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Abstract Connected Health, also known as Technology-Enabled Care (TEC),
refers to a conceptual model for health management where devices, services, or
interventions are designed around the patient’s needs and health-related data is
shared in such a way that the patient can receive care in the most proactive and
efficient manner. In particular, TEC enables the remote exchange of information,
mainly between a patient and a healthcare professional, to monitor health status, and
to assist in diagnosis. To that aim recent advances in pervasive sensing, mobile, and
communication technologies have led to the deployment of new smart sensors that
can be worn without affecting a person’s daily activities. This chapter encompasses
a brief literature review on TEC challenges, with a focus on the key technologies
enabling the development of wearable solutions for remote human motion tracking.
A wireless sensor network-based remote monitoring system, together with the main
challenges and limitations that are likely to be faced during its implementation is
also discussed, with a glimpse at its application.

Keywords Motion measurements · Connected health · Body area sensor
network · IMU · Healthcare

1 Introduction

Healthcare challenges get increasingly complex due to the growing and aging pop-
ulation, the rising cost of advanced medical treatments and the severely constrained
health and social care budgets. In such scenario, TEC is capable of providing cost-
effective solutions such as telehealth, telecare, and telemedicine with the aim of
providing care for people in convenient, accessible, and cost-effective manner.
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One of the most challenging features of Connected Health is related to human
motion measurements. Over the last few years, several motion tracking systems
and techniques have been developed in order to allow clinicians to evaluate human
motion across several biometric factors or obtaining accurate postural information
about sport athletes. Recent developments in human motion tracking systems,
mainly due to the modern communication capabilities, led to a number of exciting
applications in Connected Health scenarios, in particular in the fields of medical
rehabilitation and sport biomechanics.

In recent years, medical motor rehabilitation relevance grew fast as the average
population age increased, along with a surge of chronicle diseases and accidents,
as those related to sport activities. The ultimate goal of rehabilitation process,
which includes several stages, should be to fully recover from temporary motor
impairments, or to enhance the life quality of patients with permanent motor
disorder by aiming at the highest possible level of independence [1].

In the rehabilitation of motor dysfunctions, a key role is played by the Range
Of Motion (ROM) measurements whose evaluation constitutes the basis of the
therapist’s work. ROM is defined as the amount of movement through a particular
plane, expressed in degrees, that can occur in a joint. Figure 1 depicts a flexion
exercise apt to determine the ROM for elbow. Most times ROM measurements are
carried out under subjective scrutiny of therapists who rely on their own sensitivity
and expertise about visual analysis of human body and palpation of the concerned
regions. The adoption of electronic measurement methods in rehabilitation offers the
outstanding advantage of automatic measurements that allow to assist qualitative
analysis of therapists with objectively measured quantities. Moreover, combining
measurements via electronic instrumentation with the wide area networks set
rehabilitation activities free of space and time constraints.

One of the fields where the automatic measurement of ROM could provide
significant improvements in the treatment process and in the cost reduction of such

Fig. 1 Range of motion for elbow joint
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treatment is home rehabilitation. Basically, home rehabilitation allows a patient
to undergo treatment without the need to reach a specialized center. Apart from
minimizing inconvenience and cost of commuting, a patient that has been given
the opportunity of carrying out rehabilitation activities while staying at home is
likely to show motivation and make progress thanks to the more comfortable
conditions he/she enjoys. Moreover, avoiding for patient to share space, equipment,
and therapists’ attention with other people in a crowded center implies longer, and
thus more effective, sessions. Ultimately, helping to improve the quality of treatment
mainly means helping make recovery faster, which has a direct impact on the costs
for healthcare systems [2].

Another emerging field that involves automatic human motion measurement
techniques, often simply called motion tracking techniques, for studying biome-
chanical parameters of the human movement is sport biomechanics. In this context,
the development of accurate activity monitoring techniques is performed to gain
a greater understanding of the athletic performance. As an example, real-time
monitoring of load and tiredness of athletes during their training sessions is
important in order to maximize performance during competitions, as well as being
important for the health of the athletes. Activity monitoring also plays an important
role in injury prevention and rehabilitation. Due to the nature of sport activities, any
monitoring device should be small and unobtrusive as possible.

