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Abstract The advent of artificial intelligence methodologies pave the way towards
smarter healthcare by exploiting new concepts such as deep learning. This chapter
presents an overview of deep learning techniques that are applied to smart health-
care. Deep learning techniques are frequently applied to smart health to enable
AI-based recent technological development to healthcare. Furthermore, the chapter
also introduces challenges and opportunities in deep learning particularly in the
healthcare domain.
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1 Introduction

Urban and regional planning is an aspect of human endeavor that has expanded
as man improves in knowledge and understanding. This expansion has seen
tremendous improvement in the way and manner humans move about within and
outside their immediate vicinity. This success was no doubt assisted by tools used
for proper town planning of which maps and other location positioning services are
part of. The need to constantly get the best within our community and outside our
community has led to the improvement of the tools used for location positioning and
other factors that contribute to a better-planned city [32]. This constant improvement
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was helped and continuously being helped by improved technological output.
Digitalization of our cities is seeing daily improvement with the aid of powerful
devices embedded with sensors for data acquisition, environmental monitoring,
digital transportation, health improvement, easy access to amenities and facilities,
and overall service provision for everyone within the city. A digital city is more
often than not called a smart city. A smart city has various components which are
all interlinked with improved technology and the need to provide quality services to
its citizenry [15]. One of this components is smart health.

Smart health is the use of high technological devices for improved and quality
health delivery. In other words, it contains the use of smart devices, electronic health
monitoring gadgets, web services all connected(or not) to a data hub where positive
inferences could be made about an individual’s health status or a community’s health
status. The ubiquitousness of smart health has made its development a welcome
change; this coupled with the ever-growing production of technological tools has
seen the demand for smart health applications go up in recent years. As an example,
an individual could check his or her blood pressure with his or her mobile devices
thanks to the embedded sensors and applications found on these devices [7]; it is
also possible to check the weather or climate readings of an area within a city
and to know which part of the city to avoid if the weather is not suitable for your
health [41]; a medical professional can check his or her patients health condition
using the application both of them share with the purpose of advising the patients
should any emergency occurs and so on. These examples are just a few of the
many advantages smart health has to offer and with the increase in technological
advancements, better devices are being produced to cope with the demands of the
smart health industry. These devices not only serve as health tools but they also serve
as good data acquisition tools, in which case the generated data could be processed
and useful inference can be made in the long run. This also makes Smart Health
applications integral parts of smart cities development. However, for smart health
to be a successful element within a smart city, it ought to be able to measure up to
the level of growth when compared to other aspects of a smart city. In other words,
smart health needs to advance with technology just like the other components of
a smart city. For this to work, processing of a smart health dataset would require
proper and improved techniques; this is somewhat becoming a research hurdle as
the datasets are generated by different devices with various operating capabilities
thus leading to datasets with varying output type and format. The question now
becomes; how do we process these datasets effectively and efficiently considering
the volume and format of these generated data in order to achieve the goals of smart
health? To provide answers to this question and others like it, different methods
were developed and proposed by various data scientists. These methods would
further metamorphous into much broader techniques, the most popular of them
being machine learning.

Machine learning (ML) is the ability of a machine to learn from inputs with
the goal of producing powerful algorithms for decision making. With advancing
technologies, comes different learning ways by which a machine learns. This
learning evolution has led to the development of more sophisticated tools like



Deep Learning in Smart Health: Methodologies, Applications, Challenges 25

deep learning, extreme learning, etc. These tools have proven to be better to keep
up with the aspect of new technological developments than conventional machine
learning techniques. In fact, deep learning (one of the new tools) has a wide range of
applications in smart health, specifically bioinformatics [36], medical imaging [18],
disease prediction and analysis [40] to mention but a few. In the next section, we
will talk about the improvement of the deep learning that is the next generation of
machine learning.

2 Evolution of Deep Learning

The dataset generated by devices requires some form of processing for it to be
useful. This processing was done using techniques that include the conventional
machine learning algorithms. There two major types of machine learning algo-
rithms; Supervised learning algorithm, where an input data with labeled responses
are fed to the machine and the machine predicts the output (Support vector
machines, decision trees, etc.); and unsupervised learning algorithms, which groups
the input data into different classes or clusters based on certain characteristics (for
example, K-means, DBScan, etc.). Machine learning algorithms use the features
within a dataset to teach the machine how to identify patterns or specific characters
like handwriting and speech [38]. The usefulness of machine learning algorithms
in certain fields, for example, health care [51], computer vision [25], and so on [6],
made them the “go to” tools for data processing and analysis. However, due to the
increase in volume of datasets and the unstructured nature of data, these machine
learning algorithms tend to face limitations in achieving the desired results. These
and many other shortcomings lead to the development of a more computationally
intensive and powerful learning technique called deep learning.

