
GPU-Accelerated Learning
of Neuro-Fuzzy System Based on Fuzzy

Truth Value

Sergey Vladimirovich Kulabukhov(B) and Vasily Grigorievich Sinuk

Belgorod State Technological University Named After V.G. Shukhov,
Belgorod, Russian Federation
qlba@ya.ru, vgsinuk@mail.ru

Abstract. The article is devoted to the problem of the computational
complexity of fuzzy inference and neuro-fuzzy system learning in the case
of fuzzy inputs. We resort to parallel computations to reduce computa-
tion time. In the article, we suggest an algorithm using GPU to efficiently
perform fuzzy inference based on fuzzy truth values and the extension of
this algorithm to neuro-fuzzy system learning by evolution strategy. We
demonstrate the importance of the algorithm and include a benchmark
to compare the computation time on CPU against GPU.

Keywords: Fuzzy inference systems · Neuro-fuzzy systems ·
Fuzzy truth value · Evolution strategies · GPGPU ·
Parallel computations

1 Introduction

Fuzzy inference systems are gaining popularity. They are used in many fields of
practical interest. As a matter of fact, they are more consistent with the nature
of human thinking than systems of traditional formal logic, since they allow for
building models that reflect various aspects of uncertainty in a more adequate
manner [6]. Such models are defined via fuzzy rule bases. Fuzzy inference systems
have applications in such fields as control of technical systems, speech and image
recognition, and diverse expert systems.

Fuzzy inference systems do not address the formation of a rule base. Being a
formal representation of knowledge, fuzzy rule bases can be constructed manu-
ally. Nevertheless, some applications also provide training sets, i.e. data consist-
ing of pairs “input values–desired output values” that can be used to adjust the
parameters of the inference system. Such situations are the subject of machine
learning and are common in applications of artificial neural networks.

The interpretation of neural network parameters is generally difficult. This
fact prevents the explicit use of knowledge of domain experts in a network and
the extraction of knowledge from a trained network. The combination of basic

This work was supported by the RFBR (grant No. 19-07-00133).

c© Springer Nature Switzerland AG 2019
L. Sokolinsky and M. Zymbler (Eds.): PCT 2019, CCIS 1063, pp. 152–167, 2019.
https://doi.org/10.1007/978-3-030-28163-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28163-2_11&domain=pdf
http://orcid.org/0000-0003-3192-2553
https://doi.org/10.1007/978-3-030-28163-2_11

GPU-Accelerated Neuro-Fuzzy System Learning 153

methods of fuzzy inference systems and artificial neural networks led to the
creation of neuro-fuzzy systems. Various options for combining these methods
have been presented in the literature. For example, parameters of membership
functions, triangular norms, or even the whole rule base can undergo learning.

The parameters of fuzzy inference systems have a clear meaning, and their
values after learning may reveal previously unknown knowledge about a subject
area. In addition, if a fuzzy inference system can handle fuzzy input values,
then they can also be used for neuro-fuzzy system learning, provided that the
training set contains uncertainty. In many applications, input data contain either
nonnumerical (linguistic) assessments [2,7] or input signals that are received with
noise [8,9].

In this paper, we consider logical-type neuro-fuzzy systems based on fuzzy
truth values [5,10]. Such systems allow for inference in case of multiple fuzzy
inputs of polynomial computational complexity by using any triangular norm
[11]. On the other hand, this method of fuzzy inference leads to discretization
of membership functions since they undergo complex transformations which are
difficult to implement in analytical form.

An evolutionary algorithm was used in [8,9] for neuro-fuzzy system learn-
ing. This algorithm assumes that the computation of objective function values is
simultaneous for all elements of the offspring population created at each gener-
ation. Neuro-fuzzy system learning can be very time-consuming even in simple
tasks. The parallel implementation of both inference and learning processes in
such systems by using GPU is the subject of the present article. The implemen-
tation is based on NVIDIA CUDA technology.

