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Preface

This volume contains the papers presented at HSB 2019, the 6th International Work-
shop on Hybrid Systems Biology, held during April 6–7, 2019, at the Faculty of
Mathematics and Physics, Charles University, Prague, Czech Republic. HSB 2019 was
co-located with ETAPS 2019, the European Joint Conferences on Theory and Practice
of Software, including five prime conferences and 17 satellite workshops.

HSB provides a unique forum for discussion on dynamical models in biology, with
an emphasis on both hybrid systems (in the classic sense, i.e., mixed
continuous/discrete/stochastic systems) and hybrid approaches that combine modelling,
analysis, algorithmic and experimental techniques from different areas. HSB 2019
strengthened the focus on the design and analysis of artificial biochemical systems
(e.g., engineered bacteria or molecular machines) and of medical cyber-physical
systems. Hybrid systems and approaches are essential to the understanding of complex
living systems, which are characterized by stochasticity and heterogeneous
spatiotemporal scales. The complexity of such systems makes their formal analysis
challenging, and even their simulations are often impractical, calling for appropriate
model abstractions and scalable analysis methods. To overcome these challenges, HSB
aims at bringing together researchers from different disciplines and at applying these
methods to the study of structure, dynamics, and control mechanisms of living systems
ranging from genetic regulatory networks to metabolic networks.

HSB 2019 offered a dense two-day program, including three invited talks, regular
single-track sessions, and a poster session. Moreover, HSB 2019 had the honor of
including a special session dedicated to the memory of Oded Maler, a very much
missed member of HSB’s Steering Committee and one of the founders of the
workshop. The session celebrated his life and scientific contributions with three invited
talks by some of his closest collaborators. All contributed talks were of high quality,
and the participation was lively, interactive, and stimulating. The workshop hosted
about 30 registered participants and registered a constant inflow of attendees from other
co-located events at ETAPS 2019.

A highlight of HSB 2019 was the three invited talks and three talks dedicated to the
memory of Oded Maler. The speakers were selected in view of the breadth and
interdisciplinarity of the workshop: Marta Kwiatkowska (University of Oxford, UK, on
formal methods for behavioral prediction), Michela Chiappalone (Istituto Italiano di
Tecnologia, Italy, on closed-loop neuro-hybrid interfaces), Igor Schreiber (University
of Chemistry and Technology of Prague, Czech Republic on stability analysis of
reaction networks), Thao Dang (CNRS/VERIMAG, France, on research odyssey of
Oded Maler), Alexandre Donzé (Decyphir SAS, France, on formal barbaric systems
biology), and Eugene Asarin (IRIF, University Paris Diderot and CNRS, France, on
timed patterns and their monitoring).

HSB 2019 had 40 Program Committee (PC) members who provided detailed
reviews of the submitted contributions, out of which nine articles were accepted for



presentation during the single-track sessions and appear as full or short papers in these
proceedings. To ensure the highest quality for this volume, five submissions underwent
a second round of review or a shepherding process before inclusion in the proceedings.
The proceedings also include three invited papers from our invited speakers.

As the program co-chairs, we are extremely grateful to the PC members and the
external reviewers for their work and the valuable feedback they provided to the
authors. We thank all the members of the HSB Steering Committee, for their advice on
organizing and running the conference. Our special thanks go to David Šafránek for
helping us with the organization and for securing our sponsors. We are pleased to
acknowledge the financial support kindly received from the National Center for
Systems Biology of the Czech Republic (C4SYS) and the Faculty of Information
Technology, Brno University of Technology, Czech Republic. We acknowledge the
support of the EasyChair conference system during the reviewing process and the
production of these proceedings. We also thank Springer for publishing the HSB
proceedings in its Lecture Notes in Bioinformatics series. Finally, we would like to
thank all the participants of the conference. It was the quality of their presentations and
their contribution to the discussions that made the meeting a scientific success.

June 2019 Milan Češka
Nicola Paoletti
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Modelling and Personalisation Techniques
for Behavioural Prediction and Emotion

Recognition

Marta Kwiatkowska

Department of Computer Science, University of Oxford, UK

Abstract. The prevalence of wearable sensing devices and smartphones is
resulting in a multitude of physiological data being collected, for example heart
rate, gait and eye movement. Driven by applications in health and behavioural
monitoring, as well as affective computing, there is a growing demand for
computational models that are able to accurately predict multimodal features in a
variety of contexts. While machine learning models excel at identifying features
in physiological signals, they lack reliability guarantees and need to be adapted
to the user. This talk will give an overview of modelling and personalisation
techniques developed as part of the AffecTech project1 and their applications in
the context of biometric security and emotion recognition. Future challenges in
this important field will also be discussed.

1 http://www.cs.ox.ac.uk/projects/AFFECTech/index.html.

http://www.cs.ox.ac.uk/projects/AFFECTech/index.html


Timed Patterns: From Definition to Matching
and Monitoring

A Survey in Memoriam Oded Maler

Eugene Asarin

IRIF, Université de Paris and CNRS, Paris, France

Abstract. At timed level of abstraction, system behaviors are considered as
sequences of discrete events (from a finite alphabet) and real-valued time lapses
between them; or as discrete-valued signals over continuous time. Initiated by
works of Alur & Dill and aiming modeling and verification of real-time
sequences, this approach became quite popular and was successfully extended to
other domains. As usual in verification, sets of timed behaviors were defined by
(timed) automata, and by logical formulas.

In mid 90s, Oded Maler initiated a search for simpler, suitable for engineers,
and still powerful formalism to describe sets of timed behaviors. After over-
coming many technical obstacles, timed regular expressions were born, and their
equivalence to timed automata proven. In follow-up works, alternative for-
malisms have been proposed by several researchers.

In 2010s, Oded Maler and his group came back to timed regular expressions,
with a new optics of pattern-matching: given a (large) record of timed behavior
of a system, and a timed regular expression describing patterns of interest (e.g.
faulty sequences), detect all the occurrences of the pattern in the record. Most of
this research is automata-free: pattern-matching algorithms work directly on
timed behaviors. Efficient algorithms have been developed and implemented,
allowing off-line and on-line pattern-matching, and using several formalisms for
pattern specification, and applications to monitoring prospected.

In this talk I will present the timed view on system behaviors, and the two
periods of timed regular expressions: theoretical study on expressiveness from
1990s and practice-oriented works on pattern-matching and monitoring from
2010s. No special knowledge is required from the audience. This will also be a
memorial talk, on Oded’s philosophical, creative and personal style of choosing
research topics, leading research, and supervising students and co-workers.



From Sensitive to Formal Barbaric
Systems Biology

Alexandre Donzé

Decyphir SAS, France

Abstract. Oded Maler often characterized as “barbaric” some of his approaches
to solving complex problems. By this, he meant the modern meaning, i.e.,
“unsophisticated”, for example when he suggested to compute bunch of simu-
lations to approximate reachable sets of dynamical systems - at a time when the
trend was to fill pages of fancy theorems in advanced computational geometry or
functional analysis. However, it is fair to say that he was in effect a true Bar-
barian but in the antique sense: Ancient Greeks called “Barbarians” those who
were not Greek themselves. As a matter of fact, Oded as a scientist knew no
boundaries: he wandered freely between theoretical computer science and
applied mathematics, control theory, logics, Physics and Biology, etc. Always
with humility, humor, and avid curiosity about local customs and knowledge he
would bring in his own extended scientific baggage with genuine intention and
efforts to mix in and contribute to the fields he was exploring.

Systems Biology was a natural target of these explorations. There he found
problems related to hybrid dynamical systems, another cross-field he contributed
to pioneer. Together with various collaborators including biologists, both from
wet labs and theoreticians, and myself, we experimented with and improved
techniques such as systematic simulation [1, 3] and the monitoring of signal
temporal logic [2, 4, 5], an extension of a logic used in program verification
adapted to continuous and real-world processes, to help in particular with the
difficult problem of parameter uncertainty in the modeling of living systems.
I will try to recount some results we obtained and the avenues of research that
this work from Oded’s legacy helped create and remain open today.
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A Multimodular System to Study the Impact
of a Focal Lesion in Neuronal Cell Cultures

Alberto Averna1, Marta Carè1, Stefano Buccelli1,2,3,
Marianna Semprini1, Francesco Difato4,

and Michela Chiappalone1(&)

1 Rehab Technologies IIT-INAIL Lab, Istituto Italiano di Tecnologia,
Via Morego 30, 16163 Genoa, Italy

michela.chiappalone@iit.it
2 Department of Informatics, Bioengineering, Robotics,
System Engineering (DIBRIS), University of Genova,

Via all’Opera Pia 13, 16145 Genoa, Italy
3 Department of Neuroscience, Rehabilitation, Ophthalmology,

Genetics and Maternal and Child Science (DINOGMI), University of Genova,
L.go P. Daneo 3, 16132 Genoa, Italy

4 Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia,
Via Morego 30, 16163 Genoa, Italy

Abstract. Characterizing neuronal networks activity and their dynamical
changes due to endogenous and exogenous causes is a key issue of computa-
tional neuroscience and constitutes a fundamental contribution towards the
development of innovative intervention strategies in case of brain damage. We
address this challenge by making use of a multimodular system able to confine
the growth of cells on substrate-embedded microelectrode arrays to investigate
the interactions between networks of neurons. We observed their spontaneous
and electrically induced network activity before and after a laser cut discon-
necting one of the modules from all the others. We found that laser dissection
induced de-synchronized activity among different modules during spontaneous
activity, and prevented the propagation of evoked responses among modules
during electrical stimulation. This reproducible experimental model constitutes a
test-bed for the design and development of innovative computational tools for
characterizing neural damage, and of novel neuro-prostheses aimed at restoring
lost neuronal functionality between distinct brain areas.

Keywords: Cell cultures � Lesion � MEA � Modularity � Spikes �
Synchronization

1 Introduction

The brain is one of the most fascinating and complex organisms of the known Uni-
verse. Even if enormous advances have been done in the last decades, also thanks to the
convergence of different disciplines into the study of the brain, we still know very little
about how the brain works and we are not yet able to design artificial systems emu-
lating its functionality. One of its most peculiar property is the capability to exploit

© Springer Nature Switzerland AG 2019
M. Češka and N. Paoletti (Eds.): HSB 2019, LNBI 11705, pp. 3–15, 2019.
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plasticity to allow performing cognitive or motor task even when there is a damage.
This is because the brain is redundant and intrinsically modular, being composed of
local networks that are embedded in networks of networks [1], sparsely connected to
each other [2]: the connections can reorganize bypassing the damage or reinforcing
weak connections [3, 4].

Indeed, understanding the intricacy of brain signals, what is the effect of a damage
on signal generation [5], and how this impacts on the electrophysiological behavior of
brain networks and on their (re)-organization, has a twofold importance: from one side
it is necessary in order to shape suitable intervention strategies [6] based on novel
bioelectronic devices [3]; from the other side it will help in designing novel ‘neuro-
biohybrid’ technologies [7] which can exploit the brain self-repair capability in case of
a damage. To reach the above goals it is fundamental to deeply characterize and
understand how a damage affects the electrophysiological behavior of a network.

Within this framework, simplified in vitro models of cell assemblies can provide
useful insights to investigate the interactions between networks of neurons, both in
physiological and in pathological conditions. In vitro systems, by overcoming the
limits of in vivo models imposed by the complexity of the surrounding networks and
by the consequent low level of reproducibility, can thus serve as test bed for innovative
solutions ranging from neuropharmacological to electroceutical applications [8–10].
Moreover, in silico models, either software or hardware, of the electrophysiological
behavior of such reduced networks can be used to replace neuronal functionalities in
the framework of novel neuroprosthetic devices [11, 12].

In the last decade, different groups have started to realize in vitro modular structures
[13–16]. In particular, (multi) modular cell cultures plated over Micro Electrode Arrays
(MEAs) represent an interesting bio-artificial experimental model for studying neuronal
networks at the mesoscale level for different reasons. First, cell cultures on MEA can be
manipulated in several ways (ranging from pharmacological to electrical, optical and
other kinds of perturbations) and can survive longer with respect to other preparations
[17]. Second, recording frommultiple sites is crucial for investigating neural information
processing, in case of neural networks and in particular when dealing with multimodular
cell assemblies. Third, the high temporal resolution of MEAs allow characterizing the
neuronal activity at a time scale that is critical to understand neuronal dynamics.

In the present work, we realized a multimodular structure able to reproduce the
modular architecture of different interconnected subpopulations. We then characterized
the electrophysiological activity of both spontaneous and electrically evoked activity in
the obtained cell cultures confined in 3 or 4 modules. Neuronal modules, during
development, projected to each other and therefore self-organized themselves in a
network with intricate functional and anatomical connectivity to mimic at least a part of
the modular properties of the neuronal tissue of origin. We then used a custom-made
laser setup [18] able to produce a focal lesion between modules, thus affecting the
anatomical connectivity among the neuronal modules. We thus observed the correla-
tion of spike trains between modules and their changes due to the lesion.

This work lays the foundation for understanding the dynamical changes occurring
after a brain lesion, a critical step towards the development of novel strategies to
overcome the loss of communication between cell assemblies, with applications on
both in vivo systems and in silico devices.

4 A. Averna et al.



2 Methods

2.1 Ethics Statement

We obtained primary neuronal cultures from rat embryos at gestational day E18
(pregnant Sprague-Dawley female rats were delivered by Charles River Laboratories,
Lecco, Italy). When performing the experiments, we minimized the number of sacri-
ficed rats and the potential for nociceptor activation and pain-like sensations and we
respected the three R (replacement, reduction and refinement) principle in accordance
with the guidelines established by the European Community Council (Directive
2010/63/EU of September 22nd, 2010). Rat housing was in accordance with institu-
tional guidelines and with the in force legislation of Italy (legislation N°116 of 1992).
The procedures for preparing neuronal cultures are described in detail in previous
studies [9, 19].

2.2 PDMS Structures for Multimodular Network Confinement

Through soft lithography, we realized a polymeric structure in polydimethylsiloxane
(PDMS), composed of different modules, in order to provide the physical confinement
of neuronal cultures [20, 21]. The PDMS mask was positioned on the MEA substrate
before the coating procedure, performed by putting a 100-ll drop of laminin and poly-
D-lysine solution on the mask and leaving it in the vacuum chamber for 20 min. The
mask was then removed and cells were plated afterwards. MEAs (Multi Channel
Systems, Reutlingen, Germany) are available in different geometrical layouts: “4Q”,
where 60 electrodes are organized in 4 separate quadrants, “8 � 8”, where electrodes
are placed according to a square grid; “6 � 10”, where electrodes are placed according
to a rectangular grid. The nominal final cell concentration was around 500 cells/ll
(*100 cells per network module).

2.3 Laser Ablation Setup

The entire optical system was described in a previous work [18]. Briefly, the laser
dissection source consisted in a pulsed sub-nanosecond UV Nd:YAG laser at 355 nm
(PNV-001525-040, PowerChip nano-Pulse UV laser – Teem Photonics), whose output
was modulated with the aid of an acousto-optical modulator (MQ110-A3-UV, 355 nm
fused silica, AA-Opto-electronic) driven by a custom low impedance linear driver. The
laser dissector was integrated in a modified upright microscope (BX51 – Olympus)
equipped with a 20x, 0.5 NA water dipping objective. A custom-made software
interface based on LabVIEW (National Instruments) controlled the UV laser intensity,
pulse repetition rate, and the number of pulses delivered to the sample. Synchronization
signals between devices were sent through a D/A board (PCI-6529, 24 bit, 4 channels,
204.8 kSamples/second, National Instruments), in order to synchronize CCD image
acquisition (Andor DU-897D-C00), sample positioning trough motorized stage
(assembled 3-axis linear stages, M-126.CG1, Physics-Instruments), and the trigger of
UV laser pulses.

A Multimodular System to Study the Impact of a Focal Lesion 5



2.4 Recording Set-Up and Experimental Protocol

The activity of all cultures was recorded by means of the MEA60 System (MCS). The
signal from each channel was sampled at 25 kHz and amplified using a Multichannel
System amplifier with a bandwidth of 1 Hz–3 kHz. Each recorded channel was
acquired through the data acquisition card and on-line monitored through MC_Rack
software (MCS). A commercial stimulator (MCS) was integrated in the system to
deliver electrical pulses through one of the electrodes of the MEA. Figure 1A presents
a scheme of the experimental setup.

To reduce thermal stress of the cells during the experiment, MEAs were kept at
37 °C by means of a controlled thermostat (MCS) and covered by PDMS caps to avoid
evaporation and prevent changes in osmolarity.

We performed experiments on neocortical modular networks, recorded between 20
and 25 Days In Vitro (DIVs). The experimental dataset consisted of 8 modular net-
works (Fig. 1B) consisted of 5 consecutive phases:

Fig. 1. Setup and protocol description. (A) Schematic description of the setup. A personal
computer equipped with MC-Card (Multichannel System, MCS) records the activity from the
MEA 1060 Amplifier system. A commercial stimulator (STG 4002, MCS) delivered open-loop
regular stimulation to the MEA amplifier. (B) Schematic of the experimental protocol, consisting
of 60 min of basal (spontaneous) activity followed by 5 min of stimulation delivered to one
electrode. Stimulation was delivered to different electrodes to test the propagation of the signal
across modules. One of the clusters was then isolated by means of a laser cut. Following the laser
ablation, the protocol was repeated as before cut. (C) Optical micrographs depicting a corner of a
modular culture before (left) and after (right) laser cut.

6 A. Averna et al.



(i) ‘Basal1’: one-hour recording of spontaneous activity;
(ii) ‘Stim1’: stimulation session I, which consists of serially stimulating at least two

electrodes per cluster using a train of 50 positive then- negative pulses (1.5 V
peak-to-peak, duration 500 ls, duty cycle 50%) at 0.2 Hz;

(iii) ‘Cut’: laser ablation of inter-cluster neural connections, whose aim is to isolate a
cluster which is physically and functionally connected to at least another one
(Fig. 1C), note that in control experiments no laser ablation was performed;

(iv) ‘Basal2’: one-hour recording of spontaneous activity after performing the lesion;
(v) ‘Stim2’: stimulation session II, from the same electrodes of phase ii.

Two control experiments underwent the same protocol, but in phase (iii) the laser setup
was turned off (i.e. the ‘Cut’ phase was not present).

2.5 Data Analysis and Statistics

Raw data were bandpass-filtered in the Multi-Unit Activity - MUA (i.e. spikes) data
band (*300 Hz to 3 kHz) and processed using custom MATLAB (The Mathworks,
Natick, MA, USA) scripts. A custom offline spike detection algorithm, based on
Precise Timing Spike Detection, was used to discriminate spikes [22]. For detecting
bursting activity, we used a custom Burst Detection algorithm, according to which
bursts were identified as sequences of at least 5 consecutive spikes spaced less than a
100 ms time threshold [23].

Once spikes and bursts were detected, we computed the following electrophysio-
logical parameters:

• Mean Firing Rate, MFR (mean number of spikes over an interval of time [spike/s]);
• Mean Bursting Rate, MBR (mean number of bursts over an interval of time

[burst/minute]);
• Burst Duration (duration of burst in [ms])
• Burstiness Index (burstiness level of the network, providing a normalized value

between 0 - no bursts - and 1 - burst dominated [9, 24]).

To characterize the effect of the lesion induced by the laser ablation, we computed the
ratios of MFR, MBR and Burst Duration between their values calculated post and pre
lesion.

Furthermore, we evaluated the level of pairwise correlation between the spike
trains, by exploiting the Cross-Correlation method implemented in SpyCode, a custom
Matlab-based software developed in our lab [25]. We measured correlations within
100 ms time windows, using 1 ms bins and we normalized the Cross-Correlation peaks
found in the post lesion phase over the average value of correlation found before the
lesion.

In order to investigate the impact of the lesion on the evoked activity, we calculated
the Post-Stimulus Time Histograms (PSTH) of stimulus-associated action potentials
detected from each electrode (1 ms bins, normalized over the total number of stimu-
lation pulses) [26]. The area under the normalized PSTH curve was used to quantify the
total amount of stimulation-evoked neural activity during each stimulation phase.
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The normal distribution of experimental data was assessed using the Kolmogorov-
Smirnov normality test. Statistical comparisons were performed with Wilcoxon signed-
rank test, with p-values <0.05 were considered as significant.

3 Results

Typical multimodular cultures were characterized by subpopulations of neurons
interconnected by neurites allowing transfer of information from one module to another
(Fig. 1C, left and Fig. 2A, left). The goal of the present study was to characterize both
the spontaneous and evoked dynamics of multimodular networks and to subsequently
evaluate the electrophysiological effect of the laser ablation aimed to isolate one of the
neuronal module (Fig. 1C, right and Fig. 2B, left).

3.1 Laser Cut Affects the Spontaneous Activity of a Neuronal Network

Spiking activity of multimodular networks appeared well synchronous for the entire
duration of the experiment in control condition, as it can be qualitatively appreciated by
looking at the raster plot of Fig. 2A. On the other hand, the laser dissection of a cluster
induced a strong desynchronization of spiking activity between the isolated cluster and
all the others (Fig. 2B).

Fig. 2. Network activity in two representative experiments. (A) Control experiment. On the left
MEA modules are graphically depicted, black dots representing the channels, where the active
ones have background colored according to the module they belong to. In the center, a raster plot
of the activity recorded during the Basal 1 phase is colored according to modules as on the left. In
the right a raster plot of the activity recorded during the Basal 2 phase is colored according to
modules as on the left. (B) Same as in A, for experiments with laser ablation (i.e. between Basal 1
and Basal 2, a laser ablation was performed - Cut phase). (Color figure online)
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As a consequence of the lesion, we also observed a significant global decrease in
the network mean firing rate, both inside the isolated cluster (Isolated, p < 0.05), and in
all the other clusters (Others, p < 0.001) that were previously connected to the isolated
one (Wilcoxon signed-rank test, Fig. 3A). No changes of firing rate were found in the

Fig. 3. Changes in spontaneous activity. (A) MFR variation in control experiments (CTRL) and
in modules belonging to experiments with laser ablation (Isolated and Others). (B) Cross-
Correlation pre and post lesion calculated in the same cluster (Intra) and among the isolated
cluster electrodes and the other clusters (Inter) for the experiments with laser ablation.
(C) Normalized cross-correlations pre and post lesion both for the lesioned (Lesion) and control
(CTRL) experiments. **p < 0.01, *p < 0.05 Wilcoxon signed-rank test.
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control condition (Fig. 3A). Moreover, the analysis of the pairwise correlation indi-
cated a stable level of synchronicity for the activity of the electrodes belonging to the
same cluster (Intra, Fig. 3B, left), while a dramatic drop was observed between the
electrodes of the isolated cluster and all the other ones (Inter, Fig. 3B, right).

Figure 3C underlines this effect by showing the Cross-Correlation peaks normal-
ized over the average value of correlation found before the laser dissection, calculated
both in the same cluster (Intra) and among the isolated cluster electrodes and the other
clusters (Inter). While correlation remained rather stable in the control and in the
lesioned intra condition, it significantly dropped in the lesioned intra condition
(p < 0.001, Wilcoxon signed-rank test).

As shown in Fig. 4, laser dissection also influenced the bursting activity (Fig. 4A).
We found that, after ablation, the tendency of both the rate (Fig. 4B) and the duration
(Fig. 4C) of the detected bursting activity was to decrease for all the recorded clusters
in the lesioned condition, while they remained stable for the control condition (values
close to 1). Moreover the burst duration significantly decreased after ablation
(p < 0.001, Wilcoxon signed-rank test). The level of burstiness of the network showed
a tendency to increase within the isolated cluster after the lesion (Fig. 4D).

Fig. 4. Comparison of spontaneous and evoked bursting activity of healthy and damaged
modular cultures. (A) 1.25-s raster plot of spontaneous activity of a channel before lesion. The
red lines correspond to the detected bursting activity, the red bar above them represents the Burst
Duration, and the grey lines corresponds to isolated spiking activity. (B) Variation of Burst Rate
pre and post lesion either within the isolated cluster (Isolated) or in the other ones (Others) and in
the no-lesioned ones (CTRL). (C) Comparison between the statistical distributions of the ratio
between normalized Burst Durations calculated pre and post lesion for the isolated cluster
(Isolated), the other clusters (Others) and for the no-lesioned (CTRL) condition. (D) Burstiness
Index calculated pre and post lesion in all condition. **p < 0.01, Wilcoxon signed-rank test.
(Color figure online)
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3.2 Laser Dissection Confines Evoked Activity

We also observed the effect of electrical stimulation in the different conditions. Before
performing the lesion, electrical stimulation (Fig. 5A) was able to evoke activity both
within the cluster hosting the stimulation channel and in the connected modules
(Fig. 5B). After laser dissection, the evoked activity remained confined within the
isolated cluster without spreading towards the other ones (Fig. 5C).

Fig. 5. Network response to stimulation. (A) Graphical representation of the stimulation site
over the MEA. Stimulation was a sequence of 50 stimuli delivered at 0.2 Hz through an electrode
in the top left module before lesion. (B) Stimulation effects in the pre lesion condition. Each
graph represents the 60-electrodes MEA response at different time points with respect to the
stimulus: ranging from −10 ms before the stimulation to 30 ms after the stimulus onset. Each
pixel represents, in grey level, the probability to detect a spike in 1 ms bin. Around the stimulus
onset, the spike detection algorithm identifies artifacts on all electrodes that were then blanked to
avoid false positive detections. Stimulation site is highlighted in red. (C) Stimulation effects in
the post lesion condition. Same as in A, but after lesion. (Color figure online)
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We quantified this effect in terms of PSTH area variation (Fig. 6). We observed a
significant (Wilcoxon signed-rank test, p < 0.001) global decrease of PSTH Area after
the laser cut in both local and distal responses (Fig. 6B): since lesion was aimed at
reducing the amount of connections among clusters, responses of other clusters resulted
to be more affected than that the isolated cluster. Single channel PSTH variation are
highlighted in Fig. 6C.

Fig. 6. Impact of lesion on PSTH. (A) Graphical representation of MEA modules. (B) Ratio
between normalized PSTH Areas calculated pre and post lesion for the isolated cluster (Isolated),
the other clusters (Others) in the lesioned condition, and for the no-lesioned condition (CTRL).
(C) Post-stimulus time histograms (PSTH) obtained when stimulating a channel belonging to
either the isolated cluster (left) or one channel from the other clusters (right). The electrodes
labelled in blue belong to the isolated cluster, while the red boxes indicate the stimulated channel.
Black curves report the evoked activity before the lesion, while the red ones refer to the evoked
activity after lesion. **p < 0.01, *p < 0.05 Wilcoxon signed-rank test. (Color figure online)
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4 Discussion

Despite their simplicity, multimodular cell cultures are a very useful tool to manipulate
the neuronal networks dynamics. Modular networks were recently developed to impose
a predefined directionality in functional information transfer between neighboring
nodes [14]. A modular preparation was also recently used to prove the importance of
the modular organization on dynamical richness in cortical networks [16].

In this work, we characterized the electrophysiological behavior of multimodular
networks coupled to MEAs, devices able to both record and stimulate the neuronal
activity of the neuronal cells sitting on the surface of the planar electrodes. Thanks to
this system, we were able to show that selective laser dissection of interconnections
among neural assemblies affected both spontaneous and evoked activity of multi-
modular networks, by inducing de-synchronization between the different modules
during spontaneous activity, and preventing propagation of evoked responses among
modules. The activity remained confined to the isolated cluster exhibiting the same
level of synchronization as before the lesion. Moreover, the burstiness level showed a
tendency to increase after the lesion, suggesting that the lack of incoming/outcoming
connections further promoted the appearance of network-wide events. This is in line
with recent findings related to the concept of ‘dynamical richness’ and ‘network
complexity’ [16, 27], according to which interconnected subpopulation of neurons
show a richer dynamics than single isolated clusters of cells.

Controlling the parameters of network information and studying the effect of a
lesion can have a disruptive impact both in the neuroscience and in the computational
neuroscience field. One of the open questions in neuroscience concerns our ability to
decode the electrophysiological patterns of network activity [28]. The use of engi-
neered neuronal networks can be the key to further investigate the neural code.
Moreover, computational neuroscience can benefit from studies like ours in which
simple and controllable biological networks are involved, to better tune the computa-
tional models that aims at mimicking the electrophysiological activity of the brain [29].
This kind of studies also opens up new avenues towards ‘wetware’ based technologies
which can be employed in a synergistic way with pure silicon-based systems to truly
emulate brain’s activity and reproduce intelligent behaviors [30].

In the coming years it will be increasingly necessary to take advantage of the
complementary strengths of biological and computational studies to face the increas-
ingly complex challenges related to study of the brain. All this will then promote
interesting opportunities for innovative technologies to treat brain-related disabilities or
deriving breakthrough ‘neuro-computational’ methodologies.
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Abstract. In this note we present some influential contributions of
Oded Maler in hybrid systems research, with a focus on his pioneer-
ing results in reachability analysis and applications to systems biology.
We also give a brief discussion of the evolution of the reachability com-
putation techniques which have greatly progressed in recent years. This
discussion is not intended to include an exhaustive survey of the exist-
ing results (The reader is referred to the recent proceedings of the con-
ferences Hybrid Systems: Computation and Control.) but to show the
strong impact of his foundational work.

1 Modelling and Decidability Results

The years 80s witnessed a growing interest in timed systems that combine dis-
crete models with metric time, in order to specify behaviours of reactive sys-
tems not only qualitatively but also quantitatively. This interest, which remains
vibrant today, led to the development of a variety of formal models and logics.
Timed automata [5], introduced together with a verification algorithm in the
early 90s by Rajeev Alur and David Dill, have been undoubtedly the most pop-
ular formalism. They are used in many successful tools, such as UPPAAL [34],
for specifying and verifying real-time systems. In the 80s, Oded was a PhD
student at Weizmann Institute of Science, working on his thesis titled “Finite
Automata: Infinite Behavior, Learnability and Decomposition”, under the super-
vision of Amir Pnueli. His advisor, winner of the Turing award in 1996 for his
work on temporal logics, was part of the timed systems movement. He proposed
a model, called timed transition system, and versions of real-time temporal log-
ics [49]. This activity of his advisor certainly had a lot of impact on Oded who
was already interested in the physical world outside computers and programs. He
discovered a paper by R. Brooks from MIT AI lab which proposed a “behaviour-
based” approach to robotic systems integrating control programs, sensors, actu-
ators and timers. This prompted him to think how one can verify that such
systems behave correctly in a given environment. Together with Amir Pnueli, he
wrote a proposal titled “Systematic Development of Robots”. This idea perhaps
sounded too avant-garde at that time, partly because of the inter-cultural gap
between computer scientists and control theorists. In addition, the verification
c© Springer Nature Switzerland AG 2019
M. Češka and N. Paoletti (Eds.): HSB 2019, LNBI 11705, pp. 16–29, 2019.
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research did not yet reach its successes in industrial applications. The proposal
did not pass and Oded moved to France to do his postdoc at IRISA (Rennes).
During his post-doc, together with Amir Pnueli and Zohar Manna, he wrote
the paper “From timed to hybrid systems” [59] which proposed a model called
phase transition systems, the first formal hybrid model coming from the verifi-
cation community. This model, which combines discrete transitions (that take
no time) and continuous dynamics specified by differential equations, can be
thought of as a precursor of the model of hybrid automata proposed a little later
in a seminal paper [3]. In parallel, various models were proposed by the control
community. These models, designed to include specific discrete phenomena aris-
ing in computer control systems (such as autonomous or controlled switchings
and jumps), are suitable for the purpose of extending the existing analytic con-
trol methods to hybrid systems. Many studies were devoted to the topology and
computational capabilities of such models. The reader is referred to the PhD
thesis of Michael S. Branicky at MIT in 1995 [26] for a thorough survey of the
hybrid models proposed in the beginning of the hybrid systems research history,
including a technical comparison and classification of these models. Many of
these models (such as, hybrid automata and switched systems) are now widely
used for verification and control purposes. These models were however too com-
plex for the verification algorithms developed by computer scientists, who still
considered differential equations outside the traditional scope of their domain.
Motivated by the success of decidability results and model-checking algorithms
for timed automata, the verification community was then more interested in
extending these results to hybrid automata with simple continuous dynamics,
such as with clocks that can be stopped, or with continuous variables having
constant or piece-wise constant derivatives [4,48]. Oded was by that time an
CNRS researcher in the laboratory VERIMAG, headed by Joseph Sifakis whose
group contributed to the development of the hybrid automaton model [3]. In this
new movement, Oded’s contributions were the decidability and undecidability
results for piecewise constant derivative systems (PCD). Such a system consists
of a polyhedral partition of the state space and in each region of the partition
the continuous variables evolve with constant derivatives. He first proved decid-
ability of such systems with 2 continuous variables (planar PCD) [61], based on
the observation that a trajectory cannot intersect itself (Jordan curve theorem),
unlike the trajectory depicted in Fig. 1. Additionally, for every trajectory, the
sequence of edges it crosses is ultimately-periodic. Therefore, one can define a
finite abstract alphabet to describe qualitative behaviours as sequences of regions
or edges. Then, Oded and his colleague Eugene Asarin proved the undecidabil-
ity of PCD in 3 and higher dimensions [12,14]. They also proved, using Zeno
paradox, how all the arithmetical hierarchy can be realized by PCD [15]. These
results and directions have a number of important technical follow-ups, among
which we can mention: a generalisation to planar differential inclusions [17],
stability of polyhedral switched systems [68], and in particular models of com-
putation [24]. Despite the recognition these theoretical results received, Oded
was disappointed because these negative decidability results seemed to imply
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Fig. 1. Illustration of an impossible situation: the depicted trajectory exits a region at
a boundary point x1 and then exits this region again at a boundary point x2, thus it
cannot intersect the boundary part between x1 and x2.

that if the verification problem for such simple systems is undecidable, there
would be no hope that one can verify real-life hybrid systems. This disappoint-
ment reflected his ambition to export the verification methodology to practical
application domains. It also made him question the appropriateness of the exact
formulation of verification problems in the context of hybrid systems. While pon-
dering upon this methodological issue, Oded continued to work actively on timed
systems. Indeed he never stopped working on this theme and his contributions in
timed systems were abundant and impactful, covering a large number of prob-
lems: controller synthesis for timed automata [16,62], scheduling using timed
automata (with optimality and under stochastic uncertainty) [1,52], composi-
tional timing analysis [69], control with bounded computational resources [58],
multi-criteria optimisation [30], embedded multicore [71], timed regular expres-
sions [13], real-time temporal logic, monitoring, timed pattern matching [20]. It
is important to emphasise that his results on Signal Temporal Logic [60] not only
successfully gained industrial acceptance but also opened new research directions
in cyber-physical systems monitoring and testing (see for example [21]).

2 Reachability Analysis

While negative decidability results hindered a direct application of the algorith-
mic verification methodology to hybrid systems with non-trivial dynamics, they
also incited the verification community with a new motivation. In a continu-
ous world, it is meaningful to seek approximate answers for non-trivial systems,
rather than insisting on exact answers which are possible only for trivial systems.
Oded set out to tackle the first obstacle: continuous systems described by dif-
ferential equations. While restricting to the problem of approximating reachable
sets for this type of dynamics, he aimed at a solution that could be extended to
hybrid systems and could be used further for problems beyond verification, in
particular for controller synthesis. Although the type of dynamics was restricted,
the goal turned out to be very ambitious because the considered class is gen-
eral, including non-linear dynamics. With his student, he developed a method
for tracking the evolution of a (general) polyhedron under continuous dynamics.
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Essentially, due to continuity of trajectories, it suffices to track the evolution of
the faces of the polyhedron. A face is pushed outward if there is a point on the
face at which the projection of the vector field on the normal of the face points
outward, and the pushing amount depends on the time step size and the maxi-
mum projection magnitude over all the points on the face. This results in a new
polyhedron for which the same procedure is applied in the next time step. This
method can be seen as a set-valued Euler integration scheme. To ensure accurate
results, the faces with a large derivative variation need to be subdivided, which
generates non-convex polyhedra. The development of this method was much
inspired by the work of Greenstreet [44] in 1996 where this idea was proposed
for two dimensional systems and reachable sets are thus polygons. Non-convex
polygons benefit from well-developed plane geometric manipulation algorithms,
unlike general dimensional non-convex polyhedra. Treating high dimensional sys-
tems was never seen as ambitious, since real-life models are rarely limited to a
few variables. It was thus necessary to choose a set representation on which
the specific operations (such as pushing, splitting) as well as the Boolean set-
theoretic operations (intersection and union, for handling discrete transitions)
can be efficiently computed. To this end, orthogonal polyhedra (which are union
of hyper-rectangles) were used [25]. The method, called “face-lifting” (see Fig. 2),
was published in the proceedings of the conference HSCC (Hybrid Systems: Com-
putation and Control) 1998 [32]. Although disappointment ensued again when
it became clear that the face-lifting technique was very computationally expen-
sive, this paper turned out to be well received by the hybrid systems community
and obtained a test-of-time award at the conference HSCC 2019, to the surprise
of the (living) co-author (and, plausibly, of the other co-author too). The rea-
son was perhaps that this paper, by stating a reachability analysis problem and
describing the ingredients necessary for designing an effective algorithm to solve
it, opened a new concrete direction for hybrid systems verification. Indeed, as
attested by the publications at the HSCC conferences, reachability analysis itself
has become a central problem.

The experience with non-linear systems made Oded and his student more
aware of the importance of exploiting the structure of the system. Together
with Eugene Asarin, they focused on linear systems, for which the reachable
set can be constructed from a finite number of trajectories via the convex hull
operations. This allowed them to obtain a second-order approximation scheme
that uses convex polyhedra to represent reachable sets [7,8]. The method was
then extended to linear systems with uncertain input using the Maximum Prin-
ciple from optimal control. These results were implemented in the tool d/dt
[11]. The extension to uncertain input was inspired by the ellipsoidal technique
of Kurzhanski [54] and the polyhedral technique of Varaiya [74], developed in
the context of uncertain systems (although these techniques worked only for
discrete-time reachable sets). Another related work was that by Chutinan and
Krogh [28], who proposed a similar polyhedral approximation for systems with
constant input. Besides the direct ordinary differential equation (ODE) formula-
tion, the reachability problem was tackled using the partial differential equation
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Fig. 2. Illustration of the face-lifting technique.

(PDE) formulation [63,64,73] and level sets were used to represent reachable
sets. While computer scientists tried to handle differential equations, control
theorists became interested in the decidability question and contributed funda-
mental results for hybrid systems with linear continuous dynamics [4,6,57].