Recent advancements in communication and network technologies have made
possible the remote monitoring of motion tracking systems, both for home reha-
bilitation and sport applications. Authors in [3] describe a remote environment
for athletes’ training and support. By means of wireless sensors, the system
provides the visualization to a remote advisor about runners’ conditions, providing
feedback functions to them by using kinematic feature of arm swing. A conceptual
representation of a remote monitoring system for home healthcare in a Connected
Health scenario is shown in Fig. 2. Small sensors, unobtrusively worn on designed
clothing or accessories, are used to gather physiological and movement data.
Sensors are placed according to the clinical application of interest. For instance,

Fig. 2 Conceptual representation of a remote monitoring system for home healthcare in a
Connected Health scenario
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sensors for human motion measurements could be deployed on the body parts
involved in a rehabilitation treatment. Wireless communication is enabled to stream
health-related information to a mobile phone or an access point, forwarding them to
a Remote Monitoring Center (RMC) via Internet. Warning situations are detected
via dynamic data processing algorithms and an alert message is sent to an emergency
center to provide immediate assistance. Caregivers and family members are alerted
in case of an emergency but could also be notified in several situations when the
patient requires assistance.

Despite the proven benefits of the remote monitoring systems relying on body-
worn sensors like those described above, there are considerable open challenges that
need to be addressed before such systems can be adopted on a large scale. These
challenges include not only technological barriers, such as interoperability across
different platforms and security issues but also serious cultural barriers such as the
dislike of the use of medical devices for home-based clinical monitoring [4].

Some of the aforementioned technical challenges have already been dealt with
satisfactorily, some others are being faced and some others are still under study.
This chapter presents some solutions to those challenges focusing on a remote
measurement system designed for motion tracking in home rehabilitation field that
can be adopted for sport biomechanics and can easily be extended to other remote
health applications. The main challenges will be presented first, than the available
technologies, their lacks, and some possible solutions will be discussed in the next
sections. In particular, Sect. 2 provides an overview of key sensing technologies
enabling the development of wearable solutions for human motion tracking and
remote monitoring systems. Although the most common enabling technologies
can be classified as sensing and communication hardware, the influence of signal
processing and software technologies can be significant when designing a remote
monitoring system for home healthcare. Of course, the role of such technologies
depends on the specific application case. Therefore, the chapter presents a case
study from the choice of the sensors to the architecture design and implementation
to the communication and usage optimization. In Sect. 3, a remote monitoring
system capable of bringing a real-time 3D reconstruction of human posture is
described. Section 4 deals with the problems of realizing such system relying on
a standard wireless network. Section 5 shows an example of the application of
advanced software technologies to improve the scalability and the communication
performance of the remote monitoring system. Finally, Sect. 6 draws conclusions.

2 Key Enabling Technologies

Systems for human motion tracking and remote monitoring consist of three main
blocks: (1) the sensing hardware to collect motion data; (2) the communication
interface (both hardware and software) to gather data coming from sensing devices
and relay them to a RMC, and (3) dynamic data analysis algorithms to extract
clinically relevant information from motion data.
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The advancements of sensors based on MEMS (Micro Electro-Mechanical
Systems) technology, and in particular of inertial sensors have enabled a huge
development of instruments and systems for motion tracking, in particular for
applications in the fields of healthcare, rehabilitation, and biomechanics. MEMS
inertial sensors have been recently used to design personal and body area motion
measurement systems to continuously monitor the patients during the rehabilitation
treatment. Monitoring allows the doctors to be aware of the patient’s progress, as
well as to collect data for biofeedback systems, where the patient’s motivation can
be increased by looking at his/her results [5]. MEMS inertial sensors are usually
composed of a 3-axial accelerometer, able to measure the static acceleration, and a
3-axial gyroscope, able to measure the angular rate, to form an Inertial Measurement
Unit (IMU). Often such sensors are combined with a 3-axial magnetometer, able to
measure the Earth magnetic field. In this case, the sensor unit takes the name of
MARG (Magnetic, Angular Rate, and Gravity).

The values measured by the different sensors need to be combined to obtain
an estimation of the orientation of the unit. Although, in order to obtain the
orientation, just the 3-axial accelerometer and the 3-axial magnetometer would
be needed, it is useful to merge the measurements from such sensors with those
from the gyroscope, with the aims of reducing the noise on the accelerometer and
magnetometer readings, and of compensating for the gyroscope offset, that causes
a drift of the orientation estimation. Moreover, the magnetometer is often prone to
disturbances coming from external magnetic fields and ferromagnetic materials in
the environment.

A motion capture suit composed of inertial sensors has been presented in [6].
The suit has been specifically introduced for home and hospital rehabilitation, with
the aim of providing real-time support to health assessment by supplying motion-
related quantities. The embedded sensors communicate with a personal computer
via CAN bus at 1 Mb/s. In their latest revision, authors replaced CAN interface with
a Bluetooth module.