2 Neuro-Fuzzy System Based on Fuzzy Truth Values

The problem that is to be solved by using a fuzzy inference system is formulated
as follows. Consider a system with n inputs x = [x1, . . . , xn] and a single output
y. The relationship between inputs and the output is defined using N fuzzy rules
expressed as

Rk : If x1 is A1k and . . . and xn is Ank, then y is Bk, k = 1, N, (1)

where x ∈ X = X1 × X2 × · · · × Xn, y ∈ Y , and Ak = A1k × A2k × · · · × Ank ⊆
X, Bk ⊆ Y are fuzzy sets.

According to the classification proposed in [12], the specific feature of logical-
type systems is that the rules expressed in (1) are formalized via fuzzy implica-
tion as fuzzy (n + 1)-ary relations Rk ⊆ X1 × · · · × Xn × Y , namely

Rk = A1k × · · · × Ank × Y → X1 × · · · × Xn × Bk, k = 1, N,

where “→” denotes a fuzzy implication expressing a causal relationship between
the antecedent “x1 is A1k and . . . and xn is Ank” and the consequent “y is Bk”.
The task is to determine the inference result B′

k ⊆ Y for a system given in the
form expressed in (1), provided that the inputs are given as A′ = A′

1×· · ·×A′
n ⊆

X or “x1 is A′
1 and . . . and xn is A′

n”.

154 S. V. Kulabukhov and V. G. Sinuk

The specific feature of the considered approach to fuzzy inference is that the
inference is made within a single truth space for all premises, which is achieved
by transforming the relationships between premise and fact into a so-called fuzzy
truth value. By using the truth modification rule (see [1]), we can write

μA′ (x) = τA|A′ (μA (x)) ,

where τA|A′ (·) is the fuzzy truth value of the fuzzy set A relative to A′, which
represents the compatibility CP (A,A′) of the term A with respect to A′ [3,13]:

τA|A′ (t) = μCP (A,A′) (t) = sup
µA(x)=t
x∈X

{μA′ (x)}, t ∈ [0, 1]. (2)

Denote t = μA (x). Then

μA′ (x) = τA|A′ (μA (x)) = τA|A′ (t) . (3)

Thus, the generalized fuzzy modus ponens rule for single-input systems can be
written as

μB′
k
(y) = sup

t∈[0,1]

{τA|A′ (t) T I (t, μBk
(y))}, k = 1, N,

where T is a t-norm and I is a fuzzy implication.
In systems with n inputs (n > 1), the convolution of fuzzy truth values τAi|A′

is performed for all inputs i = 1, n. For rules of the form (1), the fuzzy truth
value of the antecedent Ak with respect to the inputs A′ is defined as

τAk |A ′ (t) = T
i=1,n

τAki|A′
i
(t) , t ∈ [0, 1], (4)

where T is an n-ary t-norm extended by the extension principle (see [9]). With
this in mind, the inference of the output value B′

k based on the fuzzy truth value,
for systems with n inputs, can be written in the form

μB′
k
(y) = sup

t∈[0,1]

{τAk |A ′ (t) T I (t, μBk
(y))}, k = 1, N. (5)

The fuzzy set B′ (the output of the system as a whole) is obtained by accu-
mulation, and in a logical approach, it is defined as an intersection operation [9]:

B′ =
⋂

j=1,N

B′
j . (6)

Accordingly, the membership function B′ is defined by means of the t-norm:

μB′ (y) = T
j=1,N

μB′
j
(y) . (7)

GPU-Accelerated Neuro-Fuzzy System Learning 155

The center-of-gravity defuzzification method is used in the neuro-fuzzy sys-
tem to define the crisp output y of the system:

y =

∫
Y

y · μB′ (y) dy∫
Y

μB′ (y) dy
. (8)

In addition, a transformation is introduced to regulate the effect of each rule j
on the accumulation result in accordance with its weight wj . This transformation
is pointwise. Now (7) can be written in the form

μB′ (y) = T
j=1,N

f
(
μB′

j
(y) , wj

)
, (9)

where f (a,w) is an arbitrary function that associates a membership-function
value a to a new value according to the rule weight w. The function f (a,w)
must be nondecreasing on the first argument and, for logical-type systems, non-
increasing on the second argument.

