
Numerical Modeling of Hydrodynamic
Turbulence with Self-gravity on Intel

Xeon Phi KNL

Igor Kulikov1(B) , Igor Chernykh1, Evgeny Berendeev1, Victor Protasov1,2,
Alexander Serenko1, Vladimir Prigarin1,2, Ivan Ulyanichev1,2,

Dmitry Karavaev1, Eduard Vorobyov3, and Alexander Tutukov4

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia

kulikov@ssd.sscc.ru, chernykh@parbz.sscc.ru, evgeny.berendeev@gmail.com,

inc 13@mail.ru, fafnur@yandex.ru, vovkaprigarin@gmail.com,

wmzonacomvn@mail.ru, kda@opg.sscc.ru
2 Novosibirsk State Technical University, Novosibirsk, Russia

3 University of Vienna, Vienna, Austria
eduard.vorobiev@univie.ac.at

4 Institute of Astronomy RAS, Moskva, Russia
atutukov@inasan.ru

Abstract. In this paper, we present the results of numerical simulations
of hydrodynamic turbulence with self-gravity, employing the latest Intel
Xeon Phi accelerators with KNL architecture. A new vectorized numer-
ical method with a high order of accuracy on a local stencil is described
in details. We outline the main features of the program implementation
of the method for massively parallel architectures and study the code
parallel implementation. We achieved a performance of 173 gigaFLOPS
and an acceleration factor of 48 using a single Intel Xeon Phi KNL. Using
16 accelerators, we were able to achieve a scalability of 97%.

Keywords: Computational astrophysics · Intel Xeon Phi ·
Numerical methods

1 Introduction

The study of physical processes in the Universe, their influence on the self-
organization and evolution of astronomical objects, as well as on their further
dynamics and interaction constitute the subject of modern astrophysics. The
importance of considering gravitational and magnetic fields and the difficulty of
reproducing cosmic conditions in the laboratory impose significant restrictions on
the experimental study of astronomical objects. Thus, mathematical modeling is
the main, and often the only, approach to the theoretical study of astrophysical
processes and astronomical objects.

c© Springer Nature Switzerland AG 2019
L. Sokolinsky and M. Zymbler (Eds.): PCT 2019, CCIS 1063, pp. 309–322, 2019.
https://doi.org/10.1007/978-3-030-28163-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28163-2_22&domain=pdf
http://orcid.org/0000-0002-1959-780X
https://doi.org/10.1007/978-3-030-28163-2_22


310 I. Kulikov et al.

The evolution of hydrodynamic turbulence and the formation of compact
objects as a result of gravitational collapse are among the important processes
occurring in astrophysical objects at various spatial scales [1,2]. Magnetohydro-
dynamic (MHD) turbulence was simulated at the scales of clusters of galax-
ies in [3]. Problems of gravitational and magneto-gravitational instability [4],
dynamics of clouds falling into a black hole [5], and cloud collapse and its frag-
mentation [6] have been considered in the context of modeling the dynamics of
molecular clouds.

An important role is given to the influence of magnetic fields on the evolution
of interstellar turbulent flows, in which the magnetic fields are quite strong [7–9].
The energy spectrum [10], the subalfvenian flows [11], and the star formation
rate [12] have been studied in the context of the evolution of MHD turbulence. A
comparison of various codes for simulation of supersonic turbulence was made in
[13]. Turbulence in the solar wind was investigated in [14]. It has been noted that
turbulence is the main mechanism for the transition of the deflagration process
into detonation in supernova explosion problems [15]. It is important to realize
that significant computational high-performance resources are required if one
wants to simulate the evolution of hydrodynamic turbulence with self-gravity
taken into account.

A trend for using hybrid supercomputers equipped with graphics accelerators
and Intel Xeon Phi or Sunway accelerators has become obvious. There are a
variety of codes adapted for hybrid supercomputers to simulate hydrodynamic
flows in astrophysics [16–23]. However, the main potential for improving the
performance in hydrodynamic computing on Intel Xeon Phi accelerators using
low-level vectorization of computations has not been sufficiently explored.

In this paper, we shall consider the model problem of turbulence evolution
using a new vectorized code developed for supercomputers equipped with Intel
Xeon Phi KNL accelerators. The peak performance of Intel Xeon Phi dual accel-
erators is about three teraFLOPS. Of course, such a value is unreachable in real-
world applications but a value of the order of one teraFLOPS can be achieved
on synthetic tests. We will be guided by this value when designing our compu-
tational model. At present, some program codes (based on publications in the
Computer Physics Communications journal) using Intel Xeon Phi accelerators
have been implemented in the fields of plasma physics [24], molecular dynamics
[25,26], statistical mechanics [27], and hydrodynamics [28].