Sensor nodes must be noninvasive to be accepted by the patient, and they have
to avoid restraining the movements that the patient does in normal conditions,
otherwise the measurement results will be altered by the system itself. For this
reason, wireless technologies have been recently adopted in many health applica-
tions because of the flexibility offered by reduced wiring, which gets costs lower
and patient more friendly to instruments he/she has to interact with. Furthermore,
wireless equipment is usually based on low-power consumption technologies
enabling long-term monitoring. A review of wireless-based solutions for health
applications is available in [7].

Authors of [8] experimented with a wireless system using an accelerometer to
monitor vital signs of people staying at home. Post analysis unveiled that different
types of human movements (i.e., walking, falling, jumping, and so forth) generate
different patterns in acceleration data, and that information can be used to recognize
abnormal activities and warn against them. Patients with Parkinson disease were
monitored during everyday activities to evaluate their in-home mobility [9]. To
capture the whole-body motor function and identify movement patterns in scripted
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and unscripted tasks, inertial units were attached to body parts and communicated
with a laptop computer in the range of action. Results obtained with principal
component analysis showed a wide variability across tasks for several subjects, and
within subjects for each task. IMUs have also been integrated into consolidated
equipment accompanying rehabilitation treatment, like those applied to forearm
crutches being used in lower limb rehabilitation [10] to sense the force applied
by patient, the crutch tilt and the handle grip position. These parameters have
been proven to deeply affect the recovery rate, thus, monitoring them and giving
biofeedback can help the patients to adjust their crutch walking to the proper way.

Several studies can be found in the literature addressing the use of wireless
IMUs in sport applications. The speed and energy expenditure of athletes over
ground running can be obtained through the use of wearable accelerometers [11].
Authors in [12] combined a suite of common, off-the-shelf, sensors with body
sensing technology and developed a software system for recording, analyzing,
and presenting sensed data sampled from a single player during a football match.
Readings are gathered from heart rate, galvanic skin response, motion, respiration,
and location using on-body sensors.

Although they are not the most accurate instrument to track human movements
[13], wireless IMUs have long turned out comfortable for home rehabilitation
applications, as they can work under the most common circumstances, without
any particular constraint on lighting or space. Many approaches to motion tracking
have been introduced over the years based on wearable motion sensors, whose
measurements have mostly been validated against well-known camera-based sys-
tems with markers. A wearable wireless sensor network able to keep track of arm
motion in sagittal plane was proposed in [14]. Two nodes, equipped with a biaxial
accelerometer, were used as inclinometer and sensed the orientation of the upper
and lower arm while extending and flexing the limb. The angle estimate error due to
misalignment of nodes along the arm was modeled, and a calibration to determine
accelerometer offsets was carried out by mounting the sensor on a high-precision
rotary motor. Furthermore, system accuracy was evaluated by making the motor
produce swinging motion with different oscillation speeds.

Motion tracking applications by means of wearable systems most often employ
multiple sensors typically integrated into a Body Area Sensor Network (BASN).
An example of this technology is the motion tracking system described in [15, 16].
The described home rehabilitation system produces, by means of a BASN, ROM
measurements for patients performing rehabilitation exercises. A set of wireless
nodes (or motes) constitutes a wearable device that keeps track of orientation
produced by different body segments. Given a joint to monitor, both of the involved
limb segments are equipped with a mote embedding an IMU, so that the ROM is
determined from the absolute orientation of two motes. The primary functions of
the sensor nodes in a BASN are (1) to unobtrusively sample motion signals and (2)
to transfer relevant data to a personal gateway by means of a wireless connection.
A personal gateway, implemented on a smartphone or a personal computer, sets up
and controls the BASN, transferring health-related information to the RMC through
the Internet.



Technologies for Motion Measurements in Connected Health Scenario 197

The availability of mobile telecommunication networks (e.g., GRPS, 3G, 4G)
allows pervasive user monitoring when he/she is outside the home environment.
During the last few years, several communication standards for low-power wireless
communication have been proposed in order to fulfill three main requirements:
(1) low cost; (2) small size of transmitter and receiver devices; and (3) low-
power consumption. The recent developments of IEEE 802.15.4 (ZigBee) and
IEEE 802.15.1 (Bluetooth) have the major focus on increasing network throughput.
Moreover, network lifetime has a greater importance in BASNs since devices are
expected to perform over long periods of time [17].

The large amount of data gathered using wearable systems for user’s status
monitoring has to be managed and processed in order to derive clinically relevant
information. Signal processing, data mining, and pattern recognition are examples
of data analysis techniques that enable remote monitoring applications that would
have been otherwise impossible. Although an exhaustive discussion of the various
data processing algorithms used to process and analyze wearable sensor data is
outside the scope of this chapter, one cannot emphasize enough the fact that
data processing and analysis techniques are an integral part of the design and
development of remote monitoring systems based on wearable technology.