Deep learning algorithms have been described as a set of algorithms that think
like the human brain [45]. A deep learning algorithm divides the dataset into layers
and learn each layer, one by one, more like a “Divide and conquer” approach to
problem solving. Deep learning techniques are gaining relevance as the year goes
by due to the ease in which deep learning algorithms tackle problems in relative
shorter time while consuming less memory. The development of deep learning was
a gradual process borne out of the need to develop a machine that can deliver faster
and work with high level of dimensions. This urge was given a boost when in 1958,
Rosenblatt invented “perceptron.” Hence, the first Artificial Neural Network (ANN)
emerged and more development was begun [43]. The goal is to model the machine
to think like the human brain and learn on its own. ANNs were used to do tasks that
ordinarily could have been difficult for the computer without certain defined rules.
However, as the year went by, improvements were needed to help the early invention
keep up with the changing trend in computation. One of these improvements was
introduced by Ivakhnenko [24] where he developed an algorithm for supervised
deep feed-forward network; in this algorithm, layers grow incrementally, then
trained using regression analysis and trimmed using validation sets to give effective
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output. Then in 1970, Linnainmaa developed the back propagation technique which
is considered as the backbone of deep learning. Fukushima [17] while building
his deep neocognition architecture introduced and added weights to convolutional
neural networks. This created a gradient-based deep learning algorithms. All these
were done in order to find a better way to train multiple layered network. To
further expand on previous stated techniques, LeCun et al. [29], combined the back
Propagation (BP) algorithm with a deep neural network in his research on hand
written zip code recognition which proved successful. This further led to other
useful ways to properly train a multilayered perceptron and further develop deep
learning algorithm as seen in [3, 11, 19, 20, 46]. These historical developments of
deep learning can be summed up into two major characteristics of deep learning. The
first characteristic is the ability to discover hidden structures within large datasets
using the back propagation algorithm which tells a machine how it should handle
its parameters used in the computation of a layer and its successor. This argument
sometimes lead to deep learning been termed as an example of representation
learning. Another characteristic is deep learning adjust to unforeseen circumstances
even if it has no knowledge of the rule governing such problems before hand. This is
a necessary characteristic since the machine cannot be trained with loose data. Loose
data occurs when proper problem description cannot be delivered to the machine
thus leading to inadequate data that could have helped the machine make meaningful
inference.

Deep learning is an effective tool in all fields through these two properties,
especially healthcare. The diverse applications of deep learning in healthcare have
evolved over the years and would be discussed in details in subsequent sections of
this chapter. However, deep learning methods in healthcare mainly discussed in the
following section.

3 Deep Learning-Based Methods

The following subsections will mention about the various type of deep learning
methods that are mostly applied on smart health technologies. Fundamental nota-
tions which are required to understand mathematical relations in the remaining part
of the section can be seen in Table 1, which has been adopted from [39].

3.1 Deep Feed-Forward Networks

Deep feed-forward primarily aims to approximate a function f ∗ by defining
a mapping y = f (x, θ) which learns the value of θ in order to get a best
approximation. To get the final value of y, several iterations are done within the
layers. A typical feed-forward neural network consists of three fundamental layers.
The input layer and the output layer should equal to the dimension of the input
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Table 1 Basic notations used in the chapter

Notations Definition

x Samples

y Outputs

v Visible vector

h Hidden vector

q State vector

W Matrix of weight vectors

M Total number of units for the hidden layer

wij Weights vector between hidden unit hj and visible unit vi

ti Signals

aik Mixing weights

Sj Binary state of a vector

s
q
i Binary state assigned to unit i by state vector q

Z Partition factor

bj Biased weights for the j -th hidden units

ai Biased weights for the i-th visible units

zi Total i-th inputs

vi Visible unit i

w2
kj Weight vector from the k-th unit in the hidden Layer 2 to the j -th output unit

w1
ji Weight vector from the j -th unit in the hidden Layer 1 to the i-th output unit

W 1
ji Matrix of weights from the j -th unit in the hidden Layer 1 to the i-th output unit

E(q) Energy of a state vector v

σ Activation function

Pr(q) Probability of a state vector q

E(v, h) Energy function with respect to visible and hidden units

pdf (v, h) Probability distribution with respect to visible and hidden units

(A(n(t |m))) Entropy of the posterior

space and output space of the model. The hidden layer can be single or multiple
according to the complexity of the model. Training process is required to ensure
that f (x) matches f ∗. In this case every sample in x has an accompanying attribute
in y ≈ f ∗ (x). In order to get the better approximations of f ∗ (x), the algorithm
develops and uses the hidden layers. The hidden layers are the iterative computations
which are done before the final result is sent to the output layer.

