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Abstract. In this note we present some influential contributions of
Oded Maler in hybrid systems research, with a focus on his pioneer-
ing results in reachability analysis and applications to systems biology.
We also give a brief discussion of the evolution of the reachability com-
putation techniques which have greatly progressed in recent years. This
discussion is not intended to include an exhaustive survey of the exist-
ing results (The reader is referred to the recent proceedings of the con-
ferences Hybrid Systems: Computation and Control.) but to show the
strong impact of his foundational work.

1 Modelling and Decidability Results

The years 80s witnessed a growing interest in timed systems that combine dis-
crete models with metric time, in order to specify behaviours of reactive sys-
tems not only qualitatively but also quantitatively. This interest, which remains
vibrant today, led to the development of a variety of formal models and logics.
Timed automata [5], introduced together with a verification algorithm in the
early 90s by Rajeev Alur and David Dill, have been undoubtedly the most pop-
ular formalism. They are used in many successful tools, such as UPPAAL [34],
for specifying and verifying real-time systems. In the 80s, Oded was a PhD
student at Weizmann Institute of Science, working on his thesis titled “Finite
Automata: Infinite Behavior, Learnability and Decomposition”, under the super-
vision of Amir Pnueli. His advisor, winner of the Turing award in 1996 for his
work on temporal logics, was part of the timed systems movement. He proposed
a model, called timed transition system, and versions of real-time temporal log-
ics [49]. This activity of his advisor certainly had a lot of impact on Oded who
was already interested in the physical world outside computers and programs. He
discovered a paper by R. Brooks from MIT AI lab which proposed a “behaviour-
based” approach to robotic systems integrating control programs, sensors, actu-
ators and timers. This prompted him to think how one can verify that such
systems behave correctly in a given environment. Together with Amir Pnueli, he
wrote a proposal titled “Systematic Development of Robots”. This idea perhaps
sounded too avant-garde at that time, partly because of the inter-cultural gap
between computer scientists and control theorists. In addition, the verification
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research did not yet reach its successes in industrial applications. The proposal
did not pass and Oded moved to France to do his postdoc at IRISA (Rennes).
During his post-doc, together with Amir Pnueli and Zohar Manna, he wrote
the paper “From timed to hybrid systems” [59] which proposed a model called
phase transition systems, the first formal hybrid model coming from the verifi-
cation community. This model, which combines discrete transitions (that take
no time) and continuous dynamics specified by differential equations, can be
thought of as a precursor of the model of hybrid automata proposed a little later
in a seminal paper [3]. In parallel, various models were proposed by the control
community. These models, designed to include specific discrete phenomena aris-
ing in computer control systems (such as autonomous or controlled switchings
and jumps), are suitable for the purpose of extending the existing analytic con-
trol methods to hybrid systems. Many studies were devoted to the topology and
computational capabilities of such models. The reader is referred to the PhD
thesis of Michael S. Branicky at MIT in 1995 [26] for a thorough survey of the
hybrid models proposed in the beginning of the hybrid systems research history,
including a technical comparison and classification of these models. Many of
these models (such as, hybrid automata and switched systems) are now widely
used for verification and control purposes. These models were however too com-
plex for the verification algorithms developed by computer scientists, who still
considered differential equations outside the traditional scope of their domain.
Motivated by the success of decidability results and model-checking algorithms
for timed automata, the verification community was then more interested in
extending these results to hybrid automata with simple continuous dynamics,
such as with clocks that can be stopped, or with continuous variables having
constant or piece-wise constant derivatives [4,48]. Oded was by that time an
CNRS researcher in the laboratory VERIMAG, headed by Joseph Sifakis whose
group contributed to the development of the hybrid automaton model [3]. In this
new movement, Oded’s contributions were the decidability and undecidability
results for piecewise constant derivative systems (PCD). Such a system consists
of a polyhedral partition of the state space and in each region of the partition
the continuous variables evolve with constant derivatives. He first proved decid-
ability of such systems with 2 continuous variables (planar PCD) [61], based on
the observation that a trajectory cannot intersect itself (Jordan curve theorem),
unlike the trajectory depicted in Fig. 1. Additionally, for every trajectory, the
sequence of edges it crosses is ultimately-periodic. Therefore, one can define a
finite abstract alphabet to describe qualitative behaviours as sequences of regions
or edges. Then, Oded and his colleague Eugene Asarin proved the undecidabil-
ity of PCD in 3 and higher dimensions [12,14]. They also proved, using Zeno
paradox, how all the arithmetical hierarchy can be realized by PCD [15]. These
results and directions have a number of important technical follow-ups, among
which we can mention: a generalisation to planar differential inclusions [17],
stability of polyhedral switched systems [68], and in particular models of com-
putation [24]. Despite the recognition these theoretical results received, Oded
was disappointed because these negative decidability results seemed to imply
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Fig. 1. Illustration of an impossible situation: the depicted trajectory exits a region at
a boundary point x1 and then exits this region again at a boundary point x2, thus it
cannot intersect the boundary part between x1 and x2.

