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Abstract. We consider in this paper an efficient approach to the parallel
solution of complex multicriterial optimization problems using heteroge-
neous computing systems. The complexity of these problems can be very
high since the criteria that are to be optimized can be multiextremal and
the computation of criteria values can be time-consuming. In the frame-
work of the proposed approach, the multicriterial optimization problem
is reduced to the solution of a series of global optimization problems
by means of the convolution of the partial criteria with different sets of
parameters. To solve the series of global optimization problems, we apply
an efficient information-statistical method of global search. Parallel com-
putations are implemented through the simultaneous solution of several
global optimization problems. We present in this paper a comparative
analysis of various methods for parallel computations and the results of
numerical experiments.

Keywords: Decision making · Multicriteria global optimization ·
Parallel calculations · Dimensionality reduction ·
Search of information · Numerical experiments

1 Introduction

Decision making is inherent to almost all fields of human activity. A variety
of mathematical formulations have been proposed for the formal description of
decision-making problems. These problems relate to many classes of optimization
approaches, such as unconstrained optimization, nonlinear programming, global
optimization, etc. Multicriterial optimization (MCO) problem statements are
widely used in the most complex situations of decision making. An opportunity
to set several criteria is a distinctive property of MCO problems which allows for
a more precise formulation of the requirements to the optimality of the chosen
decisions. MCO is currently a field of intensive studies; see, for example, the
monographs [1–6] and reviews of scientific and practical results in [7–10].

The possibility of contradictions between the partial criteria of efficiency,
which makes it impossible to achieve the optimal (the best) values for all partial
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criteria simultaneously, is an important feature of multicriterial optimization
problems. As a result, the determination of some compromised (efficient, non-
dominated) decisions, in which the achieved values with respect to some partial
criteria satisfy the given requirements for the necessary level of efficiency, is
usually taken as solution of an MCO problem.

The present work is devoted to solving MCO problems which are used for the
description of decision-making problems in the design of complex objects and
systems. In such applications, the partial criteria can take a complex multiex-
tremal form, and therefore computing the values of the criteria and constraints
may require a large number of computations.

Besides, an opportunity for correcting the MCO problem statements when
changing the perceptions of the requirements to the optimality of the chosen
decisions is allowed within the framework of the considered approach. Thus, in
the case of redundancy of the partial criteria set, an opportunity to transform
some criteria into constraints is allowed. Or, otherwise, if the set of feasible
variants is insufficient, some constraints can be transformed into criteria, and so
on. Such an opportunity to change the MCO problem statements is a source of
additional computational costs of the search for optimal decisions.

In the present paper, we present the results of the investigations we have per-
formed on generalization of decision-making problem statements [11,12] and on
the development of highly efficient global optimization methods that use all the
search information obtained in the course of computations [13–17]. Parallel algo-
rithms developed earlier are presented in [14–17]. The proposed algorithms are
able to efficiently use hundreds and thousands of computing cores [18]. Within
the scope of this paper, a comparative analysis of the implemented parallel algo-
rithms on modern computing systems is carried out. We also compare implemen-
tations of algorithms for shared memory, distributed memory, and heterogeneous
computing systems. As a result of a comparative analysis, an optimal running
configuration is selected.

The structure of the paper is as follows. In Sect. 2, we formulate the mul-
ticriterial optimization problem. In Sect. 3, we consider the reduction of multi-
criterial problems to scalar optimization ones by means of minimax convolution
of the partial criteria and dimensionality reduction through the use of Peano
space-filling curves. In Sect. 4, we provide arguments to substantiate the possi-
bility of enhancing the efficiency of computations by reusing search information.
In Sect. 5, we describe the general organization scheme of parallel computations
allowing the maximum use of the computing potential of modern supercomputer
systems. In Sect. 6, we present the results of numerical experiments confirming
the viability of the proposed approach. Finally, in the Conclusions, we discuss
the results obtained and suggest possible directions for future research.
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2 Statement of the Multiple Multicriterial Optimization
Problem

We propose the following generalized multilevel model for the formal descrip-
tion of the process of search for efficient variants in complex decision-making
problems.