Within this study, neuro-fuzzy system learning is performed by means of an
evolution strategy (μ, λ) [9]. As it was already noted, this algorithm assumes that
the computation of objective function values R (p) is simultaneous for all forms
of the offspring population O at each generation. An objective function is a func-
tion of neuro-fuzzy system parameters that reflects how far the results obtained
deviate from the training set. The lower R (pl) is, the more pl corresponds to
the training set. Let us denote the training set as

T = {Tr = 〈A′(r)
1 , . . . , A′(r)

n , y(r)〉}r=1,M ,

where A
′(r)
i is the value of the i-th input for the r-th element of the training set,

y(r) is the desired output value for these input values, and M is the training set
size.

The objective function for the neuro-fuzzy system is defined as

R (p) =
1

|Y |

√√√√ 1
M

M∑

r=1

(
Fp

(
A

′(r)
1 , . . . , A

′(r)
n

)
− y(r)

)2

, (10)

where |Y | stands for the width of the domain of definition of the output variable,
while

Fp

(
A

′(r)
1 , . . . , A′(r)

n

)

is the inference result y of the neuro-fuzzy system with parameter values p and
input values A

′(r)
1 , . . . , A

′(r)
n .

3 Parallel Implementation of the Learning Process

In this section, we consider the implementation of the learning process of the
neuro-fuzzy system, in which all computations associated with fuzzy inference
are performed on graphics processing units (GPUs).

156 S. V. Kulabukhov and V. G. Sinuk

3.1 Learning Process Overview

From a computational point of view, the evaluation of the objective function
R (p) for each element of the offspring population O is the most complex phase
of neuro-fuzzy system learning. To compute R (p) for a single p (a single vector
of parameter values), we must compute the value of the expression under the
summation symbol in (10) for each element Tr of the training set T , each time
computing the inference result for the given input values. This means that we
have to perform a fuzzy inference for each combination 〈p, Tr〉 ∈ O × T , i.e.
|O| · M times, and each of these inferences is independent of the others. Thus,
all pairs 〈p, Tr〉 ∈ O × T can be processed in parallel. In the implementation of
the algorithm using CUDA technology, every pair is processed in an individual
block.

Each block is allocated its own memory, a part of which is allocated for stor-
ing intermediate results; output results are placed in another part of the memory
and a third part contains a sequence of commands defining fuzzy inference oper-
ations. Before launching the kernel, command sequences that are executed by
the fuzzy system to compute output values are built for each block and written
to the corresponding memory location. The values of inputs and parameters are
embedded explicitly in these sequences. Since commands are specified separately
for each block, the developed algorithm does not impose restrictions on the set
of adjusted parameters of the neuro-fuzzy system. In general, it allows parallel
inference to be done for several completely different fuzzy systems. This fact
expands the possibilities of neuro-fuzzy system learning.

As previously mentioned, this fuzzy inference method leads to discretization
of membership functions into arrays of samples. These samples are distributed
over the threads and then processed. The implementation of individual fuzzy
inference operations will be described below in this section.

3.2 Data Distribution in GPU Memory

Each block is allocated the same amount of memory, which consists of three parts
(Fig. 1). Let Nb be the number of blocks. The first part of the allocated memory
is used for storing the results of the execution of intermediate commands; these
results are arrays of samples of membership functions. The part consists of Nc

arrays of Nd elements each, where Nd is the number of samples and Nc is the
maximum number of commands that result in a membership function. The array
elements are single-precision real numbers. The second part of the allocated
memory stores a real number which is the final result of the computation, i.e.
the crisp output y of the system. The third part stores the sequence of fuzzy
inference commands. The size of this part is Sc, which is an estimated maximum
size for command sequences (in bytes) as the size of sequences for different
blocks in the general case can vary, for example, due to rule base changes during
training. If the command sequence for a block is shorter than Sc, then this part
is aligned with unused memory to size Sc.

GPU-Accelerated Neuro-Fuzzy System Learning 157

Fig. 1. Data distribution in GPU memory

Intermediate results for every block are stored first in GPU memory. Final
inference results for each block are placed next, followed by command sequences.
Such a distribution of parts in memory has an advantage over their grouping in
blocks, namely when transferring the results from the device memory into the
host memory, a continuous memory segment containing Nb ∗ 4 bytes is copied
in the first case, whereas, in the second, Nb four-byte segments are copied. The
same happens when transferring command sequences into the device memory.
Storage of all intermediate results in memory is not required; however, it provides
detailed information when designing and debugging neuro-fuzzy systems.