Mathematically, a basic feed-forward network with single hidden layer can be
described in Eq. (1). Let y1, . . . , yk, ..yM be M outputs for N dimensional input x

and H1 the number of neurons in the single hidden layer, then general output yk

could be given as follows:

yk(x,w) = σ

⎛
⎝

M∑
k=1

w
(2)
kj

H1∑
j=1

σj

(
N∑

i=1

w
(1)
j i xi

)
+ w

(1)
j0

⎞
⎠ + w

(2)
k0 (1)
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Fig. 1 Basic feed-forward network with single hidden layer

where w
(2)
kj and w

(2)
k0 are weights associated with output layer; w

(1)
j i and w

(1)
j0 are

weights associated with hidden layer. Nonlinear modeling can be possible through
nonlinear activation function σ .

Deep feed-forward network in Fig. 2 has more hidden layer than basic feed-
forward network in Fig. 1. Number of hidden layer H can be shown in Fig. 2. The
more hidden layer provides more processing capability for Deep Networks.

3.2 Linear Factor Models

Given a latent variable h and a real variable x, and if

h ≈ p(h) (2)

Then we can define a linear model as Eq. (3).

x = wp(h) + b + noise (3)

where p(h) is a factorial distribution, b is the bias, and w is the weight, and the
noise is independent over all dimensions and Gaussian dependent.

Equation (3) is the base linear factor model where other forms will be derived
from as we will see in later subsections.
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Fig. 2 Deep feed-forward network with H number of hidden layers

3.2.1 Probabilistic Principal Component Analysis (PCA)

The first variant of the linear factor model is the PCA. In order to utilize Eq. (3), the
PCA allows the noise variation to occur when approximating the latent variable h

before the real valued variable x is observed. That is,

h ≈ N(h; 0, I ) (4)

With variables xi assumed to be conditionally independent with respect to h, we
get the following:

x ≈ N(x; b,WWT + ψ) (5)

In this case, x is a multivariate normal random variable, ψ is the covariant
matrix given as ψ = diag(σ 2). We can define σ 2 as per-variable variance and it
is represented in vector form [σ 2

1 + σ 2
2 + . . . + σ 2

n ]T . Substituting this into Eq. (4)
and adjusting the initial model equation (5), we obtain

x ≈ N(x; b,WWT + σ 2I ) (6)

Equation (6) is the model for the PCA and WWT + σ 2I is the covariance of the
variable x. Decomposing Eq. (6) further gives

x = Wh + b + σz (7)

where z ≈ N(z; 0, σ I ) is the introduced Gaussian noise.
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3.2.2 Independent Component Analysis (ICA)

The second variant of linear factor models is the ICA. The ICA divides observed
signals into many independent non-Gaussian parts, then fuse them to become the
observed/input data.

Suppose, we have T signal divided into T = (t1, . . . , tn)
T and a random vector

x given as x = (x1, . . . , xm)T , then the input data can be of the form

xi = ai,1t1 + . . . + ai,ktk + . . . + ai,ntn (8)

where ai,k is the mixing weights.
Now, if we let x1, x2, . . . , xm be the set of binary variables from m monitors with

a corresponding y1, y2, . . . , yn of n sources, then we have

xi = ∨n
j=1(gij ∧ yi), i = 1, 2, . . . , m (9)

where ∨ is Boolean “OR” and ∧ is Boolean “AND.” Equation (9) is called the binary
ICA model and the monitors and sources are in binary form.

3.3 Autoencoder

An autoencoder [22, 49] is a fully connected neural network which consists of three
layers such as input, hidden, and output. The autoencoder can be decoupled into two
separate parts: an encoder h = f (x) and a decoder r = g(h), both sharing the layer
which is often referred to as base vector as depicted in Fig. 3. If the autoencoder
successfully learns to place g(f (x)) = x everywhere, then it becomes irrelevant

Fig. 3 Autoencoder network
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because autoencoders are usually made just to be able to copy the original a bit but
not perfectly. They are viable tools for dimensionality reduction, feature learning,
and generative modeling.

There are various types of autoencoders which will be described briefly:

• Undercomplete Autoencoders: have a smaller dimension for hidden layer com-
pared to the input layer. This helps to obtain important features from the data.
Objective function in Eq. (10) minimizes the loss function by penalizing the
g(f (x)) for being different from the input x. Objective is to minimize the loss
function by penalizing the g(f (x)) for being different from the input x.

