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Preface

This volume presents the revised lecture notes of selected talks given at the 6th Central
European Functional Programming School (CEFP 2015), held during July 6–10, in
Budapest, Hungary and organized by the Eötvös Loránd University, Faculty of
Informatics.

The summer school was organized in the spirit of intensive programmes. CEFP
involves a large number of students, researchers, and teachers from across Europe.

The intensive programme offered a creative, inspiring environment for presentations
and for the exchange of ideas on new specific programming topics. The lectures
covered a wide range of functional programming and C++ programming subjects.

We are very grateful to the lecturers and researchers for the time and effort they
devoted to their talks and lecture notes. The lecture notes were each carefully checked
by reviewers selected from experts. The papers were revised by the lecturers based on
reviews. The last paper of the volume is a selected paper of the PhD Workshop
organized for the participants of the summer school.

We would like to express our gratitude for the work of all the members of the
Programme Committee and the Organizing Committee.

March 2019 Viktória Zsók
Zoltán Porkoláb
Zoltán Horváth
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Abstract. Functional programmers are strong enthusiasts of modular
solutions to programming problems. Since software characteristics such
as readability or maintainability are often directly proportional to mod-
ularity, this programming style naturally contributes to the beauty of
functional programs. Unfortunately, in return of this beauty we often
sacrifice efficiency: modular programs rely, at runtime, on the creation,
use and elimination of intermediate data structures to connect its com-
ponents. In this tutorial paper, we study an advanced technique that
attempts to retain the best of this two worlds: (i) it allows programmers
to implement beautiful, modular programs (ii) it shows how to trans-
form such programs, in a way that can be incorporated in a compiler,
into programs that do not construct any intermediate structure.

1 Introduction

Functional programming languages are a natural setting for the development
of modular programs. Features common in functional programming languages,
like polymorphism, higher-order functions and lazy evaluation are ingredients
particularly suitable to develop software in a modular way. In such a setting,
a software engineering develops her/his software by combining a set of simple,
reusable, and off-the-shelf library of generic components into more complex (and
possibly reusable) software. Indeed, already in Hughes (1984) it is stressed that
modularity is a fundamental reason contributing to successful programming,
hence the expressive power and relevance of functional languages.

Let us consider, for example, that we wish to define a function, named trail ,
to compute the last n lines of a given text. The naive programmer will solve this
problem by defining from scratch all that functionality in a single, monolithic
function. Although such a function may be correct and may have an efficient
execution time, it may be harder to define and to understand. In a modular

c© Springer Nature Switzerland AG 2019
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2 J. P. Fernandes et al.

setting programmers tend to solve these problems by re-using simpler functions
and to combine them in order to solve the problem under consideration.

For example, trail may be defined in an elegant way as follows:

trail :: Int → Text → Text
trail n t = (unlines ◦ reverse ◦ take n ◦ reverse ◦ lines) t

where several simple, well known, and well understood library functions are
reused, namely, function lines that breaks a text in (a list containing) the lines
that constitute it, function reverse that inverts the order of the elements in a list,
function take n that selects the first n elements of a list, and function unlines that
implements the inverse behavior of lines. Such functions are easily combined by
using another reusable, higher-order construction: function composition, denoted
by ◦.1

However, such a setting may also entail a drawback: as it encourages a com-
positional style of programming where non-trivial solutions are constructed com-
posing simple functions, intermediate structures need to be constructed to serve
as connectors of such functions.

In trail , for example, function lines produces a list of strings which is used
by reverse to construct another list, which then feeds take n, and so on.

In practical terms, constructing, traversing and destroying these data struc-
tures may degrade the performance of the resulting implementations. And, in
fact, the naive programmer surely agrees that the modular solution is more
elegant, concise, and easy to understand, but may still be convinced that his
monolithic solution is better simply because it may be more efficient!

In this tutorial we will study concrete settings where this drawback can
be avoided. For this, we rely on a program transformation technique, usually
referred to as program deforestation or program fusion (Wadler 1990; Gill et al.
1993), which is based on a certain set of calculation laws that can merge com-
putations and thus avoid the construction of intermediate data structures. By
the application of this technique a program h = f ◦ g is then transformed into
an equivalent program that does not construct any intermediate structure.

In this tutorial we study a particular approach to the fusion technique known
as shortcut fusion (Gill et al. 1993; Takano and Meijer 1995; Fernandes et al.
2007). The laws we present assume that it is possible to express the functions f
and g , that occur in a composition f ◦ g , in terms of well-known, higher-order,
recursion patterns. As we will see later, while the applicability of such laws is
certainly not universal, the fact is that the state of the art in shortcut fusion
techniques can already deal with an extensive set of programs.

A remarkable observation that can be made about the programs that we
calculate is that they often rely on either higher-order functions or on lazyness
to be executed. So, these constructions, that Hughes (1984) identified as being
essential to modularity, are in fact not only useful to increase modularity, but

1 Program composition (f ◦ g) x is interpreted as f (g x ), and is left associative, i.e.,
f ◦ g ◦ h = (f ◦ g) ◦ h.
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they can also be explored for reasoning about modular programs, including to
increase their efficiency.

This Paper is Organized as Follows. In Sect. 2 we introduce the programming
language that is used in the examples throughout the paper, that is, Haskell, and
review the concepts of that language that are necessary to follow our materials.
In Sect. 3, we present concrete shortcut fusion rules that are used to achieve
deforestation of intermediate structures in small examples that are also intro-
duced. These rules are concrete instances of generic ones, whose definition we
present in Sect. 4. In Sect. 5 we study the application of fusion rules to a realistic
example, and in Sect. 6 we conclude the paper.

2 A Gentle Introduction to Haskell

In this tutorial, all the code that we present is written in the Haskell programming
language (Peyton Jones et al. 1999; Peyton Jones 2003). Haskell is a modern,
polymorphic, statically-typed, lazy, and pure functional programming language.

In this section, we introduce the constructions that are necessary for the
reader to follow our tutorial. While some familiarity with functional program-
ming is expected, we hope that the reader does not need to be proficient in
Haskell to understand such materials.

Haskell provides a series of predefined types such as Int (typifying nat-
ural numbers), Float (typifying floating point numbers) or Char (typifying
single characters), and natural solutions to well known problems can readily
be expressed. This is the case of the following (recursive) implementation of
factorial , that directly follows from its mathematical definition:

factorial :: Int → Int
factorial 0 = 1
factorial n = n ∗ factorial (n − 1)

In Haskell, type judgments are of the form e :: τ and state that an expression
e has type τ . In the case of factorial the type Int → Int indicates that it is a
function from integers to integers.

Besides working with predefined types, we also have ways of constructing
more complex data-types based on existent ones (either provided by Haskell
itself or defined by the user). Indeed, in its prelude Haskell already defines (poly-
morphic) lists as:

data [a ] = [ ] | a : [a ]

A concrete list of elements of type a, which is of type [a ], is then either
empty, [ ], or it has an element of type a followed by a list [a ]. By polymorphic
we mean that we are able of creating a list of any type, which is achieved by
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instantiating the type variable a with that type. For example, the type String
is simply defined as,2

type String = [Char ]

and concrete lists can easily be defined:

l1 :: String
l1 = [’c’, ’e’, ’f’, ’p’ ]

l2 :: [Int ]
l2 = [2, 0, 1, 5]

For clarity, we have explicitly annotated l1 and l2 with their corresponding
types (l1 is a lisf of characters, or a String , and l2 is a list on integers), but this
is not strictly necessary. The definitions of l1 e l2 are simply syntactic sugar for
the following definitions:

l1 = ’c’ : ’e’ : ’f’ : ’p’ : [ ]

l2 = 2 : 0 : 1 : 5 : [ ]

Notice that the operator : for constructing lists (usually pronounced cons) is
an infix operator. It can be turned into a prefix operator by using parenthesis,
i.e., by writing (:). Hence, 5 : [ ] and (:) 5 [ ] are equivalent expressions. The same
can be done with any other infix operator.

This means that l1 and l2 can also be expressed as:

l1 = (:) ’c’ ((:) ’e’ ((:) ’f’ ((:) ’p’ [ ])))

l2 = (:) 2 ((:) 0 ((:) 1 ((:) 5 [ ])))

In this paper, we will use all these different notations for lists interchangeably.
Regarding l1, and since it is a string, it could alternatively have been defined

as:

l1 = "cefp"

Regarding the manipulation of lists, we normally use its constructors [ ] and
(:) to pattern match on a given list. Indeed, a function f defined as:

f [ ] = f1
f (h : t) = f2

2 Note that type synonyms are declared with the keyword type and that new data-
types are declared with data.
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defines that its behavior on an empty list is that of f1 and that its behavior on
a list whose first element is h and whose tail is t is that of f2. Of course, h and
t can be used in the definition of f2.

As an example, we may define the following function to compute the sum of
all elements in a list of integers.3

sum [ ] = 0
sum (h : t) = h + sum t

Regarding this implementation, already in 1990 Hughes pinpointed that only
the value 0 and the operation + are specific to the computation of sum. Indeed,
if we replace 0 by 1 and + by ∗ in the above definition, we obtain a function
that multiplies all the elements in a list of integers:

product [ ] = 1
product (h : t) = h ∗ product t

This suggests that abstract/generic patterns for processing lists are useful.
And in fact all modern functional languages allow the definition of such patterns
relying on the concept of higher-order functions.

In Haskell functions are first-class citizens, in the sense that they can be
passed as arguments to other functions and they can be the result produced
by other functions. With this possibility in mind, we may define a well-know
pattern named fold :4

fold :: (b, (a, b) → b) → [a ] → b
fold (nil , cons) = f

where f [ ] = nil
f (x : xs) = cons (x , f xs)

With this pattern at hand, we may now give unified, modular, definitions for
sum and product :5

sum = fold (0, uncurry (+))

product = fold (1, uncurry (∗))

3 This function is actually included in the Haskell Prelude.
4 This definition of fold slightly differs from the definition of foldr :: (a → b → b) →
b → [a ] → b provided by Haskell, in that we rely on uncurried functions and we
have changed the order of the expected arguments. We give this definition here as
it will simplify our presentation later.
Also, for simplicity, we have omitted an argument on both sides of the equa-
tion fold (nil , cons) = f , that could have equally been given the definition
fold (nil , cons) l = f l .

5 uncurry takes a function f :: a → b → c and produces a function f ′ :: (a, b) → c.
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Exercise 1. Implement a function sort :: [Float ] → [Float ] that sorts all the
elements in a list of floating point numbers. For this, you can rely on function
insert ::Float → [Float ] → [Float ] that inserts a number in a list whose elements
are in ascending order so that the ordering is preserved.

insert :: Float → [Float ] → [Float ]
insert n [ ] = [n ]
insert n (h : t) = if (n < h)

then n : h : t
else h : insert n t

(a) Propose a(n explicitly) recursive solution for sort .

(b) Re-implement your previous solution in terms of a fold . �

Now, suppose that we want to increment all elements of a list of integers by
a given number:

increment :: ([Int ], Int) → [Int ]
increment ([ ], ) = [ ]
increment (h : t , z ) = (h + z ) : increment (t , z )

Just by looking at the types involved, we may see that it is not possible to
express increment in terms of a fold . Indeed, fold allows us to define functions of
type [a ] → b, while increment is of type ([Int ], Int) → Int , and it is not possible
to match [a ] with ([Int ], Int).

Still, the fold pattern can be generalized in many ways, one of them to deal
with functions of type ([a ], z ) → b. For this we may define a new pattern, called
pfold , that also traverses a list in a systematic fashion, but does so taking into
account the additional parameter of type z :

pfold :: (z → b, ((a, b), z ) → b) → ([a ], z ) → b
pfold (hnil , hcons) = p
where p ([ ], z ) = hnil z

p (a : as, z ) = hcons ((a, p (as, z )), z )

Now, we are in conditions to give increment a modular definition, as we have
done for sum and product :

increment = pfold (hnil , hcons)
where hnil = [ ]

hcons ((h, r), z ) = (h + z ) : r
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Besides working with lists, in this tutorial we will often need to use binary
trees, whose elements are in their leaves and are of type integer. For this purpose,
we may define the following Haskell data-type:

data LeafTree = Leaf Int
| Fork (LeafTree,LeafTree)

Similarly to what we have defined for lists, we may now define fold and pfold
for leaf trees, that we will name foldT and pfoldT , respectively.

foldT :: (Int → a, (a, a) → a) → LeafTree → a
foldT (h1, h2) = fT
where fT (Leaf n) = h1 n

fT (Fork (l , r)) = h2 (fT l , fT r)

pfoldT :: ((Int , z ) → a, ((a, a), z ) → a) → (LeafTree, z ) → a
pfoldT (h1, h2) = pT
where pT (Leaf n, z ) = h1 (n, z )

pT (Fork (l , r), z ) = h2 ((pT (l , z ), pT (r , z )), z )

And we can express the recursive function tmin, that computes the minimum
value of a tree,6

tmin :: LeafTree → Int
tmin (Leaf n) = n
tmin (Fork (l , r)) = min (tmin l) (tmin r)

in terms of a fold for leaf trees:

tmin = foldT (id , uncurry min)

Similarly, we can express the recursive function replace, that places a concrete
value in all the leaves of a tree:

replace :: (LeafTree, Int) → LeafTree
replace (Leaf n,m) = Leaf m
replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

in terms of a pfold for leaf trees:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

6 Given two numbers, min will compute the minimum of both numbers.
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The input tree The output tree

6

3 1

1

1 1

Fig. 1. An example of the use of repmin.

In the above implementation, we have used functions π1 and π2, whose (type-
parametric) definition is as follows:

π1 :: (a, b) → a
π1 (a, b) = a

π2 :: (a, b) → b
π2 (a, b) = b

Now, suppose that we want to construct a function that replaces all the
leaves in a leaf tree by the minimum leaf of that tree, a problem widely know as
repmin (Bird 1984). An example of this transformation is given in Fig. 1.

We may combine the above implementations of replace and tmin in a simple
way to obtain a solution to repmin:

repmin t = replace (t , tmin t)

Regarding this implementation, Bird (1984) notices that t is traversed twice,
and that in a lazy functional language this is not strictly necessary. In fact, Bird
shows how to remove this multiple traversals by deriving circular programs from
programs such as repmin.

Circular programs hold circular definitions, in which arguments in a function
call depend on results of that same call. That is, they contain definitions such
as:

(..., x , ...) = f (..., x , ...)

From the above repmin definition, Bird derives the following circular pro-
gram:7

7 In order to make it easier for the reader to identify circular definitions, we frame the
occurrences of variables that induce them (m in this case).
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repmin t = nt
where (nt , m ) = repm t

repm (Leaf n) = (Leaf m ,n)
repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r
in (Fork (l ′, r ′),min n1 n2)

Although this circular definition seems to induce both a cycle and non-
termination of this program, the fact is that using a lazy language, the lazy
evaluation machinery is able to determine, at runtime, the right order to evalu-
ate this circular definition. This reinforces the power of lazy evaluation strategy.

Deriving circular programs, however, is not the only way to eliminate multiple
traversals of data structures. In particular, the straightforward repmin solution
shown earlier may also be transformed, by the application of a well-known tech-
nique called lambda-abstraction (Pettorossi and Skowron 1987), into a higher-
order program.
This reinforces the power of higher-order features, and as a result, we obtain8:

transform t = nt m
where (nt ,m) = repm t

repm (Leaf n) = (λz → Leaf z ,n)
repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r
in (λz → Fork (l ′ z , r ′ z ),min n1 n2)

Regarding this new version of repmin, we may notice that it is a higher-order
program, since nt , the first component of the result produced by the call repm t ,
is now a function. Later, nt is applied to m, the second component of the result
produced by that same call, therefore producing the desired tree result. Thus,
this version does not perform multiple traversals.

3 Shortcut Fusion

Having introduced the concepts of Haskell that are necessary to understand the
remainder of this paper, in this section we introduce shortcut fusion by example.

We start by introducing simple programming problems whose solutions can
be expressed as programs that rely on intermediate structures. That is, we con-
sider programs such as:

prog :: a → c
prog = cons ◦ prod

8 In the program, we use two anonymous functions that are defined using the symbol
λ. Defining λm → Leaf m, for example, is equivalent to defining g m = Leaf m.
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Then, we present specific shortcut fusion rules that are applicable to each
such example.

In Sect. 3.1, we demonstrate with programs whose producer and consumer
functions are of type prod :: a → b and cons :: b → c, respectively.

In Sect. 3.2, we extend the applicability of such rules, considering programs
whose producer and consumer functions are of type prod ::a → (b, z ) and cons ::
(b, z ) → c, respectively.

3.1 Standard Shortcut Fusion

In order to illustrate how deforestation can be achieved in practice, let us start
by considering an alternative to the factorial implementation given in Sect. 2.

For a given, assumed positive, number n, this alternative creates a list with
all the integers from n down to 1:

down :: Int → [Int ]
down 0 = [ ]
down n = n : down (n − 1)

The elements of such a list then need to be multiplied, which can be achieved
with function product that we have also already seen earlier:

product :: [Int ] → Int
product [ ] = 1
product (h : t) = h ∗ product t

Now, in order to implement factorial it suffices to combine these functions appro-
priately:

factorial :: Int → Int
factorial n = product (down n)

which is equivalent to:

factorial n = (product ◦ down) n

or simply:

factorial = product ◦ down

While this implementation is equivalent to the original one, it is creating an
intermediate list of numbers which is clearly not necessary, and this affects its
running performance. Of course, in this simple example, the original solution is
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at least as simple to implement as this alternative one, but in general, decom-
posing a problem in the sub-problems that constitute it contributes to increasing
modularity and facilitates the programming and debugging tasks.

Regarding the above implementation of factorial , we see that if we ask for
the value of factorial 0, an empty list is produced by down, which is replaced
by the value 1, as defined in product . Similarly, we see that for factorial n, the
list n : down (n − 1) is created which is later transformed into the expression
n ∗ product (down (n − 1)). So, in this simple example, we can straightforwardly
reason about the definition of a version of factorial that does not construct the
intermediate list.

In order to derive this more efficient version of factorial in a systematic way
we may proceed using shortcut fusion, and namely the fold/build rule (Gill et al.
1993; Takano and Meijer 1995; Gill 1996) that can be stated for the case when
a list is the intermediate structure used to compose two functions:

Law 1 (fold/build rule for lists)

fold (h1, h2) ◦ build g = g (h1, h2)

where

build :: (∀ b . (b, (a, b) → b) → c → b) → c → [a ]
build g = g ([ ], uncurry (:))
Function build allows us to abstract from the concrete list constructors that

are used to build the intermediate structure. This abstraction is realized in func-
tion g . In this way, and given that fold (h1, h2) replaces, in a list, all the occur-
rences of [ ] by h1 and all the occurrences of (:) by h2, deforestation proceeds by
anticipating this replacement. This is precisely what is achieved in the definition
g (h1, h2).

In order to apply Law1 to factorial , we first need to express down in terms
of build and product in terms of fold :

product = fold (1, uncurry (∗))

down = build g
where g (nil , cons) 0 = nil

g (nil , cons) n = cons (n, g (nil , cons) (n − 1))

We then follow a simple equational reasoning to obtain:

factorial
= { definition of factorial }

product ◦ down
= { definition of product and down }

fold (1, uncurry (∗)) ◦ build g
= { Law 1 }

g (1, uncurry (∗))
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Finally, by inlining the above definition, we obtain the original formulation
of factorial :

factorial 0 = g (1, uncurry (∗)) 0
= 1

factorial n = g (1, uncurry (∗)) n
= uncurry (∗) (n, factorial (n − 1))
= n ∗ factorial (n − 1)

In the following exercise, we encourage the reader to apply Law1 to another
concrete example.

Exercise 2. Imagine that you are given the list of grades (the scale is [0 . . 10])
obtained by a set of students in an university course, such as:

l = [(6, 8), (4, 5), (9, 7)]

Each pair holds the grades of a particular student; its first component holds
the grade obtained by the student in the exam, and its second component the
grade obtained in the project.

Implement a function average :: [(Float ,Float)] → [Float ] that computes the
average of the grades obtained by each student. As an example, average l is
expected to produce the list [7.0, 4.5, 8.0].

(a) Propose a(n explicitly) recursive solution for average.
(b) Re-implement your previous solution in terms of a build .
(c) Obtain a function sortavgs :: [(Float ,Float)] → [Float ] simply by composing

functions sort (from Exercise 1) and average.
(d) Notice that function sortavgs relies on an intermediate structure of type

[Float ], which can be eliminated. Apply Law1 to obtain a deforested pro-
gram, say dsortavgs that is equivalent to sortavgs. �

Law 1 deals specifically with programs such as factorial , that rely on an inter-
mediate list to convey results between the producer and the consumer functions.

A similar reasoning can, however, be made for programs relying on arbitrary
data types as intermediate structures. This is, for example, the case of programs
that need to construct an intermediate LeafTree, and Law 2, as follows, deals
precisely with such type of programs.

Law 2 (fold/build rule for leaf trees)

foldT (h1, h2) ◦ buildT g = g (h1, h2)

where

buildT :: (∀ a . (Int → a, (a, a) → a) → c → a) → c → LeafTree
buildT g = g (Leaf ,Fork)
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As an example, we can use this law to fuse the following program, that
computes the minimum value of a mirrored leaf tree.

tmm = tmin ◦ mirror

mirror :: LeafTree → LeafTree
mirror (Leaf n) = Leaf n
mirror (Fork (l , r)) = Fork (mirror r ,mirror l)

Since we had already expressed tmin in terms of foldT in Sect. 2, as

tmin = foldT (id , uncurry min)

we now need to express mirror in terms of buildT :

mirror = buildT g
where g (leaf , fork) (Leaf n) = leaf n

g (leaf , fork) (Fork (l , r)) = fork (g (leaf , fork) r ,
g (leaf , fork) l)

Finally, by Law2 we have that

tmm = g (id , uncurry min)

Inlining, we have

tmm (Leaf n) = n
tmm (Fork (l , r)) = min (tmm r) (tmm l)

As expected, this function does not construct the intermediate mirror tree.

3.2 Extended Shortcut Fusion

In this section, we move on to study shortcut fusion for programs defined as
the composition of two functions that, besides an intermediate structure, need
to communicate using an additional parameter. That is, we focus on programs
such as prog = cons ◦ prod, where prod :: a → (b, z ) and cons :: (b, z ) → c.

We start by deriving circular programs from such type of function composi-
tions and then we derive higher-order programs from the same programs.

We illustrate with examples relying on intermediate structures of type
LeafTree only. This is because a realistic example based on intermediate lists
will be given in Sect. 5.
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Deriving Circular Programs. We start by introducing a new law, whose
generic version was originally provided by Fernandes et al. (2007), and which
is similar to Law 2. This law, however, applies to the extended form of function
compositions we are now considering.

Law 3 (pfold/buildp rule for leaf trees)9

pfoldT (h1, h2) ◦ buildpT g $ c = v
where (v , z ) = g (k1, k2) c

k1 n = h1 (n, z )
k2 (l , r) = h2 ((l , r), z )

where

buildpT :: (∀ a . (Int → a, (a, a) → a) → c → (a, z )) → c → (LeafTree, z )
buildpT g = g (Leaf ,Fork)

Notice that the consumer is now assumed to be given in terms of a buildpT

and that the consumer function is now expected to be given as a pfold . This is
precisely to accommodate the additional parameter of type z .

To illustrate the application of this law in practice, recall the repmin problem
that was introduced in Sect. 2 and its initial solution:

repmin t = replace (t , tmin t)

An alternative solution to such problem can be given by an explicit compo-
sition of two functions, where the first computes the minimum of a tree and the
second replaces all leaf values by such minimum:10

transform :: LeafTree → LeafTree
transform = replace ◦ tmint

where

tmint :: LeafTree → (LeafTree, Int)
tmint (Leaf n) = (Leaf n,n)
tmint (Fork (l , r)) = (Fork (l ′, r ′),min n1 n2)

9 We have used ($) :: (a → b) → a → b in the expression pfoldT (h1, h2) ◦
buildpT g $ c to avoid the use of parenthesis. The same expression could be defined
as (pfoldT (h1, h2) ◦ buildpT g) c.

10 Here, we needed to introduce an explicit function composition since one is needed
in order to apply the rule. In practice, intermediate structures need to be more
informative that the input ones, so the latter must be bigger than the former, and
we are forced to define and manipulate intermediate structures. This means that
solutions as function compositions are natural ones.
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where (l ′, n1) = tmint l
(r ′, n2) = tmint r

and replace remains unchanged:

replace :: (LeafTree, Int) → LeafTree
replace (Leaf n,m) = Leaf m
replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

To apply the rule, first we have to express replace and tmint in terms of pfoldT

and buildpT for leaf trees, respectively:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

tmint = buildpT g
where g (leaf , fork) (Leaf n) = (leaf n,n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l
(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Therefore, by applying Law3 we get:

transform t = nt
where (nt , m ) = g (k1, k2) t

k1 = Leaf m
k2 (l , r) = Fork (l , r)

Inlining, we obtain the definition we showed previously in Sect. 2:

repmin t = nt
where (nt , m ) = repm t

repm (Leaf n) = (Leaf m ,n)
repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r
in (Fork (l ′, r ′),min n1 n2)

Next, we propose another concrete example where Law 3 is applicable.

Exercise 3. Our goal is to implement a function transform = add ◦convert , that
takes a list of integers and produces a balanced leaf tree whose elements are
the elements of the input list incremented by their sum. So, if the input list is
[1, 2, 3] we want to produce a balanced leaf tree whose elements are 7, 8 and 9.
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(a) Implement a function convert :: [Int ] → (LeafTree, Int) that produces a
height-balanced leaf tree containing all the elements of a list. Function
convert must also produce the sum of all elements of the list.

(b) Implement a function add :: (LeafTree, Int) → LeafTree that adds to all the
elements of a leaf tree a given number.

(c) Write convert in terms of buildpT and add in terms of pfoldT .
(d) Apply Law3 to derive a circular program that does not construct the inter-

mediate leaf tree. �

Deriving Higher-Order Programs. Next, we introduce a new law, Law 4,
that applies to the same type of programs as Law 3, but that instead of deriving
circular programs derives higher-order ones. The specific case of this law that
deals with programs relying on intermediate lists instead of leaf trees was orig-
inally given by Voigtländer (2008) and its generic formulation was later given
by Pardo et al. (2009).

Law 4 (higher-order pfold/buildp rule for leaf trees)

pfoldT (h1, h2) ◦ buildpT g $ c = f z
where (f , z ) = g (ϕh1 , ϕh2) c

ϕh1 n = λz → h1 (n, z )
ϕh2 (l , r) = λz → h2 ((l z , r z ), z )

where

buildpT :: (∀ a . (Int → a, (a, a) → a) → c → (a, z )) → c → (LeafTree, z )
buildpT g = g (Leaf ,Fork)

To see an example of the application of Law4, we consider again the straight-
forward solution to the repmin problem:

transform = replace ◦ tmint

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

tmint = buildpT g
where g (leaf , fork) (Leaf n) = (leaf n,n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l
(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

In order to apply Law4 to transform, we need the expressions of ϕh1 and
ϕh2 . For ϕh1 , we have that:
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ϕh1 n
= { definition of ϕh1 in Law 4 }

λz → h1 (n, z )
= { definition of h1 }

λz → (Leaf ◦ π2) (n, z )
= { definition of function composition, definition of π2 }

λz → Leaf z

and similarly for ϕh2 , we obtain that ϕh2 (l , r) = λz → Fork (l z , r z ).
Then, by direct application of Law4 to transform, we obtain:

transform t = nt m
where (nt ,m) = g (ϕh1 , ϕh2)

Inlining the above definition, we obtain the higher-order solution to repmin
that we had already presented in Sect. 2:

transform t = nt m
where (nt ,m) = repm t

repm (Leaf n) = (λz → Leaf z ,n)
repm (Fork (l , r)) = let (l ′, n1) = repm l

(r ′, n2) = repm r
in (λz → Fork (l ′ z , r ′ z ),min n1 n2)

Exercise 4. Recall the solution to transform = add ◦ convert of Exercise 3.

(a) Apply Law4 to derive a higher-order program that does not construct the
intermediate leaf tree. �

4 Generalized Shortcut Fusion

In the previous section, we have used concrete examples to demonstrate the
applicability and interest of different types of shortcut fusion rules. In this
section, we show that the concrete rules we have introduced before can actu-
ally be given uniform, generic formulations, that are applied to a wide range
of programs characterized in terms of certain program schemes. The generic
formulations of the rules described here are parametric in the structure of the
intermediate data-type involved in the function composition to be transformed.

Throughout the section we shall assume we are working in the context of
a lazy functional language with a cpo (Complete Partial Order) semantics, in
which types are interpreted as pointed cpos (complete partial orders with a
least element ⊥) and functions are interpreted as continuous functions between
pointed cpos.
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While this semantics closely resembles the semantics of Haskell, for now we
do not consider lifted cpos. That is, unlike the semantics of Haskell, we do not
consider lifted products and function spaces. The precise implications of these
semantics differences are studied in Sect. 4.5.

As usual, a function f is said to be strict if it preserves the least element, i.e.
f ⊥ = ⊥.

4.1 Data-Types

The structure of data-types can be captured using the concept of a functor.
A functor consists of two components: a type constructor F , and a function
mapF :: (a → b) → (F a → F b), which preserves identities and compositions:

mapF id = id (1)
mapF (f ◦ g) = mapF f ◦ mapF g (2)

A standard example of a functor is that formed by the list type constructor and
the well-known map function, which applies a function to the elements of a list,
building a new list with the results.

map :: (a → b) → [a ] → [b ]
map f [ ] = [ ]
map f (a : as) = f a : map f as

Another example of a functor is the product functor, which is a case of a
bifunctor, a functor on two arguments. On types its action is given by the type
constructor for pairs. On functions its action is defined by:

(×) :: (a → c) → (b → d) → (a, b) → (c, d)
(f × g) (a, b) = (f a, g b)

Semantically, we assume that pairs are interpreted as the cartesian product of
the corresponding cpos. Associated with the product we can define the following
functions, corresponding to the projections and the split function:

π1 :: (a, b) → a
π1 (a, b) = a

π2 :: (a, b) → b
π2 (a, b) = b

(�) :: (c → a) → (c → b) → c → (a, b)
(f � g) c = (f c, g c)
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Among other properties, it holds that

f ◦ π1 = π1 ◦ (f × g) (3)
g ◦ π2 = π2 ◦ (f × g) (4)

f = ((π1 ◦ f ) � (π2 ◦ f )) (5)

Another case of a bifunctor is the sum functor, which corresponds to the dis-
joint union of types. Semantically, we assume that sums are interpreted as the
separated sum of the corresponding cpos.

data a + b = Left a | Right b
(+) :: (a → c) → (b → d) → (a + b) → (c + d)
(f + g) (Left a) = Left (f a)
(f + g) (Right b) = Right (g b)

Associated with the sum we can define the case analysis function, which has the
property of being strict in its argument of type a + b:

(�) :: (a → c) → (b → c) → (a + b) → c
(f � g) (Left a) = f a
(f � g) (Right b) = g b

Product and sum can be generalized to n components in the obvious way.
We consider declarations of data-types of the form11:

data τ (α1, · · · , αm) = C1 (τ1,1, · · · , τ1,k1) | · · · | Cn (τn,1, · · · , τn,kn
)

where each τi,j is restricted to be a constant type (like Int or Char), a type
variable αt, a type constructor D applied to a type τ ′

i,j or τ (α1, · · · , αm) itself.
Data-types of this form are usually called regular. The derivation of a func-
tor that captures the structure of the data-type essentially proceeds as follows:
alternatives are regarded as sums (| is replaced by +) and constructors Ci are
omitted. Every τi,j that consists of a type variable αt or of a constant type
remain unchanged and occurrences of τ (α1, · · · , αm) are substituted by a type
variable a in every τi,j . In addition, the unit type () is placed in the positions
corresponding to constant constructors (like e.g. the empty list constructor). As
a result, we obtain the following type constructor F :

F a = (σ1,1, · · · , σ1,k1) + · · · + (σn,1, · · · , σn,kn
)

where σi,j = τi,j [τ (α1, · · · , αm) := a] 12. The body of the corresponding map-
ping function mapF :: (a → b) → (F a → F b) is similar to that of F a, with the

11 For simplicity we shall assume that constructors in a data-type declaration are
declared uncurried.

12 By s[t := a] we denote the replacement of every occurrence of t by a in s.
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difference that the occurrences of the type variable a are replaced by a function
f :: a → b:

mapF f = g1,1 × · · · × g1,k1 + · · · + gn,1 × · · · × gn,kn

with

gi,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f if σi,j = a

id if σi,j = t, for some type t
or σi,j = a′, for some type variable a′ other than a

mapD g′
i,j if σi,j = D σ′

i,j

where mapD represents the map function mapD :: (a → b) → (D a → D b)
corresponding to the type constructor D .

For example, for the type of leaf trees

data LeafTree = Leaf Int
| Fork (LeafTree,LeafTree)

we can derive a functor T given by

T a = Int + (a, a)

mapT :: (a → b) → (T a → T b)
mapT f = id + f × f

The functor that captures the structure of the list data-type needs to reflect the
presence of the type parameter:

La b = () + (a, b)

mapLa
:: (b → c) → (La b → La c)

mapLa
f = id + id × f

This functor reflects the fact that lists have two constructors: one is a constant
and the other is a binary operation.

Every recursive data-type is then understood as the least fixed point of the
functor F that captures its structure, i.e. as the least solution to the equation
τ ∼= F τ . We will denote the type corresponding to the least solution as μF .
The isomorphism between μF and F μF is provided by the strict functions
inF :: F μF → μF and outF :: μF → F μF , each other inverse. Function inF

packs the constructors of the data-type while function outF packs its destructors.
Further details can be found in (Abramsky and Jung 1994; Gibbons 2002).

For instance, in the case of leaf trees we have that μT = LeafTree and

inT :: T LeafTree → LeafTree
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inT = Leaf � Fork

outT :: LeafTree → T LeafTree
outT (Leaf n) = Left n
outT (Fork (l , r)) = Right (l , r)

4.2 Fold

Fold (Bird and de Moor 1997; Gibbons 2002) is a pattern of recursion that
captures function definitions by structural recursion. The best known example
of fold is its definition for lists, which corresponds to the foldr operator (Bird
1998).

Given a functor F and a function h :: F a → a, fold (also called catamor-
phism), denoted by fold h :: μF → a, is defined as the least function f that
satisfies the following equation:

f ◦ inF = h ◦ mapF f

Because outF is the inverse of inF , this is the same as:

fold :: (F a → a) → μF → a
fold h = h ◦ mapF (fold h) ◦ outF

A function h ::F a → a is called an F-algebra13. The functor F plays the role of
the signature of the algebra, as it encodes the information about the operations of
the algebra. The type a is called the carrier of the algebra. An F-homomorphism
between two algebras h :: F a → a and k :: F b → b is a function f :: a → b
between the carriers that commutes with the operations. This is specified by the
condition f ◦ h = k ◦ mapF f . Notice that fold h is a homomorphism between
the algebras inF and h.

The concrete instance of fold for the case when F = T and μF = LeafTree
is given by the definition we had already presented in Sect. 2:

foldT :: (Int → a, (a, a) → a) → LeafTree → a
foldT (h1, h2) = fT
where fT (Leaf n) = h1 n

fT (Fork (l , r)) = h2 (fT l , fT r)

In the same way, the concrete instance of fold for the case when F = La and
μF = [a ] is the definition we had also given in Sect. 2:

13 When showing specific instances of fold for concrete data-types, we will write the
operations in an algebra h1� · · · �hn in a tuple (h1, . . . , hn).
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fold :: (b, (a, b) → b) → [a ] → b
fold (nil , cons) = f

where f [ ] = nil
f (x : xs) = cons (x , f xs)

Notice that, for simplicity, we are overloading fold both as the name of the
generic recursion pattern and its instance for lists. This will also be the case for
other constructions given in this paper, but it should be clear from every context
whether we are referring to the generic or the specific case.

4.3 The Fold/Build Rule

Fold enjoys many algebraic laws that are useful for program transforma-
tion (Augusteijn 1998). A well-known example is shortcut fusion (Gill et al.
1993; Gill 1996; Takano and Meijer 1995) (also known as the fold/build rule),
which is an instance of a free theorem (Wadler 1989).

Law 5 (fold/build rule) For h strict,

g :: ∀ a . (F a → a) → c → a
⇒

fold h ◦ build g = g h

where

build :: (∀ a . (F a → a) → c → a) → c → μF

build g = g inF

Laws 1 and 2, that we have presented in Sect. 3.1 are particular instances
of Law 5. In that section, when we presented their formulation, notice that the
assumption about the strictness of the algebra disappears. This is because every
algebra h1 � h2 is strict as so is every case analysis.

In the same line of reasoning, we can state another fusion law for a slightly
different producer function:

Law 6 (fold/buildp rule) For h strict,

g :: ∀ a . (F a → a) → c → (a, z )
⇒

(fold h × id) ◦ buildp g = g h

where

buildp :: (∀ a . (F a → a) → c → (a, z )) → c → (μF, z )
buildp g = g inF
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For example, the instance of this law for leaf trees is the following:

(foldT (h1, h2) × id) ◦ buildpT g = g (h1, h2) (6)

where

buildpT :: (∀ a . (Int → a, (a, a) → a) → c → (a, z ))
→ c → (LeafTree, z )

buildpT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears by the same
reason as for (2).

To see an example of the application of this law, consider the program ssqm:
it replaces every leaf in a tree by its square while computing the minimum value
of the tree; later, it sums all the (squared) elements of an input tree.

ssqm :: LeafTree → (Int , Int)
ssqm = (sumt × id) ◦ gentsqmin

sumt :: LeafTree → Int
sumt (Leaf n) = n
sumt (Fork (l , r)) = sumt l + sumt r

gentsqmin :: LeafTree → (LeafTree, Int)
gentsqmin (Leaf n) = (Leaf (n ∗ n),n)
gentsqmin (Fork (l , r)) = let (l ′, n1) = gentsqmin l

(r ′, n2) = gentsqmin r
in (Fork (l ′, r ′),min n1 n2)

To apply Law (6) we have to express sumt as a fold and gentsqmin in terms of
buildpT :

sumt = foldT (id , uncurry (+))
gentsqmin = buildpT g
where g (leaf , fork) (Leaf n) = (leaf (n ∗ n),n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l
(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Hence, by (6), we have

ssqm = g (id , uncurry (+))

Inlining, we obtain
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ssqm (Leaf n) = (n ∗ n,n)
ssqm (Fork (l , r)) = let (s1, n1) = ssqm l

(s2, n2) = ssqm r
in (s1 + s2,min n1 n2)

Finally, the following property is an immediate consequence of Law6.

Law 7 For any strict h,

g :: ∀ a . (F a → a) → c → (a, z )
⇒

π2 ◦ g inF = π2 ◦ g h

This property states that the construction of the second component of the
pair returned by g is independent of the particular algebra that g carries; it only
depends on the input value of type c. This is a consequence of the polymorphic
type of g and the fact that the second component of its result is of a fixed type z .

4.4 Fold with Parameters

Some recursive functions use context information in the form of constant param-
eters for their computation. The aim of this section is to analyze the definition
of structurally recursive functions of the form f :: (μF, z ) → a, where the type
z represents the context information. Our interest in these functions is because
our method will assume that consumers are functions of this kind.

Functions of this form can be defined in different ways. One alternative con-
sists of fixing the value of the parameter and performing recursion on the other.
Definitions of this kind can be given in terms of a fold:

f :: (μF, z ) → a
f (t , z ) = fold h t

such that the context information contained in z may eventually be used in the
algebra h. This is the case of, for example, the function replace:

replace :: (LeafTree, Int) → LeafTree
replace (Leaf n,m) = Leaf m
replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

which can be defined as:

replace (t ,m) = foldT (λn → Leaf m,Fork) t
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Another alternative is the use of currying, which gives a function of type μF →
(z → a). The curried version can then be defined as a higher-order fold. For
instance, in the case of replace it holds that

curry replace = foldT (λn → Leaf , λ(f , f ′) → Fork ◦ (f � f ′))

This is an alternative we will study in detail in Sect. 4.6.
A third alternative is to define the function f :: (μF, z ) → a in terms of a

program scheme, called pfold (Pardo 2001, 2002), which, unlike fold, is able to
manipulate constant and recursive arguments simultaneously. The definition of
pfold relies on the concept of strength of a functor F , which is a polymorphic
function:

τF :: (F a, z ) → F (a, z )

that satisfies the coherence axioms:

mapF π1 ◦ τF = π1

mapF α ◦ τF = τF ◦ (τF × id) ◦ α

where α :: (a, (b, c)) → ((a, b), c) is the product associativity (see (Pardo 2002;
Cockett and Spencer 1991; Cockett and Fukushima 1992) for further details).
The strength distributes the value of type z to the variable positions (positions
of type a) of the functor. For instance, the strength corresponding to functor T
is given by:

τT :: (T a, z ) → T (a, z )
τT (Left n, z ) = Left n
τT (Right (a, a ′), z ) = Right ((a, z ), (a ′, z ))

In the definition of pfold the strength of the underlying functor plays an impor-
tant role as it represents the distribution of the context information contained
in the constant parameters to the recursive calls.

Given a functor F and a function h :: (F a, z ) → a, pfold, denoted by
pfold h ::(μF, z ) → a, is defined as the least function f that satisfies the following
equation:

f ◦ (inF × id) = h ◦ (((mapF f ◦ τF ) � π2))

Observe that now function h also accepts the value of the parameter. It is a
function of the form (h1 � . . . � hn) ◦ d where each hi :: (Fi a, z ) → a if
F a = F1 a + · · · + Fn a, and d :: (x1 + · · · + xn , z ) → (x1, z ) + · · · + (xn , z ) is
the distribution of product over sum. When showing specific instances of pfold
we will simply write the tuple of functions (h1, . . . , hn) instead of h.
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The following equation shows one of the possible relationships between pfold
and fold.

pfold h (t , z ) = fold k t where ki x = hi (x , z ) (7)

Like fold, pfold satisfies a set of algebraic laws. We do not show any of them
here as they are not necessary for the calculational work presented in this thesis.
The interested reader may consult (Pardo 2001, 2002).

4.5 The Pfold/Buildp Rule

In this section, we present a generic formulation of a transformation rule that
takes compositions of the form cons◦prod, where a producer prod ::a → (t , z ) is
followed by a consumer cons :: (t , z ) → b, and returns an equivalent deforested
circular program that performs a single traversal over the input value.

The rule, which was first introduced in Fernandes et al. (2007) and further
studied in Fernandes (2009) and Pardo et al. (2011), makes some natural assump-
tions about cons and prod: t is a recursive data-type μF , the consumer cons
is defined by structural recursion on t , and the intermediate value of type z is
taken as a constant parameter by cons. In addition, it is required that prod is a
“good producer”, in the sense that it is possible to express it as the instance of a
polymorphic function by abstracting out the constructors of the type t from the
body of prod. In other words, prod should be expressed in terms of the buildp
function corresponding to the type t . The fact that the consumer cons is assumed
to be structurally recursive leads us to consider that it is given by a pfold. In
summary, the rule is applied to compositions of the form: pfold h ◦ buildp g .

Law 8 (pfold/buildp rule)
For any h = (h1 � . . . � hn) ◦ d,14

g :: ∀ a . (F a → a) → c → (a, z )
⇒

pfold h ◦ buildp g $ c
= v
where (v , z ) = g k c

k = k1 � . . . � kn
ki x̄ = hi (x̄ , z )

Semantics of the Pfold/Buildp Rule. According to Danielsson et al. (2006),
Law 8 is morally correct only, in Haskell. In fact, the formal proof of our rule, that
the interested reader may consult in (Fernandes 2009; Pardo et al. 2011), relies on
surjective pairing (Law (5)). However, (5) is not valid in Haskell: though it holds
for defined values, it fails when the result of function g is undefined, because
⊥ is different from (⊥,⊥) as a consequence of lifted products. Therefore, (5) is
morally correct only and, in the same sense, so is our rule.

14 We denote by x̄ a tuple of values (x1, · · · , xri).
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Following our work, Voigtländer (2008) performed a rigorous study on various
shortcut fusion rules, for languages like Haskell. In particular, the author presents
semantic and pragmatic considerations on Law 8. As a first result, pre-conditions
are added to our rule, so that its total correctness can be established.

The definition of Law8 becomes:

Law 9 (Haskell valid pfold/buildp rule)
For any h = (h1 � . . . � hn) ◦ d, ∀ i ∈ {1, . . ,n } . hi ((⊥, ...,⊥),⊥) 
= ⊥

g :: ∀ a . (F a → a) → c → (a, z )
⇒

pfold h ◦ buildp g $ c
= v
where (v , z ) = g k c

k = k1 � . . . � kn
ki x̄ = hi (x̄ , z )

It is now possible to prove total correctness of Law 9 Voigtländer (2008). How-
ever, although Law9 is the one that guarantees totally correct transformations,
in the semantics of Haskell, it is somewhat pessimistic.

By this we mean that even if the newly added pre-condition is violated, it
does not necessarily imply that the Law gets broken. In fact, Voigtländer (2008)
presents an example where such pre-condition is violated, causing no harm in
the calculated equivalent program. We review here such an example.

Consider the following programming problem: from the initial part of an
input list before a certain predicate holds for the first time, return those elements
that are repeated afterwards. The specification of a natural solution to this
problem is as follows:

repeatedAfter :: Eq b ⇒ (b → Bool) → [b ] → [b ]
repeatedAfter p bs = (pfilter elem) ◦ (splitWhen p) $ bs

pfilter :: (b → z → Bool) → ([b ], z ) → [b ]
pfilter ([ ], ) = [ ]
pfilter p (b : bs, z ) = let bs ′ = pfilter p (bs, z )

in if p b z
then b : bs ′

else bs ′

splitWhen :: (b → Bool) → [b ] → ([b ], [b ])
splitWhen p bs

= case bs of [ ] → ([ ], bs)
b : bs ′ → if p b

then ([ ], bs)
else let (xs, ys) = splitWhen p bs ′

in (b : xs, ys)
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This definition uses a list as the intermediate structure that serves the pur-
pose of gluing the two composed functions. This intermediate list can be elim-
inated using Law8. However, in order to apply that law to the repeatedAfter
program, pfilter and splitWhen p must first be given in terms of pfold and buildp
for lists (the type of the intermediate structure), respectively. The definition of
pfold and buildp for lists is as follows.

buildp :: (∀ b . (b, (a, b) → b) → c → (b, z )) → c → ([a ], z )
buildp g = g ([ ], uncurry (:))

pfold :: (z → b, ((a, b), z ) → b) → ([a ], z ) → b
pfold (hnil , hcons) = pL

where pL ([ ], z ) = hnil z
pL (a : as, z ) = hcons ((a, pL (as, z )), z )

Now, we write pfilter and splitWhen p in terms of them:

splitWhen p = buildp go
where go (nil , cons) bs

= case bs of [ ] → (nil , bs)
b : bs ′ → if p b

then (nil , bs)
else let (xs, ys)

= go (nil , cons) bs ′

in (cons (b, xs), ys)

pfilter p = pfold (hnil , hcons)
where hnil = [ ]

hcons ((b, bs), z ) = if (p b z ) then (b : bs) else bs

Regarding this example, we may notice that hcons ((⊥,⊥),⊥) = ⊥, given
that (if elem ⊥ ⊥ then ⊥ : ⊥ else ⊥) equals ⊥. This means that the pre-
condition ∀ i . hi ((⊥, ...,⊥),⊥) 
= ⊥, newly added to Law 8, fails. However, it
is still possible to use Law 8 to calculate a correct circular program equivalent
to the repeatedAfter program presented earlier:

repeatedAfter p bs = a
where (a, z ) = go′ bs

go′ bs = case bs of [ ] → ([ ], bs)
b : bs ′ → if p b

then ([ ], bs)
else let (xs, ys) = go′ bs ′

in (if elem b z

then b : xs
else xs, ys)
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It is in this sense that we say Law 9 is pessimistic. However, this Law is the
most general one can present, so far, in terms of total correctness.

In the next section, we will present an alternative way to transform compo-
sitions between pfold and buildp such that, instead of circular programs, higher-
order programs are obtained as result. A good thing about the new transforma-
tion is that its total correctness can be established defining fewer pre-conditions
than the ones defined in Law9.

4.6 The Higher-Order Pfold/Buildp Rule

In the previous section, we have presented the generic formulation of a calculation
rule for deriving circular programs. There exists, however, an alternative way to
transform compositions between pfold and buildp. Indeed, in this section we
derive higher-order programs from such compositions, instead of the circular
programs we derived before.

The alternative transformation presented in this section is based on the
fact that every pfold can be expressed in terms of a higher-order fold: For
h :: (F a, z ) → a,

pfold h = apply ◦ (fold ϕh × id) (8)

where ϕh :: F (z → a) → (z → a) is given by

ϕh = curry (h ◦ ((mapF apply ◦ τF ) � π2))

and apply :: (a → b, a) → b by apply (f , x ) = f x . Therefore, fold ϕh :: μF →
(z → a) is the curried version of pfold h.

With this relationship at hand we can state the following shortcut fusion law,
which is the instance to our context of a more general program transformation
technique called lambda abstraction (Pettorossi and Skowron 1987). The specific
case of this law when lists are the intermediate structure was introduced by
Voigtländer (2008) and its generic formulation was given in Pardo et al. (2009).

Law 10 (higher-order pfold/buildp) For left-strict h,15

pfold h ◦ buildp g = apply ◦ g ϕh

Like in the derivation of circular programs, g ϕh returns a pair, but now
composed of a function of type z → a and an object of type z . The final result
then corresponds to the application of the function to the object. That is,

pfold h (buildp g c) = let (f , z ) = g ϕh c in f z

15 By left-strict we mean strict on the first argument, that is, h (⊥, z ) = ⊥.
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5 Algol 68 Scope Rules

In Sect. 3 we have applied concrete fusion rules to small, but illustrative exam-
ples, and in Sect. 4 we have shown that such rules can be given generic defini-
tions. In this section, we consider the application of shortcut fusion to a real
example: the Algol 68 scope rules. These rules are used, for example, in the Eli
system16 (Kastens et al. 1998; Waite et al. 2007) to define a generic component
for the name analysis task of a compiler.

The problem we consider is as follows: we wish to construct a program to
deal with the scope rules of a block structured language, the Algol 68. In this
language a definition of an identifier x is visible in the smallest enclosing block,
with the exception of local blocks that also contain a definition of x . In this
case, the definition of x in the local scope hides the definition in the global one.
In a block an identifier may be declared at most once. We shall analyze these
scope rules via our favorite (toy) language: the Block language, which consists
of programs of the following form:

[use y ;decl x ;
[decl y ;use y ;use w ; ]

decl x ;decl y ; ]

In Haskell we may define the following data-types to represent Block pro-
grams.

type Prog = [It ] data It = Use Var
| Decl Var

type Var = String | Block Prog

Such programs describe the basic block-structure found in many languages,
with the peculiarity however that declarations of identifiers may also occur after
their first use (but in the same level or in an outer one). According to these
rules the above program contains two errors: at the outer level, the variable x
has been declared twice and the use of the variable w , at the inner level, has no
binding occurrence at all.

We aim to develop a program that analyses Block programs and computes a
list containing the identifiers which do not obey to the rules of the language. In
order to make the problem more interesting, and also to make it easier to detect
which identifiers are being incorrectly used in a Block program, we require that
the list of invalid identifiers follows the sequential structure of the input program.
Thus, the semantic meaning of processing the example sentence is [w , x ].

Because we allow a use-before-declare discipline, a conventional implementa-
tion of the required analysis naturally leads to a program which traverses the
abstract syntax tree twice: once for accumulating the declarations of identifiers

16 A well known compiler generator toolbox.
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and constructing the environment, and once for checking the uses of identi-
fiers, according to the computed environment. The uniqueness of names can
be detected in the first traversal: for each newly encountered declaration it is
checked whether that identifier has already been declared at the current level.
In this case an error message is computed. Of course the identifier might have
been declared at a global level. Thus we need to distinguish between identi-
fiers declared at different levels. We use the level of a block to achieve this. The
environment is a partial function mapping an identifier to its level of declaration:

type Env = [(Var , Int)]

Semantic errors resulting from duplicate definitions are then computed during
the first traversal of a block and errors resulting from missing declarations in the
second one. In a straightforward implementation of this program, this strategy
has two important effects: the first is that a “gluing” data structure has to be
defined and constructed to pass explicitly the detected errors from the first to the
second traversal, in order to compute the final list of errors in the desired order;
the second is that, in order to be able to compute the missing declarations of a
block, the implementation has to explicitly pass (using, again, an intermediate
structure), from the first traversal of a block to its second traversal, the names
of the variables that are used in it.

Observe also that the environment computed for a block and used for process-
ing the use-occurrences is the global environment for its nested blocks. Thus, only
during the second traversal of a block (i.e., after collecting all its declarations)
the program actually begins the traversals of its nested blocks; as a consequence
the computations related to first and second traversals are intermingled. Fur-
thermore, the information on its nested blocks (the instructions they define and
the blocks’ level) has to be explicitly passed from the first to the second traversal
of a block. This is also achieved by defining and constructing an intermediate
data structure. In order to pass the necessary information from the first to the
second traversal of a block, we define the following intermediate data structure:

type Prog2 = [It2 ] data It2 = Block2 (Int , P rog)
| Dupl2 Var
| Use2 Var

Errors resulting from duplicate declarations, computed in the first traversal,
are passed to the second, using constructor Dupl2. The level of a nested block,
as well as the instructions it defines, are passed to the second traversal using
constructor Block2’s pair containing an integer and a sequence of instructions.

According to the strategy defined earlier, computing the semantic errors that
occur in a block sentence consists of:

semantics :: Prog → [Var ]
semantics = missing ◦ (duplicate 0 [ ])
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The function duplicate detects duplicate variable declarations by collecting all
the declarations occurring in a block. It is defined as follows:

duplicate :: Int → Env → Prog → (Prog2,Env)
duplicate lev ds [ ] = ([ ], ds)

duplicate lev ds (Use var : its)
= let (its2, ds ′) = duplicate lev ds its

in (Use2 var : its2, ds ′)

duplicate lev ds (Decl var : its)
= let (its2, ds ′) = duplicate lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds) then (Dupl2 var : its2, ds ′) else (its2, ds ′)

duplicate lev ds (Block nested : its)
= let (its2, ds ′) = duplicate lev ds its

in (Block2 (lev + 1,nested) : its2, ds ′)

Besides detecting the invalid declarations, the duplicate function also computes a
data structure, of type Prog2, that is later traversed in order to detect variables
that are used without being declared. This detection is performed by function
missing , that is defined such as:

missing :: (Prog2,Env) → [Var ]
missing ([ ], ) = [ ]

missing (Use2 var : its2, env)
= let errs = missing (its2, env)

in if (var ∈ map π1 env) then errs else var : errs

missing (Dupl2 var : its2, env)
= var : missing (its2, env)

missing (Block2 (lev , its) : its2, env)
= let errs1 = missing ◦ (duplicate lev env) $ its

errs2 = missing (its2, env)
in errs1 ++ errs2

The construction and traversal of an intermediate data structure, however, is
not essential to implement the semantic analysis described. Indeed, in the next
section we will transform semantics into an equivalent program that does not
construct any intermediate structure.
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5.1 Calculating a Circular Program

In this section, we calculate a circular program equivalent to the semantics
program presented in the previous section. In our calculation, we will use the
specific instance of Law 8 for the case when the intermediate structure gluing
the consumer and producer functions is a list:

Law 11 (pfold/buildp rule for lists)

pfold (hnil , hcons) ◦ buildp g $ c
= v
where (v , z ) = g (knil , kcons) c

knil = hnil z
kcons (x , y) = hcons ((x , y), z )

where the schemes pfold and buildp have already been defined as:

buildp :: (∀ b . (b, (a, b) → b) → c → (b, z )) → c → ([a ], z )
buildp g = g ([ ], uncurry (:))

pfold :: (z → b, ((a, b), z ) → b) → ([a ], z ) → b
pfold (hnil , hcons) = pL

where pL ([ ], z ) = hnil z
pL (a : as, z ) = hcons ((a, pL (as, z )), z )

Now, if we write missing in terms of pfold ,

missing = pfold (hnil , hcons)
where hnil = [ ]

hcons ((Use2 var , errs), env)
= if (var ∈ map π1 env) then errs else var : errs

hcons ((Dupl2 var , errs), env)
= var : errs

hcons ((Block2 (lev , its), errs), env)
= let errs1 = missing ◦ (duplicate lev env) $ its

in errs1 ++ errs

and duplicate in terms of buildp,

duplicate lev ds = buildp (g lev ds)

where g lev ds (nil , cons) [ ] = (nil , ds)

g lev ds (nil , cons) (Use var : its)

= let (its2, ds′) = g lev ds (nil , cons) its

in (cons (Use2 var , its2), ds′)
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g lev ds (nil , cons) (Decl var : its)

= let (its2, ds′) = g lev ((var , lev) : ds) (nil , cons) its

in if ((var , lev) ∈ ds) then (cons (Dupl2 var , its2), ds′) else (its2, ds′)

g lev ds (nil , cons) (Block nested : its)

= let (its2, ds′) = g lev ds (nil , cons) its

in (cons (Block2 (lev + 1,nested), its2), ds′)

we can apply Law 11 to the program semantics = missing ◦(duplicate 0 [ ]), since
this program has just been expressed as an explicit composition between a pfold
and a buildp. We obtain a deforested circular definition, which, when inlined,
gives the following program:

semantics p = errs
where

(errs, env ) = gk 0 [ ] p

gk lev ds [ ] = ([ ], ds)

gk lev ds (Use var : its)
= let (errs, ds ′) = gk lev ds its

in (if (var ∈ map π1 env ) then errs else var : errs, ds ′)

gk lev ds (Decl var : its)
= let (errs, ds ′) = gk lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds) then (var : errs, ds ′) else (errs, ds ′)

gk lev ds (Block nested : its)
= let (errs2, ds ′) = gk lev ds its

in (let errs1 = missing ◦ (duplicate (lev + 1) env ) $ nested
in errs1 ++ errs2, ds ′)

We may notice that the above program is a circular one: the environment
of a Block program (variable env) is being computed at the same time it is
being used. The introduction of this circularity made it possible to eliminate
some intermediate structures that occurred in the program we started with: the
intermediate list of instructions that was computed in order to glue the two
traversals of the outermost level of a Block sentence has been eliminated by
application of Law11. We may also notice, however, that, for nested blocks:

gk lev ds (Block nested : its)
= let (errs2, ds ′) = gk lev ds its

in (let errs1 = missing ◦ (duplicate (lev + 1) env) $ nested
in errs1 ++ errs2, ds ′)
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an intermediate structure is still being used in order to glue functions missing
and duplicate together. This intermediate structure can easily be eliminated,
since we have already expressed function missing in terms of pfold , and function
duplicate in terms of buildp. Therefore, by direct application of Law11 to the
above function composition, we obtain:

gk lev ds (Block nested : its)
= let (errs2, ds ′) = gk lev ds its

in (let (errs1, env2 ) = g (lev + 1) env (knil , kcons) nested

where knil = hnil env2

kcons x = hcons (x , env2 )

in errs1 ++ errs2, ds ′)

Again, we could inline the definition of function g into a new function, for
example, into function gk ′. However, the definition of gk ′ would exactly match
the definition of gk , except for the fact that where gk searched for variable
declarations in environment env , gk ′ needs to search them in environment env2.

In order to use the same function for both gk and gk ′, we add an extra
argument to function gk . This argument will make it possible to use circular
definitions to pass the appropriate environment variable to the appropriate block
of instructions (the top level block or a nested one).

We should notice that, in general, this extra effort is not necessary. In this
particular example, this manipulation effort was made since it is possible to
calculate two circular definitions from the straightforward solution and both
circular functions share almost the same definition. In all other cases, inlining
the calculated circular program is enough to derive an elegant and efficient lazy
program from a function composition between a pfold and a buildp.

We finally obtain the program:

semantics p = errs
where (errs, env ) = gk 0 [ ] env p

gk lev ds env [ ] = ([ ], ds)

gk lev ds env (Use var : its)
= let (errs, ds ′) = gk lev ds env its

in (if (var ∈ map π1 env) then errs else var : errs, ds ′)

gk lev ds env (Decl var : its)
= let (errs, ds ′) = gk lev ((var , lev) : ds) env its

in if ((var , lev) ∈ ds) then (var : errs, ds ′) else (errs, ds ′)

gk lev ds env (Block nested : its)
= let (errs2, ds ′) = gk lev ds env its

in (let (errs1, env2 ) = gk (lev + 1) env env2 nested
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in errs1 ++ errs2, ds ′)

Regarding the above program, we may notice that it has two circular defini-
tions. One such definition occurs in the semantics function, and makes it possible
for the environment of the outer level of a block program to be used while still
being constructed. For the example sentence that we have considered before,

[use y ;decl x ;
[decl y ;use y ;use w ; ]

decl x ;decl y ; ]

this circularity makes the environment [("x", 0), ("x", 0), ("y", 0)] available to
the function that traverses the outer block. The other circular definition, occur-
ring in the last definition of function gk , is used so that, for every traversal of
a nested sequence of instructions, its environment may readily be used. This
means that the function traversing the nested block in the above example sen-
tence may use the environment [("x", 0), ("x", 0), ("y", 0), ("y", 1)] even though
it still needs to be constructed.

The introduction of these circularities, by the application of our calculational
method, completely eliminated the intermediate lists of instructions that were
used in the straightforward semantics solution we started with. Furthermore,
the derivation of this circular program made it possible to obtain a semantics
program that computes the list of errors that occur in a Block program by
traversing it only once.

5.2 Calculating a Higher-Order Program

In this section we study the application of Law10 to the semantics program
given earlier:

semantics = missing ◦ (duplicate 0 [ ])

As we have stated, this definition constructs an intermediate list of instruc-
tions, that again we would like to eliminate with fusion. For this purpose, we
will now use the specific instance of Law 10 for the case where the intermediate
structure is a list:

Law 12 (higher-order pfold/buildp for lists)

pfold (hnil , hcons) ◦ buildp g = apply ◦ g (ϕhnil , ϕhcons)

where (ϕhnil , ϕhcons) is the algebra of the higher-order fold which corresponds
to the curried version of pfold (hnil , hcons).

We have already expressed function missing in terms of pfold ,

missing = pfold (hnil , hcons)
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where hnil = [ ]
hcons ((Use2 var , errs), env)

= if (var ∈ map π1 env) then errs else var : errs

hcons ((Dupl2 var , errs), env)
= var : errs

hcons ((Block2 (lev , its), errs), env)
= let errs1 = missing ◦ (duplicate lev env) $ its

in errs1 ++ errs

and function duplicate in terms of buildp.

duplicate lev ds = buildp (g lev ds)
where g lev ds (nil , cons) [ ] = (nil , ds)

g lev ds (nil , cons) (Use var : its)
= let (its2, ds ′) = g lev ds (nil , cons) its

in (cons (Use2 var , its2), ds ′)

g lev ds (nil , cons) (Decl var : its)
= let (its2, ds ′) = g lev ((var , lev) : ds) (nil , cons) its

in if ((var , lev) ∈ ds) then (cons (Dupl2 var , its2), ds ′)
else (its2, ds ′)

g lev ds (nil , cons) (Block nested : its)
= let (its2, ds ′) = g lev ds (nil , cons) its

in (cons (Block2 (lev + 1,nested), its2), ds ′)

Therefore, in order to apply Law12 to the semantics program, we now
only need the expression of the algebra (ϕhnil , ϕhcons) of the curried version
of missing :

missingho = fold (ϕhnil , ϕhcons)
where ϕhnil = \ → [ ]

ϕhcons (Use2 var , ferrs)
= λenv → if (var ∈ map π1 env) then ferrs env

else var : (ferrs env)

ϕhcons (Dupl2 var , ferrs)
= λenv → var : (ferrs env)

ϕhcons (Block2 (lev , its), ferrs)
= λenv → let errs1 = missing ◦ (duplicate lev env) $ its

in errs1 ++ (ferrs env)
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After inlining the definition that we calculate by directly applying Law12 to
the semantics program, we obtain the program presented in the next page.

semantics p = ferrs env
where (ferrs, env) = gϕ 0 [ ] p

gϕ lev ds [ ] = (λenv → [ ], ds)

gϕ lev ds (Use var : its)
= let (ferrs, ds ′) = gϕ lev ds its

in (λenv → if var ∈ map π1 env
then ferrs env
else var : (ferrs env), ds ′)

gϕ lev ds (Decl var : its)
= let (ferrs, ds ′) = gϕ lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds)
then (λenv → var : (ferrs env), ds ′)
else (ferrs, ds ′)

gϕ lev ds (Block nested : its)
= let (ferrs2, ds ′) = gϕ lev ds its

in (λenv → let errs1 = missing
◦ (duplicate (lev + 1)

env) $ nested
in errs1 ++ ferrs2 env , ds ′)

Notice that the first component of the result produced by the call gϕ 0 [ ] p
is now a function, instead of a concrete value. When this function is applied to
env , it produces the list of variables that do not obey to the semantic rules of the
language. The program we have calculated is, therefore, a higher-order program.

Regarding the above program, we may notice that it maintains the construc-
tion of an intermediate structure. This situation already occurred in Sect. 5.1.
Again, an intermediate structure is constructed whenever a nested sequence of
instructions is traversed, in the definition presented next.

gϕ lev ds (Block nested : its)
= let (ferrs2, ds ′) = gϕ lev ds its

in (λenv → let errs1 = missing ◦ (duplicate (lev + 1) env) $ nested
in errs1 ++ ferrs2 env , ds ′)

The missing ◦duplicate composition in the above definition, however, may be
eliminated by direct application of Law12. This is due to the fact that functions
missing and duplicate have already been expressed in terms of the appropriate
program schemes. We obtain:
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gϕ lev ds (Block nested : its)
= let (ferrs2, ds ′) = gϕ lev ds its

in (λenv → let (ferrs1, env1) = gϕ (lev + 1) env nested
in ferrs1 env1 ++ ferrs2 env , ds ′)

The higher-order version of semantics that we calculate in this section, by
applying Law12, twice, to the original semantics program avoids the construc-
tion of any intermediate structure. Furthermore, in this program, the appropri-
ate (local or global) environment is passed to the correct block of instructions.
Notice that, in order for this to happen, it was not necessary to post-process
the calculated program, as it was in Sect. 5.1. The execution of the higher-order
semantics program is not restricted to a lazy execution setting. Recall that the
intermediate structure free program that we calculated in Sect. 5.1 may only be
executed in a lazy setting: it holds two circular definitions.

6 Conclusions

In this tutorial, we revised a systematic technique for the deforestation of inter-
mediate data structures. These data structures enable a compositional style of
programming, which contributes to an increased modularity, but their use may
degrade the overall running efficiency of the resulting implementations.

As programmers, we would always like to deal with modular programs, but
as software users we favour runtime performance. In the context of this tutorial,
this opens up two questions:

1. Is it possible to automatically derive the programs we have manually calculated
here?
This derivation is indeed possible, for example within the Glasgow Haskell
Compiler (GHC), using rewrite rules (RULES pragma). For the reader inter-
ested in further details, we suggest (Fernandes 2009).

2. How do the types of programs we calculate here compare in terms of runtime
performance?
This issue is particularly relevant for the circular and higher-order programs
we have calculated, and we have in the past performed a first attempt on such
comparison (Fernandes 2009). While in the examples we considered, higher-
order programs as we propose to calculate in Sect. 5.2 were the most efficient,
it would be interesting to conduct a detailed and representative benchmark
to assess whether this observation holds in general.

In this tutorial, we have focused on programs consisting of the composition of
two functions. Recently, we have however followed a similar approach to derive
shortcut fusion rules that apply to programs consisting of an arbitrary number
of function compositions (Pardo et al. 2013).

Here, we have also focused on the practical and pragmatical aspects of the
fusion rules that were studied. In this line, we have chosen not to present their
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formal proofs, that the interested reader may obtain in (Fernandes 2009; Pardo
et al. 2011).

As we have highlighted before, in the techniques we revise, lazy evaluation
and higher-order programming are crucial.
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Abstract. Reactive programming is a relatively new discipline that
teaches how to design and develop complex systems through the notion
of data-flow. The main idea is that the system, and its components, are
able to receive signals, and to react to them in some way. The signals can
be seen as streams of messages that we can transform using the usual
monadic functions (map, bind, filter, etc.) and that we can easily direct
through our system.

Reactive programming removes the usual complexity of explicitly
dealing with the shared mutable state, manual synchronization with
mutexes, and alike.

We are presenting an approach for implementing reactive systems in
the C++ programming language, by creating abstractions over the com-
monly used methods for achieving concurrency, like callbacks and signals
and slots.

1 Introduction

Modern software systems tend to require different components that execute
simultaneously. Be it a simple GUI application that needs to process system
events while waiting for the user response, a multi-threaded application that
performs complex calculations, or a multi-client network server that processes
multiple requests at the same time.

Since the terminology is not fully standardized, in this paper we are using
the term concurrency to mean that different tasks are being executed at the
same time, as opposed to parallelism which will mean that the same function is
running at the same time on different data sets.

In a concurrent environment, functional programming patterns allow us to
make more robust and less error-prone systems. A significant fraction of software
bugs happen due to programmers not being able to fully understand all the
possible states their code can be in. In a concurrent environment, this lack of
understanding and the issues that arise from it are greatly amplified [4].

The usual approach (in the imperative languages) of dealing with concurrency
is through using plain threads and mutexes.

The problems with plain threads are numerous. The main problem is that
the threads are not composable [11]. It is impossible to tell whether another
c© Springer Nature Switzerland AG 2019
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library or a function you are calling creates new threads by itself. This can lead
to creating many more threads than the system can effectively handle, and the
thread that called said function just sleeps until it gets the result.

Another issue is that the concurrency can not be disabled. When you use
plain threads, the program logic usually becomes dependent on different code
paths running at the same time. In that case, it is not easy to modify the code to
run on a single thread which could be useful in a number of scenarios, especially
for testing and debugging purposes.

There is also the problem that there is no standard way to return values from
one thread to the caller. It usually involves using a shared variable and manual
synchronization through locks.

Fig. 1. Amdahl’s Law

When we want to achieve higher levels of parallelism, we tend to throw raw
power at it, by improving CPUs clocks and adding new cores. According to the
Amdahl’s Law [13], this is not sufficient since the speed of the program will not
double by doubling the number of cores we execute it on. For example, it claims
that if only 5% of your code is serialized (95% is parallelized) you can achieve
the speedup of only 20 times by running it on 65536 CPU cores (Fig. 1).

In a discussion on recursive mutexes, David Butenhof noted that this basic
synchronization primitive should have been called “the bottleneck” [3] instead
of creating a “cute acronym” for it (from mutual exclusion). Bottlenecks are
useful at times, sometimes indispensable – but they’re never good.

These problems all lead to decrease in program speed. Most threads just end
up waiting for the results of other computations to be sent to them. Yet, the
operating system still has to do all the book-keeping and context-switching to
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manage all those threads, which is just bureaucracy that takes the CPU time
from the actual program that needs to be executed.

2 Asynchronous Functions

Instead of using raw threads and mutexes, we need to create an abstraction that
can be used to execute something asynchronously, and to send us the result of
the operation back.

There are a few common approaches for achieving this in C++.

2.1 Calls and Callbacks

The first approach is to use the callback functions. The idea is to call an asyn-
chronous method and pass it a pointer to the function that should be invoked
when the asynchronous operation has been completed.

In the following example, the get_page is the asynchronous function, and
the on_page_retrieved is the callback. The get_page function is designed to
follow the API of a well-known callback-based library for asynchronous I/O
– the Boost.Asio [10] library. It can easily be implemented by combining the
Boost.Asio library’s async_read_until which can be used to get the request
headers (by reading until it reaches an empty line); with the header retrieved,
we will know exactly how many bytes the response body has, and we will able
to get it with the async_read method.

void on_page_retrieved(const response &result) {
std::cout << "CEFP front page retrieved";

if (result.is_valid()) {
std::cout << "Success: " << result.body();

} else {
std::cout << "Error retrieving the page\n";

}
}

void get_cefp() {
get_page("http://people.inf.elte.hu/cefp/",

on_page_retrieved);

std::cout << "Sent the request\n";
}

It is important to note that the get_page call will not block the execution of the
rest of get_cefp method, so the user will see the "Sent the request" message
before the actual request is fulfilled.
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2.2 Signals and Slots

Another often used approach to dealing with asynchrony are signals and slots.
In general, the signals and slots system is a simple communication mechanism

between different objects. Signal is used to emit a message, and a slot receives
it.

Lets consider mouse events in an application. Buttons in the user interface
are objects that send a clicked signal when the user clicks them. We will use the
syntax for connecting the signals to their respective slots used in the Qt library
for C++, since it is the most prominent library for C++ using this mechanism,
but we will keep using the snake_case syntax to keep uniformity of the code
examples.

button *exit_button;
button *get_cefp_button;

connect(exit_button, SIGNAL(clicked()),
main_window, SLOT(quit()));

connect(get_cefp_button, SIGNAL(clicked()),
main_window, SLOT(get_cefp())

When the exit_button is clicked, the connection will invoke the quit
method of the main_window object. In the same way, clicking on the
get_cefp_button will invoke the get_cefp method.

Compared to callbacks, signals and slots allow easier decoupling of compo-
nents. The button does not know (nor it needs to) whether anybody is listening
for its events – the signal is sent anyway. On the other hand, a called asyn-
chronous function needs to know exactly which callback to call.

While this mechanism is most useful for handling the user interface events, it
can have other applications as well. In the following example, we will implement
a similar example to the one in the previous section.

void init() {
connect(page, SIGNAL(page_retrieved(response)),

this, SLOT(on_page_retrieved(response)));
}

void get_cefp() {
page.get("http://people.inf.elte.hu/cefp/");

}

void on_page_retrieved(const response &result) {
std::cout << "CEFP front page retrieved";

if (result.is_valid()) {
std::cout << "Success: " << result.body();

} else {
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std::cout << "Error retrieving the page\n";
}

}

In this implementation, the get_cefp method only needs to know which page
to request, while it does not need to care which method will process the result.

2.3 Actor Systems

The third popular approach, albeit not that much in the C++ community, are
the actor systems [8]. They were popularised by the Erlang [1] programming
language, and a few of the more modern languages are adopting the idea (Scala’s
Akka library [12], the C++ Actor Framework [5] and the Distributed Haskell [7]
to name a few).

Similar to the signals and slots, the system is broken into small components
that are able to exchange messages. In these systems, it is common for the
sender to decide who will be the recipient for each message, and not the other
way round. For example, an actor A can choose that it will send the message
to the actor B. The actor B is not able to request that it wants to listen to
all messages from A – it will receive all messages sent to it no matter who sent
them.

The previous example becomes something like this (notation is as used in
the C++ Actor Framework).

void get_cefp(event_based_actor *self,
const actor &page_actor)

{
self->async_send(page_actor,

get("http://people.inf.elte.hu/cefp/"));
}

behaviour receive(event_based_actor *self) {
return {

[=] (const response_t &result) {
if (result.is_valid()) {

...
}

}
};

}

The async_send method is used to send messages. In this case, we are sending
a single get message to the actor identified by page_actor. When the request
is processed, that actor will send us back a message of type response_t which
is handled in the behaviour defined by the receive function.
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2.4 Problems with These Approaches

All previous approaches are valid, but have readability and maintainability
issues.

The task we have is quite simple: request a page, and process it when it is
retrieved. Something like this should be easy to implement. As easy as simply
writing:

result = get_page("http://people.inf.elte.hu/cefp/");
if (result.is_valid()) {

...
}

The only reason we can not write this is that the get_page method has to
be asynchronous, not to block the execution of the other parts of the system.

All the previous solutions require the program logic to be split into a part
that handles the part of the logic before the asynchronous call, and the second
part that comes after the asynchronous call has completed.

In the real-world problems, the program logic is rarely limited to only one
asynchronous call. Systems like those tend to be broken into overly small sub-
routines that are difficult to write, understand and maintain. We need better
abstractions than these.

3 Futures

The lowest level of abstraction we want to create are the futures. A future repre-
sents a handler for a value that is not yet known. While this may sound confusing,
the concept is quite simple.

Just imagine the following conversation between Alice and Bob:

Alice: What is the time?
(Bob looks at his watch)
Bob: It is 12:30.

When Alice asks the question, she only knows the type of the answer – that
it will be a type that defines (at least) hours and minutes. We will call that type
time_t. Her request for the current time can be written as follows:

Bob.get_time();

This way, she is asking Bob for the time, but the problem is that she is not
saving the result anywhere – she will never learn what is the current time. Can
we fix this by assigning it to a variable of type time_t?

time_t time = Bob.get_time();
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If we want to be able to save the response like this, we first need to wait
for Bob’s reply. This means that Alice can not do anything until Bob answers
the question. This would be a bad idea since we can not know how much time
it will take Bob to reply, and even whether he will reply at all. The data flow
for this case can be seen in the Fig. 2, where the caller is Alice, function is
Bob.get_time(), and the resulting value is represented as a circle.

Fig. 2. Returning a proper value from a function

Fig. 3. Returning a future from function

Instead, we will do the following:

future<time_t> time = bob.get_time();

What does this do? It creates an empty container that can contain an instance
of the time_t class. When Bob prepares the answer, he can just put it into the
box, and Alice will be able to get it by calling time.get(). This will allow Alice
to continue working on other things, and still get Bob’s answer when it arrives.
The data flow in the Fig. 3 shows that when the caller invokes the function, it
will not receive the resulting value, but an object that can later be used to get
it, when it becomes available.

3.1 Futures in C++

There are a few different classes for C++ that implement futures with slightly
different features and semantics. The most notable ones are std::future<T>
present in the standard library since C++11; boost::future<T> which is a
drop-in replacement for the former, and has features that are planned for inclu-
sion in the future revisions of C++ standard; QFuture<T> from the Qt library
which has similar features to the previous ones, but with a different syntax;
and the folly::Future<T> from the Facebook’s Folly library which has special
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semantics inspired by the Future class as implemented in the Scala programming
language.

All of these classes have a method .get() which returns a value contained
in the future class. The difference is in the method’s behaviour when the value
is not yet available.

All but the folly::Future<T> block the execution of the caller until the
result becomes available (Fig. 4). This is only useful if the caller creates a few
asynchronous requests that should be executed in parallel. But in our example
in which we call only Bob.get_time() it makes the asynchronous execution of
the function useless and equivalent to not using the futures at all (Fig. 2). In
the case of calling .get() on an unfinished future, the folly::Future<T> class
will throw an exception, which is in accordance to the idea that asynchronous
functions should never block the caller, and forces the caller to implement the
logic of asynchronous execution in a proper way.

Fig. 4. Calling .get() on a future

3.2 Proper Way of Handling Futures

Having the caller blocked while it is waiting for the result defeats the purpose
of the asynchronous API. The main reason why we wanted the time-consuming
operations done asynchronously in the first place is to allow the main program
to continue working (processing user input, accepting new network connections,
creating new asynchronous requests, etc.) while it waits for the result. This
means that designing the system around the .get() method of a future is a bad
idea.

Instead of relying on the caller to get the value manually, we only need to
provide it a way to define a continuation for a specific asynchronous operation.
The continuation is a function that will be invoked when the result becomes
available [6]. This way, we will never try to get the value from an unfinished
future, we will just define what should be done with the value once it becomes
available. In the following example, instead of Alice getting the result of the
asynchronous computation, she is just scheduling a continuation (print_time)
function which will print the result when Bob produces it (Fig. 5).
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Bob.get_time().then(print_time);

Fig. 5. Passing the continuation

The minimal interface a future should have consists of a constructor and
a way to chain a continuation to said future. It will be able to handle all the
previously shown ways to implement asynchronous functions. It is also be able
to cover the synchronous function calls.

Calls with callbacks can be represented as futures in a straight-forward way.
Let f be an (n + 1)-ary function, where the first n arguments are used for the
computation, and the last argument is the callback function. Then the unary
function g we get when we bind those first n arguments to specific values behaves
like the future (note that the std::bind function has nothing to do with monadic
bind, it just implements partial application in C++).

auto g = std::bind(f, arg1, arg2, ..., argn, _1);

This successfully separates the definition of an asynchronous operation with
its arguments (the constructor for this type of future), from the continuation
specification.

Signals and slots can also be represented in a simple manner. The signal sender
object, along with the signal provide the constructor for the future, while the
slot represents the continuation.

Message passing in actor systems needs a bit more effort to in order to rep-
resent it as a future. An asynchronous operation that has a result (a returning
value) in these systems consists of one message that is sent from the caller to
the callee, and then the result is returned via another message sent back to the
caller. The caller will need to be able to create a unique identifier for every call it
makes, and the callee will need to return that identifier along with the calculated
result. We will show how to represent this in the call-callback approach which
we have shown is easy to represent using futures.

void f(arg1, arg2, ..., argn, callback) {
auto request_id = generate_id();
global_callbacks[request_id] = callback;
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callee.send_message(arg1, ..., argn, request_id);
}

void receive_message(value, request_id) {
global_callbacks[request_id](value);
global_callbacks.remove(request_id);

}

The function f gets the arguments that will be passed to the actor that
performs the asynchronous computation (callee) and the callback function that
should be called when the result becomes available. The callback is saved to
a structure that maps identifiers to callbacks. The callee will send beck the
result, which will invoke receive_message function. This will, in turn, invoke
the callback associated with the specified identifier.

Synchronous function calls can also be modelled with futures. If the n-ary
function f is a synchronous one, we can easily create a callback-based function
from it.

void g(arg1, arg2, ..., argn, callback) {
callback(f(arg1, arg2, ..., argn));

}

The fact that we have created an abstraction that works for both synchronous
and asynchronous computations will be quite useful later.

3.3 Continuation Monad

The structure future<T> that we have described in the previous section can be
seen as a monad [14]. We just need to specify it more precisely.

We have seen the different constructors that the structure can have. We are
only left with the constructor that creates future<T> from the value of T. It
just needs to create a future which stores the value passed to it. As soon as the
continuation is defined, it needs to call it and pass the saved value. If we use the
interface of std::future, the implementation could be as follows:

template <typename T>
class future {
public:

future(T value)
: _value(value)

{
}

template <typename Continuation>
void then(Continuation cont)
{
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cont(_value);
}

private:
T _value;

};

The second thing we need to add is the monadic bind operation. The .then
method looks like a perfect candidate, it just needs to have a proper signature.
It needs to take a function from T to future<U>, and return the future<U>:

template <typename Continuation>

auto then(Continuation cont) -> future<decltype(cont(_value))>;

We will leave the implementation of this method as an exercise for the reader, since
it is not important for the rest of the paper.