Each command is represented as a sequence of numbers. The first number
denotes the operation type; subsequent numbers are its arguments and parame-
ters. The operation type determines the amount of numbers. If arguments include
membership functions, then the command size is also determined by their type.
Each argument or parameter is either a 32-bit integer or a single-precision real
number.

3.3 The Main Kernel Function

The main kernel function accepts four parameters: the start address of the allo-
cated memory a0; the amounts of memory Nc ∗ Nd ∗ 4 and Sc, which are needed
for storing, respectively, the intermediate results and the commands; and finally,
the number of samples Nd. Kernel launch parameters are also specified: the grid
size is set to |O| · M (single dimension); the block size is set to the maximum
possible number not exceeding Nd; the amount of shared memory is Nd ∗ 4
bytes. When the main kernel function is started, each thread calculates the
addresses of each memory part for the block b = blockIdx.x to which the
thread belongs. The first part has the address a1 = a0+b∗Nc∗Nd∗4, the second
a2 = a0+Nb∗Nc∗Nd∗4+b∗4, and the third a3 = a0+Nb∗Nc∗Nd∗4+Nb∗4+b∗Sc.
This function also declares the variable dp which contains both the number of
saved results of intermediate commands (initially equal to zero) and a pointer to
the beginning of the next command ip (initially set to a3). Then a loop begins,
in whose body the current command is read and executed, and the pointer ip is

158 S. V. Kulabukhov and V. G. Sinuk

increased by the size of the command. Implementations of individual operations
are allocated to separate subroutines; the values of arguments and parameters
that are passed to them are determined in the main subroutine. If the result
of the current operation is a membership function, then its array of samples is
placed at a3 + dp ∗ Nd and dp is incremented. The loop ends when ip points to
a dummy command that marks the end of the command sequence. We describe
each operation below.

3.4 Computing Fuzzy Truth Values

This operation is analytically defined by (2). Its arguments are membership
functions of the term μA (x) and the fact μA′ (x); the result is the fuzzy truth
value τA|A′ (t) of the term with respect to the fact. In the discrete case, we
calculate sample values of the function τA|A′ (t). Since this function is defined
in the numerical range [0; 1], we split it into Nd samples and define the value of
each sample as follows:

τA|A′ (ti) = sup
µA(x)∈[ti;ti+1]

x∈X

{μA′ (x)}, ti =
i

Nd
, i = 0, Nd − 1, (11)

whence, taking into account (3), it follows that

τA|A′ (ti) = sup
t∈[ti;ti+1]

{τA|A′ (t)}. (12)

The procedure for computing τA|A′ (ti) for each ti is divided into three sub-
routines. Flowcharts of two of them at the level of individual threads are shown
in Fig. 2. The main subroutine of the operation is FTV(dst, μA (x) , μA′ (x) , Nd),
which fills an array of Nd elements at dst with values according to (11). Mem-
bership functions μA (x) and μA′ (x) are expressed as numerical sequences in
the same way as the commands: the first number determines the type of the
membership function, the other numbers are its parameters. The destination
address dst points to an array in the memory space allocated for the results of
the execution of intermediate commands for this block.

The computation of individual samples of τA|A′ (ti) is distributed among all
threads of the block. FTV starts with getting the thread index threadIdx.x and
the number of threads blockDim.x in the block. They will be henceforth referred
to as variables x and h, respectively. Then a loop is executed for i = 0, Nd − 1,
each thread performs every h-th iteration starting with the x-th. Since the value
of the i-th sample equals the upper boundary of the fuzzy truth value in the
range [ti; ti+1] (see (12)), the ends of this range, denoted by tmin and tmax, are
calculated in the loop body. Then the function FTV1(μA (x) , μA′ (x) , tmin, tmax)
is invoked, and it returns the value of (11) for the given range [tmin; tmax], which
is then assigned to the i-th element of the array at dst.

