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Abstract. This paper addresses the issue of optimal allocation of spare modules
in complex series-parallel redundant systems in order to obtain a required
reliability under cost constraints. To solve this optimization problem, an ana-
lytical method based on the Lagrange multipliers technique is first applied. Then
the results are improved by using other optimization methods such as an evo-
lutionary algorithm and an original fine tuning algorithm based on the idea of
hill climbing. The numerical results highlight the advantage of combining
analytical approaches with fine tuning algorithms in case of very large systems.
By using such a combined technique, better solutions are obtained than those
given by classic heuristic search algorithms.
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1 Introduction

The reliability design of a complex system is one of the most studied topics in the
literature. The problems mainly refer to the kind of solution (reliability allocation
and/or redundancy allocation), the kind of redundancy (active, standby, etc.), the type
of the system (binary or multi-state), the levels of the redundancy (multi-level system
or multiple component choice) etc. All these issues have practical applications and
provide a good sphere for further research. An excellent overview of all these problems
can be found in [1–4].

According to the decision variables [3, 4], a reliability optimization problem may
belong to the following types: (a) reliability allocation, when the decision variables are
component reliabilities, (b) redundancy allocation, when the variable is the number of
component units, and (c) reliability-redundancy allocation, when the decision variables
include both the component reliabilities and the redundancies.

In this paper we address the problem of redundancy allocation in which the number
of redundant units in a series-parallel reliability model is the only decision variable.
Unfortunately, as presented in [5], this is a problem that falls into the NP-hard category.
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We have limited ourselves to the binary systems in which each component is either
operational or failed and, regarding the kind of redundancy, we focus only on the active
spares.

To solve this optimization problem of redundancy allocation, more methods or
techniques can be applied, such as intuitive engineering methods [6], heuristic search
algorithms [7–10], analytical methods based on Lagrange multipliers [11–13], or
dynamic programming [14]. Other metaheuristic methods based on genetic algorithms
are also appropriate [15–18].

2 Notations and Preliminary Considerations

Reliability is the probability that a component or a system works successfully within a
given period of time. A series-parallel model is a reliability model corresponding to a
redundant system consisting of basic components and other active spare components.

The following notations are used throughout the paper: n is number of components
in the non-redundant system or number of subsystems in the redundant system, as the
case; r i is the reliability of a component of type i, i 2 {1, 2, …, n}, for a given period
of time; c i is the cost of a component of type i; Rns is the reliability of the non-
redundant system (system with series reliability model); k i is the number of compo-
nents that compose the redundant subsystem i, i 2 {1, 2, …, n}; Ri is the reliability of
subsystem i (subsystem with parallel reliability model); Ci is the cost of subsystem i;
Rrs is the reliability of the redundant system (system with series-parallel reliability
model); Crs is the cost of the redundant system; R* is the required reliability level for
the system; C* is the maximum accepted cost for the system.

It is assumed that: each component in the system is either operational or failed, i.e.
a binary system, a spare is identical with the basic component, and the events of failure
that affect the components of the system are stochastically independent.

3 Problem Description

Let us consider a non-redundant system composed of n basic components for which the
reliability model is a series one as presented in Fig. 1. For complex systems with a
large number of components, the reliability of the system without redundancy is often
quite low. To reach a required reliability, spare components are added so that the
reliability model for this redundant system is a series-parallel one as presented in
Fig. 2.

Fig. 1. Series reliability model for a non-redundant system
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Typically, in this allocation process the criterion is reliability, cost, weight or
volume. One or more criteria can be considered in an objective function, while the
others may be considered as constraints [3, 4, 19]. From a mathematical point of view,
one must solved an optimization problem of an objective function with constraints.