With these methods, it is easy to show that future<T> is a monad. In literature,
it is commonly known as the continuation monad.

3.4 std::future and Similar Types

Now that we have seen what kind of structure we want to use as our minimal abstrac-
tion, we need yet to see whether the library-provided classes we have at our disposal
match the requirements.

std::future does not have a .then method in C++11/14. The only way to get the
value is through the .get method. It will be extended to support adding continuations
in C++17. Until then, we can use boost::future<T> since it already contains the
things that the standard one will have.

The make_ready_future function is the constructor – it takes a value of type, and
creates a future that contains that value.

template <typename T>

future<T> make_ready_future(T value);

Its .then method has the following signature and usage:

auto future<T>::then(Continuation &&cont);

future<int> f1 = answer_ultimate_question_of_life();

future<string> f2 = f1.then(

[] (future<int> f) {

return f.get().to_string(); // here .get() won’t block

}

);

The monadic bind requires the continuation to accept the value of type T, but here
we have it receive future<T>. The rationale for this is that the future<T> can contain
an exception instead of the value. While this breaks our definition, a proper version of
this method can easily be implemented:
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template <typename T, typename Continuation>

auto monadic_bind(future<T> f, Continuation cont) {

return f.then([=] (future<T> f) { cont(f.get()); });

}

We have defined both the proper constructor and a monadic bind for the
boost::future<T> (and std::future<T> from C++17). It it easy to implement for
QFuture<T> and folly::Future<T> as well.

We can now write code like this:

get_page("http://people.inf.elte.hu/cefp/")

.then(

[] (auto &&result) {

std::cout << "CEFP front page retrieved";

if (result.is_valid()) {

std::cout << "Success: " << result.body();

} else {

std::cout << "Error retrieving the page\n";

}

}

)

or even something more complex like:

get_page("http://people.inf.elte.hu/cefp/")

.then(

[] (auto &&result) {

cout << result.headers();

for (image: result.image_tags) {

image.get().then(

[] (auto &&image_result) {

// do something

// with image_result

}

);

}

}

)

4 Iterators and Algorithms

Before we proceed to our main abstraction for asynchronous system modelling, we need
to explain the notion of algorithms, iterators, and ranges in C++.

The standard library in C++ (STL – Standard Template Library) provides a set of
useful algorithms that can be applied to any structure that we can iterate over. We are
going to demonstrate how a few of them are used – std::accumulate, std::transform
and std::sort.
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4.1 Accumulate (fold)

Say we have a task to sum all numbers in a list. We can implement this easily using a
for loop:

list<int> xs = {1, 2, 3, 4, 5};

int result = 0;

for (auto x: xs) {

result = result + x;

}

return result;

This works, but is unnecessarily verbose. The pattern of iterating through a col-
lection of elements, and accumulating them using some function is a common one and
it is to be expected that the programming language provides facilities to do it without
manually implementing it. In C++, the algorithm used for this is std::accumulate

and behaves similarly to Haskell’s foldl. The signature is as follows:

T accumulate(InputIt first, InputIt last, T init,

BinaryOperation op );

It receives a pair of iterators which define which elements should be iterated on,
initial value and a binary operation that will be used for accumulation. If the operation
is not specified, it defaults to summing the values.

With std::accumulate, we can implement the previous example like this:

result = std::accumulate(xs.cbegin(), xs.cend(), 0);

If we want to calculate the product of all items instead of the sum, we can do the
following:

result = std::accumulate(xs.cbegin(), xs.cend(), 1,

[] (int acc, int x) { return acc * x; });

4.2 Transform (map)

Next, lets try to square all numbers in a list. The code for it could be implemented like
this:

list<int> xs = {1, 2, 3, 4, 5};

for (auto &x: xs) {

x = x * x;

}

// xs = {1, 4, 9, 16, 25}

This modifies the original collection to contain the squares of the values stored in
the original list. Again, this is a common pattern – to apply a function to each element
of a collection and get a collection holding the results. The standard library provides
an algorithm called std::transform that behaves similar to Haskell’s map.

OutputIt transform(InputIt first1, InputIt last1, OutputIt d_first,

UnaryOperation unary_op);
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The first two iterators define the collection whose items we want to transform,
the third is the iterator that points to the destination collection in which we want to
store the results. The last argument is the function that will be used to transform the
elements. We can use it to implement the previous example in a more concise way:

std::transform(xs.begin(), xs.end(),

xs.begin(), [] (int x) { return x * x; });

Note that we have passed the beginning of the same list that we are transforming
(xs) as the third argument. This means that we will overwrite the old data, just like
in the example above. If we want to preserve the old list, we can do it like this:

list<int> xs = {1, 2, 3, 4, 5};

vector<int> results;

std::transform(xs.cbegin(), xs.cend(),

std::back_inserter(results),

[] (int x) { return x * x; });

// xs = {1, 2, 3, 4, 5};

// results = {1, 4, 9, 16, 25};

If we wanted to get the three largest squares, we could sort the results (this is
inefficient, used only for the demonstration purposes), and create a new collection that
will contain only the first three elements.

std::sort(results.begin(), results.end(), std::greater<>());

vector<int> top_three(results.cbegin(), results.cbegin() + 3);

4.3 Iterator Types

Those who are paying attention have probably noticed that xs was a list of integers,
whereas the results is a vector. The reason for that is that the std::sort requires a
special type of iterators that the list does not support. Sorting is usually implemented
using the quick sort algorithm which requires random-access to items.

– Input iterator is the basic type of iterator. It only needs to support incrementing
(move to the next element in collection) and equality comparisons (are the two
iterators pointing to the same element).

– Forward iterators are a subset of Input iterators that allow multiple passes
through the collection.

– Bidirectional iterator is a Forward iterator that also supports decrementing
(move the iterator to point to the previous element).

– Random-access iterator is an iterator that allows non-sequential access to col-
lection elements, more precisely, random-access.

Since std::vector stores its elements in a contiguous block of memory, it can effi-
ciently provide access to any random element stored in it. On the other hand, std::list
is implemented like a doubly linked list, so it only provides efficient sequential access.
For that reason, std::sort does not work on lists.

Other algorithms we shown work on the lists without any problems – both
std::transform and std::accumulate only require a single pass through the
collection.
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4.4 Composition

The problem with the standard algorithms is that they are not easily composed. Lets
combine previous examples, and try to calculate a sum of squares of elements in a list.

In Haskell, it is a one-liner:

sum $ map (\ x -> x * x) xs

If we were to combine the previous C++ examples, we would get a code like this:

list<int> xs = {1, 2, 3, 4, 5};

list<int> squares;

std::transform(xs.cbegin(), xs.cend(),

std::back_inserter(squares),

[] (int x) { return x * x; });

int result = std::accumulate(squares.cbegin(),

squares.cend(), 0);

It is not as concise, and not even as efficient as the Haskell version. This code needs
to allocate new memory in order to store the squares, when we do not really need to
store them.

The main problem regarding composability is the fact that all algorithms accept
iterator pairs separately instead of whole collections. And they do not return iterators,
so their results can not be passed to other algorithms.

4.5 Easier Functional Objects Creation

While lambdas provide a nice in-line way of creating function objects like we saw before,
the syntax is not as terse as it could be for some special cases.

Libraries like boost.phoenix and boost.lambda [9] provide more concise solutions
for some of the special cases. Namely, they employ the idea of placeholders and leverage
C++ operator overloading to achieve easier functional object creation that is usable
in older C++ compilers (unlike lambdas which were introduced in C++11).

With these libraries, the following are equivalent:

// C++11 lambda

std::transform(xs.cbegin(), xs.cend(), xs.begin(),

[] (int x) { return x * x; });

// Boost.lambda

std::transform(xs.cbegin(), xs.cend(), xs.begin(),

_1 * _1);

// boost.phoenix

std::transform(xs.cbegin(), xs.cend(), xs.begin(),

arg1 * arg1);

They also allow more complex statements which can bind regular variables as well
as the placeholders:
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std::for_each(xs.begin(), xs.end(),

std::cout << _1 << ’ ’);

It is also possible to create custom functions that support placeholders using these
libraries, but we are going to skip that and demonstrate how to create your own
predicates from scratch.

We want to create a predicate that will be able to test whether the value passed to
it has an error or not. We want it to be possible to use it like this:

auto number_of_errors = std::count_if(

responses.cbegin(), responses.cend(),

error == true);

We can not achieve this with the aforementioned libraries because the dot (.) can
not be overloaded in C++. If it was, we would be able to write _1.error and use it as
a predicate.

We need to create an object called error that has the equality operator defined
(operator==) and calling that operator should return a predicate. We can do it in the
following manner:

class error_test_t {

public:

error_test_t(bool error = true)

: m_error(error)

{}

error_test_t operator==(bool error) const

{

return error_test_t(!!m_error ^ !!error));

}

template<typename T>

bool operator() (T &&value) const

{

return value.error == m_error;

}

private:

bool m_error;

};

error_test_t error(true);

error_test_t not_error(false);

The error and not_error objects is already predicates, so we can have even more
possible ways to use it, depending on the user preference:

auto number_of_errors = std::count_if(

responses.cbegin(), responses.cend(),

error);

// or
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auto number_of_errors = std::count_if(

responses.cbegin(), responses.cend(),

error == true);

auto number_of_valid_responses = std::count_if(

responses.cbegin(), responses.cend(),

not_error);

// or

auto number_of_errors = std::count_if(

responses.cbegin(), responses.cend(),

error == false);

While the need to manually write predicates like this is unfortunate, they can be
written only once, and used for any type. It makes the main program code much easier
to read and write.

5 Ranges

One of the common things we saw in the previous examples was that all algorithms
accepted iterator pairs – one that points to the beginning, and another that points to
the end (more precisely, it points to the element immediately after the last element in
the collection).

If it is a common pattern, we might want to abstract over it. This abstraction is
called ranges. For the time being, lets think of them as just being pairs of iterators.

5.1 Convenience

The first benefit we are getting from replacing single iterators with ranges is conve-
nience. Using the standard algorithms becomes more terse. It is easier to write just:

std::sort(xs);

std::accumulate(xs, 0);

than writing it with iterators:

std::sort(xs.begin(), xs.end());

std::accumulate(xs.cbegin(), xs.cend(), 0);

5.2 Composability

It also allows algorithms to return ranges as values which makes them composable. If
the sorting function was defined to return a sored range, it would be easy to write a
statement that gets 5 smallest elements in an array like this:

take(5, std::sort(xs));

So, the operations and transformations can be properly chained like in other func-
tional programming languages.
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5.3 Views

There are two types of ranges in C++, views and actions.
Views are just thin wrappers that represent a custom interpretation of underlying

sequence of elements without changing the original sequence nor copying it. They are
cheap to create and copy around.

If we want to get the first 5 elements in a collection, we can just write:

xs | view::take(5)

This will create a view that points to those elements, without copying them to a
separate collection. With iterators, this could be implemented like this:

auto begin5 = xs.cbegin();

// Take first 5 if there are more than 5 elements,

// take everything otherwise

auto end5 = xs.length() > 5 ? xs.cbegin() + 5

: xs.cend();

We can also do something more complex like extracting only letters from a string
and then converting them to uppercase.

auto xs = "Hello world!";

xs | view::filter(isaplha)

| view::transform(toupper);

// xs = "HELLOWORLD";

5.4 Infinite Views

Since views do not actually contain any data, accessing an element in a view is a lazy
operation – it is calculated when it is needed. This allows us to have infinite views, and
apply transformations to them.

The following example calculates a sum of squares of first ten integers.

int sum = accumulate(

view::ints(1) |

view::transform([](int i){ return i*i; }) |

view::take(10),

0);

The view containing all integers is infinite, and so is the view we get when applying
the square function to it. Since we can not sum all integers, we had to make this list
finite to be able to pass it to accumulate. We did that by taking only the first ten
elements using the take transformation.

5.5 Actions

When you need to mutate a container, or forward it through a chain of mutating
operations, you can use actions. Actions own the data they contain and are eager, so
they can not work on infinite collections.

We can use actions to sort a vector, and eliminate the duplicates like so:
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xs = std::move(xs) | action::sort | action::unique;

// or shorter

xs |= action::sort | action::unique;

// or using the function call syntax:

action::unique(action::sort(xs));

5.6 Combining Views and Actions

While fundamentally different, views and actions can be used together. For example,
we might want to get a list of 5 elements with biggest squares:

xs | view::transform(square)

| action::sort

| view::take(5);

The call to transform will create a simple view, no data will be changed. When the
user requests the items to be sorted, the algorithm needs to evaluate all the elements
of the view passed to it, so it saves them internally. The last step, again, just creates
a view containing the first five elements.

5.7 Range Types

Like it was with iterators, ranges can have different features, and belong to different
types. The types are the same ones iterators had (everything from input ranges to
random-access ranges). A small difference here is that applying a transformation to a
range can also change its type.

For example, if we call action::sort on a input range, sort will internally collect
all the elements, and make them random-accessible so that it can perform sorting.
After that, the resulting range is also a random-access one.

6 Reactive Streams

Now that we know what ranges are, we can continue with creating abstractions for
asynchronous program execution.

We have created the continuation monad (or future<T>). It is interesting to note
that all the transformations defined on ranges can also be applied to futures. You might
want to have a square of the value that the future returns and write something like
this:

future<int> f = answer_ultimate_question_of_life()

| transform(square);

Instead of f being a future that will return 42, it will be a future that returns
1764 (422). While, theoretically, we can also apply sort, filter, etc. to a future, it
does not make much sense, since it contains at most one element.

But what happens if we remove the limitation that the future can return only
one value? Many processes in computing do not generate only one value, but series of
values. Not a series in the sense that we get a collection of items at some point in the
future, but in the sense that we get a new value from time to time (Fig. 6).
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Fig. 6. Stream of values

Examples of this include mouse movement where we get a screen coordinate (with
some additional data) every time the user moves the mouse cursor, keyboard events
where we get which key is pressed, client connections on a web service where we get
some information about a client whenever a new one connects to our service, and
similar.

This can not be modelled by futures, but is quite similar in nature. Just think of
it as a future that returns a value and another future of the same type.

In order for our previously defined structures to support this idea, the only thing
that needs changing is to add the support for calling the continuation function (the
function passed to .then) multiple times. We are not going to redefine the structures,
but we are going to refer to them as reactive streams [15], and write stream<T> to
mean a stream that contains elements of type T.

In order to explain the streams in a visual way, we are going to use the example
of transforming the mouse coordinates that get generated while the user is moving the
mouse cursor.

Our source stream will be called mouse_position, which we will connect to different
objects which will show these coordinates after we apply transformations to them.

Initially, we can just connect the mouse position directly to a marker that will show
the current position at all times like this:

mouse_position >>= mouse_cursor->move_to

Whenever the user moves the mouse, the new coordinates will be passed to the
move_to method of the mouse_cursor object. The window will look like in the Fig. 7.

Streams look suspiciously like ranges. They are a collection of elements of the same
type. The only difference is that we do not control when a specific element is going to
be known. This also means that we do not know whether the stream has an end. We
can also only move from beginning one element at a time.
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Fig. 7. The rectangle with rounded corners follows the mouse cursor

Considering all this, we can say that reactive streams are similar to the lazy, infinite,
input ranges. This limits us on which transformations we can apply to them.

Since they are infinite, all the actions on ranges are inapplicable to streams (unless
we convert them to finite ones first). We are left only with views.

6.1 Map, or Transform

Lets try creating the map transformation. What does it do? When the stream gets a
new value, it will send it to map which will perform a user-defined function and pass
on the result.

First, we need a structure that will be able to store the transformation function,
and the continuation to which to send the result.

template <typename Func, typename Cont>

struct map_cont {

map_cont(Func t, Cont c)

: transformation(f)

, continuation(c)

{

}

template <typename InType>

void operator () (const InType &in) {

continuation(transformation(in));

}

Func transformation;

Cont continuation;

};

The only thing that the constructor does is to save the transformation and con-
tinuation functions. When we connect it to a stream, the stream will invoke the call
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operator (operator()) of the map_cont structure whenever a new value appears. The
call operator will just apply the specified transformation to the value, and invoke the
continuation with the result.

Now, in order to have a nice syntax for using this class, we need to define a few
more things. We want to be able to write something like this (note that a >>= b is just
a syntactic sugar for a.then(b)):

stream >>= map(some_transformation) >>= receiver;

This means the following:

– map needs to be a unary function, even if map_cont structure requires two argu-
ments;

– map(f) needs to create a dummy structure that has a .then method, so that we
can register a continuation for it.

– When a continuation is defined for the result of map(f) it needs to return the final
map_cont object.

The following code manages all these requirements. The map_impl structure is the
dummy structure that map returns, and it is used only as a way to implement currying
and allow us to construct map_cont in two steps – the first step is the call to map and
the second is binding it to a continuation. It is mostly boilerplate that only concerns
the developers of libraries that wish to implement new DSLs like this one.

template <typename Func>

struct map_impl {

map_impl(Func f)

: f(f)

{

}

template <typename Cont>

auto then(Cont &&continuation)

{

return map_cont<Func, Cont>(

transformation,

std::forward<Cont>(continuation)

);

}

Func transformation;

};

template <typename Func>

auto map(Func &&f)

{

return map_impl<Func>(std::forward<Func>(f));

}

Now that we have a way to transform the mouse stream, we can create something
more useful than an object that follows the mouse. For example, we can set the y
coordinate to be a fixed number, and pass the events to a marker we will call top_ruler.
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auto flatline_x = [](const point_t &point) {

return point_t(point.x(), 10);

}

mouse_position >>= map(flatline_x) >>= top_ruler->move_to;

Now, we get a new object – a solid dot whose position is a projection of the mouse
coordinate on the top of the window like in the Fig. 8.

Fig. 8. Top ruler projection

6.2 Forking a Stream

But now we have a problem. The rounded rectangle does not follow the mouse anymore.
In order to be able to split a stream into two identical ones, we need to implement
some kind of forking mechanism.

The syntax that we want to achieve is the following:

mouse_position >>= fork(

mouse_cursor->move_to,

map(flatline_x) >>= top_ruler->move_to,

map(flatline_y) >>= left_ruler->move_to

)

For this, we will need the fork method which can accept an arbitrary number of
continuation functions. We will need a structure that can accept n different functions,
and call them all when its call operator is invoked. For that, we will need to use variadic
templates.

First, we define what we want to create – a struct template that has an arbitrary
number of template parameters.

template <typename ... Conts>

struct fork_impl;
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Then we write the special case when we are only given one continuation function. It
behaves just like map_cont except that it does not transaction on the value it received,
it just passes it on – like a map_cont with identity function.

template <typename Cont>

struct fork_impl<Cont>

{

fork_impl(Cont continuation)

: continuation(continuation)

{

}

template <typename InType>

void operator() (const InType &in) {

// passing the value to the continuation

continuation(in);

}

Cont continuation;

};

Now onto the general case. We will use something similar to recursion. The structure
that has n continuations defined will inherit one that has n− 1. This will allow us to
process just one of the continuations, and rely that the class we inherited knows how
to implement the same behaviour for the rest.

template <typename Cont, typename ... Conts>

struct fork_impl<Cont, Conts...>: fork_impl<Conts...>

{

using parent_type = fork_impl<Conts...>;

fork_impl(Cont continuation, Conts... cs)

: parent_type(cs...)

, continuation(continuation)

{

}

template <typename InType>

void operator() (const InType &in) {

// passing the value to the first continuation

continuation(in);

// passing the value to the other n-1 continuations

parent_type::operator()(in);

}

Cont continuation;

};

With the fork_impl structure defined, creating the actual fork function is trivial:
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template <typename ... Conts>

auto fork(Conts ... cs) {

return fork_impl<Conts...>(std::forward<Conts>(cs)...);

}

We can now write the code we wanted, and we will get both the mouse cursor and
the ruler items working properly (Fig. 9).

Fig. 9. Both rulers projection, and the cursor

6.3 Stateful Function Objects

Now a question arises. Are we allowed to pass anything that looks like a function to
map? There are more than a few things in C++ that look like functions. From function
pointers to proper classes that implement the call operator.

If we are allowed to pass anything we want, we can also pass functional objects that
have mutable state. Say, an object that will try to move towards the mouse cursor, but
slowly, without jumping (Fig. 10). For this, it will need to store its previous position
and use it when calculating the new one.

class gravity_object {

public:

gravity_object()

{

}

point_t operator() (const point_t &mouse_position) {

current_position.x = current_position.x * .99

+ mouse_position.x * .01;

current_position.y = current_position.y * .99

+ mouse_position.y * .01;
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Fig. 10. Rectangle moves slowly towards the mouse

return current_position;

}

private:

point_t current_position;

};

Would the following code be safe?

mouse_position >>=

map(gravity_object()) >>= gravity_marker->move_to;

Usually, having mutable state in a concurrent system is ill-advised. It is one of the
reasons why pure functional programming languages like Haskell are getting traction.
There can be no data races if all data is constant.

Here, we have implemented an object that has mutable state, without mutexes or
any synchronization at all.

It is obvious that immutable state can not lead to concurrency problems. But the
question we are left with is whether all mutable state is bad. If we own the data, and
we do not share it with anybody, and do not allow anyone else to change it, why would
it be bad? We are in full control. Mutable state becomes a problem only when shared
(Fig. 11).

It is worth noting that by passing gravity_object() to the map transformation, we
are creating a new instance of that object. If we were to define a local variable of that
type, and pass it to multiple different transformations, we would produce an error:

gravity_object gravity;

mouse_position >>= fork (

map(gravity) >>= gravity_marker_1->move_to,

map(gravity) >>= gravity_marker_2->move_to

);
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Fig. 11. Mutable versus immutable state

We are creating a single object with mutable state that is used to transform two
separate reactive streams. We are sharing mutable state which can lead to bugs. In
this case, the bug is very subtle – the gravity markers rectangle will move twice as fast
(we will leave explanation of this statement to the reader).

6.4 Stream Filtering

Another useful stream transformation is filtering. Sometimes we want to ignore some
type of events. For example, a button in the UI usually does not care about mouse
movements outside of its area.

Like map, defining the filter transformation requires some boilerplate code to
implement currying, which we will skip this time. The essence of filtering is in the
following structure:

template <typename Pred, typename Cont>

struct filter_cont {

filter_cont(Pred predicate, Cont continuation)

: predicate(predicate)

, continuation(continuation)

{

}

template <typename InType>

void operator () (const InType &in) {

if (predicate(in)) {

continuation(in);

}

}

Pred predicate;

Cont continuation;

};

The call operator gets a value from a stream connected to it, and it calls the
continuation function only if the predicate function returns true for that value.



Functional Reactive Programming in C++ 69

For example, we might want to filter out all the coordinates where y is not divisible
by 100 like this:

mouse_position >>=

filter([] (point_t point) { return point.y % 100 == 0; }) >>=

snapping_marker;

This has the effect of snapping to guide-lines. In this case, the guide-lines are fixed
to every 100 pixels, and are horizontal only (Fig. 12). If we wanted to snap to a grid,
we could just check the x coordinate in the same way we are checking y.

Fig. 12. The cross-hair is snapping to guide-lines

6.5 Generating New Stream Events

There is a bug in the previous example. As can be seen in the Fig. 12, one guide-line
(at 300 pixels) has been skipped. This can happen because the mouse movement is not
continuous, an there is a chance that while the mouse moves across the line, that the
mouse event for the exact y = 300 will not be emitted. The faster the mouse cursor
moves, the greater probability that it will skip the guide-line.

In order to remedy this, we need to make the stream of coordinates continuous. In
this case, since the coordinates are integers, continuous means that we want to create a
stream in which the difference in coordinates for two consecutive events is not greater
than 1 pixel per axis. The simplest way to achieve this is to remember the previous
mouse coordinate, and generate the Manhattan path to the new one.

class more_precision {

public:

more_precision()

{
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}

template <typename Cont>

void then(Cont &&c)

{

continuation = std::forward<Cont>(c);

}

std::vector<point_t> operator() (const point_t &new_point) {

std::vector<point_t> result;

// Going left (or right) until we reach new_point.x()

int stepX = (m_previous_point.x() < new_point.x()) ? 1 : -1;

for (int i = (int)m_previous_point.x();

i != (int)new_point.x(); i += stepX) {

result.emplace_back(i, m_previous_point.y());

}

// Going down (or up) until we reach new_point.y()

int stepY = (m_previous_point.y() < new_point.y()) ? 1 : -1;

for (int i = (int)m_previous_point.y();

i != (int)new_point.y(); i += stepY) {

result.emplace_back(new_point.x(), i);

}

// Saving the current coordinate

m_previous_point = new_point;

return result;

}

private:

std::function<void(point_t)> continuation;

point_t m_previous_point;

};

This will generate an array of coordinates for every new coordinate provided to
the object. In order to use it to transform our stream, we can not use the map func-
tion because we would get a stream of coordinate arrays (stream<vector<point_t>>)
instead of a stream of coordinates like we need. For this, we need to create a map-like
function which flattens its result. We will call it flat_map.

template <typename Func, typename Cont>

struct flatmap_cont {

flatmap_cont(Func transformation, Cont continuation)

: transformation(transformation)

, continuation(continuation)

{

}
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template <typename InType>

void operator () (const InType &in) {

auto results = transformation(in);

// Call the continuation for all items in the

// resulting array

std::for_each(

results.cbegin(), results.cend(),

continuation);

}

Func transformation;

Cont continuation;

};

Now, in order to fix the previous program, we only need to add a single stream trans-
formation (Fig. 13):

mouse_position >>= flatmap(more_precision()) >>=

filter([] (point_t point) { return point.y % 100 == 0; }) >>=

snapping_marker;

7 Data-Flow Design

In order to write reactive systems, one must start to think about them as data-flows [2].
More specifically, to analyze what is the input to the system, what is the input and out-
put of different system components, and how the data should be transformed between
them (Fig. 14).

The input streams represent the data that is coming into the system from the
outside world, while receivers represent either internal system components that react
to the requests, or the data that is emitted back to the outside world.

The transformations that happen in-between, can be either simple ones described
in the previous sections, or complete system components that receive some message
types, and react to them by emitting different ones.

For example, lets consider a simple authentication component. The client sends
a request for a resource to the service, along with its credentials. The authentication
component processes the credentials, and if they are valid, modifies the request by
removing the credentials, and adding the internal user identifier (Fig. 15).

The code corresponding to (using the functional object we have defined in the
Sect. 4.5) this would look like this:

clients_stream // stream<request_t>

| authenticate() // stream<authenticated_request_t>

| fork(

filter(error == true) | report_error(),

filter(error == false) | resource_service()

)
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Fig. 13. The cross-hair is snapping to guide-lines, fixed

Fig. 14. Data flow through the system
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Fig. 15. Data flow for the client authentication service

8 Conclusion

Reactive programming is based on the idea of propagation of changes – reacting to
events, as an alternative to the usual approach of scheduling an asynchronous opera-
tion, and waiting for its result. This idea allows software decomposition into indepen-
dent components that communicate with each other only through messages (or events)
without any shared data and the need for synchronization primitives like mutexes or
transactional memory.

We can collect messages of the same type coming from a component into an abstrac-
tion called reactive stream. Reactive streams satisfy all the monad rules. They behave
mostly like infinite lazy lists, with the exception that we should never ask for an ele-
ment directly, but should only apply the monadic transformations on them. We can
use all the usual transformations like map, filter and fold.

This abstraction allows us to look at the system design as a data flow. We have the
data sources – the components that send the messages, data receivers – the components
that receive the messages and process them, and we have the data transformations –
either simple functions like filter, map, fold and alike, or more complex stateful
components that receive messages, do something to them, and send new messages as
the output. Composing these smaller components allow us to create complex software
systems. This allows for easier reasoning about the system logic since it uses the build-
ing blocks that are already known to functional programmers, just brings them to a
new level. It makes writing asynchronous programs to be almost as simple as writing
synchronous ones.

Because there is no explicit synchronization involved, and the whole design revolves
around creating independent and isolated components that have no shared data, our
systems become easily scalable both vertically – adding new components requires just
connecting them to an existing reactive stream, either as sources, or as receivers; and
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horizontally by allowing to clone specific components so that they can spread the load.
The design even allows us to create distributed systems without any changes to the
code, as long as we are able to send messages between different nodes in the distributed
system.

The abstractions that the FRP (functional reactive programming) uses are powerful
enough to cover most use cases. It covers interactive UI applications where the message
sources are events produced by the user – mouse movements, keyboard input and alike;
the internal program logic is implemented in the transformation components, and the
final receiver is the user interface, and thus the user herself. FRP also covers the
distributed systems, and network services. Here, the flow usually goes from the system
client, through the different nodes of the distributed system, or different components of
the network service, back to the client in the form of a processed message (or a stream
of messages) representing a result of the request.
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Abstract. The C++ programming language is a multiparadigm lan-
guage, with a rich set of procedural, object-oriented, generative and,
since C++11, functional language elements. The language is also well-
known for its capability to map certain semantic features into the lan-
guage syntax; therefore, the compiler can reason about them at compile
time. Supporting functional programming with immutables is one of such
aspects: the programmer can mark immutable components and the com-
piler checks potential violation scenarios and also optimizes the code
according to the constant expectations.

The paper targets the non-C++ programmer audience less familiar
with the technical details of C++ immutables and functional elements,
as well as those C++ programmers who are interested in the develop-
ment of the newest standard. We will survey the functional programming
features of modern C++. The various types of constants and immutable
memory storage will be discussed as well as the rules of const correct-
ness to enable the static type system to catch const violations. Const
and static const members of classes represent support for immutables in
object-oriented programming. Specific programming tools, like mutable
and const cast enable the programmer changing constness for exceptional
cases. Constexpr and relaxed constexpr (since C++14) objects and func-
tions as well as lambda expressions have recently been added to C++
to extend the language support for functional programming. We also
discuss the fundamentals of C++ template metaprogramming, a pure
functional paradigm operating at compile time working with immutable
objects.

Understanding the immutable elements and the rich set of functional
language features with their interactions can help programmers to imple-
ment safe, efficient and expressive C++ programs in functional style.
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1 Introduction

The C++ programming language is a strongly typed, compiled, multiparadigm
programming language supporting procedural, object-oriented, generative and
(partially) functional programming styles. Its root goes back to the procedural C
programming language [17] extending it with essential object-oriented features,
like classes, inheritance and runtime polymorphism inherited from Simula67 [38].
Soon generic programming, implemented via templates became fundamental
part of the language [8]. The Standard Template Library (STL), part of the
standard C++ library, is still the prime example for the generic paradigm [37].

Functional programming features [11] were barely represented in the earlier
versions of the C++ language. One of the existing elements was the pointer
to function originated in the C language. A pointer to a function allows the
programmers to represent algorithms as data; store them in variables, pass them
as parameters or returning them from functions. The applications using pointers
to functions are restricted in both semantical power and syntactical ease.

Pointers to member functions also exist in C++. As member functions are
bound to classes, the type of such a pointer includes information about the
class itself. However, the implementation is tricky as the same pointer can point
either to a non-virtual member function (represented as an “ordinary” function
pointer) or to a virtual function (effectively an offset in the virtual table).

Besides pointers to functions C++ programmers can use functors as func-
tional programming elements as predicates, comparisons or other kind of exe-
cutable code to pass to standard algorithms as parameters. Functors are classes
with function call (parenthesis) operator defined, and they behave like higher
order functions: they can be instantiated (with constructor parameters if nec-
essary), and can be called via the function call operator. Although functors are
not necessarily pure as they may have state (separate for each instantiations),
they are fundamental tools for implementing functional elements, like currying,
binding, etc.

In many cases functors are syntactically interchangeable with pointers to
functions, e.g. when passing them as template parameters to STL algorithms.

Despite all the restrictions, syntactical and semantical issues, early attempts
were made to implement complex libraries to achieve functional programming
in the C++ language [7,18]. Most notable, FC++ [20,21] has implemented lazy
lists, Currying and function composition among other functional features. The
following works on functional features in C++ also targeted template metapro-
gramming [32,33].

As functional programming becomes more and more popular – not only as
powerful programming languages, but also as formalism to specify semantics
[19,47] – further language elements supporting functional style have come into
prominence [25]. The lambda expressions have been added to C++ first as a
library for more direct support for functional programming [15,16]. Lambda
expressions provide an easy-to-use definition of unnamed function objects – clo-
sures [14]. To eliminate the shortcomings of a library-based implementation,
the C++11 standard introduced native lambda support. Lambda functions are
directly translated to C++ functors, where the function call operator is defined



Immutables in C++: Language Foundation for Functional Programming 77

as const member function. C++14 further enhanced the usability of lambda cap-
tures with generalized lambdas, and with the possibility of using initialization
expressions in the capture [13].

Despite all these achievements towards programming in functional style,
C++ is not and never will be a (pure) functional programming language. As it
is neither a pure object-oriented nor a procedural language. C++ is essentially a
multiparadigm programming language: it does not prefer a single programming
style over the others. One can write (a part of) a C++ program using the set of
features from one or more paradigms according the problem to solve [5]. More-
over, these paradigms are necessary collaborating to each other. STL containers
and algorithms with iterators form a generic library. In the same time, con-
tainers are implemented as (templated) classes with features of object-oriented
programming, e.g. separation of interface and implementation, public methods
and operators, etc. (Virtual functions, however, are mostly avoided for efficiency
reasons except in some i/o related details.) On the lower end of the abstraction
hierarchy, member functions are implemented in a procedural way.

Functional programming interweaves this hierarchy. STL algorithms are often
parameterized with lambdas or functors representing predicates and compara-
tors. Although no language rule forbids them having states, most experts suggest
to implement predicates and comparators as pure functions since algorithms may
copy them.

The STL itself suggests a functional approach: instead of writing loops and
conditional statements, the programmer is encouraged to use algorithms, like
std::for each and std::remove if. When the highly composable ranges will
be incorporated to C++17 or later [28] they will add an additional support to
this style. As explained in [26], the range comprehensions are in fact, monads.

The design goals of C++ according to Stroustrup include type safety, resource
safety, performance, predictability, readability and the ease of learning the lan-
guage [40]. These goals were achieved in different language versions to different
extents.

Resource safety can be achieved only by the thoughtful process of the pro-
grammer using the appropriate language elements. C++ is not automatically
garbage collected. (Although the standard allows using garbage collection, every-
day C++ implementations usually avoid it). The programmer, however, can use
smart pointers, like std::unique ptr or std::shared ptr (part of the standard
since C++11) to control heap allocated memory. What is different in C++ from
other usual object-oriented languages is that the notion of resource is far more
general than just memory: every user defined feature can be handled as resource
and controlled by the Resource Acquisition Is Initialization (RAII) method:
resources can be allocated by constructors and will be (and usually shall be)
disposed by a destructor. Special care should be paid to copying objects (either
by copy over existing objects or initializing newly created ones) using assignment
operators and copy contructors.

One of the major distinctive feature of C++ is the ability to map large variety
of semantic concepts to compiler checked syntactical notations. Let us investigate
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the code snippet written in ANSI C on Listing 1. The program crashes for obvious
reasons: we opened input.txt for read-only, but later we try to write into it. In
the C language, the concept whether a file has been opened for read-only, write-
only or read-write is not mapped to the language syntax at all; therefore, the
compiler is unable to check the correctness of the usage (and it does not even
attempt to do it). If we fail to use the files properly, we won’t get diagnostic
messages (like warnings) about it, our program compiles and (likely) crashes at
runtime.

#include <stdio.h>

int main() // wrong C program

{

FILE *fp = fopen( "input.txt", "r");

// ...

fprintf( fp, "%s\n", "Hello input!");

// ...

fclose(fp);

}

$ gcc -std=c99 -pedantic -Wall -W wrong.c

$ ./a.out

Segmentation violation

Listing 1: Erroneous usage of C style input/output

In the C++ standard library, however, there are separate (abstract) types for
read-only and write-only streams. Read-write streams in fact are inherited from
both bases. Real resources (e.g. files and stringstreams, i.e. streams working over
in-memory character strings) are represented by objects belonging to derived
classes inherited from either the input or the output base classes.

As input and output operations are defined in the respective base classes,
improper usage of streams cause compile time errors, as seen on Listing 2.
Although, the diagnostic message caused by the improper usage is a bit dif-
fuse, the first lines point to the exact problem. Again, the essence of the solution
was that the library mapped the concepts of opening a stream either for reading
or writing into the appropriate C++ types and, thus, the compiler is able to
detect the mismatch as type error.

The concept of immutability is handled in a very similar way. The type of a
(mutable) variable of type X is different from the type of an immutable variable of
the same type X. Although, such distinction is not unusual in other programming
languages, the generality and completeness of the mapping are what makes C++
solution special. We are speaking about a language, where multiple aliases of the
same memory area (in form of pointers, references) are usual, and where objects
of user defined classes are expected to behave the very same way as built-in
types do.
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#include <fstream>

int main()

{

std::ifstream f;

// ...

f << "Hello input!" << std::endl;

}

$ g++ -std=c++11 -pedantic -Wall -W w.cpp

w.cpp: In function ‘int main()’:

w.cpp:10:8: error: no match for ‘operator<<’ in ‘f << "Hello input!"’

w.cpp:10:8: note: candidates are:

/usr/include/c++/4.6/ostream:581:5: note: template<class _CharT,

class _Traits, class _Tp> std::basic_ostream<_CharT, _Traits>&

std::operator<<(std::basic_ostream<_CharT,_Traits>&&,const _Tp&)

/usr/include/c++/4.6/ostream:528:5: note: template<class _Traits>

std::basic_ostream<char, _Traits>& std::operator<<(

std::basic_ostream<char, _Traits>&, const unsigned char*)

...

Listing 2: C++ can detect erroneous input/output usage at compile time

This paper is organized as follows. In Sect. 2 we survey the various ways we
can define immutable objects in C++. We analyse const correctness, the set
of complex rules allowing C++ to catch constant violations at compile time in
Sect. 3. Here we will also discuss how constness works in STL and how the pro-
grammer can make exceptions of constness via const cast or mutables. The con-
stexpr objects and functions became official part of C++ since version C++11,
and were substantially extended in C++14. We overview their possibilities in
Sect. 4. Lambdas, their usage and whether and how they are pure functions are
explained in Sect. 5. Template metaprograms discussed in Sect. 6 are pure func-
tional language elements forming a compile time Turing complete sublanguage
of C++. All such elements are immutable of necessity. The paper concludes in
Sect. 7.

2 Immutable Elements in C++

In this section we first survey the elementary immutable objects in C++. Then
we will see how we can express immutability for more complex constructs.

2.1 Preprocessor Macros

The C++ preprocessor runs as the first step of the compiler. The preprocessor
executes trigraph replacement, line splicing, tokenization, comment replacement,
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and finally: macro expansion and directive handling. In this last step, identifiers
defined as macros are replaced by their defined values. Naturally, many of such
macros are defined as literals, and; therefore, they are immutable as we will see
in the next subsection.

2.2 String Literals

String literals are sequences of characters surrounded by double quotes (and
optionally prefixed since C++11). By the C++11 standard [12], a string literal
is an lvalue, a notion which are usually connected to modifiable memory location.
String literals however are strictly read-only character arrays with static lifetime.
In many environments, the compiler may place such literals to read-only storage.
Any attempt to modify such string literals results in undefined behaviour. More-
over, compilers are allowed to re-use the storage of string literals for other equal
or overlapping literals. Most of the modern compilers do this, but remember:
this is not mandatory, actual compilers may choose different implementations.

#include <iostream>

int main()

{

char *hello1 = "Hello"; // hello1 points to ’H’ and hello2

char *hello2 = "Hello"; // likely points to the same place

std::cout << static_cast<void*>(hello1) << "\t"

<< static_cast<void*>(hello2) << std::endl;

*hello1[1] = ’a’; // could cause runtime error

}

$ g++ -std=c++14 -pedantic -Wall -W string1.cpp

In function ‘int main()’:

warning: deprecated conversion from string constant to ‘char*’

[-Wwrite-strings]

char *hello1 = "Hello"; // hello1 points to ’H’ and hello2

^

warning: deprecated conversion from string constant to ‘char*’

[-Wwrite-strings]

char *hello2 = "Hello"; // likely points to the same place

^

$ ./a.out

0x4009f5 0x4009f5

Segmentation fault (core dumped)

Listing 3: String literals are immutable objects
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Both string literals in the code example in Listing 3 have type const char[6]
(one extra character is allocated for the terminating zero character of the string)
which is converted to a pointer to const – const char *. We will see in Sect. 3.1
that normally pointers to const are not converted to pointers to non-consts. Here
the exceptional rule is explained by the reverse compatibility requirement with
millions of lines of legacy C code, where such assignments were legal and frequent
[9]. At least the compiler warns us that this usage is deprecated in modern C++.

String literals must not be confused with named character arrays, which can
be initialized by string literals and all their elements are mutable (unless they
are declared as constant arrays). In Listing 4 arr1 and arr2 are two separate
mutable character arrays of type char[6] placed strictly into different memory
areas. The arrays are initialized by the same sequence of characters. The second
notion is just a simplification to denote character array initialization list.

#include <iostream>

int main()

{

char arr1[] = {’H’,’e’,’l’,’l’,’o’,’\0’};

char arr2[] = "Hello";

const char arr3[] = "Hello forever";

arr1[1] = ’a’; // ok, arr1 is mutable

}

Listing 4: Character arrays are mutable by default

Naturally both arr1 and arr2 are mutable, so we can modify any of the array
elements (although setting/removing the zero character may confuse some string-
related standard library functions). The arr3 is declared as const, therefore,
that array is immutable.

2.3 Named Constants

A const object is an object of type const T or a non-mutable subobject of such
an object. Such named const objects have some less known properties. They may
appear, for example, as case labels in switch statements, and they may serve
as the size of static arrays.

In Listing 5, c1 and c2 are initialized with constant expressions (constants
whose values can be computed by the compiler at compile time). Such constant
objects can serve as case labels or as the size in an array declaration. (Since
C++11 variable sized arrays are allowed, but only for objects with automatic
life time, like non-static local variables.) Object c3, however, must not be used,
as it is initialized with a runtime value coming from a non-constexpr function f
as a return value. In all other aspects c1, c2, and c3 have the same behaviour.
Similar situations with constexpr function will be discussed in Sect. 4.
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int f(int i) { return i; } // not constexpr

int main()

{

const int c1 = 1; // initialized at compile time, optimized out

const int c2 = 2; // initialized at compile time, but needs memory

const int *p = &c2; // ...since a pointer points to it

const int c3 = f(3); // f() is initialized at runtime, needs memory

static int t1[c1];

static int t2[c2];

int i;

// read i

switch(i)

{

case c1: std::cout << "c1"; break;

case c2: std::cout << "c2"; break;

// case label c3 does not reduce to an integer constant

// case c3: std::cout << "c1"; break;

}

}

Listing 5: Named constants

The compiler tries to optimize the const objects. Here the compiler may
decide not to allocate memory for object c1, but should allocate memory for
c2 and c3. The reason, why c3 requires memory is obvious: it is initialized at
runtime, therefore the compiler cannot replace all of its occurrences with its
value. The situation with object c2 is a bit more interesting: its address is used
to initialize a pointer (a pointer to const). Since pointers must point to legal
memory locations by the C++ standard, the compiler must store c2 in such a
location.

2.4 Static Const Members

In object-oriented programming, we try to organize our code in classes. Objects
are instantiations of such classes. The names of types, methods and data belong-
ing to a certain class are expressed as members of that class. For immutables
this is the same.

Immutable values, which are the same for all objects of a given class, are
declared as static const in the class declaration. We may think of them as
global constants nested into the namespace of the class. Static members of a
class have a static lifetime, i.e. they are initialized before the start of the main
function and destructed after the main function successfully finished. For elemen-
tary types this means that the initialization is done by the compiler. For those
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types having non-trivial constructor functions (like most of the standard con-
tainers) the constructor is called before starting the main function.

Static members are not subobjects of their class. Similar to other static mem-
bers, static constants should also be defined to tell the compiler which source
is responsible to store the static member. In this definition, static consts should
be initialized either implicitly, having a default constructor or explicitly with an
initializer expression. For integral and enumeration types (like bool, char, or
long the initialization can be placed inside class definition. According the One
Definition Rule (ODR) initialization should happen in exactly one of the places
as seen on Listing 6.

class X

{

static const int c1 = 7; // ok, but remember definition

// static const int c2 = f(2); // error: not const expression

static const double c3; // not integral, don’t initialize here

};

void f()

{

const int X::c1; // must not re-initialized

const double X::c3 = 3.14; // not integral, must initialized here

}

Listing 6: Static const members allocated outside of objects

Static consts are immutables with the same value for all objects of the class.
There are situations where a member should be immutable for the lifetime of
the object but having a different value for different objects.

(Non-static) const members represent such subobjects. Unlike their static
counterparts, such constant members are subobjects, i.e. they are part of the
object. In Listing 7, each object of class Y has its own (possibly different)
immutable value, initialized by the constructor.

class Y

{

Y() : id1( gen_id1() ) { }

const int id1;

const int id2 = gen_id2();// since C++11 same as Y():id2(gen_id()) { }

int gen_id1() { ... }

int gen_id2() { ... }

};

Listing 7: Non-static const members are allocated inside every instance
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Object-level constants are immutable, but their values can be different in
different objects. Hence, they must be stored in every object. Since C++11 we
can initialize non-static data members – the meaning is the same as the use of
the initializer list in the constructor as seen in Listing 7.

3 Const Correctness

In the previous chapter we had a survey of the immutable C++ objects. How-
ever, in C++ objects may be accessed via aliases: pointers, references. To catch
possible violations of constness at compile time C++ provides a complex set of
const-correctness rules. In the following we enumerate these rules.

3.1 Non-class Types

While C++ objects are mutable by default (with the exceptions we discussed
in the previous section), const qualified objects are immutable. Any attempt
to write to them causes compile time error. The const qualifier is part of the
object’s type: hence on Listing 8 the type of ci is const int.

int i = 4; // not const

i = 5; // i is mutable

const int ci = 6; // const

ci = 7; // error: ci is immutable

Listing 8: Mutable and immutable variables

In C++ we use the address-of (&) operator to create a pointer value pointing
to an object. We can access and modify mutable objects via pointers. The prob-
lem is that in most cases it is impossible to determine at compile time where a
pointer points to at runtime. If ordinary pointers to type T could point to objects
of type const T, then it would introduce a Trojan horse to modify immutable
objects as we see on Listing 9.

int i = 4; // non const

int *ip = &i;

*ip = 5; // ok

const int ci = 6; // const

if ( runtime_value )

{

ip = &ci; // ???

}

*ip = 7; // where does ip point now?

Listing 9: Const-correctness
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In order to avoid this issue, C++ forbids the assignment of pointers to const-
qualified objects to ordinary pointers. We can say that the type of const T* is
not convertible to T*, as we see on Listing 10.

int i = 4;

int *ip = i;

const int ci = 6; // const

if ( runtime_value )

{

// this would be compile error:

// ip = &ci;

}

*ip = 7; // ok, ip points to mutable object

Listing 10: Constness must not be lost in assignment

Since pointers are fundamental in various situations in C++ including many
use cases of the standard library, the language provides a way to set pointers to
immutable objects. An object with type of pointer to const T can store a pointer
value to an immutable object of type T, it can be dereferenced, but the derefer-
enced value is immutable. To keep const correctness, pointers to const values can-
not be assigned to pointers to mutable objects. We must not “lose” constness.

This rule is not symmetric: we can still assign addresses of mutable objects to
pointers to const variables. In that case, the pointed (originally mutable) object
is handled as immutable when accessed via the pointer to const, see Listing 11.

int i = 4; // mutable

const int ci = 6; // const

int *ip = &i; // ok

const int *cip = &ci; // ok

ip = cip; // compile error: T* <- const T*

cip = ip; // ok: const T* <- T*

*cip = 7; // compile error: *cip is immutable

Listing 11: Conversion rules between pointers

There are different conventions to define a pointer to const. Some program-
mers prefer to use the const T * order, while others emphasize the immutability
of the pointed location to move the const keyword between the type name and
the * declarator in form of T const *. Both versions are supported by the lit-
erature and have the same meaning as long as we use the const keyword on the
left side of the * declarator as on Listing 12.
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const int *cip1; // pointer to immutable

int const *cip2; // cip2 has the same type as cip1’s

int *const ptr1 = &i; // ptr1 is immutable

const int *ptr2; // ptr2 points to immutable

const int *const ptr3 = &i;

Listing 12: Immutable pointers and pointers to immutables

To declare a pointer itself as immutable (pointing either to a mutable or
an immutable object) we use the const keyword on the right side of the *
declarator. In this way, in the next example we declare ptr1, ptr2 and ptr3 as
a const pointer to mutable object, a non-const pointer to immutable object and
a const pointer to immutable object, respectively.

Note, that const (immutable) objects (like ptr1 and ptr3) must be initialized
when defined.

3.2 Constness of Class Types

The rules discussed in the previous Subsect. 3.1 create a set of compile time
guidelines to ensure that objects defined as consts won’t be modified during
runtime. However, these rules are not yet complete when we consider class types.

Consider the Date class on Listing 13 which encapsulates three int data
members and provides related access methods representing a (very simplified)
data class.

class Date

{

public:

Date( int year, int month = 1, int day = 1);

// ...

int getYear();

int getMonth();

int getDay();

void set(int y, int m, int d);

// ...

private:

int year;

int month;

int day;

};

Listing 13: The original Date class
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The rules discussed in Subsect. 3.1 stand here too. Any attempt to modify a
const object causes a compile error on Listing 14. The major difference between
elementary types and classes is that elementary objects can be modified only by
assignment (via the objects themselves, or via references or pointers denoting
them), classes, however, can be also modified by member functions. How should
the compiler handle the method calls?

void f()

{

const Date my_birthday(1963,11,11);

Date curr_date(2015,7,10);

// my_birthday = curr_date; // compile error: my_birthday is const

cout << myBirthday.getYear(); // read const

myBirthday.set(2015,7,10); // modify const?

cout << currDate.getYear(); // read non-const

currDate.set(2015,7,11); // modify non-const

}

Listing 14: Access const and non-const objects via member functions

It is obvious, that myBirthday.set(2015,7,10) violates the seemingly com-
plete set of const correctness rules. But how can the compiler make difference
between methods allowed and forbidden for immutable objects?

The näıve approach to check the body of the methods fails for various reasons;
the definition of the method can be in a different source file, the method can call
other methods, etc. C++ has chosen a more syntax-driven approach: we should
explicitly mark methods callable on immutable objects as const methods as
part of their signature. Non-const methods cannot be applied to const objects
regardless whether they attempt to modify their objects or not.

In the code snippet on Listing 15, the compiler allows the call of getYear on
the immutable object myBirthday, since it is declared as a const method, but
emits diagnostics for the call of set.

The this parameter, passed as the hidden first argument for all non-static
methods is used to check the call. The this parameter of a const method is
declared as pointer to const, whereas in a non-const method it is a pure pointer to
the class. As the address of an immutable object is obviously a pointer to const,
such an address can be passed to const methods. Otherwise, const methods
can not be applied to non-const objects based on the required const to non-
const conversion. On the other hand, since a non-const this argument can be
converted to pointer to const, const methods are callable on non-immutable
objects.

On the other hand, the compiler must not “trust” on whether the program-
mer denoted the constness in the correct way for the const methods. Here the
situation is also covered by the rules we learned in Subsect. 3.1. Data members
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class Date

{

public:

Date( int year, int month = 1, int day = 1);

// ...

int getYear() const;

int getMonth() const;

int getDay() const;

void set(int y, int m, int d);

// ...

private:

int year;

int month;

int day;

};

void f()

{

const Date my_birthday(1963,11,11); // immutable

Date curr_date(2015,7,10); // mutable

// my_birthday = curr_date; // compile error: my_birthday is const

cout << myBirthday.getYear(); // fine: const member on const

// myBirthday.set(2015,7,10); // error: non-const member on const

cout << currDate.getYear(); // fine: const member on mutable

currDate.set(2015,7,11); // fine: non-const member on mutable

}

Listing 15: Const and non-const member functions

in member functions are accessed via the this pointer. As the this parame-
ter for such methods is implicitly declared as pointer to const, all modifications
via this are marked as errors by the compiler. Similarly, the calls of non-const
methods from const methods yield errors.

The invisible this parameter can also be used for overloading. This pattern
on Listing 16 is frequently used for access operators, which should be used both
for reading const objects and for modifying mutables.

T& operator[](size_t idx);

const T& operator[](size_t idx) const;

Listing 16: Overloading on constness

Only non-static member functions can be declared as const methods. Static
member functions and namespace functions should be declared as constexpr to
express their “pure” behaviour. We will discuss constexpr in Sect. 4.
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3.3 Mutable

There are certain situations where we want to modify subobjects inside const
objects. Consider the Point class on Listing 17 with objects accessed concur-
rently from multiple threads. To read consistent x and y pairs of coordinates, the
method getXY(int &x, int &y) locks the object. For this purpose, we place a
mutex object as a class member. Naturally, getXY is declared as a const method
as it is just reading the object.

struct Point

{

void getXY(int& x, int& y) const;

double xCoord;

double yCoord;

std::mutex m;

};

void Point::getXY(int& x, int& y) const // does not compile

{

std::lock_guard<std::mutex> guard(m); // constructor locks m

x = xCoord;

y = yCoord;

} // destructor unlocks m

Listing 17: Reading x and y coordinates is protected by a mutex

Unfortunately, the code above does not compile. Locking and unlocking obvi-
ously are changing the state of the mutex object, i.e. they are non-const methods.
As we learned in Sect. 3.2, we normally cannot alter an object’s (or its particu-
lar subobject’s) state (like the mutex m in our example) using a const member
function.

To make an exception from the rule, we can declare the mutex m as mutable.
Mutable means that the (sub)object can be altered even when it is part of a
const object or when accessed from a const member function.

struct Point

{

void getXY(int& x, int& y) const;

double xCoord;

double yCoord;

mutable std::mutex m;

};

Listing 18: A class with a member declared as mutable
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Mutables are exceptional objects, and we should use them only in exceptional
cases. Such situations include among others managing internal states, like a cache
or counters, and also managing mutexes, like in our example on Listing 18.

3.4 Constant Correctness in STL

The Standard Template Library (STL) is an essential part of the C++ lan-
guage. The success of the STL is based on its flexibility and extensibility. Pro-
grammers can re-use standard containers and algorithms connecting them by
iterators instead of writing specific code for each individual problem [4,27]. STL
makes the programmer’s work faster, safer and more predictable [29]. Naturally,
the STL should support the const correct programming [22].

Consider the usual implementation of the find STL algorithm on Listing 19.

template <typename It, typename T>

It find( It begin, It end, const T& t)

{

while (begin != end)

{

if ( *begin == t )

{

return begin;

}

++begin;

}

return end;

}

Listing 19: Canonical implementation of the STL find algorithm

When we apply the algorithm to an immutable array, e.g. to a const array of
integers on Listing 20, the iterator will be deduced to the same type as the first
two parameters, i.e. to a pointer to const. Thus, const correctness stands.

For STL containers, the situation is a bit different as instead of pointers
iterators and const iterators are used to walk through container elements and
to refer to them. Dereferencing (applying the star operator for) an iterator
results in a left value reference to the value type of the container. Derefer-
encing a const iterator results in a non-writable const reference. The type
const iterator is not a const iterator which would mean an immutable iter-
ator. However, a const iterator, is a mutable object, e.g. one can modify it
and can walk through the container, but the referred objects are handled as
immutables as seen on Listing 21.

The iterator and const iterator values are generated by the begin and
end methods of the containers. Since C++11 the std namespace begin and
end functions are also available. Namespace functions provide the iterators in a
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const int t[] = { 1, 2, 3, 4, 5 };

auto len = sizeof(t)/sizeof(t[0]);

auto *p = std::find( t, t+len, 3) // const int *p

if ( p != t+len )

{

std::cout << *p; // ok to read

// *p = 6; // error to write

}

Listing 20: Const correctness in STL

void f(const std::vector<int> &v)

{

auto i = std::find( v.begin(), v.end(), 3); // const_iterator

if ( v.end() != i )

{

std::cout << *i; // ok to read

// error: *i = 6;

}

}

Listing 21: Const containers provide read only access to elements

unique and non-intrusive way for STL containers and classical C-style arrays.
The trick here is the overloading on constness: const variations of the begin and
end methods are the methods callable on constant containers and they return
const iterator.

C++11 provides more advanced type deduction with the auto keyword. Its
motivation was mainly to shorten iterator and const iterator declarations. How-
ever, it is a frequent situation when we want to apply a const iterator to an
originally non constant container. This will not work with auto and begin or end
methods, as the auto declaration deduces the type from the initializer expres-
sion, which is the return value of the begin and end methods, i.e. an iterator
in case of a non-const container [23].

void f(std::vector<int> &v, const std::vector<int> &cv)

{

auto i = std::find( v.begin() , v.end(), 3); //iterator

auto i = std::find( cv.begin(), cv.end(), 4); //const_iterator

auto i = std::find( v.cbegin(), v.cend(), 5); //const_iterator

}

Listing 22: Using cbegin and cend to return const iterator
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To enforce the return of const iterator type even for non-const containers,
new methods cbegin and cend were introduced in the C++11 standard, see
Listing 22. Similar namespace methods exist as cbegin, cend, and crbegin, and
crend for iterators and reverse iterators. For some mysterious reason, namespace
functions returning const reverse iterator were missing in C++11, and the
issue has been fixed only in C++14.

3.5 Casting Const Away

Based on the C/C++ philosophy that the ultimate control belongs to the pro-
grammer, there is an explicit cast to converting const objects to non-const ones.
However, as all other cast operations, it should be used with extra care to avoid
undefined behaviour. The basic rule is that we can cast away constness of pointers
to objects and lvalues.

Even when the compiler allows us to cast constness away, the result may be
surprising. In the example on Listing 23, we declare a variable const, then we
modify it via const cast and a non-const pointer.

#include <iostream>

int main()

{

const int ci = 10;

int *ip = const_cast<int *>(&ci);

++*ip;

std::cout << ci << " " << *ip << std::endl;

}

$ g++ -std=c++11 -pedantic -Wall -W const.cpp

$ ./a.out

10 11

Listing 23: Const cast may lead to undefined behaviour

There are a few cases when we cannot avoid the use of const cast. One
example is when a member function modifying the object’s state should be
defined as a constant member function. Suppose, we have a tree data structure to
store elements ordered by some key values. We might provide a member function
to balance the tree. Calling such balance member function from insert, which
is a non-const member function itself, is fine. However, when we want balance to
be available as a standalone API method, we should decide about its constness.
Strictly by C++ terms, balance is not a constant method as it is modifying the
object’s data. However, from the viewpoint of the user, the method behaves like
a const: no new element has been inserted, the order of the elements remains the
same. It is tempting to declare balance as const member function and simply
cast the constness of the this pointer away to make class members modifiable.
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Although, the scenario above is possible in technical terms, there are strong
arguments against it. Using const cast is extremely dangerous for objects that
were originally declared as const (see Listing 23). Whenever it is possible, use
mutable objects instead. Declaring a member function as const tells the user
that this function can be used in a multithreaded environment in a safe way.
That is not true in the example above (except that we use some very aggressive
locking inside balance, which may ruin the performance).

4 Constexpr

Compile-time expressions, i.e. expressions that can be evaluated at translation
time, always had a specific role in the C++ language. Such expressions can be
used to define an array size, a case label or a non-type template argument. On
the other hand, the compiler environment is enforced to compute these expres-
sions; C++ template metaprogramming is largely based on this fact. The phrase
translation time usually means compile time but may include link time activity
as well [36].

Interesting enough, by the C++ standard, the value of an expression com-
puted at translation time is not necessary equal to the value of the same expres-
sion computed at runtime [50]. Let us see the example on Listing 24 quoted from
the standard. The size of the character array must be compiled at translation
time, but the value of the integer variable size can be evaluated at runtime. In
such cases their values may differ.

bool f()

{

// Must be evaluated at translation time

char array[1 + int(1 + 0.2 - 0.1 - 0.1)];

// May be evaluated at run-time

int size = 1 + int(1 + 0.2 - 0.1 - 0.1);

return sizeof(array) == size; // unspecified: true or false

}

Listing 24: Compile-time expressions and run-time expressions

In classical C++03 constant expressions are restricted to the use of literals,
built-in operators, and macros. They must not contain functions or operators
of any kind, even when their return value could be trivially computed from the
compile-time given arguments as we see on Listing 25.

C++11 makes constant expressions more manageable introducing constexpr
functions and expressions. The idea is to make translation time constant com-
putation more expressive and thus partially replacing unmanageable macro and
template metaprogramming elements.
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#define AVERAGE(X,Y) (((x)+(y))/2)

double average(double x, double y) { return (x+y)/2; }

size_t s1 = sizeof(long);

size_t s2 = sizeof(short);

// constant expressions in C++03

const int a = (sizeof(long)+sizeof(short))/2;

const int b = AVERAGE(sizeof(long),sizeof(short));

// not constant expressions in C++03

const int c = AVERAGE(s1,s2);

const int d = average(sizeof(long),sizeof(short));

Listing 25: Constant and non-constant expressions in C++03

4.1 Constexpr Functions

C++11 introduced constexpr functions, functions that can be computed at trans-
lation time when all their parameters are known. As initially this feature was
planned as a minor feature to replace hard to maintain macros and small tem-
plate metaprograms, it had a minimalist design. The body of a constexpr func-
tion was restricted to a single return statement. Constexpr member functions
also were implicitly constant member functions.

As the new feature was a success, constexpr rules have been relaxed. Cons-
texpr functions since C++14 may contain declarations, sequences, and control
statements similar to “normal” functions as demonstrated on Listing 26. The
rules also have been changed in the way that non-static constexpr member func-
tions are not const member functions any more.

// in C++11

constexpr int pow( int base, int exp) noexcept

{

return exp == 0 ? 1 : base * pow(base, exp-1) ;

}

// in C++14

constexpr int pow( int base, int exp) noexcept

{

auto result = 1;

for (int i = 0; i < exp; ++i) result *= base;

return result;

}

Listing 26: Constexpr in C++11 and in C++14
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Even in C++14 there are serious restrictions on constexpr functions. They
must not contain asm definitions, goto statements, try blocks, and must not
declare static or thread local variables. Member constexpr functions must not
be virtual. These rules ensure compile time computability. Other C++ rules, e.g
overloading, work as usual.

Rules for constexpr functions are also designed to avoid side effects as we
experience on Listing 27. The safe rule is to access only variables which have life
time started inside the constexpr expression.

constexpr int f(int n)

{

static int value = n; // error, cause side effect

int i = 1;

int j = n; // ok, j is not constexpr

constexpr int x = n; // error

constexpr int y = i; // ok, life of i starts in f

return y;

}

Listing 27: Constexpr rules are to avoid side effects

Sometimes there is a thin line between what can be constexpr and what can
not. On the Listing 28 a ternary operator defines the value of member m. When
the constructor parameter is true, the value of m can be computed at translation
time. Otherwise, the initialization depends on a run-time value, so the compiler
flags an error.

int x; // not constant

struct A

{

constexpr A(bool b) : m( b ? 42 : x) { }

int m;

};

constexpr int v = A(true).m; // OK: constructor initializes m with 42

constexpr int w = A(false).m; // error: initializer of m is x

// which is not known at translation time

Listing 28: Expression computed at translation time or flags an error depending
on the value of b

One of the advantages of constexpr functions over template metaprograms is
that template metaprograms can only emulate floating point numbers, usually
with a pair of integer, while constexpr functions can work with native floating
point types.
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4.2 Constexpr Objects

Constexpr objects are constant objects having values that are known (or com-
putable) at translation time. We can apply the constexpr keyword both for
variables and for variable templates as seen on Listing 29.

constexpr size_t sizeof_long = sizeof(long);

constexpr size_t sizeof_short = sizeof(short);

template <typename T>

T PI()

{

constexpr T Pi = T(3.1415926535897932385);

return Pi;

}

Listing 29: Constexpr objects

Not only objects of built-in types can be specified as constexpr objects, but
also objects from those class types which can be safely constructed at translation
time. Such types are called literal types. Literal types must not include any
component which would indicate runtime activity, e.g. a virtual base. Scalar
types, reference types, the void, and arrays of literal types are considered as
literal types. Also classes with non-static members of (non-volatile) literal types,
constexpr member functions, constexpr constructor and with trivial destructor
are literal types [49].

On the Listing 30 we created a literal type representing a circle with a given
radius set by the constructor, inspired by [3]. Member functions are defined to
compute the perimeter and the area of the object as well as a non-const mem-
ber function magnify to change the radius by a ratio. The namespace function
create returns a new circle created by the first argument applying the second
argument as magnifying ratio.

In the example we created a literal type Circle with a single attribute radius
initialized by the only constructor. The constexpr getter methods perim and
area are declared const since in C++14 non-static constexpr member functions
are no longer implicit const member functions.

The magnify function is a constexpr but non-const member, as it changes
the object’s attribute value. Obviously, such a member cannot be applied to
a constexpr object, but can be used for non-const objects, like the local c2
object inside the create namespace function. Declaring magnify as constexpr
guarantees, that all the constexpr restrictions are hold, therefore, the function
can be safely called from the constexpr function create.

The local variable c2 of Circle type is not defined constexpr inside the
create function – we will modify it in the next line. We are allowed to create
non-const local variables in constexpr functions. The important aspect here is
that the lifetime of c2 starts inside the constexpr function.
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constexpr double sqr(double d) { return d*d; }

constexpr double Pi = 3.1415926535897932385;

class Circle // literal type

{

public:

constexpr Circle( double r) noexcept : radius(r) { }

constexpr double perim() const noexcept { return 2*radius*Pi; }

constexpr double area() const noexcept { return sqr(radius)*Pi; }

constexpr void magnify(double ratio) noexcept { radius *= ratio; }

private:

double radius;

};

constexpr Circle create( const Circle &c, double ratio) noexcept

{

Circle c2 = c;

c2.magnify(ratio);

return c2;

}

int main()

{

constexpr Circle c(2.5);

constexpr double p = c.perim();

constexpr double a = c.area();

constexpr Circle c2 = create(c,1.5);

}

Listing 30: A Circle class implemented as a literal type

In the main function all objects can be defined as constexpr. Such objects
can be placed into ROM if the environment supports that. The constructors of
these objects will run at translation time.

Constexpr functions and methods can be called with non-constexpr argu-
ments. In such situations, they will be executed at run-time. Allowing to call
constexpr functions at run-time avoid code duplication. However, the restric-
tions for these functions as described in this section still hold.

Constexpr functions are “running” at translation time, therefore, their
inspection is extremely hard. The usual method is to inject a runtime argu-
ment, and debug the function at runtime. Proper constexpr debuggers are yet
to be implemented.

5 Lambda Expressions

The Standard Template Library (STL) is a major component of the standard
C++ library. In STL containers implement various data structures, and algo-
rithms present numerous activities over them in form of namespace functions.
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To provide a smooth, generic connection between these two components, algo-
rithms access the containers via iterators [4,27].

STL supports functional style programming as it replaces the necessity of the
iteration over containers with the use of predefined algorithms, like remove if
or for each. Such algorithms are frequently parameterized by some callable
objects. The predicate in remove if and the repeated activity for for each are
provided as a callable parameter for these algorithms. In its most primitive form,
such a callable object is a pointer to function.

However, these functions often require access to the local variables in the
scope of the algorithms, e.g. the predicate for the remove if may depend on
the values of local variables in the call site. Ordinary C++ functions have no
access to the context of the call site. To bridge the problem, a functor – a class
with function call operator – can be defined and used instead of the function
pointer. Function objects (instances of functor classes) can be created and the
mentioned local variables are either copied into or referenced by its attributes.
These objects are passed to the STL algorithms as parameters and can be called
inside the algorithms. The procedure, however, requires a significant amount of
boiler-plate code as we see on Listing 31.

struct BetweenFunctor

{

public:

BetweenFunctor(int a, int b) : m_a(a), m_b(b) { }

bool operator()(int n) const { return m_a < n && n < m_b; }

private:

int m_a;

int m_b;

};

void filter(vector<int>& v, int x, int y)

{

v.erase( remove_if(v.begin(),v.end(),BetweenFunctor(x,y)),

v.end());

}

Listing 31: Removing elements from a container using a functor

The idea to provide an easy-to-use definition of unnamed function objects
– so called closures – which are capable of accessing (capturing) the variables
in the call context led to the notion of lambda expressions. Lambdas have been
introduced to C++ first as a user library in Boost.Lambda [16,48]. From C++11
they are part of the core language. Since then, lambdas are widely used as
parameters in the Standard Template Library algorithms, functions executed by
std::thread, and various other places.

Lambda expressions in C++ can be associated with equivalent functor classes
and function objects. The runtime object created from the lambda expression
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is called closure and is assignable and callable. Its type, the closure class is
unnamed. Nevertheless, we can refer to it by using the C++11 decltype expres-
sion. On Listing 32 we see the equivalent program snippet to Listing 31. Here we
are using lambda expression to remove elements from the vector. The expressive
power of the lambda solution over the functor is well worth observing.

void filter(vector<int> &v, int x, int y)

{

v.erase( remove_if(v.begin(),v.end(),

[x,y](int n) { return x < n && n < y; }),

v.end());

}

Listing 32: Removing elements from a container using lambda expression

We can understand the lambda construction by comparing it to the equiv-
alent functor on Listing 31. The lambda expression starts with the [ ] lambda
introducer. The optional captured variables x and y represent the data members
of the functor class initialized by the x and y variables of the calling context
respectively. The parameter and the function body of the lambda expression
form the function call operator of the functor defined as a constant member.
It can contain multiple statements. The return type is automatically deduced
by the corresponding C++ language rules. When that type is not suitable, the
required return type can be denoted explicitly [15].

5.1 Capture

The major advantage of a lambda over a functor is that the lambda can access
the calling context using captured variables. These variables can be captured
either by value or by reference. Default capture is by value: that is, the captured
variables are copied into the closure object when it is created. As a consequence,
further changes of the original variables captured by value are invisible in the
lambda expression. We can imagine it as the capture by value creates a “snap-
shot” of the calling context.

When variables are captured by reference, the closure initializes references
to the original storage. The lambda expression thus always sees the actual value
of the captured variables. Capturing variables by reference is denoted by the &
symbol.

On Listing 33, the filter function removes all elements from vector v which
have a value between x and y. The parameters x and y of the function are cap-
tured by value, while the local variable cnt is captured by reference. Therefore,
this latter variable can be modified from the lambda expression, and at the end
of the function cnt contains the number of the elements removed.



100 Z. Porkoláb

void filter(vector<int> &v, int x, int y)

{

int cnt = 0;

v.erase( remove_if(v.begin(),v.end(),

[x,y,&cnt](int n) { if ( x < n && n < y )

{ ++cnt; return true; }

else

return false; }),

v.end());

}

Listing 33: Variables captured by value and by reference

Lambda expressions are equivalent with constant function call operators on
the closure type. Any attempt from the lambda expression to modify the cap-
tured x and y will result in an error. Interesting enough, the lambda expression
is allowed to modify the variables captured by reference. This has the same
behaviour as we can experience with traditional classes: constant member func-
tions can make modifications via reference members.

We can allow the modification of the copies of the variables captured by value.
We indicate non-constness of the lambda function with the mutable keyword
before the body of the lambda expression. However, the modifications affect
only the copies, the original variables remain unchanged.

We can capture multiple values without enlisting them individually. The [=]
sign means capturing all variables by value and [&] means capturing all by
reference. We can mix values and reference captures, like [=,&cnt]. Naturally,
when using the = or & notion, only the variables actually used in the lambda
expression will be stored/referred. Global variables or static members are not
captured, but can be used as usual.

5.2 Capturing this Pointer

The this pointer is not captured by default, it should be captured explicitly by
value or by using the [=] notation. Capturing this is a necessary and sufficient
requirement to access members of a class. In Listing 34 the lambda inside the
print member function should capture this to access the data member s.

struct X

{

int s;

vector<int> v;

void print() const {

for_each(v.begin(), v.end(), [=](int n) { cout << n*s << " "; });

}

};

Listing 34: Capturing this pointer
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Capturing pointers and particularly capturing this can be dangerous. If the
pointed memory area is destroyed but the pointer to it still holds in the closure
object, calling the lambda can be fatal. In the example on Listing 35 the closure
captures the this pointer and then it is stored in a std::function object. Later it
is activated twice: once when the pointed object is still alive, and the second time
after the object is destroyed. That second call will likely cause runtime error.

std::function<void (int)> f;

struct X

{

X(int i) : ii(i) {}

int ii;

void addLambda() {

f = [=](int n) { if (n == ii) cout << n; else cout << ii; };

}

};

int main()

{

{

std::unique_ptr<X> up = std::make_unique<X>(4);

up->addLambda();

f(4); // calls lambda: ok

} // destroys the X object

f(4); // calls lambda: likely aborts!

}

Listing 35: Wrong usage of lambda with captured this pointer

In C++17, there will be possible to capture the enclosing object by value,
instead of capturing the this pointer.

5.3 Constant Initialization by Lambda

One of the special use cases of the lambda expressions are the initializations
of constant objects. Constants must be initialized and later they must not be
assigned to. In some cases, the initialization value heavily depends on the call-
ing context and should be computed by complex calculations. The usual way to
do this is to execute the necessary computations in a separate function and to
initialize the constant object by the return value of that function. However, this
solution has a number of drawbacks. The code of the function will be separated
from the object to be initialized. Using the actual environment of the initializa-
tion requires to pass a possible large number of parameters to the function.

It would be somehow useful to handle the variable as non-const for a while,
and make it immutable only after we calculated its “final” value. Although, this
is not possible literally, we can simulate it by lambda.
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void f()

{

bool some_variable_in_context = ...;

const int ci = [&]{

int ci; // non-const shadow variable

ci = some_default_value;

if ( some_variable_in_context ) // using the context

{

// and do some operations and calculate the value of ci

ci = some_calculated_value;

}

return ci;

} (); // note: () invokes the lambda!

// using the const ci

// ...

}

Listing 36: Initialization of a constant using lambda

On Listing 36 we are going to initialize the constant ci variable. Instead of
initializing it by a function, we define a lambda expression right in the place of
initialization capturing the whole context. In this lambda first we define a non-
const variable with the same name as the const to be initialized. This “shadow”
variable will be used to calculate the initializer value. The body of the lambda
expression looks like and acts like the continuation of the original function. Once
we calculated the required value, we close the lambda expression and immedi-
ately call it, thus, initializing the constant by its return value.

This method is usually more readable and manageable than the alternatives.

5.4 Generic Lambdas

Lambda expressions in C++11 were not generic: i.e. we had to apply various
tricks to handle lambdas in templated environment. In C++14, however, we can
write generic lambda expression, which works in a polymorphic way, similarly
to a template functor [43]. To express generality we use the auto keyword at
parameter declaration. Advanced C++14 return type deduction is also applied
on the example on the Listing 37.

// in C++11

for_each( begin(v), end(v),

[](const decltype(*begin(v))& x) { cout << x; } );

// in C++14

for_each( begin(v), end(v), [](const auto& x) { cout << x; } );

Listing 37: Generic (polymorphic) lambda expressions in C++14
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5.5 Generalized Lambda Capture

As we have seen earlier, lambdas can capture variables in the environment either
by value or by reference. The first will copy them into the closure object, the
second will initialize a reference inside the closure object to the captured vari-
able outside. Capture by reference can be dangerous, especially when the closure
object lives longer than the captured variable. In the same time, not all variables
can be captured by value. Since C++11 move-only types exist: types that can-
not be copied only just moved. Objects from such types like std::unique ptr,
std::thread and many iostream-related types cannot be copied, thus we can-
not capture them by value as it would apply the copy semantics.

To handle these types in a safe way from lambda expressions we should
move them into the closure object. For old-style functors, the solution would
be trivial, we could move the objects into the closure using the initializer list of
the constructor. (However, you must not forget to use the std::move right-value
cast operator.) To provide the same functionality for lambda expressions, C++14
presents generalized lambda capture, or init capture. An init capture behaves as
if it declares and explicitly captures a variable declared as auto and initialized
by the initialization expression. However, no real new variable is constructed:
e.g. no additional copy and destruction operations will be executed.

// since C++14

#include <iostream>

#include <memory>

int main()

{

int x = 10;

std::unique_ptr<int> up = make_unique<int>(42);

[&x = x, up = std::move(up), n = 1] { x = *up+n; } ();

std::cout << x << std::endl;

}

$ ./a.out

43

Listing 38: Init (generic) capture in C++14

In Listing 38 variable x is captured by reference, the unique ptr up is moved
into the data member of the closure object and an int type data member is
created and initialized to 1. The program prints 43. It is also important to
notice, that the heap area allocated by make unique and initialized to 42 is
already destroyed when we reach the output calls, as its ownership was moved
from the up pointer to the closure’s data member which has been destructed at
the end of the execution of the lambda expression.
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6 C++ Template Metaprogramming

In [30] we explored C++ template metaprogramming as functional programming
in a great detail. Thus, in this section we just briefly recap the generic idea and
discuss immutability.

Templates are key language elements of C++ enabling algorithms and data
structures to be parametrized by types or constants without performance penal-
ties at runtime [39]. This abstraction is essential when using general algorithms,
such as finding an element in a data structure, sorting, or defining data struc-
tures like vector or set. The generic features of these templates (like the behaviour
of the algorithms or the layout of the data structures) are the same, only the
actual type parameter is different. The abstraction over the type parameter –
often called parametric polymorphism [6] – emphasizes that this variability is
supported by compile-type template parameters. Reusable components – con-
tainers and algorithms – are implemented in C++ mostly using templates. The
Standard Template Library (STL), an essential part of the C++ standard, is
the most notable example [22,27].

Templates are code skeletons with placeholders for one or more type param-
eters. In order to use a template it has to be instantiated. This can be initiated
either implicitly, when a template is referred with actual type parameters or
explicitly. During instantiation the template parameters are substituted with
the actual arguments and new code is generated. Thus, a different code segment
is generated when a template is instantiated with different type parameters.

There are certain cases when a template with a specific type parameter
requires a special behaviour, that is different from the generic one. Such “excep-
tions” can be specified using template specializations. During the instantiation
of a template the compiler uses the most specialized version of that template.

Templates can refer to other templates (even recursively) thus complex chains
of template instantiations can be created. This mechanism enables us to write
smart template codes affecting the compilation process. To demonstrate this
capability of C++ templates Erwin Unruh wrote a sample program [42]. The
program, when compiled, emitted a list of prime numbers as part of the error
messages. This way Unruh demonstrated that with cleverly designed templates
it is possible to execute a desired algorithm at compile time. This compile-time
programming is called C++ Template Metaprogramming (TMP) [1].

The classical example on Listing 39 demonstrates how to compute the value
of factorial at compile time. We can see that the implementation uses recursion
at compile-time. The static constant value, Factorial<5>::value is referred to
inside the main function, thus the compiler is enforced to compute it. The instan-
tiation process of the class Factorial<5> begins. Inside the Factorial template,
Factorial<N-1>::value is referred. The compiler now is forced to instantiate
Factorial<4>, then to instantiate Factorial<3>, etc. The Factorial tem-
plate class is instantiated several times recursively. The recursion stops when
Factorial<1> is referred to, since there is a specialization for that argument.
At the end, the compiler generates five classes and Factorial<5>::value is
calculated at compile time.
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template <int N>

struct Factorial

{

static const int value = N * Factorial<N-1>::value;

}

template<>

struct Factorial<1> // specialization

{

static const int value = 1;

};

int main()

{

int r = Factorial<5>::value; // known compile time

cout << r << endl;

}

Listing 39: Simple factorial C++ template metaprogram

Similarly, one can use control branches using template specialization. In the
example on Listing 40 example we declare the variable i to be of type int or
long depending on whether the size of the long type is greater then the size of
int.

template <bool condition, class Then, class Else>

struct if_

{

typedef Then type;

};

template <class Then, class Else>

struct if_<false, Then, Else>

{

typedef Else type;

};

int main()

{

if_< sizeof(int)<sizeof(long), long, int>::type i;

cout << sizeof(i) << endl;

return 0;

}

Listing 40: (Runtime) conditional choice in template metaprograms

As template metaprograms are “executed” by the compiler, they funda-
mentally differ from usual runtime programs. Compilers among other actions
evaluate constant values, deduce types and declare variables – all of these are
immutable actions. Once a constant value has been computed, a type has been
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decided, a variable has been declared then they remain the same. There is no
such thing as assignment in template metaprograms. In this way C++ tem-
plate metaprograms are similar to the pure functional programming languages
with referential transparency [30]. However, one can still write control-structures,
using specializations. Loops are implemented using recursive templates, termi-
nated by specializations. Control branches are based on partial or full special-
izations.

Having recursion and branching with pattern matching we have a complete
programming language – executing programs at compile time. C++ templates
have been proven to form a Turing complete sublanguage of C++ at compile time
[44]. Template metaprograms are used intensively to implement active libraries
[45], expression templates [46], DSL integrations [34], parser generation [41],
target of translation of functional programming systems [35] or even for type
safe hosting of SQL queries [10].

We can use data structures at compile time. For example the list structure
used by most functional programming languages can be implemented by a class,
NullType, representing the empty list and a template class, Typelist, represent-
ing the list constructor [2]. One can represent any list by using the constructor
recursively. These classes can be implemented and used in Listing 41:

class NullType {};

template <class Head, class Tail>

struct Typelist {};

typedef Typelist< char,

Typelist<signed char,

Typelist<unsigned char, NullType>

>

> Charlist;

Listing 41: Representing data in metaprograms

Preprocessor macros make the use of typelists more handy (on Listing 42):

#define TYPELIST_1(x) Typelist< x, NullType>

#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>

#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>

#define TYPELIST_4(x, y, z, w) Typelist< x, TYPELIST_3(y,z,w)>

// ...

typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Listing 42: Representing data with typelist at template metaprogramming
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The most commonly used data types are implemented by the Boost.MPL
library in an efficient way and with an easy to use syntax, without having
to use the preprocessor for creating lists. The above list can be created using
boost::mpl::list as shown in Listing 43.

typedef boost::mpl::list<char, signed char, unsigned char> Charlist;

Listing 43: Using typelist in boost metaprogramming library

The similarities between template metaprogramming and the functional
paradigm are obvious. Static constants have the same role in template metapro-
grams as ordinary values have in the runtime ones. Template metaprogramming
uses symbolic names (typenames, typedefs) instead of variables. Specific classes
are used to replace runtime functions.