L = |x − g (f (x))| (10)

where L is the loss function.
• Regularized Autoencoders: This kind of autoencoder trains any type of architec-

ture by choosing the code dimension and other properties based on the complex
nature of the dataset to be modeled [4]. The regularized autoencoder uses a
loss function most times to give the model a leeway in exploiting other encoder
properties rather than limiting itself to just the ability to copy inputs to outputs.

• Sparse Autoencoders: have hidden neurons greater than input neurons. Sparsity
constraint is introduced on the hidden layer which is to prevent output layer
exactly copy to input data. They can still discover important features from the
data. The sparse autoencoder’s training requirement involves the imposition of
a sparsity penalty �(h) on the hidden layer h, together with the reconstruction
error equation (11).

L = |x − g (f (x))| + �(h) (11)

Again, sparse autoencoders are sometimes used to learn features during a
classification task.

• Denoising Autoencoder: is a stochastic autoencoder as a stochastic corruption
process to set some of the inputs to zero [49]. Denoising refers to intentionally
adding noise to the input before providing it to the network. Denoising autoen-
coders minimizes the loss function equation (12) between the output node and
the corrupted input x̃ which is obtained by adding noise to the input.

L = |x̃ − g (f (x))| (12)

• Contractive Autoencoders: is another regularization technique like sparse autoen-
coders and denoising autoencoders. It can be considered to have a robust learned
representation which is less sensitive to small variation in the data. Robustness
of the data representation is ensured by applying Frobenius norm of the Jacobian
matrix as a penalty to the loss function [42]. This penalty for the hidden layer
is calculated with respect to input. Once penalty term in Eq. (11) is changed
by Eq. (13), then Eq. (14) is used as Frobenius norm in Eq. (13). Hence, loss
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function can be obtained by changing the Eq. (11).

�(h) = λ
∥∥Jf (x)

∥∥2
F

(13)

∥∥Jf (x)
∥∥2

F
=

∑
ij

(
ahj (x)

∂xi

)2

(14)

In this case, the penalty �(h) is called the Frobenius norm.
The contractive autoencoders are trained to discourage any form of perturba-

tion of their input values, so they try to map the neighborhood of input values
into a much smaller neighborhood of output values.

3.4 Convolutional Neural Network (CNN)

Convolutional Neural Net is a more powerful deep learning technique to improve
the performance for current visual recognition tasks [1, 12]. CNN’s structure can
be determined in terms of the size, quality, and type of dataset. They are neural
networks that use mathematical convolutions besides general matrix multiplications.
CNNs consist of multiple receptive layers that process portions of the input image.
The outputs of CNNs are arranged in such a way that it creates some form of
overlapping in the input area, in order to obtain a higher-resolution representation
of the original image. The same procedure is run for every layer that is present in
the network. Moreover, the goal of CNNs is to learn data-specific kernels instead of
predefined kernels.

3.4.1 CNN Architecture

CNNs will utilize a series of convolutions and pooling operations during which the
features are detected. The fully connected layers will work as a classifier using these
extracted features. All operations in CNN are summarizes in Fig. 4. It is worthy to
note that though, any CNN might have a few amount of convolutional layers coupled
with pooling layers, it is optional for it to have fully connected layers.

• Convolutional Layer: Convolution is one of the main building blocks of CNNs.
The convolution is used for the mathematical combination of two functions and
the result is a function as well. The convolution is executed by sliding the filter
over the input. A matrix multiplication is performed for every location and sums
the result onto the feature map. The convolutional layer has a m × m × r input
image, where m is the height and width of the image and r is the number of
channels. It has k filters (or kernels) and size of each is n × n × q. n in this case,
is smaller than the image dimension. q could either be the same as the amount
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Fig. 4 Architecture of a CNN

of channels r or it might be smaller for every kernel. The filters’ size leads to
connected structures where each structure is linked with the image to constitute
k feature maps of size m − n + 1.

• Pooling Layer: After a convolution layer, a pooling layer is commonly added
between CNN layers. The main function of pooling layer is to reduce the
dimensionality to satisfy lower the number of parameters and computation in
the network. Hence, the training time is reduced and it can be possible to
control overfitting. Pooling layer sub-samples their input by applying a maximum
operation to the result produced by each filter or kernel. One major property of
pooling is to generate a fixed size output matrix that is required for classification.
The most favorite pooling is max pooling, which takes the maximum value in
each window.

• Fully Connected Layer: After the convolution and pooling layers, the last part is
required to be fully connected regular Neural Network to classify input images.
Neurons in a fully connected layer are connected to the activation functions in
the previous layer.

