
Immutables in C++: Language
Foundation for Functional Programming

Zoltán Porkoláb(B)

Faculty of Informatics, Department of Programming Languages and Compilers,
Eötvös Loránd University,

Pázmány Péter sétány 1/C, Budapest 1117, Hungary
gsd@elte.hu

http://gsd.web.elte.hu

Abstract. The C++ programming language is a multiparadigm lan-
guage, with a rich set of procedural, object-oriented, generative and,
since C++11, functional language elements. The language is also well-
known for its capability to map certain semantic features into the lan-
guage syntax; therefore, the compiler can reason about them at compile
time. Supporting functional programming with immutables is one of such
aspects: the programmer can mark immutable components and the com-
piler checks potential violation scenarios and also optimizes the code
according to the constant expectations.

The paper targets the non-C++ programmer audience less familiar
with the technical details of C++ immutables and functional elements,
as well as those C++ programmers who are interested in the develop-
ment of the newest standard. We will survey the functional programming
features of modern C++. The various types of constants and immutable
memory storage will be discussed as well as the rules of const correct-
ness to enable the static type system to catch const violations. Const
and static const members of classes represent support for immutables in
object-oriented programming. Specific programming tools, like mutable
and const cast enable the programmer changing constness for exceptional
cases. Constexpr and relaxed constexpr (since C++14) objects and func-
tions as well as lambda expressions have recently been added to C++
to extend the language support for functional programming. We also
discuss the fundamentals of C++ template metaprogramming, a pure
functional paradigm operating at compile time working with immutable
objects.

Understanding the immutable elements and the rich set of functional
language features with their interactions can help programmers to imple-
ment safe, efficient and expressive C++ programs in functional style.

Keywords: C++ · Functional programming · Immutable · Const ·
Constexpr · Template metaprogramming

c© Springer Nature Switzerland AG 2019
V. Zsók et al. (Eds.): CEFP 2015, LNCS 10094, pp. 75–110, 2019.
https://doi.org/10.1007/978-3-030-28346-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28346-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-28346-9_3

76 Z. Porkoláb

1 Introduction

The C++ programming language is a strongly typed, compiled, multiparadigm
programming language supporting procedural, object-oriented, generative and
(partially) functional programming styles. Its root goes back to the procedural C
programming language [17] extending it with essential object-oriented features,
like classes, inheritance and runtime polymorphism inherited from Simula67 [38].
Soon generic programming, implemented via templates became fundamental
part of the language [8]. The Standard Template Library (STL), part of the
standard C++ library, is still the prime example for the generic paradigm [37].

Functional programming features [11] were barely represented in the earlier
versions of the C++ language. One of the existing elements was the pointer
to function originated in the C language. A pointer to a function allows the
programmers to represent algorithms as data; store them in variables, pass them
as parameters or returning them from functions. The applications using pointers
to functions are restricted in both semantical power and syntactical ease.

Pointers to member functions also exist in C++. As member functions are
bound to classes, the type of such a pointer includes information about the
class itself. However, the implementation is tricky as the same pointer can point
either to a non-virtual member function (represented as an “ordinary” function
pointer) or to a virtual function (effectively an offset in the virtual table).

Besides pointers to functions C++ programmers can use functors as func-
tional programming elements as predicates, comparisons or other kind of exe-
cutable code to pass to standard algorithms as parameters. Functors are classes
with function call (parenthesis) operator defined, and they behave like higher
order functions: they can be instantiated (with constructor parameters if nec-
essary), and can be called via the function call operator. Although functors are
not necessarily pure as they may have state (separate for each instantiations),
they are fundamental tools for implementing functional elements, like currying,
binding, etc.

In many cases functors are syntactically interchangeable with pointers to
functions, e.g. when passing them as template parameters to STL algorithms.

Despite all the restrictions, syntactical and semantical issues, early attempts
were made to implement complex libraries to achieve functional programming
in the C++ language [7,18]. Most notable, FC++ [20,21] has implemented lazy
lists, Currying and function composition among other functional features. The
following works on functional features in C++ also targeted template metapro-
gramming [32,33].

As functional programming becomes more and more popular – not only as
powerful programming languages, but also as formalism to specify semantics
[19,47] – further language elements supporting functional style have come into
prominence [25]. The lambda expressions have been added to C++ first as a
library for more direct support for functional programming [15,16]. Lambda
expressions provide an easy-to-use definition of unnamed function objects – clo-
sures [14]. To eliminate the shortcomings of a library-based implementation,
the C++11 standard introduced native lambda support. Lambda functions are
directly translated to C++ functors, where the function call operator is defined

Immutables in C++: Language Foundation for Functional Programming 77

as const member function. C++14 further enhanced the usability of lambda cap-
tures with generalized lambdas, and with the possibility of using initialization
expressions in the capture [13].

Despite all these achievements towards programming in functional style,
C++ is not and never will be a (pure) functional programming language. As it
is neither a pure object-oriented nor a procedural language. C++ is essentially a
multiparadigm programming language: it does not prefer a single programming
style over the others. One can write (a part of) a C++ program using the set of
features from one or more paradigms according the problem to solve [5]. More-
over, these paradigms are necessary collaborating to each other. STL containers
and algorithms with iterators form a generic library. In the same time, con-
tainers are implemented as (templated) classes with features of object-oriented
programming, e.g. separation of interface and implementation, public methods
and operators, etc. (Virtual functions, however, are mostly avoided for efficiency
reasons except in some i/o related details.) On the lower end of the abstraction
hierarchy, member functions are implemented in a procedural way.

Functional programming interweaves this hierarchy. STL algorithms are often
parameterized with lambdas or functors representing predicates and compara-
tors. Although no language rule forbids them having states, most experts suggest
to implement predicates and comparators as pure functions since algorithms may
copy them.

The STL itself suggests a functional approach: instead of writing loops and
conditional statements, the programmer is encouraged to use algorithms, like
std::for each and std::remove if. When the highly composable ranges will
be incorporated to C++17 or later [28] they will add an additional support to
this style. As explained in [26], the range comprehensions are in fact, monads.

The design goals of C++ according to Stroustrup include type safety, resource
safety, performance, predictability, readability and the ease of learning the lan-
guage [40]. These goals were achieved in different language versions to different
extents.

Resource safety can be achieved only by the thoughtful process of the pro-
grammer using the appropriate language elements. C++ is not automatically
garbage collected. (Although the standard allows using garbage collection, every-
day C++ implementations usually avoid it). The programmer, however, can use
smart pointers, like std::unique ptr or std::shared ptr (part of the standard
since C++11) to control heap allocated memory. What is different in C++ from
other usual object-oriented languages is that the notion of resource is far more
general than just memory: every user defined feature can be handled as resource
and controlled by the Resource Acquisition Is Initialization (RAII) method:
resources can be allocated by constructors and will be (and usually shall be)
disposed by a destructor. Special care should be paid to copying objects (either
by copy over existing objects or initializing newly created ones) using assignment
operators and copy contructors.

One of the major distinctive feature of C++ is the ability to map large variety
of semantic concepts to compiler checked syntactical notations. Let us investigate

78 Z. Porkoláb

the code snippet written in ANSI C on Listing 1. The program crashes for obvious
reasons: we opened input.txt for read-only, but later we try to write into it. In
the C language, the concept whether a file has been opened for read-only, write-
only or read-write is not mapped to the language syntax at all; therefore, the
compiler is unable to check the correctness of the usage (and it does not even
attempt to do it). If we fail to use the files properly, we won’t get diagnostic
messages (like warnings) about it, our program compiles and (likely) crashes at
runtime.

#include <stdio.h>

int main() // wrong C program

{

FILE *fp = fopen("input.txt", "r");

// ...

fprintf(fp, "%s\n", "Hello input!");

// ...

fclose(fp);

}

$ gcc -std=c99 -pedantic -Wall -W wrong.c

$./a.out

Segmentation violation

Listing 1: Erroneous usage of C style input/output

In the C++ standard library, however, there are separate (abstract) types for
read-only and write-only streams. Read-write streams in fact are inherited from
both bases. Real resources (e.g. files and stringstreams, i.e. streams working over
in-memory character strings) are represented by objects belonging to derived
classes inherited from either the input or the output base classes.

As input and output operations are defined in the respective base classes,
improper usage of streams cause compile time errors, as seen on Listing 2.
Although, the diagnostic message caused by the improper usage is a bit dif-
fuse, the first lines point to the exact problem. Again, the essence of the solution
was that the library mapped the concepts of opening a stream either for reading
or writing into the appropriate C++ types and, thus, the compiler is able to
detect the mismatch as type error.

The concept of immutability is handled in a very similar way. The type of a
(mutable) variable of type X is different from the type of an immutable variable of
the same type X. Although, such distinction is not unusual in other programming
languages, the generality and completeness of the mapping are what makes C++
solution special. We are speaking about a language, where multiple aliases of the
same memory area (in form of pointers, references) are usual, and where objects
of user defined classes are expected to behave the very same way as built-in
types do.