In this work, we address the issue of maximizing system reliability within the cost

constraint. Thus, one must maximize the reliability function Rrs ¼
Qn
i¼1

Ri; with the

restriction of cost
Pn
i¼1

Ci �C�:

In case of large systems, to master the complexity of the problem, we choose to first
apply an analytical method based on Lagrange multipliers in order to quickly obtain an
approximate solution, and then, this approximate solution is improved by using other
optimization methods such as an evolutionary algorithm and an original fine tuning
algorithm. To check the results, we have also implemented some heuristic algorithms,
as presented in the following section.

4 Heuristic Search Algorithms

For the reliability model presented in Fig. 2, the following equation is valid: Rrs tð Þ ¼
Qn
i¼1

Ri tð Þ� min
i

Ri tð Þf g: Starting from this observation, the following two heuristic

methods are applied to solve this optimal allocation problem.

Algorithm 1: This is a greedy algorithm given by Misra [7] that tries to make an
optimal choice at each step. Thus, starting with the minimum system design presented
in Fig. 1 (k i; i 2 1; 2; . . .; nf g), the system reliability is increased by adding one
component to the subsystem with the lowest reliability. This process is repeated as long
as the cost constraint is met.

Algorithm 2: This algorithm given by Rajendra Prasad, Nair, and Aneja [9] ensures an
acceleration of the allocation process. The basic idea is that the subsystem with the
highest reliability will have the smallest number of components, and the least reliable
subsystem, the greatest number of components. Thus, starting with the system in a non-
redundant form, the reliability is increased by adding one component to each subsystem
(a row allocation) as long as the cost constraint is met. For the most reliable subsystem,

Fig. 2. Series-parallel reliability model for a redundant system with spare components
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this is the final allocation. The process of allocation continues in the same manner with
the other subsystems, until no allocation is possible any longer.

As presented in Sect. 8, these heuristic algorithms are useful in many cases, but
sometimes they do not give good solutions. Therefore, we choose to apply first an
analytical method based on Lagrange multipliers as presented in the following section.

5 Analytical Approach

As the spares are identical with the basic component, for the series-parallel reliability
model presented in Fig. 2, the reliability function can be expressed by the equation:

Rrs ¼
Yn
i¼1

1� ð1� riÞki
� �

: ð1Þ

We have to determine the values k i that maximize the function Rrs with the cost
constraint:

Xn
i¼1

ciki �C�: ð2Þ

Based on (1) and (2), the following Lagrangian function results:

L k1; k2; . . .; kn; kð Þ ¼
Yn
i¼1

1� ð1� riÞki
� �

þ k
Xn
i¼1

ciki � C�
 !

; ð3Þ

where k is the Lagrange multiplier.
Thus, instead of maximizing the function Rrs given by (1) within the cost restriction

(2), we have to maximize the Lagrange function given by (3) without constraints. For
this propose, a system with partial derivatives must be solved, where
@L=@ki ¼ 0; i 2 f1; 2; . . .; ng, and @L=@k ¼ 0. But the resulting system of algebraic
equations is very difficult to solve because of the products that appear. For this reason,
we use another way of expressing the reliability of the system, as presented as follows.

The reliability of a system can be expressed by the reliability function (R) or the non-
reliability function (F = 1 − R), that means, by a point within the unit segment [0, 1]. As
presented in Fig. 3, this value can be uniquely identified by a point on the diagonal of a
square with the side length equal to the unit (denoted by P).

P

R

F

0 1

1

θ

Fig. 3. Another way of expressing the reliability
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The point P in Fig. 3 is uniquely identified by the angle h, and thus by x ¼ tanðhÞ.
Related to the two reliability indicators, R and x, the following equations are valid:
x ¼ ð1� RÞ=R ¼ 1=R� 1, and R = 1/(x + 1). Notice that, if R !1 then x ! 0, and if
R ! 0 then x ! ∞.