that if the verification problem for such simple systems is undecidable, there
would be no hope that one can verify real-life hybrid systems. This disappoint-
ment reflected his ambition to export the verification methodology to practical
application domains. It also made him question the appropriateness of the exact
formulation of verification problems in the context of hybrid systems. While pon-
dering upon this methodological issue, Oded continued to work actively on timed
systems. Indeed he never stopped working on this theme and his contributions in
timed systems were abundant and impactful, covering a large number of prob-
lems: controller synthesis for timed automata [16,62], scheduling using timed
automata (with optimality and under stochastic uncertainty) [1,52], composi-
tional timing analysis [69], control with bounded computational resources [58],
multi-criteria optimisation [30], embedded multicore [71], timed regular expres-
sions [13], real-time temporal logic, monitoring, timed pattern matching [20]. It
is important to emphasise that his results on Signal Temporal Logic [60] not only
successfully gained industrial acceptance but also opened new research directions
in cyber-physical systems monitoring and testing (see for example [21]).

2 Reachability Analysis

While negative decidability results hindered a direct application of the algorith-
mic verification methodology to hybrid systems with non-trivial dynamics, they
also incited the verification community with a new motivation. In a continu-
ous world, it is meaningful to seek approximate answers for non-trivial systems,
rather than insisting on exact answers which are possible only for trivial systems.
Oded set out to tackle the first obstacle: continuous systems described by dif-
ferential equations. While restricting to the problem of approximating reachable
sets for this type of dynamics, he aimed at a solution that could be extended to
hybrid systems and could be used further for problems beyond verification, in
particular for controller synthesis. Although the type of dynamics was restricted,
the goal turned out to be very ambitious because the considered class is gen-
eral, including non-linear dynamics. With his student, he developed a method
for tracking the evolution of a (general) polyhedron under continuous dynamics.
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Essentially, due to continuity of trajectories, it suffices to track the evolution of
the faces of the polyhedron. A face is pushed outward if there is a point on the
face at which the projection of the vector field on the normal of the face points
outward, and the pushing amount depends on the time step size and the maxi-
mum projection magnitude over all the points on the face. This results in a new
polyhedron for which the same procedure is applied in the next time step. This
method can be seen as a set-valued Euler integration scheme. To ensure accurate
results, the faces with a large derivative variation need to be subdivided, which
generates non-convex polyhedra. The development of this method was much
inspired by the work of Greenstreet [44] in 1996 where this idea was proposed
for two dimensional systems and reachable sets are thus polygons. Non-convex
polygons benefit from well-developed plane geometric manipulation algorithms,
unlike general dimensional non-convex polyhedra. Treating high dimensional sys-
tems was never seen as ambitious, since real-life models are rarely limited to a
few variables. It was thus necessary to choose a set representation on which
the specific operations (such as pushing, splitting) as well as the Boolean set-
theoretic operations (intersection and union, for handling discrete transitions)
can be efficiently computed. To this end, orthogonal polyhedra (which are union
of hyper-rectangles) were used [25]. The method, called “face-lifting” (see Fig. 2),
was published in the proceedings of the conference HSCC (Hybrid Systems: Com-
putation and Control) 1998 [32]. Although disappointment ensued again when
it became clear that the face-lifting technique was very computationally expen-
sive, this paper turned out to be well received by the hybrid systems community
and obtained a test-of-time award at the conference HSCC 2019, to the surprise
of the (living) co-author (and, plausibly, of the other co-author too). The rea-
son was perhaps that this paper, by stating a reachability analysis problem and
describing the ingredients necessary for designing an effective algorithm to solve
it, opened a new concrete direction for hybrid systems verification. Indeed, as
attested by the publications at the HSCC conferences, reachability analysis itself
has become a central problem.