Immutables in C++: Language Foundation for Functional Programming 79

#include <fstream>

int main()

{

std::ifstream f;

// ...

f << "Hello input!" << std::endl;

}

$ g++ -std=c++11 -pedantic -Wall -W w.cpp

w.cpp: In function ‘int main()’:

w.cpp:10:8: error: no match for ‘operator<<’ in ‘f << "Hello input!"’

w.cpp:10:8: note: candidates are:

/usr/include/c++/4.6/ostream:581:5: note: template<class _CharT,

class _Traits, class _Tp> std::basic_ostream<_CharT, _Traits>&

std::operator<<(std::basic_ostream<_CharT,_Traits>&&,const _Tp&)

/usr/include/c++/4.6/ostream:528:5: note: template<class _Traits>

std::basic_ostream<char, _Traits>& std::operator<<(

std::basic_ostream<char, _Traits>&, const unsigned char*)

...

Listing 2: C++ can detect erroneous input/output usage at compile time

This paper is organized as follows. In Sect. 2 we survey the various ways we
can define immutable objects in C++. We analyse const correctness, the set
of complex rules allowing C++ to catch constant violations at compile time in
Sect. 3. Here we will also discuss how constness works in STL and how the pro-
grammer can make exceptions of constness via const cast or mutables. The con-
stexpr objects and functions became official part of C++ since version C++11,
and were substantially extended in C++14. We overview their possibilities in
Sect. 4. Lambdas, their usage and whether and how they are pure functions are
explained in Sect. 5. Template metaprograms discussed in Sect. 6 are pure func-
tional language elements forming a compile time Turing complete sublanguage
of C++. All such elements are immutable of necessity. The paper concludes in
Sect. 7.

2 Immutable Elements in C++

In this section we first survey the elementary immutable objects in C++. Then
we will see how we can express immutability for more complex constructs.

2.1 Preprocessor Macros

The C++ preprocessor runs as the first step of the compiler. The preprocessor
executes trigraph replacement, line splicing, tokenization, comment replacement,

80 Z. Porkoláb

and finally: macro expansion and directive handling. In this last step, identifiers
defined as macros are replaced by their defined values. Naturally, many of such
macros are defined as literals, and; therefore, they are immutable as we will see
in the next subsection.

2.2 String Literals

String literals are sequences of characters surrounded by double quotes (and
optionally prefixed since C++11). By the C++11 standard [12], a string literal
is an lvalue, a notion which are usually connected to modifiable memory location.
String literals however are strictly read-only character arrays with static lifetime.
In many environments, the compiler may place such literals to read-only storage.
Any attempt to modify such string literals results in undefined behaviour. More-
over, compilers are allowed to re-use the storage of string literals for other equal
or overlapping literals. Most of the modern compilers do this, but remember:
this is not mandatory, actual compilers may choose different implementations.

#include <iostream>

int main()

{

char *hello1 = "Hello"; // hello1 points to ’H’ and hello2

char *hello2 = "Hello"; // likely points to the same place

std::cout << static_cast<void*>(hello1) << "\t"

<< static_cast<void*>(hello2) << std::endl;

*hello1[1] = ’a’; // could cause runtime error

}

$ g++ -std=c++14 -pedantic -Wall -W string1.cpp

In function ‘int main()’:

warning: deprecated conversion from string constant to ‘char*’

[-Wwrite-strings]

char *hello1 = "Hello"; // hello1 points to ’H’ and hello2

^

warning: deprecated conversion from string constant to ‘char*’

[-Wwrite-strings]

char *hello2 = "Hello"; // likely points to the same place

^

$./a.out

0x4009f5 0x4009f5

Segmentation fault (core dumped)

Listing 3: String literals are immutable objects

Immutables in C++: Language Foundation for Functional Programming 81

Both string literals in the code example in Listing 3 have type const char[6]
(one extra character is allocated for the terminating zero character of the string)
which is converted to a pointer to const – const char *. We will see in Sect. 3.1
that normally pointers to const are not converted to pointers to non-consts. Here
the exceptional rule is explained by the reverse compatibility requirement with
millions of lines of legacy C code, where such assignments were legal and frequent
[9]. At least the compiler warns us that this usage is deprecated in modern C++.

String literals must not be confused with named character arrays, which can
be initialized by string literals and all their elements are mutable (unless they
are declared as constant arrays). In Listing 4 arr1 and arr2 are two separate
mutable character arrays of type char[6] placed strictly into different memory
areas. The arrays are initialized by the same sequence of characters. The second
notion is just a simplification to denote character array initialization list.

#include <iostream>

int main()

{

char arr1[] = {’H’,’e’,’l’,’l’,’o’,’\0’};

char arr2[] = "Hello";

const char arr3[] = "Hello forever";

arr1[1] = ’a’; // ok, arr1 is mutable

}

Listing 4: Character arrays are mutable by default

Naturally both arr1 and arr2 are mutable, so we can modify any of the array
elements (although setting/removing the zero character may confuse some string-
related standard library functions). The arr3 is declared as const, therefore,
that array is immutable.

2.3 Named Constants

A const object is an object of type const T or a non-mutable subobject of such
an object. Such named const objects have some less known properties. They may
appear, for example, as case labels in switch statements, and they may serve
as the size of static arrays.

In Listing 5, c1 and c2 are initialized with constant expressions (constants
whose values can be computed by the compiler at compile time). Such constant
objects can serve as case labels or as the size in an array declaration. (Since
C++11 variable sized arrays are allowed, but only for objects with automatic
life time, like non-static local variables.) Object c3, however, must not be used,
as it is initialized with a runtime value coming from a non-constexpr function f
as a return value. In all other aspects c1, c2, and c3 have the same behaviour.
Similar situations with constexpr function will be discussed in Sect. 4.

82 Z. Porkoláb

int f(int i) { return i; } // not constexpr

int main()

{

const int c1 = 1; // initialized at compile time, optimized out

const int c2 = 2; // initialized at compile time, but needs memory

const int *p = &c2; // ...since a pointer points to it

const int c3 = f(3); // f() is initialized at runtime, needs memory

static int t1[c1];

static int t2[c2];

int i;

// read i

switch(i)

{

case c1: std::cout << "c1"; break;

case c2: std::cout << "c2"; break;

// case label c3 does not reduce to an integer constant

// case c3: std::cout << "c1"; break;

}

}

Listing 5: Named constants

The compiler tries to optimize the const objects. Here the compiler may
decide not to allocate memory for object c1, but should allocate memory for
c2 and c3. The reason, why c3 requires memory is obvious: it is initialized at
runtime, therefore the compiler cannot replace all of its occurrences with its
value. The situation with object c2 is a bit more interesting: its address is used
to initialize a pointer (a pointer to const). Since pointers must point to legal
memory locations by the C++ standard, the compiler must store c2 in such a
location.

2.4 Static Const Members

In object-oriented programming, we try to organize our code in classes. Objects
are instantiations of such classes. The names of types, methods and data belong-
ing to a certain class are expressed as members of that class. For immutables
this is the same.

Immutable values, which are the same for all objects of a given class, are
declared as static const in the class declaration. We may think of them as
global constants nested into the namespace of the class. Static members of a
class have a static lifetime, i.e. they are initialized before the start of the main
function and destructed after the main function successfully finished. For elemen-
tary types this means that the initialization is done by the compiler. For those

Immutables in C++: Language Foundation for Functional Programming 83

types having non-trivial constructor functions (like most of the standard con-
tainers) the constructor is called before starting the main function.

Static members are not subobjects of their class. Similar to other static mem-
bers, static constants should also be defined to tell the compiler which source
is responsible to store the static member. In this definition, static consts should
be initialized either implicitly, having a default constructor or explicitly with an
initializer expression. For integral and enumeration types (like bool, char, or
long the initialization can be placed inside class definition. According the One
Definition Rule (ODR) initialization should happen in exactly one of the places
as seen on Listing 6.

class X

{

static const int c1 = 7; // ok, but remember definition

// static const int c2 = f(2); // error: not const expression

static const double c3; // not integral, don’t initialize here

};

void f()

{

const int X::c1; // must not re-initialized

const double X::c3 = 3.14; // not integral, must initialized here

}

Listing 6: Static const members allocated outside of objects

Static consts are immutables with the same value for all objects of the class.
There are situations where a member should be immutable for the lifetime of
the object but having a different value for different objects.

(Non-static) const members represent such subobjects. Unlike their static
counterparts, such constant members are subobjects, i.e. they are part of the
object. In Listing 7, each object of class Y has its own (possibly different)
immutable value, initialized by the constructor.

class Y

{

Y() : id1(gen_id1()) { }

const int id1;

const int id2 = gen_id2();// since C++11 same as Y():id2(gen_id()) { }

int gen_id1() { ... }

int gen_id2() { ... }

};

Listing 7: Non-static const members are allocated inside every instance

84 Z. Porkoláb

Object-level constants are immutable, but their values can be different in
different objects. Hence, they must be stored in every object. Since C++11 we
can initialize non-static data members – the meaning is the same as the use of
the initializer list in the constructor as seen in Listing 7.