1. At the highest level, a decision-making problem (DMP) is defined within
the framework of the proposed model. The optimal values of the parameters
should be determined for this problem according to the available requirements
to optimality. In the most general form, a DMP can be defined by a vector
function of characteristics,

w(y) =
(
w1(y), w2(y), . . . , wM (y)

)
, y ∈ D, (1)

where y = (y1, y2, . . . , yN ) is the vector of constructive parameters and D ∈ RN

is the domain of feasible values, which usually is an N -dimensional hyperinterval,

D = {y ∈ RN : ai ≤ yi ≤ bi, 1 ≤ i ≤ N}, (2)

for two given vectors a and b.
The values of the characteristics w(y) are supposed to be nonnegative. More-

over, when these values decrease, the efficiency of the chosen variants increases.
It is also assumed that the characteristics wj(y), 1 ≤ j ≤ M , can be multiex-
tremal and computing their values can require large numbers of computations.
In addition, within the framework of the approach under consideration in this
paper, we assume that the characteristics wj(y), 1 ≤ j ≤ M , satisfy the Lipschitz
condition

|wj(y1) − wj(y2)| ≤ Lj‖y1 − y2‖, 1 ≤ j ≤ M, (3)

where Lj is the Lipschitz constant corresponding to the characteristic wj(y),
1 ≤ j ≤ M , and ‖ · ‖ denotes the Euclidean norm in RN . It is important
to note that the fulfillment of the Lipschitz condition corresponds to practical
applications. Indeed, small variations of the parameters y ∈ D lead, as a rule,
to limited variations of the corresponding values of the characteristics wj(y),
1 ≤ j ≤ M .

In general, the DMP model is defined by the following set of elements:

S = 〈y, w(y),D, a, b〉. (4)

This model is supposed to remain the same and does not change throughout the
course of computations.

2. The requirements to the optimality of the chosen variants y ∈ D of the
DMP can be defined in the following way. First of all, we should find charac-
teristics wj(y), 1 ≤ j ≤ M , for which the achievement of the minimum possible
values is necessary. By defining a set of indices F = {i1, i2, . . . , is} of such char-
acteristics, we define the vector criterion of efficiency

f(y) =
(
wi1(y), wi2(y), . . . , wis(y)

)
. (5)
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Sufficient levels of efficiency for characteristics wj(y), 1 ≤ j ≤ M , not
included in the vector criterion of efficiency defined by a set of indices G =
{j1, j2, . . . , jm} should be defined by a tolerance vector q = (q1, q2, . . . , qm). The
availability of tolerances enables one to define a vector function of constraints

g(y) =
(
g1(y), g2(y), . . . , gm(y)

)
, gl(y) = wjl(y) − ql, jl ∈ G, 1 ≤ l ≤ m. (6)

The constraints g(y) define the feasible search domain

Q = {y ∈ D : g(y) ≤ 0}. (7)

With the criteria of efficiency and constraints formulated in this way, we can
pose the multicriterial optimization (MCO) problem

f(y) → min, y ∈ Q, (8)

defined on the basis of the model S from (4) using the elements listed above:

P = 〈S, F,G, q〉. (9)

The scheme proposed covers many existing optimization problem statements.
In the case s = 1, m = 0, the general statement becomes a global optimization
problem. For s = 1 and m > 0, the general statement defines a nonlinear pro-
gramming problem. When s > 1 and m > 0, it becomes a constrained multicri-
terial problem.

3. The use of multicriterial optimization problem statements reduces the com-
plexity of the formal description of decision-making problems since it becomes
possible to define several partial criteria instead of defining a unified “global”
criterion of efficiency, as is necessary in MCO problems. No doubt, such an app-
roach is a simpler task for the decision maker determining the requirements to
the optimality of the decisions made. It is worth noting also that the multicri-
terial definition of the efficiency criteria corresponds to the practice of decision
making in various fields of applications.