Depending on both the type of the membership function μA (x) and the val-
ues of its parameters, FTV1 determines all ranges such that μA (x) ∈ [tmin; tmax].

GPU-Accelerated Neuro-Fuzzy System Learning 159

Fig. 2. Flowcharts of fuzzy truth value computation

FTV1 features algorithms to determine these ranges for all supported types of
membership functions. For example, the ranges for a Gaussian membership func-
tion with center in m and standard deviation σ are
[
m − σ

√
− ln tmin;m − σ

√
− ln tmax

]
,
[
m + σ

√
− ln tmax;m + σ

√
− ln tmin

]
.

For each of these ranges, FTV1 invokes the function RM(μA′ (x) , xmin, xmax), which
returns the maximum membership degree of the fact within this range. FTV1
returns the maximum of the values returned by RM.

The flowchart of RM is not shown in the figure as it contains only the formulas
that express the maximum value within a given range [xmin;xmax] for all sup-
ported types of membership functions. In the aforementioned case of a Gaussian
function, this value is given as

sup
x∈[xmin;xmax]

{μA′ (x)} =

⎧
⎪⎪⎨

⎪⎪⎩

1, if xmin ≤ m ≤ xmax,

exp
(
(xmax − m)2 /σ2

)
, if xmax < m,

exp
(
(xmin − m)2 /σ2

)
, if xmin > m.

3.5 Convolution of Fuzzy Truth Values

If a rule contains more than one subcondition, then the fuzzy truth value of the
entire antecedent Ak with respect to the inputs A′ is computed according to
(4). This formula contains an n-ary t-norm extended by the extension principle.
For n = 2, it is defined as

T
i=1,2

τAki|A′
i
(t) = sup

t1 T t2=t
t1,t2∈[0;1]

{τAk1|A′
1
(t1) T τAk2|A′

2
(t2)}, t ∈ [0, 1]. (13)

160 S. V. Kulabukhov and V. G. Sinuk

If n > 2, then T is applied as an associative binary operator to the result of the
convolution of the previous (n − 1) arguments and the n-th argument.

The algorithm for computing the result of this operation is depicted in Fig. 3.
Its computational complexity is O

(
N2

d

)
. The operation is implemented for n = 2;

the convolution for larger values of n is defined by using multiple convolution
commands. The arguments A, B, and the result dst are fuzzy truth values in
discrete form (arrays of samples). Therefore, t1 and t2 take on values in the
discrete set {i/Nd}i=0,Nd−1 .

Fig. 3. Flowchart for the convolution of fuzzy truth values

The enumeration of all values of t1 and t2 is implemented by a double loop
for the variables i and j, respectively. The iterations of the external loop for the
variable i are distributed among all threads of the block in the same manner
as in the case of FTV (Fig. 2). The internal loop for j is entirely executed by a
single thread. The values of i and j correspond to t1 = i/Nd and t2 = j/Nd,
respectively. Then t = t1 T t2 is computed. The index of the result sample
corresponding to t is k = 	t ∗ Nd
. Let us denote by τ̂t the argument of the
supremum in (13), i.e. τ̂t = τAk1|A′

1
(t1) T τAk2|A′

2
(t2), which is calculated as

T(A[i], B[j]), where T is the implementation of the t-norm. If τ̂t is greater
than the current value of dst[k], then dst[k] is assigned the value of τ̂t.

The index k is calculated using the t-norm. In the implemented distribution
of iterations for i and j, threads may process elements of the destination array
with the same index. If multiple threads read the value of dst[k] and then
conditionally update it, then data races may occur. However, distributing the
iterations in such a way that no pair of threads obtains similar values of k
depends on the t-norm and is computationally inefficient since threads will get
different numbers of payloads. Data races can be eliminated by using the atomic

GPU-Accelerated Neuro-Fuzzy System Learning 161

maximum operation provided by the CUDA framework, which can be invoked
by calling the function atomicMax. This function accepts address and the value
val as arguments. If the value at address is less than val, then val is written
at address. Since the function accepts only integer numbers, 	τ̂t ∗ INT MAX
 is
passed instead of τ̂t. Given that τ̂t ∈ [0; 1], no overflow can occur.

