., Lu, W., Wei, W.: A SOA based IoT communication middle-
ware. In: MEC, pp. 2555–2558. IEEE (2011)

49. Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J., Montesi, F.: Self-reconfiguring
microservices. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Theory and
Practice of Formal Methods. LNCS, vol. 9660, pp. 194–210. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30734-3_14

50. Callegati, F., Giallorenzo, S., Melis, A., Prandini, M.: Insider threats in emerging
mobility-as-a-service scenarios. In: HICSS, AIS Electronic Library (AISeL) (2017)

51. The sensorML project. http://www.opengeospatial.org (2017)
52. Giallorenzo, S., Montesi, F., Gabbrielli, M.: Applied choreographies. In: Baier,

C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp. 21–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-92612-4_2

53. Lanese, I., Bedogni, L., Di Felice, M.: Internet of Things: a process calculus app-
roach. In: SAC, pp. 1339–1346. ACM (2013)

https://doi.org/10.1007/978-3-319-30734-3_14
http://www.opengeospatial.org
https://doi.org/10.1007/978-3-319-92612-4_2

Energy-Efficient Scheduling of Tasks
with Conditional Precedence Constraints

on MPSoCs

Umair Ullah Tariq1, Hui Wu1(B), and Suhaimi Abd Ishak2

1 The University of New South Wales, Sydney, Australia
{u.tariq,huiw}@unsw.edu.au

2 Universiti Tun Hussein Onn, Parit Raja, Malaysia
suhaimiabd@uthm.edu.my

Abstract. In this article, we investigate the problem of energy-efficient
scheduling of tasks with conditional precedence constraints on hetero-
geneous NoC-based MPSoC. We propose a novel offline approach that
performs task mapping, scheduling and voltage scaling in an integrated
manner. Our approach consists of a scheduling algorithm that constructs
a single unified schedule by prioritizing tasks with tight latest finish time
bounds. It uses an NLP-based DVFS algorithm to assign continuous fre-
quencies and voltages to tasks and communications, and transforms the
assigned frequencies and voltages to tasks and communications to valid
discrete frequency and voltage levels using either an ILP or a heuristic-
based algorithm. Compared to the state-of-the-art approach designed for
the task model with unconditional precedence constraints, our approach
using ILP-based algorithm achieves improvements in the range of 9%
to 61% and an average improvement of 31%, and our approach using a
heuristic-based algorithm achieves improvements in the range of 2% to
46% and an average improvement of 20% in terms of energy reduction.
In terms of running time, our approach is approximately 3 times faster
than the state-of-the-art approach.

Keywords: Conditional Task Graph (CTG) ·
Dynamic voltage and frequency scaling ·
Offline task mapping and scheduling

1 Introduction

During the past few decades, we have witnessed immense growth in the appli-
cations of embedded systems. In addition to conventional performance metrics
such as execution speed, energy consumption is a critical metric for gauging the
quality of an embedded system, Modern embedded systems such as driverless
cars and robots require powerful energy-efficient hardware due to their complex
functions. Multi-Processor System on Chip (MPSoC) is an ideal architecture for

c© Springer Nature Switzerland AG 2019
T. A. Majchrzak et al. (Eds.): Towards Integrated Web, Mobile,
and IoT Technology, LNBIP 347, pp. 115–145, 2019.
https://doi.org/10.1007/978-3-030-28430-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28430-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-28430-5_6

116 U. U. Tariq et al.

these systems due to its high performance and low power dissipation. MPSoC has
knobs that provide a mechanism to trade-off speed of execution against energy
efficiency [39]. Adjusting the settings of these energy-management knobs so that
the impact on execution speed is minimized and the energy reduction is maxi-
mized, involves decisions such as where, when and at what speed to execute each
task of an application. These decisions are made by the task scheduling algo-
rithm. Therefore, energy-aware task scheduling is an important research topic.

Typically an embedded application consists of a set of tasks. Each task rep-
resents a piece of code in the application. Tasks may be subject to precedence
constraints. A precedence constraint (A,B) between tasks A and B specifies
that task B can start only after A has finished. Classic Directed Acyclic Graph
(DAG) task model captures such relationships between tasks. In applications
some precedence constraints may be conditional. A conditional precedence con-
straint (A,B) specifies that task B can start only after A has completed only
if a certain condition has been met. Applications with conditional precedence
constraints are modeled by Conditional Task Graphs (CTG). A real example
of an application with conditional precedence constraints is an MPEG decoder.
An MPEG decoding process varies according to the frame of the encoded video
stream. Each frame is composed of 16 × 16 pixel macro-blocks. Macro-blocks are
classified as I, P and B blocks. Each macro block has a different decoding proce-
dure. For example I block performs Inverse Discrete Cosine Transform (IDCT)
but B-block may skip IDCT. Traditional DAG-based task models cannot model
such an application.

Scheduling applications on MPSoCs involve task mapping that allocates tasks
to MPSoC processors, and task ordering that arranges tasks in time. In hetero-
geneous MPSoCs processors have not only different power-performance charac-
teristics but may also have different voltage scaling capabilities. In such systems
task mapping greatly influences the capability of DVFS algorithms to reduce
energy consumption. DVFS algorithms are also influenced by the order in which
tasks are executed as task executions are bounded by deadlines. If tasks are not
mapped on energy-efficient processors and tasks with shorter deadlines block
tasks with longer deadlines, DVFS can do very little to reduce energy con-
sumption. Moreover, modern MPSoCs have a large number of processors and
for the future kilo-processor MPSoCs [12] bus-based on-chip communication is
no longer feasible due to its poor scalability. Network on Chip (NoC)-based
on-chip interconnects are suitable for these MPSoCs as they provide a signifi-
cant improvement in terms of flexibility, scalability and performance over other
on-chip interconnect such as hierarchical (e.g., advanced micro-controller bus
architecture and STBus) and traditional bus structures [20].

In this paper we investigate the problem of scheduling a set of tasks with
conditional precedence constraints and individual deadlines on a heterogeneous
NoC-based MPSoC such that the total expected processor and communication
energy is minimized. The processors and NoC links are voltage scalable and

Energy-Efficient Scheduling of Tasks 117

can operate at a set of discrete voltage/frequency levels. We make the following
major contributions:

1. We propose a novel offline task scheduling approach. Our approach consists
of a task scheduling heuristic that constructs a single unified schedule for all
the tasks and collectively assigns a frequency to each task and each communi-
cation assuming continuous frequencies, and an Integer Linear Programming
(ILP)-based algorithm as well as a polynomial-time heuristic for assigning
a discrete frequency to each task and each communication. To the best of
our knowledge, our approach is the first one that investigates the problem
of scheduling a set of tasks and communications with conditional precedence
constraints on NoC-based MPSoCs such that the total expected energy con-
sumption is minimized.

2. We have performed experiments on 20 benchmarks. Compared to the state-
of- the-art approach proposed by Li and Wu [22] that does not consider con-
ditional precedence constraints, in terms of energy reduction, our approach
using the ILP-based algorithm achieves an average improvement of 31% and
a maximum improvement of 61%, and our approach using the polynomial-
time heuristic achieves an average improvement of 20% and a maximum
improvement of 46%. Furthermore, both our approach using the ILP-based
algorithm and our approach using the polynomial-time heuristic run approx-
imately three times faster than the state-of-the-art approach.

2 Related Work

In NoC-based MPSoCs energy is not only consumed by the processors but also
by the communication network. The energy (both static and dynamic) con-
sumed by the processors and communication network is referred to as processing
and communication energy, respectively. Authors in [27,33,40,41] schedule tasks
with precedence constraints such that communication energy is reduced. These
approaches achieve this goal through task duplication. The key idea of these
approaches is to duplicate some tasks to reduce the communication energy as
well as traffic congestion. Authors in [33] additionally take into account the con-
tention among communications for communication links bandwidth. Although
these approaches may optimize energy consumption but are limited in only
reducing the communication energy, and therefore are only suitable for applica-
tions with intensive communication volumes.

Many energy-aware approaches have been proposed for scheduling tasks with
precedence constraints with an objective to optimize the processing energy con-
sumption.

Authors in [14] investigate the problem of scheduling a set of tasks with
precedence constraints onto heterogeneous multi-processors system such that
the dynamic energy consumption is minimized. In their approach task mapping
and scheduling are integrated with dynamic voltage and frequency scaling to
maximize energy efficiency. Their DVFS algorithm assigns task frequencies and
voltages based on the critical path length of the tasks.

118 U. U. Tariq et al.

Authors in [28] propose DVFS-based offline and online algorithms for assign-
ing frequencies to a set of tasks with precedence constraints on multi-processors
systems. They assume that a static schedule is given, which assigns tasks to pro-
cessors and specifies the order in which tasks are executed. They propose three
off-line DVFS algorithms, Greedy Static Power Management (G-SPM), Simple
Static Power Management (S-SPM) and Static Power Management with Paral-
lelism (P-SPM). The G-SPM allocates the global slack (difference of schedule
makespan and application deadline) to the first task on each processor, if the first
task is a source node. The S-SPM allocates the global slack to tasks proportion-
ally based on their worst-case execution times at maximum processor frequency.
P-SPM first determines the degree of parallelism of the different time intervals
of static schedule and allocates slack to each time interval based on the degree
of parallelism of that interval (number of tasks scheduled in the interval). They
also propose a greedy online DVFS algorithm that allocates the slack available
at run-time to next ready task.

Authors in [5] propose offline voltage scaling algorithms to schedule tasks
with precedence constraints on a heterogeneous multi-processor system such
that the total energy consumption is minimized. They assume that a static
schedule is given and propose only voltage scaling algorithms. For processors
that can operate at any frequency and voltage within a continuous range, they
propose a Non-Linear Programming (NLP)-based voltage scaling algorithm to
assign each task a voltage and a frequency. For a processor that can operate
at a fixed set of discrete voltages and frequencies, they propose an ILP-based
voltage scaling algorithm. Their approaches optimize the total energy consump-
tion by collectively scaling supply voltage and body-to-source voltage. Authors
in [8] propose an energy-efficient approach to schedule tasks with precedence
constraints on battery-powered heterogeneous multi-processor mobile embedded
systems. They assume that task mapping and scheduling are given and propose
an online algorithm that assigns frequencies and voltages to tasks. Their DVFS
algorithm is based on the critical path length of the tasks and allocates a slack
to each task proportional to the critical path length of the task.

