

Avulsion Injury

63

Liliana G. Olvi, Maria L. Gonzalez, Isabela W. da Cunha, Eduardo Santini-Araujo, and Ricardo K. Kalil

63.1 Definition

- Avulsion injury is considered a special type of fracture.
- Radiographically and histologically, the lesion may have a pseudosarcomatous appearance.

63.2 Synonyms

- Cortical avulsion
- · Avulsion fracture

63.3 Etiology

 Repetitive muscle contraction or a violent muscle contraction may pull off a fragment of cortical and medullary bone across the tendon insertion, which has a stronger tensile strength than the bone.

Eduardo Santini-Araujo was deceased at the time of publication.

L. G. Olvi · M. L. Gonzalez Laboratory of Orthopaedic Pathology, Buenos Aires, Argentina

I. W. da Cunha Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil

E. Santini-Araujo (Deceased)
Department of Pathology, University of Buenos Aires,
Buenos Aires, Argentina
e-mail: santiniaraujo@laborpat.com.ar

R. K. Kalil (⊠) Department of Pathology, A.C. Camargo Cancer Center, São Paulo, SP, Brazil

63.4 Epidemiology

• Occurs more frequently in active young adolescents.

63.5 Sites of Involvement

- Most commonly in the tibial tuberosity, at the insertion of the quadriceps (Osgood-Schlatter disease), and in the medial distal metaphysis of the femur, at the insertion of the adductor magnus tendon (distal femoral cortical syndrome or periosteal desmoid)
- Around the pelvis:
 - Ischial tuberosity (ischial apophyseolysis), at the insertion of the hamstring muscles
 - Inferior pubic ramus, at the insertion of the adductor muscles
 - Iliac spine, at the insertion of the rectus femoris
 - Femoral greater trochanter, at the insertion of the gluteus
 - Femoral lesser trochanter, at the insertion of the psoas
 - Humerus, at the insertion of the pectoralis major or the subscapularis muscle

63.6 Clinical Symptoms and Signs

- Usually sudden and severe pain.
- Slight swelling in bones near the skin.

63.7 Imaging Features

63.7.1 Radiographic and CT Features

 The radiographic picture commonly shows extensive reactive bone proliferation and may suggest malignant neoplasms.

- In the ischium, iliac spine, and femoral greater trochanter, a portion of the cortex is pulled off by a violent muscle contraction or repetitive muscle contractions, and radiographs frequently show the apophysis loose in the soft tissue (Figs. 63.1 and 63.2).
- Later, reactive bone formation appears, which in some patients may be exuberant.

63.7.2 Bone Scan Features

• Intense uptake of technetium.

63.8 Imaging Differential Diagnosis

63.8.1 Bone-Forming Benign and Malignant Neoplasms (e.g., Surface Osteosarcoma)

 Avulsion injury has a limited growth potential and mineralizes early over time.

63.9 Pathology

63.9.1 Gross Features

• Frequently the material is obtained by core needle biopsy (Fig. 63.3).

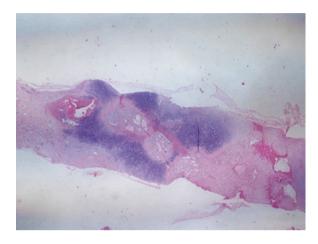
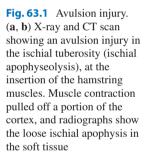



Fig. 63.3 Microphotograph at low magnification of a core needle biopsy specimen from an avulsion injury

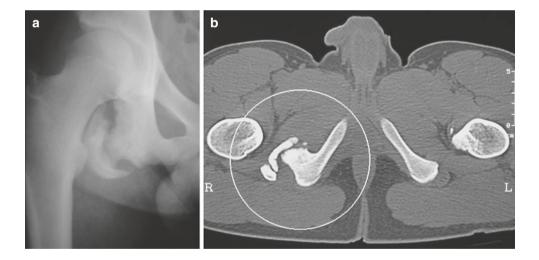
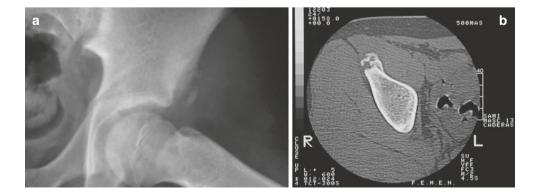



