

Leiomyosarcoma of Bone

43

Ricardo K. Kalil

43.1 Definition

• A rare malignant intraosseous neoplasm composed of spindle cells showing smooth muscle differentiation and devoid of matrix production.

43.2 Etiology

- · Mostly unknown.
- Some cases secondary to radiation therapy or associated with Epstein-Barr virus (EBV) infection have been reported.

43.3 Epidemiology

- · Slight male predominance.
- More common in adults.

43.4 Sites of Involvement

- Most cases occur in long bones, especially the distal metaphysis of the femur and the proximal metaphysis of the tibia.
- Craniofacial bones and the spine are other reported sites of occurrence.

43.5 Clinical Symptoms and Signs

- Pain is the most frequent first symptom.
- Pathological fracture may occur.

43.6 Imaging Features

43.6.1 Radiographic Features

 Radiographs show a purely osteolytic mass centered in the medullary cavity, with ill-defined margins. Cortical permeation and periosteal reaction suggestive of an aggressive lesion may be seen.

43.6.2 CT and MRI Features

- CT and MRI disclose an unusual high preference for this neoplasia to grow much more in length rather than a mediolateral expansion.
- MR images of the tumor are isointense or hypointense relative to muscle on T1-weighted images. T2-weighted SE images show areas isointense or hypointense relative to fat.

43.7 Imaging Differential Diagnosis

43.7.1 Lymphoma of Bone

May present similar imaging features.

43.7.2 Other Malignancies

 Other primary and secondary malignancies with lytic but otherwise nonspecific images may be considered in individual cases.

R. K. Kalil (⊠) Department of Pathology, A. C. Camargo Cancer Center, São Paulo, SP, Brazil

43.8 Pathology

43.8.1 Gross Features

- The cut surface of the tumor is fleshy and gray or pinkish white, with areas of necrosis (Fig. 43.1).
- Margins may be well-defined or poorly defined.

43.8.2 Histological Features

- Long and interwoven bundles of spindle cells with eosinophilic cytoplasm and characteristic blunt-ended nuclei, with variable pleomorphism, similar to its soft-tissue counterpart (Figs. 43.2 and 43.3). "Schoolfish" pattern.
- · Osteoid is always absent.
- Epithelioid, myxoid, and pleomorphic variants have been reported.

Fig. 43.1 Leiomyosarcoma of the metaphysis and diaphysis of a femur, shown in specimen photography and radiography. The lesion involved metallic implants from a previous surgical procedure. (a) Whitish-pink, firm and elastic lesion occupying the marrow space in a mostly longitudinal fashion, permeating the cortex and involving adjacent soft tissue. (b) Absence of mineral deposits in tumor tissue

43.9 Pathologic Differential Diagnosis

 Metastasis from primary leiomyosarcoma from other sites (especially the uterus and bowel) must be ruled out.

43.10 Ancillary Techniques

 Immunohistochemical techniques demonstrate positivity for muscle markers: desmin, h-caldesmon, and smooth muscle actin (SMA) (Figs. 43.4 and 43.5).

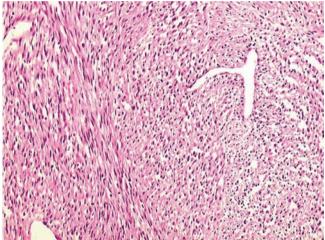
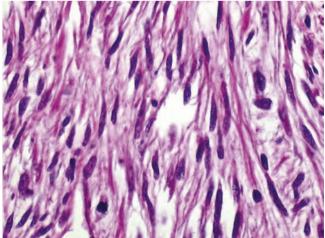
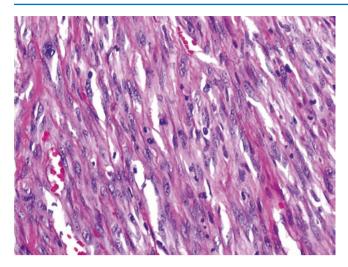




Fig. 43.2 Low-power microscopic view. Long and interwoven bundles of spindle cells

Fig. 43.3 High-power microscopic view. Spindle cells with hyper-chromatic nuclei, sometimes showing blunt ends. Atypical mitoses are frequent

Fig. 43.4 Medium-power microscopic view of a leiomyosarcoma of a higher grade than the previous figure. Immunohistochemistry may be needed to properly identify the neoplasia

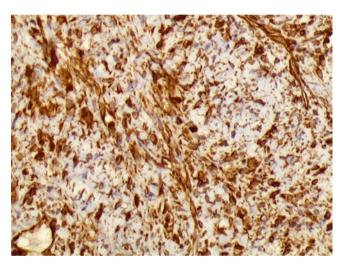


Fig. 43.5 Immunohistochemistry: SMA positive in neoplastic cells

43.10.1 Genetics

 Genomic losses and absence of phosphorylated RB, similar to soft-tissue leiomyosarcoma.

43.11 Prognosis

Histologic grade correlates directly with rates of recurrence and metastasis.

- Metastasis at diagnosis and less than wide resection with free margins are adverse prognostic factors.
- Prognosis is statistically better than for other primary bone sarcomas of the same grade in patients without metastasis.

43.12 Treatment

Surgical resection with wide margins combined with chemotherapy is the treatment of choice.

Suggested Reading

Antonescu CR, Erlandson RA, Huvos AG. Primary leiomyosarcoma of bone: a clinicopathologic, immunohistochemical, and ultrastructural study of 33 patients and a literature review. Am J Surg Pathol. 1997;21:1281–94.

Berlin O, Angervall L, Kindblom LG, Berlin IC, Stener B. Primary leiomyosarcoma of bone. A clinical, radiographic, pathologicanatomic, and prognostic study of 16 cases. Skelet Radiol. 1987;16:364–76.

Berner K, Johannesen TB, Hall KS, Bruland ØS. Clinical epidemiology and treatment outcomes of spindle cell non-osteogenic bone sarcomas: a nationwide population-based study. J Bone Oncol. 2018;14:100207.

Brewer P, Sumathi V, Grimer RJ, Carter SR, Tillman RM, Abudu A, Jeys L. Primary leiomyosarcoma of bone: analysis of prognosis. Sarcoma. 2012;2012:636849.

Davies AM, Sundaram M, James SJ. Imaging of bone tumors and tumor-like lesions. Berlin: Springer-Verlag; 2009. p. 393–9.

Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F. WHO classification of tumors of soft tissue and bone. Lyon: IARC; 2013. p. 302–4.

Jeanrot C, Ouaknine M, Anract P, Carlioz A, Forest M, Tomeno B. Primary leiomyosarcoma of bone. Report of 5 anatomo-clinical cases and review of the literature. Rev Chir Orthop Reparatrice Appar Mot. 2000;86:63–73.

Mori T, Nakayama R, Endo M, Hiraga H, Tomita M, Fukase N, et al. Forty-eight cases of leiomyosarcoma of bone in Japan: a multicenter study from the Japanese Musculoskeletal Oncology Group. J Surg Oncol. 2016;114:495–500.

Myers JL, Arocho J, Bernreuter W, Dunham W, Mazur MT. Leiomyosarcoma of bone. A clinicopathologic, immuno-histochemical, and ultrastructural study of five cases. Cancer. 1991;67:1051–6.

Unni KK, Inwards C. Dahlin's bone tumors. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 179–83.

Young CL, Wold LE, McLeod RA, Sim FH. Primary leiomyosarcoma of bone. Orthopedics. 1988;11:615–8.