Authors in [19] propose an online DVFS algorithm to schedule tasks with
precedence constraints on a multi-processor system such that dynamic energy
consumption is minimized. They assume that tasks have been mapped, sched-
uled and assigned frequencies and voltages offline, and propose online DVFS
algorithms, including Greedy, K time lookahead and K descendant lookahead.
The online DVFS algorithm is called at run-time whenever a task finishes execu-
tion. The greedy algorithm adjusts the frequency of only the direct successors of
the finished task. K time lookahead algorithm adjusts the frequency of each task
in a fixed time window k, and k descendant algorithm adjusts the frequencies of
only k direct decedents of the finished task.

Authors in [2] investigate the problem of energy-aware scheduling of task
with precedence and deadline constraint on heterogeneous multiprocessor sys-
tems. They assume that a static schedule is given and propose a voltage scaling
algorithm called Quasi-Static Voltage Scaling (QSVS). The QSVS aims to mini-
mize the overhead of online voltage scaling algorithm. They achieve this goal by

Energy-Efficient Scheduling of Tasks 119

distributing the voltage scaling process in offline and online phases. Their offline
algorithm prepares the voltage settings and stores them in a look-up table. The
online algorithm selects the voltage setting based on the workload at run-time.

Authors in [34] propose a heuristic called Enhanced Energy efficient Schedul-
ing (EES) to schedule tasks with precedence and deadline constraints on a homo-
geneous multi-processor system such that energy consumption is minimized. The
EES algorithm consists of three phases. The first phase is the task mapping
phase in which tasks are mapped to processors using HEFT algorithm [36]. In
the second phase, the slack between the makespan of the schedule and the dead-
line is distributed proportionally among the tasks on the critical path. In the
final phase, the EES algorithm assigns the most energy-efficient voltages and
frequencies to tasks recursively.

Authors in [23] schedule a set of tasks with precedence constraints on homo-
geneous multi-processor system such that timing constraints are satisfied and
energy consumption is minimized. Their approach is based on level-by-level
scheduling and has three main steps. In the first step, tasks are grouped into
levels. All the tasks at the same level are independent. In the second step, each
level is assigned a time-slot such that all tasks in the level execute in that time-
slot. Finally, all the tasks in the same level are assigned the same frequency.
Authors in [29] and [6] survey in detail approaches that optimize the processing
energy consumption.

All the approaches discussed so far aim to minimize either the processing
energy or the communication energy only. Next, we discuss some approaches that
optimize both the processing energy and the communication energy. Authors in
[21] propose a complete solution of task mapping, scheduling and voltage assign-
ment for a task set with dependencies. They formulate the entire problem of
task mapping, ordering and voltage assignment as a Mixed Integer Linear Pro-
gramming (MILP) problem. Since MILP does not scale well, they also propose
a divide-and-conquer-based polynomial-time heuristic algorithm.

Authors in [31] propose an approach that combines task mapping, schedul-
ing, and DVFS to optimize the energy consumption. They consider a set of tasks
with precedence constraints and heterogeneous multi-processor systems where
each processor is DVFS-enabled and can operate at any frequency in a continu-
ous range. Their approach consists of two nested Genetic Algorithms. The outer
Genetic Algorithm performs task mapping and the inner Genetic Algorithm per-
forms task ordering. Their DVFS algorithm assigns voltages to tasks such that
timing constraints are satisfied and the energy consumption is minimized for the
task mapping and task ordering generated by Genetic Algorithms. Authors in
[16] propose an energy-aware task mapping, scheduling and voltage scaling algo-
rithm for a task set with precedence constraints. They integrate task mapping,
scheduling and voltage assignment in a single optimization loop. Their algorithm
starts with an initial solution generated by a list scheduling algorithm assum-
ing that all processors operate at maximum frequencies and iteratively tries to
improve the initial solution. In each iteration, their algorithm tentatively re-maps
each task to every processor at each voltage level of the processor and constructs

120 U. U. Tariq et al.

a new schedule for the new mapping and voltage assignment, and finds a task
with the highest priority (ratio of the difference in energy consumption and the
difference in make-span) and re-maps it to the processor at a voltage level such
that the energy consumption of the new solution is reduced compared to the
current solution.

Authors in [15] investigate the problem of energy-efficient scheduling of tasks
with precedence constraints on heterogeneous NoC-based MPSoC. They formu-
late the entire problem of task mapping, task and communication ordering and
task voltage assignment as an MILP. They also propose a heuristic algorithm
called randomized rounding. The randomized rounding heuristic algorithm first
solves a Linear Programming (LP) problem by relaxing the integer constraints in
MILP. It then repeatedly rounds the variables with non-integer values to integer
values such that constraints are not violated.

Authors in [17] propose a simulated annealing-based, energy-aware task map-
ping algorithm on heterogeneous NoC-based MPSoCs. In their model processors
are assumed to be voltage scalable and NoC links operate at a fixed frequency.
They propose MILP-based algorithm that takes into account both communica-
tion and processing energy. They integrate a simulated the annealing algorithm
with a timing adjustment heuristic. The timing adjustment heuristic explores the
solution space near an acceptable mapping generated by the simulated annealing
algorithm to find a mapping that reduces the energy consumption.

Authors in [15–17,21,31] aim to minimize both communication and process-
ing energy. All these approaches assume that only processors are voltage scalable.
Therefore, the DVFS approaches allocate the slack to tasks only and the com-
munication energy is reduced only through task mapping. Authors in [4] and [3]
have shown that if both processors and communication links are voltage scalable,
more energy can be saved by sharing the available slack between communications
and tasks.

Authors in [4] and [3] propose an NLP and an MILP-based DVFS algorithms
for a tasks set with precedence constraints on heterogeneous MPSoC. Their pro-
posed approach shares available slack between task and communication nodes
such that total energy consumption is minimized. Authors in [32] consider a
NoC based MPSoC model with voltage scalable links and assume that proces-
sors operate at fixed frequency and voltage levels. They propose energy efficient
voltage scaling algorithm that aims to minimize the communication energy by
statically assigning voltages and frequencies to links.

Authors in [22] propose task mapping, scheduling and DVFS algorithm for a
task set with precedence constraints on homogeneous NoC based-MPSoC model
with voltage scalable links and processors. They propose a two-step approach. In
the first step, they propose a quadratic programming-based mapping algorithm
that maps tasks to a processor such that total weighted communication distance
is minimized. In the second step, they use GA to assign voltages and frequencies
to tasks and communications.

Our approach differs from all the previous approaches in three major aspects.
First, our approach considers conditional precedence constraints. Second, our

Energy-Efficient Scheduling of Tasks 121

approach handles NoC and takes link contentions into account. Third, our app-
roach collectively optimizes the frequencies of processors and NoC links aiming
at minimizing the total expected energy consumption of the MPSoC.

3 Models

The target application is modelled by a conditional task graph (CTG) [35].
A CTG is a weighted directed acyclic graph G(V,E,A,X) defined as follows.
V = {v1, v2, ..., vn} is a set of tasks. Each task has an execution time represented
by the number of clock cycles on each processor and a deadline di. All the tasks
are non-preemptible. E ⊂ V × V is a set of directed edges each denoting the
dependency between the two tasks. A is a set of triplets (ei, ci, p(ci)), where
ei ∈ E, and ci and p(ci) represent the condition associated with ei and its
probability [24], respectively. X is a set of edge weights. An edge weight Xs ∈ X
of an edge es = (vi, vj) represents the communication volume in bits from task
vi to task vj . The execution probability of each node vi ∈ V is represented by
p(vi) [24].

Fig. 1. (a) A CTG G (b) The extended CTG Ge

Each non-sink node of a conditional task graph is a FORK node. A FORK
node with multiple outgoing edges is an OR-FORK node if all the outgoing
edges are conditional edges with mutually exclusive conditions. The sum of the
probabilities of all the conditional edges of an OR-FORK node is equal to 1. A
node is an AND-FORK node if all its outgoing edges are unconditional edges.
A non-source node is also a JOIN node. A JOIN node with multiple incoming
edges is either an AND-JOIN node or an OR-JOIN node. All the incoming edges
of an OR-JOIN node are mutually exclusive. A node is an AND-JOIN node
if all its parent tasks are executed. We assume that each node with multiple
incoming edges is either an OR-JOIN node or AND-JOIN node, and each node
with multiple outgoing edges is either an OR-FORK node or an AND-FORK
node. In the CTG shown in Fig. 1(a), v3 is an OR-FORK node, v1 an AND-
FORK node, v7 an OR-JOIN node, and v3 an AND-JOIN node.

122 U. U. Tariq et al.

A scenario of a CTG is a sub-graph of the CTG formed by all the tasks in
a complete execution trace of the task set. The probability p(vj) of a task vj ,
is calculated as p(vj) = Σs∈Sj

p(s), where p(s) = Πc∈sp(c) is the probability
of the scenario s, and Sj is a set of all the scenarios in which vj is executed
and p(c) is the probability of a condition c [24]. The MPSoC has a set P =
{pe1, pe2, · · · , pem} of m processors.

We assume heterogeneous processors, where each processor pek ∈ P is DVFS-
enabled and can operate on a set {(Vdd1 , f1), ..., (Vddnk

, fnk
)} of nk discrete

voltage-frequency pairs. A matrix NC represents the execution times in clock
cycles of all the tasks in G on different processors, where NC(j, i) is the number
of clock cycles of task vi on pej .