To bring C++ metaprogramming from an ad-hoc approach to a more struc-
tured form, Czarnecki and Eisenecker defined the term template metafunction as
a special template class [6]. The template metafunction is the unit to encapsulate
compile time computations in a standard way. The arguments of the metafunc-
tion are the template parameters of the class, the value of the function is a nested
type of the template. The name of this nested type has been standardised by
Boost.MPL, and it is called type. To evaluate a metafunction we provide actual
parameters for the arguments, and we refer to the nested type as the value.

The possibility of writing compile-time metaprograms in C++ was not
intentionally designed. Therefore, C++ compilers are not focused on template
metaprograms as primary targets. The syntax of the metaprograms is far from
trivial, and in most cases it is hard to understand. Debugging and profiling tem-
plate metaprograms, although now supported by various tools [24,31], are still
challenging.

7 Summary

More than 35 years after it has been created, the C++ programming language
has still among the most important and frequently used mainstream program-
ming languages. One of the reasons of its vitality is that C++ has successfully
addressed challenges that have emerged from time to time. The RAII idiom and
its consequences, like smart pointers, handled resource safety issues, generative
programming and the STL created a complex, fully comprehensive, still effec-
tive and easy to use standard library. Lately, the new memory model and the
multithreading library addressed the emerging request for supporting concurrent
programming.

Not independently from concurrent programming, we experience a growing
enthusiasm for functional programming and its toolset. Historically C++ was
not rich in language elements directly supporting the functional paradigm. In this
paper we attempted the summarize those classical and new language elements
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that provide support for one of the major characteristics of functional paradigm:
immutable programming. Immutability or referential transparency requires that
objects must not change their value during runtime.

Although there is no direct support for immutable data types in C++, various
existing language features can be used to achieve immutability. Constants, and
const-correctness rules have been used in C++ from the beginning. STL supports
and always supported constant correctness. Lambda functions, introduced to
C++11, have a pure behaviour by default. Constant expressions, especially their
extended form since C++14, provide a feasible way to implement immutable
objects and pure functions. Template metaprograms are referentially transparent
by nature, and compile time data structures, like typelists, are immutable. In the
upcoming C++17 version constexpr lambdas, folding expressions will enhance
the functional toolset of C++.

With this rich set of available language features, one can safely implement in
modern C++ immutable data structures, pure functions and all the other means
of functional programming.
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Abstract. C++ is a multiparadigm programming language. So the pro-
grammer may choose and combine between structural, procedural, object
oriented, generic or functional features of C++ to solve his problem.
Especially the functional aspect of C++ lambda functions with, type
inference and the function std::bind and std::function has grown in mod-
ern C++ and is quietly evolving with the next C++ standard.

1 Introduction

This lecture gives an overview of the functional capabilities of modern C++,
compares them with Haskell features and shows, how you can use them. In
addition, the lecture tries to peek into the future and gives you an idea of what
to come in the near future. So this paper is divided in two parts. At first I
describe the functional capabilities of classical C++, then I will peek into the
future.

2 Functional Programming in C++

C++ is not a functional programming language. But C++ allows to program in
a functional way. Examples? Automatic type derivation, typical for functional
programming languages, is one of the most used features in C++11:

Listing 1.1: Automatic type derivation with auto

std : : vec to r <int> myVec ;
auto i tVec = myVec . begin ( ) ;
f o r ( auto v : myVec) std : : cout << v << ”” ;

So in the simple example itVec is of type iterator and v a integer in the
range-based for loop. With C++ 11 C++ knows lambda functions. These are
functions without names that are often used as parameters for functions.

Listing 1.2: Lambda functions

i n t a = 2000 ;
i n t b = 11 ;
auto sum = std : : async ( [= ] { re turn a + b ; } ) ;
s td : : cout << sum . get ( ) << std : : endl ;
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3 Functional Programming: The Definition

Functional programming is easy to define. Functional programming is program-
ming with mathematical functions. You guessed it probably. The key point in this
definition is the term mathematical functions. These are functions that always
return the same result, if they are called with the same arguments. Therefore,
they behave like infinite large lookup tables. This feature, which always pro-
duces the same result when given the same arguments, is also called referential
transparency and has far-reaching consequences:

– Functions may not have any side effects, i.e. state outside the function body
change.

– The function call can be replaced by its result, resorted or automatically
moved to another thread.

– The program flow is controlled by the data dependencies and not by the order
of the instructions.

– Mathematical functions can be significantly easier refactored or tested,
because the functions can be considered in isolation.

4 Characteristics of Functional Programming

The definition of functional programming is short and crisp, but does not really
help further. More helpful is it already, to describe the characteristics of func-
tional programming and its implementation in C++. The Fig. 1 sets out the
strategy for the next section.

4.1 First-Class Functions

Functional programming languages are distinguished by first-class functions.
First-class functions behave as data and are often used in C++ in the Stan-
dard Template Library (STL). Thus, first-class functions can

– Be used as an argument of a function:

std : : accumulate ( vec . begin ( ) , vec . end ( ) ,
[ ] { i n t a , i n t b}{ re turn a+b ; } )

– Be returned by a function:

std : : funct ion<i n t ( int , i n t )> makeAdd(){
re turn [ ] ( i n t a , i n t b) { re turn a + b ; } ;

}
std : : f unc t i on < i n t ( int , i n t )> myAdd= makeAdd ( ) ;
myAdd(2000 , 11 ) ; // 2011
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Fig. 1. Characteristics of functional programming

The makeAdd function returns the lambda function [](int a, int b)
{return ab;} back. The function requires two int arguments and returns an int
value: std::function<int(int,int)>. The return type of the function makeAdd
can be bound to the generic function wrapper myAdd and can be executed. In
particular, the expressiveness of first-class features beautifully shows the C++
implementation of the dispatch table in Listing 1.3.

Listing 1.3: Dispatch table

std : : map <const char , f unc t i on <double ( double , double)>> tab ;

tab . i n s e r t ( { ’+ ’ , [ ] ( double a , double b){ r e turn a + b ; } } ) ;
tab . i n s e r t ({ ’ − ’ , [ ] ( double a , double b){ r e turn a − b ; } } ) ;
tab . i n s e r t ( { ’ ∗ ’ , [ ] ( double a , double b){ r e turn a ∗ b ; } } ) ;
tab . i n s e r t ( { ’ / ’ , [ ] ( double a , double b){ r e turn a / b ; } } ) ;

s td : : cout<< ”3.5+4.5=” << tab [ ’+ ’ ] ( 3 . 5 , 4 . 5 ) << std : : endl ; // 8
std : : cout<< ”3.5∗4.5=” << tab [ ’ ∗ ’ ] ( 3 . 5 , 4 . 5 ) << std : : endl ; // 15 .75
tab . i n s e r t ( { ’ ˆ ’ , [ ] ( double a , double b) { r e turn std : : pow(a , b ) ; } } ) ;
s td : : cout<< ”3.5ˆ4.5=” << tab [ ’ ˆ ’ ] ( 3 . 5 , 4 . 5 ) << std : : endl ; // 280 741

The std::map maps a const char to a function that takes two double values
and returns double value. It is this signature corresponding to the four functions
in the following lines. They represent the basic arithmetic operations. Now, if the
std::map is called with the key ’+’:tab[’+’](3.5,4.5), the lambda function
is used as a value for the key ‘+’. The result is that it evaluates the lambda
function with the values of (3.5, 4.5). Even subsequently allows the dispatch
table to be extended by the power function.

The Extension of the Function Concept. In the development of C++,
the extension of the function concept can be very nicely observed (Fig. 2). C
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has only functions. C++ added function objects with the first standard 1998.
These are instances of classes, which the call operator overloaded so that their
instantiated objects behave like a function. As objects they can hold state. With
C++ 11 C++ is expanded to include lambda functions; with C++ 14 generic
lambda functions. Generic lambda functions are lambda functions that have type
parameters as arguments similar to templates.

Fig. 2. The evolution of the function concept

4.2 First-Class Functions

Higher-order functions are the counterparts of first-class functions. Higher-order
functions accept as an argument or return as a result a function. Any program-
ming language that permits programming in functional style supports at least
the three functions map, filter and fold. map applies a function to each element of
a list, filter removes items from the list that do not satisfy a predicate. fold is the
most powerful of the three functions. fold applies a binary operation successively
on all pairs of a list until the list is reduced to one element. The easiest way to
get a feeling for the three functions in to use them. I use a list including natural
number and strings as input data. In the case of C++, the list is a std::vector:

Listing 1.4: Input data for Haskell and C++

// Haske l l
vec = [ 1 . . 9 ]
s t r = [ ” Programming ” ,” in ” ,” a ” ,” f un c t i o n a l ” ,” s t y l e . ” ]
// C++
std : : vector<int> vec {1 ,2 , 3 , 4 , 5 , 6 , 7 , 8 , 9}
std : : vector<s t r i ng> s t r {”Programming ” ,” in ” ,” a ” ,

” f un c t i o n a l ” ,” s t y l e . ”}
The result will be shown for the sake of simplicity in the syntax of Haskell.
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map applies a callable unit to each element of a list. A callable unit is any-
thing that behaves like a function. This can be a function, a function object or
a lambda function. The ideal candidate for higher-order functions is a lambda
function. This is for two reasons. Firstly, the functionality is expressed compact
and thus easy to understand. On the other hand defines lambda their function-
ality exactly at the spot where it is needed. Through this code, the compiler
receives locality maximum insight into the source code and can therefore opti-
mize very well.

Listing 1.5: Comparison of map and std::transform

// Haske l l
map (\ a −> a ∗ a ) vec
map (\ a −> l ength a ) s t r

// C++
std : : t rans form ( vec . beg in ( ) , vec . end ( ) , vec . beg in ( ) ,

[ ] ( i n t i ){ r e turn i ∗ i ; } ) ;

s td : : t rans form ( s t r . beg in ( ) , s t r . end ( ) , s td : : b a c k i n s e r t e r ( vec2 ) ,
[ ] ( s td : : s t r i n g s ){ r e turn s . l ength ( ) ; } ) ;

// [ 1 , 4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 ]
// [ 1 1 , 2 , 1 , 1 0 , 6 ]

Of course there is a different syntax for lambda functions in Haskell and
C++. So a lambda function in Haskell is introduced by a slash \a -> a * a,
however, in C++ by square brackets: [](int i){return i * i;}. But, these
differences are just of syntactic nature.

filter only leaves the items in the list that satisfy the predicate. Here, a
predicate is a callable unit. A predicate has to return true or false for each
argument.

Listing 1.6: Comparison of filter and std::remove if

// Haske l l
f i l t e r (\x−> x <3 | | x> 8) vec
f i l t e r (\x −> i supper ( head x ) ) s t

// C++
auto i t = std : : r emove i f ( vec . begin ( ) , vec . end ( ) ,

[ ] ( i n t i ){ re turn ( ( i <3) or ( i> 8 ) ) ! } ) ;
auto i t 2 = std : : r emove i f ( s t r . begin ( ) , s t r . end ( ) ,

[ ] ( s td : : s t r i n g s ) { r e turn ! ( std : : i supper ( s [ 0 ] ) ) ; } ) ;

// [ 1 , 2 , 9 ]
// [ ” Programming ” ]
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The function composition isupper (head x) checks for each word if the first
letter (head x) is a capital letter. Because std::remove if removes the arguments,
that satisfy the predicate, the logical expression must be inverted.

fold is the most powerful of the three higher-order functions. fold can imple-
ment map and filter. Listing 1.7 shows in Haskell and C++ the calculation of
the factorial of 9 and string concatenation by using foldl or std::accumulate.

Listing 1.7: Comparison of foldl and std::accumulate

// Haske l l
f o l d l (\ a b −> a ∗ b) 1 vec
f o l d l (\ a b −> a ++ ”:” ++ b) ”” s t r

// C++
std : : accumulate ( vec . begin ( ) , vec . end ( ) , 1 ,

[ ] ( i n t a , i n t b) { r e turn a ∗ b ; } ) ;
s td : : accumulate ( s t r . begin ( ) , s t r . end ( ) , s td : : s t r i n g (”” ) ,

[ ] ( s td : : s t r i n g a , std : : s t r i n g b){ r e turn a + ”:” + b ; } ) ;

// 362 800
// ” : Programming : in : a : f un c t i o n a l : s t y l e . ”

foldl needs like its C++ counterpart std::accumulate a starting value. This
is the case of the calculation of the faculty the 1, this is in the case of string
concatenation, the empty string ””. While Haskell uses two plus signs in the
lambda function to add the strings together, the simple
plus sign is sufficient in C++: a + ":" + b.

4.3 Immutable Data

Pure functional programming languages like Haskell are distinguished primarily
by the fact that their data are immutable. Thus assignments of the form x = x
+ 1 and accordingly ++x are not possible. The consequence is that Haskell has
no loops. These are based on the modification of a loop variable. Haskell does
not modify any existing data but creates new ones when needed. Immutable
data has a beautiful property. They are implicit thread-safe, because they lack
a necessary condition for a critical area. A critical area is characterized by the
access of two or more threads simultaneously on the same data. At least one
thread tries to change this data.

The immutability of data in Haskell can be seen in the Quicksort algorithm.

Listing 1.8: Haskells Quicksort algorithm

qsor t [ ] = [ ]
q so r t ( x : xs)= qso r t [ y | y <− xs , y < x ] ++ [ x ] ++

qsor t [ y | y <− xs , y >= x ]

The Quicksort algorithm qsort consists of two function definitions. The first
line is quicksort, applied to the empty list. This is the empty list. The second
line depicts the general case in which the list has at least one element of: x: xs.
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x is the beginning and xs the rest of the list by convention. The strategy of the
Quicksort algorithm can be expressed almost directly in Haskell. Use the first
element of the list x, the so-called pivot element and build a one element list
out of it [x]. Then add all elements of the list before the list [x], that are smaller
than x (qsort [y | y <- xs, y <x ]) and add all element after the list [x],
that are at least as large as x (qsort [y | y <- xs, y> = x]). The recursion
terminates when quicksort is applied to the empty list. The key point of the
algorithm is that in each recursion, a new list is generated.

The use of fixed data is based in C++ on the discipline of the programmer.
With constant data template metaprogramming and constant expressions C++
provides three options. The options one and two are presented with few words,
however constant expressions deserve much more attention. By the instruction
const int value = 1; value will be constant. Template metaprogramming
takes place at compile time. At compile time, there is no modification. Therefore,
all values at compile time are constant.

Now to constant expressions. This supports C++ in three forms: as a variable,
user-defined types and functions. The special feature of constant expressions is
that they can be evaluated at compile time.

pi becomes by the term constexpr double pi = 3.14 a constant expres-
sion. pi is thus implicitly const and must be initialized by a constant expression
3.14.

To create an object of a user-defined, which is a constexpr, the user-defined
type has a few limitations. So its constructor must be a constant expression itself.
Thus the object can only use methods, that are constant expressions themselves.
At compile time, no calls to virtual methods are of course possible. Meets the
custom type all restrictions, its objects can be created and used at compile time.

For functions as constant expressions there are limitations, so that they can
be performed at compile time. Firstly, all arguments must be constant expres-
sions. Secondly, they cannot contain static and thread-local data. Which expres-
siveness constant expressions have, can be seen in Listing 1.9. In this user defined
Literals are used to calculate distances at compiletime.

Listing 1.9: Constant expressions to calculate distances

#inc lude <iostream>
#inc lude <ostream>

c l a s s Dist {
pub l i c :

constexpr Dist ( long double i ) :m( i ){}

f r i e nd constexpr Dist operator+(const Dist& a , const Dist& b){
r e turn Dist ( a .m + b .m) ;

}
f r i e nd constexpr Dist operator −( const Dist& a , const Dist& b){

r e turn Dist ( a .m − b .m) ;
}
f r i e nd constexpr Dist operator ∗( double m, const Dist& a ){

r e turn Dist (m∗a .m) ;
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}
f r i e nd constexpr Dist operator /( const Dist& a , i n t n){

r e turn Dist ( a .m/n ) ;
}
f r i e nd std : : ostream& operator<<(std : : ostream& out ,

const Dist& myDist ){
out << myDist .m << ” m” ;
re turn out ;

}
pr i va t e :

long double m;
} ;

namespace Unit{
Dist constexpr operator ”” km( long double d){

r e turn Dist (1000∗d ) ;
}
Dist constexpr operator ”” m( long double m){

r e turn Dist (m) ;
}
Dist constexpr operator ”” dm( long double d){

r e turn Dist (d /10 ) ;
}
Dist constexpr operator ”” cm( long double c ){

r e turn Dist ( c /100) ;
}

}

Dist constexpr getAverageDist ( std : : i n i t i a l i z e r l i s t <Dist> i nL i s t ){
auto sum= Dist ( 0 . 0 ) ;
f o r ( auto i : i nL i s t ) sum = sum + i ;
r e turn sum/ i nL i s t . s i z e ( ) ;

}

us ing namespace Unit ;

i n t main ( ){
constexpr Dist work= 63.0 km ;
constexpr Dist workPerDay= 2 ∗ work ;
constexpr Dist abbreToWork= 5400 .0 m ; // abbrevat ion to work
constexpr Dist workout= 2 ∗ 1600 .0 m ;
constexpr Dist shop= 2 ∗ 1200 .0 m ; // shopping

constexpr Dist distPerWeek1= 4∗workPerDay − 3∗abbreToWork
+ workout + shop ;

constexpr Dist distPerWeek2=4∗workPerDay −3∗abbreToWork
+ 2∗workout ;

constexpr Dist distPerWeek3= 4∗workout + 2∗ shop ;
constexpr Dist distPerWeek4= 5∗workout + shop ;
constexpr Dist averagePerWeek=

getAverageDist ({ distPerWeek1 , distPerWeek2 ,
distPerWeek3 , distPerWeek4 } ) ;

s td : : cout << ”Average per week : ” << averagePerWeek
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<< std : : endl ;
}

User defined literals are built-in literals, which are complemented with their
own suffixes. This is possible for strings, characters, integers and floating point
numbers. This can be seen in Listing 1.9.

Now to the analyses of the program. As a frequent traveler, it is always
interesting for me to know how many meters I drive per week on average by
car. Thanks to user defined literals, I can express all distances in a natural way.
So the direct route to work is 63_km. An abbreviation that is present from time
to time is 5400.0_m. A trip to the remote 1600.0_m gym and 1200.0_m remote
wholesalers is also occasionally on the plan. Now it is time to add all distances
per week and calculate the average over the weeks. Figure 3 shows the execution
of the program in the unit meters.

Fig. 3. User defined literals

How does the magic work? The compiler maps the user defined Literals to the
literal operators. In these operators, the corresponding literal Dist objects are
created and normalized to meters. Figure 4 provides all the steps as examples,
which are necessary to add two user defined literals. The blue arrows are done
by the compiler, for the red steps, the programmer has to implement the code.

Fig. 4. Processing of user defined literals
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But what is special about the program? Except for calling the output function
std::cout all objects and functions are defined as constant expressions. Special is,
the whole program can be evaluated at compile time. So of course all properties
are constant.

4.4 Pure Functions

Pure functions are very similar to mathematical functions. They are the reason
why Haskell is called a pure functional programming language. Figure 5 compares
pure and impure functions.

Fig. 5. Pure versus impure functions

But pure functions have a decisive disadvantage. You cannot interact with
the world. The functions for input and output or functions that produce random
numbers cannot be pure. Haskell dissolves out of the impasse in which it embedds
a impure, imperative subsystems in the programming language. What is the
story about the purity of C++? This is based like dealing with fixed data on the
discipline of the programmer. Listing 1.10 presents three pure functions.

Listing 1.10: A function, a metafunction and a constexpr function as pure
function

i n t powFunc( i n t m, i n t n){
i f (n == 0) re turn 1 ;
re turn m ∗ powFunc(m, n−1);

}

template<i n t m, i n t n>
s t r u c t PowMeta{

s t a t i c i n t const va lue = m ∗ PowMeta<m, n−1>:: va lue ;
} ;

template<i n t m>
s t r u c t PowMeta<m,0>{

s t a t i c i n t const va lue = 1 ;
} ;

constexpr i n t powConst ( i n t m, i n t n){
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i n t r = 1 ;
f o r ( i n t k=1; k<=n ; ++k) r∗= m;
return r ;

}

i n t main ( ){
std : : cout << powFunc (2 ,10 ) << std : : endl ; // 1024
std : : cout << PowMeta<2 ,10>:: va lue << std : : endl ; // 1024
std : : cout << powConst (2 , 10 ) << std : : endl ; // 1024

}
Even if the three functions return the same result, they are very different.

powFunc is a classic function. It is running during the runtime of the program and
can also handle non-constant expressions. In contrast PowMeta is a meta-function
that is performed at compile time of the program. Therefore, it requires constant
expressions as arguments. The constexpr function powConst can be performed
at compile time and at runtime of the program. To be executed at compile time,
it requires constant expressions as arguments.

Pure functional languages have no mutable data. Instead of loops they use
recursion.

4.5 Recursion

The metafunction in Listing 1.10 has already shown it. Recursions occur at
compile time instead of loops. This allows the Factorial function in Listing 1.11
to be written much more compact in Haskell.

Listing 1.11: Recursion in Haskell

f a c 0 = 1
fa c n = n ∗ f a c (n−1)

A fine difference however between the recursive factorial function in Haskell
and the recursive factorial function in C++ exists. Strictly speaking the C++
- variant is not recursive. In fact each iteration the general class template with
the template argument N creates a new template with the template argument
N − 1. The recursion will end with the full template specialization for N equal
to 0.

Listing 1.12: Factorial <N>::value instantiate Factorial <N-1>::value

template < i n t N>
s t r u c t Fa c t o r i a l {

s t a t i c i n t const va lue = N ∗ Fac t o r i a l <N−1>:: va lue ;
} ;

template <>
s t r u c t Fac to r i a l <0>{
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s t a t i c i n t const va lue= 1 ;
} ;

If recursion is used along with lists and pattern matching, compact functions
can be implemented in Haskell. This is only partly true in C++.

4.6 Processing of Lists

LISt Processing (LISP) is characteristic of functional programming languages.
Since lists are the universal data structure, they are the ideal basis for functional
composition.

Processing of lists follows the functional model:

– Process the first element of the list.
– Recursively process the rest of the list, which is reduced by the first element.

Since the processing of lists is idiomatic for functional programming, there
have been names established for the first element of the list and the rest of the
list: (x, xs), (head, tail) or (car, cdr).

The functional model for the processing of lists can be implemented directly
in Haskell and C++:

Listing 1.13: Summation of a list in Haskell

mySum [ ] = 0
mySum (x : xs ) = x + xs mySum
mySum [ 1 , 2 , 3 , 4 , 5 ] −− 15

Listing 1.14: A variable number of template arguments in C++

template<i n t . . . >
s t r u c t mySum;

template<>
s t r u c t mySum<>{

s t a t i c const i n t va lue = 0 ;
} ;

template<i n t head , i n t . . . t a i l >
s t r u c t mySum<head , t a i l . . . >{

s t a t i c const i n t va lue = head + mySum<t a i l . . . > : : va lue ;
} ;

i n t sum = mySum<1 ,2 ,3 ,4 ,5 > : : va lue ; // 15

While the Haskell program is easy to consume, the C++ program is difficult
to digest. Even with the imperative eye of a C++ developer. The C++ syntax
requires that the primary or general template has to be defined at first. The fully
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specialized class template follows (meta-function). This class template is applied
to the empty argument list. If the template argument list containts one or more
elements, the partially specialized class template comes in use. A few more words
about the three points, called ellipse. Through this, the class template (last line)
can accept any number of template arguments.

Both Haskell and C++ use pattern matching to apply the correct function.
There is a subtle difference between both. Haskell follows the first-match strat-
egy, C++ the best-match strategy.

4.7 Lazy Evaluation

Lazy evaluation means, that an expression is only evaluated, when it is needed.
This strategy has two major advantages. On the one hand, time and memory
can be saved. Algorithms on the other hand, can be formulated for infinite data
structures. Of course it is only possible at runtime to request finite number of
elements.

Listing 1.15 shows three impressive examples in Haskell. The complexity
increases.

Listing 1.15: Lazy evaluation in Haskell

l ength [ 2 + 1 , 3 ∗ 2 , 1/0 , 5−4] −− 4

su c c e s s o r i = i : ( s u c c e s s o r ( i + 1) )
take 5 (1 su c c e s s o r ) −− [ 1 , 2 , 3 , 4 , 5 ]

odds = takeWhile (<1000). f i l t e r odd .map(ˆ 2)
[ 1 . . ] = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 . . . cont ro l−C
odds [ 1 . . ] −− [ 1 , 9 , 2 5 , . . . , 8 41 . 961 ]

In the first line Haskell calculates the length of the list, although the argument
is not a valid expression 1/0. Successor i defines the infinite number sequence of
natural numbers. With take 5 only the first five are required, the term is well
defined. But well-defined is not the expression [1 ..] for requesting all natural
numbers. Therefore, the program execution should be interrupted with control-
C. Of course it is possible to use [1 ..] when only finitely many elements are
requested. Exactly that takes place in odds[1 ..]. odds introduces the power
of the functional composition in Haskell. 6 The dot (.) is the symbol of the
function composition. The phrase can be read directly with a bit of practice
from right to left: first turn of the square function, then filter out all straight
elements and continue as long as the numbers are less than one thousand.

C++ uses eager evaluation by default. That is figuratively speaking, that, in
contrast to C++ Haskell evaluates the expressions from the inside to the outside.
With the short circuit evaluation in logical expressions C++ is only a bit lazy. If
in a logical expression, the result of the overall expression prematurely is known,
the rest of the expression has not be fully evaluated. Therefore, the following
code fragment is executable although 1/0 is undefined:
if (true or (1/0)) std::cout<<"Short Circuit evaluation" << std::endl;
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5 Functional Programming in C++17 and C++20

C++ will receive many new features with the upcoming C++-Standards that
do not have much in common at first glance. So the algorithms of the Standard
Template Library will act with the range library directly on the containers. With
Concepts Lite C++ 20 you can make demands on template parameters, using
std::optional. C++17 has a data type that can have a value or not. The compo-
sition of asynchronous function calls will be allowed by C++20 and thus fix the
shortcomings of std::future in C++11. This new features are based on powerful,
functional concepts like function composition, type classes and monads. Func-
tional concepts will be put on significantly more formal basis with the C++17
and C++20.

5.1 Fold Expressions

C++11 knows variadic templates. Variadic templates are templates which may
have any number of template parameters. This arbitrary number is held in the
parameters Pack. New is in C++17, that a parameter pack can be directly
reduced by a binary operator. So functions from Haskell like foldl, foldr, foldl1
and foldr1 [7] can be directly translated to C++ (Listing 1.16).

Listing 1.16: Calculating the truth value with variadic templates and fold
expressions

#inc lude <iostream>
bool a l lVar ( ){

re turn true ;
}

template<typename T, typename . . . Ts>
bool a l lVar (T t , Ts . . . t s ){

r e turn t && al lVar ( t s . . . ) ;
}

template<typename . . . Args>
bool a l l ( Args . . . a rgs ) { re turn ( . . . && args ) ; }

i n t main ( ){
std : : cout << s td : : boo la lpha ;
std : : cout << ” a l lVar ( ) : ” << a l lVar ( ) << std : : endl ;
s td : : cout << ” a l l ( ) : ” << a l l ( ) << std : : endl ;
s td : : cout << ” a l lVar ( t rue ) : ” << a l lVar ( t rue ) << std : : endl ;
s td : : cout << ” a l l ( t rue ) : ” << a l l ( t rue ) << std : : endl ;
s td : : cout << ” a l lVar ( true , true , true , f a l s e ) : ”

<< a l lVar ( true , true , true , f a l s e ) << std : : endl ;
s td : : cout << ” a l l ( true , true , true , f a l s e ) : ”

<< a l l ( true , true , true , f a l s e ) << std : : endl ;
}
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The two function templates allvar and all provide at compile time if and
only true if all arguments are true. allvar applys variadic templates, all vari-
adic templates in combination with fold expressions. First to allvar. Variadic
templates use recursion to their arguments to evaluate. The boundary condi-
tion is, that the parameter pack has to be empty. The actual recursion takes
place in the function template allvar in the line. The three dots – called
ellipse – define the parameter pack. Parameter Packs allow two operations.
They can be packed and unpacked. Everything is packed in the parameters Pack
template<typename T, typename ...Ts>, unpacked in the following lines. The
line return t && allVar(ts...); requires special attention. In it the head t
of the parameter pack will be linked with the rest of the parameters packs via
&&. The call allvar (TS ...) leads here to the recursion. This call includes a
parameter pack that is successively reduced to its first element. This is much
easier with C++17. In C++17, the parameter pack can be reduced directly via
a binary operator. Figure 6 shows the two algorithms in use.

Fig. 6. Comparison of variadic templates and fold expressions

Now to the two variations of the fold expression, leading to the four different
forms of expression fold. On the one hand fold expression depends on the binary
operator having a default value or not, on the other hand they can process the
pack parameters starting from left or right. The difference you can see between
the two algorithms allvar and all. all already has the default value true for
the empty parameters Pack.

C++17 supports 32 binary operators in fold expression [8]:

+ − ∗ / % ˆ & | = < > << >> += −= ∗= /= %= ˆ= &= |=
<<= >>= == != <= >= && | | , .∗ −>∗

Some binary operators already have a default value:

∗ ( 1 ) , +(0) , &(−1), | ( 0 ) , &&(true ) , | | ( f a l s e ) , ( void ( ) )

For binary operators, for which no default value is defined, a default value
must be specified. For binary operations, for which a default value is defined, a
start value can be specified.

Whether a parameter pack is processed from the left or right depends on
whether the ellipse left or right of the parameter pack. The same rule applies to
fold expression with starting value.
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5.2 Ranges Library

With the range library [11] of Eric Niebler working with the containers is clearly
more comfortable and powerful. Comfortable because the algorithms of the Stan-
dard Template Library (STL) can act on the containers directly and don’t need
a start and end iterator. Powerful because with the ranges library C++20 gets
lazy evaluation, significantly improved function composition and range compre-
hension.

Lazy Evaluation. Haskell is thoroughly lazy. Lazy evaluation allows Haskell
to define algorithms for infinite data structures that only ask a finite number of
elements. It is thus possible in a very elegant way to separate the algorithm for
calculating an infinite data structure from its application.

The range library allows the uncommented line Haskell code to be directly
translated to C++.

Listing 1.17: Lazy evaluation with the ranges library

#inc lude <range /v3/ a l l . hpp>

#inc lude <iostream>

#inc lude <tuple>

us ing namespace ranges ;

i n t main ( ){
std : : cout << std : : endl ;

// take 5 [ 1 . . ] −− [ 1 , 2 , 3 , 4 , 5 ]

auto num = view : : take ( view : : i n t s ( 1 ) , 5 ) ;

ranges : : f o r e a ch (num, [ ] ( i n t i ){ std : : cout << i << ” ” ; } ) ;

s td : : cout << ”\n\n ” ;

auto pa i r s= view : : z i p w i th ( [ ] ( i n t i , char c ){ r e turn

std : : make pair ( i , c ) ; } , view : : i n t s ( 0 ) , ” ranges ” ) ;

ranges : : f o r e a ch ( pa i r s , [ ] ( s td : : pa ir<int , char> p){
std : : cout << ”(” << p . f i r s t << ” :” << p . second << ” ) ” ;

} ) ;

s td : : cout << ”\n\n ” ;

}

The term view::ints(1) produces an infinite sequence of natural num-
bers, starting with the 1. However only 5 natural numbers are needed. In
the ensuing ranges::for_each loop the five natural numbers are issued
using the lambda function. Admittedly this is beautiful. On the other
hand it allows the algorithm function composition to be more elegant:
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auto num = view::ints(1) | view::take(5). More on that point later. Sec-
ondly the future C++20 standard will support the direct output of the range
by the Range-Based for loop:
for (n:num) std::cout << num << "".

The view::zip_with function known from functional programming assumes
multiple lists and a lambda function and zips this with the help of the lambda
function to a new list. So in line 20 the lambda function zips the infinite series
of natural numbers, starting with 0 with the finite string "ranges". The result
(Fig. 7 is a finite tuple whose pairs can be addressed with first or second.

Fig. 7. Lazy evaluation with the ranges library

Function Composition. Function composition in Haskell has a great similarity
with Lego blocks. The newly composed functions express their functionality very
compact and can be read for the trained eye as prose. The power of the functional
composition in Haskell is based on three components. First Haskell functions do
exactly one task, second they act on the central data structure list and third
they use the period (.) for the composition of functions. The situation is similar
with the new range library. It has a rich set of functions, which is inspired by
Haskell, act on the central data structure range and use the from the Unix shell
or Windows PowerShell known pipe symbol (|) for composition of functions.

Listing 1.18 juxtaposes the commented Haskell code to the new C++ code.

Listing 1.18: Function composition with the ranges library

#inc lude <range /v3/ a l l . hpp>
#inc lude <numeric>
#inc lude <iostream>

us ing namespace ranges ;

i n t main ( ){
std : : cout << std : : endl ;
// odds= takeWhile (< 1000) . f i l t e r odd . map(ˆ2)
// odds [ 1 . . ] −− [ 1 , 9 , 2 5 , . . . , 841 ,961 ]
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auto odds= view : : trans form ( [ ] ( i n t i ){ re turn i ∗ i ; } ) |
view : : r emove i f ( [ ] ( i n t i ){ re turn i % 2 == 0 ; }) |
view : : t ake wh i l e ( [ ] ( i n t i ){ re turn i < 1 0 0 0 ;} ) ;

auto oddNumbers= view : : i n t s (1 ) | odds ;

ranges : : f o r e a ch ( oddNumbers ,
[ ] ( i n t i ){ std : : cout << i << ” ” ; } ) ;

s td : : cout << ”\n\n ” ;

// t o t a l= sum $ take 100
$ map(\x −> x∗x ) [ 1 0 0 . . 1 0 0 0 ] −− 2318350

auto t o t a l= ranges : : accumulate ( view : : i n t s (100 ,1000) |
view : : trans form ( [ ] ( i n t x ){ re turn x∗x ; } ) |
view : : take (100) , 0 ) ;

s td : : cout << ” t o t a l : ” << t o t a l << std : : endl ;

s td : : cout << std : : endl ;
}

The C++ expression is challenging to read. Figure 8 shows the program in
action.

Fig. 8. Function composition with the ranges library

Range Comprehension. List comprehension is Syntactic Sugar [6] of the
sweetest kind for functional algorithms map and filter and makes it possible
to directly generate a new list at runtime. The list comprehension is very remi-
niscent of the mathematical notation of course. That is not an accident, because
the functional programming languages Haskell is based on mathematical con-
cepts.

With the range library C++20 supports range comprehension. This is not
as easy to digest as list comprehension (Listing 1.19).
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Listing 1.19: List versus range comprehension

#inc lude <range /v3/ a l l . hpp>

#inc lude <iostream>

us ing namespace ranges ;

i n t main ( ){
std : : cout << std : : endl ;

// odds= [ x∗x | x < − [1 . . ] , odd x ]

// takeWhile (<1000) odds −− [ 1 , 9 , 2 5 , . . . , 841 ,961 ]

auto odds= view : : i n t s (1 )

| view : : f o r e a ch ( [ ] ( i n t i ){ r e turn y i e l d i f ( i%2 == 1 , i ∗ i ) ; } ) ;

ranges : : f o r e a ch ( odds

| view : : t ake wh i l e ( [ ] ( i n t i ){ r e turn i <1000;}) ,

[ ] ( i n t i ){ std : : cout << i << ” ” ; } ) ;

s td : : cout << ”\n\n ” ;

}

The uncommented list comprehension brings its functionality directly to the
point. Ask for the natural numbers (x <- [1 ..]), keep the elements that are
odd (odd x) and create the square of it (x*x). This corresponds to odd x as
the filter, x*x as the map function. Subsequently, the list will be evaluated, as
long as the elements are smaller than 1000 (take while (<100)).

The same algorithm is used in C++. Here is the result of the program: Fig. 9.

Fig. 9. List versus range comprehension

If you use in range comprehension several producers of natural numbers or fil-
ter functions, it will become very understanding resistant. Listing 1.20 introduces
the Pythagorean triple in Haskell and C++. The Pythagorean triple consists of
the natural numbers, which can occur as the length of a rectangular triangle.

Listing 1.20: Pythagorean triple with list comprehension and range compre-
hension

t r i p l e s =[(x , y , z ) | z < − [1 . . ] , x <−[1.. z ] , y <−[x . . z ]
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, xˆ2 + yˆ2 == z ˆ2 ]

auto t r i p l e s =
view : : f o r e a ch ( view : : i n t s ( 1 ) , [ ] ( i n t z ){

re turn view : : f o r e a ch ( view : : i n t s (1 , z ) , [= ] ( i n t x ){
re turn view : : f o r e a ch ( view : : i n t s (x , z ) , [= ] ( i n t y ){

re turn y i e l d i f ( x∗x + y∗y == z∗z ,
s td : : make tuple (x , y , z ) ) ;

} ) ;
} ) ;

} ) ;

The views algorithms (view::for_each) of the range library are distin-
guished in that way, that they are lightweight wrapper over the underlying
range. They apply their arguments only on request and cannot change them.
With Actions (action::remove_if) the range library contains an additional
set of algorithms that can change their arguments and produce new range. In
contrast to the views they evaluate their arguments immediately.

Thus, in order for the range library to be type safe, Eric Niebler used the
type traits library [1]. This is no longer necessary with C++20.

5.3 Concepts Lite

The central idea of generic programming with templates in C++ is to define
functions and classes that can be used with different types. It often happens,
however, that a template with an inappropriate type is instantiated. The results
are often pages of cryptic error messages at compile time, for which templates
have gained notoriety. Therefore Concepts were planned as one of the most
important feature for the C++11 standard. They should make it possible to
make demands on templates that are verified by the compiler. In July 2009 they
were removed but essentially due to the complexity of the standard. “The C++
0x concept design evolved into a monster of complexity.” (Bjarne Stroustrup)
[12].

With C++20 C++ gets concepts lite [3]. Although concepts lite are simplified
concepts in the first implementation, they have a lot to offer.

– Allow programmers to directly formulate the requirements for the templates
as part of the interface

– Support the function overloading and the specialization of class templates
based on the requirements on the templates.

– Generate significantly improved error messages by comparing the require-
ments of the template parameter with the current template arguments.

The additional value of concepts lite doesn’t influences the compile time of the
program. Concepts lite are inspired by Haskell’s type classes. But concepts lite
describes semantic categories and not syntactic constraints. There will be avail-
able type categories such as DefaultConstructible, MoveConstructible, CopyCon-
structible, AssignableMove, CopyAssignable or Destructible. For the container
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categories such as ReversibleContainer, AllocatorAwareContainer, Sequence-
Container, ContinousContainer, AssociativeContainer or UnorderedAssociative-
Container.

Concepts Lite for Class Templates and Member of Classes. Concepts
Lite is part of the template declaration. The function template sort requires,
that

template <Sor tab l e Cont>
void s o r t (Cont & conta ine r ) { . . . }
the container must be sortable.

This can also be written explicitly as a requirement for the template param-
eter:

template <typename Cont>
r e qu i r e s Sor tab l e <Cont> ( )

void s o r t (Cont & conta ine r ) { . . . }
Sortable itself must be a constant expression of the kind predicate. This means
Sortable can be evaluated at compile time and returns true or false.

The sort algorithm is now used by a container lst, which is not sortable.
The compiler complained with an error message.

std : : l i s t <int> l s t = {1998 ,2014 ,2003 ,2011} ;
s o r t ( l s t ) ; // ERROR: l s t i s no random−ac c e s s conta ine r with <

Concepts lite can be used in all kind of templates. This allows defining a
class template MyVector (Listing 1.21), who can have only objects as elements:

Listing 1.21: My vector only for objects

template <Object T>
MyVector c l a s s {} ;

MyVector <int> v1 ; // OK
MyVector < i n t&> v2 ; // ERROR: i n t& i s no ob j e c t

In this case, the compiler complains, that the pointer object is not an object.
MyClass can be further refined.

template <Object T>
c l a s s MyVector {

. . .
r e q u i r e s copyable<T>()
void push back ( const T& e ) ;
. . .

} ;

Now the member function push_back of MyVector requires that the elements
must be copyable.
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Extended Functionality. A template can have multiple requirements for tem-
plate parameters.

template<SequenceContainer S , EqualityComparable<value type<S >> T>
I t e r a t o r t yp e<S> f i nd (S && seq , const T & val ) { . . . }

Function overloading is also supported by concepts lite (Listing 1.22).

Listing 1.22: Function overloading

template <I npu t I t e r a t o r I>
void advance ( I & i t e r , i n t n) { . . . }

template <B i d i r e c t i o n a l I t e r a t o r I>
void advance ( I & i t e r , i n t n) { . . . }

template <RandomAccessIterator I>
void advance ( I & i t e r , i n t n) { . . . }

std : : l i s t <int> l s t {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} ;
s td : : l i s t <int > : : i t e r a t o r i = l s t . begin ( ) ;
s td : : advance ( i , 2 ) ; // B i d i r e c t i o n a l I t e r a t o r

The function template std::advance places its iterator n position further.
Depending on whether the iterator can only go forward, positioned in both
directions or on arbitrary positions, different function templates are used. In the
specific case of the list BidirectionalIterator is used.

Concepts Lite support the specialization of class templates (Listing 1.23).

Listing 1.23: Specialization of class templates

template <typename T>
MyVector c l a s s {} ;

template <Object T>
MyVector c l a s s {} ;

MyVector <int> v1 ; // Object T
MyVector < i n t&> v2 ; // typename T

Thus the compiler used for MyVector<int&> v2 the template without
requirements, for MyVector<int> v1 the partial specialization.

C++17 gets monads. Monads in the first approximation are a strategy to
encapsulate side effects in C++. C++20 has a monad with the range library.
As well the new data type std::optional in C++17 and the extensions of the
futures, which were introduced in C++11, are monads.
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5.4 std::optional

std::optional [4] is inspired by Haskell’s Maybe monad [5]. std::optional,
which should be originally available already in the small C++14-Standard, is
a calculation that can contain a value. So the find algorithm or the query of a
hash table has to deal with the fact that the request cannot be answered. Usu-
ally special values are used for the non-existents of a value. Examples are null
pointers, empty strings or special integer values. This technique is time- con-
suming and error-prone, as these non-results must be treated specially and they
are syntactically indistinguishable from a regular result. Listing 1.24 provides
std::optional in more detail.

Listing 1.24: Asking for the result with std::optional

#inc lude <exper imenta l / opt iona l>
#inc lude<iostream>
#inc lude<vector>

opt iona l<int> g e tF i r s t ( const std : : vector<int>& vec ){
i f ( ! vec . empty ( ) ) re turn opt iona l<int >(vec [ 0 ] ) ;
e l s e re turn opt iona l<int >() ;

}

i n t main ( ){

std : : vector<int> myVec{1 ,2 , 3} ;
s td : : vector<int> myEmptyVec ;

auto myInt= g e tF i r s t (myVec ) ;

i f (myInt ){
std : : cout << ”∗myInt : ” << ∗myInt << std : : endl ;
s td : : cout << ”myInt . va lue ( ) : ” << myInt . va lue ( ) << std : : endl ;
s td : : cout << ”myInt . va lu e o r ( 2017 ) : ” << myInt . va lu e o r (2017)

<< std : : endl ;
}

std : : cout << std : : endl ;

auto myEmptyInt= g e tF i r s t (myEmptyVec ) ;

i f ( ! myEmptyInt ){
std : : cout << ”myEmptyInt . va lu e o r ( 2017 ) : ”

<< myEmptyInt . va lu e o r (2017)
<< std : : endl ;

}

}

std::optional is the current time in the namespace std::experimental.
That will change with C++17. Figure 10 shows the output of the program with
the help of the online compiler on cpprefence.com [2].
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Fig. 10. std::optional

5.5 std::future Extensions

Modern C++ supports tasks. Tasks are pairs of std::promise and std::future
objects that are connected via a channel. This channel can also communicate
above thread boundaries. The std::promise (sender) pushes a value into the
channel for which the std::future (receiver) waits. The sender can use his
channel to the receiver not only for a value, but also for a notification or an
exception.

The easiest way to create a promise is the function template std::async
(Listing 1.25). This behaves like an asynchronous function call.

Listing 1.25: Creation of a future with std::async

i n t a = 2000
i n t b = 11 ;
std : : f u tu r e <int> sum = std : : async ( [= ] { re turn a + b ; } ) ;
s td : : cout<< sum . get ( ) << std : : endl ;

The call std::async performs several actions. On the one hand it produces
the two communication endpoints promise and future; secondly, it combines
them with a channel. The promise use the lambda function [=]{return a + b;}
as a work package. The lambda function get their arguments a and b from the
calling context. C++ - runtime decides whether the promise will be executed
in the same or a separate thread. Decision criteria can be the size of the work
package, the utilization of the system or the number of cores.

By the sum.get() call the future ask the result from the channel. This can
be done only once. If the promise has not yet produced its value, the get-call of
the future is blocked.

Tasks allow significantly easier and safer handling of threads, they have no
common state. Therefore a deadlock happens significantly less often. Neverthe-
less their C++11-implementation has one major drawback. The composition of
std::future objects is not possible. This will change with C++20. Listing 1.26
present some examples from the official proposal n3721 [10].

Listing 1.26: Extensions of std::future

future<int> f 1= async ( [ ] ( ) { r e turn 1 2 3 ; } ) ;
future<s t r i ng> f 2 = f1 . then ( [ ] ( future<int> f ) {

r e turn f . get ( ) . t o s t r i n g ( ) ;
} ) ;
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future<int> f u t u r e s [ ] = {async ( [ ] ( ) { r e turn in tRe su l t ( 1 2 5 ) ; } ) ,
async ( [ ] ( ) { r e turn in tRe su l t ( 4 5 6 ) ; } ) } ;

future<vector<future<int>>> any f = when any ( begin ( f u tu r e s ) ,
end ( f u tu r e s ) ) ;

future<int> f u t u r e s [ ] = {async ( [ ] ( ) { r e turn in tRe su l t ( 1 2 5 ) ; } ) ,
async ( [ ] ( ) { r e turn in tRe su l t ( 4 5 6 ) ; } ) } ;

future<vector<future<int>>> a l l f = when a l l ( begin ( f u tu r e s ) ,
end ( f u tu r e s ) ) ;

The future f2 will be executed when the future f1 is done. Chaining can of
course significantly expand: f1.then(...)then(...)then(...).... The future
any_f is executed when one of his futures finished. Unlike the future all_f. It
runs if all of its futures are done.

Of course, a question still remains. What have futures in common with func-
tional programming? A lot! The extended futures are a Monad. For this purpose,
a function for a monad is required that lifts the simple type in the complex type.
Secondly, it requires a feature that allows the composition of the complex type.
make_ready_future transformed a simple type in a complex type, a so called
monadic value. The two functions then and future<future <T>> are equiva-
lent to the bind operator in Haskell. The bind operator ensures that a monadic
value can be transformed in another monadic value. bind provides the function
composition in the Monad.

5.6 Conclusion

This question will probably make many readers of this article. C++17 [9] and
C++20 take - as the other popular programming languages Java, Scala, Python
or C# - very many ideas of functional programming in order to master the chal-
lenges of a modern programming language. These are generally the challenges
of multicore architectures and the challenges of generic programming. Haskell
expressiveness and type safety is based on mathematical concepts. The mathe-
matical concepts are not only for Haskell the key for mastering the upcoming
challenges.

References

1. Type traits, 13 February 2016. http://en.cppreference.com/w/cpp/header/type
traits

2. Webpage, 13 February 2016. http://en.cppreference.com/w/
3. Proposal n3701, 2 July 2013. https://isocpp.org/blog/2013/07/new-paper-n3701-

concepts-lite-a.-sutton-b.-stroustrup-g.-dos-reis
4. std::optional, 13 May 2016. http://en.cppreference.com/w/cpp/experimental/

optional
5. Maybe monad, 18 June 2016. https://en.wikipedia.org/wiki/Monad
6. Syntactic sugar, 26 February 2016. https://en.wikipedia.org/wiki/Syntactic sugar

http://en.cppreference.com/w/cpp/header/type_traits
http://en.cppreference.com/w/cpp/header/type_traits
http://en.cppreference.com/w/
https://isocpp.org/blog/2013/07/new-paper-n3701-concepts-lite-a.-sutton-b.-stroustrup-g.-dos-reis
https://isocpp.org/blog/2013/07/new-paper-n3701-concepts-lite-a.-sutton-b.-stroustrup-g.-dos-reis
http://en.cppreference.com/w/cpp/experimental/optional
http://en.cppreference.com/w/cpp/experimental/optional
https://en.wikipedia.org/wiki/Monad_
https://en.wikipedia.org/wiki/Syntactic_sugar


136 R. Grimm

7. Fold variations in haskell, 3 April 2016. https://en.wikibooks.org/wiki/Haskell/
Lists III#Folds

8. Fold variations in haskell, 3 April 2016. http://en.cppreference.com/w/cpp/
language/fold

9. C++17, 3 June 2016. https://en.wikipedia.org/wiki/C
10. Proposal n3721, 3 June 2016. http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2013/n3721.pdf
11. Eric Niebler: Ranges library, 3 March 2016. https://ericniebler.github.io/std/

wg21/D4128.html
12. Bjarne Stroustrup: Concepts, 13 March 2016. https://isocpp.org/blog/2013/02/

concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s

https://en.wikibooks.org/wiki/Haskell/Lists_III#Folds
https://en.wikibooks.org/wiki/Haskell/Lists_III#Folds
http://en.cppreference.com/w/cpp/language/fold
http://en.cppreference.com/w/cpp/language/fold
https://en.wikipedia.org/wiki/C
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3721.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3721.pdf
https://ericniebler.github.io/std/wg21/D4128.html
https://ericniebler.github.io/std/wg21/D4128.html
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s


Functional, Reactive Web Programming
in F#

Adam Granicz(B) and Loic Denuziere

IntelliFactory, Budapest, Hungary
{granicz.adam,loic.denuziere}@intellifactory.com

http://intellifactory.com

Abstract. In these lecture notes, we present the basics of functional and
reactive web programming through WebSharper, a mature web develop-
ment framework for F# [7], and its UI.Next [9] library for constructing
reactive markup with two-way data binding. You will learn the theory
behind similar technologies, discover its advantages, and develop simple
applications using the concepts learned.

Keywords: Functional programming · Reactive programming · F# ·
WebSharper

1 Introduction

Reactive programming is a useful paradigm for specifying applications depend-
ing on data that changes throughout the course of the application’s execution.
Instead of specifying callbacks to be executed when a piece of data changes,
reactive programming approaches allow the construction of a dataflow graph,
wherein changes to data sources are propagated through the graph. Elements in
the display layer may then be written declaratively as a function of nodes in the
dataflow graph, reducing the need for callbacks.

2 WebSharper

WebSharper is a mature, open source reactive web framework for F#. It offers
a uniform, single-language programming model; a host of web development
abstractions such as formlets, flowlets, and piglets; and an ecosystem of dozens
of extensions to popular JavaScript libraries, enabling programmers to developer
robust client-server, HTML, and single-page applications (SPAs) in F#.

The reader is encouraged to browse through the documentation [1] for an
in-depth treatment of various WebSharper topics, including installation, get-
ting started, project templates, the main F# to JavaScript compiler, working
with JavaScript libraries, extending .NET compilation coverage via proxying,
pagelets, sitelets, formlets, flowlets, and piglets, among others.

In this tutorial, we are primarily interested in WebSharper’s reactive foun-
dation UI.Next [9] and its associated web abstractions for reactive formlets,
piglets, and sitelets [8].
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3 WebSharper UI.Next

UI.Next is a client-side WebSharper library providing a novel, pragmatic and
convenient approach to UI reactivity. It includes:

– A dataflow layer for expressing user inputs and values computed from them
as time-varying values. This approach is related to Functional Reactive Pro-
gramming (FRP), but differs from it in significant ways discussed later.

– A reactive DOM library for displaying these time-varying values in a func-
tional way. Instead of explicitly inserting, modifying and removing DOM
nodes, we work with values that represent a virtual DOM tree based on
inputs. These inputs are nodes of the dataflow layer, rather than a single
state value associated with the component.

3.1 Dynamic Dataflow

In UI.Next, the flow of time-varying values is represented as a dataflow graph.
This graph consists of two primitives: Vars, which are observable mutable refer-
ence cells, and Views, which are projections of Vars in the dataflow graph, and
can be manipulated via standard functional combinators such as Map and Bind.

When the value of an input node (a Var) is set, it is propagated through the
internal nodes (Views) down to the output node (Sink).

Reactive Variables. A value of type Var<’T> is an input node in the dataflow
graph. Its value can be imperatively read or set using the Value property, the
functions Var.Get and Var.Set, or the := operator. In the following example,
v is a Var<string>.

let v = Var.Create "initial value"
// Update the value of v
v := "another value" // Var.Set v "another value"
// Read the value of v
v.Value // Var.Get v

Reactive variables can also be associated with an element in the DOM layer,
either through various DOM combinators that create input controls bound to
reactive variables, or through observing them through reactive Views.

Reactive Views. A value of type View<’T> is an internal node in the dataflow
graph. It is not possible to explicitly get or set the value of a View<’T>. Instead,
at any time its value is determined by the value of the nodes that precede it
in the dataflow graph, and can be observed by other Views. For instance, the
following snippet defines a reactive view vUpper, which reflects the uppercased
value of its corresponding variable v.

let v = Var.Create ""
let vUpper = View.Map (fun t -> t.ToUpper()) v.View
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Operations on Reactive Views. The following list summarizes the core reac-
tive view constructors and combinators. An up to date description of these oper-
ators is found in the project documentation [1].

– The simplest way to create a View<’T> is by using the View property of a
reactive variable, which creates a view whose value is always the current value
of the variable.

– View.Const :’T -> View<’T> creates a view whose value never changes.

let v = View.Const 1 // v’s value will always be 1

– View.FromVar : v:Var<’T> -> View<’T> creates a view whose value is
always the current value of v. It is equivalent to v.View.

– View.Map : f:(’A ->’B) -> v:View<’A> -> View<’B> creates a view
whose value is always the result of calling f on the current value of v.

let v = Var.Create "initial"
let vw = View.Map (fun t -> t.ToUpper()) v.View
// vw’s current value is now "INITIAL"

– View.MapAsync : f:(’A -> Async<’B>) -> v:View<’A> -> View<’B>
creates a view whose value is always the result of calling f on the current
value of v. Note that if v is updated before the previous asynchronous call
returns, then this previous call is discarded.

– View.Map2 : f:(’A ->’B ->’C) -> va:View<’A> -> vb:View<’B> ->
View<’C> creates a view whose value is always the result of calling f on
the current values of va and vb.

type Person = { Name: string; Age: int }

let name = Var.Create "John Doe"
let age = Var.Create 42
let person = View.Map2 (fun n a -> { Name=n; Age=a }) name age
// person’s current value is now { Name="John Doe"; Age=42 }
name <- "Jane Doe"
// person’s current value is now { Name="Jane Doe"; Age=42 }

– View.Apply : vf:View<’A ->’B> -> va:View<’A> -> View<’B> creates a
view whose value is always the result of calling the current value of vf on the
current value of va. It is particularly useful in combination with View.Const
to do the same as View.Map2 but with more than two views:

type Person = { FirstName: string; LastName: string; Age: int }

let first = Var.Create "John"
let last = Var.Create "Doe"
let age = Var.Create 42
let (<*>) f x = View.Apply f x
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let vPerson =
View.Const (fun f l a -> { FirstName=f; LastName=l; Age=a })
<*> first.View
<*> last.View
<*> age.View

– View.Bind : f:(’A -> View<’B>) -> View<’A> -> View<’B> is an
important combinator as it allows a subgraph to change depending on its
inputs. For example, in the following code, when isEmail’s value is true, the
graph contains email as a node, and when it is false, it contains username
as a node instead.

type UserId =
| Username of string
| Email of string

let isEmail = Var.Create false
let username = Var.Create ""
let email = Var.Create ""
let userId =

isEmail |> View.Bind (fun isEmail ->
if isEmail then

View.Map Email email.View
else

View.Map Username username.View
)

– View.Join : View<View<’A>> -> View<’A> “flattens” a view of a view. It
can be used equivalently to Bind, as the following equalities hold:

View.Bind f x = View.Join (View.Map f x)
View.Join x = View.Bind id x

Dynamic composition via View.Bind and View.Join should be used with
some care. Whenever static composition (such as View.Map2) can do the
trick, it should be preferred. One concern here is efficiency, and another is
state, identity and sharing.

– View.SnapshotOn : init:’B -> va:View<’A> -> vb:View<’B> -> View<’B> pro-
duces a snapshot of vb: a View that has the same value as vb, except that
it is only updated when va is updated. Before va is first updated, the result
View has the value init.
SnapshotOn is typically used to bring events such as submit buttons into the
dataflow graph. In the example below, loginData is initialized with None, and
is updated with the current login data wrapped in Some whenever submit is
updated. It is then possible to map a View or a Sink on loginData that
performs the actual login.

type LoginData = { Username: string; Password: string }
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let submit = Var.Create ()
let username = Var.Create ""
let password = Var.Create ""
let loginData =

View.Const (fun u p -> Some { Username = u; Password = p })
<*> username.View
<*> password.View
|> View.SnapshotOn None submit.View

– View.Convert : f:(’A ->’B) -> v:View<seq<’A>> -> View<seq<’B>>
maps views on sequences with “shallow” memoization. The process remem-
bers inputs from the previous step, and reuses outputs from the previous step
when possible instead of calling the converter function. Memory use is pro-
portional to the longest sequence taken by v. Since only one step of history
is retained, there is no memory leak. Requires equality on ’A.

– View.ConvertBy : key:(’A ->’K) -> f:(’A ->’B) -> v:View<seq<’A>> ->

View<seq<’B>> is a variant on Convert that uses a key function to deter-
mine identity on inputs, rather than an equality constraint on the type ’A
itself.

– View.ConvertSeq : f:(View<’A> ->’B) -> v:View<seq<’A>> -> View<seq<’B>>

is an extended form of Convert where the conversion function accepts a reac-
tive view. At every step, changes to inputs identified as being the same object
are propagated via that view. Requires equality on ’A.

– View.ConvertSeqBy : key:(’A ->’K) -> f:(View<’A> ->’B) -> v:
View<seq<’A>> -> View<seq<’B>> is a variant on ConvertSeq that uses a
key function to determine identity on inputs, rather than an equality con-
straint on the type ’A itself.

Sinks. Once a graph is built out of Vars and Views, it needs to be run to
react to changes. The function View.Sink : f:(’T -> unit) -> v:View
<’T> -> unit is the output node of the dataflow graph. This function calls
f with the current value of v whenever it is updated. It is highly recommended
to have a single Sink running per dataflow graph; memory leaks may happen if
the application repeatedly spawns Sink processes that never get collected.

Using loginData from the previous section, the following code extracts the
username-password pair from the underlying reactive variables when the state
of submit is updated:

do
loginData
|> View.Sink (function

| None -> ()
| Some loginData ->

Rpc.LoginUser loginData // A user-defined function
|> Async.Start)
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It is relatively rare to call View.Sink directly. Instead, reactive views are
generally bound to the DOM layer, which calls Sink when inserted into the
document.

3.2 Reactive DOM

In UI.Next, sequences of reactive HTML or SVG elements are represented by
the Doc monoid type. Unlike in previous WebSharper DOM representations, the
Doc API is mostly generative: it is not advised to imperatively insert nodes or
change their contents. Instead, dynamic nodes are generated based on a dataflow
graph.

Creating Doc Values. The following list contains the core Doc operations.
Most of these functions are located in the namespace WebSharper.UI.Next.
Dynamic functions that involve Vars, Views or Dom.Elements are under
WebSharper.UI.Next.Client.

– Doc.TextNode | text : string -> Doc creates a Doc composed of a single
text node with the given content.

let node = Doc.TextNode "WebSharper"

– Doc.TextView : View<string> -> Doc creates a Doc composed of a single
text node whose contents is always equal to the value of the given reactive
view. Also aliased as textView.

let text = Var.Create "WebSharper"
let doc = Doc.TextView text.View
// doc HTML equivalent is now: WebSharper
text.Value <- "UI.Next"
// doc HTML equivalent is now: UI.Next

– Doc.Static : Dom.Element -> Doc creates a Doc from an existing DOM
element.

– Doc.Element|SvgElement : string -> seq<Attr> -> seq<Doc> -> Doc
creates a Doc composed of a single HTML/SVG element with the given tag
name, attributes and child nodes.

– Doc.EmbedView : View<Doc> -> Doc creates a time-varying Doc from a
view on a Doc.

– Doc.BindView : (’T -> Doc) -> View<’T> -> Doc creates a time-varying
Doc from a view and its rendered Doc. Also available as a method .Doc(f)
on View<’T>.

HTML Attributes. Each HTML attribute has suffixed variants to cater to
different usage scenarios. For each HTML5 attribute x, these are:

– attr.x : value:string -> Attr: creates an attribute x with the specified
value. Equivalent to Attr.Create"x" value.
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– attr.xDyn : value:View<string> -> Attr: creates an attribute x whose
value varies with the given view. Equivalent to Attr.Dynamic "x" value.

– attr.xDynPred : value:View<string> -> pred:View<bool> -> Attr:
creates an attribute x with a time-varying value, which is set or unset based
on the given time-varying predicate. Equivalent to Attr.DynamicPred "x"
value pred

– attr.fooAnim : value:View<’T> -> convert:(’T -> string) ->
trans:Trans<’T> -> Attr: creates an animated attribute x with the given
time-varying value and transition. Equivalent to Attr.Animated "foo"
trans view convert.

Next to ordinary attributes, additional syntax is available for dealing with
event handlers. For every HTML event x, the following are available:

– on.x : (Dom.Element -> #Dom.Event -> unit) -> Attr: creates an
event handler for x. The exact subtype of Dom.Event passed depends on
the actual event; for example, on.click passes a Dom.MouseEvent.

– on.xView : View<’T> -> (Dom.Element -> #Dom.Event -> ’T ->unit)
-> Attr: creates an event handler for x, which also passes the current value
of the given view.

HTML Combinators. HTML constructors are defined in
the WebSharper.UI.Next.Html namespace. For each HTML5 element x, two
functions are available:

– x: children:seq<Doc> -> Doc: constructs an HTML node x with the given
subnodes. Equivalent to

Doc.Element "x" [] children

– xAttr: attrs:seq<Attr> -> children:seq<Doc> -> Doc: constructs an
HTML node x with the given attributes and subnodes. Equivalent to

Doc.Element "x" attrs children

The following snippet gives an actual example:

div [
buttonAttr [

attr.‘‘class‘‘ "my-button"
on.click (fun e arg -> JS.Alert "clicked!")

] [
text "Click me"

]
]

SVG elements are similarly available in the SvgElements module.
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Combining Reactive Markup. Docs are modeled as a monoid type. The
following operations are available for combining them:

– Doc.Append : Doc -> Doc -> Doc appends two node sequences.
– Doc.Concat : seq<Doc> -> Doc concatenates a sequence of node sequences.
– Doc.Empty : Doc creates an empty document.

Input Forms. And finally, reflecting user input into variables and providing
two-way data binding is accomplished via a series of functions that take reactive
variables along with additional arguments and construct various forms of input
controls.

These include:

– Doc.Input : seq<Attr> -> Var<string> -> Doc creates a textbox from a
sequence of attributes and a reactive variable.

– Doc.InputArea : seq<Attr> -> Var<string> -> Doc creates a textarea.
– Doc.PasswordBox : seq<Attr> -> Var<string> -> Doc creates a textbox

for password input.
– Doc.CheckBox : (’T -> string) -> list<’T> -> Var<list<’T>> ->
Doc creates a set of check boxes from the given list. Requires a function
to show each item, and a list variable which is updated with the currently-
selected items.

– Doc.Select : seq<Attr> -> (’T -> string) -> list<’T> -> Var<’T>
-> Doc creates a selection box from the given list. Requires a function to
show each item, and a variable which is updated with the currently-selected
item.

– Doc.Button : caption: string -> seq<Attr> -> (unit -> unit) ->
Doc creates a button with the given caption and attributes. Takes a callback
which is executed when the button is clicked.

– Doc.Link : caption: string -> seq<Attr> -> (unit -> unit) -> Doc crea-
tes a link with the given caption and attributes which does not change the
page, but instead executes the given callback.

3.3 List Models

Vars are the observable equivalent of mutable reference cells, and store a single
value. However, a common need for web applications is to use a reactive col-
lection of values. For this purpose, UI.Next provides ListModels [8], which are
observable ordered key-value collections. A value of type ListModel<’K, ’T> is
a collection of items of type ’T identified by a key of type ’K.

The general API of ListModels is listed below, providing members to insert,
delete, and update individual items in the collection wrapped by it.

type ListModel<’k,’t when ’k:equality> =
member View : View<seq<’t>>
member Add : ’t -> unit
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member RemoveByKey : ’k -> unit
member UpdateBy : (’t -> option<’t>) -> ’k -> unit
member Key : (’t -> ’k)

module ListModel =
val Create : (’t -> ’k) -> seq<’t> -> ListModel<’k, ’t>

Just like a Var<’T> is observable as a View<’T> using the function
View.FromVar, a ListModel<’K, ’T> is observable as a View<seq<’T>> using
the function ListModel.View. These View values can be integrated into the
dataflow graph by a variety of combinators, including Doc.BindSeqCached that
maps elements of the underlying collection to reactive DOM and uses shal-
low memoization to process incremental changes only, thus providing rendering
updates only where needed.

In their basic form, ListModels only manage client-side state with no per-
sistence. Simple client-only persistence can be added by using a Store imple-
mentation or using the built-in alternative to store list models in HTML5 local
storage. For instance, a simple data list model for storing names and ages can
be defined as:

type Person = { Name: string; Age: int }
with

static member Create name age =
{ Name = name; Age = age }

let MyPeopleRegister =
ListModel.CreateWithStorage

(fun p -> p.Name)
(Storage.LocalStorage "people" Serializer.Default)

Using such a store avoids losing client-side data on page refreshes, and can
be a good aid in simple client-side scenarios.

3.4 Reactive Templates

The programmatic use of reactive variables and their views to generate reactive
markup, while straightforward, has the obvious disadvantage that it requires
embedding markup into code. UI.Next employs an innovative use of F# type
providers [2] to automate this chore. This involves reading a markup document
passed as an argument to the type provider, and scanning for various place-
holders with reactive semantics within inner templates declared via special data
attributes.

String Variables. The simplest form of a placeholder holds a string value. This
is defined using the syntax {v}, and generate a string member v.



146 A. Granicz and L. Denuziere

Reactive Variables and Views. The following markup snippet defines a reac-
tive variable for an input box using a special data attribute data-var, and uses
its view (referred to with $!{...}) to show what was typed in it:

<input data-var="Username" />
<p>You typed: $!{Username}</p>

The type of a reactive variable defined with data-var is determined as fol-
lows:

– An <input type="text">, an <input> with no or unrecognized type
attribute, or a <textarea>, yields a Var<string>.

– An <input type="number"> yields a Var<float>.
– An <input type="checkbox"> yields a Var<bool>.
– A <select> yields a Var<string>, corresponding to the values of its
<option> subnodes.

Event Handlers. Event handlers are defined using data-event-xxx, where
xxx is the name of the HTML event being bound. The following snippet binds
a click event handler to a button, added as a new member Add with type
Dom.Element -> Dom.Event -> unit.

<button data-event-click="Add">Add</button>

Attributes. Attributes, pairs of attribute names and values, can be dynamically
added or removed using data-attr, which defines a new member of type Attr.
Attribute values can be embedded via string variables directly.

Reactive Markup. Doc content placeholders can be added using data-hole and
data-replace. The former retains the containing node, the latter doesn’t, both
defining a new member of type seq<Doc>. Placeholders named scripts, meta
and styles, ignoring case, that are otherwise used in server-side templating, are
ignored.

Nested Templates. Nested templates are defined using data-template="Name".
The HTML element on which this attribute is placed will not be
inserted into the final document. If this is required, an alternate form
data-children-template="Name" can be used.

This and the previous placeholders trigger the UI.Next templating type
provider to generate a type for each template, with appropriately typed members
to correspond to each placeholder.

For instance, assuming a parent template node with data-template=
"NewUserDialog" in an external designer file main.html, the above placeholders
will enable the following F# code:
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open WebSharper.UI.Next.Templating
type App = Template<"main.html">

...
div [

App.NewUserDialog.Doc(
Username = ...
Add = (fun e args -> ...)

)
]

Here, Username, of type Var<string>, can be used to assign values program-
matically, or retrieving the value currently typed into the corresponding input
box, and Add can be used to set up a click event handler for its associated button.

Dealing with list models follows a similar construction, typically involving a
pair of nested templates. The following template snippet gives an example:

<div data-children-template="Messages">
<ul data-hole="Container">

<li data-template="Message">
$!{Title}

</li>
</ul>

</div>

4 Examples

The examples in this section are UI.Next Single-Page Applications (SPAs).
These are the simplest form of WebSharper applications, and are based on a
single HTML markup file and a corresponding F# code base that generates
included JavaScript content. The F# code typically interacts with the markup
by dynamically inserting and updating DOM nodes. The former is accomplished
by utility functions such as Doc.RunById, which takes a Doc value and renders
it into the DOM node with the specified id.

The reader is encouraged to try the examples in this section. The easiest
way to do so is to start from a Single-Page Application template, shipped with
WebSharper for various popular IDE integrations such as Visual Studio or Xam-
arin Studio. These can be obtained from the project website [1]. The code for
the main F# file and/or the master markup document to apply within the SPA
application template is given below.

Using the SPA template, a simple application setup looks like the following:

namespace YourApplication

open WebSharper.UI.Next
open WebSharper.UI.Next.Html
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open WebSharper.UI.Next.Client

[<JavaScript>]
module Client =

let Main =
// Generate DOM content
...

4.1 Reactive Views

This example, shown in Fig. 1, demonstrates how to react to user input. A simple
textbox, bound to a reactive variable, is used for taking an input value, which is
then transformed into a list of various mapped views and embedded into reactive
DOM.

Fig. 1. Reactive views of a simple input

To construct markup, we use a module B (short for Bootstrap, a popular
JavaScript/CSS library that we assume is linked from the master HTML docu-
ment) with various helpers that yield annotated DOM nodes.

[<JavaScript>]
module B =

let cls s = attr.‘‘class‘‘ s
let panel els = divAttr [cls "panel panel-default"] els
let panelHeading els = divAttr [cls "panel-heading"] els
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let panelTitle els = h3Attr [cls "panel-title"] els
let panelBody els = divAttr [cls "panel-body"] els
let form els =

formAttr
[cls "form-horizontal"; Attr.Create "role" "form"]
els

let formGroup els = divAttr [cls "form-group"] els
let labelFor id els =

labelAttr
[cls "col-sm-2 control-label"; attr.‘‘for‘‘ id] els

let formControl id v =
divAttr [cls "col-sm-10"] [

Doc.Input [cls "form-control"; attr.id id] v
]

let table els = tableAttr [cls "table"] els

With these DOM shorthands, we can implement the entire application as
follows. First, we create a reactive variable input, and bind that to a textbox
via Doc.Input.

let Main =
let input = Var.Create ""
let inputField =

B.panel [
B.panelHeading [

B.panelTitle [text "Input"]
]
B.panelBody [

B.form [
B.formGroup [

B.labelFor "inputBox" [text "Write something:"]
B.formControl "inputBox" input

]
]

]
]

Next, we map the view of input to the desired forms. Changes to the user
input are automatically propagated to these views.

let view = input.View
let viewCaps =

View.Map (fun s -> s.ToUpper()) view
let viewReverse =

View.Map (fun s ->
new string(Array.rev(s.ToCharArray()))) view

let viewWordCount =
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View.Map (fun s -> s.Split([| ’ ’ |]).Length) view
let viewWordCountStr =

View.Map string viewWordCount
let viewWordOddEven =

View.Map (fun i ->
if i % 2 = 0 then "Even" else "Odd") viewWordCount

These are then rendered into a table, where each row contains the various
mapped views.

let views =
[

("Entered Text", view)
("Capitalised", viewCaps)
("Reversed", viewReverse)
("Word Count", viewWordCountStr)
("Is the word count odd or even?", viewWordOddEven)

]

let tableRow (lbl, view) =
tr [

td [text lbl]
tdAttr [attr.style "width:70%"] [textView view]

] :> Doc

let tbl =
B.panel [

B.panelHeading [
B.panelTitle [text "Output"]

]
B.panelBody [

B.table [
tbody [

Doc.Concat (List.map tableRow views)
]

]
]

]

And last, we wrap the input and table content into a DIV node and insert it
into a "main" placeholder.

div [
inputField
tbl

]
|> Doc.RunById "main"
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4.2 Reactive Formlets

Formlets [3,4] are one of the fundamental web abstractions available in the Web-
Sharper ecosystem and its reactive foundations [8]. They provide a type-safe,
composable encoding of web forms using a highly declarative syntax, making
them a perfect tool for quick prototyping of user interfaces that need to collect
user input.

Consider the following example. It implements a simple web form for
inputting a string/int pair, along with basic client-side validation, and a sub-
mit button that echos the input on success.

namespace Samples

open WebSharper

open WebSharper.JavaScript

open WebSharper.UI.Next

open WebSharper.UI.Next.Html

open WebSharper.UI.Next.Client

open WebSharper.UI.Next.Formlets

[<JavaScript>]

module Client =

type Person = { FirstName: string; Age: int }

let Main =

Formlet.Return (fun fn age -> { FirstName=fn; Age=age })

<*> Controls.Input "First name"

<*> (Controls.Input "20"

|> Validation.IsMatch "^[1-9][0-9]*$" "Need an integer"

|> Formlet.Map int)

|> Formlet.WithSubmit "Submit"

|> Formlet.Run (fun person ->

JS.Alert (person.FirstName + "/" + string person.Age)

)

|> Doc.RunById "main"

This formlet code would look exactly the same using ordinary WebSharper
formlets, e.g. those found in the WebSharper.Formlets namespace. However,
as implemented here, UI.Next formlets offer a fundamentally more powerful
feature: data binding.

The code below implements the same age/name formlet, but uses reactive
variables bound to the two input controls.

...

open WebSharper.UI.Next.Notation

[<JavaScript>]
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module Client =

type Person = { FirstName: string; Age: int }

let Main =

let first = Var.Create "First name"

let age = Var.Create "20"

Formlet.Return (fun fn age -> { FirstName=fn; Age=age })

<*> Controls.InputVar first

<*> (Controls.InputVar age

|> Validation.IsMatch "^[1-9][0-9]*$" "Need an integer"

|> Formlet.Map int)

...

In particular, note the use of Controls.InputVar along with the newly cre-
ated reactive variables. The two-way binding created between the user control
and the reactive variables ensure that changes to one are propagated to the other.
For instance, upon submitting a given name/age pair, we can set the contents
of the input controls freely by assigning the reactive variables as shown below.

...
|> Formlet.Run (fun person ->

JS.Alert (person.FirstName + "/" + string person.Age)
first := "Enter another name"
age := "20"

)

4.3 Reactive Piglets

Piglets [5] improve on formlets by retaining the same concise, declarative con-
struction and type-safe, composable build-up, and adding the extra flexibility of
decoupling the presentation layer from a piglet’s definition. By doing so, devel-
opers are free to customize the presentation of a piglet in any way they prefer,
as opposed to the inherent look and feel that formlets come hardcoded with.
Piglets also enable reusing piglet definitions and retargeting their presentation
to different execution platforms or content delivery channels, making them an
excellent choice for modern web applications.

Ordinary WebSharper piglets are defined in the WebSharper.Piglets names-
pace, and their reactive counterparts are implemented in WebSharper.Forms,
now the primary means of constructing reactive user interfaces in WebSharper.

The following example demonstrates using reactive piglets for a simple login
dialog.

namespace LoginWithReactivePiglets

open WebSharper
open WebSharper.UI.Next
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[<JavaScript>]
module Client =

open WebSharper.JavaScript
open WebSharper.UI.Next.Html
open WebSharper.UI.Next.Client
open WebSharper.UI.Next.Notation
open WebSharper.Forms

let loginForm =
let user, password = Var.Create "", Var.Create ""
Form.Return (fun user pass -> user, pass)
<*> (Form.YieldVar user

|> Validation.IsNotEmpty "Must enter a username")
<*> (Form.YieldVar password

|> Validation.IsNotEmpty "Must enter a password")
|> Form.WithSubmit
|> Form.Run (fun (u, p) ->

user := ""; password := "" // Reset input controls
JS.Alert("Welcome, " + u + "!")

)
|> Form.Render (fun user pass submit ->

div [
div [label [text "Username: "]; Doc.Input [] user]
div [label [text "Password: "]; Doc.PasswordBox [] pass]
Doc.Button "Log in" [] submit.Trigger
div [

Doc.ShowErrors submit.View (fun errors ->
errors
|> Seq.map (fun m -> p [text m.Text])
|> Seq.cast
|> Doc.Concat)

]
]

)
|> fun s -> s.RunById "main"

In this application, note the use of Form.YieldVar, a variant of Form.Yield,
that binds a reactive variable to a piglet for its input. These piglets are in turn
composed into larger piglets using the piglet <*> bind operator, whose return
value is composed as a tuple. Similar to formlets, a piglet can be acted upon, e.g.
taking its return values and producing a side-effect. In addition to Form.Run,
the equivalent of Formlet.Run for reactive piglets, we make use of Form.Render
to give a render implementation to our piglet.

The presentation uses UI.Next HTML combinators and various Doc func-
tions, such as Doc.Input, Doc.PasswordBox, Doc.Button, and Doc.ShowErrors
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to produce reactive markup. This latter function takes the view of the submitter
and renders any validation and other error messages into a Doc.

Alternate Rendering. Piglets enable different rendering functions for
the same piglet definition. In the example below, we extend the login
piglet with a checkbox and provide a Bootstrap-based rendering using
WebSharper.Forms.Bootstrap, an additional library which essentially wraps
the common reactive input controls in Bootstrap-specific markup.

Fig. 2. A reactive login piglet using Bootstrap rendering

namespace LoginWithBootstrap

open WebSharper

open WebSharper.UI.Next

open WebSharper.UI.Next.Html

[<JavaScript>]

module Client =

open WebSharper.JavaScript

open WebSharper.UI.Next.Client

open WebSharper.UI.Next.Notation

open WebSharper.Forms

module B = WebSharper.Forms.Bootstrap.Controls

let cls = Attr.Class

let loginForm =

let user, password = Var.Create "", Var.Create ""

Form.Return (fun user pass check -> user, pass, check)
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<*> (Form.YieldVar user

|> Validation.IsNotEmpty "Must enter a username")

<*> (Form.YieldVar password

|> Validation.IsNotEmpty "Must enter a password")

<*> Form.Yield false

|> Form.WithSubmit

|> Form.Run (fun (u, p, check) ->

JS.Alert("Welcome, " + u + "!")

user := ""; password := ""

)

|> Form.Render (fun user pass check submit ->

form [

B.Simple.InputWithError "Username" user submit.View

B.Simple.InputPasswordWithError "Password" pass submit.View

B.Simple.Checkbox "Keep me logged in" check

B.Button "Log in" [cls "btn btn-primary"] submit.Trigger

B.ShowErrors [attr.style "margin-top:1em;"] submit.View

]

)

|> fun s -> s.RunById "main"

WebSharper.Forms.Bootstrap provides standard Bootstrap rendering, and
eliminates much of the notational overhead for constructing input controls. For
instance, Controls.ShowErrors no longer needs to specify how to convert error
messages into reactive markup, it’s performed automatically using a default ren-
dering strategy as shown in Fig. 2.

4.4 Reactive Templates

Our final example is a simple TODO task register shown in Fig. 3. The applica-
tion can input and manage simple tasks to be performed. It involves a designer
template index.html that contains the core look and feel, and UI.Next reac-
tive placeholders for the dynamic content. It defines a Main template that has a
ListContainers master placeholder and a nested template ListItem. Both the
Main and the ListItem templates contain various reactive placeholders defined
via data-xxx attributes and !{...}.

<!DOCTYPE html>
<html lang="en">
<head>

<meta chartset="utf-8" />
<meta name="viewport"

content="width=device-width,initial-scale=1.0" />
<title>My TODO list</title>
<link rel="stylesheet" href="//.../bootstrap.min.css" />
<style> ... </style>
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</head>
<body>

<div style="width: 400px">
<h1>My TODO list</h1>
<div id="tasks"></div>
<div style="display: none" data-children-template="Main">

<ul class="list-unstyled" data-hole="ListContainer">
<li data-template="ListItem">

<div class="checkbox">
<label data-attr="ShowDone">

<input type="checkbox" data-var="Done" />
${Task}
<button class="btn btn-danger btn-xs pull-right"

type="button"
data-event-click="Clear">X</button>

</label>
</div>

</li>
</ul>
<form onsubmit="return false">

<div class="form-group">
<label>New task</label>
<div class="input-group">

<input class="form-control" data-var="NewTaskName" />
<span class="input-group-btn">

<button class="btn btn-primary"
type="button"
data-event-click="Add">Add</button>

</span>
</div>
<p class="help-block">

You are going to add: $!{NewTaskName}<span></span></p>
</div>
<button class="btn btn-default"

type="button"
data-event-click="ClearCompleted">

Clear selected tasks</button>
</form>

</div>
</div>

</body>
</html>

The corresponding F# application is a stunningly concise 40-line application.
It starts by invoking the templating type provider passing the designer template
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index.html. This causes the runtime to parse this file, identify the reactive
placeholders, and generate the corresponding code and type space.

Fig. 3. A simple reactive TODO application

namespace TODOList

open WebSharper
open WebSharper.JavaScript
open WebSharper.JQuery
open WebSharper.UI.Next
open WebSharper.UI.Next.Client

[<JavaScript>]
module Code =

type MainTemplate = Templating.Template<"index.html">

We represent tasks using a record that stores the task’s name and its com-
pletion status in a reactive variable. A task will be identified by its name, so
trying to add the same task twice will result in the same task. This is specified
in the list model constructor, along with a couple initial tasks on the list.