Let us now consider a system with a series reliability model, composed of
n modules of reliability given by x i. The system reliability, denoted by xSðnÞ, can be
expressed by the following equation:

xS nð Þ ¼ 1
RS nð Þ

� 1 ¼ 1Qn
i¼1

1
xi þ 1

� 1 ¼
Yn
i¼1

xi þ 1ð Þ � 1: ð4Þ

This relationship is rather complicated, but for the values xi � 1; i 2
f1; 2; . . .; ng; the products that are formed can be neglected and the reliability of the

system can be approximated with good accuracy by the equation xS nð Þ �
Pn
i¼1

xi: In the

same manner, one show that for a parallel reliability model with n components, when
xi � 1; i 2 1; 2; . . .; nf g the reliability of the redundant system denoted by xPðnÞ can

be approximated with good accuracy by xPðnÞ �
Qn
i¼1

xi.

In this form of representation for the system reliability, the optimization problem

assumes the maximization of the reliability function xrs ¼
Pn
i¼1

xkii with the cost con-

straint (2). In this case, the Lagrangian function is:

L k1; k2; . . .kn; kð Þ ¼
Xn
i¼1

xkii þ k
Xn
i¼1

ciki � C�
 !

: ð5Þ

By applying the partial derivatives, and using the notations ai ¼ 1= ln xi
and bi ¼ ai ln ci þ ln ð�aiÞð Þ, i 2 f1; 2; . . .; ng, the system solution of algebraic equa-
tions is:

k ¼ e c; where c ¼ C� �
Xn
i¼1

cibi

 !,Xn
i¼1

ciai ; and ki ¼ ai ln kþ bi;

i ¼ 1; 2; . . .; n

ð6Þ

Note that, this analytical result is valid only if ai\0 (i.e. ri [ 0:5).
The only impediment for solving the problem remains that the values ki obtained by

applying (6) are real values, and the allocation is, by its nature, a discrete problem.
Therefore, it is necessary to determine the optimal allocation in integer numbers
starting from the actual solution.

An approximate solution results by adopting the integers closest to the real values.
But, in this case, it is possible that the new solutions for ki, i 2 f1; 2; . . .; ng, not
longer satisfy the cost constraint. Starting from the value of the Lagrange multiplier k
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given by (6), a searching process is carried out in a neighborhood of this value in order
to obtain a better approximate solution for ki, i 2 f1; 2; . . .; ng, while satisfying the
cost constraint. Unfortunately, this approximate solution is not accurate enough.
Consequently, this approximate solution is further improved by applying other methods
of refining the search process, as shown in the following sections.

As mentioned in Sect. 1, regarding the kind of redundancy, in this work we have
limited ourselves to the active spares, because for the case of passive spares the
Lagrangian function is more complicated and the system of partial derivatives is very
difficult to solve. But the following optimization methods may be tailored to cover this
case as well, or better, to cover the most general case in which some subsystems may
have active spares and the others, passive spares.

6 Evolutionary Algorithm

Evolutionary algorithms are optimization methods inspired by natural selection. The
search is made in parallel, with a population of potential solutions, also known as
individuals or chromosomes, which are randomly initialized. Each chromosome is
associated with a value determined by the fitness function that describes the problem to
be solved. The evolution of the population is based on the successive application of
genetic operators such as selection, which gives the better individuals more changes to
reproduce, crossover, which combines the genetic information of two parents and
creates offspring, and mutation, which may slightly change a newly generated child in
order to introduce new genetic information into the population. The search progresses
until a stopping criterion is met.

In our case, the encoding of the problem is real-valued, and each chromosome has
n real genes, corresponding to ki. The domain of the genes [1, kmax] depends on the
problem. kmax is the maximum estimated value for any ki.

The fitness function is the expression in (1). Since the genes are real-values and ki
are integer numbers, the gene values are rounded in order to convert them into integers.

Since we have a constraint, one method of handling it is to add a penalty to the
fitness function of the chromosomes that do not satisfy the constraint. However, this
can have a very negative impact on the quality of the solution, because, especially in
the beginning, very few or no individuals may satisfy the cost constraint. This can
likely lead to very poor local optima, or may cause the algorithm to fail altogether in
finding any solution.