In 2015, we developed the AstroPhi code [18], based on the implementation
of an original numerical method by using the offload programming model of the
Intel Xeon Phi. The used accelerator architecture did not allow us to implement
vector instructions, although switching to the native mode made it possible to
achieve a code performance of 28 gigaFLOPS [29]. The use of low-level vector-
ization of cycles in the AstroPhi code allowed us to increase the performance to
a value of the order of 100 gigaFLOPS [30]. There became evident the necessity
to use low-level vectorizing tools to achieve a maximum performance. The new
version of the code was based on the HLL method and used a single accelerator



Turbulence Modeling on Intel Xeon Phi KNL 311

[31,32]. With this implementation, we achieved performances of 245 gigaFLOPS
on Intel Xeon Phi 7250 and 302 gigaFLOPS on Intel Xeon Phi 7290.

The computational model and the numerical method will be briefly described
in Sect. 2. Section 3 is devoted to the development and investigation of the paral-
lel implementation. In Sect. 4, we formulate the main problems of vectorization.
Section 5 is devoted to the simulation of hydrodynamic turbulence taking self-
gravity into consideration. Finally, we summarize the conclusions of our research
in Sect. 6.

2 The Computational Model

The mathematical model is based on the equations of multicomponent gravita-
tional hydrodynamics. An important condition for the subsequent construction
of a vectorized numerical method is to write the equations in vector form. We
will use an overdetermined system of hydrodynamic equations with an entropy
equation. This will enable us to write the system of hydrodynamic equations in
a divergent form, making it possible to formulate a vector numerical method:

∂

∂t

⎛
⎜⎜⎜⎜⎝

ρ
ρi

ρu
ρS
ρE

⎞
⎟⎟⎟⎟⎠

+ � ·

⎛
⎜⎜⎜⎜⎝

ρu
ρiu

ρu ⊗ u + p
ρSu

(ρE + p)u

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0
si

ρ � Φ
(γ − 1) ρ1−γ (Λ − Γ )

Λ − Γ

⎞
⎟⎟⎟⎟⎠

, (1)

where ρi is the density of the species, ρ =
∑

i ρi denotes the density of the
gas mixture, u = (ux, uy, uz) is the velocity vector, S stands for the entropy,
p = p (ρ, S, T ) denotes the pressure, γ is the adiabatic index, ρE = ρε + 1

2ρu2

is the total mechanical energy, T is the temperature, sI represents the rate
of formation of the corresponding species and, finally, Φ is the gravitational
potential satisfying the Poisson equation

� Φ = 4πGρ, (2)

in which G is the gravitational constant, Λ is the cooling function and Γ is the
heating function. In this article, we restrict ourselves to considering the equation
of state based on a combination of the isothermal and adiabatic regimes:

p = c2
sρ + c2

sρcrit (ρ/ρcrit)
γ

, (3)

where c2
s is the isothermal velocity of sound and ρcrit is the critical density of

the gas during the transition from isothermal to adiabatic mode, which can be
expressed as

ρcrit = μmHncrit, (4)

with μ the average molecular weight of gas, mH the mass of a hydrogen atom, and
ncrit the critical gas concentration. In this work, we assume ncrit = 1010 cm−3.



312 I. Kulikov et al.

We will consider neither cooling/heating processes nor chemical kinetics pro-
cesses. Consequently, to simulate hydrodynamic turbulence, we will use the fol-
lowing simplified form of the equations:

∂

∂t

(
ρ

ρu

)
+ � ·

(
ρu

ρu ⊗ u + p

)
=

(
0

ρ � Φ

)
. (5)

However, we will describe all the calculations and the structure of the code for
the entire system given in (1).

The equations of hydrodynamics can be written in vector form:

∂U

∂t
+

∂F (U)
∂x

= 0. (6)

To solve the equations, one can use a numerical method based on a combination
of the operator splitting approach, the Godunov method, the HLL scheme, and
the piecewise-parabolic method on a local stencil. The flow through the boundary
between the left (L) and the right (R) cells is calculated with the help of the
equation

F =
F (−λLτ) + F (λRτ)

2
+

c + ‖u‖
2

(U (−λLτ) − U (λRτ)) , (7)

where
λL = c − ‖u‖, λR = c + ‖u‖, (8)

with c =
√

γp
ρ the speed of sound. The modification of the parabolas construct

given in [33] is based on the reduction of the order of the first element in the
parabola.