3.5 Deep Belief Network (DBN)

The DBN consists of stochastic binary unit layers where each connected layers have
some weight. The DBN has multiple layers of latent variables that is connected
between layers [21, 23]. Though with these connections amongst layers, there exists
no visible connections amongst units that are within a particular layer. Again, the
DBN learns to do a new construction of its inputs, and thereafter train them for
classification tasks. One important feature of the DBN is that, they are learned
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one particular layer per time using the greedy scheme. The DBN has the following
properties:

• When learning the generative weights, a layer by layer approach is used which
determines how each variable in a layer depends on variables in another layer
that is above it.

• After learning each latent variable, their values are inferred using a single pass
which begins with an observed data in the least layer.

Furthermore, suppose, we have the visible units v, the hidden units, h that are
conditionally independent, the weights W , that is learned by a restricted Boltzmann
machine, then the probability of generating a visible vector v, is

p(v) =
∑
h

p(h\W)p(v\h,W) (15)

where p(h\W) is the prior distribution over hidden vectors and p(v\h,W) is the
posterior distribution over visible vectors.

In one sense, if a DBN has just one hidden layer, it is called a restricted
Boltzmann machine (RBM). In this case using a constructive divergence method,
we can train the first RBM which subsequently leads to the training of DBN after
certain number of iterations.

3.6 Boltzmann Machine (BM)

BM is a symmetrically connected network of neuron-like units (Fig. 5) that make
binary stochastic decisions [2]. The learning algorithms of BMs allow them to fully
discover useful and important features that portrays complex regularities in datasets.
BMs are mostly used to solve search and learning problems.

To get a better understanding, assume a unit i has an opportunity to always update
its binary state at any given time; it computes its total input as seen in Eq. (16),
below.

zi = bi +
∑
j

sjwij (16)

where wij refers to the connection weight between units i, j , and sj is 1 if j is on
or 0 when j is off. The probability that unit i comes on is given as

Pr(si = 1) = 1

1 + e−zi
(17)
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Fig. 5 Boltzmann network

Now, if each unit is updated sequentially, the network in the probability of a state
vector v can be obtained in Boltzmann distribution as follows:

Pr(q) = e−E(q)

∑
u e−E(u)

(18)

where E(q) is the energy of state vector q and defined as

E(q) = −
∑

i

s
q
i bi −

∑
i<j

s
q
i s

q
j wij (19)

where s
q
i refers to the binary state assigned to unit i by state vector q.

Should any of these connections weights be selected in a way that the energies of
each state vectors represent their costs, then we can view the stochastic nature of a
BM as a means of exiting from an inappropriate local optima while it continues its
search for low-cost solutions.

When learning a BM, it can be done with the hidden units or without them. There
are special cases or types of BM, out of which two are highlighted below.

Mean Field Boltzmann Machines. This kind of BM uses mean field units which
possesses deterministic values between 0 and 1, and they are used to compute the
main value for a unit’s state based on the current states of the other units.

High-order Boltzmann machines.In this type, the structure and the rule for
learning encourage the use of energy functions that are complicated.
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3.7 Restricted Boltzmann Machines (RBM)

In an RBM, there exists layers of visible and hidden units with intraconnections
within these layers (that is, no hidden-hidden nor visible-visible connections) [22,
28].

With the hidden units (h) being independent conditionally on the visible (v)

vector, the unbiased samples from 〈sisj 〉data can be obtained in one single step.
In order to take samples from 〈sisj 〉model requires a number of iterations with
alternating activities between updating the hidden units and the visible units in
parallel times [44].

Mathematically, the energy function of an RBM with hidden and visible units
consisting of W = (wij ) (where W is the matrix of weights) associated with the
connection between hidden unit hj and visible unit vi , can be written as

E(v, h) = −
∑

i

aivi −
∑
j

bjhj −
∑

i

∑
j

viwi,j hj (20)

with a probability distribution of

pdf (v, h) = 1

Z
e−E(v,h) (21)

After learning is finished for one hidden layer, the activity vectors of the hidden
units can be treated as “data” to train another RBM. This particular computation
can be repeated as many times as possible in order to learn as many hidden layers
as needed. After learning many hidden layers, the entire network can be seen as a
single but multi-layered generative model where additional hidden layers contribute
to the improvement of the lower bound (Fig. 6).

Learning hidden layers one at a time has been seen as a very efficient way to learn
and understand deep neural networks that possess multiple hidden layers with quite
a number of weights. The learning might be unsupervised but the highest features
are generally useful for classification purposes.