[<NoComparison>]
type Task = { Name: string; Done: Var<bool> }
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let Tasks =
ListModel.Create (fun task -> task.Name)

[ { Name = "Have breakfast"; Done = Var.Create true }
{ Name = "Have lunch"; Done = Var.Create false } ]

What’s left is to bind our list model to the template. This requires
that we instantiate the Main template and its inner placeholders, including
ListContainer, which contains the list of the tasks on our register. This in
turn uses the ListItem template and its inner placeholders.

let NewTaskName = Var.Create ""

let Main =

MainTemplate.Main.Doc(

ListContainer =

[ListModel.View Tasks |> Doc.Convert (fun task ->

IndexTemplate.ListItem.Doc(

Task = task.Name,

Clear = (fun _ _ -> Tasks.RemoveByKey task.Name),

Done = task.Done,

ShowDone = Attr.DynamicClass "checked" task.Done.View id)

)],

NewTaskName = NewTaskName,

Add = (fun _ _ ->

Tasks.Add { Name=NewTaskName.Value; Done=Var.Create false }

Var.Set NewTaskName ""),

ClearCompleted = (fun _ _ ->

Tasks.RemoveBy (fun task -> task.Done.Value))

)

|> Doc.RunById "tasks"

Note the use of event handlers to remove a given task, to clear completed
ones, or to add a new task. These all operate on the main list model, and the
necessary UI changes are automatically propagated.

We should also note that changes to the design template require recompila-
tion, however, the strongly-typed nature of templating eliminates a large class
of possible errors, including inconsistencies around event handling and identity.

5 Related Work

Functional Reactive Programming (FRP) [12] is a paradigm relying on values,
called Signals or Behaviours which are a function of time, and Events, which are
discrete occurrences which change the value of Behaviours.

FRP has spawned a large body of research, in particular concentrating on
efficient implementations: näıvely implemented, purely-monadic FRP is prone
to space leaks. One technique, arrowised FRP [13], provides a set of primitive
behaviours and forbids behaviours from being treated as first-class, instead allow-
ing the primitive behaviours to be manipulated using the arrow abstraction.
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Elm [14] is a functional reactive programming language for web applications,
which has attracted a large user community. Elm implements arrowised FRP,
using the type system to disallow leak-prone higher-order signals.

While UI.Next draws inspiration from FRP, it does not attempt to imple-
ment FRP semantics. Instead, UI.Next consists of observable mutable values
which are propagated through the dataflow graph, providing a monadic interface
with imperative observers. Consequently, presentation layers such as the reactive
DOM layer can be easily integrated with the dataflow layer. Such an approach
simplifies the implementation of reactive web abstractions such as Flowlets and
Piglets.

The Reactive Extensions (Rx) [11] library is designed to allow the creation of
event-driven programs. The technology is heavily based on the observer pattern,
which is an instance of the publish/subscribe paradigm. Rx models event occur-
rences, for example key presses, as observable event streams, and has a somewhat
more imperative design style as a result. The dataflow layer in UI.Next models
time-varying values, as opposed to event occurrences.

Facebook React1 is a library which, in a similar way to our approach, allows
developers to construct reactive DOM nodes programmatically. This process
is enabled through JSX, an HTML-like markup language with facilities for
property-based data binding. The key concept behind React is the use of an auto-
mated “diff” algorithm, driven by a global notion of time instead of a dataflow
system: as a result, DOM updates are batched for efficiency. Our use of a dataflow
system enables more control over DOM node identity, and is better able to work
with various persistence approaches [10].

Flapjax [6] is a dataflow-backed programming language providing full FRP
functionality which can also be used as a JavaScript library. Flapjax provides
similar functionality to UI.Next, but integrates with the DOM layer differently:
signals are instead inserted using a library function. This results in a distinctly
different development style for applications in the two systems.

6 Conclusions

In this tutorial, we highlighted the foundations in UI.Next, WebSharper’s
dynamic dataflow library, and discussed the main machinery for its support
for two-way data binding via reactive variables and their views embedded into
reactive markup. We demonstrated the applicability of these concepts through
numerous examples that can serve as a ground for further exploration.

Acknowledgements. UI.Next and the larger WebSharper ecosystem is the work of
many individuals. The authors would like thank their past IntelliFactory colleagues
Simon Fowler and Anton Tayanovskyy for their work on the initial version of UI.Next,
and Andras Janko for his work on WebSharper and its templating support.

1 https://facebook.github.io/react/.
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Abstract. Coloured Petri nets are a formal method that allows to create
sophisticated event-driven models. In addition, there exists a software
tool, called CPN Tools, which provides a support for creation, simulation
and state space-based verification of CPN models. An interesting feature
of CPN Tools is that it uses CPN ML, a slightly modified version of
the SML functional language, for data manipulation. In this chapter we
describe basic concepts of Coloured Petri nets (CPN), SML and CPN
ML and by means of an example illustrate how CPN ML can be used to
build a concrete, timed CPN model from an abstract, low-level Petri net
model in such a way that the structure of the abstract model is preserved.
We also explore possibilities of already existing SML code utilization in
CPN models.

1 Introduction

Petri nets (PN) [1] can be regarded as a family of modelling languages that
originates from a formalism introduced1 by Carl Adam Petri in his dissertation
“Kommunikation mit Automaten” (Communication with Automata) in 1962.
Nowadays, dozens of Petri net types exist. They vary in modelling and expres-
sive power, notation, typical areas of use and other properties but have the same
basic features. First, they are able to express the behaviour of non-deterministic,
parallel and concurrent systems. Second, they have a form of bipartite oriented
graphs. In these graphs, the first type of vertices is place. Places have a round
shape and hold objects called tokens. The vertices of the second type are tran-
sitions and are rectangular. Another common feature is that their semantics, or
behaviour, is defined as a so-called token game: a state of a Petri net is expressed
by tokens that are held in its places and this state can change only by a firing
of a transition of the net. The firing consumes some of the existing tokens and
creates new ones. The nature of the tokens and the exact form of the transition
firing are examples of properties in which Petri net types differ one from each

1 In fact, Petri invented the formalism more than 20 years earlier, in August 1939,
when he used it to describe chemical processes [12].
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other. In the most of the types the effect of the firing is local; it only affects
places directly connected with the fired transition.

In this chapter we deal with one particular type of Petri nets, the Coloured
Petri nets (CPN) [6,8]. This choice has several reasons. The first one is that
CPN are one of those PN types that offer great modelling power while being
compatible with basic types of Petri nets, such as Place/Transition nets (PT
nets). This means that the formal analysis techniques developed for PT nets can
be used for CPN as well. The second one is the availability of a sophisticated
software tool, called CPN Tools [15], which allows to create, simulate and analyse
CPN models. And, finally, the most important reason is that in CPN Tools the
functional language CPN ML, a slightly modified version of Standard ML (SML),
is used to define types of tokens and expressions that manipulate with tokens or
collect data. The full power of SML is at the modeller’s disposal and we show
how it can be utilized. No previous experience with SML or Petri nets is needed,
however we assume that the reader has at least basic programming skills and is
aware of the principles of functional programming. We also encourage the reader
to get familiar with CPN Tools in the course of reading Sects. 5 and 6. The web
page [15] provides enough material to accomplish this.

The rest of the chapter is organized as follows. In Sect. 2 we deal with the
basic concepts of Petri nets and in Sects. 3 and 4 briefly describe the functional
languages SML and CPN ML. Armed with this knowledge we go back to Petri
nets and introduce Coloured Petri nets, including their timed version, in Sect. 5.
The ways in which SML can be used in CPN models are shown in Sect. 6, where
a timed CPN model of a simple manufacturing process is built step by step.
This model also uses some of the functions and modules defined in Sect. 3. The
chapter concludes with a summary of what was achieved and some tips for further
reading.

To emphasize important terms we render them in italic typeface. A
monospace font is used for names of places and transitions and for code in
SML and CPN ML.

2 Basic Concepts of Petri Nets

With respect to the nature of the tokens in places we distinguish two basic classes
of Petri nets:

Low-level Petri nets have tokens that are all the same, it is impossible to
distinguish between them. The nets from C.A. Petri’s dissertation and PT
nets belong to this class. The tokens are usually rendered as black dots inside
a place they occupy or only their amount is shown next to or inside the place.

High-level Petri nets have tokens with different values. Usually, types of these
tokens are defined, too, and one place may hold only tokens of one type. This
is the case of CPN, which are a member of this class. The word “coloured” in
their name emphasizes the fact that tokens are “coloured” by various values
(“colours”) and are not just undistinguishable black dots.
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In this section we use low-level PT nets to explain basic concepts of Petri nets,
i.e. markings and transition firing, and how PN can express properties like non-
determinism and parallelism. Features specific to Coloured PN and their timed
version will be presented later, in Sect. 5. All PN shown in this and the following
sections have been created in the CPN Tools software.

2.1 Markings and Transition Firing

The amount and values of tokens in some place p of a Petri net is called marking
of p and is denoted M(p). If we fix ordering of places of the net, for example to
p1, p2 . . . , pn, we can write the marking of the whole net in a vector form as

M = (M(p1),M(p2) . . . , M(pn)).

Markings represent states of PN. To distinguish between different markings we
use lower and upper indices, for example M ′,M ′

1,M2. M0 is usually reserved for
the initial marking, that is the marking in which the net is when it begins its
computation. A computation of PN is a sequence of firings (executions) of its
transitions.

A transition t can be fired (executed) if and only if there are enough tokens
of required values in all pre-places of t in the corresponding marking M . We
say that t is enabled in M . Pre-places of t are places from which there are
directed arcs to t and post-places of t are places to which there are directed arcs
from t. When t fires, it removes tokens from its pre-places and adds tokens to
its post-places. This means that the net reaches a new marking. Amount and
values2 of tokens that are required for a firing of t and are removed and added
by the firing are defined by arc inscriptions, associated with the arcs from and
to t. Computations of PN can be written in the form of occurrence sequences
(trajectories), which consist of transitions fired and markings reached.

)b)a

Fig. 1. PT net in its initial marking M0 (a) and subsequent marking M1 (b)

2 In high-level PN.
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In PT nets the firing process is fairly simple as the tokens are undistin-
guishable, markings are only amounts of tokens and arc inscriptions are natural
numbers. A transition firing example can be seen in Fig. 1. Figure 1(a) shows a
small PT net in its initial marking M0,

M0 = (M0(p1),M0(p2),M0(p3),M0(p4)) = (10, 5, 0, 0).

The amount of tokens in given place is shown right to it in a small circle
or ellipse. The number above the place (e.g. 10 for p1) is an initial marking
inscription that defines its initial marking and the number next to an arc (e.g.
2 for the arc from p4 to t2) is the corresponding arc inscription. The arcs with
no inscriptions shown have arc inscriptions equal to 1. Similarly, each place p
without the initial marking inscription has M0(p) = 0 (e.g. p3 and p4 in Fig. 1).

The arc inscriptions define the amount of tokens removed from or added
to corresponding places when a transition is fired. In M0 the transition t1 is
enabled3, because there is at least one token in its pre-place p1 and at least 3
tokens in its pre-place p2. The result of t1 firing in M0 is a new marking M1,

M1 = (9, 2, 2, 5).

The net in M1 can be seen in Fig. 1(b). In M1 the transition t2 can be fired and
its firing leads to M2 = (10, 2, 2, 3). Here, again, only t2 can fire and the firing
results in M3 = (11, 2, 2, 1). M3 is a dead marking, because no transition can fire
in M3: there is one token missing in p2 to fire t1 and one token missing in p4
to fire t2. So, only one occurrence sequence (excluding its parts) is possible in
the net from Fig. 1 and this can be written as

(10, 5, 0, 0) [t1> (9, 2, 2, 5) [t2> (10, 2, 2, 3) [t2> (11, 2, 2, 1).

The inscription
M0 [t> M1

means “by firing t in M0 a new marking M1 is reached”. Markings M0, M1, M2

and M3 are called reachable markings of the net from Fig. 1. In this case the set
of reachable markings is finite, but there are many PN where it is infinite. To
make the set infinite for the net from Fig. 1, it is enough to add a new transition,
say t3, and a new arc with the arc inscription 1 from t3 to p4. As t3 has no
pre-places, it can be fired in every marking of the net. And each firing of t3 will
add a token to p4, so M(p4) can grow indefinitely. The same will be true for p1,
thanks to t2.

Nondeterminism and Parallelism
In the introduction we said that one of the key features of PN is the ability
to describe non-deterministic and parallel behaviour. How this can be done we
3 This is indicated by the thick frame around the transition in Fig. 1.
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a)

b)

Fig. 2. PT net of a non-deterministic process in M0 (a) and M1 (b)

demonstrate on the following two examples, shown in Figs. 2 and 3. Both these
nets are 1-bounded, i.e. for each place p in them and each reachable marking M
it holds that M(p) ≤ 1. Places of such nets can be interpreted as (local) states:
The net (or its part) is in the state represented by the place p if and only if
M(p) = 1. Their transitions are usually interpreted as events, which cause state
changes.

There is only one token present in each reachable marking of the net from
Fig. 2. After the firing of t1 in M0 the net reaches M1 (Fig. 2b), where two
alternative paths are possible. The first one consists of t2 and the second one
of t3, p3 and t4. In M1 both t2 and t3 are enabled, but only one of them can
fire. This is because they have one common pre-place p2 with only one token in
M1 (M1(p2)=1). There are only two possible occurrence sequences from M0 to
a dead marking, the sequence

(1, 0, 0, 0) [t1> (0, 1, 0, 0) [t2> (0, 0, 0, 1)

and
(1, 0, 0, 0) [t1> (0, 1, 0, 0) [t3> (0, 0, 1, 0) [t4> (0, 0, 0, 1).

The net in Fig. 3 doesn’t look very different from the previous one: Instead of
the part with two transitions and their common pre-place (p2, t2, t3 in Fig. 2)
we have one transition with two post-places (t1, p2, p4). Similar difference is
in the right part of the net (t2, t4, p4 vs. p3, p6, t5). Consequence of these
changes is that we still have two paths for the process execution (t2 and t3, t4),
but now both of them are executed in parallel. This is because t2 and t3 have
separate pre-places and both of them have a token in M1 (Fig. 3b). We have
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a)

b)

Fig. 3. PT net of a process with two parallel sub-processes in M0 (a) and M1 (b)

three possible occurrence sequences from M0 to a dead marking:

M0 [t1> M1 [t2> M2 [t3> M3 [t4> M4 [t5> M5

M0 [t1> M1 [t3> M6 [t2> M3 [t4> M4 [t5> M5

M0 [t1> M1 [t3> M6 [t4> M7 [t2> M4 [t5> M5

where

M0 = (1, 0, 0, 0, 0, 0, 0),M1 = (0, 1, 0, 1, 0, 0, 0),M2 = (0, 0, 1, 1, 0, 0, 0),
M3 = (0, 0, 1, 0, 1, 0, 0),M4 = (0, 0, 1, 0, 0, 1, 0),M5 = (0, 0, 0, 0, 0, 0, 1),
M6 = (0, 1, 0, 0, 1, 0, 0),M7 = (0, 1, 0, 0, 0, 1, 0)

The transition t2 represents a fork event and t3 a join event, so the process
modelled by the net has two parallel sub-processes. The first one consists of p2,
t2 and p3 and the second one of p4, t3, p5, t4 and p6. We can also see that
all markings of the net, except of M0 and M5, have exactly two tokens in two
separate places. The first token is in p2 or p3 and represents the local state of
the first sub-process. The second token is in p4, p5 or p6 and represents the local
state of the second sub-process. And together these two local states form one
global state of the net.

3 Standard ML

Standard ML or SML is a general-purpose functional programming language, a
descendant of Robin Milner’s ML language. This means that it belongs to the
same family of functional languages like Calm, OCalm or F#. SML is a type-safe
statically typed language with an extensible type system. SML implements the
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Hindley–Milner type inference algorithm, so it is not necessary to define types
of values in most cases. In addition, a programmer doesn’t need to care about
allocating and freeing the memory as SML provides an efficient automatic stor-
age management for data structures and functions [3]. The most recent version
of SML is from 1997 and its formal specification can be found in [11], where
the language is defined by means of typing rules and the natural (operational)
semantics. The language itself consists of a core language for small-scale pro-
gramming and a module system for large-scale programming [2]. In SML these
modules are called structures.

A distinctive feature of SML is that it is not a pure functional language. It
supports the typical features of functional languages, such as pattern-matching,
currying and higher-order functions but it also allows us to write expressions
with side effects, loops or sequences of commands. By means of references it
is also possible to define variables, similar to those in imperative programming
languages. We can say that SML is both functional and imperative language,
but the preferred way is to use it as a functional one.

All the code samples presented in this chapter can be evaluated (“run”) using
available SML compilers, such as MLton [16], Poly/ML [17] or Standard ML of
New Jersey (SML/NJ) [19].

3.1 Expressions and Primitive Types

As it is typical for functional languages, computation in SML is based on the
evaluation of expressions. The expressions consist of values, operators, identi-
fiers, reserved words and other elements, as defined in [11]. Each valid expres-
sion evaluates to a value of given type. SML offers a few primitive types and an
opportunity to create an infinite number of user-defined types using type con-
structors such as products, records and lists. The primitive types used in this
chapter are integers, strings, booleans and an empty type called unit.

Integers. The basic integer type is int and values of this type can be writ-
ten in decimal (e.g. 15) or hexadecimal (e.g. 0xf) form. The unary opera-
tor ~ is used for negative numbers, so ~5 is minus five. Infix operators +, -,
*, div and mod are provided for addition, subtraction, multiplication, integer
division and the remainder after division. An example of integer expression is
(0xff+45) div 2 mod 7-5, which evaluates to ~2.

Character Strings are defined in the string type. Strings have to be enclosed
in double quotes (i.e. "Hi!"). All the comparison operators are available here,
too, and they compare strings lexicographically. The infix operator ^ provides
string concatenation, for example "Hi "^"there!" evaluates to "Hi there!".

Booleans. The type bool stores the boolean values true and false. The
boolean operators are andalso for logical conjunction, orelse for disjunction
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and not for negation. An example of an expression that evaluates to true is
(25.2<3.0 orelse not(13=4)) andalso ("a"<"ab").

Unit. SML also includes a type that is an equivalent of the void type, which we
can find in many programming languages. This type is called unit and contains
only one value, ().

Type Conversion. SML doesn’t convert values of one type to another auto-
matically, so the expressions like "The value is "^5 or 3+5.0 will cause an
error. Fortunately, conversion functions for this job are provided. Some of them
are listed in Table 1, where the symbol “≡” is used as a shortcut for “evaluates
to”.

Table 1. Selected conversion functions

From To Function Examples

int real real real 3 ≡ 3.0

int string Int.toString Int.toString 123 ≡ "123"

real int round round 3.49 ≡ 3

round 3.51 ≡ 4

real int floor floor 3.49 ≡ 3

floor 3.51 ≡ 3

real string Real.toString Real.toString 1.2E2 ≡ "120.0"

Conditional Expressions and Pattern Matching. For a conditional expres-
sion various ways of evaluation exist and which one is chosen depends on a con-
dition that is its part. SML offers two kinds of these, the if-than-else and case
expressions.

The if-then-else is the simpler one and has the syntax

if cnd then exp1 else exp2

where cnd is a boolean expression and exp1 and exp2 are expressions, which
must have the same type. If cnd = true, it evaluates to exp1, otherwise to exp2.
An example of if-than-else is

if 12<20 then "ordering works" else "something’s wrong"

which evaluates to "ordering works".
The case expression with n rules has the form

case cexp of
cpat1 => exp1

| cpat2 => exp2
. . .

| cpatn => expn
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Each rule consists of a pattern (cpati) and an expression (expi). All patterns
have to be of the same type as cexp. The expressions exp1 to expn must have the
same type, too. The evaluation of the case expression starts with matching cexp
against the pattern cpat1. If cexp fits cpat1 then it evaluates to exp1. Otherwise
the evaluation continues with matching cexp against cpat2. If the evaluation goes
through all the patterns and cexp doesn’t fit any of them then it ends with an
error (nonexhaustive match failure). To prevent the error it is a good practice to
make cpatn cover all the cases not included in cpat1 to cpatn−1. This can be done
using the wildcard pattern, which is represented by the underscore character (_)
in SML and means “any value”. For example, the expression

case 1 of
1 =>"red"

| 2 =>"orange"
| 3 =>"green"
| _ =>"unknown"

evaluates to "red" but if we replace 1 by 7 then it evaluates to "unknown".
It should be also noted that if-than-else is just a special case of the case

expression, namely

case cnd of
true => exp1

| false => exp2

3.2 Variables and Functions

In SML we can also create named values (variables). This can de done using a
variable definition of the form

val vname = exp

where vname is the name of the variable and exp is an SML expression, which
specifies its value. It is not necessary to specify the type of the value, but it can
be done using the extended form

val vname = exp : type

Here, type is the name of the type. These named values are usually called vari-
ables (e.g. [2,3]), but they are different from those in languages such as Java or
C++. SML variables don’t vary. Once a value is assigned to a variable by the
val construct, it will not change. If we use val with the same vname again, the
SML environment will destroy the original variable and create a new one, with
the same name and possibly different type. For example, consider the following
SML construct consisting of two variable definitions:
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val a = 2*3
val a = case a of

0 => false
| _ => true

During its processing a variable a is created first. Then its value (6) is used in
the second definition and the result of the whole processing is

val a = true : bool

The first a and the second a are different variables. The first one is of type int,
the second one of type bool.

Functions. The case expression we used in the assignment above is in fact a
conversion from int to bool and may come handy in many situations. So, it will
be nice to have it available in a form of function, say int2bool, which takes an
integer as the argument and returns the corresponding boolean value. Functions
are defined using the form

fun fname arg = bexp

where fname is the name, arg the argument (arguments) and bexp an expres-
sion, which forms the body of the function. Then the function int2bool can be
defined as

fun int2bool a = case a of
0 => false

| _ => true

However, functions that use pattern matching can be written in a more elegant
form by replacing the argument by individual patterns. If this form is used, the
name of the function appears before each pattern and = replaces =>:

fun int2bool 0 = false
| int2bool _ = true

Both definitions result in

val int2bool = fn : int -> bool

This tells us that in SML functions are in fact variables that are mappings
from one type to another (here from int to bool). Alternatively, we can define
functions using the keywords val and fn:

val int2bool = fn a => case a of 0 => false | _ => true

and we can also specify types in the definition:

val int2bool: int->bool = fn a: int => case a of 0 => false
| _ => true
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In SML each function has exactly one argument and returns exactly one value.
This may be seen as too restrictive, because in the real life we often use functions
of two or more arguments. The need for more arguments can be satisfied in two
ways. The first one is to replace n arguments with one argument, which is an
n-tuple. How to do this we show in Sect. 3.3. The second way is to define them
as so-called curried functions.

Curried functions are functions that return functions. In SML we create a
curried function using the same form as for the previous ones, but instead of
one argument we write more arguments, separated by the space character. From
this, one may get an impression that a multi-argument function is created, but
it is not true. Let us, for example, assume that we need to define a function
linVal, which computes the value of the expression

a ∗ x + b,

where a, b and x are arguments. In SML we define it as

fun linVal a b x = a * x + b

and it is a function of the type

int -> int -> int -> int

This means that linVal takes an integer and returns a function of the type
int -> int -> int (again a curried function), which returns a function of the
type int -> int and, finally, this function returns the resulting value of the
type int. So, the evaluation of expression

linVal 5 6 7

first returns a function with the body

5 * x + b

this takes 6 for b and returns a function with the body

5 * x + 6

which takes 7 for x and returns 41. Curried functions allow us to define functions
that are special cases of the more general ones. For example, if we would like to
have a function that computes

5x + 6,

we can define it as

fun linVal_a5b6 x = linVal 5 6 x
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which is of the type int -> int. Of course, linVal_a5b6 7 evaluates to 41.
The pattern matching can be used with curried functions, too. This comes

handy when we need to deal with special cases of argument values in a func-
tion definition. Such cases can also be found in our linVal function, the most
prominent of them is that if a = 0 (x = 0) then the expression is reduced to b
and the value of x (a) doesn’t matter. To define linVal with these cases treated
separately we write

fun linVal 0 b _ = b
| linVal _ b 0 = b
| linVal a b x = a * x + b

The wildcard pattern is used for arguments that are not considered in given case.

Recursive functions , i.e. functions that call themselves, can be written in
SML, too. For example, the factorial function can be defined as

fun fact 0 = 1
| fact n = n * fact(n-1)

or as

val rec fact = fn 0 => 1
| n => n * fact(n - 1)

Notice that the keyword rec must be added to indicate the recursive nature of
the function if the val . . . fn form is used.

Some functions are mutually recursive, i.e. they call each other and cannot be
defined separately. In this case we write their definitions one after each other and
use the keyword and instead of fun for all but the first of them. The functions
max and isPrioritized of the functor Heap in Sect. 3.6 are mutually recursive.

Limiting the Scope. Sometimes it is necessary to limit the scope of defined
objects, such as variables (including functions), types or structures, to certain
expression or definition. In SML there are two constructs for this task,

let def in exp end

and
local def in def1 end

where def and def1 are definitions of one or more objects and exp is an expres-
sion. If we, for example, wish to define a function that multiplies its argument
by the π constant and where π is given as a local variable, then we can define it
as
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local
val pi=3.14159265359

in
fun mulByPi x = pi*x

end

or

fun mulByPi x = let
val pi=3.14159265359

in
pi*x

end

Notice that the positions of local and let are different. This is because the let
construct limits the scope to an expression that evaluates to a certain value and
the local construct to expressions that are definitions. It is also impossible to
define types or structures using the let construct. Because of this the functions
iHeapSortDsc and iHeapSortAsc in Sect. 3.6 use local.

3.3 Tuples, Records and Lists

So far we used only values of primitive types like int or bool. SML also provides
means to construct and handle values of more complex, structured types. In this
section we deal with three most frequently used ones.

Tuples are value sequences of fixed length where each value (field) may be of a
different type. To create an n-tuple the following construct is used:

(exp1, . . . expn)

Here, n is the number of fields and exp1 to expn are expressions that evaluate
to certain values. For example,

(2<3,2+3,Int.toString(2)^"3")

evaluates to a triple (true,5,"23") of the type bool * int * string. The
symbol * stands for the Cartesian product. Tuples can be members of other
tuples, e.g.

(true,(2,3,(3.0,"a")))

which is of the type bool * (int * int * (real * string)).
Tuples can also be used to define a function of n arguments, n ≥ 2 as a

function of one argument that is an n-tuple. So, linVal from Sect. 3.2 can be
redefined as

fun linVal (a, b, x) = a * x + b
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This time the type of linVal will be int * int * int -> int, instead of
int -> int -> int -> int and the call with arguments 5, 6 and 7 will be
linVal(5,6,7). Patterns in function definition work in the same way as for
curried functions, e.g.

fun linVal (0, b, _) = b
| linVal (_, b, 0) = b
| linVal (a, b, x) = a * x + b

To access individual fields of tuples we can use pattern matching, as in the
definition of linVal above, or indices of the fields in the tuple. As an example,
lets us consider a variable tp,

val tp = ((1,2),((3,4),5))

and that we would like to extract the value 2 to a variable a and 4 to a variable
b. Using pattern matching, this can be done easily by the definition

val ((_,a),((_,b),_)) = tp

Here the structure of the tuple on the left hand side resembles that of tp and
wildcards are used on the positions from which we do not need to read any data.
To access the fields via indices the notation

#i tpl

is used. The symbol i is the index, defining the position of the accessed field
within the tuple and tpl is the tuple. The first value in a tuple has the index 1.
For example, to extract 2 and 4 from tp to a and b we write:

val a = #2 (#1 tp)
val b = #2 (#1 (#2 tp))

Each of these definitions contains more than one index, because tp has nested
tuples. The first index is for the innermost tuple and the last index for the
outermost one.

Records are like tuples but with named fields. They are also written in a similar
manner, in the form

{name1 = exp1, . . . namen = expn}

where n is the number of fields, name1 to namen are names of the fields and
exp1 to expn are expressions as in the case of tuples. An example of a record
value is in the following definition, which assigns a record about an assembled
product to a variable prd:
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val prd = { id = 35,
ptype = "left joint",
assemblyDuration = 175,
prdQuality = 64 }

Then the type of prd is

{assemblyDuration:int, id:int, prdQuality:int, ptype:string}

Field names are a part of the type, so a record with the same number and types
of fields but different names will be of a different type. Values in the individual
fields can be accessed using the pattern matching or field names. So, if we need
to copy the value "left joint" to a variable a and 175 to b, we can do it by
writing

val {id = _, ptype = a,assemblyDuration = b, prdQuality = _} = prd

or

val a = #ptype prd
val b = #assemblyDuration prd

When creating a record or specifying a record pattern the order of the fields
doesn’t matter, e.g. {a=5,b=4} is equal to {b=4,a=5}.

We introduced records as tuples with field names but the relation between
these type constructors is quite opposite. Actually, in SML tuples are records
with field names 1, 2, 3 and so on.

Lists are sequences of values, too, but all elements of a list are of the same type
and list size is not fixed. They are defined in the form

[exp1, . . . expn]

where n is the number of elements, n ≥ 0, and exp1 to expn are expressions that
evaluate to values of the same type. For example, a variable holding a list of 5
integers can be defined as

val lst = [1,2,3,4,5]

and is of the type int list, i.e. a list of elements of the type int. The first
element of a list (1 for lst) is called the head of the list and the rest ([2,3,4,5]
for lst) is called the tail. An empty list can be created using the expression []
or nil. To manipulate lists two basic operators exist in SML.

The first operator is :: and its purpose is to enable adding an element to
the beginning of a list. For example,

0::lst
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evaluates to the list

[1,2,3,4,5]

The operator can be also used to store the head and tail in separate variables,
e.g. the evaluation of

val h::t = lst

results in the creation of two variables

val h = 1 : int
val t = [2,3,4,5] : int list

The second operator4 is @ and implements the list concatenation. This means
that the evaluation of

lst@[6, 7, 8]

results in the list [1,2,3,4,5,6,7,8].

3.4 User-Defined Types

The type constructors, such as those in Sect. 3.3, can be combined in infinitely
many ways to create values of new types. But not only that; we can also give
names to these types and introduce new type constructors. To do this, SML
provides constructs type and datatype.

Type Abbreviations. The construct type allows us to give names (abbrevi-
ations) to types that can be created using already existing type constructors.
One of the syntactical forms of the construct is

type tname = texp

where tname is the name of the type and texp is an expression that defines the
type. The form of texp depends on what kind of type we wish to define. If our
goal is just to rename an existing type then texp is its name, e.g.

type str =string

For record types texp looks like

{name1 : texp1 . . . , namen : texpn}

where name1 to namen are names of the fields and texp1 to texpn are type
expressions defining types of the fields. Then the assembled product record prd
from Sect. 3.3 can be of the type PRD,
4 In CPN ML the @ operator is replaced by ^^, because @ is reserved for so-called delay
expressions.
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type PRD = {id:int, ptype:string, assemblyDuration:int,
prdQuality:int}

For n-tuples the type definition uses the Cartesian product symbol * and texp
has the form

(texp1 . . . * texpn)

and for lists texp is
texpe list

where texpe defines the type of the list elements. Of course, we can combine
these expressions and create more complex types. For example, a type PRDlst,
which is a list of records about assembled products, can be defined as

type PRDlst = {id:int, ptype:string, assemblyDuration:int,
prdQuality:int} list

or, after the type PRD is defined, as

type PRDlst = PRD list

Now we can use the abbreviation when defining variables:

val prods:PRDlst = [
{id=1, ptype="lArm", assemblyDuration=29, prdQuality=70},
{id=2, ptype="rArm", assemblyDuration=49, prdQuality=61}]

or functions:

fun getFisrtPrdType [] = "list empty"
| getFisrtPrdType ((h::t):PRDlst) = #ptype (h)

The fact that these types are just abbreviations can be observed when we
define prods without the “:PRDlst” part. Then the type inference mecha-
nism of SML will not identify it as the type PRDlst but as the general type
{assemblyDuration:int, id:int, prdQuality:int, ptype:string} list.

New Types. To define a brand new type, a type that cannot be constructed
from the existing ones, the keyword datatype is used. One of the forms of a new
type definition is

datatype tname = tcexp1 | . . . tcexpn

where tname is the name of the new type and tcexp1 to tcexpn are expressions
that define constructors by which the individual values of the type are created.

The simplest constructors are nullary constructors, which just name values
that belong to the type. A datatype defined exclusively by them is in fact an
enumerated set, for example
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Fig. 4. Binary tree of integers example

datatype DevStatus = on | off | broken

with exactly three values, on, off and broken. After a datatype is created, we
can use its values when defining variables, e.g.

val stat1 = off

or for pattern matching, e.g.

fun devOk broken = false
| devOk _ = true

The type of stat1 will be correctly inferred to DevStatus and devOk stat1
evaluates to true.

More sophisticated constructors can be found in definitions of recursive types.
A recursive type is a type where values can be composed of other values of the
same type. The syntax of their definition in SML follows the inductive way in
which they are usually described. As an example, let us consider the binary tree
of integers type, which can be described as follows:

1. An empty tree is a binary tree of integers (iTree).
2. If r is an integer and T1, T2 are iTrees, then a structure where r is the root,

T1 is the left sub-tree and T2 is the right sub-tree is also an iTree.

One form of iTree definition in SML is

datatype iTree = empty | tNode of iTree * int * iTree

The definition has two constructors, corresponding exactly to the first and the
second case in the description above. The nullary constructor empty represents
an empty tree and tNode is for the general case, where a tree is a triple con-
sisting of its left sub-tree, a root storing an integer value and its right sub-tree.
The keyword of separates the name of the constructor from its definition. Con-
crete values are then defined exclusively by means of these two constructors. For
example, a variable tr holding the tree from Fig. 4 is defined as

val tr = tNode(tNode(tNode(empty,4,empty),2,empty),1,
tNode(tNode(empty,5,empty),3,tNode(empty,6,empty)))
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In a similar fashion we can define types for trees holding values of other
types than int. However, one may wonder whether it is possible to define a tree
without specifying exactly what is the type of its elements. It is, using so-called
parametrised datatypes. An example of such datatype is list, which is defined
as

datatype ’a list = nil | :: of ’a * ’a list

in SML. Notice that instead of exactly specifying the type of list elements the
type parameter ’a is used. The name of each type parameter has to start with ’.
The type constructors of list are nil and :: and the variable lst from Sect. 3.3
can be alternatively defined as

val lst = 1::2::3::4::5::nil

A general, parametrised, definition of binary trees can be found under the
name tree inside the structure Tree in Sect. 3.6. This structure also contains
examples of functions working with parametrised types. The type abbreviations
can be parametrised, too.

3.5 Higher-Order Functions

SML treats functions as values, so it’s not a problem to create a function that
takes functions as arguments. Such functions are called higher-order functions
and can be used to break complex functions over recursive types into simpler
ones with common functionality defined only once.

For example, suppose that we need functions isPrdLstAsc and isPrdLstDsc
of the type PRD list -> bool. The first one returns true if the elements of its
argument (a list of product records) are in ascending order, false otherwise.
The second one does the same but for descending order. The PRD type is as
specified in Sect. 3.4 and the ordering is defined by its assemblyDuration field.
Both functions share certain functionality, namely they apply a logical operation
(i.e. a function returning boolean) to each pair of adjacent values in the list and
return a boolean value. We define the common functionality in a higher-order
function isOrdered:

fun isOrdered ([], ordRel) = true
| isOrdered ([a], ordRel) = true
| isOrdered ((a::b::t), ordRel) = if ordRel(a,b) then

isOrdered(b::t, ordRel)
else false

Its first argument is a list to be examined and the second one is a function
ordRel, which returns true if its two arguments are in the correct order and
false otherwise. In isOrdered we have two special cases, an empty list and a
list of one element. In both of them the function returns true. In the third case
the ordRel is subsequently applied to adjacent elements of the list, starting from
the beginning. The function isOrdered doesn’t always traverse the whole list.
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It stops and returns false as soon as it finds two adjacent elements that are not
in order.

As ordRel we use two functions, geqPrd and leqPrd. The code of geqPrd is

fun geqPrd(x:PRD,y:PRD) =
if (#assemblyDuration x) >= (#assemblyDuration y)
then true else false

and leqPrd differs only in the use of operator <= instead of >=. Finally, we can
define the desired functions as

fun isPrdLstDsc l = isOrdered(l, geqPrd)
fun isPrdLstAsc l = isOrdered(l, leqPrd)

3.6 Structures, Signatures and Functors

One of the key features of Standard ML is that it is a modular language. It means
that definitions of variables, functions, exceptions, types and other objects can be
organized into named units, called structures. There is also another type of unit,
which exists for each structure and that is called signature. While a structure
contains definitions of variables (and functions), i.e. their full code, a signature
only declare them; it specifies their types. We can see signatures as types of
structures or as interfaces that corresponding structures implement. The third
type of unit is functor, a parametrised structure. Functors map their parameters,
which include functions, types and structures, to structures.

Instead of describing these three types of units in general, we present here
an example, which uses all of them. It is an implementation of the heapsort
algorithm for sorting lists of records of the PRD type5. The implementation is
based on an unstructured implementation of heapsort, available at [13].

Heapsort is a comparison-based sorting algorithm, which uses a binary heap
to sort a sequence of items of the same ordered type. The binary heap is a
complete binary tree, where so-called heap property holds. In a complete binary
tree every level, except the last one, has to be full and if the last level is not full
then all nodes in it have to be as far left as possible. For example, if we remove
the node 6 from the tree in Fig. 4 and insert it as the right son of the node 2
then the tree will be complete. The heap property assumes an existence of some
ordering function ord(x, y), which returns true if x and y are ordered, false
otherwise (e.g. ≤ or ≥). The values x, y are of the type of elements stored in the
heap. Then the heap property holds if for each node r of the tree ord(r, n) = true
for all nodes n from the left and right sub-trees of r. The heap property implies
that the greatest element with respect to ord will be the root of the heap. The
heapsort algorithm for sorting a non-empty sequence seq can proceed as follows:

1. Create a heap h from all the elements of seq.

5 As defined in Sect. 3.4.
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2. Create a new empty sequence oseq.
3. Let r be the root of h and l and r its left and right sub-trees. Take r and

append it to the end of oseq.
4. If both l and r are empty, go to step 6. Otherwise go to step 5.
5. Merge l and r to a new heap and name it h. Go to step 3.
6. Return oseq.

We split the implementation of the algorithm into one structure and one
functor and define signatures for them. The structure, named Tree, implements
the signature TREE and contains everything needed to define and manipulate
binary trees. The code of the signature TREE is as follows:

signature TREE = sig
datatype ’a tree = empty | tNode of ’a tree * ’a * ’a tree
val inorder : ’a tree -> ’a list -> ’a list
val height : ’a tree -> int
val isFull : ’a tree -> bool
val isComplete : ’a tree -> bool
val cbtInsert : ’a -> ’a tree -> ’a tree
val list2cbt : ’a list -> ’a tree -> ’a tree

end

The type tree defined in the signature is a generalisation of iTree from Sect. 3.4
and can hold elements of any type. The signature also declares functions to work
with trees. The first one, inorder should convert a binary tree into a list using
the inorder tree traversal, height should return the number of levels of a tree,
isFull should return true if all levels of a tree are full, isComplete should
return true if a tree is complete, cbtInsert should insert a new element into a
tree in such a way that it remains complete and list2cbt should add all elements
of a list to a complete binary tree. All these functions are implemented in the
Tree structure, which is a good example of utilisation of the pattern matching
for recursive types:

structure Tree:TREE = struct

datatype ’a tree = empty | tNode of ’a tree * ’a * ’a tree

fun inorder empty s = s
| inorder (tNode(l,n,r)) s = inorder l (n :: (inorder r s))

local
fun maxN (x:int) y = if x > y then x else y

in
fun height empty = 0

| height (tNode(l,_,r)) = 1 + maxN (height l) (height r)
end
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fun isFull empty = true
| isFull (tNode(l,_,r)) = height l = height r andalso

isFull l andalso isFull r

fun isComplete empty = true
| isComplete (t as tNode(l,_,r)) =

isFull t orelse
((height l) = (height r) + 1 andalso isFull r

andalso isComplete l)
orelse
((height l) = (height r) andalso isFull l

andalso isComplete r)

fun cbtInsert item empty = tNode (empty,item,empty)
| cbtInsert item (t as tNode(l,n,r)) =

if isFull t orelse
(height l = height r + 1 andalso isFull r andalso
isComplete l andalso not (isFull l))

then tNode (cbtInsert item l,n,r)
else tNode (l,n,cbtInsert item r)

fun list2cbt [] t = t
| list2cbt (x::xs) t = list2cbt xs (cbtInsert x t)

end

The fact that the structure Tree implements or, in other words, ascribes to the
signature TREE is expressed by the part “Tree:TREE” at the beginning of the
structure definition. There are two types of ascription in SML. We use here the
transparent ascription, which means that the types defined in the structure are
externally visible. The second one is the opaque ascription and makes the types
from the structure invisible. The symbol :> is used instead of : for the opaque
ascription. In functions isComplete and cbtInsert the keyword as is used to
define abbreviations for too long arguments. Then these abbreviations are used
inside the functions instead of the arguments. The type tree is declared in both
Tree and TREE. This is because we need to use its type constructors in the Heap
functor. Otherwise it will be enough to declare the type as type’a tree in TREE.

The heapsort algorithm, together with auxiliary functions to manipulate the
heap are defined in the Heap functor, which ascribes to the HEAP signature. HEAP
declares the type Item of elements in the heap and four functions. The first one,
buildFromList, should create a heap from a list of type Item, insert should
insert a new element to a heap, isHeap should check whether a tree is a heap
and the last one, toSortedList should transform a heap into a sorted array
using the heapsort algorithm.
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signature HEAP = sig
structure T:TREE
type Item
val buildFromList : Item list -> Item T.tree
val insert : Item -> Item T.tree -> Item T.tree
val isHeap : Item T.tree -> bool
val toSortedList : Item T.tree -> Item list

end

Because we want our implementation to work with different types and order-
ing functions, we implement the signature as the functor Heap. The functor has
two arguments. The first is a type Itm of elements in the list to be sorted and
the second one is a function ord that defines the ordering to be established by
the sorting.

functor Heap(type Itm val ord : Itm * Itm -> bool):HEAP = struct

structure T = Tree
type Item=Itm
exception nonEmptyNode

fun heapify T.empty = T.empty
| heapify(t as T.tNode(T.empty,n,T.empty)) = t
| heapify(T.tNode(T.empty,n,r)) = raise nonEmptyNode
| heapify(t as T.tNode(T.tNode(T.empty,m,T.empty),n,T.empty)) =

if ord(n,m) then t
else T.tNode(T.tNode (T.empty,n,T.empty),m,T.empty)

| heapify(T.tNode(T.tNode(l,m,r),n,T.empty)) =
raise nonEmptyNode

| heapify(t as T.tNode(l as T.tNode(l1,m,r1),n,
r as T.tNode(l2,q,r2))) =

if ord(n,m) andalso ord(n,q) then t
else if ord(m,n) andalso ord(m,q) then

T.tNode(heapify(T.tNode(l1,n,r1)),m,r)
else T.tNode (l,q,heapify(T.tNode(l2,n,r2)))

fun max n T.empty = true
| max n (T.tNode (l,m,r)) = ord(n,m) andalso (isPrioritized l)

andalso (isPrioritized r)
and

isPrioritized (T.empty) = true
| isPrioritized (T.tNode (l,n,r)) = (max n l) andalso (max n r)

fun cbt2heap T.empty = T.empty
| cbt2heap (T.tNode(l,n,r)) =

heapify (T.tNode (cbt2heap l, n, cbt2heap r))
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fun buildFromList l = cbt2heap (T.list2cbt l T.empty)

fun insert item t = cbt2heap (T.cbtInsert item t)

fun merge t s = cbt2heap (T.list2cbt (T.inorder t []) s)

fun isHeap t = T.isComplete t andalso isPrioritized t

fun toSortedList T.empty = []
| toSortedList (T.tNode(l,n,r)) = n :: toSortedList (merge l r)

end

In addition to the functions declared in HEAP the functor Heap contains other
ones that help to implement the heapsort. The most complex one is heapify,
which re-establish the heap property inside a heap. The function isPrioritized
checks whether the heap property holds and is defined using the mutually recur-
sive function max. The function cbt2heap transforms a complete binary tree to
a heap by calling heapify and merge merges two trees into one heap.

If we take the functions geqPrd and leqPrd from Sect. 3.5 as ordering func-
tions, we can define a function prdHeapSortDsc for sorting a list of PRD records
in descending order as

local
structure h = Heap(type Itm=PRD val ord= geqPrd)

in
fun prdHeapSortDsc [] = []
| prdHeapSortDsc [a] = [a]
| prdHeapSortDsc l = h.toSortedList(h.buildFromList l)

end

A function prdHeapSortAsc for sorting in the opposite direction can be defined
in a similar way, by using leqPrd instead of geqPrd.

Existing implementations of SML already come with a bunch of structures,
signatures and functors, called the Standard ML basis library. They provide
a lot of useful functionality and their description can be found at [18]. In
Table 1 we already encountered two function from the library, Int.toString
and Real.toString, which are defined in structures Int and Real.

4 CPN ML

CPN ML is a functional programming language that embeds the Standard ML
and extends it with constructs for defining colour sets, variables [8] and for
dealing with multisets. There are also other changes, like the replacement of
the operator @ for the list concatenation by ^^ and use of @ for delay expres-
sions. CPN ML also comes with its own library of functions that, for example,
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includes generators of random numbers and variates or the function time(),
which returns the actual value of so-called simulated time6. On the other hand,
as CPN Tools internally uses SML/NJ [8] for CPN ML evaluation, almost any
valid piece of SML code, including the Standard ML basis library, can be used
with CPN Tools. Specifics of CPN ML are exhaustively described at [15], here
we just briefly describe the most significant differences.

4.1 Colour Sets and Variables

In CPN, colour sets are used as types of tokens, places, values, variables and
expressions. They are defined by the colset keyword, which is an equivalent of
the type keyword from SML. This means that we can (and also have to) name
colour sets created as subsets of other colour sets or by type constructors avail-
able in CPN Tools but we cannot introduce new type constructors. Fortunately,
the constructors in CPN ML cover some cases that can only be solved using
the datatype construct in SML. There are two types of colour sets, simple and
compound.

Simple colour sets are like primitive types in SML, but with some distinctive
features. One of them is that it is possible to replace values in a colour set with
alternative ones or define a colour set as an interval of values from another one.
Both of these are achieved by using the keyword with. For example, a colour set
containing integers from 0 to 127 can be defined as

colset ASCII = int with 0..127;

and a colour set, which is the bool type with the value7 disagree instead of
false and agree instead of true as

colset Agr = bool with (disagree, agree);

Types from SML cannot be directly used as colour sets, they have to be renamed,
for example colset INT = int;. Simple colour sets include enumerated sets, so
an alternative to the data type DevStatus from Sect. 3.4 can be defined as

colset DevStatus = with on | off | broken;

Compound colour sets are those defined by other colour sets. For example,
the record colour set PRD and the list colour set PRDlst from Sect. 6 belong here.

Variables are necessary for describing relations between values of tokens
removed and created during transition firings. They were a part of CPN long
before the decision to use SML for net inscriptions has been made, so there is
no way of avoiding them. They are defined in the form

var vname1 . . . , vnamen : cset;

6 See Sect. 5.3 for details.
7 We can use any pair of values, the first one is always for true and the second one
for false.



186 Š. Korečko

where vname1 to vnamen are names of variables and cset is the name of a colour
set that is their type. Notice that all definitions of colour sets and variables end
with the semicolon symbol. This is mandatory, a definition without it will cause
error in CPN Tools.

4.2 Multisets

Multisets are like sets, but allow multiple occurrences of the same elements.
They are also called bags and in CPN describe groups of tokens in markings and
various kinds of expressions. Formally a multiset m over a non-empty set S is
defined as a function m : S → N, represented as a formal sum:

∑

s∈S

m(s)′s.

N is the set of natural numbers and the values {m(s)| s ∈ S} are the coefficients
of the multiset. We say, that s belongs to m (s ∈ m) if and only if m(s) �= 0. For
example, a multiset holding two members of value 4, three members of value 5
and one member of value 9 can be written as the formal sum

2′4 + 3′5 + 1′9.

In CPN ML the syntax is a bit different, because the apostrophe and plus symbols
are reserved for other purposes. Namely, the back-quote (grave accent) symbol
“‘” is used instead of “′” and the single plus is replaced by “++”. So, in CPN
ML our multiset will be written as

2‘4++3‘5++1‘9

The back-quote operator is called multiset constructor and ++ is multiset addi-
tion. There are also other operators and functions for multisets. Some of them
are listed in Table 2.

Table 2. Selected multiset operators and functions

Operator (function) Name Example
empty empty multiset (∅)
== equality 1‘2++3‘1 == 3‘1++1‘2 ≡ true

<><> inequality 1‘8++3‘1 <><> 3‘1++1‘2 ≡ true

<< less than 2‘1++1‘2 << 3‘1++1‘2 ≡ true

>>= greater than or equal 3‘1++8‘2 >>= 3‘1++1‘2 ≡ true

-- subtraction 3‘1++8‘2 -- (3‘1++1‘2) ≡ 7‘2

** scalar multiplication 4**(3‘1++1‘2) ≡ 12‘1++4‘2

size size size(3‘1++1‘2) ≡ 4

cf number of appearances cf(1,3‘1++1‘2) ≡ 3
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If a multiset contains only one element then the number of occurrences and
the back-quote may be omitted, e.g. 1‘5 is the same as 5 and 1‘() is the same
as (). However, we should be careful when a multiset is specified as one non-
negative integer value. For example, the expression 5 means 1‘5 if the multiset
is over an integer colour set and 5‘() if it is over a colour set defined as equal to
the SML type unit. In the following section we use the term multiset expression,
which denotes an expression that evaluates to a multiset.

5 Coloured Petri Nets

Coloured Petri Nets belong to the class of high-level Petri nets, so tokens held in
their places can be of various values. There are still the same basic elements as in
PT nets, i.e. places, transitions and arcs, but their definition and markings and
the firing process of CPN are more complicated. In addition, each CPN contains
a part called declarations with CPN ML code defining colour sets, variables,
values and functions of the net. CPN ML code can be also loaded from text files.
To do this a declaration of the form

use "fname";

where fname is the name of the file to be loaded, has to be added to the net
declarations.

Fig. 5. A small CPN in its initial marking M0

An example of a small CPN can be seen in Fig. 5. This net uses two colour
sets, INT and UNIT, and three variables, x, y and z. All of them have to be defined
in the declarations of the net, which can be written as follows:

colset UNIT = unit;
colset INT = int;
var x,y,z: INT;
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All the PT nets presented in Sect. 5 are valid Coloured Petri nets with UNIT used
as the colour set for all places.

5.1 Place, Transition and Arc Inscriptions

In PT nets we define a name and an initial marking for each place. In CPN we
also specify a colour set for each place and all tokens in the place have to be from
it. Markings are multisets of tokens, so initial markings are defined as multiset
expressions. For example, the place in the top left corner of Fig. 5 has the name
p1, the initial marking 6‘3++4‘42 and INT as its colour set. If the colour set of a
place is UNIT then its name is not shown (even in the cases when it is not equal
to the unit type). This is the case of the place (named) p3 in Fig. 5. Places p3
and p4 have no initial marking inscriptions, so their initial markings are empty
multisets.

For transitions we now have four different inscriptions: name, guard, time,
and code segment inscriptions. The transitions in Fig. 5 have the names t1 and t2
and one of them, t1, also has a guard expression in the form x<y. Guard expres-
sions are additional conditions for transition firings and their role is explained in
Sect. 5.2. Time inscriptions are used in timed CPN and are treated in Sect. 5.3.
A code segment inscription contains a CPN ML code that is executed when the
corresponding transition is fired. An example of a code segment can be seen in
Fig. 13 (transition newSetOfParts).

Arc inscriptions are multiset expressions, which define what tokens are
removed or created when transitions fire. Their role is explained in the next
section.

5.2 Transition Firing

There are two fundamental differences between arc inscriptions in PT nets and
CPN:

1. In CPN they define not only amount but also values of tokens.
2. They may contain variables.

The consequence of the second one is that usually there are several ways in which
a transition can fire.

Binding Element. If we want to describe an enabling or a firing of a transition
t precisely, then we do not say that a transition is enabled (fires) but a binding
element is enabled (fires). The binding element is a pair in the form

(t, < var1 = val1 . . . , varn = valn >), (1)

where t is the transition, var1 to varn are variables that occur in arc inscriptions
of the arcs adjacent to t and val1 to valn are values assigned to these variables.
Examples of binding elements for the transition t1 from Fig. 5 are

(t1, < x = 3, y = 8 >) and (2)
(t1, < x = 42, y = 8 >). (3)
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If we say that a transition t is enabled (fires), we mean that some binding element
containing t is enabled (fires).

Before defining enabling and firing we introduce two multisets, ms(p, t, be)
and ms(t, p, be):

– ms(p, t, be) is an empty multiset if there is no arc from p to t. If there is
an arc a from p to t then ms(p, t, be) is a multiset to which eArc(p, t, be)
evaluates. eArc(p, t, be) is the inscription on the arc from p to t with var1 to
varn replaced by val1 to valn according to a binding element be.

– ms(t, p, be) is defined in the similar way but for an arc from t to p.

For the sake of simplicity we assume that there is always at most one8 arc going
from p to t or from t to p. The occurrence sequences for CPN are defined similarly
to those in PT nets but they contain binding elements instead of transitions.

Enabling. A binding element be of the form (1) is enabled in a marking M if
and only if

1. For each pre-place p of t it holds that the multiset ms(p, t, be) is less than or
equal to M(p).

2. The expression obtained from the guard of t by replacing var1 to varn by
val1 to valn according to be evaluates to true.

This means that in the initial marking M0 of our net (Fig. 5), which can be
written9 as

M0 = (6‘3++4‘42, 15‘8, ∅, ∅),

only the binding element (2) is enabled. The second one, (3), is not because the
guard of t2 (i.e. 42<8) evaluates to false.

Firing. The result of the firing of be in M is a new marking M ′, M [be> M ′,
computed for each place p as

M ′(p) = M(p) -- ms(p, t, be) ++ ms(t, p, be),

where ms(p, t, be) and ms(t, p, be) are as defined above and -- and ++ are multiset
operators from Sect. 4.2. For example, if we fire the step (2) in the initial marking
M0 of our net (Fig. 5), it will result in a new marking M1 (Fig. 6), computed as

M1(p1) = (6‘3++4‘42) -- 1‘3 ++ ∅ = 5‘3++4‘42
M1(p2) = 15‘8 -- 3‘8 ++ ∅ = 12‘8
M1(p3) = ∅ -- ∅ ++ (8‘6++2‘11) = 8‘6++2‘11
M1(p4) = ∅ -- ∅ ++ 2‘() = 2‘()

Notice that the inscription of the arc from t1 to p4 uses the values of consumed
tokens not only to compute values of new tokens (x+y) but also to define the
number of new tokens (y‘6). In M1 both t1 and t2 can be fired.
8 In fact, if there are two or more arcs, they can be always replaced by one.
9 Assuming the ordering p1, p2, p3, p4 of places. The symbol ∅ denotes an empty
multiset.



190 Š. Korečko

Fig. 6. CPN from Fig. 5 in marking M1

5.3 Time in CPN

In Sect. 2 we said that transitions often represent events or actions, which occur
or are executed when they fire. But in real life actions usually have a duration
and some time needs to pass between two event occurrences. To capture time-
related features in CPN models we need to use their timed version, called timed
CPN. They differ from “ordinary” CPN is several ways:

– In a timed CPN a value called timestamp can be associated with tokens. A
timestamp of a token is written after its ordinary value with the symbol @
as a delimiter. For example, the expression 5@10 represents a token with the
value 5 and timestamp 10. The timestamp of a token is the time when the
token was created.

– Colour sets can be timed. A timed colour set is a colour set, where each value
includes a timestamp. So, a token with a timestamp has to be a member of
a timed colour set. The keyword timed is used to declare that a colour set
is timed. The aforementioned value 5@10 can be a member of a timed colour
set, declared as colset INTtm = int timed;

– Arc inscriptions may include so-called delay expressions, which define times-
tamps of newly created tokens. These expression have the form @+expr, where
expr is an arithmetic expression of the integer type.

– A delay expression can be also associated with a transition, as so-called tran-
sition time inscription. It has the same effect as if the expression is added to
each outgoing arc of the transition.

– Delay expressions can also be a part of the initial marking inscriptions of
places, whose types are timed colour sets. They define timestamps of tokens
in M0.

The time in CPN models is called simulated time and is represented as a
non-negative integer. Its value is 0 when a computation (simulation) starts and



Functional Languages in Design of Coloured Petri Nets Models 191

)b)a

c)

Fig. 7. Timed CPN in M0, tsim = 0 (a) M1, tsim = 10 (b) and M2, tsim = 10 (c)

may only increase during the simulation. The actual value of the simulated time
can be obtained by calling the CPN ML function time().

The time aspect is incorporated into transition enabling and firing by intro-
ducing the notion of token availability : A token v@s is available at simulated
time tsim if and only if tsim ≥ s. This means that all what was said in Sect. 5.2
remains valid, but only available tokens are taken into account. Tokens gener-
ated by firings have timestamps computed by corresponding delay expressions.
All tokens without timestamps are regarded as tokens with timestamps equal to
0, so they are always available.

We explain how the computation of timed CPN proceeds on an example in
Fig. 7. It shows a small timed CPN in three subsequent markings. The net has
only three declarations, namely:



192 Š. Korečko

colset INT = int;
colset INTtm = int timed;
var x,y: INT;

Notice, that the variables x and y doesn’t need to be of the timed version of
the corresponding type (int here). All the places are of timed colour sets, so
all the tokens in every marking have timestamps. Only the place p1 holds a
token in M0 (Fig. 7a). As the initial marking inscription 1‘5 of p1 has no delay
expression, this token has the timestamp 0. In the simulated time tsim = 0 only
the transition t1 can fire. The firing (t1, < x = 5 >) consumes the token from
p1 and creates six new tokens in p2, two with the timestamp 5 and four with
10 (Fig. 7b). To fire t2 three tokens have to be available in p2, so it becomes
enabled in tsim = 10 (in tsim = 5 we have only two available tokens in p2). The
firing of (t2, < x = 5 >) results in M2, shown in Fig. 7c). The newly created
token in p3 has the timestamp 110 despite the fact that the arc from t2 to p3
has no delay expression. This is because the delay expression @+100 of t2 applies
to all tokens created when t2 fires. And the timestamp of the new token in p4
is computed as 10+100+3*5.

6 CPN Model Development

In this section we build a timed CPN model of a simple manufacturing process.
The process consists of two tasks: product assembly and quality evaluation. The
assembly is performed by an assembly line, which takes a set of product parts
and assembles them into a product. This activity takes about 70 s, the assembly
line can make only one product at once and for now we assume that a new set
of parts is always available. The quality evaluation takes an assembled product,
evaluates its quality and marks it as passed or failed. The evaluation takes about
130 s. After a product is evaluated a new evaluation can start. The quality of a
product depends on the quality of its parts and the assembly duration.

The model is built step by step, staring with a basic, low-level, one in Sub-
sect. 6.1. Next, data to be stored in tokens and durations of individual activities
are added in Subsects. 6.2 and 6.3. The quality evaluation process is implemented
in Sect. 6.4 and in Sect. 6.5 randomness is introduced to the model. In Sect. 6.6
we abandon the assumption that a new set of parts is always available and imple-
ment an arrival process for the sets. Finally, in Sect. 6.7 we extend our model by
a procedure, which records selected failed products to an XML file.

In addition to presenting a CPN model development process, this section
highlights two interesting aspects of SML utilization in CPN Tools. First, two
approaches to modelling are demonstrated in Subsects. 6.3 and 6.4: an app-
roach that primarily uses CPN places, transitions and arcs and an approach
that prefers SML code. Second, in Subsect. 6.7 it is shown how an already exist-
ing SML code can be embedded into CPN models. Contrary to the previous
sections, in what follows we don’t show enabled transitions and actual markings
in CPN models.
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Fig. 8. Low-level PN representation of the manufacturing process

6.1 Low-Level PN Model

When creating a CPN model, it is good to start with a low-level one, which
captures the “essence” of the system modelled. In our case it is the sequence of
actions within the tasks and interaction between them. The low-level model can
be seen in Fig. 8 and one of the goals we will try to accomplish by utilisation of
CPN ML is to keep a resulting timed CPN as similar to this model as possible.

The assembly task is modelled by places lineEmpty, assembling and
prdAss- embled and transitions startAss and finishAss. The places
prdReady4QC, prdEvaluated, passed, failed and QCready and transitions
evaluatePrd, pass and fail belong to the quality evaluation. The transition
takePrd belongs to both tasks and represents an event on which both these
concurrent tasks synchronize.

In the initial marking we have tokens in lineEmpty and QCready, which
means that both tasks are ready to begin. However, only the assembly can start
by a firing of startAss. A token in assembling means that a product is being
assembled and a token in prdAssembled that the assembly is done (by a firing of
finishAss). Now, takePrd can be fired, representing the removal of the product
from the assembly line and the start of its evaluation (a token in prdReady4QC).
In the meanwhile, a new assembly can start. A firing of evaluatePrd means
that the product has been evaluated (a token in prdEvaluated) and can be
marked as passed (by a firing of pass) or failed (by a firing of fail). After this
an evaluation of a new product can start as we have a token in QCready again.
The places passed and failed differ from others, they can hold more than one
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token. Because of this we do not see them as states of the tasks but as containers
storing products that passed or failed the evaluation procedure.

6.2 High-Level Timed CPN Model

Now we can update the model to a high-level one, which incorporates the dura-
tions of the tasks and stores important information inside the tokens. For tokens
we create a new timed record colour set PRD, similar but not identical to the
SML type PRD from Sect. 3.4.

colset PRD = record
id:INT *
partsQuality:INT *
tmsStartAssembly:INTINF *
assemblyDuration:INTINF *
prdQuality:INT

timed;

where the field id stores the identifier of a product or a set of
parts, partsQuality stores the value representing quality of the parts,
tmsStartAssembly the value of the simulated time when the assembly of the
product started, assemblyDuration is the time needed to assembly the product
and prdQuality is the value on the basis of which it will be decided whether the
product passes or fails. The overall structure of the net doesn’t change, but all
places except of lineEmpty and QCready are now of the colour set PRD (Fig. 9).

Fig. 9. Deterministically timed CPN model of the manufacturing process
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This is because tokens in them are products or sets of parts in corresponding
stage of the assembly or evaluation.

To be able to pass values from one token to another and update fields we
define a variable p as

var p:PRD;

and functions

fun newParts():PRD={
id=0,
partsQuality=55,
tmsStartAssembly=time(),
assemblyDuration=0,
prdQuality=0}

and

fun setDuration(p:PRD)={
id= (#id p),
partsQuality=(#partsQuality p),
tmsStartAssembly=(#tmsStartAssembly p),
assemblyDuration=time()-(#tmsStartAssembly p),
prdQuality=(#prdQuality p)}

How they are used in arc inscriptions can be seen in Fig. 9. Of course, we can put
the expressions from these functions directly to the corresponding arc inscrip-
tions, but using functions increases readability of the net and makes future
changes in data representation easier (i.e. only declarations will be modified,
the net stays as it is).

The function newParts creates a record for a new token. For now, the fields
id and partsQuality are set to constant values, but we will change this in
Sects. 6.3 and 6.5. The field tmsStartAssembly holds an actual simulated time of
the corresponding startAss firing. Finally, assemblyDuration and prdQuality
are set to 0, because their values will be computed later. The assemblyDuration
is computed by the second function, setDuration. The net also contains delay
expressions for the duration of assembly (@+70) and evaluation (@+130).

6.3 Adding Id Generator

There are some underdeveloped features in our model and the one we deal with
first is the product identifier (id) generation. Each product should have a unique
id. There are several ways how to implement the generator and here we show
two of them. The first one we call a “PN way”, because it extends the structure
of the net and uses minimum of CPN ML code. The second one, an “ML way”
leaves the net as it is and uses CPN ML code only. Going the PN way means
adding a new place that stores the id of the next product to be assembled. This
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Fig. 10. Part of the CPN model with the place nextId added

place (nextId) is connected to the transition startAss (Fig. 10). Of course, we
also need to add var nId:INT; to the declarations of the net and change the
first two lines of the function newParts definition to

fun newParts(nid):PRD={
id=nid,

The ML way is to use a global variable to store the id for a next product. In
CPN ML global variables are implemented using one of the imperative features
of SML, namely the possibility to implement variables as references. The global
variable can be declared as

globref nextPrdId=0;

and to increase its value after an assembly of a new product starts we add the
expression

action
inc nextPrdId

to the code segment inscription of the transition startAss. The first two lines
of the newParts definition will now be

fun newParts():PRD={
id=(!nextPrdId),

The symbol ! is the dereferencing operator of SML. One difference between the
two approaches is that when the PN way is used the id generation starts from 1
again when the net is reset to its initial marking. In ML way it continues from
the last used value.

6.4 Quality Evaluation Process

Above we said that the quality evaluation of a product is based on the quality of
its parts and the duration of its assembly. Let us assume that the quality of the
parts can be measured and whether the product passes or fails depends on the
following criteria, where pq(p) is the quality of parts and ad(p) is the assembly
duration of a product p:
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– If the pq(p) ≤ 50 then p fails
– If 50 < pq(p) < 78 then

• if ad(p) ≤ 71 then p passes
• if ad(p) > 71 then p fails

– If pq(p) ≥ 78 then
• if ad(p) ≤ 80 then p passes
• if ad(p) > 80 then p fails.

This evaluation process can be implemented in several ways and we again show
a PN and an ML way of doing it. Both implementations store the result of
the evaluation in the field prdQuality of a token representing p added to the
place prdEvaluated and this result is 1 if p passes and 0 if p fails. The value of
prdQuality is then used in guards of the transitions pass and fail, which are
the same in both implementations.

Fig. 11. Part of the model implementing the evaluation process in PN way

Using the PN way, i.e. putting as much of the process to places and transitions
as possible, may result in a significant addition to the structure of the net.
This can be seen in Fig. 11, where everything but the places prdReady4QC and
prdEvaluated and transitions pass and fail is new. The rest of the net is not
shown, because it remains the same as in Fig. 9. Except the inscriptions shown
in Fig. 11, the only new piece of code the net uses is the function

fun setQ(p:PRD, q:INT)={
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Fig. 12. Part of the model with modified inscriptions (ML way)

id= (#id p),
partsQuality= (#partsQuality p),
tmsStartAssembly=(#tmsStartAssembly p),
assemblyDuration=(#assemblyDuration p),
prdQuality=q}

The second implementation adds no places or transitions; it just modifies
some inscriptions (Fig. 12). The whole evaluation process is now hidden inside
the function

fun evaluate(p:PRD):INT=
let
fun evalPartsQ(p:PRD)=

if (#partsQuality p)<=50 then 0 else
if (#partsQuality p)<78 then 1 else 2;

in
case evalPartsQ(p) of

0 => 0
| 1 => if (#assemblyDuration p)<=71 then 1 else 0
| 2 => if (#assemblyDuration p)<=80 then 1 else 0

end

which is called by the function

fun setprdQuality(p:PRD)={
id= (#id p),
partsQuality=(#partsQuality p),
tmsStartAssembly=(#tmsStartAssembly p),
assemblyDuration=(# assemblyDuration p),
prdQuality=evaluate(p)}

to update the prdQuality field.

6.5 From Deterministic to Stochastic Model

The evaluation process added in the previous section made our net completely
deterministic. With the assembly duration set to 70 and the parts quality to 55
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(as in Sect. 6.2) all the products will pass. Of course, this is not very realistic
as processes like these are usually of stochastic nature. To capture such nature
in a CPN model, CPN ML offers functions that generate random values from
various random distributions. Now we will use some of them to make our model
stochastic and thus more realistic. We will do this with the model that has both
the id generator and the quality evaluation process implemented in the ML way.
However, identical modifications can be applied to a model that implements
both or one of these parts in the PN way. The same is true for the functionality
implemented in Sects. 6.6 and 6.7.

Let us assume that on the basis of corresponding measurements we found
out that

– the product assembly duration follows the normal distribution with mean
μ = 69 and variance σ2 = 13,

– the quality evaluation duration follows the normal distribution with μ = 131
and σ2 = 10 and

– the parts quality can be characterized by an integer value pq, where 0 ≤ pg ≤
100, which follows the normal distribution with μ = 81 and σ2 = 21 but
approximately 1 in 10 sets has only half of the quality.

To reflect this in our model we first prepare the function

fun normTm(mean: int, variance: int) =
round(normal(real(mean),real(variance)))

which returns a value drawn from the normal distribution with given mean and
variance and the function

fun getPartsQuality() = let
val usualQ= normal(81.0,21.0)
val dvd = if uniform(0.0,1000.0)<=100.0 then uniform (1.8,2.1)

else 1.0
in ((floor (usualQ/dvd)) mod 101)

end

which computes the parts quality value according to what was said above. The
functions normal and uniform are CPN ML functions for generating random
values from normal and uniform distributions. They have real arguments and
return a real value, so some of the SML conversion functions, presented in Table 1
are used to convert from and to integers. Then we replace the line

partsQuality=55,

in the function newParts (from Sect. 6.2) with

partsQuality=getPartsQuality(),

and modify the corresponding arc inscriptions. The new ones will be

– newParts()@+normTm(69,13) on the arc from startAss to assembling and
– setprdQuality(p)@+ normTm(131,10) on the arc from evaluatePrd to
prdEvaluated.

This can also be seen in Fig. 13 in the next section.
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6.6 Adding Input Queue

The next modification we make is an addition of a more realistic representation
of the parts sets arrival. Until now, we assumed that there is always a new set
of parts available when the assembly line is empty. Now we change this to the
following arrival procedure:

– The sets of parts arrive in intervals characterized by the exponential distri-
bution with mean = 143.

– When a new set arrives, it enters a queue, where it waits to be assembled.

Fig. 13. Manufacturing process CPN model with input queue

In CPN we usually represent queues as lists and the enqueue and dequeue
operations with operators ^^ and ::. The head of the list will be the front of
the queue. To draw an integer value from the exponential distribution we add a
new function

fun expTm(mean: int) =
round(exponential(1.0/real(mean)))
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to the declarations of the net, where we also define two new colour sets and a
variable:

colset UNITtm = UNIT timed;
colset PRDlst = list PRD;
var pl: PRDlst;

The function exponential is provided by CPN ML to get the corresponding
random value. After this we implement the arrival procedure in our CPN model
by adding new places nextSet, inputQueue and a transition newSetOfParts
(Fig. 13). The time of a new set arrival is stored as the timestamp of the token
in nextSet and the token in inputQueue represents the queue. The transition
newSetOfParts implements the enqueue operation and startAss the dequeue
operation.

6.7 Failed Products Recording

The CPN model we created is evidently suitable for simulation. We can easily
perform a simulation run by firing corresponding sequence of binding elements,
but the question is how to conveniently collect data during the run. Fortunately,
CPN Tools offer a feature called monitors, designed especially for this task. A
monitor is a collection of CPN ML functions, which are executed when certain
events, such as firings of transitions associated with them, occur.

Now, let’s assume that during the simulation runs of our model we need to
record critical fails in descending order to an XML file for every work shift. One
work shift is 4 h long and a critical fail is a failed product with the assembly
duration longer than 70 s. The order is defined by the assembly duration, too.
To accomplish this we

1. prepare functions for sorting lists of failed products and add them to the CPN
model,

2. extend the structure of the net with places, transitions and arcs that collect
failed products into a sorted list for each shift and

3. define a write-in-file monitor, which processes the sorted list and appends it
to the XML file at the end of each shift.

The XML file is called criticalFailsPerShift.xml and for each shift it has
to contain information about the time it ended (in seconds) and id, assembly
duration and parts quality of every critical fail during the shift. For a simulation
run lasting two shifts with one critical fail in the first shift has and two fails in
the second one the file should look as follows:

<failedProducts>
<shift endTime="14440">
<prd id="83">
<partsQuality>76</partsQuality>
<assemblyDuration>76</assemblyDuration>
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</prd>
</shift>
<shift endTime="28880">
<prd id="137">
<partsQuality>72</partsQuality>
<assemblyDuration>73</assemblyDuration>

</prd>
<prd id="154">
<partsQuality>41</partsQuality>
<assemblyDuration>73</assemblyDuration>

</prd>
</shift>

</failedProducts>

SML Functions for Sorting. The lists of failed products should be sorted
and for this task we can use the already introduced SML code, namely

1. the functions isOrdered, geqPrd and isPrdLstDsc from Sect. 3.5,
2. the structure Tree from Sect. 3.6, but with the first line

structure Tree:TREE = struct

replaced with

structure Tree = struct

3. the functor Heap from Sect. 3.6, but with the first line

functor Heap(type Itm val ord: Itm*Itm -> bool):HEAP = struct

replaced with

functor Heap(type Itm val ord : Itm * Itm -> bool) = struct

4. the function prdHeapSortDsc from Sect. 3.6.

The signatures TREE and HEAP are not used, because CPN Tools doesn’t allow
them in declarations. Omission of the signatures is the reason why the first lines
of Tree and Heap have to be modified. There are two ways of how to include the
code into our CPN model:

1. Add the code directly to the declarations of the model. This will result in six
new declarations, one for each function, structure and functor.

2. Put all the code to a text file and link it with the model by means of the
SML command use. If we, for example, name the file prdListUtils.sml and
place it in the same folder as the CPN model then the only declaration we
need to add to the model is the use command, namely
use"prdListUtils.sml";.
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The code will work with our model despite the fact that it was designed for the
PRD type from Sect. 3.4 while the model uses the slightly different colour set PRD,
introduced in Sect. 6.2. This is thanks to the fact that both of them

– have the same name,
– are defined by the record type constructor and
– have the assemblyDuration field, the only field used in the code.

Fig. 14. Part of the CPN model from Fig. 13 modified for the failed products recording

Modified CPN Model. Now we are ready to modify the CPN model itself
(Fig. 14). We split the transition fail into failNormal, which works as the
original one, and failCritical for the critical fails. A firing of failCritical
does the same as of failNormal plus it updates a list of critical fails, stored
in a new place failedList, by corresponding failed product record. Another
new transition is takeAndSortList, which fires at the end of each work shift.
This is ensured by the place nextShiftEnd and adjacent arcs. The firing of
takeAndSortList empties the list in failedList and adds its ordered version
to failedListDsc. The shiftDuration is a value defined as
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val shiftDuration =14440;

and descending is a function, which calls the functions added in step 1:

fun descending(pl)= if isPrdLstDsc(pl) then pl
else prdHeapSortDsc(pl)

The purpose of the transition processList is to empty failedListDsc and
trigger a monitor, which saves the ordered list to criticalFailsPerShift.xml.
It should be also noted that the data type tree from the structure Tree cannot
be made a colour set but, as it is evident from the example, there is no problem
in using it inside functions called from inscriptions of CPN.

Write-in-file Monitor. There are four types of monitors in CPN Tools and
the one firings of processList trigger is of the write-in-file type. Its name is
criticalFailsPerShift and it is associated with processList only. As most of
the monitors in CPN Tools, each write-in-file monitor consists of four functions.
The first one is init, which is called at the beginning of each simulation run
and writes the opening tag to the file:

fun init () = "<failedProducts>\n"

The second one is pred (predicate). It is called after each firing of processList
and determines whether the next function, the obs (observer) is called. As we
wish to call obs at each firing of processList, we leave pred in its default form,
generated by CPN Tools. The observer adds information about all the failed
products from the list pl to the file and is defined as

fun obs (bindelem) =
let
fun obsBindElem (final’processList (1, {pl})) =

"<shift endTime=\""^IntInf.toString(time())^"\">\n"^
(foldr (op ^) "" (map prd2Xml pl))^"</shift>\n"

| obsBindElem _ = ""
in
obsBindElem bindelem
end

provided that a page on which the model is created in CPN Tools is named
final. The code of obs contains three functions we didn’t encounter yet, foldr,
map and prd2Xml. The first two are higher-order functions, defined in the List
structure of the Standard ML basis library [18]. The function map is used to
transform the list pl of product records to a list of product inscriptions in XML
and foldr concatenates these inscriptions to one string. How a product record
(of the colour set PRD) is transformed to XML is defined by the third function,
which must be added to the declarations of the model and has the form
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fun prd2Xml(p:PRD) =
" <prd id=\""^Int.toString(#id p)^"\"><partsQuality>"^
Int.toString(#partsQuality p)^
"</partsQuality><assemblyDuration>"^
IntInf.toString(#assemblyDuration p)^
"</assemblyDuration></prd>\n"

The last function of the monitor is stop. It is called at the end of each simulation
run and in our case it encloses the file:

fun stop () = "</failedProducts>"

7 Conclusion

In this chapter we provided an introduction to Coloured Petri nets and explored
the possibilities that its pairing with the SML functional language offers. How-
ever, we barely scratched the surface and some features haven’t been mentioned
at all. These include polymorphism and some of the imperative aspects of SML
and formal definition, properties and analytical methods on the side of Petri
nets. To learn more about SML we recommend the tutorial [2] and books [14],
[11] and [3]. A reader interested in Petri nets can find a general introduction
to various types of Petri nets, including available formal analysis techniques, in
[1]. Coloured Petri nets are comprehensively described in the three-volume book
[4,5,7] and the more recent book [8]. The formal definition of Coloured Petri
nets and its properties in a compact form can be found in [6].

The manufacturing process example from Sect. 6 promoted a design approach
where a low-level model of a system, capturing its fundamental properties, is
built first and CPN ML is used in such a way that only minimal modifications
of the net structure are necessary on the way to the final model. One of the
advantages of the approach is that formal analysis techniques such as place or
transition invariants [1] can be applied to the low-level model to prove that
it really preserves the fundamental properties. This approach was already suc-
cessfully used during the development of simulation models for evaluation of a
parallel ray-tracing implementation modifications [9,10] at the home institution
of the author. However, the fact that the structure is preserved doesn’t automat-
ically mean that the fundamental properties are preserved, too. This can be also
observed in our example, where firings of the transitions pass and fail change
from nondeterministic in Figs. 8 and 9 to deterministic in Figs. 11 and 12 and
back to nondeterministic in Fig. 13.

In Sect. 6.7 we shown how already existing SML code can be re-used in a
CPN model. What we have done with the structure and functor for the heapsort
algorithm can be adapted for other cases as well. However, the modeller should
be aware of limitations (e.g. no support for signatures) and specific features (e.g.
the operator ^^ for list concatenation instead of the SML operator @) of CPN
ML. In addition, necessary level of similarity between the data types for which
the re-used code has been originally designed and the colour sets used in the
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corresponding CPN model should be maintained and only values compatible
with the colour sets of the model should be stored as tokens in places.
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Abstract. Single Assignment C (SaC) is a data parallel programming
language that combines an imperative looking syntax, closely resembling
that of C, with purely functional, state-free semantics. Again unlike the
functional programming mainstream, that puts the emphasis on lists
and trees, the focus of SaC as a data-parallel language is on (truly)
multi-dimensional arrays. SaC arrays are not just loose collections of
data cells or memory address ranges as in many imperative and object-
oriented languages. Neither are they explicitly managed, stateful data
objects as in some functional languages, may it be for language design or
for performance considerations. SaC arrays are indeed purely functional,
immutable, state-free, first-class values.

The array type system of SaC allows functions to abstract not only
from the size of vectors or matrices but even from the number of array
dimensions. Programs can and should be written in a mostly index-free
style with functions consuming entire arrays as arguments and producing
entire arrays as results. SaC supports a highly generic and compositional
programming style that composes applications in layers of abstractions
from universally applicable building blocks. The design of SaC aims at
combining high productivity in software engineering of compute-intensive
applications with high performance in program execution on today’s
multi- and many-core computing systems.

These CEFP lecture notes provide a balanced introduction to lan-
guage design and programming methodology of SaC, but our main focus
is on the in-depth description and illustration of the associated compila-
tion technology. It is literally a long way down from state-free, functional
program code involving multi-dimensional, truly state-free arrays to effi-
cient execution on modern computing machines. Fully compiler-directed
parallelisation for symmetric multi-socket, multi-core, hyper-threaded
server systems, CUDA-enabled graphics accelerators, workstation clus-
ters or heterogeneous systems from a single architecture-agnostic source
program adds a fair deal of complexity. Over the years, we have devel-
oped an intricate program transformation and optimisation machinery
for this purpose. These lecture notes provide the first comprehensive
presentation of our compilation technology as a whole.
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1 Introduction

The on-going multi-core/many-core revolution in processor architecture has
arguably more radically changed the world’s view on computing than any other
innovation in microprocessor architecture before. For several decades the same
program could be expected to run faster on the next generation of computers
than on the previous. The trick that worked so well all the time was clock fre-
quency scaling. The next generation of machines would simply run identical code
at a higher clock frequency and, thus, in less time. Several times in the (short)
history of computing the end of clock frequency scaling was predicted, but every
time some technology breakthrough appeared right in time to continue, often
even with a higher gradient than before.

About ten years ago the necessary technology breakthrough, however, failed
to appear: the “free lunch” was finally over [1]. While sequential processing speed
has still grown ever since, gains have been modest and often came at a high
price. Instead parallel processing has moved from the niche of high performance
computing into the mainstream. Today it is literally impossible to purchase
a sequential computer. Multi-core processors rule the consumer market from
desktops to laptops, tablets and smartphones [2,3]. Even TV sets are powered
by multi-core processors these days, and safety- and time-critical cyber-physical
systems will be next. Server systems are usually equipped with two or four
processor sockets. Equipped with 8-core or even 16-core processors they reach
levels of parallelism that were until recently only found in supercomputers.

As Oracle’s Ultra SPARC T series [4,5] (code name Niagara) demonstrates, it
is not uncommon to compromise sequential compute performance for the ability
to fit more cores onto the same die space or into the same power budget. Taking
this approach to the extreme, general-purpose graphics processing units (GPG-
PUs), the other big trend of our time, combine thousands of fairly restricted com-
pute units in one device. They can compute workloads that match the architec-
tural restrictions much faster than state-of-the-art general-purpose processors.
And, increasingly relevant, they can do this with a fraction of the energy budget.
With the fairly general-purpose CUDA programming model, particularly NVidia
graphics cards have become integral parts of many high-performance computing
installations [6].