3 Const Correctness

In the previous chapter we had a survey of the immutable C++ objects. How-
ever, in C++ objects may be accessed via aliases: pointers, references. To catch
possible violations of constness at compile time C++ provides a complex set of
const-correctness rules. In the following we enumerate these rules.

3.1 Non-class Types

While C++ objects are mutable by default (with the exceptions we discussed
in the previous section), const qualified objects are immutable. Any attempt
to write to them causes compile time error. The const qualifier is part of the
object’s type: hence on Listing 8 the type of ci is const int.

int i = 4; // not const

i = 5; // i is mutable

const int ci = 6; // const

ci = 7; // error: ci is immutable

Listing 8: Mutable and immutable variables

In C++ we use the address-of (&) operator to create a pointer value pointing
to an object. We can access and modify mutable objects via pointers. The prob-
lem is that in most cases it is impossible to determine at compile time where a
pointer points to at runtime. If ordinary pointers to type T could point to objects
of type const T, then it would introduce a Trojan horse to modify immutable
objects as we see on Listing 9.

int i = 4; // non const

int *ip = &i;

*ip = 5; // ok

const int ci = 6; // const

if (runtime_value)

{

ip = &ci; // ???

}

*ip = 7; // where does ip point now?

Listing 9: Const-correctness

Immutables in C++: Language Foundation for Functional Programming 85

In order to avoid this issue, C++ forbids the assignment of pointers to const-
qualified objects to ordinary pointers. We can say that the type of const T* is
not convertible to T*, as we see on Listing 10.

int i = 4;

int *ip = i;

const int ci = 6; // const

if (runtime_value)

{

// this would be compile error:

// ip = &ci;

}

*ip = 7; // ok, ip points to mutable object

Listing 10: Constness must not be lost in assignment

Since pointers are fundamental in various situations in C++ including many
use cases of the standard library, the language provides a way to set pointers to
immutable objects. An object with type of pointer to const T can store a pointer
value to an immutable object of type T, it can be dereferenced, but the derefer-
enced value is immutable. To keep const correctness, pointers to const values can-
not be assigned to pointers to mutable objects. We must not “lose” constness.

This rule is not symmetric: we can still assign addresses of mutable objects to
pointers to const variables. In that case, the pointed (originally mutable) object
is handled as immutable when accessed via the pointer to const, see Listing 11.

int i = 4; // mutable

const int ci = 6; // const

int *ip = &i; // ok

const int *cip = &ci; // ok

ip = cip; // compile error: T* <- const T*

cip = ip; // ok: const T* <- T*

*cip = 7; // compile error: *cip is immutable

Listing 11: Conversion rules between pointers

There are different conventions to define a pointer to const. Some program-
mers prefer to use the const T * order, while others emphasize the immutability
of the pointed location to move the const keyword between the type name and
the * declarator in form of T const *. Both versions are supported by the lit-
erature and have the same meaning as long as we use the const keyword on the
left side of the * declarator as on Listing 12.

86 Z. Porkoláb

const int *cip1; // pointer to immutable

int const *cip2; // cip2 has the same type as cip1’s

int *const ptr1 = &i; // ptr1 is immutable

const int *ptr2; // ptr2 points to immutable

const int *const ptr3 = &i;

Listing 12: Immutable pointers and pointers to immutables

To declare a pointer itself as immutable (pointing either to a mutable or
an immutable object) we use the const keyword on the right side of the *
declarator. In this way, in the next example we declare ptr1, ptr2 and ptr3 as
a const pointer to mutable object, a non-const pointer to immutable object and
a const pointer to immutable object, respectively.

Note, that const (immutable) objects (like ptr1 and ptr3) must be initialized
when defined.

3.2 Constness of Class Types

The rules discussed in the previous Subsect. 3.1 create a set of compile time
guidelines to ensure that objects defined as consts won’t be modified during
runtime. However, these rules are not yet complete when we consider class types.

Consider the Date class on Listing 13 which encapsulates three int data
members and provides related access methods representing a (very simplified)
data class.

class Date

{

public:

Date(int year, int month = 1, int day = 1);

// ...

int getYear();

int getMonth();

int getDay();

void set(int y, int m, int d);

// ...

private:

int year;

int month;

int day;

};

Listing 13: The original Date class

Immutables in C++: Language Foundation for Functional Programming 87

The rules discussed in Subsect. 3.1 stand here too. Any attempt to modify a
const object causes a compile error on Listing 14. The major difference between
elementary types and classes is that elementary objects can be modified only by
assignment (via the objects themselves, or via references or pointers denoting
them), classes, however, can be also modified by member functions. How should
the compiler handle the method calls?

void f()

{

const Date my_birthday(1963,11,11);

Date curr_date(2015,7,10);

// my_birthday = curr_date; // compile error: my_birthday is const

cout << myBirthday.getYear(); // read const

myBirthday.set(2015,7,10); // modify const?

cout << currDate.getYear(); // read non-const

currDate.set(2015,7,11); // modify non-const

}

Listing 14: Access const and non-const objects via member functions

It is obvious, that myBirthday.set(2015,7,10) violates the seemingly com-
plete set of const correctness rules. But how can the compiler make difference
between methods allowed and forbidden for immutable objects?

The näıve approach to check the body of the methods fails for various reasons;
the definition of the method can be in a different source file, the method can call
other methods, etc. C++ has chosen a more syntax-driven approach: we should
explicitly mark methods callable on immutable objects as const methods as
part of their signature. Non-const methods cannot be applied to const objects
regardless whether they attempt to modify their objects or not.

In the code snippet on Listing 15, the compiler allows the call of getYear on
the immutable object myBirthday, since it is declared as a const method, but
emits diagnostics for the call of set.

The this parameter, passed as the hidden first argument for all non-static
methods is used to check the call. The this parameter of a const method is
declared as pointer to const, whereas in a non-const method it is a pure pointer to
the class. As the address of an immutable object is obviously a pointer to const,
such an address can be passed to const methods. Otherwise, const methods
can not be applied to non-const objects based on the required const to non-
const conversion. On the other hand, since a non-const this argument can be
converted to pointer to const, const methods are callable on non-immutable
objects.

On the other hand, the compiler must not “trust” on whether the program-
mer denoted the constness in the correct way for the const methods. Here the
situation is also covered by the rules we learned in Subsect. 3.1. Data members

88 Z. Porkoláb

class Date

{

public:

Date(int year, int month = 1, int day = 1);

// ...

int getYear() const;

int getMonth() const;

int getDay() const;

void set(int y, int m, int d);

// ...

private:

int year;

int month;

int day;

};

void f()

{

const Date my_birthday(1963,11,11); // immutable

Date curr_date(2015,7,10); // mutable

// my_birthday = curr_date; // compile error: my_birthday is const

cout << myBirthday.getYear(); // fine: const member on const

// myBirthday.set(2015,7,10); // error: non-const member on const

cout << currDate.getYear(); // fine: const member on mutable

currDate.set(2015,7,11); // fine: non-const member on mutable

}

Listing 15: Const and non-const member functions

in member functions are accessed via the this pointer. As the this parame-
ter for such methods is implicitly declared as pointer to const, all modifications
via this are marked as errors by the compiler. Similarly, the calls of non-const
methods from const methods yield errors.

The invisible this parameter can also be used for overloading. This pattern
on Listing 16 is frequently used for access operators, which should be used both
for reading const objects and for modifying mutables.

T& operator[](size_t idx);

const T& operator[](size_t idx) const;

Listing 16: Overloading on constness

Only non-static member functions can be declared as const methods. Static
member functions and namespace functions should be declared as constexpr to
express their “pure” behaviour. We will discuss constexpr in Sect. 4.

Immutables in C++: Language Foundation for Functional Programming 89

3.3 Mutable

There are certain situations where we want to modify subobjects inside const
objects. Consider the Point class on Listing 17 with objects accessed concur-
rently from multiple threads. To read consistent x and y pairs of coordinates, the
method getXY(int &x, int &y) locks the object. For this purpose, we place a
mutex object as a class member. Naturally, getXY is declared as a const method
as it is just reading the object.

struct Point

{

void getXY(int& x, int& y) const;

double xCoord;

double yCoord;

std::mutex m;

};

void Point::getXY(int& x, int& y) const // does not compile

{

std::lock_guard<std::mutex> guard(m); // constructor locks m

x = xCoord;

y = yCoord;

} // destructor unlocks m

Listing 17: Reading x and y coordinates is protected by a mutex

Unfortunately, the code above does not compile. Locking and unlocking obvi-
ously are changing the state of the mutex object, i.e. they are non-const methods.
As we learned in Sect. 3.2, we normally cannot alter an object’s (or its particu-
lar subobject’s) state (like the mutex m in our example) using a const member
function.