The dynamic power Pdk,i
of a task vi on processor pek, dominated by dis-

charging and charging of load capacitance due to gate switching, is given as
Pdk,i

= Ceffk,i
V 2

ddk,i
fk,i [3,7], where Ceffk,i

, Vddk,i
and fk,i are the effective load

switching capacitance, the supply voltage and the operating frequency, respec-
tively. The execution time of a task vi on a processor pek operating at frequency
fk,i is given as tk,i = NC(k, i)/fk,i. The operating frequency f is approximated
by f = ((1+K1)Vdd +K2Vbs −Vth1)

α/K6LdVdd [3], where K1, K2, K6 and Vth1

are circuit dependent constants, Ld the logic depth, and α the velocity saturation
imposed by the used technology (1.4 ≤ α < 2). The total energy consumption
Ek,i of a task vi on pek is computed as follows [3]:

Ek,i = NC(k, i)Ceffk,i
V 2

ddk,i
+ Lg(Vddk,i

K3e
K4Vddk,i eK5Vbs + |Vbs|Ij)tk,i (1)

We consider the 2D mesh NoC architecture, where each processor is associ-
ated with a router, and there are NR rows and NC columns. Every router has
five ports with one port used to communicate with the associated processor, and
the remaining four ports used to communicate with the neighboring routers. A
link connecting two routers is called global link and a link connecting a router
with its associated processor is referred to as local link. All the links are full
duplex. All the global links are identical and have same link width (also called
bus width or the number of wires) bw.

We only take into account the energy consumption of global links and neglect
the energy consumption of the local links. In the rest of this paper, all links refer
to global links unless they are explicitly specified.

The NoC links can operate at a set {(Vdd1 , f1), · · · , (VddF
, fF)}, of voltage

frequency pairs. In a 2D mesh, the Manhattan distance ηi,j between two proces-
sors pei and pej is defined as follows: ηi,j = |xi − xj | + |yi − yj |, where (xi, yi)
and (xj , yj) are the coordinates of pei and pej , respectively.

The wormhole switching [22,25] and deterministic XY routing are used. We
do not scale router frequencies as adjusting router frequencies makes the problem
too complex. We assume that router frequencies are fixed and commensurate
with link frequencies as in [22].

We transform the original CTG into an extended CTG so that communi-
cations can also be scheduled in the same way as tasks. The original CTG is
transformed into an extended graph by adding additional nodes to G for every

Energy-Efficient Scheduling of Tasks 123

edge in original graph G. We refer to these additional nodes as communication
nodes. The original nodes in graph G are kept unchanged and are referred to as
task nodes. The extended graph is represented by Ge(V + V ∗, E′, A′), where V
is the set of task node, V ∗ is the set of communication nodes, E′ is the set of
edges in the extended graph and A′ is the set of triples where each element of
the triple is an edge, the condition associated with the edge and probability of
the condition. The extended graph Ge of CTG in Fig. 1(a) is shown in Fig. 1(b).
In the rest of this paper, all the algorithms are based on the extended CTG.

Consider the message ei for a communication node. The time taken by ei on
the links operating at frequency fi such that ei traverses the network without
contention is calculated as follows [22]:

ti =
χi

bwfi
(2)

We use the bit energy model given in [26,37] for communication. Assume
that the source node and the destination node of ei are mapped on processors
pes and ped, respectively. The energy of transmitting one bit of the message ei is
Ebit = (ηs,d +1)ERbit + ηs,dElbiti , where ERbit is the energy consumption of one
bit on one router, and Elbiti is the energy consumption of transmitting one bit
on one link when all the links of ei operate at fi. Thus, the energy consumption
of transmitting ei on the links operating at frequency fi is calculated as follows:

Ecommi
= χi((ηs,d + 1)ERbit + ηs,dPi/(fibw)) (3)

where Pi is the total power consumed in transmitting one bit when the links
that ei traverses operate at frequency fi. Pi is the sum of the dynamic power
Pdyni

and static power Pstati , Pi = Pdyni
+ Pstati [3]. The static and dynamic

powers depend on how links are implemented. The frequency fi is approximated
by fi = ((1 + K1)Vdd + K2Vbs − Vth1)

α/K6LdVdd [3].

4 Task Scheduling and Frequency Assignment

4.1 Computing Successor-Tree-Consistent Deadlines

Our offline scheduling algorithm schedules nodes using the priorities of task
nodes and communication nodes. We extend the notion of successor-tree-
consistent deadline [35] to NoC-based MPSoCs, and propose a priority scheme for
nodes, where the priority of each node vi is its successor-tree-consistent deadline
denoted by d′

i. When computing the successor-tree-consistent deadline of each
node, we assume that all the processors and NoC-links operate at the maxi-
mum frequencies. Furthermore, the original CTG is used. Before defining the
successor-tree-consistent deadline, we introduce the worst-case set of a task. Let
IPred(vi) and ISucc(vi) be the sets of all the immediate predecessors and all
the immediate successors of a task vi, respectively.

124 U. U. Tariq et al.

Algorithm 1. Computing Successor-Tree-Consistent Deadlines
input : A conditional task graph G(V, E, A) and a NOC-based MPSoC with

m processors
output: The successor-tree-consistent deadline d′

i of each task vi in G
1 for each node vi ∈ G in reverse topological order of G do
2 if outdegree(vi) == 0 then
3 d′

i = di;
4 WCS(vi) = ∅;

5 else
6 if vi is an OR-FORK node then
7 Find a child vj of vi among all the children of vi in the CTG such

that d′
j − min∀pek∈P {tk,s} is minimized;

8 WCS(vi) = {vj} ∪ WCS(vj);
9 d′

i = BackwardSchedule(vi,WCS(vi);

10 else
11 WCS(vi) = ∅;
12 for each vj ∈ ISucc(vi) do
13 WCS(vi) = {vj} ∪ WCS(vj) ∪ WCS(vi);

14 d′
i = BackwardSchedule(vi,WCS(vi);

Definition 1. The worst-case set of a task vi, denoted by WCS (vi), is a set of
tasks defined as follows:

1. If vi is a sink node, WCS (vi) = ∅.
2. If vi is an OR-FORK node, WCS (vi) = {vj} ∪ WCS (vj), where vj is in

ISucc(vi) and satisfies d′
j − min∀pek∈P {tk,i} = min∀vs∈ISucc(vi){d′

s−
min∀pek∈P {tk,s}}.

3. If vi is an AND-FORK node, WCS (vi) =
⋃

vs∈ISucc(vi)
(WCS (vs) ∪ {vs}).

Definition 2. Given a CTG G and a task vi, the successor tree of a task vi is
a weighted directed tree ST(G,vi)= (V ′, E′, X ′) where v′ = {vi} ∪ WCS(vi),
E′ = {(vi, vj) : vj ∈ WCS(vi)} and X ′ = {χ′

s : if vj is the immediate successor
of vi, χ′

s = χs, the edge weight of (vi, vj) ∈ E; otherwise, χ′
s = 0}.

Definition 3. Given a task vi, if vi is a sink task, its successor-tree-consistent
deadline d′

i is equal to its preassigned deadline di. Otherwise, d′
i is the upper

bound on the latest completion time of vi in any feasible schedule of the relaxed
problem instance: a set V ′ = {vi} ∪ WCS (vi) of tasks with the precedence con-
straints in the form of the weighted successor tree ST (G, vi), where the deadline
of each task vj ∈ WCS (vi) is its successor-tree-consistent deadline, and the
deadline of vi is its preassigned deadline, and the same MPSoC.

Algorithm 1 describes our successor-tree-consistent deadline algorithm. We
select each node vi in CTG G in reverse topological order of G (Line 1). If the

Energy-Efficient Scheduling of Tasks 125

Algorithm 2. Computing Backward Schedule
1 Function BackwardSchedule(vi,WCS(vi)
2 Partition the tasks in WCS(vi) into two disjoint sets U and J such that U

consists of all the tasks in WCS(vi) each of which does not receive any
data from vi, and J contains all the tasks in WCS(vi) that are not in U ;

3 Sort all the tasks in U in non-increasing order of their
successor-tree-consistent deadlines;

4 Schedule each task vj in U on a processor that maximizes its start time;
5 Sort all the tasks in J in non-increasing order of their

successor-tree-consistent deadlines and for the tasks with the same
successor-tree-consistent deadlines, sort them in non-increasing order of
their edge weights;

6 Schedule each task vj in J on a processor that maximizes its start time;
7 Schedule vi on a processor that maximizes its completion time respecting

the constraints specified by the successor tree of vi;
8 Set d′

i to the completion time of vi;
9 return d′

i;

node vi is a sink node, its successor-tree-consistent deadline is equal to its pre-
assigned deadline and its worst case set is an empty set (Lines 2–4). If vi is not
a sink and is an OR-FORK node, we find a child vj of vi among all the children
of vi in the CTG such that d′

j − min∀pek∈P {tk,j} is minimized (Lines 6–7). In
this case the worst-case set of vi is the union of node vj and the worst-case set
of vj . Given the worst-case set of vi we calculate its successor-tree-consistent
deadline using Algorithm 2. If vi is neither a sink node nor an OR-FORK node,
we first calculate the worst-case set of vi (Lines 11–13), and then calculate its
successor-tree-consistent deadline by calling Algorithm 2 (Line 14).

4.2 Earliest Successor-Tree-Consistent Deadline First Algorithm

The number of scenarios in a CTG grows exponentially as the number of con-
ditions increases. Therefore, our offline scheduling approach constructs a single
unified schedule for all the scenarios by exploiting the mutual exclusion rela-
tions between communication and task nodes. In a CTG, two nodes are said to
be concurrent if they are not reachable from each other and are not mutually
exclusive.

We propose an Earliest-Successor-Tree-consistent Deadline First (ESTDF)
scheduling algorithm assuming that all processors and links operate at the max-
imum frequencies. Algorithm 3 describes the ESTDF algorithm. ESTDF is called
by our main algorithm IOETCS described in the next subsection. It deter-
mines the order in which task nodes and communication nodes are executed
and captures this order by adding additional precedence constraints in the input
graph G. Schedule constructed by prioritizing nodes with shorter successor-tree-
deadline over nodes with longer successor-tree-deadline enables DVFS algorithm
to save more energy as it can efficiently utilize slack available for the nodes.