The experience with non-linear systems made Oded and his student more
aware of the importance of exploiting the structure of the system. Together
with Eugene Asarin, they focused on linear systems, for which the reachable
set can be constructed from a finite number of trajectories via the convex hull
operations. This allowed them to obtain a second-order approximation scheme
that uses convex polyhedra to represent reachable sets [7,8]. The method was
then extended to linear systems with uncertain input using the Maximum Prin-
ciple from optimal control. These results were implemented in the tool d/dt
[11]. The extension to uncertain input was inspired by the ellipsoidal technique
of Kurzhanski [54] and the polyhedral technique of Varaiya [74], developed in
the context of uncertain systems (although these techniques worked only for
discrete-time reachable sets). Another related work was that by Chutinan and
Krogh [28], who proposed a similar polyhedral approximation for systems with
constant input. Besides the direct ordinary differential equation (ODE) formula-
tion, the reachability problem was tackled using the partial differential equation
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Fig. 2. Illustration of the face-lifting technique.

(PDE) formulation [63,64,73] and level sets were used to represent reachable
sets. While computer scientists tried to handle differential equations, control
theorists became interested in the decidability question and contributed funda-
mental results for hybrid systems with linear continuous dynamics [4,6,57].

In the quest for efficient set representations to make reachability algorithms
more scalable, Greenstreet and Mitchell extended their method to polygonal
projections [42,43]. Antoine Girard proposed zonotopes, for which computing
linear transformation and Minkowski sum can be done in an algebraic manner,
and this allows tracking the evolution of zonotopes under linear dynamics effi-
ciently, without resorting to expensive geometric computations (in particular the
convex hull operations) [39]. The algebraic manipulation was later adapted to
general convex sets represented by support functions, in the thesis work of Colas
Le Guernic, supervised by Oded and Antoine [40,41,45,46]. This thesis work
culminated in a method that could compute reachable sets for systems of hun-
dreds of dimensions. Special attention also put on performing numerical schemes
intelligently to avoid error accumulation. The representations by zonotopes and
support functions were implemented in the tool SpaceEx [38], developed by
Oded’s group under the direction of Goran Frehse. The tool quickly became one
of the most advanced tools for hybrid systems verification. The influence of the
work on zonotope-based reachability computation was attested by the HSCC
2018 test-of-time award given to Antoine’s first paper on this topic [39].

It is fair to say that using these set representations the reachability problem
for linear continuous systems is solved; however computing intersection of their
unions remains (until now) a big challenge. This is a reason why the state-of-
the-art reachability analysis techniques can handle purely continuous systems
of up to billions of dimensions [19] but are still limited when handling hybrid
systems (especially with a large number of discrete transitions).
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3 Non-linear Systems and Hybrid Systems Biology

The research directions in systems biology that Oded pursued involved building
and analysing dynamical system models of biological phenomena. For engineer-
ing systems, this approach is termed model-based, in the sense that a model is
developed and used to debug, since correcting a model is cheaper than fixing a
real system. Similarly, testing and exploring biological models in silico is pre-
ferred over expensive experiments. A network of interacting genes and proteins
is thinkable as an information processing system that evolves in space and time
according to fundamental laws of physics, and can thus be formally described
in mathematical terms. Therefore, intuitively speaking, the biological modelling
activity consists of discovering a dynamical model that can explain the relation
between a diagram of biological interactions and experimental data obtained by
measuring some entities in the diagram.