To make an exception from the rule, we can declare the mutex m as mutable.
Mutable means that the (sub)object can be altered even when it is part of a
const object or when accessed from a const member function.

struct Point

{

void getXY(int& x, int& y) const;

double xCoord;

double yCoord;

mutable std::mutex m;

};

Listing 18: A class with a member declared as mutable

90 Z. Porkoláb

Mutables are exceptional objects, and we should use them only in exceptional
cases. Such situations include among others managing internal states, like a cache
or counters, and also managing mutexes, like in our example on Listing 18.

3.4 Constant Correctness in STL

The Standard Template Library (STL) is an essential part of the C++ lan-
guage. The success of the STL is based on its flexibility and extensibility. Pro-
grammers can re-use standard containers and algorithms connecting them by
iterators instead of writing specific code for each individual problem [4,27]. STL
makes the programmer’s work faster, safer and more predictable [29]. Naturally,
the STL should support the const correct programming [22].

Consider the usual implementation of the find STL algorithm on Listing 19.

template <typename It, typename T>

It find(It begin, It end, const T& t)

{

while (begin != end)

{

if (*begin == t)

{

return begin;

}

++begin;

}

return end;

}

Listing 19: Canonical implementation of the STL find algorithm

When we apply the algorithm to an immutable array, e.g. to a const array of
integers on Listing 20, the iterator will be deduced to the same type as the first
two parameters, i.e. to a pointer to const. Thus, const correctness stands.

For STL containers, the situation is a bit different as instead of pointers
iterators and const iterators are used to walk through container elements and
to refer to them. Dereferencing (applying the star operator for) an iterator
results in a left value reference to the value type of the container. Derefer-
encing a const iterator results in a non-writable const reference. The type
const iterator is not a const iterator which would mean an immutable iter-
ator. However, a const iterator, is a mutable object, e.g. one can modify it
and can walk through the container, but the referred objects are handled as
immutables as seen on Listing 21.

The iterator and const iterator values are generated by the begin and
end methods of the containers. Since C++11 the std namespace begin and
end functions are also available. Namespace functions provide the iterators in a

Immutables in C++: Language Foundation for Functional Programming 91

const int t[] = { 1, 2, 3, 4, 5 };

auto len = sizeof(t)/sizeof(t[0]);

auto *p = std::find(t, t+len, 3) // const int *p

if (p != t+len)

{

std::cout << *p; // ok to read

// *p = 6; // error to write

}

Listing 20: Const correctness in STL

void f(const std::vector<int> &v)

{

auto i = std::find(v.begin(), v.end(), 3); // const_iterator

if (v.end() != i)

{

std::cout << *i; // ok to read

// error: *i = 6;

}

}

Listing 21: Const containers provide read only access to elements

unique and non-intrusive way for STL containers and classical C-style arrays.
The trick here is the overloading on constness: const variations of the begin and
end methods are the methods callable on constant containers and they return
const iterator.

C++11 provides more advanced type deduction with the auto keyword. Its
motivation was mainly to shorten iterator and const iterator declarations. How-
ever, it is a frequent situation when we want to apply a const iterator to an
originally non constant container. This will not work with auto and begin or end
methods, as the auto declaration deduces the type from the initializer expres-
sion, which is the return value of the begin and end methods, i.e. an iterator
in case of a non-const container [23].

void f(std::vector<int> &v, const std::vector<int> &cv)

{

auto i = std::find(v.begin() , v.end(), 3); //iterator

auto i = std::find(cv.begin(), cv.end(), 4); //const_iterator

auto i = std::find(v.cbegin(), v.cend(), 5); //const_iterator

}

Listing 22: Using cbegin and cend to return const iterator

92 Z. Porkoláb

To enforce the return of const iterator type even for non-const containers,
new methods cbegin and cend were introduced in the C++11 standard, see
Listing 22. Similar namespace methods exist as cbegin, cend, and crbegin, and
crend for iterators and reverse iterators. For some mysterious reason, namespace
functions returning const reverse iterator were missing in C++11, and the
issue has been fixed only in C++14.

3.5 Casting Const Away

Based on the C/C++ philosophy that the ultimate control belongs to the pro-
grammer, there is an explicit cast to converting const objects to non-const ones.
However, as all other cast operations, it should be used with extra care to avoid
undefined behaviour. The basic rule is that we can cast away constness of pointers
to objects and lvalues.

Even when the compiler allows us to cast constness away, the result may be
surprising. In the example on Listing 23, we declare a variable const, then we
modify it via const cast and a non-const pointer.

#include <iostream>

int main()

{

const int ci = 10;

int *ip = const_cast<int *>(&ci);

++*ip;

std::cout << ci << " " << *ip << std::endl;

}

$ g++ -std=c++11 -pedantic -Wall -W const.cpp

$./a.out

10 11

Listing 23: Const cast may lead to undefined behaviour

There are a few cases when we cannot avoid the use of const cast. One
example is when a member function modifying the object’s state should be
defined as a constant member function. Suppose, we have a tree data structure to
store elements ordered by some key values. We might provide a member function
to balance the tree. Calling such balance member function from insert, which
is a non-const member function itself, is fine. However, when we want balance to
be available as a standalone API method, we should decide about its constness.
Strictly by C++ terms, balance is not a constant method as it is modifying the
object’s data. However, from the viewpoint of the user, the method behaves like
a const: no new element has been inserted, the order of the elements remains the
same. It is tempting to declare balance as const member function and simply
cast the constness of the this pointer away to make class members modifiable.

Immutables in C++: Language Foundation for Functional Programming 93

Although, the scenario above is possible in technical terms, there are strong
arguments against it. Using const cast is extremely dangerous for objects that
were originally declared as const (see Listing 23). Whenever it is possible, use
mutable objects instead. Declaring a member function as const tells the user
that this function can be used in a multithreaded environment in a safe way.
That is not true in the example above (except that we use some very aggressive
locking inside balance, which may ruin the performance).

4 Constexpr

Compile-time expressions, i.e. expressions that can be evaluated at translation
time, always had a specific role in the C++ language. Such expressions can be
used to define an array size, a case label or a non-type template argument. On
the other hand, the compiler environment is enforced to compute these expres-
sions; C++ template metaprogramming is largely based on this fact. The phrase
translation time usually means compile time but may include link time activity
as well [36].

Interesting enough, by the C++ standard, the value of an expression com-
puted at translation time is not necessary equal to the value of the same expres-
sion computed at runtime [50]. Let us see the example on Listing 24 quoted from
the standard. The size of the character array must be compiled at translation
time, but the value of the integer variable size can be evaluated at runtime. In
such cases their values may differ.

bool f()

{

// Must be evaluated at translation time

char array[1 + int(1 + 0.2 - 0.1 - 0.1)];

// May be evaluated at run-time

int size = 1 + int(1 + 0.2 - 0.1 - 0.1);

return sizeof(array) == size; // unspecified: true or false

}

Listing 24: Compile-time expressions and run-time expressions

In classical C++03 constant expressions are restricted to the use of literals,
built-in operators, and macros. They must not contain functions or operators
of any kind, even when their return value could be trivially computed from the
compile-time given arguments as we see on Listing 25.

C++11 makes constant expressions more manageable introducing constexpr
functions and expressions. The idea is to make translation time constant com-
putation more expressive and thus partially replacing unmanageable macro and
template metaprogramming elements.

94 Z. Porkoláb

#define AVERAGE(X,Y) (((x)+(y))/2)

double average(double x, double y) { return (x+y)/2; }

size_t s1 = sizeof(long);

size_t s2 = sizeof(short);

// constant expressions in C++03

const int a = (sizeof(long)+sizeof(short))/2;

const int b = AVERAGE(sizeof(long),sizeof(short));

// not constant expressions in C++03

const int c = AVERAGE(s1,s2);

const int d = average(sizeof(long),sizeof(short));

Listing 25: Constant and non-constant expressions in C++03

4.1 Constexpr Functions

C++11 introduced constexpr functions, functions that can be computed at trans-
lation time when all their parameters are known. As initially this feature was
planned as a minor feature to replace hard to maintain macros and small tem-
plate metaprograms, it had a minimalist design. The body of a constexpr func-
tion was restricted to a single return statement. Constexpr member functions
also were implicitly constant member functions.

As the new feature was a success, constexpr rules have been relaxed. Cons-
texpr functions since C++14 may contain declarations, sequences, and control
statements similar to “normal” functions as demonstrated on Listing 26. The
rules also have been changed in the way that non-static constexpr member func-
tions are not const member functions any more.

// in C++11

constexpr int pow(int base, int exp) noexcept

{

return exp == 0 ? 1 : base * pow(base, exp-1) ;

}

// in C++14

constexpr int pow(int base, int exp) noexcept

{

auto result = 1;

for (int i = 0; i < exp; ++i) result *= base;

return result;

}

Listing 26: Constexpr in C++11 and in C++14

Immutables in C++: Language Foundation for Functional Programming 95

Even in C++14 there are serious restrictions on constexpr functions. They
must not contain asm definitions, goto statements, try blocks, and must not
declare static or thread local variables. Member constexpr functions must not
be virtual. These rules ensure compile time computability. Other C++ rules, e.g
overloading, work as usual.