The application of the procedure suggested in [33] for the construction of a
local parabola to increase the order of accuracy would have made more difficult
the transition to an adaptive nested mesh, due to the difference in size of the
cells. Therefore, we set two features: to take the original PPML approach using a
compact template and the ability to integrate parabolas along the characteristics
in each cell. To this end, we save the solver notation and, therefore, the parallel
computing algorithms. To solve the problems posed, we will rewrite the parabola
construction algorithm from [33] and integrate the parabolas within each cell.

The blocks are the parabolas constructed for the numerical scheme. We con-
struct a piecewise-parabolic function q(x) on a regular mesh with step size h on
the interval [xi−1/2, xi+1/2]. The general equation of the parabola can be written
as

q(x) = qL
i + ξ

(
�qi + q

(6)
i (1 − ξ)

)
,

where qi is the value at the center of the cell, ξ = (x−xi−1/2)h−1, �qi = qL
i −qR

i ,
and q

(6)
i = 6

(
qi − 1/2(qL

i + qR
i )

)
, according to conservation laws:

qi = h−1

∫ xi+1/2

xi−1/2

q(x) dx.



Turbulence Modeling on Intel Xeon Phi KNL 313

To construct qR
i = qL

i+1 = qi+1/2, we use an interpolation function of second
order of accuracy:

qi+1/2 = 1/2(qi + qi+1),

where δqi = 1/2(qi+1−qi−1). The input value for the construction of the parabola
is qi. The output procedure involves all parameters of the parabola on each
interval [xi−1/2, xi+1/2].

1. Construct δqi = 1/2(qi+1 − qi−1) without extreme regularization:

δmqi =

⎧⎪⎨
⎪⎩

min(|δqi|, 2|qi+1 − qi|, 2|qi − qi−1|) sgn(δqi),
if (qi+1 − qi)(qi − qi−1) > 0,

0, if (qi+1 − qi)(qi − qi−1) ≤ 0.

2. Compute the boundary values for the parabola:

qR
i = qL

i+1 = qi+1/2 = 1/2(qi + qi+1).

3. Reconstruct the parabola according to the following equations:

�qi = qL
i − qR

i , q
(6)
i = 6(qi − 1/2(qL

i + qR
i )).

To obtain a monotone parabola, we use the following equations for the bound-
ary values qL

i , qR
i :

qL
i = qi, qR

i = qi, (qL
i − qi)(qi − qR

i ) ≤ 0,

qL
i = 3qi − 2qR

i , �qiq
(6)
i > (�qi)2,

qR
i = 3qi − 2qL

i , �qiq
(6)
i < −(�qi)2.

4. Make a final upgrade of the parabola parameters:

�qi = qL
i − qR

i ,

q
(6)
i = 6(qi − 1/2(qL

i + qR
i )).

At the final stage of the solution of the hydrodynamic equations, we execute
an adjustment procedure. In the case of a gas vacuum border, we have

‖u‖ =
√

2(E − ε), (E − u2/2)/E < 10−3. (9)

In other regions, we apply an adjustment to ensure a nondecreasing entropy:

ρε =
(

ρE − ρu2

2

)
, (E − u2/2)/E ≥ 10−3. (10)

This modification provides a detailed balance of energy and ensures a nonde-
creasing entropy.

After solving the hydrodynamic equations, it is necessary to restore the grav-
itational potential with respect to the gas density. To this end, we will use a 27-
point template to approximate the Poisson equation. The algorithm for solving
the Poisson equation consists of three stages:



314 I. Kulikov et al.

1. Setting the boundary conditions for the gravitational potential at the bound-
ary of the region.

2. Transforming the density function to the harmonics space. A fast Fourier
transform is used for this.

3. Solving the Poisson equation in the harmonics space. Next, it is necessary
to perform the inverse fast Fourier transformation of the potential of the
harmonics into the functional space of the harmonics.

The details of the method are given in [33].

3 Parallel Implementation

The parallel implementation is based on a multi-level decomposition of the com-
putations:

1. One-dimensional decomposition of the computational domain by means of
MPI, which, for consistency with the solution of the Poisson equation, is
specified by the FFTW library.

2. One-dimensional decomposition of the computations by means of OpenMP
as part of a single process running on a single Intel Xeon Phi accelerator.