In the quest for efficient set representations to make reachability algorithms
more scalable, Greenstreet and Mitchell extended their method to polygonal
projections [42,43]. Antoine Girard proposed zonotopes, for which computing
linear transformation and Minkowski sum can be done in an algebraic manner,
and this allows tracking the evolution of zonotopes under linear dynamics effi-
ciently, without resorting to expensive geometric computations (in particular the
convex hull operations) [39]. The algebraic manipulation was later adapted to
general convex sets represented by support functions, in the thesis work of Colas
Le Guernic, supervised by Oded and Antoine [40,41,45,46]. This thesis work
culminated in a method that could compute reachable sets for systems of hun-
dreds of dimensions. Special attention also put on performing numerical schemes
intelligently to avoid error accumulation. The representations by zonotopes and
support functions were implemented in the tool SpaceEx [38], developed by
Oded’s group under the direction of Goran Frehse. The tool quickly became one
of the most advanced tools for hybrid systems verification. The influence of the
work on zonotope-based reachability computation was attested by the HSCC
2018 test-of-time award given to Antoine’s first paper on this topic [39].

It is fair to say that using these set representations the reachability problem
for linear continuous systems is solved; however computing intersection of their
unions remains (until now) a big challenge. This is a reason why the state-of-
the-art reachability analysis techniques can handle purely continuous systems
of up to billions of dimensions [19] but are still limited when handling hybrid
systems (especially with a large number of discrete transitions).
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3 Non-linear Systems and Hybrid Systems Biology

The research directions in systems biology that Oded pursued involved building
and analysing dynamical system models of biological phenomena. For engineer-
ing systems, this approach is termed model-based, in the sense that a model is
developed and used to debug, since correcting a model is cheaper than fixing a
real system. Similarly, testing and exploring biological models in silico is pre-
ferred over expensive experiments. A network of interacting genes and proteins
is thinkable as an information processing system that evolves in space and time
according to fundamental laws of physics, and can thus be formally described
in mathematical terms. Therefore, intuitively speaking, the biological modelling
activity consists of discovering a dynamical model that can explain the relation
between a diagram of biological interactions and experimental data obtained by
measuring some entities in the diagram.

Whereas hybrid systems became a mathematical model widely accepted for
reasoning about interactions between discrete and analog parts of embedded
and cyber-physical systems, they also drew a lot of attention of researchers in
systems biology since they can capture phenomena of hybrid nature in molecular
biology. Oded was one of the founders of the workshop Hybrid Systems Biology.
The term “hybrid systems biology” can be understood (literatim) as a branch
of systems biology which relies on the techniques developed in the domain of
hybrid systems. In a more allegorical manner, this term expresses a view of
thinking and reasoning about biological mechanisms and processes in the spirit
of the mathematical and computational methods for specifying and analysing
behaviours of heterogenous systems with mixed discrete-continuous dynamics.
It is important to emphasise before continuing that this note focuses only on
the synergy between Oded’s reachability analysis research and his interest in
systems biology. He also approached systems biology via his research on real-
time temporal logics for specifying and testing biological hypotheses, such as [35,
66,70].

Oded created collaborations with some biologists (having a reciprocal inter-
est) in Grenoble, in an effort to apply hybrid systems verification technology to
biological systems, in particular the techniques that can be used to analyse in a
systematic manner quantitative models admitting uncertainty whose nature is
set-theoretic. Parameter uncertainty in biological models is uncertainty of this
type. These collaborations led to the following observation. Hybrid systems can
be used not only as a model but also to approximate complex systems by simpler
ones (which can be analysed by more efficient techniques). In addition, they can
naturally capture stiffness in continuous dynamics arising in many biological sys-
tems, which often causes instability in traditional numerical methods. However,
their use does not come for free. Indeed, even when continuous dynamics can be
efficiently handled (such as linear dynamics), discrete dynamics (which in prin-
ciple can be handled using well-developed techniques for discrete systems) may
lead to significant computation effort, as costly as that for overcoming numerical
instability. Indeed, while numerical instability can be addressed by reducing the
time step in order to adapt to fast changes of some variables, switching continu-
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ous dynamics via discrete transitions in a hybrid system may deteriorate “nice”
geometric structures of continuous reachable sets. As an example, trajectories
starting from points in a convex polyhedron can reach a transition guard at very
different times, and the accumulation of starting points for the next continuous
dynamics may form a “curved” non-convex set with complex geometry.

Taking both the drawbacks and advantages of the hybrid systems methodol-
ogy into account, Oded’s group revisited the hybridization approach developed
in [9,10]. The main idea of this approach is to decompose a non-linear vector
field into different segments corresponding to disjoint regions of the state space.
Each segment is then approximated with a simpler (such as linear) vector field.
This approach is very general and in principle can be applied to a large class
of non-linear systems. However, in practice, the price for having artificial dis-
crete transitions is often high, since the simpler approximate dynamics are used,
the larger number of segments is needed in order to assure a desired precision.
One way to avoid intersections with the boundary of two adjacent regions is
to “smoothen” the transitions without compromising the approximation qual-
ity. Furthermore, geometric properties of the dynamics should be exploited to
determine approximation domains that are as large as possible. This work shows
an interplay between ideas from geometric modelling and set-based numerical
integration, which is sketched in the following.

Given a non-linear system ẋ(t) = f(x(t)), x ∈ X ⊂ R
n where the function

f is Lipschitz. One can approximate this original system with a system: ẋ(t) =
g(x(t))+u(t), x ∈ X . The input u(·) such that ||u(·)|| ≤ µ where µ is the bound
of ||g−f ||, is added in the approximate system in order to conservatively account
for the dynamics approximation error. The construction of such an approximate
system consists of two main steps. Inside a zone of interest that contains the
current reachable set, an approximation domain and its associated approximate
vector field are computed. When the system leaves the current approximation
domain, a new domain is created. This technique was implemented using linear
interpolation over simplicial domains and multi-affine interpolation over hyper-
rectangles (the interpolants in both cases can be uniquely determined). Note
that the error in the reachable set approximation depends on the dynamics
error bound µ. It is thus important to derive tight error bounds. For systems
satisfying some smooth conditions, [33] proved for each simplex an error bound
that depends on the maximal curvature of f in the simplex and on the radius of
the smallest ball that contains the simplex. This error bound is tighter than the
error bound used in [10] which depends on the maximal simplex edge length. In
addition, one can obtain a larger simplex by stretching an equilateral simplex
along a direction in which the curvature is small. This can be done by mapping
the simplices to an “isotropic” space where the curvature bounds are isotropic.
An illustration of this transformation is depicted in Fig. 3, where the application
of the mapping to an ellipsoid produces a circle. When applying the mapping to
the triangle inscribed the ellipsoid shown on the left, the result is a more regular
triangle shown on the right. This mapping can be used further to define optimal
shape and orientation of the simplicial domains. This dynamic hybridization
based on dynamics curvature allowed treating a number of biological systems
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with up to 12 continuous variables [31]. This constituted a considerable progress
since the original hybridization approach was limited to systems with only 3,
4 continuous variables. On the other hand, most of the existing state-of-the-
art techniques for non-linear systems worked efficiently only for low-dimensional
systems.

T

Fig. 3. Illustration of the transformation to the isotropic space.

In the following, we illustrate the results obtained by this approach for a
model describing the loosening of the extra-cellular matrix [51]. This is a cru-
cial process in angiogenesis, the sprouting of new blood vessels as a reaction
to signals that indicate the need for additional oxygen in certain tissues [51,75].
Interfering with angiogenesis is considered a promising direction for fighting can-
cer tumors by cutting their blood supply. The soluble and membrane-associated
matrix metalloproteinases are among the enzymes responsible for the proteolytic
processes that occur in the extra-cellular matrix. In [51], a network of reactions
involving the entities of interest was established, and then, from this network, a
system of ordinary differential equations was derived using mass action kinetics.
This differential equation system of 12 variables, used in our reachability anal-
ysis case study (see Table 3 of [31]), can be used to describe the proteolysis of
collagen I by matrix metalloproteinases 2 (MMP2) and membrane type 1 matrix
metalloproteinases (MT1-MMP) in the presence of the tissue inhibitor of metal-
loproteinases 2 (TIMP2). The model focuses on the degradation of collagen type
1 (represented by the variable c1) by two enzymes MT1-MMP and MMP2 (the
concentrations of which are represented by the variables mt1 and m2). The latter
has to be activated from its passive form M2P obtained by a chain of reactions
involving TIMP2 (the concentration of which is represented by the variable t2)
which also plays the role of an inhibitor for MT1-MMP, which leads to an over-
all complex system of interactions. The study in [51] experimentally observed a
convergence of the variables, stating from a single initial state of concentrations,
towards a nearly steady state (see Fig. 2-A in [51]). We computed reachable sets
to verify this observation for a set of initial concentrations. Figure 4 shows the
projection of the reachable set evolution on the three variables mt1, m2, and
t2. The initial set is a small set around the origin (corresponding to the cube
in the figure). We observe that the variables converge towards the dense part
of the reachable set (drawn in cyan colour). This confirmed the observation of
convergence in [51].
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Fig. 4. Projection of the reachable set on the first three variables mt1, m2 and t2. The
cube in this figure is the set of initial concentrations. We can observe that the variables
converge towards the dense part of the reachable set (drawn in cyan colour), which
confirmed the experimental observation of convergence in [51] (Color figure online).

Oded once said humorously, “our computational methods are not fast enough
[to fight cancer]”, referring to his ongoing Plan Cancer project (MoDyLAM
- Dynamic modelling of iron-linked redox perturbations in Acute Myeloid
Leukemia). His adventure in hybrid systems biology was not long, but he already
paved a research path for us to follow.

4 Conclusion

This note was written in memoriam Oded Maler, who made groundbreaking
contributions in the hybrid systems research. His creativity, courage, sharp
mind and passion made him a role model to many of his colleagues. To cel-
ebrate Oded’s scientific legacy, nothing would be more cheerful than a list1

of major hybrid verification tools which have been developed over the last
two decades: Coho [43], CheckMate [28], HyperTech [47], MPT [56], HJB
toolbox [64], ET Toolbox [55], KeYmaera [65], SpaceEx [38], Adriane [29],
HySon [23], NLToolbox [72], Flow∗ [27], CORA [2], dReach [53], C2E2 [37],
AVERIST [67], HyReach [50], Sapo [36], HyLaa [18], and JuliaReach [22].

Acknowledgements. This note would not exist without the author’s numerous
exchanges with Oded Maler and Eugene Asarin over the last two decades. Many details
about Oded’s early career come from his Habilitation thesis and his various scientific
writings.

1 Which may be non-exhaustive.
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Abstract. We outline an approach to analysis of dynamics of biosys-
tems formulated as reaction networks. In particular, we discuss stabil-
ity analysis provided that stoichiometric equations are given for each
reaction step together with power law rate expressions. Based on stoi-
chiometry alone, the network at stationary state can be decomposed into
elementary subnetworks (elementary modes, extreme currents, fluxes).
Assuming power law kinetics, the capacity of the elementary subnet-
works for displaying dynamical instabilities, such as bistability and oscil-
lations, is evaluated. These subnetworks are then suitably combined to
form the entire network satisfying certain stability constraints implied
by experiments. Specifically, we assume that an experimentally measured
biosystem represented by a reaction network displays an experimentally
observed change from a steady state to oscillations. For the assumed
reaction mechanism only a limited set kinetic parameters is known. In
contrast, input/output parameters are known from the experiment. The
set of unknown kinetic parameters may be estimated by finding a suitable
linear combination of elementary modes via linear optimization so that
the dynamics displayed by the model fits the experimentally observed
behavior. Moreover, reaction network theory is useful in identifying sub-
networks that are destabilizing the steady state to yield oscillations. Such
subnetworks are called oscillatory motifs and possess a characteristic
topology. As an example, we analyze a carbon-nitrogen metabolism of
cyanobacteria and examine its oscillatory dynamics.

Keywords: Reaction networks · Oscillatory dynamics ·
Kinetic parameter estimation

1 Introduction

Stoichiometric network analysis (SNA) [3] examines stability of steady states
of stoichiometric reaction networks. Model equations of such systems possess a
pseudolinear form enabling the network at steady state to be decomposed into
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elementary subnetworks (elementary fluxes, extreme currents). The elementary
subnetworks can be linearly combined using arbitrarily chosen non-negative coef-
ficients, producing the full network. Each of these coefficients represent degree of
coupling of the relevant subnetwork to the network. The decomposition of a reac-
tion network into elementary subnetworks has been widely applied to get insight
into large networks, such as genome-scale metabolic networks [17]. However,
in such networks kinetics is not specified and the steady state of the balanced
network is tacitly assumed to be stable.

In contrast, SNA assumes that, in addition to stoichiometry, the rate equa-
tions for all reaction steps are given in terms of power law kinetics. This in turn
allows to identify positive and negative feedbacks and draw conclusions about
steady state instabilities of elementary subnetworks, or their linear combina-
tions. An advantage of this analysis is that it does not require prior knowledge
of rate coefficients and steady state concentrations of participating species. As
a result, capacity of a given (sub)network for an instability of steady state is
determined by identifying certain species and the range of their steady state
concentrations, where the instability is manifested. Such instability may lead to
bistability or oscillations depending on the nature of negative feedback involved.
Given that an elementary subnetwork, or another small subnetwork, is unstable,
its capacity for instability is inherited by the entire network provided that the
unstable subnetwork plays a dominant role in the network, i.e. it is sufficiently
coupled.

This kind of stability analysis proved useful when applied to chemical oscil-
lators [4–6,19,22]. It allows for identification of a core subnetwork that gives rise
to an oscillatory instability for each of the examined oscillators. The core subnet-
works may share certain topological features, which allows for a categorization
of chemical oscillators [5,19], each category being represented by a prototype or
a motif. At the same time, species within each prototype can be classified based
on the role they play in generating oscillations. Furthermore, when describing
an experimental system in terms of component mass balances and kinetic rate
expressions, the coupling coefficients and steady state concentrations (convex
parameters) must be consistent with known rate coefficients and inflow/initial
constraints (kinetic parameters).

An alternative approach toward classifying biochemical oscillators [15] does
not exploit stability analysis of reaction networks; instead, it is based on qual-
itative identification of positive and negative feedback combined with a phase
plane analysis.

In our previous work [14,18] we outlined an approach toward estimating
kinetic parameters based on a suitable combination of elementary subnetworks.
Here we overview the basic formulation, provide examples of distinct motifs and
use the outlined approach to identify an oscillatory subnetwork in the model of
carbon-nitrogen metabolism in cyanobacteria.
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2 Basic Theory

A spatially homogeneous isothermal chemical oscillator is described by its sto-
ichiometry and kinetics as follows. Let us assume a reaction network involving
m reactions and a total number of species ntot,

νL
1jA1 + · · · + νL

ntotjAntot −−→ νR
1jA1 + · · · + νR

ntotjAntot , j = 1, · · · ,m, (1)

where Ai are the reacting species and νL
ij , νR

ij are left and right stoichiometric
coefficients. Any reversible reaction is treated as a pair of forward and backward
steps. Dynamics of n ≤ ntot species that are not inert products or being fixed are
governed by a set of coupled mass balance equations which have the following
pseudolinear form:

dx
dt

= Nv(x), (2)

where x = (x1, · · · , xn) is the vector of concentrations of the interacting dynam-
ical species, N = {Δνij} = {νR

ij − νL
ij} is the (n × m) stoichiometric matrix

and v = (v1, · · · , vm) is the non-negative vector of reaction rates (fluxes). The
reaction rates are assumed to follow mass action kinetics,

vj = kj

n∏

i=1

x
κij

i = kj v̄j , (3)

where κij = ∂lnvj/∂lnxi ≥ 0 is the reaction order of species i in reaction j and
kj is the corresponding rate coefficient, which may include fixed concentration(s)
of pooled species and v̄j is the reduced reaction rate. In vector notation we have
k = (k1, · · · , km) and v̄(x) = (v̄1, · · · , v̄m). For elementary reactions, κij =
νL

ij , more generally κij �= νL
ij may be assumed for quasielementary steps. The

kinetic matrix {κij} is denoted as K. In flow systems, the inflows and outflows
are included as pseudoreactions of zeroth and first order, respectively; the rate
coefficient corresponding to an inflow term is kj = k0xi0 and that for an outflow
is kj = k0, where k0 is the flow (or dilution) rate and xi0 is the feed concentration
of any inflowing species i.

At steady state Eq. (2) reduces to

Nv = 0. (4)

Since the reaction rates are non-negative, the set of all vs satisfying the steady
state condition is a non-negative subset of the null space of N represented by
an (m − d)-dimensional convex polyhedral cone delimited by faces of dimension
1, · · · , (m − d) − 1, where d is the rank of N. One-dimensional faces (or edges)
represent a set of minimal, irreducible, connected subnetworks called elementary
subnetworks or extreme currents or elementary fluxes. There are f edges of the
cone satisfying f ≥ m−d. The edges should be properly normalized, a convenient
way is to let the components of the rate vector corresponding to an edge sum
up to 1. Endpoints of the normalized edges are apexes of a convex polytope of
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dimension (m − d − 1). If f = m − d, the edges form a basis of the cone which is
then called simplicial and the corresponding polytope is a simplex. Elementary
fluxes can be obtained by algorithms of linear programming [9] or other efficient
algorithms [20].

Let Ek denote a normalized rate vector corresponding to an elementary sub-
network. The set of all such subnetworks can be put into a matrix

E = [E1, · · · ,Ef ]. (5)

Any feasible rate vector vs satisfying the steady state condition can be conve-
niently expressed as a non-negative linear combination of the elementary sub-
networks,

vs = Eα, α = (α1, · · · , αf ). (6)

By substituting (3) into Eq. (6) the rate coefficients k are determined by choosing
steady states xs. Thus, for a given set of convex parameters (α,xs), kinetic
parameters k are determined.

Using the convex parameters, the mass balances given by Eq. (2) are
expressed as

dx
dt

= Ndiag (Eα) (diag v̄(xs))
−1
v̄(x). (7)

Upon linearizing the r.h.s. at the steady state xs, the Jacobian matrix is

J = Ndiag (Eα)KT (diag xs)
−1

= −V (diag xs)
−1

. (8)

An instability of a steady state xs can be determined by analyzing principal
minors of the (n×n) matrix V, which for a chosen (sub)network Eα depends on
stoichiometry and reaction orders but is independent of xs. If a principal minor
of order � involving a subset of indexes i1, · · · , i� of certain species is negative,
then at least one eigenvalue of J is unstable, provided that the steady state
concentrations of corresponding species xs

i1
, · · · , xs

in
are sufficiently small [3]. It

is sufficient to consider a leading negative minor with a minimal order � since
any higher order instability is derived from the minimal configuration.

3 Dominant Subnetworks and Oscillatory Motifs

Of primary importance are unstable subnetworks corresponding to edges. When
coupled with other subnetworks through Eq. (6), the unstable subnetwork
induces instability of the whole network provided that its coupling to the rest
of the network is sufficiently strong. In other words, the unstable subnetwork is
dominant. This concept can be generalized to unstable dominant faces. Specif-
ically, a combination of two or more edges that are stable may still produce a
negative principal minor, which typically occurs within an almost entire range of
the relevant αk’s, i.e. the corresponding face is unstable in almost entire scope.
We call such a face primary unstable. Thus, an increase of αk for a primary
unstable edge or the sum of αk’s for a primary unstable face will lead to oscilla-
tions via Hopf bifurcation [12] and is a clue to kinetic parameter estimation.
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A negative principal minor represents positive feedback in the network and
reflects the susceptibility of the subnetwork to possessing an unstable steady
state provided that the corresponding steady state concentrations are sufficiently
small. There are special cases when there is an oscillatory instability even in the
absence of negative principal minor—so called negative feedback oscillators [15]
used to describe simple gene regulatory networks—then more subtle criteria have
to be applied to indicate instability [4,6]. However, such networks do not admit
any other instability than the Hopf bifurcation, in particular they are missing a
saddle-node bifurcation leading to bistability, and mathematically they represent
a nongeneric case. Therefore the outlined features provide excellent guidelines
in evaluating the potential of vast majority of reaction networks to undergo a
dynamical instability.

When applying the SNA to oscillatory mechanisms of inorganic reactions,
is has been found [5] that dominant subnetworks forming the core oscillator
have only a few topological arrangements of their networks, which are called
prototypes or motifs. All those possess an autocatalytic cycle, i.e. a cycle con-
necting species (denoted a type X) of which at least one has a stoichiometric
overproduction. Also, part of the motif is a negative feedback loop involving a
noncyclic species (denoted as type Z) and a removal of a type X species either
by decomposition or via reaction with an inhibitory species (denoted as type Y).

More recently it has been found that some inorganic systems and many bio-
chemical oscillators do not possess an autocatalytic cycle. Instead, their core
oscillator possesses two type X-like species competing for a type Y-like species.
In addition, there is a negative feedback loop involving type Z species, but all
cycles present in the network are “ordinary” catalytic cycles (such as enzyme-
complex-enzyme cycle) that do not directly support autocatalytic growth. Yet
the network admits an instability leading to oscillations. Such a feature is called
competitive autocatalysis. As with the inorganic chemical oscillators, a limited
number of basic motifs are expected to constitute unstable dominant subnet-
works of biochemical networks.

Examples of four prototypes are shown in Fig. 1. Cases (a) and (b) possess
autocatalytic cycle and differ in the way type Z species is connected. In the case
(a) it is provided via inflow and consumed by the cycle, whereas in the case
(b) the type Z species is produced by the cycle and exerts negative feedback
via production of the type Y species, which inhibits the autocatalytic growth.
Cases (c) and (d) represent competitive autocatalysis. In the case (c) the type
X species are on an “ordinary” catalytic cycle which is fed by an external source
of X1 allowing for autocatalytic-like accumulation if the type Y species is low.
However, if Y is high, the autocatalysis is inhibited. In addition, the type Z
species controls switches between the phase of accumulation and depletion of X
species. Availability of Z is inflow-controlled and is analogous to the case (a).
Case (d) is an example od topological arrangement where no cycle connects type
X species. Instead, type Y species is self-regenerating. Negative feedback may be
arranged in several ways, either inflow-limited external supply of Z as in the case
(c) or with internal production of Z feeding back to X2 as shown in the Figure
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Fig. 1. Network diagrams for typical motifs of oscillatory subnetworks, (a) cyclic auto-
catalysis with external source of Z, (b) cyclic autocatalysis with internal source of Z,
(c) competitive autocatalysis with external source of Z, (d) competitive autocatalysis
with internal source of Z.

or feeding back to X1 (not shown). The internal production is a feature shared
with the case (b). Examples of the motif in cases (a) and (b) are numerous
inorganic oscillating systems [5], in particular, case (b) is the motif found in
the well-known Belousov-Zhabotinsky reaction [23]. Among the enzyme systems,
oxidase-peroxidase reaction [16,21] belongs to case (a). Case (c) is a prototype of
an enzyme reaction with substrate inhibition, where X1 and X2 are two enzyme
forms, Y is the inhibitory substrate and Z is another substrate that controls the
oscillations. Case (d) represents a transcriptional network with X1 and X2 being
the activator and inhibitor, respectively, Y is the protomer and Z represents the
mRNA coding for the inhibitor. Alternatively, case (d) with feedback to X1 is
found in phosphorylation cascades. Both alternatives occur simultaneously in a
circadian clock model of cyanobacteria [1,13], the phosphorylation version occurs
in the model of the MAPK cascades [8,10].

4 Parameter Estimation Using Stoichiometric
Constraints

The basic idea of parameter determination is that Eq. (6) with vs = v(xs) can
be used for finding unknown quantities including rate coefficients and steady
state concentrations, given that other quantities are available, such as rate coef-
ficients known from independent experiments or taken from literature, inflow
rates, inflow concentrations and steady state concentrations obtained from an
experiment at the threshold of the instability—emergence of oscillations at a
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Hopf bifurcation or switch to another steady state at a saddle-node bifurcation.
Depending on how many known parameters are available, only a subset of Eq. (6)
can be used to express (fully or partly) the rate equations vs = v(xs). To preserve
linearity, we choose a subset of rate equations such that, upon substituting the
known quantities, the rate expressions are either linear in a particular unknown
or fully determined. We call such equations constraint equations. Below, the
superscript fv means a fixed or given value of the relevant quantity, uv means
an unknown value to be determined from the constraint equations and iv means
an implied value determined from those equations in Eq. (6) that cannot be used
as the constraint equations (mostly because of lack of linearity of unknowns) but
can be used after the unknown values are determined.

After identifying fixed, unknown and implied quantities the constraint equa-
tions are obtained by selecting certain equations from Eq. (6) and rearranging
them to obtain linear equations in a standard matrix form. The constraint equa-
tions then read

⎡

⎣
0 0

Êuv A 0
0 B

⎤

⎦

⎡

⎣
αuv

kuv

xuv

⎤

⎦ =

⎡

⎣
vfv

0
0

⎤

⎦ − Êudsαuds. (9)

Here Êuv is a submatrix of E corresponding to unknown αk’s other than the
unstable dominant subnetwork, and Êuds corresponds to the unstable dominant
subnetwork. A and B are obtained from known parts of rate expressions. Further
details can be found in Ref. [18].

The number of constraint equations in (9) is given by the number of reac-
tion steps, for which we have some data in the rate expressions, in particular,
rate coefficients known from experiments or literature and/or measured steady
state concentrations. The number of these equations may be quite limited. On
the other hand, the number of unknowns is expected to exceed the number of
equations, mainly because the number of elementary subnetworks typically far
exceeds the number of equations in (9) where reaction rates vfv are known.
Therefore, the system (9) is not expected to have a unique solution. Conse-
quently, a desired solution needs to be selected by applying linear optimization
using an objective function. As explained above, emergence of oscillations via
Hopf bifurcation is implied by dominance of the unstable dominant subnetwork.
Using Occam’s razor argument, we postulate that the contributions of the ele-
mentary subnetworks other than the leading unstable subnetwork should be as
small as possible at the oscillatory instability. Thus the objective function to be
minimized is the sum of the αk’s of all subnetworks involved in the constraint
equations other than the unstable dominant one, whose αuds

k is used as a free
bifurcation parameter. This parameter is stepwise varied, at each step Eq. (9) is
solved until a Hopf bifurcation is found (indicated by a pair of eigenvalues of the
Jacobian crossing imaginary axis). As a result, we obtain all αk’s, the unknown
rate coefficients kuv and steady state concentrations xuv at the threshold of
oscillatory instability. If there are any unknown parameters not involved in the
constraint equations, they are subsequently determined as implied values from
the equations in (6), which were not used as the constraint equations.
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5 Case Study: Carbon-Nitrogen Metabolism in
Cyanobacteria

The carbon-nitrogen (CN) metabolism of cyanobacteria [7] describes interacting
pathways for the photosynthetic uptake of carbon dioxide and nitrogen fixation
in cyanobacterium Crocosphaera watsonii. The model involves power law kinetics
and describes a suspension of cells in a flow-through chemostat. A modified
version of the underlying reaction network introduced in [1] is shown in Fig. 2.
Notation Rk of the reactions is as in [7]. Each reaction is drawn as multiple-tail-
multiple-head arrow connecting reactants and products [3]. The arrow represents
both stoichiometry and power law rate expression: the label r/o at each tail of a
reaction arrow represents stoichiometric coefficient/order for the corresponding
reactant and the label p at each head represents the stoichiometric coefficient
of the corresponding product. If there is no label on the reactant side, then
r = o = 1, while for products p is then equal to the number of barbs at the
head. Notice that stoichiometric coefficients may assume noninteger values which
are adjustable parameters in some steps. Inflow/outflow streams are marked by
unnumbered arrows. The two major input species N2 and CO2 are assumed
fixed (marked by rectangles). Variables Cf and Cr correspond to functional
carbon and carbohydrate compartments, Nf and Nr are functional nitrogen and
nitrogen storage compartments and Cnit is the pool of the enzyme nitrogenase.
Step R2 corresponds to photosynthesis and step R1 to nitrogen fixation. In the
original work [7] these two processes are time-separated by controlling step R2

by periodically varying irradiance and switching the nitrogenase activation step
R4 on/off depending on the external light to mimick day/night cycles. In a
subsequent work [1] the model has been coupled with a circadian clock model to
simulate interaction between the metabolism and joint action of the circadian
clock and diurnal cycle. In addition, the system has been analyzed by the above
outlined methods and certain modifications were proposed to avoid inconsistent

Fig. 2. Network diagram for the carbon-nitrogen metabolic model.
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dynamics resulting in negative concentrations and absence of stable steady states
(zero order of R1 and R5b with respect to Cr was replaced by first order and a
positive order of Cf in R2 was added).

Of interest in this work is, whether the model admits stable oscillatory
regimes assuming constant light intensity and decoupled from the circadian
clock. Such dynamics would correspond to the ultradian rhythm observed exper-
imentally [2]. The analysis of the network indicates 8 elementary subnetworks,
of which the subnetwork involving reactions R1, R2, R3 and R4 is unstable.
For certain combinations of all the elementary subnetworks the instability gen-
erates oscillations via Hopf bifurcation. For example, at a chosen dilution rate
k0 = D = 0.01 (in arbitrary units) the vector α = [1, 1, 0.001, 0.1, 1, 0.01,
0.01, 0.255] is found to correspond to a Hopf bifurcation and both xs and k
are implied. Although this result was not obtained by employing the constraint
Eq. (9) because of insufficient experimental data, it does explicitly show that
oscillations are possible.

To further analyze the scope of oscillatory dynamics, we employ numerical
bifurcation analysis [11]. The Hopf bifurcation point found by the network anal-
ysis can be used as a starting point for numerical determination of dependence
of the steady state xs on dilution rate D, see the bifurcation diagram in Fig. 3.
The diagram shows the steady state value of Cf for varying D. There are three
branches of steady states. The branch with zero Cf corresponds to zero (’dead’)
steady states, which are stable in the entire range of D. Two other branches
with positive steady states coexist in the range of dilution rates from 0 to D ≈ 7
where they merge and disappear (saddle-node bifurcation). This point corre-
sponds to washout above which only the zero steady state exists. The lower of
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Fig. 3. Dependence of steady states on dilution rate. Full lines – stable steady state,
dashed lines – unstable steady state, squares – points of the Hopf bifurcation delimiting
the region of stable oscillations.
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Fig. 4. Temporal periodic oscillations of Cr and Cnit.

the two positive branches is unstable within entire range but the upper is stable
for low and high dilution rates and unstable in the middle range delimited by two
points of the oscillatory instabilities (Hopf bifurcation). Within this window, sta-
ble periodic oscillations occur. Therefore the system displays bistability between
positive and zero steady states for low and high D (but below the washout limit)
and bistability between oscillations and zero steady state in the middle range of
D. The character of oscillations is shown in Fig. 4. Periodic temporal dynamics
of Cr and Cnit is marked by a phase shift, which spontaneously separates pho-
tosynthesis from nitrogen fixation even without intervening internal circadian or
external diurnal oscillator. On a qualitative level, this provides an explanation
for the ultradian cycles [2], but further modifications/extensions of the model
are needed to account for quantitative description.

6 Conclusion

The approach outlined above has been successfully applied to the glucose
oxidase–catalase reaction [14] and the Belousov-Zhabotinsky reaction [18]. How-
ever, target applications are expected in identifying kinetic parameters in models
of biological oscillating systems including cyanobacterial rhythms as briefly men-
tioned above.
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Science Foundation.
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Abstract. The analysis of equilibria of ordinary differential equations
(ODEs) that represent biochemical reaction networks is crucial in order
to understand various functional properties of regulation in systems biol-
ogy. In this paper, we develop a numerical algorithm to compute equi-
libria under the assumption that the regulatory network satisfies certain
graph-theoretic conditions which lead to fixed-point iterations over an
anti-monotonic function. Unlike generic approaches based on Netwon’s
method, our algorithm does not require the availability of the Jacobian
of the ODE vector field, which may be expensive when the dimension-
ality of the system is large. More important, it produces an estimation
(through over-approximation) of the entire set of equilibria, with the
guarantee of yielding the unique equilibrium of the ODE in the case that
the returned set is a singleton. We demonstrate the applicability of our
algorithm to two signaling pathways of MAPK and EGFR.

1 Introduction

Ordinary differential equations (ODEs) are a fundamental dynamical model
across many branches of natural and engineering sciences. In many applications,
modelers are often interested in the behavior of a system when it is sufficiently
away from a transient regime that depends on the conditions with which the
ODEs are initialized. In this context, one is typically concerned with the study
of equilibrium points; that is, given an ODE system ẋ = F (x) over variables x,
one considers the equation 0 = F (x), whose solution gives the states at which
the ODE solution may settle over time.

In systems biology, the analysis of the equilibrium points of ODE systems that
represent biochemical reaction networks carries important physical implications
that are related to various regulatory phenomena; because of this, it is an area
that has received considerable attention [19,27]. In this paper, we are concerned
with methods to compute equilibrium points. There are different cases where
this is particularly useful. For example, bifurcation analysis usually consists in
producing a diagram that plots the equilibria of an ODE system as a function
of a model parameter (the bifurcation parameter), e.g. [15]; this requires one
computation for each point in the diagram.
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-28042-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28042-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-28042-0_4
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In general, the analysis of equilibria could be approached by means of func-
tional iteration algorithms such as Newton’s method in order to find the roots
of the function F (x) [20]. However, there are two notable issues related to the
use of such methods. The first issue is of computational nature and is due to the
fact that these methods require the computation of the Jacobian of F (x) at each
iteration, which may be demanding when the number of ODE state variables is
large. The second issue is related to the convergence properties. Indeed, New-
ton’s method does not guarantee convergence in general. Also, it may converge
to different equilibria depending on the initial guess. Finally, while it can be used
to find equilibria, it cannot be used to prove that a given ODE systems has only
one equilibrium point.

Contribution. The main contribution of this paper is to develop an algorithm
that is designed for the computation of equilibrium points of (nonlinear) ODE
systems arising from the modeling of biochemical reaction networks that aims to
avoid the two aforementioned issues. We focus on models that can be represented
as regulatory networks (RNs), similarly to [6,17,27], whereby vertices represent
biomolecular species that can activate or inhibit other vertices.

Technically, the main idea behind our framework is to observe that the equi-
librium equation 0 = F (x) mentioned above is equivalent, under certain graph-
theoretic assumptions on the RN, to a fixed-point equation x = f(x). A key step
is the replacement of loops in the RN with exogenous inputs; roughly speaking, if
we can uniquely characterize the equilibrium in the open-loop system through a
function that enjoys some monotonicity properties, then it is possible to compute
the equilibrium of the closed-loop system via a fixed-point iteration that solves
x = f(x). Our conditions yield that f is anti-monotonic, that is f(x′) ≤ f(x)
when x ≤ x′. This implies that a composition of f with itself, i.e., g := f ◦ f ,
yields a monotonic function. Thus, Kleene’s fixed-point theorem and the fact
that any fixed-point of f is necessarily a fixed-point of g, allow us to prove that
all equilibria of ẋ = F (x) are contained between the least and the greatest fixed
point of g, respectively, and can be efficiently computed by fixed-point iteration,
avoiding the need for the Jacobian of F (x).

In practice our framework enables an efficient estimation of the set of equilib-
ria of an ODE system underlying a RN. Apart from providing additional model
insight, the estimation facilitates the use of other algorithms, e.g., it narrows
down the set of initial guesses in Newton’s method. More importantly, in the
special case where the least and greatest fixed points coincide, the approach
provides the unique equilibrium point of the ODE system. The framework has
been evaluated on computational models of the well-known signaling pathways
MAPK [2,18] and EGFR [5].

Related Work. Fixed-points and decomposition have been used to verify finite
space dynamical systems [11]. While similar in spirit, our approach is comple-
mentary because it focuses on regulatory networks whose semantics is given
in terms of differential equations. Instead, our work is closely related to [1–
3,13,25,26] which also analyze RNs by suppressing feedback loops. However,
[1–3,13] do not focus on the computation of the set of equilibria but prove that
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the ODE system converges to one of the stable equilibria. More specifically, [2,3]
rule out the presence of such complex phenomena like limit cycles and ensure that
convergence to unstable equilibria is only possible from a set of initial conditions
with Lebesgue measure zero. Instead, [25,26] focus on the computation of the set
of equilibria but do not exploit any monotonicity arguments. While this allows
for a general treatment, it requires one to solve a nonlinear system of equations.
Instead, under model-dependent assumptions discussed later, each iteration of
the proposed fixed-point iteration algorithm can be computed in polynomial
time. The closest approach to ours is [13] which proposes to decompose an in
general non-monotonic system into subsystems with negative feedback. Unlike
us, however, [13] does not provide an algorithm which can be used to compute
(or over-approximate) the set of system’s equilibria. Moreover, our algorithm is
stated on the domain of regulatory networks, while [1–3,13] associate graphs to
systems of differential equations [1].

2 Overview of Main Results

Before providing a formal introduction of our technique in Sect. 3, we shall
present the main ideas using a running example. In particular, we consider the
well-known mitogen-activated protein kinase (MAPK) signaling cascade. This
is activated by several receptors, and the signal triggers the consecutive acti-
vation of several downstream protein kinases, where the last kinase can trig-
ger cellular response such as growth, development, differentiation, proliferation,
inflammation, and apoptosis. The pathway is regulated by phosphatases which
dephosphorylate the kinases and interrupt the signal. This regulation occurs
in intermediate steps. At the end of the pathway, a negative feedback triggers
the shutdown on the activator kinase. A mutation on one of the components
of the signaling pathway can cause errors in information processing interfering
with the cellular response and causing diseases such as cancer, autoimmunity,
diabetes, etc. Therefore, there is great interest in understanding the underlying
mechanisms of this pathway, see, e.g., [4,5,16,18,21–24,28,29].

We consider a computational model which can be schematically represented
as the chemical reaction network depicted in Fig. 1a, following Kholodenko
[18]. It is possible to identify the three levels of the cascade (light-blue boxes),
where each level consists of a cycle involving two or more interconvertible mass-
preserving forms of some kinase, i.e., dephosphorylated, mono-phosphorylated,
and bi-phosphorylated (the number of phosphorylated sites is indicated by the
suffixes ‘-P’ and ‘-PP’). The most active form regulates the downstream kinases
as a catalyst for the phosphorylation reactions (e.g., the reaction with label 3),
while dephosphorylation is assumed to take place spontaneously (e.g., label 2).

This model can be cast into our framework of reaction networks, where essen-
tially we decompose the behavior into a local dynamics that describes the evo-
lution between the different forms of a given component (i.e., a gene, a protein,
a metabolite, and so on) and the network dynamics that describes the influ-
ence (that is, activation or inhibition) that one form of each such component
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Fig. 1. Left. Original MAPK model from [18]. Right: MAPK RN. Each family of
states (e.g., {[MKK], [MKKP], [MKKPP]}) is identified by the most active species (e.g.,
[MKKPP]). (Color figure online)

exerts on the other components in the system. In doing so, we are essentially
following a standard biochemical representation, akin to that used, among oth-
ers, by Cardelli [6] as well as Tyson and Novak [27], remarking that we are not
committing to specific kinetic mechanisms. Overall, this leads to a more abstract
graphical representation of the RN (that will be mathematically formalized later)
as depicted in Fig. 1b, where we replace each box of Fig. 1a with a single vertex
(labeled with the most active form of the component) and connect the vertices
through activation or inhibition arcs. The vertex label indicates the observable,
that is, the ODE variable related to the specific component form (for instance,
the most active form) that appears in the ODEs of the other components.