Rules for constexpr functions are also designed to avoid side effects as we
experience on Listing 27. The safe rule is to access only variables which have life
time started inside the constexpr expression.

constexpr int f(int n)

{

static int value = n; // error, cause side effect

int i = 1;

int j = n; // ok, j is not constexpr

constexpr int x = n; // error

constexpr int y = i; // ok, life of i starts in f

return y;

}

Listing 27: Constexpr rules are to avoid side effects

Sometimes there is a thin line between what can be constexpr and what can
not. On the Listing 28 a ternary operator defines the value of member m. When
the constructor parameter is true, the value of m can be computed at translation
time. Otherwise, the initialization depends on a run-time value, so the compiler
flags an error.

int x; // not constant

struct A

{

constexpr A(bool b) : m(b ? 42 : x) { }

int m;

};

constexpr int v = A(true).m; // OK: constructor initializes m with 42

constexpr int w = A(false).m; // error: initializer of m is x

// which is not known at translation time

Listing 28: Expression computed at translation time or flags an error depending
on the value of b

One of the advantages of constexpr functions over template metaprograms is
that template metaprograms can only emulate floating point numbers, usually
with a pair of integer, while constexpr functions can work with native floating
point types.

96 Z. Porkoláb

4.2 Constexpr Objects

Constexpr objects are constant objects having values that are known (or com-
putable) at translation time. We can apply the constexpr keyword both for
variables and for variable templates as seen on Listing 29.

constexpr size_t sizeof_long = sizeof(long);

constexpr size_t sizeof_short = sizeof(short);

template <typename T>

T PI()

{

constexpr T Pi = T(3.1415926535897932385);

return Pi;

}

Listing 29: Constexpr objects

Not only objects of built-in types can be specified as constexpr objects, but
also objects from those class types which can be safely constructed at translation
time. Such types are called literal types. Literal types must not include any
component which would indicate runtime activity, e.g. a virtual base. Scalar
types, reference types, the void, and arrays of literal types are considered as
literal types. Also classes with non-static members of (non-volatile) literal types,
constexpr member functions, constexpr constructor and with trivial destructor
are literal types [49].

On the Listing 30 we created a literal type representing a circle with a given
radius set by the constructor, inspired by [3]. Member functions are defined to
compute the perimeter and the area of the object as well as a non-const mem-
ber function magnify to change the radius by a ratio. The namespace function
create returns a new circle created by the first argument applying the second
argument as magnifying ratio.

In the example we created a literal type Circle with a single attribute radius
initialized by the only constructor. The constexpr getter methods perim and
area are declared const since in C++14 non-static constexpr member functions
are no longer implicit const member functions.

The magnify function is a constexpr but non-const member, as it changes
the object’s attribute value. Obviously, such a member cannot be applied to
a constexpr object, but can be used for non-const objects, like the local c2
object inside the create namespace function. Declaring magnify as constexpr
guarantees, that all the constexpr restrictions are hold, therefore, the function
can be safely called from the constexpr function create.

The local variable c2 of Circle type is not defined constexpr inside the
create function – we will modify it in the next line. We are allowed to create
non-const local variables in constexpr functions. The important aspect here is
that the lifetime of c2 starts inside the constexpr function.

Immutables in C++: Language Foundation for Functional Programming 97

constexpr double sqr(double d) { return d*d; }

constexpr double Pi = 3.1415926535897932385;

class Circle // literal type

{

public:

constexpr Circle(double r) noexcept : radius(r) { }

constexpr double perim() const noexcept { return 2*radius*Pi; }

constexpr double area() const noexcept { return sqr(radius)*Pi; }

constexpr void magnify(double ratio) noexcept { radius *= ratio; }

private:

double radius;

};

constexpr Circle create(const Circle &c, double ratio) noexcept

{

Circle c2 = c;

c2.magnify(ratio);

return c2;

}

int main()

{

constexpr Circle c(2.5);

constexpr double p = c.perim();

constexpr double a = c.area();

constexpr Circle c2 = create(c,1.5);

}

Listing 30: A Circle class implemented as a literal type

In the main function all objects can be defined as constexpr. Such objects
can be placed into ROM if the environment supports that. The constructors of
these objects will run at translation time.

Constexpr functions and methods can be called with non-constexpr argu-
ments. In such situations, they will be executed at run-time. Allowing to call
constexpr functions at run-time avoid code duplication. However, the restric-
tions for these functions as described in this section still hold.

Constexpr functions are “running” at translation time, therefore, their
inspection is extremely hard. The usual method is to inject a runtime argu-
ment, and debug the function at runtime. Proper constexpr debuggers are yet
to be implemented.

5 Lambda Expressions

The Standard Template Library (STL) is a major component of the standard
C++ library. In STL containers implement various data structures, and algo-
rithms present numerous activities over them in form of namespace functions.

98 Z. Porkoláb

To provide a smooth, generic connection between these two components, algo-
rithms access the containers via iterators [4,27].

STL supports functional style programming as it replaces the necessity of the
iteration over containers with the use of predefined algorithms, like remove if
or for each. Such algorithms are frequently parameterized by some callable
objects. The predicate in remove if and the repeated activity for for each are
provided as a callable parameter for these algorithms. In its most primitive form,
such a callable object is a pointer to function.

However, these functions often require access to the local variables in the
scope of the algorithms, e.g. the predicate for the remove if may depend on
the values of local variables in the call site. Ordinary C++ functions have no
access to the context of the call site. To bridge the problem, a functor – a class
with function call operator – can be defined and used instead of the function
pointer. Function objects (instances of functor classes) can be created and the
mentioned local variables are either copied into or referenced by its attributes.
These objects are passed to the STL algorithms as parameters and can be called
inside the algorithms. The procedure, however, requires a significant amount of
boiler-plate code as we see on Listing 31.

struct BetweenFunctor

{

public:

BetweenFunctor(int a, int b) : m_a(a), m_b(b) { }

bool operator()(int n) const { return m_a < n && n < m_b; }

private:

int m_a;

int m_b;

};

void filter(vector<int>& v, int x, int y)

{

v.erase(remove_if(v.begin(),v.end(),BetweenFunctor(x,y)),

v.end());

}

Listing 31: Removing elements from a container using a functor

The idea to provide an easy-to-use definition of unnamed function objects
– so called closures – which are capable of accessing (capturing) the variables
in the call context led to the notion of lambda expressions. Lambdas have been
introduced to C++ first as a user library in Boost.Lambda [16,48]. From C++11
they are part of the core language. Since then, lambdas are widely used as
parameters in the Standard Template Library algorithms, functions executed by
std::thread, and various other places.

Lambda expressions in C++ can be associated with equivalent functor classes
and function objects. The runtime object created from the lambda expression

Immutables in C++: Language Foundation for Functional Programming 99

is called closure and is assignable and callable. Its type, the closure class is
unnamed. Nevertheless, we can refer to it by using the C++11 decltype expres-
sion. On Listing 32 we see the equivalent program snippet to Listing 31. Here we
are using lambda expression to remove elements from the vector. The expressive
power of the lambda solution over the functor is well worth observing.

void filter(vector<int> &v, int x, int y)

{

v.erase(remove_if(v.begin(),v.end(),

[x,y](int n) { return x < n && n < y; }),

v.end());

}

Listing 32: Removing elements from a container using lambda expression

We can understand the lambda construction by comparing it to the equiv-
alent functor on Listing 31. The lambda expression starts with the [] lambda
introducer. The optional captured variables x and y represent the data members
of the functor class initialized by the x and y variables of the calling context
respectively. The parameter and the function body of the lambda expression
form the function call operator of the functor defined as a constant member.
It can contain multiple statements. The return type is automatically deduced
by the corresponding C++ language rules. When that type is not suitable, the
required return type can be denoted explicitly [15].

5.1 Capture

The major advantage of a lambda over a functor is that the lambda can access
the calling context using captured variables. These variables can be captured
either by value or by reference. Default capture is by value: that is, the captured
variables are copied into the closure object when it is created. As a consequence,
further changes of the original variables captured by value are invisible in the
lambda expression. We can imagine it as the capture by value creates a “snap-
shot” of the calling context.

When variables are captured by reference, the closure initializes references
to the original storage. The lambda expression thus always sees the actual value
of the captured variables. Capturing variables by reference is denoted by the &
symbol.

On Listing 33, the filter function removes all elements from vector v which
have a value between x and y. The parameters x and y of the function are cap-
tured by value, while the local variable cnt is captured by reference. Therefore,
this latter variable can be modified from the lambda expression, and at the end
of the function cnt contains the number of the elements removed.