3. Vectorization of computations within a single cell.

The geometric decomposition of the computational domain is carried out by
means of MPI processes and by means of OpenMP threads. In the case of a
decomposition of the computations by means of MPI, it is necessary to take
into account overlapping subregions. The compact calculation template allows
for the use of only one overlapping layer.

Next, we describe the basic instructions used to implement the method. We
will dwell only on the declarative description:

– mm512 set1 pd – Formation of a vector with each element being a scalar.
– mm512 load pd – Loading the addresses of the eight double elements of

the vector.
– mm512 mul pd – Multiplication of vectors.
– mm512 add pd – Addition of vectors.
– mm512 sub pd – Subtraction of vectors.
– mm512 stream pd – Writing the vector to memory.
– mm512 abs pd – Getting the absolute value of the vector elements.

The instructions given here are sufficient to implement a numerical method for
the solution of the hydrodynamic equations. We used the following line to com-
pile the code:

icc -xMIC-AVX512 -qopenmp -O3 -no-prec-div

-o gooPhi.mic gooPhi.cpp -lm

It is worth noting only the acceleration of the division through the option -no-
prec-div, which is recommended when using SSE extensions.



Turbulence Modeling on Intel Xeon Phi KNL 315

Table 1. Speedup and real performance of the code on a single Intel Xeon Phi

Cores GFLOPS Speedup

1 3.63 1.000

2 7.62 2.099

4 14.67 4.041

8 31.49 8.675

16 62.27 17.154

32 109.57 30.184

64 157.66 43.432

72 173.35 47.755

128 131.68 36.275

256 111.19 30.631

We studied the acceleration of the gooPhi code on a 5123 grid. We measured
the time of the numerical method (Total) in seconds on different numbers of
logical cores (Cores). The acceleration P (Speedup) was calculated with the
formula

P =
Total1
TotalK

, (11)

where Total1 is the computation time on one logical core and TotalK is the
computation time on K logical cores. We also assessed the actual performance.
Table 1 contains the results on acceleration and performance on a mesh of size
5123. We achieved a performance of 173 gigaFLOPS and a speedup factor of 48
using a single Intel Xeon Phi KNL.

In addition, we studied the scalability of the gooPhi code on a mesh of size
512 × 512 × 512 points using all logical cores of each accelerator. Thus, each
accelerator has a subdomain size of 5123. For scalability assessment purposes, we
measured the time of the numerical method (Total) in seconds while varying the
number of Intel Xeon Phi (KNL) accelerators. The scalability T was computed
using the formula

T =
Total1
Totalp

, (12)

where Total1 is the computation time for one accelerator when using a single
accelerator and Totalp is the computing time for one accelerator when using p
accelerators. The results on acceleration are given in Table 2. Using 16 acceler-
ators, we achieved a 97% scalability. Note that this is a fairly high result.



316 I. Kulikov et al.

Table 2. Scalability of the code for various numbers of Intel Xeon Phi accelerators

KNL Scalability

1 1.000

2 0.999

3 0.998

4 0.994

8 0.988

12 0.972

16 0.968

4 Discussion

In this section, we will discuss several important issues related to the organization
of computations, constraints, and new features.

1. In the study, we used the eight elements of the vector (four density functions,
three components of the velocity, and the entropy). This is connected with
the use of all elements of a 512-bit double-precision vector. We hope that
the size of the vector in future versions of the processors will be increased.
This would allow us to take into account a greater number of species. At the
same time, the multiplicity of eight requires in some cases the use of dummy
elements for the organization of computations.

2. When writing the first version of the AstroPhi code and performing subse-
quent studies, an interesting fact emerged: a greater performance is achieved
when using separate arrays to describe hydrodynamic quantities (density,
angular momentum, pressure, etc.) than when using an array of C/C++ lan-
guage structures in which each object contains all the information about the
cell. Apparently, this is due to the use of a larger cache. This means that,
when accessing multiple arrays, the corresponding cache lines are filled. Thus,
we efficiently used as many cache lines as arrays. In the case of structures (or
4D arrays as in the present paper), only one or two cache lines were used.

3. In our implementation, we did not use combined instructions of FMA type.
Performance tests, especially in linear algebra applications, where the main
operation is a daxpy instruction, show that using FMA instructions improves
performance. However, this trend was not observed. Moreover, there was a
slowdown of the code, after which we decided to reject such instructions.

5 Modeling of Hydrodynamic Turbulence
with Self-Gravity

For the simulation, we considered the test problem in the cubic region [−1; 1]3

with cs = 0.1. The initial density was assumed to be 1. The initial velocity
perturbations followed a Gaussian distribution [34].