The main contribution of the present paper is a graph-theoretic analysis
of the RN for the computation of the equilibrium points of its associated ODE
system. To see this with our example, let us make the assumption of mass-action
dynamics. Then, the ODE equations associated with the vertices labeled RAS
and MKKK-P are thus:

˙[RAS](t) = λ − β0[MAPKPP](t)[RAS](t) − γ[RAS](t) (1)
˙[MKKK](t) = β2[MKKKP](t) − α1[MKKK](t)[RAS](t) (2)
˙[MKKKP](t) = α1[MKKK](t)[RAS](t) − β2[MKKKP](t) (3)

where, following standard notation, species (i.e., state variable) names in square
brackets refer to concentrations. In these equations, αi, λ, βi, and γ are positive
parameters, respectively (in particular, we assume that RAS is injected into the
system at a constant rate).
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(a) Closed loop MAPK model. (b) Open loop MAPK model.

Fig. 2. The feedback from MKKPP to MAPKPP is suppressed and vertex MAPKPP is
interpreted as an input vertex.

The key idea of our method builds upon [2,13,26] and consists in transforming
a closed-loop RN into an open-loop one by suppressing one or several edges of the
original network. Vertices whose incoming edges are suppressed are treated as
input vertices. Figure 2 visualizes this process in the case of our running example.

Under certain assumptions, the dynamical system underlying the open loop
network has a unique equilibrium and can be efficiently computed whenever a
constant input is provided. For instance, by removing the feedback loop from
MAPKPP to RAS, we treat [MAPKPP] as a constant input in the ODE (1) of
RAS. With this, we can compute the equilibrium of RAS by setting its derivative
to zero as

[RAS] =
λ

β11[MAPKPP] + γ
=: φRAS([MAPKPP]) (4)

where the φRAS function maps the input [MAPKPP] to the unique equilibrium
point of [RAS]. We can continue this reasoning along the pathway, by interpreting
[RAS] as a constant input in the ODEs (2)–(3) of MKKK and MKKKP. This
leads to the equilibrium

[MKKKP] =
α1cMKKKP

α1[RAS] + β2
=: φMKKKP([RAS]), (5)

where we have set

cMKKKP := [MKKK](0) + [MKKKP](0)

thanks to the mass conservation property ˙[MKKK](t) + ˙[MKKKP](t) = 0.
By continuing in a similar fashion, one can derive the equilibrium formula
φMKKPP([MKKKP]).

While the above discussion implies that the equilibrium point of the open-
loop network given in Fig. 2b can be computed efficiently, its relation to the
equilibria of the original closed-loop network in Fig. 2a is not obvious. We can
address this problem by closing the open loop network by reactivating the
previously suppressed edge. Formally, this corresponds to the feedback condi-
tion [MAPKPP] = φMAPKPP([MKKPP]), where φMAPKPP([MKKPP]) denotes the
equilibrium value of MAPKPP in the case of a given constant input [MKKPP].
Overall, we obtain the fixed-point equation

[MAPKPP] = φMAPKPP

(
φMKKPP

(
φMKKKP

(
φRAS([MAPKPP])

)))

=: fMAPKPP([MAPKPP]) (6)
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Therefore, the equilibria of the original ODEs system consisting of nine equations
stands in a one-to-one correspondence with the solution of the single nonlinear
Eq. (6). More formally, if [MAPKPP] is the value of the MAPKPP-coordinate of
an equilibrium of the ODE system, then [MAPKPP] solves (6). Conversely, every
solution of (6) induces the equilibria [RAS], [MKKKP], [MKKPP] and [MAPKPP]
for the ODEs of RAS, MKKKP, MKKPP and MAPKPP, respectively, through
the functions φRAS, φMKKKP , and φMKKPP . Together with the equilibrium con-
ditions imposed by the ODEs and the conservation of mass, this determines the
equilibria of the remaining five ODEs.

In [25,26] the above discussion is generalized and the equilibria of a non-
linear ODE system are expressed as fixed points of a nonlinear vector function
of smaller size. Unfortunately, the computation of the solution set of a sys-
tem of nonlinear equations is computationally prohibitive and does not scale
[25]. Instead, [13] identifies further conditions under which the dynamical sys-
tem converges to the set of fixed points but does not address their automatic
computation.

The present work addresses this problem by showing that the system of
nonlinear equations can be often solved via a fixed-point iteration algorithm.
More specifically, we identify graph-theoretic conditions under which an RN
induces a fixed-point equation x = f(x) such that f is anti-monotonic, i.e.,
x ≤ x′ implies f(x′) ≤ f(x), where ≤ is to be interpreted componentwise if
x and f(x) are vectors. For instance, let us denote by cMAPKPP the maximal
concentration attainable by MAPK in any of its forms, i.e.,

cMAPKPP := [MAPK](0) + [MAPKP](0) + [MAPKPP](0),

Then, for any 0 ≤ x ≤ x′ ≤ cMAPKPP , where it holds that fMAPKPP(x′) ≤
fMAPKPP(x). In the case of the MAPK model, this should not surprise because
it essentially states that an increase in inhibition leads to a decrease in activation.

While anti-monotonicity does not imply in general that a fixed-point iter-
ation x, f(x), f(f(x)), . . . converges to a fixed-point of f , it ensures that the
composition g := f ◦ f is monotonic, i.e., 0 ≤ x ≤ x′ ≤ c implies g(x) ≤ g(x′),
with c being the vector of all maximal attainable species concentrations. This
and Kleenes’s fixed-point theorem ensure that the sequences 0, g(0), g(g(0)), . . .
and c, g(c), g(g(c)), . . . converge to the least and the greatest fixed-point of g,
respectively. Noting that any fixed-point of f has to be necessarily a fixed-point
of g = f ◦ f , this can be used to prove the following two statements.

1. Let x⊥ and x� be the least and greatest fixed-point of g, respectively.
Then, any equilibrium of the ODE system underlying the RN is contained in
[x⊥;x�].

2. If x∗ = x⊥ = x�, then x∗ is the unique equilibrium of the ODE system
underlying the RN.

The first statement allows one to efficiently estimate the set of equilibria of the
ODE system, while the second statement allows one to decide whether the ODE
system has a unique equilibrium and, in the case it does, allows for an efficient
computation of it.
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If applied to the MAPK model, the above discussion ensures that we obtain
the unique solution of the nonlinear Eq. (6) when the sequences

0, gMAPKPP(0), gMAPKPP

(
gMAPKPP(0)

)
, . . .

and

cMAPKPP , gMAPKPP(cMAPKPP), gMAPKPP

(
gMAPKPP(cMAPKPP)

)
, . . .

converge to the same value, with gMAPKPP := fMAPKPP ◦ fMAPKPP .

3 Computation of Equilibria in RNs

Notation. We denote vectors with index set I by R
I . For x ∈ R

I and I0 ⊆ I,
the restriction of x to the index set I0 is denoted by x|I0 .

Let us now formalize the ideas and results presented in the previous section.
We start by fixing the notation for a RN.

Definition 1 (Regulatory Network). A Regulatory Network (RN) is a
directed graph (V,E) where V is the set of vertices and E is the set of labeled
edges, i.e., E ⊆ V × {+,−} × V .

– The set of all outgoing neighbors of vertex i ∈ V is denoted by out(i), that
is out(i) = {j ∈ V | (i, ·, j) ∈ E}. Similarly, in(i) denotes all incoming
neighbors of i.

– A vertex is called activator (resp., inhibitor) if all its outgoing edges are
activating (resp., inhibiting). We let V + and V − be the sets of activator and
inhibitor vertices, respectively.

– The set of inhibitors with incoming edges defines the set of core observables
I, that is, I = {i ∈ V − | in(i) �= ∅}.
The symbols in the label set of the edges denotes activation and inhibition in

the obvious way. The set of core observables I corresponds essentially to those
vertices whose incoming edges are all suppressed and which act as exogenous
inputs in the open network. Throughout the remainder of this paper we exclude
the case of vertices with no outgoing edges. For a more compact notation, the
set of vertices is assumed to be V = {1, 2, . . . , n} for some n ≥ 1.

We now define the semantics of an RN in terms of a system of coupled ODEs.
In particular, with a given vertex i we associate a set of mi ODEs over variables
x1

i , . . . , xmi
i . Essentially, each of the mi variables x1

i , . . . , xmi
i related to a vertex

i may represent the different forms that a component can exhibit, e.g., MKKK
and MKKKP in Fig. 1a. One such variable (i.e., the first component x1

i without
loss of generality) is chosen to represent the observable—the only variable that
may appear in the set of ODE related to the other vertices; this formalizes the
idea of the labels used in the pictorial representation of the RN of, for example,
Fig. 1b.
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Definition 2 (RN Semantics). Given an RN, its underlying ODE is given
by associating each vertex i ∈ V with a system of mi ≥ 1 ODEs over variables
x1

i , . . . , x
mi
i . The ODE system associated with vertex i is given by

ẋi = Fi(x
1
1, . . . , x

1
i−1,xi, x

1
i+1, . . . , x

1
n), with xj := (x1

j , . . . , x
mj

j ) for 1 ≤ j ≤ n.

The ODE system underlying the RN is given by

ẋ = F (x), where x = (x1, . . . ,xn) and F = (F1, . . . , Fn).

The initial condition of the RN is denoted by x(0) and assumed to be non-
negative. Moreover, we assume that F is Lipschitz continuous and that the solu-
tion of ẋ = F (x) remains non-negative if initialized with a non-negative initial
condition.

In the remainder, we avoid the use of the superscript for the observable of vertex
i, i.e., we write xi to indicate x1

i .
We next introduce well-posed RNs. Intuitively, this identifies a local property

of the network whereby the ODE system associated with each vertex enjoys
a unique equilibrium when the observables of the other vertices that act as
inhibitors or activators are treated as exogenous constant inputs.

Definition 3 (Well-Posed RN). For fixed initial condition x(0) and model
parameters, an RN (V,E) is called well-posed when the following conditions are
satisfied.

(1) V + and V − form a partition of V , i.e., there are no vertices that are both
activators and inhibitors.

(2) For all i ∈ V , the maximal value of xi attainable across all non-negative
initial conditions x̂(0) satisfying ‖x̂j(0)‖1 = ‖xj(0)‖1, where j ∈ V is
arbitrary and ‖·‖1 denotes the L1 norm, exists and is denoted by ci.

(3) For every vertex i ∈ V , define
– U+

i :=
∏

j∈V +∩in(i)[0; cj ] the set of admissible activation inputs; and
– U−

i :=
∏

j∈V −∩in(i)[0; cj ] the set of admissible inhibition inputs.
Then, for every i ∈ V , u+ ∈ U+

i and u− ∈ U−
i , it must hold that the

equilibrium equation

0 = Fi(x1, . . . , xi−1,xi, xi+1, . . . , xn)

admits a non-negative solution that satisfies xj = u+
j for all j ∈ V + ∩in(i)

and xk = u−
k for all k ∈ V − ∩ in(i).

Moreover, the equilibrium equation must characterize the value xi. That is,
given two non-negative solutions

0 = Fi(x1, . . . , xi−1,xi, xi+1, . . . , xn)
0 = Fi(x̂1, . . . , x̂i−1, x̂i, x̂i+1, . . . , x̂n)

satisfying xj = x̂j = u+
j for all j ∈ V + ∩ in(i) and xk = x̂k = u−

k for all
k ∈ V − ∩ in(i), then xi = x̂i.
The uniqueness property ensures the well-definedness of φi(u+, u−) := xi.
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Fig. 3. An RN that is not anti-monotonic because is violates condition (iii).

Essentially, the equilibrium of vertex i is uniquely determined in the case
one is given constant activation and inhibition inputs u+ and u−, respectively.
Since inputs are described by the values of the observables x = (x1, . . . , xn), one
can use x instead of the redundant (at least as far the steady-state regime is
concerned) vector x.

For instance, in the case of the MAPK model from Fig. 1a, Eqs. (4) and (5)
show that the vertices associated with RAF and MKKP in Fig. 1b do satisfy the
requirement above.

Armed with the notion of well-posedness, we are ready to introduce anti-
monotonic RNs, the core concept of the present paper. The graph-theoretic
conditions describing an anti-monotonic network ensure that the correspond-
ing nonlinear fixed-point equation characterizing the equilibria, y = f(y), can
be constructed and is anti-monotonic, that is, it satisfies f(y′) ≤ f(y) for all
y ≤ y′.

Definition 4 (Anti-monotonic RN). A well-posed network (V,E) is called
anti-monotonic if the following properties are satisfied.

(i) There are no inhibitors that are inhibited.
(ii) All vertices with incoming neighbors can be reached from the set of core

observables I.
(iii) The graph which arises from (V,E) by removing all inhibitors is acyclic,

that is, (V +, E \ (V − × {−,+} × V ∪ V × {−,+} × V −)) is acyclic.
(iv) With φi(u+, u−) being as in Definition 3, φi is a continuous function that

is monotonic and anti-monotonic in u+ and u−, respectively. That is:
– φi is continuous as a function of (u+, u−) ∈ U+

i × U−
i ;

– φi(u−, u+) ≤ φi(u−, û+) if u− ∈ U−
i and u+, û+ ∈ U+

i with u+ ≤ û+;
– φi(u−, u+) ≥ φi(û−, u+) if u−, û− ∈ U−

i and u+ ∈ U+
i with u− ≤ û−.

We first remark that (ii) requires that all i /∈ I depend on the core observables
I. Intuitively, this is needed to ensure that the equilibrium of the opened network
can be computed from the values assigned to I. Condition (iii), instead, is needed
to exclude dependency deadlocks. For instance, the network depicted in Fig. 3
cannot be handled because the equilibrium of 2 depends on the equilibrium of 3
and vice versa. Overall, (ii) and (iii) ensure that f in the fixed-point equation
y = f(y) is well-defined, while condition (i) and (iv) imply that f is anti-
monotonic.
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The graph-theoretic conditions (i)–(iii) boil down to verifying that a sub-
graph of (V,E) has no loops, a well-known problem that can be solved in polyno-
mial time. Instead, condition (iv) depends on the actual ODE system underlying
the RN. For instance, recall that in the case of the MAPK network from Fig. 1b,
we have φMKKKP([RAS]) = α1cMKKKP/(α1[RAS] + β2). Hence, (5) fulfills con-
dition (iv). More in general, the following can be proven.

Lemma 1. The MAPK network from Fig. 1b satisfies (i)–(iv).

Proof. Since φRAS and φMKKKP have been covered in Sect. 2, we are left to derive
the expressions φMKKPP and φMAPKPP . Noting that φMAPKPP is an instance of
φMKKPP with modified activation and inhibition parameters, it suffices to focus
on φMKKPP only. Standard algebraic manipulations reveal that

φMKKPP([MKKKP]) = cMKKPP

α3α4[MKKKP]2

α3α4[MKKKP]2 + α3β4[MKKKP] + β5β6

For completeness, we remark here that

φMKK([MKKKP]) = cMKKPP

β5β6

α3α4[MKKKP]2 + α3β4[MKKKP] + β5β6

φMKKP([MKKKP]) = cMKKPP

α3β4[MKKKP]
α3α4[MKKKP]2 + α3β4[MKKKP] + β5β6

Since αi and βi are positive, it suffices to show that the function h(y) :=
a1y

2/(a1y
2 + a2y + a3) is monotonic in y when a1, a2, a3 > 0. A differentia-

tion of h with respect to y yields

(∂yh)(y) =
2a1y

a1y2 + a2y + a3
− a1y

2(a2 + 2a1y)
(a1y2 + a2y + a3)2

Algebraic manipulations reveal that ∂yh has the roots y = 0 and y = − 2a3
a2

< 0.
Since h is non-negative and h(0) = 0, we infer the claim. �

In our framework, we suppress the incoming edges of the core observables
I and show that the equilibrium of the so-obtained open-loop network can be
computed from the values assigned to I. To do so, we will work with three index
sets. First, there is the full vector x. The sub-vector x of x which lives in R

V and
tracks the observables. Finally, x|I provides only the values of those vertices who
become dangling in the open the network. Our theorems work on this coarsest
set I and show that the knowledge of those values characterizes the equilibria x
of the ODE system ẋ = F (x) in full.

In particular, the next result ensures that Algorithm1 computes, for a given
vector y ∈ ∏

i∈I [0; ci], a value f(y) ∈ ∏
i∈V [0; ci] such that the fixed-points of

y �→ f|I(y) stand in an one-to-one correspondence with the equilibria of the ODE
system ẋ = F (x) of the RN. Thus, if y = f|I(y), then the unique equilibrium x
associated to y can be computed from y.
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For instance, in the case of the MAPK network from Fig. 1b, I = {MAPKPP}
and y �→ f|I(y) rewrites to [MAPKPP] �→ fMAPKPP([MAPKPP]), thus resem-
bling (6). The function value f([MAPKPP]), instead, has the four components

fRAS([MAPKPP]) = φRAS([MAPKPP])
fMKKKP([MAPKPP]) = φMKKKP(fRAS([MAPKPP]))
fMKKPP([MAPKPP]) = φMKKPP(fMKKKP([MAPKPP]))

fMAPKPP([MAPKPP]) = φMAPKPP(fMKKPP([MAPKPP])),

where φRAS and φMKKKP are given in (4) and (5), respectively (while φMKKPP

and φMAPKPP are derived in the proof of Lemma1). If [MAPKPP] satisfies
[MAPKPP] = fMAPKPP([MAPKPP]), we set

[RAS] := fRAS([MAPKPP]) [MKKKP] := fMKKKP([MAPKPP])
[MKKPP] := fMKKPP([MAPKPP]) [MAPKPP] := fMAPKPP([MAPKPP])

With this, the remaining components of the equilibrium, [MKKK], [MKK],
[MKKP], [MAPK] and [MAPKP], are determined by the corresponding equilib-
rium equations. In the case of [MKKK], [MKKKP] and [MKKKPP], for instance,
it holds that (see proof of Lemma 1)

[MKK] = cMKKPP

β5β6

α3α4[MKKKP]2 + α3β4[MKKKP] + β5β6

[MKKP] = cMKKPP

α3β4[MKKKP]
α3α4[MKKKP]2 + α3β4[MKKKP] + β5β6

[MKKPP] = cMKKPP

α3α4[MKKKP]2

α3α4[MKKKP]2 + α3β4[MKKKP] + β5β6
,

where cMKKPP = [MKK](0) + [MKKP](0) + [MKKPP](0). Noting that the above
values [MKK], [MKKP] and [MKKPP] depend only on [MKKKP], we observe
that the equilibrium of vertex MKKP is fully determined by [MKKKP]. Hence,
vertex [MKKKP] satisfies condition (3) of Definition 3 which requires that the
equilibrium equation of vertex i ∈ V ,

0 = Fi(x1, . . . , xi−1,xi, xi+1, . . . , xn),

characterizes the value of xi (with respect to the given inputs).

Remark 1. Condition (iv) of Definition 4 is usually established by deriving
closed-form expressions for (φi)i∈V . Note that this problem is model-dependent.
In the case of the MAPK model, for instance, it is sufficient to provide three
(instead of four) closed-form expressions because φMAPKPP is an instance of
φMKKPP with modified activation and inhibition parameters. In the model stud-
ied in Sect. 4, instead, it suffices to derive only one closed-form expression because
all vertices share a common ODE semantics.

Theorem 1. Assume that (V,E) is an anti-monotonic RN. Then, Algorithm1
computes, for any vector y ∈ ∏

i∈I [0; ci], a value f(y) ∈ ∏
i∈V [0; ci] such that:
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(1) f is anti-monotonic, i.e., 0 ≤ y ≤ y′ ≤ c|I implies 0 ≤ f(y′) ≤ f(y) ≤ c.
(2) There is a one-to-one correspondence between the equilibria of F and the

fixed-points of f|I . More formally
– If x is such that 0 = F (x), then f(x|I) = x|I .
– If y ∈ ∏

i∈I [0; ci] satisfies f|I(y) = y, then there exists a unique x such
that 0 = F (x) and y = x|I . Moreover, f(y) = x|V .

(3) If each φi can be computed in polynomial time, then the same applies to f .

Statement (2) ensures that it suffices to find all fixed-points of f|I in order
to determine the equilibria of ẋ = F (x). In particular, given a fixed-point y
of f|I , the vector f(y) provides the observables V with values, i.e., xi = fi(y).
Hence, xi can be obtained by solving the equilibrium equations, see discussion
preceding Theorem 1. In the case of the MAPK model, statement (3) ensures
that each iteration of the algorithm can be computed in polynomial time.

In Algorithm 1, any vector y ∈ ∏
i∈I [0; ci] is processed in three stages. In the

first stage, the for loop from line 2, the algorithm sets the f value of each vertex
in I (i.e., fi(y) := yi for all i ∈ I) and computes the f values of all vertices that
have no incoming neighbors (note that the equilibrium function of any vertex
i ∈ V with in(i) = ∅ has no inputs, hence φi is merely a constant).

In the second stage, the algorithm computes the f values of all remaining
vertices, that is vertices that are activators with at least one incoming neighbor.
The underlying computation is carried out using the while loop from line 10.
This is because the f values in question have to be computed in a specific order
that is dictated by the graph. For instance, in the case of the MAPK network
from Fig. 1b, fRAS([MAPKPP]) has to be computed before fMKKKP([MAPKPP])
can be computed. Because of this, fMKKKP([MAPKPP]) is computed during the
second iteration, while fRAS([MAPKPP]) is obtained in the first iteration.

The third and final stage of the algorithm is given by the for loop in line 20.
There, the algorithm computes the f values of all i ∈ I using the previously
computed f values. This intuitively corresponds to a closing of the opened net-
work, see Sect. 2. In particular, if the f values computed during the for loop in
line 20 coincide with y ∈ ∏

i∈I [0; ci], then y = f|I(y).
If applied to the MAPK network from Fig. 1b, Algorithm 1 repeats the com-

putational steps from Sect. 2.
Armed with Theorem 1, we are in a position to state our main result.

Theorem 2. Assume that (V,E) is an anti-monotonic RN and let I and f be
as in Theorem1. Define g(y) := f|I(f|I(y)) for any y ∈ ∏

i∈I [0; ci]. Then, the
following holds true.

(1) Function f|I :
∏

i∈I [0; ci] → ∏
i∈I [0; ci] has at least one fixed-point.

(2) Function g is monotonic, i.e., 0 ≤ y ≤ y′ ≤ c|I implies 0 ≤ g(y) ≤ g(y′) ≤ c.
(3) Sequence 0|I , g(0|I), g(g(0|I)), . . . converges to x⊥, the least fixed-point of g.
(4) Sequence c|I , g(c|I), g(g(c|I)), . . . tends to x�, the greatest fixed-point of g.
(5) If x is such that 0 = F (x), then x|I ∈ [x⊥;x�].
(6) If x∗ = x⊥ = x�, then 0 = F (x) has a unique solution x and x|I = x∗.
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Algorithm 1. Computation of the anti-monotonic function f underlying an
anti-monotonic RN.
Require: Anti-monotonic network (V, E)

and y ∈ ∏
i∈I [0; ci]

1: set done to V − ∪{i ∈ V + | in(i) = ∅}
2: for all i ∈ done do
3: if i ∈ I then
4: set fi(x) to yi

5: else
6: set fi(x) to φi

7: end if
8: end for
9: set left to

⋃
i∈done out(i)

10: while left �= ∅ do
11: set tmp to left

12: for all i ∈ tmp do
13: if in(i) ⊆ done then

14: set fi(x) to φi(u
+, u−), where

u+ and u− are computed from
{fj(x) | j ∈ in(i)}

15: set done to done ∪ {i}
16: set left to left ∪ (out(i) \

done)
17: end if
18: end for
19: end while
20: for all i ∈ I do
21: set fi(x) to φi(u

+), where u+ is
computed from {fj(x) | j ∈ in(i)}

22: end for
23: return f(x) ∈ ∏

i∈V [0; ci]

Proof. We start by noting that f|I :
∏

i∈I [0; ci] → ∏
i∈I [0; ci] is a continuous

function that maps a compact set into itself (the continuity is ensured by the
fact that all φi are continuous). Hence, Brouwer’s fixed-point theorem ensures
(1). Instead, (2) follows from Theorem1 that ensures that f is anti-monotonic.
Statement (3) and (4) are readily implied by Kleene’s fixed-point theorem. To see
(5) and (6), we first note that any fixed-point of f|I is necessarily a fixed-point
of g. This and Theorem 1, which establishes that the fixed-points of f|I stand
in an one-to-one correspondence with the equilibria of the dynamical system
underlying the regulatory network, yield the claim.

Theorem 2 formalizes the claims made in Sect. 2 and provides an analysis
framework for the equilibria of an ODE underlying an anti-monotonic RN.

We conclude the section by noting that one may be tempted to check x⊥ = x�

by solving the ODE system for different initial conditions (that respect the max-
imal attainable concentration vector c). However, while such an ad-hoc approach
can be used to discover the presence of different equilibria, it cannot be used to
prove their absence because the number of possible initial conditions is infinite.

4 Evaluation

We next discuss a model for the EGFR signaling pathway from [5], whose asso-
ciated RN is given in Fig. 4a. It is also reported, with a compact set of labels, in
Fig. 4b, to which we shall refer from now on.

We use a mass-action semantics that follows [6], where each vertex is asso-
ciated with a variable triplet. Here we already express it in the more compact
notation which exploits the preservation of mass among the three forms. Thus
we use two ODE variables x∗

i and xi, which represent the active and the passive
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Fig. 4. Left: Regulatory network from [5] modeling an EGFR pathway. Right: The
corresponding open network which arises by suppressing the activations from 3 to
6 and 11 to 12, respectively. The open network has the core observables 6 and 12.
The blue numbers give the while loop iteration at whose beginning the corresponding
f value becomes available for the first time. For instance, f6 and f12 are initialized
during the for loop in line 2 and are thus available at the beginning of the first while
loop iteration. Instead, f2 is computed during the first while loop iteration, hence it is
not available at the beginning of the first while loop iteration. (Color figure online)

form of each component, respectively, and denote by ci the total concentration
for vertex i. Let us denote by Ω+

i ⊆ V and Ω−
i ⊆ V the set of activators and

inhibitors of vertex i, respectively. The ODEs are given by

ẋ∗
i = −

( ∑

Ik∈Ω−
i

βk,ixIk +
∑

Al∈Ω+
i

αk,i(cAl
− xAl

)
)
x∗

i

+
( ∑

Al∈Ω+
i

αk,ixAl
+

∑

Ik∈Ω−
i

βk,i(cIk − xIk)
)
(ci − x∗

i − xi)

ẋi = −
( ∑

Al∈Ω+
i

αk,ixAl
+

∑

Ik∈Ω−
i

βk,i(cIk − xIk)
)
xi

+
( ∑

Ik∈Ω−
i

βk,ixIk +
∑

Al∈Ω+
i

αk,i(cAl
− xAl

)
)
(ci − x∗

i − xi)

(7)

where the parameters α and β are positive constants that give the strengths of
inhibition and activation, respectively.
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Table 1. Application of Algorithm 1 to the model of the epidermal growth factor
from Fig. 4. The variable values are stated with respect to the beginning of the while
loop iteration one, two, three, four and five, respectively. All function terms are meant
to be evaluated with respect to x6 and x12, e.g., f2 ≡ f2(x6, x12) and φ2(f1, f12) ≡
φ2(f1(x6, x12), f12(x6, x12)). This is because 6 and 12 are treated as inputs during the
while loop. The for loop from line 20, instead, takes the suppressed feedbacks to 6 and
12 into account and assigns f6 := φ6(f3) and f12 := φ12(f11)

Value Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

f1 φ1 φ1 φ1 φ1 φ1 φ1

f2 — φ2(f1, f12) φ2(f1, f12) φ2(f1, f12) φ2(f1, f12) φ2(f1, f12)

f3 — — — φ3(f1, f4) φ3(f1, f4) φ3(f1, f4)

f4 — — φ4(f2, f5) φ4(f2, f5) φ4(f2, f5) φ4(f2, f5)

f5 φ5 φ5 φ5 φ5 φ5 φ5

f6 x6 x6 x6 x6 x6 x6

f7 — — — φ7(f4, f6, f8) φ7(f4, f6, f8) φ7(f4, f6, f8)

f8 φ8 φ8 φ8 φ8 φ8 φ8

f9 — — — — φ9(f7, f10) φ9(f7, f10)

f10 φ10 φ10 φ10 φ10 φ10 φ10

f11 — — — — — φ11(f9, f10)

f12 x12 x12 x12 x12 x12 x12

The set of core observables is I = {6, 12} and conditions (i)–(iii) can be
easily seen to hold true. Instead, using

ai(A, I) =
∑
Al

αl,ixAl
−

∑
Ik

βk,ixIk +
∑
Ik

βk,icIk

bi(A, I) =
∑
Ik

βk,ixIk −
∑
Al

αl,ixAl
+

∑
Al

αl,icAl
,

it can be shown that φi = cia
2
i /(a2

i +aibi +b2i ) is the unique equilibrium point of
x∗

i . Moreover, it can be proven that the roots of (∂Al
φi)(Al) are either less than

or equal to zero or strictly greater than cAl
. By considering Al �→ (∂2

Al
φi)(Al)

at Al = 0, we infer that φi is monotonic in Al on [0; cAl
]. A similar argumenta-

tion ensures that φi is anti-monotonic in every Ik on [0; cIk ], thus yielding the
following.

Lemma 2. The semantics (7) satisfies condition (iv).

Proof. Additionally to the observations made above that ensure that (iv) holds
true, we remark that the equilibrium of the non-observable species of vertex i
(i.e., xi) is given by cib

2
i /(a2

i +aibi+b2i ). Hence, for any fixed-point of y �→ f|I(y),
vector f(y) and cib

2
i /(a2

i + aibi + b2i ) induce the equilibrium associated to y, see
second statement of Theorem 1.
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The above discussion allows us to apply Algorithm 1. The order in which it
computes the entries of the vector function f are provided in Fig. 4b (light blue
numbers alongside the nodes). Table 1 additionally provides the corresponding
f values.

Experiments. We evaluated our approach on the MAPK and EGFR model
from Figs. 1 and 4, respectively. To this end, we ran 100 experiments for each
model in which the parameters were uniformly sampled from the compact inter-
val [1; 1000], covering thus a variety of possible scenarios; for both models we
used the initial conditions stated in [18] and [5], respectively. In each experiment,
the ODE system could be shown to enjoy a unique equilibrium because the least
and the greatest fixed-point of g from Theorem 2 were identical.

5 Conclusion

In this paper we have presented an algorithm for the computation of equilibrium
points in ODE systems that model regulatory networks. Our method rests on
the idea of cutting feedback loops in the network, similarly to other approaches
in the literature, most notably [2,13] and [25]. In contrast to [25], our approach
does not require to solve systems of nonlinear equations and enjoys, under cer-
tain assumptions, polynomial time complexity. The work of Sontag et al. [2,13],
instead, does not focus on the computation of equilibria. Instead, it ensures that
convergence to unstable equilibria is only possible from a set of initial conditions
with Lebesgue measure zero.

A possible line of future research is to combine the computational approach
of the present paper with [2,13]. Specifically, the goal would be to provide suf-
ficient conditions ensuring that the set of equilibria contains, for instance, only
attractors. To this end, we plan to relate the anti-monotonic regulatory networks
to the graphs that are induced by systems of differential equations in [1–3,13].
Moreover, we intend to investigate whether the requirement that each vertex is
either an inhibitor or activator can be dropped by introducing artificial vertices
that preserve equilibria. Finally, aiming at a more efficient computation of equi-
libria, we also plan to investigate if the current approach can be combined with
model reduction techniques such as [7–10,12,14].
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Austrian Science Fund (FWF) under grant number M-2393-N32 (COCO).
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Abstract. Stochastic processes can model many emerging phenomena
on networks, like the spread of computer viruses, rumors, or infectious
diseases. Understanding the dynamics of such stochastic spreading pro-
cesses is therefore of fundamental interest. In this work we consider the
wide-spread compartment model where each node is in one of several
states (or compartments). Nodes change their state randomly after an
exponentially distributed waiting time and according to a given set of
rules. For networks of realistic size, even the generation of only a sin-
gle stochastic trajectory of a spreading process is computationally very
expensive.

Here, we propose a novel simulation approach, which combines
the advantages of event-based simulation and rejection sampling. Our
method outperforms state-of-the-art methods in terms of absolute run-
time and scales significantly better while being statistically equivalent.

Keywords: Spreading process · SIR · Epidemic modeling ·
Monte-Carlo simulation · Gillespie Algorithm

1 Introduction

Computational modeling of spreading phenomena is an active research field
within network science with many applications ranging from disease prevention
to social network analysis [1–6]. The most widely used approach is a continuous-
time model where each node of a given graph occupies one of several states
(e.g. infected and susceptible) at each point in time. A set of rules determines
the probabilities and random times at which nodes change their state depending
on the node’s direct neighborhood (as determined by the graph). The application
of a rule is always stochastic and the waiting time before a rule “fires” (i.e. is
applied) is governed by an exponential distribution.

The underlying stochastic dynamics are given by a continuous-time Markov
chain (CTMC) [6–9]. Each possible assignment from nodes to local node states
constitutes an individual state of the CTMC (here referred to as CTMC state or
network state to avoid confusion with the local state of a single node). Hence, the
c© Springer Nature Switzerland AG 2019
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corresponding CTMC state space grows exponentially in the number of nodes,
which renders its numerical solution infeasible.

As a consequence, mean-field-type approximations and sampling approaches
have emerged as the cornerstones for their analysis. Mean-field equations origi-
nate from statistical physics and provide typically a reasonably good approxima-
tion of the underlying dynamics [10–14]. Generally speaking, they propose a set
of ordinary differential equations that model the average behavior of each com-
ponent (e.g., for each node, or for all nodes of a certain degree). However, mean-
field approaches only give information about the average behavior of the system,
for example, about the expected number of infected nodes for each degree. Nat-
urally, this restricts the scope of their application. In particular, they are not
suited to answer specific questions about the system.

For example, one might be interested in finding the specific source of an
epidemic [15,16] or wants to know where an intervention (e.g. by vaccination) is
most successful [17–20].

Consequently, stochastic simulations remain an essential tool in the compu-
tational analysis of complex networks dynamics. Different simulation approaches
for complex networks have been suggested, which can all be seen as adaptations
of the Gillespie algorithm (GA) [6]. Recently, a more efficient extension of the
GA has been proposed, called Optimized GA (OGA) [21]. A rejection step is
used to reduce the number of network updates.

Here, we propose an event-driven simulation method which also utilizes rejec-
tion sampling. Our method is based on an event queue which stores infection
and curing events. Unlike traditional methods, we ensure that it is not necessary
to iterate over the entire neighborhood of a node after it has changed its state.
Therefore, we allow the creation of events which are inconsistent with the cur-
rent CMTC state. These might lead to rejections when they reach the beginning
of the queue. We introduce our method for the well-known SIS (Susceptible-
Infected-Susceptible) model and show that it can easily be generalized for other
epidemic-type processes. Code will be made available.1

We formalize the semantics of spreading processes in Sect. 2 and explain
how the CTMC is constructed. Previous simulation approaches, such as GA
and OGA, are presented in Sect. 3. In Sect. 4 we present our rejection sampling
algorithm and discuss to which extend our method is generalizable to different
network models and spreading models. We demonstrate the effectiveness of our
approach on three different case studies in Sect. 5.

2 Stochastic Spreading Processes

Let G = (N , E) be a an undirected, unweighted, finite graph without self-loops.
We assume the edges are tuples of nodes and that (n1, n2) ∈ E always implies
(n2, n1) ∈ E . At each time point t ∈ R≥0 each node occupies one out of m (local)
states (also called labels or compartments), denoted by S = {s1, s2, . . . , sm}.

1 github.com/gerritgr/Rejection-Based-Epidemic-Simulation.

http://github.com/gerritgr/Rejection-Based-Epidemic-Simulation
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Consequently, the (global) network state is fully specified by a labeling L : N →
S. We use L = {L | L : N → S} to denote all possible network states. As each
of the |N | nodes occupies one of m states, we know that |L| = m|N |. Nodes
change their state by the application of a stochastic rule. A node’s state and its
neighborhood determine which rules are applicable to a node and the probability
density of the random delay until a rule fires. If several rules can fire, the one
with the shortest delay is executed.

We allow two types of rules: node-based (independent, spontaneous) rules
and edge-based (contact, spreading) rules. The application of a node-based rule
A

μ−→ B results in a transition of a node from state A ∈ S to state B ∈ S (A �= B)
with rate μ ∈ R>0. That is, the waiting time until the rule fires is governed
by the exponential distribution with rate μ. An edge-based rule has the form
A + C λ−→ B + C, where A,B,C ∈ S,A �= B, λ ∈ R>0. Its application changes
an edge (more precisely, the state of an edge’s node). It can be applied to each
edge (n, n′) ∈ E where L(n) = A, L(n′) = B. Again, the node in state A changes
after a delay that is exponentially distributed with rate λ. Note that, if a node in
state A has more than one direct B-neighbor, it is “attacked” independently by
each neighbor. Due to the properties of the exponential distribution, the rate at
which a node changes its state according to a certain contact rule is proportional
to the number of neighbors which induce the change.

SIS Model. In the sequel, we use the well-known Susceptible-Infected-
Susceptible (SIS) model as a running example. Consider S = {I,S} and the
rules:

S + I λ−→ I + I I
μ−→ S.

In the SIS model, infected nodes propagate their infection to neighboring
susceptible nodes using an edge-based rule. Thus, only susceptible nodes with
at least one infected neighbor can become infected. Infection of a node occurs
at a rate that increases proportionally with the number of infected neighbors.
Infected nodes can, independently from their neighborhood, recover (i.e. become
susceptible again) using a node-based rule.

3 Previous Approaches

In this section, we shortly revise techniques that have been previously suggested
for the simulation of SIS-type processes. For a more comprehensive description,
we refer the reader to [6,21].

3.1 Standard Gillespie Algorithm

The Standard Gillespie Algorithm (here, simply referred to as GA) is also known
as Gillespie’s direct method and a popular method for the simulation of coupled
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chemical reactions. Its adaptation to complex networks uses as key data struc-
tures two lists which are constantly updated: a list of all infected nodes (denoted
by LI) and a list of all S–I edges (denoted by LS−I).

In each simulation step, we first draw an exponentially distributed delay for
the time until the next rule fires. That is, instead of sampling a waiting time for
each rule and each position where the rule can be applied, we directly sample
the time until the network state changes. For this, we compute an aggregated
rate c = μ|LI | + λ|LS−I |. Then we randomly decide if an infection or a cur-
ing event is happening. The probability of the latter is proportional to its rate,
i.e. 1

cμ|LI |, and thus, the probability of an infection is 1
cλ|LS−I |. After that we

pick an infected node (in case of a curing) or an S–I edge (in case of an infec-
tion) uniformly at random. We update the two lists accordingly. The expensive
part in each step is keeping LS−I updated. For this, we iterate over the whole
neighborhood of the node and for each susceptible neighbor we remove (after a
curing) or add (after an infection) the corresponding edge to the list. Thus, we
need one add/remove operation on the list for each susceptible neighbor.