126 U. U. Tariq et al.

Algorithm 3. Earliest Successor-Tree-Consistent Deadline First
Scheduling
input : CTG G, a matrix NC of worst-case clock cycles of tasks, a vector X

of communication volumes and a task-to-processor mapping Map
output: Graph G that captures the precedence as well the additional resource

constraints
1 Construct a list R of all the source nodes in G;
2 while R is not empty do
3 Find a node vi ∈ R with minimum successor-tree-consistent deadline and

compute its ready time ri;
4 if vi is a communication node then
5 ξi = ri + ti;
6 Insert unconditional directed edges in G from vi to the communication

nodes satisfying conditions C1, C2 and C3;

7 else
8 ξi = ri + tk,i, where tk,i is the execution time of vi on pek at maximum

frequency;
9 Insert unconditional directed edges in G from vi to unscheduled nodes

satisfying conditions C4, C5 and C6;
10 Insert all the ready nodes in R;

Therefore, we first construct a list R of all the source nodes in G (Line 1). Next,
we select a node from R with the highest priority, schedule it and insert in
R all the ready nodes. Ready nodes are those nodes whose parents have been
scheduled. This process is repeated until all the nodes in G has been scheduled
(Lines 2–10).

A node has the highest priority if it has the shortest successor-tree-consistent
deadline among all the nodes in R (Line 3). Thus, nodes with shorter successor-
tree-consistent deadlines are scheduled earlier than nodes with longer successor-
tree-consistent deadlines. Each time a node is selected for scheduling, we calcu-
late its ready time (Line 3). The ready time of a node vi is the earliest time it can
start its execution. A node cannot start its execution until all its predecessors
have finished execution. Thus the ready time of node vj is:

rj = max{ξl : vl ∈ IPred(vj)}, (4)

where ξl is the finish time of node vl. If vi is communication node, we compute
its finish time and insert additional edges in G called resource constraints from
vi to the nodes that satisfy the following three conditions simultaneously (Lines
4–6).

– C1: They are concurrent to vj . Two communication nodes are said to be
concurrent if they are not reachable in CTG G from each other and are not
mutually exclusive. Concurrent nodes can start their executions at the same
time if allocated to the same resource since there are no precedence constraints

Energy-Efficient Scheduling of Tasks 127

between them. This constraint together with C2 and C3 enforce a total order
for communication nodes.

– C2: Their successor-tree-consistent deadline is either longer than or equal to
vj .

– C3: They traverse the same communication links that vj traverses. Resource
constraints are only introduced between communication nodes that compete
for the same communication links.

(a) Task-to-processor map-
ping

(b) Local schedule constructed in ESTDF manner

(c) Graph capturing the
precedence and resource
constraint

Fig. 2. An illustrative example

These constraints are enforced so that no two non-mutually exclusive com-
munication nodes are allocated the same resource at the same time. If vi is a task
node, we calculate its finish time in a similar way and insert resource constraints
from vi to the nodes in G that simultaneously satisfy following three conditions:

– C4: They are concurrent to vj .
– C5: They are assigned to the same processor where vj is allocated.
– C6: They have not been scheduled.

Consider the CTG in Fig. 1(b) and the MPSoC in Fig. 2(a) where all the
processors are identical. The execution times of tasks at the maximum processor
frequency are t1,1 = 7, t1,2 = 2, t1,3 = 5, t1,4 = 3, t1,5 = 3, t1,6 = 2, and t1,7 = 4
time units. The communication times are t8 = 7, t9 = 8, t10 = 6, t11 = 5,
t12 = 4, t13 = 5, t14 = 7, and t15 = 9 time units. All the tasks have a common

128 U. U. Tariq et al.

deadline of 40 time units. Consider the task mapping in Fig. 2(a). Based on this
task mapping, the input CTG Ge shown in Fig. 1(b) to ESTDF does not contain
communication nodes v11, v14 and v15. Furthermore, edges (v4, v11), (v11, v3),
(v6, v14), (v14, v7), (v5, v15), (v15, v7) in Ge are replaced by (v4, v3), (v6, v7) and
(v5, v7). Figure 2(b) gives an illustration of ESTDF scheduling algorithm for task
mapping in Fig. 2(a). Three communication nodes v8, v10 and v9 become ready
after v1 is scheduled. Communication nodes v8 and v10 traverse the same link
l1. Since they are concurrent, they contend for l1. ESTDF resolves this conflict
by scheduling v8 before v10 as v8 has a smaller successor-tree-consistent deadline
than v10. Since v8 and v10 are concurrent nodes, an edge is inserted from v8 to
v10 to capture this order as shown in Fig. 2(c). Notice that communication nodes
v12 and v13 are allocated the same time slot even though both use the same link
l3. This is because both are mutually exclusive. No additional edges are inserted
between v12 and v13 as they are not concurrent nodes.

4.3 Iterative Offline Energy-Aware Task and Communication
Scheduling Algorithm (IOETCS)

A heterogeneous MPSoC consist of processors that have different power perfor-
mance profiles and may operate at different voltage and frequency levels. More-
over, deadline and precedence constraints of the tasks must be observed. There-
fore, the order in which tasks and communications are executed may significantly
impact the overall energy consumption. Considerable amount of energy may be
saved by prioritizing tasks and communications with shorter deadlines over tasks
and communications with longer deadlines as the slack available for tasks can
be efficiently utilized by DVFS algorithm to assign low voltages and frequencies
to them. Consequently, the quality of a solution obtained by an energy-efficient
scheduling algorithm is influenced by three factors: task mapping, ordering and
voltage assignment. The state-of-the-art approach [22] performs task ordering
and voltage scaling in an integrated manner and performs task mapping sep-
arately. Our observation is that task and communication ordering and voltage
scaling are helpful in steering the task mapping optimization process towards a
more energy-efficient solution. This is one of major factors that we consider in
design of our Iterative Offline Energy-aware Task and Communication Schedul-
ing Algorithm (IOETCS).

In our IOETCS algorithm we perform mapping, scheduling and voltage
scaling in an integrated manner. We schedule nodes by first calculating their
successor-tree-consistent deadlines (Line 1). We select each node from list L in
order and tentatively assign it to each processor (Lines 3–5). Each time we assign
(tentatively) a node in L to a processor we perform four major steps. First, we
construct a subgraph Gs(Vs +V ∗

s , Es) (Lines 7–8). In subgraph Gs, Vs is the set
of all the mapped task nodes, V ∗

s the set of communication nodes with both child
and parent nodes mapped on different processors and Es the set of all the edges
where every edge in Es belongs to E′ and both its head and tail nodes are in
Vs + V ∗

s . For each communication node vs whose parent node vp and child node vc

are mapped on the same processor, insert a directed edge (vp, vc) to Es. Second,

Energy-Efficient Scheduling of Tasks 129

given the subgraph Gs, we call ESTDF () (Gs = ESTDF (Gs, NC,X,Map))
to construct a local schedule and capture the resource constraints introduced
by the local schedule (Line 9). Third, given a task-to-processor mapping and
a graph Gs, assign voltages/frequencies to task and communication nodes by
solving an NLP problem (Line 9). The objective of the NLP problem is to min-
imize the total expected energy consumption of graph Gs. The expected energy
consumption is given as Eexp = Σvi∈Vs

p(vi)Ek,i +Σvi∈V ∗
s
p(vi)Ecommi

. The NLP
problem is formulated as follows:

minimize Eexp

s.t.

tk,i =
NCk,iK6LdVddk,i

((1 + K1)Vddk,i
+ K2Vbs − Vth1)α

∀vi ∈ Vs (5)

ti =
χiK6LdVddi

bw((1 + K1)Vddi
+ K2Vbs − Vth1)α

∀vi ∈ V ∗
s (6)

ρi + tk,i ≤ d′
i vi ∈ Vs (7)

ρi + tk,i ≤ ρj ∀(vi, vj) ∈ Es ∧ vi ∈ Vs (8)
ρi + ti ≤ ρj ∀(vi, vj) ∈ E ∧ vi ∈ V ∗

s (9)
ρi ≥ 0 ∀vi ∈ Vs + V ∗

s (10)
Vddk,min

≤ Vddk,i
≤ Vddk,max

(11)
Vddmin

≤ Vddi
≤ Vddmax

∀vi ∈ V ∗ (12)

The decision variables are, the start time ρi, the task node execution time
tk,i, the communication time ti, the task voltage Vddk,i

and the communication
voltage Vddi

. Vddk,min
and Vddk,max

are the minimum and the maximum supply
voltages of the processor pek, respectively. Equations (5) and (6) are the task
execution time and communication time constraints, respectively. Equation (7)
is the deadline constraint, and Eqs. (8) and (9) are the precedence constraints.
Since the constraints and the objective function are convex, this NLP problem
can be solved in polynomial time [5,38].

Next, assign each node in Gs a valid discrete frequency given a frequency
assigned to it by an NLP and compute the total expected energy consumption
Eexp (Line 11). Note that in our NLP formulation the decision variables for sup-
ply voltages are continuous. However, typically processors and communication
links can only operate at a set of fixed voltage and frequency levels. Under the
continuous supply voltage constraints the task and communication nodes may
be assigned invalid frequencies by the NLP. Hence, we need to assign them valid
discrete frequencies.

5 Discrete Frequency Assignment Algorithms

In this section we describe our ILP-based algorithm and heuristic algorithm to
assign each node a valid discrete frequency.

130 U. U. Tariq et al.

Algorithm 4. IOETCS
input : CTG Ge(V + V ∗, E′, A′) with a matrix NC and a set X, node

deadlines, and a NoC-based MPSoC
output: Schedule graph G∗(Vs + V ∗

s , Es), a vector Map for task mapping,
and a communication and task voltage assignment

1 Construct a list L of nodes in V sorted in non-descending order of
successor-tree-consistent deadlines;

2 ∀vi ∈ V Map[i] = 0;
3 for each vi ∈ L in order do
4 Eini = ∞;
5 p = 0;

6 for each pek ∈ P do
7 Map[i] = k;
8 Construct graph Gs;
9 Gs = ESTDF (Gs, NC, X, Map);

10 Compute the voltage assignment of nodes in Gs and the total expected
energy Eexp of Gs by solving NLP;

11 Assign nodes in Gs valid discrete frequencies and compute the total
expected energy Eexp using the discrete frequency assignment algorithm;

12 if Eexp < Eini then
13 G∗ = Gs;
14 Eini = Eexp;
15 p = k;

16 Map[i] = p;

5.1 ILP-Based Algorithm

The optimal frequency fopt
i of a communication node and the optimal frequency

fopt
k,i of a task node are computed as described in Sect. 4. We differentiate between

the following two cases for each task or communication node vi:

1. If vi is a task node and its frequency fopt
k,i is a discrete frequency of the

processor pek where vi is assigned, assign fopt
k,i to vi. If vi is a communication

node and its frequency fopt
i is equal to a discrete link frequency, assign fopt

i

to vi.
2. If vi is a task node and its frequency fopt

k,i is not a discrete frequency of the
processor pek where vi is assigned, find two frequencies fopt,u

k,i and fopt,l
k,i of the

pek where vi is assigned such that fopt,u
k,i is the smallest discrete frequency of

pek larger than fopt
k,i and fopt,l

k,i is the largest discrete frequency of pek smaller
than fopt

k,i . Similarly, if vi is a communication node and its frequency fopt
i is

not a discrete link frequency, find two discrete frequencies fopt,l
i and fopt,u

i

of communication links such that fopt,u
i is the smallest discrete frequency of

communication links larger than fopt
i and fopt,l

i is the largest discrete fre-
quency of communication links smaller than fopt

i . We introduce a binary

Energy-Efficient Scheduling of Tasks 131

decision variable to select between fopt,u
i and fopt,l

i if vi is a communication
node or between fopt,u

k,i and fopt,l
k,i if vi is a task node.