Turbulence Modeling on Intel Xeon Phi KNL 317

The main analysis of turbulent flows with gravity consists in estimating the
Jeans criterion and the free-fall time, during which a local collapse occurs. To
estimate of Jeans criterion, let us write the equations of gravitational hydrody-
namics in 1D form using the isothermal equation of state:

∂ρ

∂t
+

∂

∂x
(ρu) = 0,

∂ρu

∂t
+

∂

∂x
(ρuu) = −∂p

∂x
− ρ

∂Φ

∂x
,

∂2Φ

∂x2
= 4πGρ,

p = c2
sρ. (13)

The adiabatic term of the equation of state (3) starts working when the critical
density is reached. This density is attained during the development of instability.
For the analysis, we need the Jeans criterion, which is achieved at the initial stage
by using the isothermal equation of state.

We will consider a linear perturbation of the physical variables:

ρ = ρ0 + ρ1, p = p0 + p1, u = u1, Φ = Φ0 + Φ1. (14)

Let us rewrite the equations of gravitational hydrodynamics for the considered
perturbation of the physical variables:

∂ρ1

∂t
+ ρ0

∂u1

∂x
= 0,

∂u1

∂t
= − c2

s

ρ0

∂ρ1

∂x
− ∂Φ1

∂x
,

∂2Φ1

∂x2
= 4πGρ1. (15)

We seek a nontrivial solution proportional to exp [i (kx + ωt)]. Consequently,

∂

∂t
= iω,

∂

∂x
= ik.

Let us write the equations for (ρ1, u1, Φ1) in the following form:

ωρ1 + kρ0u1 = 0,

kc2
s

ρ0
ρ1 + ωu1 + kΦ1 = 0,

4πGρ1 + k2Φ1 = 0. (16)

By equating to zero the determinant of the system,
∣∣∣∣∣∣∣

ω kρ0 0
kc2s
ρ0

ω k

4πG 0 k2

∣∣∣∣∣∣∣
,



318 I. Kulikov et al.

we obtain the condition
ω2 = k2c2

s − 4πGρ0. (17)

We should write the critical wavenumber of the Jeans criterion in the form

kJ =
(

4πGρ0

c2
s

)1/2

, (18)

and the critical wavelength of the Jeans criterion in the form

λJ =
2π

kJ
=

(
π

Gρ0

)1/2

cs. (19)

By applying a perturbation of the wavelength λ > λJ , we trigger the gravita-
tional instability.

To estimate the free-fall time, we consider the collapse of a homogeneous
sphere of mass M and radius R. We need to estimate the time it takes the
sphere radius to decrease from R to zero. Let us write the equation for the
moment of impulse in the following form:

d2r

dt2
= −Gm

r2
, (20)

where m = 4π
∫ r

0
r2ρ0 dr and M = 4πR3ρ0

3 . Here we omit the cumbersome but
rather trivial computations. It follows from Eq. (20) that

dt = −
(

8πGρ0

3

)−1/2 (
r

R − r

)1/2
dr

R
. (21)

By integrating the last equation from the initial state of the sphere r = R to the
final stage r = 0, when it collapses, we obtain the equation for the free-fall time
tff :

tff =
(

3π

32Gρ0

)1/2

. (22)

We will use the last equation to find the characteristic time for the local col-
lapse. Obviously, a collapse is not achievable in a hydrodynamic model in that
time. However, since the computational cells have finite size we can consider the
process of local collapse in various subdomains of the computational domain.
That is especially important in the context of the process of star formation and
supernovae explosions.

The results of the computational experiments on the evolution of hydrody-
namic turbulence are portrayed in Fig. 1. As we can see, density fragmentation
occurs throughout the evolution of turbulence. It would be interesting to con-
sider each individual density wave since in the context of star formation these
waves can potentially correspond to young stars. It would also be interesting
from the point of view of nuclear reactions to consider the high density regions
in the case of turbulent combustion of carbon in white dwarfs.



Turbulence Modeling on Intel Xeon Phi KNL 319

(a) (b)

(c) (d)

Fig. 1. The density distribution during the evolution of the turbulence process for a
model time equal to one quarter (a), two quarters (b), three quarters (c), and four
quarters (d) of the free-fall time for cold matter

The problem of hydrodynamic turbulence is one of interest in various astro-
physical applications. Our main interest is related to the organization of par-
allel and distributed computations of supernova explosions. Despite the variety
of mechanisms involved in supernova explosions, the distributed computations
in these problems are used to correctly reproduce the nuclear combustion of
chemical elements and, therefore, correctly compute the injected energy in each
computational cell of the domain.