These days even a fairly modest computer, consisting of a multi-core pro-
cessor and a graphics card, is a veritable heterogeneous system. Heterogeneity
in computing resources appears to be the direction for the foreseeable future.
ARM’s big.LITTLE single-ISA processor design with some powerful but energy-
hungry cores and some less powerful energy-saving cores is likely to mark the
begin of a new era [7,8].

Unlike ARM’s big.LITTLE, the common combination of a multi-core pro-
cessor and one, or possibly several, graphics accelerator(s) also forms a dis-
tributed system with multiple distinguishable memories. Another example of
such a distributed memory accelerator design is Intel’s Xeon Phi: 60 or more
general-purpose x86 cores with extra-large vector registers and a high-speed
interconnect [9–11].
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The radical paradigm shift in computer architecture has a profound impact
on the practice of software engineering:

All software must become ready for parallel execution!

Parallel programming per sé is hardly new, but it was largely confined to the
niche of high performance computing. Programming methodologies and tools
are geared towards squeezing the maximum possible performance out of an
extremely expensive computing machinery through low-level machine-specific
programming. Programming productivity concerns are widely ignored as run-
ning code is often more expensive than writing it.

What has changed with the multi-/many-core revolution is that any kind of
software and likewise any programmer is affected, not only specialists in high
performance computing centers with a PhD in computer science. Engineering
parallel software is notoriously difficult because it adds a completely new design
space: how to divide computational work into independent subparts, where and
when to synchronise, how to balance the workload among cores and processors,
etc, etc.

What has also changed is the variety of hardware. With existing programming
technology this variety immediately affects software engineering. Programmers
are confronted with a variety of programming models that even exceeds the
variety of architectural models. Even a fairly modest computing system requires
the combination and integration of several such models. Heterogeneous systems
add a number of challenges to software engineering: where to compute what for
highest performance or lowest power consumption or some combination thereof,
where to store data, when to avoid copying data back and forth between mem-
ories, etc, etc.

All these developments make it technologically and economically challenging
to write software that makes decent use of the variety and heterogeneity of
today’s computing systems. The quintessential goal of the SaC project lies in the
co-design of programming language technology and the corresponding compiler
technology that effectively and efficiently maps programs from a single source to
a large variety of parallel computing architectures [12,13].

Our fundamental approach is abstraction. The guiding principle is to let the
programmer define what to compute, not how exactly this is done. With respect
to parallel program execution, we let the programmer express concurrency to
be understood as an opportunity for parallel execution, but it is up to compiler
and runtime system to decide where and when to exploit this opportunity. In
any case it remains their responsibility to organise parallel program execution
correctly and efficiently. Our goal is to put expert knowledge, once and for all,
into compiler and runtime system, instead of again and again into low-level
application programs.

Specifying what to compute, not exactly how to compute sounds very famil-
iar to functional programmers. And indeed, SaC is a purely functional language.
As the name Single Assignment C suggests, SaC combines an imperative looking
syntax, closely resembling that of C, with purely functional, state-free seman-
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tics. Thus, despite the syntax, SaC programs deal with values, and program
execution computes new values from existing values in a sequence of context-
free substitution steps.

SaC is an array programming language in the best tradition of Apl [14,15],
J [16] or Nial [17]. Thus, the focus of SaC is on (truly) multi-dimensional arrays
as purely functional, state-free, first-class values of the language. SaC arrays are
characterised by their rank, i.e. a natural number describing the number of axes,
or dimensions, by their shape, i.e. a rank-length vector of natural numbers that
describe the extent of the array along each axis/dimension, and, last not least,
by the contiguous row-major sequence of elements. As in C proper, indexing into
arrays always starts at zero: legal index vectors are greater equal zero and less
than the corresponding shape vector value in each element. The length of an
index vector must be equal to the length of the shape vector to yield a scalar
array element or less than the length of the shape vector to yield a subarray.

SaC functions consume array values and produce new array values as results.
How array values are actually represented, how long they remain in memory and
whether they actually become manifest in memory at all, is left to compiler and
runtime system. Abstracting from all these low-level concerns allows SaC pro-
grams to expose the algorithmic aspects of some computation in much more
clarity because they are not interspersed with the organisational aspects of pro-
gram execution on some concrete target architecture.

The array type system of SaC allows functions to abstract not only from the
size of vectors or matrices but likewise from the number of array dimensions.
Programs can and should be written in a mostly index-free style with functions
consuming entire arrays as arguments and producing entire arrays as results.
SaC supports a highly generic programming style that composes applications in
layers of abstractions from basic building blocks that again are not built-in to
the language, but defined using SaC’s versatile array comprehension construct
with-loop.

The design of SaC aims at combining high productivity in software engi-
neering of compute-intensive applications with high performance in program
execution on the entire range of today’s multi- and many-core computing sys-
tems. From literally the same source code the SaC compiler currently gen-
erates executable code for symmetric (potentially hyper-threaded) multi-core
multi-processor systems with shared memory, general-purpose graphics process-
ing units (GPGPUs) as well as the MicroGrid [18], an innovative general-purpose
many-core processor architecture developed at the University of Amsterdam.
Most recently we added clusters of workstations or more generally distributed
memory systems to the list of supported architectures [19]. Likewise, we explored
opportunities for heterogeneous computing using multiple accelerators or comb-
ing the computational power of accelerators with that of the CPU cores [20].
Figure 1 illustrates our compilation challenge.

Eventually, we aim at compiling a single SaC source program to the whole
spectrum of relevant computing architectures. However, before looking into the
challenges of parallel program execution or the intricacies of different target



Single Assignment C (SAC) 211

Clusters
Accelerators

Systems
on a
ChipProcessors

Functional Array Programming

Advanced Compiler Technology

FPGAs GPGPU
Multi−

Multi−Core
MicroGrid
Architecure

Amsterdam

SAC

SAC2C

Fig. 1. The SaC compilation challenge: past, present and future work

architectures, we must be able to generate sequential code with competitive per-
formance. After all, we cannot expect more than a linear performance increase
from parallel execution. Sequential performance should be competitive not only
with other high-level, declarative programming approaches, but also in rela-
tion to established imperative programming languages, such as C, C++ or For-
tran. To this effect we have developed a great number of high-level and target-
independent code transformations and optimisations. These code transforma-
tions systematically resolve the layers of abstractions introduced by the pro-
gramming methodology advocated by SaC. They systematically transform code
from a human-readable and -maintainable representation into one that allows
for efficient execution by computing machines. Only after that we focus on code
generation for the various computing architectures.

For any of the supported target architectures all decisions regarding parallel
execution are taken by the compiler and the runtime system. To this effect we
fully exploit the data-parallel semantics of SaC that merely expresses concur-
rency as the opportunity for parallel execution, but only compiler and runtime
system effectively decide where, when and to what extent to actually harness
this opportunity. The right choice depends on a variety of concerns including
properties of the target architecture, characteristics of the code and attributes
of the data being processed.

These CEFP lecture notes are not the first of their kind. In [21] we gave
a thorough and fairly complete introduction to SaC as a programming lan-
guage and the advocated programming methodology and design philosophy. At
the same time we merely glanced over implementation and compilation aspects.
Stringent co-design of programming language and compilation technology, how-
ever, is of paramount importance to achieve our overall goals. After all it is
one story to define a programming language, but it is another (and much more
time and effort consuming) story to actually develop the necessary compilation
technology.

In these second CEFP lecture notes we tell this other story and focus on
the compilation technology that is so critical for success. It is literally a long
way down from state-free, functional program code involving multi-dimensional
truly state-free multi-dimensional arrays to efficient compiler-directed parallel
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program execution. Over the years, we have developed an intricate program
transformation and optimisation machinery for this sole purpose. It combines
many textbook optimisations that benefit from the functional semantics of SaC
with a large variety of SaC-specific array optimisations. While many of them
have been the subject of dedicated publications, it is the contribution of these
lecture notes to provide a comprehensive overview of SaC’s compilation tech-
nology, putting individual transformations into perspective and demonstrating
their non-trivial interplay.

To keep the lecture notes self-contained, we begin with explaining the lan-
guage design of SaC in Sect. 2 and our programming methodology of abstraction
and composition for rank-generic, index-free array programming in Sect. 3. We
illustrate the SaC approach in Sect. 4 by a brief application case study, namely
convolution with cyclic boundary conditions and convergence check. Turning
to compilation technology, we first sketch out the overall compiler design and
explain its frontend in Sect. 5. High-level, mostly target-independent code opti-
misation is the subject of Sect. 6. In Sect. 7 we outline several crucial lowering
steps from a high-level functional intermediate representation amenable to far-
reaching code transformations towards code generation for imperative machines.
At last, in Sect. 8 we touch upon code generation: first for sequential execution
and then on the various compilation targets supported by SaC at the time of
writing. In Sect. 9 we illustrate the entire compilation process by going step-by-
step through the compilation of the application case study introduced in Sect. 4.
We complete the lecture notes with an annotated bibliography on the subject of
performance evaluation on various architectures in Sect. 10 and a brief discussion
of related work in Sect. 11 before we draw some conclusions in Sect. 12.

2 Language Design

In this section we describe the language design of SaC. First, we rather briefly
sketch out the scalar language core and the relationship between imperative
syntax and functional semantics. We continue with the array calculus underlying
SaC and, in particular, SaC’s versatile array comprehension construct: with-
loop. We complete the section with a glimpse on SaC’s type system.

2.1 The Scalar Language Core: A Functional Subset of C

The scalar core of SaC is the subset of ANSI/ISO C [22] for which func-
tional semantics can be defined (surprisingly straightforwardly). In essence, SaC
adopts from C the names of the built-in types, i.e. int for integer numbers, char
for ASCI characters, float for single precision and double for double precision
floating point numbers. Conceptually, SaC also supports all variants derived
by type specifiers such as short, long or unsigned, but for the time being
we merely implement the above mentioned standard types. SaC strictly distin-
guishes between numerical, character and Boolean values and features a built-in
type bool.
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As a truly functional language SaC uses type inference instead of C-style
type declarations (the latter are optional). This requires a strict separation of
values of different basic types. As expected, type bool is inferred for the Boolean
constants true and false and type char for character constants like ‘a’. Any
numerical constant without decimal point or exponent is of type int. Any float-
ing point constant with decimal point or exponent specification by default is of
type double. A trailing f character makes any numerical constant a single pre-
cision floating point constant, a trailing d character a double precision floating
point constant. For example, 42 is of type int, 42.0 is of type double, 42.0f
and 42f are of type float and 42d again is of type double.

SaC requires explicit conversion between values of different basic types by
means of the (overloaded) conversion functions toi (conversion to integer), toc
(conversion to character), tof (conversion to single precision floating point), tod
(conversion to double precision floating point) and tob (conversion to Boolean).
To this end we decided to deliberately distinguish SaC from C: We use C-like
type casts for casting values between types that are synonyms of each other,
as introduced via C-like typedef declarations. However, we use more explicit
conversion functions whenever the actual representation of a value needs to
be changed. The motivation here is similar as with the explicit bool type for
Boolean values: clean up the language design (a bit) in corners where even mod-
ern versions of C struggle due to the need for keeping backwards compatibility.

Despite these minor differences in details, SaC programs generally look
intriguingly similar to C programs. SaC adopts the C syntax for function defini-
tions and function applications. Function bodies are statement sequences with a
mandatory return-statement at the end. In addition, SaC features assignment
statements, branches with and without alternative (else), loops with leading
(while) and with trailing (do...while) predicate and counted loops (for). All
of these constructs have exactly the same syntax as C proper.

In addition to constants, expressions are made up of identifiers, function
applications and operator applications. SaC supports most operators from C,
among them all arithmetic, relational and logical operators. As usual, Boolean
conjunction and disjunction only evaluate their right operand expression if nec-
essary. SaC also supports C-style conditional expressions, operator assignments
(e.g. += and *=) as well as pre and post increment and decrement operators
(i.e. ++ and --). For the time being, SaC does neither support the bitwise oper-
ations of C, nor the switch-statement.

Given the proper separation between Boolean and numerical values, predi-
cates in branches, conditional expressions and loops must be expressions of type
bool, not of type int. While C-style variable declarations are superfluous due
to type inference, they are nonetheless permitted and may serve documentation
purposes. If present, declared types are checked against inferred types.

The language kernel of SaC is enriched by a number of features not present in
C, e.g. a proper module system and an I/O system that combines the simplicity
of imperative I/O (e.g. simply adding a print statement where one is needed)
with a save integration of state manipulation into the purely functional context
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of SaC “under the hood”. In the absence of a general notion of tuples or records,
SaC features functions with multiple return values: a comma-separated list of
return types in the function header corresponds to a comma-separated list of
expressions in the function’s return-statement. For this sole purpose, SaC also
supports simultaneous assignment to multiple identifiers if and only if the right
hand side expression is the application of a function with multiple return values.
As usual a function with the reserved name main defines the starting point of
program execution.

Despite its imperative appearance, SaC is a purely functional programming
language. This is achieved on the one hand side by the absence of global variables
and pointers and on the other hand by a functional “interpretation” of imperative
syntax as follows. Sequences of assignment statements with a trailing return-
statement are semantically equivalent to nested let-expressions with the expres-
sion in the return-statement being the final goal expression. Imperative-style
branching constructs are semantically equivalent with functional conditionals
where the code following the branching construct is (conceptually) duplicated
in both branches. Last not least, we consider the for-loop syntactic sugar for
a while-loop, just as Kernighan and Ritchie [23], while both while-loops and
do-while-loops are semantically equivalent to tail recursion. For a more in-depth
explanation of the semantic equivalence between core SaC and OCaml we refer
the interested reader to [21].

2.2 Multidimensional Stateless Arrays

On top of the scalar language core SaC provides genuine support for truly multi-
dimensional stateless arrays based on a formal calculus. This calculus dates back
to the programming language Apl [14,24] and was later adopted by other array
languages such as J [16,25,26] or Nial [17,27] and also theoretically investigated
under the name ψ-calculus [28,29].

In this array calculus any array is represented by a natural number (named
rank), a vector of natural numbers (named shape) and a vector of whatever data
type is stored in the array (named data vector). The rank of an array is the
number of dimensions or axes. The elements of the shape vector determine the
extent of the array along each of the array’s dimensions or axes.

The rank of an array equals the length of that array’s shape vector. The
product of shape vector elements equals the length of the data vector and, thus,
the number of elements of an array. The data vector contains the array’s elements
along ascending axes with respect to the shape vector (i.e. row-major). Figure 2
shows a number of example arrays and illustrates the relationships between rank,
shape vector and data vector.

As shown in Fig. 2, the array calculus nicely extends to scalars. A scalar value
has rank zero while the shape vector is the empty vector and the data vector
contains a single element, which is the scalar value itself. All this is completely
consistent with the rules and invariants sketched out before.
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Fig. 2. Truly multidimensional arrays in SaC and their representation by data vector,
shape vector and rank scalar

In sharp contrast to all other realisations of this array calculus, from Apl to
the ψ-calculus, SaC only defines a very small number of built-in operations on
arrays that are directly related to the underlying calculus:

– dim(a )
yields the rank scalar of array a ;

– shape(a )
yields the shape vector of array a ;

– sel(iv, a )
yields the element of array a at index location iv , provided that iv is a
legal index vector into array a , i.e. iv is not longer than shape(a ) and
every element of iv is greater equal to zero and less than the corresponding
element of shape(a );

– reshape(sv, a )
yields an array that has shape sv and the same data vector as array a ,
provided that sv and a are shape-compatible;

– modarray(a, iv, val )
yields an array with the same rank and shape as array a , where all elements
are the same as in array a except for index location iv where the element
equals val .

For programming convenience SaC supports some syntactic sugar to express
applications of the sel and modarray built-in functions:

sel(iv, a ) ≡ a [iv ]
a = modarray(a, iv, v ); ≡ a [iv ] = v ;
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Figure 3 further illustrates the SaC array calculus and its built-in functions
by a number of examples. Most notably, selection supports any prefix of a legal
index vector. The rank of the selected subarray equals the difference between the
rank of the argument array and the length of the index vector. Consequently, if
the length of the index vector coincides with the rank of the array, the rank of
the result is zero, i.e. a single element of the array is selected.

vec ≡ [4,5,6,7]

dim( vec) ≡ 1

shape( vec) ≡ [4]

vec[[3]] ≡ 7

mat ≡ [ [ 0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11] ]

dim( mat) ≡ 2

shape( mat) ≡ [3,4]

mat[[1,2]] ≡ 6

mat[[]] ≡ mat

mat[[1]] ≡ vec

mat ≡ reshape( [3,4], [0,1,2,3,4,5,6,7,8,9,10,11])

[[4,5],[6,7]] ≡ reshape( [2,2], vec)

Fig. 3. SaC built-in functions in the context of the array calculus

Using an index vector instead of a rank-specific sequence of individual indices
for selecting elements (or subarrays) from an array is mainly motivated by
our ambition for rank-invariant programming that we will discuss later in this
chapter. For simple programs with constant index vectors, however, this choice
sometimes leads to pairs of opening and closing square brackets that may appear
unusual, as can be observed in Fig. 3. Here, the outer pair of brackets stems from
the syntactic sugar for selection while the inner pair stems from constructing the
index vector from a sequence of scalar constants or expressions. For a more com-
mon look and feel, the SaC standard library provides a number of overloaded
selection functions for fixed array ranks. In the remainder of this paper we will
deliberately not make use of this feature in order to rather expose the underlying
concepts instead of hiding them.

2.3 With-Loop Array Comprehensions and Reductions

With only five built-in array operations (i.e. dim, shape, sel, reshape and
modarray) SaC leaves the beaten track of array-oriented programming languages
like Apl and Fortran-90 and all their derivatives. Instead of providing dozens
if not a hundred or more hard-wired array operations such as element-wise exten-
sions of scalar operators and functions, structural operations like shift and rotate
along one or multiple axes and reduction operations with eligible built-in and
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user-defined operations like sum and product, SaC features a single but versatile
array comprehension construct: the with-loop.

We use with-loops to implement all the above array operations and many
more in SaC itself. Rather than hard-wiring them into the language, we provide
a comprehensive standard library of array operations. With-loops come in three
variants, named genarray, modarray and fold. Since the with-loop is by far
the most crucial syntactical deviation from C, we also provide a formal definition
of the (simplified) syntax in Fig. 7.

Fig. 4. The genarray-variant of the with-loop array comprehension

We begin with the genarray-variant in Fig. 4. Any with-loop array com-
prehension expression begins with the key word with (line 1) followed by a
partition enclosed in curly brackets (line 2), a colon and an operator that defines
the with-loop variant, here the key word genarray. The genarray-variant is an
array comprehension that defines an array whose shape is determined by the first
expression after the key word genarray. The shape expression must evaluate to
a non-negative integer vector. The example with-loop in Fig. 4, hence, defines
a matrix with 5 rows and 4 columns.

By default all element values of the new array are defined by the second
expression, the so-called default expression. The middle part of the with-loop,
the partition (line 2 in Fig. 4), defines a rectangular index subset of the defined
array. A partition consists of a generator and an associated expression. The gen-
erator defines a set of index vectors along with an index variable representing ele-
ments of this set. Two expressions, which must evaluate to non-negative integer
vectors of the same length as the value of the shape expression, define lower and
upper bounds of a rectangular range of index vectors. For each element of this
index vector set the associated expression is evaluated with the index variable
instantiated according to the index position. In the case of the genarray-variant
the resulting value defines the element value at the corresponding index location
of the array.

The default expression itself is optional. An element type dependent default
value (i.e. the matching variant of zero: false, ‘\0’, 0, 0f, 0d for types bool,
char, int, float, double, respectively) is inserted by the compiler where needed.
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The default expression may likewise be obsolete if the generator covers the entire
index set of the corresponding array.

Fig. 5. The modarray-variant of the with-loop array comprehension

The second with-loop-variant is the modarray-variant illustrated in Fig. 5.
While the partition (line 2) is syntactically and semantically equivalent to the
genarray-variant, the definition of the array’s shape and the default rule for ele-
ment values are different. The key word modarray is followed by a single expres-
sion. The newly defined array takes its shape from the value of that expression,
i.e. we define an array that has the same shape as a previously defined array.
Likewise, the element values at index positions not covered by the generator
are obtained from the corresponding elements of that array. It is important to
note that the modarray-with-loop does not destructively overwrite the element
values of the existing array, but we indeed define a new array.

The third with-loop-variant, illustrated in Fig. 6, supports the definition of
reduction operations. It is characterised by the key word fold followed by the
name of an eligible reduction function or operator and the neutral element of
that function or operator. For certain built-in functions and operators the com-
piler is aware of the neutral element, and an explicit specification can be left
out. SaC requires fold functions or operators to expect two arguments of the
same type and to yield one value of that type. Fold functions must be associative
and commutative. These requirements are stronger than in other languages with
explicit reductions (e.g. foldl and foldr in many mainstream functional lan-
guages). This is motivated by the absence of an order on the generator defined
index subset and ultimately by the wish to facilitate parallel implementations of
reductions.

Note that the SaC compiler cannot verify associativity and commutativity of
user-defined functions. It is the programmer’s responsibility to ensure these prop-
erties. Using a function or operator in a fold-with-loop implicitly asserts these
properties. Of course, floating point arithmetic strictly speaking is not associative.
It is up to the programmer to judge whether it is “sufficiently associative”. This
problem is not specific to SaC, but appears in all programming environments that
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Fig. 6. The fold-variant of the with-loop array comprehension

support parallel reductions, e.g. the reduction clause in OpenMP [30,31] or the
collective operations of Mpi [32].

Fig. 7. Formal definition of the (simplified) syntax of with-loop expressions

As can be seen in the formal definition of the syntax of with-loop expres-
sions in Fig. 7, generators are not restricted to defining dense, contiguous ranges
of index vectors, but the key words step and width optionally allow the spec-
ification of strided index sets where the step expression defines the periodicity
in each dimension and the width expression defines the number of indices taken
in each step. Both expressions must evaluate to positive integer vectors of the
same length as the lower and upper bounds of the index range specification.
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We now illustrate the concept of with-loops and its use by a series of exam-
ples. For instance, the matrix

A =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

⎞
⎟⎟⎟⎟⎠

can be defined by the following with-loop:

A = with {

([0,0] <= iv < [5 ,10]): iv[[0]] * 10 + iv [[1]];

}: genarray ([5 ,10]);

Note here that the generator variable iv denotes a 2-element integer vector.
Hence, the scalar index values need to be extracted through selection prior to
computing the new array’s element values.

The following modarray-with-loop defines the new array B that like A is
a 5 × 10 matrix where all inner elements equal the corresponding values of A
incremented by 50 while the remaining boundary elements are obtained from A
without modification:

B = with {

([1,1] <= iv < [4 ,9]): A[iv] + 50;

}: modarray(A);

This example with-loop defines the following matrix:

B =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4 5 6 7 8 9
10 61 62 63 64 65 66 67 68 19
20 71 72 73 74 75 76 77 78 29
30 81 82 83 84 85 86 87 88 39
40 41 42 43 44 45 46 47 48 49

⎞
⎟⎟⎟⎟⎠

Last not least, the following fold-with-loop computes the sum of all elements
of array B:

sum = with {

([0,0] <= iv < [5 ,10]): B[iv];

}: fold(+, 0);

which yields 2425.
All three types of with-loops can be combined with strided generators. As

a simple illustration consider the following example:

B = with {

([0,0] <= iv < [5,10] step [2,4] width [1 ,2]): 99;

}: modarray(A);
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which yields the matrix

A =

⎛
⎜⎜⎜⎜⎝

99 99 2 3 99 99 6 7 99 99
10 11 12 13 14 15 16 17 18 19
99 99 22 23 99 99 26 27 99 99
30 31 32 33 34 35 36 37 38 39
99 99 42 43 99 99 46 47 99 99

⎞
⎟⎟⎟⎟⎠

As pointed out earlier, with-loops can be much more complex than pre-
sented here so far. For example, with-loops may feature multiple partitions
defining different computations for disjoint index subsets or multiple operators
simultaneously defining multiple array comprehensions or reductions.

2.4 Array Type System

In Sect. 2.1 we introduced the basic types int, float, double, char and bool,
but when discussing arrays in Sect. 2.2, we carefully avoided any questions
regarding array types. While SaC is monomorphic in scalar types including the
base types of arrays, any scalar type immediately induces a hierarchy of array
types with subtyping. Figure 8 illustrates this type hierarchy for the example of
the base type int. The shapely type hierarchy has three levels characterised by
different amounts of compile time knowledge about shape and rank.

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic
AUD Class:

shape: static

shape: dynamic

AKD Class:
rank: static
shape: dynamic

AKS Class:
rank: static

*

Fig. 8. The SaC array type system with the subtyping hierarchy

On the lowest level of the subtyping hierarchy (i.e. the most specific types) we
have complete compile time information on the structure of an array: both rank
and shape are fixed. We call this class AKS for array of known shape. On the
intermediate level we still fix the rank of an array, but abstract from its concrete
shape. We call this class AKD for array of known dimension. For example, a
vector of unknown length or a matrix of unknown size fall into this category.
The most common supertype neither prescribes shape nor rank at compile time.
We call such types AUD for array of unknown dimension. Our syntax for AUD
types is motivated by that of regular expressions: the Kleene star in the AUD
type stands for any number of dots, including none.
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Note the special case for arrays of rank zero (i.e. scalars). Since there is only
one vector of length zero, the empty vector, the shape of a rank-zero array is
automatically known and the type int[] is merely a synonym for int.

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int[*] (-) (int[*] A, int[*] B) {...}

Fig. 9. Overloading with respect to the array type hierarchy

SaC supports overloading of functions and operators. The example in Fig. 9
shows three overloaded instances of the subtraction operator, one for 20 × 20-
matrices, one for matrices of any shape and one for arrays of any rank. Appli-
cations are dispatched (possibly at runtime) to the most specific instance avail-
able. To keep dispatch decidable we require parameter monotony: For any two
instances F1 and F2 of some function F with the same number of parameters
and the same base types for each parameter either each parameter type of F1 is a
subtype of the corresponding parameter type of F2 or vice versa. Static dispatch
is a typical SaC compiler optimisation to be discussed in Sect. 6.

SaC supports user-defined types: any type can be abstracted by a name. Fol-
lowing our general design principle, we reuse the C typedef syntax. For example,
a type complex can be defined as typedef double[2] complex;. Remember
that SaC requires explicit type casts to convert values between synonymous
types. Any user-defined type definition induces a whole new array type hierar-
chy in line with Fig. 8.

A few restrictions apply to user-defined types. The defining type must be
an AKS type, i.e. another scalar type or a type with static shape, as in the
case of type complex defined above. We have been working on removing this
restriction and supporting truly nested arrays, i.e. arrays where the elements are
again arrays of different shape and potentially different rank. For now, however,
this is an experimental feature of SaC; details can be found in [33].

For the time being, SaC does syntactically support mixed array types such
as int[.,10] or float[100,.,100] with the obvious meaning, but they do
not extend the subtyping hierarchy. Instead, such types would be treated as
int[.,.] and float[.,.,.] with an additional assertion.

3 Programming Methodology: Abstraction and
Composition

So far, we have introduced the most relevant language features of SaC. Now, we
explain the methodology of programming in SaC, or how the language features
are supposed to be combined to actual programs. Our two over-arching software
engineering principles are the principle of abstraction discussed in Sect. 3.1 and
the principle of composition illustrated in Sect. 3.4.
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3.1 The Principle of Abstraction

As pointed out in Sect. 2.2, SaC only features a very small set of built-in array
operations. Commonly used aggregate array operations are defined in SaC itself
and provided through a comprehensive standard library. Figure 10 demonstrates
this by means of an overloading of the binary subtraction operator for 20 × 20-
element integer matrices. Note that we leave out the default expression as the
generator covers the entire index set.

1 int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

2 {

3 return with {

4 ([0,0] <= iv < [20 ,20]): A[iv] - B[iv];

5 }: genarray( [20 ,20]);

6 }

Fig. 10. Overloaded subtraction operator for arrays of known shape (AKS), namely
20 × 20-element integer matrices

A single with-loop suffices to define element-wise subtraction: we define a
new array C of size 20 × 20 and define each element to be the difference of the
corresponding elements of argument arrays A and B. As the shape is statically
known, we can easily use vector constants for result shape and generator bounds,
and the code still very much resembles our introductory examples in Sect. 2.3.

Of course, it would be very inconvenient to provide numerous instances of
the subtraction operator for all kinds of array shapes that may occur in a pro-
gram and completely impossible to provide a library with all potentially needed
overloaded instances. What we need is more abstraction. As defined in Fig. 7, all
relevant syntactic positions of with-loops may host arbitrary expressions. Only
in the examples so far we merely used constants for the purpose of illustration.

1 int[.,.] (-) (int[.,.] A, int[.,.] B)

2 {

3 shp = min( shape(A), shape(B));

4 return with {

5 ([0,0] <= iv < shp): A[iv] - B[iv];

6 }: genarray( shp);

7 }

Fig. 11. Overloaded subtraction operator for arrays of known dimension (AKD),
namely integer matrices (2d-arrays) of any size

Figure 11 demonstrates the transition from a shape-specific implementa-
tion to a shape-generic implementation of element-wise subtraction. We stick
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to two dimensions, but abstract from the concrete size of argument matrices.
Whereas the generator-associated expression remains unchanged, this generali-
sation immediately raises a crucial question: how to deal with argument arrays
of different shape? There are various plausible answers to this question, and the
solution adopted in our example is to compute the element-wise minimum of the
shape vectors of the two argument arrays. With this solution we safely avoid
out-of-bound indexing while at the same time restricting the function domain
as little as possible. The vector shp is used both in the shape expression of the
with-loop and as upper bound in the generator. With fixed rank a constant
vector still suffices as lower bound.

One could argue that in practice, it is very rare to encounter problems that
require more than 4 dimensions, and, thus, we could simply define all relevant
operations for one, two, three and four dimensions. However, for a binary oper-
ator that alone would already require the definition of 16 instances. Hence, it
is of practical relevance, and not just theoretical beauty, to also abstract from
the rank of argument arrays, not only the shapes. Thus, SaC supports fully
rank-generic programming, as illustrated in Fig. 12.

1 int[*] (-) (int[*] A, int[*] B)

2 {

3 shp = min( shape(A), shape(B));

4 return with {

5 (0*shp <= iv < shp): A[iv] - B[iv];

6 }: genarray( shp);

7 }

Fig. 12. Overloaded subtraction operator for arrays of unknown dimension (AUD),
thus integer arrays of any rank and size

Apart from using the most general array type int[*], the rank-generic
instance is surprisingly similar to the rank-specific one. The main issue is an
appropriate definition of the generator’s lower bound, i.e. a vector of zeros whose
length equals that of the shape expression. We achieve this by multiplying the
shape vector by zero.

3.2 How It Really Works: Rank-Generic Subtraction

While increasing the level of abstraction we must be able to deal with increasingly
differently shaped argument arrays. With fully rank-generic code we may easily
end up subtracting a 3×3-element matrix from a 5-element vector. How does the
trick with the minimum function work in practice? Let us explore this example
in more detail beginning with the following expression:

[[1,2,3],

[1,2,3,4,5] - [4,5,6],

[7,8,9]]
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Instantiating the rank-generic instance of the subtraction operator with these
actual arguments yields

{

[[1,2,3],

shp = min(shape ([1,2,3,4,5]), shape ([4,5,6], ));

[7,8,9]]

return with {

(0*shp <= iv < shp):

[[1,2,3],

sel(iv , [1,2,3,4,5]) - sel(iv, [4,5,6] ) ;

[7,8,9]]

}: genarray(shp);

}

Note that we use the sel operator to denote indexing into arrays for better
readability here and from now onwards. In a first step we evaluate the shape
queries in line 3 to

{

shp = min([5], [3 ,3]);

...

}

Now, what’s the minimum of [5] and [3,3]? For this we need to learn more
about the min function. Following our general design principles, min is only
built-in for scalar values, but not for vectors. In fact, we can expect to find an
instance of min in the standard library that is defined in the same spirit as our
rank-generic subtraction operator, i.e. as shown in Fig. 13. However, here we
face our first problem: we again use min to define the minimum shape of the
two argument arrays, which refers back to the rank-generic definition of min. To
avoid this non-terminating recursion we need another instance of min specifically
for 1-element vectors:

int [1] min (int [1] A, int [1] B)

{

return min(A[[0]], B[[0]]);

}

1 int[*] min (int[*] A, int[*] B)

2 {

3 shp = min( shape(A), shape(B));

4 return with {

5 (0*shp <= iv < shp): min( A[iv], B[iv]);

6 }: genarray( shp);

7 }

Fig. 13. Rank-generic definition of minimum function
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The trick here is that the shape of the shape of any array is guaranteed to
be a 1-element vector. Hence, we may see at most one recursive application of
the rank-generic instance of min before we are guaranteed to apply the above
shape-specific instance, which in turn applies the built-in scalar instance of min.
Let us illustrate this with our original subtraction example. Instantiation of the
rank-generic instance of min and using some pseudo syntax that of course is not
legal SaC code but otherwise pretty self-explaining we obtain:

{

shp = {

shp = min(shape ([5]), shape ([3 ,3]));

res = with {

(0* shp <= iv < shp):

min(sel(iv, [5]), sel(iv, [3 ,3]));

}: genarray(shp);

return res;

}

return with {

(0* shp <= iv < shp):

[[1,2,3],

sel(iv ,[1,2,3,4,5]) - sel(iv, [4,5,6] ) ;

[7,8,9]]

}: genarray(shp);

}

Evaluating the (inner) shape queries in line 3 yields shp = min([1], [2]); and
with the 1-element vector instance of min, as shown before, we end up with [1]
as value for the inner instance of shp. With that we can now proceed to evaluate
the (inner) with-loop. This yields a 1-element vector whose only element is the
minimum of the first elements of the vectors [5] and [3,3]:

{

shp = [min(sel([0], [5]), sel([0], [3 ,3]))];

...

}

With the result shape [3] at hand we obtain for the running example:

{

return with {

([0] <= iv < [3]):

[[1,2,3],

sel(iv ,[1,2,3,4,5]) - sel(iv , [4,5,6] ) ;

[7,8,9]]

}: genarray ([3]);

}

which yields the following vector:

[1 - [1,2,3], 2 - [4,5,6], 3 - [7,8,9]]



Single Assignment C (SAC) 227

At this stage we are guaranteed to end up with recursively applying subtraction
to a scalar and an array or vice versa, depending on the rank difference of
the original arguments. As of now, we would recursively apply the rank-generic
instance of subtraction, but that would not work. We leave it as an exercise
to the reader to figure out why. Instead, we provide two more instances of the
subtraction operator, as shown in Fig. 14. With these at hand we obtain the
following intermediate representation by instantiation and simplification:

[ with {

([0] <= iv < [3]): 1 - sel(iv , [1,2,3]);

}: genarray ([3]),

with {

([0] <= iv < [3]): 2 - sel(iv , [4,5,6]);

}: genarray ([3]),

with {

([0] <= iv < [3]): 3 - sel(iv , [7,8,9]);

}: genarray ([3]),

]

and, at last, the final result:

[[ 0,-1,-2],

[-2,-3,-4],

[-4,-5,-6]]

What we effectively do overall is to split the rank-generic operation into an
outer operation and an inner operation. The index space of the outer operation
has as rank the minimum of the two argument arrays’ ranks and as shape the
element-wise minima of their shape vectors. This outer shape is called the frame
shape. The inner operation is guaranteed to be on scalar elements of at least one
of the two argument arrays, i.e. the one with the lesser rank. Selecting with the
index vector of the outer operation from the other argument array, that is the
one with greater rank, yields an entire subarray. Hence, it is guaranteed that for
the inner operation we use one of the function instances shown in Fig. 14. That
yields an array of the same shape as the subarray argument.

3.3 Alternatives and Extensions

It is one of the strengths of SaC that the exact behaviour of array operations is
not hard-wired into the language definition. This sets SaC apart from all other
languages with dedicated array support. Alternative to our above solution with
the minimum shape, one could argue that any attempt to subtract two argument
arrays of different shape is a programming error. This would be the view of
Fortran-90 or Apl. The same could be achieved in SaC by comparing the
two argument shapes and raising an exception should they differ. The important
message here is that SaC does not impose a particular solution on its users:
anyone can provide an alternative array module implementation with the desired
behaviour.
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1 int[*] (-) (int a, int[*] B)

2 {

3 return with {

4 (0* shape(B) <= iv < shape(B)): a - B[iv];

5 }: modarray( B);

6 }

7
8 int[*] (-) (int [*] A, int b)

9 {

10 return with {

11 (0* shape(A) <= iv < shape(A)): A[iv] - b;

12 }: modarray( A);

13 }

Fig. 14. Additional overloaded instances of the subtraction operator as they are found
in the SaC standard library

A potential wish for future versions of SaC is support for a richer type
system, in which shape relations like equality can be properly expressed in the
array types. For example, matrix multiplication could be defined with a type
signature along the lines of

double[a,c] matmul(double[a,b] X, double[b,c] Y)
This leads to a system of dependent array types that we have studied in the
context of the dependently typed array language Qube [34,35]. However, how
to carry these ideas over to SaC in the presence of overloading and dynamic
dispatch requires a plethora of future research. A first step into this direction
can be found in [36].

3.4 The Principle of Composition

The generic programming examples of the previous section pave the way to
define a large collection of rank-generic array operations that is even more com-
prehensive than what other array languages offer built-in while retaining the
same universal applicability to arrays of any shape and rank.

With-loops, however, should only be used to implement the most basic
array operations. Anything beyond can be much more elegantly and concisely
expressed following the other guiding software engineering principle in SaC: the
principle of composition. For instance, Fig. 15 shows the definition of a generic
convergence check. Two argument arrays new and old of any shape and rank are
deemed to be convergent if for every element (reduction with logical conjunc-
tion) the absolute difference between the new and the old value is less than a
given threshold eps.

The answer to the question what should and what would happen if the two
argument arrays are of different shape or even of different rank is inherited from
the definition of the element-wise subtraction operator, as demonstrated in-depth
in Sect. 3.2. The compositional specification of the convergence check is entirely
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1 bool is_convergent (double [*] A, double [*] B, double eps)

2 {

3 return all( abs( A - B) < eps);

4 }

Fig. 15. Programming by composition: specification of a generic convergence check

based on applications of predefined array operations from the SaC standard
library: element-wise subtraction, absolute value, element-wise comparison and
reduction with Boolean conjunction. This example demonstrates how application
code can be designed in an entirely index-, loop-, and comprehension-free style.

Ideally the use of with-loops as versatile but accordingly complex language
construct would be confined to defining basic array operations like the ones used
in the definition of the convergence check. And, ideally all application code would
solely be composed out of these basic building blocks. This leads to a highly
productive software engineering process, substantial code reuse, good readability
of code and, last not least, high confidence into the correctness of programs. The
case study on generic convolution developed in Sect. 4 further demonstrates how
the principle of composition can be applied in practice.

4 Programming Case Study: Convolution

In this section we illustrate programming in SaC by means of a case study:
convolution with cyclic boundary conditions. As an algorithmic principle con-
volution has countless applications in image processing, computational sciences,
etc. Our particular focus is on the programming methodology outlined in the
previous section: abstraction and composition.

4.1 Algorithmic Principle

Convolution follows a fairly simple algorithmic principle. Essentially, we deal
with a regular multidimensional grid of data cells, as illustrated in Fig. 16. Con-
volution is an iterative process on this data grid: in each iteration the value at
each grid point is recomputed as a function of the existing old value and the
values of a certain neighbourhood of grid points. This neighbourhood is often
referred to as stencil.

In Fig. 16 we show two common stencils. With a five-point stencil (left) only
the four direct neighbours in the two-dimensional grid are relevant. By including
the four diagonal neighbours we end up with a nine-point stencil (right). In the
context of cellular automata these neighbourhoods are often referred to as von
Neumann neighbourhood and Moore neighbourhood, respectively. With higher-
dimensional grids, we obtain different neighbourhood sizes, but the principle
can straightforwardly be carried over to any number of dimensions.
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Fig. 16. Algorithmic principle of convolution, shown is the 2-dimensional case with a
5-point stencil (left) and a 9-point stencil (right)

Since any concrete grid is finite, boundary elements need to be taken care
of in a different way. In our case study we opt for cyclic boundary conditions,
i.e., the left neighbour of the leftmost element is the rightmost element and vice
versa. In principle, any function from a set of neighbouring data points to a
single new one is possible, but in practice variants of weighted sums prevail.
Iteration on the grid is continued until a given level of convergence is reached,
i.e., for any grid cell the change in value between the previous and the current
iteration is less than a given threshold.

4.2 Iterative Process with Convergence Check

In our case study we take a top-down approach and first look at organising a
sequence of convolution steps until the required convergence criterion is met,
see Fig. 17. We make use of a do-while-loop because the number of convolution
steps needed is a-priori unknown, but we need to make at least one step to check
for convergence. We reuse the is convergent function introduced in Sect. 3.4 as
the loop predicate. Note that the code is entirely shape- and rank-generic.

1 double [*] convolution (double [*] A,

2 double [.] weights ,

3 double eps)

4 {

5 do {

6 B = A;

7 A = convolution_step( B, weights );

8 }

9 while (! is_convergent( A, B, eps));

10
11 return A;

12 }

Fig. 17. Rank-generic convolution with convergence test
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Looking at the code in Fig. 17 it is important to understand the functional
semantics of SaC. The C-style assignment statement in line 6 merely creates
a new λ-binding to the existing array value. By no means does it copy the
array value itself. This behaviour clearly sets SaC apart from imperative array
languages such as Fortran-90 or Chapel [37].

4.3 Convolution Step

For illustration purposes we start with an index-free and shape- but not rank-
generic implementation of the convolution step. As shown in Fig. 18, the function
convolution step expects a vector of double precision floating point numbers
and a vector of likewise weights; it yields a (once) convolved vector. The imple-
mentation is based on the rotate function from the SaC standard library, which
rotates a given vector by a certain number of elements towards ascending or
descending indices.

1 double [.] convolution_step (double [.] A,

2 double [3] weights)

3 {

4 return weights [[0]] * A

5 + weights [[1]] * rotate( 1, A)

6 + weights [[2]] * rotate( -1, A);

7 }

Fig. 18. 1-dimensional index-free convolution step

Rotation towards ascending indices means moving the rightmost element of
the vector (the one with the greatest index) to the leftmost index position (the
one with the least index). This implements cyclic boundary conditions almost for
free. We multiply each of the three array values with the corresponding weight
and sum up the results to yield the convolved vector. This implementation makes
use of a total of seven data-parallel operations: two rotations, three scalar-array
multiplications and two element-wise additions.

We now generalise the one-dimensional convolution to the rank-generic con-
volution shown in Fig. 19. We use the same approach with rotation towards
ascending and descending indices, but now we are confronted with a variable
number of axes along which to rotate the argument array.

We solve the problem by using a for-loop over the number of dimensions
of the argument array A, which we obtain through the built-in function dim.
In each dimension we rotate A by one element towards ascending indices and
by one element towards descending indices. We use an overloaded, rank-generic
version of the rotate function that takes the rotation axis as additional (first)
argument. As in the 1-dimensional case, we multiply each rotated array value (as
well as the original argument array) by the corresponding element of the weight
vector and sum up all resulting array values using element-wise addition.
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1 double [*] convolution_step (double [*] A,

2 double [.] weights)

3 {

4 R = weights [[0]] * A;

5
6 for (i=0; i<dim(A); i++) {

7 R += weights [[2*i+1]] * rotate( i, 1, A)

8 + weights [[2*i+2]] * rotate( i, -1, A);

9 }

10
11 return R;

12 }

Fig. 19. Rank-generic index-free convolution step definition

4.4 Rank-Generic Array Rotation

For completeness and as an example of possibly surprising implementation com-
plexity we show the implementation of rotation in Fig. 20. We first check the
arguments: should the rotation offset be zero or the rotation axis not a legal
axis of the argument array, we simply return the latter. It might be interesting
to note that this also covers the case of the argument array being a scalar as
included in the type double[*]. In this case the rank of the argument array
would be zero, thus turning any possible offset illegal. Of course, any rotation of
a scalar yields the scalar again.

After normalising the offset to the range between zero and one less than the
size of the array in the rotation axis we define the two vectors, lower and upper
that exactly divide the index space of the argument array in the rotation axis at
the desired offset. One final multi-generator with-loop defines the result array
for all regular cases. Here, we make use of two features of with-loops that we
haven’t used so far: multiple generators and the dot notation. Multiple generators
associate disjoint partitions of the index space with different expressions while
dots as lower or as upper bounds in generators refer to the least and the greatest
legal index vector in the relevant index space.

4.5 Further Variations of Convolution

Convolution allows for a plethora of further variations. As space limitations pre-
vent us from investigating convolution any further, we refer the interested reader
to [21]. There we show examples of convolution, among others, for fixed bound-
ary conditions, red-black convolution, generalised stencils, etc. We, furthermore,
recommend [21], but also the literature discussed in Sect. 10, for applications of
SaC to domains other than convolution.
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1 double [*] rotate (int axis , int offset , double [*] A)

2 {

3 if (offset == 0 axis >= dim(A) axis < 0) {

4 R = A;

5 }

6 else {

7 max_rotate = shape(A)[axis];

8
9 if (max_rotate == 0) {

10 R = A;

11 }

12 else {

13 offset = offset % max_rotate;

14
15 if (offset < 0) {

16 offset = offset + max_rotate;

17 }

18
19 lower = 0 * shape(A);

20 lower[axis] = offset;

21
22 upper = shape(A);

23 upper[axis] = offset;

24
25 R = with {

26 ( . <= iv < upper ): A[iv+shape(A)-upper];

27 ( lower <= iv <= . ): A[iv-lower];

28 }: modarray( A );

29 }

30 }

31
32 return R;

33 }

Fig. 20. Rank-generic definition of array rotation from the SaC standard library

5 Compilation Technology: Overview and Frontend

In this section we discuss the fundamental challenges of compiling SaC source
code into competitive executable code for a variety of parallel computing archi-
tectures and outline how compiler and runtime system address these issues.
Following an overview of the compiler architecture in Sect. 5.1 we explain the
compiler frontend in more detail in Sect. 5.2 before we elaborate on type inference
and specialisation in Sect. 5.3.

Subsequently, Sects. 6, 7 and 8, focus on architecture-independent optimisa-
tion, a sequence of lowering steps and, at last, code generation for various parallel
architectures, respectively.
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5.1 SAC Compiler Organisation

Despite the intentional syntactic similarities, SaC is far from merely being a
variant of C. SaC is a complete programming language, that only happens to
resemble C in its look and feel. A fully-fledged compiler is needed to implement
the functional semantics and to address a series of challenges when it comes to
achieving high performance.

Figure 21 shows the overall internal organisation of the SaC compiler sac2c.
It is a many-pass compiler built around a slowly morphing abstract intermediate
code representation. We chose this design to facilitate concurrent compiler engi-
neering across individuals and institutions. Today, we have around 200 compiler
passes, and Fig. 21 only shows a macroscopic view of what is really going on
behind the scenes. In particular, we leave out all compilation passes that are not
directly related to our core business, such as the module system, the I/O system
or the foreign code interfaces. As a research compiler sac2c is very verbose: com-
pilation can be interrupted after any pass and the intermediate representation
visualised in the form of annotated source code.

Memory Management

For−loops to while−loops

Branches to conditional expressions

With−Loop Lowering

Index Vector Elimination

Backend Compiler Backend Compiler Backend Compiler Backend Compiler
NVidia CmuTC

High−Level

Type Inference

Functionalisation

Scanner / Parser

Desugaring

Function Specialisation

Optimisation

Code Generation
Sequential MicroGrid CUDA

Code Generation Code Generation Code Generation
Multi−Core 

ISO C ISO C

User−defined types resolution
Type inference
Type checking
Function dispatch
Wrapper creation

Do−loops to tail recursion
Static single assignment form

While−loops to do−loops
Conditional expressions to if−else
Expression flattening
Conjunction/disjunction handling

Fig. 21. Compilation process with focus on front end transformations
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Over the years, we have developed a complete, language-independent com-
piler engineering framework, that has successfully been re-used in other compiler-
related research projects [38]. Also the Compiler Construction courses (Bache-
lor/Master) at the University of Amsterdam are based on this framework. The
framework automatically generates large amounts of boilerplate code for abstract
syntax tree management as well as tree traversal and compiler driver code from
abstract specifications. It is instrumental in keeping a compiler of this size and
complexity manageable. In the following sections, however, we leave out such
engineering concerns and take a more conceptual view on the SaC compilation
process.

5.2 Compiler Front End

As in any compiler lexicographic and syntactic analyses transform program
source code from a textual representation into an abstract syntax tree. All
remaining compilation steps work on this internal intermediate representation,
that is subject to a large number of lowering steps towards final target-specific
code generation.

The first major code transformation shown in Fig. 21 is concerned with desug-
aring and functionalisation. Here, we turn the imperative(-looking) source code
into a functional representation and considerably reduce the overall number of
language features. Typical desugaring transformations are the concentration on
a single sequential loop construct instead of the three loop constructs featured by
the language: while, do-while and for, just as in C proper. Another important
desugaring measure is the systematic elimination of nested expressions through
the introduction of additional fresh local variables.

The functionalisation passes are more specific to the design of SaC: they
actually implement the transformational semantics of branches and loops, as
outlined in Sect. 2.1. Here, imperative-style if-else constructs are transformed
into properly functional conditional expressions, and loops are transformed into
tail-recursive functions.

5.3 Type Inference and Function Specialisation

This part of the compiler implements the array type system outlined in Sect. 2.4.
It annotates types to local variables and checks all type declarations provided
in the source code. Furthermore, the type inference system resolves function
dispatch in the context of subtyping and overloading. Where possible, function
applications are dispatched statically. Where necessary, wrapper functions are
introduced that implement dynamic dispatch between multiple potential over-
loaded function instances. More information on the type system of SaC and its
implementation can be found in [39].

The other important aspect handled by this part of the compiler is func-
tion specialisation. Shape- and rank-generic specifications are a key feature of
SaC, and from a software engineering point of view, all code should be writ-
ten in rank-generic (AUD) or at least in shape-generic (AKS) style. From a
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compiler perspective, however, shape- and rank-specific code offers much better
optimisation opportunities, works with a much leaner runtime representation
and generally shows considerably better performance. In other words, we are
confronted with a classical trade-off between abstraction and performance.

A common trick to reconcile abstract programming with high runtime per-
formance is specialisation. In fact, the SaC compiler aggressively specialises
rank-generic code to rank-specific (shape-generic) code and again shape-generic
code into shape-specific code.

Specialisation can only be effective to the extent that rank and shape infor-
mation is somehow accessible by the compiler. While sac2c makes every effort
to infer the shapes needed, there are scenarios in which the required information
is simply not available in the code. For this scenario we still provide two ways
out: the programmer could simply help the compiler through the use of special-
isation directives. On the technology-wise more challenging side, we have been
developing an adaptive compilation framework [40,41] that aims at generating
specialisations at application runtime and so to step-by-step adapt binary code
to the actually used array shapes.

6 Architecture-Independent Optimisation

High-level, target-independent code optimisation constitutes a major part of
the SaC compiler; it alone accounts for a substantial fraction of overall com-
piler engineering. Only the most prominent and/or relevant transformations are
actually included in Fig. 22. They can coarsely be classified into two groups:
standard optimisations and array optimisations. In the following we first look
into standard optimisations before we look deeper into the organisation of the
optimisation process as a whole. Following that, we introduce SaC’s three most
relevant array optimisations: with-loop-folding, with-loop-fusion and with-
loop-scalarisation. We end the section with a brief sketch of further array opti-
misations.

6.1 Standard Optimisations

Many of the standard optimisations are well-known textbook optimisations. In
our context, they are also crucial as enabling transformations for the array opti-
misations discussed towards the second half of this section.

Function inlining replaces applications of statically dispatched functions by
their properly instantiated definitions. Apart from avoiding function call over-
head in binary code, function inlining results in larger code contexts for other
optimisations and, thus, is an important enabler for both standard and array
optimisations. As of now, however, we refrain from automatically inlining
functions based on heuristics such as code size, call intensity or recursive
nature and rely on program annotation using the keyword inline preceding
the function definition.
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Fig. 22. Compilation process with focus on optimisation subsystem

Array elimination replaces (very) small arrays by the corresponding scalar
values and adapts all code accordingly. Despite the name, we list array elimi-
nation here under standard optimisations due to its simplicity. It is, however,
important to note that the purely functional semantics of SaC arrays is cru-
cial for the effectiveness of array elimination.

Dead code elimination removes all code that does not contribute to the result
of a computation. Again, the functional semantics allows us to do dead code
elimination much more aggressively than what syntactically almost identical
C code would support. In our highly optimising compiler scenario dead code
elimination is also instrumental in relieving the intermediate code represen-
tation from parts that only became dead as a result of other optimisations.

Common subexpression elimination searches for identical subexpressions
in the code and makes sure they are only evaluated once.

Constant propagation propagates scalar constant values into all subexpres-
sions. For arrays, even small constant arrays, constant propagation would be
counter-productive as arrays are instantiated in heap memory at runtime.
Here, we provide alternative means to convey the value information, e.g. for
the case that elements are selected from a constant vector.



238 C. Grelck

Constant folding does partial evaluation of code as far as constants become
operands to built-in functions and operators.

Copy propagation is a very simple optimisation that removes the binding of
multiple variables to the same value and effectively avoids chains of assign-
ments like a = b;.

Algebraic simplification is a whole collection of optimisations, from simple to
challenging, that range from avoiding multiplication by one or addition with
zero towards large-scale code transformations based on the associative and
distributive laws of algebra.

Loop unrolling replaces a loop with a statically known small number of iter-
ations by the corresponding sequence of properly instantiated copies of the
loop body. We still call this transformation loop unrolling for clarity, although
strictly speaking all loops have already been replaced by tail-recursive func-
tions during the earlier functionalisation phase. In addition to saving loop
overhead, loop unrolling typically triggers a plethora of further optimisations
by replacing induction variables with constants.

Loop invariant code motion is a typical text book optimisation adapted to
our tail-recursive intermediate representation. We implemented both variants:
moving code ahead of the tail-recursion and below it.

Type upgrade and specialisation reruns the type system during optimisa-
tions to infer stronger array types as an effect of other optimisations and to
dispatch more functions statically.

Signature simplification removes superfluous parameters from tail-recursive
functions and the corresponding applications. Such superfluous parameters
typically originate from other optimisations such as loop unrolling.

While many of these optimisations are common in industrial-strength com-
pilers for imperative languages, the functional semantics of SaC allows us to
apply them much more aggressively.

6.2 Organisation of the Optimisation Process

As the bottom-up arrow in Fig. 22 suggests, we organise the optimisation phase
as a bounded fixed point iteration. All optimisations are carefully designed to
avoid cycles in this fixed point iteration. Still, the organisation of the optimisa-
tion cycle is far from trivial because we must be careful with respect to efficient
use of resources. Namely, the memory required for the intermediate represen-
tation of program code and the time spent in compilation are crucial. Some
optimisations expand the intermediate code representation while others reduce
its size. Applying a sequence of code expanding optimisations in a row to the
intermediate representation of a non-trivial program may exceed the available
memory. The other issue is compilation time. Even if an optimisation does not
find any optimisation case, it must traverse the entire syntax tree to figure this
out. This becomes time-consuming as codes turn non-trivial.

To make good use of both compilation time and memory we run one com-
plete sequence of optimisations (Actually, some optimisations, like for instance
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dead code elimination, appear multiple times in the sequence.) for each func-
tion definition. We count the number of optimisation cases and can, thus, detect
function-specific fixed points. Only after having completed one entire sequence
of optimisations for each of the function definitions do we start into the next
iteration of the optimisation cycle. Of course, this is restricted to those func-
tions that have not yet reached a fixed point. Some of our optimisations have
cross-function effects. Consequently, optimisation of one function may reactivate
the optimisation of other functions that in turn will again be included in further
iterations of the optimisation cycle.

Our compiler design ensures that code expanding optimisations are only
applied to a single function definition before code shrinking optimisations, such
as dead code elimination or constant folding, make sure that overall memory
consumption remains within acceptable bounds. At the same time, we support
cross-fertilisation of optimisations across function definitions.

6.3 Array Optimisations

The compositional programming methodology advocated by SaC creates a par-
ticular compilation challenge. Without dedicated compiler support it inflicts the
creation of numerous temporary arrays at runtime. This adversely affects perfor-
mance: large quantities of data must be moved through the memory hierarchy to
perform often minor computations per array element. We quickly hit the mem-
ory wall and see our cores mainly waiting for data to be brought in from memory
rather than performing productive computations. With individual with-loops
as basis for parallelisation, compositional specifications also incur high synchro-
nisation and communication overhead.

As a consequence, the major theme of array optimisation lies in condensing
many light-weight array operations, more technically with-loops, into much
fewer heavy-weight array operations/with-loops. Such techniques universally
improve a number of ratios that are crucial for performance: the ratio between
computations and memory operations, the ratio between computations and loop
overhead and, in case of parallel execution, the ratio between computations and
synchronisation and communication overhead.

We identified three independent optimisation cases and address each one with
a tailor-made program transformation:

Vertical composition describes the case where the result of one with-loop is
consumed as an argument by one or more subsequent with-loops. A good
example is the convergence check in Fig. 15. Naive compilation would yield
three temporary intermediate arrays before the final reduction is computed.
To avoid the actual creation of such temporary arrays we devised the with-
loop-folding optimisation described in Sect. 6.4 below.

Horizontal composition describes the case where two with-loops indepen-
dently define two values (i.e. values unrelated in the data flow graph) based
on at least partially the same original argument values and the same or at
least very similar overall index space. Such compositions are taken care of by
the with-loop-fusion optimisation introduced in Sect. 6.5 below.
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Nested composition describes the case of two nested with-loops where the
result of the inner with-loop describes the value of one element of the outer
with-loop. This scenario likewise introduces a large quantity of temporary
arrays. It usually cannot, and thus should not, be avoided in the code,
but thoroughly taken care of by the compiler. We devised the with-loop-
scalarisation optimisation to this effect and describe it in Sect. 6.6 below.

These optimisations are essential for making the compositional programming
style advocated by SaC feasible in practice with respect to performance.

We illustrate all three composition styles and the corresponding optimisations
by a running example. In order to demonstrate complexity and versatility of the
individual optimisations without making the example overly complicated, we use
the synthetic SaC function foo shown in Fig. 23. It takes a 9×9-element matrix
of complex numbers as an argument and yields two 9 × 9-element matrices of
complex numbers in return. On the right hand side of the figure we illustrate
the corresponding index space partitions.

1 complex [9,9], complex [9,9] foo (complex [9,9] A)

2 {

3 B = with {

4 ([0,0] <= iv < [5 ,9]): A[iv];

5 }: genarray( [9,9], toc (1.0));

6
7 C = with {

8 ([1,2] <= iv < [8 ,7]): A[iv] + B[iv -1];

9 }: genarray( [9,9], toc (0.0));

10
11 D = with {

12 ([0,0] <= iv < [9 ,7]): B[iv];

13 }: genarray( [9,9], toc (0.0));

14
15 return (C, D);

16 }

Fig. 23. Synthetic code example to illustrate SaC high-level array optimisation

Both result arrays C and D are defined in terms of the argument array A and
an intermediate array B. We use the conversion function toc (“to complex”) to
create default elements of type complex.

Before applying any optimisations, all with-loops are transformed into an
internal representation that makes the default elements explicit by adding further
generators as shown in Fig. 24.
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1 C = with {

2 ([0,0] <= iv < [1 ,9]): toc (0.0);

3 ([1,0] <= iv < [8 ,2]): toc (0.0);

4 ([1,2] <= iv < [8 ,7]): A[iv] + B[iv -1];

5 ([1,7] <= iv < [8 ,9]): toc (0.0);

6 ([8,0] <= iv < [9 ,9]): toc (0.0);

7 }: genarray( [9 ,9]);

Fig. 24. Creating a full partition for the second with-loop of the running example
introduced in Fig. 23

6.4 With-Loop Folding Optimisation

Our first optimisation technique, with-loop-folding, addresses vertical composi-
tions of with-loops. In the running example introduced in the previous section,
we have vertical compositions between the first and the second with-loop and
again between the first and the third with-loop. Technically spoken, with-
loop-folding aims at identifying array references within the generator-associated
expressions in with-loops. If the index expression is an affine function of the
with-loop’s index variable and if the referenced array is itself defined by another
with-loop, the array reference is replaced by the corresponding element compu-
tation. Instead of storing an intermediate result in a temporary data structure
and taking the data from there when needed, we forward-substitute the compu-
tation of the intermediate value to the place where it is actually needed.

1 complex [9,9], complex [9,9] foo (complex [9,9] A)

2 {

3 C = with {

4 ([0,0] <= iv < [1 ,9]): toc (0.0);

5 ([1,0] <= iv < [8 ,2]): toc (0.0);

6 ([1,2] <= iv < [6 ,7]): A[iv] + A[iv -1];

7 ([1,7] <= iv < [8 ,9]): toc (0.0);

8 ([6,2] <= iv < [8 ,7]): A[iv] + toc (1.0);

9 ([8,0] <= iv < [9 ,9]): toc (0.0);

10 }: genarray( [9 ,9]);

11
12 D = with {

13 ([0,0] <= iv < [5 ,7]): A[iv];

14 ([0,7] <= iv < [5 ,9]): toc (0.0);

15 ([5,0] <= iv < [9 ,7]): toc (1.0);

16 ([5,7] <= iv < [9 ,9]): toc (0.0);

17 }: genarray( [9 ,9]);

18
19 return (C, D);

20 }

Fig. 25. Running example after with-loop-folding
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The challenge of with-loop-folding lies in the identification of the correct
expression to be forward-substituted. Usually, the referenced with-loop has mul-
tiple generators each being associated with a different expression. Hence, we must
decide which of the index sets defined by the generators is actually referenced.
To make this decision we must take into account the entire generator sequence
of the referenced with-loop, the generator of the referencing with-loop associ-
ated with the expression that contains the array reference under consideration,
and the affine function defining the index. As demonstrated by the example in
Fig. 25, this process generally involves intersection of generators. For example,
folding the first with-loop into the second one requires splitting the index range
of the generators in lines 3, 4 and 5 in Fig. 24.

For a more in-depth coverage of the ins and outs of with-loop-folding we
refer the interested reader to [42,43].

6.5 With-Loop Fusion Optimisation

With-loop-fusion addresses horizontal composition of with-loops. Horizontal
composition is characterised by two or more with-loops without data depen-
dencies that iterate over the same index space or, at least, over similar index
spaces. In our running example the with-loops defining the result arrays C and D
in Fig. 25 form such a horizontal composition. The idea of with-loop-fusion
is to combine horizontally composed with-loops into a more versatile inter-
nal representation named multi-operator with-loop. The major characteristic
of multi-operator with-loops is their ability to simultaneously define multiple
array comprehensions and multiple reduction operations as well as combinations
thereof.

Figure 26 shows the effect of with-loop-fusion on the running example. As a
consequence of the code transformation both result arrays C and D are computed
in a single sweep. This allows us to share the overhead inflicted by the multi-
dimensional loop nest among computing both array C and array D.

Furthermore, we change the order of array references. The intermediate code
as shown in Fig. 25 accesses large parts of array A in both with-loops. Assuming
array sizes typical for numerical computing, elements of A are extremely likely
not to reside in cache memory any more when they are needed for execution
of the second with-loop. With the fused code in Fig. 26 both array references
A[iv] occur in the same with-loop iteration and, hence, the second one always
results in a cache hit.

Technically, with-loop-fusion requires systematically computing intersec-
tions of generators in a way similar to with-loop-folding. After identification
of suitable with-loops, we compute the intersections of all pairs of generators.
Whereas in the worst case this leads to a quadratic increase in the number of
generators, many of the new generators in practice turn out to be empty as
demonstrated by our running example.

For a more complete coverage of the ins and outs of with-loop-fusion we
refer the interested reader to [44].
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1 complex [9,9], complex [9,9] foo (complex [9,9] A)

2 {

3 C, D =

4 with {

5 ([0,0] <= iv < [1 ,7]): toc(0.0), A[iv];

6 ([0,7] <= iv < [1 ,9]): toc(0.0), toc (0.0);

7 ([1,0] <= iv < [5 ,2]): toc(0.0), A[iv];

8 ([5,0] <= iv < [8 ,2]): toc(0.0), toc (1.0);

9 ([1,2] <= iv < [5 ,7]): A[iv] + A[iv -1], A[iv];

10 ([5,2] <= iv < [6 ,7]): A[iv] + A[iv -1], toc (1.0);

11 ([6,2] <= iv < [8 ,7]): A[iv] + toc(1.0), toc (1.0);

12 ([1,7] <= iv < [5 ,9]): toc(0.0), toc (0.0);

13 ([5,7] <= iv < [8 ,9]): toc(0.0), toc (0.0);

14 ([8,0] <= iv < [9 ,7]): toc(0.0), toc (1.0);

15 ([8,7] <= iv < [9 ,9]): toc(0.0), toc (0.0);

16 }: (genarray( [9,9]),

17 genarray( [9 ,9]));

18
19 return (C, D);

20 }

Fig. 26. Running example after with-loop-fusion with graphical illustration of the
final iteration space on top

6.6 With-Loop Scalarisation Optimisation

So far, we have not paid any attention to the element types of the arrays involved.
In SaC, complex numbers are not built-in, but they are defined as vectors of
two elements of type double. As a consequence, our 9 × 9 arrays of complex
numbers are in fact three-dimensional arrays of shape [9,9,2], and the addition
operation on complex numbers, in fact, is defined by a with-loop over vectors of
two elements. The idea of with-loop-scalarisation is to eliminate such nestings of
with-loops and to transform them into with-loops that exclusively operate on
scalar values. This is achieved by concatenating the bound and shape expressions
of the with-loops involved and by adjusting the generator variables accordingly.
For our example we obtain an intermediate code representation equivalent to
the code shown in Fig. 27.
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1 double [9,9,2], double [9,9,2] foo (double [9,9,2] A)

2 {

3 C, D =

4 with {

5 ...

6 ([1,2,0] <= iv < [5 ,7,1]): A[iv] + A[iv -1], A[iv];

7 ([1,2,1] <= iv < [5 ,7,2]): A[iv] + A[iv -1], A[iv];

8 ...

9 ([6,2,0] <= iv < [8 ,7,1]): A[iv] + 1.0, 1.0;

10 ([6,2,1] <= iv < [8 ,7,2]): A[iv] + 0.0, 0.0;

11 ...

12 }: (genarray( [9,9,2]),

13 genarray( [9 ,9 ,2]));

14
15 return (C, D);

16 }

Fig. 27. Running example after with-loop-scalarisation.

When comparing this code against the code of Fig. 26, we can observe several
benefits. There are no more two-element vectors which results in less memory
allocations and deallocations at runtime. Furthermore, the individual values are
directly written into the result arrays without any copying from temporary vec-
tors. The fine grain skeletons for the additions of complex numbers have been
absorbed within the coarse grain skeleton that constitutes the entire function
body now. For a more complete coverage of the ins and outs of with-loop-
scalarisation we refer the interested reader to [45].

6.7 Further Array Optimisations

The SaC compiler features a plethora of further array optimisations. Some are
merely with-loop-specific variations of otherwise fairly standard code transfor-
mations. For instance, with-loop-unrolling or with-loop invariant code motion
exactly do what their names suggest and what their conventional loop counter-
parts do. Another group of array optimisation aims at improving the utilisation
of multi-level cache memories, e.g. array padding [46] and with-loop-tiling [47].

7 Lowering Towards Code Generation

Following target-independent code optimisation we now start our descent
towards code generation. While in the SaC-compiler this involves a plethora
of smaller and bigger steps, we concentrate our presentation here on three essen-
tial conceptual steps: with-loop lowering, index vector elimination and memory
management. Figure 28 illustrates this part of the compiler in greater detail.
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Fig. 28. Compilation process with focus on backend lowering subsystem

7.1 Transforming Complex Generator Sets

It has become clear by now that compiling with-loops into efficiently executable
code is of paramount importance for overall success. With-loops are responsible
for the by far largest share of execution time in typical application programs.
Unfortunately, generating efficiently executable code for with-loops with com-
plex generator sets is far from trivial. The last stages of the running example,
as shown in Fig. 26 and in Fig. 27, nicely demonstrate this.

Compiling each generator in isolation into a nesting of C for-loops in the
target code would be the most straightforward solution. However, the deep cache
hierarchies of modern compute systems demand memory to be accessed in linear
storage order to exploit spatial locality. As a consequence, the SaC compiler puts
considerable effort into compiling complex generator sets first into an abstract
intermediate representation that dispenses with the source-language motivated
generator-centric view of with-loops. Instead, it resembles a tree of fairly simple
conventional loops with one loop layer per dimension of the with-loop’s index
space. We call this intermediate representation canonical order representation.
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1 A = with {
2 ;)vi(1pxe:)]002,041[<vi=<]0,0[(
3 ([140, 0] <= iv < [320 ,200] step [1,2] ): exp1(iv);
4 ([140, 1] <= iv < [320 ,200] step [1,2] ): exp2(iv);
5 ([ 0 ,200] <= iv < [320 ,400] step [9,1] width [2 ,1]): exp2(iv);
6 ([ 2 ,200] <= iv < [320 ,400] step [9,1] width [7 ,1]): exp1(iv);
7 }: genarray( [320 ,400]);

Fig. 29. New running example for the illustration of with-loop lowering

In particular, the individual compilation of strided generators would result in
poor cache utilisation and, thus, in overall performance below expectations. We
briefly mentioned strided generators in Sect. 2.3, but have rather ignored them
since. Now, we change the running example in order the demonstrate the full
power of the with-loop lowering transformation. The new running example can
be found in Fig. 29. It consists of a total of five generators with two different
associated expressions that for simplicity and readability of the code are simply
named exp1 and exp2. Here and in the following we identify generators by source
code line numbers. Generator 2 specifies a regular dense rectangular index set,
generators 3 and 4 describe column-wise interleaved index sets while generators 5
and 6 describe row-wise interleaved index sets with two repetitions of exp2
followed by seven repetitions of exp1.

1 A = with {

2 cube ([ 0, 0] <= iv < [140 ,200] step [1,1]) {

3 (width [1,1] offset [0 ,0]): exp1(iv);

4 }

5 cube ([140, 0] <= iv < [320 ,200] step [1,2]) {

6 (width [1,1] offset [0 ,0]): exp1(iv);

7 (width [1,1] offset [0 ,1]): exp2(iv);

8 }

9 cube ([ 0,200] <= iv < [320 ,400] step [9 ,1]) {

10 (width [2,1] offset [0 ,0]): exp2(iv);

11 (width [7,1] offset [2 ,0]): exp1(iv);

12 }

13 }: genarray( [320 ,400]);

Fig. 30. Running example after cube formation

With-loop lowering in itself is organised as a multi-step process. Its effect
on the running example is illustrated in Fig. 35, but we first go through the
example step by step. In a first transformation step, named cube formation, we
identify interleaved generators. Note that all generators form a set, and hence
their textual order is semantically irrelevant. Thus, cube formation identifies
generators that spatially belong together. Figure 30 demonstrates the effect of
cube formation on the running example, using pseudo code notation.
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Note the three cubes that directly reflect the above text. Instead of slightly
varying lower bounds, we now use offsets in (pseudo) generators. Lower bound,
upper bound and step specifications become properties of the cube rather than
properties of the individual generator. At this time we also introduce missing
default step and width expressions which we set to default values.

1 A = with {

2 cube ([ 0, 0] <= iv < [140 ,200] step [1,1]) {

3 (width [1,1] offset [0 ,0]): exp1(iv);

4 }

5 cube ([140, 0] <= iv < [320 ,200] step [1,2]) {

6 (width [1,1] offset [0 ,0]): exp1(iv);

7 (width [1,1] offset [0 ,1]): exp2(iv);

8 }

9 cube ([ 0,200] <= iv < [140 ,400] step [9 ,1]) {

10 (width [2,1] offset [0 ,0]): exp2(iv);

11 (width [7,1] offset [2 ,0]): exp1(iv);

12 }

13 cube ([140 ,200] <= iv < [320 ,400] step [9,1]) {

14 (width [4,1] offset [0 ,0]): exp1(iv);

15 (width [2,1] offset [4 ,0]): exp2(iv);

16 (width [3,1] offset [6 ,0]): exp1(iv);

17 }

18 }: genarray( [320 ,400]);

Fig. 31. Running example after cube splitting

In the next step, named cube splitting, we split cubes such that no cube spans
multiple other cubes in an outer dimension. For example, cube 3 in Fig. 30 is
split into cubes 3 and 4 in Fig. 31 (numbering in textual order). Cube 3 now
spans the upper 140 rows while cube 4 spans the lower 180 rows. Since the row
step of 9 does not divide the cube size of 140, cube 4 looks different from cube 3
internally: instead of 2 rows with exp2 followed by 7 rows with exp1, we now see
4 rows with exp1 followed by 2 rows with exp2 followed by 3 rows again with
exp1.

In the next step we adjust cubes that are adjacent in inner dimensions to
match each other’s stride. For instance, the dense cube 1 in Fig. 31 is a horizontal
neighbour of cube 3 with stride [9,1]. After the cube adjustment transformation
in Fig. 32 cube 1 also shows stride [9,1] with the same two partitions inside as
cube 3. With one dense cube this is, of course, fairly straightforward, but the
example of the horizontally adjacent cubes 2 and 4 is more complex. In fact, we
need to fully intersect strided cubes. In the running example cube 2 is adjusted
to cube 4 and now has stride [9,2] and the corresponding 6 partitions inside.

In the next step we switch from the cube-based representation used so far to
a loop-oriented representation that forms a tree-shaped nesting of pseudo for-
loops, as shown in Fig. 33. In the general case we generate two nested loops per
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1 A = with {

2 cube ([ 0, 0] <= iv < [140 ,200] step [9,1]) {

3 (width [2,1] offset [0 ,0]): exp1(iv);

4 (width [7,1] offset [2 ,0]): exp1(iv);

5 }

6 cube ([140, 0] <= iv < [320 ,200] step [9,2]) {

7 (width [4,1] offset [0 ,0]): exp1(iv);

8 (width [4,1] offset [0 ,1]): exp2(iv);

9 (width [2,1] offset [4 ,0]): exp1(iv);

10 (width [2,1] offset [4 ,1]): exp2(iv);

11 (width [3,1] offset [6 ,0]): exp1(iv);

12 (width [3,1] offset [6 ,1]): exp2(iv);

13 }

14 cube ([ 0,200] <= iv < [140 ,400] step [9 ,1]) {

15 (width [2,1] offset [0 ,0]): exp2(iv);

16 (width [7,1] offset [2 ,0]): exp1(iv);

17 }

18 cube ([140 ,200] <= iv < [320 ,400] step [9,1]) {

19 (width [4,1] offset [0 ,0]): exp1(iv);

20 (width [2,1] offset [4 ,0]): exp2(iv);

21 (width [3,1] offset [6 ,0]): exp1(iv);

22 }

23 }: genarray( [320 ,400]);

Fig. 32. Running example after cube adjustment

dimension: an outer strided loop and an inner loop covering the stride. Likewise,
indexing into the target array A as well as within the associated right hand side
expressions now use the sum of outer strided index and inner step index.

To make the common case fast, we deviate from the general transforma-
tion scheme in the case of dense partitions and generate only a single loop per
dimension. We deliberately use a pseudo notation for for-loops to improve the
readability of code, here and throughout the remainder of the paper.

Of course, the current form of representation lowering raises the question
where the memory used to represent the target array A might be allocated. To
decouple the problem of memory management from the generation of loop nests
we will continue with the latter aspect for now and entirely focus on memory
management in the following Sect. 7.3.

As demonstrated in Fig. 34, the loop-based representation gives rise to a
number of optimisations. Namely, we eliminate step-1 loops (lines 35–36, 44–45,
53–54) and we merge adjacent loops with the same associated expression (lines
11–13). We also apply loop peeling whenever the size of a cube is not a multiple
of its stride (lines 17–30).
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1 for (iv_0 = 0 to 140 step 9) {
2 for (step_0 = 0 to 2) {
3 for (iv_1 = 0 to 200) {
4 A[iv_0+step_0 , iv_1] = exp1(iv_0+step_0 , iv_1);
5 }
6 for (iv_1 = 200 to 400) {
7 A[iv_0+step_0 , iv_1] = exp2(iv_0+step_0 , iv_1);
8 }
9 }

10 for (step_0 = 2 to 9) {
11 for (iv_1 = 0 to 200) {
12 A[iv_0+step_0 , iv_1] = exp1(iv_0+step_0 , iv_1);
13 }
14 for (iv_1 = 200 to 400) {
15 A[iv_0+step_0 , iv_1] = exp1(iv_0+step_0 , iv_1);
16 }
17 }
18 }
19
20 for (iv_0 = 140 to 320 step 9) {
21 for (step_0 = 0 to 4) {
22 for (iv_1 = 0 to 200 step 2) {
23 for (step_1 = 0 to 1) {
24 A[iv_0+step_0 , iv_1+step_1] = exp1(iv_0+step_0 , iv_1+step_1 );
25 }
26 for (step_1 = 1 to 2) {
27 A[iv_0+step_0 , iv_1+step_1] = exp2(iv_0+step_0 , iv_1+step_1 );
28 }
29 }
30 for (iv_1 = 200 to 400) {
31 A[iv_0+step_0 , iv_1] = exp1(iv_0+step_0 , iv_1);
32 }
33 }
34 for (step_0 = 4 to 6) {
35 for (iv_1 = 0 to 200 step 2) {
36 for (step_1 = 0 to 1) {
37 A[iv_0+step_0 , iv_1+step_1] = exp1(iv_0+step_0 , iv_1+step_1 );
38 }
39 for (step_1 = 1 to 2) {
40 A[iv_0+step_0 , iv_1+step_1] = exp2(iv_0+step_0 , iv_1+step_1 );
41 }
42 }
43 for (iv_1 = 200 to 400) {
44 A[iv_0+step_0 , iv_1] = exp2(iv_0+step_0 , iv_1);
45 }
46 }
47 for (step_0 = 6 to 9) {
48 for (iv_1 = 0 to 200 step 2) {
49 for (step_1 = 0 to 1) {
50 A[iv_0+step_0 , iv_1+step_1] = exp1(iv_0+step_0 , iv_1+step_1 );
51 }
52 for (step_1 = 1 to 2) {
53 A[iv_0+step_0 , iv_1+step_1] = exp2(iv_0+step_0 , iv_1+step_1 );
54 }
55 }
56 for (iv_1 = 200 to 400) {
57 A[iv_0+step_0 , iv_1] = exp1(iv_0+step_0 , iv_1);
58 }
59 }
60 }

Fig. 33. Running example after switching from the cube based representation to a
pseudo loop-based representation
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1 for (iv_0 = 0 to 135 step 9) {
2 for (step_0 = 0 to 2) {
3 for (iv_1 = 0 to 200) {
4 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
5 }
6 for (iv_1 = 200 to 400) {
7 A[iv_0 + step_0 , iv_1] = exp2(iv_0 + step_0 , iv_1);
8 }
9 }

10 for (step_0 = 2 to 9) {
11 for (iv_1 = 0 to 400) {
12 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
13 }
14 }
15 }
16
17 iv_0 = 135;
18
19 for (step_0 = 0 to 2) {
20 for (iv_1 = 0 to 200) {
21 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
22 }
23 for (iv_1 = 200 to 400) {
24 A[iv_0 + step_0 , iv_1] = exp2(iv_0 + step_0 , iv_1);
25 }
26 }
27 for (step_0 = 2 to 5) {
28 for (iv_1 = 0 to 400) {
29 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
30 }
31 }
32
33 for (iv_0 = 140 to 320 step 9) {
34 for (step_0 = 0 to 4) {
35 for (iv_1 = 0 to 200 step 2) {
36 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
37 A[iv_0 + step_0 , iv_1 + 1] = exp2(iv_0 + step_0 , iv_1 + 1);
38 }
39 for (iv_1 = 200 to 400) {
40 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
41 }
42 }
43 for (step_0 = 4 to 6) {
44 for (iv_1 = 0 to 200 step 2) {
45 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
46 A[iv_0 + step_0 , iv_1 + 1] = exp2(iv_0 + step_0 , iv_1 + 1);
47 }
48 for (iv_1 = 200 to 400) {
49 A[iv_0 + step_0 , iv_1] = exp2(iv_0 + step_0 , iv_1);
50 }
51 }
52 for (step_0 = 6 to 9) {
53 for (iv_1 = 0 to 200 step 2) {
54 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
55 A[iv_0 + step_0 , iv_1 + 1] = exp2(iv_0 + step_0 , iv_1 + 1);
56 }
57 for (iv_1 = 200 to 400) {
58 A[iv_0 + step_0 , iv_1] = exp1(iv_0 + step_0 , iv_1);
59 }
60 }
61 }

Fig. 34. Running example after with-loop lowering pseudo loop-based optimisation
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Fig. 35. Illustration of with-loop lowering steps for our running example

Figure 35 illustrates the entire compilation process of the running example
as explained so far. A more formal description of the compilation scheme for
with-loops and its implementation can be found in [47,48].

7.2 Index Vector Elimination

As a characteristic feature SaC introduces the array indexing operation sel (or
the corresponding square bracket notation) that uniformly has two parameters,
regardless of the indexed array’s rank. Instead of an unbounded collection of
rank-specific indexing operations, as is common in other languages, SaC makes
use of vector values for indexing into arrays. See Sect. 2.2 for details.

It comes at no surprise that dynamically creating such index vectors in heap
memory would be prohibitively expensive. Hence, elimination of index vectors
is an important lowering step for SaC. Index vector elimination systematically
replaces vector-based selection operations by one that expects a single scalar
index into the flat memory representation of the array concerned. Computing
this scalar index into a flat array representation is an inevitable step anyhow,
but up to now it has been hidden within sel. Index vector elimination makes
this computation explicit in the intermediate representation, and thereby opens
up a whole avenue towards further optimisation.

For example, index computations using the same index vector for different
arrays that are known to have the same shape, even if the shape itself is unknown
to the compiler, can be shared. Moreover, the common situation of an index
vector with a constant offset can be optimised by splitting it into the sum of
a scalar index derived from the statically unknown index vector and a scalar
index derived from the constant offset. Should the shape of the indexed array be
known to the compiler, the latter constituent of the scalar index can be entirely
evaluated at compile time. If the array’s shape is not known at compile time,
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we at least can share all such index computations for the same constant offset
across all arrays of the same shape.