The method adopted in the present work was to repair the chromosomes that violate
the cost constraint, i.e. randomly removing one redundant component at a time, until
the remaining components satisfy the constraint. Each subsystem must have at least one
component, so only redundant components may be removed.

The selection method is tournament selection with two individuals. We use arith-
metic crossover and mutation by gene resetting. As a stopping criterion, both fitness
convergence and a fixed number of generation were tried. It was found that after a
small number of generation, the values of all the fitness functions become very close,
but these small differences actually make a big difference for the quality of the final
result. Thus, a fixed number of generations was chosen as a stopping criterion.
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Several variants of genetic evolution were evaluated:

• the typical method that generates offspring from parents, creates a complete new
generation and then the new generation replaces the old one;

• elitism, where the best individual of a generation is directly copied into the next
one, and that guarantees that the best solution at one time is never lost;

• steady state evolution, where from the current population of size s a new population
of size s is generated by regular selection, crossover and mutation, but the new
population does not directly replace the old one; instead, the two populations are
merged, and from the resulting population of size 2s, the best s individuals are
selected to form the next generation;

• optimized offspring generation, where after a child has been created by regular
selection, crossover and mutation, it is not directly inserted into the next generation;
instead the individual with the best fitness out of the mother, the father and the child
is inserted into the next generation.

From the experiments conducted for large problem instances, it was found that the
optimized offspring generation combined with elitism provided the best results.

7 Pairwise Hill Climbing

An evolutionary algorithm has a good chance of find the global optimum, but it often
finds a solution within the neighborhood of the optimum. On the other hand, the
analytical method presented in Sect. 5 provides an approximate solution because of the
conversion of the real solution into an integer one. In both situations, it is important to
fine tune the initial approximation, it order to find a better solution, closer or equal to
the actual optimum.

The typical hill climbing procedure starts from an initial solution and generates its
neighbors in the problem space. The best neighbor is identified and if the value of its
objective function is better than the one of the initial solution, the neighbor becomes the
current solution and the same process is repeated until no neighbor is better that the
current (and final) solution.

However, for the problems we study, the above algorithm cannot be applied
because of the existence of the constraint. The approximate solvers usually find good,
but sub-optimal solutions, which all have a cost very close or equal to C*. Therefore,
the classic hill climbing procedure cannot increase reliability further by adding, for
example, an additional component, because the cost constraint would be violated.

In order to increase reliability at fairly the same total cost, a few, e.g. usually 1–2,
components need to be removed from one or a few redundant subsystems, while
simultaneously a few components need to be added to other few redundant subsystems.

Therefore, beside the addition of a component, a swap operation must also be
considered when generating the neighbors of an allocation.

In some situations, the initial solution may not be in a direct neighborhood of the
optimum, and thus solely relying on the addition of new components, which is the only
way to increase reliability, in not sufficient.
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Consequently, we propose an original fine tuning algorithm, Pairwise Hill
Climbing, presented in Pseudocode 1, based on the main idea of hill climbing, but with
several heuristics that make it more appropriate for our class of problems.

Pairwise Hill Climbing(initial) 
  solutionList.Add(initial) 

for i in [1..n] do
    initial2 ← initial   
    initial2.k[i] ← max(1, initial2.k[i] - 1) 
    solutionList.Add(initial2) 

  initial3 ← initial 
for i in [1..n] do

    initial3.k[i] ← max(1, initial3.k[i] - 1) 
  solutionList.Add(initial3) 

best ← initial 
while solutionList is not empty do
  bestSoFar ← solutionList[bi] where
    solutionList[bi].reliability is the largest
  solutionList.Remove(bestSoFar) 
  Refine(bestSoFar) 

return best 

Refine(current) 
for each pair (i, j) in ([1.. n], [1.. n]) and i ≠ j do

    next ← current with (next.k[i], next.k[j]) += (1, 0)  
and then += (1, -1) 

    next.reliability ← ComputeReliability () 

if IsFeasible(next) and next.reliability >  
      current.reliability then
      solutionList.Add(next) 

if current.reliability > best.reliability then
    best ← current 

Pseudocode 1. Pairwise Hill Climbing

As the pseudocode shows, the successive allocations, starting from n + 2 initial
points, are added to a priority queue, which helps to first expand the most promising
solution. However, if the corresponding subtree yields a suboptimal solution, other
parts of the tree can be used to find a better one. From the practical point of view, the
search may be limited to a maximum number of levels in the tree lmax and to a
maximum number of solutions taken from the queue smax.