During the execution of the algorithm, the integer representation of the
resulting array is located in the shared memory. This memory is used since it has
shorter access time than global memory. When the execution is completed, the
result is transferred to global memory at dst with each element converted into
a floating-point number and divided by INT MAX. This process is also iterative
and involves all threads of the block in the same way as in previous cases.

3.6 Computation of the Result of Rule Inference

This operation is performed according to (5) after obtaining the truth value of
the antecedent of the rule with respect to the inputs. The algorithm is shown in
Fig. 4.

Fig. 4. Flowchart of the computation of rule inference result

The fuzzy truth value of the antecedent A is represented in discrete form,
whereas the membership function of the consequent term B is given in analytical
form (type and values of parameters). The discrete representation of the result is
placed at dst. According to (5), it is necessary to have the values of B in the same
points in which the result μB′

k
must be computed. The discrete representation

of B is prepared by the main kernel function and stored in shared memory; this
process is parallelized by distributing the samples among threads. Similarly to
the previous operation, a double loop is executed for two variables, i and j, to

162 S. V. Kulabukhov and V. G. Sinuk

enumerate the samples of y and t, respectively. The computational complexity
of this algorithm is O

(
N2

d

)
.

The iterations of the loop for i are distributed among all threads; the loop
for j is entirely executed by a single thread. The values of i and j correspond
to y = i/Nd and t = j/Nd, respectively. The values of T (A[j], I (j/Nd, B[i]))
are computed in the body of the inner loop; the maximum of these values is
recorded at dst[i] after leaving the loop. Unlike the convolution of fuzzy truth
values, this algorithm does not cause data races since every sample dst[i] of
the result array is processed by a single thread.

3.7 Applying Rule Weights

The transformation of the membership function of the rule inference result is
pointwise, i.e. it transforms every sample value separately (see (9)). The function
f (a,w) is implemented in the program as

f (a,w) = a ∗ w + (1 − w) .

This function was designed by analogy with [4], where f (a,w) was defined as
f (a,w) = a ∗ w, which is equivalent to f (a,w) = a ∗ w + 0 ∗ (1 − w). Thus,
w determines the proportion of the original function in a linear combination
with μB′

j
(y) = 0, which is the neutral element for the union of fuzzy sets. The

logical-type fuzzy system under consideration defines the accumulation through
intersection, whose neutral element is μB′

j
(y) = 1.

The flowchart of the algorithm is depicted in Fig. 5. Its computational com-
plexity is O (Nd). The arguments of the operation are the membership function
of the rule inference result A in discrete representation and the rule weight w.
The algorithm contains a single loop for the variable i which denotes the sample
index; the iterations are distributed among threads. The argument A and the
result are both located in global memory.

Fig. 5. Flowchart for application of rule weights

GPU-Accelerated Neuro-Fuzzy System Learning 163

3.8 Accumulation

Accumulation is the computation of the inference B′ of the fuzzy system as
a whole. For logical-type systems, it is defined through the intersection of the
inference results of all rules B′

j , j = 1, N (see (6)). The intersection is performed
pointwise; the membership degree of each sample is determined by applying the
t-norm to the membership degrees of the samples in each set B′

j . The flowchart
of this algorithm is not given here since it is completely similar to the one shown
in Fig. 5, except that the operator in the loop body is dst[i]=T(A[i],B[i]).
The operation is implemented for N = 2; accumulation for greater numbers N
is programmed at command sequence level, similarly to the convolution of fuzzy
truth values. The arguments A, B and the result are membership functions in
discrete form, located in global memory. The enumeration of samples is imple-
mented by a loop for the variable i (sample index); the iterations are distributed
among threads.

3.9 Defuzzification

Defuzzification determines the crisp output of the system by accumulation result.
In this research, the center-of-gravity defuzzification method was used. In the
continuous case, it has the form given in (8), whereas in the discrete case, it can
be defined as

y =
Nd−1∑

i=0

yi · μB′ (yi)
/Nd−1∑

i=0

μB′ (yi) .