The distributed run of such problems is a very expensive and complicated
procedure, and a detailed elaboration is not always required. This is a conse-
quence of the fact that perturbations in the computational cell do not always
lead to instabilities. The main criterion for running a hydrodynamic problem
should be the analysis of the Jeans criterion λJ . If it is attained, then it is
enough to carry out the simulation for a time less than free-fall time tff , rather
than for the characteristic time step of the main task. All density waves are
formed in that time, and this allows one to fully take into account all nuclear
reactions in supernovae of all types.



320 I. Kulikov et al.

6 Conclusions

In this paper, we presented the results of simulations of hydrodynamic turbulence
with self-gravity, employing the latest Intel Xeon Phi accelerators with KNL
architecture. A new vector numerical code was described in detail. We achieved
a performance of 173 gigaFLOPS and an acceleration factor of 48 by using
a single Intel Xeon Phi KNL. Using 16 accelerators, we reached a scalability
of 97%.

Acknowledgments. The research was supported by the Russian Science Foundation
(project 18-11-00044).

References

1. Klessen, R., Heitsch, F., Mac Low, M.-M.: Gravitational collapse in turbulent
molecular clouds I. Gasdynamical turbulence. Astrophys. J. 535, 887–906 (2000).
https://doi.org/10.1086/308891

2. Heitsch, F., Mac Low, M.-M., Klessen, R.: Gravitational Collapse in turbulent
molecular clouds II. Magnetohydrodynamical turbulence. Astrophys. J. 547, 280–
291 (2001). https://doi.org/10.1086/318335

3. Beresnyak, A., Xu, H., Li, H., Schlickeiser, R.: Magnetohydrodynamic turbulence
and cosmic-ray reacceleration in galaxy clusters. Astrophys. J. Suppl. Ser. 771,
131 (2013). https://doi.org/10.1088/0004-637X/771/2/131

4. Kim, W., Ostriker, E.: Amplification, saturation, and Q Thresholds for runaway:
growth of self-gravitating structures in models of magnetized galactic gas disks.
Astrophys. J. 559, 70–95 (2001). https://doi.org/10.1086/322330

5. Alig, C., Burkert, A., Johansson, P., Schartmann, M.: Simulations of direct colli-
sions of gas clouds with the central black hole. Mon. Not. Roy. Astron. Soc. 412(1),
469–486 (2011). https://doi.org/10.1111/j.1365-2966.2010.17915.x

6. Petrov, M., Berczik, P.: Simulation of the gravitational collapse and fragmentation
of rotating molecular clouds. Astron. Nachr. 326(7), 505–513 (2005)

7. Beresnyak, A.: Basic properties of magnetohydrodynamic turbulence in the inertial
range. Mon. Not. Roy. Astron. Soc. 422(4), 3495–3502 (2012). https://doi.org/10.
1111/j.1365-2966.2012.20859.x

8. Mason, J., Perez, J.C., Cattaneo, F., Boldyrev, S.: Extended scaling laws in numer-
ical simulations of magnetohydrodynamic turbulence. Astrophys. J. Lett. 735, L26
(2011). https://doi.org/10.1088/2041-8205/735/2/L26

9. Perez, J.C., Boldyrev, S.: Numerical simulations of imbalanced strong magneto-
hydrodynamic turbulence. Astrophys. J. Lett. 710, L63–L66 (2010). https://doi.
org/10.1088/2041-8205/710/1/L63

10. Beresnyak, A.: Spectra of strong magnetohydrodynamic turbulence from high-
resolution simulations. Astrophys. J. Lett. 784, L20 (2014). https://doi.org/10.
1088/2041-8205/784/2/L20

11. McKee, C.F., Li, P.S., Klein, R.: Sub-alfvenic non-ideal MHD turbulence simula-
tions with ambipolar diffusion II. Comparison with observation, clump properties,
and scaling to physical units. Astrophys. J. 720, 1612–1634 (2010). https://doi.
org/10.1088/0004-637X/720/2/1612

https://doi.org/10.1086/308891
https://doi.org/10.1086/318335
https://doi.org/10.1088/0004-637X/771/2/131
https://doi.org/10.1086/322330
https://doi.org/10.1111/j.1365-2966.2010.17915.x
https://doi.org/10.1111/j.1365-2966.2012.20859.x
https://doi.org/10.1111/j.1365-2966.2012.20859.x
https://doi.org/10.1088/2041-8205/735/2/L26
https://doi.org/10.1088/2041-8205/710/1/L63
https://doi.org/10.1088/2041-8205/710/1/L63
https://doi.org/10.1088/2041-8205/784/2/L20
https://doi.org/10.1088/2041-8205/784/2/L20
https://doi.org/10.1088/0004-637X/720/2/1612
https://doi.org/10.1088/0004-637X/720/2/1612