8 Experimental Results

In this section, we present the results of the previously described methods for three
problems, designed in such a way as to make the optimization more difficult. Thus, for
some components, we have chosen values so that, for a very similar reliability, the cost
is very different. For example, in Problem 3, as highlighted by bold face in Table 1, the
components with order number 4 and 43 have quite similar reliabilities (0.74 and 0.75,
respectively), but very different cost values (49 and 4, respectively). The same remark
holds for components with order number 39 and 44. The parameters of the components
are presented in Table 1. For all three problems, n = 50.

The obtained results are presented in Table 2.
Methods 1 and 2 are the heuristic methods presented in Sect. 4.
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Method 3 is the analytical method from Sect. 5 where the real-valued coefficients
are converted into integers by rounding them down, i.e. ki ¼ kri

� �
. This method

obviously provides suboptimal results, but it can be a good starting point for solution
improvement, because its solution has a good chance of being in the neighborhood of
the optimal one.

Method 4 involves an additional heuristic search starting from the initial estimates
of the analytical method.

Method 5 uses the same estimates given by the analytical method, but employs the
Pairwise Hill Climbing (PHC) search presented in Sect. 7. For PHC, the parameters
used are lmax = 20 and smax = 1000.

Table 1. The optimization problems considered in the experimental study

Component reliability
(r1; r2; . . .; rn)

Component cost
(c1; c2; . . .; cn)

C*

Problem 1 0.59, 0.70, 0.84, 0.99, 0.81, 0.69,
0.88, 0.68, 0.65, 0.92, 0.67, 0.73,
0.68, 0.87, 0.71, 0.51, 0.66, 0.98,
0.73, 0.88, 0.87, 0.55, 0.73, 0.55,
0.59, 0.83, 0.76, 0.58, 0.77, 0.52,
0.87, 0.76, 0.77, 0.71, 0.63, 0.96,
0.97, 0.96, 0.79, 0.63, 0.61, 0.88,
0.86, 0.71, 0.91, 0.91, 0.93, 0.82,
0.72, 0.93

14, 5, 21, 21, 9, 9, 44, 35, 27, 30, 16,
22, 28, 22, 7, 15, 33, 47, 13, 38, 37,
34, 11, 41, 9, 45, 35, 48, 34, 41, 7,
17, 21, 10, 2, 33, 9, 40, 23, 38, 4, 34,
32, 20, 17, 40, 26, 48, 4, 32

6240

Problem 2 0.83, 0.91, 0.88, 0.99, 0.93, 0.73,
0.89, 0.96, 0.80, 0.95, 0.60, 0.88,
0.64, 0.83, 0.70, 0.86, 0.95, 0.70,
0.85, 0.80, 0.66, 0.86, 0.86, 0.84,
0.72, 0.91, 0.62, 0.69, 0.78, 0.70,
0.83, 0.86, 0.92, 0.53, 0.58, 0.65,
0.77, 0.57, 0.93, 0.79, 0.78, 0.67,
0.75, 0.94, 0.72, 0.70, 0.91, 0.97,
0.63, 0.80

47, 25, 21, 49, 20, 13, 44, 28, 8, 23,
45, 44, 34, 7, 14, 15, 42, 25, 42, 29,
23, 44, 2, 22, 7, 17, 18, 28, 20, 26,
48, 21, 8, 5, 17, 2, 6, 32, 49, 50, 26,
22, 4, 4, 42, 31, 44, 10, 45, 26