3.8 Variational Autoencoders (VAE)

These autoencoders use learned approximations to make inference. They are trained
mainly using gradient-based methods. To obtain a sample from an already built
model, the VAE chooses a sample t from the distribution pmodel(t) and runs it
through a generator network g(t). After which, the random variable m is chosen
randomly from the distribution pmodel(m; g(t)) = pmodel(m|t). While training is
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Fig. 6 Restricted Boltzmann
network

going on, the generated approximate inference network n(l) is used to derive t

while pmodel(m|t) becomes the encoder of the network. In other words a VAE could
be trained properly if the variational lower bound D(n) that is associated with the
random variable m is maximized such that

D(n) = Et≈n(t |m)logpmodel(t, m) + A(n(t |m)) (22)

where A(n(t |m)) refers to the entropy of the posterior.
If n is a Gaussian distribution with an additive noise added to its predicted mean

value, then a maximum entropy value would increase the value of the standard
deviation of the noise. Another way of saying this is, the entropy value allows the
variational posterior to place a steep probability mass function on a number of t

items which would have produced m rather than reducing it to just a point estimate
of the most probable value.

While some approaches to VAE infer the value of n through an optimization
algorithm, the main goal however is to train any parametric encoder to produce
parameters of n. Thus, if t is a continuous variable, then carrying out a back
propagation on the samples of m will give a gradient with respect to the encoder(θ ).

One important feature with the VAE is that it is very possible to train a combined
parametric encoder and generator network function, thus giving the model the
ability to learn a predictable coordinate system which the encoder captures.
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3.9 Auto-Regressive (AR) Model

An auto-regressive (AR) model is utilized to predict future characteristics based on
past values. AR is also used for forecasting when there is some correlation between
values in a time series and the values [27, 35]. Since AR requires past data to model
the behavior, the name auto-regressive is related to “self.” The process is very similar
to a linear regression of the data in the current series opposing one or more past
values in the series.

The AR process is a stochastic process, which has degrees of uncertainty or
randomness built in. The randomness means that AR might be able to predict future
trends accurately in terms of past data, but this accuracy is never going to get %100.
Generally, the process can be close enough to the desired response. AR models are
also called conditional models or Markov models.

An AR(p) model is an auto-regressive model where specific lagged values of yt

are used as predictor variables. The value for “p” is called the order. AR(1) indicates
the first-order auto-regressive process. The response in a first-order AR process at
some point in time t is related only to time delayed response. The high order AR
process is related to the corresponding time delayed response data. AR(p) model
formulation is given as follows:

yt = δ + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + At (23)

where At is white noise and ϕ indicates constant values. Moreover yt−1 indicates
the first-order time delayed response.

δ in (24) is seen in (23).

δ =
(

1 −
p∑

i=1

φi

)
μ (24)

where μ is the process mean.

3.10 Nonlinear Auto-Regressive (NAR) Neural Networks

Nonlinear auto-regressive (NAR) neural networks are mostly suitable for prediction
and forecasting [14, 16]. The output of NAR neural network is generated by
regarding different ordered delayed outputs. Hence previous output data are used for
prediction of the future output. Nonlinear activation functions provide a nonlinear
relationship between time delayed data and the current time output. The structure of
NAR neural network can be seen in Fig. 7.
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Fig. 7 Auto-regressive
Neural Network (ARNN)

4 Applications

Health care systems are being revolutionized due to rapid growth in technology.
The applications of various technological innovations have contributed immensely
to the growth of quality healthcare delivery. As stated in Sect. 1, the growth of
smart health can be attributed to the ever-growing ecosystem in the technological
space. And as this growth increases, comes the burden of specialization in terms
of proper algorithms for problem solving; ability to synchronize the data acquired
with the intended technique for data analysis; how and when to use a particular
technique; what techniques should be used for effective results, amongst many
others. These are some of the many problems plaguing the smart health industry.
However intimidating these problems might seem, research has been conducted
to provide up-to-date solutions to these problems. Most research was conducted
according to various themes in the industry which includes but not limited to data
acquisition, data processing, data analytics, and learning techniques. That said, for
any meaningful progress to be made, there is always a base case. The base case
for smart health care is a 2-prong one: data acquisition and data analytics. Data
acquisition can occur in various forms with different output format. This often leads
to data heterogeneity when various devices are used to acquire data for experimental
purposes. The format of the acquired data determines what kind of techniques that
would be used for analytics. Deep learning, one of the tools used for data analytics
has proven to be an effective tool due to its accuracy, runtime, and usage with almost
any kind of data. Deep learning can make classify, cluster, and predict possible
by getting signals, or structures in datasets. When deep network is trained, it can
be used for prediction about the data. The prediction error of it can be measured
regarding with the training set. What’s more is that deep learning has a range of
applications in the smart health industry. In this section of the chapter, we shall be
looking at a few applications of deep learning techniques in smart health. These
applications shall be discussed based on three health categories; bioinformatics,
medical imaging, and predictive analytics.
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4.1 BioInformatics