Note that there are different possibilities to sample the node that will become
infected next. Instead of keeping an updated list of all S–I edges one can also
use a list of all susceptible nodes. In that case, we cannot sample uniformly but
decide for the infection of a susceptible node with a probability proportional to
its number of infected neighbors.

Likewise, we can randomly pick the starting point of the next infection by
only considering LI . To generate an infection event, we first sample an infected
node from this list and then we (uniformly) sample a susceptible neighbor, which
becomes infected. Since infected nodes with many susceptible neighbors have a
higher probability of being the starting point of an infection (i.e., they have more
S–I edges associated with them), we sample from LI such that the probability of
picking an infected node is proportional to its number of susceptible neighbors.

All three approaches are statistically equivalent but the last one motivates
the Optimized Gillespie Algorithm (OGA) [21].

3.2 Optimized Gillespie Algorithm

As discussed earlier, sampling from LI is expensive because Updating this infor-
mation for all elements of LI is costly because after each event, the number of
susceptible neighbors may change for many nodes.

In [21] Cota and Ferreira suggest to sample nodes from LI with a probability
that is proportional to the degree k of a node, which is an upper bound for the
maximal possible number of susceptible neighbors. Then they uniformly choose
a neighbor of that node and update the global clock. If this neighbor is already
infected they reject the infection event, which yields a rejection probability of
k−kS

k if kS is the number of susceptible neighbors. Note that the rejection prob-
ability exactly corrects for the over-approximation of using k instead of kS . This
is illustrated in Fig. 1.

Compared to the GA, updating the list of infected nodes becomes cheaper,
because only the node which actually changes its state is added to (or removed
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Fig. 1. Example of an infection event. We sample from LI proportional to kS . Alter-
natively, we can weight according to the number of neighbors k which is constant and
over-approximates kS . To correct for the over-approximation we reject a sample with
probability k−ks

k
.

from) LI . The sampling probabilities of the neighbors remain the same because
their degree remains the same. On the other hand, sampling of a node is more
expensive compared to the GA where we sample edges uniformly.

Naturally, the speedup in each step comes at the costs (of a potentially
enormous amount) of rejection events. Even a single infected node with many
infected but few susceptible neighbors will continuously lead to rejected events.
This is especially problematic in cases with many infected nodes and no or
very few susceptible neighbors which therefore make rejections many orders of
magnitude more likely than actual events. Therefore, in [21] the authors propose
the algorithm for simulations close to the epidemic threshold, where the number
of infected nodes is typically very small.

Note that, to sample a node, Cota and Ferreira also propose rejection sam-
pling based on the maximal degree. However, St-Onge et al. point out that in
the case of heterogeneous networks a binary tree can be used to speed up this
step significantly. Specifically, this allows them to derive an upper-bound for
the rejecting probability [22]. This, however, does not overcome the fundamen-
tal limitation of the OGA approach regarding models with a large fraction of
infected nodes. That is, where infected nodes are mostly surrounded by infected
nodes causing most infections to be rejected.

3.3 Event-Based Simulation

In the event-driven approach, the primary data structure is an event queue, in
which events are sorted and executed according to the time points at which they
will occur. This eliminates the costly process of randomly selecting a node for
each step (popping the first element from the queue has constant time com-
plexity). Events are either curing of a specific node or infection via a specific
edge. Moreover, it is easy to adapt the event-driven approach to rules with
non-Markovian waiting times or to a network where each node has individual
recovery and infection rates [6]. Event-based simulation of an SIS process is
done as follows: For the initialization, we draw for each node an exponentially
distributed time until recovery with rate μ and add the respective curing event to
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the queue. Likewise, for each susceptible node with at least one infected neighbor
we draw an exponentially distributed time until infection with rate λ × “Number
of infected neighbors”. We add the resulting events to the queue.

During the simulation, we always take the earliest event from the queue,
change the network accordingly and update the global clock. If the current event
is the infection of a node, the infection rates of its susceptible neighbors increase.
Thus, it is necessary to iterate over all neighbors of the corresponding node, draw
renewed waiting times for their infection events, and update the event queue
accordingly. Although efficient strategies have been suggested [6], these queue
updates are rather costly.

Since each step requires an iteration over all neighbors of the node under
consideration, the worst-case runtime depends on the maximal degree of the
network. Moreover, for each neighbor, it might be necessary to reorder the event
queue. The time complexity of reordering the queue depends (typically logarith-
mically) on the number of elements in the queue and adds significant additional
costs to each step. Note that trajectories generated using the event-driven app-
roach are statistically equivalent to those generated with the GA because all
delays are exponentially distributed and thus have the memoryless property. A
variant of this algorithm can also be found in [23].

4 Our Method

In this section, we propose a method for the simulation of SIS-type processes.
The key idea is to combine an event-driven approach with rejection sampling
while keeping the number of rejections to a minimum. We will generalize the
algorithm for different epidemic processes as well as for weighted and temporal
networks. First, we introduce the main data structures:

Event Queue. It stores all future infection and curing events generated so far.
Each event is associated with a time point and with the node(s) affected by the
event. Curing events contain a reference to the recovering node and infection
events to a pair of connected nodes, an infected (source) node and a susceptible
(target) node.

Graph. In this graph structure, each node is associated with its list of neighbors,
its current state, a degree, and, if infected, a prospective recovery time.

We also keep track of the time in a global clock. We assume that an initial
network, a time horizon (or another stopping criterion), and the rate parame-
ters (μ, λ) are given as input. In Algorithm 1–4 we provide pseudocode for the
detailed steps of the method.

Initialization. Initially, we iterate over the network and sample a recovery
time (exponentially distributed with rate μ) for each infected node (cf. Line
2, Algorithm 1). We push the recovery event to the queue and annotate each
infected node with its recovery time (cf. Line 5, Algorithm 2). Next, we iterate
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over the network a second time and generate an infection event for each infected
node (cf. Line 5, Algorithm 1). The procedure for the generation of infection
events is explained later.

In Algorithm 1 we need two iterations because the recovery time of each
infected node has to be available for the infection events. These events identify
the earliest infection attempt of each node.

Iteration. The main procedure of the simulation is illustrated in Algorithm 4.
We schedule events until the global clock reaches the specified time horizon (cf.
Line 9). In each step, we take the earliest event from the queue (Line 7) and set
the global clock to the event time (Line 8). Then we “apply” the event (Line
11–20).

In case of a recovery event, we simply change the state of the corresponding
node from I to S and are done (Line 12). Note that we always generate (exactly)
one recovery event for each infected node, thus, each recovery event is always
consistent with the current network state. Note that the queue always contains
exactly one recovery event for each infected node.

If the event is an infection event, we apply the event if possible (Line 14–18)
and reject it otherwise (Line 19–20). We update the global clock either way.
Each infection event is associated with a source node and a target node (i.e., the
node under attack). The infection event is applicable if the current state of the
target node is S (which might not be the case anymore) and the current state of
the source node is I (which will always be the case). After a successful infection
event, we generate a new recovery event for the target node (Line 16) and two
novel infection events, one for the source node (Line 17) and one for the target
node which is now also infected (Line 18). If the infection attempt was rejected,
we only generate a novel infection event for the source node (Line 20). Thus, we
always have exactly one infection event in the queue for each infected node.

Generating Infection Events. The generation of infection events and the
distinction between unsuccessful and potentially successful infection attempts is
an essential part of the algorithm.

In Algorithm 3, for each infected node we only generate the earliest infection
attempt and add it to the queue. Therefore, we first sample the exponentially
distributed waiting time with rate kλ, where k is the degree of the node, and
compute the time point of infection (Line 5). If the time point of the infection
attempt is after its recovery event, we stop and no infection event is added to
the queue (Lines 6–7). Note that in the graph structure, each node is annotated
with its recovery time (node.recovery time) to have it immediately available.

Next, we uniformly select a random neighbor which will be attacked (Line
8). If the neighbor is currently susceptible, we add the event to the event queue
and the current iteration step ends (Lines 9–12).

If the neighbor is currently infected we check the recovery time of the neighbor
(Line 9). If the infection attempt happens before the recovery time point, we
already know that the infection attempt will be unsuccessful (already infected
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Fig. 2. Pseudocode for our event-based rejection sampling method.
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Fig. 3. First four steps of the our method for a toy example (I: red, S: blue): (a)
Initialization, generate the recovery events (left queue), and infection event for each
infected node (right queue). The first infection attempt from node 1 is an early reject.
(b) The infection from 1 to 4 was successful, we generate a recovery event for 4 and
two new infection events for 1 and 4. The infection event of node 4 is directly rejected
because it happens after its recovery. (c) (Late) Reject of the infection attempt from 3
to 4 as 4 is already infected. A new infection event starting from 3 is inserted into the
queue. (d) Node 4 recovers, the remaining queue is shown. (Color figure online)

nodes cannot become infected). Thus, we perform an early reject (Lines 10–12
are not executed). That is, instead of pushing the surely unsuccessful infection
event to the queue, we directly generate another infection attempt, i.e. we re-
enter the while-loop in Lines 4–12. We repeat the above procedure until the
recovery time of the current node is reached or the infection can be added to the
queue (i.e. no early rejection is happening) (Fig. 2).
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Figure 3 provides a minimal example of a potential execution of our method.

4.1 Analysis

Our approach combines the advantages of an event-based simulation with the
advantages of rejection sampling. In contrast to the Optimized Gillespie Algo-
rithm, finding the node for the next event can be done in constant time. More
importantly, the number of rejection events is dramatically minimized because
the queue only contains events that are realistically possible. Therefore, it is
crucial that each node “knows” its own curing time and that the curing events
are always generated before the infection events. In contrast to traditional event-
based simulation, we do not have to iterate over all neighbors of a newly infected
node followed by a potentially costly reordering of the queue.

Runtime. For the runtime analysis, we assume that a binary heap is used to
implement the event queue and that the graph structure is implemented using a
hashmap. Each simulation step starts by taking an element from the queue (cf.
Line 7, Algorithm 4), which can be done in constant time. Applying the change
of state to a particular node has constant time complexity on average and linear
time complexity (in the number of nodes) in the worst case as it is based on
lookups in the hashmap.

Now consider the generation of infection events. Generating a waiting time
(Line 3, Algorithm 3) can be done in constant time because we know the degree
(and therefore the rate) of each node. Likewise, sampling a random neighbor
(Line 8) is constant in time (assuming the number of neighbors fits in an inte-
ger). Checking for an early reject (Line 9) can also be done in constant time
because each neighbor is sampled with the same (uniform) probability and is
annotated with its recovery time. Even though each early rejection can be com-
puted in constant time, the number of early rejections can of course increase with
the mean (and maximal) degree of the network. Inserting the newly generated
infection event(s) to the event queue (Line 11) has a worst-case time complex-
ity of O(log n), where n is the number of elements in the heap. In our case,
n is bounded by twice the number of infected nodes. However, we can expect
constant insertion costs on average [24,25].

Correctness. Here, we argue that our method generates correct sample trajec-
tories of the underlying Markov model. To see this, we assume some hypothetical
changes to our method that do not change the sampled trajectories but makes
it easier to reason about the correctness. First, assume that we abandon early
rejects and insert all events in the event queue regardless of their possibility of
success. Second, assume that we change the generation of infection events such
that we do not only generate the earliest attempt but all infection attempts until
recovery of the node. Note that we do not do this in practice, as this would lead
to more rejections (less early rejections).
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Similar to [21], we find that our algorithm is equivalent to the direct event-
based implementation of the following spreading process:

I
μ−→ S S + I λ−→ I + I I + I λ−→ I + I .

In [21], I + I λ−→ I + I is called a shadow process, because the application of
this rule does not change the network state. Hence, rejections of infections in
the SIS model can be interpreted as applications of the shadow process. Note
that the rate at which this rule is applied to the network is the rate of the
rejection events. Hence, the rate at which an infected node attacks its neighbors
(no matter whether in state I or S) is exactly λk, where k is the degree of
the node. Our method includes the shadow process into our simulation in the
following way: For each S–I edge and I–I edge, an infection event is generated
with rate λ and inserted into the queue. The decision if this event will be a real
or a “shadow infection” is postponed until the event is actually applied. This is
possible because both rules have the same rate, in particular, the joint rate at
which an infected k-degree node attacks its neighbors will always be kλ.

4.2 Generalizations

So far we have only considered SIS processes on static and unweighted networks.
This section shorty discusses how to generalize our simulation method to SIS-
type processes on temporal and weighted networks.

General Epidemic Models. A key ingredient to our algorithm is the early
rejection of infection events. This is possible because we can compute a node’s
curing time already when the node gets infected. In particular, we exploit that
there is only one way to leave state I, that is, by the application of a node-
based rule. This gives us a guarantee about the remaining time in state I. Other
epidemic models have a similar structure. For instance, consider the Susceptible-
Infected-Recovered (SIR) model, where infected nodes first become recovered
(immune), before entering state I again:

S + I λ−→ I + I I
μ1−→ R R

μ2−→ S .

We also consider the competing pathogens model [26], where two infectious
diseases, denoted by I and J, compete over the susceptible nodes:

S + I λ1−→ I + I S + J λ2−→ J + J I
μ1−→ S J

μ2−→ S .

In both cases, we can exploit that certain states (I, J, R) can only be left
under node-based rules and thus their residence time is independent of their
neighborhood. This makes it simple to annotate each node in any of these states
with their exact residence time and perform early rejections accordingly.
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If we do not have these guarantees, early rejection cannot be applied. For
instance in the (fictional) system:

S + I λ1−→ I + I I + I λ2−→ I + S .

It is likely that our method will still perform better than the traditional
event-based approach, however, the number of rejection events might signifi-
cantly decrease its performance.

Weighted Networks. In weighted networks, each edge e ∈ E is associated with
a positive real-valued weight w(e) ∈ R>0. Each edge-based rule of the form

A + C λ−→ B + C

fires on this particular edge with rate w(e) · λ. Applying our method to
weighted networks is simple: Let n be a node. During the generation of infec-
tion events, instead of sampling the waiting time with rate λk, we now use
λ

∑
n′∈N(n) w(n, n′) as the rate, where N(n) is the set of neighbors of n. More-

over, instead of choosing a neighbor that will be attacked with uniform prob-
ability, we choose them with a probability proportionally to their edge weight.
This can be done by rejection sampling or in O(log(k)) time complexity, where
k is the degree of n.

Temporal Networks. Temporal (time-varying, adaptive, dynamic) networks
are an intriguing generalization of static networks which generally complicates
the analysis of their spreading behavior [27–30]. Generalizing the Gillespie algo-
rithm for Markovian epidemic-type processes is far from trivial [27].

In order to keep our model as general as possible, we assume here that an
external process governs the temporal changes in the network. This process runs
simultaneously to our simulation and might or might not depend on the current
network state. It changes the current graph by adding or removing edges, one
edge at a time. For instance, after processing one event, the external process
could add or remove an arbitrary number of edges at specific time points until
the time of the next event is reached. It is simple to integrate this into our
simulation.

Given that the external process removes an edge, we can simply update the
neighbor list and the degrees in our graph. For each infection event that reaches
the top of the queue, we first check if the corresponding edge is still present. If
not, we reject the event. This is possible because removing events only decreases
infection rates which we can correct by using rejections. When an edge is added
to the graph and at least one corresponding node is infected, the infection rate
increases. Thus, it is not sufficient to only update the graph, we also generate an
infection event which accounts for the new edge. In order to minimize the number
of generated events, we change the algorithm such that each infected node is
annotated with the time point of its subsequent infection attempt. Consider
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now an infected node. When it obtains a new edge, we generate an exponentially
distributed waiting time with rate λ modeling the infection attempt through this
specific link. We only generate a new event if this time point lies before the time
point of the subsequent infection attempt of the node. In that case, we also
remove the old event associated with this node from the queue.

Since most changes in the graph do not require changes to the event queue
(and those that do only cause two operations at maximum), we expect our
method to handle temporal networks with a reasonably high number of graph
updates very efficiently. In the case that an extremely large number of edges in
the graph change at once, we can always decide to iterate over the whole network
and newly initialize the event queue.

5 Case Studies

We demonstrate the effectiveness our approach on three classical epidemic-type
processes. We compare the performance of our method with the Standard Gille-
spie Algorithm (GA) and the Optimized Gillespie Algorithm (OGA) for differ-
ent network sizes. We use synthetically generated networks following the con-
figuration model [31] with a truncated power-law degree distribution, that is
P (k) ∝ k−γ for 3 ≤ k ≤ 1000. We compare the performance on degree distri-
butions with γ ∈ {2, 3}. This yields a mean degree around 30 (γ = 2) and 10
(γ = 3). We use models from the literature but adapt rate parameters freely to
generate interesting dynamics. Nevertheless, we find that our observations gen-
eralize to a wide range of parameters that yield networks with realistic degree
distributions and spreading dynamics.

We also report how the number of nodes in a network is related to the CPU
time of a single step. This is more informative than using the total runtime of a
simulation because the number of steps obviously increases with the number of
nodes when the time horizon is fixed. The CPU time per step is defined as the
total runtime of the simulation divided by the number of steps, only counting
the steps that actually change the network state (i.e., excluding rejections). We
do not count rejection events, because that would give an unfair advantage to
the rejection based approach. The evaluation was performed on a 2017 MacBook
Pro with a 3.1 GHz Intel Core i5 CPU and 16 GB of RAM.

Note that an implementation of the OGA was only available for the SIS
model and the comparison is therefore not available for other models. Due to
the high number of rejection steps in all models, we expect a similar difference
in the performance between our approach and the OGA also for other models.

5.1 SIS Model

For the SIS model we used rate parameters of (μ, λ) = (1.0, 0.6) and an initial
distribution of 95% susceptible nodes and 5% infected nodes. CPU times are
reported in Fig. 4a, where “reject” refers to our rejection-based algorithm (as
described in Sect. 4). For a sample trajectory, we plot the fraction of nodes in
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Fig. 4. SIS model (a): Average CPU time for a single step (i.e., change of network state)
for different networks. The GA method run out of memory for γ = 2.0, |N | = 107. (b):
Sample dynamics for a network with γ = 3.0 and 105 nodes.

Fig. 5. SIR model (a): Average CPU time for a single step (i.e., change of network
state) for different networks. (b): Sample dynamics for a network with γ = 2.0 and 105

nodes.

each state w.r.t. time (Fig. 4b). To have a comparison with OGA we used the
official Fortran-implementation in [21] and estimated the average CPU time per
step based on the absolute runtime. Note that the comparison is not perfectly
fair due to implementation differences and additional input/output of the OGA
code. It is not surprising that the OGA performs comparably bad, as the method
is suited for simulations close to the epidemic threshold. Moreover, our maximal
degree is very large, which negatively affects the performance of the OGA.

We also conducted experiments on models closer to the epidemic threshold
(i.e., where the number of infection events is very small, e.g. λ = 0.1) and with
smaller maximal degree (e.g. kmax = 100). The relative speed-up to the GA
increased slightly compared to the results in Fig. 4a. The performance of the
OGA improved significantly compared our method leading to a similar perfor-
mance as our method (results not shown).
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Fig. 6. Competing pathogens model (a): Average CPU time for a single step (i.e.,
change of network state) for different networks. (b): Mean fractions and standard devi-
ations of a network with γ = 2.0 and 104 nodes.

5.2 SIR Model

Next, we considered the SIR model, which has more complex dynamics. We used
rate parameters of (μ1, μ2, λ) = (1.1, 0.3, 0.6) and an initial distribution of 96%
susceptible nodes and 2% infected and recovered nodes, respectively. Similar as
above, CPU times and example dynamics are reported in Fig. 5. We see that
runtime behavior is almost the same as in the SIS model.

5.3 Competing Pathogens Model

Finally, we considered the Competing Pathogens model. We used rate param-
eters of (λ1, λ2, μ1, μ2) = (0.6, 0.63, 0.6, 0.7) and an initial distribution of 96%
susceptible nodes and 2% infected nodes for both pathogens (denoted by I, J),
respectively. CPU times and network dynamics are reported in Fig. 6. The model
is interesting because we see that in the beginning J dominates I due to its higher
infection rate. However, nodes infected with pathogen J recover faster than those
infected with I. This gives the I pathogen the advantage that infected nodes have
more time to attack their neighbors. In the limit, I takes over and J dies out.
For this model stochastic noise has a significant influence on the macroscopic
dynamics. Therefore, we also reported the standard deviation of the fractions
(cf. Fig. 6). Note that the fraction of susceptible nodes is almost deterministic.
Performance-wise our rejection method performs slightly worse than in the pre-
vious models (w.r.t. the baseline). We believe that this is due to the even larger
number of infection events and rejections.

6 Conclusions

In this paper, we presented a novel rejection algorithm for the simulation of
epidemic-type processes. We combined the advantages of rejection sampling and
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event-driven simulation. In particular, we exploited that nodes can only leave
certain states using node-based rules, which made it possible to precompute
their residence times, which then again allowed us to perform early rejection of
certain events.

Our numerical results show that our method outperforms previous
approaches especially for networks which are not close the epidemic thresh-
old. In particular, the speed-up increases as the maximal degree of the network
increases.

As future work, we plan to extend the method to compartment models with
arbitrary rules, including an automated decision for which states early rejections
can be computed and are useful.
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Abstract. Protein levels can be controlled by regulating protein syn-
thesis or half life. The aim of this paper is to investigate how introducing
feedback in burst frequency or protein decay rate affects the stochas-
tic distribution of protein level. Using a tractable hybrid mathematical
framework, we show that the two feedback pathways lead to the same
mean and noise predictions in the small-noise regime. Away from the
small-noise regime, feedback in decay rate outperforms feedback in burst
frequency in terms of noise control. The difference is particularly con-
spicuous in the strong-feedback regime. We also formulate a fine-grained
discrete model which reduces to the hybrid model in the large system-size
limit. We show how to approximate the discrete protein copy-number dis-
tribution and its Fano factor using hybrid theory. We also demonstrate
that the hybrid model reduces to an ordinary differential equation in the
limit of small noise. Our study thus contains a comparative evaluation
of feedback in burst frequency and decay rate, and provides additional
results on model reduction and approximation.

1 Introduction

Synthesis of protein molecules in bursts of multiple copies has been identified as
a major factor in gene expression noise [13]. The number of bursts per protein
lifespan determines the abundance of a bursty protein [10]. This ratio can be con-
trolled by the numerator, the burst frequency, or the denominator, the protein
decay rate. Feedback in burst frequency has been widely documented [2], and
examples of feedback in decay rate are available too [16,27]. Linear noise approx-
imation based analysis suggest that the two feedback pathways are equivalent
in terms of controlling gene-expression noise [26].

In this paper we compare the two feedback pathways using a hybrid model for
bursty gene expression with negative feedback in burst frequency or decay rate.
Hybrid models mix continuous deterministic with discrete stochastic dynam-
ics [11,12,19,23]. The chosen modelling framework is hybrid in that it combines
c© Springer Nature Switzerland AG 2019
M. Češka and N. Paoletti (Eds.): HSB 2019, LNBI 11705, pp. 80–97, 2019.
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stochastic dynamics of bursty production occurring at discrete time-points with
deterministic dynamics of protein decay [4].

Intuition suggests that, by repressing production, negative feedback low-
ers the protein mean, and, by improving regression to the mean, it also low-
ers the protein noise [14]. Counter-intuitively, multiple studies report that the
response of noise to increasing feedback strength is U-shaped [20,28]. The even-
tual increase in the noise can be attributed e.g. to low copy number effects [25],
loss of time averaging [18], or the failure to control large bursts [5]. In this paper
we examine how the choice of feedback pathway (burst frequency or decay rate)
affects the shape of the noise response to strengthening feedback.

The outline of the paper is as follows. Section 2 introduces the chosen hybrid
modelling framework on a protein which is expressed constitutively without feed-
back. Section 3 extends the hybrid model by negative autoregulation, and Sect. 4
derives the steady-state distribution for the extended model. Section 5 defines
a specific noise metric that is used here to evaluate feedback performance. Sec-
tions 6 and 7 elaborate on feedback in burst size and decay rate, respectively,
the two feedback pathways whose performance we are set to compare. Section 8
introduces a full discrete model for bursty protein expression. Section 9 contains
the bulk of the results of this paper that are based on the theoretical backbone
of the previous sections. The results compare the performance of the two feed-
back types, and draw connections between the full discrete, the hybrid and the
deterministic modelling formalisms. Section 10 concludes the paper with a short
summary.

2 Constitutive Model

By the constitutive model we understand a hybrid stochastic bursting gene-
expression model without a feedback mechanism. The protein level dynamics
is given by the balance of deterministic protein decay and stochastic protein
synthesis in bursts. Between bursts, the protein concentration satisfies a linear
ordinary differential equation dx/dt = −γx, where γ is the decay rate constant,
implying that the temporal profile of protein concentration is piecewise expo-
nential (see Fig. 1, left). Bursts occur randomly in time with frequency α per
unit time. It follows that the waiting time from one burst until the next one is
drawn from the exponential distribution with mean waiting time 1/α. The size
of a burst is also random and is drawn from the exponential distribution with
mean burst size β [10].

The probability balance equation (i.e. the master equation) for the hybrid
process as described above takes the form of a partial integro-differential equa-
tion [24]

∂p

∂t
+

∂J

∂x
= 0, J = −γxp(x, t) + α

∫ x

0

exp
(

−x − y

β

)
p(y, t)dy. (1)

The solution p(x, t) gives the probability density function of protein concentra-
tion x at time t. The partial integro-differential equation (1) represents a hybrid
analogue of the chemical master equation used in discrete systems [7].
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∅ B × X ∅

∅ B × X ∅

Fig. 1. Left: Sample protein path corresponding to the constitutive model (1). The
concentration of protein decays with rate constant γ between bursts (solid lines). Bursts
occur randomly in time with burst frequency α and lead to positive discontinuous jumps
of mean size β in protein level (dotted vertical lines). In this example, α = β = γ = 1.
Right: The two feedback types considered in this paper are feedback in burst frequency
and feedback in decay rate. Protein X is produced in bursts of size B and degrades one
molecule at a time. The protein controls its level either by reducing the frequency of
burst occurrence or by enhancing its own decay.

The first equation in (1) states the principle of probability conservation in
differential form. It says that the probability changes in time due to differentials
in the probability flux J . The probability flux is described in the second equation
of (1). The flux consists of a negative local flux and a positive non-local flux. In
general, a flux is local if it depends on the value of the solution at the point x of
flux evaluation, whereas a non-local flux depends on the values of the solution
away from the evaluation point; the sign of a flux corresponds to the direction
of probability mass transfer. In our particular model (1), the negative local flux
represents the downward transfer of probability mass due to deterministic decay
of protein, and the positive non-local flux represents the upward transfer of
probability mass due to bursts of protein production. Note in particular that
the integral kernel in the nonlocal flux expresses the probability that a burst
occurs which takes the protein concentration from a value y below x into any
value above x.

Previous studies established that the gamma distribution [15]

p(x) =
1

Γ (a)βa
xa−1e− x

β (2)

is a steady-state solution to the master Eq. (1). The parameter a in (2) is defined
by

a =
α

γ
, (3)

and gives the average number of protein bursts per protein lifetime. The mean
and variance of (2) are

〈x〉 = aβ, Var(x) = aβ2. (4)
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Fig. 2. As the average number a of bursts per protein lifetime increases, the trajectories
of the stochastic bursting model (6) become well approximated by the solution (9) to
the ordinary differential equation model (8). Without loss of generality, the burst size
is scaled to 1/a in order that the steady-state protein mean is equal to 1 regardless of
the choice of a.

It follows immediately from (4) that the squared coefficient of variation, defined
as the ratio of the variance to the square of mean, is equal to a−1. Therefore,
if a large number of bursts occur on average per protein lifetime, the noise in
protein concentration is low.

It is convenient to measure the protein concentration in units of its mean and
time in units of the protein lifetime. This is achieved via nondimensionalisation

x = aβx̃, t =
t̃

γ
, p(x, t) = p̃(x̃, t̃), (5)

where x̃ and t̃ represent the dimensionless concentration and time variables.
We insert (5) into (1) and, for simplicity, drop the tildes in the dimensionless
variables symbols, obtaining

∂p

∂t
+

∂J

∂x
= 0, J = −xp(x, t) + a

∫ x

0

exp(−a(x − y))p(y, t)dy. (6)

Comparing the dimensional problem (1) to the dimensionless problem (6), we
see that the latter can be formally obtained from the former by setting α = a,
β = 1/a, γ = 1. However, the assignment β = 1/a should not be interpreted
as implying that burst sizes are physically small if the burst frequency is large.
Rather, it means that burst sizes are small in comparison to the steady-state
mean.

In the regime a � 1 of very frequent (and very short) bursts, the probability
flux J in (6) can be approximated using the Laplace method [17] by

J ∼ (1 − x)p(x, t) for a � 1. (7)

The reduced flux (7) corresponds to deterministic dynamics governed by the
ordinary differential equation

ẋ = 1 − x, (8)
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whose solutions have the explicit form of

x(t) = 1 + (x(0) − 1)e−t. (9)

Figure 2 compares sample paths of the hybrid model (6) to the deterministic
solution (9) for two different initial conditions, x(0) = 0 (Fig. 2, left) and x(0) = 2
(Fig. 2, right). As expected from the use of the Laplace method, stochastic sample
paths are close to the deterministic solution for large burst frequencies a.

3 Feedback Model

Here we extend the hybrid stochastic model (6) with feedback in burst frequency
and decay rate (Fig. 1, right). In the feedback model, the probability of a burst
to occur in a time interval of length dt is equal to ah(x)dt+ o(dt), where x gives
the current protein concentration and h(x) is a response function as specified
below. Bursts sizes are exponentially distributed with mean size 1/a like in the
(dimensionless) constitutive model. Between bursts, the protein concentration
satisfies ẋ = −g(x)x, in which g(x) is another response function. We assume
that the response functions satisfy

g(0) = 1, g′(x) ≥ 0, h(0) = 1, h′(x) ≤ 0. (10)

If there is a shortage of protein (x is close to zero), bursts occur with frequency a
and decay with rate constant 1 as in the constitutive model. However, as the pro-
tein concentration increases, bursts become less frequent and/or the propensity
of protein molecules for decay increases.

The master equation for the feedback model reads

∂p

∂t
+

∂J

∂x
= 0, J = −g(x)xp(x, t) + a

∫ x

0

exp(−a(x − y))h(y)p(y, t)dy. (11)

Applying the Laplace method on the non-local flux yields

J ∼ (h(x) − g(x)x)p(x, t) for a � 1, (12)

which corresponds to the ordinary differential equation

ẋ = h(x) − g(x)x. (13)

Under assumptions (10), Eq. (13) has a single globally stable steady state which
is smaller than the steady state 1 of the constitutive deterministic model (8).

4 Steady State Distribution and Moments

At steady state, the probability flux J in the master Eq. (11) vanishes, leading
to the Volterra integral equation

g(x)xp(x) = a

∫ x

0

exp(−a(x − y))h(y)p(y)dy (14)
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for the stationary protein distribution p(x). In order to solve (14) in the unknown
p(x), we multiply both sides by eax,

eaxg(x)xp(x) = a

∫ x

0

eayh(y)p(y)dy, (15)

and differentiate with respect to x to obtain a linear first-order ordinary differ-
ential equation

d
dx

(eaxg(x)xp(x)) = aeaxh(x)p(x) =
ah(x)
xg(x)

× eaxg(x)xp(x). (16)

Solving (16) in eaxg(x)xp(x) implies that up to a normalisation constant we
have

p(x) =
eaΦ(x)

xg(x)
, (17)

in which the potential Φ(x) is defined through the indefinite integral

Φ(x) =
∫

h(x)
xg(x)

dx − x. (18)

The n-th moment of the steady-state protein distribution is given by

〈xn〉 =
Mn

M0
, where Mn =

∫ ∞

0

xnp(x)dx. (19)

In general, the moments can be evaluated by numerical integration of (19). In
special parametric regimes, asymptotic approximations to the integrals (19) can
be developed (Appendices A and B). In the next section, we use the moments
(19) to define a specific characteristic of protein noise.

5 Relative Noise

In this section we provide a definition of relative noise in protein concentration.
The purpose of this quantity is to compare the steady-state variance in a feedback
model to the steady-state variance in a referential constitutive model. The latter
is chosen so as to have the same steady-state mean as the feedback model. By
doing such a comparison, we compensate for the increase in noise in the feedback
model that results from the decrease of the time-averaged number of bursts per
protein lifetime. What remains is the change in noise that results from improved
mean reversion in a feedback model. Indeed, we shall see that the relative noise
is always less than 1 in our examples of negative autoregulatory pathways. For
this section only, we refer to the concentration of a self-regulating protein as xreg

and to the concentration of the referential constitutive protein as xconst.
In the absence of regulation, the normalised burst frequency is equal to a

and the burst size is equal to 1/a. These values lead to the mean value of 1.
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In order to satisfy the constraint 〈xconst〉 = 〈xreg〉, we decrease the normalised
burst frequency in the constitutive model to a〈xreg〉 whilst keeping the burst
size equal to 1/a. Since the protein variance is equal to the product of burst
frequency and the square of burst size, cf. (4), we find that

Var(xconst) =
〈xreg〉

a
. (20)

The relative noise compares the variances in the regulated model and the refer-
ential constitutive model,

η2 =
Var(xreg)

Var(xconst)
= a

Var(xreg)
〈xreg〉 = a

(
M2

M1
− M1

M0

)
. (21)

The definition (21) of the relative noise superficially resembles the Fano factor [6].
However, the two should not be confused. The value one of Fano factor means
Poissonian noise. On the other hand, η2 = 1 means that the regulated protein
has the same variance as the referential unregulated protein. Nevertheless, that
can still correspond to a very large Fano factor: how large the actual Fano factor
is depends on how many molecule copies are encompassed in an average burst. In
Sect. 8, we consider a discrete modelling approach and systematically establish
the relationship between the Fano factor of a full discrete model and the relative
noise of the hybrid model.

6 Feedback in Burst Frequency

Sections 3–4 provided general results for feedback in burst frequency and decay
rate acting concurrently. Here we provide additional details for the situation
if feedback is in burst frequency only. We thereby focus on a specific type of
response function, the decreasing Hill function. This leads to choices

h(x) =
1

1 + (x/K)H
, g(x) = 1 (22)

in the general model (11). The parameter K gives the critical concentration
of protein that is required to halve the burst frequency. The parameter H is
the cooperativity coefficient. Large values of H imply that the burst frequency
decreases rapidly from its maximal value to zero as the protein concentration
exceeds the critical threshold K. The critical threshold K is a reciprocal measure
of feedback strength: small values of K mean that low amounts of protein suffice
to turn off the production. For this reason we refer from now on to the reciprocal
K−1 of the critical threshold as feedback strength. It is easy to verify that the
choices in (22) satisfy the assumptions (10) imposed on the feedback model.

With choices (22), the limiting ordinary differential equation (13) takes the
form of

ẋ =
1

1 + (x/K)H
− x. (23)
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Solutions to (23) converge to a unique, globally stable, steady state, which sat-
isfies the fixed-point equation

1
1 + (x0/K)H

= x0. (24)

Elementary analysis shows that x0 is an increasing function of K, i.e. that the
deterministic steady state x0 decreases with increasing feedback strength K−1.

With choices (22), the potential (18) is an elementary function

Φ(x) =
∫

dx

x(1 + (x/K)H)
− x = lnx − ln

(
1 + (x/K)H

)
H

− x. (25)

Inserting (25) into (17) we find an explicit formula

p(x) = e−axxa−1
(
1 + (x/K)H

)− a
H (26)

for the steady-state protein pdf which holds up to a normalisation constant. The
asymptotic behaviour of the mean 〈x〉 (19) and the relative noise η2 (21) for
the protein pdf (26) in the small-noise regime (a � 1) and the strong feedback
regime (K � 1) is provided in AppendicesA and B.

7 Feedback in Decay Rate

Here we explore in detail the situation if feedback is in decay rate only. Specifi-
cally, we use the choices

h(x) = 1, g(x) = 1 + (x/K)H . (27)

The polynomial response function g(x) consist of a basal term 1 and a monomial
term which is proportional to xH . Biologically, this means that in addition to
spontaneous decay, there is an additional decay pathway, which is cooperatively
activated by the protein itself. The critical concentration K gives the amount of
protein that is necessary to double the rate of decay per protein molecule. Small
values of K mean that few proteins suffice to turn on the decay, suggesting that
the reciprocal K−1 can again be used as a measure of feedback strength.

With choices (27), the limiting ordinary differential equation (13) reads

ẋ = 1 − (1 + (x/K)H)x. (28)

Equation (28) describes a different time-dependent dynamics than the limiting
Eq. (23) for feedback in burst frequency. Nevertheless, solutions to (28) converge
to the same steady-solution x0 satisfying (24). Furthermore, the probability-
distribution potential (18) for the choices (27) is the same as (25) obtained for
feedback in burst frequency.

The steady-state protein pdf (17) simplifies to

p(x) = e−axxa−1
(
1 + (x/K)H

)− a
H −1

. (29)
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We note that the pdf (29) differs from (26) only in the exponent of the third
factor. The asymptotic behaviour of the mean 〈x〉 (19) and the relative noise η2

(21) for the protein pdf (29) in the small-noise regime (a � 1) and the strong
feedback regime (K � 1) is provided in AppendicesA and B.

8 Discrete Approach

The full discrete model for feedback in burst frequency and decay rate is based
on chemical reactions

∅ ah( P
Ω )−−−−→ B × P, P

g( P
Ω )−−−→ ∅. (30)

The first reaction in (30) is the production of protein P in bursts of size B. The
second reaction in (30) is the degradation of protein P . The response functions
depend on the ratio P/Ω of the protein copy number to a system-size parameter
Ω. Large values of Ω mean that feedback is sensitive to large changes in protein
molecules. As with the hybrid model, we treat the discrete model (30) separately
for the choices (22) (feedback in burst frequency) and the choices (27) (feedback
in decay rate).

The burst size B is assumed to be drawn from the geometric distribution [22]
with mean Ω/a

Prob[B = n] =
a

a + Ω

(
Ω

a + Ω

)n

, n = 0, 1, 2 . . . (31)

Due to previously developed theoretical arguments [3,9,21], the protein concen-
tration x = P/Ω approximately satisfies in the large system-size limit Ω � 1
the hybrid bursting model (11).