Whereas hybrid systems became a mathematical model widely accepted for
reasoning about interactions between discrete and analog parts of embedded
and cyber-physical systems, they also drew a lot of attention of researchers in
systems biology since they can capture phenomena of hybrid nature in molecular
biology. Oded was one of the founders of the workshop Hybrid Systems Biology.
The term “hybrid systems biology” can be understood (literatim) as a branch
of systems biology which relies on the techniques developed in the domain of
hybrid systems. In a more allegorical manner, this term expresses a view of
thinking and reasoning about biological mechanisms and processes in the spirit
of the mathematical and computational methods for specifying and analysing
behaviours of heterogenous systems with mixed discrete-continuous dynamics.
It is important to emphasise before continuing that this note focuses only on
the synergy between Oded’s reachability analysis research and his interest in
systems biology. He also approached systems biology via his research on real-
time temporal logics for specifying and testing biological hypotheses, such as [35,
66,70].

Oded created collaborations with some biologists (having a reciprocal inter-
est) in Grenoble, in an effort to apply hybrid systems verification technology to
biological systems, in particular the techniques that can be used to analyse in a
systematic manner quantitative models admitting uncertainty whose nature is
set-theoretic. Parameter uncertainty in biological models is uncertainty of this
type. These collaborations led to the following observation. Hybrid systems can
be used not only as a model but also to approximate complex systems by simpler
ones (which can be analysed by more efficient techniques). In addition, they can
naturally capture stiffness in continuous dynamics arising in many biological sys-
tems, which often causes instability in traditional numerical methods. However,
their use does not come for free. Indeed, even when continuous dynamics can be
efficiently handled (such as linear dynamics), discrete dynamics (which in prin-
ciple can be handled using well-developed techniques for discrete systems) may
lead to significant computation effort, as costly as that for overcoming numerical
instability. Indeed, while numerical instability can be addressed by reducing the
time step in order to adapt to fast changes of some variables, switching continu-
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ous dynamics via discrete transitions in a hybrid system may deteriorate “nice”
geometric structures of continuous reachable sets. As an example, trajectories
starting from points in a convex polyhedron can reach a transition guard at very
different times, and the accumulation of starting points for the next continuous
dynamics may form a “curved” non-convex set with complex geometry.

Taking both the drawbacks and advantages of the hybrid systems methodol-
ogy into account, Oded’s group revisited the hybridization approach developed
in [9,10]. The main idea of this approach is to decompose a non-linear vector
field into different segments corresponding to disjoint regions of the state space.
Each segment is then approximated with a simpler (such as linear) vector field.
This approach is very general and in principle can be applied to a large class
of non-linear systems. However, in practice, the price for having artificial dis-
crete transitions is often high, since the simpler approximate dynamics are used,
the larger number of segments is needed in order to assure a desired precision.
One way to avoid intersections with the boundary of two adjacent regions is
to “smoothen” the transitions without compromising the approximation qual-
ity. Furthermore, geometric properties of the dynamics should be exploited to
determine approximation domains that are as large as possible. This work shows
an interplay between ideas from geometric modelling and set-based numerical
integration, which is sketched in the following.

Given a non-linear system ẋ(t) = f(x(t)), x ∈ X ⊂ R
n where the function

f is Lipschitz. One can approximate this original system with a system: ẋ(t) =
g(x(t))+u(t), x ∈ X . The input u(·) such that ||u(·)|| ≤ µ where µ is the bound
of ||g−f ||, is added in the approximate system in order to conservatively account
for the dynamics approximation error. The construction of such an approximate
system consists of two main steps. Inside a zone of interest that contains the
current reachable set, an approximation domain and its associated approximate
vector field are computed. When the system leaves the current approximation
domain, a new domain is created. This technique was implemented using linear
interpolation over simplicial domains and multi-affine interpolation over hyper-
rectangles (the interpolants in both cases can be uniquely determined). Note
that the error in the reachable set approximation depends on the dynamics
error bound µ. It is thus important to derive tight error bounds. For systems
satisfying some smooth conditions, [33] proved for each simplex an error bound
that depends on the maximal curvature of f in the simplex and on the radius of
the smallest ball that contains the simplex. This error bound is tighter than the
error bound used in [10] which depends on the maximal simplex edge length. In
addition, one can obtain a larger simplex by stretching an equilateral simplex
along a direction in which the curvature is small. This can be done by mapping
the simplices to an “isotropic” space where the curvature bounds are isotropic.
An illustration of this transformation is depicted in Fig. 3, where the application
of the mapping to an ellipsoid produces a circle. When applying the mapping to
the triangle inscribed the ellipsoid shown on the left, the result is a more regular
triangle shown on the right. This mapping can be used further to define optimal
shape and orientation of the simplicial domains. This dynamic hybridization
based on dynamics curvature allowed treating a number of biological systems
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with up to 12 continuous variables [31]. This constituted a considerable progress
since the original hybridization approach was limited to systems with only 3,
4 continuous variables. On the other hand, most of the existing state-of-the-
art techniques for non-linear systems worked efficiently only for low-dimensional
systems.