We introduce a binary decision variable to select between fopt,u
i and fopt,l

i if vi

is a communication node or between fopt,u
k,i and fopt,l

k,i if vi is a task node:

xi =

{
0 if vi uses fopt,l

i or fopt,l
k,i

1 if vi uses fopt,u
i or fopt,u

k,i

Let V opt be a set of nodes that lie in Case 1. VR = Vs − V opt is a set of task
nodes and V ∗

R = V ∗
s − V opt is a set of communication nodes for which Case 2

holds. The expected energy consumption is now given as Eexp =
∑

vi∈VR
((1 −

xi)E
opt,l
k,i +xiE

opt,u
k,i)p(vi)+

∑
vi∈V ∗

R
((1−xi)Eopt,l

commi
+xiE

opt,u
commi

)p(vi)+C, where

Eopt,l
k,i and Eopt,u

k,i (given in Eq. (1)) are the energy consumptions of a task node
vi on a processor pek at the frequencies fopt,l

k,i and fopt,u
k,i , respectively, Eopt,l

commi

and Eopt,u
commi

(given in Eq. (3)) are the energy consumptions of a communication
node vi when all the links on its routing path operate at the frequencies fopt,l

i

and fopt,u
i , respectively, and C is the sum of energy consumption of nodes in

V opt. The ILP problem is formulated as follows:

minimize Eexp

s.t.

tk,i = topt,l
k,i (1 − xi) + topt,u

k,i xi ∀vi ∈ VR (13)

ti = topt,l
i (1 − xi) + topt,u

i xi ∀vi ∈ V ∗
R (14)

ρi + tk,i ≤ d′
i ∀vi ∈ VR (15)

ρi + topt
k,i ≤ d′

i ∀vi ∈ V opt ∪ Vs (16)

ρ(vi) + topt
k,i ≤ ρj ∀(vi, vj) ∈ Es ∧ vi ∈ V opt ∪ Vs (17)

ρ(vi) + topt
i ≤ ρj ∀(vi, vj) ∈ Es ∧ vi ∈ V opt ∪ V ∗

s (18)
ρ(vi) + tk,i ≤ ρj ∀(vi, vj) ∈ Es ∧ vi ∈ VR (19)
ρ(vi) + ti ≤ ρj ∀(vi, vj) ∈ Es ∧ vi ∈ V ∗

R (20)
ρi ≥ 0 ∀vi ∈ Vs ∪ V ∗

s (21)

The decision variables are task execution time tk,i, communication time ti,
binary variable xi and start time ρi. topt,l

k,i and topt,u
k,i are the execution times of

the task node vi on the processor pek where vi is mapped at the frequencies fopt,l
k,i

and fopt,u
k,i , respectively. topt,l

i and topt,u
i are the communication times (given in

Eq. (2)) of the communication node vi when all the links of the communication
path operate at the frequencies fopt,l

i and fopt,u
i , respectively. topt

k,i is the execution
time of the task node vi at frequency level fopt

k,i and topt
i is the communication

time of the communication node vi when all the links of the communication

132 U. U. Tariq et al.

operate at the frequency fopt
i . Equation (13) defines the execution time of a task

node. Equation (14) defines the communication time of a communication node.
Equations (15) and (16) collectively define the deadline constraints, Eqs. (17),
(18), (19) and (20) collectively define the precedence constraints.

In our ILP formulation the binary variable xi determines if a node vi executes
at fopt,u

k,i (or fopt,u
i) or at fopt,l

k,i (or fopt,l
i). Equations (13) and (14) in our ILP

formulation implement this OR logic. Since xi is a binary decision variable it can
either be 1 or 0. When xi is 0, Eq. (13) becomes tk,i = topt,l

k,i (1−0)+0topt,u
k,i = topt,l

k,i

and thus, the task executes at fopt,l
k,i and the energy consumed by vi is reflected

by the term (Eopt,l
k,i (1 − xi) + Eopt,u

k,i xi)p(vi) = (Eopt,l
k,i (1 − 0) + Eopt,u

k,i 0)p(vi) =
Eopt,l

k,i p(vi)) in the objective function. Similarly, when xi equals 1 the first term
in Eq. (13) becomes 0 and this represents the scenario when vi operates at fopt,u

k,i .
Notice that when the execution time changes depending on the value of decision
variable xi, the start time of other nodes in the graph may also change. This
is because of the precedence and resource constraints between the nodes and
therefore, we have decision variable ρi to capture the change in start time.

5.2 Heuristic Algorithm

The ILP problem is NP-complete [11]. Therefore, the previous ILP-based algo-
rithm is not scalable. Next, we propose a polynomial time heuristic to assign
discrete frequencies to task and communication nodes. Algorithm5 describes our
discrete frequency and voltage assignment heuristic algorithm. In our heuristic
we use the schedule constructed by IOETCS algorithm (Algorithm4). We first
compute all the node cuts of graph G∗ (Line 1). The node cuts Cp(p = 1, 2, 3, · · ·)
of graph G∗ are computed as follows:

– Create a copy G′ of G∗ and repeat the following steps until G′ is empty:
1. Create an empty cut Cp.
2. Add all the the source nodes with zero in-degree in G′ to Cp.
3. Remove all the source nodes and their incident edges from G′.

The NLP algorithm assigns task and communication nodes frequencies in a
continuous range. Thus, the frequency assigned by NLP may not be a valid dis-
crete frequency. Therefore, we inspect the frequencies assigned to nodes by NLP
(Lines 2–6). If the frequency assigned to a task or a communication node vi is
a valid discrete frequency, it is not changed (Line 4). Otherwise vi is assigned a
nearest valid discrete frequency lower than the assigned frequency (Line 6). After
assigning the nodes valid discrete frequency we construct a new local schedule
using the new frequency such that the order between nodes remains the same as
in the schedule used by the NLP-based algorithm (Line 7). We construct a new
schedule because under the new frequency assignment some tasks may miss their
deadlines. If the new schedule is feasible, the algorithm terminates. Otherwise,
we find a minimum set of nodes such that by increasing the frequency of each

Energy-Efficient Scheduling of Tasks 133

Algorithm 5. Discrete Frequency and Voltage Assignment Heuristic
input : Schedule graph G∗ , Vector map, and a NoC-based MPSoC
output: A schedule that assigns to each task and communication a valid

discrete frequency, start time and an execution time
1 Compute the node cuts of graph G∗;
2 for each vi ∈ Vs + V ∗

s do

3 if fopt
i is a valid discrete frequency then

4 Assign fopt
i to vi;

5 else

6 Assign fopt,l
k,i to vi if vi is a task node or fopt,l

i to vi if vi is a

communication node;

7 Construct a new local schedule using the new frequency such that the order
between nodes remains the same as in the schedule used by the NLP-based
algorithm;

8 while there is a late task node do
9 Find the first late task node vj ;

10 Find a set B of nodes blocking vj ;
11 while vj is late do
12 Compute the rank of each node vi ∈ B;
13 Select a node vi with the highest rank by comparing ranks

lexicographically;

14 Adjust the frequency of vi to fopt,u
i if vi is a communication node or

fopt,u
k,i if vi is a task node;

15 Remove vi from set B;
16 Update the schedule;

node vi in this set (to fopt,u
i if vi is a communication node or fopt,u

k,i if vi is a task
node), makes the schedule feasible and there is a minimal increase in the energy
consumption.

Next, we describe a method for finding the set of these nodes (Lines 8–15). We
scan the schedule in non-decreasing order of time to find the first late task node
vj (Line 9). For this node, we find a set B of blocking nodes (Line 11). Each node
vz ∈ B satisfies the following two conditions:

1. vz belongs to the set {vj} ∪ Pred(vj), where Pred(vj) is a set of predecessors
of vj .

2. The frequency of vz can be adjusted. The frequency of vz can be adjusted if
it is not a valid discrete frequency assigned by NLP and is not fopt,u

k,z if vz is a
task node or fopt,u

z if vz is a communication node.

The set B consists of nodes that affect the finish time of the late task node vj .
Therefore, increasing the frequency of some or all the nodes in B may result in
an early start of vj and consequently allow vj to meet its deadline. We compute
the ranks of all the nodes in set B to find a node vh with the highest rank by

134 U. U. Tariq et al.

Table 1. Execution times of tasks in CTG shown in Fig. 3(a) at maximum processor
frequency

Task Type 1 Type 2 Task Type 1 Type 2 Task Type 1 Type 2

v1 2.9 1.3 v3 3.12 1.7 v5 2.32 1.12

v2 2.2 1.9 v4 2.46 1.9 v6 3.55 1.86

v7 2.4 1.2 v9 2.1 1.9 v11 2.59 1.5

v8 2.7 1.7 v10 3.1 1.7

Table 2. Processor configurations

Type 1 Type 2

Supply voltage (V) 0.75 0.70 0.65 0.60 0.95 0.90 0.85 0.80

Frequency (GHz) 1.53 1.26 1.01 0.78 2.7 2.4 2.1 1.8

comparing the ranks lexicographically (Line 13). The rank of each node vi ∈ B
is a 2-tuple (gi, κi) which reflects the impact of vi on shifting the late node vj to
an earlier time. Let Cp be a set of nodes of a cut containing vi, C ′

p be Cp ∩ B,
FT old

j the finish time of vj in the current schedule, FTnew
j the finish time of vj

after the frequencies of all the nodes in the set C ′
p are increased by one level, and

FTnew,i
j the finish time of vj when the frequency of vi is increased by one level.