The running index vectors of with-loops play a specific role for index vector
elimination. In addition to its high-level vector representation we augment with-
loops by two more value-wise identical representations: If the rank of the with-
loop, i.e. the common length of all vectors in the (index set) generators, is known
at compile time, we additionally represent the index vector by a corresponding
number of scalar loop variables. Regardless of static knowledge, we maintain the
running offset into the array to be created (genarray/modarray). We make use
of this scalar offset not only for writing element values into the corresponding
element locations of the new array, but we immediately reuse it for indexing into
equally shaped arrays in the associated expressions of the with-loop.

1 int offset = 0;

2 for (iv_0 = 0 to 135 step 9) {

3 for (step_0 = 0 to 2) {

4 for (iv_1 = 0 to 200) {

5 A[offset] = exp1(iv_0 + step_0 , iv_1 , offset );

6 offset ++;

7 }

8 for (iv_1 = 200 to 400) {

9 A[offset] = exp2(iv_0 + step_0 , iv_1 , offset );

10 offset ++;

11 }

12 }

13 for (step_0 = 2 to 9) {

14 for (iv_1 = 0 to 400) {

15 A[offset] = exp1(iv_0 + step_0 , iv_1 , offset );

16 offset ++;

17 }

18 }

19 }

20 ...

Fig. 36. Effect of index vector elimination on running example (excerpt)

We illustrate (parts of) index vector elimination by continuing the running
example from the previous section. Figure 36 shows the resulting code corre-
sponding to the first loop nesting in Fig. 34. In addition to the dimension-wise
induction variables of the pseudo for-loops (i and j) we maintain a scalar offset
(named offset) into the linear memory representation of target array A. This
offset is likewise available to the right hand side expressions in the with-loop-
bodies, where index vector elimination leads to further code transformations
that we will describe in more detail in Sect. 9.7.

In many cases, index vector elimination makes the original vector represen-
tation of the index vector obsolete, and we entirely avoid its costly creation and
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maintenance at runtime. However, we also must care for the odd case where, for
instance, the index vector is passed as an argument to a function. We refer the
interested reader to [49] for a much more in-depth motivation and explanation
of index vector elimination.

7.3 Memory Management

Functional arrays require memory resources to be managed automatically at run-
time. Automatic garbage collection is a key ingredient of any functional language
and meanwhile well understood [50–52]. For array programming, however, many
design decisions in memory management must be reconsidered. For example,
single arrays can easily stretch hundreds of MegaBytes (and more) of contiguous
memory. This pretty much rules out copying garbage collectors with respect to
runtime performance.

Another aspect of memory management for arrays is the aggregate update
problem [53]. Often, an array is computed from an existing array by only chang-
ing a few elements. Or, imagine a recurrence relation where vector elements are
computed in ascending index order based on their left neighbour. A straight-
forward functional implementation would need to copy large quantities of data
unchanged from the “old” to the “new” array. As any imperative implementation
would simply overwrite array elements as necessary, the functional code could
never achieve competitive performance.

As a domain-specific solution for array processing, SaC uses non-deferred
reference counting [54] for automatic garbage collection. At runtime each array
is augmented with a reference counter, and the generated code is likewise aug-
mented with reference counting instructions that dynamically keep track of how
many conceptual copies of an array exist. Compared with other garbage collec-
tion techniques non-deferred reference counting has the unique advantage that
memory can immediately be reclaimed as soon as it turns into garbage. All
other known techniques in one way or another decouple the identification and
reclamation of dead data from the last operation that makes use of the data.

Only reference counting supports a number of optimisations that prove to
be crucial for achieving high performance in functional array programming. The
ability to dynamically query the number of references of an array prior to some
eligible operation creates opportunities for immediate memory reuse. Take for
example a simple arithmetic operator overloaded for arrays like rank-generic
element-wise subtraction as introduced in Fig. 12 in Sect. 3.1. Both argument
arrays A and B are so-called reuse candidates for the result array named R in the
following.

In Fig. 37 we show pseudo code representative for what the SaC compiler
generates for the memory allocation part of the with-loop. The memory holding
array A could be reused for the representation of result array R if and only
if the reference counter is 1 and both arrays have the same shape and, thus,
the same memory footprint. Should the first test be negative, we try the same
with argument array B. Third, we try the special case where A and B actually
refer to the same array (pointer equality) and the joint reference counter is 2,
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1 if (RC(A) == 1 && shape(A) == shp) R = A;

2 else if (RC(B) == 1 && shape(B) == shp) R = B;

3 else if (RC(A) == 2 && A == B) R = A;

4 else R = SAC_malloc(shp);

Fig. 37. Pseudo code generated by the SaC compiler for the memory allocation part
of the compiled with-loop implementing element-wise subtraction as defined in Fig. 12
in Sect. 3.1

which again means nothing but that A and B become obsolete after the current
operation. Only if all three options fail, do we allocate fresh memory of required
size. Immediate memory reuse does not only avoid a costly memory allocation,
but also reduces the overall memory footprint of the operation, which improves
memory locality through more effective cache utilisation.

Moreover, we frequently observe code scenarios where we may not only be
able to reuse the memory of argument arrays but even some of the data that
already resides in that memory. Consider for example the with-loop in Fig. 38.
Here, an array B is computed from an existing array A such that every element
in the upper left quadrant (in the further assumed 2-dimensional case) is incre-
mented by 1 while all remaining elements are copied from array A proper. If we
figure out at runtime (at the latest) that the memory of array A can safely be
reused to store array B, we can effectively avoid to copy all those elements that
remain the same in B as in A.

1 B = with {

2 (. <= iv < shape(A) / 2): A[iv] + 1;

3 }: modarray(A);

Fig. 38. SaC code example illustrating our data reuse optimisation

In Fig. 39 we illustrate, by means of pseudo code, how the SaC compiler
deals with this example. We can clearly identify the case distinction between
array A becoming garbage at the end of the operation or not. The example
additionally illustrates both the canonical order code generation scheme as well
as index vector elimination (use of additional scalar offset instead of loop
induction variables). We call this compiler transformation immediate data reuse
optimisation.

Memory management techniques, as we have described in this section, are
important prerequisites to compete with imperative languages in terms of per-
formance. A survey on SaC memory management techniques with further static
code analyses and a number of additional optimisations to reduce memory
requirements as well as memory management overhead can be found in [55].
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1 if (RC(A) == 1) {

2 B = A;

3 for (i = 0 to shape(A)[0]/2) {

4 for (j = 0 to shape(A)[1]/2) {

5 B[offset] = A[offset] + 1;

6 offset ++;

7 }

8 }

9 }

10 else {

11 B = SAC_malloc(shape(A));

12 for (i = 0 to shape(A)[0]/2) {

13 for (j = 0 to shape(A)[1]/2) {

14 B[offset] = A[offset] + 1;

15 offset ++;

16 }

17 for (j = shape(A)[1]/2 to shape(A)[1]) {

18 B[offset] = A[offset ];

19 offset ++;

20 }

21 }

22 for (i = shape(A)[0]/2 to <shape(A)[0]) {

23 for (j = 0 to shape(A)[1]) {

24 B[offset] = A[offset ];

25 offset ++;

26 }

27 }

28 RC(A) -= 1;

29 }

Fig. 39. Pseudo code illustration of the immediate data reuse optimisation

Unlike other garbage collection techniques, non-deferred reference counting
still relies on a heap manager for allocations and de-allocations. Standard heap
managers are typically optimised for memory management workloads charac-
terised by many fairly small chunks. In array processing, however, extremely
large chunks are common, and they are often handled inefficiently by stan-
dard heap managers. Therefore, SaC comes with its own heap manager tightly
integrated with compiler and runtime system and properly equipped for multi-
threaded execution [56].

8 Code Generation

It is one of the strengths of the SaC compiler and the whole SaC approach to
generate executable code for a variety of architectures from the very same target-
agnostic source code. So far the entire compilation process has been (mostly)
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target-agnostic, but now we reach the point to apply one of multiple target-
specific code generators to our intermediate code representation. The SaC com-
piler supports a number of different compilation targets that we will describe in
the remainder of this section. Space limitations preclude any in-depth discussion
of technical details, but we refer the interested reader to additional resources for
further reading.

In fact, the SaC compiler does not generate architecture-specific machine
code but rather architecture-specific variations of C code. The final step of
machine code generation is left to a backend compiler, configurable for any a
given computing platform. While this design choice foregoes certain machine-
level optimisation opportunities, we found it to be a reasonable compromise
between engineering effort and support for a variety of computing architectures
and operating systems. This flexibility also allows us to choose the best perform-
ing C compiler among various alternatives, e.g. the Intel compiler for Intel pro-
cessors, the Oracle compiler for Niagara systems or GNU gcc for AMD Opteron
based systems. It would be extremely challenging to compete with these com-
pilers in terms of binary code quality.

Our first code generator produces purely sequential C code. It is of special
relevance as it serves as a blue print for all other code generators. After all, sub-
stantial parts of any parallel program are nonetheless run in a single-threaded
way, and many aspects of code generation are simply independent of the con-
crete backend choice and parallelisation approach. The various lowering steps
described in the preceding Sect. 7 have already brought us reasonably close to
(C) code generation. The remaining code generation steps are not trivial, but
more of a technical than of a conceptual nature. Hence, we omit any further
details here and refer the interested reader to [39] for more details.

8.1 Compiler-Directed Parallelisation for Multi-core Systems

An important (non-coincidental) property of with-loops is that by definition
evaluation of the associated expression for any element of the union of index
sets is completely independent of any other. This allows the compiler to freely
choose any suitable evaluation order. We thoroughly exploit this property in the
various with-loop-optimisations described in Sect. 6, but at the end of the day
our main motivation for this design is entirely compiler-directed parallelisation.

In contrast to auto-parallelisation in the imperative world, our problem is
not to decide where code can safely be executed in parallel, but we still need
to decide where and when parallel execution is beneficial to reduce program
execution times. The focus on data-parallel computations and arrays helps here:
We do know the index space size of an operation before actually executing it,
which is better than in typical divide-and-conquer scenarios.

It is crucial to understand that with-loops do not prescribe parallel execu-
tion. Instead, they merely open up parallelisation opportunities for compiler and
runtime system. They still take the autonomous decision as whether to make
use of this opportunity or not. This design sets SaC apart from many other
approaches, may they be as explicit as OpenMP directives [30] or as implicit as
par and seq in Haskell [57].
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For symmetric multi-core multi-processor systems we target ANSI/ISO C
with occasional calls to the PThread library. Conceptually, the SaC runtime
system follows a fork-join approach, where a program is generally executed by a
single master thread. Only computationally-intensive kernels are effectively run
in parallel by temporarily activating a team of worker threads created at pro-
gram startup. In intermediate SaC code these kernels are uniformly represented
by with-loops already enhanced and condensed through high-level optimisation.
The synchronisation and communication mechanisms implementing the transi-
tion between single-threaded and multi-threaded execution modes and vice versa
are highly optimised to exploit cache coherence protocols in today’s multi-core
multi-processor systems.

As demonstrated in Sect. 7.1 the SaC compiler may generate very complex
loop nestings for individual with-loops. Therefore, we aim at orthogonalising
loop nest generation from parallelisation aspects as far as possible. In multi-
threaded execution each thread must take care of a mutually disjoint index sub-
set such that the union of all these subsets is equal to the complete index set.
In Fig. 40 we illustrate our code generation approach by continuing the running
example from Fig. 34 in Sect. 7.1.

1 run , lo, hi = scheduler( thread_id , num_threads , shape );

2
3 while (run) {

4 for (iv_0 = max(0,lo[0]) to min(135,hi[0]) step 9) {

5 ...

6 }

7
8 if (lo[0] <= 135 && 135 < hi[0]) {

9 iv_0 = 135;

10 ...

11 }

12
13 for (iv_0 = max(140,lo[0]) to min(320,hi[0]) step 9) {

14 ...

15 }

16
17 run , lo, hi = scheduler( thread_id , num_threads , shape );

18 }

Fig. 40. Pseudo code illustrating the generation of multithreaded target code

We add a separate loop scheduler in front of the loop nesting. Based on the
current thread’s id, the total number of threads and the shape of the index
set this oracle computes a Boolean flag run and the lower and upper bound
vectors defining a multi-dimensional, rectangular index subset. The following
while-loop as well as the second call to the loop scheduler at the bottom of
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the while-loop body are motivated to support oracles that repeatedly assign
(disjoint) index subsets to the same thread. Such a feature is a prerequisite for
supporting dynamic load balancing. Each (non-step) loop generated from the
original with-loop is further augmented by code that restricts the effectiveness
of the loop to the intersection between its original lower and upper bound and
the lower and upper bounds computed by the loop scheduling oracle.

At the time of writing the SaC compiler supports multiple loop scheduling
strategies similar to those of OpenMP, both static and dynamic, both with and
without data locality awareness. Unfortunately, an automatic choice of the best
loop scheduler based on static code analysis is still subject to future work.

Whether it is beneficial to actually execute some with-loop in parallel or
whether it might be better to fall back to sequential execution critically depends
on the code generated for the expressions associated with the various index set
generators, but even more so on the shape and size of the index set. In the
presence of shape- and rank-generic codes this information may not always be
available to the compiler, even with sophisticated static analysis. Therefore, we
generally create fat binaries that contain both sequential and multithreaded code
variants for with-loops. Decisions are taken at compile time as far as possible
and at runtime as far as necessary. We refer the interested reader to [58,59] for
all further information regarding generation of multi-threaded code.

8.2 Compiler-Directed Parallelisation for Many-Core GPGPUs

Our support for GPGPUs is based on NVidia’s CUDA framework [60]. In this
case, our design choice to leave binary code generation to an independent C com-
piler particularly pays off because one is effectively bound to NVidia’s custom-
made CUDA compiler for generation of binary code.

A number of issues need to be taken into account when targeting graphics
cards in general and the CUDA framework in particular, that are quite different
from generating multithreaded code as before. First CUDA kernels, i.e. the code
fragments that actually run on the accelerator, are restricted by the absence
of a runtime stack. Consequently, with-loops whose bodies contain function
applications that cannot be eliminated by the compiler, e.g. through inlining,
disqualify for being run on the graphics hardware. Likewise, there are tight
restrictions on the organisation of C-style loop nestings that (partially) rule
out the transformations for traversing arrays in linear order that are vital on
standard multi-core systems. This requires a fairly different path through the
compilation process early on.

Last not least, data must be transferred from host memory to device memory
and vice versa before the GPU can participate in any computations, effectively
creating a distributed memory. It is crucial for achieving good performance to
avoid superfluous memory transfers. We take a type-based approach here and
attribute every type in SaC intermediate code with an additional host or device
tag. This way transfers between host and device memory turn into type conver-
sions. By taking these particularities of GPGPU computing into account in the
compiler, SaC drastically facilitates the utilisation of GPGPUs for non-expert
programmers in practice. More details can be found in [61].
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8.3 Compiler-Directed Parallelisation for Heterogeneous Systems

This still rather experimental code generator aims at systems equipped with
multiple, possibly different GPUs as well as at systems where we may want to
use both the CPU cores and the GPGPUs. Already the CUDA code generator
described before results in binary code that runs on both the CPU and the
GPU, namely all suitable with-loops are run on the GPU and the remaining
mostly scalar and/or auxiliary code is executed on the CPU by a single core
in a sequential fashion. However, in the plain GPGPU compiler generator any
with-loop is either executed by the GPGPU or by the CPU cores in its entirety.

Using our heterogeneous code generator we actually employ multiple CPU
cores and multiple GPUs to jointly execute a single with-loop. Technically, we
combine aspects of both the multi-core and the CUDA backend. Nonetheless,
the plethora of organisational decisions that arise justify naming this approach
a fully-fledged backend in its own right.

As mentioned before, code generation for CPUs and code generation for
GPGPUs require different paths through the compilation process from the opti-
misation stage onwards. For this purpose we extend our internal representation
of with-loops (once more) to accommodate two alternative representations that
are independently and differently optimised and later lowered towards code gen-
eration. We reuse the loop scheduler of the multithreaded code generation back-
end to decide which parts of an index space to compute on the various CPU
cores and which parts to compute on the multiple GPGPUs attached. For the
latter purpose, each GPGPU is represented by one (special) worker thread in
the multithreaded runtime system of SaC.

We still aim at transferring the minimal amount of data between the various
memories needed to perform the computations assigned to each compute unit.
To this end we compute the inverse index functions to determine the subsets
of indices of each array referred to in the body of a heterogeneously computed
with-loop. For the time being this is restricted to constant offsets to the index
(vector). This actually suffices for many relevant numerical codes. Where we fail
to compute the precise inverse index function, we make sure the entire argument
array is available in the memory where it is needed. In many cases we do suc-
ceed in computing problem sizes that would not fit into the memory of a single
GPGPU. We refer the interested reader to [20] for an in-depth motivation and
discussion of this compiler backend.

8.4 Compiler-Directed Parallelisation for the MicroGrid

The MicroGrid is an experimental general-purpose many-core processor architec-
ture developed by the Computer Systems Architecture group at the University
of Amsterdam [18]. The MicroGrid combines, among others, single-cycle thread
creation/deletion with an innovative network-on-chip memory architecture. An
architecture-specific programming language, named μTC, and the corresponding
compiler tool chain form the basis of our work [62].
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The MicroGrid, or more precisely μTC, allows (or better requires) us to
expose fine-grained concurrency to the hardware. This is in sharp contrast to our
multithreaded code generator, described in Sect. 8.1. There we take considerable
effort to adapt the fine-grained concurrency exposed by SaC intermediate code
to the (generally) much coarser-grained actually available concurrency on the
executing hardware platform. Now, the MicroGrid efficiently deals with fine-
grained concurrency in the hardware itself. Details on code generation for the
MicroGrid architecture can be found in [63–65].

8.5 Compiler-Directed Parallelisation for Workstation Clusters

Most recently we added support for workstation clusters, or, more generally,
symmetric parallel distributed memory architectures. Our approach is based
on our custom-designed software distributed shared memory solution (Software
DSM). Our approach resembles a cache-only architecture where data needed
to compute parts of a with-loop is dynamically mapped into local memory on
demand. Instead of individual values, we always transfer entire memory pages (of
configurable size) from the owning compute node to the one in need. Assuming
a certain level of spatial and temporal locality in memory access, we expect the
caching effect to largely mitigate the performance penalty of on demand data
fetching from remote nodes. As the alert reader will expect by now, we once
more restrict parallel execution to with-loops of our choice while all other code
is executed in a replicated manner.

Among others, our approach was triggered by recently growing general inter-
est in Software DSM solutions due to the fundamental changes in relative per-
formance characteristics of network and memory access latency and throughput
of today compared to two decades ago when Software Distributed Shared Mem-
ory was initially proposed, explored and eventually rejected [66]. Having our
own tailor-made Software DSM subsystem allows us to exploit SaC’s functional
semantics as well as the very controlled parallel execution model of with-loops.
While other arrays can be referred to in the body of a with-loop in many ways,
these ccesses are solely in read mode. All writing to memory is restricted to
result array(s) of with-loops, which is under complete control of the compiler.
In contrast, modern general-purpose SDSM implementations go to great lengths
to perform correctly and efficiently when used to implement synchronisation
facilities.

It may be interesting to note the difference in design choice we made here
as compared to the heterogeneous code generator. There we relied on static
analysis of memory access patterns. Where our analysis failed we retreated to
data replication across memories. We deemed this undesirable but nonetheless
acceptable for a scenario of a host computer equipped with a small number of
accelerators. In contrast, we deem data replication unacceptable on an otherwise
scalable architecture. Or, in other words, we aim at a solution that is for sure
capable of running computations that would no fit into the memory of any
individual compute node. We refer the interested reader to [19] for an in-depth
motivation, discussion and evaluation of this compiler backend.
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9 Compilation Case Study: Convolution

In this section we illustrate the major steps of the compilation process, and
in particular the impact of the various compiler optimisations, by means of a
small case study. For this we directly connect to the programming case study
on convolution in Sect. 4 and demonstrate step by step how that code example
is transformed into efficiently executable code.

1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] B;

7
8 do {

9 B = A;

10 A = convolution_step( B, weights );

11 }

12 while (! is_convergent( A, B, eps));

13
14 return A;

15 }

16
17 double [9,9] convolution_step (double [9,9] A,

18 double [5] weights

19 = [0.4, 0.2, 0.2, 0.1, 0.1])

20 {

21 double [9,9] R = weights [[0]] * A;

22
23 for (i=0; i<dim(A); i++) {

24 R += weights [[2*i+1]] * rotate( i, 1, A)

25 + weights [[2*i+2]] * rotate( i, -1, A);

26 }

27
28 return R;

29 }

Fig. 41. Specialised convolution implementation from Fig. 19

9.1 Type Inference and Function Specialisation

To improve readability we omit the desugaring and functionalisation steps
described in Sect. 5 and commence with type inference and specialisation. To
make the example more concrete we specialise the code shown in Fig. 19 for an
application to 9 × 9-matrices with the weight vector [0.4,0.2,0.2,0.1,0.1].
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We keep the threshold eps symbolic because compile time knowledge of its con-
crete value, although not unlikely in practice, would not affect the compilation
process. We use an example shape as small as 9 × 9 solely for the purpose of
illustration.

Figure 41 shows the corresponding specialisations of our functions
convolution and convolution step, as originally introduced in Fig. 17 and
in Fig. 19, respectively. We deliberately omit the similar specialisations of
is convergent and rotate for now. Note the inferred types for arrays B and R.

9.2 Optimisation Prologue

In an initial step we inline the function convolution step into the function
convolution, which yields the representation shown in Fig. 42 Thanks to the
specialisation to rank 2, the iteration count of the for-loop in line 11 is known
to the compiler. Our compiler decides to unroll this loop, which yields the inter-
mediate representation shown in Fig. 43.

1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] B, R;

7 do {

8 B = A;

9
10 R = weights [[0]] * A;

11 for (i=0; i<dim(A); i++) {

12 R += weights [[2*i+1]] * rotate( i, 1, A)

13 + weights [[2*i+2]] * rotate( i, -1, A);

14 }

15
16 A = R;

17 }

18 while (! is_convergent( A, B, eps));

19
20 return A;

21 }

Fig. 42. Convolution case study after inlining the convolution step

We now tend to the rotation function for a moment. Following the unrolling
of the for-loop in the previous step, all four applications of the rotate function
are characterised by constant axis and offset values. This enables specialisation
of rotate as shown in Fig. 44 for the first of the four applications.
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1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] B;

7
8 do {

9 B = A;

10
11 A = weights [[0]] * B

12 + weights [[1]] * rotate( 0, 1, B)

13 + weights [[2]] * rotate( 0, -1, B)

14 + weights [[3]] * rotate( 1, 1, B)

15 + weights [[4]] * rotate( 1, -1, B);

16
17 }

18 while (! is_convergent( A, B, eps));

19
20 return A;

21 }

Fig. 43. Convolution case study after unrolling the for-loop for its two iterations and
applying variable propagation

Static knowledge of rotation axis and rotation offset triggers an avalanche
of partial evaluation at whose end only the with-loop at the bottom of the
original implementation of rotate remains. This is shown in Fig. 45. Further
inlining the four applications of the rotate function yields the still fairly compact
convolution code in Fig. 46.

Looking back at Sect. 3, however, we understand that the five element-wise
multiplications of intermediate arrays with the corresponding scalar coefficients
are nothing but five more with-loops, at least after inlining the corresponding
function definition from the SaC standard library. Likewise, but slightly hidden
within the assignment operator +=, a syntactic heritage of C proper, we have
four more with-loops derived from the definition of element-wise addition. The
resulting intermediate code representation is shown in Fig. 47. However, for space
reasons we only show about the first half of the do-while loop’s body.

9.3 With-Loop Folding

At this stage, the first of our array optimisations kicks in. With-loop-folding
manages to condenses all 13 with-loops in Fig. 47 into a single one as shown in
Fig. 48. This step leads to a complete reorganisation of the with-loop’s index
space into a total of nine partitions: the central part, the four edges and the four
corners. This is achieved by systematic intersection of the various generator sets



264 C. Grelck

1 double [9,9] rotate (int axis = 0,

2 int offset = 1,

3 double [9,9] A)

4 {

5 if (offset == 0 axis >= dim(A) axis < 0) {

6 R = A;

7 }

8 else {

9 max_rotate = shape(A)[axis];

10
11 if( max_rotate == 0) {

12 R = A;

13 }

14 else {

15 offset = offset % max_rotate;

16 if (offset < 0) {

17 offset = offset + max_rotate;

18 }

19
20 lower = 0 * shape(A);

21 lower[axis] = offset;

22
23 upper = shape(A);

24 upper[axis] = offset;

25
26 R = with {

27 (lower <= iv <= . ): A[iv-lower];

28 ( . <= iv < upper): A[iv+shape(A)-upper];

29 }: modarray( A );

30 }

31 }

32
33 return R;

34 }

Fig. 44. Specialised intermediate representation of rotation as introduced in Fig. 20
with constant arguments propagated according to the first application in Fig. 42

present in the previous representation. At the same time the index offsets into
the argument array A are adapted accordingly.

Each of the nine partitions has an associated expression that is very simi-
lar to the one of the central partition shown in Fig. 48. Only the constant 2-
element offset vectors for accessing array elements in A differ according to the
cyclic boundary pattern chosen. For space reasons we only show the associated
expression of the central partition here and in the following intermediate code
examples.

So far, we haven’t really looked at the convergence check. In fact, with-
loop-folding can also very successfully be applied to the implementation of the
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1 double [9,9] rotate (int axis = 0,

2 int offset = 1,

3 double [9,9] A)

4 {

5 return with {

6 ( [1,0] <= iv < [9,9] ): A[iv -[1 ,0]];

7 ( [0,0] <= iv < [1,9] ): A[iv+[8 ,0]];

8 }: modarray( A );

9 }

Fig. 45. Specialised rotation after thorough optimisation: with axis and offset known
the entire definition can be partially evaluated to the single with-loop originally at the
end of the function

convergence check. Figure 49 shows the resulting intermediate representation
that comes along with a single with-loop for the reduction with Boolean con-
junction while all other array operators have been moved to the scalar level.

9.4 With-Loop Fusion

Assuming the convergence check to also be inlined, we are in the situation that
two with-loops suffice to implement the entire convolution with cyclic boundary
conditions and convergence check. However, this is still one too many. Any expe-
rienced imperative programmer would combine computing the convolved array
and computing the convergence check in a single traversal of the memory space.
With our current intermediate code, in contrast, we go twice over the whole
memory involved in every iteration: once to compute the one step convolved
array R from array A, and once more to compute the element-wise difference of
R and A for the convergence check.

Our second array optimisation, with-loop-fusion makes an end to this sit-
uation and successfully fuses the two remaining with-loops into the single one
shown in Fig. 50. Technically, we first split the index space representation of the
convergence check with-loop to comply with that of the convolution with-loop
and then fuse the two. This results in a multi-operator with-loop that defines
both an array comprehension (genarray) and a reduction (fold).

The fact that we can actually fuse the two with-loops in Fig. 49 requires
further explanation. In Sect. 6.5 we explained the optimisation case of with-
loop-fusion to be two with-loops unrelated in the data flow graph. This is clearly
not the case in Fig. 49, where the result of the convolution with-loop clearly is
an argument of the convergence check with-loop. This scenario marks the most
advanced application case of with-loop-fusion: The second with-loop only refers
to the result of the first with-loop at index location, i.e. without any further
computing on the index vector variable of the with-loop. In this case we can
still fuse the two with-loops because the access to the intermediate array in the
second with-loop can be replaced by the scalar variable referring to that value
in the new combined associated expression, as demonstrated in Fig. 50.
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1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] B;

7
8 do {

9 B = A;

10
11 A = 0.4 * B

12
13 A += 0.2 * with {

14 ( [1,0] <= iv < [9,9] ): B[iv -[1 ,0]];

15 ( [0,0] <= iv < [1,9] ): B[iv+[8 ,0]];

16 }: modarray( A );

17
18 A += 0.2 * with {

19 ( [8,0] <= iv < [9,9] ): B[iv -[8 ,0]];

20 ( [0,0] <= iv < [8,9] ): B[iv+[1 ,0]];

21 }: modarray( A );

22
23 A += 0.1 * with {

24 ( [0,1] <= iv < [9,9] ): B[iv -[0 ,1]];

25 ( [0,0] <= iv < [9,1] ): B[iv+[0 ,8]];

26 }: modarray( A );

27
28 A += 0.1 * with {

29 ( [0,8] <= iv < [9,9] ): B[iv -[0 ,8]];

30 ( [0,0] <= iv < [9,8] ): B[iv+[0 ,1]];

31 }: modarray( A );

32 }

33 while (! is_convergent( A, B, eps));

34
35 return A;

36 }

Fig. 46. Convolution case study after inlining the four applications of the rotate

function, each partially evaluated for the individual combination of axis and offset

Accordingly, each partition becomes associated with two expressions, or bet-
ter say: a pair of expressions. For this we use a pseudo syntax similar to that
introduced in Sect. 3.2 with pairs in the trailing return statement reusing the
syntax of functions with multiple return values.
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1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] B, R, P, T;

7
8 do {

9 B = A;

10
11 A = with {

12 ( [0,0] <= iv < [9,9] ): 0.4 * B[iv];

13 }: genarray( [9,9] );

14
15 T = with {

16 ( [1,0] <= iv < [9,9] ): B[iv -[1 ,0]];

17 ( [0,0] <= iv < [1,9] ): B[iv+[8 ,0]];

18 }: modarray( A );

19
20 P = with {

21 ( [0,0] <= iv < [9,9] ): 0.2 * T[iv];

22 }: genarray( [9,9] );

23
24 A = with {

25 ( [0,0] <= iv < [9,9] ): A[iv] + P[iv];

26 }: genarray( [9,9] );

27
28 T = with {

29 ( [8,0] <= iv < [9,9] ): B[iv -[8 ,0]];

30 ( [0,0] <= iv < [8,9] ): B[iv+[1 ,0]];

31 }: modarray( A );

32
33 P = with {

34 ( [0,0] <= iv < [9,9] ): 0.2 * T[iv];

35 }: genarray( [9,9] );

36
37 A = with {

38 ( [0,0] <= iv < [9,9] ): A[iv] + P[iv];

39 }: genarray( [9,9] );

40
41 ...

42 }

43 while (! is_convergent( A, B, eps));

44
45 return A;

46 }

Fig. 47. Convolution case study after following the inlining of element-wise sum and
product operations
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1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] B;

7
8 do {

9 B = A;

10
11 A = with {

12 ( [0,0] <= iv < [1,1] ): ... ;

13 ( [0,1] <= iv < [1,8] ): ... ;

14 ( [0,8] <= iv < [1,9] ): ... ;

15 ( [1,0] <= iv < [8,1] ): ... ;

16 ( [1,1] <= iv < [8,8] ): 0.4 * B[iv]

17 + 0.2 * B[iv -[0 ,1]]

18 + 0.2 * B[iv+[0 ,1]]

19 + 0.1 * B[iv -[1 ,0]]

20 + 0.1 * B[iv+[1 ,0]];

21 ( [1,8] <= iv < [8,9] ): ... ;

22 ( [8,0] <= iv < [9,1] ): ... ;

23 ( [8,1] <= iv < [9,8] ): ... ;

24 ( [8,8] <= iv < [9,9] ): ... ;

25 }: genarray( [9,9] );

26 }

27 while (! is_convergent( A, B, eps));

28
29 return A;

30 }

Fig. 48. Convolution case study after aggressive with-loop-folding

1 bool is_convergent (double [9,9] A, double [9,9] B,

2 double eps)

3 {

4 return with {

5 ([0,0] <= iv < [9 ,9]): abs(A[iv] - B[iv]) < eps;

6 }: fold( &&);

7 }

Fig. 49. Specialised convergence check after with-loop-folding

9.5 Optimisation Epilogue

The far-reaching reorganisation of the intermediate code is now complete,
but the expressions associated with the in total nine partitions of our
final with-loop allow for some further optimisation. For example, common
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1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 do {

7 A, p = with {

8 ( [0,0] <= iv < [1,1] ): ... ;

9 ( [0,1] <= iv < [1,8] ): ... ;

10 ( [0,8] <= iv < [1,9] ): ... ;

11 ( [1,0] <= iv < [8,1] ): ... ;

12 ( [1,1] <= iv < [8,8] ): {

13 t1 = 0.4 * A[iv]

14 + 0.2 * A[iv -[0 ,1]]

15 + 0.2 * A[iv+[0 ,1]]

16 + 0.1 * A[iv -[1 ,0]]

17 + 0.1 * A[iv+[1 ,0]];

18 t2 = abs(t1 - A[iv]) < eps;

19 return (t1, t2);

20 }

21 ( [1,8] <= iv < [8,9] ): ... ;

22 ( [8,0] <= iv < [9,1] ): ... ;

23 ( [8,1] <= iv < [9,8] ): ... ;

24 ( [8,8] <= iv < [9,9] ): ... ;

25 }: (genarray( [9,9]), fold( && ));

26 }

27 while (!p);

28
29 return A;

30 }

Fig. 50. Convolution case study after inlining the convergence check and applying
with-loop-fusion

subexpression elimination finds the repeated indexing into array A with index
vector iv and avoids a repeated load of the same value from memory by storing
it in a fresh variable t0. Another optimisation concerns the identical coefficients
for the left and right neighbour as well as the top and bottom neighbour, respec-
tively. Here, algebraic simplification based on the distributive law avoids two
multiplications. The resulting intermediate code for the central partition can be
found in Fig. 51; all other partitions’ associated expressions undergo equivalent
transformations.

9.6 With-Loop Lowering

We eventually leave the realm of optimisation and start the lowering process
towards final code generation. This process in reality is much more complicated
than illustrated here, but we sketch out the main ideas.
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1 {

2 t0 = A[iv];

3 t1 = 0.4 * t0

4 + 0.2 * (A[iv -[0 ,1]] + A[iv+[0 ,1]])

5 + 0.1 * (A[iv -[1 ,0]] + A[iv+[1 ,0]]);

6 t2 = abs(t1 - t0) < eps;

7 return (t1, t2);

8 }

Fig. 51. Fused with-loop body for inner indices following epilogue optimisations

As our first major lowering step the with-loop-lowering code transformation
systematically transforms multi-dimensional partition generator sets into nested
one-dimensional pseudo for-loops, as outlined in Sect. 7.1. All other aspects of
the with-loop, namely the codes associated with each nested generator, for now
remain exactly as they are.

In Fig. 52 we demonstrate the combined effect of all three (major) lowering
steps, namely with-loop-lowering, index vector elimination and memory man-
agement, on the running example. The effects of these three code transformations
are largely orthogonal to each other. Hence, we make use of a single figure and
highlight the individual lowering effects in the textual description hereafter.

In the convolution example it is not straightforward to establish the canonical
traversal order, but nonetheless simpler than in the running example of Sect. 7.1.
The first nesting of generators takes care of the upper left corner of the matrix,
the upper edge and the upper right corner. The same holds for the third nesting of
generators covering the last row of the matrix, including the two lower corners. For
these 6 generators the canonical order could also be achieved by simple reordering.

However, this is not always the case as the remaining three generators demon-
strate: one covers the left-most column, one the right-most column and one the
bulk of the index space of all non-boundary elements. Instead we aim at an
organisation of the 2-dimensional index space where for each row we first com-
pute the element of the first column according to the 4th partition, then the
middle part of the row according to the 5th partition and, at last, the final ele-
ment of the right-most column according to the 6th partition. Note in Fig. 52
that we deliberately refrain from unrolling single-iteration loops to retain the
structural similarity with the original nine generators obtained from the optimi-
sation compilation phase.

9.7 Index Vector Elimination

Our next major lowering step is index vector elimination, as introduced in
Sect. 7.2. Here, we start accompanying the running index vector of a with-loop,
i.e. iv, and the scalar induction variables, i.e. i and j in our running example, by
a scalar offset into the flat memory representation of the array being computed.

As can be seen in lines 20 to 33 of Fig. 52, we completely scalarise the index
computation, including the constant (vector) offsets. With static knowledge of



Single Assignment C (SAC) 271

the accessed arrays’ shapes the compiler can compute the corresponding scalar
offset difference in the flat memory representation of arrays. For reasons of illus-
tration we still use the same square bracket notation for indexing as before.
Of course, the compiler internally distinguishes between index operations with
vectors and with scalars.

We now potentially have three runtime representations of the with-loop
index: the original 2-element vector, two individual scalar indices and, third,
the scalar offset into the flat memory representation added during index vector
elimination. As can be seen in Fig. 52, only the offset is actually used in the right
hand side expressions. We already eliminated the (costly) vector representation,
but it is important to understand that this is not per sé superfluous as the index
vector could be passed as an argument to a function that does expect a vector no
matter what and cannot or should not be inlined. We refrain from eliminating
the scalar induction variables as well because that would make the construction
of the loops considerably more complex at limited performance gain.

9.8 Memory Management

While memory management with its multitude of analyses and optimisations as
detailed in Sect. 7.3 is a comprehensive lowering step, the case study example
code leaves little opportunity for far-reaching optimisation. In essence, we do
need two chunks of memory, one is occupied by the incoming argument array A,
the other is freshly allocated in the first iteration of the do-while-loop (line 9).
The with-loop essentially computes the new array T stored in the newly allo-
cated memory chunk from the data in the incoming memory chunk representing
array A. Immediate reuse of the memory of array A for array T is not possible
due to the access pattern in lines 25 and 26.

Following the with-loop, the SAC tryfree(A) in line 41 acknowledges the
fact that while we no longer need array A in function convolution and thus could
de-allocate the corresponding chunk of memory, the original function argument
could still be needed in the calling context and, thus, may need to be pre-
served throughout the evaluation of convolution. If so, the next iteration of
the do-while-loop leads to the allocation of a third chunk of memory; other-
wise, we immediately re-use the argument memory.

In either case, already in the first iteration of the do-while-loop, or at the
latest in the second iteration, we end up with a scenario where two chunks
of memory alternately represent arrays A and T, and pointers are effectively
swapped between iterations. Further optimisation of the memory management
structure would only be possible by either separating the first iteration of the
do-while-loop at the expense of considerable code duplication or by analysis
of all potential call sites of function convolution, should that be technically
feasible in the presence of multiple modules and separate compilation.

Instead of pursuing either of the above ways forward we very much optimised
the de-allocation/allocation in the SaC private heap manager, which guarantees
an effective pointer swapping with only a few machine cycles overhead.
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1 double [9,9] convolution (double [9,9] A,

2 double [5] weights

3 = [0.4, 0.2, 0.2, 0.1, 0.1],

4 double eps)

5 {

6 double [9,9] T;

7
8 do {

9 T = SAC_malloc( 9 * 9 * sizeof(double ));

10
11 p = true;

12 offset = 0;

13
14 for (i=0; i<1; i++) {

15 for (j=0; j<1; j++) { ... }

16 for (j=1; j<8; j++) { ... }

17 for (j=8; j<9; j++) { ... }

18 }

19
20 for (i=1; i<8; i++) {

21 for (j=0; j<1; j++) { ... }

22 for (j=1; j<8; j++) {

23 t0 = A[offset ];

24 t1 = 0.4 * t0

25 + 0.2 * (A[offset -1] + A[offset +1])

26 + 0.1 * (A[offset -9] + A[offset +9]);

27 t2 = abs(t1 - t0) < eps;

28 T[offset] = t1;

29 p = p && t2;

30 offset ++;

31 }

32 for (j=8; j<9; j++) { ... }

33 }

34
35 for (i=8; i<9; i++) {

36 for (j=0; j<1; j++) { ... }

37 for (j=1; j<8; j++) { ... }

38 for (j=8; j<9; j++) { ... }

39 }

40
41 SAC_tryfree( A);

42 A = T;

43 }

44 while (!p);

45
46 return A;

47 }

Fig. 52. Convolution case study after applying with-loop-lowering, index vector elim-
ination and memory management transformations
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9.9 Code Generation and Final Words

The code shown in Fig. 52 is our final word on the compilation case study. It goes
(almost) without saying that the C code actually emitted by the SaC compiler
is hardly readable even for domain experts. Hence, showing that makes little
sense. Instead, we conclude this section with some outlook what else could still
be done. We already mentioned that the single-iteration for-loops are merely
still there for readability, whereas we would normally expect them to have been
eliminated in the course of with-loop-lowering as described in Sect. 7.1.

What else could we do from here?
We could, for instance consider to apply loop unrolling or loop invariant

removal on the level of the generated for-loops. At the time of writing the SaC
compiler still lacks such capacity and instead relies on the backend C compiler
to exploit such opportunities, for good or for bad.

As mentioned before, we could avoid maintaining the loop indices i and j
altogether as our code exclusively uses the flat index offset instead. Again, we
expect any decent C compiler to do this job for us at the right optimisation level.

Another optimisation opportunity would be the detection of the fixed point
where p equals false in the Boolean computations of lines 27 and 29. Again
we hope for the C compiler to this effect. Alternatively, the SaC features an
experimental foldfix with-loop-operator that generalises the notion of a fixed
point in fold-like computations from the usual Boolean operators to any operator.
However, we didn’t make use of this feature here due to its experimental nature
and incomplete code generators for some target architectures.

At last, it might be tempting to unroll the for-loop in line 20, but be aware
that the small number of iterations is merely an artefact of our illustration while
any production code would come with a number of iterations here and elsewhere
in the code that would immediately preclude any idea of loop unrolling.

10 Experimental Evaluation: An Annotated Bibliography

Many publications on SaC, if not most, contain some form of experimental eval-
uation of the concrete subject matter described. In addition to these publica-
tions we have over the years conducted a number of larger-scale case studies that
demonstrate the applicability of SaC in various application domains and put the
performance achieved by SaC into the perspective of other high-level and low-
level programming models and their compilers and runtime systems. Instead of
reproducing essential results, we rather provide a certainly non-exhaustive anno-
tated bibliography. This is not only owed to the limitation of space here but at
least as much to the fact that any experimental investigation is a snapshot in
time since not only the SaC compiler is continuously evolving, but likewise other
compilers, operating systems and last not least computer architectures.

Motivated by the SICSA Multi-core Challenge we investigate SaC imple-
mentations of the all-pairs N-body problem and compare performance on CPUs
and GPUs in [67]. In [68] we experiment with anisotropic filters and single-class
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support vector machines from an industrial image processing pipeline again both
on multi-core CPUs and GPGPUs. In [69] we investigate the scalability of the
SaC multithreaded code generator and runtime system on the 4-socket 16-core
Oracle T3-4 server with up to 512 hardware threads. We analyse the performance
of the GPGPU code generator for a variety of benchmarks in [61].

In [70] we compare SaC with Fortran-90 in terms of programming pro-
ductivity and performance on multi-core multi-processor systems for unsteady
shock wave interactions. We again compare SaC with Fortran-90 in [71], this
time based on the Kadomtsev-Petiviashvili-I equations (KP-I) that describe the
propagation of non-linear waves in a dispersive medium. In [72] and [73] we
describe SaC implementations of the NAS benchmarks [74] FT (3-dimensional
fast-Fourier transforms) and MG (multigrid), respectively, on multi-processor
systems of the pre-multi-core era. Last not least, [75] contains an early compar-
ison between SaC and High Performance Fortran.

11 Related Work

Given the wide range of topics around the design and implementation of SaC
that we have covered in this article, there is a plethora of related work that
is impossible to do justice in this section. Hence, the selection inevitably is
subjective and incomplete.

General-purpose functional languages such as Haskell, Clean, Sml or
OCaml all support arrays in one way or another on the language level. Or
more precisely, they support (potentially nested) vectors (1-dimensional arrays)
in our terminology. However, as far as implementations are concerned, arrays
are rather side issues; design decisions are taken in favour of list- and tree-like
data structures. This largely rules out achieving competitive performance on
array-based compute-intensive kernels.

The most radical step is taken by the ML family of languages: arrays come
as stateful, not as functional data structures. To the same degree as this choice
facilitates compilation, it looses the most appealing characteristics of a functional
approach. The lazy functional languages Haskell and Clean both implement
fully functional arrays, but investigations have shown that in order to achieve
acceptable runtime performance arrays must not only be strict and unboxed (as
in SaC), but array processing must also adhere to a stateful regime [76–78].
While conceptually more elaborate than the ML approach to arrays, monads
and uniqueness types likewise enforce an imperative programming style where
arrays are explicitly created, copied and removed.

Data Parallel Haskell [79,80] is an extension of vanilla Haskell with partic-
ular support for nested vectors (arrays in Haskell speak). Data Parallel Haskell
aims at irregular and sparse array problems and inhomogeneous nested vectors
in the tradition of Nesl [81]. Likewise, it adopts Nesl’s flattening optimisation
that turns nested vectors into flat representations.

One project that deserves acknowledgement in our context is Sisal [82,83].
Sisal was the first approach to high-performance functional array programming,
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and, arguably, it is the only other approach that aims at these goals as stringently
as SaC. Sisal predates SaC, and consequently, we studied Sisal closely in
the beginning of the SaC project. Unfortunately, the development of Sisal
effectively ended with version 1.1 around the time the first SaC implementation
was available. Further developments, such as Sisal 2.0 [84] and Sisal-90 [85],
were proposed, but have to the best of our knowledge never been implemented.

SaC adopted several ideas of Sisal, e.g. dispensing with many great but
implementation-wise costly functional features, e.g. currying, higher-order func-
tions or lazy evaluation. In many aspects, however, SaC goes significantly beyond
Sisal. Examples are support for truly multi-dimensional arrays instead of 1-
dimensional vectors (where only vectors of the same length can be nested in
another vector), the ability to define generic abstractions on array operations
or the compositional programming style. This list could be extended, but then
the comparison is in a sense both unfair and of limited relevance given that
development of Sisal ended many years ago.

An interesting offspring from the Sisal project is SaC’s namesake SA-C also
called Sassy [86,87]. Independently of us and around the same time the origina-
tors of SA-C had the idea of a functional language in the spirit of Sisal but with
a C-inspired syntax. Thus, we came up with same name: Single Assignment C.
Here, the similarities end, even from a syntactic perspective. Despite the almost
identical name, SaC and SA-C are in practice very different programming lan-
guages with SA-C mainly targeting programmable hardware.

SaC’s implementation of the calculus of multi-dimensional arrays is closely
related to interpreted array languages like Apl [14,15], J [16] or Nial [17]. In [88]
Bernecky argues that array languages are in principle well suited for data parallel
execution and thus should be appropriate for high-performance computing. In
practice, language implementations have not followed this path. The main show
stopper seems to be the interpretive nature of these languages that hinders
code-restructuring optimisations on the level of SaC (Sect. 6). While individual
operations could be parallelised, the ratios between productive computation and
organisational overhead are often unfavourable.

Dynamic (scripting) languages like Python are very popular these days.
Consequently, there are serious attempts to establish such languages for
compute-intensive applications [89,90]. Here, however, it is very difficult to
achieve high performance. Like the Apl-family of languages the highly dynamic
nature of programs renders static analysis ineffective. It seems that outside the
classical high-performance community, programmers are indeed willing to sacri-
fice performance in exchange for a more agile software engineering process. Often
this is used to explore the design space, and once a proper solution is identified,
it is re-implemented with low-level techniques to equip production code with the
right performance levels. This is exactly where we see opportunities for SaC:
combine agile development with high runtime performance through compilation
technology and save the effort of re-implementation and the corresponding con-
sistency issues. Much of the above likewise holds for the arguably most used
array language of our time: MatLab and its various clones.
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12 Conclusions and Perspectives

We have presented the ins and outs of the compilation technology of the func-
tional programming language Single Assignment C (SaC), developed over more
than two decades. SaC combines array programming technology with functional
programming principles and a C-like look-and-feel. By means of a case study,
namely rank-generic convolution with cyclic boundary conditions and conver-
gence check, we have first illustrated how the SaC approach facilitates the engi-
neering of concise, abstract, high-level, reusable code. Then, we have proceeded
to illustrate step-by-step how such concise, abstract, high-level, reusable code
may nonetheless systematically be compiled into highly efficiently executable
code without additional programmer intervention. This code forms the basis of
fully automatic parallelisation for a variety of architectures from multi-socket,
multi-core systems to GPGPU accelerators, heterogeneous systems, multi-node
clusters and beyond. Unfortunately, space limitations only allowed us to briefly
sketch out these aspects of the compilation technology. Likewise, we could only
provide pointers for further reading with respect to performance evaluation and
comparison.

The ability to fully automatically generate code for various parallel archi-
tectures, from symmetric multi-core multi-processors to GPGPU accelerators is
arguably one of SaC’s major assets. In a standard software engineering pro-
cess the job is less than half done when a first sequential prototype yields cor-
rect results. Every targeted parallel architecture requires a different paralleli-
sation approach using different APIs, tools and expertise. Explicit parallelisa-
tion is extremely time-consuming and error-prone. Typical programming errors
manifest themselves in a non-deterministic way that makes them particularly
hard to find. Targeting different kinds of hardware, say multi-core systems and
GPGPU-accelerators inevitably clutters the code and creates particular mainte-
nance issues. With SaC the job is done as soon as a sequential program is ready.
Multiple parallel target architectures merely require recompilation of the same
source code base with different compiler flags.

While much has been achieved already, our work at the crossroads of lan-
guage design and compiler technology is far from finished. The continuous devel-
opment of new parallel architectures keeps us busy just as further improvements
of the language and of our compilation technology as well as of our compiler
infrastructure.
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87. Najjar, W., Böhm, W., Draper, B., Hammes, J., et al.: High-level language abstrac-
tion for reconfigurable computing. IEEE Comput. 36, 63–69 (2003)

88. Bernecky, R.: The role of APL and J in high-performance computation. APL Quote
Quad 24, 17–32 (1993)

89. van der Walt, S., Colbert, S., Varoquaux, G.: The NumPy array: a structure for
efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011)

90. Kristensen, M., Vinter, B.: Numerical Python for scalable architectures. In: 4th
Conference on Partitioned Global Address Space Programming Model (PGAS
2010), New York, NY, USA. ACM Press (2010)

91. Scholz, S.B.: Single Assignment C - functional programming using imperative style.
In: Glauert, J., (ed.) 6th International Workshop on Implementation of Functional
Languages (IFL 1994), Norwich, England, UK, pp. 21.1-21.13. University of East
Anglia, Norwich (1994)

https://doi.org/10.1007/3-540-49256-9_6
https://doi.org/10.1007/3-540-49256-9_6


Type-Safe Functions and Tasks
in a Shallow Embedded DSL

for Microprocessors

Pieter Koopman(B) and Rinus Plasmeijer

Institute for Computing and Information Sciences, Radboud University, Nijmegen,
The Netherlands

{pieter,rinus}@cs.ru.nl

Abstract. The Internet of Things, IoT, brings us large amounts of
connected computing devices that are equipped with dedicated sensors
and actuators. These computing devices are typically driven by a cheap
microprocessor system with a relatively slow processor and a very lim-
ited amount of memory. Due to the special input-output capabilities of
IoT devices and their connections it is very attractive to execute (parts
of) programs on these microcomputers.

Task-oriented programming, as introduced in the iTask framework,
offers a very convenient abstraction level to construct distributed pro-
grams at a high level of abstraction. The task concept basically intro-
duces lightweight threads. Tasks can be composed to more powerful tasks
by a flexible set of combinators. These tasks can communicate with each
other via shared data sources and inspect intermediate task values of
other tasks.

The IoT devices considered here are far from powerful enough to
execute programs made within the standard iTask system. To facilitate
the execution of simple tasks using the special capabilities of the IoT
devices from the iTask environment, we introduce a type-safe multi-view
extendable domain-specific language to specify tasks for IoT devices.
This domain specific language is embedded in the iTask system to facil-
itate the integration of both systems, but those systems are very useful
on their own.

Keywords: Task oriented programming · Embedded systems ·
Internet of Things · Domain specific language · Shallow embedding ·
User-defined functions

1 Introduction

The Internet of Things, IoT, is a trending name for the large collection of inter-
connected smart devices. The IoT apparatus are smart in the sense that they can
be programmed. Most of these devices are microprocessor-based systems. These
microcomputers are usually equipped with special purpose sensors for quantities
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like temperature, pressure, GPS position, distance to the nearest object and so
on. On the output side, the IoT devices can often control lights, the heating sys-
tem, open doors and windows, etcetera. These special input–output capabilities
and the fact that they can be programmed make those devices very valuable
despite their limited computing power. Our long-term goal is to incorporate IoT
devices in distributed task-oriented programs to execute tasks that require their
special input–output options.

Task Oriented Programming, TOP [32], uses tasks as basic building blocks
of software construction. The tasks perform real world or artificial units of work,
like providing information, make decisions based on information (provided by
other tasks), start other tasks, or change something in the real world. Currently
the iTask system [31] is the main implementation of this paradigm. Interaction
of TOP software with users is done via the browser. The required web-pages are
automatically generated and updated. On an IOT device tasks repeatedly check
the value of inputs, can decide to invoke other tasks based on these measure-
ments, or use the outputs to induce changes in the real world.

In this paper, we construct a TOP system embedded in the iTask system to
program IoT devices. The behaviour of microprocessors is specified in a Domain
Specific Language, DSL, with type-safe user-defined functions and simple tasks.
This DSL is intended to enable TOP on small embedded systems like an Arduino
[2,6]. The 8-bit 16MHz ATmega328P microprocessor of the Arduino Uno R3 is
very suited for simple control tasks, but it is not particularly speedy. It provides
just 32Kb of program store and 2Kb of RAM. Other microprocessors have more
memory and a faster processor, but they are all very modest systems compared
to desktops and laptops. The Arduino is the archetype of microcomputers. It is
widely used due to the large number of input–output equipment available and
the associated software infrastructure (IDE and libraries) that is portable to
most other microcomputers. Due to the limited capabilities of such systems, it
is unfeasible to implement a complete higher order and lazy functional program-
ming language on these embedded systems. Despite the limited processing power
of such microprocessor-based systems, these devices are very useful for simple
control tasks.

Since microcomputers cannot execute full iTask programs, we use an embed-
ded DSL. This ensures that the programs for the IoT devices are part of the
iTask programs. Using a DSL has as additional advantage that we can piggy-
back on the parser and a type checker of the host language. We use Clean [33],
the implementation language of the iTask system as the host language. We call
our DSL for TOP of microprocessors mTask.

To achieve TOP on a tiny microprocessor we have to impose significant
restrictions on the DSL used to specify tasks compared to the iTask system.
The available memory makes it impossible to use a standard heap. This implies
that we can neither have lazy evaluation nor higher-order functions. It is possible
to transform higher-order functions to a first-order language by defunctionaliza-
tion, [11,35], but that introduces many new functions. Due to the very limited
amount of flash memory to store programs, additional functions are undesirable.
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We must restrict the use of data types rigorously. Any data structure that uses
large or uncontrolled amounts of memory will cause problems. Currently, we
support only primitive data types, but this will be extended as future work.

We require that the type system of the functional host language checks the
types in the DSL. This is achieved by a shallow embedded DSL: the DSL is a
set of functions. The types of these functions ensure that the expressions in the
DSL are correctly typed. To allow different interpretations (like pretty printing,
code generation and simulation) of the DSL, we use type classes of functions
instead of plain functions. Each interpretation, or view, is constructed as a new
instance of the type classes.

To prevent that we silently inherit the complete host language in our DSL,
we need a clearly bounded DSL. This is achieved by providing primitives to lift
elements of the host language to the DSL, but not the other way around. This
is accomplished by using type constructor classes instead of plain type classes.
Only language elements of the type constructor class belong to our DSL.

The class-based DSL can be extended by new language constructs or new
views without changing any existing code. The type system of the host language
checks that the required constructs and views are defined for an application.

In the translation view, mTask programs are compiled to C++ programs for
the Arduino dialect. The Arduino infrastructure has as advantages that code
generation is relative simple (compared to generating machine code for indi-
vidual microprocessors), the generated code is applicable to all microcomputers
supported by the Arduino platform, it is easy to reuse existing libraries, and
suited for portable optimizations.

Unfortunately, simple compilation to C++ imposes some additional restric-
tions on mTask. In particular, mTask is a first-order strict language. We use addi-
tional type constraints in mTask to prevent that statements will be generated in
a context that only allows expressions.

We first give a brief introduction to Arduino programming in C in Sect. 2. In
Sect. 3 we discuss various ways to make an embedded DSL and make a motivated
choice for the rest of this paper. Based on our requirements for strong typing,
multiple views, and extendibility we show that a shallow embedding based on
type constructor classes is the best fit. The next Sect. 4, introduces our type-
safe extendable shallow embedded DSL. Section 5 shows how we can generate
directly C++ code in a tailor-made view of our DSL. Section 6 shows how we
can simulate programs in our DSL using a view that transforms DSL programs
into expressions in its host language. An iTask program is used to interactively
show and update the state and to execute the tasks generated by the simulation
view. Section 7 shows briefly two different approaches to optimize DSL programs.
Since these optimization views yield a new program in our DSL, all other views
can profit from the optimizations. Finally, we discuss related work in Sect. 8, and
discuss the obtained results in Sect. 9.
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The contributions of this paper are:

– It defines the notion of task-oriented programming that can run on small
microprocessors. The tasks can communicate via shared data sources, but
run interleaved like light-weight threads.

– The examples show that this TOP paradigm yields concise programs for these
microcomputers. This enables the fast and dynamic creation and assignment
of tasks to IoT devices.

– The implementation technique of the mTask DSL using type constructor
classes is interesting on its own; it yields a type-safe multi-view extendable
DSL. The type checker of the host language also checks the types in the DSL.
It guarantees that all identifiers in the DSL are well defined and used in a
type-safe way. A preliminary version of this implementation technique was
used in [26].
The extendibility of the mTask system is used to add libraries controlling
input-output shields of the microprocessors as primitives to the language
without requiring any changes, or even recompilation, of the existing DSL.

2 Arduino Programming

An Arduino is typically programmed in its own dialect of C++. The Arduino
IDE supports programming. It can translate such a C++ program to machine
code for the selected board. This code is uploaded to the microprocessor via a
USB cable and a tiny boot loader on the board. Apart from the various Arduino
variants, the IDE also supports many other microprocessors.

An Arduino does not run an operating system, nor offers support from some
runtime system. This implies that the user program is all on its own on the
microcomputer. Therefore, every Arduino program in C++ contains two basic
functions. The function void setup() is called once at startup of the micropro-
cessor. After this initialization, the function void loop () is repeated forever.
Each of these functions can be empty.

The “hello world” example for the Arduino blinks the onboard LED connected
to digital pin 13.

void setup() {
pinMode(13, OUTPUT ) ; // ini t ia l i ze pin 13 as output

}

void loop() {
digitalWrite(13, HIGH ) ; // switch LED on (HIGH voltage)
delay(1000); // wait a second
digitalWrite(13, LOW ) ; // switch LED off (LOW voltage)
delay(1000); // wait a second

}

The pins of the Arduino can be used as input and output. It is required to
set the pin in the right input–output mode before using it in that mode. In
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this example setup() configures pin 13 as an output. The loop switches on the
LED, waits for a second, switches of the LED, and waits another second. Since
there is no operating system, there are no other threads or programs on the
Arduino. This implies that the delay(1000) call blocks any program execution
for one second. For more advanced programs it is better to prevent blocking by
long delays. The use of delay is easily to circumvent by introducing some state
variables and looking repeatedly at the clock with millis(), a function returning
the milliseconds since start-up of the microprocessor.

#define DELAY 1000
boolean ledOn = fa lse ; // status of LED
long lastTime = 0; // last status switch

void setup() {
pinMode(LED_BUILTIN , OUTPUT ) ;

}

void loop() {
i f (millis() − DELAY > lastTime) { // time to change?
ledOn = not ledOn ;
digitalWrite(LED_BUILTIN , ledOn ) ;
lastTime += DELAY ;

}
}

2.1 Shields

Shields are boards that can be plugged on top of the Arduino main board offering
additional functionality. For this purpose, the Arduino main board has connec-
tors giving access to the analogue and digital ports of the microprocessor as well
as some power lines. Many of these shields contain connectors to plug in another
shield on top of this shield; these shields are stackable. There are shields for pur-
poses like WiFi and Bluetooth connections, sensors (like temperature and heart-
beat), actuators (like motor drivers and relays), displays and many more. These
shields typically come with a library that offers a class to control that shield.
The availability of a wide range of stackable shields and associated libraries are
an important factor in the success of the Arduino development platform.

Figure 1 displays a picture of an Arduino with a 1602 LCD-shield executing
the program sonar from Sect. 4.10. At the bottom of the figure, there is an
ultrasonic distance sensor. A small servo with moving arms is displayed on the
right side of the picture. The big blue cable is a USB connection providing
power to the microprocessor. After loading a program via the Arduino-IDE it
is perfectly possible to run this microprocessor without USB connection. Power
can be provided by a DC-adapter, or battery.

One of the most used shields contains an LCD of two lines of 16 charac-
ters each. It is called a 1602 LCS shield. The corresponding library can control
many different LCD-shields. The library is included in an Arduino program by
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Fig. 1. An Arduino Uno with a LCD-shield, an ultrasonic sensor and a servo.

#include <LiquidCrystal .h>. A LCD control object is made by the construc-
tor LiquidCrystal lcd(8 ,9 ,4 ,5 ,6 ,7). The numbers are the Arduino pins used to
control the actual LCD hardware, see [5] for a complete description. A simple
program that shows the message Hello World ! on the display and scrolls it back
and forth is:

#include <LiquidCrystal .h> // LCD library
#define STEPS 10 // max scrol l steps
int pos = 0; // scrol l steps done
int inc = 1; // step inc
LiquidCrystal lcd(8 ,9 ,4 ,5 ,6 ,7); // define lcd object

void setup() {
lcd .begin(16, 2); // set LCD size
lcd .print("Hello world!") ; // display message

}

void loop() {
i f (inc > 0) // scrol l right?
lcd .scrollDisplayRight () ; // scrol l one step right

else // scrol l l e f t
lcd .scrollDisplayLeft () ; // scrol l one step l e f t

step () ; // count step
delay(400);

}

void step() {
pos += inc ; // increment steps
i f (pos < −STEPS | | pos > STEPS) // outside bounds?
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inc = −inc ; // turn around
}

Part of the message is scrolled outside the display, but remembered by the
LiquidCrystal object lcd. Note that this program uses the variables pos and
inc to store the state between subsequent calls of loop(). This is a very com-
mon pattern in Arduino programs. This example also uses a simple user-defined
function.

The final example combines an ultrasonic distance sensor, a LCD, a servo
[3]. The method ping_cm() of the sonar object returns the echo time of a short
ultrasonic burst in centimetres [4]. The measured distance is shown on the LCD.
The angle of servo in degrees is set to the distance limited between 10 and 170◦

by servo .write(deg).

#include <LiquidCrystal .h> // LCD library
#include <Servo .h> // servo library
#include <NewPing.h>

#define trigPin A1 // pin names
#define echoPin A2
#define servoPin A5
#define maxDist 250

LiquidCrystal lcd(8 , 9 , 4 , 5 , 6 , 7);
Servo servo ; // no constructor parameters
NewPing sonar(trigPin , echoPin , maxDist ) ;

void setup() {
servo .attach(servoPin ) ; // servo at A5
lcd .begin(16, 2); // set LCD size
lcd .print("echo distance" ) ;

}

void loop() {
int dist = sonar .ping_cm () ; // measure distance in cm
lcd .setCursor (0 , 1); // print i t on lcd
lcd .print(dist ) ;
lcd .print(" cm " ) ;
int deg = min(max(dist , 10) , 170);
servo .write(deg ) ; // set servo
delay(250);

}

These examples give a good first impression of possibilities of microprocessor
programming in C++.

3 DSL Implementation Techniques

In this section, we motivate the implementation technique chosen for the DSL
to implement task-oriented programming on microprocessors. The simplest way
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to add functionality to a programming language is by a library with tailor-
made functions and data types that directly implement the desired functionality.
Most libraries, including the iTask system, are implemented in this way. In our
situation this cannot be applied; the microprocessors are too small to execute
Clean programs. Adding a library makes the programs bigger and hence does
not solve the memory and speed problems.

It is possible to communicate with the microprocessor via various channels,
for instance, serial communication over the USB-connection. The Firmata pro-
tocol can implement this solution [16]. The actual task is running on an ordinary
computer. This task controls the ports of the microprocessor via this Firmata
protocol. HArduino is a Haskell library that demonstrates that this approach
works [12]. A drawback of this approach is that it requires quite some commu-
nication between the task program on the ordinary computer and the micro-
processor. We aim for a solution where the task is actually executed on the
microprocessor itself.

Since we cannot execute a high-level task-oriented Clean program on a micro-
processor and we do not want to execute such programs on an ordinary computer
that remotely controls the microprocessor, we need a special language to spec-
ify the task-oriented program. We want that this special DSL is part of our
high-level task-oriented system. It is convenient to have only a single source for
programs that are distributed between an ordinary computer and a micropro-
cessor. It is easier for the programmer and prevents problems with versions and
language interfaces. Moreover, this allows the main program on the host com-
puter to analyse the task oriented program executed on the microprocessor. The
way to realize such a special DSL is by using an embedded DSL. Fowler gives a
solid introduction to DSLs [14]. There is a long tradition of DSLs and functional
programming, e.g. Hudak [17]. Gibbons gives a recent overview of the use of func-
tional programming in DSL construction [15]. We give here a brief overview of
approaches for DSL construction in functional programming languages tailored
to task-oriented approach for microprocessor programming (see also [26]).

3.1 Deep Embedding of the DSL

The simplest approach to make an embedded DSL is by a data structure to
represent the DSL. This is called a deep embedding. This data structure is, of
course, an algebraic data type in a functional programming language. In this
section, we use a very simple language with integer constants, Boolean constants,
identifiers, integer addition, logical AND, and an overloaded equality for integers
as well as Booleans. The algebraic data type DeepExp is an appropriate deep
representation of this simple DSL in Clean.

:: DeepExp
= Int Int // integer constants
| Bool Bool // Boolean constants
| Id Name // integer identifiers
| Add DeepExp DeepExp // integer addition
| And DeepExp DeepExp // Logical AND for Booleans
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| Eq DeepExp DeepExp // equality for integers and Booleans

:: Name :== String // identifier names

For a syntactical more appealing DSL we will probably use infix operators instead
of the prefix constructors of this algebraic data type. In this situation we can
even make an instance of the ordinary + for the expressions in our DSL.

instance + DeepExp where (+) x y = Add x y

For the equality operator, ==, this is not possible since its result is always Bool

while we need a DeepExp here.
It is straightforward to write interpretations, called views, of this represen-

tation of the DSL. Typical interpretations are the evaluation, pretty printing,
optimization and so on. In this section, we use the views to evaluate, eval, and
to pretty print, show, a program in the DSL.

For evaluation, we need an environment that maps variables to their value.
we use only integer variables for simplicity. A simple environment, Env, is defined
as a function from names to integer values.

:: Env :== Name → Int // environment is function from name to integer

new :: Env // new environment
new = \name.0 // every name is bound is initially bound to 0

( �→) i n f i x 0 :: Name Int → Env → Env // environment update operator
( �→) name val = λenv name2.if (name == name2) val (env name2)

Using this environment we can write an evaluator for our DSL. We restrict this
evaluator to well-typed programs. For instance, we do not include an alternative
for the addition of integers and Booleans. Such a case is allowed by the data
type, e.g., Add ("Id "x") (Bool True), but should not occur in our DSL.

eval :: DeepExp Env → DeepExp
eval (Id name) env = Int (env name)
eval (Add x y) env =

case (eval x env , eval y env) of
(Int a , Int b) = Int (a + b)

eval (And x y) env =
case (eval x env , eval y env) of

(Bool a , Bool b) = Bool (a && b)
eval (Eq x y) env =

case (eval x env , eval y env) of
(Int a , Int b) = Bool (a == b)
(Bool a , Bool b) = Bool (a == b)

eval exp env = exp // constants Int and Bool

In the same style we define a pretty printer that produces a list of strings. We
use a continuation argument that represents the rest of the representation. This
continuation prevents the use of a large number of append operators.
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show :: DeepExp [String ] → [String ]
show (Int i ) cont = [toString i:cont ]
show (Bool b ) cont = [toString b:cont ]
show (Id name) cont = [name:cont ]
show (Add x y) cont = ["(" ,"Add ":show x [" ":show y [")":cont ] ] ]
show (And x y) cont = ["(" ,"And ":show x [" ":show y [")":cont ] ] ]
show (Eq x y) cont = ["(" ,"Eq " :show x [" ":show y [")":cont ] ] ]

As an example we define the expression e1. The Start expression initiates its
evaluation and pretty printing.

e1 :: DeepExp
e1 = And (Bool False) (Eq (Add (Int 2) (Id "x")) (Int 7))

env1 :: Env
env1 = ("x" �→ 6) new // bind x to 6 in a new environment

Start = (eval e1 env1 , show e1 [ ] )

The result of evaluation e1 is Bool False. Pretty printing this expression with
show yields (And False (Eq (Add 2 x) 7)).

Although this deep embedding of the DSL works fine for correct programs
and is familiar to most functional programmers, it has a huge drawback; the type
system of the host language, here Clean, is unable to spot all the type errors in
a DSL program. Expressions like Add (Int 7) (Bool True) are proper instances
of the type DeepExp, but evaluation of such a statement will produce a runtime
type error like Cannot add integers and Booleans. It is very well possible to write
a function that checks the types of a DSL program, but such a function will
discover the type problems in the DSL program when it is executed; at runtime.
Detecting type problems in the DSL programs at compile time (statically), by
the type system of the host language, is very desirable. In such a statically
typed DSL, the compiler of the host language rejects common type errors in
DSL programs, like the equivalent of Add 7 True in that DSL.

Making the type of the expression an argument of the algebraic data type
prevents some of the problems, but there is no proper way to handle the over-
loaded equality. Neilson and Neilson show in their example language While how
to make a separate data type AExpr for arithmetic expressions and BExpr for
Boolean expressions [29]. This enables the type checker of the host language
to check the types in DSL programs. This requires a separate constructor for
each type of arguments of an operation, e.g., there must be an equality for inte-
gers, separate equality for Booleans, yet another equality operator for equality
of characters and so on. In our DSL we require at least overloading for the basic
operations like equality to prevent a huge number of operators for the same
operation that only differ in the type of arguments.

Another problem with this representation is that it is hard to extend. Adding
a language construct requires a change of the algebraic data type DeepExp and
all functions manipulating it. The host language compiler offers at best-limited
support to check whether all views are correctly adapted.
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3.2 Generalized Algebraic Data Types for the DSL

A way to prevent the type problems of the previous representation is to use
Generalized Algebraic Data Types, GADTs [22], instead of algebraic data types.
Even in a language without GADT support, we can achieve the effect of a GADT
by introducing some type conversion functions.

The record BM contains a bimap between the types x and y. There are functions
f and t for transformations in both directions.

:: BM x y = {f :: y→x , t :: x→y}

bm :: BM t t
bm = {f = id , t = id}

The only bimaps we will use are the identities from bm. Here we need only
the function f. In more complex situations, like program transformations, one
needs also transformations of kind *→*. This means we need functions like
f2 :: (v x)→v y.

We extend our representation of the DSL with a type parameter a. The cases
for Int and Bool can now be mapped to a single literal definition Lit. In all other
cases, we add an instance of the bimap to convince the type system that the
resulting type matches the required type a.

:: GadtExp a
= Lit a
| Id (BM a Int) Name
| Add (BM a Int) (GadtExp Int) (GadtExp Int)
| And (BM a Bool) (GadtExp Bool) (GadtExp Bool)
| ∃b: Eq (BM a Bool) (GadtExp b) (GadtExp b) & toString , == b

Note that we use an existentially quantified type b for the arguments of the
equality operator Eq. Since we need instances of the classes toString and == in
the show and eval views later on, we have to state those class restrictions here.
This is the only place where we can impose such restrictions.

Pretty printing those expressions is simple. We do not need the argument
type a of GadtExp in this view. Hence, we do not need the bimap at all.

show :: (GadtExp a) [String ] → [String ] | toString a
show (Lit i) cont = [toString i: cont ]
show (Id bm name) cont = [name: cont ]
show (Add bm x y) cont = ["(" ,"Add ": show x [" ": show y [")": cont ] ] ]
show (And bm x y) cont = ["(" ,"And ": show x [" ": show y [")": cont ] ] ]
show (Eq bm x y) cont = ["(" ,"Eq " : show x [" ": show y [")": cont ] ] ]

Evaluating those expressions changes. Note that this evaluator yields a result of
type a instead of GadtExp a. This eliminates the need to remove the constructor
Lit, like we removed and inserted the constructors Int and Bool in the previous
representation.

eval :: (GadtExp a) Env → a
eval (Id {f} name) env = f (env name)
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eval (Add {f} x y) env = f (eval x env + eval y env)
eval (And {f} x y) env = f (eval x env && eval y env)
eval (Eq {f} x y) env = f (eval x env == eval y env)
eval (Lit a) env = a // constants Int and Bool

Here we need the type transforming function f from the bimap. The actual types
are always correct, applying f is just needed to convince the Hindley-Milner type
system that this is indeed correct. A GADT implementation will insert these
functions without user interaction.

Our example and associated Start rule becomes:

e1 :: GadtExp Bool
e1 = And bm (Lit False) (Eq bm (Add bm (Lit 2) (Id bm "x")) (Lit 7))

Start = (eval e1 env1 , show e1 [ ] )

We use the environment env1 from the previous encoding in all examples in this
Section. The obtained results are identical to the previous example.

3.3 Shallow Embedding of the DSL

In a shallow embedding, the DSL is represented as a set of functions. An expres-
sion is a function that takes the environment as its argument and produces a
value of the indicated type. All operations become functions of this type. For
compatibility, we use here function names that start with an uppercase charac-
ter, note that these are really functions and not constructors used as functions.
In Clean it is allowed to start function names with an uppercase character.

:: Exp a :== Env → a

Lit :: a → Exp a // literals of any type
Lit a = λe.a

Add :: (Exp Int) (Exp Int) → Exp Int
Add x y = λe.x e + y e

And :: (Exp Bool) (Exp Bool) → Exp Bool
And x y = λe.x e && y e

Eq :: (Exp a) (Exp a) → Exp Bool | == a
Eq x y = λe.x e == y e

Id :: Name → Exp Int
Id n = λe.e n

It is possible to hide the passing of the environment in a monad. Especially
when the operations are able to change the environment, this is more elegant
than explicitly passing this environment around.

In the shallow embedding our standard example and invoking evaluation by
a Start rule looks like:
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e1 :: Exp Bool
e1 = And (Lit False) (Eq (Add (Lit 2) (Id "x")) (Lit 7))

Start = e1 env1

The advantage of the shallow embedding is that the type system of the host
language can check all types in the DSL very well. Moreover, it is very easy to
extend the DSL without touching the existing code. By just defining the desired
functions the DSL is extended, the type system of the host language checks
whether everything is properly defined. This blend very well with the usual way
to extend programs; one can add functions and tailor-made abbreviations by
need. This is the reason this embedding is used in many libraries adding new
functionality to the host languages. For instance, the iTask DSL is added in this
way to the host language Clean.

A substantial limitation of this shallow embedding is that it provides just one
view. Typically, this view is the evaluation of the DSL. The elements of the DSL
just implement the desired behaviour. Adding another view like pretty printing,
compile-time optimization, or code generation in another language requires a
significant change of design.

3.4 Shallow Embedding of the DSL with Multiple Views

Type classes provide a way to assign different views to a shallow embedded
DSL. Actually, a type class allows us to define different functions with identical
names. The actual type used for the type variables of the class determines the
function used. This is fully integrated with every modern functional program-
ming language; the system selects the desired function based on the available
type information, or gives an error message that such a function cannot be found.

Based on these type classes we define a DSL with multiple views. The lan-
guage itself becomes a type class. The view v is the type variable of this class. The
functions in this class are the constructs in our DSL. For our running example
this becomes:

class Exp v where
Lit :: t → v t | toString t
Id :: Name → v Int
Add :: (v Int) (v Int) → v Int
And :: (v Bool) (v Bool) → v Bool
Eq :: (v t) (v t) → v Bool | == , toString t

The type t of the actual language construct in the DSL is not a parameter of the
type class. This connotes that any class restriction needed in the views must be
stated in the class definition. This explains the class restrictions of Lit and Eq

in this DSL definition. The toString is needed in the show view and the equality
is needed in eval.

Adding more classes with the same type variable can extend the DSL at need.
In an extreme case, any function in the class above becomes its own class. We just
group operations of the DSL in a class to express their relation. Whenever one
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of the functions in such a class is needed in a particular view, all other functions
must also be implemented. Note that the type argument v for the view requires
the type of the DSL construct as its argument. So, it is a type constructor class.

The views are just instances of this type class. The Clean type system cannot
distinguish functions with different types as instances of a class. Hence, we use
a data type containing such a function as an instance. For the evaluation view,
we define the type Eval. Apart from adding and removing the constructors Eval

this definition is identical to the shallow embedding presented above.

:: Eval t = Eval (Env→t)

instance Exp Eval where
Lit a = Eval λe.a
Id n = Eval λe.e n
Add (Eval x) (Eval y) = Eval λe.x e + y e
And (Eval x) (Eval y) = Eval λe.x e && y e
Eq (Eval x) (Eval y) = Eval λe.x e == y e

eval :: (Eval t) → t
eval (Eval f) = f env1

We still use uppercase identifiers for functions to stay compatible with the deep
embedded DSL names.

In contrast to the ordinary shallow embedding, it is here very easy to add
a new view. Showing DSL expressions is just another instance of the class Exp.
Just like the evaluation we define a data type Show for this instance of Exp. In line
with the previous show views we use a continuation of type [String ] to prevent
appends in this view.

:: Show a = Show ( [String ]→ [String ] )

instance Exp Show where
Lit x = Show λc. [toString x: c ]
Id name = Show λc. [name: c ]
Add (Show x) (Show y) = Show λc. ["(" ,"Add ":x [" ":y [")":c ] ] ]
And (Show x) (Show y) = Show λc. ["(" ,"And ":x [" ":y [")":c ] ] ]
Eq (Show x) (Show y) = Show λc. ["(" ,"Eq " :x [" ":y [")":c ] ] ]

show :: (Show a) → [String ]
show (Show f) = f [ ]

The plumbing with the additional constructors and environments in these views
is very standard. With a few auxiliary functions, this can be nicely hidden.

The definition of our running example and the Start rule looks again very
familiar.

e1 :: v Bool | Exp v
e1 = And (Lit False) (Eq (Add (Lit 2) (Id "x")) (Lit 7))

Start = (eval e1 , show e1)
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This class-based way to define a DSL combines best of both worlds. The type
system of the host language checks types as well as for any other function. One
can always supply additional language constructs in the DSL by adding a new
class. This requires no changes to the existing code at all. The type system of
the host language will check whether the required instances of these classes are
available. The views themselves can be made by need, but the host language
compiler checks their availability at compile time of a DSL program. Like a deep
embedded DSL, it is always possible to add a new view without touching existing
code. Unlike a deep embedding, the host language compiler will check whether all
the required parts of the DSL are defined. Apart from type constructor classes,
which are part of modern functional programming languages for many years,
no fancy type extension are needed for this powerful methodology to implement
embedded domain-specific languages. Hence, we use this class–based architecture
to construct a DSL for microprocessors.

4 The mTask DSL

As outlined in the introduction we want to create a task-oriented programming
language to program microprocessors. In the long run, it should interoperate
smoothly with the iTask system, such that parts of an iTask application can run
on a microprocessor.

Due to the small amount of memory on a microprocessor (e.g., 2KB RAM
on an Arduino UNO), it is impossible to port the entire iTask system to micro-
processors. A typical iTask program requires 100MB of heap space. To run a
task-based program in the limited memory of a microprocessor we reject the
heap. Hence, we cannot have lazy evaluation and standard higher-order func-
tions. Transforming higher-order functions to first order functions by defunc-
tionalization introduces too many new functions for the limited flash memory
available. Hence, we restrict our language to first order functions. We obtain a
first order, strict language. This strictness matches very well with the imperative
nature of controlling the input/output ports of the microprocessor.

The examples in Sect. 2 use shares to store state information. In our DSL
this information is stored in a state that is passed around in a monadic style.
Program specific fields of the state are defined by need.

Our DSL should be equipped with the possibility to define recursive func-
tions. These functions will be used to express repetition. The functions also
enable abstraction and code reuse.

The actions of the program can be grouped into tasks. These tasks are param-
eterized, just like functions, to tune their actions. Unlike functions, tasks are not
executed immediately when they are encountered during program execution,
but somewhere in the future. It is perfectly possible to schedule different tasks
or multiple instances of the same task for future execution. Since we have no
heap the current program cannot wait for the result of an invoked task. Task
invocation immediately returns a value of type Task.

Instead of the functions setup and loop, our programs execute a single main

expression. After executing the main expression, the system repeatedly takes
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a task from the pool of scheduled tasks and executes it. Executing a task can
initiate any number of new tasks.

The Arduino examples above show that it is very common to wait for some
time in programs interacting with their environment. To facilitate this, every
task definition specifies a custom delay. The task will not be executed before the
given time is passed. Whenever it is necessary, the actual task invocation can
have a customized delay.

The DSL is defined by a set of type classes. The functions in the classes
define the allowed constructs in the mTask language. There is one instance of
these classes for each view of the DSL. In this paper, we will use code generation
and translation to the host language Clean as views. This can be extended with
views like pretty printing and partial evaluation.

4.1 Expressions

The basic class of our DSL is arith. It contains a function lit to lift a constant
from the host language to mTask, and some basic operations. Like any class in
the DSL, arith is based on a type constructor type v t p, where v is the view, t
is the type of the mTask construct, and p indicates whether the expression is an
updatable position, an arbitrary expression or a statement.

class arith v where
lit :: t → v t Expr | toCode t
(+.) i n f i x l 6 :: (v t p) (v t q) → v t Expr

| type , + t & isExpr p & isExpr q
(-.) i n f i x l 6 :: (v t p) (v t q) → v t Expr

| type , - t & isExpr p & isExpr q
(*.) i n f i x l 7 :: (v t p) (v t q) → v t Expr

| type , * t & isExpr p & isExpr q
(/.) i n f i x l 7 :: (v t p) (v t q) → v t Expr

| type , / t & isExpr p & isExpr q

The names of these operators are slightly different from the usual operator names
in Clean. Since the types are different from the usual operators we cannot use
instances of these operators. We do not redefine the operators in Clean since they
coexist in programs with embedded DSL components. By convention, we add a
dot to the operator name. The class restrictions toCode t and type t guarantee
that we can only lift types that can become code to the DSL level, and use DSL
type of arguments for the operators respectively. Currently there are instances
of toCode for the basic types and String. There are instances of the basic types
for type. The class restriction to the corresponding operator in Clean guarantees
that we can apply the corresponding operator in the DSL simulator.