3 A Remote Monitoring System for Home Rehabilitation

An example of joint adoption of the key technologies introduced in the previous
section can be found in [18], proposing an integrated wireless system gearing toward
the human motion tracking in home rehabilitation. The study described in [18]
deals with the design and implementation, from scratch, of a remote monitoring
system allowing the real-time 3D reconstruction of the patient’s motion. The key
contribution of the proposal, in addition, to help improving treatment conditions
and to reduce healthcare costs, lies in producing outputs that can be evaluated both
qualitatively and quantitatively by an operator. The system has been designed in
order to reduce costs, as well as occupancy, of home-side instrumentation. In such a
scenario, a subject in treatment may stay at home performing rehabilitation exercises
while wearing small motion sensors, which are included in a BASN. Of course,
nothing prevents the same system from being used also within the rehabilitation
centers, where many patients could be contemporarily accommodated.

Being properly strapped to the body segments of interest, the sensor nodes
provide information about their own respective motions. Through a network
connection, sensed data are delivered to a dedicated server (Posture Reconstruction
Server—PRS), housed at the RMC, that processes the raw measurements to
determine the corresponding human posture. The evolution of human body part
orientation and posture in time is afterwards stored in a database so that the motor
behavior can be replayed for post analysis. The patient’s motor behavior is projected
at the RMC on a 3D digital representation.
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Fig. 3 System architecture of the human motion tracking system proposed in [18]

By interacting with a ROM analysis graphical user interface, the clinical staff
can watch, without leaving the workplace, the movements of several subjects
under analysis as they are executed at the same time. Augmenting the observation
experience of physiotherapists with objective ROM measurements may stand for
an unprecedented way to evaluate functional recovery, both between and within
subjects.

The components of the remote monitoring system are detailed in the following
subsections (Fig. 3).

3.1 Body Area Sensor Network

The proposed BASN (Fig. 4) includes as many sensor nodes as body segments
to track, in addition to a gateway node. Each sensor node is responsible for
providing the data needed to determine the absolute orientation in the space of the
body segment. All the motes taking part in the BASN are Zolertia Z1 modules,
having the size of 34.40 × 57.00 × 11.86 mm3, and transmitting data via IEEE
802.15.4 interfaces to the gateway node. Each of them is programmed with TinyOS,
and equipped with a 9 degrees of freedom IMU. Such an IMU comprises three
sensors connected by I2C bus to a Texas Instruments© MSP430 microcontroller:
a 3-axis accelerometer measuring linear acceleration with 12-bit resolution, a
3-axis gyroscope measuring angular rates with 16-bit resolution, and a 3-axis
magnetometer sensing the magnetic field with 16-bit resolution, all being sampled
at 50 Hz along the same local reference system. Apart from size and weight of motes
being limited, the fact that the whole communication relies exclusively on wireless
technology goes a long way toward getting the usage as tidy and comfortable as
possible. Consequently, the patients may enjoy more mobility than wearing a wired
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Fig. 4 Body area sensor network

measurement system, which may play an essential role in motivating patients. The
gateway node consists of a mote, wirelessly receiving data from sensor nodes,
that is attached via USB to a Raspberry Pi, a very cheap banknote-sized single-
board computer, having TCP/IP capabilities and being connected to the power grid.
The single-board computer, equipped with a 32-bit ARM 700 MHz processor and
512 MB RAM, gathers and handles raw sensed data from IMUs that are then
streamed to the PRS via Real-time Transport Protocol (RTP).

3.2 Posture Reconstruction Server

The PRS, housed in the RMC, is a processing unit that is in charge of three different
functions: (1) it handles raw sensed data from several BASNs to obtain absolute
orientation of single body segments and, as a result, the whole body orientation
and posture of multiple patients tracked at once; (2) it runs a Real Time Streaming
Protocol (RTSP) server offering to the users the possibility of controlling the 3D
representation playback; and (3) it operates a database storing the patient’s posture
as it evolves in time, thus making up a sort of personal motor history. The PRS
represents a powerful resource that allows both for offline analysis of progresses
made by a given subject over time and for comparison of quantities concerning the
same rehabilitation stage in a given treatment from different patients. The RTSP
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server can be required by the user to stream either “live” playback, directly from a
BASN, or some content stored in the database.