The normalized time gain gi of the cut containing vi, is given as

gi =
FT old

j − FTnew
j

E′
exp − Eexp

(22)

where E′
exp is the expected energy consumption after the frequencies of all the

nodes in the set C ′
p are increased by one level. The normalized time gain κi of vi

is computed as follows:

κi =
FT old

j − FTnew,i
j

E′′
exp − Eexp

(23)

where E′′
exp is the expected energy consumption after the frequency of vi is

increased by one level.
We increase the frequency of vh and update the schedule (Lines 14–16). This

process of finding a blocking nodes of late task with highest rank and increasing
its frequency is repeated until the late task node meets its deadline.

The process of scanning the schedule to find the late task node to pushing its
start time to an earlier time until the node meets its deadline is repeated until
there is no late task node in the schedule.

Figures 4, 5 and 6 show an illustrative example of our discrete frequency assign-
ment heuristic where task execution times at the maximum processor frequency
are shown in Table 1. Figure 4(a) shows the task-to-processor mapping generated
by IOETCS algorithm for the example shown in Fig. 3, and Fig. 4(b) shows the

Energy-Efficient Scheduling of Tasks 135

Fig. 3. (a) CTG G with edge weights are communication volumes in mega bits (b)
Extended Graph Ge (c) 2 × 2 NoC-based MPSoC with two types of processors

Table 3. NoC link configurations

Supply voltage (V) 0.55 0.50 0.43

Frequency (MHz) 600 400 200

Bandwidth (Gbps) 4.7 3.1 1.55

schedule generated under the frequencies assigned by the NLP. Tables 2 and 3
show the discrete frequencies for processors and communication links. Notice that
as shown in Table 4 task nodes v1, v3, v4, v8, v9 and v10 are assigned invalid fre-
quencies by NLP (frequencies assigned to nodes are shown on top of each node
schedule in all schedules). This is because NLP assumes the processor can oper-
ate at any frequency in a continuous range. Our discrete frequency assignment
heuristic assigns them valid discrete frequencies.

We first find the cuts of the graph. The cuts of the graph are shown in Fig. 5.
After this, we analyze the frequencies assigned to the nodes by the NLP. If the
frequency assigned to a node is valid discrete frequency, it is not changed. Oth-
erwise, we assign this node a lower frequency (fopt,l

k,i or fopt,l
i). Figure 5(b) shows

the schedule when nodes v1, v3, v4, v8, v9 and v10 operate at nearest valid lower
discrete frequency assigned to them by NLP (fopt,l

k,i). Under these frequencies, the
schedule is not feasible. The late task nodes are highlighted in Fig. 5(b).

Next, we scan the schedule in non-decreasing order of time to find the first late
task node and this node is highlighted in Fig. 5(b). The first late task node is v2.
We find a set B of its blocking nodes. These nodes are shown in Fig. 5(c). Blocking

Table 4. Nodes assigned invalid frequencies by NLP

Node Lower frequency
fopt,l
k,i /fopt,l

i

NLP assigned
frequency fopt

i

Upper frequency
fopt,u
k,i /fopt,u

i

v1 v3 v4 1.26 1.47 1.53

v8 v9 v10 0.78 0.87 1.01

136 U. U. Tariq et al.

Fig. 4. (a) Task-to-processor mapping generated by IOETCS algorithm (b) Schedule
generated by frequencies assigned to tasks by NLP and the integer on top of each node
is the frequency in GHz assigned to the node (c) CTG with resource constraints

nodes satisfy two criteria. Firstly, they are predecessors of v2. Secondly, their fre-
quencies can be adjusted. The frequency of a node vi cannot be adjusted if it has
been assigned a valid discrete frequency by NLP or it has already been assigned
fopt,u

k,i or fopt,u
i . Now, we calculate the rank of each blocking node. The rank of each

blocking node is a two-tuple. The first element of the tuple is normalized time gain
of the node cut containing the node and the second element is the normalized time
gain of the node. Node v2 has three blocking nodes: v1, v3 and v4. To calculate the
rank of v3, we first calculate the normalize node cut gain of the cut containing v3.
The node cut of v3 is C3 as shown in Fig. 5(a). Next, we find the nodes in C3 that
are also in B. The only common node in both C3 and B is v3. We increase the fre-
quency of v3 to fopt,u

3,3 = 1.5 GHz and generate a new schedule such that the order
between the tasks remains the same as in the schedule by NLP. Given the new
finish time of the v2 and the expected energy consumption, the normalized time
gain of C3 is 4.331. Similarly, we compute the normalized time gain of v3 which is
4.331. Thus, the rank of v3 is (4.331, 4.331). The ranks of v1 and v4 are calculated

Energy-Efficient Scheduling of Tasks 137

(a) (b)

(c)

Fig. 5. (a) Node cuts (b) Schedule when a set of nodes assigned invalid frequencies by
NLP are executed at a lower frequency fopt,l

k,i (c) Blocking nodes of the first late task
node

next which are (4.318, 4.318) and (4.330, 4.330), respectively. By comparing their
ranks lexicographically the node v3 has the highest rank. Its frequency is updated
to fopt,u

3,3 = 1.5 GHz. Figure 6(a) shows the new schedule under the new frequency
of v3. We next delete v3 from B and check if v2 is late. Since v2 is still late, we
repeat the whole process again to find a node with the highest rank in B. Now v4
has the highest rank. Similarly, the frequency of v4 is adjusted and a new schedule
with the new frequency of v4 is constructed as shown in Fig. 6(c). Notice that in
the schedule shown in Fig. 6(c) not only v2 but also v7 meets its deadline.

After that, we select the next late task which is v8 and repeat the same process
until all the nodes meet their deadlines.

6 Performance Evaluation

In this section, we use IOETCS-ILP and IOETCS-Heuristic to denote our app-
roach using the ILP-based algorithm and the heuristic, respectively, for assign-

138 U. U. Tariq et al.

ing a discrete frequency to each task and each communication. To demonstrate
the effectiveness of IOETCS-ILP and IOETCS-Heuristic, we compare them with
three approaches. The first approach is Li-Wu approach, a state-of-the-art app-
roach for unconditional task graph model proposed in [22]. The second approach
ILP-vpv-flv that is the same as IOETCS-ILP except that the NLP and ILP algo-
rithms are modified such that they only scale processors frequencies/voltages and
assign the maximum link frequency to all communication nodes. The third app-
roach is ILP-fpv-vlv that is the same as IOETCS-ILP except the NLP and ILP
algorithms are modified such that they only scale the voltages of links and assign
the maximum processor frequencies to task nodes.

Table 5. Characteristics of benchmarks without conditional precedence

BM a/b/D Dim BM a/b/D Dim

TG 1 17/19/1.4 4 × 5 TG 2 20/24/0.77 5 × 4

TG 2 15/11/0.98 4 × 5 TG 4 16/12/0.89 5 × 4

TG 5 27/28/2.4 6 × 5 TG 6 27/35/2.7 6 × 5

TG 7 27/39/2.9 6 × 5 TG 8 30/40/3.45 6 × 6

(a) (b)

(c)

Fig. 6. (a) Schedule when v3 operates at higher frequency (b) Blocking nodes of v2 (c)
Schedule when v3 and v4 operate at a higher frequency

Energy-Efficient Scheduling of Tasks 139

Table 6. Characteristics of benchmarks with conditional precedence constraints.

BM x/y/z/D Dim BM x/y/z/D Dim

CTG 1 17/2/6/0.74 3 × 3 CTG 2 20/1/2/1.06 3 × 3

CTG 3 15/2/4/0.723 3 × 3 CTG 4 17/2/6/0.93 3 × 3

CTG 5 30/4/11/1.73 3 × 3 CTG 6 35/3/8/3.101 3 × 2

CTG 7 33/5/15/3.7128 3 × 2 CTG 8 31/3/9/3.69 3 × 2

(a) Energy consumption (b) Running time

Fig. 7. Comparison of real-world benchmarks without conditional precedence con-
straints

6.1 Experimental Setup

We use the same experimental setup as in [3,9,13]. The technology parameters
are taken from [9]. We use two types of processors in our experiments, Type 1 and
Type 2, modelled after the processors in [9] and [10], respectively. The configu-
ration for NoC links is adopted from [22]. The execution times in cycles of tasks
are randomly generated within [10, 100] × 106 and [5, 10] × 106, respectively. The
communication volumes are generated randomly within [80, 800] × 106 in bits.
The deadline for each application is set to twice the makespan of the schedule of
the application constructed by IOETCS algorithm assuming the maximum pro-
cessor frequencies and the maximum link frequencies so that there is reasonable
slack for energy reduction. All the approaches are implemented in Matlab ver-
sion R2015a. We use fmincon, quadprog and intlinprog solvers to solve the NLP,
quadratic programming and ILP problems, respectively. The hardware platform
consists of Intel(R) Core(TM) i5-4570 CPU with a clock frequency of 3.20 GHz,
8.00 GB memory, and 3 MB caches.

6.2 Results and Discussion

Experiments with Conditional Task Graphs. In the first set of experiments
we choose eight benchmarks and their details are given in Table 6 where x/y/z/D
stands for the number of tasks, the number of OR-FORK tasks, the number of
conditions and the deadline of the application in seconds, respectively. The column
with heading Dim represents NoC dimensions. The benchmarks in Table 6 are the
same benchmarks used in [24].