The Fano factor, which is defined as the variance to mean ratio, is a widely
used measure of variability in discrete probability distributions and discrete
stochastic models for gene expression [6]. The protein Fano factor satisfies

F =
Var(P )

〈P 〉 = Ω
Var(x)

〈x〉 ∼ η2Ω

a
, for Ω � 1, (32)

where η2 is the relative noise of the hybrid model as defined by (21). Hence, for
large system sizes, the Fano factor is proportional to the mean burst size Ω/a,
with the relative noise of the hybrid model giving the factor of proportionality.

9 Results

This paper explores a bursting model for stochastic gene expression with negative
feedback. The model is hybrid in the sense that it combines a deterministic decay
of protein with stochastic protein production in bursts. Two separate versions
of the model are considered, depending on whether the feedback is in burst
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frequency or decay rate. The model (either version) is characterised by three
parameters: the maximal burst frequency a; the critical concentration K; and
the cooperativity coefficient H.

The maximal burst frequency a gives the average number of bursts per pro-
tein lifetime at full gene activation. Without loss of generality, the mean burst
size is scaled to 1/a. This choice of scaling implies that the mean protein level,
which is equal to the product of the burst frequency and the burst size, is
bounded by one. In the regime a � 1 of frequent bursts, the trajectories of the
stochastic model fluctuate near the deterministic solution (Fig. 2). The regime
a � 1 is therefore referred to as the small-noise regime.

The parameters K and H determine the character of the feedback response.
The critical concentration K gives the amount of protein that is required to
halve the frequency of bursts (in case of feedback in burst frequency) or double
the propensity for decay (in case of feedback in decay rate). The reciprocal K−1

is used as a measure of feedback strength. The regime K � 1 (i.e. K−1 � 1)
is referred to as the strong-feedback regime of the model. The cooperativity
coefficient H determines how steeply the response changes as the protein con-
centration passes through the critical threshold K.

Figure 3 shows the steady-state values of protein mean and relative noise as
functions of feedback strength. The relative noise is defined in Eq. (21) as the
ratio of the variance of the protein with feedback to the variance of a consti-
tutively expressed protein with the same mean. Several values of the maximal
burst frequency a are selected, including the limit value of a → ∞, the results
for which are derived in AppendixA using a small-noise approximation. The
cooperativity coefficient is set to H = 4.

The small-noise approximation leads to the same mean and noise values for
both feedback types. In particular, the small-noise approximation suggests that,
regardless of the feedback type, a maximal (H+1)-fold reduction of relative noise
can be achieved in the limit K → 0 of strong feedback. However, the assumption
of high burst frequency, on which the use of small-noise approximation is based,
eventually breaks down as feedback strengthens. Indeed, finite values of the
maximal burst frequency a paint a radically different picture from that obtained
by the small-noise approximation. In case of feedback in burst frequency, the
relative noise starts increasing for large feedback strengths, eventually returning
to the value of one. Contrastingly, in case of feedback in decay rate, the relative
noise decreases down to zero. Thus, despite the small-noise prediction that the
two feedbacks are indistinguishable in terms of controlling protein mean and
noise, we see that at high feedback strengths, feedback in decay rate can be
much more effective than feedback in burst frequency.

The stark differences between the small-noise prediction and the exact results
motivate us to develop in AppendixB an alternative asymptotic approximation
in the regime K � 1 of strong feedback. For feedback in decay rate the asymp-
totics (B6) reveal that the relative noise is: of the order of K if H > 2; of the
(asymptotically larger) order of KH−1 if 1 < H < 2; or converges to the constant
1−H if 0 < H < 1. For feedback in burst frequency the strong-feedback asymp-
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Fig. 3. The mean, the relative noise and skewness of protein concentration subject to
feedback in burst frequency or decay rate. The exact values (coloured lines) are based
on numerical integration of (19), in which the probability density function p(x) is given
by (26) (feedback in burst frequency) or (29) (feedback in decay rate). The small-noise
approximation (SNA) of the protein mean is the fixed-point solution x0 to Equation
(24); the SNA of the relative noise is given by (A4). The feedback cooperativity coef-
ficient is fixed to H = 4 throughout. (Color figure online)

totics [8] confirm the numerical observation that the relative noise eventually
returns to the value of one as K tends to zero.

The protein skewness is quantified by the third standardised moment of
its steady-state distribution. In the nethermost panels of Fig. 3 we report the
response of a relative protein skewness to increasing feedback strength. By the
relative skewness we understand the ratio of the skewness of the auto-regulated
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Fig. 4. Steady-state protein copy number distribution by discrete simulations and
hybrid (continuous) theory. The theoretical distribution is given by 1

M0Ω
p

(
P
Ω

)
, where p

is the continuous probability density function (26) (feedback in burst frequency) or (29)
(feedback in decay rate) of the hybrid model and M0 is the zero-th moment (19) (the
reciprocal of the normalisation constant). Discrete simulation results are based on 106

Gillespie iterations of the discrete model (30), in which the response functions h(x) and
g(x) are given by (22) (feedback in burst frequency) or (27) (feedback in decay rate).
The model parameters are: burst frequency a = 5; cooperativity coefficient H = 4;
critical concentration K = 0.1; system size Ω = 100.

protein to that of a referential constitutive protein with the same mean. The pro-
tein skewness responds to increasing feedback strength in a complicated manner
featuring first a trough and then a peak. Feedback in burst frequency is more
conducive to skewness than feedback in decay rate.

The hybrid framework is cross-validated by a fine-grained discrete stochas-
tic bursting model (30) with feedback in burst frequency or decay rate. In the
discrete model, burst sizes are geometrically distributed; decay is stochastic and
leads to the removal of one molecule at a time. In addition to the three param-
eters of the hybrid model, the discrete model features an additional system-size
parameter Ω, which is equal to the copy number P of protein that are encom-
passed in a unit of protein concentration x. Provided that Ω is large, discrete
protein distributions obtained by stochastic simulation of the discrete model (30)
are well approximated by the explicit continuous protein distributions (26) or
(29) obtained using hybrid theory (Fig. 4).

The variability of a discrete distribution is conveniently quantified using the
Fano factor (the variance to mean ratio). Figure 5 shows the Fano factor for the
steady-state protein copy number obtained by stochastic simulation of the full
discrete model (30) and the hybrid theory approximation (32). For large values
of Ω the two agree well. For small values of Ω, single-molecule effects become
important in discrete simulations; by neglecting them, the hybrid theory tends
to underestimate the Fano factor.

The hybrid approximation (32) implies that the protein Fano factor is propor-
tional to the relative noise of the hybrid model. The factor of proportionality is
the mean copy number Ω/a of protein molecules produced per burst. The hybrid
model can thus be consistent with a range of different Fano factors depending on
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Fig. 5. The Fano factor of steady-state protein copy number as function of system
size Ω (upper panels) and feedback strength K−1 (lower panels). The discrete results
are obtained by simulation of system (30). The hybrid (continuous) are based on (32),
(21), and (19). The model parameters are set to a = 5, H = 4, K = 0.1 (upper
panels) Ω = 10 or Ω = 100 (lower panels). The number of Gillespie iterations is set to
104 × �Ω�.

the chosen value of the system size. Provided that the value of the system size is
fixed to a sufficiently large value, the response of the Fano factor to increasing
feedback strength coincides with that of the relative noise (Fig. 5, lower panels).

10 Summary

We evaluated the noise suppression capabilities of feedback in burst frequency
and feedback in decay rate using a hybrid model for bursty protein dynamics.
Using a relative noise measure, we systematically related the noise levels of a
regulated protein to those of a constitutive protein expressed at the same mean
value. It was found that introducing feedback of either kind brings about a
decrease in the relative noise. Nevertheless, feedback in decay rate was shown
to perform better in suppressing noise, in particular under high-noise and/or
strong-feedback conditions.

We identified the relationships between the hybrid model and other modelling
frameworks, in particular a deterministic one, based on an ordinary differential
equation, and a discrete stochastic framework. The deterministic model is recov-
ered from the hybrid model in the limit of very frequent bursts. The discrete
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stochastic model reduces to the hybrid model in the limit of large system sizes.
Discrete protein distributions estimated by a kinetic Monte Carlo method were
found to be in agreement with the continuous distributions provided explicitly
by the hybrid framework. The relative noise metric from the hybrid framework
was shown to determine the leading order behaviour of the protein Fano factor
in the large system size regime.

Overall, our results illustrate the tractability and usefulness of hybrid frame-
works in studying non-linear fluctuations in stochastic gene expression.
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Appendix A: Small-Noise Asymptotics

The potential (25), which applies for both regulation types (22) and (27), is a
concave function with a single maximum situated at x = x0, where x0 satisfies
the fixed-point equation (24).

For a � 1, the most important part of the pdf lies around the maximum
x = x0 of the potential. Therefore we use the parabolic approximation in (17)
to obtain

p(x) =
CeaΦ(x)

xg(x)
≈ Cea

(
Φ(x0)+

Φ′′(x0)
2 (x−x0)

2
)

x0g(x0)
= C ′e

aΦ′′(x0)
2 (x−x0)

2
, (A1)

where C ′ = CeaΦ(x0)/x0g(x0) is a constant. The parabolic approximation (A1)
implies that at steady state the protein concentration is normally distributed
with statistics

〈x〉 ∼ x0, Var(x) ∼ − 1
aΦ′′(x0)

. (A2)

Note that the variance in (A2) is in fact positive since the second derivative of
the potential Φ(x) at the point x = x0 of its maximum is negative.

We see that the (leading-order) approximations (A2) to the protein statistics
in the small-noise regime depend on their shared potential (25) but not on the
fine differences between the pdfs (26) and (29). Therefore we arrive at a first
important conclusion of the present work: feedback in burst frequency and feed-
back in decay rate are equivalent in terms of control of both mean and noise in
the small-noise regime.

Evaluating the second derivative of the potential yields

Φ′′(x0) =
d
dx

1
x(1 + (x/K)H)

∣∣∣∣
x=x0

= −1 + (H + 1)(x/K)H

x2(1 + (x/K)H)2

∣∣∣∣
x=x0

= −
(

1 + (H + 1)
(

1
x0

− 1
))

= −H(1 − x0) + 1
x0

. (A3)
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in which we used the fixed-point Eq. (24) several times. For the relative noise
(21) we find

η2 = a
Var(x)

〈x〉 ∼ − 1
x0Φ′′(x0)

=
1

H(1 − x0) + 1
. (A4)

The asymptotic approximation of the relative noise on left-hand side of (A4),
which we denote by η2

SNA, is a decreasing function of K which satisfies

η2
SNA ∼ 1

H + 1
for K � 1. (A5)

The small-noise asymptotics thus predict that a maximal (H + 1)-fold reduc-
tion in relative noise can be achieved in the strong-feedback regime using either
feedback type.

Appendix B: Strong-Feedback Asymptotics

In this Section we develop the relative noise asymptotics for the strong feedback
regime K � 1. We separately treat feedback in decay rate and refer to literature
[8] for treatment of feedback in burst frequency.

B.1 Feedback in Decay Rate

The purpose of this section is to provide asymptotic approximations as K � 1
to the integral

Mn =
∫ ∞

0

e−axxa+n−1
(
1 + (x/K)H

)− a
H −1

dx, (B1)

giving the n-th moment of the protein pdf (29). In particular, M−1
0 gives the

normalisation constant C in the protein pdf.
If K � 1 and x = O(1), then x/K � 1 so that

(
1 + (x/K)H

)− a
H −1 ∼ (x/K)−a−H for K � 1. (B2)

Inserting (B2) into (B1) we find

Mn ∼ Ka+H

∫ ∞

0

e−axxn−H−1dx = Ka+HaH−nΓ (n − H), (B3)

which converges for n > H. For n < H, we need to use a different method of
approximating the integral (B1).

Substituting (x/K)H = z in the integral (B1) yields

Mn =
Ka+n

H

∫ ∞

0

e−aKz
1
H z

a+n
H −1(1 + z)− a

H −1dz. (B4)
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Neglecting the O(K) term in the exponential in (B4) yields

Mn ∼Ka+n

H

∫ ∞

0

z
a+n

H −1(1 + z)− a
H −1dz

=
Ka+n

H
B

(
a + n

H
, 1 − n

H

)
, for K � 1, (B5)

where B(μ, ν) is the beta function [1]. The right-hand side in (B5) converges for
n < H, which complements the condition for validity of the previous approxi-
mation (B5). The nongeneric case n = H can be treated by method of splitting
the integration range [17].

Using the asymptotic approximations (B3) and (B5) in the formula η2 =
a(M2/M1−M1/M0) for the relative noise, we obtain asymptotic approximations

η2 ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aK

(
B

(
a+2
H , 1 − 2

H

)
B

(
a+1
H , 1 − 1

H

) − B
(

a+1
H , 1 − 1

H

)
B

(
a
H , 1

)
)

if H > 2,

aH−1HKH−1Γ (2 − H)
B

(
a+1
H , 1 − 1

H

) if 1 < H < 2,

1 − H if 0 < H < 1.

(B6)

Hence, as K ↘ 0, the relative noise decreases to zero linearly if H > 2, sub-
linearly if 1 < H < 2, or tends to a positive constant 1 − H if 0 < H < 1.
High cooperativity in feedback in decay rate thus improves its performance in
the strong-feedback regime. Even in the worst case scenario 0 < H < 1 in terms
of noise control, the limiting value 1−H of relative noise is less than the limiting
value 1/(1 + H) of the small-noise prediction (A5) for the relative noise.
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Abstract. The predictive power of dynamical models of cell signaling
is often limited due to the difficulty in estimating the relevant kinetic
parameters. Super-resolution microscopy techniques can provide in vivo
trajectories of individual receptors, and serve as a direct source of quanti-
tative information on molecular processes. Single particle tracking (SPT)
has been used to extract reaction kinetic parameters such as dimer life-
times and diffusion rates. However, signaling models aim to characterize
kinetics relevant to the entire cell while SPT follows individual molecules
in a small fraction of the cell. The gap in resolution can be bridged with
spatial simulations of molecular movement, validated at SPT resolution,
which are used to infer effective kinetics on larger spatial scales.

Our focus is on processes that involve receptors bound to the cell
membrane. Extrapolating kinetics observed at SPT resolution must take
into account the spatial structures that interferes with the free movement
of molecules of interest. This is reflected in patterns of movement that
deviate from standard Brownian motion. Ideally, simulations at SPT res-
olution should reproduce observed movement patterns, which reflect the
properties and transformation of the molecules as well as those of the
underlying cell membrane.

We first sought to identify general signatures of the underlying mem-
brane landscape in jump size distributions extracted from SPT data. We
found that Brownian motion simulations in the presence of a pattern of
obstacles could provide a good qualitative match. The next step is to
infer the underlying landscape structures. We discuss our method used
to identify such structures from long single particle trajectories that are
obtained at low density. Our approach is based on deviations from ideal
Brownian motion and identifies likely regions that trap receptors. We
discuss the details of the method in its current form and outline a frame-
work aimed at refinement using simulated motion in a known landscape.
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1 Introduction

Cell signaling plays an important role in the normal functioning of cells and
in health conditions such as cancers and immune diseases [1,5,12]. Cell signal-
ing models, capturing the transformations of many different molecular species,
are one of the most successful applications of dynamical systems biology
[3,10,19,21]. The predicting power of these highly nonlinear dynamical models
is often limited due to difficulties in estimating the relevant kinetic parameters.
It is difficult to infer the dynamics of individual processes in a living system
by separating them from the rest of system. Due to many factors, including
the spatial structure of the cell, parameters that appropriately characterize a
given process within a living cell can be very different from those observed when
reproducing the process in synthetic (“in vitro”) conditions. Advances in molec-
ular resolution imaging could provide a way around this, by estimating reaction
parameters in vivo, from the movement of individual molecules. This is a real-
istic possibility for membrane-bound receptors important for cancers and other
major health problems [12,20,23,34] whose two dimensional movement can be
reliably mapped using currently available technology [2,9,25].

Super-resolution microscopy provides in vivo trajectories of receptors and
other bio-molecules labelled with fluorescent tags [22,25]. The behavior of indi-
vidual molecules in a small fraction of the cell is “too detailed” – well beyond
the spatial resolution relevant to current quantitative models of cell signaling
[10,21,28]. Single particle tracking (SPT) is used to infer diffusion coefficients
and dimerization rates [9,25,26,32]. However, the characteristics of movement
as well as the identification of dimerization/dissociation events observed at SPT
resolution are complicated by transient trapping of molecules in small domains
[11,22,26].

Here we investigate the possible signatures and present a method to identify
such structures, based on deviations from ideal Brownian motion and outline a
framework aimed at refinement using simulated motion in a known landscape.
Our first goal is to understand and identify the non-Brownian (“anomalous”)
aspects of particle movement. The study of jump size distributions from Brow-
nian motion simulations in artificial landscapes of barriers led us to identify the
“hockey-stick” shaped square displacement distributions (Fig. 1B) as a likely
signature of the presence of trapping domains. We found that the qualitative
features were consistently reproduced, but the quantitative aspects of the distri-
butions were sensitive to the detailed properties of the domains. The realization
of the specificity of the jump size distributions led us to the second aim, of
identifying an underlying landscape of (likely) trapping domains from specific
trajectories. The resulting method consists of a scoring process that identifies
locations where particle movement is slow, and a domain reconstruction part
that results in geometric footprints of the domains.

The paper is organized as follows. In the remainder of this section we pro-
vide some background on dynamical modeling of cellular processes, describe the
relevant experimental methods in the field, and define the problem of inter-
est. Section 2 contains a summary of basic mathematical aspects of diffusion
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and Brownian motion, along with a basic observations and hypotheses regard-
ing the quasi-Brownian behavior of membrane bound receptors a observed by
singe plarticle tracking. Section 3 discusses simulation methods used to model
signal initiation by membrane receptors and to analyze jump size distributions
extracted from particle tracking. This section ends with the description of the
domain reconstruction method we developed and used in recent work. Section 4
begins with the discussion of comparing jump size distributions from simulated
movement in landscapes with semipermeable barriers and actual SPT data. We
present an example of a set of reconstructed domains from trajectories, simi-
lar to what we did in several projects where these reconstructed domains were
used in model simulations. Finally, we outline the simulation environment we
constructed aimed at generating synthetic trajectories for the refinement of the
domain identification process, and ideas for future applications.

1.1 Background and Motivation

Dynamical models of cell signaling aim to capture the molecular processes that
take place in a cell, from the appearance of a stimulus to the triggering of the
cell’s response. The resulting dynamical systems are typically high dimensional
[4,6,15,19]. In spite of progress [7,36,37] toward the identification of robust
behaviors, there are many possible steady states and regimes, and the emerging
behaviors are sensitive to parameter values. For signaling models, this is further
compounded by the need to capture the behavior of the entire cell (or at least the
parts involved from the stimulus to the implementation of the cellular response).
Fully stochastic and/or spatially resolved models are impractical, and a useful
signaling model will rely on effective kinetic constants that reflect an average
behavior.

Biochemical experimentation tends to focus on identifying and establishing
the role of a given substance. This is often achieved in vitro or in organisms
specifically modified to enhance and isolate the process of interest. Such setups
will often result in conditions that are very different from the in vivo context rel-
evant to the signaling process. Values of rate constants found in the literature for
the same process might vary by orders of magnitude. It is not realistic to expect
large amounts of laboratory resources dedicated to parameterizing dynamical
models by repeating almost identical experiments under slightly changed condi-
tions. The perceived benefit is not exciting the way finding a new transcription
factor would be.

Interest in systems biology is fueled by advances in genetic technology as
well as other technologies that allow molecular level intervention into the func-
tioning of cells. Fluorescent labeling of individual molecular structures involved
in signaling, combined with microscopy and automated image processing, pro-
vides modalities to interrogate individual molecular processes, in vivo, in mini-
mally modified cells. Flow cytometry (FC) allows the estimation of the amount
(often the number) of tagged molecules in individual cells. Flow cytometry
can provide whole cell measurements of individual molecular species, together
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with their distribution over a population. The time resolution is somewhat lim-
ited by the experimental setup, but this modality provides insight into the
overall functioning of a signaling pathway or of its elements. Super-resolution
microscopy can localize fluorophores with a precision of tens of nanometers
(1nm = 10−3μm = 10−9m) and generate trajectories with time resolution from
≈ 50 frames per second [2,22,25,29]. The resulting single particle tracks (SPT)
represent a much higher level of detail compared to FC. However, this is often
necessary in order to disentangle the steps involved in signaling. It can also
potentially connect to molecular dynamics, another level of modeling study con-
cerned with the functionality of bio-molecules as it results from their atomic and
spatial structure.

SPT has been previously used to estimate dimerization and dissociation con-
stants and to study transient confinement of diffusing receptors [25,26,32]. At
this level of resolution, nano-scale details of spatial organization become impor-
tant. In particular, the presence of obstacles to the movement of membrane
bound receptors result in a movement pattern of anomalous diffusion; the parti-
cles move consistent with Brownian motion, but the observed diffusion coefficient
is dependent on the time scale of observation. Closer examination of the trajec-
tories reveals transient trapping consistent with the presence of obstacles.

We report on our ongoing effort aimed at understanding and modeling the
phenomena of transient trapping and anomalous diffusion in SPT. A properly
validated microscopic model of diffusion behavior can be used to predict diffusion
behavior at longer time and spatial scales. An equivalent diffusion-reaction model
can be the basis of abstractions and approximations, leading to simple spatially
averaged reaction models that can be used for cell signaling.

1.2 Statement of the Problem and Related Work

We have a set of trajectories resulting from one or more single particle tracking
(SPT) experiments. Trajectories represent the consecutive positions of a sin-
gle molecular entity (such as a receptor, or ligand) throughout its movement
and interactions/transformations. Our goal is to infer factors that influence the
observed movement, in particular: (i) obstacles and (2) changes in mobility due
to interaction with other molecular entities.

An experiment consists of a recording of a sample, and yields a set of tra-
jectories. Images (frames) are recorded at fixed time intervals. The positions of
(point) sources of emitted light are identified during image processing. These are
fluorescent tags, which are bound to molecules of a certain type. A given tag
may not be detected in every frame of a recording. One trajectory consists of a
sequence of positions that have been identified as representing the same fluores-
cent tag. In addition to the issue of missing points, trajectories are affected by a
position uncertainty and the fact that two tags of the same color that are close
can not be distinguished. In the absence of interaction with obstacles, we assume
that molecules perform Brownian motion in two dimensions, consistent with a
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“free-space” diffusion coefficient1. Obstacles are one dimensional barriers that
either completely block movement or allow crossing with a certain probability
pcross < 1, which may be different for the two directions. Additionally, tagged
molecules may join larger aggregates, resulting in reduced mobility.

The main mathematical problem is to identify a set of obstacles that would
result in the observed trajectories, assuming that the intrinsic diffusion coefficient
of a particle does not change.

Related Work: There are two directions of investigation we are aware of. First,
the methodology of extracting trajectories from single fluorescent proteins [16,
30,35] and the related methods developed for identifying confinement (trapping)
of individual particles [26,33] rely on comparing jump sizes with the normal
distributions expected from Brownian motion. In particular, co-confinement was
identified in [26] using a hidden Markov model that relied on the mutual distance
between two particles.

Another direction [8,27] relies on high-density single molecule imaging, which
results in shorter trajectories (due to the difficulty of identifying consecutive
positions of the same particle). Due to the different experimental approach this
results in a higher resolution mapping of the mmbrane landscape but the shorter
trajectories do not allow simultaneous investigation of binding and unbinding
events and the extraction of dimerization/dissociation rates.

2 Preliminaries

2.1 Brownian Motion/Ideal Diffusion

Brownian motion (BM), taken in the mathematical sense, is a type of random
process. In two spatial dimensions, the components of the position vector r(t) =
(x(t), y(t)) representing a moving point [-like object], are continuous random
variables, and the components Δx,Δy of the displacement vector Δr = r(t +
Δt)−r(t) over any interval (t, t+Δt) are random variables distributed according
to the PDF

f(Δx,Δy;Δt) =
1

4πDΔt
exp

(
−Δx2 + Δy2

4DΔt

)
. (1)

The x- and y-displacements are independent and each follows a normal distri-
bution with variance σ2 = 2DΔt. The parameter D is a measure of the mobility
of the particle. A diffusing substance can be represented as a set of n particles
that moves consistent with (1). We can describe a set of n Brownian particles
by the sum of the individual localization probability density functions that each

1 Brownian motion, as well as confinement to the cell membrane, result from interac-
tion with much smaller molecules such as the lipids that form the membrane. We do
not explicitly address this level of interaction.
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follow (1). This joint localization density function ρ(x, y; t) verifies a diffusion
equation:

∂ρ

∂t
= D

(
∂2ρ

∂x2
+

∂2ρ

∂y2

)
. (2)

Brownian Motion is central to any discussion of random movement. It is a
consequence of the Central Limit Theorem [17] that any isotropic random walk
approaches ideal Brownian motion in the limit of large time (or spatial) scales.
In a random walk, the position of the moving object is updated in discrete steps,
at finite time intervals. If the displacement along one direction, over a charac-
teristic time τ , has mean zero and standard deviation σ0, then the distribu-
tion of displacements over time T approaches a normal with standard deviation
σ(T ) =

√
2T · Deff as T � τ where Deff is given by

Deff =
σ2

0

2τ
. (3)

If the movement is in two dimensions and the displacements along both x
and y verify the assumptions (zero mean and standard deviation 〈(ΔX)2〉 =
〈(ΔY )2〉 = σ 0/τ , then, in the limit T/τ → ∞, the system approaches ideal
Brownian motion with diffusion coefficient given by Einstein’s relation (3).

However, perfect Brownian motion is a mathematical idealization. In sum-
mary, we could say that all physical random motion looks Brownian if examined
on a long enough time scale. On the other hand, the model becomes unphysical
over short time scales. Thus, examination over a short enough time scale should
reveal that any apparently Brownian motion is in reality, “anomalous”.

Jump Size Distributions. When analyzing trajectories, one often compares
the distribution of displacements Δr = r(t + τ) − r(t) over some observation
time τ with the Brownian PDF (1). The most commonly used observable is the
square displacement s ≡ (Δr)2 = |Δr|2 = (Δx)2 +(Δy)2, whose distribution for
fixed observation time τ is exponential2:

fSD(s) =
1

4Dτ
exp

(
− s

4Dτ

)
(4)

The mean square displacement (MSD) is the expectation of (4) and is consistent
with the standard deviation of the two components σ2 ≡ 2Dτ = 〈(Δx)2〉 =
〈(Δy)2〉:

〈s〉 = 〈(Δr)2〉 = 4Dτ = 2σ2 . (5)

Equation (5) provides a simple check of the Brownian nature of trajectories.
We will also use the distribution of square displacements (SDD) for a given τ .

2 not to be confused with the distribution of the magnitude of the displacement
f(Δr) ∝ (Δr) exp(−(Δr)/4Dτ).
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2.2 Diffusion and Obstacles

The movement of membrane bound proteins is similar to that of particles sus-
pended in a liquid solution; the diffusive behavior is the result of interaction with
the much smaller lipid molecules that form the membrane. These effects are not
individually discernible on the scale of tens of nanometers that is relevant to
our discussion, and therefore we assume that, in the absence of obstacles3 the
movement of membrane bound receptors can be characterized as Brownian with
a “free space” diffusion coefficient D0.

The experimental picture, derived from single particle tracking, indicates
deviations from (5). The mean square displacement (as shown in Fig. 1A) initially
increases linearly with the observation time Tobs, but the slope is reduced as Tobs

increases. The corresponding SDD (Fig. 1B) are consistent with a superposition
of two or more distributions, that are somewhat consistent with exponentials
corresponding to (4) with different diffusion coefficients.

Fig. 1. Square displacement statistics from 1685 SPT trajectories from 21 recordings.
The mean square displacement (MSD) as well as the square displacement distributions
(SDD) deviate from ideal Brownian motion.

The “anomalous” nature of movement in single particle tracking has been
noticed early on [22]. A frequently noticed feature of the trajectories is that
particles tend to have intervals of movement that is localized to a relatively small
area, interspersed with longer jumps or sequences. There has been a vigorous
debate in the biology/biophysics literature on the origin of this phenomenon.
Elongated protein structures of varying thickness, called actin filaments, that run
along the membrane or are part of the cytoskeleton (a rigid support structure
that ensures the shape of the cell, stretching the soft and flexible membrane
similarly to a large tent) likely act as physical barriers that impede the movement
of membrane bound proteins such as the receptors. The resulting grid of barriers
creates a partition of the cell membrane, much like fences that divide grazing
land into corrals.

3 ... of comparable size, 10 nm.
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Fig. 2. Two sample SPT trajectories exhibiting typical features of anomalous diffu-
sion consistent with the presence of obstacles and/or trapping. The receptors tend to
alternate between confinement to small areas and movement on longer distances.

Corrals would easily explain the observed confinement episodes, but it is hard
to see how they may account for the phenomenon of receptor clustering, where
receptors of one type tend to accumulate in small areas, consistent with the
confinement zones seen in SPT experiments. Lipid rafts are membrane patches
whose physico-chemical composition differs from the surroundings, due to the
shape and electric charge distribution of the respective lipid molecules. Similar
interactions might result in an affinity between specific types of receptors and
lipid rafts. The latter would then act as transient traps for receptors, which could
move in and out of these attractive domains, with a probabilistic exit penalty.

Obviously, these two possible explanations are not mutually exclusive and
are by no means the only ones. Another important factor in modulating the
mobility of membrane bound proteins is their participation in aggregates, less
stable structures consisting of several molecular entities, receptors, their ligands,
and associated proteins that are part of the orchestration of the signaling pro-
cess. Thus, a change in the mobility of a labelled receptor may reflect trapping,
interaction with other proteins, or its association/exit from a (larger, therefore
less mobile) aggregate.

3 Methods and Models

3.1 Simulation

The spatial simulation approach developed in our recent work ([31,32], and oth-
ers) relies on a number of standard methods, self-implemented in programs devel-
oped for the purpose of the specific application.
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Brownian Motion (BM) Simulator. We use a first-principles approach [31], in
that our motion simulation algorithm emulates Brownian motion using the exact
expression for displacements (1). We follow a fixed number of particles, Np, and
generate their positions at consecutive times t0, t1, . . . using a fixed time step, Δt.

Each particle is represented by a two dimensional position vector, which
evolves over time reflecting the movements of the particle. For instance, the
position vector of the k-th particle is r(k)(t) = (x(k)(t), y(k)(t)). It is helpful to
point out the distinction between integers used to identify the discrete times
(when the updates occur) and the labeling of the different particles. The time
at step j is tj = t0 + jΔt. The state of the (simulated) system at a given time
tj consists of the XY coordinates of the set of Np particles,

{
r(k)(tj)

}
k=1···Np

.
Each update consists of adding displacements Δx,Δy to the positions of each
particle. Each displacement value is a random number generated consistent with
the PDF (1). At every update, the system time is advanced by the amount of
one step; for each of the NP particles, the X and Y coordinates are by amounts
Δx and Δy respectively, generated as described above.

Reactions. For a more complete discussion of stochastic simulation of chemical
reactions, we refer the interested reader to textbooks and reviews or to [14]. We
use a stochastic, agent- and rule-based approach in our fully detailed simulations.

In an agent-based simulation, chemical species is a discrete label that char-
acterizes a given particle (agent). A particle may change its species without
interacting with others (similar to radioactive decay). More complicated situ-
ations arise due to oligomerization. Agents maintain their identity even when
they become bound in such a group.

Rule-based modeling. The number of species and reactions induced by the
combinations of proteins participating in a signaling network, is potentially
enormous, a phenomenon known as combinatorial complexity. The traditional
method of specifying the kinetics for a chemical reaction system requires a list of
all possible species and reactions that can potentially occur in the system. The
alternative is a rules-based approach [24] where types of transformations are
specified, and reactions, and species, are generated accordingly. Combinations
of agents bound to each other in various internal states correspond to species in
the traditional sense.

3.2 Analysis of Jump Size Distributions

As illustrated in Fig. 1B, distributions of square displacements (SDD) derived
from experimental tracks deviate from the simple exponential (4). The “hockey
stick” shaped distribution can be interpreted as a superposition of two exponen-
tials,

fSD(s) =
A1

4D1τ
exp

(
− s

4D1τ

)
+

A2

4D2τ
exp

(
− s

4D2τ

)
; D1 > D2. (6)

The steeper negative slope seen on the semi-logarithmic scale (1/4D2τ) corre-
sponds to slower motion, labeled “nominal MSD”) and dominates the shorter
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displacements. The component corresponding to the higher diffusion coefficient,
hence lower slope, dominates the longer displacements.

Looking at the mean square displacements (MSD, Fig. 1A), the obvious fea-
ture is that shorter time scales correspond to a higher slope. Here the Brownian
model would predict 〈(ΔR)2〉 = 2DTobs, therefore the initial higher slope corre-
sponds to faster movement for shorter time scales.

Deconvolution. One avenue for a deeper analysis of the SDD consists of fitting
a number of exponential distributions. One challenge in dealing with data that
is roughly exponentially distributed is that building histograms to compare with
a theoretical PDF involves difference of orders of magnitude in terms of the
expected counts. It is intuitively helpful to look at the distribution pertaining to
the logarithms of the observed square displacements; if the quantity s follows the
PDF f(s) = 1/μ exp(−s/μ), then its logarithm λ = ln(s) will follow the PDF
g(λ) = (eλ/μ)e−eλ/μ. This function approaches zero asymptotically at λ → ±∞
and has a single maximum at λ = ln(μ) which corresponds to s = ln(λ) = μ.

3.3 Domain Reconstruction Algorithm

The domain reconstruction algorithm (DRA) we developed uses a set of tra-
jectories from a given experiment to identify areas in the field of view where
the movement of particles is slower. It relies exclusively on the distribution of
jump sizes (displacements) between points in the same trajectory and can be
summarized as follows.

1. Identify “slow” points
(a) Build distributions of displacements over m1 < m2 · · · mp frame intervals
(b) For each point r

(j)
k in each trajectory j:

i. Find the percentage rank ρi(r
(j)
k ) of displacements over {mi}i=1···p

frame intervals.
ii. Construct a weighted score ω(r(j)

k ) =
p∑

i=1

αiρi(r
(j)
k )

(c) Obtain the distribution of weighted scores over the entire sample, and
choose a cutoff to define points associated with slower movement

2. Group the slow points into distance based clusters
(a) Compute the mutual distances between all pairs of slow points
(b) Two points A,B are “connected” if

i. |rA − rB | < L (their distance is less than L)
ii. There is another point C that is connected to both A and B4

3. Build a (non-convex) envelope around the clusters consistent with L
(a) For each cluster, build a graph with edges connecting pairs of points

whose distance is < L

4 This implies that two points will be connected if there is a connecting path {A =
M0, M1, · · · Mq = B} through any number of other points and no edge longer than
L, |rMj − rMj+1 | < L.
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(b) identify the outer edges of the graph and form a closed poly-line5

i. Choose the outer-most point in some direction u, let that be A0 (r0)
ii. From the points in the cluster that are connected to A0, identify the

point A1 for which the angle A1A0u, measured counter-clockwise from
u is the smallest. This will be the next point in the inner contour.

iii. Choose the point connected to A2 such that the angle A2A1A0 mea-
sured counter-clockwise from A0 is minimal.

iv. Repeat the previous step, each time adding a new point to the inner
contour.

v. Stop when the initial point A0 is reached.
(c) Build a padding around the outer edges

i. Using each outer edge, construct a rectangle outside the graph, whose
other two sides have length L/2.

ii. If the angle between two adjacent outer edges is <180o, clip the cor-
responding rectangle sides at their intersection

iii. If the angle is >180o, connect the outer rectangle sides with arc of
circle centered on the common vertex

Motivation. Assuming that at least some of the variations in mobility result
from the underlying landscape, we are interested in finding correlations between
the mobility of receptors, as reflected by their jump sizes and spatial locations.
The distance between point rk in a trajectory, corresponding to frame k, and
the points rk−1, rk+1 immediately before and after it carry some information on
the landscape at rk. Since these jump sizes are random variables, a short jump
does not necessarily imply the presence of an obstacle, but makes it more likely
that an obstacle is present in the vicinity of rk .

The time between consecutive frames is set by the experiment. One can
make the same argument for jumps over several frames, Δrkm = rk − rk+m. If
confining domains or other obstacles are present, then the relevant time scale τ∗

should be such that the mean displacement 2
√

Dτ∗ ≈ �, where � is the linear size
of the domains or some typical distance between obstacles. For time intervals
of length τ smaller than τ∗, the likelihood that a given step involves hitting an
obstacle decreases with τ/τ∗. On the other hand, jumps over τ � τ∗ will almost
certainly involve obstacles, so we won’t be able to distinguish any locations.

Scoring. Since the length scale � is not a priori known, we constructed a com-
bined score for points in trajectories as follows. Assume a set of trajectories
T1, · · · TNtraj

from the same experiment or group of experiments, collected at
frame interval τ . We choose a set of p integers m1 < m2 < · · · mp, and collect
jump size distributions from each trajectory Tj = {r(j)

1 , r
(j)
2 , . . . r

(j)
Nsteps

}. The set

D(j)
m of displacements of length tobs = τm collected from trajectory Tj will be a

non-overlapping subset of all possible displacements
{

|Δr
(j)
k,k+m|

}
1≤k≤Nsteps−m

.

5 This is not completely unique, but will always provide a closed polygonal line.
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Do this for each trajectory to collect the merged and sorted set of displacements
of m time steps Dm = D(1)

m ∪ D(2)
m · · · D(Ntraj)

m .
Once the jump sizes have been compiled, the individual points from each

trajectory are ranked, based on the jumps of each length m that begin and end
on that point; for example, the point r

(j)
k gets the average of relative ranks of

|Δr
(j)
k,k+m| and |Δr

(j)
k−m,k| in the set Dm. For every point, the relative rank is

calculated by comparing the point’s jump size to all the other points’ jump sizes
for a specific step size. The jump sizes for a specific step count m are sorted in
order from smallest to largest. The rank of a specific point is where it falls in
that order; the relative rank is obtained by dividing by the number of entries in
Dm. This is repeated across all points in each trajectory, and for each step size
m1 < m2 < · · · mp. Finally, a weighted average is used to determine the overall
score for each point

ω(r(j)
k ) =

p∑
i=1

αiρi(r
(j)
k ), (7)

where ρp(r
(j)
k ) stands for the relative rank of the point using mp time steps. Some

points may not have a score for all p step sizes due to the aforementioned holes in
the trajectories. In this case we omit the missing jumps from the averaging (7).

The combined score (7) is interpreted as a measure of the likelihood that a
point is close to an obstacle. We use it to sort the points in a group of trajectories
obtained from the same recording by choosing a cutoff value and identify a set
of “slow” points. We found that, by choosing the weights appropriately, the
distribution of scores often becomes bimodal, which is helpful in choosing a
cutoff.