The scheme of the above-considered MCO problem statement was first pro-
posed in [11] and was widely used in the solution of many applied decision-
making problems. At the same time, the results of the practical application of
this approach have demonstrated that the formulation of a single MCO problem
statement may be difficult when altering the ideas of the necessary requirements
to optimality. Thus, in the case of redundancy of the partial criteria set, the
transformation of some criteria into constraints might be appropriate. Or, vice
versa, if a small feasible domain Q is obtained, the loosening of the tolerances q
or transforming some constraints into criteria may be required. As a result, an
opportunity for simultaneous formulation of several MCO problems,

Pt = {P1, P2, . . . , Pt}, (10)

will be allowed within the framework of the extended model of optimal choice
as a further development of scheme (1)–(9). It is worth noting that the set of
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problems P can change in the course of computations as a consequence of the
addition of new problems or the elimination of already existing ones:

P
′ = P +/− P. (11)

The solution of the problems from set P can be performed sequentially or simulta-
neously in time-sharing mode or in parallel if several computing devices are avail-
able. Undoubtedly, the simultaneous method of solving the problems is preferable
since the results obtained in the course of computations allow to adjust promptly
the current set of problems P. In the case of parallel computations, the total time
of problem solving can be reduced substantially.

In general, the model (1)–(11), proposed for the search of optimal decisions,
defines a new class of optimization problems, namely multiple multicriterial
global optimization (MMGO) problems.

3 Successive Reduction of Multicriterial Global
Optimization Problems

As it has been mentioned above, the partial criteria of efficiency in MCO prob-
lems are usually contradictory. This feature of MCO problems implies that the
attainment of optimal (the best) values with respect to all partial criteria simul-
taneously cannot be ensured. In such a situation, particular compromised (effec-
tive, non-dominated) decisions, in which the achieved values with respect to
some specific partial criteria cannot be improved without simultaneous worsen-
ing with respect to some other criteria, are usually understood as solutions to
an MCO problem. In the limiting case, it may be required to find all effective
(Pareto-optimal) decisions PD(Q) ⊂ Q.

Due to the high relevance of this topic, a large number of methods have been
developed and widely used for the solution of MCO problems (see, for example,
[2–10]). Some of these algorithms ensure the attainment of the numerical esti-
mates of the whole Pareto set PD(Q) [3,27–29]. Along with the usefulness of
this approach (all effective decisions of the MCO problem are found), the use of
these methods appears to be difficult due to the high computational complexity
of finding the estimates of the Pareto set. Besides, the estimate of the whole set
PD(Q) might be redundant in cases when it would suffice to find several par-
ticular effective decisions to solve the MCO problem (this happens quite often
in practice). As a result, the more extensively used approach to the solution of
MCO problems is based on the scalarization of the vector criterion into some
general scalar criterion of efficiency, the optimization of which can be performed
with the use of already existing optimization methods. Among these, we can
mention the weighted sum method, the compromise programming method, the
weighted min-max method, goal programming, and many other algorithms (see,
for example, [2–6,22]).
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The general approach used in the present work consists in the reduction of
the solution of an MMGO problem to the solution of a series of single-criterion
global optimization problems1:

min ϕ(y) = F (λ, y), g(y) ≤ 0, y ∈ D, (12)

where g(y) is the vector function of constraints from (6); F (λ, y) is the minimized
convolution of the partial criteria fi(y(x)), 1 ≤ i ≤ s, of MCO problem (5),

F (λ, y) = max (λifi(y), 1 ≤ i ≤ s), (13)

using the vector of weighting coefficients

λ = (λ1, λ2, . . . , λs) ∈ Λ ⊂ Rs :
s∑

i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ s. (14)

The approach we have developed includes one more step of conversion of
the problems F (λ, y) from (12) being solved, namely to perform a reduction of
dimensionality using Peano space-filling curves (evolvents) y(x) which provide an
unambiguous mapping of the interval [0, 1] onto an N -dimensional hypercube D
[19,21]. As a result of this reduction, the multidimensional global optimization
problem (12) is reduced to the one-dimensional problem

F (λ, y(x∗)) = min {F (λ, y(x)) : g(y(x)) ≤ 0, x ∈ [0, 1]}. (15)

The considered dimensionality reduction scheme superimposes the multidi-
mensional problem with the Lipschitzian minimized function F (λ, y) to a one-
dimensional problem, in which the reduced function F (λ, y(x)) satisfies a uniform
Hölder condition, i.e.

∣
∣F (λ, y′(x)) − F (λ, y′′(x))

∣
∣ ≤ H‖x′ − x′′‖, x′, x′′ ∈ [0, 1], (16)

where the constant H is defined by the relation H = 2L
√

N + 3, N is the dimen-
sionality of the optimization problem from (1), and L is the Lipschitz constant
for the function F (λ, y) from (12). The dimensionality reduction makes it possi-
ble to apply (after the necessary generalization) many well-known highly efficient
one-dimensional global optimization algorithms for the solution of problems (12)
(see, for instance, [19,21,30–36]).