3.3 ROM Analysis Software

The software application for posture and ROM analysis runs at the physician’s
workstation and offers several analysis interfaces to the medical staff by interacting
with the PRS. For example, patient reports including data and statistics on current
treatment can be composed and displayed by the software upon accessing the history
database in the PRS. Intra-subject analyses can be conducted by aggregating data
from that source as well. The digital reconstruction of human posture is realized by
means of a free 3D engine. The application can be set to feed the animation either
with the data from one of the operating BASNs (real-time playback), or with stored
posture information (delayed playback). It is worth adding that the operator is given
the possibility of defining a set of joint angles he/she is interested to watch. The 3D
animated model can be observed in Fig. 5 while set for measuring right upper limb
motion. In this way, while the 3D animation is going on, objective quantities about
those angles are displayed in virtual labels. The labels also show the maximum
value reached since the therapy session has started, giving highly valuable support
for immediate ROM assessment.

Fig. 5 A screenshot from the 3D animation of the right upper limb in action. The joint under
analysis is the blue node in the screen
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Fig. 6 Stages of real-time processing to animate the 3D reconstruction

3.4 Stages in Processing the Measurement Signals

Figure 6 outlines the stages that the real-time 3D reconstruction goes through, from
home to the RMC. At the first stage (a), the movements produced by the patient
are captured by the IMUs, whose raw data are collected and sent by the gateway to
PRS. Subsequently (b), the PRS filters the compensated sensor outputs to determine,
in real time, the orientation of the several body segments in the Earth’s coordinate
frame. The segment orientations are then combined to compute relative orientations
and joint angles for reconstructing the posture of the subject (c). In the final stage
(d), limb orientation and posture feed the ROM analysis application running on
clients that show a 3D real-time animated model representing the patient. A therapist
working at the rehabilitation center can finally observe from his/her workstation the
movements as they are executed, maximizing productivity by observing multiple
subjects at once.

3.5 Quaternion-Based Processing

Avoiding to engage them in any orientation computation lets the nodes of the BASN
spend most of their working time in low power consumption mode, thus preserving
battery life. Therefore, the PRS turns raw sensor data into body segment orientation
and posture.

The orientations are expressed with quaternions q ∈ R
4 as representations based

on Euler angles (i.e., pitch, roll, and yaw) suffer well-known singularity problems
[19]. Although angular rates produced by a 3-axis gyroscope suffice to sense move-
ments in the three planes, bias drift affecting the measurement prevents the accuracy
necessary in human motion tracking applications. This is why the adopted algorithm
uses data from accelerometer and magnetometer to estimate and compensate the
gyro drift. On the other hand, external acceleration and magnetic disturbance usually
make outputs from those two sensors noisy. To tackle these problems, step b of Fig.
6 is carried out by a quaternion-based implementation of extended Kalman filter
[20]. Before an orientation estimation might be produced by a filter, a quaternion
corresponding to each set of accelerometer (a) and magnetometer measurements
(m) ym = [a m]T should be computed. This is done by the Factored Quaternion
Algorithm (FQA) [21], which offers good performance by avoiding to compute
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trigonometric functions. Moreover, since magnetic disturbance might be remarkable
in indoor environments such as home and medical settings, the adoption of FQA
is significant for the application as it limits the influence of magnetometer and,
consequently, of disturbance to one plane of motion. The computed quaternion,
along with angular rate from gyroscope, represents the input of the Kalman filter.
Relative orientation quaternions necessary to the 3D representation are obtained
at step c of Fig. 6 from global coordinate orientations through a reference system
conversion. For example, let qu and qf be, respectively, the quaternions providing
the absolute orientations of the upper arm and forearm segments, then qu

f is the
forearm orientation expressed in the upper arm’s local reference system and is given
by:

qu
f = q∗

u

⊗
qf (1)

where
⊗

is the quaternion multiplication and q∗
u represents the conjugate of qu.

Relative quaternions are also used to determine the joint angles that the operator
requires to measure. For example, elbow joint angle θ can be expressed as pitch
angle of the forearm segment in the upper arm’s reference frame, that is:

θ = arcsin (2wy − 2xz) (2)

with qu
f = [ w x y z ]T .

4 Orientation Estimation in BASN Affected by Packet Loss

In order to achieve battery life extension, leading commitment in designing a BASN,
a node is generally equipped with a low-power radio transceiver implementing IEEE
802.15.4 communication [22]. After all, extended battery life comes at a price: the
less power is used, the lower is the communication reliability, meaning that the
probability of packet loss may be significant. In most of wireless sensor network
applications, communication occurs once in a while and retransmission is a viable
way to overcome losses. Unfortunately, the strict time constraints on sampling,
processing, and sending in real-time systems do not allow to broadcast once again a
packet supposed to be not delivered. This happens any time a processing task cannot
be postponed due to the needs for immediate feedback to provide. For instance,
augmented reality applications have to adapt their outputs according to the change
of spatial position and orientation as it happens [23].