Clustering and Domains. More often than not, when applying to experimental
trajectories, the “slow” points identified as described above do tend to collect
in areas preferentially visited by the particles. This is reflected in an uneven
distribution, so that the slow points form clusters. We apply a cluster identifica-
tion algorithm based on hierarchical distance based clustering [13] to partition
the slow points into clusters. This algorithm relies on a length parameter L. In
practice, this is adjusted on a trial and error basis.

For each identified cluster, we construct a geometric footprint (shape) around
the member points to provide us with an estimate of the area and perimeter for
the cluster. This footprint can be identified with an underlying physical support.
This was described in detail elsewhere ([31] as well as [13]). Briefly, the points in
a cluster are used to define the vertices of a graph, whose edges link point whose
distane is less than the length parameter L. By the definition of the clusters, this
graph must be connected. An outer contour (subset of the graph) is identified by
walking around the graph in one direction (e.g. clockwise). This contour is then
padded with circles of radius L/2 around the vertices and rectangles around the
outer edges. The resulting padded contour is exported as a poly-line.
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4 Results and Discussion

The efforts discussed here address three objectives, all related to understanding
the movement of membrane bound receptors (and other molecules) as observed
in low density single particle tracking experiments. These are (i) a plausible
explanation for the observed features of anomalous diffusion (ii) an efficient
methodology for the identification of confining domains (iii) validation, consis-
tency checks, and optimization of the existing methods.

Plausible Explanation of Anomalous Diffusion: The anomalous features of recep-
tor diffusion consist of deviations of the mean square displacement from (5) and
of the square displacement distributions from (4). Using Brownian motion sim-
ulations in a synthetic landscape with rectangular shaped trapping domains,
we have obtained square displacement distributions with “hockey stick” shapes
similar to the experimentally observed ones (Fig. 3). The corresponding MSD
curves exhibit sub-diffusion similar to 1A, albeit to a significantly lesser degree
than the experimental ones.

These simulation results provide the plausible explanation we sought. Parti-
cles get transiently trapped (confined) to relatively small domains, whose diam-
eter is comparable to the mean square displacements over a few frame intervals.
Trapped particles will exhibit smaller jumps compared to the free ones. The
observed longer jumps correspond to particles that are free (at least for part
of the observation time) and are thus moving consistently with the free space
diffusion constant; hence the apparent higher diffusion rate observed at longer
distances, which gives the hockey stick shape to the square displacement distri-
butions.

Implementation of a Method to Identify Confining Domains: The procedure
outlined in Sect. 3.3 was implemented in Matlab and identifies likely confining
areas. The efficiency is reasonable in that data corresponding to a typical set
of experiments (a few days of recording) is processed in not much more than
1 hour. This implementation has been used to generate simulation landscapes
for several projects [18,31]. Several additional features, such as computations of
domain areas, perimeter lengths, geometric form factors, are implemented and
can be used to collect statistics over larger groups of recordings.

Many applications and consistency checks are yet to be performed in a con-
sistent fashion. To test and further refine the hypothesis of confining domains,
we need to build statistics of domain sizes and form factors; the area correspond-
ing to confining domains and the fraction of the trajectories that are localized
in them; co-localization in the same domain of different trajectories or repeted
visits by the same trajectory separated by long time intervals. These can then
be compared to meaningful null hypothesis of uniform, unimpeded diffusion and
several species of particles with different mobilities.

Toward a Framework for Simulation Based Validation: The most obvious open
question is that of self-consistency of the domain identification method. Synthetic
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trajectories from simulations of diffusion in a landscape of domains may be used
as input to the domain identification process. This feedback could then be used
to refine the methods.

We can report initial results in this direction. The original difficulty in per-
forming this self-consistency check is that our simulations are quite complex
– in addition to diffusion in domains, we also include many different chemical
interactions, which add greatly to the computational cost. Therefore, we started
the separate development of a Brownian simulation in a landscape of random
barriers. Results from simulations in this framework are shown in Fig. 6.

4.1 Signature of Confinement or Just Different Mobility States?

The simplest explanation of a two-exponential distribution (6) is that we have
two populations of particles with different diffusion coefficients. Assuming that
the labeling is specific to one receptor species, we might still see two mobilities
if the receptors could form dimers that are less mobile.
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Fig. 3. Simulations with rectangular domains can approximate the observed square
displacement distributions.

Another possible explanation is transient confinement in domains whose lin-
ear size � is within the range of mean displacements

√〈(ΔR)2〉. Particles move
freely within these domains, with diffusion coefficient D0. Over time scales τ
where the diffusion distance (square root of the MSD) becomes comparable to
the linear size of the domains (2

√
D0τ ≈ �), free movement is impeded. The

particles may escape with a certain probability, but a fraction will be unable
to move beyond the boundaries. This is reflected in the inflection in the MSD
curve: as Tobs increases, the fraction of particles that have been turned back at
the boundary increases, leading to lower averages. If confinement was perfect,
the MSD would approach a horizontal line.

Displacement statistics at fixed time reflect the relative frequency of jumps
of each size. Jumps that exceed the domain size � are not impossible, but their
likelihood is smaller, because the jump requires an escape event. Once escaped, a
particle gains an additional are of free diffusion. Particles that have successfully
escaped (during or before the observation interval) and are free to diffuse over
distances larger than �, and therefore their square displacements are consistent
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with higher mobility (hence the flatter slope). By contrast, particles that remain
confined over the observation time will exhibit displacement statistics that are
bounded. Since the shape and diameter of the confining domains varies, the
corresponding jump distribution is not dramatically different from normal.

Simulations with simple landscapes of barriers did produce distributions sim-
ilar to the experimental ones, as illustrated in Fig. 3. This result supports the
obstacle based interpretation, but does not exclude a model with particles hav-
ing different mobility characteristics, that may or may not change from one
state to another. Furthermore, we know that such changes occur in the course
of signaling, so we would like to be able to (1) identify mobility changes and (2)
clarify whether there is a correlation between the spatial location and movement
patterns of particles.

4.2 Reconstructed Domains

Figure 5 illustrates a set of trajectories and the domains inferred from them. A
few other trajectories were omitted for clarity. Red dots indicate “slow” points,
including those identified from the trajectories that were omitted. The clustering
leaves some of these points in pairs or as singletons. We used domain maps
derived from the DRA in model simulations for ErbB [18,31] as well as ongoing
work on pre B cell receptors.
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Fig. 4. Two different cumulative scores for the same sample.

The domain reconstruction algorithm (DRA) as described above is able to
identify likely areas of high affinity. This algorithm still relies on a number of
parameters and choices that are, at this point, chosen on an ad hoc basis. There
is no clear guidance for the choice of the frame intervals m1,m2, · · · and espe-
cially the of corresponding weights αi. Figure 4 illustrates the effect of selecting
different weights.
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Fig. 5. Illustration of the domain reconstruction algorithm (DRA). The trajectories
shown are the same as in Fig. 2. The red/magenta contours are putative attractive
domains identified with the DRA. Red dots indicate ‘slow’ points from the two tra-
jectories as well as from other trajectories in the same recording. (Color figure online)

4.3 Simulation - Analysis - Improvement Feedback

As we outlined in the introduction, the longer term objective/vision/hope is
that we can leverage the emerging technology of molecular resolution imaging to
construct more realistic, better parameterized, and specifically tuned dynamical
models of cell signaling. The aim of the effort discussed in this contribution is to
use spatially resolved simulations in conjunction with SPT and other microscopic
data to emulate and thus help to understand the processes that the observed
particles participate in.

Comparing displacement distributions (SDD mostly) from simulations of two
simple obstacle/domain configurations to SPT results, we found that a landscape
studded with attractive domains produced a better (still qualitative) match with
a data set of FCε receptor trajectories than a landscape with a complete par-
tition into corrals. However, these early results also exhibited a strong depen-
dence on the size and shape of the trapping domains used in the simulations.
This prompted us to develop the domain reconstruction algorithm reported in
Sect. 3.3. We used the attractive domain contours derived with this method in
model simulations for receptors from the ErbB family as well as pre-B cell recep-
tors.

As the reader can hopefully appreciate, the domain reconstruction approach
presents many exciting avenues of refinement and automation. To pursue this,
we will use spatial simulations of the type developed for our recent work ([31,
32], and others) to compare the input simulation landscape with the structure
reconstructed from simulation runs. Logically this is equivalent to regarding
the (agent- and rule based spatial stochastic) simulation as a “ground truth”
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model of the physical phenomenon. While that model is clearly incomplete, a
closed loop of simulation-analysis-reconstruction-simulation with the objective
of minimizing the discrepancy between the input and output landscape would
be an important validation point.

We plan to investigate the possibility of identifying more general landscape
types. This raises the exciting question of how to generate a configuration of
barriers that has certain predetermined features, such as density, connectedness
or lack thereof, closed domains, etc. Figure 6 shows preliminary results from
simulations in a random landscape.

Fig. 6. Localization density heatmap from Brownian motion simulations with random
barriers.
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Abstract. The understanding of mechanisms that control epigenetic
changes is an important research area in modern functional biology. Epi-
genetic modifications such as DNA methylation are in general very stable
over many cell divisions. DNA methylation can however be subject to
specific and fast changes over a short time scale even in non-dividing
(i.e. not-replicating) cells. Such dynamic DNA methylation changes are
caused by a combination of active demethylation and de novo methyla-
tion processes which have not been investigated in integrated models.

Here we present a hybrid (hidden) Markov model to describe the cycle
of methylation and demethylation over (short) time scales. Our hybrid
model decribes several molecular events either happening at determinis-
tic points (i.e. describing mechanisms that occur only during cell division)
and other events occurring at random time points. We test our model on
mouse embryonic stem cells using time-resolved data. We predict methy-
lation changes and estimate the efficiencies of the different modification
steps related to DNA methylation and demethylation.

Keywords: DNA methylation · Hidden Markov model ·
Hybrid stochastic model

1 Introduction

All cells of a multi-cellular organism share the same DNA sequence, yet, depend-
ing on location and cell type, display distinct cellular programs as a result of
controlled gene expression. Hence, the expression of genes is regulated by epige-
netic factors such as DNA methylation. In mammals, the methylation of DNA
is restricted to the C5 position of cytosine (C) and mostly appears in a CpG
di-nucleotide sequence [6,7]. The palindromic nature of CpG positions provides
a symmetry which, after DNA replication, allows the stable inheritance of the
methylation “signal”. Methylation of C to 5-methyl cytosine (5mC) is catalysed
by a certain enzyme family, the DNA methyltransferases (Dnmts) [2,29]. Three
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conserved and catalytic active family members are associated with the methy-
lation of DNA. Dnmt1 is mainly responsible for maintenance methylation after
DNA replication, i.e. the enzyme mainly reestablishes the methylation pattern
on the newly synthesized daughter strand [15] according to the inherited infor-
mation of the parental DNA strand. The enzymes Dnmt3a and Dnmt3b perform
de novo methylation, where new methyl groups are added on unmethylated Cs
[28]. However, there is evidence that this separation of tasks is not definite and
that all Dnmts may carry out all tasks to a certain extent [1].

Once established, 5mC can be further modified by oxidation to 5-hydroxyme-
thyl cytosine (5hmC), which can again be oxidized to 5-formyl cytosine (5fC).
Then, 5fC can eventually be converted to 5-carboxy cytosine (5caC). All these
processes are carried out by the ten-eleven translocation (Tet) enzymes [16,30]. A
considerable level of 5hmC can be found in many cells types and its occurrence
has been connected to gene regulation as well as genome wide loss of DNA
methylation [12,19]. In contrast, 5fC and 5caC are far less abundant and their
particular functions remain more illusive. Nevertheless, studies suggest that both
oxidized cytosine variants function as intermediates during enzymatic removal
of 5mC from the DNA [12].

In general, DNA methylation can be removed in two ways. First, after DNA
replication, the absence or blocking of maintenance methylation will result in a
passive DNA methylation loss with each cell division (passive demethylation).
Second, generated 5fC or 5caC is enzymatically removed from the DNA and
subsequently replaced by unmodified cytosine (active demethylation, see also
Fig. 1) [4,13,14,24].

While DNA replication and the associated maintenance methylation hap-
pens only once per cell division cycle, de novo methylation and the modification
processes of 5mC via oxidation, as well as active demethylation, may happen at
arbitrary time points. With purely discrete hidden Markov models (HMM), as
used in [1] and [9], it is difficult to describe multiple instances of de novo methyla-
tion or other modification events, such as hydroxylation, formylation and active
demethylation, during one cell division cycle. Here, we introduce a hybrid HMM
to describe the dynamics of active demethylation. It distinguishes between events
at fixed time points (cell division and maintenance methylation) and events at
random time points (de novo methylation, oxidations, active demethylation).
Overall, the hybrid HMM permits a broader applicability compared to our pre-
viously discrete models. Particularly interesting are demethylation events which
occur during cell differentiation and early embryonic development. In this case,
active demethylation plays a significant role since only a very limited number of
cell divisions can be observed. By applying our model to a data set of a single
copy gene from mouse embryonic stem cells, we were able to accurately predict
the frequency of the observable CpG states and the levels of the hidden states,
which correspond to the different modified forms of C. Furthermore, we show
how to estimate the enzymatic reaction efficiencies using a maximum likelihood
approach.
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Compared to previous models for describing DNA methylation, we here pro-
pose an approach that takes into account both, the rather fixed and deterministic
timing of cell division and the random nature of the enzymatic processes. In this
way, we are able to present a model that realistically describes the dynamics of
DNA methylation and improves our understanding of active demethylation.
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η φ
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d

Fig. 1. Schematic representation of de novo methylation and the active demethylation
loop, where we use the following notation for the methylation states: (Unmethylated)
C is denoted by u, 5mC by m, 5hmC by h, and 5fC or 5caC by f . The corresponding
enzymatic reaction rates are μd (de novo methylation), η (oxidation), φ (formylation),
and δ (demethylation). (Color figure online)

The paper is organized as follows: In Sect. 2 we give the necessary biological
and mathematical background, i.e. we explain passive and active demethylation
in more detail, describe the model and explain the parameter estimation proce-
dure. In Sect. 3 the results are discussed and in Sect. 4 we conclude our findings.

2 Model

2.1 Passive and Active Demethylation

One can distinguish between two different ways of losing methylation at
cytosines: After cell division a new (daughter) strand of the DNA is synthe-
sized. Initially, all cytosines of the daughter strand are unmethylated, while the
methylation states of cytosines on the parental strand remain unchanged. Main-
tenance methylation, which happens during the replication process, is used to
re-establish the methylation pattern at the newly synthesized strand. However,
the absence or inhibition of maintenance methylation causes a loss of 5mC with
each replication step. This DNA replication dependent loss has been termed
passive demethylation.

For active demethylation it is assumed that oxidation of 5mC to 5fC or
5caC via 5hmC and a subsequent enzymatic removal of the oxidative cytosine
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from the DNA occurs (cf. Fig. 1). Since de novo methylation as well as active
demethylation are replication independent, the loop depicted in Fig. 1 can be
traversed multiple times within one cell cycle. In measurements, we see Cs in all
stages, i.e., either methylated, oxidized (5hmC/5fC/5caC) or unmodified.

2.2 Hybrid Markov Model

In this section, we present a model that describes the state changes of a single
CpG over time. It can be seen as a hybrid extension of previous discrete-time
models [1,9]. The (hidden) states of a CpG correspond to the set of all pairs
of the four possibilities in Fig. 1, i.e., {u,m, h, f}2, because it contains a C on
both strands of the DNA. We split the transitions of our model into transitions
that occur at fixed times and those that occur at random times. This results
in a mixture of a discrete time Markov chain (DTMC) and a continuous time
Markov chain (CTMC). In the following we will refer to the events or transitions
that occur at fixed time points as discrete part of the model, while we refer to
the other events or transitions at the random time points as continuous part of
the model.

We assume that cells divide after a fixed time interval (usually every 24 h).
Hence, these events correspond to deterministic transitions at fixed times. Dur-
ing cell division one strand is kept as it is (parental strand) and all methylation
states and its modifications remain unchanged, while one DNA strand is newly
synthesized (daughter strand) and therefore contains only unmethylated cyto-
sine. Consequently, after cell division a CpG that was modified on both sides
becomes a CpG that is unmodified on one side. Since the parental strand is
chosen at random, the probability for each of the two successor states (corre-
sponding to the state of the CpG in the two daughter cells) is 0.5. The full
transition probability matrix D for cell division is shown in Table 1. Note that
the cell division matrix is time-homogeneous.

Maintenance methylation, i.e. methylation events that occur on hemimethy-
lated CpGs to reestablish methylation patterns, is known to be linked to the
replication fork [22]. We therefore consider maintenance to occur together with
the cell division at the same fixed time points. Hence, cell division and main-
tenance can be described by a (discrete-time) Markov chain whose transition
probability matrix P(t) is defined in the sequel in Eq. (1). Maintenance may
happen at the daughter strand if there is a methylated C on the parental strand,
i.e. on hemimethylated CpGs (um or mu), with probability μm(t). Since it is
reasonable to assume that hemihydroxylated CpGs (uh or hu) have different
properties compared to hemimethylated CpGs in terms of maintaining existing
methylation patterns, we describe the maintenance probability for hemihydrox-
ylated CpGs as follows. Let p be the probability that 5hmC is recognized as
unmethylated by maintenance enzymes, i.e., the enzyme will not perform main-
tenance of a hemihydroxylated CpG. Then, the maintenance probability of such
a CpG is given by p̄μm(t), where p̄ = 1−p. Note that there is no equivalent prob-
ability for uf or fu, i.e. we assume that CpGs with 5fC or 5caC at one strand are
not maintained [17]. The transition probability matrix for maintenance events is
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Table 1. Cell division matrix D.

uu um uh uf mu mm mh mf hu hm hh hf fu fm fh ff

uu 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

um 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

uh 1/2 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0

uf 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0 0

mu 1/2 0 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

mm 0 1/2 0 0 1/2 0 0 0 0 0 0 0 0 0 0 0

mh 0 0 1/2 0 1/2 0 0 0 0 0 0 0 0 0 0 0

mf 0 0 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0

hu 1/2 0 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0

hm 0 1/2 0 0 0 0 0 0 1/2 0 0 0 0 0 0 0

hh 0 0 1/2 0 0 0 0 0 1/2 0 0 0 0 0 0 0

hf 0 0 0 1/2 0 0 0 0 1/2 0 0 0 0 0 0 0

fu 1/2 0 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0

fm 0 1/2 0 0 0 0 0 0 0 0 0 0 1/2 0 0 0

fh 0 0 1/2 0 0 0 0 0 0 0 0 0 1/2 0 0 0

ff 0 0 0 1/2 0 0 0 0 0 0 0 0 1/2 0 0 0

illustrated in Fig. 2, where we omitted the time dependency of μm(t). Whenever
no transition is possible, i.e. there is only a self loop for this state (omitted in
Fig. 2) the corresponding diagonal entry in the matrix is 1. Where a transition is
possible we set the corresponding (off-diagonal) entry in the matrix to its transi-
tion probability and the diagonal entry to 1 minus its transition probability. All
other entries in the matrix are 0. One discrete step of the corresponding DTMC
corresponds to one cell division, including maintenance methylation. Hence, its
transition probability matrix is defined as

P(t) = D · M(t). (1)

Every other event may occur an arbitrary (unknown) number of times
between two cell divisions at random time points and will be described by a
continuous-time Markov jump process. These events are de novo methylation
(u → m) with rate μd(t), hydroxylation (m → h) with rate η(t), formylation
(h → f) with rate φ(t) and active demethylation (f → u) with rate δ(t) (cf.
Fig. 1). Note that all these events may happen on both strands, independent
of the state on the complementary strand. All possible reactions are shown in
Fig. 3. From these transitions the infinitesimal generator matrix Q(t) of the jump
process can easily be inferred. For the off-diagonal elements, we set the entries to
the respective reaction rate if a reaction is possible between two states, indicated
by a colored arrow in Fig. 3, and to 0 if no reaction is possible. The diagonal
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Fig. 2. Maintenance methylation events occur at (fixed) times t1, t2, . . . , tn and belong
therefore to the discrete part of the model. Each state is represented by two colored
dots, one for each C on the two strands of the DNA. Unmethylated C is blue, 5mC red,
5hmC yellow and 5fmC cyan. The arrows indicate the possible transitions. Note that
we omitted the self loops with probability 1 for states where no transition is possible.
The four shown self loops have probability 1−μm or 1− p̄μm respectively. (Color figure
online)

elements are then given by the negative sum of the off-diagonal elements of the
respective row.

In order to describe the time evolution let us first define the set of time points
Td = {t1, t2, . . . , tn}, at which cell division and maintenance occur. We assume
that there are in total n of these events. Note that the ti ∈ Td have to be set
beforehand, however, one is not restricted to equidistant time intervals. Instead
the times can also be sampled from an arbitrary distribution.

At these time points ti the time evolution of the probability distribution of
the states is given by

π(ti + Δt) = π(ti) · P(ti), (2)

where Δt is the duration of cell division and maintenance. After cell division and
maintenance the other events take place at random time points until the time
point for the next cell division is reached. During this interval [ti + Δt, ti+1] the
time evolution for π(t) is obtained by solving the differential equation

d

dt
π(t) = π(t) · Q(t). (3)

Note that since cell division and maintenance methylation occur at a time inter-
val that is much shorter than the time between two cell divisions, we assume
here that these events occur instantaneously, i.e. we let Δt → 0, which leads to



A Hybrid HMM Approach for the Dynamics of DNA Methylation 123

Fig. 3. Possible transitions in the continuous part of the model. Each state is repre-
sented by two colored dots, one for each C on the two strands of the DNA. Unmethy-
lated C is blue, 5mC red, 5hmC yellow and 5fmC cyan. The arrows indicate the possible
transitions, whereupon the colors indicate the different reactions and their rates, i.e.
methylation with rate μd (red), oxidation with rate η (yellow), formylation with rate
φ (cyan) and active demethylation with rate δ (blue). (Color figure online)

a jump of the distribution at ti. It holds that the left-hand and right-hand limit
do not coincide (except for the special case of only uu at time ti), i.e.

lim
t→t−i

π(t) = π(t−i ) �= π(t−i ) · P(t−i ) = π(t+i ) = lim
t→t+i

π(t). (4)

To resolve the ambiguity we set the value of π at time ti to π(ti) := limt→t+i
π(t),

which means that we assume that at time ti the cell division and maintenance
methylation have already happened. Intuitively, we can obtain the solution for
π(t) numerically by alternating between multiplication with P (Eq. (2)) and
integration of Eq. (3).

2.3 Efficiencies

As already discussed in [9] the methylation or modification rates may change over
time, i.e. with the assumption of constant rates the behavior of the system can
not be captured correctly. We therefore introduce time dependent rates, which
we call efficiencies. The simplest way of making the efficiencies time dependent
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is to impose a linear form. Let r ∈ {μm, μd, η, φ, δ} be one of the reaction rates.
For each reaction we then define

r(t) := αr + βr · t, (5)

where αr and βr are some new parameters to characterize the linear efficiency
function. To further compress the notation we write these new parameters into
a vector vr = (αr, βr).

Note that in order to ensure identifiability of the parameters we have to
introduce certain constrains. Obviously since μm(t) and p are probabilities, they
have to be bound between zero and one, i.e. 0 ≤ μm(t) ≤ 1 for all t ∈ [0, tmax]
and 0 ≤ p ≤ 1. The other efficiencies have to be bound by some upper limit
ub since otherwise the demethylation cycle may become arbitrarily fast and the
optimization algorithm runs into identifiability problems. We therefore require
0 ≤ r(t) ≤ ub for all t ∈ [0, tmax], where r(t) �= μm(t). Since typical average
turnover times E[Tturnover] = μ−1

d + η−1 +φ−1 + δ−1 of the demethylation cycle
are in the order of 75 to 120 min in certain promotors of human cells [18,25], a
viable choice would be, for example, ub = 12, i.e. each modification occurs on
average not more frequent than 12 times per hour (not faster than every 5 min).

2.4 Conversion Errors

The actual state of a CpG can not be directly observed. We therefore have to
estimate the hidden states from sequencing experiments. In total there are 16
hidden und four observable states. Since the different modifications of C might
lead to the same observable states it is necessary to perform multiple sequenc-
ing experiments in order to uniquely determine the levels of the hidden states.
Here, we perform three different kinds of sequencing experiments: All sequencing
strategies share a bisulfite treatment, which usually converts C and its oxidized
variants 5fC and 5caC, summarized to 5fC∗, to uracil. Additionally, in bisulfite
sequencing (BS) both 5mC and 5hmC remain unconverted while in oxidative
bisulfite sequencing (oxBS) only 5mC is retained as C [3]. A combination of
both methods can therefore be used to estimate the amount of 5hmC. In M.SssI
assisted bisulfite sequencing (MAB-Seq) at first all Cs in a CpG context are
methylated and afterwards BS is applied. Thus, if all conversions would hap-
pen without any errors, only 5fC∗ would be converted to T [27]. In order to
capture the methylation pattern of CpG position at both complementary DNA
strands, the distinct chemical treatments were combined with hairpin sequencing
[10,11,21]. Regular reactions with their respective probabilities are marked with
solid black arrows in Fig. 4, while the possible false reactions are depicted with
dashed red arrows. Since every CpG consists of two Cs (one on each strand)
with independent conversion errors, we get the conversion error for CpGs by
multiplying the individual conversion errors. A complete overview of all possible
combinations for each of the three methods is shown in Table 2.
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Fig. 4. Cytosine conversions during chemical treatment and sequencing. The correct
reactions with their respective probabilities are marked with black arrows, while the
false reactions are shown with red dashed arrows. The probability for a false reaction
is 1-“rate of correct reaction”. (Color figure online)

2.5 Parameter Estimation

Recall that the set of hidden states is S = {uu, um, uh, uf,mu,mm,mh,mf, hu,
hm, hh, hf, fu, fm, fh, ff}. We now define a hidden Markov model (HMM)
based on the model presented in Sect. 2.2. As set of observable states we define
Sobs = {TT, TC, CT,CC}, i.e. we use the results of the sequencing experi-
ments (cf. Fig. 4) on both strands. The conversion errors define the correspond-
ing emission probabilities. We also define ne(j, t) as the number of times that
state j ∈ Sobs has been observed during independent measurements of sequenc-
ing method e ∈ E := {BS, oxBS, MAB-Seq}. The probability distribution over
all observable states for experiment e is denoted by πe(t), the probability of a
state j ∈ Sobs by πe(j, t) and in a similar fashion we denote π(i, t) with i ∈ S for
the hidden states, with probability distribution π(t). The observable and hidden
states for all times t are connected via

πe(t) = π(t) · Ee, (6)

where Ee is the emission matrix for sequencing method e and is listed in Table 2
for each of the three methods.

Our goal is to estimate the efficiencies for the different methylation events
given our hybrid HMM and data from the three different experiments at different
time points t ∈ Tobs via a maximum likelihood estimator (MLE). Since an initial
distribution over the hidden states, which can not directly be observed, is needed
in order to initialize the model, we have to employ the MLE twice: First we
estimate the initial distribution π(0) over the hidden states by maximizing

π(0)∗ = argmaxπ(0)L1(π(0)), (7)

under the constrain that
∑

i∈S π(i, 0) = 1. The likelihood L1(π(0)) is defined as

L1(π(0)) =
∏

e∈E

∏

j∈Sobs

πe(j, 0)ne(j,0). (8)
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Table 2. Conversion errors for CpGs, where the rates for single cytosines are defined in
Fig. 4. We define x̄ := 1−x. Note that for MAB-Seq we also define j := μd+(1−μ)(1−c).

bisulfite seq. (BS) ox. bisulfite seq.
(oxBS)

MAB-Seq

TT TC CT CC TT TC CT CC TT TC CT CC

uu c2 c·c̄ c·c̄ c̄2 c2 c·c̄ c·c̄ c̄2 j̄2 j ·j̄ j ·j̄ j2

um c·d̄ c·d c̄·d̄ c̄·d c·d̄ c·d c̄·d̄ c̄·d j̄ ·d̄ j̄ ·d j ·d̄ j ·d
uh c·ē c·e c̄·ē c̄·e c·f c·f̄ c̄·f c̄·f̄ j̄ ·ē j̄ ·e j ·ē j ·e
uf c·g c·ḡ c̄·g c̄·ḡ c·g c·ḡ c̄·g c̄·ḡ j̄ ·g j̄ ·ḡ j ·g j ·ḡ
mu c·d̄ c̄·d̄ c·d c̄·d c·d̄ c̄·d̄ c·d c̄·d j̄ ·d̄ j ·d̄ j̄ ·d j ·d
mm d̄2 d·d̄ d·d̄ d2 d̄2 d·d̄ d·d̄ d2 d̄2 d·d̄ d·d̄ d2

mh d̄·ē d̄·e d·ē d·e d̄·f d̄·f̄ d·f d·f̄ d̄·ē d̄·e d·ē d·e
mf d̄·g d̄·ḡ d·g d·ḡ d̄·g d̄·ḡ d·g d·ḡ d̄·g d̄·ḡ d·g d·ḡ
hu c·ē c̄·ē c·e c̄·e c·f c̄·f c·f̄ c̄·f̄ j̄ ·ē j ·ē j̄ ·e j ·e
hm d̄·ē d·ē d̄·e d·e d̄·f d·f d̄·f̄ d·f̄ d̄·ē d·ē d̄·e d·e
hh ē2 e·ē e·ē e2 f2 f ·f̄ f ·f̄ f̄2 ē2 e·ē e·ē e2

hf ē·g ē·ḡ e·g e·ḡ f ·g f ·ḡ f̄ ·g f̄ ·ḡ ē·g ē·ḡ e·g e·ḡ
fu c·g c̄·g c·ḡ c̄·ḡ c·g c̄·g c·ḡ c̄·ḡ j̄ ·g j ·g j̄ ·ḡ j ·ḡ
fm d̄·g d·g d̄·ḡ d·ḡ d̄·g d·g d̄·ḡ d·ḡ d̄·g d·g d̄·ḡ d·ḡ
fh ē·g e·g ē·ḡ e·ḡ f ·g f̄ ·g f ·ḡ f̄ ·ḡ ē·g e·g ē·ḡ e·ḡ
ff g2 g ·ḡ g ·ḡ ḡ2 g2 g ·ḡ g ·ḡ ḡ2 g2 g ·ḡ g ·ḡ ḡ2

Note that Eq. (8) is independent of the parameters. Given an initial distribution
over the hidden states we can now run our model and apply the MLE

v∗ = argmaxvL2(v), (9)

a second time in order to estimate the efficiencies, where

L2(v) =
∏

e∈E

∏

t∈Tobs\{0}

∏

j∈Sobs

πe(j, t)ne(j,t). (10)

The vector v = (vμm
,vμd

,vη,vφ,vδ, p) contains all unknown parameters for
all efficiencies and the probability p of considering a hydroxylated cytosine as
unmethylated. Note that applying the MLE twice and independently leads only
to an approximation of the true most likely explanation, since the estimated
initial distribution may not lead to the same result in the parameter estimation,
as if it would all be done in one estimation. However, we choose this approach
to reduce the computational complexity of the optimization. Note that we used
a numerical multistart optimization approach for both MLEs in order to ensure
that the global optimum is indeed found.

In order to estimate the standard deviations of the estimated parameters we
use the observed Fisher information matrix [5]. The Fisher information is defined
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Fig. 5. Results for Afp. (a)–(c) Predicted frequencies (dashed lines) and frequencies
obtained from sequencing experiments (solid lines) of the observable states for all three
methods. (d) Estimated efficiencies with standard deviations. (e) Probabilities of the
hidden states. (f) Detailed distribution of hydroxylated CpGs. (g) Detailed distribution
of formalized CpGs.

as J (v∗) = −H(v∗), where v∗ is the maximum likelihood estimate and H(v) =
∇∇T log L2(v) the Hessian matrix of the log-likelihood. The expected Fisher
information is then given by I(v∗) = E[J (v∗)] and its inverse forms a lower
bound for the covariance matrix. Thus, we can approximate the standard devi-
ation of all estimated parameters by σ(v∗) =

√
Var(v∗) ≈ √

diag(−H−1(v∗)).
The implementation of the hybrid HMM and its analysis as explained above

has been integrated into the latest beta version of the H(O)TA tool [20]. H(O)TA
provides results for individual CpGs and also an aggregated profile across all
analyzed CpGs.

3 Results

In the following, we will discuss the results after applying our model to data
derived from a short region at the single copy gene Afp (alpha fetoprotein), which
contains 5 CpGs. More precisely, we followed the DNA methylation changes dur-
ing the adjustment of mouse embryonic stem cells (mESCs) towards 2i medium
after previous long time cultivation under Serum/LIF conditions [8,9]. The
Serum/ LIF-to-2i shift is a common model system which induces genome wide
demethylation in mESCs including the Afp locus.

The bases of our modelling is given by three data sets derived from three
sequencing experiments, hairpin (HP) bisulfite sequencing (BS), HP oxidative
BS (HPoxBS) and M.SssI assisted HPBS (MAB-Seq). While the combination of
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BS and oxBS permits the simultaneous detection of 5mC and 5hmC, MAB-Seq
provides the combined level and distribution of 5fC and 5caC [3,10,11,21,27].
Thus, the additional information about oxidized cytosine forms allows us to
investigate the role of 5hmC and 5fC/5caC in the given demethylation process.

Here, the individual and aggregated H(O)TA results show a very similar
behavior. Hence, we only present the aggregated results in Fig. 5.

Figure 5 (a)–(c) shows a comparison of the actual measurements (solid lines)
and the results from the model (dashed lines) of the time evolution for the four
observable states for all three sequencing models. The predictions and measure-
ments are in good agreement. In BS and oxBS over time the frequency of TT
increases, while the frequency of CC decreases. Moreover, the frequencies of TC
and CT show a temporal increase. For MAB-Seq the frequencies of all observable
states remain quite constant, except for some small changes in early times. This
behavior can be explained by the changes over time in the efficiencies, which are
shown in Fig. 5(d). The maintenance probability μm remains constant at about
0.8, as well as the probability p of considering 5hmC as unmethylated, which
is constant by definition. The estimation of p gives p = 1, i.e. 5hmC is always
considered to be unmethylated and will not be recognized by Dnmt1 after repli-
cation which means that 5hmC leads to an impairment of Dnmt1 activity and
a passive loss of DNA methylation with each replication. The de novo efficiency
μd decreases over time, while the hydroxylation and formylation efficiency η and
φ increase. The demethylation efficiency δ is always 0. Note, however, that the
standard deviation for δ becomes very large for later time points due to insuf-
ficient data. On the contrary the standard deviations for all other efficiencies
remain very small.

The efficiencies explain the behavior of the frequencies of the observable
states and is even more evident for the hidden states shown in Fig. 5(e): Over time
the probability of being fully or hemimethylated decreases, while the probability
of being unmethylated, hydroxylated or formylated increases. A more detailed
look into hydroxylated and formylated states is shown in Fig. 5(f) and (g). Note
that the combination of hydroxylation and formylation is only shown in one of
the two subplots, namely in (g). The observed increase in 5hmC and 5fC/5caC is
in accordance with the high oxidation efficiency of Test in form of hydroxylation
and formylation. Previously, we showed using a purely discrete HMM, that the
presence of 5hmC leads to a block of Dnmt1 activity after replication, which
we also observe in the present hybrid model [9]. However, we now also observe
an increase in higher oxidized cytosine variants, namely 5fC and 5caC which
equally prevents methylation by Dnmt1. Thus, we reason that the impact of Tet
mediated oxidation of 5mC on DNA demethylation in the investigated system
plays a much more important role than previously suggested [26].

Considering the rather rapid periodic events of de novo methylation and
active demethylation, the chosen measurement time points are not ideal. There
is only information available at the end of each cell division cycle (one division
within 24 h), i.e., no information is given for the times between two cell divisions.
With measurements at time points between two cell divisions we would be able
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to distinguish if a CpG is in a certain state because it initially was, or because
it ran through the full cycle, possibly multiple times. We emphasize that with
better data, i.e. with sufficiently many measurements between cell divisions, it
will be possible to estimate all reaction efficiencies with better confidence.

4 Conclusion

We proposed a hybrid hidden Markov model which is able to successfully describe
both, events such as cell division and maintenance methylation that occur at
fixed times, and events that occur at random times, such as de novo methylation,
oxidizations and active demethylation, according to a continuous-time Markov
jump process. To the best of our knowledge, this is the first model that describes
the dynamics of active demethylation, i.e., the active removal of the methyl group
through several enzymatic steps. We applied our model to data from mouse
embryonic stem cells, which undergo a gradually loss of DNA methylation over
time. We were able to accurately predict the frequency of the observable states
and the levels of the hidden states in all cases. We were also able to predict
the enzymatic reaction efficiencies based on a linear assumption for their time
behavior.

As future work we plan to apply our model to more informative data such
that all efficiencies of the active demethylation cycle can be estimated with
better confidence. Moreover, we plan to allow different functional forms for the
efficiencies as we do not always expect a constant in- or decrease in enzyme
efficiencies over time. Therefore, a linear form is not flexible enough and does not
allow to capture more complex behaviors. A suitable choice could be splines of
different degrees and with a different number of knots. However, in this case it is
also necessary to perform model selection in order to prevent overfitting. Another
possible extension could be to investigate potential neighborhood dependencies
of the modified cytosines [23].
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Abstract. Metabolism and cell cycle are two central processes in the
life of a eukaryote cell. If they have been extensively studied in their
own right, their interconnection remains relatively poorly understood.
In this paper, we propose to use a differential model of the central car-
bon metabolism. After verifying the model accurately reproduces known
metabolic variations during the cell cycle’s phases, we extend it into a
hybrid system reproducing an imposed succession of the phases. This first
hybrid approach qualitatively recovers observations made in the litera-
ture, providing an interesting first step towards a better understanding
of the crosstalks between cell cycle and metabolism.

Keywords: Metabolism · Cell cycle · Ordinary differential equations ·
Hybrid systems

1 Introduction

In cell biology, two mechanisms are absolutely central to understand the growth
of a cell population: the metabolism and the cell division cycle. The former deals
with the production of energy and the production of all molecular components
needed for a cell to live and grow, while the latter ensures, when a cell has
sufficiently grown, that it will divide into two daughter cells. Both mechanisms
have been extensively studied over the years, however the exploration of inter-
dependency between them is relatively recent [2,10,15]. The coupling of the two
systems has attracted a lot of attention in recent years, as disruptions in their
interconnection have been linked to severe pathologies such as cancer [3].

Similarly, from a modeling point of view the dynamical analysis of
metabolism (e.g. [12]) and of cell cycle (e.g. [7]) are also relatively separate,
and the coupling of metabolic and cell cycle models remains a challenging task
in systems biology. In this paper, we propose a first approach towards this cou-
pling by proposing a differential model of central carbon metabolism (CCM),
inspired from [4]. The CCM is an important metabolic part regarding both syn-
thesis of precursors (amino acids, nucleotides, fatty acids etc), energy produc-
tion (ATP) or redox ratios (NAD/NADH, NADP/NADPH), making this model
c© Springer Nature Switzerland AG 2019
M. Češka and N. Paoletti (Eds.): HSB 2019, LNBI 11705, pp. 132–146, 2019.
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a good candidate to analyze the effect of cell cycle on metabolic activity. We
then construct different versions of the CCM model, reproducing major known
effects of the cycle’s phases. Finally we use a hybrid approach to simulate the
dynamical succession of the phases.