To obtain several effective decisions (or to estimate the whole Pareto domain),
problem (12) should be solved several times for the corresponding sets of values
of the elements of the weighting vector λ ∈ Λ. In this case, the set of MCO
problems P from (10) which are required for solving the initial decision-making
problem is transformed into a wider set of scalar optimization problems (12)

FT = {Fi(λi, y) : λi ∈ Λ, 1 ≤ i ≤ T}, (17)

where it is possible that several problems (12) with different values of the coef-
ficients λ ∈ Λ correspond to each problem P ∈ P.
1 On account of the initial assumptions on possible multiextremality of the character-

istics wj(y), 1 ≤ j ≤ M , from (1).
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4 Improving the Efficiency of Computations by Reusing
Search Information

As we already mentioned, the solution of MCO problems P from (10) and the
corresponding global optimization problems F from (15) may require a large
number of computations even when solving a single particular problem. In the
case when a series of problems from the sets P and F is to be solved, the required
quantity of computations can be much larger. And, therefore, overcoming the
computational complexity of decision-making problems of the considered class
is a necessary condition for the practical application of the proposed approach.
An intensive use of the whole search information obtained in the course of com-
putations can be a viable approach to the solution of this problem.

The numerical solution of global optimization problems is usually reduced to
a sequential computation of the values of the characteristics w(y) at the points
yi, 0 ≤ i ≤ k, of the search domain D [19,23–26]. The data obtained as a result
of the computations can be represented as a matrix of search information (MSI):

Ωk = {(yi, wi = w(yi))T : 1 ≤ i ≤ k}. (18)

By scalarization of vector criterion (12) and application of dimensionality
reduction (15), Ωk in (18) can be transformed into the matrix of the search
state (MSS),

Ak = {(xi, zi, gi, li)T : 1 ≤ i ≤ k}, (19)

where

– xi, 1 ≤ i ≤ k, are the reduced points of the executed global search iterations
at which the criteria values have been computed;

– zi, gi, 1 ≤ i ≤ k, are the values of the scalar criterion and of the constraints
at points xi, 1 ≤ i ≤ k, for the current optimization problem F (λ, y(x))
from (15) which is being solved, i.e.

zi = ϕ(xi) = F (λ, y(xi)), gi = g(y(xi)), 1 ≤ i ≤ k; (20)

– li, 1 ≤ i ≤ k, are the indices of the global search iterations at which the
points xi, 1 ≤ i ≤ k, were generated; these indices are used to store the
correspondence between the reduced points and the multidimensional ones at
the executed iterations, i.e.

yj = y(xi), j = li, 1 ≤ i ≤ k. (21)

The matrix of the search state Ak contains search information transformed
into the current scalar reduced problem (15) which is being solved. Moreover,
the search information in the MSS is arranged according to the values of the
coordinates of the points xi, 1 ≤ i ≤ k, for a more efficient execution of the
global search algorithms; the arranged representation of the points is reflected
by the use of a lower index:

x1 ≤ x2 ≤ · · · ≤ xk. (22)
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The representation of the search information obtained in the course of compu-
tations in the form of matrices Ωk and Ak provides the basis for the development
of efficient optimization search procedures. The availability of such information
allows to perform an adaptive choice of the points for the execution of the global
search iterations taking into account the results of all computations completed
earlier,

yk+1 = Y (Ωk), k = 1, 2, . . . (23)

where Y is the rule for computing the points yi, 0 ≤ i ≤ k, of the applied opti-
mization algorithm. Such an adaptive choice of the points of executed search
iterations can accelerate the determination of the effective decisions. In the case
of global optimization problems, the accumulation of the entire search informa-
tion and the use of rules of type (23) is indeed mandatory. Any reduction of
the search information in the determination of the points to be executed would
result in the execution of excessive global search iterations.