These class members yield an expression of type Expr. The mTask language has
three kinds of constructs: updatable state elements, expressions, and statements.
These kinds are identified by single constructor types.

:: Update = Update
:: Expr = Expr
:: Stmt = Stmt
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The difference between expressions and statements is guided by the generated
code. The arguments of the binary operations should be compilable to expression
instead of statements. This implies that only updatable elements and expressions
are allowed. This is checked at compile time by the class isExpr. The function
isExpr is never used, its only purpose is to guarantee the contents restriction.

class isExpr a :: a → Int
instance isExpr Update where isExpr _ = 0
instance isExpr Expr where isExpr _ = 1

The class boolExpr contains the Boolean operators, the overloaded equality
and comparison operators. The new class shows that the DSL is extendable.
More operators can be added by need without changing existing code.

class boolExpr v where
(&.) i n f i x r 3 :: (v Bool p) (v Bool q) → v Bool Expr

| isExpr p & isExpr q
(|.) i n f i x r 2 :: (v Bool p) (v Bool q) → v Bool Expr

| isExpr p & isExpr q
Not :: (v Bool p) → v Bool Expr | isExpr p
(==.) i n f i x 4 :: (v a p) (v a q) → v Bool Expr

| == , type a & isExpr p & isExpr q
(!=.) i n f i x 4 :: (v a p) (v a q) → v Bool Expr

| == , type a & isExpr p & isExpr q
(<.) i n f i x 4 :: (v a p) (v a q) → v Bool Expr

| Ord , type a & isExpr p & isExpr q
(>.) i n f i x 4 :: (v a p) (v a q) → v Bool Expr

| Ord , type a & isExpr p & isExpr q
(≤.) i n f i x 4 :: (v a p) (v a q) → v Bool Expr

| Ord , type a & isExpr p & isExpr q
(≥.) i n f i x 4 :: (v a p) (v a q) → v Bool Expr

| Ord , type a & isExpr p & isExpr q

4.2 Arduino Data Types

The Arduino programming language comes with a rich set of basic data types.
Characters and Booleans nicely match the corresponding data types in our host
language Clean. There are only some minor syntax differences that are handled
by the class toCode that transforms values to their string representation.

Integers on the Arduino come in various sizes: byte of 8 bits, int of 16 bits,
and long of 32 bits. These types come in a signed as well as in an unsigned
variant. In our DSL we will use the Clean type Int as the representation of the
default type int of the Arduino. Currently, we ignore differences due to overflow
on the Arduino and in the simulation view. In addition, we introduce a type Long

to mimic the 32-bit integers of the Arduino.

:: Long = L Int

To use this type in both views of our DSL we define instances of the arithmetic
operations for this type. Some typical examples are:
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instance + Long where (+) (L x) (L y) = L (x + y)
instance one Long where one = L one

For the conversion of ordinary integers to longs we define the class long.

class long v t :: (v t p) → v Long Expr | isExpr p

The inverse transformation from long to int looses information and is hence much
less used. For the sake of compactness, we restrict ourselves here to the types
Int and Long and the single transformation long. More types and conversions can
be added in the same style. Using functional dependencies it is possible to use
the arithmetic operations of a class like arith with mixed integer representations
[23]. In the Arduino C++ version this mixed used of integer representations and
the implicit insertion of the required conversions is hard-wired into the language.

Similar representation issues apply for the floating-point numbers and more
complex native types like strings and arrays. Currently, the basic type Real of
the host language is used as the type of floating-point numbers in our DSL.
Whenever the need for various representations arises, they will be introduced
similar to the various types for integers. Note that also these changes of the DSL
are incremental, there is no need to change existing views.

4.3 Conditionals

The class If contains only the conditional expression of the DSL. The If has
a DSL expression of the Bool as argument and two DSL expressions of type t.
Any expression/statement type for the last two arguments is allowed. The result
is a DSL component of type t. Whether the conditional yields an expression
or a statement is determined by the kind of the argument using a functional
dependency. The ~s indicates that this class variable is dependent on the other
class variables. There is also an infix conditional that has only a then part. It is
a statement with a void result ().

class If v q r ~s where
If :: (v Bool p) (v t q) (v t r) → v t s | isExpr p

class IF v where
(?) i n f i x 1 :: (v Bool p) (v t q) → v () Stmt | isExpr p

4.4 Shared Data Sources

As outlined above, it is necessary to have user-defined fields in the state that
passed around. In an imperative language adding a field to the state is just a
variable definition. For small embedded systems defining variables in the DSL is
quite convenient, but it is not required by our approach to constructing DSLs at
all. In the mTask system, we use a shared data source, SDS, for the communica-
tion between tasks. This way of task communication is directly copied from the
iTask system. Since the mTask system uses strict evaluation, the state containing
these shares can be implicitly passed around. There is no need for a state monad
to obtain referential transparency. Although the shares are intended for task
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communication, they can also be used to store parts of the state of individual
tasks. Using task arguments is the preferred functional approach, but the shares
can be used as ordinary variables.

Shares in mTask can be introduced by the class sds. The first argument is the
initial value of the share. This value determines the type of the share. The second
argument is a function that takes the share in the current view as argument and
yields an arbitrary construct in the DSL. The introduced share can be updated
as indicated by the kind Update. There is also a con to define constants. Its kind
is Expr instead of Update to indicate that a constant cannot be updated.

class sds v where
sds :: t ((v t Update)→(Main (v c s))) → (Main (v c s)) | type t
con :: t ((v t Expr) →(Main (v c s))) → (Main (v c s)) | type t

The type Main packs a value in a record. It is defined as:

:: Main a = { main :: a }

unMain :: (Main a) → a
unMain m = m.main

Its only purpose is to make the main expression of mTask programs recognizable
by the type system. The use of a record provides the desirable curly braces.
shares are introduced by a function. The argument represents the share in the
DSL program. Its type v t Update ensures that it is used only in a well-typed
manner. There is no other way to specify shares; hence, all shares in the DSL
are properly defined.

We can assign a new value to such a share in the DSL by the class assign.
The first argument is the share that is required to be updatable by Update. It is
required that the new value given by the second argument has the same type t

as the share.

class assign v where
(=.) i n f i x r 2 :: (v t Update) (v t p) → v t Expr | type t

A minimal example is:

e1 =
sds 6 λx.
{main =

x =. x *. lit 7
}

Here we define a share with the name x. Its initial value is 6. This program
assigns the value x multiplied by 7 to this share.

We omit the types of our example programs in mTask. The host language
compiler is perfectly capable to derive these types. In the current example this
is v Int Expr | arith & sds & assign v. For larger examples, there is generally
a long list of class restrictions. This list contains all classes that contain mTask
constructs used in the example.



302 P. Koopman and R. Plasmeijer

4.5 Monadic Bind

There is a monadic bind operator, >>= ., in mTask. In the variant : . the second
argument does not need the result of the first argument. This is just the semicolon
from imperative programming, or the sequence operator >>.

class bind v where
(>>= .) i n f i x r 0 :: (v t p) ((v t Expr) → (v u q)) → v u Stmt

| type t & type u
( : . ) i n f i x r 0 :: (v t p) (v u q) → v u Stmt | type t & type u

There is no explicit return, all results are implicit returns. See Sect. 4.9 for the
first example.

4.6 Input–Output Pins

A distinguished property of microprocessor programming is the direct access to
the input and output pins of the microprocessor. Often this access will be done
by the library controlling the shields stacked on the Arduino, or connected to
the microprocessor. In simple situations, like the control of a LED or relay, the
pins are usually directly controlled by the user program. To this end, we define
some data types and classes.

The input–output pins of the Arduino come into two flavours. The digital
pins are either low or high, represented as false or true. An Arduino Uno has 14
of these pins. Each of these pins can be used as input or output. The 6 analogue
pins contain a 10-bit analogue to digital converter. Any input voltage between
0 and 5V is mapped to an integer between 0 and 1023. Writing an integer value
between 0 and 255 to these pins results in a pulse width modulated, PWM,
output signal. This is a steady square wave output signal with the specified duty
cycle. It can be used to vary the brightness of a LED or speed of a motor without
generating heat in the microprocessor of the attached motor driver. By quickly
switching the digital pins on and off we can achieve a similar PWM output
effect on any output pin. There are special libraries implementing conveniently
the generation of PWM signals on arbitrary output pins. These libraries use the
native Arduino timers instead of a simple loop with blocking delays.

We can indicate the pins by an integer pin number. This simple scheme has
as drawback that the integers can also indicate non-existing pins. To prevent
this we have created enumeration types for the digital and analogue pins. The
number of pins is tailor-made for the Arduino Uno, but can easily be changed for
any other microprocessor. The PinMode indicates either input, output, or input
where an unconnected pin is connected internally to positive power voltage,
INPUT_PULLUP, by a pull-up resistor.

:: DigitalPin
= D0 | D1 | D2 | D3 | D4 | D5 |D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13

:: AnalogPin = A0 | A1 | A2 | A3 | A4 | A5
:: PinMode = INPUT | OUTPUT | INPUT_PULLUP
:: Pin = Digital DigitalPin | Analog AnalogPin
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The class pin can be used to convert any pin to the unified Pin type.

class pin p | type , == p where
pin :: p → Pin

instance pin DigitalPin where pin p = Digital p
instance pin AnalogPin where pin p = Analog p

With these primitives, we can make classed to set the mode of any pin, to read
and write digitally to any pin, and set the described input and output to the
analogue pins.

class pinMode v where
pinmode :: p PinMode → v () Expr | pin p

class digitalIO v where
digitalRead :: p → v Bool Expr | pin , readPinD p
digitalWrite :: p (v Bool q) → v Bool Expr | pin , writePinD p

class analogIO v where
analogRead :: AnalogPin → v Int Expr
analogWrite :: AnalogPin (v Int p) → v Int Expr

Instead of digitalWrite and analogWrite it would be possible to use a variant
of the assignment operator for these output actions, or state changes. We have
chosen for the current architecture to stay close to the Arduino C++ primitives
and to avoid overloading of the assignment operator.

4.7 Shield Control

To lift the C++ classes controlling a shield to mTask we introduce a class contain-
ing the shield manipulations in the host language. As an example, we show how
to control an LCD. The LCD object is created by liquidCrystal. This object is
introduced very similar to shares. The manipulation functions take this object as
its first argument. Hence, they always act on a properly defined LCD object. In
contrast to the plain Arduino constructor, this constructor takes the size of the
display as an argument. This eliminates the need for a method call begin with
this size as argument in the main expression. The other arguments correspond
one-to-one with the arguments of the methods in the C++ class.

class lcd v where
print :: (v LCD Expr) (v t p) → v Int Expr|stringQuotes t
setCursor :: (v LCD Expr) (v Int p) (v Int q) → v () Expr
scrollLeft :: (v LCD Expr) → v () Expr
scrollRight :: (v LCD Expr) → v () Expr
liquidCrystal ::

Int Int [DigitalPin ] ((v LCD Expr)→Main (v b q))→Main (v b q)

Example 1. Hello world
The program that prints a message on a 16× 2 LCD looks like:

helloLCD =
liquidCrystal 16 2 [ ] λlcd.
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{main =
print lcd (lit "Hello world")

}

The list of digital pins in the argument of the constructor specifies to which pins
the LCD is connected. An empty list is automatically converted to the most
common list of pins.

In the same style we add a servo-control class.

:: Servo = {pin :: String , pos :: Int }

class servo v where
attachS :: (v Servo q) (v p r)→v () Expr|pin p & isExpr r
writeS :: (v Servo q) (v Int q) → v () Expr
servo :: ((v Servo p)→(Main (v t q))) → (Main (v t q))

There are embeddings for the classes Serial, and newPing in the same fashion.
Other classes from the large collection of available libraries are added to mTask
by need.

4.8 Function Definitions

Function definitions are implemented similarly to shares. The main difference
is that the function introducing the function name needs two arguments: the
function body and the main expression. These elements are grouped by the infix
constructor def In main of type In def main. The function body needs the name
of the function in recursive functions. The function body itself is a function in the
host language taking the function arguments in the host language as arguments.
The class for function definitions in mTask is:

class fun v t where
fun :: ((t→v s Expr)→In (t→v s p) (Main (v u q))) → Main (v u q)

| type s

:: In def main = In i n f i x 0 def main

Note that this class has two class arguments; the familiar view v and the type of
the function argument t. By making the type of the function argument a type
class argument, we can control the function arguments allowed in mTask, and
create the desired instances of the function definition. Moreover, the type of the
argument of the mTask function is available in Clean. Below we will see that this
type is required in the views.

Example 2. Factorial Function
Using these definitions we can define the famous factorial function and the

main expression applying it to 5 as:

e2 =
fun

λfac.(\n.If (n ≤. One) One (n *. fac (n -. One)))
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In
{main =

fac (lit 5)
}

One :: v Int Expr | arith v
One = lit 1

Currently, there are instances of the class fun allowing basic types, i.e. instances
of the class type, and tuples with zero, two, three and four of these types as
arguments. Since there is no instance of type for functions the type system of
Clean prevents higher order functions in mTask programs.

4.9 Task Definitions

Task definitions are very similar to function definitions. The result of such a task
is of type Task instead of an instance of type. Remember that the operational
semantics of a task is different than of a function. Functions are evaluated imme-
diately in our imperative DSL. Tasks are evaluated somewhere in the future. The
additional integer argument in task definitions is the minimal delay in millisec-
onds between task invocation and actual task execution.

class mtask v a where
task :: Int ((a→v MTask Expr)→In (a→v u p) (Main (v t q)))

→ Main (v t q) | type t & type u

Example 3. Blinking Task
The task blink switches the LED on digital pin 13 every 500ms. The argu-

ment b of the task indicates the new state of the LED. The main expression
makes pin D13 an output and starts the blink task.

blink =
task 500 λblink.

(λb. digitalWrite D13 b : .
blink (Not b)) In

{main =
pinmode D13 OUTPUT : .
blink (lit True)

}

This example illustrates that, in contrast to the Arduino loop (), tasks are not
repeated by default. When repetition is needed, a task can call any number of
tasks in its body. Here, the task blink is called with the inverted Boolean value.
Tasks can have the same type of arguments as functions.

The type MTask is different from the ordinary type Task a in the iTask sys-
tem. Since these types coexist in programs, like the simulator in Sect. 6, we use
different names. In our DSL the type MTask just carries the information needed
by the simulator described in Sect. 6. This happens to be just the index in the
list of task invocations. Hence, we define:
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:: MTask = MTask Int

Tasks have a default delay. This delay can be zero, but in many situations
it is required to wait some time. For instance, the program has to wait until a
signal becomes stable, to wait until the system can switch to the next state, and
so on. Sometimes it is useful to change the default delay to a specific value in
an individual invocation. This can be done with the function setDelay.

class setDelay v where
setDelay :: (v Long p) (v MTask Expr) → (v MTask Expr) | isExpr p

Since MTask is not an instance of type, it is not possible to store task-ids in the
state. We have designed mTask such that the delay can only be set during the
creation an instance if the task.

Example 4. Clock with multiple instances of a task
The clock example shows that it is perfectly possible to have multiple

instances of the same task. Here the same task is used to update hours, minutes
and seconds. The different delays and position are arguments of the task.

clock =
liquidCrystal 16 2 [ ] λlcd.
fun λprintWithZero.

(\n. n <. lit 10 ? print lcd Zero : . print lcd n) In
task 0 \tick.

(λ(n , max , pos , delay).
setCursor lcd pos Zero : .
printWithZero n : .
setDelay (long delay *. lit (L 1000))

(tick (If (n ==. max -. One) Zero (n +. One) , max , pos , delay))
) In

{main =
print lcd (lit "00:00:00") : .
tick (lit 0, lit 24, lit 0, lit (60*60)) : .
tick (lit 0, lit 60, lit 3, lit 60) : .
tick (lit 0, lit 60, lit 6, lit 1)

}

4.10 Mutual Recursion

The scope of functions and tasks is determined by the scope of the functions
getting their name. Typically these are nameless functions with the rest of the
mTask program as a body. This implies that it is impossible to make mutual
recursive functions and tasks. By defining two of them in one go this limitation
can be circumvented.

class mtasks v a b where
tasks :: Int Int ((a→v MTask Expr , b→v MTask Expr)→

In (a→v t p , b→v u p) (Main (v s q))) → Main (v s q) | type s
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Example 5. Mutual Recursion
A simple mTask program that scrolls the text Hello World! back and forth

without using any state shares with two mutual recursive tasks is:

scroll =
liquidCrystal 16 2 [ ] λlcd.
tasks 400 600 λ(left , right).

(\n. If (n <. lit (~steps))
(right n)
(scrollLeft lcd : . left (n -. One))

,\n. If (n >. lit steps)
(left n)
(scrollRight lcd : . right (n +. One))

) In
{main =

print lcd (lit "Hello world!") : .
right Zero

}
where

steps = 10

The sonar example illustrates the use of the host language Clean as “macro”
language in the mTask DSL.

sonar maxDist =
liquidCrystal 16 2 [ ] λlcd.
servo λservo.
newPing trigPin echoPin (max maxDist 5) λsonar.
task 250 λping. (λ().

ping_cm sonar >>= . λdist.
printAt lcd Zero One dist : . print lcd (lit " cm ") : .
writeS servo (Limit minDegree maxDegree dist) : .
ping ()

) In
{main =

attachS servo servoPin : .
print lcd (lit "echo distance") : .
ping ()

}

trigPin = A1
echoPin = A2
servoPin = lit A5
minDegree = lit 10
maxDegree = lit 170

printAt :: (v LCD Expr) (v Int b) (v Int c) (v t e) → v Int Stmt
| lcd , bind v & stringQuotes t

printAt lcd x y z = setCursor lcd x y : . print lcd z
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Limit :: (v t p) (v t q) (v t r) → v t s
| boolExpr v & Ord , toCode t
& isExpr p & isExpr q & isExpr u & isExpr r & If v p r u & If v u q s

Limit low up x = Min (Max x low) up

Min :: (v t p) (v t q) → v t r
| boolExpr v & Ord , toCode t & isExpr p & isExpr q & If v p q r

Min x y = If (x <. y) x y

Max :: (v t p) (v t q) → v t r
| boolExpr v & Ord , toCode t & isExpr p & isExpr q & If v q p r

Max x y = If (x <. y) y x

Fortunately, the elaborated types of the auxiliary DSL definitions printAt, Limit,
Min, and Max are derived by the host language compiler. It is not necessary to
write these types manually.

This concludes our description of the language mTask. There are few other
classes in our DSL containing additional operators and convenience definitions.
Due to the architecture that builds the language as a set of classes, it is easy to
add classes without influencing the existing code.

4.11 Examples

To illustrate task-oriented programming on microprocessors we present a few
additional examples. The program demo1 shows that it is very well possible to
have related as well as unrelated tasks running concurrently on a microproces-
sor. In the Arduino examples of Sect. 2 this is problematic since the programs
contain explicit delay statements. When we simply combine the setup and loop

functions of several programs these delays add up to a long delay in the loop.
The timing of the various components changes much more as necessary based
on pure processing time. Our setup with minimum waiting times does not suffer
from this problem.

Example 6. Clock
In this example, there are three instances of the task tick implementing a

clock similar to the one presented above. The task tick invokes itself recursively
with the appropriate delay passed as parameter. In addition, there is un uncou-
pled task swing that swings the position of a servo repeatedly from a minimum
number of degrees to the maximum and back. When the servo turns it invokes a
task count that counts the number of turns and displays it on the same LCD as
the clock. The task count uses the share turns to count the number of turns.

demo1 =
liquidCrystal 16 2 [ ] λlcd.
task 0 \tick.

(λ(n , max , pos , delay).
setCursor lcd pos Zero : .
n <. lit 10 ? print lcd Zero : .
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print lcd n : .
setDelay (long delay *. lit (L 1000))

(tick (If (n ==. max -. One) Zero (n +. One) , max , pos , delay))
) In

sds 0 \turns.
task 0 λcount.

(λ().
turns =. turns +. One : .
setCursor lcd Zero One : .
print lcd turns

) In

servo λservo.
task 100 λswing.
(λ(pos , step).
step +. pos >>= . \new.
If (new <. minDegree |. new >. maxDegree)

(swing (pos , Zero -. step) : .
count ())

(writeS servo new : .
swing (new , step))

) In
{main =

print lcd (lit "00:00:00") : .
tick (lit 0, lit 24, lit 0, lit (60*60)) : .
tick (lit 0, lit 60, lit 3, lit 60) : .
tick (lit 0, lit 60, lit 6, lit 1) : .
attachS servo servoPin : .
swing (lit 90, One)

}

In this example the task count is started every now and then by the task swing,
but apart from that there is no task communication.

Example 7. Servo Sweep
The next example shows that it is very well possible to have communicating

tasks. The task sweep repeatedly increments the share pos by step and sets the
servo position to this number of degrees. The task turn turns the direction of this
sweep ever 25 s by inverting the value of the share step. Finally, there is a task key

that repeatedly checks whether a key of the LCD-shield is pressed. Whenever
a key is pressed the input voltage on pin A0 drops below 5v. Hence, the AD
converter will produce a number below 1023 when we execute an analogRead. Here
the value 900 is used as the threshold to prevent that small voltage fluctuation
might accidentally trigger an action. When pressing a key is detected the position
and direction of the servo are reset to their initial position by changing the shares.
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demo2 =
sds 1 λstep.
task 25000 \turn.
(λ().

step =. Zero -. step : .
turn ()

) In

sds initPos λpos.
task 500 λkey.
(λ().

analogRead A0 <. lit 900 ? (pos =. lit initPos : . step =. One) : .
key ()

) In

servo λservo.
task 250 λsweep.
(λ().

pos =. pos +. step : .
writeS servo pos : .
sweep ()

) In
{main =

attachS servo servoPin : .
key () : .
turn () : .
sweep ()

}
where

initPos = 30

Example 8. Displaying Temperature and Humidity
One of the many ways to measure the temperature with an Arduino is by

using one of the DHT sensors. The DHT11 is a relatively cheap sensor for mea-
suring temperature and humidity [8]. The DHT22 is similar to the DHT11 but
has greater accuracy. Both sensors have a (different) single-wire digital serial
interface. Apart from the power and ground connections, only one single wire is
used for the digital communication between the sensor and the microprocessor.
This communication is handled by a library offering a tailor-made C++ class.
We will use the DHT-sensor-library from Adafruit [1]. The embedding of this
library is very similar to the library for liquid crystal displays:

class dht v where
dht :: p DHTtype ((v DHT Expr)→Main (v b q)) → Main (v b q) | pin p
temperature :: (v DHT Expr) → v Real Expr
humidity :: (v DHT Expr) → v Real Expr

:: DHTtype = DHT11 | DHT21 | DHT22
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In this example we create a dht object handling the sensor and an lcd object
handling the 1602 LCD. There is a single task that reads and displays every
second the temperature and the humidity.

displayTemp =
dht A1 DHT11 λdht =
liquidCrystal 16 2 [ ] λlcd =
task 1000 \t = (λ().

printAt lcd Zero Zero (lit "Temp ") : .
print lcd (temperature dht) : .
print lcd (lit " C") : .
printAt lcd Zero One (lit "Humidity ") : .
print lcd (humidity dht) : .
print lcd (lit "% ") : .
t ()

) In
{main = t Zero ()}

Example 9. Thermostat
Based on this DHT11 temperature sensor we construct a simple thermostat.

Just like the previous example, there is a dht and an lcd object controlling
the sensor and the display respectively. There is a share goal for the target
temperature. The task temp just measures and displays the temperature every
second. The task keys checks every 250ms if the up-key or the down-key is
pressed. When a key is pressed, the goal temperature is adjusted accordingly.
The task control compares the actual temperature with the goal temperature
and switches the heating whenever desired. The Boolean argument of this task
is the current state of the heating system controlled by pin D13. When the state
changes, the task waits the corresponding minimum on or off time. Without a
state switch, the task is repeated every 500ms. Even when the control task is
blocked due to a recent state switch, the temp task adjusts the display and the
keys task updates the goal temperature at their own rate.

thermostat =
dht A1 DHT11 λdht =
liquidCrystal 16 2 [ ] λlcd =
sds λgoal = 20.0 In
task 1000 \temp = (λ(). // adjust current temperature on LCD

printAt lcd Zero Zero (lit "temp ") : .
print lcd (temperature dht) : .
temp ()) In

task 250 λkeys = (λ(). // adjust goal temperature and adjust display
IF (pressed upButton) (

goal =. goal +. step
) ((pressed downButton) ? (goal =. goal -. step)) : .
printAt lcd Zero One (lit "goal ") : .
print lcd goal : .
keys ()
) In
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task 500 λcontrol = (λon. // switch the heating whenever required
temperature dht >>= . \temp.
IF (goal >. temp &. Not on) (

digitalWrite D13 true : .
printAt lcd (lit 11) Zero (lit "On ") : .
setDelay minOnTime (control true)

) (IF (goal <. temp &. on) (
digitalWrite D13 false : .
printAt lcd (lit 11) Zero (lit "Off") : .
setDelay minOffTime (control false)

) (control on)
)

) In
{main =

temp () : .
keys () : .
control false

}
where

step = lit 0.5 // change in goal temperature when button is pressed
minOnTime = lit (L 60000) // 60 seconds
minOffTime = lit (L 90000) // 90 seconds

These examples show that we have achieved task-oriented programming of
microprocessors. Tasks are parameterized by their argument and have a user-
defined standard delay. It is perfectly possible for tasks to invoke each other
or call themselves recursively, they can even be mutually recursive. It is also
possible to execute several unrelated and related tasks simultaneously. In the
next section, we show that this can be implemented within a fixed amount of
memory. Whenever desired, tasks can be made so that they communicate via
custom defined shares.

4.12 Software Download

The software described in this paper is used in our research and education. The
system is actively maintained and developed. The current version can always
be found at https://gitlab.science.ru.nl/mlubbers/mTask. This site contains an
installation guide and explains how the system should be used. It is intended
to work on Windows, Linux as well as on Mac OS X. This version of the mTask
system works with the most recent version of the Clean system which is available
at https://clean.cs.ru.nl/Download_Clean.

5 The Code Generation View of mTask

The most important view of mTask generates code of DSL programs that can
be executed on a microprocessor. In this paper, we will generate C++ code
from the mTask constructs directly. Functions and expressions in our DSL will

https://gitlab.science.ru.nl/mlubbers/mTask
https://clean.cs.ru.nl/Download_Clean


Type-Safe Functions and Tasks in a Shallow Embedded DSL 313

be mapped rather directly to corresponding C++ constructs. This is a rather
extraordinary implementation route for functional programming languages. In
general, the need for heap manipulations, especially garbage collection, make
a direct translation of a functional language to C++ impractical. In mTask we
carefully avoided a heap due to memory size restrictions. The distinction between
Expr and Stmt ensures that all mTask expressions of kind Expr can be translated
to C++ expressions (without the need to introduce additional helper functions).
Since there are only first-order functions with proper names on the outermost
level, the functions of our DSL can be directly mapped to functions in C++.

This architecture comes with some clear advantages. (1) It is easier to gener-
ate C++ code than low-level machine code for a microprocessor. We profit from
all optimizations of the existing compiler from C++ to microprocessor code.
(2) The code generation is to a large extent microprocessor independent. The
Arduino system contains code generators for various microprocessors. (3) It is
obvious how the existing ecosystem of shields and associated C++ libraries can
be used in mTask. We just have to extend our DSL with a one-to-one mapping of
the relevant methods of the C++ class. The LCD library in Sect. 4.7 illustrates
this. (4) Whenever necessary C gives enough low-level control to implement
additional optimization in the future.

5.1 Data Type for Compilation

Any view v of our DSL requires two arguments: the type t and the kind k.
The data type Code uses neither of these arguments. This type contains just a
function changing the state, CODE, of the code generation. In this state we store
the actual code in four different flavours: functions, shares, code for the setup

function, and code for the loop function. In addition, it stores book-keeping fields
for generating fresh identifiers for names in the generated code, the appropriate
indentation in the various contexts, the kind of code currently generated in def,
and the mode whether we need to decorate the code with a return or a semicolon.

:: Code t k = C (CODE → CODE)
:: CODE =

{ fresh :: Int // to generate id’s
, freshTask :: Int // to generate task id’s
, funs :: [String ] // code for functions
, ifuns :: Int // indentation for functions
, sdss :: [String ] // code for shares
, isdss :: Int // indentations for shares
, setup :: [String ] // code for setup() function
, isetup :: Int // indentation in setup()
, loop :: [String ] // code for loop() function
, iloop :: Int // indentation foor loop()
, includes :: [String ] // names of included libraries
, def :: Def // definition switch: where the code goes in

this state
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, mode :: Mode // decoration mode of translation
}

:: Def = SDS | Fun | Setup | Loop
:: Mode = NoReturn | Return String | SubExp | Assign String

There is a set of manipulation functions. For instance, the function c adds code
to the current definition, and the operator +.+ composes two code generation
functions.

c :: a → Code b p | toCode a
c a = C λc.case c.def of

Fun = {c & funs = [toCode a: c.funs ]}
SDS = {c & sdss = [toCode a: c.sdss ]}
Setup = {c & setup = [toCode a: c.setup ]}
Loop = {c & loop = [toCode a: c.loop ]}

(+.+) i n f i x l 5 :: (Code a p) (Code b q) → Code c r
(+.+) (C f) (C g) = C (g o f)

The mode of the code-state controls the generation of embedding C++ keywords
like return and the semicolon. Subexpressions do not need any embedding. As
everywhere else, the definition switch of the code state controls to what part of
the code the output goes.

embed :: (Code a p) → Code a p
embed e =

getMode λm. case m of
NoReturn = setMode SubExp +.+ e +.+ c ";"

Return t = c "return " +.+ setMode SubExp +.+ e +.+ c ";"
Assign s = c (s+" = ") +.+ setMode SubExp +.+ e +.+ c ";"
SubExp = e

The actual compilation applies the code generation function to the initial CODE

state and composes all code strings in the right order. The simplified version
without predefined shares and the loop function reads like:

compile :: (Main (Code a p)) → [String ]
compile {main=(C f)} =

reverse c.sdss ++
reverse c.funs ++
["void setup () {\n"
," Serial.begin(9600);\n"
:reverse c.setup
] ++ ["\n}\n" ]

where c = f newCode

The actual compile function is about 90 lines long and listed in Appendix A.

5.2 Code Generation for Expressions

These preparations enable code generation for expressions as:
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instance arith Code where
lit a = embed (c a)
(+.) x y = codeOp2 x " + " y
(-.) x y = codeOp2 x " - " y
(*.) x y = codeOp2 x " * " y
(/.) x y = codeOp2 x " / " y

codeOp2 :: (Code a p) String (Code b q) → Code c r
codeOp2 x n y = embed (brac (x +.+ c n +.+ y))

brac :: (Code a p) → Code b q
brac e = c "(" +.+ e +.+ c ")"

The code generation for the operators from the class BoolExpr is very similar and
omitted for brevity.

5.3 Code Generation for Arduino Data Types

The Arduino code does all the hard work. When a 16-bit integer has to be
transformed to a 32-bit version, we insert long. Transforming a Long to a Long

done by the identity function, an efficient implementation requires no generated
code at all.

instance long Code Int where
long x = embed (c "long" +.+ brac x)

instance long Code Long where
long x = embed (toE x)

The auxiliary class toE ensures that the kind of the result is an expression. For
expressions, this is just the identity function. For shares that all have kind Update,
the kind is replaced by Expr:

class toE v :: (v t p) → v t Expr | isExpr p

instance toE Code where toE (C c) = C c

For the simulation view, we have a similar instance of this class.
There is a class toCode that transforms basic values to their representation

in the Arduino variant of C++. For integers, this is just the accompanying
toString instance. For Booleans, we have to take care of the lowercase in the
constant name. For a Long we add the letter L to the end of the integer value.

class toCode a :: a → String

instance toCode Int where toCode a = toString a
instance toCode Bool where toCode b = i f b "true" "false"
instance toCode Long where toCode (L i) = toCode i + "L"

All other types are handled similarly.
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5.4 Code Generation for Conditionals

Code generation for conditionals distinguishes two situations. We generate a
conditional statement when one or more of the branches is a statement. Oth-
erwise, we generate the C++ conditional expression c ? t : e. The functional
dependency in the class definition ensures that the type entire conditional con-
struct has kind Stmt when one of the branches is a statement. When none of the
branches is a statement, the conditional itself is an expression.

instance If Code Stmt Stmt Stmt where If c t e = IfStm c t e
instance If Code e Stmt Stmt where If c t e = IfStm c t e
instance If Code Stmt e Stmt where If c t e = IfStm c t e
instance If Code x y Expr where If c t e = IfExp c t e

IfExp b t e =
embed (brac (b +.+ indent +.+ nl +.+ c " ? " +.+ t +.+ nl +.+

c " : " +.+ e +.+ unindent))

Code generation for a statement with IfStm is similar, but slightly bigger, to
code generation for expressions.

IfStmt b t e =
getMode λmode.

let
sds = sdsName t
newMode =

case mode of
Return s = Return s
_ = i f (sds == "") NoReturn (Assign sds)

in
setMode SubExp +.+
c "if " +.+ brac b +.+ c " {" +.+

indent +.+ nl +.+ setMode newMode +.+ t +.+ unindent +.+ nl +.+
c "} else {" +.+ indent +.+ nl +.+ setMode newMode +.+ e +.+
unindent +.+ nl +.+ c "}" +.+ setMode mode +.+

case newMode of
Assign _ = embed (c sds) // return value only if newMode = Assign
_ = C id

5.5 Code Generation for Share Definitions

For share and constant definitions, we generate exactly the same code. The
difference between those definitions in mTask is made due to the kind argument
by the type system of the host language. It is possible to add the keyword
const to generate C++ code of a constant definition, but this is not required.
The actual work is done by defCode. It generates a fresh share name, name. The
actual definition of a global variable is added to the share definition part of the
code. In the value embed name is used as actual value for applied occurrences of
this share in this view. This is achieved by supplying this value to the function
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f that produces the main expression. The code for main is directed towards the
body of the setup function.

instance sds Code where
sds v f = defCode v f
con v f = defCode v f

defCode :: t ((Code t p)→Main (Code u q)) → Main (Code u r) | type t
defCode v f =

{main = fresh \n.
let
name = c ("v" + toCode n)

in
setCode SDS +.+ c (type2string v + " ") +.+ name +.+
c (" = " + toCode v + ";\n") +.+
setCode Setup +.+ unMain (f (embed name))

}

Code generation for an assignment just generates the code for the share (gener-
ated by the share definition above), an equals sign and the code for the expres-
sion.

instance assign Code where
(=.) v e = embed (setMode SubExp +.+ v +.+ c " = " +.+ e)

For instance, for example e1 from Sect. 4.4 the following code is generated:

int v0 = 6;

void setup () {
v0 = (v0 ∗ 7);

}

5.6 Code Generation for the Monadic Bind

For a monadic bind, we define a constant to store the result of the first argument.
We use the name of this constant as an argument to the function on the right-
hand side. By design, the kind of the introduced identifier is Expr instead of
Update. This implies that it is not possible to update this identifier. In the code,
we generate a constant to hold the value of the lefthand-side of the bind operator,
if we would use the kind Update for the generated identifier, the variable would be
updatable. In the code generation, we have to juggle a little with modes to ensure
that a potential return goes to the second statement and the first statement gets
just a semicolon.

instance bind Code where
(>>= .) x f =
getMode λmode. fresh \n.

let
v = c ("b" + toCode n)
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in
sdsType x +.+ c " " +.+ setMode NoReturn +.+ v +.+
c " = " +.+ x +.+ nl +.+ setMode mode +.+ f (embed v)

( : . ) x y = getMode λmode. setMode NoReturn +.+ embed x +.+
nl +.+ setMode mode +.+ y

5.7 Code Generation for Input–Output Pins

We have chosen to have the digital and analogue pins as separate fields in the
evaluator state instead of ordinary values in the list of shares. Since there are
a small number of pins we can use a simple association list between pin names
and values. To keep the length of this list as short as possible in the GUI, we
only store values actually used. All other pins get a default value when they are
used.

Moreover, the read and write functions clearly distinguish whether we want
to read or write to a pin. This eliminates the need for a type like RW a which was
needed to distinguish the read and write contexts of the shares.

instance pinMode Eval where
pinmode p m = rtrn ()

instance digitalIO Eval where
digitalRead p = E λrw s=:{dpins , apins}.(readPinD p dpins apins , s)
digitalWrite p b = b >>== λa. E λrw s.(a , writePinD p a s)

instance analogIO Eval where
analogRead p = E λrw s=:{apins}. (readPinA p apins , s)
analogWrite p b = b >>== λa. E λrw s.(a , writePinA p a s)

Reading and writing of analog pins is defined by two simple helper functions.

readPinA :: AnalogPin [ (AnalogPin , Int ) ] → Int
readPinA p lista
= case [b \\ (q , b) ← lista | p == q ] of

[ ] = 0
[a:x ] = a

writePinA :: AnalogPin Int State → State
writePinA p x s
= {s & apins = [ (p , x): [ (q , y) \\ (q , y) ← s.apins | p �= q ] ]}

For the digital pins we need two classes to distinguish whether we are handling
an analog pin or a digital pin.

5.8 Code Generation for Shield Classes

The object definition goes to the share part. Its name is given to the function
generating the main expression. The manipulation functions take this name as
first argument and yields code calling the appropriate methods in C++.
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instance lcd Code where
begin v x y = embed (v +.+ c ".begin" +.+ codeOp2 x "," y)
print v x = embed (v +.+ c".print("+.+quotes x+.+c ")")
scrollLeft v = embed (v +.+ c ".scrollDisplayLeft()")
scrollRight v = embed (v +.+ c ".scrollDisplayRight()")
setCursor v x y = embed (v +.+ c ".setCursor" +.+ codeOp2 x "," y)
liquidCrystal x y [ ] f = liquidCrystal x y [D8 , D9 , D4 , D5 , D6 , D7 ] f
liquidCrystal x y pins f =

{main =
getCode λcd. fresh \n.
let
name = "lcd" + toString n
rest = f (c name)

in
include "LiquidCrystal" +.+
setCode SDS +.+

c ("LiquidCrystal " + name + "(" + argList pins + ");\n") +.+
setCode Setup +.+

c (name + ".begin(" + toCode x + "," + toCode y +");") +.+ nl +.+
setCode cd +.+

rest.main
}

5.9 Code Generation for Function Definitions

Our DSL is designed such that functions in mTask can be mapped directly to
functions in C++. We designed the class fun such that we have to make an
instance for every number of arguments allowed. Currently, we allow zero to
four arguments. As an example, we show the code generation for a two-argument
function. Based on a fresh number we generate names for the function, fname,
and its arguments, aname and bname. The class argTypes yields the types of the
arguments needed in the C++ function definition. Applied occurrences of the
function take a Clean tuple of mTask expressions as an argument. The nameless
function we supply as argument to f converts this to code for C++ arguments.
In the function section of the code, we generate the C++ version of our DSL
function. In the obtained function body g we use the generated formal arguments
as actual arguments.

instance fun Code (Code a p , Code b q) | type a & type b where
fun f =

{main =
getMode λmode. fresh \n.
let
fname = c ("f" + toCode n + " ")
aname = c ("a" + toCode n + " ")
bname = c ("b" + toCode n + " ")
(atype , btype) = argTypes f
(g In main) = f (λ(x ,y).embed (fname +.+ codeOp2 x ", " y))
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in setCode Fun +.+ nl +.+ resType f +.+ fname +.+
codeOp2 (atype +.+ aname) "," (btype +.+ bname) +.+
funBody (setMode (Return (toCode (resType2 f))) +.+

g (embed aname , embed bname)) +.+
setCode Setup +.+ setMode mode +.+ unMain main

}

For the mTask program

e22 =
con 6 λsix.
fun λf.(λ(a ,b).a +. One >>= . λx. x *. b) In
{ main = serialPrint (f (six , six)) }

our compiler generates:

int v0 = 6;

int f1 ( int a1 , int b1);{
int b2 = (a1 + 1);
return (b2 ∗ b1 ) ;

}

void setup () {
Serial .begin(9600);
Serial .print(f1 (v0 , v0 )) ;

}

5.10 Code Generation for Task Definitions

Although the definition of tasks is very similar to the definition of functions,
the operational behaviour is quite different. Functions are evaluated strictly by
compiling them directly to C++ functions. Tasks are scheduled for execution
somewhere in the future.

Executing task in the future is implemented by a small array, tasks, of task
activation records of C++ type Task. Each record contains the task-id (a small
number that fits in a byte), a waiting time in milliseconds, and an array con-
taining the arguments.

typedef union Arg { int i ; bool b ; char c ; word w;} ARG ;
typedef struct Task {byte id ; long wait ; ARG a [M_ARG ] ;}TASK ;

TASK tasks [MAX_TASKS ] ;

The generated loop() function scans this array of tasks. When the next task
in the array needs to wait before it may start, the task record is copied to the end
of the sequence of waiting tasks in a round-robin arrangement. When the waiting
time of the current task in the array has expired, the task body is executed. The
generated loop function contains a case construct to select the proper task body.
The task-id is used to find the appropriate code fragment.
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The compilation scheme for mtask is very similar to the one for fun. Since we
have also an mtasks class we distribute the code generation slightly different to
reuse more code.

instance mtask Code a | taskImp a & types a where
task i f =
{main =

freshTask \n.
let

(app , a) = taskImp n types
(b In main) = f (app i)

in
codeTaskBody (loopCode n (b a)) (unMain main)

}

The class taskImp generates the task application and the formal arguments of
the definition. A task application boils down to a call of newTask in the generated
code with appropriate task-id, waiting time, and arguments. The instance for a
two-argument task is:

class taskImp a :: Int a → (Int a→Code MTask Expr , a)

instance taskImp (Code a p , Code b q) where
taskImp n (type1 , type2) = (app , (ta1 , ta2)) where

ta1 = c "t0p→a[0]" +.+ type1
ta2 = c "t0p→a[1]" +.+ type2
app i (a1 , a2) =

embed (c "newTask(" +.+ c n +.+ c ", " +.+ c i +.+
c ", " +.+ a1 +.+ c ", " +.+ a2 +.+ c ", 0, 0)")

The loopCode generates the appropriate case in the switch statement for this
task. It just puts the code generated for the task body between a case and a
break.

loopCode :: Int (Code a b) → Code c d
loopCode n b =

nl +.+ c "case " +.+ c n +.+ c ": {" +.+ indent +.+ nl +.+
setMode NoReturn +.+ b +.+ nl +.+ c "break;" +.+
unindent +.+ nl +.+ c "} "

The function codeTaskBody ensures that the generated code goes to the right part
of the produced C++ program.

In order to delay task execution, we change the waiting time of a task invoca-
tion in the array tasks. The generated code invokes the C++ function setDelay

from our own library.

instance setDelay Code where
setDelay d t = embed (c "setDelay" +.+ brac (t +.+ c ", " +.+ d))

The C++ function to change a delay gets the task index in the array of tasks
and the new waiting time as arguments and updates the task record in the array
of tasks with the given waiting time.



322 P. Koopman and R. Plasmeijer

byte setDelay(byte t , long d) {
tasks [t ] . wait = d ;
return t ;

}

It would be better to set the desired waiting time directly in the C++ code. This
requires the transformation of the generated code setDelay(newTask(id , w1 , a0 ,
a1 , a2 , a3) , w2) by newTask(id , w2 , a0 , a1 , a2 , a3). This is beyond the capa-
bilities of our code generation view. In Sect. 7 we discuss optimizations that are
capable to achieve this kind of transformations.

The generated loop for the scroll example from Sect. 5 is:

void loop () {
i f (t0 != tn) {

i f (t0 == tc) { // update delta for a l l tasks
unsigned long time2 = millis () ;
delta = time2 − time ;
time = time2 ;
tc = tn ; // update delta at a new task

};
TASK∗ t0p = &tasks [t0 ] ;
t0p→wait −= delta ;
i f (t0p→wait > 0L) { // task has to wait longer?
newTask(t0p→id , t0p→wait , t0p→a [ 0 ] .w , t0p→a [ 1 ] .w ,

t0p→a [ 2 ] .w , t0p→a [ 3 ] .w ) ;
} else { // waiting is done: execute task

switch (t0p→id) { // select task
case 0: { // task l e f t

i f ((t0p→a [ 0 ] .i < −10)) {
newTask(1 , 600, t0p→a [ 0 ] .i , 0 , 0 , 0);

} else {
lcd0 .scrollDisplayLeft () ;
newTask(0 , 400, (t0p→a [ 0 ] .i − 1) , 0 , 0 , 0);

}
break ;

}
case 1: { // task right

i f ((t0p→a [ 0 ] .i > 10)) {
newTask(0 , 400, t0p→a [ 0 ] .i , 0 , 0 , 0);

} else {
lcd0 .scrollDisplayRight () ;
newTask(1 , 600, (t0p→a [ 0 ] .i + 1) , 0 , 0 , 0);

}
break ;

}
default :
t0 = tn ; // no known task : force termination
return ;

};
}
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t0 = NEXT_TASK(t0 ) ;
}

}

The somewhat peculiar way to decrement all waiting times of tasks with the
same delta ensures that all tasks that are created in main and all tasks started
in that expression stay in sync. This is used for instance in our clock example in
Sect. 4. When each task looks at the timer itself, we would get small deviations
in accumulated waiting times since the actual timer of the Arduino counts in
nanoseconds. Since tasks might consume an arbitrary amount of computation
time, we can only ensure that task will not start before the waiting time is
passed. When one task takes much computation time, the next task in the queue
is delayed.

After 50 days the timer in the Arduino hardware will overflow. The calcu-
lation of delta should be somewhat more sophisticated to prevent problems at
that moment.

6 The Simulation View

The next view translates mTask programs to plain Clean programs. This is very
useful in a simulation of mTask programs. Since it is hard to debug programs
running on an Arduino, simulation is an important tool to spot execution prob-
lems. In this section, we outline how to translate our DSL to the host language
and we indicate how this can be simulated with an iTask program.

6.1 Data Type for Simulation

Similar to the code view, the evaluation view is a state transformer. The state
in this view contains the relevant parts of the Arduino and the task queue. As
Arduino parts, we have the declared shares, an abstraction of the IO-pins, the
timer and the serial output.

:: State
{ mtasks :: [ (Int , State→State ) ] // delay and actual mtask
, store :: [Dyn ] // user defined fields
, dpins :: [ (DigitalPin , Bool ) ] // used digital pins
, apins :: [ (AnalogPin , Int ) ] // used analog pins
, serial :: [String ] // serial output
, millis :: Int // the milli seconds of the Arduino clock
}

The state transition takes a read/write value of type RW t as argument. This
value determines whether a share occurs in a read, R, or write context, W t. The
write context occurs on the left-hand side of assignments, everywhere else we
have the read context. The function F value is used to update objects in the
store.

:: Eval t p = E ((RW t) State → (t , State))
:: RW t = R | W t | F (t→t)
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For convenience we define a tailor-made monadic bind,>>==, and return, rtrn,
for Eval. Since the usual names>>=and return are used by the iTask system we
use slightly different names.

(>>==) i n f i x l 1 :: (Eval a p) (a→Eval b q) → Eval b r
(>>==) (E f) g = Eλr s.let (a ,t) = f R s in unEval (g a) R t

rtrn :: a → Eval a q
rtrn a = E λr s → (a , s)

yield :: t (Eval s p) → Eval t Expr // effect of rtrn in Expr
yield a (E f) = E λr s.(a , snd (f R s))

6.2 Evaluating Expressions

The evaluation view of expression computes their value in the context of the
monad introduced above.

instance arith Eval where
lit a = rtrn a
(+.) x y = x >>== λa. y >>== λb. rtrn (a + b)
(-.) x y = x >>== λa. y >>== λb. rtrn (a - b)
(*.) x y = x >>== λa. y >>== λb. rtrn (a * b)
(/.) x y = x >>== λa. y >>== λb. rtrn (a / b)

6.3 Evaluation of Arduino Data Types

We have designed the DSL such that the types in the DSL match the types of
the host language. This implies that no actions are required for the simulation
of those data types.

The explicit type conversion to long integers is the only exception. Since these
operations are part of our DSL, we need to provide an instance for their simula-
tion. For ordinary integers this is just a type conversion from Int to Long. Long
integers are already of the desired type, the code generator does not produce
anything at all.

instance long Eval Int where
long x = x >>== rtrn o L

instance long Eval Long where
long x = toE x

6.4 Evaluation of Conditionals

The evaluation of conditionals starts with the usual computation of the value
of the condition in the monad. Based on the value of the condition either the
then-branch or the else-branch will be chosen. For the operator ? there is no
else-branch, we just return void if the condition evaluates to False. The toExpr

in the If is necessary to ensure that the kind of the result is an expression.
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instance If Eval p q Expr where
If c t e = c >>== λb.if b (toExpr t) (toExpr e)

instance IF Eval where
IF c t e = c >>== λb.if b (yield () t) (yield () e)
(?) c t = c >>== λb.if b (yield () t) (rtrn ())

toExpr :: (Eval t p) → (Eval t Expr)
toExpr (E f) = E f

6.5 Evaluation of Share Definitions

A share becomes an element in the list store. Since we have different type of
share (e.g. Int and Bool), we store a dynamic representation of these values,
a list of strings, instead of the values themselves. The element number in this
list becomes the share identifier. Each applied occurrence of the identifier v is
replaced by a piece of code that reads the value of store element n, refer n, form
the value store. The value n is the position of the next share at the end of the
store. The number n of the next share is computed by length s.store.

instance sds Eval where
sds v f = defEval v f
con v f = defEval v f

defEval v f =
{main =

E (λr s.(length s.store , {s & store = s.store ++ [toDyn v ]}))
>>== \n.unMain (f (E (refer n)))

}

The handling of shares in expressions is somewhat challenging. On the left-hand
side of an assignment, the share indicates the position to be updated. Any other
occurrence of a share indicates a read access of this position. In such expressions,
we want to write a plain share name, like x, instead of an explicit read operation,
like read x. This is realized by the argument RW t of the evaluation function.
This argument is nearly always R for reading. Only on the left-hand side of an
assignment, we replace it by W a to write value a. In an object update, for shields,
we replace the R by F f, where f the object update function is.

The function refer selects the appropriate element form the store. The read–
write context, of type RW t, indicates the desired action with this share: R read,
W a write value a, and F f apply function f to update the object:

refer :: Int (RW a) State → (a ,State) | dyn a
refer n R s = (fromJust (fromDyn (s.store !! n)) , s)
refer n (W a) s = (a , {s&store=updateAt n (toDyn a) s.store})
refer n (F f) s = (obj , {s & store = updateAt n (toDyn obj) s.store})
where obj = f (fromJust (fromDyn (s.store !! n)))

As outlined above, the read-write context RW a of shares is always read R, except
in an assignment. In an assignment we write the new value a with the read-write
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context W a. The new value is obtained by evaluating the expression e on the
right-hand side of the assignment.
instance assign Eval where

(=.) (E v) e = e >>== λa. E λr s.v (W a) s

This view of shares illustrates that the shares do respect the functional seman-
tics. Due to the strict evaluation order of mTask programs the handling of the
shares obeys referential transparency. The monad containing the values of the
shares is passed around implicitly, but give mTask programs the desired functional
semantics. This holds also for the class bind treated in the next subsection.

6.6 Evaluation of the Monadic Bind

The bind operators >>= . and : . are directly translated to the corresponding
operators in Clean.
instance bind Eval where

(>>= .) x f = x >>== f o rtrn
( : . ) x y = x >>== λ_. y

Since the values bound by these operators are constants in the mTask DSL,
there is no reason to introduce a share for them in the store (as we did in the
compilation view).

6.7 Evaluation of Input–Output Pins

The classes pinMode, digitalIO, and analogIO directly reflect the operations avail-
able in Arduino C++. Hence, code generation is very easy. The corresponding
functions in C++ are called directly.
instance pinMode Code where
pinmode p m =

embed (c ("pinMode(" + toCode p + ", " + consName{|�|} m + ")"))
instance digitalIO Code where
digitalRead p = embed (c ("digitalRead(" + toCode p + ")"))
digitalWrite p b =

embed (c ("digitalWrite(" + toCode p + ", ") +.+ b +.+ c ")")
instance analogIO Code where
analogRead p = embed (c ("analogRead(" + toCode p + ")"))
analogWrite p b =

embed (c ("analogWrite(" + toCode p + ", ") +.+ b +.+ c ")")

6.8 Evaluation of Shield Control

In the iTask system, the simulation of shields can be as fancy as one can imagine.
Here we present a very simple version where the objects controlling a shield are
elements in the store.

The servo definition adds the object to the store and yields the appropriate
selection function. The attach and write methods update the object in the store.
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instance servo Eval where
attachS (E v) x = x >>== λp.yield () (E λr.v (F λs.{s & pin = toCode p}))
writeS (E v) x = x >>== λp.yield () (E λr.v (F λs.{s & pos = p}))
servo f = defEval {pin = "" , pos = 0} f

In a similar way the liquidCrystal constructor of the class lcd adds a LCD
object to the store.

instance lcd Eval where
print (E v) x =

x >>== λa. let str = toCode a in
yield (size str) (E λr.v (F λlcd.lcdPrintStr str lcd))

setCursor (E v) x y =
x >>== λw.
y >>== λh.
yield () (E λr.v (F λlcd.{lcd & cursorRow = h , cursorCol = w}))

liquidCrystal w h pins f = defEval lcd f where
lcd =

{ cursorRow = 0
, cursorCol = 0
, sizeH = h
, sizeW = w
, lcdtxt = repeatn h (toString (repeatn w ' '))
}

6.9 Evaluation of Functions Definitions

Also functions are directly converted to functions in Clean:

instance fun Eval x | arg x where
fun f = e where (g In e) = f (λa.toExpr (g a))

6.10 Evaluation of Task Definitions

Task definitions are slightly more complicated since every invocation is stored
as State→State function with its delay d in a separate field in the state. The
function toS2S transforms an eval function to a plain state transformation.

instance mtask Eval x | arg x where
task d f = e where
(t In e) =
f (λa.Eλr s.(MTask (length s.mtasks)

,{s & mtasks = s.mtasks ++ [ (i , toS2S (t a))]}))

6.11 An mTask Simulator

The translation of a program in mTask by this view yields a state transformation
function in Clean. By construction, the tasks wait in the state to get evaluated.
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The function step collects the task from the state increments the time by the
smallest delay of these tasks and apply the tasks in their creation order. In
general, this will create new tasks. This step function has the same effect as
evaluating all currently available tasks in the generated loop of the compilation.

step :: State → State
step s =

foldr appTask {s & millis = s.millis + delta , mtasks = [ ]}
[ (w - delta , f) \\ (w , f) ← s.mtasks ]

where delta = foldl1 min (map fst s.mtasks) // smallest wait

A simple iTask program can be used as an interactive simulator for mTask
programs. This is very useful in the construction of mTask programs; in the sim-
ulator, we can execute the tasks step by step, inspect the store and outputs, and
manipulate the inputs of the system. In an actual microprocessor debugging is
very troublesome. We cannot inspect the state and we have limited control over
the input-output of the system. Producing trace information over the serial port
changes the timing of tasks and it can change the behaviour of the mTask pro-
gram. Controlling the inputs in time is often next to impossible. In the simulator,
all these desirable things can be done easily.

By a push of the loop button in the simulator, we apply the step function,
this executes a single step of all currently available tasks. New tasks, including
recursive calls of a task, are just collected instead of being directly executed.
The iTask defining the simulator is:

simulate :: (Main (Eval a p)) → Task ()
simulate {main=(E f)} = setup state0 where

setup s =
updateInformation "State" [ ] (toView s)
>>* [ OnAction ActionFinish (always shutDown)

, OnAction (Action "setup" [ ] ) (hasValue
(λsi.simloop (snd (f R (mergeView s si)))))

]
simloop s =

updateInformation "State" [ ] (toView s)
>>* [ OnAction ActionFinish (always shutDown)

, OnAction ActionNew (always (setup state0))
: i f (isEmpty s.mtasks)

[ ]
[OnAction (Action "loop" [ ] ) (hasValue
λsi.simloop (step (mergeView s si)))

]
]

In this simulator we used a type StateInterface and the conversion functions
toView :: State → StateInterface and mergeView :: State StateInterface →
State to obtain a nicer view of the machine state in the iTask simulation.
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:: StateInterface =
{ serialOut :: Display [String ]
, analogPins :: [ (AnalogPin , Int ) ]
, digitalPins :: [ (DigitalPin , Bool ) ]
, shares :: [DisplaySDS ]
, timer :: Int
, taskCount :: Display Int
}

A screenshot of this simulator executing the sweep program below is depicted
in Fig. 2. This program is using the serial port, the onboard LED, as well as a
servo.

sweep =
liquidCrystal 16 2 [ ] λlcd.
servo λs.
sds ((max - min) / 2) λpos.
sds 1 λstep.
task 50 \task.(λ().

pos =. pos +. step : .
lit max <. pos |. pos <. lit min ? step =. Zero -. step : .
writeS s pos : .
printAt lcd Zero Zero pos : .
print lcd (lit " ") : .
task ())

In {main =
serialPrint (lit "Hello World!") : .
serialPrint (lit "This is sweep.") : .
attachS s (lit A5) : .
task ()

}
where

max = 170
min = 10

Unfortunately, it is not possible to show the code of these tasks easily since
they are functions. In a better simulator, we would include a separate view to
display the code of the tasks. Then it makes also sense to execute the tasks one
by one, and even to execute tasks step by step.

This simulation of the Arduino is by design not accurate to the last bit.
For instance, we do not update the values of the input–output pins controlling
the shields, hence interferences of shields with other pin manipulations cannot
be detected in the simulator. The simulator also does not check whether the
memory of the actual microprocessor is capable of handling all actions, overflows
might happen unnoticed in the simulator. Nevertheless, the simulation is very
useful to observe and test the behaviour of mTask programs. Debugging any
program running on a microprocessor is cumbersome since the program to debug
is designed to occupy the whole machine. Changing the program to write trace
information to the serial port is often the simplest approach. There are libraries
and IDE extensions to facilitate this, e.g., [38]. Despite the mentioned limitations,
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Fig. 2. Screenshot of the simulation.

the simulation presented here provides an easy to use alternative. The simulator
provides information about the state and tasks to be executed at the abstraction
level of tasks instead of individual instructions and memory addresses of the
microprocessor.

7 Optimization

The given code generator and transformation to the host language Clean follow
the given definitions in the mTask very directly. Since Clean can be used as the
macro language of the mTask DSL this is often sufficient. In general, it is desirable
to make more sophisticated views that do transformations and optimizations of
the given DSL program.
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There are at least two approaches to consider: partial evaluation of mTask
programs to new mTask programs, and view-dependent optimizations. We will
briefly discuss both possibilities.

7.1 Partial Evaluation

Partial evaluation transforms a program to an equivalent program in the same
language that can be executed more efficiently [7,24]. Typical transformations
are the execution of computation that only depend on static information, like
arithmetic expressions of statically known constants.

In our approach, the basic steps are the definition of a data type PE that hold
potentially a compile-time value, Val t, as well as a language component in an
arbitrary view, v t p. The function pe performs partial evaluation. Whenever a
value x is known, it is produced by lit x. Otherwise, the given view is the result.

:: PE v t p = PE (Val t) (v t p)
:: Val t = Val t | NoVal

pe :: (PE v t p)→v t Expr|expr ,toE v & toCode t & isExpr p
pe (PE (Val x) v) = lit x
pe (PE _ v) = toE v

Producing partial evaluation of literals and addition is defined as:

instance arith (PE v) | toE , arith v where
lit a = PE (Val a) (lit a)
(+.) a=:(PE mx vx) b=:(PE my vy) =

case (mx , my) of
(Val x , Val y) = PE (Val (x + y)) (pe a +. pe b)
(Val x , _) | x == zero

= PE NoVal (pe b)
= PE NoVal (lit x +. pe b)

(_ , Val y) | y == zero
= PE NoVal (pe a)
= PE NoVal (pe a +. lit y)

(_ , _) = PE NoVal (pe a +. pe b)

The advantage of this approach is that an mTask expression in an arbitrary view
is generated. Each and every other view of the DSL can be optimized by this
transformation.

Since we have currently no plain view of mTask that yields a textual repre-
sentation of DSL programs, we can only observe the effect of partial evaluation
indirectly (for instance in the generated code). As a tiny example we partially
evaluate and compile the following minimal program.

pe1 = {main = pe (output (lit 6 *. lit 7))}

The generated code for the setup() function shows that lit 6 *. lit 7 is indeed
replaced by 42 in the partial evaluation:
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void setup () {
Serial .begin(9600);
Serial .println(42);

}

Partial evaluation of the complete mTask system is an ongoing endeavour. It
seems definitely possible, but it deserves some attention to handle the carefully
constructed types correctly.

7.2 Syntax Tree Manipulation

Instead of partial evaluation, we can also make view specific transformations. For
the most flexible transformations, it is convenient to transform mTask programs
to an equivalent abstract syntax tree of type AST. When we limit ourselves to
integers and Booleans the required basis is:

:: AST = VAR String | Ap String [AST ] | Int Int | Bool Bool
:: Ast t p = Ast ( [Int ]→( [Int ] ,AST))

class ast t :: t → AST
instance ast Int where ast i = Int i
instance ast Bool where ast b = Bool b

The view that produces an optimized AST of lit and +. is:

instance arith Ast where
lit x = Ast λl.(l ,ast x)
(+.) (Ast x) (Ast y)
= Ast λl.

let
(m , a) = x l
(n , b) = y m

in (n , (case (a , b) of
(Int i , Int j) = Int (i + j)
(Int 0, b) = b
(a , Int 0) = a
(a , b) = Ap "+" [a ,b ] ) )

A constant definition can be replaced by inlining the value as the literal in
the AST. For a share definition, this is not allowed since the value can change
dynamically.

instance sds Ast where
sds v f =

{main =
Ast λ[a:x ].(λ(Ast g).g x)

(unMain (f (Ast λl.(l , VAR ("x"+fromInt a)))))
}

con v f = f (lit v)

Applying this transformation to
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ast = con 6 λs.sds 1 λx.{main = s *. (s +. One) +. x}

yields (Ap"+" [ (Int 42) ,(VAR "x0" ) ] ) for the main expression.
The obtained AST is very suited for view specific transformations like tail-call

optimization of recursive functions.
Basically, we transform the shallow embedded version of mTask here to a

deeply embedded version of the DSL. It is still worthwhile to make a shallow
embedded version of the language for the user. In contrast to the deeply embed-
ded version, the shallow embedded version enables the type checker of the host
language to verify types in mTask with a plain Hindley-Milner type system [10].
The shallow embedded version also ensures the proper definition of identifiers,
functions and tasks.

8 Related Work

There are several groups of related work. We discuss approaches to control micro-
processors with high-level languages, the generation of C code to implement
function languages directly, and related representations of DSLs.

8.1 High-Level Languages for Microprocessors

There are many microprocessors with various capabilities. Many languages are
ported to some microprocessors. The Clean compiler is currently ported to the
ARM-processor driving the Raspberry Pi. With the announcement of the Pi
Zero [34] as the $5 computer, this can become a serious alternative for many
microprocessor applications, especially in the IoT.

The package hArduino allows Haskell programs to control Arduino boards
and peripherals, using the Firmata [16] protocol. The Haskell program is not
running on the Arduino itself. The Haskell package frp-arduino offers Functional
Reactive Programming, FRP, for the Arduino [28]. It is implemented as a deeply
embedded DSL that compiles to C. Our task-based approach is more flexible than
the FRP paradigm.

Microscheme is an implementation of a subset of Scheme for the Arduino
[36]. This implementation uses a simple heap in the 2K of RAM of the Arduino.
It implements proper tail calls and it offers the exception handling required
by Scheme’s dynamic nature. Microscheme contains a last-resort primitive for
memory recovery of the form (free! ...), instead of a garbage collector.

Lua [18,19] is a powerful, fast, lightweight, embeddable scripting language
ported to the ESP8266 microprocessor. The ESP8266 is far more powerful than
the ATmega328P driving the Arduino, both is memory size and clock-speed.
Since it costs only a few dollars and has WiFi support, it is a very interesting
platform.

The Espruino project projects provides a JavaScript interpreter on single
chips microprocessor boards [40]. This JavaScript interpreter is also ported to
the ESP8266. The interpreter is originally designed for 128 kb of Flash and 8 kb
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of RAM. This is small in JavaScript terms, about 1000 times smaller than an
ordinary interpreter, but still a factor 4 bigger than an Arduino Uno.

The SAPL approach compiles functional programming languages to small
executables, typically executing in a browser [20,21]. It is interesting to inves-
tigate whether it is possible to generate C code with a very small footprint to
allow execution on a microprocessor in this way.

8.2 Generating C-Code

Generating C code from functional languages is quite common, e.g. [13,25,37].
Until version 6 GHC compiled Haskell to C code [30]. These implementations use
C has a high-level assembly. Functions in the source language are not directly
mapped to functions in C.

Filet-o-fish is a tool to build DSLs to write operating systems [9]. Like mTask
the DSL generates C code. The abstraction level of the DSLs constructed is
typically lower than in our mTask system. The implementation route is quite dif-
ferent; the filet-o-fish approach uses standalone compiler instead of an embedded
DSL.

8.3 Shallow Embedding of DSLs with Multiple Views

Carette et al. use a class-based approach to construct a DSL with multiple
views like we do [7]. One of the views is the partial evaluation. Their language
is basically λ-calculus. Their work is missing the fancy type system used here as
well as C code generation. Lämmel and Ostermann discuss the possibilities to use
type classes for an extendable software and integration [27]. This shows that the
class-based approach used here solves Wadler’s expression problem [39]. Their
approach to making an extendable DSL is far less sophisticated as the technique
described in the current paper.

8.4 Future Work

Although we are now able to execute task-oriented programs on a tiny micro-
processor system like the Arduino, this work is not finished. The first thing to
be done is making a connection between the mTask and the iTask system. The
goal is that an iTask program can specify subtasks in mTask and delegate them
to a microprocessor. The iTask system should be able to monitor and influence
task execution on the mTask system, similar to its own tasks.

The current mTask system is able to interact with other systems over the
serial port by sending and receiving messages. To make it a better IoT language
we will add communication over WiFi as well as Bluetooth.

The mTask system itself should be completed with data types. It is desir-
able to add at least strings and arrays. Currently, the mTask system is lacking
primitives for task management. Any task coordination must be implemented
using shares. It is desirable to introduce constructors to implement frequently
occurring communication patterns between tasks.
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9 Discussion

The goal of this work was to construct a system for task-oriented programming
on tiny microprocessors like the Arduino. We built a shallow embedded domain-
specific language based on type classes. This shallow embedding defines the DSL
as a set of functions. The tasks in our system are light-weight threads that run
interleaved and communicate via shared data sources. The examples show that
out mTask system yields concise and flexible programs.

We showed that the advantage of shallow embedding over deep embedding
is that a plain Hindley-Milner type system ensures well-typed DSL programs.
Moreover, a shallow embedded DSL is easily extendable by adding new func-
tions in the host language as elements of the DSL. This paper shows how one
can introduce type-safe and well-defined shares, functions, as well as tasks, in a
shallow embedded DSL by (nameless) functions in the host language. Guaran-
teeing well-defined identifiers at compile time is usually problematic in a DSL.
This paper provides a simple and elegant solution.

Since we defined the DSL as a set of classes instead of a set of plain functions,
it is easy to introduce new interpretations, called views, of the DSL. In this paper,
we showed how to compile our DSL to compact C++ code for the Arduino
ecosphere. This makes the generated C++ programs portable to a family of
microprocessors. By targeting the smallest member, the Arduino Uno R3, of
the family the generated programs can be ported easily to all other similar
microprocessors.

Despite the high-level C++ intermediate language, the generated code is
rather compact. The largest examples in this paper use about 25% of the avail-
able flash memory. The shares and task table use about 25% of the dynamic
memory. This usually leaves enough space for function calls and the associated
local shares. The memory usage is similar to memory needs of handwritten C++
code for those tasks.

The second view translates programs from the DSL with shares to a monadic
expression in the pure host language. A concise iTask program simulates the DSL
programs interactively. The user can inspect and change the state of the DSL
program between the execution of DSL tasks.

Finally, we have briefly shown how to optimize DSL programs. The partial
evaluation view optimizes programs within the DSL. The obtained program can
be used in any of the views available. For view specific transformations a view of
the DSL that yields an abstract syntax tree is more appropriate. This combines
best of both worlds; we have an extendable and a type-safe DSL in the primary
shallow embedding, while the generated data structure of the deep embedding
is convenient for analysis and transformation.

Our example programs show that task-oriented programming in the intro-
duced mTask system is very suitable for programming microprocessor systems.
Using parameterized tail-calls in the tasks the use of shares can often be cir-
cumvented. This results in concise, well-typed, elegant, and portable high-level
programs for microprocessor systems. We can run any number of independent
tasks on the microprocessor, as well as tasks that invoke each other. When-
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ever necessary tasks can communicate via shares. The advantage of our DSL
over C++ for microprocessor programming is that it provides high-level task-
oriented programming. In our approach, it is much easier to recognize the tasks
and to compose them.

Acknowledgements. The authors thank Ralf Hinze and Peter Achten from the Rad-
boud University for inspiring discussions about the architecture of the DSL used. Spe-
cial thanks to the anonymous referees for their feedback on the draft version of this
paper.

A The Function compile

For completeness, this appendix contains the complete function compile dis-
cussed in Sect. 5.

compile :: (Main (Code a p)) → [String ]
compile {main=(C f)} =

["/*\n"
," Generated code for Arduino\n"
," Pieter Koopman, pieter@cs.ru.nl\n"
,"*∧n"
,"\n"
,"�define MAX_ARGS 4\n"
,"�define MAX_TASKS 20\n"
,"�define MAX_TASK_NO MAX_TASKS - 1\n"
,"�define NEXT_TASK(n) ((n) == MAX_TASK_NO ? 0 : (n) + 1)\n"
,"\n"
,"typedef union Arg {\n"
," int i;\n"
," bool b;\n"
," char c;\n"
," word w;\n"
,"} ARG;\n"
,"\n"
,"typedef struct Task {\n"
," byte id;\n"
," long wait;\n"
," ARG a[MAX_ARGS];\n"
,"} TASK;\n"
,"\n"
,"boolean pressed(int b) {\n"
," pinMode(A0, INPUT);\n"
," int a0 = analogRead(A0);\n"
," switch (b) {\n"
," case " ,toCode RightButton ,": return a0 < "

,toString RightBound ,"; // right\n"
," case " ,toCode UpButton ,": return " ,toString RightBound

," < a0 && a0 < " ,toString UpBound ,"; // up\n"
," case " ,toCode DownButton ,": return " ,toString UpBound
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," < a0 && a0 < " ,toString DownBound ,";// down\n"
," case " ,toCode LeftButton ,": return " ,toString DownBound

," < a0 && a0 < " ,toString LeftBound ,";//left\n"
," case " ,toCode SelectButton ,": return " ,toString LeftBound

," < a0 && a0 < " ,toString SelectBound ,";//select\n"
," default: return " ,toString SelectBound ," < a0; //no button\n"
," }\n"
,"}\n"
] ++
foldr (λlib c. ["�include <":lib:".h>\n":c ] ) [ [ ] ] (mkset c.includes) ++
["\n// --- Shared Data Source definitions ---\n"
,"TASK tasks[MAX_TASKS];\n"
,"byte t0 = 0, tc = 0, tn = 0;\n"
,"long delta;\n"
,"\n"
,"int vInt;\n"
,"bool vBool;\n"
,"char vChar;\n"
,"float vFloat;\n"
,"unsigned long time = 0;\n"
:reverse c.sdss
] ++
["\n// --- functions ---\n"
,"byte newTask(byte id, long wait, word a0, word a1, word a2, word a3) {\n"
," TASK *tnp = &tasks[tn];\n"
," tnp→id = id;\n"
," tnp→wait = wait;\n"
," tnp→a[0].w = a0;\n"
," tnp→a[1].w = a1;\n"
," tnp→a[2].w = a2;\n"
," tnp→a[3].w = a3;\n"
," byte r = tn;\n"
," tn = NEXT_TASK(tn);\n"
," return r;\n"
,"}\n"
,"\n"
,"byte setDelay(byte t, long d) {\n"
," tasks[t].wait = d;\n"
," return t;\n"
,"}\n"
:reverse c.funs
] ++
["\n// --- setup --- \n"
,"void setup () {\n"
," Serial.begin(9600);\n"
," "
:reverse c.setup
] ++
["\n}\n"
,"\n// --- loop --- \n"
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,"void loop () {\n"
," if (t0 != tn) {\n"
," if (t0 == tc) {\n"
," unsigned long time2 = millis();\n"
," delta = time2 - time;\n"
," time = time2;\n"
," tc = tn;\n"
," };\n"
," TASK* t0p = &tasks[t0];\n"
," t0p→wait -= delta;\n"
," if (t0p→wait > 0L) {\n"
," newTask(t0p→id, t0p→wait"

,", t0p→a[0].w, t0p→a[1].w, t0p→a[2].w, t0p→a[3].w);\n"
," } else {\n"
," switch (t0p→id) {"
:reverse c.loop
] ++
["\n"
," default:\n"
," Serial.println(\"stopped\");\n"
," t0 = tn; // no known task: force termination of tasks\n"
," return;\n"
," };\n"
," }\n"
," t0 = NEXT_TASK(t0);\n"
," }\n"
,"}\n"
]

where c = f newCode
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Abstract. iTasks is a shallowly embedded monadic domain-specific lan-
guage written in the lazy, functional programming language Clean. It
implements the Task-Oriented Programming (TOP) paradigm. In TOP
one describes, on a high level of abstraction, the tasks that distributed
collaborative systems and end users have to do. It results in a web appli-
cation that is able to coordinate the work thus described. Even though
iTasks is defined in the common notion of “tasks”, for stake holders with-
out programming experience, textual source code remains too difficult to
understand. In previous work, we introduced Tonic (Task-Oriented Nota-
tion Inferred from Code) to graphically represent iTasks programs using
blueprints. Blueprints are designed to bridge the gap between domain-
expert and programmer. In this paper, we add the capability to graphi-
cally trace the dynamic behaviour of an iTasks program at run-time. This
enables domain experts, managers, end users and programmers to follow
and inspect the work as it is being executed. Using dynamic blueprints
we can show, in real-time, who is working on what, which tasks are fin-
ished, which tasks are active, and what their parameters and results are.
Under certain conditions we can predict which future tasks are reach-
able and which not. In a way, we have created a graphical tracing and
debugging system for the TOP domain and have created the foundation
for a tracing and debugging system for monads in general. Tracing and
debugging is known to be hard to realize for lazy functional languages.
In monadic contexts, however, the order of evaluation is well-defined,
reducing the challenges Tonic needs to overcome.

Keywords: Dynamic program visualisation ·
Purely functional programming · Monads · iTasks · Clean

1 Introduction

When developing non-trivial software, one frequently needs to gather the correct
requirements and frequently evaluate whether the right software is being built.
This can be a hard and time-consuming activity when stakeholders with different
backgrounds are involved. This is in part due to the communication gap that
exists between experts in unrelated fields.
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Task-oriented programming (TOP) is a style of functional programming that,
amongst other things, aims to reduce the communication gap between vari-
ous parties by developing programs in terms of the common notion of tasks.
TOP is implemented by iTasks [11], a shallowly embedded monadic domain-
specific language in the general-purpose, lazy, purely functional programming
language Clean [12]. iTasks is used to compose multi-user web-based applica-
tions. Common technical issues related to distributed client-server settings, such
as communication, synchronization, user interface generation, and user interac-
tion, are handled automatically by applying advanced functional programming
techniques. These include type driven generic functions, and the ability to store,
load and communicate closures in a type safe way using Clean’s dynamic system.

As a result, the iTasks application writer is able to concentrate on the main
issues: the tasks that have to be done by the end users in collaboration with the
computer systems they use. Although one can now, when writing the application
code, concentrate on the things that matter, there still exists a communication
gap between various stakeholders. Commonly, domain experts, managers and
end users are not used to read and understand textual source code. They prefer
pictures, diagrams and natural language instead. Yet it is vital that they are
able to evaluate the software that has been built, preferably more quickly than
by simply running the program in a testing or production environment.

One way to bridge the communication gap between stakeholders and pro-
grammers is to utilise graphical notations. Well-known examples of such nota-
tions are BPMN [7] and UML [10]. However, such notations have as disadvantage
that they are not part of the actual implementation and cannot practically be
used as such. Additionally, since they are not part of the implementation, com-
monly manual labour is required to keep the models synchronized with the imple-
mentation. In practice, these models are prone to becoming outdated, because
the cost of maintaining them may be higher than the benefit gained from the
up-to-date documentation [3].

In previous work [18] we introduced our own graphical notation, called Tonic
(Task-Oriented Notation Inferred from Code). Rather than specifying programs
graphically, however, we made a specialised version of the Clean compiler1,
the Clean-Tonic compiler, which generates a graphical representation, called
a blueprint, of the tasks that have been defined in Clean. Since blueprints are
generated, they always provide up-to-date documentation of the source code.
Implementing Tonic in the Clean compiler is necessary, since iTasks is shal-
lowly embedded in Clean. As a result, programmers can use any Clean language
construct to write iTasks programs. Implementing Tonic in the Clean compiler
allows us to capture these language constructs in the blueprints we generate.

It is neither practical nor informative to show all the details of the original
source code in the blueprints; they would become huge and unreadable. Instead
we abstract from certain details yet provide enough information such that one
should be able to understand by looking at the pictures which tasks have been

1 Available in the latest development releases at https://clean.cs.ru.nl/
Download Clean.

https://clean.cs.ru.nl/Download_Clean
https://clean.cs.ru.nl/Download_Clean
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defined and understand how these tasks depend on each other. We hope that
by doing so, blueprints are easier to understand for non-programmers than the
(Clean) code they are generated from.

The first version of the Clean-Tonic compiler, however, did suffer from a num-
ber of drawbacks. For one, we could only generate static blueprints. Secondly,
it had a hard-coded connection between the compiler and iTasks, which is not
desirable for a general-purpose compiler. Thirdly, since the compiler was mod-
ified specifically for iTasks, Tonic’s features were not usable in other contexts.
Lastly, there was no way to customize the rendering of specific tasks without
modifying both the compiler and iTasks.

In this paper, we set out to solve all of the aforementioned problems. We
transform monadic programs such that dynamic information can be added to
blueprints at run-time, creating dynamic blueprints. With these one can monitor
what is happening with the monad during execution. In principle this can be done
for any monad, but some programming effort is required to link its execution at
run-time to the blueprints generated at compile-time. Our focus in this paper is
one specific yet challenging example, the dynamic blueprints for iTasks, which
is a highly complex and dynamic system.

iTasks is a challenging example because it is used for developing complex
distributed systems. In the real world, people and systems often don’t do their
work as planned. Therefore it would be of great help if one were able to inspect
what is going on at run-time. This aids, for example, programmers in debug-
ging, domain experts in seeing whether the application works as designed, and
managers and end users in tracking progress of workflows.

In essence, we have developed a kind of monitoring, tracing and debugging
tool. This is commonly known to be a very challenging tool to make for a lazy
functional language, particularly if one realizes that Clean applications are not
interpreted, but compiled.

The Clean compiler is a state-of-the-art compiler, well known for the efficient
code it generates. Due to the many transformations performed by the compiler
to obtain such efficient code, and the laziness of the language, it is in general
near to impossible to relate the execution of an application to a specific part of
the original source code. The advantage we have here is that, since we restrict
ourselves to monadic contexts, we statically know their order of evaluation.

A particular challenge is how to relate run-time behaviour to the correspond-
ing parts of static blueprints. The difficulty comes from run-time calculations and
higher order functions. To do so, we modify the generated code by adding wrap-
per functions to the monadic applications. These wrappers tell which part of the
original source code is being evaluated, so that it can be related to the correct
part of the static blueprint.

With the dynamic blueprints we can show, at run-time, for any iTasks appli-
cation, dynamic aspects such as: which tasks have been started, which are fin-
ished, which are running, how are they instantiated, what are the actual argu-
ments, who is working on what, and which information is currently being pro-
duced by a specific task. The graphical representation of dynamic blueprints has
to be modified at run-time to reflect the current program state.
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In this paper we address the issues mentioned above and make the following
contributions:

– We generalise the notion of blueprints to not only capture iTasks programs,
but monadic programs in general. Using this new-found generalisation, we
remove the hard connection between the Clean-Tonic compiler and iTasks,
making Tonic a general solution.

– We show how static and dynamic blueprints are being made for the Task
monad. Furthermore we discuss how our approach can be used for any monad,
such as e.g. the IO Monad.

– We explain what kind of code transformations are made by the compiler such
that we are able to map run-time behaviour to static information generated
from the source program.

– We explain how we created a Tonic Task which allows an end-user of any
iTasks application to browse through the dynamic blueprints, and to inspect
values of arguments and results of any task executed in the past or currently
under evaluation.

– We explain that with a simple control-flow analysis and code transformation
we can show the reachability of information (monads/task) in the blueprints.
In this way we are able to show which future task can or cannot be executed
given the current state of affairs.

– Tonic’s end users can now customize how tasks are rendered using the declar-
ative Graphics.Scalable library [1].

The rest of this paper is structured as follows: Sect. 2 shows several examples
of static blueprints, after which Sect. 3 shows how these are made. Section 4 shows
how we instantiate blueprints at run-time and incorporate run-time information
in them, using an example in iTasks. Finally, Sect. 6 discusses related work, and
Sect. 7 discusses current challenges and concludes.

2 Static Blueprints: Examples

In this section we explain, with the help of a number of examples, what kind
of static blueprints we generate from Clean source text2. In the introduction
we already made clear that it is not a good idea to turn a complete Clean pro-
gram into a graphical counterpart. First of all, Clean, much like Haskell, contains
many language constructs. A pictorial representation isomorphic with the source
code would only be huge and would not contribute to a better understanding of
the code than the text of the source program itself. Secondly, there are techni-
cal obstacles that currently prevent us from showing all language features in a
meaningful, graphical way. This is due to the fact that the Clean compiler gen-
erates highly efficient code, applying many transformations during compilation.
Some of the original code is simply no longer available.