This article is motivated by previous works of da Veiga Moreira et al. [3],
where experimental results were obtained, in normal and cancer cells. In partic-
ular, they measured ATP concentrations and redox ratios at different phases of
the cell cycle. These measures highlight variations across the cycle, with notable
differences between normal and cancer cells. By qualitatively reproducing key
experimental observations in normal cells in [3], our hybrid dynamical model con-
stitutes an important first step towards a better understanding of metabolism
along the cell cycle.

This article is organized as follows. We first present the dynamical model
of the CCM (Sect. 2). Then, we analyze its sensitivity with respect to known
regulations of the cell cycle, and propose different versions of the model, one for
each phase (Sect. 3). Finally, we combine them into a hybrid model and simulate
it on a full cycle (Sect. 4).

2 A Dynamical Model of Central Carbon Metabolism

We start with a brief presentation of the metabolic model used in this paper.
This model consists of 24 ordinary differential equations summarizing the main
pathways, together with the main regulations of the central carbon metabolism
(CCM) in a growing population of eukaryotic cells. It is a slight adaptation of
the model in [4], which is itself based on the work of Robitaille [12].

2.1 Description of the Metabolic Model

The state vector x(t) ∈ R
24
+ is decomposed into three groups of variables:

x(t) = (xI(t), xII(t), xbiomass(t)) ,

where xI ∈ R
16
+ contains the concentration (expressed in mmol L−1) of 16

metabolites in the CCM, including palmitate to represent lipid production;
xII ∈ R

7
+ contains the concentration (expressed in mmol L−1) of central cofac-

tors: ATP-ADP-AMP (energy management), NAD-NADH and NADP-NADPH
(redox management); finally xbiomass ∈ R+ represents biomass production, it is
expressed in L. The differential system can be summarized by:

⎧
⎨

⎩

ẋI = SIν(x(t)) − μ(x(t))xI(t),
ẋII = SIIν(x(t)),
ẋbiomass = μ(x(t))xbiomass(t).

(1)
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Evolution of Metabolites. The first two equations in (1) govern the temporal
evolution of the different metabolites and cofactors. The term −μxI represents
a dilution term, modeling the fact that the cell population is growing. Note that
the second equation does not have a dilution term: it is a modeling assumption to
take into account the fact that the biosynthetic pathways of cofactors (such as the
couple NAD/NADH for instance) are not included in the model. More precisely:
every time a molecule of NADH is produced in the model, a molecule of NAD
is consumed so that the sum y(t) = NAD(t)+NADH(t) keeps constant. Thus,
since the production de novo of these “exchange” metabolites is not included
in the model (for the sake of simplicity), their dilution is ignored preventing
unwanted exhaustion of their pools. This is the only reason why the metabolites
are separated into the two groups of variables xI and xII . The remainder of the
right-hand terms can be regrouped:

( SI

SII

)

ν(x(t)) = Sν(x(t)),

where S ∈ Q
23×29 is the stoichiometric matrix and ν(x) ∈ R

29 is the vector
of velocities of the 29 reactions involved in the model. These reactions recover
the main pathways of the CCM: glycolysis, pentose-phosphate pathway (PPP),
tricarboxylic acid cycle (TCA) as well as lactate and lipid production (see Fig. 1
for a graphical representation). Note that some reactions have been aggregated,
according to the original model in [12].

The construction of the vector ν(x(t)) of reaction rates is mainly based on
the classical model of Michaelis-Menten for enzymatic catalysis. According to
this model, the velocity of reaction S

E−→ P is given by

ν = kcate(t)
s(t)

Km + s(t)
, (2)

where e(t) and s(t) designate the concentrations in enzyme and substrate, and
kcat and KM are constants. For a reversible reaction r, we split it into a forward
and a backward reaction:

νr = νr f − νr b,

the velocity of each reaction being given by (2), with different kcat and Km. In
our model, enzyme concentrations are supposed fixed1, simplifying (2) into

ν = νmax
s

Km + s
, where νmax = kcate. (3)

Finally, some known regulatory effects are included in the model, mainly
under the form of multiplicative factors involving michaelis-like terms. To better
see how the differential equations are constructed, let us consider an example.

1 Note that this fact amounts to supposing that the “genetic part” of the cell ensures
the maintenance of enzymatic pools.
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Fig. 1. Graphical representation of the CCM model designed with Celldesigner [8].
Glycolysis is represented in red, pentose phosphate pathway in blue and TCA cycle in
green. Reversible reactions are represented with a double arrow, as for instance PGI
and irreversible reactions by a simple arrow. Note that some reactions have been aggre-
gated (following [12]; for instance PFK denotes the aggregation of phosphofructokinase,
aldolase and triose phosphate isomerase). (Color figure online)

Take for instance the fructose 6-phosphate F6P , which is the second metabolite
of the glycolysis. By looking at the different reactions involving F6P (see Fig. 1),
its differential equation reads:

dF6P

dt
= νpgi f − νpgi b − νpfk + 2νtkt − μF6P.

Now, let us explain how the reaction rates ν are built. Consider for example the
term νpfk, which is the rate of phosphofructokinase. In the model, this reaction
is actually aggregated with two neighbor reactions (catalyzed by fructose biphos-
phate aldolase and triose phosphate isomerase), leading to the overall reaction:

F6P + ATP −→ 2GAP + ADP.
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To take into account the effect of cofactors ADP and ATP, we follow [12] and
[4] and construct the function νpfk as the product of Michaelis-Menten terms:

νpfk = νmax
F6P

Km1 + F6P

ATP
ADP

Km2 + ATP
ADP

.

Now, two different regulations of this enzyme are known, namely a stimulation
by the ratio AMP

ATP and a (non-competitive) inhibition by citrate. Again, following
[4,12] the final reaction rate of PFK is given by:

νpfk = νmax

(
1 + β

αK
AMP
ATP

)
F6P

(
1 + 1

K
AMP
ATP

)
Km1 +

(
1 + 1

αK
AMP
ATP

)
F6P

ATP
ADP

Km2 + ATP
ADP

Ki

Ki + CIT
.

For more details about these terms and their biological justification, the reader
is referred to [12,13]. All the regulations included in the present model come
from [4].

Biomass Production. The last equation in (1) models the growth of the cell
population. It is modeled as a storage reaction, which mimics the use of certain
central metabolites to represent biomass production. As described in [14], a cell
needs a number of precursors such as amino acids2, glycogen, nucleotides and
lipids to grow. Articles [12] and [4] make the following assumptions: glycogen
demand is represented by a demand in glucose-6-Phosphate (G6P), nucleotide
demand by ribose-5-Phosphate (R5P) and lipid demand by palmitate (PALM).
Moreover, growth needs energy, which is represented by an additional demand in
adenosine triphosphate (ATP). These assumptions lead to the following growth
rate:

μ(x(t)) = νmax
ATP

KATP + ATP

G6P

KG6P + G6P

R5P

KR5P + R5P

PALM

KPALM + PALM
.

(4)

2.2 Simulation of the Model

The model consists in 24 highly nonlinear differential equations. It involves
around a hundred parameters, which mainly come from [12] and [4]. Given its
complexity, an analytical analysis of its asymptotic behavior is presently not
available. Nevertheless, we performed multiple numerical simulations to test its
behavior in different conditions. With respect to [12], we further simplified by
considering glucose as the unique source of carbon (in the model, external glu-
cose directly enters as G6P through the hexokinase reaction). In general, the
model seems to converge to a stationary regime illustrated in Fig. 2.

2 For the sake of simplicity, the demands in amino acids are ignored in this paper.
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Fig. 2. Example of temporal trajectory of the metabolic model. On the left, the
metabolites visually reach a stationary regime around 5 000 h. On the right, ATP,
NAD/NADH and μ reach a stationary regime around 10 000 h while the ratio
NADP/NADPH needs more time to reaches it. All numerical simulations of this paper
are made in Matlab (The MathWorks, Inc.) with solver ode15s.

Such a stationary regime is not a proper equilibrium point, as the biomass
grows exponentially. However, it seems to represent an equilibrium regime mod-
eling a population growing in exponential phase, where all internal metabolites
numerically tend to a steady state value. As expected in such conditions, gly-
colysis is fully running (glucose 6-phosphate and pyruvate are respectively the
entry and exit points of glycolysis), while pentose phosphate pathway and lipid
production are relatively low (represented respectively by ribose 5-phosphate
and palmitate).

An advantage of this model is that it explicitly includes the concentration
of “exchange” metabolites (group II) as variables. It is therefore possible to
have a direct visualization of key functions of the cell such as energy produc-
tion (through ATP) or its redox state whether in catabolism (through the ratio
NAD/NADH) or in anabolism (through the ratio NADP/NADPH).

3 Reproducing Metabolic Variations Along the Cell
Cycle

The system presented in the previous section is intended to model the temporal
evolution of a (exponentially) growing population of cells. For a population to
grow, cells need to divide, undergoing the complex process known as cell cycle
(or cell-division cycle). This process can be defined as the series of key cellular
events, including the duplication of the genetic material, to ultimately produce
two genetically identical daughter cells. Schematically, it can be decomposed
into four successive phases: G1-S-G2-M (sometimes a fifth phase G0 is added
representing a quiescent state). The regulatory network behind this process has
been extensively studied in different biological contexts, and models using differ-
ent formalisms are available [7,11]. However, understanding the interconnection
between the cell cycle and metabolism remains challenging.
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To understand the links between the two, a key is to understand the main
role of each phase in the division process. The effects of the cycle on metabolic
activity have been actively explored recently, leading to both experimental and
modeling works (see e.g. [1,3,5,6] and references therein). Phase G1 is typically
viewed as a growth phase, where the cell produces a lot of proteins. It is generally
associated with high energy production, notably as ATP. Also associated with
high energy, phase S is the phase of DNA duplication; it is linked to an increase of
the pentose phosphate pathway, main producer of nucleotide precursors. During
G2 the cell continues its growth, notably by producing membrane precursors
(lipids in particular). Finally, phase M is the mitosis phase itself, where the cell
actually divide into two daughter cells. Little is known about specific metabolic
activity in this phase. Table 1 summarizes the main metabolic variations through
the cycle’s phases.

Table 1. Qualitative description of the main role of mammalian cell cycle’s phases and
specific metabolite demands along the phases (mainly interpreted from [3,5]).

Main role Specific metabolic
demands

G1 Growth, production of
proteins (and mRNA)

Energy (ATP) amino
acids, nucleotides

S DNA duplication Energy and
nucleotides

G2 Growth, membrane
production

lipids

M Division not known

The main idea of this article is to use the metabolic model described in Sect. 2
to reproduce, at least on a qualitative level, the general behavior of metabolism
during the cycle’s phases, as described in Table 1. As a first step, in the follow-
ing we investigate whether the model is able to reproduce major regulations of
the CCM by the cell cycle. For that, we mainly use the review article [6] by
Diaz-Moralli et al., which outlines some of the major known regulations. After
verifying that the model is able to reproduce all major effects described in [6],
we further use this result to build three different versions of the model, each
representing the CCM during a phase of the cell cycle.

3.1 Uncovering Regulatory Effects of the Cycle Phases on the CCM

For each phase G1, S and G2 we proceed in the same way. The first step is
to deduce from [6] the main regulatory effects of the phase on CCM enzymes.
Table 2 below reproduces all tested effects. Each regulatory effect may be positive
or negative, and can act on enzyme activity (e.g. increased activity of G6PDH
in S) or directly on enzyme level (e.g. accumulation of PFK in G1). In both
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cases, we proceed in the same way and make vary the parameter νmax (maximal
velocity, see Eq. (3) above): an increase of νmax either corresponds to an increased
activity (i.e. a higher kcat) or to an increase of enzyme concentration (a higher
e). The second step is to select a “response” metabolite x in the model to test
the expected effect. Sometimes the choice is straightforward; for instance in
G1 the increase of lipogenic activity is supposed to have an effect on lactate
concentration, so we test x = LAC. Sometimes the choice is more indirect;
for instance in S the decrease of PFK concentration is linked with an increase
of the pentose phosphate pathway, in that case we choose x = R5P (ribose
5-phosphate, in the middle of the PPP, see Fig. 1). Once the enzyme and the
response metabolite x are chosen, we simulate the model and plot the steady
state value x∗ for different value of the enzyme νmax, thus allowing to test
whether the model reproduce the desired (positive or negative) effect.

Table 2. List of the tested effects of cell cycle’s phases on the CCM, as interpreted
from [6]. Note that VPALM corresponds to the reaction of lipid production (palmitate
in our case). In G1, PFK has a high concentration while G6PDH has a low activity.

Enzyme G1 S G2

PFK High Low Low

G6PDH Low High High

TKT Low Low High

VPALM Low Low High

In total, we tested six different effects indicated in [6] and in each case the
model recovered the expected behavior (increase or decrease of the response
metabolite with respect to varying νmax). These experiments are described there-
after. Since these results were encouraging, we decided to go further and to
instantiate the model into three versions, each one representing a phase of the
cycle. These versions were simply deduced by arbitrarily choosing high or low
values for the parameters νmax for each of the four enzymes PFK, G6PDH, TKT
and VPALM.

Phase G1. According to [6], two main enzymes are affected during G1. First,
there is an accumulation of PFK during the whole phase, leading to an increase
in glycolytic activity. To observe such an activity, we tracked the concentration
of pyruvate, which is the end-product of glycolysis. Figure 3 clearly shows an
increase of PYR∗ with respect to νmaxPFK . The second regulation in G1 indi-
cated by [6] is a decrease of lipogenic enzyme concentration leading to an increase
of lactate concentration. In our model, we used the enzyme VPALM (produc-
tion of palmitate) to test a decrease of lipid production, and we observed the
steady state concentration of lactate. Again, as expected the model reproduce an
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increase of lactate when νmaxV PALM decreases (see Fig. 3). Therefore, to obtain
a model for G1 we set the two parameters to the following values:

{
νG1
maxPFK := 1 · 10−2 mmol L−1 h−1,

νG1
maxVPALM := 3 · 10−6 mmol L−1 h−1.

Fig. 3. Left: steady state value of pyruvate concentration for varying values of νmaxPFK.
Right: steady state value of lactate concentration for varying values of νmaxVPALM.
Values νdef

max and νG1
max correspond respectively to the value of the parameter νmax in

the initial model and in the G1 model.

Phase S. During this phase the concentration of PFK starts to decrease [6],
leading to a subsequent increase of the PPP. As indicated earlier, we decided
to observe this effect on the concentration of R5P, which in the model is the
central metabolite of the PPP. The second change in this phase is an increase of
G6PDH activity, also contributing to an increase of R5P. Figure 4 shows that the
model reproduces both effects. Furthermore, since in phase S lipogenic enzymes
are still supposed to be low, we instanciate a S model by setting:

⎧
⎨

⎩

νS
maxVPALM := νG1

maxVPALM,

νS
maxPFK := 1.5 · 10−3 mmol L−1 h−1,

νS
maxG6PDH := 5 · 10−4 mmol L−1 h−1.

Phase G2. In G2 the concentration of lipogenic enzymes increases, leading to
an increase of lipid production. Lipids in the model are represented by palmitate.
Moreover, increase in the activity of TKT is supposed to further activate the
end of the PPP [6]. We used the metabolite GAP in the model, as it is the exit
point of the PPP (where the PPP flux comes back to glycolysis). Both effects are
qualitatively reproduced in the model (see Fig. 5). Further taking into account
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Fig. 4. Left: steady state R5P concentration with respect to νmaxPFK with νS
maxVPALM

set. Right: steady state R5P concentration with respect to νmaxG6PDH.

Fig. 5. Left: steady state PALM concentration with respect to νmaxVPALM with
νG2
maxG6PDH and νG2

maxPFK set. Right: steady state R5P concentration with respect to
νmaxG6PDH.

the fact that PFK concentration is supposed to be low and the activity of G6PDH
is supposed to be high, we instantiate a model G2 by setting:

⎧
⎪⎪⎨

⎪⎪⎩

νG2
maxPFK := νS

maxPFK,
νG2
maxG6PDH := νS

maxG6PDH,

νG2
maxVPALM := 5 · 10−5 mmol L−1 h−1,

νG2
maxTKT := 2.3 · 10−4 mmol L−1 h−1.

3.2 Validation of the Three Models

Thanks to biological information [6], we were thus able to propose three versions
of the original model, each supposed to reproduce the main metabolic behavior
induced during one of the cycle’s phases G1, S and G2. To further validate those
models, we simulated them separately and observed the steady state values of
five specific metabolites, strategically placed within the CCM: G6P and pyru-
vate (respectively entry and end points of glycolysis), R5P (middle of pentose
phosphate pathway), palmitate (lipid production) and lactate (anaerobic energy
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production). The obtained values are illustrated in Fig. 6. They seem to confirm
four main biological observations made in [6]:

– Glycolysis has a high activity in G1 (higher values of G6P∗ and PYR∗),
– Lactate production is high in G1,
– Pentose phosphate increases in S and G2 (attested by higher values of R5P∗),
– Lipid production increase in G2.

Fig. 6. Steady state concentrations of five key CCM metabolites in the G1 (white),
S (grey) and G2 (black) models. For comparison, the dashed bars indicate the corre-
sponding values for the original model.

4 Hybrid Simulation of Metabolism Along the Cell Cycle

Encouraged by the previous results, we decided to use a hybrid approach to
observe the temporal succession of the three models, in the order imposed by biol-
ogy. The idea was to reproduce, at least on a qualitative level, major metabolic
variations as they are predicted theoretically or observed experimentally [3,5]
during a whole cycle. In reality, the correct succession of cell cycle’s phases is
ensured by a complex regulatory network (see e.g. [7] for a discrete model in the
case of mammalian cells), which is tightly linked to the cell’s metabolism [9].
However, the interconnection remains difficult as the precise biochemical con-
nections are not fully understood. Here, we decide to drastically simplify the
“cell cycle” part by imposing a switch when the biomass reaches a certain level,
thus mimicking the general growth of the mother cell before its division. Despite
this drastic hypothesis, we show in the following that our approach is sufficient
to reproduce expected metabolic variations during a cycle.
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4.1 Creating a Hybrid Trajectory

We start by the description of the hybrid automaton. This automaton contains
three modes corresponding to the three phases G1, S and G2. To each of these
phases corresponds a model built in Sect. 3. In a given phase, we designate the
state vector by xphase(t) = (xphase

I (t), xphase
II (t), xphase

biomass(t)). Starting in G1 at
time t0, we switch to S at time t1 > t0 and to G2 at time t2 > t1, where t1 and
t2 are defined as follows:

– xG1
biomass(t1) := xbiomass + αxbiomass = (1 + α)x0

biomass,
– xS

biomass(t2) := xbiomass + βxbiomass = (1 + β)x0
biomass,

x0
biomass being the initial biomass. In other words, in this model the succession

of phases is entirely determined by biomass evolution. α and β are parameters
that verify 0 < α < β < 1 and correspond to fractions of biomass needed to be
produced to enter the next phase. At each switch, we impose the continuity of
the solution by setting:

x(i)(t+i ) = x(i−1)(t−i ).

To model the completion of a cycle at the end of the phase G2, we switch back to
mode G1 at time t3 > t2 defined by xG2

biomass(t3) := 2 × x0
biomass. Thus, biomass

has doubled and the cell can divide itself. We actually model an instantaneous
mitosis by imposing:

xG1
biomass(t

+
3 ) :=

xG2
biomass(t

−
3 )

2
.

We present two hybrid trajectories in Fig. 7. As an initial condition, we use
the stationary regime of the original model (see Fig. 2). By simulating the above
hybrid system on several cycles, we observe that the trajectories ultimately sta-
bilize to an oscillatory regime. The two hybrid trajectories depicted in Fig. 7
correspond to two set of values for parameters α and β. The choice of α and β
seems to have an impact on a quantitative level, but not so much on a qualita-
tive level. Overall, major metabolic variations through the succession of phases
are retrieved [6]. First, there is a generally high glycolytic activity in G1, as
illustrated by (generally) increasing G6P and pyruvate curves. Comparatively,
pentose phosphate pathway and lipid production remain low. As expected, R5P
starts to increase in S reproducing a high demand in nucleotide for DNA dupli-
cation. It is associated with a sharp fall of the ratio NADP/NADPH, confirming
high activation of pentose phosphate pathway. This high level continues in G2,
accentuated by a higher demand in lipid (palmitate).

Furthermore, the exchange metabolite curves allow a direct comparison with
experimental curves given in [3]. Major effects are qualitatively recovered:

– a decrease of ATP during G1, followed by an increase during S and a decrease
during G2,
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Fig. 7. Two examples of hybrid trajectories. Two cell cycles obtained for two different
values of (α, β), left: (0.3, 0.4), right: (0.5, 0.7).

– a relatively low variation of the redox ratios3,
– an increase of the NADP/NADPH ratio during G1, followed by a decrease

during S and an increase during G2.

However, we observe a discrepancy in the NAD/NADH ratio: it decreases in G2
in the hybrid model whereas it seems to increase in experimental curves.

These first results seem promising: by combining the three versions of the
model we were able to recover accurate biological observations made in [6] as
well as experimental variations made in [3], thus validating the use of a hybrid
approach to qualitatively capture the metabolic variations during the cycle. It
is interesting to note that the modifications needed to build the hybrid system
from the original ODE model are relatively parsimonious, which is always a good
point from a modeling point of view. The obtained hybrid model is a good first
step towards the analysis of the crosstalks between metabolism and cell cycle. If
the cell cycle part is relatively simple (phases’ succession is only imposed by a
growth criterion), it is easy to imagine extensions including for instance a more
complete representation of the cell cycle regulation network (as is [7]), or a more
precise description of checkpoints as in [11]. In the next section, we propose a
slight extension of the model to try to improve the model’s predictions on a
quantitative level.

3 in [3], the range of variation of redox ratios is low in normal cells with respect to
cancer cells.
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Fig. 8. Hybrid trajectory with updated palmitate demand KPALM = 2.55 · 10−3.
Parameters (α, β) = (0.3, 0.4).

4.2 Extension: Modifying Demand Parameters

If the hybrid simulations are relatively satisfying on a qualitative level, certain
quantitative aspects still need improvement. In particular, from a dynamical
system point of view the switch times seem a bit high (typically, a cell cycle is
completed in tenth hours and not hundreds). By looking at the biomass ratio
xbiomass(t)
x0
biomass

in Fig. 7, we observed that its increase is particularly high in G2, when
palmitate production is higher. We confirmed that by looking at the growth
rate evolution μ(t) (not shown). Complementary simulations (not shown) also
indicated that palmitate was usually the limiting factor of the growth rate. To
alleviate this limitation, we decide to act on the demand of palmitate by reducing
parameter KPALM (see (4)). It was originally at 2.55 · 10−2 and we reduced it
to 2.55 · 10−3. The results are illustrated in Fig. 8. Most of qualitative effects
described previously are conserved, except for the ATP concentration during G2.
The simulation time has been greatly reduced, indicating the demand parameters
Ki in function μ are good candidates to calibrate the hybrid model.

5 Conclusion

The hybrid system proposed in this article is a preliminary work allowing us to
analyse the temporal evolution of metabolites and fluxes through the phases of
the cell cycle. First simulations are in good accordance with biological observa-
tions, at least at qualitative level. These positive results show that the hybrid
approach is a promising way to combine metabolism and cell cycle. If the dis-
crete part remains simplistic (the succession of phases is imposed), a next step
will be to include more complete information about the cell cycle regulatory net-
work [7,11] in order to better approach possible interconnections with the cell’s
metabolism.

Another extension concerns the incorporation of known disruptions in the
regulations, thus proposing a hybrid model for cancer cells with dysfunctioning
metabolism and cell cycle. Such a model, validated on experimental data such
as in [3], would pave the way to find potential targets for therapy.
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Abstract. Stochastic population models are widely used to model phe-
nomena in different areas such as chemical kinetics or collective animal
behaviour. Quantitative analysis of stochastic population models easily
becomes challenging, due to the combinatorial propagation of dependen-
cies across the population. The complexity becomes especially prominent
when model’s parameters are not known and available measurements are
limited. In this paper, we illustrate this challenge in a concrete scenario:
we assume a simple communication scheme among identical individuals,
inspired by how social honeybees emit the alarm pheromone to protect
the colony in case of danger. Together, n individuals induce a population
Markov chain with n parameters. In addition, we assume to be able to
experimentally observe the states only after the steady-state is reached.
In order to obtain the parameters of the individual’s behaviour, by util-
ising the data measurements for population, we combine two existing
techniques. First, we use the tools for parameter synthesis for Markov
chains with respect to temporal logic properties, and then we employ
CEGAR-like reasoning to find the viable parameter space up to desired
coverage. We report the performance on a number of synthetic data sets.

1 Introduction

Population models are widely used to model different phenomena: animal col-
lectives such as social insects, flocking birds, schooling fish, or humans within
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societies, as well as molecular species inside a cell, cells forming a tissue. Ani-
mal collectives show remarkable self-organisation towards emergent behaviours
without centralised control. Quantitative models of the underlying mechanisms
can directly serve important societal concerns (for example, prediction of seis-
mic activity [27]), inspire the design of distributed algorithms (for example, ant
colony algorithm [17]), or aid robust design and engineering of collective, adap-
tive systems under given functionality and resources, which is recently gain-
ing attention in vision of smart cities [22,26]. Quantitative prediction of the
behaviour of a population of agents over time and space, each having several
behavioural modes, results in a high-dimensional, non-linear, and stochastic sys-
tem [20]. Hence, computational modelling with population models is challenging,
especially when the model parameters are unknown and experiments are expen-
sive.

In this paper, we investigate how to obtain the parameters for single agent
behaviour, based on data collected for a population. Measurements for differ-
ent population sizes are especially important when studying social feedback: an
adaptation of individual’s behaviour to the changing context of the population.
For example, honeybees protect their colonies against vertebrates by releasing
an alarm pheromone to recruit a large number of defenders into a massive sting-
ing response [28]. However, these workers will then die from abdominal damage
caused by the sting tearing loose [33]. In order to achieve a balanced trade-off
towards efficient defence, yet no critical worker loss, each bee’s response to the
same amount of pheromone may vary greatly, depending on its social context,
which, in the case of bees, has been experimentally validated.

To tackle this problem, we assume a simple communication scheme among
identical individuals, such that n individuals together form a discrete-time
Markov chain (DTMC) M with at most n parameters. Each population even-
tually reaches one of its terminal strongly connected components (tSCC) in the
underlying MC. We employ the theoretical steady-state assumption that is com-
monly used in biological modelling scenarios: we assume that the experimental
observations can be taken when the steady state is reached, hence that exper-
imental measurements allow us to estimate probabilities of reaching any of the
tSCCs in the form of a confidence interval (for any desired confidence level α).
We assume V denotes a set of model parameters, each defined over domain [0, 1].
Our major goal is to synthesise a viable parameter space Θ, Θ ⊆ [0, 1]|V|, such
that the following condition is satisfied:

θ ∈ Θ if and only if M(θ) |=
∧

all tSCCs

ϕ(tSCC | data) (1)

where ϕ(tSCC | data) expresses that reaching a tSCC is achieved within the
confidence interval estimated from experimental data. In contrast to traditional
parameter inference techniques which return a single estimate, the parameter
synthesis approach gives a quantitative characterisation of the entire domain of
satisfying parameter values.
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We propose and implement a workflow for obtaining the viable parameter
space for a simple population model. The workflow, summarised in Fig. 3 (con-
crete steps and used technology), and Algorithm 1 (region generation and split-
ting), consists of two steps: first, we obtain a symbolic characterisation of the
distribution over tSCCs in form of multivariate rational functions, leveraging
the existing tools for parameter synthesis. Second, we employ CEGAR-like rea-
soning (candidate region generation and checking) for determining the viable
parameter space, until the desired proportion of the domain (called coverage) is
reached. We implemented several variants of the search algorithm, and tested
the performance on synthetic data sets. It is worth noting that, for showcasing
the framework, we here implemented a workflow for a specific class of population
models which have acyclic underlying transition system and each tSCC contains
one state (being strongly inspired by the propagation of alarm pheromones in
honeybees). The framework is applicable to any general DTMC and any persis-
tence or repeated reachability temporal logic property.

Related Work. Population models induced from a counting abstraction, have
been widely studied in the context of biochemical reaction networks. Ideas focus-
ing on faster prediction of resulting distributions over sub-populations of molec-
ular species, based on fluid, continuous space approximations, [6,7], as well as
moment closure approximations [3,4,21] could be useful for improving scalabil-
ity of our parameter synthesis problem. Further promising approaches include
global optimisation algorithms adopted from machine learning ideas, allowing to
develop a notion of robustness degree in [5,8]. Different to our work here, these
approaches handle continuous-time Markov models, and general temporal spec-
ifications. Population protocols – interacting identical agents, each being a state
machine – have been extensively studied in the context of distributed algorithms
[1,2], where the focus is different than ours: it is on the performance of imple-
mentation of protocols such as, for example, leader election or self-stabilisation.

When it comes to exact methods for parameter synthesis, there exists a sub-
stantial body of work on verification of parametric discrete-time Markov chains
(pMC), subject to temporal logic properties: symbolic computation of reachabil-
ity properties through state elimination in a parametric Markov chain [13,23],
lifting the parameters towards verifying a non-parametric Markov decision pro-
cess (MDP) instead of the original pMC [31], candidate region generation and
checking, helped by SMT solvers (see [24] and references therein). Specifying
biological properties as temporal logic formulae, and using such specifications
for parameter synthesis, has already been applied in biological modelling: in
[19], the authors compute the robustness of evolving gene regulatory networks
by first synthesising the viable space of parameters with constraint solvers. In a
related setup in [10,11,36], the authors express properties of general biochemical
reaction networks in continuous signalling logic (CSL), where they deal with the
parameter synthesis for continuous-time Markov chains. Only recently, in [30],
direct integration of data into Bayesian verification of parametric chains has
been proposed. To the best of our knowledge, the latter framework could not
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directly handle our case study, because it is designed to handle affine transition
functions in the pMC.

In our computational experiments, we considered using several tools which
support parameter synthesis - PRISM [25], Prophesy [15], and Storm [16].
Finally, we used PRISM as it supports a command line input, helpful for the
automatisation of the workflow.

2 Model

Consider n identical agents, each given a task. Each agent succeeds at completing
a task with probability p, and fails with probability (1 − p). If there is no other
interaction among agents, the number of successes is binomially distributed. We
add the following type of communication: an agent who fails has a second chance
to succeed if some of the other agents already succeeded. In other words - any
agent that succeeds can help other agents who have failed in the first attempt1.
We assume that each agent has two chances to succeed, but not more (allowing
unbounded number of chances would lead to an uninteresting case where either
all agents fail immediately or, otherwise, all agents succeed eventually). In Fig. 1,
we sketch the states of a single agent and the transitions between them. We
consider two model variants: the probability of conversion in the second attempt
is constant (Fig. 1, middle), or it can vary depending on the number of agents
who have already succeeded (Fig. 1, right).

2.1 Preliminaries

Let M = (S, P, ξin) be a transition system inducing a discrete-time Markov
process (DTMC) {Xt} over finite state space S, with kernel P , initial distribu-
tion ξin. We denote by PM the probability measure over the respective prefix
sets of traces, defined in a standard way: inductively by PM (s) = ξin(s) and
PM (s0 . . . sks) = PM (s0 . . . sk)P (sk, s), where s0, . . . , sk, s ∈ S.

A population of agents that we assume in our case study will follow a discrete-
time Markov chain. In order to define logical properties over it, we add labels to
the states in a standard way.

Definition 1. Labelled Markov Chain (LMC) is a tuple M = (S, P, ξin, AP,L)
over finite state space S, transition probability function P : S × S → [0, 1] such
that

∑
s′∈S P (s, s′) = 1 for all s ∈ S, initial distribution ξin : S → [0, 1], set of

atomic propositions AP , and a state-labelling function L : S → 2AP .

A finite run of LMC M = (S, P, ξin, AP,L), denoted by σ = (s0, s1, . . .) ∈ Sl,
induces a trace τ(σ) ∈ (2AP )l, defined inductively by τ(s) = L(s) and τ(σs) =
τ(σ)L(s). The prefix set of traces defined by τ inherits the probability measure
PM from the DTMC (S, P, ξin), hence PM (σ) denotes the probability of a prefix

1 In our case, ‘help’ does not involve interaction between agents, - it is simultaneously
broadcasted from an agent to all the others.
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set of traces σ. Consider a fragment of linear temporal logic (LTL) properties
defined over the traces for LMC M , induced by the grammar φ := ϕ ∈ AP ::
FG(φ). We will write P(M |= φ) = PM ({τ ∈ Σω | τ |= φ}) to denote the
probability of satisfaction of LTL property φ in the LMC M .

When the transition probabilities are not known, but rather are rational
functions of some parameters from the parameter set V, each over domain [0, 1],
we work with a parametric Labelled Markov Chain (pMC). We here restrict our
attention to the case when the transition probabilities are multivariate polyno-
mial functions over the variables V, which we will denote by PolV .2

Definition 2. Parametric Markov Chain (pMC) is a tuple MV = (S, PV , ξin,
AP,L,V), where PV : S×S → PolV defines the probability transition matrix, and
for each evaluation of parameters θ ∈ [0, 1]|V| induces a Markov chain M(θ) =
(S, Pθ, ξin, AP,L), where Pθ denotes the instantiation of the expression PV , for
parameter evaluations given by a vector θ. Consequently, for all θ ∈ [0, 1]|V|, for
all s ∈ S,

∑
s′∈S Pθ(s, s′) = 1.

Fig. 1. Single-agent model. (a) From the initial state, the success (state labelled with
1) is realised with probability p. (b) If no success is achieved in the first attempt (state
1
2
), and if another agent helps (input ?h), the transition to a success state occurs with

probability q. Otherwise, the transition to a final state occurs. In case of success, the
agent keeps emitting a help action (output !h). (c) Probability of success after being
helped depends on the number of successes in the population.

In the next subsection, we define the behaviour of a population of n agents,
as a pMC. Denote by [x, y] the range {x, x + 1, . . . , y}, when it is clear from the
context that x and y are integers.

2.2 Case Study

Let n ∈ N>0. Interactions among n identical agents can be captured by a pMC
M

(n)
V = (S, PV , s0, L,AP,V), where S = {s0, s1, . . .} is a finite set of states, and

the set of variables V = {p, q1. . . . , qn−1}. We assign atomic propositions to reflect
2 In general, the reachability probabilities for a pMC can be expressed by rational

functions; In our case study, polynomials will suffice because the underlying transi-
tion system is acyclic.
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the subpopulations of agents who succeeded, failed, or have another chance,
denoted by 1, 1

2 and 0, respectively: AP = {0, 1, . . . , n}{1, 12 ,0} ∪ {init}. The
labelling function counts the number of success outcomes (1), failed outcomes
(0), and those with another chance (12 ).

Initial state has label init. After one step, the population can be in one of
(n + 1) different states, counting k ∈ [0, n] successes and (n − k) ∈ [0, n] agents
in state 1

2 . Since the initial probability of each success is p, the probability to
move to a state with k successes in the first step is

(
n
k

)
pk(1 − p)n−k. Hence,

after the first step, the number of successes follows a binomial with parameter
p. Notice that there is a possibility of having zero successes after the first step
– state labelled with (12 , . . . , 1

2 ) – which is already a tSCC, since no help will be
possible for any of the agents. In the second step, in case there are k > 0 agents
who can help, each of the agents with label 1

2 may be helped with probability
qk, and it will never succeed (state labelled with 0) with probability (1 − qk).
If all agents who will be helped, do so simultaneously, then the probability that
c out of n − k agents in state 1

2 will succeed is
(
k
c

)
qc
k(1 − qk)k−c, inducing the

following transition function PV : S × S → Pol(V):

(synchronous semantics)

P syn
V (s, s′) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n
k

)
(1 − p)kpn−k if L(s) = init, L(s′) = (k, n − k, 0) for some k ∈ [0, n]

(k
c

)
(1 − qk)

cqk−c
k L(s) = (k, n − k, 0), L(s′) = (k + c, 0, n − k − c) for some c ∈ [0, k],

1 if L(s) = (k, 0, n − k) and L(s′) = (k, 0, n − k)

or L(s) = L(s′) = (0, n, 0).

When probability of help depends on the number of success agents (that
is, q1, . . . qn−1 seen as a function is not constant), it is unrealistic to assume
simultaneous success of all agents who will be helped: as soon as one of the
agents with label 1

2 succeeds, the probability of success for other agents with
state 1

2 changes. Accounting for such non-synchronous update of the population
state defines a different transition function PV : S×S → Pol(V) in our population
pMC:

(semi-synchronous semantics)

P semisyn
V (s, s′) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
n
k

)
(1 − p)kpn−k if L(s) = init, L(s′) = (k, n − k, 0) for some k ∈ [0, n]

qk L(s) = (k, n − k − c, c), L(s′) = (k + 1, n − k − c − 1, c),

1 − qk L(s) = (k, n − k − c, c), L(s′) = (k, n − k − 1 − c, c + 1),

1 if L(s) = (k, 0, n − k) and L(s′) = (k, 0, n − k)

or L(s) = L(s′) = (0, n, 0).

where c ∈ [0, k].
In Fig. 2a, we illustrate a population pMC for n = 3, with semi-synchronous

update. In general, PV(·, ·) are multivariate polynomials of maximum order
n. Population model with n agents will have n + 1 terminal states (tSCCs)
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with respectively 0, 1, . . . , n success outcomes. In case of three agents, the semi-
synchronous population model counts eight states (Fig. 2), and in general, the
state space counts O(n2) states; In the case of a synchronous update, the number
of states is O(n).

Remark. A population of n agents can be formally defined as a parallel com-
position of n agents, with variants depending on how the synchronisation on
help actions is defined [34,35,37]. Then, the counting abstraction is a lumpable
partition of the state space underlying the parallel composition model. Deriving
formally the parallel composition of generic communicating agents is beyond the
scope of this manuscript, so we directly define the population quotient.

3 Parameter Synthesis

Our general goal is to synthesise the parameters of single-agent behaviour, based
on data collected for a population. More concretely, we assume that we can
observe the system after the underlying population Markov chain has reached
one of its tSCCs.

3.1 Symbolic Expressions for Measured Properties

In Fig. 2b, we show the distribution among the tSCCs as polynomial expressions
over parameters. In general,

let F (n)(k | V) ∈ Pol(n)(V) be such that (2)

for all θ ∈ [0, 1]|V|, F (n)(k | θ) = P
(
M (n)(θ) |= FG(k, 0, n − k)

)
, (3)

that is, F (n)(k | V) is a polynomial expression over variables V, exactly charac-
terising the reachability of a tSCC counting k successes in a population pMC
M

(n)
V . We omit superscript (n) and subscript V when clear from context. Notice

that the formula does not involve the information obtained from data - it refers
to the probability of eventually reaching a tSCC with k successes, as a function
of parameters. In the implementation, we will leverage existing model checking
tools to obtain these polynomials.