T

Fig. 3. Illustration of the transformation to the isotropic space.

In the following, we illustrate the results obtained by this approach for a
model describing the loosening of the extra-cellular matrix [51]. This is a cru-
cial process in angiogenesis, the sprouting of new blood vessels as a reaction
to signals that indicate the need for additional oxygen in certain tissues [51,75].
Interfering with angiogenesis is considered a promising direction for fighting can-
cer tumors by cutting their blood supply. The soluble and membrane-associated
matrix metalloproteinases are among the enzymes responsible for the proteolytic
processes that occur in the extra-cellular matrix. In [51], a network of reactions
involving the entities of interest was established, and then, from this network, a
system of ordinary differential equations was derived using mass action kinetics.
This differential equation system of 12 variables, used in our reachability anal-
ysis case study (see Table 3 of [31]), can be used to describe the proteolysis of
collagen I by matrix metalloproteinases 2 (MMP2) and membrane type 1 matrix
metalloproteinases (MT1-MMP) in the presence of the tissue inhibitor of metal-
loproteinases 2 (TIMP2). The model focuses on the degradation of collagen type
1 (represented by the variable c1) by two enzymes MT1-MMP and MMP2 (the
concentrations of which are represented by the variables mt1 and m2). The latter
has to be activated from its passive form M2P obtained by a chain of reactions
involving TIMP2 (the concentration of which is represented by the variable t2)
which also plays the role of an inhibitor for MT1-MMP, which leads to an over-
all complex system of interactions. The study in [51] experimentally observed a
convergence of the variables, stating from a single initial state of concentrations,
towards a nearly steady state (see Fig. 2-A in [51]). We computed reachable sets
to verify this observation for a set of initial concentrations. Figure 4 shows the
projection of the reachable set evolution on the three variables mt1, m2, and
t2. The initial set is a small set around the origin (corresponding to the cube
in the figure). We observe that the variables converge towards the dense part
of the reachable set (drawn in cyan colour). This confirmed the observation of
convergence in [51].
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Fig. 4. Projection of the reachable set on the first three variables mt1, m2 and t2. The
cube in this figure is the set of initial concentrations. We can observe that the variables
converge towards the dense part of the reachable set (drawn in cyan colour), which
confirmed the experimental observation of convergence in [51] (Color figure online).

Oded once said humorously, “our computational methods are not fast enough
[to fight cancer]”, referring to his ongoing Plan Cancer project (MoDyLAM
- Dynamic modelling of iron-linked redox perturbations in Acute Myeloid
Leukemia). His adventure in hybrid systems biology was not long, but he already
paved a research path for us to follow.

4 Conclusion

This note was written in memoriam Oded Maler, who made groundbreaking
contributions in the hybrid systems research. His creativity, courage, sharp
mind and passion made him a role model to many of his colleagues. To cel-
ebrate Oded’s scientific legacy, nothing would be more cheerful than a list1

of major hybrid verification tools which have been developed over the last
two decades: Coho [43], CheckMate [28], HyperTech [47], MPT [56], HJB
toolbox [64], ET Toolbox [55], KeYmaera [65], SpaceEx [38], Adriane [29],
HySon [23], NLToolbox [72], Flow∗ [27], CORA [2], dReach [53], C2E2 [37],
AVERIST [67], HyReach [50], Sapo [36], HyLaa [18], and JuliaReach [22].

Acknowledgements. This note would not exist without the author’s numerous
exchanges with Oded Maler and Eugene Asarin over the last two decades. Many details
about Oded’s early career come from his Habilitation thesis and his various scientific
writings.

1 Which may be non-exhaustive.
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