100 Z. Porkoláb

void filter(vector<int> &v, int x, int y)

{

int cnt = 0;

v.erase(remove_if(v.begin(),v.end(),

[x,y,&cnt](int n) { if (x < n && n < y)

{ ++cnt; return true; }

else

return false; }),

v.end());

}

Listing 33: Variables captured by value and by reference

Lambda expressions are equivalent with constant function call operators on
the closure type. Any attempt from the lambda expression to modify the cap-
tured x and y will result in an error. Interesting enough, the lambda expression
is allowed to modify the variables captured by reference. This has the same
behaviour as we can experience with traditional classes: constant member func-
tions can make modifications via reference members.

We can allow the modification of the copies of the variables captured by value.
We indicate non-constness of the lambda function with the mutable keyword
before the body of the lambda expression. However, the modifications affect
only the copies, the original variables remain unchanged.

We can capture multiple values without enlisting them individually. The [=]
sign means capturing all variables by value and [&] means capturing all by
reference. We can mix values and reference captures, like [=,&cnt]. Naturally,
when using the = or & notion, only the variables actually used in the lambda
expression will be stored/referred. Global variables or static members are not
captured, but can be used as usual.

5.2 Capturing this Pointer

The this pointer is not captured by default, it should be captured explicitly by
value or by using the [=] notation. Capturing this is a necessary and sufficient
requirement to access members of a class. In Listing 34 the lambda inside the
print member function should capture this to access the data member s.

struct X

{

int s;

vector<int> v;

void print() const {

for_each(v.begin(), v.end(), [=](int n) { cout << n*s << " "; });

}

};

Listing 34: Capturing this pointer

Immutables in C++: Language Foundation for Functional Programming 101

Capturing pointers and particularly capturing this can be dangerous. If the
pointed memory area is destroyed but the pointer to it still holds in the closure
object, calling the lambda can be fatal. In the example on Listing 35 the closure
captures the this pointer and then it is stored in a std::function object. Later it
is activated twice: once when the pointed object is still alive, and the second time
after the object is destroyed. That second call will likely cause runtime error.

std::function<void (int)> f;

struct X

{

X(int i) : ii(i) {}

int ii;

void addLambda() {

f = [=](int n) { if (n == ii) cout << n; else cout << ii; };

}

};

int main()

{

{

std::unique_ptr<X> up = std::make_unique<X>(4);

up->addLambda();

f(4); // calls lambda: ok

} // destroys the X object

f(4); // calls lambda: likely aborts!

}

Listing 35: Wrong usage of lambda with captured this pointer

In C++17, there will be possible to capture the enclosing object by value,
instead of capturing the this pointer.

5.3 Constant Initialization by Lambda

One of the special use cases of the lambda expressions are the initializations
of constant objects. Constants must be initialized and later they must not be
assigned to. In some cases, the initialization value heavily depends on the call-
ing context and should be computed by complex calculations. The usual way to
do this is to execute the necessary computations in a separate function and to
initialize the constant object by the return value of that function. However, this
solution has a number of drawbacks. The code of the function will be separated
from the object to be initialized. Using the actual environment of the initializa-
tion requires to pass a possible large number of parameters to the function.

It would be somehow useful to handle the variable as non-const for a while,
and make it immutable only after we calculated its “final” value. Although, this
is not possible literally, we can simulate it by lambda.

102 Z. Porkoláb

void f()

{

bool some_variable_in_context = ...;

const int ci = [&]{

int ci; // non-const shadow variable

ci = some_default_value;

if (some_variable_in_context) // using the context

{

// and do some operations and calculate the value of ci

ci = some_calculated_value;

}

return ci;

} (); // note: () invokes the lambda!

// using the const ci

// ...

}

Listing 36: Initialization of a constant using lambda

On Listing 36 we are going to initialize the constant ci variable. Instead of
initializing it by a function, we define a lambda expression right in the place of
initialization capturing the whole context. In this lambda first we define a non-
const variable with the same name as the const to be initialized. This “shadow”
variable will be used to calculate the initializer value. The body of the lambda
expression looks like and acts like the continuation of the original function. Once
we calculated the required value, we close the lambda expression and immedi-
ately call it, thus, initializing the constant by its return value.

This method is usually more readable and manageable than the alternatives.

5.4 Generic Lambdas

Lambda expressions in C++11 were not generic: i.e. we had to apply various
tricks to handle lambdas in templated environment. In C++14, however, we can
write generic lambda expression, which works in a polymorphic way, similarly
to a template functor [43]. To express generality we use the auto keyword at
parameter declaration. Advanced C++14 return type deduction is also applied
on the example on the Listing 37.

// in C++11

for_each(begin(v), end(v),

[](const decltype(*begin(v))& x) { cout << x; });

// in C++14

for_each(begin(v), end(v), [](const auto& x) { cout << x; });

Listing 37: Generic (polymorphic) lambda expressions in C++14

Immutables in C++: Language Foundation for Functional Programming 103

5.5 Generalized Lambda Capture

As we have seen earlier, lambdas can capture variables in the environment either
by value or by reference. The first will copy them into the closure object, the
second will initialize a reference inside the closure object to the captured vari-
able outside. Capture by reference can be dangerous, especially when the closure
object lives longer than the captured variable. In the same time, not all variables
can be captured by value. Since C++11 move-only types exist: types that can-
not be copied only just moved. Objects from such types like std::unique ptr,
std::thread and many iostream-related types cannot be copied, thus we can-
not capture them by value as it would apply the copy semantics.

To handle these types in a safe way from lambda expressions we should
move them into the closure object. For old-style functors, the solution would
be trivial, we could move the objects into the closure using the initializer list of
the constructor. (However, you must not forget to use the std::move right-value
cast operator.) To provide the same functionality for lambda expressions, C++14
presents generalized lambda capture, or init capture. An init capture behaves as
if it declares and explicitly captures a variable declared as auto and initialized
by the initialization expression. However, no real new variable is constructed:
e.g. no additional copy and destruction operations will be executed.

// since C++14

#include <iostream>

#include <memory>

int main()

{

int x = 10;

std::unique_ptr<int> up = make_unique<int>(42);

[&x = x, up = std::move(up), n = 1] { x = *up+n; } ();

std::cout << x << std::endl;

}

$./a.out

43

Listing 38: Init (generic) capture in C++14

In Listing 38 variable x is captured by reference, the unique ptr up is moved
into the data member of the closure object and an int type data member is
created and initialized to 1. The program prints 43. It is also important to
notice, that the heap area allocated by make unique and initialized to 42 is
already destroyed when we reach the output calls, as its ownership was moved
from the up pointer to the closure’s data member which has been destructed at
the end of the execution of the lambda expression.

104 Z. Porkoláb

6 C++ Template Metaprogramming

In [30] we explored C++ template metaprogramming as functional programming
in a great detail. Thus, in this section we just briefly recap the generic idea and
discuss immutability.

Templates are key language elements of C++ enabling algorithms and data
structures to be parametrized by types or constants without performance penal-
ties at runtime [39]. This abstraction is essential when using general algorithms,
such as finding an element in a data structure, sorting, or defining data struc-
tures like vector or set. The generic features of these templates (like the behaviour
of the algorithms or the layout of the data structures) are the same, only the
actual type parameter is different. The abstraction over the type parameter –
often called parametric polymorphism [6] – emphasizes that this variability is
supported by compile-type template parameters. Reusable components – con-
tainers and algorithms – are implemented in C++ mostly using templates. The
Standard Template Library (STL), an essential part of the C++ standard, is
the most notable example [22,27].

Templates are code skeletons with placeholders for one or more type param-
eters. In order to use a template it has to be instantiated. This can be initiated
either implicitly, when a template is referred with actual type parameters or
explicitly. During instantiation the template parameters are substituted with
the actual arguments and new code is generated. Thus, a different code segment
is generated when a template is instantiated with different type parameters.

There are certain cases when a template with a specific type parameter
requires a special behaviour, that is different from the generic one. Such “excep-
tions” can be specified using template specializations. During the instantiation
of a template the compiler uses the most specialized version of that template.

Templates can refer to other templates (even recursively) thus complex chains
of template instantiations can be created. This mechanism enables us to write
smart template codes affecting the compilation process. To demonstrate this
capability of C++ templates Erwin Unruh wrote a sample program [42]. The
program, when compiled, emitted a list of prime numbers as part of the error
messages. This way Unruh demonstrated that with cleverly designed templates
it is possible to execute a desired algorithm at compile time. This compile-time
programming is called C++ Template Metaprogramming (TMP) [1].

The classical example on Listing 39 demonstrates how to compute the value
of factorial at compile time. We can see that the implementation uses recursion
at compile-time. The static constant value, Factorial<5>::value is referred to
inside the main function, thus the compiler is enforced to compute it. The instan-
tiation process of the class Factorial<5> begins. Inside the Factorial template,
Factorial<N-1>::value is referred. The compiler now is forced to instantiate
Factorial<4>, then to instantiate Factorial<3>, etc. The Factorial tem-
plate class is instantiated several times recursively. The recursion stops when
Factorial<1> is referred to, since there is a specialization for that argument.
At the end, the compiler generates five classes and Factorial<5>::value is
calculated at compile time.