In those cases, the only action one can take to face loss is to deal with it:
loss tolerance countermeasures must aim at the reduction of the relative effects on
the system outputs. Packet loss in real-time motion tracking applications basically
results in a temporary decrease of the sampling rate, whose value is essential
to capture a subject’s movement adequately. In particular, for remote monitoring
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systems like the one described in the previous section, it can seriously harm the
capability of the system to provide the user with accurate real-time measurements
(e.g., a 3D model in motion tracking may happen to pose incorrectly). The problem
is even bigger in applications with tens of nodes jointly working to trace the whole-
body motion.

The problem of tracking and reconstructing the subject’s movements can be
modeled as the problem of finding out the spatial orientations, at any given time, of
each of the segments the body is composed of. Theoretically, two main approaches
are possible in order to estimate an orientation: either integrating the angular rates
or referring to the projections of the Earth’s gravity and magnetic field onto the
sensor frame. In the former case, estimation relies exclusively on gyroscope data,
in the latter accelerometer and magnetometer measurements are used as the inputs.
Integrating angular rates means keeping an internal state (stateful) relying on the
history of gyroscope data, while one sample of acceleration and magnetic field
suffices to find orientation (stateless). In practice, both approaches, when working
separately, fail to come up with a result being fit to represent human motion
accurately. Gyroscope data are affected by bias that changes unpredictably in time,
leading to an integration error that drifts remarkably in a few seconds. On the other
hand, accelerometer and magnetometer data are basically noisy, and so are the
resulting orientations, in addition, to suffering from interference caused by external
acceleration and magnetic perturbations.

Every time a packet gets lost, a gap in the history of angular rates some of the
body segments of the 3D model fall behind the actual movement, and in some cases
awkward postures may show up. Figure 7 shows the ideal humerus pitch angle
obtained when a loss occurs after 40 s, against the humerus pitch angles produced
by single-frame algorithm (red line) and data-fusion algorithm (blue line). As can
be seen, the ideal pitch angle grows linearly with time, while single-frame trajectory
gets back on its track reacting to the same loss faster than what happens for data-
fusion trajectory. A trade-off has to be found between choosing single-frame or
data-fusion algorithms that could cause lower orientation accuracy and/or better loss
resilience. In order to deal with that problem, a method based on the interpolation of
quaternions computed by two algorithms, as depicted in Fig. 8, has been proposed
in [24].

Having two unit quaternions representing rotations, an intermediate rotation
can be found by interpolating them. Linear interpolation is not the best solution
since a rotating joint is expected to move along a smooth curve. Spherical Linear
IntERPolation (SLERP) is defined as a linear interpolation performed on the surface
of a unit sphere, used in the field of computer graphics to obtain smooth motion.
Analytically, let qA and qB be two unit quaternions, θ be the rotation angle, and
μ ∈ [0, 1] be a real scalar value, the SLERP resulting from

qC = SLERP (qA, qB,μ) = sin (1 − μ) θ

sin θ
qA + sin μθ

sin θ
qB (3)



204 P. Daponte et al.

Fig. 7 Humerus pitch angle trajectories

Fig. 8 Interpolation between data-fusion and single-frame quaternion

carries out a spherical interpolation between qA and qB by an amount μ, with qC

determined as a point along the circle arc on the surface of the unit sphere.
Early experiments have been carried out and their results have been presented

in [24]. The sensor platform used in experiments consists of the same Zolerzia Z1
described above. The raw data have been organized in 6-sample packets, collected
by a personal computer from a sensor via wired serial communication in order
to get continuous lossless sequences of samples. These sequences then have been
artificially injected with several profiles of loss, so as to create artificial lossy sample
sequences and analyze the algorithm performance under different conditions of
network reliability. In order to assess effects not only on the single node orientation,
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but also on joint angle measurement, sequences from two adjacent nodes have been
acquired. In particular, raw data related to a 90◦ arm extension have been acquired
and the pitch angles of humerus and forearm have been analyzed. The raw data
sequence of the humerus trajectory has been injected with a loss of four packets
right after 80 samples.