140 U. U. Tariq et al.

Figure 8(a) shows that IOETCS-ILP achieves an average improvement of 31%,
a maximum improvement of 62% for CTG 7 and a minimum improvement of
1.03% for CTG 1 over ILP-vpv-flv. It achieves an average improvement of 27%, a
maximum improvement of 61% for CTG 3 and a minimum improvement of 7.9%
for CTG 6 over ILP-fpv-vlv. IOETCS-Heuristic achieves an average improvement
of 23%, a maximum improvement of 40% for CTG 5 and a minimum improve-
ment of 1.3% for CTG 1 in comparison to ILP-vpv-flv. It achieves an average
improvement of 18%, a maximum improvement of 61% for CTG 3 and a mini-
mum improvement of 4% for CTG 6 over ILP-fpv-vlv. We observe that ILP-vpv-
flv performs significantly better in terms of energy consumption if the computa-
tion energy dominates the total energy, and ILP-fpv-vlv performs better if com-
munication energy dominates the total energy. CTGs 5, 6 and 7 favour ILP-fpv-
vlv as the communication volumes for these benchmarks are significantly larger
than the execution times of task nodes. Both IOETCS-ILP and IOETCS-Heuristic
distribute slacks efficiently between communication nodes and task nodes and
thus perform significantly better than ILP-vpv-flv and ILP-fpv-vlv. In terms of
running time both ILP-vpv-flv and ILP-fpv-vlv run slightly faster than IOETC-
SILP and IOETCS-Heuristic. This is because the search space of ILP-vpv-flv and
ILP-fpv-vlv is smaller as compared to IOETCS-ILP and IOETCS-Heuristic. ILP-
vpv-flv only scales processor voltages and ILP-fpv-vlv only scales link voltages.

(a) Energy consumption (b) Running time

Fig. 8. Comparison of eight benchmarks in Table 6

(a) Energy consumption (b) Running time

Fig. 9. Comparison of eight benchmarks in Table 5

Energy-Efficient Scheduling of Tasks 141

Whereas, IOETCS-ILP and IOETCS-Heuristic scale both the processor voltages
and the link voltages. We choose two real-world benchmarks vehicle cruise con-
troller [30] and Robot control [1] that are the task graphs of actual applications.
These benchmarks are executed on 3 × 3 NoC where the processors are selected
randomly as either Type 1 or Type 2. As shown in Fig. 10(a) IOETCS-ILP and
IOETCS-Heuristic perform significantly better than ILP-vpv-flv and ILPfpv- vlv
in terms of energy consumption. In terms of running time IOETCS-ILP and
IOETCS-Heuristic take longer compared to ILP-vpv-flv and ILP-fpv-vlv as shown
in Fig. 10(b). The reason is that IOETCS algorithm cannot find a feasible solution
for some sub-problems, and thus the solver takes a longer time to converge.

(a) Energy consumption (b) Running time

Fig. 10. Comparison of real-world benchmarks with conditional precedence constraints

Experiments with Non-conditional Task Graphs. Our approach is the
first approach that solves the problem discussed in this paper for CTG model.
Since task model with unconditional precedence constraints is a special case of
CTG we compare the performance of our approaches with the state-of-the-art
approach for task model with unconditional precedence constraints. To demon-
strate the effectiveness of our approach on task graphs without conditional prece-
dence constraints, we have conducted a second set of experiments. We choose
eight task graphs (TG) and their details are given in Table 5 where a/b/D stand
for the number of tasks, the number of edges and the deadline of the applica-
tion in seconds, respectively. The column with the heading Dim represents NoC
dimensions.

Figure 9(a) gives a comparison of 8 benchmarks in Table 5 in terms of energy
consumption where all the processors are of Type 1. IOETCS-ILP achieves an
average improvement of 31%, a maximum improvement of 61% for TG 6 and a
minimum improvement of 9% for TG 1 over Li-Wu approach. IOETCS-Heuristic
achieves an average improvement of 20%, a maximum improvement of 46% for TG
4 and a minimum improvement of 2% for TG 1 over Li-Wu approach. We observe
that Li-Wu approach makes very poor mapping decisions for heterogeneous pro-
cessors. The benchmarks TG 3, TG 4, TG 6 and TG 8 are executed on MPSoCs
where the processors are randomly selected as either Type 1 or Type 2. The rea-

142 U. U. Tariq et al.

son for poor performance of Li-Wu approach is that it does not take into account
the energy profiles of processors when making mapping decisions.

The benchmarks TG 1, TG 2, TG 5 and TG 7 are executed on MPSoCs with
homogeneous processors (Type 1). As a result, Li-Wu approach performs consid-
erably better for these benchmarks than for other benchmarks.

As shown in Fig. 9(b), in terms of running time, IOETCS-ILP and IOETCS-
Heuristic run approximately three times faster than Li-Wu approach. The major
reason is that the genetic algorithm takes significantly longer time as it constructs
a new schedule for each candidate solution using ETFGBF.

We have chosen two real-world benchmarks JPEG encoder [18] and Automatic
Target Recognition (ATR) [22]. JPEG encoder is executed on a 3 × 3 MPSoC
and ATR is executed on a 4 × 5 MPSoC. The processors are randomly selected as
either Type 1 or Type 2. For both benchmarks, both IOETCS-ILP and IOETCS-
Heuristic outperform Li-Wu approach in terms of both running time and energy
consumption as shown in Fig. 7.

7 Conclusion

We have investigated the problem of energy-aware mapping and scheduling of
tasks and communications with conditional precedence constraints and individ-
ual deadlines on a heterogeneous NoC-based MPSoC and propose a novel app-
roach. Our approach reduces the total expected energy consumption by col-
lectively optimizing the voltages/frequencies of processors and NoC links. The
IOETCS algorithm maps tasks to processors and serializes communications that
use same communication links. It constructs a unified schedule and assigns volt-
ages/frequencies to tasks and communications collectively assuming continu-
ous voltages/frequencies. The IOETCS algorithm significantly narrows down the
search space for our ILP-based algorithm and our heuristic for assigning discrete
frequencies/voltages to tasks and communications. The experimental results show
that in terms of energy consumption, our approach using either ILP or heuristic
outperforms the state-of-the-art approach proposed by Li and Wu [22] that con-
siders only unconditional task graphs. Compared to the stateof- the-art approach,
our ILP-based approach achieves an average improvement of 31%, a maximum
improvement of 61% and a minimum improvement of 9%, and our heuristic-based
approach achieves an average improvement of 20%, a maximum improvement of
46% and a minimum improvement of 2%. In terms of running time, our approach
is approximately 3 times faster than the state-of-the- art approach.

Energy-Efficient Scheduling of Tasks 143

References

1. Standard task graph. http://www.kasahara.elec.waseda.ac.jp. Accessed 4 Sept 2017
2. Andrei, A., Eles, P., Jovanovic, O., Schmitz, M., Ogniewski, J., Peng, Z.: Quasi-

static voltage scaling for energy minimization with time constraints. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 19(1), 10–23 (2011)

3. Andrei, A., Eles, P., Peng, Z., Schmitz, M.T., Al Hashimi, B.M.: Energy optimiza-
tion of multiprocessor systems on chip by voltage selection. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 15(3), 262–275 (2007)

4. Andrei, A., Schmitz, M., Eles, P., Peng, Z., Al Hashimi, B.M.: Simultaneous com-
munication and processor voltage scaling for dynamic and leakage energy reduc-
tion in time-constrained systems. In: Proceedings of the 2004 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pp. 362–369. IEEE Computer Soci-
ety (2004)

5. Andrei, A., Schmitz, M., Eles, P., Peng, Z., Al-Hashimi, B.M.: Overhead-conscious
voltage selection for dynamic and leakage energy reduction of time-constrained sys-
tems. IEE Proc. Comput. Digit. Tech. 152(1), 28–38 (2005)

6. Bambagini, M., Marinoni, M., Aydin, H., Buttazzo, G.: Energyaware scheduling for
real-time systems: a survey. ACM Trans. Embed. Comput. Syst. (TECS) 15(1), 7
(2016)

7. Burd, T.D., Brodersen, R.W.: Energy efficient CMOS microprocessor design. In:
Proceedings of the Twenty-Eighth Hawaii International Conference on System Sci-
ences, vol. 1, pp. 288–297. IEEE (1995)

8. Cai, Y., Schmitz, M.T., Al-Hashimi, B.M., Reddy, S.M.: Workload-ahead-driven
online energy minimization techniques for battery-powered embedded systems with
time-constraints. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(1), 5
(2007)

9. Chen, G., Huang, K., Knoll, A.: Energy optimization for real-time multiprocessor
system-on-chip with optimal DVFS and DPM combination. ACM Trans. Embed.
Comput. Syst. (TECS) 13(3s), 111 (2014)

10. Choi, K., Soma, R., Pedram, M.: Fine-grained dynamic voltage and frequency scal-
ing for precise energy and performance tradeoff based on the ratio of off-chip access
to on-chip computation times. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 24(1), 18–28 (2005)

11. DeNero, J., Klein, D.: The complexity of phrase alignment problems. In: Proceed-
ings of the 46th Annual Meeting of the Association for Computational Linguistics
on Human Language Technologies: Short Papers, pp. 25–28. Association for Com-
putational Linguistics (2008)

12. Engel, M., Spinczyk, O.: A radical approach to network-on-chip operating systems.
In: 42nd Hawaii International Conference on System Sciences, HICSS 2009, pp. 1–
10. IEEE (2009)

13. Ge, Y., Zhang, Y., Malani, P., Qing, W., Qiu, Q.: Low power task scheduling
and mapping for applications with conditional branches on heterogeneous multi-
processor system. J. Low Power Electron. 8(5), 535–551 (2012)

14. Gebotys, C.H., Gebotys, R.J.: Power minimization in heterogeneous processing. In:
Proceedings of the Twenty-Ninth Hawaii International Conference on System Sci-
ences, vol. 1, pp. 330–337. IEEE (1996)

http://www.kasahara.elec.waseda.ac.jp

144 U. U. Tariq et al.

15. Ghosh, P., Sen, A., Hall, A.: Energy efficient application mapping to NoC pro-
cessing elements operating at multiple voltage levels. In: Proceedings of the 2009
3rd ACM/IEEE International Symposium on Networks-on-Chip, pp. 80–85. IEEE
Computer Society (2009)

16. Goh, L.K., Veeravalli, B., Viswanathan, S.: Design of fast and efficient energy-aware
gradient-based scheduling algorithms heterogeneous embedded multiprocessor sys-
tems. IEEE Trans. Parallel Distrib. Syst. 20(1), 1–12 (2009)