Bioinformatics is one area in the health industry that has been receiving lots
of attention in recent years. This is not far-fetched since the health industry is
currently experiencing massive digitization and the utilization of this massive
technological growth is evident. Deep learning techniques are being used widely
in the bioinformatics area of health care. Specific cases are summarized as follows.
Understanding protein structures is a key research topic in the medical area. This is
due to the fact that protein structures are key components in the understanding of the
functions of proteins. The authors in [36] proposed a deep learning technique called
sparse autoencoder for sequence-based determination of the distance between two
neighboring cα atoms represented by the angles between Cαi−1 −Cαi −Cαi+1 (θ )
and Cαi − Cαi + 1 (τ ). They believed that accurate predictions of these angles can
appropriately give a more accurate distance. Also, the predicted α and τ values
could be used to construct local structures with good accuracies. In the same
vein, the authors in [5] show that DNA- and RNA- binding proteins sequence
specificities can be derived from experimental data. They called this approach
“DeepMind.” This method uses the convolutional neural network for training the
acquired data and then used back propagation to compute the derivative of all
parameters that are in the model. The result obtained from Deepmind was better
than other methods used in this particular application area. Also, Lee and Yoon
[30] used a deep learning-based technique-restricted Boltzmann machines to predict
protein secondary structure. The demand for protein secondary structure predictions
is on the increase in the protein discovery sphere of bioinformatics. The authors
generated multiple layers for the intended network from a dataset of 1230 protein
chains, used the RBM for training, analysis, and prediction. The outcome of the
prediction was evaluated using the SOV scoring functions. Their proposed method
generated a result of 80.7% accuracy when tested with an independent test dataset.
In their work, Leung et al. [31] used deep neural network to create a model that
can predict splicing patterns in individual tissues as well as individual differences
found in splicing patterns across tissues. Zhang et al. [52] with a view to model the
structural binding for RNA-binding proteins used a deep learning framework. The
developed learning framework constructed a representation for the specificities of
the RNA-binding proteins and also predict new binding sites within the RNA being
studied. Motivated by the need to accurately recognize gene expressions, the authors
in [9] used D-GEXT (feed-forward neural network-based technique) to determine
the expressions of certain target genes. The result from this experiment showed
that D-GEX outperforms other methods by 6.57%. Aside gene classifications and
expressions, deep learning is also being used in cancer research. Specifically, to
enhance diagnosis of cancer, Fakoor et al. [13] proposed a method that is based
on two deep learning techniques (principal component analysis and autoencoder).
Their proposed method was able to detect and classify cancer types accurately
from different cancer datasets. In similar vein, Danaee et al. [10] used the stacked
denoising autoencoder for feature extraction and classification of cancer types from
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high dimensional gene expression dataset with a view to accurately detect cancer.
Again, a deep learning-based model was proposed by Wei et al. [50] for breast
cancer image classification. The deep learning technique used for this research was
convolutional neural network where class and sub-class labels of breast cancer are
labeled in such a way that the distance between features in breast cancer images are
restricted within a certain threshold. This method produced a classification accuracy
of 97%. Similarly, Liu et al. [34] developed “XmasNet” a convolutional neural
networks-based classification technique for prostate cancer identification.

4.2 Medical Imaging

While deep learning has a presence in bioinformatics, its presence is also found
in medical imaging. Over the years, scientist and health care professionals have
been seeking for new ways to process and analyze medical images properly and
in a timely manner. And since deep learning surfaced, various deep learning-
based techniques have been developed. These techniques have produced results
that have outperformed the traditional image processing techniques. A case specific
example is the use of deep learning algorithm for the detection of melanoma (a
deadly form of skin cancer). In order to detect this tumor, the algorithm learns
more about the features of the disease from a dataset containing medical images
and makes appropriate predictions. Similarly, Li et al. [33] developed a method
based on deep learning (CNN) for the detection of mitotic cells from pathological
slides. This is done by first creating a deep segmentation of the mitosis region
and there after designing a deep detection network for the localization of the
mitosis region. The results from this showed a better F-score when compared to
other methods. Aside tumor detection, deep learning is also being used to track
tumor growth and development by generating probability heat maps which provides
various information on the shape, size, density, and location of tumors [47]. In [48],
the authors used deep learning-based technique called the stacked autoencoder to
identify and categorize organs in MRI images from unlabeled and unstructured
dataset. This they did with the hope of developing a working technique for organ
identification within abnormal datasets. This technique achieved an accuracy of
96%. In order to be able to detect diabetic retinopathy early, Gulshan et al.
[18] developed a deep learning algorithm that detects diabetic retinopathy early
using images in the retinal fundus photographs. The deep learning algorithm used
was the CNN and it had an accuracy of 97% in detecting this deadly case of
diabetes. For brain lesion segmentation, Kamnitsas et al. [26] proposed a CNN-
based technique to overcome earlier computational burden experienced during brain
lesion segmentation; this technique is 11 layers deep and has proven to be an
effective scheme when run on the MRI dataset of patients with brain injuries and
brain tumors. Using non-medical image database, the CNN was used to identify
various types of pathologies present in chest X-ray images; the idea was to use the
algorithm/result to prove that deep learning could be applied to databases that are
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all non-medical and still produce useful results and this experiment yielded a 93%
accuracy [8].