Immutables in C++: Language Foundation for Functional Programming 105

template <int N>

struct Factorial

{

static const int value = N * Factorial<N-1>::value;

}

template<>

struct Factorial<1> // specialization

{

static const int value = 1;

};

int main()

{

int r = Factorial<5>::value; // known compile time

cout << r << endl;

}

Listing 39: Simple factorial C++ template metaprogram

Similarly, one can use control branches using template specialization. In the
example on Listing 40 example we declare the variable i to be of type int or
long depending on whether the size of the long type is greater then the size of
int.

template <bool condition, class Then, class Else>

struct if_

{

typedef Then type;

};

template <class Then, class Else>

struct if_<false, Then, Else>

{

typedef Else type;

};

int main()

{

if_< sizeof(int)<sizeof(long), long, int>::type i;

cout << sizeof(i) << endl;

return 0;

}

Listing 40: (Runtime) conditional choice in template metaprograms

As template metaprograms are “executed” by the compiler, they funda-
mentally differ from usual runtime programs. Compilers among other actions
evaluate constant values, deduce types and declare variables – all of these are
immutable actions. Once a constant value has been computed, a type has been

106 Z. Porkoláb

decided, a variable has been declared then they remain the same. There is no
such thing as assignment in template metaprograms. In this way C++ tem-
plate metaprograms are similar to the pure functional programming languages
with referential transparency [30]. However, one can still write control-structures,
using specializations. Loops are implemented using recursive templates, termi-
nated by specializations. Control branches are based on partial or full special-
izations.

Having recursion and branching with pattern matching we have a complete
programming language – executing programs at compile time. C++ templates
have been proven to form a Turing complete sublanguage of C++ at compile time
[44]. Template metaprograms are used intensively to implement active libraries
[45], expression templates [46], DSL integrations [34], parser generation [41],
target of translation of functional programming systems [35] or even for type
safe hosting of SQL queries [10].

We can use data structures at compile time. For example the list structure
used by most functional programming languages can be implemented by a class,
NullType, representing the empty list and a template class, Typelist, represent-
ing the list constructor [2]. One can represent any list by using the constructor
recursively. These classes can be implemented and used in Listing 41:

class NullType {};

template <class Head, class Tail>

struct Typelist {};

typedef Typelist< char,

Typelist<signed char,

Typelist<unsigned char, NullType>

>

> Charlist;

Listing 41: Representing data in metaprograms

Preprocessor macros make the use of typelists more handy (on Listing 42):

#define TYPELIST_1(x) Typelist< x, NullType>

#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>

#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>

#define TYPELIST_4(x, y, z, w) Typelist< x, TYPELIST_3(y,z,w)>

// ...

typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Listing 42: Representing data with typelist at template metaprogramming

Immutables in C++: Language Foundation for Functional Programming 107

The most commonly used data types are implemented by the Boost.MPL
library in an efficient way and with an easy to use syntax, without having
to use the preprocessor for creating lists. The above list can be created using
boost::mpl::list as shown in Listing 43.

typedef boost::mpl::list<char, signed char, unsigned char> Charlist;

Listing 43: Using typelist in boost metaprogramming library

The similarities between template metaprogramming and the functional
paradigm are obvious. Static constants have the same role in template metapro-
grams as ordinary values have in the runtime ones. Template metaprogramming
uses symbolic names (typenames, typedefs) instead of variables. Specific classes
are used to replace runtime functions.

To bring C++ metaprogramming from an ad-hoc approach to a more struc-
tured form, Czarnecki and Eisenecker defined the term template metafunction as
a special template class [6]. The template metafunction is the unit to encapsulate
compile time computations in a standard way. The arguments of the metafunc-
tion are the template parameters of the class, the value of the function is a nested
type of the template. The name of this nested type has been standardised by
Boost.MPL, and it is called type. To evaluate a metafunction we provide actual
parameters for the arguments, and we refer to the nested type as the value.

The possibility of writing compile-time metaprograms in C++ was not
intentionally designed. Therefore, C++ compilers are not focused on template
metaprograms as primary targets. The syntax of the metaprograms is far from
trivial, and in most cases it is hard to understand. Debugging and profiling tem-
plate metaprograms, although now supported by various tools [24,31], are still
challenging.

7 Summary

More than 35 years after it has been created, the C++ programming language
has still among the most important and frequently used mainstream program-
ming languages. One of the reasons of its vitality is that C++ has successfully
addressed challenges that have emerged from time to time. The RAII idiom and
its consequences, like smart pointers, handled resource safety issues, generative
programming and the STL created a complex, fully comprehensive, still effec-
tive and easy to use standard library. Lately, the new memory model and the
multithreading library addressed the emerging request for supporting concurrent
programming.

Not independently from concurrent programming, we experience a growing
enthusiasm for functional programming and its toolset. Historically C++ was
not rich in language elements directly supporting the functional paradigm. In this
paper we attempted the summarize those classical and new language elements

108 Z. Porkoláb

that provide support for one of the major characteristics of functional paradigm:
immutable programming. Immutability or referential transparency requires that
objects must not change their value during runtime.

Although there is no direct support for immutable data types in C++, various
existing language features can be used to achieve immutability. Constants, and
const-correctness rules have been used in C++ from the beginning. STL supports
and always supported constant correctness. Lambda functions, introduced to
C++11, have a pure behaviour by default. Constant expressions, especially their
extended form since C++14, provide a feasible way to implement immutable
objects and pure functions. Template metaprograms are referentially transparent
by nature, and compile time data structures, like typelists, are immutable. In the
upcoming C++17 version constexpr lambdas, folding expressions will enhance
the functional toolset of C++.

With this rich set of available language features, one can safely implement in
modern C++ immutable data structures, pure functions and all the other means
of functional programming.

References

1. Abrahams, D., Gurtovoy, A.: C++ Template Metaprogramming, Concepts, Tools,
and Techniques from Boost and Beyond, p. 400. Addison-Wesley, Boston (2004).
ISBN 0321-22725-6

2. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, Boston (2001)

3. Allain, A.: Constexpr - Generalized Constant Expressions in C++11. http://www.
cprogramming.com/c++11/c++11-compile-time-processing-with-constexpr.html

4. Austern, M.H.: Generic Programming and the STL: Using and Extending the C++
Standard Template Library. Addison-Wesley, Boston (1998)

5. Coplien, J.O.: Multi-Paradigm Design for C++. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (1998)

6. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools and
Applications. Addison-Wesley, Boston (2000)

7. Dami, L.: More functional reusability in C/C++/ Objective-C with curried func-
tions. Object Composition, pp. 85–98. Centre Universitaire d’Informatique, Uni-
versity of Geneva, June 1991

8. Ellis, M., Stroustrup, B.: The Annotated C++ Reference Manual. Addison-Wesley,
Boston (1990)

9. Fejerčák, V., Szabó, Cs., Bollin, A.: A software reverse engineering experience with
the AMEISE legacy system. In: Electrical Engineering and Informatics 6: Pro-
ceedings of the Faculty of Electrical Engineering and Informatics of the Technical
University of Košice, pp. 357–362. FEI TU, Košice (2015). ISBN 978-80-553-2178-3

10. Gil, Y., Lenz, K.: Simple and safe SQL queries with C++ templates. In: Consela,
C., Lawall, J.L. (eds.) 6th International Conference on Generative Programming
and Component Engineering, GPCE 2007, Salzburg, Austria, 1–3 October, pp.
13–24 (2007)

11. Hudak, P.: Conception, evolution, and application of functional programming
languages. ACM Comput. Surv. 21(3), 359–411 (1989). https://doi.org/10.1145/
72551.72554

http://www.cprogramming.com/c++11/c++11-compile-time-processing-with-constexpr.html
http://www.cprogramming.com/c++11/c++11-compile-time-processing-with-constexpr.html
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554

Immutables in C++: Language Foundation for Functional Programming 109

12. The C++11 Standard: ISO International Standard, ISO/IEC 14882:2011(E) -
Information technology - Programming languages - C++ (2011)

13. The C++14 Standard: ISO International Standard, ISO/IEC 14882:2014(E) - Pro-
gramming Language C++ (2014)

14. Järvi, J., Powell, G., Lumsdaine, A.: The Lambda library: unnamed functions in
C++. Softw. Pract. Exper. 33(3), 259–291 (2003). https://doi.org/10.1002/spe.
504

15. Järvi, J., Freeman, J.: C++ lambda expressions and closures. Sci. Comput. Pro-
gram. 75(9), 762–772 (2010)

16. Karlsson, B.: Beyond the C++ Standard Library, An Introduction to Boost.
Addison-Wesley, Boston (2005)

17. Kernighan, B.W., Ritche, D.M.: The C Programming Language, vol. 2. Prentice-
Hall, Englewood Cliffs (1988)

18. Kiselyov, O.: Functional style in C++: closures, late binding, and Lambda abstrac-
tions. In: Proceedings of the Third ACM SIGPLAN International Conference on
Functional Programming, (ICFP 1998), p. 337. ACM, New York (1998). https://
doi.org/10.1145/289423.289464