17. Huang, J., Buckl, C., Raabe, A., Knoll, A.: Energy-aware task allocation for
network-on-chip based heterogeneous multiprocessor systems. In: 19th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP), pp. 447–454. IEEE (2011)

18. In, J., Shirani, S., Kossentini, F.: JPEG compliant efficient progressive image cod-
ing. In: Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, vol. 5, pp. 2633–2636 (1998)

19. Kang, J., Ranka, S.: Dynamic slack allocation algorithms for energy minimization
on parallel machines. J. Parallel Distrib. Comput. 70(5), 417–430 (2010)

20. Lee, H.G., Chang, N., Ogras, U.Y., Marculescu, R.: On-chip communication archi-
tecture exploration: a quantitative evaluation of point-to- point, bus, and network-
on-chip approaches. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(3),
23 (2007)

21. Leung, L.-F., Tsui, C.-Y., Ki, W.-H.: Minimizing energy consumption of multiple-
processors-core systems with simultaneous task allocation, scheduling and voltage
assignment. In: Proceedings of the Asia and South Pacific Design Automation Con-
ference, ASP-DAC 2004, pp. 647–652. IEEE (2004)

22. Li, D., Jie, W.: Energy-efficient contention-aware application mapping and schedul-
ing on NoC-based mpsocs. J. Parallel Distrib. Comput. 96, 1–11 (2016)

23. Li, K.: Power and performance management for parallel computations in clouds and
data centers. J. Comput. Syst. Sci. 82(2), 174–190 (2016)

24. Lombardi, M., Milano, M., Ruggiero, M., Benini, L.: Stochastic allocation and
scheduling for conditional task graphs in multi-processor systems-on-chip. J. Sched.
13(4), 315–345 (2010)

25. Lu, Z.: Using wormhole switching for Networks on Chip: feasibility analysis and
microarchitecture adaptation. Ph.D. thesis, KTH (2005)

26. Marcon, C., Calazans, N., Moraes, F., Susin, A., Reis, I., Hessel, F.: Exploring NoC
mapping strategies: an energy and timing aware technique. In: Proceedings of the
conference on Design, Automation and Test in Europe, vol. 1, pp. 502–507. IEEE
Computer Society (2005)

27. Mei, J., Li, K.: Energy-aware scheduling algorithm with duplication on heteroge-
neous computing systems. In: Proceedings of the 2012 ACM/IEEE 13th Interna-
tional Conference on Grid Computing, pp. 122–129. IEEE Computer Society (2012)

28. Mishra, R., Rastogi, N., Zhu, D., Mosse, D., Melhem, R.: Energy aware scheduling
for distributed real-time systems. In: Proceedings of International Conference on
Parallel and Distributed Processing Symposium, p. 21.2 (2003)

29. Mittal, S.: A survey of techniques for improving energy efficiency in embedded com-
puting systems. Int. J. Comput. Aided Eng. Technol. 6(4), 440–459 (2014)

30. Pop, P.: Scheduling and communication synthesis for distributed real-time systems.
Department of Computer and Information Science, Linköpings universitet (2000)

31. Schmitz, M.T., Al-Hashimi, B.M., Eles, P.: Iterative schedule optimization for volt-
age scalable distributed embedded systems. ACM Trans. Embed. Comput. Syst.
(TECS) 3(1), 182–217 (2004)

Energy-Efficient Scheduling of Tasks 145

32. Shin, D., Kim, J.: Communication power optimization for networkon- chip archi-
tectures. J. Low Power Electron. 2(2), 165–176 (2006)

33. Singh, J., Betha, S., Mangipudi, B., Auluck, N.: Contention aware energy efficient
scheduling on heterogeneous multiprocessors. IEEE Trans. Parallel Distrib. Syst.
26(5), 1251–1264 (2015)

34. Sen, S., Huang, Q., Li, J., Cheng, X., Peng, X., Shuang, K.: Enhanced energy-
efficient scheduling for parallel tasks using partial optimal slacking. Comput. J.
58(2), 246–257 (2014)

35. Tariq, U.U., Wu, H.: Energy-aware scheduling of conditional task graphs with dead-
lines on MPSoCs. In: IEEE 34th International Conference on Computer Design
(ICCD), pp. 265–272. IEEE (2016)

36. Topcuoglu, H., Hariri, S., Min-you, W.: Performance-effective and lowcomplexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13(3), 260–274 (2002)

37. Ye, T.T., De Micheli, G., Benini, L.: Analysis of power consumption on switch fab-
rics in network routers. In: Proceedings of the 39th Annual Design Automation Con-
ference, pp. 524–529. ACM (2002)

38. Nemirovskii, A., Nesterov, Y.: Interior Point Polynomial Algorithms in Convex Pro-
gramming. SIAM, Philadelphia (1987)

39. Zhuravlev, S., Saez, J.C., Blagodurov, S., Fedorova, A., Prieto, M.: Survey of energy-
cognizant scheduling techniques. IEEE Trans. Parallel Distrib. Syst. 24(7), 1447–
1464 (2013)

40. Zong, Z., Manzanares, A., Ruan, X., Qin, X.: EAD and PEBD: two energy-aware
duplication scheduling algorithms for parallel tasks on homogeneous clusters. IEEE
Trans. Comput. 60(3), 360–374 (2011)

41. Zong, Z., Qin, X., Ruan, X., Bellam, K., Nijim, M., Alghamdi, M.: Energy-efficient
scheduling for parallel applications running on heterogeneous clusters. In: Proceed-
ings of International Conference on Parallel Processing, p. 19. IEEE (2007)

Author Index

Brown, Joshua 1

Chow, Yang-Wai 1

Díaz, Óscar 67

Gabbrielli, Maurizio 83
Giallorenzo, Saverio 83

Ishak, Suhaimi Abd 115

Kuchen, Herbert 36

Lanese, Ivan 83

Pereira, Juanan 67

Rieger, Christoph 36

Tariq, Umair Ullah 115

Wu, Hui 115

Zheng, Yong 21
Zhou, Zhi Quan 1
Zingaro, Stefano Pio 83

	Towards Integrated Web, Mobile, and IoT Technology: Foreword
	Contents
	Metamorphic Testing of Mapping Software
	1 Introduction
	2 Background
	2.1 Difficulties in Testing Mapping Software
	2.2 Metamorphic Testing (MT)
	2.3 Related Work

	3 Our Approach for Testing Navigation Software
	3.1 The Identified Metamorphic Relations for Navigation Software
	3.2 General Design of the Experiments
	3.3 General Design of the Google Maps Experiments
	3.4 General Design of the OpenStreetMap Testing Environment

	4 Issues Detected in Google Maps
	4.1 Defects Detected by MRSimilar
	4.2 Defects Detected by MRRestriction
	4.3 Defects Detected by MRSplit
	4.4 Defects Detected by MREnvironment

	5 Discussions and Conclusion
	References

	Multi-criteria Recommendations by Using Criteria Preferences as Contexts
	1 Introduction and Motivations
	2 Related Work
	2.1 Context-Aware Recommender Systems
	2.2 Multi-criteria Recommender Systems
	2.3 Preliminary: The Aggregation-Based Recommendation Approach

	3 Methodologies by Using Criteria Preferences as Contexts
	3.1 Multi-criteria Rating Predictions Using Criteria Preferences as Contexts
	3.2 Rating Aggregations Using Criteria Preferences as Contexts
	3.3 Summary
	3.4 Traditional and Context-Aware Rating Predictions

	4 Experiments and Results
	4.1 Data Sets
	4.2 Baselines and Evaluations
	4.3 Experimental Results and Findings

	5 Conclusions and Future Work
	References

	Towards Pluri-Platform Development: Evaluating a Graphical Model-Driven Approach to App Development Across Device Classes
	1 Introduction
	2 Related Work
	3 Münster App Modeling Language
	3.1 Language Design Principles
	3.2 Language Overview
	3.3 App Modelling
	3.4 App Generation

	4 Evaluation
	4.1 Study Setup
	4.2 Comprehensibility Results
	4.3 Usability Results

	5 Towards Pluri-Platform Development
	5.1 Challenges
	5.2 Towards Pluri-Platform Development
	5.3 Applicability of Existing Cross-Platform Approaches for Pluri-Platform Development
	5.4 Evaluation of MAML in a Pluri-Platform Context

	6 Discussion
	7 Conclusion
	References

	What Matters for Chatbots? Analyzing Quality Measures for Facebook Messenger's 100 Most Popular Chatbots
	1 Introduction
	2 Background
	3 Quality Attributes for Chatbots
	4 Experiment
	4.1 Implementation Details
	4.2 Results
	4.3 Correlation Analysis

	5 Discussion
	5.1 Checklist of Frequently Observed Issues in Messenger Chatbots

	6 Conclusions
	References

	Linguistic Abstractions for Interoperability of IoT Platforms
	1 Introduction
	2 Approach Overview
	3 Contribution
	4 JIoT: Jolie for IoT
	5 Supporting Constrained Application Protocol in Jolie
	6 Supporting Message Queue Telemetry Transport in Jolie
	6.1 One-Way Communications in MQTT
	6.2 Request-Response Communications in MQTT

	7 Implementation
	7.1 Programming a Jolie Extension
	7.2 Implementation of CoAP/UDP in Jolie
	7.3 Implementation of MQTT in Jolie

	8 Case Study
	8.1 Structure of the Orchestration
	8.2 Thing Descriptors
	8.3 System Deployment
	8.4 Components Behavior
	8.5 Cloud Deployment

	9 Related Work
	10 Discussion and Conclusion
	References

	Energy-Efficient Scheduling of Tasks with Conditional Precedence Constraints on MPSoCs
	1 Introduction
	2 Related Work
	3 Models
	4 Task Scheduling and Frequency Assignment
	4.1 Computing Successor-Tree-Consistent Deadlines
	4.2 Earliest Successor-Tree-Consistent Deadline First Algorithm
	4.3 Iterative Offline Energy-Aware Task and Communication Scheduling Algorithm (IOETCS)

	5 Discrete Frequency Assignment Algorithms
	5.1 ILP-Based Algorithm
	5.2 Heuristic Algorithm

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Results and Discussion

	7 Conclusion
	References

	Author Index