It should be noted that the availability of the MSS Ωk from (18) makes it pos-
sible to transform the results of all preceding computations zi, 1 ≤ i ≤ k, stored
in the MSS Ak, into the values of the current optimization problem F (λ, y(x))
from (15). These recalculations are based on the values of the characteristics wi,
1 ≤ i ≤ k, which were computed earlier and stored in Ωk without any repeated
time-consuming computation of the values of w(y) from (1). The updated values
zi, 1 ≤ i ≤ k, can be used both for any new parameters of the MCO problem
statement P from (9) and for any new values of the convolution coefficients λ
from (14), i.e.

wi
λ,P−−→ (zi, gi), 1 ≤ i ≤ k, ∀λ ∈ Λ, P ∈ P. (24)

Therefore, all the search information can be used to continue the computa-
tions in full. An efficient use of this information becomes an important require-
ment in the selection of the methods used to solve the problems F (λ, y(x)) from
(15). The reuse of search information can provide a continuous decrease in the
number of computations required to solve each subsequent optimization prob-
lem, up to the execution of just a few iterations only to find the next effective
decision.

5 Parallel Computations in Multiple Multicriterial
Global Optimization Problems

The sequential solution of the set of problems F from (17) to find several globally
optimal decisions increases substantially the number of computations required
to solve the decision-making problems. The parallel solution of the problems
F (λ, y(x)) from the set F is a promising and simple method of accelerating the
computations. For sufficiently large numbers of computer nodes (processors), the
time required for the solution of the whole set of problems F is determined by the
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computation time for the problem F (λ, y(x)), whose solution takes the longest
time. This approach can be implemented quite easily. However, it does not solve
the problem of computational complexity when it is necessary to expand the set
of problems F throughout the course of the computations.

The method considered above for the organization of parallel computations
can be further developed by using the information compatibility of the problems
of set F. Indeed, as we noted in Sect. 4, the values of the characteristics wi,
1 ≤ i ≤ k, computed when solving any problem F1(λ, y(x)), can be transformed
into the values of any other problem F2(λ, y(x)). This result provides the basis
for the following general scheme of parallel computations for the simultaneous
solution of the problems of set F.
1. The Distribution of the Problems. Before starting the computations, the
problems of the set F from (17) must be distributed among the computing nodes
of a multiprocessor system. This distribution can be quite varied: for solving one
problem from the set F, various numbers of computing cores (q, q ≥ 1) and
computing nodes (p, p ≥ 1) can be allocated. An opportunity to use several
computing nodes p > 1 for the solution of the same problem is provided by
applying multiple evolvents yi(x), 1 ≤ i ≤ p (see [13,14]). Provided that we are
not planning to employ the processor cores of a computing node in full when
solving one problem from the set F, we could use the same node to solve several
optimization problems, depending on the number of processors available at the
computer node and the number of cores in each of them.
2. The Choice of the Optimization Algorithms. The proposed scheme of
parallel computations is a general one: various methods of multiextremal opti-
mization can be applied for solving the problems on each computing node (see,
for example, [19,21,30–36]). The main condition imposed upon the selection of
the algorithms is that the methods must use the search information Ωk and
Ak to increase the efficiency of global search. As it was already noted above,
in Sect. 3, the global optimization algorithms should be generalized to solve the
reduced one-dimensional global optimization problems of type F (λ, y(x)) from
set F. The possibility to apply the proposed approach was substantiated using
as example efficient global search algorithms developed within the framework of
the information-statistical theory of multiextremal optimization (see [12–21]).
3. The Execution of Global Search Iterations. The execution of global
search iterations for each problem F (λ, y(x)) from the set F is performed in
parallel. The execution of every iteration on each computing node includes the
following operations:

1. The choice of q, q ≥ 1, points xi, 1 ≤ i ≤ q, of the next global search iteration
is performed according to the optimization method rule given in (23). The
points are chosen taking into account the available search information Ωk and
Ak. The number q, q ≥ 1, of generated points is determined by the number
of computing cores employed to solve the problem F (λ, y(x)).

2. For each chosen one-dimensional point xi ∈ [0, 1], 1 ≤ i ≤ q, of the current
global search iteration, the multidimensional image yi ∈ D, 1 ≤ i ≤ q, is
determined by the mapping y(x). Then, each computed image yi ∈ D, 1 ≤
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i ≤ q, is sent to all employed computing nodes, so as to prevent that the
same points of the domain D are chosen more than once when solving the
problems of the set F.

3. The values of the characteristics w(y) from (1) are computed at all points
yi ∈ D, 1 ≤ i ≤ q. For each point yi ∈ D, 1 ≤ i ≤ q, these computations are
performed in parallel using different computing cores. The computed values of
the characteristics w(y) are sent to all employed computing nodes to include
the data obtained into the search information Ωk and Ak.