4.3 Predictive Analytics

Predictive analytics is the use of past data coupled with some computations or
analytical tools to predict an event. In the medical case, it is the use of a medical
history or health care history to predict the outcome of an event. Predictive analytics
has been an ongoing activity in recent years as successful prediction can help avoid
adverse health condition of a patient or help reduce the effect of an outbreak. Various
techniques have been employed in predictive analytics, of which deep learning is
one of them. Some of the applications of deep learning in this aspect of health care
are highlighted in the following sentences. Miotto et al. [37] proposed a method
called Deep Patient, which used denoising autoencoder for deep feature learning
and EHR data extraction with the view to properly facilitate clinical prediction
of patients’ health status. In similar vein, Pham et al. [40] developed DeepCare
whose sole purpose is to read medical records and make predictions of future
health outcomes. DeepCare uses long short-term memory for this purpose. Both
Deep Patient and DeepCare showed a high performance rate with regard to disease
predictions.

Table 2 shows a summary of the major applications of deep learning and their
associated techniques.

Table 2 A summary of deep learning applications in smart health

Smart health theme Deep learning technique used

Bioinformatics Protein Structure prediction Sparse autoencoder [36]

CNN [5]

RBM [30]

Gene expression DNN [31, 52]

Feed-forward network [9]

Cancer detection and identification PCA,Autoencoder [13]

Denoising autoencoder [10]

CNN [34, 50]

Medical imaging Tumor detection CNN [33, 47]

Brain lesion CNN [26]

Organ Identification Stacked Autoencoder [18, 48]

Predictive analytics Patients health prediction Denoising autoencoder [37, 40]

Auto-regressive NN [16]
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5 Challenges in Deep Learning

Deep learning algorithms require huge amount of data to enable them perform
excellently. The more perfection you want; the more data you will need to feed
to the machine to enable the algorithms produce models that are powerful enough
for your needs. This is mostly the bane of deep learning. And with big data comes
the huge amounts of parameters required to get the deep learning algorithm properly
tuned. In most cases, this huge amount of data is not available and whenever they
are, it is mostly not enough as such, researchers are expected to augment the learning
process through approximation.

Another challenge is the issue of overfitting. This is usually common in neural
networks where there is a huge difference in the error that occurs when training a
dataset and that which occur when a new dataset is introduced. This is an issue since
the reason a model is being trained is to be able to perform well when it is used on
a new dataset rather than the one it was developed with.

Again, deep learning usually requires huge resource deployments for it to
perform excellently well. That is, the more powerful your computing resources
are, the more likely you are to get a more effective result from the deep learning
algorithm. Aside computing resources, you would also require a huge amount
of storage capabilities to train models effectively. Also, deep learning algorithm
requires more time to train a dataset than the usual machine learning techniques.

Furthermore, deep learning algorithms are problem specific. That is, when a
model is trained for a particular problem, it is usually difficult to tweak it for another
kind of problem. This lack of flexibility is an issue because, it would lead to a waste
of time to retrain and redevelop a new model for a seemingly similar problem.

6 Conclusion

Deep learning is proving to be an emerging and usable technique in smart health
processing and applications. Even with its challenges, its use has been widely
accepted in smart health.In the beginning of this chapter, we discussed briefly the
emergence of smart city and its links to smart health. We also talked about the
link between smart health and machine learning in the introductory section of this
chapter. The recent transition from machine learning to deep learning was also
discussed in Sect. 2, where we briefly highlighted the deep learning development
timeline and evolution. Then, we introduced the basic deep learning techniques
(feed-forward networks, autoencoders, linear factor models, convolutional neural
networks) that are been used in smart health along with their major formulations.
Furthermore, we highlighted the applications of deep learning techniques in smart
health from cancer diagnosis to health status predictions. These applications were
divided along the lines of bioinformatics, medical imaging, and predictive analytics.
Lastly, the challenges of deep learning were discussed in the last section of this
chapter.
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