19. Koopman, P., Plasmeijer, R., Achten, P.: An executable and testable semantics for
iTasks. In: Scholz, S.-B., Chitil, O. (eds.) IFL 2008. LNCS, vol. 5836, pp. 212–232.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24452-0 12

20. McNamara, B., Smaragdakis, Y.: Functional programming in C++. In: Proceed-
ings of the Fifth ACM SIGPLAN International Conference on Functional Program-
ming, pp. 118–129 (2000)

21. McNamara, B., Smaragdakis, Y.: Functional programming in C++ using the
FC++ library. SIGPLAN Not. 36(4), 25–30 (2001)

22. Meyers, S.: Effective STL – 50 Specific Ways to Improve Your Use of the Standard
Template Library. Addison-Wesley, Boston (2001)

23. Meyers, S.: Effective Modern C++. O’Reilly Media, Sebastopol (2014). ISBN 978-
1-4919-0399-5, ISBN 10 1-4919-0399-6

24. Mihalicza, J., Pataki, N., Porkoláb, Z.: Compiler support for profiling C++ tem-
plate metaprograms. In: Proceedings of the 12th Symposium on Programming
Languages and Software Tools (SPLST 2011), pp. 32–43, October 2011

25. Milewski, B.: Functional Data Structures in C++. C++Now, Aspen (2015).
https://www.youtube.com/watch?v=OsB09djvfl4

26. Milewski, B.: C++ Ranges are Pure Monadic Goodness. B. Milewski’s blog.
https://bartoszmilewski.com/2014/10/17/c-ranges-are-pure-monadic-goodness/

27. Musser, D.R., Stepanov, A.A.: Algorithm-oriented generic libraries. Softw.-Pract.
Exper. 27(7), 623–642 (1994)

28. Niebler, E.: Ranges for the Standard Library proposal, Rev. 1, N4128, 10 October
2014. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4128.html

29. Pataki, N., Szűgyi, Z., Dévai, G.: C++ standard template library in a safer way.
In: Proceedings of Workshop on Generative Technologies (WGT 2010), pp. 46–55
(2010)

30. Porkoláb, Z.: Functional programming with C++ template metaprograms. In:
Horváth, Z., Plasmeijer, R., Zsók, V. (eds.) CEFP 2009. LNCS, vol. 6299, pp.
306–353. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17685-
2 9

31. Sinkovics, Á.: Interactive metaprogramming shell based on clang. In: Lecture at
C++Now Conference. Aspen, Co., US (2015). https://www.youtube.com/watch?
v=oCbeXpJKzlM

https://doi.org/10.1002/spe.504
https://doi.org/10.1002/spe.504
https://doi.org/10.1145/289423.289464
https://doi.org/10.1145/289423.289464
https://doi.org/10.1007/978-3-642-24452-0_12
https://www.youtube.com/watch?v=OsB09djvfl4
https://bartoszmilewski.com/2014/10/17/c-ranges-are-pure-monadic-goodness/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4128.html
https://doi.org/10.1007/978-3-642-17685-2_9
https://doi.org/10.1007/978-3-642-17685-2_9
https://www.youtube.com/watch?v=oCbeXpJKzlM
https://www.youtube.com/watch?v=oCbeXpJKzlM

110 Z. Porkoláb

32. Sinkovics, Á., Porkoláb, Z.: Expressing C++ template metaprograms as lambda
expressions. In: Horváth, Z., Zsók, V., Achten, P., Koopman, P. (eds.) Proceedings
of Tenth Symposium on Trends in Functional Programming, Komárno, Slovakia,
2–4 June 2009, pp. 97–111 (2009)

33. Sinkovics, Á., Porkoláb, Z.: Implementing monads for C++ template
metaprograms. In: Science of Computer Programming. https://doi.org/10.
1016/j.scico.2013.01.002, http://www.sciencedirect.com/science/article/pii/
S0167642313000051. ISSN 0167-6423. Accessed 23 Jan 2013

34. Sinkovics, Á, Porkoláb, Z.: Domain-specific language integration with C++ tem-
plate metaprogramming. In: Formal and Practical Aspects of Domain-Specific Lan-
guages: Recent Developments, pp. 32–55. IGI Global (2013). https://doi.org/10.
4018/978-1-4666-2092-6.ch002. Accessed 30 Apr 2014

35. Sipos, Á., Zsók, V.: EClean – an embedded functional language. Electron. Not.
Theoret. Comput. Sci. 238(2), 47–58 (2009)

36. Sommerlad, P.: C++14 Compile-time computation (ACCU 2015). http://wiki.hsr.
ch/PeterSommerlad/files/ACCU2015VariadicVariableTemplates.pdf

37. Stepanov, A.: From Mathematics to Generic Programming, 1st edn. Addison-
Wesley, Boston (2014). ISBN-10: 0321942043, http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2013/n3649.html

38. Stroustrup, B.: A history of C++: 1979–1991. In: The Second ACM SIGPLAN
Conference on History of Programming Languages (HOPL-II), pp. 271–297. ACM,
New York (1996). https://doi.org/10.1145/154766.155375

39. Stroustrup, B.: The C++ Programming Language, 4th edn. Addison-Wesley Pro-
fessional, Boston (2013). ISBN-10 0321563840

40. Stroustrup, B.: The Design and Evolution of C++. Addison-Wesley, Boston (1994)
41. Szűgyi, Z., Sinkovics, Á., Pataki, N., Porkoláb, Z.: C++ metastring library and its

applications. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 461–480. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18023-1 15

42. Unruh, E.: Prime number computation. ANSI X3J16-94-0075/ISO WG21-462
43. Vali, F., Sutter, H., Abrahams, D.: N3649 Generic (Polymorphic) Lambda Expres-

sions (Revision 3). http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/
n3649.html

44. Veldhuizen, T.: C++ Templates are Turing Complete. Technical report, Indi-
ana University Computer Science (2003). http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.14.3670

45. Veldhuizen, T., Gannon, D.: Active libraries: rethinking the roles of compilers and
libraries. In: Proceedings of the SIAM Workshop on Object Oriented Methods for
Inter-operable Scientific and Engineering Computing, OO 1998 (1998)

46. Veldhuizen, T.: Expression Templates. C++ Report, vol. 7, pp. 26–31 (1995)
47. Zsók, V., Koopman, P., Plasmeijer, R.: Generic executable semantics for d-clean.

Electron. Not. Theoret. Comput. Sci. 279(3), 85–95 (2011)
48. Järvi, J.: The Boost Lambda library. http://www.boost.org/doc/libs/1 60 0/doc/

html/lambda.html
49. Literal types in Draft C++14 standard. Working Draft, Standard for Programming

Language C++. ANSI C++ N4290, 19 November 2014. 3.9. [10]. http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf

50. Constant expressions in Draft C++14 standard. Working Draft, Standard for Pro-
gramming Language C++. ANSI C++ N4290, 19 November 2014. 5.20. [4]

https://doi.org/10.1016/j.scico.2013.01.002
https://doi.org/10.1016/j.scico.2013.01.002
http://www.sciencedirect.com/science/article/pii/S0167642313000051
http://www.sciencedirect.com/science/article/pii/S0167642313000051
https://doi.org/10.4018/978-1-4666-2092-6.ch002
https://doi.org/10.4018/978-1-4666-2092-6.ch002
http://wiki.hsr.ch/PeterSommerlad/files/ACCU2015VariadicVariableTemplates.pdf
http://wiki.hsr.ch/PeterSommerlad/files/ACCU2015VariadicVariableTemplates.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html
https://doi.org/10.1145/154766.155375
https://doi.org/10.1007/978-3-642-18023-1_15
https://doi.org/10.1007/978-3-642-18023-1_15
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3649.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.3670
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.3670
http://www.boost.org/doc/libs/1_60_0/doc/html/lambda.html
http://www.boost.org/doc/libs/1_60_0/doc/html/lambda.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf

	Immutables in C++: Language Foundation for Functional Programming
	1 Introduction
	2 Immutable Elements in C++
	2.1 Preprocessor Macros
	2.2 String Literals
	2.3 Named Constants
	2.4 Static Const Members

	3 Const Correctness
	3.1 Non-class Types
	3.2 Constness of Class Types
	3.3 Mutable
	3.4 Constant Correctness in STL
	3.5 Casting Const Away

	4 Constexpr
	4.1 Constexpr Functions
	4.2 Constexpr Objects

	5 Lambda Expressions
	5.1 Capture
	5.2 Capturing this Pointer
	5.3 Constant Initialization by Lambda
	5.4 Generic Lambdas
	5.5 Generalized Lambda Capture

	6 C++ Template Metaprogramming
	7 Summary
	References