4. Updating Search Information. Before starting the next global search
iteration, the availability of data sent from other computing units (processors or
cores) is checked; the received data should be included in the search information.

According to the suggested computational scheme of parallel computations,
each computing unit contains an identical copy of the matrix of search infor-
mation Ωk from (18); the matrices Ak from (19) contain different sets of global
search points xi, 1 ≤ i ≤ k, because of the use of different evolvents y(x) for the
dimensionality reduction and the different values of the scalar criterion and the
constraints zi, gi, 1 ≤ i ≤ k, corresponding to the problems F (λ, y(x)) from the
set F.

Within the framework of such computational scheme, it becomes possible to
expand the set of problems F being solved at any moment of the computations.
Indeed, to solve a new problem F (λ, y(x)), it is enough to allocate an additional
computing unit, copy the set Ωk, and create the corresponding matrix Ak.

It is clear that the increase in global search efficiency due to the use of the
sets of search information Ωk and Ak depends on the optimization algorithms
employed. An analysis of the elements of the above-considered scheme of parallel
computations applied to information-statistical global optimization algorithms
can be found in [12–17]. In Sect. 6, we present the results of the numerical exper-
iments carried out for a complete evaluation of the efficiency of the scheme we
used to choose the best parameters for using the computing resources of high-
performance supercomputer systems.

6 Results of Numerical Experiments

The numerical experiments were carried out on the “Lobachevsky” supercom-
puter, at the University of Nizhni Novgorod (operation system: CentOS 6.4,
management system: SLURM). Each supercomputer node is equipped with two
Intel Sandy Bridge E5-2660 processors (2.2 GHz, 64 Gb RAM). Each proces-
sor has eight cores (making a total of 16 CPU cores available on each computer
node). We used the Intel C++ 17.0 compiler to generate the executable program
code.

The numerical experiments, conducted according to the general scheme of
parallel computations considered in Sect. 5, made use of efficient algorithms of
multicriterial multiextremal optimization [12–17] developed within the frame-
work of the information-statistical theory of global optimization [19]. The effi-
ciency of these algorithms has been proven by many numerical experiments.
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In the present work, we present the results of a series of numerical exper-
iments performed to choose the best parameters of parallel computations (the
number of computing cores and computer nodes employed, the number of mul-
ticriterial optimization subproblems to be solved simultaneously, the number of
evolvents used for the dimensionality reduction, etc.). Each experiment included
the solution of 30 MCO problems, each one six-dimensional and five-criterial,
i.e. N = 6, s = 5. Multiextremal functions defined by the GKLS generator (see
[37]) were used as criteria. This generator produces multiextremal optimization
problems having properties given a priori, such as the number of local minima,
sizes of their attractors, the global minimum point, the value of the objective
function at this point, etc.

The values of the parameters used in the numerical experiments were as
follows. The computation stop condition in the solution of the MCO prob-
lems was set for a predefined accuracy ε = 0.05. The estimates of the Pareto
domain PDA(f,D) were constructed by solving 100 subproblems of the family
F from (17) for various values of the coefficients λ ∈ Λ. In the experiments,
10 computing nodes of the supercomputer were used, each having two 8-core
processors (which gives a total of 160 computing cores used for computations in
each experiment).

At the beginning of the series of experiments, the parallel computations were
performed using only a single supercomputer node (2 processors, 16 computing
cores using shared memory). The results of these experiments are contained in
Table 1.

Table 1. Evaluation of the efficiency of a single supercomputer node for the solution
of 30 six-dimensional five-criterial MCO problems

Cores Search information Iterations S1 S2

1 Not used 26 813 722.7 1.0

1 Used 9 103 069.6 2.9 1.0

8 Used 1 291 720.0 20.8 7.0

16 Used 609 169.5 44.0 14.9

The number of computing cores employed in the experiments is given in the
Cores column. The Search information column contains information on reuse of
the search information when solving the series of subproblems of the family F

from (17) for different values of the coefficients λ ∈ Λ. The Iterations column
presents the average number of global search iterations executed in the solution
of a single subproblem of the MCO problem. The S1 column shows the overall
speedup achieved in parallel computations for the corresponding number of com-
puting cores. Finally, the S2 column shows the speedup of computations with
respect to the serial optimization algorithm, in which the search information is
used.
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As follows from the results in Table 1, even when using a single computing
core, one can achieve a computation speedup by almost a factor of three by
reusing the search information obtained during the optimization. The overall
speedup achieved in parallel computations is 44 times using the 16 cores of a
single supercomputing node.