Figure 9a reports the performance of the data-fusion algorithm proposed in [24].
It can be seen that the occurrence of packets loss results in humerus pitch angle
(red line) different from forearm one (blue line). As reported previously, this results
in a growing elbow joint angle (black line). Moreover, the slow convergence rate
causes a considerable deviation of the elbow joint angle for more than 2 s (about
100 samples), which is not desirable in human motion capture. The noisy single-
frame orientations are shown in Fig. 9b to reduce the upper bound of elbow joint
error below 20◦, even though they return trajectories being unacceptably jerky. The
performance of the interpolation method is shown in Fig. 9c, where the error of
elbow joint angle reaches 10◦ for about 1 s only. It is worth remarking that these

Fig. 9 (a) Trajectories produced by data fusion deviate remarkably from real motion due to loss.
(b) Single-frame algorithm produces jerky trajectories. (c) Interpolation algorithm preserves the
smoothness and limits the maximum deviation
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early results seem to confirm that quaternion interpolation is a viable way to reduce
the packet loss effects.

5 Remote Health Monitoring Systems and IoT

The example shown above follows a general paradigm based on a three-layer
architecture. The first layer of the architecture is composed of the sensing nodes of
the BASN. Each mote receives initialization command and responds to queries from
its coordinator, also called gateway. The network nodes continuously sample and
process raw information, sending data to the gateway. The operative frequencies for
sampling, processing, and communicating are established according to the nature
of the application. The second layer is the gateway that interfaces the BASN
sensor nodes and communicates with services at top level. Typically, the gateway is
responsible for the following tasks: (1) sensor node registration (number and type of
sensors), (2) initialization (e.g., specify sampling frequency and operational mode),
and (3) setup of secure communication. Once the network is configured, the gateway
manages the BASN, taking care of channel sharing, time synchronization, data
retrieval, and processing. At top level, a wide area network of several computers
receives user’ electronic health data and provides several services, such as data
storage, user authentication, data pattern analysis, and recognition of serial health
anomalies.

In addition to technology for data collecting, storage and access, healthcare-
related information analysis and visualization are critical components of remote
health monitoring systems [25]. Dealing with huge amount of data often makes their
analysis quite frustrating and error prone from the clinician point of view. A solution
for the aforementioned challenges can be found in data mining and visualization
techniques [26]. The integration of Internet of Things (IoT) paradigm into remote
monitoring systems can further increase intelligence, flexibility, and interoperability
[27]. A device adopting the IoT scheme is uniquely addressed and identifiable
anytime and anywhere through the Internet. IoT-based devices in remote health
monitoring systems are not only capable of sensing tasks but can also exchange
health information with each other. As exemplified in [28], IoT-enabled remote
monitoring systems are able to provide services such as automatic alarm to the
nearest emergency center in the event of a critical accident for a supervised patient.

A paradigm that breaks the rigid layered architecture shown above can be helpful
when human motion of multiple users is simultaneously monitored by multiple
observers. In such cases, a solution that takes advantages from the IoT and the
Publish-Subscribe communication paradigm has been proposed in [29]. According
to this last paradigm, the information produced by users, also known as publishers,
is delivered to one or multiple observers, as a function of their interests. To this aim,
the user labels the information with a topic before publishing it. The subscription
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Fig. 10 Architecture of the remote health monitoring system based on IoT and Publish/Subscribe
communication paradigm

of the interest to a certain topic enables the observers, also called subscribers, to
receive notification when publications on such topic occur.

In Fig. 10, a different architecture of the remote health monitoring system
based on IoT and Publish/Subscribe paradigms is shown. It is made of several
Motion Tracking Sub-systems, devoted to acquire measurement information about
the body segments of a single user (i.e., the BASNs described previously) and
several Measurement Presentation Sub-systems, devoted to display the results to the
clinicians. Among them the communication is ensured by software modules called
publishers, subscribers, and broker. Differently from traditional human motion
tracking systems, in the proposed one: (1) many Motion Tracking Sub-systems
operate simultaneously and (2) each Motion Tracking Sub-system does not send the
measurement information directly to the Measurement Presentation Sub-system but
to the publisher. The publisher, once received the measurement information, labels
it with a topic, e.g., the identification number of the subject being monitored and
sends it to the broker by means of Internet. The broker reads the label of the received
measurement information and sends it, using Internet, to further the subscribers that
have previously declared their interest in that topic. Each subscriber operates in two
successive phases: (1) it declares its interest by sending a message with the topic in
which it is interested to the broker, and (2) it receives the measurement information
in which it is interested from the broker and sends them to the Measurement
Presentation Sub-system.

In the proposed solution, the human motion measurements coming from several
Motion Tracking Sub-systems are published onto topic-based channels. A topic can
refer to measurement information concerning a single user, multiple users, a body
part of one or more users. Subscribers express their interest in one or more topics
and then receive all information published to such topic.