6370

Problem 3 0.83, 0.91, 0.88, 0.74, 0.93, 0.73,
0.89, 0.96, 0.80, 0.95, 0.60, 0.88,
0.64, 0.83, 0.70, 0.86, 0.95, 0.70,
0.85, 0.80, 0.66, 0.86, 0.61, 0.84,
0.72, 0.91, 0.62, 0.69, 0.78, 0.70,
0.83, 0.86, 0.92, 0.53, 0.58, 0.56,
0.77, 0.57, 0.89, 0.79, 0.78, 0.67,
0.75, 0.90, 0.72, 0.70, 0.91, 0.97,
0.55, 0.80

47, 25, 21, 49, 20, 13, 44, 28, 8, 23,
45, 44, 34, 7, 14, 15, 42, 25, 42, 29,
23, 44, 2, 22, 7, 17, 18, 28, 20, 26,
48, 21, 8, 5, 17, 2, 6, 32, 49, 50, 26,
22, 4, 4, 42, 31, 44, 10, 45, 26

6370
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Method 6 only uses the Evolutionary Algorithm (EA) described in Sect. 6 with a
large number of generations, i.e. 10000. In all cases, the other parameters of the EA are
the following: the population size is 100, the crossover rate is 0.9, the mutation rate is
0.1. The search range for this method is 1–15 for each gene, i.e. ki. Since the EA is
nondeterministic, 10 runs for each configuration were performed and the best result
was reported.

Method 7 uses the EA with a smaller number of generations, i.e. 1000, and its
solution is used as the initial point for the PHC search.

Finally, method 8 uses the solution of the analytical method to define the search
range for the EA genes. The range of a gene is the suboptimal ki ± 2, but ensuring that
the lower limit remains at least 1.

Beside the actual reliability value of the redundant system Rrs, we included an
additional, more intuitive measure of the results, namely the redundancy efficiency
defined as: Ef = (1 − Rns)/(1 − Rrs). The efficiency shows how many times the risk of
a failure decreases for the redundant system, compared to the baseline, non-redundant
one. For example, at the first glance, it may not seem to be a big difference between two
reliability values of 0.88 and 0.98, e.g. for Problem 2. However, the efficiency shows us
that the risk of a failure decreases almost 6 times.

Table 2. The results obtained (Rrs, Ef, Crs) with different optimization methods

Method Problem 1 Problem 2 Problem 3

1. Heuristic 1 0.8242,
5.69,
6239

0.9803,
50.76,
6369

0.9701,
33.44,
6370

2. Heuristic 2 0.9628,
26.88,
6240

0.8882,
8.94,
6370

0.8591,
7.10,
6370

3. Analytical method with ki rounded down 0.9678,
31.06,
6204

0.9830,
58.82,
6344

0.9755,
40.82,
6351

4. Analytical method followed by heuristics 0.9685,
31.75,
6239

0.9831,
59.17,
6369

0.9757,
41.15,
6369

5. Analytical method followed by pairwise hill
climbing

0.9690,
32.26,
6239

0.9835,
60.77,
6370

0.9759,
41.50,
6370

6. Evolutionary algorithm with long search 0.9687,
31.99,
6239

0.9819,
55.42,
6370

0.9742,
38.82,
6370

7. Evolutionary algorithm followed by pairwise
hill climbing

0.9668,
30.19,
6240

0.9825,
57.41,
6370

0.9751,
40.27,
6369

8. Analytical method followed by evolutionary
algorithm with reduced search range

0.9686,
31.87,
6239

0.9834,
60.28,
6370

0.9755,
40.89,
6370
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As one can notice, the first two heuristic methods give very different results for all
the three problems. This highlights the difficulty of the optimization problems we
considered.

The first observation is that in all three cases, the best results are obtained by the
hybrid Method 5. The results of the analytical method are a very good starting point for
the PHC, because the component allocation is likely less than the optimal one and a
procedure based on the hill climbing idea can easily add new components and thus
improve the objective function.