Ten supercomputer nodes (i.e. a total of 160 computing cores) were used in
all the experiments. The parameters of the experiments were the following: the
number of subproblems of the family F from (17) being solved simultaneously, the
number of computing nodes employed for solving a single MCO subproblem, and
the number of test problems (produced by the GKLS generator) that are solved
simultaneously (a total of 30 six-dimensional five-criterial test MCO problems
were solved in each experiment). The results of the numerical experiments are
summarized in Table 2.

Table 2. Evaluation of efficiency of ten supercomputing nodes for the solution of a
series of 30 six-dimensional five-criterial MCO problems

Nodes NumMCO SubProblems SubNodes Iterations S1 Scaling

1 1 1 1 609 169.5 44.0 1.0

10 1 10 1 75 045.8 357.3 8.1

10 1 5 2 77 643.6 345.3 7.8

10 1 1 10 108 700.0 246.7 5.6

10 2 5 1 76 819.0 349.1 7.9

10 2 1 5 81 132.8 330.5 7.5

10 5 2 1 66 618.6 402.5 9.1

10 5 1 2 77 995.0 343.8 7.8

10 10 1 1 73 999.7 362.3 8.2

The number of employed supercomputing nodes is given in the Nodes column.
The NumMCO column contains the number of test MCO problems (produced
by the GKLS generator) solved simultaneously. The SubProblems column lists
the number of subproblems of the family F from (17) solved simultaneously. The
SubNodes column gives the number of computing nodes employed for solving
one MCO subproblem. The Iterations column indicates the average number of
global search iterations executed for the solution of one single subproblem of the
MCO problem. The S1 column indicates the overall speedup achieved in parallel
computations for the corresponding number of supercomputing nodes. Finally,
the Scaling column shows the speedup of parallel computations with respect to
the results obtained when using a single computing node.

As follows from the results presented in Table 2, the best speed up in the
considered series of experiments was achieved for the simultaneous solution of
five MCO problems of the test class when two subproblems of the family F from
(17) were solved in parallel for each problem, using a single supercomputing
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node for each subproblem (the parameters of the corresponding experiments are
shown in bold in Table 2). In this case, the speedup factor achieved in parallel
computations exceeded 400 (it should be noted that we used in the experiment
10 computing nodes with a total of 160 cores).

7 Conclusions

In the present paper, we proposed an efficient computational scheme of parallel
computations for solving complex multicriterial optimization problems with non-
convex constraints in which the optimization criteria can be multiextremal and
the computation of criteria values can require a large quantity of computations.
The approach proposed is based on the reduction of the multicriterial problems
to nonlinear programming problems by means of minimax convolution of the
partial criteria, dimensionality reduction through the use of Peano space-filling
curves, and application of efficient information statistical and global optimization
methods which implement a novel index scheme of accounting for the constraints
instead of the penalty functions, which are commonly used.

The developed general computational scheme includes concurrent parallel
computational methods for computing systems with shared memory, distributed
parallel computations using multiple mappings for dimensionality reduction, and
multilevel nesting of parallel computations for high-performance computing sys-
tems. In general, the proposed computational scheme can provide for an effi-
cient application of high-performance computing systems with large numbers
of cores/processors for the solution of complex global optimization problems.
Besides, this general scheme can be used for the organization of parallel com-
putations for a wide range of algorithms to solve time-consuming problems of
decision making (in particular, for information-statistical global optimization
algorithms).

We carried out a series of experiments to determine the optimal parameters
of parallel computations. The results of our research showed that the suggested
approach leads to a significant reduction of the computational costs of the solu-
tion of multicriterial optimization problems with non-convex constraints.

Finally, this research has shown the viability of the approach we have devel-
oped, but it requires further investigation. First of all, numerical experiments
on the solution of multicriterial optimization problems should be conducted for
larger numbers of partial criteria of efficiency and for larger dimensions of the
optimization problems.
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