2 All blueprints in this paper are generated from the example programs.
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For all these reasons, we decided to restrict ourselves to generating graph-
ical representations for certain top level abstractions and a limited number of
language primitives. We want to capture the major structure of the application
being defined; we don’t want nor need to provide all details of the applica-
tion. We therefore decided to focus on monads. Monads are a frequently used
abstraction in functional programming. In Haskell, for example, the IO monad is
the principal way to perform side-effecting operations. As well as being useful,
monads provide the ability to hide tedious book-keeping operations under the
bind combinator, making code easier to read and reason about. In addition, the
evaluation order of sequentially composed monadic computations is well defined
and strict. The laziness of the language does not provide problems here.

We distinguish two sets of monads: one for which we want to generate a
blueprint, and one for which we don’t want to generate blueprints, but that may
be part of a blueprint. We call the first set blueprint monads and the second
contained monads. A blueprint monad is always a contained monad, but not the
other way around. For iTasks, for example, the set of blueprint monads contains
the Task monad, while the set of contained blueprints contains both the Task and
the Maybe monad. To distinguish between the two sets of monads, we introduce
two new type classes. We discuss the implementation and application of these
classes in Sect. 3.

What makes generating blueprints challenging is that in any combinator
definition, any Clean language construct may be used as well. As explained
above, and further illustrated in the examples below, we limit ourselves to Clean
language constructs which we are able to visualize in a meaningful manner, and
hide those which are too complicated to visualize. We support if-blocks, case-
blocks, pattern matching, let-blocks, recursion, higher-order functions and list
definitions in the case that the number of list elements are statically known. For
all other language constructs and cases we do not offer special graphical support
in a blueprint. If we cannot graphically represent an expression, we pretty-print
the original source code. Let’s have a look at some examples.

2.1 Static Blueprints of the I/O Monad

The example in Fig. 1 shows a simple interactive program implemented in Clean’s
IO monad3. It asks the user to enter a number, confirms which number has been
entered and then tells the user whether the number is prime or not. An example
of its output is shown in Fig. 2.

Figure 3(a) shows the blueprint we generate for this program. The graphical
representation of the top-level primeCheck computation acts as a container for the
other graphical elements. Each IO function application is represented by its own
function-application box. The applied function’s name is presented in bold on the
top of the box, while its arguments are presented below it. Binds are represented
by edges between two boxes. If the right-hand side of a bind is a lambda, the
expression in the lambda is pretty-printed as edge-label.

3 Clean does not have do-notation, so binds are explicitly written out.
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primeCheck :: IO ()
primeCheck = putStrLn "Enter�number:"

>>| getLine
>>= \numStr -> putStrLn ("Entered:�" +++ numStr)
>>| if (isPrime (toInt numStr))

(putStrLn ("Is�prime:�" +++ numStr))
(putStrLn ("Isn’t�prime:�" +++ numStr))

Fig. 1. IO implementation of the primeCheck example.

Fig. 2. Example of IO performed by primeCheck

io_examples.primeCheck :: IO ()

putStrLn
"Enter number:"

getLine numStr
putStrLn

"Entered: " +++ numStr
isPrime (toInt numStr)

True
putStrLn

"Is prime: " +++ numStr

False
putStrLn

"Isn't prime: " +++ numStr

(a)
itasks_tonic_examples.primeCheck :: Task Int

enterInformation
"Enter number"

num
viewInformation
"Entered:"
num

isPrime num

True
viewInformation
"Is prime:"
num

False
viewInformation
"Isn't prime:"
num

(b)

Fig. 3. Static blueprints of the primeCheck function implemented in both the IO and
the Task monad.

2.2 Static Blueprints of the Task Monad

In this subsection we look at several example iTasks programs and the blueprint
we generate for each of them. The goal of this subsection is to give an intuition
for Tonic and its blueprints, while at the same time explaining the basics of
iTasks. The basic tasks used in this section are also listed in AppendixB.



Static and Dynamic Visualisations of Monadic Programs 347

Prime Number Checker. An iTasks version of the primeCheck program is shown
in Fig. 4, with its output shown in Fig. 5 and its corresponding blueprint shown
in Fig. 3(b). iTasks’ bind combinator automatically adds a “Continue” button
to the user interface to progress to the right-hand side task. Since iTasks is shal-
lowly embedded in Clean, all Clean language features can be used to construct
iTasks programs. Some of these, e.g. conditionals, we also want to include in the
blueprints. Tasks are defined as functions with monadic result type (Task a) for
some a. Sequential task composition is accomplished with the monadic bind com-
binator. enterInformation and viewInformation are examples of basic predefined editor
tasks, which generate a web-based graphical user interface for a given type using
generic programming techniques. The former editor allows the user to enter data
using generically generated web forms, while the latter editor renders a textual
read-only representation of the data.

primeCheck :: Task Int
primeCheck
= enterInformation "Enter�number" []
>>= \num -> viewInformation "Entered:" [] num
>>| if (isPrime num)

(viewInformation "Is�prime:" [] num)
(viewInformation "Isn’t�prime:" [] num)

Fig. 4. iTasks implementation of the primeCheck example.

Despite the fact that the previous two programs are defined in different mon-
ads, their blueprints are similar, since they share the common abstraction level
of a monad.

Step. User definable buttons can be created by using the step combinator (>>*),
shown in Fig. 6 (with its output in Fig. 10(a) and blueprint in Fig. 7). The step’s
left-hand side is a task that is executed first, while its right-hand side is a list of
conditions paired with a follow-up task. If a condition is met, the corresponding
follow-up task is executed.

In this example one such condition is provided in the form of an OnAction

condition, which causes a button to be rendered in the left-hand side task’s
user interface. OnAction takes two arguments: an action, which describes the but-
ton’s text and a list of button meta-data, and a continuation to proceed to
the next task once the corresponding button is pressed. The continuation is of
type (TaskValue a) -> Maybe (Task b). If the continuation returns Nothing the button
is disabled, if it returns Just, the button is enabled and pressing it will progress
the work-flow to the inner Task b. Several convenience functions are available to
write these continuation functions. In this example, the ifValue function is used.
It takes a predicate (isPalindrome) over the left hand-side task’s value, enabling
the corresponding button only if the predicate returns True.
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Fig. 5. Example of the web forms generated by primeCheck

palindrome :: Task String
palindrome
= enterInformation "Enter�a�palindrome" []
>>* [ OnAction (Action "Ok" [])

(ifValue isPalindrome (\palindrome -> return palindrome))]
where
isPalindrome :: String -> Bool
isPalindrome s = let s‘ = [toLower c \\ c <-: s | c <> ’�’]

in s‘ == reverse s‘

Fig. 6. iTasks implementation of the palindrome example.

itasks_tonic_examples.palindrome :: Task String

enterInformation
"Enter a palindrome"
[]

isPalindrome  "Ok" palindrome 
return

palindrome

Fig. 7. Static blueprint of palindrome

The step combinator is strictly more powerful than the bind combinator. In
fact, the bind combinator is implemented in terms of the step combinator, as
shown in Fig. 8.
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(>>=) :: (Task a) (a -> Task b) -> Task b | iTask a & iTask b
(>>=) taska taskbf = taska >>* [ OnAction (Action "Continue" []) (hasValue taskbf)

, OnValue (ifStable taskbf) ]

Fig. 8. Implementation of the bind combinator.

If the left-hand side task has a value, the “Continue” button is enabled.
Additionally, if the left-hand side task has a stable value, i.e., if the value is
guaranteed to never change again, it also proceeds to the right-hand side task.

Recursion and Higher-Order Tasks. Tasks can be passed as argument to
other tasks: one can define higher-order tasks. Other functional concepts trans-
late to TOP as well, such as recursive tasks. Both of these concepts are demon-
strated in Fig. 9 in the add1by1 task. Its blueprint is shown in Fig. 11. One new
graphical element is that of the let binding; they are rendered as sign-posts.

Here we see that add1by1 has two arguments; a higher order task, called task,
of type (Task a), and an accumulator listSoFar of type [a]. On demand of the
end user, add1by1 recursively evaluates the higher order task and accumulates the
results. When finished, the accumulator is yielded as result. Notice that add1by1 is
not polymorphic in a, but overloaded. In Clean, context restrictions are specified
at the end of a type definition (| iTask a). This context restriction is synonymous
for several generic functions that take care of the type driven rendering of GUIs
and the communication between the web server and the client (i.e. the web
browser). This can automatically be derived by the Clean compiler for any first
order type. Context information is considered to be too much detail to mention
in a blueprint and is therefore left out in the types shown in the blueprint.

The task add1by1 also has a step function. In this particular example, we
can see that step functions are rendered differently from binds. Each condition
in the step’s right-hand side’s list is rendered in its own branch. Continuation
convenience functions as found in iTasks’ standard libraries are rendered in a
special way as well. Here, the hasManyElems predicated is rendered as a diamond,
implying that this condition should be met before the work-flow can continue.
The action is rendered as well, together with a small figure showing that it relates
to a user action. It is possible to customize the way blueprints are rendered (see
Sect. 4.2).

The higher order task task is executed first. Statically we only know the type
of task, but we do not know what its concrete value will be. For this we use a
dashed frame. We do know that the task yields a value of proper type a. This
value can be added to the accumulator (when the “Add another” button is
pressed), after which add1by1 recursively calls itself. Alternatively, the task can
be terminated by pressing “Done”, but this option can only be chosen when at
least two values are collected in the list.
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add1by1 :: (Task a) [a] -> Task [a] | iTask a
add1by1 task listSoFar
= task
>>= \elem -> let newList = [elem : listSoFar] in

viewInformation "New�list:�" [] newList
>>* [ OnAction (Action "Add�another" [])

(always (add1by1 task newList))
, OnAction (Action "Done" [])

(ifValue hasManyElems (\xs -> return xs))
]

where
hasManyElems :: [a] -> Bool
hasManyElems xs = length xs > 1

addPalindromes :: Task [String]
addPalindromes = add1by1 palindrome []

Fig. 9. Implementation of the add1by1 task.

Parallel Tasks. iTasks allows several tasks to be executed in parallel. In the
parallelChat example, shown in Fig. 13, the user of the task (currentUser) starts a
chat by first selecting n friends to chat with from a list of administrated users.
Next, n + 1 makeChat tasks are started in parallel using the library combinator
allTasks. This function expects a lists of tasks to be executed in parallel and
ends when all its tasks are ended. parallelChat’s output is shown in Fig. 12 and
its blueprint is shown in Fig. 14.

Each makeChat task enables user i to have a chat with the others via a shared
data source chatBox of type Shared [String]. Shared Data Sources (SDS) [?] allow
tasks to share information. The shared list used here contains as many strings
as there are chatting users, where the i-th element of the list represents the
information typed in by the i-th chat user. In iTasks, shared data structures are
maintained automatically. Whenever someone is changing the content of a shared
data structure, any task that is looking at its structure is informed and updated
automatically. This notification system works for any first order data type, not
just shared strings of text. In this example, chatting users automatically see
what is written by someone else. Chat users can only update their part of the
shared structure. In updateSharedInformation the i-th element is selected (selectChat)
to be updated in the function defined in UpdateWith while in viewSharedInformation

the other elements are selected (dropChat) in ViewWith and shown read-only.
In this particular example it is statically undecidable how many parallel task

there will be, since it depends on the number of chosen friends. We will later
see that at run-time we can in fact show these tasks in a dynamic blueprint,
and see who is chatting with whom and inspect what they are chatting about.
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Fig. 10. GUIs when applying add1by1 to the palindrome task

itasks_tonic_examples.add1by1 :: Task [a]

task  :: Task a
listSoFar :: [a]

task elem

newList = [elem : listSoFar] viewInformation
"New list: "
newList

 "Add another"
add1by1
task
newList

hasManyElems  "Done" xs 
return
xs

Fig. 11. Static blueprint of add1by1 with a higher-order task and recursion

Fig. 12. parallelChat program execution
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parallelChat :: Task [[String]]
parallelChat
= get currentUser
>>= \me -> enterMultipleChoiceWithShared "Select�friends" users
>>= \friends -> let users = [me : friends] in

withShared (repeatn (length users) "")
(\chatBox -> allTasks (chatTasks users chatBox))

where
chatTasks :: [User] (Shared [String]) -> [Task [String]]
chatTasks users chatBox = [ chatTask user i users chatBox

\\ i <- [0 ..] & user <- users
]

chatTask :: User Int [User] (Shared [String]) -> Task [String]
chatTask user i users chatBox = user @: makeChat i users chatBox

makeChat :: Int [User] (Shared [String]) -> Task [String]
makeChat i users chatBox
= updateSharedInformation [selectChat i]

(users !! i +++> "is�chatting:�") chatBox
||- viewSharedInformation [dropChat i] "with:�" chatBox
where
selectChat i
= UpdateWith (\chatBox -> chatBox!!i)

(\chatBox chat -> (updateAt i chat chatBox))
dropChat i
= ViewWith (\chatBox ->

[ user +++> "�says�:�" +++> chat
\\ (user, chat) <- removeAt i (zip2 users chatBox)
])

Fig. 13. Implementation of the parallelChat task.

In general, one can statically not deduce how many elements are contained in
a list. In a static blueprint we therefore only show the elements of a list when
it statically contains a fixed number of elements and it is not generated by a
list-comprehension or other list-producing expression. This holds for the list of
step continuations used in the add1by1 task, but it does not hold for the list of
chat tasks used in the parallelChat task. Since lists are the most frequently used
data structure in a functional language, several convenient language constructs
are offered in Clean to handle them, such as dot-dot notation and list compre-
hensions.
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Fig. 14. Static blueprint of parallel chat example in iTasks

3 Building Static Blueprints

Figure 15 shows the architecture of the modified Clean-Tonic compiler. In addi-
tion to the code the compiler normally generates (Intel, Arm and JavaScript), it
now also generates a file containing blueprint information for each Tonic-enabled
Clean module. This information can be read in by a tool called the Tonic Viewer.
The viewer is implemented in iTasks itself and can render blueprints in any
HTML5 compatible browser.

Fig. 15. Global architecture of the clean - tonic compiler

As explained in the previous section, not all functions are automatically
turned into a blueprint, only those with a blueprint monadic return type. Like-
wise, not all monadic function applications are turned into blueprint nodes, only
those with a contained monadic return type. To differentiate between these sets
of monads we introduce two type classes, Blueprint and Contained, both shown in
Fig. 16.
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class Contained m | Monad m

class Blueprint m | Contained m

Fig. 16. Class signatures for Contained and Blueprint type classes.

Whenever a programmer provides an instance of the Blueprint class for a cer-
tain type, a blueprint is generated by the compiler for every function which
returns a monad of that type. Whenever an instance of the class Contained is
provided, the application of the function in a blueprint is treated special. Any
type with a Blueprint instance also requires a Contained instance, which is enforced
by the former class’ context restriction. Not all modules are considered for
blueprint generation. Only modules that explicitly import the Tonic framework
are searched for top-level blueprints. This approach offers a course-grained con-
trol over the blueprint generation process. For example, none of the iTasks core
modules import the Tonic framework, so no core tasks are turned to blueprint.

All blueprints are built from a small and general core language, shown in
Fig. 17. At compile-time, we generate blueprints per Clean module (TModule). For
every function of a blueprint monad we create a TFun record. This record con-
tains meta-information, such as the comments, module name, function name,
the function definition’s line number, its result-type, the argument names and
types and the function body. Every type or expression is represented by the TExpr
data type.

TExpr contains the usual suspects for a small core language, such as variables,
literals, lambdas, lets and cases. Function application, however, is represented
by two distinct constructors: TMApp and TFApp. The former represents function
application of all contained monads (hence the M), the latter all other func-
tion applications. Several constructors contain additional meta-data. An ExprId,
found in the TVar, TMApp, TFApp, TIf, and TCase constructors, uniquely identifies those
expressions in a blueprint. This turns out to be very useful later on when we will
make blueprints show dynamic behaviour (Sect. 4). TMApp also contains the type
of the monad (if the function is monomorphic in its monadic return type) and
the name of the module in which the function being applied is defined. This is to
disambiguate functions with the same name. In addition to the function’s argu-
ments and priority, it has an optional VarPtr in case the function being applied is
variable.
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:: ModuleName :== String
:: FuncName :== String
:: Pattern :== TExpr
:: TypeName :== String
:: PPExpr :== String
:: ExprId :== [Int]
:: VarName :== String
:: VarPtr :== Int

:: TModule = { tm_name :: ModuleName
, tm_funcs :: Map FuncName TFun }

:: TFun = { tf_comments :: String
, tf_module :: ModuleName
, tf_name :: FuncName
, tf_iclLineNo :: Int
, tf_resty :: TExpr
, tf_args :: [(TExpr, TExpr)]
, tf_body :: TExpr }

:: TExpr = TVar ExprId PPExpr VarPtr
| TPPExpr PPExpr
| TMApp ExprId (Maybe TypeName) ModuleName

FuncName [TExpr] TPriority (Maybe VarPtr)
| TFApp ExprId FuncName [TExpr] TPriority
| TLam [TExpr] TExpr
| TLet [(Pattern, TExpr)] TExpr
| TIf ExprId TExpr TExpr TExpr
| TCase ExprId TExpr [(Pattern, TExpr)]

:: TPriority = TPrio TAssoc Int | TNoPrio

:: TAssoc = TLeftAssoc | TRightAssoc | TNoAssoc

Fig. 17. Algebraic data type definitions for blueprints.

To get an intuition of what a static blueprint looks like in code, lets look at
a blueprint for the iTasks primeCheck example (Sect. 2.2). The blueprint code is
shown in Fig. 18. Note how the unique node numbering allows for a deterministic
lookup of a node’s parents and siblings. Despite the presence of meta-data such
as the unique node identifiers and the unique variable identifiers, the blueprint
remains compact, making it suitable for transmission over a network.
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{ TFun
| tf_comments = ""
, tf_module = "itasks_tonic_examples"
, tf_name = "primeCheck"
, tf_iclLineNo = 36
, tf_resty = TFApp [] "Task" [TPPExpr "_String"] TNoPrio
, tf_args = []
, tf_body =
TMApp [0] Nothing "iTasks.API.Core.Types" ">>="
[ TMApp [0, 0] (Just "Task") "itasks_tonic_examples" "enterNumber"

[] TNoPrio Nothing
, TLam [TVar [] "num" 4566313280]

(TLet [ ( TVar [] "numStr" 4566313512
, TFApp [0, 1, 1] "toString" [TVar [] "num" 4566313280] TNoPrio)]

(TMApp [0, 1, 0] Nothing "iTasks.API.Core.Types" ">>|"
[ TMApp [0, 1, 0, 0] (Just "Task")

"iTasks.API.Common.InteractionTasks" "viewInformation"
[TPPExpr "Entered:", TVar [] "numStr" 4566313512] TNoPrio Nothing

, TIf [0, 1, 0, 1, 0]
(TFApp [0, 1, 0, 1, 0, 0] "isPrime"

[TVar [] "num" 4566313280] TNoPrio)
(TMApp [0, 1, 0, 1, 0, 1] (Just "Task")

"iTasks.API.Common.InteractionTasks" "viewInformation"
[TPPExpr "Is�prime:", TVar [] "numStr" 4566313512]
TNoPrio Nothing)

(TMApp [0, 1, 0, 1, 0, 2] (Just "Task")
"iTasks.API.Common.InteractionTasks" "viewInformation"
[TPPExpr "Isn’t�prime:", TVar [] "numStr" 4566313512]
TNoPrio Nothing)

] (TPrio TLeftAssoc 1) Nothing))]
(TPrio TLeftAssoc 1) Nothing

}

Fig. 18. Concrete blueprint value.

4 Dynamic Blueprints

A static blueprint gives a graphical view of how the monad combinators are
defined in the source code. Now we want to be able to trace and inspect the exe-
cution of the resulting application, making use of the static blueprints. Although
the monad parts of the program may be just a small part of the source code, they
are an important part and they commonly form the backbone of the architecture
of the application. If we can follow their execution and see how their correspond-
ing blueprints are being applied, we will already have a good impression of the
run-time behaviour of the application. We want to show which monadic compu-
tation is currently being executed, how far along the program’s flow we currently
are, the current value for a given argument or variable, the result of a completed
computation, and which program branches will be taken in the future. Before
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delving into the technical challenges associated with addressing these require-
ments, lets look at our previous examples and how their static blueprints are
used at run-time.

When a function with a Blueprint-monadic type is applied, we make an
instantiation (a copy) of its corresponding static blueprint, creating a dynamic
blueprint. On top of it we can show who is calling it, we can inspect its actual
arguments, and visualize the progress in the flow when the body is being exe-
cuted. The Tonic viewer can show and inspect these dynamic blueprints. Notice
that the Tonic viewer can show the blueprints in real-time, i.e. when the appli-
cation is being executed. The Tonic viewer also allows inspecting the past, and
it can sometimes predict the future. Since we output blueprints in SVG, most
blueprints in this section are imported SVG files. In some cases, however, we use
a screen-shot instead. This is so we can include other DOM elements, such as
the Tonic viewer’s value inspector windows, as well.

4.1 Dynamic Blueprints of the Task Monad

In this section we will look at how we augment the blueprints of the previous
examples with run-time information.

Prime Number Checker. In the primeCheck example we saw sequential compo-
sition using a bind combinator. Since bind determines the order in which com-
putations are executed, it is a great place for us to track progress in a program’s
flow. Figure 19 shows the dynamic blueprints for the primeCheck iTasks program
as it is executed.

When the program starts and the user is presented with the input field, its
corresponding blueprint instance is that of Fig. 19(a). Immediately the blueprint
is different from its static incarnation in several ways. A pair of numbers is added
in the top bar, next to the task name. This is the task ID, uniquely identifying
this task instance within the iTasks run-time system. Next to it is the image of
a person, together with the name of the person that is currently executing this
particular task instance. Going to the lower half of the blueprint, we see that
the upper area of the task-application node is coloured green. Green means that
the task is currently actively being worked on. We also say that the enterNumber

node is active. Additionally, the task ID of the enterNumber task instance is added
to the blueprint and positioned next to the task name.

Next to each node, a square is drawn. Clicking on this square allows us to
inspect the task’s value in real-time. Its colour also indicates the stability of the
task’s value. In Fig. 19(a), there is no value yet, hence the square is white. This is
confirmed by a pop-up window when we click the white square. However, as soon
as a number is entered by the end user in the editor’s text field, or whenever the
number is changed, the current input is directly shown in the inspection window
(Fig. 19(b)).

On the right side of the blueprint there is a diamond-shaped conditional node,
followed by two viewInformationnodes, which now have green borders. These border
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(a)

(b)
itasks_tonic_examples.primeCheck :: Task Int (1-35)  Alice <alice>

enterInformation (1-36)
"Enter number"

num
viewInformation (1-38)
"Entered:"
num

isPrime num

True
viewInformation
"Is prime:"
num

False
viewInformation
"Isn't prime:"
num

(c)
itasks_tonic_examples.primeCheck :: Task Int (1-35)  Alice <alice>

enterInformation (1-36)
"Enter number"

num
viewInformation (1-38)
"Entered:"
num

isPrime num

True
viewInformation
"Is prime:"
num

False
viewInformation (1-39)
"Isn't prime:"
num

(d)

Fig. 19. Dynamic blueprints of primeCheck showing monadic progress tracking and value
inspection (Color figure online)

colours tell us something about the future, in particular which program branch
might be taken. Since the program has only just started, all branches might still
be reached. However, when we enter the number 42 to the enterNumber task’s text
field – which is not a prime number – we can already predict that the True branch
will not be reached. This is represented by red borders, as seen in Fig. 19(b). If we
would change the number in the box to, e.g., 7 the tasks in the False branch would
receive a red border instead. We call this feature dynamic branch prediction.
Once the user has entered a number and has pressed “Continue”, the work-flow
progresses to the second task and the blueprint instance is updated accordingly
(Fig. 19(c)). The first node is no longer highlighted. Instead, it is frozen and
given a blue colour. A frozen blueprint node for a given task instance will not
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change again. Additionally, the edge between the first and second node is now
coloured green. For edges, green does not indicate activity, but the stability of
the previous task’s value. A green edge means an unstable value, while a blue
edges means a stable value. In iTasks, tasks may have a stable or unstable value,
or even no value at all. It reflects the behaviour of an end user filling in a form.
The form may be empty to start with or some information may be entered which
can be changed over time. Once values are stable they can no longer change over
time. When the “Continue” button is pressed again, we reach the False branch,
as predicated earlier. Since the True branch is no longer reachable, its nodes now
get a grey header (Fig. 19(d)).

Recursion and Higher-Order Tasks. Yet other dynamic behaviour is found
in the blueprints of add1by1 (as applied in addPalindromes), in which we have to
deal with a task as argument, a step combinator, and recursion. Its dynamic
blueprints are shown in Fig. 20. Notice that the task variable is now replaced by
a task-application node containing the name of the palindrome task (Fig. 20(a)).
When a valid palindrome has been entered, the workflow continues to the
viewInformation task. The step combinator at that point presents the user with
two buttons: “Add another” and “Done”. The former can always be pressed,
whereas the latter is only enabled when at least two values are accumulated in
newList. Since we only have one palindrome so far, only the “Add another” but-
ton is enabled. This is reflected in the blueprint (Fig. 20(b)). Recursion is simply
yet another task-application node (Fig. 20(c)). Entering the recursion creates
a new blueprint instance for the add1by1 task in which another palindrome task
is executed (Fig. 20(d)). When the user submits another valid palindrome, we
encounter viewInformationagain. This time, however, the “Done” button is enabled,
because the hasManyElems predicate holds. (Figure 20(e)). Pressing “Done” finishes
the add1by1 task and returns the list of palindromes (Fig. 20(f)).

Parallel Chat Tasks. In the parallelChat example we saw that the function
application of chatTasks can only be pretty printed. There are two reasons for this:
(1) we don’t have a Contained instance for lists (for the sake of this example), and
(2) chatTasks is a function application. We cannot compute any kind of function
statically. At run-time, however, we would like to know which tasks are being
executed in parallel, so we need to replace the pretty-printed expression with a
list of task-application nodes dynamically. We can see how Tonic deals with this
situation in Fig. 21.

Figure 21(a) shows that we select two friends to chat with: Bob and Carol.
Next, the parallelChat task delegates three chat tasks: one to the current user,
Alice, and one to each of her friends. Since the chatTasks function application is
now evaluated, we can substitute a list of task application nodes for the pretty-
printed expression. Each of the nodes contain the parallel task’s name and task
ID. For each of these nodes a corresponding blueprint instance is created, which
can be inspected as well (Fig. 21(a)).
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itasks_tonic_examples.add1by1 :: Task [a] (1-35)  Alice <alice>

task  :: Task a
listSoFar :: [a]

palindrome (1-36) elem

newList = [elem : listSoFar] viewInformation
"New list: "
newList

 "Add another"
add1by1
task
newList

hasManyElems  "Done" xs 
return
xs

(a)
itasks_tonic_examples.add1by1 :: Task [a] (1-35)  Alice <alice>

task  :: Task a
listSoFar :: [a]

palindrome (1-36) elem

newList = [elem : listSoFar] viewInformation (1-40)
"New list: "
newList

 "Add another"
add1by1
task
newList

hasManyElems  "Done" xs 
return
xs

(b)
itasks_tonic_examples.add1by1 :: Task [a] (1-35)  Alice <alice>

task  :: Task a
listSoFar :: [a]

palindrome (1-36) elem

newList = [elem : listSoFar] viewInformation (1-40)
"New list: "
newList

 "Add another"
add1by1 (1-41)
task
newList

hasManyElems  "Done" xs 
return
xs

(c)
itasks_tonic_examples.add1by1 :: Task [a] (1-41)  Alice <alice>

task  :: Task a
listSoFar :: [a]

palindrome (1-42) elem

newList = [elem : listSoFar] viewInformation
"New list: "
[]
newList

 "Add another"
add1by1
task
newList

hasManyElems  "Done" xs 
return
xs

(d)
itasks_tonic_examples.add1by1 :: Task [a] (1-41)  Alice <alice>

task  :: Task a
listSoFar :: [a]

palindrome (1-42) elem

newList = [elem : listSoFar] viewInformation (1-46)
"New list: "
newList

 "Add another"
add1by1
task
newList

hasManyElems  "Done" xs 
return
xs

(e)
itasks_tonic_examples.add1by1 :: Task [a] (1-41)  Alice <alice>

task  :: Task a
listSoFar :: [a]

palindrome (1-42) elem

newList = [elem : listSoFar] viewInformation (1-46)
"New list: "
[]
newList

 "Add another"
add1by1
task
newList

hasManyElems  "Done" xs 
return (1-47)
xs

(f)

Fig. 20. Dynamic blueprints of add1by1
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Fig. 21. Dynamic blueprints for the parallel chat example

4.2 Tonic Architecture

To enable such dynamic features, we need to make a connection between the
static blueprints and the program’s run-time. With this connection, we can pass
additional information from the original program to the Tonic run-time system.
This is similar to standard tracing and debugging tools. Connecting blueprints
and a program’s run-time is done by extending the Contained and Blueprint classes
with wrapper functions that we apply to the original program at compile-time.
These wrapper functions are executed at the same time as the program’s original
functions. It is up to the programmer to provide sensible instances for these
classes. We have already provided instances for both classes for the Task type
that can be used in any iTasks program. Section 4.4 shows how these classes are
defined for iTasks.

Figure 22 shows the architecture of a Tonic-enabled iTasks application. Tonic
maintains a central SDS with run-time information. When a wrapper function
is applied, it writes additional information to this SDS, allowing us to track
the program’s progress and inspect its values. The specifics of what data the
wrappers contain are discussed later in this section. Writing to the share triggers
an update that refreshes the dynamic blueprint in the Tonic viewer.

The Tonic viewer is written in iTasks itself and is therefore yet another task.
Using the Tonic viewer in an iTasks application requires the programmer to make
sure the viewer task is reachable by the program’s end-user. Having the viewer
built into the application that is going to be visualized has certain advantages.
In iTasks’ particular case, this allows us to easily inspect nearly all function
arguments and task values using iTasks’ own generic editors. This even works
for complex types. Section 4.5 shows how this integrated viewer is used by an
end-user. Section 5.1 talks about a solution that does not require the viewer to
be integrated with the original application.
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Fig. 22. Architecture of integrated Tonic viewer.

When applying the viewer-task, the programmer can optionally provide
additional render functions with which the rendering of individual function-
application nodes can be customized. The programmer can use our fully declara-
tive SVG library [1] to define alternative visualizations. This library is a general-
purpose tool to draw arbitrary vector images. As such, the programmer is not
constrained in what the custom rendering looks like.

Contained Monads. The Contained class is what identifies interesting function
applications. It is therefore the right place to gather more information about the
functions being applied. For example, which function is being applied? To which
blueprint node does this function application correspond? How does the value
of the underlying function application influence the program’s workflow? We
extend the Contained class with only one function: wrapFunApp, as shown in Fig. 23.

class Contained m | Monad m where
wrapFunApp :: ModuleName FuncName ExprId [(ExprId, a -> Int)]

(m a) -> m a | iTask a

Fig. 23. Complete definition of the Contained type class.

It is here that the Tonic system is notified of the execution of individual
computations, where the current value of these computations is inspected, where
blueprints are updated dynamically, etcetera. wrapFunApp takes five arguments,
the first two of which are the module and function name of the function being
applied. The third argument is an ExprId, which together with the module and
function name of the function application’s context (obtained via the Blueprint

class and passed through by iTasks; see also Sect. 4.2), uniquely identifies this
function application. The same ExprId is also found in the blueprint of the parent
function, allowing us to relate run-time execution to the static blueprint. The
fourth argument allows us to do dynamic branch prediction. It is a list of pairs,
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the first element of which is the ExprId that refers to the case block of which we
want to predict its future. The second element is a function that, given the value
of type a of the wrapped task (Task a), gives the index number of the branch that
will be chosen, should that value be used. Before discussing how the Contained

class is used we need to understand how dynamic branch prediction works.
Tonic’s dynamic branch prediction feature utilizes the fact that Tonic is

implemented as a compiler pass in the Clean compiler. During the Tonic pass,
we copy case blocks and lift them to a newly generated function. We transform
the right-hand side of the individual cases and return the index of the branch as
integer. We call this entire procedure case lifting. By applying this fresh func-
tion, we known, using the original case expression, the index of the branch that
will be taken, should that expression be evaluated with an identical context.
Definition 1 formalizes this process.

Definition 1. Case lifting transformation. Given a case expression

case f x1 . . . xi of

p1 → e1

. . .

pj → ej

Generate a fresh function

dbpf :: a1 . . . ai → Int

dbpf x1 . . . xi = case f x1 . . . xi of

p1 → 1
. . .

pj → j

As mentioned earlier, wrappers are not always applied. In particular, it might
be necessary to forego wrapping certain expressions when they are an argument to
another function. Consider again the add1by1 example. Should we wrap the recur-
sive call as well as the task variable, the recursive instance would effectively have
two wrappers around task due to laziness. When task is evaluated, both wrappers
would be evaluated as well, polluting Tonic’s run-time state with wrong data. Still,
in some cases we do want to wrap higher-order arguments. The most prominent
case for this is the bind combinator. An iTasks-specific case are the parallel com-
binators. They are rendered as a container within which we want to keep following
the workflow’s progress. We need the wrappers to do so. To support this case, we
only wrap function arguments when the function itself comes from a module that
does not enable Tonic. In addition, a function-level pragma, either TONIC_CONTEXT

or TONIC_NO_CONTEXT, can be provided. When the former pragma is used, the func-
tion’s arguments are wrapped. With the latter, they are not. The pragmas override
the default module-based wrapping behaviour and allow custom domain-specific
behaviour to be specified instead. Definition 2 formalizes the transformations the
Tonic compiler applies to utilize the Contained class.
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Definition 2. Contained transformation. For all function applications fe1 . . . ei
where f :: α1 . . . αi → m αn and f is in module M , and for which holds
instance Contained m:

[[fe1 . . . ei >>= λv → ej ]]
iff module M does not enable Tonic or f has TONIC_CONTEXT

⇒
wrapFunApp “M” “f” exprId(f) dbpC (v, ej) (f [[e1]] . . . [[ei]])
>>= λx → [[ej ]]

[[fe1 . . . ei >>= λv → ej ]]
otherwise

⇒
wrapFunApp “M” “f” exprId(f) dbpC (v, ej) (fe1 . . . ei)
>>= λx → [[ej ]]

[[fe1 . . . ei]]
iff module M does not enable Tonic or f has TONIC_CONTEXT

⇒
wrapFunApp “M” “f” exprId(f) [] (f [[e1]] . . . [[ei]])

[[fe1 . . . ei]]
otherwise

⇒
wrapFunApp “M” “f” exprId(f) [] (fe1 . . . ei)

[[e]]
⇒

e

Two additional functions are used during this transformation: exprId and
dbpC . exprId(f) returns a unique identifier for the application of f to its argu-
ments. dbpC enables dynamic branch prediction for contained monads as follows.
For all lifted case functions dbpf k x1 . . . xi, xi+1 from ej , if v ≡ xi+1 and x1 . . . xi

are bound, then [(caseExprId(dbpf 1), dbpf 1 x1 . . . xi), . . . , (caseExprId(dbpf n),
dbpf n x1 . . . xi)]. Here, caseExprId returns the unique identifier for the original
case expression that was used to create dbpf . Implementing dynamic branch
prediction in a bind is possible because the monad right-identity law guarantees
that for a bind expression e1 >>= λx → e2, x will always bind e1’s result value.

Blueprint Monads. The Blueprint class already allows us to identify functions
for which to generate a blueprint. This class is therefore well suited to capture
some meta data for blueprint functions that would otherwise be lost at run-
time. We extend the Blueprint class with two functions: wrapFunBody and wrapFunArg,
as shown in Fig. 24.
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class Blueprint m | Contained m where
wrapFunBody :: ModuleName FuncName [(VarName, m ())]

[(ExprId, Int)] (m a) -> m a | iTask a
wrapFunArg :: VarName a -> m () | iTask a

Fig. 24. Complete definition of the Blueprint type class.

The wrapFunBody function is statically applied to the body of a blueprint func-
tion. It has several goals: to make the blueprint function’s module and function
name available at run-time, to provide a way to inspect the blueprint func-
tion’s arguments, and to do future branch prediction based on the function’s
arguments. The wrapFunArg function is used in the third argument of wrapFunBody.
It is statically applied to all function arguments to enable their inspection at
run-time. In general, the compiler applies the following transformation rule:

Definition 3. Blueprint transformation. For all function definitions f ::
α1 . . . αi → m αn in module M , for which holds instance Blueprint m:

[[fx1 . . . xi = e]]
⇒

f x1 . . . xi = wrapFunBody “M” “f”
[(“x1”,wrapFunArg x1)
, . . .
, (“xi”,wrapFunArg xi)]
dbpB(x1 . . . xi, e)
[[e]]

dbpB works subtly different from dbpC . Rather than being associated with
a variable bound by a lambda in a bind, it works on the function’s arguments,
which are all bound as soon as the blueprint is instantiated.

The iTask constraint on the Contained and Blueprint class members is used exten-
sively in iTasks. Unfortunately, due to limitations in Clean’s type system, we are
currently forced to include this context restriction in our two classes, even though
they might be instantiated for monads that have nothing to do with iTasks. We
will come back to this limitation in Sect. 7.

4.3 Tonic Wrappers in Action

Applying all transformations to the primeCheck example transforms it to the code
in Fig. 25 (manually simplified for readability). Module names passed to the
wrappers are fully qualified. The lists of numbers are the unique expression
identifiers from the exprId function. The _f_case function is an instance of the
dbpf function.
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primeCheck :: Task String
primeCheck = wrapFunBody "itasks_tonic_examples" "primeCheck" [] []
wrapFunApp "itasks_tonic_examples" "enterNumber" [0, 0]
[([0, 1, 0, 1, 0], _f_case_4566316320)] enterNumber

>>= \num -> let numStr = toString num in
wrapFunApp "iTasks.API.Common.InteractionTasks" "viewInformation"
[0, 1, 0, 0] [] (viewInformation "Entered:" [] numStr)

>>| if (isPrime num)
(wrapFunApp "iTasks.API.Common.InteractionTasks"
"viewInformation" [0, 1, 0, 1, 0, 0] []
(viewInformation "Is�prime:" [] numStr)

(wrapFunApp "iTasks.API.Common.InteractionTasks"
"viewInformation" [0, 1, 0, 1, 0, 1] []
(viewInformation "Isn’t�prime:" [] numStr)

Fig. 25. Example of the transformed primeCheck program.

4.4 Dynamic Blueprints in iTasks

To demonstrate how these wrappers can be used, we show their concrete imple-
mentation for iTasks. A task in iTasks is represented by the Task type (Fig. 26).

:: Task a = Task (TaskAdministration TonicAdministration *IWorld
-> *(TaskResult a, *IWorld))

Fig. 26. The Task type.

A task is implemented as a continuation which takes some internal task-
administration and some Tonic administration and passes it down the continua-
tion. It chains a unique IWorld through the continuation, which allows interaction
with SDSs and provides general IO capabilities, amongst other things. The con-
tinuation produces a TaskResult, which, amongst other things, contains the task’s
result value.

The wrappers we place in the code unpack the continuation from a Task con-
structor and use it to define a new task, as shown in Fig. 27. In the case of the
Blueprint class, the wrapper’s job is to create a new blueprint instance for the
task that is being started (line 7), while in the case of Contained, the wrapper’s
job is to update the blueprint instance in which the task-application takes place.
In that case, a blueprint instance already exists and just needs to be loaded from
Tonic’s internal administration (line 23). Both wrapper classes perform similar
operations: the relevant blueprint instance is loaded and updated, after which
it is stored again, triggering a redraw event. One of the differences between the
two classes is in when the original continuation is executed. In wrapFunBody, it is
the last thing the wrapper does (line 12). In wrapFunApp, the original continuation
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1instance Blueprint Task where
2wrapFunBody :: ModuleName FuncName [(VarName, Task ())] [(ExprId, Int)]
3(Task a) -> Task a | iTask a
4wrapFunBody modNm funNm args dbp (Task oldEval) = Task newEval
5where
6newEval taskAdmin tonicAdmin iworld
7# (blueprint, iworld) = instantiateBlueprint modNm funNm taskAdmin
8args iworld
9# blueprint = processCases dbp blueprint
10# iworld = storeBlueprint blueprint iworld
11# tonicAdmin = updateTonicAdminFun blueprint tonicAdmin
12= oldEval taskAdmin tonicAdmin iworld
13

14wrapFunArg :: String a -> Task () | iTask a
15wrapFunArg descr val = viewInformation descr [] val @! ()
16

17instance Contained Task where
18wrapFunApp :: ModuleName FuncName ExprId [(ExprId, a -> Int)]
19(Task a) -> Task a | iTask a
20wrapFunApp modNm funNm exprId dbp (Task oldEval) = Task newEval
21where
22newEval taskAdmin tonicAdmin iworld
23# (blueprint, iworld) = getBlueprintInstance tonicAdmin iworld
24# (blueprint, iworld) = preEvalUpdate modNm funNm exprId blueprint iworld
25# iworld = storeBlueprint blueprint iworld
26# tonicAdmin = updateTonicAdminApp modNm funNm tonicAdmin exprId
27# (result, iworld) = oldEval taskAdmin tonicAdmin iworld
28# (blueprint, iworld) = getBlueprintInstance tonicAdmin iworld
29# blueprint = processCases dbp result blueprint
30# (blueprint, iworld) = postEvalUpdate result modNm funNm exprId
31blueprint iworld
32# iworld = storeBlueprint blueprint iworld
33= (result, iworld)

Fig. 27. Wrapper implementation for iTasks.

is executed half-way in the wrapper (line 27). After executing the original con-
tinuation, the blueprint instance is loaded again, since it may have been updated
by other wrappers in the mean time. Another thing both class instances have in
common is that they both do future branch prediction (lines 9 and 29).

4.5 The Integrated Tonic Viewer

The integrated Tonic viewer is written in iTasks, for iTasks. To use the viewer
for viewing dynamic blueprints, the programmer has to import it in the appli-
cation that needs to be inspected, thereby including it as part of the original
program. Implementing the viewer in iTasks is advantageous, because it allows
us to develop it quickly and to leverage our Graphics.Scalable library for drawing
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the blueprints. Another advantage is that we can easily integrate SDSs in our
iTasks programs and refresh the correct tasks when the SDSs are changed. Tonic
uses SDSs to store its blueprint instances and run-time meta-data. Any time an
instance or its meta-data is updated, the Tonic viewer gets a signal and is able
to redraw the corresponding blueprint. Yet another advantage of implementing
Tonic in iTasks, for iTasks, is that we have iTasks’ generic machinery at our
disposal with which we can easily inspect the data that is being passed around
in the program. With the generic instances derived for the data, inspecting the
data has become equivalent to applying a viewInformation editor.

Figure 28 shows a screen-shot of the integrated dynamic Tonic viewer. Both
the original application and the Tonic viewer are running in the browser. The lat-
ter has its own url. The viewer offers two modes, represented by two tabs: a mode
with which one can view static blueprints and a mode with which one can view
dynamic blueprints. When viewing static blueprints, one can browse through
all static blueprints for that particular application. Viewing static blueprints is
useful when using Tonic as a means of communication with stakeholders. In this
mode, Tonic is akin to static UML or BPMN viewers. When viewing dynamic
blueprints, the user is presented with a list of active tasks, i.e. with a list of
blueprint instances. Each of these tasks can be selected, in order to view the
instance. Meta-data such as a task’s unique identifier, start time, modification
time, optional end time, and which is working on it is also presented.

Fig. 28. A screenshot of the integrated Tonic viewer
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Below the list of blueprint instances is a large space for rendering the dynamic
blueprints. Exactly what is visualized can be customized in a settings panel on
the right side of the screen. For example, the “Unfold depth” slider determines
how many levels of child tasks are shown together with the selected task. In
the screen-shot in Fig. 28 we have selected the “Show all child tasks” option,
so all child tasks to the currently selected task are shown recursively. Another
option is “Show task value”. This opens a floating window in which one can
see the task value of a selected task. Tasks can be selected for this purpose by
clicking the small square on the right-hand side of the task-application node.
Other features of the viewer include viewing the doc-block comments associated
with a particular function, showing all finished blueprints, and a compact-mode,
in which task-application arguments are not rendered.

One of the challenges in making a viewer for dynamic blueprints is designing
a way to navigate through all active blueprints. Even in a small application
such as this add1by1 example, the number of blueprint instances quickly rises.
To manage a potentially large number of blueprint instances, the Tonic viewer
offers a means to filter the list of dynamic blueprints. This is done in the “Filter
query” panel on the right side of the screen. Active blueprints can be filtered by
substring matching on any of the columns in the blueprint list. Complex filters
can be constructed using conjunction and disjunction operators.

5 Blueprints for All

In the previous sections we have looked in great detail at the way Tonic is
implemented for iTasks programs. One of the claims we have made earlier is
that we now support blueprints for any monad. To solidify this claim, we shall
look at an example of dynamic blueprints of a program in the IO monad. Showing
a dynamic blueprint for non-iTasks programs requires a new Tonic viewer, which
we will discuss as well.

5.1 Dynamic Blueprints of the I/O Monad

Lets look at how Tonic handles the IO variant of the primeCheck example. Figure 29
shows the dynamic blueprints for primeCheck. This dynamic blueprint is produced
by an experimental stand-alone Tonic viewer, which serves as a proof-of-concept
that such a stand-alone viewer can be constructed. As such, we are currently
limited in the kind of information that we can dynamically show. The next
section will elaborate on the implementation of the stand-alone viewer and talk
about how the Tonic classes are implemented for the IO monad. We will also
discuss some of the challenges we have encountered.

Creating a general (i.e. iTasks-agnostic) stand-alone viewer largely requires
solving the same problems as for writing an embedded viewer: how does one load
and draw the blueprints? How does one receive and process dynamic updates?
How does one inspect dynamic data? It turns out that these questions become
significantly more challenging when answering them for a general and stand-
alone Tonic viewer. We will look at these aspects next.
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Fig. 29. Dynamic blueprint for IO variant of primeCheck.

5.2 Stand-Alone Viewer Architecture

Instead of including the Tonic viewer as part of an iTasks program, the stand-
alone viewer communicates with the to-be-inspected program via a TCP proto-
col. Figure 30 shows its architecture. There is a two-way communication channel
between the original application (the server) and the Tonic viewer (the client).

Fig. 30. Architecture of the stand-alone Tonic viewer

Blueprints are stored on disk in the same directory as the application for
which they are generated. This allows the embedded Tonic viewer to locate them.
The stand-alone viewer is not necessarily located in the same directory as the
program that needs to be inspected, however. As a result, it cannot access the
blueprints directly. Instead, it requests blueprints from the server and caches
them, after which they can be drawn. The stand-alone viewer uses the same
drawing mechanism as the built-in viewer.

Dynamic updates are provided by the Tonic wrappers. In the iTasks imple-
mentation, these wrappers write directly to the Tonic SDS. Wrappers for the
stand-alone viewer write to a TCP connection instead. On the client-side, this
data is stored again in an SDS.
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5.3 Drawing Dynamic Blueprints

Figure 31 shows the protocol the Tonic viewer uses to instantiate blueprints and
update them. When starting the client, it connects to exactly one server. The
server registers the client, so it knows it can send updates to it when the program
is executed. These updates are received by the client. If a given blueprint instance
does not exist yet, the client tries to instantiate it. If the blueprint is not available
on the client yet, it requests it from the server. Finally, the blueprint instance is
updated and the client waits for the next update.

Fig. 31. Client/server protocol for the stand-alone Tonic viewer.

In the integrated Tonic viewer, blueprints are identified by a task’s unique
identifier. In the stand-alone viewer, we abstract over this identifier by allowing
it to be anything for which equality is defined. It is up to the implementation of
the Blueprint and Contained classes to determine what the identifier is.

Inspecting values at run-time is another challenge in the stand-alone Tonic
viewer. In the integrated viewer, we simply imposed the iTask constraint on any-
thing that could be inspected, allowing rich visualizations. In general, we cannot
rely on this constraint being fulfilled. In the stand-alone viewer, we therefore cur-
rently disallow inspection of run-time values. One could take a first step towards
dynamic value inspection by, for example, impose JSON (de)serialization con-
straints. Inspecting raw JSON data structures quickly becomes unwieldy for
complex data structures, however.

5.4 Discussion

A clear downside to the approach presented above is that for each monad for
which one wants to have dynamic blueprints, one needs to implement a blueprint
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server. The current implementation of the stand-alone Tonic viewer also has
several limitations. It is currently not possible to inspect values or do dynamic
branch prediction, nor is it possible to select which blueprint instance you are
interested in; the viewer only ever shows the blueprint instance for which the lat-
est update arrived. Still, we feel like this is an important step towards positioning
Tonic as a general tool.

6 Related Work

Tonic can be seen as a graphical tracer/debugger. Several attempts at tracer/de-
buggers for lazy functional languages have already been made. Some examples
include Freja [5,6], Hat [16,17], and Hood [2], the latter of which also has a
graphical front-end called GHood [15]. All of these systems are general-purpose
and in principle allow debugging of any functional program at a fine-grained
level. Tonic only allows tracing on a monadic abstraction level. Due to our focus
on monads, Tonic does support any monad, including the IO monad. All of the
aforementioned systems only have limited support for the IO monad. Freja is
implemented as its own compiler which supports a subset of Haskell 98. Pre-
vious Hat versions were implemented as a part of the nhc98 compiler. Modern
Hat versions are implemented as stand-alone programs and support only Haskell
98 and some bits of Haskell 2010. Tonic is implemented in the Clean compiler
and supports the full Clean language, which is more expressive than even Haskell
2010. Hood, on the other hand, requires manually annotating your program with
trace functions.

GHood is a graphical system on top of Hood that visualizes Hood’s output.
Its visualizations are mostly aimed at technical users. Graphical programming
language, such as VisaVis [13] and Visual Haskell [14] suffer from similar prob-
lems. Tonic explicitly aims at understandability by laymen by choosing a higher
level of abstraction, hiding details that do not contribute significantly to under-
standing the program, and by utilizing coding conventions.

Another way to look at Tonic is as a graphical communication tool. In this
sense it fulfills a role similar to UML [8,9] and BPMN [19]. Both of these tech-
nologies also offer a means to specify programs and workflows. This is something
Tonic is not designed to do. Previous work from our group, GiN – Graphical
iTasks Notation [4] can be used for that.

7 Discussion and Conclusion

In this paper we generalised and expanded our original Tonic idea. Any monadic
program can now be statically visualized by Tonic. While dynamic visualization
is currently mostly limited to iTasks, we have laid the foundation for dynamically
visualizing any monadic program.

So far, we have extensively experimented with using Tonic for iTasks. Our
approach of using type classes for defining how dynamic behaviour should be
captured allows for an almost completely orthogonal implementation for iTasks;



Static and Dynamic Visualisations of Monadic Programs 373

the core system only required very minimal changes. The biggest change was
made to the way iTasks handles task IDs. These IDs are not generated deter-
ministically, so we had to implement a form of stack-tracing in iTasks to capture
which tasks had already been executed. Systems with deterministic identifiers
will not have to resort to such measures.

Section 5.1 shows the results of experiments aimed at supporting dynamic
blueprints for the IO monad. The fact that we can successfully generate these
blueprints suggests that Tonic can be used in contexts other than iTasks as
well. While this experimental Tonic viewer works reasonably well for simple IO
programs, it lacks many of the features shown in Sect. 4.5 and is not very user-
friendly. In the future we want to expand this stand-alone viewer to the point
where it can replace the built-in iTasks Tonic viewer.

Complete iTasks Agnostisism
Even though we have made the Tonic compiler completely iTasks-agnostic, Tonic
itself still is tied to iTasks by means of the iTask context restriction in the Blueprint
and Contained classes. The iTask class is used to be able to generically inspect
values. Its presence in the classes means that, even when using Tonic for non-
iTasks programs, we require an iTasks-specific class to be instantiated for all
types that we want to inspect. Clean’s type-system, however, offers no elegant
solution to this problem. GHC in particular could solve this problem elegantly
using its ConstraintKindsand TypeFamilies extensions, as shown in the code snippet in
Fig. 32. Here, the context restriction depends on the type of the Blueprint monad.

For Clean, we could require values to be serializable to JSON so we can
display data as, for example, a set of key-value pairs. While this approach would
generalise the Tonic classes in the short term, it limits the ways in which we can
present the inspected values. For example, we can currently render interactive
graphics in the Tonic inspector. A true solution would be to implement variable
context restrictions in type classes in Clean, similar to GHC.

Portability
By generalising Tonic it becomes clear that it could be implemented in a context
different from Clean as well. Acknowledging that GHC in particular offers elegant
solutions to improve Tonic’s type classes, it would be interesting to explore
porting Tonic to GHC.

Dynamic Blueprint Modification
Tonic’s blueprints, whether static or dynamic, are currently read-only. We cannot
influence the execution of programs or change a program’s implementation. In
the future we would like to explore such possibilities.

Wrapping Up
Tonic, as presented in this paper, lays the foundation for a plethora of distinct but
related tools. On the one hand, blueprints can be seen as automatic program doc-
umentation. Each time the program is compiled, its blueprints are generated too,
giving the programmer up-to-date documentation for free. Furthermore, dynamic
instances of these blueprints document the program’s dynamic behaviour. Due to
the blueprint’s high level of abstraction, this free documentation can serve as the



374 J. Stutterheim et al.

class Monad m => Contained m where
type CCtxt m a :: Constraint
type CCtxt m a = ()
wrapFunApp :: CCtxt m a

=> (ModuleName, FuncName) -> ExprId -> m a -> m a

class Contained m => Blueprint m where
type BpCtxt m a :: Constraint
type BpCtxt m a = ()
wrapFunBody :: BpCtxt m a

=> ModuleName -> FuncName -> [(VarName, m ())]
-> m a -> m a

wrapFunArg :: BpCtxt m a => String -> a -> m ()

instance Contained Task where
type CCtxt Task a = ITask a
wrapFunApp = ..

instance Blueprint Task where
type BpCtxt Task a = ITask a
wrapFunBody = ..
wrapFunArg = ..

instance Contained Maybe where
wrapFunApp = ..

Fig. 32. GHC definition of Tonic type classes.

basis of communication between various project stakeholders as well, enabling
rapid software development cycles. Whether Tonic succeeds in being a suitable
communication tool is a subject for future work.

Another way to look at Tonic is as a graphical tracer and debugger. Dynamic
blueprints trace the execution of the program, while Tonic’s inspection and future
branch prediction capabilities add features desirable in a debugger. Even for
programmers, having such information visualized may aid in understanding the
behaviour of the programs they have written better. It may also aid in construct-
ing the required program faster or with less effort.

Yet another avenue worth exploring is education. We are currently including
blueprints in the lecture slides of functional programming courses. In our expe-
rience, students struggle with the concept of monads, so we want to see if and
how Tonic can reduce these problems.

A Using Tonic

In this section we will look at how to use Tonic in iTasks programs. Tonic consists
of two parts: the Tonic compiler and the Tonic framework. iTasks ships with pre-
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configured Tonic environment files, which you can load into the Clean IDE. The
Tonic environment then ensures the correct compiler is used.

Tonic uses an opt-in mechanism to determine which modules to visualize.
Opting a module in is done by importing the iTasks. Framework.Tonic module.
By default, importing this module will import instances for the Contained and
Blueprint type classes for the following types: Task, Maybe, Either, and IO. At
this point, you can also define your own instances for these classes.

In order to see the blueprints, you still need to include a path to the built-in
Tonic viewer. This is done in the startEngine rule of your program, as shown
in Fig. 33. The built-in Tonic viewer is exported via another module, which will
need to be imported first.

import iTasks._Framework.Tonic
import iTasks.API.Extensions.Admin.TonicAdmin

Start :: *World -> *World
Start world = startEngine [ publish "/" (\_ -> myMainTask)

, publish "/tonic" (\_ -> tonic) ] world

Fig. 33. Using Tonic.

Navigating to the /tonic URL presents the user with a screen similar to
Fig. 34. Two tabs on the top of the screen allow the user to choose between
viewing static or dynamic blueprints. Initially, the “Static Blueprints” tab is
selected. The user can browse the static blueprints by first selecting the module
for which to view the blueprints. After selecting the module, a list with the task
names for which a blueprint has been generated appears. Selecting a task name
from that list will cause the corresponding blueprint to be rendered.

Fig. 34. Built-in static blueprint browser

To view runtime progress, the user can select the “Dynamic Blueprints” tab.
This is shown in Sect. 4.5, Fig. 28.
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B iTasks Combinators

In this appendix we list common task combinators. All of the combinators used in
this paper are presented here. Additional combinators are presented as well. We
encourage the reader to experiment with them. Because the iTasks system is a
work in progress, it is inevitable that definitions may change in the future. Please
use the dedicated search engine Cloogle4 to get access to up-to-date definitions
and documentation, not only of iTasks but also of Clean and all other libraries.

B.1 Type Classes

class Functor f where

fmap :: (a -> b) (f a) -> f b

class TApplicative f | Functor f where

(<#>) :: (f (a -> b)) (f a) -> f b | iTask a & iTask b

return :: a -> f a | iTask a

class TMonad m | TApplicative m where

(>>=) infixl 1 :: (m a) (a -> m b) -> m b | iTask a & iTask b

(>>|) infixl 1 :: (m a) ( m b) -> m b | iTask a & iTask b

instance Functor Task

instance TApplicative Task

instance TMonad Task

B.2 Step Combinator and Utility Functions

:: Action = Action ActionName [ActionOption]

:: ActionOption = ActionKey Hotkey

| ActionIcon String

:: TaskCont a b = OnValue ((TaskValue a) -> Maybe b)

| OnAction Action ((TaskValue a) -> Maybe b)

| E.e: OnException (e -> b) & iTask e

| OnAllExceptions (String -> b)

(>>*) infixl 1 :: (Task a) [TaskCont a (Task b)] -> Task b | iTask a & iTask b

always :: b (TaskValue a) -> Maybe b

ifValue :: (a -> Bool) (a -> b) (TaskValue a) -> Maybe b

hasValue :: (a -> b) (TaskValue a) -> Maybe b

ifStable :: (a -> b) (TaskValue a) -> Maybe b

4 Cloogle resides at https://cloogle.org/.

https://cloogle.org/
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B.3 Parallel Combinators

allTasks :: [Task a] -> Task [a] | iTask a

anyTask :: [Task a] -> Task a | iTask a

(-||-) infixr 3 :: (Task a) (Task a) -> Task a | iTask a

(||-) infixr 3 :: (Task a) (Task b) -> Task b | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) -> Task a | iTask a & iTask b

(-&&-) infixr 4 :: (Task a) (Task b) -> Task (a, b) | iTask a & iTask b

B.4 Editors

:: ViewOption a = E.v: ViewAs (a -> v) & iTask v

:: EnterOption a = E.v: EnterAs (v -> a) & iTask v

:: UpdateOption a b = E.v: UpdateAs (a -> v) (a v -> b) & iTask v

| E.v: UpdateSharedAs (a -> v) (a v -> b) (v v -> v) & iTask v

:: ChoiceOption o = E.v: ChooseFromDropdown (o -> v) & iTask v

| E.v: ChooseFromCheckGroup (o -> v) & iTask v

| E.v: ChooseFromList (o -> v) & iTask v

| E.v: ChooseFromGrid (o -> v) & iTask v

viewInformation :: d [ViewOption m] m -> Task m | toPrompt d & iTask m

enterInformation :: d [EnterOption m] -> Task m | toPrompt d & iTask m

updateInformation :: d [UpdateOption m m] m -> Task m | toPrompt d & iTask m

viewSharedInformation :: d [ViewOption r] (ReadWriteShared r w)

-> Task r | toPrompt d & iTask r

enterMultipleChoiceWithShared :: d [ChoiceOption a] (ReadWriteShared [a] w)

-> Task [a] | toPrompt d & iTask a & iTask w

updateSharedInformation :: d [UpdateOption r w] (ReadWriteShared r w)

-> Task r | toPrompt d & iTask r & iTask w

B.5 Share Combinators

withShared :: b ((Shared b) -> Task a) -> Task a | iTask a & iTask b

get :: (ReadWriteShared a w) -> Task a | iTask a

set :: a (ReadWriteShared r a) -> Task a | iTask a

upd :: (r -> w) (ReadWriteShared r w) -> Task w | iTask r & iTask w

watch :: (ReadWriteShared r w) -> Task r | iTask r

B.6 Task Assignment

(@:) infix 3 :: worker (Task a) -> Task a | iTask a & toUserConstraint worker
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Abstract. The optimal modularization and the right level of cou-
pling between components are important for the overall quality of soft-
ware systems. Although the generic suggestion is to minimize the cou-
pling between modules, earlier research on object-oriented programming
showed that there is a natural limit to eliminating dependencies between
classes. In our research we extend these findings for non-OOP systems
and show that this limitation seems to be paradigm-independent. For
this purpose we define paradigm-agnostic metrics for coupling and eval-
uate them. Our results, measuring Scala and Erlang sources, prove that
the coupling behavior shows scale-free properties. Our contribution could
be useful to avoid unnecessary or harmful code refactors to chase overall
low coupling in systems.

1 Introduction

A good software system is said to be loosely coupled between components [1].
This general software engineering advice does not specify the nature of coupling.
We define coupling in a generic way, stating that two separate entities are coupled
if they are connected by some kind of dependency. This still leaves freedom
in defining the entities and the dependency relation. From scientific point of
view, any kind of directed connection can be considered a dependency (e.g. one
function calls another, one class inherits from another, etc.), and any kind of
grouping of pieces of code can be an entity (e.g. function, class, module and
package).

In our paper we focus on a common subset of the artifacts and dependencies
of two programming paradigms, namely object-oriented (OOP) and functional
paradigms (FP). We have chosen these as they are both separately and inde-
pendently gaining popularity in scientific and industrial applications [2]. We
investigate the scale-free property of large software systems from both OOP and
FP. In our investigation, entities will be classes for OOP and modules for FP, and
function call as the dependency for both of them. To apply our measurements
we have chosen Scala [3] and Erlang [4] programming languages. Function call
dependency naturally defines two metrics, that we precisely describe in Sect. 3.
It is important to note that our analysis considers static and not dynamic calls.

c© Springer Nature Switzerland AG 2019
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28346-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-28346-9_10


Analyzing Scale-Free Properties in Erlang and Scala 381

Dynamic binding can happen only at run-time, and it can depend on previous
program state or user input. It leads to a completely separate problem space
that this paper doesn’t intend to solve.

Our paper is organized as follows: Sect. 2 overviews the related works on scale-
free networks and metrics. Section 3 describes two metrics and proves that they
are coupling metrics. Section 4 lists our measurements and findings on how the
scale-free property is paradigm-agnostic considering coupling metrics. Section 5
discusses the possible future works. Our paper concludes in Sect. 6.

2 Related Works

In this section we summarize already-existing key findings on scale-free proper-
ties of software metrics.

2.1 On Scale-Free Networks

Considerable amount of effort has been recently put into researching the struc-
ture of networks, their transformations over time and properties describing them
[5]. Networks that originate in real-world systems rather than follow a mathe-
matically designed structure have been found to usually follow a degree distri-
bution described by a power-law distribution [6]. This opposes previous findings
of networks generated by algorithms that tend to have a Poisson degree distri-
bution [7]. Network properties of large computer programs were investigated for
several publicly available computer programs written in various programming
languages including Java, C, C++, Erlang, etc. [8–10]. Moreover, the scale-free
property was justified for large scale test systems as well [11].

The Power-Law Distribution

Definition (Scale-free Network) [12]. A graph is called a scale-free network,
if its degree distribution follows a power-law distribution, that is for all nodes in
the graph having k connections to other nodes, the following must be true for
large enough k values:

P (k) ∼ Ck−λ (1)

where λ is typically in the range of 2 < λ < 3 and C is the normalization
constant that needs to satisfy

∞∑

n=1

Cn−λ = 1 (2)

Properties of Scale-Free Networks. In practice, this describes two key char-
acteristics of these networks:

1. The graph has a set of vertices possessing the number of degrees that is
considerably above the mean of the whole network. These nodes are usually
called “hubs” of the graph.
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2. The clustering coefficient tends to correlate with the node degree: as the
degree decreases, the local clustering coefficient decreases as well. This also
declares that the coefficient needs to follow a power-law distribution.

The aforementioned properties are thought to be descriptive of how fault-tolerant
the network is [13–15] (if this can be considered regarding the network in ques-
tion), percolation theory had been used to analyze the fault tolerance of scale-free
networks previously. Findings in these studies have identified hubs as both the
weaknesses and the strengths of networks. If the graph has mostly low-degree
vertices and failures randomly affect nodes, losing a hub is less likely. Although,
the fall of a hub can mean severe loss of connectedness of the graph, this effect
is still negligible compared to a random graph.

While matching the power-law distribution to a data-set can become
resource-intensive, there is a much easier (although less precise) method to ana-
lyze empirical data. By transforming the definition of power-law distribution as
described in [16], we can arrive to a practical solution to analyze data. After
plotting the data-set in the fashion of degrees assigned to frequencies on a log-
log graph (that is to have a logarithmic scale on both the x- and y-axes), this
graph should show a linear regression. This method has been shown to be sta-
tistically imprecise [17], although it matches our practical requirements, since it
is between the error limits.

There is also a need to ignore some points in the data-set, as these tend to
corrupt the linearity of the plot. Our definition takes this into consideration, the
condition to check large enough k values is to avoid noise at the ends of the
graph. This is studied and explained in detail in [17].

Lastly, we make an observation on the naming of these networks. Scale-
freeness can be caught when one considers nodes at different levels of degree
distribution. These nodes tend to “look familiar” at all levels, thus providing
the self-similar nature of the network.

2.2 Metrics

Software metrics is a thoroughly investigated research area. Metrics come from
mathematics where the abstract notion of metrics is based on some axioms. All
relations satisfying the set of axioms are considered valid metrics. Although soft-
ware metrics are originated from industrial experiences [18] later Weyuker [19]
defined nine axioms that every software metric should satisfy. Although they
provided a solid theoretical foundation for the field, these axioms themselves
did not provide useful hints for neither the usefulness nor the categorization of
metrics. It seems obvious that software metrics can be grouped in categories
based on the investigated property of the software. A useful categorization was
described in [20]. They defined a simple mathematical background for the theory
where non-specified parts of the software are described with nodes, connections
between the parts with directed edges and sets as “abstract containers” for
the parts. This simplification is useful for achieving full language-independence,
which is a requirement to compare different paradigms. In our paper we define
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nodes as functions, edges as function calls (the starting node of the edge is the
calling function; the ending node is the called function) and sets as modules or
classes. Five categories were defined for metrics:

– size: a straightforward property describing the number of elements or lines in
a program;

– length: it describes the distance between two elements;
– complexity : it is a system level property describing the relationship between

components (modules, classes etc.) of the system;
– cohesion: it describes how the related program entities are grouped together

(e.g. how modules are self-contained in a modularized system);
– coupling : it captures the amount of relationship between the modules of the

system.

There are different kinds of coupling metrics in the literature, based on this
we only list here axioms directly related to them:

1. Non-negativity. The coupling value of a module is non-negative.
2. Null value. The coupling of a module is zero, if there are no connections to

other modules through function calls. (If the module is denoted by m, then let
Outero(m) denote the number of function calls towards other modules, and
Outeri(m) the number of function calls towards m. The distinction between
incoming and outgoing calls is not necessary.)

3. Monotonicity. Let Outer(m) := Outeri(m) + Outero(m) and Coupling(m)
be the function that assigns the Coupling metrics result to module m. In
this case, if we add a new inter-module relationship to m (let us denote this
modified module by m′), its coupling will not decrease:

Outer(m) ≤ Outer(m′) ⇒ Coupling(m) ≤ Coupling(m′)

4. Merging of modules. If two modules are merged together (all functions from
one module is moved to the other) then the coupling of the merged module
is not greater than the sum of the individual modules.

5. Disjoint module additivity. If two modules, m and m′ are not connected (i.e.
there exists no function call between the two modules) and there is no module
m′′ such that it connects to both m and m′, then the sum of the coupling of
the individual modules equals to the coupling of the merged module.

3 Formal Evaluation

In this section we formally define the metrics we use and prove that they comply
with the previously defined axioms of coupling. The metrics do not depend on
the programming paradigm, we only suppose that there are functions, functions
are grouped in sets (modules or classes) and function calls are possible among
these sets.
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Firstly, we define Aggregated Coupling Metric (ACG)1 as the sum of incom-
ing and outgoing function calls to a module: ACG(m) = ACGi(m) + ACGo(m)
If we have modules a and b, and one function call from a to b, then ACGi(b) = 1
and ACGo(a) = 1. We also define a variant of ACG that considers the cardi-
nality of function calls: WACG in the case of multiple function calls existing
between a and b, the number of these function calls will be the result of the
metric.

Let us denote a module or class by m. Suppose that function f is defined
in module m. Denote a function call from f to a function g in module m′ by
m.f → m′.g. Denote M as the set of modules of the software system. Let us
denote χ a characteristic function that returns 1 if the parameter set is non-
empty and 0 otherwise. Furthermore, # will be used as the cardinality of a
set.

3.1 Definitions

The ACG metric is the sum of the number of incoming calls from other modules
and the number of outgoing calls of the module.

Definition 1. (Incoming function calls)

Si(m) = {(f, g)|∃f ∈ m,∃g ∈ m′ : m′.f → m.g} (3)

Definition 2. (Outgoing function calls)

So(m) = {(f, g)|∃f ∈ m,∃g ∈ m′ : m.f → m′.g} (4)

Definition 3. (ACG metric)

ACG(m) := ACGi(m) + ACGo(m) (5)

where
ACGi(m) = χ(Si(m)) (6)

ACGo(m) = χ(So(m)) (7)

Definition 4. (WACG metric)

WACG(m) := WACGi(m) + WACGo(m) (8)

where
WACGi(m) = #(Si(m)) (9)

WACGo(m) = #(So(m)) (10)

The following theorem shows the coupling nature of the incoming and outgo-
ing components of metrics based on the coupling axioms mentioned previously.

1 ACG stands for Aggregated Coupling to avoid the acronym ACM.
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Theorem 1. WACGi and WACGo as well as ACGi and ACGo are coupling
metrics.

Proof. It is enough to prove for ACGi and WACGi. The proof for ACGo and
WACGo is analogous. We check the five properties of coupling metrics.

1. Trivially true, since both χ and # return non-negative values.
2. Outer(m) = 0 implies that there exists no g ∈ n so that n.g → m.f , hence

the resulting set is always empty. It makes both χ and # equal to 0.
3. To prove monotonicity, we need to consider two cases:

(a) Let us suppose that we add a function call to module m and Si in (1)
was not empty. In this case, the number of elements in Si increases, but
the characteristic functions χ and # return the same value for Si. This
means that ACGi and WACGi satisfies the non-decreasing requirement
of monotonicity.

(b) In the case of adding such a function call to module m where Si(m) was
empty, both # and χ will increase for Si(m), thus values of ACGi and
WACGi will be increased as well which means strict monotonicity.

4. We have to prove that WACGi(m) + WACGi(n) ≥ WACGi(m + n) and
ACGi(m) + ACGi(n) ≥ ACGi(m + n). Since the proof is similar for both
ACGi and WACGi, here we will only list it for WACGi. We need to consider
three possible cases.
(a) Disjoint modules. In this case there exists no module p such that ∃f ∈ p∧

g ∈ m|p.f → m.g and ∃f ∈ p∧g ∈ n|p.f → n.g and �f ∈ m∧g ∈ n|m.f →
n.g or n.f → m.g: simply, there is no module that has a connection to
both m and n and there are no calls between m and n. Merging such
modules means that the merged module will have exactly the same calls
as m and n, so WACGi(m) + WACGi(n) = WACGi(m + n).

(b) Call from a common module. If there is a module p: ∃f ∈ p∧g ∈ m|p.f →
m.g and ∃f ∈ p ∧ g ∈ n|p.f → n.g, also �f ∈ m ∧ g ∈ n|m.f → n.g or
n.f → m.g meaning that there is one module that has a call to both m
and n, but there is no call between m and n. The merged module will
contain the call from p only once, so its weight will be accounted for only
once, hence WACGi(m) + WACGi(n) > WACGi(m + n).

(c) Call between the modules. If there is no module p in a way that ∃f ∈ p∧g ∈
m|p.f → m.g and ∃f ∈ p∧g ∈ n|p.f → n.g and ∃f ∈ m∧g ∈ n|m.f → n.g
or n.f → m.g. In this case there is a call from m to n (the proof is the same
in the reverse order) and there are no common calls from outer modules.
Merging such modules will have the same connections as the separate
modules except for the call between m and n, which will be excluded
since we don’t consider self calls for WACG and ACG. This leaves us
with the same considerations as (4b), thus WACGi(m) + WACGi(n) >
WACGi(m + n).

5. If m and n are disjoint, then the condition of 4.a. holds.

The coupling nature of WACG follows from a more generic theorem.
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Theorem 2. The sum of coupling metrics is a coupling metric.

Proof. Let M1 and M2 be coupling metrics. We have to prove that M := M1+M2

is a coupling metric. We check the five properties of coupling metrics.

1. M is non-negative, since it is the sum of non-negative numbers.
2. If M1 = 0 and M2 = 0, then M = 0.
3. Let M1 and M2 be monotonously increasing functions on the domain set D.

For all x, y ∈ D,x ≤ y we know that M1(x) ≤ M1(y) and M2(x) ≤ M2(y).
Adding M1 and M2 together we have M1(x) + M2(x) ≤ M1(y) + M2(y) and
that is equivalent to (M1 + M2)(x) ≤ (M1 + M2)(y).

4. Merging of two modules can also be derived back to the monotonicity of
addition.

5. The equation derives from the monotonicity property as described in Theo-
rem 1.

Since WACG is the sum of two coupling metrics, it is also a coupling metric.
We will use both WACG and ACG to show that the degree distribution derived
from these metrics shows a scale-free property.

4 Evaluation of the Metrics

In this section we provide a methodology and results that scale-free property of
different software systems of different paradigms are preserved. First we provide
the methodology of our measurements, then our expectations to these measure-
ments and finally the data that supports our expectations.

4.1 Methodology

We used RefactorErl [21] for analyzing the Erlang [4] compiler and a Scala com-
piler plugin for analyzing the call-graph of the Scala [3] compiler. Both products
are complex software systems usually written by experts who are familiar with
the paradigms. With these tools we gathered the number of incoming function
calls for each module or class (entity). We have investigated three consecutive
major releases of Erlang OTP (R12B, R13B, R14B) [22]. The Erlang compiler
is about 626.000 lines of code. RefactorErl loads the whole investigated soft-
ware system into a semantic graph [23] and stores it into a database. We have
written a plugin module for RefactorErl that queries the database to analyze
all function calls and module graphs with incoming and outgoing edges deriv-
ing from the analyzed function calls. Erlang function calls can be dynamic, i.e.
pure higher-order functions, or function and module names can be determined
run-time. The dynamic function calls are not included in our results and their
Scala counterparts are not analyzed either, and there are only a few of them in
the analyzed Erlang systems.

We have investigated three consecutive major versions of the Scala com-
piler [24]: v2.10, v2.11, v2.12. The Scala compiler is about 430.000 lines of code.
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The compiler plugin for Scala was inserted as the last compile phase traversing all
method calls and registering incoming and outgoing edges for the corresponding
classes. The last compiler phase receives the fully analyzed syntax tree.

The source code can be downloaded from https://github.com/olikasg/erlang-
scala-metrics.

4.2 Hypotheses

Since several studies provided proof that real object-oriented software systems
follow scale-free properties we expect that the Scala compiler will also show the
same, despite the fact that it is written in a mixed, both functional and object-
oriented paradigm. In other words, mixing the functional style (immutable data
structures, higher-order functions, algebraic data types) has no (or insignificant)
effect on the scale-free property.

Hypothesis 1. The Scala compiler shows scale-free property for WACGi,
WACGo and WACG.

Since the industrial AXD 311 product of Ericsson - which was written in
Erlang - has scale-free behavior [10], we expect that the Erlang OTP will show
similar properties. Although Erlang is not a pure functional programming lan-
guage (more of a concurrent one), the base language elements are functional
(except compound expressions and sequences). The lack of user-defined types
(hence lack of classes) provides a different environment to our analysis. (One
might argue that parametric modules and the actor model could be used to
simulate object-orientation [25], but the existing systems rarely use parametric
modules and Erlang OTP is not written using OOP.)

Hypothesis 2. Erlang OTP shows scale-free properties for WACGi, WACGo

and WACG.

The less complex ACG still grabs an interesting property of a software sys-
tem. The lack of multiplicity of edges reveals a similar “coupling” order between
nodes. We expect that this simpler metric also preserves the scale-free property
of the systems under investigation.

Hypothesis 3. Both the Scala compiler and the Erlang OTP preserves the
scale-free property with ACGi, ACGo and ACG.

We analyzed three consecutive major versions of the compilers to investigate
whether the scale-free property changes over releases. Supposing Hypotheses 1–3
are true for the first analyzed version, the scale-free property remains and the
average change of the metric values are significant (i.e. more than 5%) for all
defined metrics.

Hypothesis 4. The scale-free property can be observed for all analyzed versions
of the Scala compiler and the Erlang OTP in all defined metrics.

https://github.com/olikasg/erlang-scala-metrics
https://github.com/olikasg/erlang-scala-metrics
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4.3 Our Findings

We used log-log plots to visualize the distributions of class dependencies. The
charts can be read as the number of classes (y-axis) that have the given number
of connections (x-axis). We have fitted a linear regression model (the red line in
the charts) to visualize that the number of classes with a given number of con-
nections is close to a straight line. The blue lines represent the average number
of connections.

Figure 1 shows the results of the metrics for the Scala compiler v2.10. The
number of Erlang modules analyzed is 1227, while the number of Scala classes
is 2227. All of WACGi (Fig. 1a), WACGo (Fig. 1b) and WACG (Fig. 1c) show
a highly left-skewed distribution. This observation confirms Hypothesis 1, the
distribution is very similar to ideal power-law distributions. It is common in all
charts that the majority of the data points are below average and some of the
modules are significantly higher than this average.
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Fig. 1. WACG distributions for the Scala compiler. (Color figure online)

The same left-skewed distribution property is valid for Erlang OTP R12B in
Fig. 2. Although the distribution shows a high number of outliers and is a bit
scattered, but the majority of modules show below-average number of connec-
tions. We analyzed 993 modules, the majority of them are below-average and
only a small number have significantly higher values than the average. We claim
that Hypothesis 2 is also valid.

The ACG metrics show a cleaner distribution in the following way: with only
a few outliers at the beginning, a steep decline and a long tail, the charts (Figs. 3
and 4) fit the regression lines nicely. Hence Hypothesis 3 also holds.

The main claim of our article, i.e. the scale-free property is independent from
the programming paradigm, is supported by the observation that the charts of
both the Scala and the Erlang systems show high levels of similarity.

As Hypothesis 4 suggests, the scale-free property is preserved throughout the
different versions of both systems. We included only the distributions deriving
from the ACG (Figs. 6 and 8) and WACG (Figs. 5 and 7) metrics, but the incom-
ing and outgoing distributions show similar results. The source code changes
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Fig. 2. WACG distributions for the Erlang OTP.
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Fig. 3. ACG distributions for the Scala compiler.
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Fig. 4. ACG distributions for the Erlang OTP.

significantly: approximately 5% of the Erlang compiler changed, and approxi-
mately 50% of the code of the Scala compiler did. The changes in the values
of the metrics are significant: for the Erlang compiler there is 9.93% increase
in WACG and 10.31% increase in ACG; for the Scala compiler there is 5.92%
decrease in WACG and 11.09% decrease in ACG. These numbers also support
Hypothesis 4.
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5 50 500 5000

1
2

5
10

20

Degrees

N
um

be
r o

f n
od

es

(c) WACG Erlang R14B

Fig. 5. WACG distributions for different versions of the Erlang OTP.
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Fig. 6. ACG distributions for different versions of the Erlang OTP.
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Fig. 7. WACG distributions for different versions of the Scala compiler.

Our conclusion is that both ACG and WACG are suitable to capture the
scale-free property of the investigated systems. The scale-free property is pre-
served and significant source code modifications do not alter this property. Since
scale-freeness means that some nodes (hubs) have above-average connections,
both ACG and WACG are suitable to point out heavily dependent parts of
software systems.
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Fig. 8. ACG distributions for different versions of the Scala compiler.

Furthermore, the paradigm in which the system is written, is not relevant to
the scale-free property.

5 Future Work

Our work can be extended to other functional languages like Haskell or Clojure.
If a language lacks a module system then our definitions should be altered.
Other paradigms such as logical programming (Prolog) or generic programming
techniques (e.g. template meta-programming) may also be investigated.

The cause why large software systems tend to show a scale-free property
should be further investigated. We see two possible explanations that are worth
to consider. One reason can be that the developer’s familiarity with classes or
modules creates a preference resulting in the avoidance of other less-understood
classes. Over time this creates hubs. The other reason can be that the chosen
software architecture (e.g. layered architecture) creates artificial preference and
hubs are inevitable.

6 Summary

In this paper we investigated the coupling behavior of programs written in mul-
tiple paradigms. Earlier research found that coupling level of object-oriented
systems has a certain pattern, similar to scale-free networks. Thus overall cou-
pling of systems cannot be decreased under a specific limit, i.e. there will always
remain components that have significantly higher than average dependency.

As modern programming languages (like Scala) support multiple paradigms
as opposed to purely object-oriented ones, it is important to understand whether
the scale-free property is paradigm-agnostic, furthermore, whether functional
programming languages (like Erlang) preserve the same property.

For this purpose we defined two metrics, Aggregated Coupling Metric (ACG)
and Weighted Aggregated Coupling Metric (WACG) in a paradigm independent
way. We have shown that both metrics fulfill all the requirements of coupling
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metrics. With the help of these metrics, we measured large sample code bases
of Erlang and Scala systems. The results of these measurements show similar
scale-free behaviors of coupling, similar to earlier results of OOP systems.

Our findings can be useful to avoid unnecessary refactorings to chase overall
low coupling in systems regardless of the paradigm used. Further investigation
is required to understand the reason behind the scale-free nature of software
systems.
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