Conversely, it is more difficult for the PHC to improve more extensively the EA
solution, because that is already near the maximum cost, and therefore some compo-
nents need to be removed in order to add others, while keeping the solution in the
feasibility region, i.e. satisfying the cost constraint. As it was seen, such refining does
not only address simple component swaps, but sometime, more components should be
removed from or added to a subsystem, and the changes to be made involve not only
two subsystems, but often more.

It is somewhat surprising that the EA does not seem capable of finding the opti-
mum, even with a very large number of generations and even starting from an esti-
mated neighborhood of the optimal solution. This is because the problem has many
local optima with the maximum cost, and the genetic search procedure is also affected
by the fact that infeasible solutions are repaired, i.e. modified outside the influence of
the genetic operators, by randomly removing components until the cost constraint is
met. This repairing procedure is however critical to the convergence of the EA; if one
uses penalties for constraint violation, usually the EA does not find a solution at all, or
finds a very poor one. Thus, a different repairing procedure may be needed, where
components are not removed at random, but some problem specific information is used
in order to find the most appropriate change that can help the optimization process.

It is also important to discuss the execution times of these methods. The first four
techniques are very fast, because they are based on the application of formulas or a
linear search in a very limited range, comparable with n. The average execution times
for ten runs for each problem using a computer with a 4-core 2 GHz Intel processor and
8 GB of RAM are given as follows: Method 5 – 1061.98 ms, Method 6 –

45,603.83 ms, Method 7 – 6,877.77 ms, Method 8 – 4252.38 ms.
Therefore, Method 5, which gives the best results, is also the fastest.
In Table 3, the best solutions are presented for each of the three problems under

study.

Table 3. The best solutions found, i.e. the ki values and total cost for the best Rrs

Optimal allocation: k1; k2; . . .; kn Crs

Problem 1 8, 7, 4, 2, 5, 7, 3, 6, 7, 3, 7, 6, 6, 4, 7, 10, 6, 2, 6, 4, 4, 8, 6, 8, 9, 4, 5, 7,
5, 8, 5, 5, 5, 6, 9, 3, 3, 3, 5, 7, 9, 4, 4, 6, 4, 3, 3, 4, 7, 3

6239

Problem 2 4, 4, 4, 2, 3, 7, 4, 3, 6, 3, 8, 4, 7, 5, 7, 5, 3, 6, 4, 5, 7, 4, 6, 5, 7, 4, 8, 7,
6, 6, 4, 4, 4, 12, 9, 10, 7, 8, 3, 5, 5, 7, 7, 4, 6, 6, 3, 3, 7, 5

6370

Problem 3 4, 4, 4, 5, 3, 6, 3, 3, 5, 3, 7, 4, 7, 5, 7, 4, 3, 6, 4, 5, 7, 4, 11, 4, 7, 4, 8, 6,
5, 6, 4, 4, 4, 11, 9, 12, 6, 8, 3, 5, 5, 7, 7, 4, 6, 6, 3, 3, 8, 5

6370
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9 Conclusions

In this paper several optimization methods where presented for the problem of maxi-
mizing the reliability of a redundant system, with a series-parallel reliability model, in
the presence of cost-related constraints. Beside domain-specific heuristics and an
analytical solution based on Lagrange multipliers, other general techniques were
applied: an evolutionary algorithm with chromosome repairs meant to satisfy the
constraint and an optimized offspring generation, and also a original algorithm based
on the hill-climbing idea, but using swaps and a priority queue in addition to the
incremental greedy improvements, in order to fine tune the approximate solutions
found by other methods.

Our study shows that the hybrid methods provided the best results, especially the
combination of the analytical method with the original Pairwise Hill Climbing algo-
rithm, which is also the fastest.

As future directions of investigation, other optimization methods will be tried, and
other variants of the problem will be addressed, for example, the issue of passive
redundancy allocation and the converse problem of minimizing the cost while having a
minimum imposed reliability, as a means to further verify the optimality of the
solutions.
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