Both summations, on the numerator and on the denominator, can be distributed
among threads; every thread computes its own partial sums, then they are
reduced and divided. Barrier synchronization must be done before division; the
division itself must be executed by a single thread. The algorithm flowchart is
depicted in Fig. 6. The complexity of this algorithm is O (Nd). The argument
of the operation is A, the membership function of the system inference result in
discrete form, which is stored in global memory. The result is placed at dst; it
points to the memory part for final results. The boundaries a and b of the base
set of the output variable are also passed to the function that implements the
algorithm.

In the implementation of the algorithm, the whole sums numTotal and
denTotal of the numerator and the denominator, respectively, are stored in
shared memory. Initially, they are assigned zero values by one of the threads;
then barrier synchronization is performed (not shown in the flowchart). Next,
every thread computes its own partial sums of the numerator and the denomina-
tor, executing its iterations of the loop for the sample index i. The values yi are
calculated regardless of the original domain of definition [a; b] of the output vari-
able; it is assumed to be [0; 1] instead. After completion of the loop, the threads
increase the values of the whole sums by the values of their partial sums. Since
all threads are modifying the same memory locations, we use the atomic addition
operation atomicAdd which is provided by the CUDA framework. This function

164 S. V. Kulabukhov and V. G. Sinuk

Fig. 6. Algorithm flowchart of the center-of-gravity defuzzification method

has address and value val as its arguments and increases the value at address
by val. Then barrier synchronization is performed (syncthreads()). Finally,
the zeroth thread divides the whole sums of the numerator and the denominator,
casts the quotient y0 to the boundaries of the base set [a; b], according to the
formula y = a+(b − a) y0, and records the result as y at dst, while other threads
do nothing.

4 Benchmark

Let us consider a neuro-fuzzy system that approximates the analytical depen-
dency f (x1, x2) = (x1 − 7)2 · sin (0.61x2 − 5.4). The plot of this dependency is
shown in 7. The rule base compiled according to the shape of the plot is given
in Table 1.

Fig. 7. Approximate dependency plot

GPU-Accelerated Neuro-Fuzzy System Learning 165

Table 1. Rule base

x1 x2 y

Low Low High

Low Medium Low

Low High High

Medium — Medium

High Low Above medium

High Medium Below medium

High High Above medium

The neuro-fuzzy system has two inputs, each having three terms, six rules
with two subconditions, and one rule with one subcondition. The computation
of fuzzy truth values must be performed six times, for each term of each input
variable. The convolution of fuzzy truth values occurs six times since the rule base
contains six rules having two subconditions. The rule inference result is computed
seven times, then each of them is applied a weight factor transformation. Finally,
accumulation is performed N − 1 = 6 times, followed by defuzzification. The
neuro-fuzzy system performs 33 operations in total; 13 of them have complexity
O

(
N2

d

)
. All terms are defined by Gaussian membership functions; each of them

has two parameters for adjustment. Moreover, each rule has its own adjusted
weight. The system contains altogether (3 + 3 + 5) ∗ 2 + 7 = 29 parameters.

Let us estimate the computational complexity of system learning. A common
number of generations for evolution strategies is Ng = 300; μ = 40, λ = 4 ∗ μ =
160. Let the size of the training set be M = 80. In this situation, fuzzy inference is
executed Ng∗λ∗M = 3.84 million times. Every inference requires 13∗N2

d +20∗Nd

iterations of loops. For Nd = 1024, it results in 13.6 millions of iterations; so
the entire learning process requires approximately 5.2 ∗ 1013 iterations. Figure 8

Fig. 8. A comparison of the learning process duration on CPU and GPU

166 S. V. Kulabukhov and V. G. Sinuk

portrays the results of an experiment comparing the duration of the learning
process on CPU and GPU for different values of Nd. We used a parallel CPU-
based implementation of the neuro-fuzzy system. For Nd = 1024, learning on
CPU took 769.33 seconds, whereas on GPU it completed in 48.06 seconds. Thus,
the GPU-based implementation accelerated the learning process by a factor of
16 approximately.