Turbulence Modeling on Intel Xeon Phi KNL 321

12. Federrath, C., Klessen, R.: The star formation rate of turbulent magnetized clouds:
comparing theory, simulations, and observations. Astrophys. J. 761, 156 (2012).
https://doi.org/10.1088/0004-637X/761/2/156

13. Kritsuk, A., et al.: Comparing numerical methods for isothermal magnetized super-
sonic turbulence. Astrophys. J. 737, 13 (2011). https://doi.org/10.1088/0004-
637X/737/1/13

14. Galtier, S., Buchlin, E.: Multiscale hall-magnetohydrodynamic turbulence in the
solar wind. Astrophys. J. 656, 560–566 (2007). https://doi.org/10.1086/510423

15. Willcox, D., Townsley, D., Calder, A., Denissenkov, P., Herwig, F.: Type Ia super-
nova explosions from hybrid carbon-oxygen-neon white dwarf progenitors. Astro-
phys. J. 832, 13 (2016). https://doi.org/10.3847/0004-637X/832/1/13

16. Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-
refinement code for astrophysics. Astrophys. J. 186, 457–484 (2010). https://doi.
org/10.1088/0067-0049/186/2/457

17. Kulikov, I.: GPUPEGAS: a new GPU-accelerated hydrodynamic code for numeri-
cal simulations of interacting galaxies. Astrophys. J. Supp. Ser. 214, 1–12 (2014).
https://doi.org/10.1088/0067-0049/214/1/12

18. Kulikov, I.M., Chernykh, I.G., Snytnikov, A.V., Glinskiy, B.M., Tutukov, A.V.:
AstroPhi: a code for complex simulation of dynamics of astrophysical objects using
hybrid supercomputers. Comput. Phys. Commun. 186, 71–80 (2015). https://doi.
org/10.1016/j.cpc.2014.09.004

19. Schneider, E., Robertson, B.: Cholla: a new massively parallel hydrodynamics code
for astrophysical simulation. Astrophys. J. Suppl. Ser. 217, 2–24 (2015). https://
doi.org/10.1088/0067-0049/217/2/24

20. Benitez-Llambay, P., Masset, F.: FARGO3D: a new GPU-oriented MHD code.
Astrophys. J. Suppl. Ser. 223, 1–11 (2016). https://doi.org/10.3847/0067-0049/
223/1/11

21. Pekkilaa, J., Vaisalab, M., Kapylac, M., Kapylad, P., Anjum, O.: Methods for
compressible fluid simulation on GPUs using high-order finite differences. Comput.
Phys. Commun. 217, 11–22 (2017). https://doi.org/10.1016/j.cpc.2017.03.011

22. Griffiths, M., Fedun, V., Erdelyi, R.: A fast MHD code for gravitationally stratified
media using graphical processing units: SMAUG. J. Astrophys. Astron. 36(1), 197–
223 (2015). https://doi.org/10.1007/s12036-015-9328-y

23. Mendygral, P., et al.: WOMBAT: a scalable and high-performance astrophysical
magnetohydrodynamics code. Astrophys. J. Suppl. Ser. 228, 2–23 (2017). https://
doi.org/10.3847/1538-4365/aa5b9c

24. Surmin, I., et al.: Particle-in-cell laser-plasma simulation on Xeon Phi coproces-
sors. Comput. Phys. Commun. 202, 204–210 (2016). https://doi.org/10.1016/j.
cpc.2016.02.004

25. Needham, P., Bhuiyan, A., Walker, R.: Extension of the AMBER molecular dynam-
ics software to Intel’s Many Integrated Core (MIC) architecture. Comput. Phys.
Commun. 201, 95–105 (2016). https://doi.org/10.1016/j.cpc.2015.12.025

26. Brown, W.M., Carrillo, J.-M.Y., Gavhane, N., Thakkar, F.M.: Optimizing legacy
molecular dynamics software with directive-based offload. Comput. Phys. Com-
mun. 195, 95–101 (2015). https://doi.org/10.1016/j.cpc.2015.05.004