In order to manage the information delivery, the Message Queue Telemetry
Transport standard (MQTT) protocol has been selected. It was designed for
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networks with low bandwidth and high-latency, as in the case of Internet. The
reduced size of header and payload in MQTT messages makes it useful for the
transmission of data in a real-time mode. Further advantages of using MQTT relate
to hiding the implementation details about networking aspects and to confine the
difficulties in the data recruitment only to a topic identification. In this way, different
subscribers can easily access data from different publishers. To this aim, MQTT
makes use of different components, as described in the following:

• The publisher software module: (1) Creates a message, (2) labels the message
with a topic, and (3) sends the message to the broker.

• The subscriber software module: (1) Subscribes to receive messages that it is
interested in, (2) unsubscribes to remove a request for messages, and (3) receives
from the broker the messages labeled with the topic in which it is interested in.

• The broker software module routes the messages from publishers to subscribers
according to each message label and the topic in which each subscriber is
interested in.

The novelty of such a paradigm lies in the fact that a client will no longer need
to contact the server periodically to check new data availability. Instead, the server
sends the specific data requested by the client, as soon as it has them available.

The performance of the previously described remote health monitoring system
has been evaluated by considering the one-way delay from publisher to subscriber.
In order to characterize such packet delays in the IoT scenario, multiple instances of
MQTT publishers and subscribers have been executed providing multiple message
flows from publisher to broker and from broker to subscriber. Figure 11 depicts
the architecture of the test bench. Several instances of MQTT publishers have been
executed on a dedicated computer (PC#1 in Fig. 11). One instance of the MQTT
broker has been running on a further computer (PC#2 in Fig. 11). Several instances
of MQTT subscribers have been executed on another computer (PC#3 in Fig. 11).
Finally, a delay measurement system has been installed on a further computer (PC#4
in Fig. 11), in order to analyze the network traffic. It consists of an open-source
network analyzer tool, Wireshark, able to capture network packets in real time,
filtering them, and displaying the acquired information in human-readable format. It
is worth noting that the packets are time stamped by Wireshark having as reference
the same clock, i.e., the one of PC#4. This solution avoids the use of protocols to
synchronize the clock of the PC sender and the clock of the PC receiver in order
to evaluate the packet delay [30]. All computers in the test bench are connected
together to a network hub. This choice allows to capture each packet as soon as it is
sent by PC#1 and PC#2 and then to consider the behavior of the broker as function
of the message flows, only. In the test scenario of this preliminary experimental
analysis, a computer has been used for all the publishers and a further computer
for all the subscribers. This does not happen in actual applicative scenario, where
a dedicated machine is typically used for each publisher and subscriber. The usage
of a single computer, however, represents a worst case, for two main reasons: (1)
all the publishers/subscribers, share the same computational resources, and (2) the
messages sent by all the publishers are queued to the same network interface.
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Table 1 Packet delays with respect to multiple publishers and subscribers [29]

# Publisher # Subscriber Max. (ms) Min. (ms) μ (ms) σ (ms)

1 1 14.54 0.01 0.08 0.96
1 3 13.45 0.01 0.05 0.63
3 3 13.29 0.01 0.41 2.05
5 5 55.33 0.01 9.98 7.47
5 10 24.53 0.01 3.61 4.48

10 5 21.16 0.01 5.29 4.40
10 10 20.49 0.01 7.38 6.28

Table 1 shows the results of the experimental test bench considering differ-
ent numbers of message flows produced by the publishers and received by the
subscribers. As expected, the values of mean and standard deviation increase by
increasing the number of message flows. No strict requirements are needed about
the end-to-end delay, as the streaming is one way from the Motion Tracking Sub-
systems to the Measurement Presentation Sub-system. About the delay variation,
requirements are related to the capability of a jitter buffer of removing such
variation. This can be easily done until values of the variation in the order of 50 ms,
therefore, the obtained results, reporting a maximum standard deviation of less than
8 ms, are fully acceptable for the 3D movement reconstruction application.

6 Conclusions

Driven by the widespread adoption of information and mobile communication
technologies for health-related applications, the healthcare system could see a
radical changing from current professional centric healthcare system to a distributed
networked and mobile healthcare system. In such a context, the pervasive access
to health-related data will be essential for diagnosis and treatment procedure
in healthcare system. Wearable sensors, particularly those equipped with IoT
capabilities, are the key players of such challenge. In this chapter, an unobtrusive
sensing solution based on MEMS technologies with the aim of providing human
motion measurement has been presented, together with motion measurement related
research field and open issues. In particular, technological solutions related to
packet loss in wireless networks, network scalability, and remote control in existing
network infrastructures have also been discussed. It is easy to imagine extending
the type and number of measurements by embedding other kinds of sensors in the
wireless motes, like EMG electrodes and force sensors, in order to monitor and
process vital signs related to motor activity.
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