5 Conclusions

The parallel algorithms we have developed make it possible to significantly accel-
erate neuro-fuzzy system learning, which makes them more useful in practical
applications. Owing to its high time complexity, the problem of acceleration
becomes essential. The benchmark we provided demonstrates that the GPU-
accelerated implementation of learning shortens its duration by a factor of 16.
The suggested neuro-fuzzy system also allows for handling fuzzy input values,
in contrast to most modern fuzzy modeling frameworks (see [6]).

References

1. Borisov, A., Alekseev, A., Krumberg, O., et al.: Decision Making Models Based on
Linguistic Variable. Zinatne, Riga (1982). (in Russian)

2. Borisov, V., Kruglov, V., Fedulov, A.: Fuzzy Models and Networks. Hot Line -
Telecom, Moscow (2007). (in Russian)

3. Dobuis, D., Prade, H.: Possibility Theory. Applications to the Representation of
Knowledge in Informatics. Radio and Communication, Moscow (1990). (in Rus-
sian)

4. Programmable controllers - part 7: Fuzzy control programming. International Stan-
dard Electrotechnical Commission, Geneva, Switzerland (2000)

5. Kutsenko, D., Sinuk, V.: Inference method for systems with multiple fuzzy inputs.
Bull. Russ. Acad. Sci. Control Theory Syst. 3, 48–56 (2015). https://doi.org/10.
7868/S0002338815030129. (in Russian)

6. Leonenkov, A.: Fuzzy Modeling in MATLAB and FuzzyTech Environment. BHV
- Petersburg, Saint Petersburg (2003). (in Russian)

7. Rothstein, A., Shtovba, S.: Identification of nonlinear dependence by fuzzy training
set. Cybern. Syst. Anal. 2, 17–24 (2006). (in Russian)

8. Rutkowska, D., Pilinsky, M., Rutkowsky, L.: Neural Networks, Genetic Algorithms
and Fuzzy Systems. Hot Line - Telecom, Moscow (2004). (in Russian)

9. Rutkowsky, L.: Methods and Techniques of Computational Intelligence. Hot Line
- Telecom, Moscow (2010). (in Russian)

10. Sinuk, V.G., Polyakov, V.M., Kutsenko, D.A.: New fuzzy truth value based
inference methods for non-singleton MISO rule-based systems. In: Abraham, A.,
Kovalev, S., Tarassov, V., Snášel, V. (eds.) Proceedings of the First International
Scientific Conference “Intelligent Information Technologies for Industry” (IITI’ 16).
AISC, vol. 450, pp. 395–405. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-33609-1 36

https://doi.org/10.7868/S0002338815030129
https://doi.org/10.7868/S0002338815030129
https://doi.org/10.1007/978-3-319-33609-1_36
https://doi.org/10.1007/978-3-319-33609-1_36

GPU-Accelerated Neuro-Fuzzy System Learning 167

11. Sinuk, V.G., Kulabukhov, S.V.: Neuro-fuzzy system based on fuzzy truth value. In:
Kuznetsov, S.O., Osipov, G.S., Stefanuk, V.L. (eds.) RCAI 2018. CCIS, vol. 934,
pp. 91–101. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00617-4 9

12. Zadeh, L.: Outline of a new approach to the analysis of complex systems and
decision processes. IEEE Trans. Syst. Man Cybern. 3(1), 28–44 (1973)

13. Zadeh, L.: PRUF - a meaning representation language for natural language. Intern.
J. Man-Mach. Stud. 10, 395–460 (1978)

https://doi.org/10.1007/978-3-030-00617-4_9

	GPU-Accelerated Learning of Neuro-Fuzzy System Based on Fuzzy Truth Value
	1 Introduction
	2 Neuro-Fuzzy System Based on Fuzzy Truth Values
	3 Parallel Implementation of the Learning Process
	3.1 Learning Process Overview
	3.2 Data Distribution in GPU Memory
	3.3 The Main Kernel Function
	3.4 Computing Fuzzy Truth Values
	3.5 Convolution of Fuzzy Truth Values
	3.6 Computation of the Result of Rule Inference
	3.7 Applying Rule Weights
	3.8 Accumulation
	3.9 Defuzzification

	4 Benchmark
	5 Conclusions
	References