Fig. 63.2 Avulsion injury. Roentgenogram (a) and CT scan (b) showing a cortical avulsion in the iliac spine at the insertion of the rectus femoris

63.9.2 Histological Features

- The histological pattern is similar to a repairing fracture process (endosteal and periosteal callus) (Figs. 63.4, 63.5, and 63.6).
- The osteoid trabeculae are lined by typical osteoblasts.
- Reactive cartilage may be present, similar to a fracture
- Typical mitosis may be present, especially in the early phase of evolution.

63.10 Pathologic Differential Diagnosis

63.10.1 Osteosarcoma

- The brisk mitotic activity and the osteoid production may result in a mistaken overdiagnosis of malignancy.
- Atypical mitoses or cellular pleomorphism are never seen in an avulsion injury.

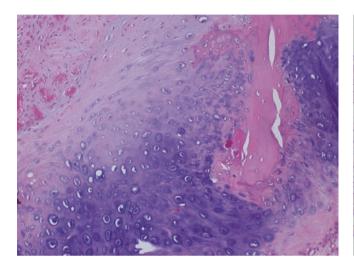
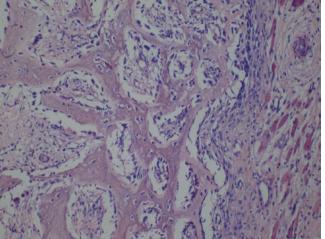



Fig. 63.4 Microphotograph showing peripheral muscle fibers and a chondroid fracture callus

Fig. 63.5 The histological pattern is similar to a repairing fracture process with endosteal and periosteal callus

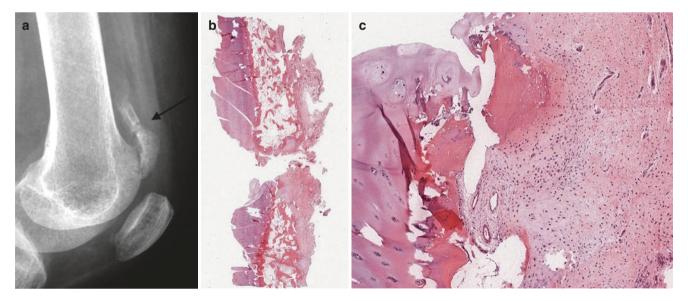


Fig. 63.6 Avulsive fracture of a mineralized tendon insertion segment. (a) Radiograph showing fracture of the ossified tendon end (*arrow*). (b) Panoramic microphotograph of both ends of the fracture fragments. (c) Reactive fibro-chondro-osteoid proliferation

63.11 Prognosis

• Benign lesion, with excellent prognosis.

63.12 Treatment

Lesions often can be confidently diagnosed on the basis
of radiographic features and puncture needle or surgical
biopsy, so that surgical treatment is not necessary; followup may be done by radiographic studies.

Suggested Reading

- Byers PD, Gray JC, Mostafa A, Ali SY. The healing of bone and articular cartilage. In: Glynn LE, editor. Tissue repair and regeneration. Handbook of inflammation. Amsterdam: North Holland; 1981.
- Hayda RA, Brighton CT, Esterhai JL. Pathophysiology of delayed healing. Clin Orthop Relat Res. 1998;355:S31–40.
- Ostrum RF, Chao EY, Bassett CA, et al. Bone injury, regeneration and repair. In: Simon SR, editor. Orthopaedic basic science. Chicago: American Academy of Orthopaedic Surgeons; 1994. p. 277–323.