27. Bernaschia, M., Bissona, M., Salvadore, F.: Multi-Kepler GPU vs. multi-Intel MIC
for spin systems simulations. Comput. Phys. Commun. 185, 2495–2503 (2014).
https://doi.org/10.1016/j.cpc.2014.05.026

https://doi.org/10.1088/0004-637X/761/2/156
https://doi.org/10.1088/0004-637X/737/1/13
https://doi.org/10.1088/0004-637X/737/1/13
https://doi.org/10.1086/510423
https://doi.org/10.3847/0004-637X/832/1/13
https://doi.org/10.1088/0067-0049/186/2/457
https://doi.org/10.1088/0067-0049/186/2/457
https://doi.org/10.1088/0067-0049/214/1/12
https://doi.org/10.1016/j.cpc.2014.09.004
https://doi.org/10.1016/j.cpc.2014.09.004
https://doi.org/10.1088/0067-0049/217/2/24
https://doi.org/10.1088/0067-0049/217/2/24
https://doi.org/10.3847/0067-0049/223/1/11
https://doi.org/10.3847/0067-0049/223/1/11
https://doi.org/10.1016/j.cpc.2017.03.011
https://doi.org/10.1007/s12036-015-9328-y
https://doi.org/10.3847/1538-4365/aa5b9c
https://doi.org/10.3847/1538-4365/aa5b9c
https://doi.org/10.1016/j.cpc.2016.02.004
https://doi.org/10.1016/j.cpc.2016.02.004
https://doi.org/10.1016/j.cpc.2015.12.025
https://doi.org/10.1016/j.cpc.2015.05.004
https://doi.org/10.1016/j.cpc.2014.05.026


322 I. Kulikov et al.

28. Nishiura, D., Furuichi, M., Sakaguchi, H.: Computational performance of a
smoothed particle hydrodynamics simulation for shared-memory parallel comput-
ing. Comput. Phys. Commun. 194, 18–32 (2015). https://doi.org/10.1016/j.cpc.
2015.04.006

29. Kulikov, I., Chernykh, I., Tutukov, A.: A new hydrodynamic model for numerical
simulation of interacting galaxies on Intel Xeon Phi supercomputers. J. Phys: Conf.
Ser. 719, 012006 (2016). https://doi.org/10.1088/1742-6596/719/1/012006

30. Glinsky, B., Kulikov, I., Chernykh, I., et al.: The co-design of astrophysical code
for massively parallel supercomputers. Lect. Notes Comput. Sci. 10049, 342–353
(2017). https://doi.org/10.1007/978-3-319-49956-7 27

31. Kulikov, I.M., Chernykh, I.G., Glinskiy, B.M., Protasov, V.A.: An efficient opti-
mization of HLL method for the second generation of Intel Xeon Phi pro-
cessor. Lobachevskii J. Math. 39(4), 543–550 (2018). https://doi.org/10.1134/
S1995080218040091

32. Kulikov, I.M., Chernykh, I.G., Tutukov, A.V.: A new parallel Intel Xeon Phi hydro-
dynamics code for massively parallel supercomputers. Lobachevskii J. Math. 39(9),
1207–1216 (2018). https://doi.org/10.1134/S1995080218090135

33. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-
dissipation, operator-splitting scheme for numerical simulations of hydrodynamic
flows. J. Comput. Phys. 317, 318–346 (2016). https://doi.org/10.1016/j.jcp.2016.
04.057

34. Kulikov, I., Chernykh, I., Protasov, V.: Mathematical modeling of formation, evo-
lution and interaction of galaxies in cosmological context. J. Phys: Conf. Ser. 722,
012023 (2016). https://doi.org/10.1088/1742-6596/722/1/012023

https://doi.org/10.1016/j.cpc.2015.04.006
https://doi.org/10.1016/j.cpc.2015.04.006
https://doi.org/10.1088/1742-6596/719/1/012006
https://doi.org/10.1007/978-3-319-49956-7_27
https://doi.org/10.1134/S1995080218040091
https://doi.org/10.1134/S1995080218040091
https://doi.org/10.1134/S1995080218090135
https://doi.org/10.1016/j.jcp.2016.04.057
https://doi.org/10.1016/j.jcp.2016.04.057
https://doi.org/10.1088/1742-6596/722/1/012023

	Numerical Modeling of Hydrodynamic Turbulence with Self-gravity on Intel Xeon Phi KNL
	1 Introduction
	2 The Computational Model
	3 Parallel Implementation
	4 Discussion
	5 Modeling of Hydrodynamic Turbulence with Self-Gravity
	6 Conclusions
	References