3.2 Data

For a population of size n, we assume N experiments in which we can observe
the number of successes at steady state (for the purpose of performance analysis
reported in Sect. 4, we will obtain synthetic data, by simulating the experiments
on a computer). Denote by Xi ∈ [0, n] the outcome in experiment i = 1, . . . , N .
As we have proportional data, we can estimate the probability of reaching each
of the tSCCs in a standard way:

for given confidence level α, for all k ∈ {0, 1, 2, . . . , n},

data : PM(V)(FG(k, 0, n − k)) ∈ x̂k ±
(

zα/2

√
x̂k(1 − x̂k)

N
+

0.5
N

)
, (4)
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where x̂k := Xk

N is the point estimate for the probability of eventually having
k success agents in a population of n agents. The terms 0.5

N are included for
the correction of approximation from discrete to continuous distribution. In the
experiments, we choose sample size N = 100 and N = 1500, that guarantee
margins to be at most 0.1 and 0.025 respectively. In further text, we will denote
by [x̂l, x̂u](k | data) the lower and upper bound of the confidence interval for
tSCC with k successes.

Fig. 2. Population model for n = 3: (a) the pMC representing the model, (b) distri-
bution among possible final states is a list of 2n-degree multivariate polynomial over
model parameters V = {p, q1, . . . , qn−1}.

3.3 Region Generation and Refinement with Constraint Solvers

Back at the general question introduced in Eq. (1), the conjunction of properties
ϕ(tSCC | data) for our case study amounts to:
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n∧

k=0

(
F (n)(k | V) ∈ [x̂l, x̂u](k | data)

)
, (5)

expressing that each of the tSCCs is reached with probability within a confidence
interval obtained from data.

Every parameter evaluation θ ∈ [0, 1]|V| such that the above constraint holds,
belongs to our goal viable set Θ, and vice versa. A single point estimate may
be satisfactory in some cases. However, for smaller data samples, we wish to
have a better idea of the viable parameter space, and we wish to explore the
parameter space further. We can pass a query ∃θ ∈ (V �→ [0, 1]|V|), such that∧n

k=0 F (n)(k | V) ∈ [x̂l, x̂u](k | data) to an SMT solver, such as Z3 [14]. Then,
depending on the outcome, we further refine the parameter space in CEGAR-like
fashion into

– “safe” or “green” regions, where the constraints are met,
– “unsafe” or “red” regions, where the constraints are not met,
– “unknown” or “white” regions, where the constraints may hold or not,

the idea of which is also used by the existing tools, such as Prophesy [15]. For each
parameter evaluation in a safe region, the formula holds because the negation of
the formula is not satisfiable. For each parameter evaluation in the unsafe region,
the formula itself is not satisfiable. The unknown region is not yet refined, since
it may contain both – parameters for which formula holds and for which it does
not hold. In our implementation, we use a naive refinement approach, splitting
into two halves along dimension with the largest range. This split occurs when
the given region is proven to be neither safe nor unsafe. As the main stopping
criterion, we introduce the parameter coverage, such that the fraction of the
explored parameter space and the whole parameter space is larger than coverage:

Θgreen + Θred > coverage.

Algorithm. Algorithm 1 summarises the idea of this procedure. Depending on
how the query in Eq. (5) is passed to the solver, we used three major ideas:

– All-in-one approach (described in Algorithm 1). Each clause in the conjunc-
tion in Eq. (5), is joined using logical operators. This may result in compu-
tation overhead because in each splitting, the solver has to first find a point
which satisfies each of the properties, and then prove the unsatisfiability of
its negation.

– Prop-by-prop approach. Each clause in the conjunction in Eq. (5) is queried
separately, and the resulting regions are conjuncted in the end.

– Iterative approach. In this approach, clauses are also passed to the solver
separately, and each next clause is not resolved for the whole domain of
parametrisation, but only for the portion of the parametrisation that are
found not be in a red region so far.
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All three approaches can be parallelised. The easiest to parallelise is the
second approach, since each clause is checked independently. In case of iterative
method, sorting properties by amount of unsafe region may help to outperform
the other settings.

Fig. 3. Workflow used to analyse the case study models, where model pre-processing,
composition and the counting abstraction (lumpable quotient) are computed in one
step. In our case study we used only reachability properties. The output of parameter
synthesis are rational functions.

4 Implementation and Results

We implemented the workflow in a Jupyter notebook [18]. First, two-parametric
and multiparametric models (V = {p, q} and V = {p, q1, . . . , qn−1}) are cre-
ated with respective property files, for desired population size. We implemented
the construction for three kinds of compositions – synchronous, asynchronous,
and semisynchronous. Asynchronous models are largest and provide multi-affine
labelling, hence are usable for Storm model checker. Semisynchronous models are
instantiated in Fig. 2. Polynomials F (n) are obtained with PRISM [15], by invok-
ing parametric model-checking on properties FG(k, 0, n − k), for k ∈ [0, n]. The
implementation includes sampling and visualisation of polynomials F (n)θ(k | θ)
for given parametrisation θ ∈ [0, 1]|V|. We generated two synthetic data sets
by first generating the parametrizations θ1, θ2 ∈ [0, 1]|V| uniformly at random,
and then simulating the experimental outcomes X1,X2, . . . , XN . Finally, we
employed an SMT solver Z3 [14] to obtain the viable parameter space by querying
on the constrains specified in Eq. (5). The resulting partitioning of the parameter
domain can be visualised as green and red regions (Fig. 4).

It is possible to directly search for the viable parameter space, without first
generating polynomials F (n)(k), by non-parametric model checking for the con-
straints in Eq. (6):
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Θ = {θ ∈ [0, 1]|V| |
n∧

k=0

P≥x̂l
(M(θ) |= FG(k, 0, n − k)) ∧ P<x̂u

(M(θ) |= FG(k, 0, n − k))}

(6)

In order to compare the scalability of our approach with the existing model
checkers, we also implemented a search for Θ, as non-parametric model checking
for the constraints in Eq. (6) in PRISM and Storm [16].

The implementation is written in Python, calling model-checking tool PRISM
and Z3. For Storm, commands usable for data-driven parameter synthesis of the
case study are provided within the notebook. Created source code with generated
data is provided within the Jupyter notebook which is available at www.fi.muni.
cz/∼xhajnal/hsb2019/. A scheme of the workflow is visualised in Fig. 3.

4.1 Performance

The first bottleneck of the workflow was parameter synthesis procedure due to
insufficient memory and exception of Java code when running PRISM. More
precisely, using default setting we have obtained results for 35 agents using
two param model and for 15 agents in multi param models. Increasing Java
heapsize (from default 1 GB) to 8 GB we obtained results for 50 agents using
two param model, but did not get results for 18 agents in multi param models
due to memory. This problem was solved by analysing each clause in Eq. (5)
separately (prop-by-prop approach, explained in Sect. 3.3). We were able to com-
pute results in one hour for 75 agents using two param and even for 18 agents
in multi param models. The results are summarised in Table 1.

The second bottleneck of the workflow was the region generation and refine-
ment using constraint solvers. Using naive algorithm splitting the parameter
space in each dimension recursively calling itself, we have obtained data for pop-
ulation up to five agents within a minute. This approach was not sufficient for
greater populations or multi-parametric models, hence we do not compare it
with further options.

The first improvement was refining only one dimension at a time – Alg1.
This version is represented in Algorithm 1. Problems occurred with increasing
coverage threshold and max recursion depth. It is because a preorder traver-
sal provided by the simple recursion searches smaller and smaller regions in each
iteration, while the second half of the region, possibly green or red, will be
checked only after the whole first half is split3. To improve this issue we added
a queue to provide lever-order traverse – Alg2.

Further, we exploit the information as to which satisfiable subregion contains
the found model. With this information, some checks for unsatisfiability can be
skipped. This change is implemented in Alg3. The improvement of computation

3 If the coverage is not set below 50%.

www.fi.muni.cz/~xhajnal/hsb2019/
www.fi.muni.cz/~xhajnal/hsb2019/
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Table 1. Parameter synthesis using PRISM for respective model and properties (reach-
ing a tSCC). When memory limit, 8GB java heapsize, exceeded (marked as OM) used
prop-by-prop approach.

model type, #agents #params #states #transitions param synthesis

semisynchronous 2 2 9 12 2 s

semisynchronous 3 2 13 19 2 s

semisynchronous 5 2 24 39 2 s

semisynchronous 10 2 69 124 2 s

semisynchronous 20 2 234 444 4 s

semisynchronous 50 2 1329 2604 6,5 m

semisynchronous 75 2 2929 5779 OM/1 h

semisynchronous 3 3 13 19 2 s

semisynchronous 5 5 24 39 2 s

semisynchronous 10 10 69 124 2 s

semisynchronous 15 15 139 259 15 s

semisynchronous 18 18 193 364 OM/2,5 m

semisynchronous 20 20 234 444 OM/OM

time for respective algorithm is shown in Appendix Table 2. Since the compu-
tation time depends heavily on the intervals constraining the polynomials, to
conclude results on scalability one would need to run more cases.

After these improvements, we were able to obtain results for 10 agents for
two param models. In the experiments, we choose sample size N = 100 and
N = 1500, that guarantee margins to be at most 0.1 and 0.025 respectively. The
results are visualised in Fig. 4. With increasing sample size, the unsafe regions
grow much quicker than with increasing the population number.

Finally, we compare the computation time of Alg1-3 with PRISM and Storm
results in Appendix Table 3. All results were obtained using Freya - desktop,
i7-8700K, GeForce GTX 1060, 32 GB RAM, with SSD disk.

To view, run, or edit the case study use www.fi.muni.cz/∼xhajnal/hsb2019/.
Html files serve to view analysis without using Jupyter, the zip file contains
notebooks and Data sets.

5 Discussion and Future Work

In this paper, we proposed how to synthesise parameters for a class of popula-
tion discrete-time Markov Chains, for which we assume that experimental data
at steady state is available. We illustrated the workflow on a case study over n
identical, interacting agents with n parameters, subject to persistence proper-
ties. Our approach is exact, in the sense that the only approximation involved is
the estimation of confidence intervals when the property is extracted from the
data. Moreover, our parameter search is agnostic in the sense that we make no
assumption on the dependency between parameters q1, q2, . . . , qn−1. As a result,

www.fi.muni.cz/~xhajnal/hsb2019/
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Algorithm 1. Space Refinement
1 Function check([interval], [property], [data]):
2 if sat(∀parameter.value() ∈ interval ∧ ∀property ∈ (data ± margin))

then
3 if check safe([interval], [property], [data]) == safe then
4 return safe
5 else
6 return model

7 else
8 return unsafe

9

10 Function check safe([interval], [property], [data]):
11 if sat(∀parameter.value() ∈ interval ∧ ∃property �∈ (data ± margin))

then
12 return unsat
13 else
14 return safe

15 Function check deeper([interval], [property], [data], recursion depth,
min rectangle,coverage threshold):

16 if (recursion depth == 0) ∨ ([interval].size() <
min rectangle) ∨ (coverage() > coverage threshold) then

17 return
18 if check([interval], [property], [data]) == safe then
19 green.add([interval])
20 else if check([interval], [property], [data]) == unsafe then
21 red.add([interval])
22 else
23 check deeper([interval].left(), [property], [data], recursion depth − 1,

min rectangle, coverage threshold)
24 check deeper([interval].right(), [property], [data], recursion depth − 1,

min rectangle, coverage threshold)

25 Function setup([interval], [property], [data], recursion depth,
min rectangle,coverage threshold):

26 whole area = [interval].size()
27 green = {}
28 red = {}
29 coverage() = union(green, red)
30 check deeper([interval], [property], [data], recursion depth, min rectangle,

coverage threshold)
31 return (green, red)

we may be able to discover unexpected dependencies in the viable region, but this
comes at the cost of the number of parameters growing directly with the popula-
tion size. Synthetic data set allowed us to identify several scalability bottlenecks
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Fig. 4. Visualisation of results of Alg2, 3 for two-param models with populations of 2,
5, and 10 agents in the respective row, and sample size of 100 and 1500 in the respective
column with constant value of 0.005 absolute margin added to data. Parameter point
from which the data were obtained is p = 0.81, q = 0.92 - shown as a blue cross. (Color
figure online)

and open directions for future research. We implemented three algorithms refin-
ing the parameter space using a SMT solver: Alg1 – simple recursion splitting
region into two in dimension with largest interval, Alg2 – level order traversal
instead of preorder, Alg3 – passing information in which subregion the model
was found. These changes improved the performance – see Appendix Table 2.
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We plan to further investigate how to improve the scalability towards larger
population size and more parameters, especially in light of the fact that the
realistic scenarios involve more complex communication schemes and hundreds
or thousands of individuals. There are several ideas we plan to consider for
improving the scalability. One idea includes bypassing the time-expensive calls to
the constraint solver by other algorithms, such as worst-case interval propagation
through a Markov decision process (MDP) [31], as well as different encoding of
measurements: encoding each outcome as separate property is impractical when
the sample size is small, or when only two parameters define the process. Further
immediate ideas include moment closure approximations [3,4,21], pre-sampling
of the parameter space in order to quickly label large portions or red or green
areas, as well as employing Bayesian inference. The latter has been extensively
used for parameter inference over continuous-time Markov chains of biochemical
reaction networks [9,32]. Finally, the generalisation of the class of properties
to handle systems with multi-state tSCCs would require extracting properties
from data, for models where tSCCs contain more than one state, which in turn
requires a detection of tSCC states in a black-box setting. To this end, we will
consider the statistical model checking approach proposed in the recent works
[12,29], where the tSCCs are detected with desired confidence, subject to only an
assumption that each transition probability exceeds a threshold. On a different
front, we plan to explore formal properties suitable for describing time-series
measurements, which will require a Markov chain model in continuous time.

A Performance Comparison

Table 2. Runtime comparison for parameter space refinement using our algorithm –
Alg1-3. Computation times for respective population size, two/multi param case, data,
algorithm, and setting. All models used in the comparison are semisynchronous and
the results were computed using all-in-one approach. Computation time in seconds.

two param multi param

#agents 2 3 5 10 3

data set 1 2 1 2 1 2 1 2 1 2

alpha, n samples cov thresh = 0.95, recursion depth = 15

0.95;100 Alg1 37.9 19.1 56.5 25.1 133 TO TO TO 48.9 29

Alg2 8 2.3 13.1 2.3 44.6 TO TO TO 0.9 0.56

Alg3 6.8 1.7 11.1 2.1 41.2 TO TO TO 0.7 0.5

0.95;1500 Alg1 0.2 6 0.3 8.1 0.1 30.8 TO 0.3 6 29.9

Alg2 0.2 0.3 0.3 0.4 0.1 0.6 346.3 0.3 0.6 0.7

Alg3 0.2 0.2 0.3 0.3 0.1 0.5 307 0.3 0.5 0.6

0.95;3500 Alg1 0.2 3.6 <0.1 5.4 0.1 17.2 3.9 0.3 3.9 3

Alg2 0.2 0.2 <0.1 0.3 0.1 0.5 3.7 0.3 0.5 0.3

Alg3 0.2 0.2 <0.1 0.3 0.1 0.5 3.7 0.3 0.5 0.3
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Table 3. Runtime comparison of our algorithm, PRISM, and Storm. Our algorithm,
Alg3, and PRISM were using semisynchronous models and Storm used asynchronous
models. Rows for Alg3 contain the time used to compute polynomials F (k) (done by
PRISM), plus the time needed to refine the space. By N/A we denote cases when Storm
was unable to return a result due to a technical problem. We used Data set 1.

two param multi param

#agents 2 3 5 10 3 5 10

alpha, n samples, approach 0.95; 100; all-in-one

PRISM 2.5 s 4.5 s 7.8 s 30 s 5m50 s TO TO

Alg3 2+6.8 s 2+11 s 2+41 s TO 2+0.7 s TO TO

alpha, n samples, approach 0.95; 100; thresh-by-tresh

PRISM 5 s 7 s 12 s 33 s 3m51 s TO TO

Storm <0.1 s <0.1 s 1 s 2 s 6 s N/A N/A

alpha, n samples, approach 0.95; 1500; all-in-one

PRISM 3.7 s 5 s 7.8 s 37.5 s 8m TO TO

Alg3 2+0.2 s 2+0.3 s 2+0.1 s 2 s+ 5.1m 2+0.5 s TO TO

alpha, n samples, approach 0.95; 1500; thresh-by-tresh

PRISM 9 s 9 s 12 s 44 s 6m TO TO

Storm 0.00 s 1 s 1 s 2 s 8 s N/A N/A

alpha, n samples, approach 0.95; 3500; all-in-one

PRISM 4 s 5.2 s 10 s 40 s 9m TO TO

Alg3 2+0.9 s 2+0.0 s 2+0.1 s 2+0.1 s 2+0.5 s TO TO

alpha, n samples, approach 0.95; 3500; thresh-by-tresh

PRISM 8 s 10 s 11 s 45 s 6m51 s TO TO

Storm <1 s 1 s 1 s 3 s 8 s 40m N/A
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Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 214–231.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 13

16. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
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Abstract. In this work we introduce the software rPrism, as a branch of
the software PRISM model checker, in order to be able to study weighted
reactive state transition models. This kind of model gathers together the
concepts of reactivity – which consists of the capacity of a state transition
model to alter its accessibility relation – and weights, which can be seen
as costs, rates, etc.. Given a specific model, the tool performs a simulation
based on a Continuous Time Markov Chain. In particular, we show an
example of its application for biological systems.

Keywords: rPrism · PRISM model checker · Reactive models ·
Weighted switch graphs

1 Introduction

The concept of reactivity in state transition models have been introduced by
several authors such as van Benthem, Areces and Gabbay and some examples
can be found in [1–3,8,9]. These reactive models are those whose accessibility
relation (set of edges) is not fixed but can vary according to a taken path. In
some sense, it can be seen as a model with memory.

The authors mentioned before, proposed several formalisms to study such
models. In this paper, we will focus on the approach of [8]. In this paper, switch
graphs are presented and their application is illustrated with some examples. In
particular, systems whose dynamics can be described using counters or demand-
ing some specific order to evolve are shown to be more efficiently described by
reactive models. Also in biology, this kind of model can be applied: a previous
work in a related topic, where a reactive model is proposed for the study of
biological regulatory networks can be found in [6].

Here, we present the tool rPrism that was designed as a branch of PRISM
model checker [10] to study such reactive models. The proposed tool calls PRISM
to simulate the evolution of a reactive state transition model.
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1.1 Background

We start by introducing some theoretical foundations in the topic in order to be
able to explain better the relevance and usability of rPrism.

Definition 1 (Switch graph). A switch graph is a pair (W,S) such that W is
a non empty set of states and S is defined recursively as:

– S0 ⊆ W × W ;
– Si+1 ⊆ S0 × Si × {◦, •}, for i ∈ Z

+
0 ;

– S =
⋃

i∈Z
+
0

Si.

We say that S is the set of edges and the edges in S\S0 are higher-level edges.
Furthermore, if e ∈ Si, e is said to be a i-level edge. Also, the initial configuration
of a switch graph is given by an initial instantiation function I0 : W → {0, 1}.

A higher-level edge (d, e, ∗) is said to be an activator if ∗ is • and is said to
be an inhibitor if ∗ is ◦. It means that it will either inhibit (temporarily remove)
or activate (reintroduce) its target edge e in the model whenever the source edge
d is crossed. If the state of the target edge already agrees with the directed by
the higher-level edge (d, e, ∗), then it has no effect.

In the graphical representation of a switch graph, as shown in Fig. 1, inhibitor
edges are depicted as white headed arrows, while black headed arrows represent
activator edges.

At any time, the configuration of a switch graph is given through an instan-
tiation function I : S → {0, 1} which marks each edge as inhibited (temporarily
removed) or active depending on I(s). An edge is active if I(s) = 1 and it is inhib-
ited otherwise. The former edges are depicted as dashed arrows while the later
edges are depicted as full arrows. Inhibited edges cannot be crossed, and they
can neither activate nor inhibit other edges. Moreover, only 0-level edges (going
from nodes to nodes) can be crossed: if one such edge x is crossed, all active
higher-level edges with source in x, i.e. (x, e, ∗) will fire and activate/inhibit the
respective target edge e.

Fig. 1. Example and evolution of a switch graph.
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Example 1. Figure 1 depicts a switch graph (W,S) with W = {w} and

S = {(w,w),
(
(w,w), (w,w), ◦), ((w,w),

(
(w,w), (w,w), ◦)), •)}

For simplicity, we define e1 =
(
(w,w),

(
(w,w), ◦)), •)

and e2 =
(
(w,w), (w,w), ◦).

The initial instantiation I0 is such that I0(w,w) = 1 (the edge (w,w) can be
crossed), I0(e2) = 0 (meaning that it is inhibited) and I0(e1) = 1 (therefore,
activated and ready to activate e2, the pointed edge whenever (w,w) is crossed).
Therefore, starting from w, the edge (w,w) can be crossed (since it is active)
and this causes the higher-level edge e1 to fire and activate e2. But e2 has no
effect since it was originally inhibited when (w,w) was crossed. One can then
cross (w,w) again. Now, e1 acts but has no effect, since e2 is already active,
while e2 acts and inhibits (w,w). Hence, (w,w) can no longer be crossed. This
is illustrated in Fig. 1.

Switch graphs can indeed be used in several fields. See [6,7] for more exam-
ples.

1.2 Weighted Switch Graphs

In this section, we introduced a generalization of switch graphs to include
weights. Weights in state transition models are very useful and can represent
diverse mechanisms such as costs, distances, rewards, probabilities, besides oth-
ers.

Definition 2. A weighted switch graph is a pair (W,S) together with an initial
instantiation I0 : S → Ω ∪ {�} where Ω is the set of weights, and can be chosen
according to the context.

In weighted switch graphs, instead of simply considering that an edge is active
or inhibited, each domain has a weight. In order to express this, we can generalize
the notion of instantiation. This is attained by considering an instantiation as
a function whose images belong to a set of weights Ω, along with an element �
as image. Thus, if s is an edge of the model and I an instantiation, I(s) = �
mean that the edge s is inhibited (temporarily removed from the model) and,
otherwise, we say that the edge s is active and with weight I(s).

Given this definition, we can describe the evolution of a weighted switch
graph when some edge s ∈ W × W is crossed in the following way:

I+(t) =

⎧
⎪⎨

⎪⎩

I(t), if (s, t, ∗) /∈ S ∨ I
(
(s, t, ∗)

)
= �, for any ∗ ∈ {•, ◦}

�, if (s, t, ◦) ∈ S and I
(
(s, t, ◦)

) 	= �
I
(
(s, t, •)

)
, otherwise.

Although we introduced this general definition, we only consider a particular
class of models for now. The current version of the package rPrism, version 1.0,
is suitable for one-level weighted switch graphs, which are defined as follows.
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Definition 3. A one-level weighted switch graph is a pair (W,S) with W 	= {}
and S = S0 ∪ S1 such that:

– S0 ⊆ W × W
– S1 ⊆ S0 × S0

along with an initial instantiation I0 : S → Ω, where Ω is the set of weights.

Note. In this context, � ≡ 0, because our weights will be conceived as rates.

2 About the Tool rPrism

As mentioned before, rPrism is suitable to deal with one-level weighted switch
graph. Furthermore, the codomain for the considered instantiations must be Q

+
0

and, in practical cases, weights should be considered as rates. For instance, if
an edge from a node w to a node w′ has weight a, then it means that the
component represented by w will become the component w′ with rate a. The
tool then performs a stochastic simulation based on a Continuous Time Markov
Chain.

Given a one-level weighted switch graph, the user of rPrism must specify the
model in a simple text format, with the following structure:

NS {
N "definition of node 1" {

"definition of edge 1";
"definition of edge 2";
...

}
N "definition of node 2" {
}
...

}

H1 {
"definition of one-level edge 1";
"definition of one-level edge 2";
...

}

options "command1";
output "command2";
sim cmtc;

The “definition of a node” has the following format:

“node label” “lbound” “ubound” “initvalue”
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where “node label” is a valid string with the name/identifier of the node;
“lbound” (respectively, “ubound”) is an integer determining the lower (respec-
tively, upper) bound with respect to the number of elements of type “node” on
the system; and “initvalue” is a integer with the initial value of elements of type
“node” on the system.

The “definition of an edge” is done in the following way:

“target node” “initial weight”

where “target node” is a valid string with the name/identifier of the target node;
and “initial weight” is a float with the initial weight of the edge.

Finally, to define a one-level edge, we must use the following code:

“source edge” “target edge” “weight”

where both “source edge” and “target edge” are strings and have the format
“source node”:“target node”; and “weight” is a float with the weight of the
one-level edge.

The entry “command1” determines the output of the program and must be
filled according to the goal of the user, for example, can be “simpath 10” (mean-
ing the simulation will make at least 10 steps) or “simtime 5.7” (the simulation
will run at least until the unit of time reaches the value 5.7). The entry “com-
mand2” can be replaced as “all” in order to obtain the entire set of outputs
or restricted to any combination of the commands: “odel”, “simulation results”,
“simulation plot”, “reachable sets”, “transition matrix”, “labels”, separated by
a space.

Given a one-level switch graph, rPrism translates the introduced model into
PRISM language in order to use it to study reactive models. For readers who
are used to PRISM syntax, the process traduces nodes to variables and edges to
actions. However, an additional module for rates is considered. There, higher-
level edges are encoded as an additional variable whose value determines the
rates of target edges (actions).

Finally, we point out that the rPrism software is implemented as a sDL
package1, and an online demo is available2 for testing purposes. Nevertheless, the
online demo has several limitations due to the fact of being over a web browser,
such specific limitations do not exist when using directly the sDL client.

3 Modeling Biochemical Systems

Switch graphs can describe diverse dynamics of systems which regular graphs
can not. An example is the possibility of describing counters such as the one
illustrated at Fig. 1 and many others can be found in [3,7–9]. Also in biochem-
ical contexts, we can find systems which can intuitively be described by switch

1 http://sdl.mathdir.org.
2 http://sdl-vm2.mathdir.org/demos/sDL-pck-run?pck=rPrism/1.0&sdoc=

Example A.

http://sdl.mathdir.org
http://sdl-vm2.mathdir.org/demos/sDL-pck-run?pck=rPrism/1.0&sdoc=Example_A
http://sdl-vm2.mathdir.org/demos/sDL-pck-run?pck=rPrism/1.0&sdoc=Example_A
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graphs. Indeed, as mentioned before, an application of switch graph to the study
of biological regulatory networks can be found in [6].

A simple example of a biochemical process which can be modeled using a
switch graph is presented in Fig. 2: the scheme represents the general sequence
of stages related to a vaccination process. Upon vaccination, a susceptible indi-
vidual immediately has a lower probability of becoming infected if it comes into
contact with a virus. This fact is described by the inhibition arrow.

Fig. 2. Example of a switch graph describing a biological systems.

Another biological system which could be described by reactive formalisms is
the cooperativity of a hemoglobin protein and it is described in [5]. In this system,
a hemoglobin protein can bind up to 4 oxygen molecules. Thus, although this
seems a simple systems, it needs to be described by a model which accommodates
features such as counters, and switch graphs are perfect for the case. However,
at this point, we must note that even switch graphs do not fully describe the
dynamics of the mentioned system. Indeed, the cooperativity of hemoglobin is
characterized by the fact that binding to one oxygen molecule increases the like-
lihood of binding to another one (up to the maximum of four). This increase of
the binding rate cannot be described by simple switch graphs which do not con-
sider any kind of quantitative measure. Thus, this issue is solved with weighted
switch graphs which admit weights in edges.

Fig. 3. Model representing the cooperativity of hemoglobin.

The example of a weighted switch graph describing a hemoglobin protein is
shown in Fig. 3. There, each loop represents the binding of one oxygen molecule
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Fig. 4. Weighted switch graph of the biological circadian rhythm model.

Fig. 5. Plot of the simulation.

and the weight of the loop represents the respective rate: note that the weights
increase for the binding of successive oxygen molecules, but a fifth molecule can
no longer bind.

Finally, we introduce another example and show how rPrism can be used to
study weighted switch graph models.

Example 2 (Circadian rhythm of cyanobacteria).
In [4] we may find a model for the circadian rhythm of a cyanobacteria which

considers three phosphorylated forms of the protein KaiC (s, t and ts) and an
unphosphorylated form (u). Here, we omit the occurrences of protein KaiA, as
related in the model of [4], in order to show that it can be represented by the
reactivity of the system. In fact, a one-level weighted switch graph for such model
is presented in Fig. 4.

Fig. 6. Non-reactive weighted model for hemoglobin protein.
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rPrism was used to simulate the evolution of this system. The plot of the
output is presented in Fig. 5. Below, the code introduced in rPrism is presented.

We note that this model shows a cyclic behavior as would be expected for a
circadian rhythm system. Thus, this kind of model seems suitable to represent
by higher-level edges the effect of non linear or even unknown mechanisms of a
cell and still obtain coherent simulations and results.

Through all examples we can find a common pattern: reactivity and, in par-
ticular, higher-level edges appear to describe the dynamics caused by a com-
ponent/variable which is not considered. Indeed, note that, for instance, in the
hemoglobin example we could consider a model with five states where each node
is fully described by the number of oxygen molecules bound. In this way, we
could obtain a model as the one shown in Fig. 6. Compared to the this one,
the reactive model in Fig. 3 ignores a variable: the number of oxygen molecules
already bound by the hemoglobin protein.

We note that the proposed software – rPrism – is able to, in general, construct
a reactive model which contains less states than a non-reactive model. Neverthe-
less, rPrism internally introduces additional state variables when translating the
introduced model into PRISM language, in order to retrieve the hidden informa-
tion about the system. Using simple words, rPrism considers additional variables
which determine what weights must be considered for each edge, at each time.
Therefore, we cannot think about one-level switch graphs as reduced models but
as a different description of the same model with, in general, the same “com-
putational size”. In this way, weighted switch graphs and rPrism are specially
useful in two general cases:

– When the user understands that the system is more intuitively described by
a reactive model, which in general depends on the background of the user.

– When the “hidden” components/variables causing reactivity are still
unknown by the user.

In fact, the second point described above occurs frequently in biological con-
texts when, for instance, there is a missing or misunderstood regulation between
two components in a system. Reactive formalisms allows one to, even so, recover
coherent results from such model.

4 Conclusions and Future Work

In this paper we briefly introduce the software rPrism to study one-level weighted
switch graphs. The proposed software has a proper syntax in order to be a
friendly software, translating the rPrism input language to a suitable input for
simulations in PRISM. Also, we present an example of a biological system which
can be modeled and studied using this approach.

As future work, we intend to extend the rPrism language with the aim of
exploring as much as possible the rich set of features of PRISM, namely, adding
some model checking capabilities for reactive graphs. In fact, we choose to use
PRISM to be the basis of our work based on its model checking capacities.
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It has a temporal logic language embedded and it would allow us to compute
the validity of properties as well of probabilities for some events to occur, which
would be quite relevant for model analysis and predictions for biological systems.
Also, we intend to expand the class of models that are suitable to be studied
using rPrism. In particular, we intend to consider the general set of higher-level
edges. Finally, as ongoing work, we are applying rPrism to a wider number of
biological problems.
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A Appendix

The code used in rPrism for the circadian rhythm reactive model is presented
bellow:

NS {

N s 0 100 25 {

u 0.3;

}

N ts 0 100 25 {

s 0.4;

}

N t 0 100 25 {

ts 0.4;

}

N u 0 100 25 {

t 0.4;

}

}

H1 {

s:u u:t 0.4;

s:u ts:s 0.4;

s:u t:ts 0.4;

ts:s u:t 0.2;

ts:s t:ts 0.2;

ts:s ts:s 0.6;

}

options simtime 100000;

output all;

sim cmtc;
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Abstract. Computational approaches in systems biology have become
a powerful tool for understanding the fundamental mechanisms of cel-
lular metabolism and regulation. However, the interplay between the
regulatory and the metabolic system is still poorly understood. In par-
ticular, there is a need for formal mathematical frameworks that allow
analyzing metabolism together with dynamic enzyme resources and reg-
ulatory events. Here, we introduce a metabolic-regulatory network model
(MRN) that allows integrating metabolism with transcriptional regula-
tion, macromolecule production and enzyme resources. Using this model,
we show that the dynamic interplay between these different cellular
processes can be formalized by a hybrid system, combining continuous
dynamics and discrete control.

Keywords: Computational modeling · Metabolism ·
Resource allocation · Gene regulation · Hybrid system

1 Introduction

Computational approaches in systems biology have become a powerful tool for
understanding the fundamental mechanisms of cellular metabolism and regu-
lation. Concerning integrated modeling of metabolism and regulation, there
exist approaches such as [1,2] that combine Boolean or multi-valued logical
rules for transcriptional regulation with a steady-state stoichiometric model of
metabolism. These techniques iterate flux balance analysis (FBA) by splitting
the growth phase into discrete time steps. At each time step, the updated reg-
ulatory states are imposed as bounds on the reaction fluxes while ignoring the
costs for enzyme production. At a different level, there exist methods to predict
metabolic resource allocation considering enzyme-catalytic relationships, either
at steady-state [3,4] or in a dynamic setting [5–7]. But, regulation is not included
in these approaches. Besides Boolean logic and stoichiometric models, piecewise-
linear differential equations [8,9] and other types of hybrid systems [10,11] have
also been used to study the dynamics of metabolic-genetic networks. Most of
these studies, however, merely consider metabolism and regulation, and do not
combine these with macromolecule production and enzymatic relationships.
c© Springer Nature Switzerland AG 2019
M. Češka and N. Paoletti (Eds.): HSB 2019, LNBI 11705, pp. 177–180, 2019.
https://doi.org/10.1007/978-3-030-28042-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-28042-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-28042-0_12


178 L. Liu and A. Bockmayr

N M

RP

Q

vN

Metabolism

Regulation

vRP

vRE

vQ

RE

NREvNRE

Degradation

∅

∅

∅

∅

Fig. 1. Schematic model of the metabolic-regulatory network (MRN).

In the present work, we introduce a metabolic-regulatory network model
(MRN) extending the self-replicator system proposed in [12]. Our model-
ing framework allows integrating metabolism with transcriptional regulation,
macromolecule production, enzyme resources, and structural building blocks.
Using this framework, we show that the dynamic interplay between cellular
metabolism, macromolecule production and regulation can be formalized by a
hybrid system, combining continuous dynamics and discrete control. In this for-
malization, all metabolite concentrations are represented by continuous vari-
ables. The discrete states of the system are composed of all gene expression
states for the regulated proteins, which include regulatory proteins and regu-
lated enzymes. In each discrete state, the continuous variables evolve according
to a system of differential equations that is specific for this state. The guard con-
ditions for the state transitions depend on the concentrations of the molecular
species and associated thresholds.

Our formalization makes it possible to apply hybrid system tools for analyz-
ing metabolic-regulatory cellular processes. Compared to the approaches men-
tioned above, this will allow us including regulation, macromolecule production
and enzyme resources into the prediction of the dynamics of cellular metabolism.

2 Metabolic-Regulatory Networks

We formalize the interactions between metabolism and regulation by a
metabolic-regulatory network (MRN) that is given in Fig. 1. Regarding
metabolism, N represents the set of external nutrients and vN is the set of
intermediate reactions that convert the nutrients into precursor metabolites M.
The macromolecular production reactions vRP,vQ and vE = vRE ∪ vNRE use
the precursors M to build regulatory proteins RP, non-catalytic macromolecules
Q, and enzymes E. To keep the model simple, the set of enzymes E contains
all catalytic molecules, including transporters and ribosomes. However, we dis-
tinguish between regulated enzymes RE and non-regulated enzymes NRE, i.e.,
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E = RE∪NRE. Non-catalytic macromolecules, termed as quota compounds Q,
e.g. DNA and lipids, are included in the model because they are essential for
growth and consume a lot of cellular resources.

3 Hybrid Discrete-Continuous Dynamics

Based on our metabolic-regulatory network (see Fig. 1), we define the set of
molecular species M = N ∪ M ∪ RP ∪ E ∪ Q. In a purely continuous model-
ing approach, the dynamics of the network would be described by a system of
ordinary differential equations

Ṁ(t) =
dM
dt

= F (M,K,S, t), (1)

where K is the set of kinetic parameters, S is the stoichiometric matrix, and t
denotes time. The function F represents the kinetic laws that govern the dynam-
ics, which - depending on the molecular species - could be mass action, Michaelis-
Menten, Hill kinetics etc.

Continuous modeling of gene regulatory networks is known to be very difficult
due to the lack of the necessary kinetic data. Therefore, we adopt a more qualita-
tive approach to include regulation in our model. It is based on the logical mod-
eling framework pioneered in the 1970’s by L. Glass, S. Kauffman, R. Thomas
et al., see [13] for a recent review. We assume that for each regulated protein
p there are two possible states on and off, describing whether at a particular
time t the gene encoding p is expressed or not.

Formally, for all p ∈ RP ∪ RE, we introduce a Boolean variable p = p(t) ∈
{0, 1} and a logical function fp : Rn → {0, 1}. Here, the Boolean value 0 corre-
sponds to off and the value 1 to on. Each function fp is defined as a Boolean
combination (using the Boolean operations ¬ (not), ∧ (and), ∨ (or)) of atomic
formulae xi ≥ θi, where xi is a real variable and θi is a constant. Overall, the
regulation of our MRN is then formalized by a system of Boolean equations of
the form

p(t) = fp(RP(t),N(t),M(t)), for all p ∈ RP ∪ RE. (2)

Here, fp describes how the expression state of the gene encoding the regulated
protein p depends on the current concentrations of regulatory proteins, external
nutrients, and intermediate metabolites.

Combining metabolism and regulation in this way leads to a hybrid discrete-
continuous system. Here, all concentrations of molecular species are modeled
by continuous variables. However, the evolution of the regulated proteins p is
controlled by the expression state p of the corresponding genes. Thus, depending
on the discrete state p, there are two different continuous dynamics. The system
will jump from one discrete state to the other if some regulatory event given by
Eq. (2) occurs, see Fig. 2 for illustration.



180 L. Liu and A. Bockmayr

p = on

Ṁp(t) = Fp(M,K,S, t) Ṁp(t) = −kd · Mp(t)

Jump(on, σ, off)

Jump(off, σ′, on) Mp(t) ≥ 0Mp(t) ≥ 0

p = off

Fig. 2. Graphical representation of the continuous evolution in the discrete states p =
on and p = off, for regulated proteins p ∈ RP∪RE. In the on-state, protein production
and degradation is described by the kinetic law Fp(·), while in the off-state only
degradation occurs, with kinetic constant kd.
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